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Abstract. As heterogeneous systems become more ubiquitous, com-
puter architects will need to develop new CPU scheduling approaches
capable of exploiting the diversity of computational resources. Advances
in deep learning have unlocked an exceptional opportunity of using these
techniques for estimating system performance. However, as of yet no sig-
nificant leaps have been taken in applying deep learning for scheduling
on heterogeneous systems.

In this paper we describe a scheduling model that decouples thread
selection and mapping routines. We use a conventional scheduler to
select threads for execution and propose a deep learning mapper to map
the threads onto a heterogeneous hardware. The validation of our pre-
liminary study shows how a simple deep learning based mapper can
effectively improve system performance for state-of-the-art schedulers by
8%–30% for CPU and memory intensive applications.

1 Introduction

Heterogeneous computational resources have allowed for effective utilization of
increasing transistor densities by combining very fast and powerful cores with
more energy efficient cores as well as integrated GPUs and other accelerators.
Interest in heterogeneous processors within the industry has recently translated
into several practical implementations including ARM’s big.Little [8]. However,
in order to fully utilize and exploit the opportunities that heterogeneous architec-
tures offer, multi-program and parallel applications must be properly managed
by a CPU scheduler. As a result, heterogeneous scheduling has become a popular
area of research and will be essential for supporting new diverse architectures
down the line.

Effective schedulers should be aware of a system’s diverse computational
resources, the variances in thread behaviors, and be able to identify patterns
related to a thread’s performance on different cores. Furthermore, since appli-
cations may perform differently on distinct core types, an efficient scheduler
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should be able to estimate performances in order to identify an optimal map-
ping scheme. Mapping determines which thread to send to which core and is a
problem that shares similarities with recommendation systems and navigation
systems both of which have benefitted using machine and deep learning.

Deep learning (DL) techniques and deep neural networks (DNNs) in partic-
ular are beginning to be utilized in a wide variety of fields due to their great
promise in learning relationships between input data and numerical or categori-
cal outputs. The relationships are often hard to identify and program manually
but can result in excellent prediction accuracies using DNNs. Though DL tech-
niques have been gaining traction over the last few years, its application toward
improving hardware performance remains in its earliest stages. As of yet, there
has been no seminal work applying DL for predicting thread performance on
heterogeneous systems and maximizing system throughput.

The objective of this work is the proof of concept of the opportunities that
arise by applying DL to computer architecture designs. The novelty of this
work centers on decoupling the selection and mapping mechanisms of a het-
erogeneous scheduler and fundamentally, the implementation of a deep learning
mapper (DLM) which uses a DNN to predict system performance. The selector
remains responsible for ensuring fairness and selecting the threads to execute
next scheduling quantum while the mapper is charged with identifying an opti-
mal mapping of selected threads onto available cores. Initial results of our pro-
posal are promising, the DLM is capable of improving the performance of existing
conventional schedulers (round-robin, fairness-aware, Linux CFS) by 8%, 20%,
and 30% respectively for computational and memory intensive applications.

Our contributions include:

– A heterogeneous scheduling model which abstracts and decouples thread
selection and mapping.

– An implementation of a deep learning mapper (DLM) that uses a deep neural
network for predicting the system performance of different mapping schemes.
To our knowledge this work is the first to apply deep learning to CPU schedul-
ing for heterogeneous architectures.

The rest of this paper is structured as follows. Section 2 discusses our motivation
and a brief technical overview of mapping, machine/deep learning techniques,
and heterogeneous scheduling issues. Section 3 presents our proposed schedul-
ing model with a description of a practical implementation. Validation of our
implementation with experimental results is found in Sect. 4. Lastly, we discuss
related work in Sect. 5 and future work and conclusion in Sect. 6.

2 Motivation

This section highlights the efficiency opportunities attainable by optimizing map-
ping on heterogeneous systems and also discusses the rationale for applying DL
towards predicting system performance and how decoupling the thread selec-
tion and mapping mechanisms can provide model scalability while still ensuring
fairness for all threads.
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2.1 Mapping

Finding the optimal thread to core mapping on a heterogeneous system is no
trivial feat. This is especially the case when executing diverse workloads since
the performance of each application is likely to vary from quantum to quantum
and core to core. These differences can vary from application to application as
well as from phase to phase within an application.

