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Abstract. We present AccaSim, an HPC simulator for workload man-
agement. Thanks to the scalability and high customizability features of
AccaSim, users can easily represent various real HPC system resources,
develop dispatching methods and carry out large experiments across dif-
ferent workload sources. AccaSim is thus an attractive tool for conducting
controlled experiments in HPC dispatching research.

1 Introduction

High Performance Computing (HPC) systems have become fundamental tools to
solve complex, compute-intensive, and data-intensive problems in diverse engi-
neering, business and scientific fields, enabling new scientific discoveries, inno-
vation of more reliable and efficient products and services, and new insights in
an increasingly data-dependent world. This can be witnessed for instance in the
annual reports1 of PRACE and the recent report2 by ITIF which accounts for
the vital importance of HPC to the global economic competitiveness.

As the demand for HPC technology continues to grow, a typical HPC sys-
tem receives a large number of variable requests by its end users. This calls for
the efficient management of the submitted workload and system resources. This
critical task is carried out by the software component Workload Management
System (WMS). Central to WMS is the dispatcher which has the key role of
deciding when and on which resources to execute the individual requests by
ensuring high system performance and Quality of Service (QoS), such as high
utilization of resources and high throughput. An optimal dispatching decision is
a hard problem [4], and yet suboptimal decisions could have severe consequences,
like wasted resources and/or exceptionally delayed requests. Efficient HPC dis-
patching is thus an active research area, see for instance [9] for an overview.

One of the challenges of the dispatching research is the amount of experimen-
tation necessary for evaluating and comparing various approaches in a controlled
1 http://www.prace-ri.eu/praceannualreports/.
2 http://www2.itif.org/2016-high-performance-computing.pdf.
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environment. The experiments differ under a range of conditions with respect
to workload, the number and the heterogeneity of resources, and dispatching
method. Using a real HPC system for experiments is not realistic for the follow-
ing reasons. First, researchers may not have access to a real system. Second, it is
impossible to modify the hardware components of a system, and often unlikely to
access its WMS for any type of alterations. And finally, even with a real system
permitting modifications in its WMS, it is inconceivable to ensure that distinct
approaches process the same workloads, which hinders fair comparison. There-
fore, simulating a WMS in a synthetic HPC system is essential for conducting
controlled dispatching experiments. Unfortunately, currently available simula-
tors are not flexible enough to render customization in many aspects, limiting
the scope of their usage.

The contribution of this paper is the design and implementation of AccaSim,
an HPC simulator for workload management. AccaSim is an open source,
freely available library for Python, executable in any major operating system.
AccaSim is scalable and highly customizable, allowing to carry out large experi-
ments across different workload sources, resource settings, and dispatching meth-
ods. Moreover, AccaSim enables users to design novel advanced dispatchers
by exploiting information regarding the current system status, which can be
extended for including custom behaviors such as power consumption and fail-
ures of the resources. The researchers can use AccaSim to mimic any real system
by setting up the synthetic resources suitably, develop advanced such as power-
aware, fault-resilient dispatching methods, and test them over a wide range of
workloads by generating them synthetically or using real workload traces from
HPC users. As such, AccaSim an attractive tool for developing dispatchers and
conducting controlled experiments in HPC dispatching research.

This paper is organized as follows. After introducing the concept of WMS in
Sect. 2, we present in Sect. 3 the architecture and main features of AccaSim, and
recap its implementation, instantiation, and customization. In Sect. 4, we show
a case study to illustrate the use of AccaSim for evaluating dispatching methods
and highlight its scalability. We discuss the related work in Sect. 5 and conclude
in Sect. 6.

2 Workload Management System in HPC

A WMS is an important software of an HPC system, being the main access for
the users to exploit the available resources for computing. A WMS manages user
requests and the system resources through critical services. A user request con-
sists of the execution of a computational application over the system resources.
Such a request is referred to as job and the set of all jobs are known as workload.
The jobs are tracked by the WMS during all their states, i.e. from their submis-
sion time, to queuing, running, and completion. Once the jobs are completed,
the results are communicated to the respective users. Figure 1 depicts a general
scheme of a WMS.
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Fig. 1. HPC workload management system.

