PRIMULA: A Framework Based on Finite
Elements to Address Multi Scale and Multi
Physics Problems

Alejandro Soba®™?

CNEA - CONICET Centro Atéomico Constituyentes,
Av. Gral. Paz 1499, San Martin, Argentina
soba@cnea. gov. ar

Abstract. The PRIMULA code, a multi scale and multithreads open source
framework based on finite elements applicable to the numerical resolution of
partial differential equations is presented. PRIMULA is portable to LINUX/
UNIX, where it is compiled with gfortran, and to WINDOWS, compiled in the
Visual Studio environment. It can be compiled to run in series, with shared
memory under the Standard OPENMP, in a distributed environment under
Standard MPI and on hybrid systems, with a compilation that combines
MPI-OPENMP. The code was tested with non-linear problems in a 16 cores
Intel Xeon (R) E5-2630 v3 multiprocessor of 2.4 GHz and in TUPAC, with
4 x Hexadeca core AMD Opteron 6276s processors. This paper presents results
of scalability and computation times of some of the multiple tests to which it
was submitted.

Keywords: PRIMULA - MPI-OPENP - FEM solver

1 Introduction

There are numerous software packages focused on problems based on differential
equations in partial derivatives using the finite element method. The offer is wide for
user looking for paid [13, 14], restricted [12] or free [11] licensed codes. Most of them
consist of robust solvers that can be applied to the resolution of nonlinear, stationary or
time-dependent problems, allowing them to approach numerical solutions of very
complicated real systems. These packages usually support several parallelization
modes that allow them to take advantage of the computing capacity of large computers,
either distributed memory [22], shared [21] or lately with hybrid format, to profit the
new generations of multithreads machines.

The geometries that these packages manipulate are also of great complexity. They
are discretized using both structured and unstructured meshes with equal efficiency, to
cover a wide range of problems from the spatial point of view, as well as numerical
precision. In particular, this way of facing certain problems in simulation enters into
what is ambiguously called multiphysics-multiscale. The multiplicity of analyzed
physical problems as well as the different ranges of work scales supports this form of
denomination. The method of finite elements [8], often combined with finite differences

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 139-153, 2018.
https://doi.org/10.1007/978-3-319-73353-1_10

140 A. Soba

and finite volumes, so versatile and adaptable to all kinds of geometries, has come to
synergistically favour the limits of applicability of the packages mentioned in such a
way that today it seems there is no physical problem that cannot be numerically dealt
with.

Due not only to the cheapness of hardware but also to the growing importance of
numerical simulation in various branches of science and technology, the acquisition of
a computer with several thousand processors is an accessible goal even for developing
countries, companies or scientific institutes at our national level. However, this supply
of increasingly fast and powerful equipment is not accompanied by the development in
equal measure and intensity of codes that take advantage of this availability. Rather,
users often fall into the automatic use of packages already established in the market,
either under paid or free license, but which show a certain robustness based on the
number of groups in the world that use them or the number of publications that cite
them. In some instances the scientific communities of certain countries can afford a
supercomputer, but they do not seem to understand that such acquisition should be
accompanied by a similar effort in time and money for the development of appropriate
software, which would guarantee independence from the point of view of the gener-
ation and utilization of knowledge.

Currently in a computer like TUPAC [7], not only the administration tools are of
foreign origin, but of free license [9, 10], but the 80% of the software that runs on the
machine belongs to packages not developed by local groups. A great part of that time is
dedicated to calculations with codes of first principle, of the so-called ab initio or
similar, where by means of molecular dynamics or other approximate methods cal-
culations at the atomic scale are performed. Also finite element codes like FLUENT
[14], OPENFOAM [11], and the WRF-ARW [15] for climate analysis are employed in
80% of the studies. The remaining 20% uses more specific software, and only a
minority of them written by local scientists.