Figure 1 illustrates the performance differences that result from executing
SPEC2006 on a large core compared to a small core (for core details see Sect. 4.1).
On average, the applications achieve about 2x better system instructions per
cycle (IPC) when executing on the large core vs. the small core. Variations in
IPC differences can also be observed between applications. For some applica-
tions, these IPC differences can be either very minor (mcf 29%, bzip2 33%, and
hmmer 36%) or very sizable (gemsFDTD 171%, omnetpp 161%, and perlbench
153%). These variations can be partially explained by the code’s structure and
algorithms including loops, data dependencies, I/O and system calls, and mem-
ory access patterns among others.

The inter-application variations in core to core IPC differences also exist
within the different basic blocks and phases of every application (intra-
application). The more inter-application variations of core to core IPC differ-
ences there are, the harder it is for a scheduler to identify the optimal mapping
scheme, but the greater opportunities for improvement.

To showcase how identifying these core to core IPC differences can translate
into mapping benefits, consider the case where four applications (e.g. A, B, C,
and D) are selected to run on a system with 1-large core and 3-small cores. Four
mapping schemes which assign one application to the large core and the other
three to the small cores can be A-BCD, B-CDA, C-DAB, D-ABC. Each mapping
scheme will produce a different resulting system IPC. The overall benefits of an
effective mapper will be based upon the difference between the best and worst
mapping schemes. For instance if A-BCD is the best mapping scheme resulting
in a system IPC of 4 and C-DAB is the worst with a system IPC of 2, then the
difference in percentage terms would be 100% (i.e. (4 − 2)/2).

To demonstrate this in practical terms, we found the differences between the
best and worst mapping schemes for all possible combinations of four applica-
tions from the SPEC2006 benchmark suite. The differences in system perfor-
mance between the best and worst possible mapping scheme for each combina-
tion of four SPEC2006 applications range from 1%–36%. On average, identify-
ing the most adventageous mapping scheme for a given set of four SPEC2006
applications on a 1-large 3-small core system can lead to 16% improvements in
system performance. These results expose the theoretical benefits that may be
gained from an effective scheduler at the application level granularity. Practical
schedulers, however, work at the quantum level granularity and may addition-
ally identify and take advantage of intra-application core to core performance
differences which could expose greater opportunities for mapping optimization.
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Fig. 1. The performance differences that result from executing each SPEC2006 bench-
mark on a large vs. small core.

In order to identify an optimal mapping scheme, a heterogeneous scheduler
should be able to estimate the system performance that each individual mapping
scheme would produce. Conventional schedulers such as the Linux Completely
Fair Scheduler (CFS), however, typically do not make use of the mechanisms
needed to exploit this potential. As we shall see, deep learning can be an effective
tool for schedulers to utilize in order to help estimate system performance.

2.2 Machine/Deep Learning

Part of the attraction of machine/deep learning is the flexibility that its algo-
rithms provide to be useful in a variety of distinct scenarios and contexts. For
instance, advances in computer vision and natural language processing using con-
volutional neural network techniques [10,12] have led to high levels of prediction
accuracy enabling the creation of remarkably capable autonomous vehicles and
virtual assistants. In particular, it is our belief that the predictive power of artifi-
cial neural networks (ANNs) will be of great use for computer architects seeking
to improve system performance and optimize the utilization of diverse hardware
resources. Deep learning (DL) methods expand on more simplistic machine learn-
ing techniques by adding depth and complexities to existing models. Using deep
ANNs (DNNs) or ensembles of different machine learning models is a typical
example of DL.

DNNs consist of a set of input parameters connected to a hidden layer of
artificial neurons which are then connected to other hidden layers before con-
necting to one or more output neurons. The inputs to the hidden and to the
output neurons are each assigned a numerical weight that is multiplied with
its corresponding input parameter and then added together with the result of
the neuron’s other incoming connections. The sum is then fed into an activation
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function (usually a rectified linear, sigmoid, or similar). The output of these neu-
rons is then fed as input to the next layer of neurons or to the output neuron(s).

