
123

Esteban Mocskos
Sergio Nesmachnow (Eds.)

4th Latin American Conference, CARLA 2017
Buenos Aires, Argentina, and
Colonia del Sacramento, Uruguay, September 20–22, 2017
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 796

Communications
in Computer and Information Science 796

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
Nanyang Technological University, Singapore, Singapore

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Esteban Mocskos • Sergio Nesmachnow (Eds.)

High Performance
Computing
4th Latin American Conference, CARLA 2017
Buenos Aires, Argentina, and
Colonia del Sacramento, Uruguay, September 20–22, 2017
Revised Selected Papers

123

Editors
Esteban Mocskos
CSC-CONICET and Universidad de Buenos
Aires

Buenos Aires
Argentina

Sergio Nesmachnow
Universidad de la República
Montevideo
Uruguay

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-73352-4 ISBN 978-3-319-73353-1 (eBook)
https://doi.org/10.1007/978-3-319-73353-1

Library of Congress Control Number: 2017963753

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-6473-7672
http://orcid.org/0000-0002-8146-4012

Preface

High-performance computing (HPC) is a dynamic field that combines the use of
innovative computing technologies and algorithms with advances in a broad range of
scientific, technical, and industrial areas. Latin America shares the global enthusiasm
embracing and pushing forward HPC. New challenges coming from the use of the
computing capabilities of massive multicores, accelerators, cluster platforms, cloud
federations, and the new perspectives of Internet of Things resources all help to pro-
mote the research and innovation in this area.

Building on the success of the previous editions of CARLA, the High-Performance
Computing Latin America Conference (and former HPCLATAM and CLCAR Con-
ferences), the tenth edition was organized in Buenos Aires and Colonia jointly by
Universidad de Buenos Aires (Argentina) and Universidad de la República (Uruguay).

The main goal of the CARLA conference is to provide a forum fostering the growth
of the HPC community in Latin America, through the exchange and dissemination of
new ideas, techniques, and research in HPC. In 2017, CARLA featured invited talks
from academia and industry, full-paper sessions presenting mature work, and new ideas
in research and industrial applications including: distributed systems, parallel algo-
rithms and concurrency; GPU and MIC computing; mobile, grid, and cloud computing;
big data, data management, and visualization; scientific computing applications;
architecture, infrastructure, and HPC data center; HPC computing education and out-
reach; industrial solutions. Satellite events co-located with CARLA 2017 included the
meeting of the Cloud Computing for Smart-City Energy Management (CC-SEM
STIC-AmSud) Project, Red SCALAC (Servicios de Computación Avanzada para
Latinoamérica y el Caribe), and RICAP CYTED (Red Iberoamericana de Computación
de Altas Prestaciones). More than 100 researchers, students, technicians, practitioners,
and representatives of industry, technology, and state companies and organizations
(from more than 20 countries in Latin America, Europe, Asia, and Oceania) attended
the event.

This book introduces the top contributions presented at CARLA 2017, covering all
the aforementioned topics. As organizers, we think the articles are valuable contribu-
tions to the development of HPC in Latin America.

December 2017 Esteban Mocskos
Sergio Nesmachnow

CARLA 2017
September 20-22, 2017

Colonia, Uruguay & Buenos
Aires, Argentina

Organization

Program Chairs

Gregoire Danoy University of Luxembourg, Luxembourg
Ricardo Medel Ascentio Technologies S.A., Argentina
Esteban Meneses Costa Rica National High Technology Center,

Costa Rica
Esteban Mocskos CSC-CONICET and Universidad de Buenos Aires,

Argentina
Sergio Nesmachnow Universidad de la República, Uruguay
Markus Rampp Max Planck Computing and Data Facility, Germany
Carlos Sarraute Grandata Labs, Argentina
Luiz Angelo Steffenel Université de Reims Champagne-Ardenne, France
Mariano Vazquez Barcelona Supercomputing Center, Spain

Program Committee

José Pedro Aguerre Universidad de la República, Uruguay
Hartwig Anzt Karlsruhe Institute of Technology, Germany
Carlos J. Barrios Universidad Industrial de Santander, Colombia
Leonardo Bautista Gomez Centro Nacional de Supercomputación, Spain
Carlos Bederián CONICET, Argentina
Pascal Bouvry University of Luxembourg, Luxembourg
Carlos Buil Universidad Técnica Federico Santa María, Chile
Harold Castro Universidad de los Andes, Colombia
Marcio Castro Federal University of Santa Catarina (UFSC), Brazil
Maria Clicia Stelling

de Castro
Universidade do Estado do Rio de Janeiro, Brazil

Gerson Cavalheiro Universidade Federal de Pelotas, Brazil
Germán Ceballos Uppsala University, Sweden
Andrea Charão Universidad Federal Santa María, Brazil
Esteban Clua Universidade Federal Fluminense, Brazil
Flavio Colavecchia Centro Atómico Bariloche, Comisión Nacional