Without diminishing merit to those groups that identify particular software and
understand that this development is what they need for their research, this lack of local
developments marks a trend towards dependence on the way in which scientific
knowledge is manipulated. It also limits in a certain way the problems that can be
faced. Due to the impossibility of adapting the code, a certain degree of simplification
or idealization of the particular problem has to be assumed by the user so that the code
can provide a solution.

In the Codes and Models Section of the Nuclear Fuel Cycle Management, CNEA we
have started from a philosophy opposite to the one described above. Certainly, the type
of institution we belong to and the character of the numerical challenges that the group
needs to solve imposes that route. The confidentiality of certain problems as well as the
difficulty of adapting these problems to the pre-existing packages in the market impelled
us to develop our code at home, building the package that we have called DIONISIO
[16-20], owned by CNEA. This code is devoted to the simulation of nuclear fuels
behaviour during reactor operation, under normal and/or accident conditions. Until now
it runs in desktop machines, with some computation sections parallelized under the
standard Openmp [21]. DIONISIO is a multi-physic and multi-scale code, since it has
models ranging from the level of a fuel grain, to the thermal-hydraulic description of
heat removal by the coolant from a whole rod (typically some meters long).

PRIMULA: A Framework Based on Finite Elements 141

The code has one, two and three-dimensional models, which operate in coupled
form. However, the pretension to extend the analysis to the description of more realistic
geometries, and to increase the dimension of the involved models, multiplies the
computing time required. For this reason, the PRIMULA framework was designed. It is
destined to solve coupled, non-linear differential equations, in two and three-
dimensional geometries.

As the DIONSIO programmers and in general those of any type of application, are
not experts in the writing of a distributed code, it is fundamental for the PRIMULA
user that the framework structure remains hidden for him in such a way that he can
parallelize his code without entering into the framework details. On the other hand, we
intended to build a code that does not distinguish between operating systems (PRI-
MULA can be executed in a WINDOWS as well as in a LINUX environment without
any further modification than, obviously, the way of compiling) or in which type of
machine it is executed (it should be irrelevant for the user if the code is executed on a
desktop machine or a supercomputer, so that it is transparent to serial or parallel use).
Thus, through the modification of a couple of variables in the input file, the user
decides whether the code will be executed serially or in parallel, and in the latter case, if
the chosen parallelization will be over distributed or shared memory or a hybrid of
both.

A final detail was considered in the design of PRIMULA: even for the simplest
finite element packages users must be involved in programming certain details of the
code to adapt it to their own particular problem. In many cases packages such as
ABAQUS or OPENFOAM support writing and recompiling code segments. That is
why today it is increasingly difficult to find pure users of a code, and in general, to
achieve maximum software performance, the user becomes a programmer. Under-
standing this mutation of roles, PRIMULA also requires that the user actively intervene
in the programming of certain code sectors. In the modification of the input and the
output, as well as in the manipulation and creation of the variables that each user needs
to introduce in his simulation, new programming is required. It should be noted that for
each type of intervention, there are portions of code already written that facilitate the
rapid learning of the novel programmer. Figure 1 shows a diagram of PRIMULA in
which the separation between the systems to be solved and the kernel of the code is
schematized. The IO of the same works through a series of input files that allow the
selection of the different types of possible executions programmed so far in the kernel,
as well as the manipulation of the system that the user wishes to solve.

PRIMULA is a code in development, which never seeks to consolidate in a fixed
package, but is proposed as a framework that the user must adapt to his own particular
problem and then continue with his own development. PRIMULA is completely ver-
satile and has as one of its peculiarities of style (in its “to be delivered” state) to avoid
FORTRAN language features that are not specific to the gfortran standard, this is, the
most usual and common of the compilers of the moment. Each user, once he takes over
the framework, can give him personal guidance related to the environment where he
wants to execute the code under his own responsibility.

142

A. Soba

SYSTEMS .

IO Any....

[User intervention for his particular problem|

KERNEL

solvers

Fig. 1. Scheme of the engineering of the PRIMULA framework.