A DNN can learn to produce accurate predictions by adjusting its weights
using a supervised learning method and training data. This is performed via a
learning algorithm such as backpropagation that adjusts the weights in order to
find an optimal minima which reduces the prediction error based on an estimated
output, the target output, and an error function. Advances in learning algorithms
have enabled faster training times and allowed for the practical use of intricate
DNN architectures. DNNs can also keep learning dynamically (often called online
learning) by periodically training as new data samples are generated. Moreover,
several of the training calculations may be executed in parallel for the neurons
within the same layer. The latency of these calculations can be further mitigated
through the use of hardware support including GPUs, FPGAs, or specialized
neural network accelerators.

2.3 Program Behaviors and CPU Scheduling

Recognizing and exploiting the behavioral variations of programs is instrumental
for achieving optimal scheduling schemes to maximize fairness and system perfor-
mance. Behaviors represent the different characteristics of the program or thread
while executing on the physical cores. These can include cache accesses and miss
rates, branch prediction accuracies, and instructions per cycle (IPC). While not
all programs exhibit the same behavior, studies [7,24] have revealed that the
behavioral periodicity in different applications is typically consistent. In fact,
the behavioral periodicity has been shown to be roughly on the order of several
millions of instructions and is present in various different and even non corre-
lated metrics stemming from looping structures inside of applications. Behavioral
variations may be additionally influenced by interference effects between threads.
These effects are generally due to shared data and physical resources between
threads and should be taken into consideration by an optimal scheduler.

Yet, even after accounting for program behaviors, finding the optimal
scheduling scheme is far from simple. CPU schedulers rely chiefly upon two
mechanisms to fulfill their policy objectives: (1) thread selection and (2) thread
to core mapping. The thread selection mechanism is responsible for selecting
a subset of threads to run from a larger pool of available threads. It does so
by using heuristics which order the threads using priorities or scores related to
how critical the threads are (e.g. time constrained or system level tasks may
be given a higher priority than background tasks which search for application
updates) or how much execution time or progress the threads have made so far.
The selection mechanism also generally ensures that no threads are continually
starved of system resources thereby guaranteeing a certain level of fairness. On
homogeneous systems where all cores are identical, the task of mapping indi-
vidual threads to particular cores depends mainly upon keeping threads close
to their data in the cache hierarchy. On heterogeneous systems, in contrast, the
mapping mechanism must take into regard the different microarchitectural char-
acteristics of the cores in order to find an optimal mapping of the threads to the
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cores which is the most effective for its scheduling objective. As a result, sched-
ulers targeted towards homogeneous systems are unable to optimally exploit the
resource diversity in heterogeneous systems.

The current Linux Completely Fair Scheduler (CFS) [19] is one such example
of a homogeneous scheduler. The state-of-the-art CFS selection scheme combines
priorities with execution time metrics in order to select the threads to run next,
however, the mapping scheme is relatively simplistic. When mapping, the CFS
evenly distributes the threads onto the cores such that all cores have approxi-
mately the same number of threads to run. These threads are effectively pinned
to the core because they are only swapped with threads on their assigned core
and not with those of another core (i.e. threads don’t move from the core they
were initially assigned to).

Heterogeneous architectures, however, provide excellent environments for
exploiting the behavioral diversity of concurrently executing programs and
several schedulers targeting these systems have been recently proposed. The
fairness-aware scheduler by Van Craeynest et al. [27] is one such scheduler which
works similarly to the CFS but instead of mapping all threads evenly on all cores
and pinning them there, it maps the highest priority thread (i.e. the one that has
made the fewest progress) to the most powerful core. For example, in a 4 core
system with 1 powerful core and 3 smaller energy efficient cores, this scheduler
will send the thread with the highest priority to the large core and the next 3
highest priority threads to the other 3 small cores.