A WMS offers distinct ways to users for job submission such as a GUI and/or
a command line interface. A submitted job includes the executable of a computa-
tional application, its respective arguments, input files, and the resource require-
ments. An HPC system periodically receives job submissions. Some jobs may
have the same computational application with different arguments and input
files, referring to the different running conditions of the application in develop-
ment, debugging and production environments. When a job is submitted, it is
placed in a queue together with the other pending jobs (if there are any). The
time interval during which a job remains in the queue is known as waiting time.
The queued jobs compete with each other to be executed on limited resources.

A job dispatcher decides which jobs waiting in the queue to run next (schedul-
ing) and on which resources to run them (allocation) by ensuring high system
performance and QoS, such as high utilization of resources and high through-
put. The dispatching decision is generated according a policy using the current
system status, such as the queued jobs, the running jobs and the availability
of the resources. A suboptimal dispatching decision could cause resource waste
and/or exceptional delays in the queue, worsening the system performance and
the perception of its users. A (near-)optimal dispatching decision is thus a critical
aspect in WMS.

The dispatcher periodically communicates with a resource manager of the
WMS for obtaining the current system status. The resource manager updates
the system status through a set of active monitors, one defined on each resource
which primarily keeps track of the resource availability. The WMS systematically
calls the dispatcher for the jobs in the queue. An answer means that a set of jobs
are ready for being executed. Then the dispatching decision is processed by the
resource manager by removing the ready jobs from the queue and sending them
to their allocated resources. Once a job starts running, the resource manager
turns its state from “queued” to “running”. The resource manager commonly
tracks the running jobs for giving to the WMS the ability to communicate their
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state to their users through the interface, and in a more advanced setting to
(let the users) submit again their jobs in case of resource failures. When a job is
completed, the resource manager turns its state from “running” to “completed”
and communicates its result to the interface to be retrieved by the user.

3 AccaSim

AccaSim enables to simulate the WMS of any real HPC system with minimum
effort and facilitates the study of various issues related to dispatching meth-
ods, such as feasibility, behavior, and performance, accelerating the dispatching
research process.

In the rest of this section, we first present the architecture and the main
features of AccaSim, and then recap its implementation, instantiation and cus-
tomization.

Fig. 2. AccaSim architecture.

3.1 Architecture and Main Features

AccaSim is designed as a discrete event simulator. The simulation is guided
by certain events that belong to a real HPC system. These events are mainly
collected from workload and correspond to the job submission, starting and com-
pletion times, referred to as Tsb, Tst and Tc, resp. The architecture of AccaSim
is depicted in Fig. 2. Since there are no real users for submitting jobs nor real
resources for computation during simulation, the first step for starting a simu-
lation is to define the synthetic system with its jobs and resources.
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The job submission component mimics the job submission of users. The main
input data is the workload provided either in the form of a file, corresponding
to the descriptions of the existing workloads, or in the form of an external work-
load generator producing synthetic workload descriptions based on statistical
data. The default reader subcomponent reads the input from a file in Standard
Workload Format (SWF)[11] and passes the parsed data to the job factory sub-
component for creating the synthetic jobs for simulation, keeping the information
related to their identification, submission time, duration and request of system
resources. The created jobs are then mapped to the event manager component,
simulating the job submission process. The main data input is customizable in
the sense that any workload description file and any synthetic workload genera-
tor can be used. The reader can be adapted easily for this purpose to parse any
workload description file format or to read from any workload source.