[FEI\/I] [METISj

[MPI+OPENMP]

This work is proposed as a brief summary of the main characteristics of PRIMULA,

in addition to a brief presentation of its capabilities, some results obtained and analysis
of scalability and performance in the different environments where it was tested.
Naturally, this report does not cover all the possible problems or tests to which it will
be subjected in the near future, but is only intended to show the perspectives of its
development.

2 PRIMULA General Features

L

ii.

Mesh Generator: The code has a built-in structured mesh generator, which
allows meshing simple domains. The user can to modify the mesh and adapt it to
others simples geometry. On the other hand the code can acquire meshes in files
that agree with the preset format. The types of elements supported by the code are
listed in Table 1. The integrations can be open or closed, with Gauss quadrant
formulas for user defined points.

Mesh partition: Work distribution is achieved by partitioning the original mesh
into sub domains (sub meshes) that run concurrently by the corresponding MPI
processes. Mesh partitioning is carried out using METIS [2]. The mesh parti-
tioning is done sequentially by the master while the workers wait for receiving
their parts of the mesh.

In order to establish the communication scheme between processes, a common
graphing algorithm is used. [1, 3]: firstly the nodes-elements adjacency graph is
created, then for each node the elements it belongs to are obtained. Secondly the
adjacency elements graph is created, to know the neighboring elements of each
element.

After that METIS uses the adjacency elements graph and the number of
sub-domains and gives an array assigning the sub domain to each element.
Based on this information, the communication arrays needed to exchange data
between the workers are created. Finally the communication scheduling needed to

PRIMULA: A Framework Based on Finite Elements 143

Table 1. I: Bi and tri-dimensional elements programmed in PRIMULA.

Lagrangian bi-dimensional Tri-dimensional

Tetrahedrons four

Triangular three nodes nodes

/\ Open or

closed inte-
gration with

triangular or

Triangular six nodes
g Tetrahedrons ten nodes tetrahedral
coordinates.
Hexahedrons eight
Quadrangular four nodes nodes
|
|
. Hexahedrons twenty
Quadrangular nine nodes seven nodes Gaussian
integration

Quadrangular sixteen nodes

determine in which order the workers have to interchange its data in pairs
(through MPI_SendReceive) is computed. Once all this work is done, the dis-
tribution of the sub-meshes and corresponding element, boundary and node arrays
to the corresponding workers is carried out (Fig. 2).

144

iii.

A. Soba

Fig. 2. Two tri-dimensional domains partitioned in 64 local regions using METIS.

Programmed systems: PRIMULA is oriented to the resolution of stationary or
time dependent equations in nonlinear partial derivatives. Field, bio-heat and
mechanical equations for elasto-plasticity are presently codified (see Table 2), all
types with Dirichlet, Neumann and Robin boundary conditions.

Problems can be solved in two and three dimensions. In the case of two
dimensions, approximations of plane stress, plane strain and axy symmetry are
possible.

Table 2. scheme of the main equations solved in PRIMULA until now

System Unknow Representative Equation

Field @D (Field variable) V- (@)VD)+ q = (D) % o

Mechanical (Week U (displacements) J’g’adg = _[fo M adQ+ J' £ udr +R @
form) Q Q r

Bioheat (coupled T (temperature) V-k(T,O)VT)—a(TT-T,)+

with (1)) (3)

+q+ (O, TIVO[=0

iv.

Where k, ¢, a and 4 are the non linear parameters of each physical problem and
g corresponds to the volumetric heat source term.

Linear Equation Systems Solution: The solver of the linear system is a gradient
conjugated with Jacobi preconditioner designed to work in hybrid systems [4, 5].
Among the iterative methods, the Conjugate Gradient method is an algorithm for
the numerical solution of particular systems of linear equations, for which matrix
(A) is symmetric and positive-definite. Every iteration of the algorithm requires
only a single Sparse Matrix-Vector multiplication (SpMV) and a small number of
dot products.