Another scheduler targeted at heterogeneous systems is the hardware round-
robin scheduler by Markovic et al. [15]. Instead of using priorities for thread
selection, this approach chooses which threads to run next in a round-robin
manner (thereby guaranteeing fairness) and then maps the selected threads to
the cores. Using the same 4 core system as described above, this scheduler will
rotate the threads in a manner similar to a first in first out queue, from small
core to small core to small core to large core and then back into the thread
waiting pool until all threads have had a chance to execute.

Scheduling also produces overheads which may reduce the total efficiency
gains due to the cost of calculations as well as context swap penalties. It is
therefore imperative for effective lightweight schedulers to balance finding an
optimal scheduling scheme without triggering costly context swaps.

3 Scheduling Model

In this section we present our scheduling model (shown in Fig. 2) with decou-
pled thread selection and mapping mechanisms. This scheduling model uses a
conventional scheduler (CS) to select a subset of available threads to execute
next quantum (using its prioritization scheme) and the deep learning mapper
(DLM) to map the selected threads onto the diverse system resources (using
a throughput maximization scheme). The scheduling quantum (the periodicity
to run the scheduler) chosen is 4 ms for the CS and 1ms for the DLM which
reflect typical quantum granularities of CS approaches. This difference allows



A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 9

the DLM to take advantage of the finer grained variations in program behaviors
and optimize the mapping on the heterogeneous system while still maintaining
CS objectives. Furthermore, the context swap penalties are generally lower for
the DLM since it only swaps threads which are already running and have data
loaded in the caches while the CS may select to run any thread that may not
have any of its data in the caches.

In addition to selecting the threads to run next, the CS is responsible for
thread management, including modifying their statuses, dealing with thread
stalls, and mapping for the first quantum of new threads or when the num-
ber of available threads is less than the number of available cores. When active,
the DLM essentially provides a homogeneous abstraction of the underlying het-
erogeneous hardware to the CS since it only needs to select threads to run and
not whether to execute on a large or small core.

Fig. 2. The scheduling model. A conventional scheduler is used to select the threads
to run next quantum and the DLM then uses the NQP and DNN predictor to find the
optimal mapping to maximize system performance.

3.1 Deep Learning Mapper (DLM)

The DLM is responsible for finding a mapping of the selected threads onto
the hardware cores which optimizes system throughput. This objective helps
to demonstrate the significant potential that using DNN based performance
predictors can have for a continuously busy system. The DLM works by firstly
collecting statistical information about each selected thread pertaining to its
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behavior (described in Sect. 3.1). These are gathered during the thread’s previous
execution quantum. These statistics are then passed along to the next quantum
behavior predictor (NQP) that predicts that the thread’s behavior during the
next execution quantum will be the same as during its previous quantum. The
NQP in essence forwards the behavioral statistics for all threads that have been
selected to execute next quantum to our DNN based performance predictor. The
DNN is able to estimate the system performance for a given mapping scheme of
the threads selected to run next quantum. To identify the most advantageous
mapping scheme to initiate for the next quantum, the DLM will utilize the DNN
to make separate predictions for all possible mapping schemes given the selected
threads and then choses the scheme that results in the highest estimated system
performance.

Thread statistics and parameter engineering. It is important to carefully
determine the appropriate set of thread statistics that characterize thread behav-
iors and will be used as input parameters to our system performance predictor.
This process, otherwise known as parameter engineering, is critical since the
accuracy of the system predictor depends upon the ability of the neural network
to find causal relationships between these inputs and the expected output.

Normalizing the statistics into ratios helps to achieve parameter generaliza-
tion. Using ratios instead of real values such as generating an instruction mix
where each instruction type is given as a ratio of the total instructions executed
during the last quantum helps to achieve this generalization. Without using this
type of normalization, we would be left with inconsistent statistical input to
the DNN performance predictor. For example, the number of actual executed
instructions of each type depend heavily on the microarchitecture of the cores
(e.g. an out-of-order core may execute more instructions than an in-order core
even though the instruction mix ratios may be the same). Different forms of
generalization can also be used in cases when the core types have different ISAs
or cache configurations. Generalizing statistics enables our approach to be useful
in systems with a variety of different architectures.