Event manager is the core component of the simulator, which mimics the
behaviour of the synthetic jobs and the presence of the synthetic resources, and
manages the coordination between the two. Differently from a real WMS, the
job manager subcomponent tracks the jobs during their artificial life-cycle by
maintaining all their possible states “loaded”, “queued”, “running” and “com-
pleted” via the events handled by the event manager. During simulation, at each
time point t:

– the event manager checks if t = Tsb for some jobs. If the submission time
of a job is not yet reached, the job manager assigns the job the “loaded”
state meaning in the real context that the job has not yet been submitted. If
instead the submission time of a job is reached, the job manager updates its
status to “queued”;

– the dispatcher component gives a dispatching decision on (the subset of) the
queued jobs, assigning them an immediate starting time. The event manager
reveals that t = Tst for some waiting jobs and consequently the job manager
updates their status to “running”;

– the event manager checks if t = Tc for currently running jobs. Since these
jobs were dispatched in a previous time point, their starting and completion
times are known (the completion time of a job is the sum of its starting time
and duration). If the completion time of a job is reached, the job manager
updates its status to “completed”.

The resource manager subcomponent of the event manager defines the syn-
thetic resources of the system using a system configuration file in input, and then
mimics their allocation and release at the job starting and completion times.
Hence, at a time point t, if a job starts, the resource manager allocates for the
job the resources decided by the dispatcher ; and if it completes, the resource
manager releases its resources. The system configuration file can be customized
according to the needed types of resources in the simulation.

AccaSim is designed to maintain a low consumption of memory for scalability
concerns, therefore job loading is performed in an incremental way, loading only
the jobs that are near to be submitted at the corresponding simulation time, as
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opposed to loading them once and for all. Moreover, completed jobs are removed
from the system so as to release space in the memory.

The dispatcher component responsible for generating a dispatching decision
interacts with the event manager for retrieving the current system status regard-
ing the queued jobs, the running jobs, and the availability of the resources.
Note that the dispatcher is not aware of the job durations. This information
is known only by the event manager to stop the jobs at their completion time
in a simulated environment. The scheduler and the allocator subcomponents
of the dispatcher are customizable according to the methods of interest. Cur-
rently implemented and available methods for scheduling are: First In First Out
(FIFO), Shortest Job First (SJF), Longest Job First (LJF) and Easy Backfilling
with FIFO priority [20]; and for allocation: First Fit (FF) which allocates to the
first available resource, and Consolidate (C) which sorts the resources by their
current load (busy resources are preferred first), thus trying to fit as many jobs
as possible on the same resource, to decrease the fragmentation of the system.

It has been shown in the last decade that system performance can be
enhanced greatly if the dispatchers are aware of additional information regarding
the current system status, such as power consumption of the resources [2,5,6,24],
resource failures [7,15], and the heating/cooling conditions [3,23]. The addi-
tional data component of AccaSim provides an interface to integrate such extra
data to the system which can then be utilized to develop and experiment with
advanced dispatchers which are for instance power-aware, fault-resilient and
thermal-aware. The interface lets receive the necessary data externally from the
user, make the necessary calculations together with some input from the event
manager, all customizable according to the need, and pass back the result to the
event manager so as to transfer it to the dispatcher.

We conclude the overview of the architecture with the tools component and
the output data which help the users to follow the simulation process and ana-
lyze the results. The watcher allows tracking the current system status, such as
the number of queued jobs, the running jobs, the completed jobs, the availability
of the resources, etc. The visualization instead shows in a GUI a representation
of the allocation of resources by the running jobs during the simulation. The
output data are of two types: (i) the data regarding the execution of the dis-
patching decision for each job, and (ii) the data related to the simulation process,
specifically the CPU time required by the simulation tasks like the generation of
the dispatching decision, job loading etc. Such data is useful for analyzing the
dispatching results and the performance of the simulation process.

To sum up the main features, AccaSim is customizable in its workload source,
resource types, and dispatching methods; AccaSim enables users to design novel
advanced dispatchers by exploiting information regarding the current system
status, which can be extended for including custom behaviors such as power
consumption and failures of the resources; and Accasim provides tools and out-
put data to follow the simulation process and analyze the results.
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3.2 Implementation, Instantiation and Customization

AccaSim is implemented in Python (compatible with version 3.4 or above) which
is an interpreted, object-oriented, high-level programming language, freely avail-
able for any major operating system, and is well established with a large commu-
nity in academia and industry3. All the dependencies used by AccaSim are part of
any Python distribution, except the matplotlib and psutil packages which can be
easily installed using the pip management tool. The source code is available under
MIT License, together with a documentation at http://accasim.readthedocs.io/
en/latest/. A release version is available as a package in the PyPi repository4.