de Energía Atómica, Argentina
Daniel Cordeiro Universidade de São Paulo, Brazil
Carlos Couder-Castañeda Instituto Politecnico Nacional, Mexico
Alvaro Coutinho Federal University of Rio de Janeiro, Brazil
Adrián Cristal Barcelona Supercomputing Centre, Spain
Gregoire Danoy University of Luxembourg, Luxembourg
Alvaro de la Ossa Universidad de Costa Rica, Costa Rica
Cristian Mateos Diaz ISISTAN-CONICET, Universidad Nacional

del Centro, Argentina

Gilberto Diaz Universidad Industrial de Santander, Colombia
Mario Jose Diván Universidad Nacional de La Pampa, Argentina
Bernabe Dorronsoro Universidad de Cadiz, Spain
Ernesto Dufrechou Universidad de la República, Uruguay
Nicolás Erdödy Open Parallel, New Zealand
Eduardo Fernandez Universidad de la República, Uruguay
Ezequiel Ferrero Department of Physics and Center for Complexity

and Biosystems, Italy
Alejandro Flores-Méndez CINVESTAV, Mexico
Emilio Francesquini University of Campinas, Brazil
Joao Gazolla Universidade Federal Fluminense, Brazil
Veronica Gil-Costa Universidad Nacional San Luis, Argentina
Isidoro Gitler ABACUS-CINVESTAV, Mexico
Brice Goglin Inria, France
Leo Gonzalez Universidad Politecnica de Madrid, Spain
José Luis Gordillo Universidad Nacional Autónoma de México, México
Jesus Cruz Guzman Universidad Nacional Autónoma de México, México
Elisa Heymann Universitat Autònoma de Barcelona, Spain
Javier Iparraguirre Universidad Tecnológica Nacional, Argentina
Santiago Iturriaga Universidad de la República, Uruguay
Salma Jalife Corporación Universitaria para el Desarrollo

de Internet A.C., Mexico
Roberto Leon Universidad Andres Bello, Chile
Francisco Luna Universidad de Málaga, Spain
Renzo Massobrio Universidad de la República, Uruguay
Rafael Mayo-Garcia Centro de Investigaciones Energéticas,

Medioambientales y Tecnológicas, Spain
Ricardo Medel Ascentio Technologies S.A., Argentina
Esteban Meneses Costa Rica National High Technology Center,

Costa Rica
Renato Miceli CENAI-CIMATEC, Brazil
Barton Miller University of Wisconsin-Madison, USA
Esteban Mocskos CSC-CONICET and Universidad de Buenos Aires,

Argentina
Philippe Navaux Universidade Federal de Rio Grande do Sul, Brazil
Sergio Nesmachnow Universidad de la República, Uruguay
Carla Osthoff National Laboratory for Scientific Computing, Brazil
Alejandro Otero Universidad de Buenos Aires and CSC-CONICET,

Argentina
Horacio Paggi Universidad Politécnica de Madrid, Spain
Jairo Panetta Instituto Tecnológico de Aeronáutica, Brazil
Claudio J. Paz UTN FRC, Argentina
Martín Pedemonte Universidad de la República, Uruguay
Tomas Perez-Acle Universidad de Chile, Chile
Laercio Lima Pilla Universidade Federal de Santa Catarina, Brazil
Javier Principe Universidad Politecnica de Cataluña - CIMNE, Spain

VIII Organization

Juan Manuel Ramírez Universidad de Colima, Mexico
Markus Rampp Max Planck Computing and Data Facility, Germany
Vinod Rebello Universidade Federal Fluminense, Brazil
Genghis Ríos Pontificia Universidad Católica del Perú, Perú
Pablo Rodríguez-Bocca Universidad de la República, Uruguay
Isaac Rudomin Barcelona Supercomputing Center, Spain
Afonso Sales Pontificia Universidad Católica do Rio Grande do Sul,

Brazil
Carlos Sarraute Grandata Labs, Argentina
Lucas Mello Schnorr Universidade Federal do Rio Grande do Sul, Brazil
Hermes Senger Universidade Federal de São Carlos, Brazil
Alejandro Soba Comisión Nacional de Energía Atómica, Argentina
Roberto Souto Laboratório Nacional de Computação, Brazil
Luiz Angelo Steffenel Université de Reims Champagne-Ardenne, France
Mario Storti Universidad Nacional del Litoral and

CIMEC-CONICET, Argentina
Claude Tadonki MINES ParisTech, PSL, France
Gonzalo Tancredi Universidad de la República, Uruguay
Andrei Tchernykh Centro de Investigación Científica y de Educación

Superior de Ensenada, Mexico
Jamal Toutouh Universidad de Málaga, Spain
Tram Truong-Huu National University of Singapore, Singapore
Manuel Ujaldón Universidad de Málaga, Spain
Gabriel Usera Universidad de la República, Uruguay
Mariano Vazquez Barcelona Supercomputing Center, Spain
Jesus Verduzco Instituto Tecnológico de Colima, México
Pablo Javier Vidal Universidad de la Patagonia Austral, Argentina
Nicolás Wolovick Universidad Nacional de Córdoba, Argentina
Jesús Xamán Centro Nacional de Investigación y Desarrollo