In determining the final set of statistics, we sought to balance DNN predictor
accuracy while minimizing the overheads due to gathering the statistics and the
arithmetic operations needed to be performed. Based upon the heterogeneous
system used in our work (detailed in Sect. 4.1), we identified 12 different thread
statistics that are useful in describing thread behaviors on the cores and are
inclusive of thread interference effects. The statistics are collected after a thread
completes an execution quantum and are composed of the accesses and misses
of the different structures of the cache hierarchy as well as the instruction mix
executed. These 12 thread statistics (given as ratios) are: (1) DL1, (2) L2, and
(3) L3 data cache miss ratios, instruction mix ratios including (4) loads, (5)
stores, (6) floating point operations, (7) branches, and (8) generic arithmetic
operations, (9) IL1 divided by DL1 loads, (10) L2 divided by DL1 misses, (11)
L3 divided by DL1 misses, and (12) L3 divided by L2 misses.
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The 12 statistics are saved as part of a thread’s context after each quantum it
executes, overwriting the values from the previous quantum. Many conventional
CPUs come with hardware support for collecting similar statistics and in future
work we will seek to further explore the set of statistics needed in order to
mitigate collection and processing overheads while maintaining or improving
the accuracy of our performance predictor.

Next quantum thread behavior predictor (NQP). Several novel
approaches have been proposed which predict program behavior based on var-
ious statically or dynamically collected program statistics [7,26]. However, to
keep overheads low and for simplicity, we use a next quantum thread behavior
predictor (NQP) that always predicts the next behavior to be the same as the
immediately anterior quantum behavior. The statistics forwarded by the NQP,
therefore, are based on those collected during the thread’s previous execution
quantum.

Figure 3 helps to visualize the behavioral periodicity which the NQP must
predict for. It shows the IPC variability of the perlbench and gamess benchmarks
throughout their simulated execution on an Intel Nehalem x86 using a 1ms
execution quantum. There are clearly periodic behavioral phases that span tens
and sometimes hundreds of quanta. It is also possible to observe that for finer
granularities, the IPC variation from quantum to quantum is quite minimal, and
more so on the small core.

We measured the NQP accuracy results using the mean percentage error for
the SPEC2006 benchmark suite. These applications were simulated executing on
an Intel Nehalem x86 configuration using a 1ms execution quantum. The errors
are calculated using Eq. 1 by measuring the IPC differences from quantum to
quantum.

errori =
|yi − ti|

ti

µerror =
1
n
×

n∑

i=1

errori

(1)

where y is the predicted IPC and t is the target (i.e. observed) IPC value for
quantum i and n is the total number of quanta (i.e. samples).

The NQP results in average errors of 10% for all SPEC2006 applications
on both cores. However, the results vary between individual benchmarks with
some outliers (e.g. cactusADM and soplex) exhibiting higher errors. These error
variations can have a significant impact on the ability of the DNN predictor to
properly predict and maximize system throughput.

DNN system performance predictor. The key component behind the DLM
is a DNN system performance predictor which takes as input a set of parameters
from as many individual threads as there are hardware cores and then outputs
an estimated system IPC value. The system we target is a heterogeneous CPU
architecture composed of 4 cores with 2 different core types (1 large core and
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(a) The IPC per quantum behavior of perlbench.

(b) The IPC per quantum behavior of gamess.

Fig. 3. The IPC per quantum behavior of four SPEC benchmarks when running on
the large core compared to the small core.

3 small cores, described in Sect. 4.1). The DNN predictor takes as input the 12
normalized parameters from the 4 threads (selected for execution by the CS) for
a total of 48 input parameters.

The order in which the threads are inputted to the DNN correspond to which
physical core they would be mapped to with the first 12 thread parameters as
corresponding to the thread mapped to the large core, and the next 36 param-
eters corresponding to the threads mapped to the three small cores. This way,
we are able to estimate what the system IPC would be for different mapping
combinations.
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Fig. 4. An example of how the DLM uses the DNN to predict for 4 different mapping
combinations once it is passed the 4 threads selected by the CS (A, B, C, and D).