PRIMULA: A Framework Based on Finite Elements 145

[!$0MP PARALLEL DO
: 7 <)
1$0MP SHARED (glShiftRow, ...)
1somp ...
do ii = 1, 1lcRows
33 = glshiftRow + ii

oo

r(ii) = b(ii)
2(ii) = r(ii) * invbiag(ii)
plii) = z(ii)

inormB = inormB + b(ii)*b(ii)
€ = ¢4 z(ii)*r(ii)
enddo PARALLEL DO |

scheme of comunication betwveen processors

mpi_allreduce (inormB, c, SUM)
inowmB = 1.0 / sqgrt (inormB)

do while ((err > tolerance) .and. (iter < iterMax))
call spav (p, z)
pz = 0.0
SUBROUTINE spmv (in b(:), out c(:))
[150MP PARALLEL DO @ X
1SOMP PRIVATE (i3, ...) @ c = 0.0
1SOMP SHARED (glShiftRow, ...) & s
1SOMP ... !$0MP PARALLEL DO &
do ii = 1, 1lcRows {SQ‘!!’
3] = glshiftRow + ii do ii = 1, 1lcRows
Pz = pz + p(jj) * z(ii) c(il) = 0.0 -
enddo PARALLEL DO do jj = ia(ii), ia(ii+l)-1
! c(ii) = c(ii) + aa(jj) * btja(iji))
mpi_allreduce (pz, SUM) .e.r.c':io
alpha = o / pz (A PARALLEL DO |

nom o

)
!$0MP SHARED (glShiftRow, ...)

do ii = 1, 1lcRows

33 = glShiftRow + ii
x(ii) = x(ii) + alpha*p(3jj)
r(ii) = r(ii) alpha*z(ii)
z(ii) = r(ii) * invbiag(ii)

normR = normR + r(ii)*r(ii)
d d + z(ii)*r(ii)
enddo PARALLELDO |

mpi_allreduce (normR,d, SUM)
normR = sgrt (normR}
beta = d/c

EL DO &

!$0MP PARALL,

!$OMP PRIVATE (33, ...) &
!$0MP SHARED (glShiftRow, ...)
do ii = 1, 1lcRows
ij = glshiftRow + ii
p(jj) = z(ii) + beta*p(jj)
enddo PARALLEL DO |

scheme of comunication betwveen processors

iter = iter + 1

err = normk*inormB
enddo

Fig. 3. Hybrid algorithm of JPCG. One matrix vector operation (spmv) and two reduction of dot
product are needed in each iteration. After each iteration the communication between processors
are needed in order to update the values of the coefficients in shared nodes.

The storage requirements are also very modest, since vectors can be overwritten.
In practice, this method often converges in far fewer than a number of iterations
less than the order of the matrix A. However, the conjugate gradient can still
converge very slowly if the matrix A is ill-conditioned. The convergence can
often be accelerated by preconditioning. The choice of P is crucial in order to
obtain a fast converging iterative method. The Jacobi preconditioner is one of the
most popular forms of preconditioning, in which P is a diagonal matrix with

146

vi.

A. Soba

diagonal entries equal to those of A. The advantages of this preconditioner are the
facility of its implementation and the low amount of memory it needs.

A hybrid version of the JPCG was implemented in this work (see Fig. 3),
establishing the parallelization across MPI of the matrix vector multiplication and
the dot product using the portion of the matrix that each processor locally has. The
algorithm also allows the OPENMP strategy (highlighted in the windows) of
distribution in the internal and local operations in each processor. After each
iteration the communication between processors are needed in order to update the
values of the coefficients in shared nodes.