The highly customizable characteristic of AccaSim is driven by its abstract
classes and the inheritance capabilities of Python. The UML diagram of the
main classes is shown in Fig. 3 where the abstract classes associated to the cus-
tomizable components are highlighted in bold.

Fig. 3. AccaSim class diagram.

The starting point for launching a simulation is to instantiate the
hpc simulator class. It must receive as arguments at least a workload description
– such as a file path in SWF format, a system configuration file path in JSON

3 https://www.python.org/events/python-events/.
4 https://pypi.org.

http://accasim.readthedocs.io/en/latest/
http://accasim.readthedocs.io/en/latest/
https://www.python.org/events/python-events/
https://pypi.org
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format, and a dispatcher instance, with which the synthetic system is generated
and loaded with all the default features. An example instantiation is detailed in
Fig. 4.

Fig. 4. A sample AccaSim instantiation.

The workload description file is handled by an implementation of the abstract
reader class, which is default reader by default. The file is read and parsed by
the read() and parse() methods. AccaSim can be customized in its workload
description file format by modifying these methods suitably. AccaSim can as
well be customized so as to read workloads from any source, not necessarily
from a file, by implementing the abstract reader class appropriately.

The system configuration file, which is processed by the resource manager
class, defines the synthetic resources. The file has two main contents. The first
specifies the resource types and their quantity in each group of nodes, which is
useful for modeling heterogeneous HPC systems. The second instead determines
the number of nodes of each group. See Fig. 5 for an example. The user is free
to mimic any real system by customizing this configuration file suitably.

The dispatcher instance is composed by implementations of the abstract
scheduler base and allocator base classes. Both classes must implement their
main methods, schedule() and allocate() respectively, to deal with the scheduling
and the allocation decisions of the dispatching. In this illustrative instantiation
of the hpc simulator class, fifo sched implements scheduler base using FIFO,
whereas ff alloc implements allocator base using FF, and both fifo sched and
ff alloc classes are available in the library for importing, as done in lines 2–3 of
Fig. 4. AccaSim can be customized in its dispatching method by implementing
the abstract scheduler base and allocator base classes as desired.

After instantiating the hpc simulator class in line 10 of Fig. 4, the simula-
tion process starts in line 11 with the start simulation() method which has the
following optional arguments:

simulator.start simulation(debug=True, watcher=True,visualization=True,
↪→ additional data=None)

which serve to require the use of a debugger, as well as the watcher, the visualiza-
tion, and the additional data components of the simulator. The additional data
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argument is an array of objects where each object is an implementation of the
abstract additional data class, giving the possibility to customize AccaSim in
terms of the extra data that the user may want to provide to the system for
dispatching purposes.

4 Case Study

In this section, we show a case study to illustrate the use of AccaSim for evalu-
ating dispatching methods in a simulated environment and highlight AccaSim’s
scalability. The experiments are done on a Macbook Pro machine with Intel Dual
Core i5@2.2 Ghz CPU, 8 GB of RAM, and Python 3.6.

Workload source and synthetic system configuration. We rely on a public
workload trace collected from the Seth cluster5 belonging the High Performance
Computing Center North (HPC2N) of the Swedish National Infrastructure for
Computing. The workload trace file includes 200,735 jobs spanning through 4
years, from July 2002 to January 2006, and is available on-line6 in the SWF
format. Seth was built in 2001 and is already retired by now. It ranked 59th in
Top500 list7, the world’s 500 fastest computers. It was composed of 120 nodes,
each node with two AMD Athlon MP2000 + dual core processors with 1.667 GHz
and 1 GB of RAM. For high parallel performance, the system was equipped
with a low latency network. Because multiple jobs can co-exist on the same
node, we consider a better representation of the system, made of cores instead
of processors. Therefore, we define the synthetic system in the configuration file
with 120 nodes each with 4 cores and 1 GB of RAM, as depicted in Fig. 5.

Fig. 5. System configuration of Seth.