An example of this is given in Fig. 4. Here the CS has selected 4 threads
(A, B, C, and D) from a larger pool of available threads to execute next quantum.
There are 4 different combinations which we can map the 4 threads onto the
hardware where each combination will have a different thread mapped onto the
large core. The different mapping combinations represent the different ordering
of the thread parameter inputs to the DNN. For instance, combination 1 will have
the first 12 inputs correspond to thread A, the next 12 to thread B and so on. We
can also consider all mapping permutations but since the only shared structure
is the L3, there should be negligible differences in performance and interference
effects. In the example, the DNN predictions for the 4 different combinations are
given in the last column. Combination 2 has the highest estimated system and
will be chosen as the optimal mapping scheme for the upcoming quantum.

We have implemented the DNN performance predictor using Python and the
machine learning library scikit-learn [20]. An extensive exploration into the DNN
architecture was conducted before settling upon the chosen design. Due to space
concerns and the objective of this work being the proof of concept of the DLM,
only a brief summary of the DNN design study is provided here.

Once the 12 input parameters were chosen, we evaluated numerous DNNs
by modifying the hyperparameters of each including using different numbers
of hidden layers, hidden units, activation functions, and training regularization
techniques. We sought to balance prediction accuracy with implementation fea-
sibility and made use of learning curves to gain insight into how many training
samples the DNN needs to start predicting consistently for unseen data and
how accurate these predictions are. Each training data sample consists of 48
input parameters and 1 target system IPC value. These are collected after each
scheduling quantum which has resulted in the execution of 4 threads on the 4
cores. The algorithm used for training is a stochastic gradient based optimizer
with L2 regularization which is readily used in machine learning models. During
training, the weights of the neural network are adjusted after each full iteration
of a batch of training data, always aiming to minimize the mean square error
(mse) between the predicted output and the target output.

At the end of the design study, we settled upon a DNN implementation con-
sisting of 48 total inputs, 5 hidden layers of 25 hidden units each, and a single
output unit that use a rectified linear activation function. Figure 5 plots the
learning curves of the training and 10-fold cross-validation results of the chosen
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DNN. It highlights how, as the quantity of training data grows, so too does the
accuracy and generalizability of the predictor when executing all the applications
from SPEC2006. The score is measured in terms of correlation between the pre-
dicted system performance and the observed system performance using an R2

coefficient. In particular, the figure shows that after about 15000 quanta, the
correlation between the predicted performance and the observed performance
on the data used to train is very high (about 0.96) and after about 35000
quanta, the correlation of stabilizes for the unseen validation data at about
0.64. The difference between the training and validation curves illustrates that
the model has high variance which may indicate overfitting but can be explored
in future work by adding more regularization and fine tuning the input param-
eters, hyperparameters, and sample data. Since our model is capable of online
learning, however, the prediction errors introduced by running new applications
will gradually settle at lower levels after training dynamically. Online learning
works by continuing to train our DNN periodically after a certain number of new
data samples are gathered. For our online DNN implementation, we have chosen
to keep training our predictor every 20 execution quanta (i.e. a micro-batch of
20 samples). This requires needing to save only 20 quantum samples of data a
time. The frequency of online training is related to the average number of quanta
the benchmarks take to complete. A larger micro-batch could be used for longer
applications or when the system is exceedingly busy in order to lower overheads.

3.2 Overheads

Schedulers typically add overheads due to the mapping calculations and resulting
context swaps after each scheduling quantum. Since the DLM is triggered 4 times
as often as the CS (1 ms vs 4 ms quantum), the DLM can also cause context swaps
before the next CS quantum. A minimum of 0 and maximum of 4 extra context
swaps can be issued by the DLM before the next CS quantum. However, the DLM
will only trigger a swap if the resulting mapping is beneficial to overall system
performance. The overheads due to the NQP and performance predictor amount
to less than 4000 floating point operations per predicted mapping combination
and less than 16000 in total. However, not only can a large quantity of these
calculations be done in parallel, but this overhead is still orders of magnitude less
than it costs to swap contexts and load the caches. Online training also adds
overheads but is only done after every 20 quanta (or the chosen frequency of
micro-batch training) and can be hidden by running it in the background when
a core is idle.