Post Process: The entire post-process of the information generated in PRIMULA
is adapted to the free distribution software PARAVIEW [6] under the data formats
Comma Separate Values (CSV) and ENSI. ParaView is an open-source,
multi-platform data analysis and visualization application. ParaView was devel-
oped to analyze extremely large datasets using distributed memory computing
resources. It can be run on supercomputers to analyze datasets of petascale as well
as on laptops for smaller data. The ParaView flexibility allows developers to
quickly create applications that have specific functionality for a specific problem
domain (Fig. 4).

Fig. 4. A contours plot data from a field problem solved using PRIMULA.

Parallel environment: The code is designed to be run on hybrid machines, taking
advantage of the availability of multiprocessors that share their node with multiple
threads. In the case of TUPAC, each node is a 4x Hexadeca core AMD Opteron

PRIMULA: A Framework Based on Finite Elements 147

6276s, with 64 threads and 8 gigabytes of RAM. In this way a correct use of this
computing capacity must have the possibility of combining algorithms that work
in a distributed and shared form. To this end, the standards Message Passing
Interface [22] and OPENMP [21] will be used. The user selects the parallelization
mode he wants to use and the amount of threads and MPI processes needed for his
problem through input files.

3 Scalability Results

Intel Xeon(R) E5-2630 v3 2.4 Hgz: Has 8 independent processing units (cores) and 2
threads per core, giving a total of 16 working threads. This allows using MPI and
OPENMP or some combinations of both. In particular, to program PRIMULA in
Windows OS we use FORTRAN in the VISUAL studio environment Visual Studio Pro
2012 [23]. Also we use MS-MPI [24] for distributed memory functionalities and
OPENMP feature that by default contains the VS.

The main limitation that a code that handles large amounts of data possesses in the
Windows environment is memory. Manipulating the variable STACK is inevitable if it
is intended to work with a system of several million elements. On the other hand, there
is a physical limit that can not be crossed and eventually works as a limiting problem to
be established by RAM. Nevertheless, work in a desk computer with systems with
several million of nodes efficiently, already is acceptable given the comfort they offer.

We have analyzed PRIMULA with a field problem (see Table 2) for domains with
approximately one million variables obtaining some interesting results, plotted in
Fig. 5 where the speedup for different code portions is showed. First of all, the solver of
JPCG was always measured independently, since is the more demanding portion of the
code. We plot too the pre-processing time, the general calculation zone (that includes
the solver but also the time used in assembly the finite element matrix) and a measure
of the total computing time of the code.

Analyzing these graphs, the first thing we observed is the region of super-scalability
for the limit p < 4. It is interesting to note that the solver PJCG works optimally in
this type of machines with a number of threads close to 4. From there the scalability is
reduced to 86% with 8p and 58% with 16. The total computer time has an acceptable
speedup up to 8 processors while the performance is greatly reduced to 16 where both
the pre-process and the calculation saturate the computation times.

AMD OPTERON 6200: With 4 Hexadeca cores whereby each node has 64 threads.
Two ways of executing the code were measured in this graph. First the application was
executed in fully distributed mode, using pure MPI (plotted with dotted lines). Sec-
ondly, the code was run in hybrid form, with MPI + OPENMP, with 64 shared
memory threads per node. We use an example of approximately 30 million elements
for the calculation. There are several points in this comparison that are shown jointly in
Figs. 6 and 7:

148

®

(i)

(iii)

A. Soba

The solver time in distributed mode has scalability similar to that of the hybrid mode.
However it is remarkable how the distributed mode loses scalability in the section
that we call calculus, which is the arming of matrices and calculation of all the
coefficients by elements. Clearly the use of hybridization reduces the time consumed
in communication between processes and accelerates the computation locally.

Intel Xeon(R) E5-2630

182 1M elements
— Ideal

61 —— Total

144 — Solver
—— Calculation

124 —— Pre Procesing

8 4 Region of super

Speed Up

scalability

processors

Fig. 5. Speed up for systems of 1M of elements approximately.