Tecnológico, México
Alejandro Zunino ISISTAN-CONICET, Argentina

Organization IX

Contents

HPC Infrastructures and Datacenters

A Deep Learning Mapper (DLM) for Scheduling
on Heterogeneous Systems . 3

Daniel Nemirovsky, Tugberk Arkose, Nikola Markovic,
Mario Nemirovsky, Osman Unsal, Adrian Cristal, and Mateo Valero

Power Consumption Characterization of Synthetic Benchmarks
in Multicores . 21

Jonathan Muraña, Sergio Nesmachnow, Santiago Iturriaga,
and Andrei Tchernykh

Initial Experiences from TUPAC Supercomputer. 38
David Vinazza, Alejandro Otero, Alejandro Soba,
and Esteban Mocskos

HPC Industry and Education

romeoLAB: A High Performance Training Platform for HPC, GPU
and DeepLearning . 55

Arnaud Renard, Jean-Matthieu Etancelin, and Michael Krajecki

GPU, Multicores, Accelerators

Analysis and Characterization of GPU Benchmarks
for Kernel Concurrency Efficiency . 71

Pablo Carvalho, Lúcia M. A. Drummond, Cristiana Bentes,
Esteban Clua, Edson Cataldo, and Leandro A. J. Marzulo

Parallel Batch Self-Organizing Map on Graphics Processing
Unit Using CUDA . 87

Habib Daneshpajouh, Pierre Delisle, Jean-Charles Boisson,
Michael Krajecki, and Nordin Zakaria

Performance Prediction of Acoustic Wave Numerical Kernel
on Intel Xeon Phi Processor . 101

Víctor Martínez, Matheus Serpa, Fabrice Dupros, Edson L. Padoin,
and Philippe Navaux

http://dx.doi.org/10.1007/978-3-319-73353-1_1
http://dx.doi.org/10.1007/978-3-319-73353-1_1
http://dx.doi.org/10.1007/978-3-319-73353-1_2
http://dx.doi.org/10.1007/978-3-319-73353-1_2
http://dx.doi.org/10.1007/978-3-319-73353-1_3
http://dx.doi.org/10.1007/978-3-319-73353-1_4
http://dx.doi.org/10.1007/978-3-319-73353-1_4
http://dx.doi.org/10.1007/978-3-319-73353-1_5
http://dx.doi.org/10.1007/978-3-319-73353-1_5
http://dx.doi.org/10.1007/978-3-319-73353-1_6
http://dx.doi.org/10.1007/978-3-319-73353-1_6
http://dx.doi.org/10.1007/978-3-319-73353-1_7
http://dx.doi.org/10.1007/978-3-319-73353-1_7

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative
for Sparse GPU Computations . 111

José I. Aliaga, Ernesto Dufrechou, Pablo Ezzatti,
and Enrique S. Quintana-Ortí

HPC Applications and Tools

Benchmarking Performance: Influence of Task Location
on Cluster Throughput . 125

Manuel Rodríguez-Pascual, José Antonio Moríñigo,
and Rafael Mayo-García

PRIMULA: A Framework Based on Finite Elements to Address
Multi Scale and Multi Physics Problems . 139

Alejandro Soba

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific
Computing and HPC . 154

Josef Spillner, Cristian Mateos, and David A. Monge

AccaSim: An HPC Simulator for Workload Management. 169
Cristian Galleguillos, Zeynep Kiziltan, and Alessio Netti

SherlockFog: Finding Opportunities for MPI Applications
in Fog and Edge Computing. 185

Maximiliano Geier and Esteban Mocskos

Big Data and Data Management

IoT Workload Distribution Impact Between Edge and Cloud Computing
in a Smart Grid Application . 203

Otávio Carvalho, Manuel Garcia, Eduardo Roloff,
Emmanuell Diaz Carreño, and Philippe O. A. Navaux

Model-R: A Framework for Scalable and Reproducible
Ecological Niche Modeling . 218

Andrea Sánchez-Tapia, Marinez Ferreira de Siqueira,
Rafael Oliveira Lima, Felipe Sodré M. Barros,
Guilherme M. Gall, Luiz M. R. Gadelha Jr., Luís Alexandre E. da Silva,
and Carla Osthoff

Parallel and Distributed Algorithms

Task Scheduling for Processing Big Graphs in Heterogeneous
Commodity Clusters . 235

Alejandro Corbellini, Daniela Godoy, Cristian Mateos, Silvia Schiaffino,
and Alejandro Zunino