Storing the 64-bit weights of the DNN requires about 21 KB of memory.
The introduction of new statistical fields to save for each thread is also a minor
overhead (96 bytes per thread) as is the memory needed to store the online
training data (¡8 KB for 20 samples of 4 threads’ worth of parameters). Lowering
these overheads is a topic for future work but are still reasonable for a viable
implementation of the scheduling model.



A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 15

Fig. 5. The learning curve of the online DNN predictor. As the amount of training data
increases the predictor becomes more generalized to account for different applications
and behaviors. Higher y-axis numbers are better.

4 Evaluation

4.1 Methodology

This work uses the Sniper [3] simulation platform. Sniper is a popular hardware-
validated parallel x86-64 multicore simulator capable of executing multithreaded
applications as well as running multiple programs concurrently. The simulator
can be configured to run both homogeneous and heterogeneous multicore archi-
tectures and uses the interval core model to obtain performance results.

The processor that is used for all experimental runs in this work is a quad-
core heterogeneous asymmetric multi-core processor consisting of 1 large core
and 3 identical small cores. Both core types are based on the Intel Nehalem x86
architecture running at 2.66 GHz. Each core type has a 4 wide dispatch width,
but whereas the large core has 128 instruction window size, 16 cycle branch mis-
prediction penalty (based on the Pentium M predictor), and 48 entry load/store
queue, the small core has a 16 instruction window size, 8 cycle branch mispre-
diction penalty (based on a one-bit history predictor), and a 6 entry load/store
queue. The 1-large 3-small multi-core system configuration is based on the exper-
imental framework used in previous work [15,27] that we evaluate our proposal
against. These works also make use of Sniper, which unfortunately does not
provide for a wide selection of different architectures such as ARM but does
support hardware validated x86 core types. We believe that using the (admit-
tedly limited) experimental setup as employed in previous work allows for the
fairest comparison.
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We have used the popular SPEC2006 [9] benchmark suites to evaluate and
train our scheduling model. This is an industry-standardized, CPU-intensive
benchmark suite, stressing a system’s processor and memory subsystem. The
entirety of the benchmark suite is used with the exception of some applications
which did not compile in our platform (dealII, wrf, sphinx3). All 26 benchmarks
are run from start to finish and the simulation ends after all the benchmarks
finish. This is done to emulate a busy system which must execute a diverse set of
applications. This setup is also useful in demonstrating the ability of the DLM
to improve system throughput.

We evaluate the performance for three different conventional schedulers
(round-robin [15], fairness-aware [27], and CFS [19]) with and without the use
of a fully trained DLM. That is to say we compare how much each conventional
scheduler may be improved (in terms of system throughput) by using the DLM
instead of its typical mapping mechanism. To account for context switch over-
heads due to architectural state swapping, we apply a 1000 cycle penalty which
is consistent with the value utilized in the round robin study. The additional
cache effects from the context switches are captured by the simulation.

Fig. 6. Average system throughput (IPC) improvements when using the DLM for all
SPEC2006. Higher numbers are better.

Figure 6 compares the system throughput improvements achieved for all 3
schedulers when using a DLM after running SPEC2006. The results show an
average percentage throughput increase of 8%, 20%, and 30% for the round-
robin, fairness-aware, and CFS schedulers respectfully. These improvements are
significant especially for a preliminary study with a simple deep neural network
predictor. They also highlight how effective the DLM is at benefitting all 3 differ-
ent state-of-the-art schedulers. The improvements demonstrate the ability of the
DLM to find more optimal mappings than the schedulers can by themselves. It
achieves this thanks to two main factors. The DNN predictor allows the DLM to
make highly accurate predictions for different mapping combinations while the
1ms quantum provides the opportunity to detect and adjust the mapping for
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variations in thread behaviors. The differences in the throughput gains for the
3 schedulers are also consistent with how they perform relative to one another
without the DLM. On a heterogeneous system, the round-robin scheduler has
been shown to perform better than the fairness-aware scheduler, which in turn
performs better than the CFS.

The average total percentage prediction error of the DLM (calculated using
Eq. 1) for the experiments was 12%. The DLM errors are slightly higher than
those of the DNN shown earlier (see Sect. 3.1) because the DLM includes errors
from both the NQP and the DNN. This error rate is within reasonable margins
and our results are notable when considering that the DLM still showed such
significant throughput benefits.