It is observed in the graph that for the pure MPI mode, we obtain compute times
for 32 and 64 processors. However, it is not possible to obtain reasonable
computing time for the hybrid case. This is because dividing the general domain
(2 nodes) into two local parts, the amount of information of a mesh of 30 million
degrees of freedom that must be transferred between nodes is so large that the
calculation is notoriously slowing down. On the other hand, structures also grow
in size considerably so memory management is also affected. In fact already for
the case of 2 nodes (128 threads) the processing time increases disproportion-
ately, (see Fig. 7). For the hybrid case, it improves the performance of the solver
for 1024 processors in relation to 512. This is related to the improvement in
communication that is established for 16 nodes with respect to that of 8 MPI
nodes. The graph colouring algorithm shows that there is an optimal number of
divisions to minimize communication in the global domain and in the case of the
type of problem we are solving, this happens for that number of 16.

Figure 7 shows the pre-processing time each case consumes. We expect a
similar time consumed in pre-processing for all the systems, with a grow of time
consumed with the number of communication, but in case of 2 nodes plus 64
threads we highlight the fact mentioned in point (ii) about the time of
post-processing in a hybrid case for low number of nodes. We have also added a
point for 2048 processors. This point, although it degrades scalability

PRIMULA: A Framework Based on Finite Elements 149

dramatically for the analyzed case, shows that PRIMULA works correctly for
that number of processors. Finally, this graph tells us that the pre-processing
times are lower for the hybrid case. This is for the same reason observed in item
(i) in where we saw better calculation times in hybrid systems.

30M elements

ideal

MPI MPI+OPENMP

896 ~- - —n— solver
—————— calculus

1024

768

640

512

Speed up

384

256

20%

128

T T T T T T T T
0 128 256 384 512 640 768 896 1024
processors

Fig. 6. Speed up for a system of 30 Millions of elements.

2 nodes+64 threads ﬁ —I

a) | © =
(;;‘"_ cnodes?
10000-:
2048 processors
D 1000 4 . "
0] ¥y = [u]
£ :
Preprocessing time (30M elements)
—— Average
1907 = MPI
] o MPI+OPENMP

M I M I * I M 1 M I * T T T o T o 1
0 256 512 768 1024 1280 1536 1792 2048 2304
Processors

Fig. 7. (a) PRIMULA pre-processing times for a 30M system (approx). In the case 2 nodes and
64 threads the pre-processing time increases disproportionately due to the size of the generated
arrays. (b) Use of processors per node in selected cores done by PRIMULA (Color figure online)

150 A. Soba

(iv) In Fig. 7(b) we presents some results performed by the monitoring system
GANGLIA that analyze cluster behaviour on real time. We follow the local
behaviour of PRIMULA running on the highlighted nodes. Is necessary to note
that if an efficient use of the cluster is wanted, it is advisable to write applications
that use the 64 threads of each node, since the access of each user to each node is
individual. That’s mean that if one user occupied one node alone using only 50%
of the computer capacity (as in the case highlighted in yellow) is a waste of
computing time with the consequent wasted cost in cash.

4 An Example of Field: PLATE Fuel

The fuels used by the vast majority of research reactors currently in operation are
so-called dispersed fuels, which consist of particles of a uranium compound dispersed
in a matrix of a metal (generally aluminium), which ensures a good extraction of heat
of the combustible particle. This material thus formed is sheathed by co lamination
between two metal plates (also generally aluminium) to be introduced into the reactor.
This type of fuel is built by joining a number of plates into prismatic cavities that will
occupy certain positions within the core. Other plate configurations may curve or form
rings, always looking for an optimal neutron flux distribution, better dispersion of
generated heat, plus adequate mechanical stability of the system. (See Fig. 8).