XII Contents

http://dx.doi.org/10.1007/978-3-319-73353-1_8
http://dx.doi.org/10.1007/978-3-319-73353-1_8
http://dx.doi.org/10.1007/978-3-319-73353-1_9
http://dx.doi.org/10.1007/978-3-319-73353-1_9
http://dx.doi.org/10.1007/978-3-319-73353-1_10
http://dx.doi.org/10.1007/978-3-319-73353-1_10
http://dx.doi.org/10.1007/978-3-319-73353-1_11
http://dx.doi.org/10.1007/978-3-319-73353-1_11
http://dx.doi.org/10.1007/978-3-319-73353-1_12
http://dx.doi.org/10.1007/978-3-319-73353-1_13
http://dx.doi.org/10.1007/978-3-319-73353-1_13
http://dx.doi.org/10.1007/978-3-319-73353-1_14
http://dx.doi.org/10.1007/978-3-319-73353-1_14
http://dx.doi.org/10.1007/978-3-319-73353-1_15
http://dx.doi.org/10.1007/978-3-319-73353-1_15
http://dx.doi.org/10.1007/978-3-319-73353-1_16
http://dx.doi.org/10.1007/978-3-319-73353-1_16

Exploring Application-Level Message-Logging in Scalable HPC Programs. . . 250
Esteban Meneses

Accelerated Numerical Optimization with Explicit Consideration
of Model Constraints . 255

Lucia Damiani, Ariel Ivan Diaz, Javier Iparraguirre,
and Aníbal M. Blanco

Parallel Processing of Intra-cranial Electroencephalogram Readings
on Distributed Memory Systems . 262

Leonardo Piñeyro and Sergio Nesmachnow

Support Vector Machine Acceleration for Intel Xeon
Phi Manycore Processors . 277

Renzo Massobrio, Sergio Nesmachnow, and Bernabé Dorronsoro

Performance Improvements of a Parallel Multithreading
Self-gravity Algorithm . 291

Nestor Rocchetti, Daniel Frascarelli, Sergio Nesmachnow,
and Gonzalo Tancredi

A Fast GPU Convolution/Superposition Method for Radiotherapy
Dose Calculation. 307

Diego Carrasco, Pablo Cappagli, and Flavio D. Colavecchia

Grid, Cloud and Federations

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique
for my Cloud Workflow . 321

Leonardo Araújo de Jesus, Lúcia M. A. Drummond,
and Daniel de Oliveira

Energy Aware Multiobjective Scheduling in a Federation
of Heterogeneous Datacenters . 337

Santiago Iturriaga and Sergio Nesmachnow

Markov Decision Process to Dynamically Adapt Spots Instances Ratio
on the Autoscaling of Scientific Workflows in the Cloud 353

Yisel Garí, David A. Monge, Cristian Mateos,
and Carlos García Garino

Experimental Analysis of Secret Sharing Schemes for Cloud Storage
Based on RNS . 370

Vanessa Miranda-López, Andrei Tchernykh, Jorge M. Cortés-Mendoza,
Mikhail Babenko, Gleb Radchenko, Sergio Nesmachnow, and Zhihui Du

Contents XIII

http://dx.doi.org/10.1007/978-3-319-73353-1_17
http://dx.doi.org/10.1007/978-3-319-73353-1_18
http://dx.doi.org/10.1007/978-3-319-73353-1_18
http://dx.doi.org/10.1007/978-3-319-73353-1_19
http://dx.doi.org/10.1007/978-3-319-73353-1_19
http://dx.doi.org/10.1007/978-3-319-73353-1_20
http://dx.doi.org/10.1007/978-3-319-73353-1_20
http://dx.doi.org/10.1007/978-3-319-73353-1_21
http://dx.doi.org/10.1007/978-3-319-73353-1_21
http://dx.doi.org/10.1007/978-3-319-73353-1_22
http://dx.doi.org/10.1007/978-3-319-73353-1_22
http://dx.doi.org/10.1007/978-3-319-73353-1_23
http://dx.doi.org/10.1007/978-3-319-73353-1_23
http://dx.doi.org/10.1007/978-3-319-73353-1_24
http://dx.doi.org/10.1007/978-3-319-73353-1_24
http://dx.doi.org/10.1007/978-3-319-73353-1_25
http://dx.doi.org/10.1007/978-3-319-73353-1_25
http://dx.doi.org/10.1007/978-3-319-73353-1_26
http://dx.doi.org/10.1007/978-3-319-73353-1_26

Bi-objective Heterogeneous Consolidation in Cloud Computing 384
Luis-Angel Galaviz-Alejos, Fermín Armenta-Cano, Andrei Tchernykh,
Gleb Radchenko, Alexander Yu. Drozdov, Oleg Sergiyenko,
and Ramin Yahyapour

Scaling the Deployment of Virtual Machines in UnaCloud 399
Jaime Chavarriaga, César Forero-González, Jesse Padilla-Agudelo,
Andrés Muñoz, Rodolfo Cáliz-Ospino, and Harold Castro

Distributed Cosmic Ray Detection Using Cloud Computing 414
Germán Schnyder, Sergio Nesmachnow,
and Gonzalo Tancredi