Dispatching Methods. As we previously mentioned in Sect. 3.1, currently
implemented and available methods for scheduling are: First In First Out
(FIFO), Shortest Job First (SJF), Longest Job First (LJF) and Easy Backfilling
with FIFO priority (EBF); and for allocation are: First Fit (FF) and Consol-
idate (C). In the experiments, we consider every combination of the available
5 https://www.hpc2n.umu.se/resources/hardware/seth.
6 http://www.cs.huji.ac.il/labs/parallel/workload/l hpc2n/index.html.
7 http://www.top500.org/.

https://www.hpc2n.umu.se/resources/hardware/seth
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
http://www.top500.org/
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scheduling and allocation methods, which gives rise to the 8 dispatching meth-
ods: FIFO-FF, FIFO-C, SJF-FF, SJF-C, LJF-FF, LJF-C, EBF-FF, and EBF-C.
To employ the various dispatching methods, we modify lines 2–3 and 8–9 of Fig. 4
so as to import from the library and use the corresponding implementations of
the abstract scheduler base and allocator base classes. Then we run AccaSim 8
times on the entire workload each time with a different dispatching method.

Scalability of AccaSim. We parallelize the experiments in two different
threads. The usage of CPU time and memory of each experiment are reported in
Table 1, where the time columns correspond to the total CPU time spent by the
simulator and the time spent in generating the dispatching decision; whereas
the memory columns give the average and the maximum amount of memory
utilized over the total simulation time points. In the first thread, FIFO and LJF
based experiments are completed in 110 min, while in the second, the SJF and
EBF based experiments are completed in 193 min. Each of the experiments took
around 30 min. The exceptions are the EBF-based experiments which require
around an hour because the underlying dispatching methods are computation-
ally more intensive. As can be observed in the table, the time spent by the
simulator, other than generating the dispatching decision, is constant (around
22 min) across all the experiments. The total CPU usage is thus highly dependent
on the complexity of the dispatcher.

Table 1. CPU time and memory usage of the simulator.

Thread 1 Thread 2

Simulator Time (MM:SS) Memory (MB) Simulator Time (MM:SS) Memory (MB)

Total Disp. Avg. Max. Total Disp. Avg. Max.

FIFO-FF 24:44 03:23 27.8 41.4 SJF-FF 25:48 05:19 32.5 54.7

FIFO-C 26:31 04:43 27.5 40.9 SJF-C 27:19 06:14 32.5 55.4

LJF-FF 29:45 07:26 32.7 54.7 EBF-FF 68:27 46:15 26.8 40.2

LJF-C 30:26 08:12 32.9 54.7 EBF-C 71:43 48:31 26.89 40.2

As for the memory usage, thanks to the incremental job loading and job
removal capabilities, AccaSim consumes low memory. The average memory usage
is around 30 MB with a peak at 55 MB across all the experiments. Such low
memory usage makes it possible to execute experiments in parallel. Considering
the large size of the workload, these numbers are very reasonable, supporting
the claim that AccaSim is scalable.

Evaluation of the dispatching methods. The dispatching methods can be
evaluated and compared from different perspectives thanks to AccaSim’s tools
and output data. In Fig. 6, sample snapshots of the watcher and the visualization
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tools taken at certain time points during the FIFO-FF experiment are shown.
The watcher receives command line queries to show a variety of information
regarding the current synthetic system status, such as the queued jobs, the run-
ning jobs, the completed jobs, resource utilization, the current simulation time
point, as well as the total CPU time elapsed by the simulator. The visualization
tool summarizes the allocation of resources by the running jobs each indicated
with a different color, using an estimation (such as wall-time) for job duration.
The display is divided by the types of resources. In our case study, the core and
memory usage are shown separately.

Fig. 6. Following a simulation process.