One of the most important codes that make up the DIONISIO package refers to the
so-called PLACA3D, whose function is to simulate the behaviour of a combustible
plate under irradiation in a research reactor in operation. The different phenomena that
occur in each of the plate materials are motorized by temperature. It is generated inside
the fissile material inside the plate and the heat is extracted through the passage of
water by the outer coating, generally constructed of aluminium. Note that a com-
bustible plate has a dimension of 1.4 mm thick, with a region of material fisil of 750
microns of thickness, 65 mm wide and 650 mm long, thus dimensionally establishing a
complicated domain to solve due to the differences in scale of its geometry. On the
other hand, physically interesting problems occur within the fissile region, due to being
the zone of fission heat production, but in addition, the temperature on the plate must be
determined through a water contour condition flowing at the rate of about 10 m per
second. On the other hand, the plate is growing as time passes in the reactor a layer of
oxide that functions as a thermal insulation. This complex problem with models at such
dissimilar scales must be solved in more or less discrete time steps.

As the first field test of the PRIMULA framework we used the geometry of a
discretized fuel plate with 1.256 million elements. The objective of this first test was to
analyze the performance of the framework in a unique analysis of nonlinear temper-
ature, to obtain the temperature distribution over the whole domain with Robin
boundary conditions and a stationary generation of heat. Note that the complete history
of a fuel within a reactor may range from 140 to 160 days of permanence, which is
usually equivalent to a number of numerical steps of approximately 200.

PRIMULA: A Framework Based on Finite Elements 151

Fig. 8. Different types of fuel elements for research reactors: straight plates, curves or forming
rings.

In this first estimation it was established that the calculation time by time step for a
purely MPI computation with 64 processors (a TUPAC node) is approximately 36 s, so
a complete history of this fuel element will oscillate between 2 and 2:30 h of com-
putation. Figure 9 shows the temperature of the refrigerant, that obtained on the oxide
layer that covers the plate and the temperature on the outside of the aluminium plate. In
the inferior part the central temperature of the plate with the scale that appears in the
same graph is presented. These values are correlated with knower experimental and
analytical results.

= Coolant
> Oxide Surface

100 Plate Surface

90

80

70

60

50

40 4

30~

Temperature (°C)

20~

Z (cm)

Fig. 9. Graph of temperature on the refrigerant, on the rust cover and on the aluminum cladding
of the analyzed domain. The lower graph represents the central temperature of the plate.

5 Conclusions

Throughout this work we have given a first bounded description of the PRIMULA
code, designed as a framework adaptable to problems of numerical resolution of dif-
ferential equations in partial derivatives by the finite elements method. It responds to
the usual denominations of multiscale and multiphysical, given the quality and pre-
cision with which it solves coupled problems of different dimensionalities and
described physics through models of one two and three dimensions.

152

A. Soba

The code respects other interesting features such as:

®
(ii)
(iii)
(iv)

It works for any operating system with minimal modifications in its compilation.
It works in series or in parallel with minimal modifications in its input variables.
Works for bi and tri-dimensional geometries.

It is designed for any user to program their problem with a minimal intervention
in the distribution of the particular information. That is, the user does not
intervene in the distributed manipulation of its geometry or in the solver of its
system.

Scalability analyzes have been performed for field problems, obtaining in different
operative systems, results that justify its use given the savings in computing time that
PRIMULA provides. Due to the characteristics of the problem analyzed and the type of
solver used, a scalability that reaches 67% for 1024 processors is adequate.

The code is by no means finished and in fact as already warned in the introduction,
it does not pretend to ever reach its final state. However there are some items in which
we must continue working to make it a robust tool:

®

(i)

(iif)

Firstly, the supply of linear system solvers available in the code should be
expanded. For this purpose, it is planned to include the possibility of using the
Petsc package in addition to programs other solvers of the type of Krilov spaces
with specific preconditioners optimized for distributed calculation.

The finite element types and the shapes functions offered in the code must be
expanded. This is fundamental to more accurately encompass complicated
domains.

The number of systems treated by PRIMULA should be increased considerably.
We are working on the inclusion of field equations coupled with thermal phe-
nomena and also on including equations of fluid mechanics such as the
incompressible Navier Stokes equation. However the list is still short and this
point should be a priority if PRIMULA is intended to compete with packages
already established.