Author Index . 431

XIV Contents

http://dx.doi.org/10.1007/978-3-319-73353-1_27
http://dx.doi.org/10.1007/978-3-319-73353-1_28
http://dx.doi.org/10.1007/978-3-319-73353-1_29

HPC Infrastructures and Datacenters

A Deep Learning Mapper (DLM) for Scheduling
on Heterogeneous Systems

Daniel Nemirovsky1(B), Tugberk Arkose1, Nikola Markovic2,
Mario Nemirovsky1,3, Osman Unsal1, Adrian Cristal1, and Mateo Valero1

1 Barcelona Supercomputing Center, Barcelona, Spain
{daniel.nemirovsky,tugberk.arkose,mario.nemirovsky,osman.unsal,

adrian.cristal,mateo.valero}@bsc.es
2 Microsoft, Belgrade, Serbia
nimarkov@microsoft.com

3 ICREA, Barcelona, Spain

Abstract. As heterogeneous systems become more ubiquitous, com-
puter architects will need to develop new CPU scheduling approaches
capable of exploiting the diversity of computational resources. Advances
in deep learning have unlocked an exceptional opportunity of using these
techniques for estimating system performance. However, as of yet no sig-
nificant leaps have been taken in applying deep learning for scheduling
on heterogeneous systems.

In this paper we describe a scheduling model that decouples thread
selection and mapping routines. We use a conventional scheduler to
select threads for execution and propose a deep learning mapper to map
the threads onto a heterogeneous hardware. The validation of our pre-
liminary study shows how a simple deep learning based mapper can
effectively improve system performance for state-of-the-art schedulers by
8%–30% for CPU and memory intensive applications.

1 Introduction

Heterogeneous computational resources have allowed for effective utilization of
increasing transistor densities by combining very fast and powerful cores with
more energy efficient cores as well as integrated GPUs and other accelerators.
Interest in heterogeneous processors within the industry has recently translated
into several practical implementations including ARM’s big.Little [8]. However,
in order to fully utilize and exploit the opportunities that heterogeneous architec-
tures offer, multi-program and parallel applications must be properly managed
by a CPU scheduler. As a result, heterogeneous scheduling has become a popular
area of research and will be essential for supporting new diverse architectures
down the line.

Effective schedulers should be aware of a system’s diverse computational
resources, the variances in thread behaviors, and be able to identify patterns
related to a thread’s performance on different cores. Furthermore, since appli-
cations may perform differently on distinct core types, an efficient scheduler
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-319-73353-1_1

4 D. Nemirovsky et al.

should be able to estimate performances in order to identify an optimal map-
ping scheme. Mapping determines which thread to send to which core and is a
problem that shares similarities with recommendation systems and navigation
systems both of which have benefitted using machine and deep learning.

Deep learning (DL) techniques and deep neural networks (DNNs) in partic-
ular are beginning to be utilized in a wide variety of fields due to their great
promise in learning relationships between input data and numerical or categori-
cal outputs. The relationships are often hard to identify and program manually
but can result in excellent prediction accuracies using DNNs. Though DL tech-
niques have been gaining traction over the last few years, its application toward
improving hardware performance remains in its earliest stages. As of yet, there
has been no seminal work applying DL for predicting thread performance on
heterogeneous systems and maximizing system throughput.

The objective of this work is the proof of concept of the opportunities that
arise by applying DL to computer architecture designs. The novelty of this
work centers on decoupling the selection and mapping mechanisms of a het-
erogeneous scheduler and fundamentally, the implementation of a deep learning
mapper (DLM) which uses a DNN to predict system performance. The selector
remains responsible for ensuring fairness and selecting the threads to execute
next scheduling quantum while the mapper is charged with identifying an opti-
mal mapping of selected threads onto available cores. Initial results of our pro-
posal are promising, the DLM is capable of improving the performance of existing
conventional schedulers (round-robin, fairness-aware, Linux CFS) by 8%, 20%,
and 30% respectively for computational and memory intensive applications.

Our contributions include:

– A heterogeneous scheduling model which abstracts and decouples thread
selection and mapping.

– An implementation of a deep learning mapper (DLM) that uses a deep neural
network for predicting the system performance of different mapping schemes.
To our knowledge this work is the first to apply deep learning to CPU schedul-
ing for heterogeneous architectures.

The rest of this paper is structured as follows. Section 2 discusses our motivation
and a brief technical overview of mapping, machine/deep learning techniques,
and heterogeneous scheduling issues. Section 3 presents our proposed schedul-
ing model with a description of a practical implementation. Validation of our
implementation with experimental results is found in Sect. 4. Lastly, we discuss
related work in Sect. 5 and future work and conclusion in Sect. 6.

2 Motivation

This section highlights the efficiency opportunities attainable by optimizing map-
ping on heterogeneous systems and also discusses the rationale for applying DL
towards predicting system performance and how decoupling the thread selec-
tion and mapping mechanisms can provide model scalability while still ensuring
fairness for all threads.