The output file contains two types of data. The first regards the execution of
the dispatching decision for each job, such as the starting time, the completion
time and its resource allocation, which gets updated each time a job completes its
execution. This type of data can be utilized to contrast the dispatcher methods in
terms of their effect on system resource utilization: how many resources are used
and to what extend they are consumed. Alternatively, the data can be utilized to
compare them in terms of their impact on system throughput, using some metrics
like the well-know job slowdown [10]. Slowdown of a job j is a normalized waiting
time and is defined as slowdownj = (Tw,j + Tr,j)/Tr,j where Tw,j is the waiting
time and Tr,j is the duration of job j. A job waiting more than its duration has a
higher slowdown than a job waiting less than its duration. Another useful metric
could be the queue size, which is the number of jobs waiting in the queue at a
given time point. The lower the slowdown and the queue size are, the higher the
throughput is.

In Fig. 7, we show the distributions of the slowdown and the queue size for
each of the 8 experiments in box-and-whisker plots. We can see that SJF and
EBF based dispatching methods achieve the best results, independently of their
allocation methods probably due to the homogeneous nature of the synthetic
system. Their slowdown values are mainly lower than the median of the FIFO
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and LJF based methods. SJF maintains overall lower slowdown values than the
other methods, but a higher mean than the EBF. SJF maintains also slightly
higher mean in the queue size than the EBF. The scheduling policy of EBF
does not sort the jobs, like SJF, instead it tries to fit as many jobs as possible
into the system, which can explain the best average results achieved in terms of
slowdown and queue size.

Fig. 7. QoS of the dispatchers.

The second type of output data regards the simulation process, specifically
the CPU time required by the simulation tasks like job loading and generation of
the dispatching decision, which gets updated at each simulation time point. This
type of data can be used to evaluate the performance of the dispatchers in terms
of the time they incur for generating a decision. In Fig. 8a, we report the average
CPU time required at a simulation time point for each of the 8 experiments.
In accordance with Table 1, the time spent in simulation, other than generating
the dispatching decision, is constant (around 2 ms in this case) across all the
experiments and the EBF based methods spent much more time in generating
a decision than the others. In Fig. 8b, we instead analyze the scalability. Specifi-
cally, we report for each queue size the average CPU time spent at a simulation
time point in generating a dispatching decision for each of the 8 experiments.
While all the dispatchers scale well, the EBF based methods require more CPU
time for processing bigger queue sizes, due to their scheduling policy which tries
to fit as many jobs as possible into the system.

Our analysis restricted to the considered workload and resource settings
reveals that, while the EBF based dispatchers give the best throughput, they are
much more costly in generating a dispatching decision. Simple dispatchers based
on SJF are valid alternatives with their excellent scalability and high through-
put comparable to the EBF based methods. The job durations in the current
workload are distributed as 56,63% short (duration under 1 h), 34,66% medium
(duration between 1 and 12 h), and 8,71% long (duration over 12 h). The syn-
thetic system has a very homogeneous structure with all the nodes having the
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Fig. 8. Performance of the dispatchers.

same number of the same type of resources. It would be interesting to experi-
ment further with the dispatching methods using workloads with different job
duration distributions and more heterogeneous resource structures. Thanks to
AccaSim, such experiments can be conducted smoothly.

5 Related Work

HPC systems have been simulated from distinct perspectives, for instance to
model their network topologies [1,14,17] or storage systems [18,21]. There also
exist HPC simulators dealing with the duties of a WMS, as in our work, which
are mainly focused on job submission, resource management and job dispatching.

To the best of our knowledge, the most recent WMS simulator is presented
in [19]. The Scheduling Simulation Framework (ScSF) emulates a real WMS,
Slurm Workload Manager8 which is popular in many HPC systems. In [16,22]
Slurm is modified to provide job submission, resource management and job dis-
patching through distinct daemons which run in diverse virtual machines and
which communicate over RPC calls, and dedicated simulators are implemented.
ScSF extends these simulators with automatic generation of synthetic work-
load descriptions based on statistical data, but does not give the possibility to
read real workload descriptions, for instance from a file, for job submission. The
dependency on a specific WMS does not render the customization of the WMS,
and together with the additional dependency on virtual Machines and MySQL,
the set up of ScSF is rather complex. Moreover, ScSF requires a significant
amount of resources in the machines where the simulation will be executed.