In short, the concept of PRIMULA will not be exploited in all its possibilities until
the number of users grows.

Acknowledgment. I would like to thank CSC researchers and the TUPAC team of adminis-
trators for ongoing support they provided me during all of PRIMULA’s writing, installation and
scalability analysis tasks.

References

LW =

. Artigues, A., Houzeaux, G.: Parallel mesh partitioning in alya. www.prace-ri.eu

. Metis: Serial Graph Partitioning and Fill-reducing Matrix Ordering (metis documentation)
. Coloracion de Grafos. Maria Rosa Murga Dias. Tesis de Grado. U. de Cantabria (2013)

. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing

pain. Carnegie Mellon University (1994)

http://www.prace-ri.eu

-

17.

18.

19.
20.
21.
22.
23.

24.

PRIMULA: A Framework Based on Finite Elements 153

. Séez, X., Soba, A., Sanchez, E., Kleiber, R., Castejon, F., Cela, J.M.: Improvements of the

particle-in-cell code EUTERPE for petascaling machines. Comput. Phys. Commun. 182(9),
2047-2051 (2011)

. WWw.paraview.org
. tupac.conicet.gov.ar/stories/home/
. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 1, 2 & 3. Butterworth

Heinemann, Oxford (2000)

. slurm.schedmd.com/
10.
11.
12.
13.
14.
15.
16.

ganglia.sourceforge.net/

www.openfoam.com/

www.bsc.es/es/computer-applications/alya-system
www.3ds.com/products-services/simulia/products/abaqus/
www.ansys.com/Products/Fluids/ANSY S-Fluent

www.wrf-model.org/index.php

Soba, A., Denis, A.. Simulation with DIONISIO 1.0 of thermal and mechanical
pellet-cladding interaction in nuclear fuel rods. J. Nucl. Mater. 374, 32-43 (2008)

Lemes, M., Soba, A., Daverio, H., Denis, A.: Inclusion of models to describe severe accident
conditions in the fuel simulation code DIONISIO. Nucl. Eng. Design 315, 1-10 (2017)
Soba, A., Denis, A., Lemes, M., Gonzéilez, M.E.: Modelado del comportamiento del
combustible nuclear bajo irradiacion mediante DIONISIO 2.0 Revista de 1a CNEA, Vol. 53—
54 (2014)

Soba, A., Denis, A., Romero, L., Villarino, E., Sardella, F.: A high burnup model developed
for the DIONISIO code. J. Nucl. Mater. 433, 160-166 (2013)

Soba, A., Denis, A.: PLACA/DPLACA: co6digo para la simulaciéon de un combustible tipo
placa monolitico/disperso. Rev. Int. Mét. Num. Cal. Dis. Ing. 23(2), 205-224 (2007)
www.openmp.org/

www.open-mpi.org/

Visual_Studio_Pro_2013. https://www.visualstudio.com/es/ (License 62739385 COM.NAC.
DE ENERGIA ATOMICA)

msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx

http://www.paraview.org
http://tupac.conicet.gov.ar/stories/home/
http://slurm.schedmd.com/
http://ganglia.sourceforge.net/
http://www.openfoam.com/
http://www.bsc.es/es/computer-applications/alya-system
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.ansys.com/Products/Fluids/ANSYS-Fluent
http://www.wrf-model.org/index.php
http://www.openmp.org/
http://www.open-mpi.org/
https://www.visualstudio.com/es/
http://msdn.microsoft.com/en-us/library/bb524831(v%3dvs.85).aspx

	PRIMULA: A Framework Based on Finite Elements to Address Multi Scale and Multi Physics Problems
	Abstract
	1 Introduction
	2 PRIMULA General Features
	3 Scalability Results
	4 An Example of Field: PLATE Fuel
	5 Conclusions
	Acknowledgment
	References