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 5

2.1 Mapping

Finding the optimal thread to core mapping on a heterogeneous system is no
trivial feat. This is especially the case when executing diverse workloads since
the performance of each application is likely to vary from quantum to quantum
and core to core. These differences can vary from application to application as
well as from phase to phase within an application.

Figure 1 illustrates the performance differences that result from executing
SPEC2006 on a large core compared to a small core (for core details see Sect. 4.1).
On average, the applications achieve about 2x better system instructions per
cycle (IPC) when executing on the large core vs. the small core. Variations in
IPC differences can also be observed between applications. For some applica-
tions, these IPC differences can be either very minor (mcf 29%, bzip2 33%, and
hmmer 36%) or very sizable (gemsFDTD 171%, omnetpp 161%, and perlbench
153%). These variations can be partially explained by the code’s structure and
algorithms including loops, data dependencies, I/O and system calls, and mem-
ory access patterns among others.

The inter-application variations in core to core IPC differences also exist
within the different basic blocks and phases of every application (intra-
application). The more inter-application variations of core to core IPC differ-
ences there are, the harder it is for a scheduler to identify the optimal mapping
scheme, but the greater opportunities for improvement.

To showcase how identifying these core to core IPC differences can translate
into mapping benefits, consider the case where four applications (e.g. A, B, C,
and D) are selected to run on a system with 1-large core and 3-small cores. Four
mapping schemes which assign one application to the large core and the other
three to the small cores can be A-BCD, B-CDA, C-DAB, D-ABC. Each mapping
scheme will produce a different resulting system IPC. The overall benefits of an
effective mapper will be based upon the difference between the best and worst
mapping schemes. For instance if A-BCD is the best mapping scheme resulting
in a system IPC of 4 and C-DAB is the worst with a system IPC of 2, then the
difference in percentage terms would be 100% (i.e. (4 − 2)/2).

To demonstrate this in practical terms, we found the differences between the
best and worst mapping schemes for all possible combinations of four applica-
tions from the SPEC2006 benchmark suite. The differences in system perfor-
mance between the best and worst possible mapping scheme for each combina-
tion of four SPEC2006 applications range from 1%–36%. On average, identify-
ing the most adventageous mapping scheme for a given set of four SPEC2006
applications on a 1-large 3-small core system can lead to 16% improvements in
system performance. These results expose the theoretical benefits that may be
gained from an effective scheduler at the application level granularity. Practical
schedulers, however, work at the quantum level granularity and may addition-
ally identify and take advantage of intra-application core to core performance
differences which could expose greater opportunities for mapping optimization.

6 D. Nemirovsky et al.

Fig. 1. The performance differences that result from executing each SPEC2006 bench-
mark on a large vs. small core.

In order to identify an optimal mapping scheme, a heterogeneous scheduler
should be able to estimate the system performance that each individual mapping
scheme would produce. Conventional schedulers such as the Linux Completely
Fair Scheduler (CFS), however, typically do not make use of the mechanisms
needed to exploit this potential. As we shall see, deep learning can be an effective
tool for schedulers to utilize in order to help estimate system performance.

2.2 Machine/Deep Learning

Part of the attraction of machine/deep learning is the flexibility that its algo-
rithms provide to be useful in a variety of distinct scenarios and contexts. For
instance, advances in computer vision and natural language processing using con-
volutional neural network techniques [10,12] have led to high levels of prediction
accuracy enabling the creation of remarkably capable autonomous vehicles and
virtual assistants. In particular, it is our belief that the predictive power of artifi-
cial neural networks (ANNs) will be of great use for computer architects seeking
to improve system performance and optimize the utilization of diverse hardware
resources. Deep learning (DL) methods expand on more simplistic machine learn-
ing techniques by adding depth and complexities to existing models. Using deep
ANNs (DNNs) or ensembles of different machine learning models is a typical
example of DL.

DNNs consist of a set of input parameters connected to a hidden layer of
artificial neurons which are then connected to other hidden layers before con-
necting to one or more output neurons. The inputs to the hidden and to the
output neurons are each assigned a numerical weight that is multiplied with
its corresponding input parameter and then added together with the result of
the neuron’s other incoming connections. The sum is then fed into an activation

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 7

function (usually a rectified linear, sigmoid, or similar). The output of these neu-
rons is then fed as input to the next layer of neurons or to the output neuron(s).

A DNN can learn to produce accurate predictions by adjusting its weights
using a supervised learning method and training data. This is performed via a
learning algorithm such as backpropagation that adjusts the weights in order to
find an optimal minima which reduces the prediction error based on an estimated
output, the target output, and an error function. Advances in learning algorithms
have enabled faster training times and allowed for the practical use of intricate
DNN architectures. DNNs can also keep learning dynamically (often called online
learning) by periodically training as new data samples are generated. Moreover,
several of the training calculations may be executed in parallel for the neurons
within the same layer. The latency of these calculations can be further mitigated
through the use of hardware support including GPUs, FPGAs, or specialized
neural network accelerators.