In [12], an energy aware WMS simulator, called Performance and Energy
Aware Scheduling (PEAS) simulator is described. With the main aim being to
minimize the power consumption and to increase the throughput of the system,

8 Slurm Workload Manager: https://slurm.schedmd.com/.

https://slurm.schedmd.com/
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PEAS uses predefined dispatching methods and workload description file format,
and the system power calculations are based on a fixed data from SPEC bench-
mark9 considering the entire processor at its max load. PEAS is available only
as GNU/Linux binary, therefore it is not customizable in any of these aspects.

Brennan et al. [8] define a framework for WMS simulation, called Cluster
Discrete Event Simulator (CDES), which uses predefined scheduling algorithms
and relies on specific resource types. Although CDES allows reading real work-
load descriptions for job submission, as apposed to having to generate them
automatically as in ScSF, all jobs are loaded at the beginning which can hinder
the performance when experimenting with a large number of jobs. Moreover, the
implementation is not available which prevents any form of customization.

In [13], a WMS simulator based on a discrete event library called Omnet++10

is introduced. Similar to ScSF, only automatically generated synthetic workload
descriptions are accepted for job submission. Since Omnet++ is primarily used
for building network simulators and is not devoted to workload management,
there exist issues such as the inability to consider different types of resources as
in CDES. Moreover, due to lack of documentation, it is hard to understand to
what extend the simulator is customizable.

The main issues presented in the existing WMS simulators w.r.t. to AccaSim
can be summarized as complex set up and need of many virtual machines and
resources, inflexibility in the workload source, performance degrade with large
workloads, no customization of the WMS, and unavailable or undocumented
implementation.

6 Conclusions

In this paper, we presented AccaSim, a library for simulating WMS in HPC
systems, which offers to the researchers an accessible tool to aid them in their
HPC dispatching research. The library is open source, implemented in Python,
which is freely available for any major operating system, and works with depen-
dencies reachable in any distribution, making it easy to use. AccaSim is scalable
and is highly customizable, allowing to carry out large experiments across dif-
ferent workload sources, resource settings, and dispatching methods. Moreover,
AccaSim enables users to design novel advanced dispatchers by exploiting infor-
mation regarding the current system status, which can be extended for including
custom behaviors such as power consumption and failures of the resources.

In future work, we plan to do experimental comparison to other simulators
and assess further the scalability of AccaSim in terms of distinct system config-
urations. Besides, in order to aid the users further in evaluating dispatchers, we
are currently working on showing more information in the tools regarding system
utilization, such as the amount of allocation of each resource individually, and
on automatically generating the performance and QoS plots used in this paper.

9 https://www.spec.org/power ssj2008/.
10 http://www.omnetpp.org/.

https://www.spec.org/power_ssj2008/
http://www.omnetpp.org/


AccaSim: An HPC Simulator for Workload Management 183

In addition, we plan to externalize the visualization tool by executing it in an
independent application to reduce the simulation resource usage.
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We thank Alina Ŝırbu for fruitful discussions on the work presented here.

References

1. Acun, B., Jain, N., Bhatele, A., Mubarak, M., Carothers, C.D., Kalé, L.V.: Pre-
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via simulation of parallel workloads. In: Proceedings of SC, pp. 154–165. IEEE CS
(2016)

15. Li, Y., Gujrati, P., Lan, Z., Sun, X.: Fault-driven re-scheduling for improving
system-level fault resilience. In: Proceedings of ICPP, pp. 39. IEEE CS (2007)

16. Lucero, A.: Simulation of batch scheduling using real production-ready software
tools. In: Proceedings of IBERGRID, pp. 345–356, Netbiblo (2011)

17. Mubarak, M., Carothers, C.D., Ross, R.B., Carns, P.H.: Enabling parallel sim-
ulation of large-scale HPC network systems. IEEE Trans. Parallel Distrib. Syst.
28(1), 87–100 (2017)

18. Nuñez, A., Fernández, J., Garćıa, J.D., Garćıa, F., Carretero, J.: New techniques
for simulating high performance MPI applications on large storage networks. J.
Supercomput. 51(1), 40–57 (2010)
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