5 Related Work

Much of the previous work using machine/deep learning for scheduling has been
to classify applications, as well as to identify process attributes and a program’s
execution history. This is the approach of [18] which used decision trees to char-
acterize whole programs and customize CPU time slices to reduce application
turn around time by decreasing the amount of context swaps. The work pre-
sented in [13] studies the accuracy of SVMs and linear regression in predicting
the performance of threads on two different core types. However, they do so at
the granularity of 1 s, use only a handful of benchmarks, and do not implement
the predictor inside of a scheduler.

The studies by Dorronsoro and Pinel [6,21] investigates using machine learn-
ing to automatically generate desired solutions for a set of problem instances
and solve for new problems in a massively parallel manner. An approach that
utilized machine learning for selecting whether to execute a task on a CPU or
GPU based on the size of the input data is done by Shulga et al. [25]. Predicting
L2 cache behavior is done using machine learning for the purpose of adapting a
process scheduler for reducing shared L2 contention in [23].

In the work done by Bogdanski et al. [2], choosing parameters for task
scheduling and loadbalancing is done with machine learning. However, their pre-
diction is whether it is beneficial to run a pilot program that will characterize a
financial application. They also assume that the computational parameters of the
workload stay uniform over certain periods of time. Nearly all of these approaches
deal with either program or process level predictions and target homogeneous
systems.

Characterizing and exploiting program behavior and phases has been the
subject of extensive research. Duesterwald et al. [7] and Sherwood et al. [24]
showed that programs exhibit significant behavioral variation and can be cate-
gorized into basic blocks and phases which can span several millions to billions
of instructions before changing. Work done in [26] has taken advantage of the
compilers ability to statically estimate an applications varying level of instruc-
tion level parallelism in order to estimate IPC using monotonic dataflow analysis
and simple heuristics for guiding a fetch-throttling mechanism.
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A heterogeneous system containing various cores of the same ISA but of
different types was proposed by Kumar et al. in [11]. Their process consists of
deciding on the core that will perform in the most power efficient manner each
time a new phase or program is detected using sampling techniques. Moncrieff
et al. [17] and Menasce and Almeida [16] analytically examined the tradeoffs
between utilizing fast and slow processors in heterogeneous processors. Their
study showed that a system composed of few fast cores and many slow cores are
effective in terms of cost and performance. Optimal scheduling of independent
applications running on a preemptive heterogeneous CMP has been studied by
Liu and Yang [14]. A separate study [1] aims to create a contention-aware sched-
uler that maximizes throughput by learning and mimicking the decisions of an
oracle scheduler.

Chronaki et al. [4,5] propose a heterogeneous scheduler for a dataflow pro-
gramming model which improves performance using a prioritization scheme and
dynamic task dependency graph to assign newly created and critical tasks to fast
cores. A statistical method using extreme value theory is used in [22] to deter-
mine the probabilities for optimal task assignment in massively multithreaded
processors.

6 Future Work and Conclusion

In this paper we have presented a preliminary study which pioneers applying
DL to heterogeneous scheduling. We outlined a scalable scheduling model that
decouples thread selection and mapping routines. The thread selection mech-
anism of a conventional scheduler is used in conjunction with a deep learning
mapper (DLM) to maintain fairness and increase system performance. The DLM
uses a deep neural network to predict the system performance for different map-
ping options at the scheduling quantum granularity. This lightweight deep neural
network can provide highly accurate predictions for a diverse set of applications
while continuing to train dynamically. The validation of our approach shows that
even a simple DL based mapper can significantly improve system performance
for state-of-the-art schedulers by 8% to 30% for CPU and memory intensive
applications.

We seek to expand the scope of our work in the future by further exploring
thread behavioral statistics, alternative DL models, improving the NQP, and
scalability issues. We would also like to study ensemble models could be used to
further widen the scope of the DLM for dealing with irregular applications.

We hope that the novelty of this work has helped to highlight the value that
using deep learning can offer towards improving system performance.
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