2.3 Program Behaviors and CPU Scheduling

Recognizing and exploiting the behavioral variations of programs is instrumental
for achieving optimal scheduling schemes to maximize fairness and system perfor-
mance. Behaviors represent the different characteristics of the program or thread
while executing on the physical cores. These can include cache accesses and miss
rates, branch prediction accuracies, and instructions per cycle (IPC). While not
all programs exhibit the same behavior, studies [7,24] have revealed that the
behavioral periodicity in different applications is typically consistent. In fact,
the behavioral periodicity has been shown to be roughly on the order of several
millions of instructions and is present in various different and even non corre-
lated metrics stemming from looping structures inside of applications. Behavioral
variations may be additionally influenced by interference effects between threads.
These effects are generally due to shared data and physical resources between
threads and should be taken into consideration by an optimal scheduler.

Yet, even after accounting for program behaviors, finding the optimal
scheduling scheme is far from simple. CPU schedulers rely chiefly upon two
mechanisms to fulfill their policy objectives: (1) thread selection and (2) thread
to core mapping. The thread selection mechanism is responsible for selecting
a subset of threads to run from a larger pool of available threads. It does so
by using heuristics which order the threads using priorities or scores related to
how critical the threads are (e.g. time constrained or system level tasks may
be given a higher priority than background tasks which search for application
updates) or how much execution time or progress the threads have made so far.
The selection mechanism also generally ensures that no threads are continually
starved of system resources thereby guaranteeing a certain level of fairness. On
homogeneous systems where all cores are identical, the task of mapping indi-
vidual threads to particular cores depends mainly upon keeping threads close
to their data in the cache hierarchy. On heterogeneous systems, in contrast, the
mapping mechanism must take into regard the different microarchitectural char-
acteristics of the cores in order to find an optimal mapping of the threads to the

8 D. Nemirovsky et al.

cores which is the most effective for its scheduling objective. As a result, sched-
ulers targeted towards homogeneous systems are unable to optimally exploit the
resource diversity in heterogeneous systems.

The current Linux Completely Fair Scheduler (CFS) [19] is one such example
of a homogeneous scheduler. The state-of-the-art CFS selection scheme combines
priorities with execution time metrics in order to select the threads to run next,
however, the mapping scheme is relatively simplistic. When mapping, the CFS
evenly distributes the threads onto the cores such that all cores have approxi-
mately the same number of threads to run. These threads are effectively pinned
to the core because they are only swapped with threads on their assigned core
and not with those of another core (i.e. threads don’t move from the core they
were initially assigned to).

Heterogeneous architectures, however, provide excellent environments for
exploiting the behavioral diversity of concurrently executing programs and
several schedulers targeting these systems have been recently proposed. The
fairness-aware scheduler by Van Craeynest et al. [27] is one such scheduler which
works similarly to the CFS but instead of mapping all threads evenly on all cores
and pinning them there, it maps the highest priority thread (i.e. the one that has
made the fewest progress) to the most powerful core. For example, in a 4 core
system with 1 powerful core and 3 smaller energy efficient cores, this scheduler
will send the thread with the highest priority to the large core and the next 3
highest priority threads to the other 3 small cores.

Another scheduler targeted at heterogeneous systems is the hardware round-
robin scheduler by Markovic et al. [15]. Instead of using priorities for thread
selection, this approach chooses which threads to run next in a round-robin
manner (thereby guaranteeing fairness) and then maps the selected threads to
the cores. Using the same 4 core system as described above, this scheduler will
rotate the threads in a manner similar to a first in first out queue, from small
core to small core to small core to large core and then back into the thread
waiting pool until all threads have had a chance to execute.

Scheduling also produces overheads which may reduce the total efficiency
gains due to the cost of calculations as well as context swap penalties. It is
therefore imperative for effective lightweight schedulers to balance finding an
optimal scheduling scheme without triggering costly context swaps.

3 Scheduling Model

In this section we present our scheduling model (shown in Fig. 2) with decou-
pled thread selection and mapping mechanisms. This scheduling model uses a
conventional scheduler (CS) to select a subset of available threads to execute
next quantum (using its prioritization scheme) and the deep learning mapper
(DLM) to map the selected threads onto the diverse system resources (using
a throughput maximization scheme). The scheduling quantum (the periodicity
to run the scheduler) chosen is 4 ms for the CS and 1ms for the DLM which
reflect typical quantum granularities of CS approaches. This difference allows

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 9

the DLM to take advantage of the finer grained variations in program behaviors
and optimize the mapping on the heterogeneous system while still maintaining
CS objectives. Furthermore, the context swap penalties are generally lower for
the DLM since it only swaps threads which are already running and have data
loaded in the caches while the CS may select to run any thread that may not
have any of its data in the caches.

In addition to selecting the threads to run next, the CS is responsible for
thread management, including modifying their statuses, dealing with thread
stalls, and mapping for the first quantum of new threads or when the num-
ber of available threads is less than the number of available cores. When active,
the DLM essentially provides a homogeneous abstraction of the underlying het-
erogeneous hardware to the CS since it only needs to select threads to run and
not whether to execute on a large or small core.

Fig. 2. The scheduling model. A conventional scheduler is used to select the threads
to run next quantum and the DLM then uses the NQP and DNN predictor to find the
optimal mapping to maximize system performance.

3.1 Deep Learning Mapper (DLM)

The DLM is responsible for finding a mapping of the selected threads onto
the hardware cores which optimizes system throughput. This objective helps
to demonstrate the significant potential that using DNN based performance
predictors can have for a continuously busy system. The DLM works by firstly
collecting statistical information about each selected thread pertaining to its

10 D. Nemirovsky et al.

behavior (described in Sect. 3.1). These are gathered during the thread’s previous
execution quantum. These statistics are then passed along to the next quantum
behavior predictor (NQP) that predicts that the thread’s behavior during the
next execution quantum will be the same as during its previous quantum. The
NQP in essence forwards the behavioral statistics for all threads that have been
selected to execute next quantum to our DNN based performance predictor. The
DNN is able to estimate the system performance for a given mapping scheme of
the threads selected to run next quantum. To identify the most advantageous
mapping scheme to initiate for the next quantum, the DLM will utilize the DNN
to make separate predictions for all possible mapping schemes given the selected
threads and then choses the scheme that results in the highest estimated system
performance.

Thread statistics and parameter engineering. It is important to carefully
determine the appropriate set of thread statistics that characterize thread behav-
iors and will be used as input parameters to our system performance predictor.
This process, otherwise known as parameter engineering, is critical since the
accuracy of the system predictor depends upon the ability of the neural network
to find causal relationships between these inputs and the expected output.

Normalizing the statistics into ratios helps to achieve parameter generaliza-
tion. Using ratios instead of real values such as generating an instruction mix
where each instruction type is given as a ratio of the total instructions executed
during the last quantum helps to achieve this generalization. Without using this
type of normalization, we would be left with inconsistent statistical input to
the DNN performance predictor. For example, the number of actual executed
instructions of each type depend heavily on the microarchitecture of the cores
(e.g. an out-of-order core may execute more instructions than an in-order core
even though the instruction mix ratios may be the same). Different forms of
generalization can also be used in cases when the core types have different ISAs
or cache configurations. Generalizing statistics enables our approach to be useful
in systems with a variety of different architectures.

In determining the final set of statistics, we sought to balance DNN predictor
accuracy while minimizing the overheads due to gathering the statistics and the
arithmetic operations needed to be performed. Based upon the heterogeneous
system used in our work (detailed in Sect. 4.1), we identified 12 different thread
statistics that are useful in describing thread behaviors on the cores and are
inclusive of thread interference effects. The statistics are collected after a thread
completes an execution quantum and are composed of the accesses and misses
of the different structures of the cache hierarchy as well as the instruction mix
executed. These 12 thread statistics (given as ratios) are: (1) DL1, (2) L2, and
(3) L3 data cache miss ratios, instruction mix ratios including (4) loads, (5)
stores, (6) floating point operations, (7) branches, and (8) generic arithmetic
operations, (9) IL1 divided by DL1 loads, (10) L2 divided by DL1 misses, (11)
L3 divided by DL1 misses, and (12) L3 divided by L2 misses.

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 11

The 12 statistics are saved as part of a thread’s context after each quantum it
executes, overwriting the values from the previous quantum. Many conventional
CPUs come with hardware support for collecting similar statistics and in future
work we will seek to further explore the set of statistics needed in order to
mitigate collection and processing overheads while maintaining or improving
the accuracy of our performance predictor.

Next quantum thread behavior predictor (NQP). Several novel
approaches have been proposed which predict program behavior based on var-
ious statically or dynamically collected program statistics [7,26]. However, to
keep overheads low and for simplicity, we use a next quantum thread behavior
predictor (NQP) that always predicts the next behavior to be the same as the
immediately anterior quantum behavior. The statistics forwarded by the NQP,
therefore, are based on those collected during the thread’s previous execution
quantum.

Figure 3 helps to visualize the behavioral periodicity which the NQP must
predict for. It shows the IPC variability of the perlbench and gamess benchmarks
throughout their simulated execution on an Intel Nehalem x86 using a 1ms
execution quantum. There are clearly periodic behavioral phases that span tens
and sometimes hundreds of quanta. It is also possible to observe that for finer
granularities, the IPC variation from quantum to quantum is quite minimal, and
more so on the small core.

We measured the NQP accuracy results using the mean percentage error for
the SPEC2006 benchmark suite. These applications were simulated executing on
an Intel Nehalem x86 configuration using a 1ms execution quantum. The errors
are calculated using Eq. 1 by measuring the IPC differences from quantum to
quantum.

errori =
|yi − ti|

ti

µerror =
1
n
×

n∑

i=1

errori

(1)

where y is the predicted IPC and t is the target (i.e. observed) IPC value for
quantum i and n is the total number of quanta (i.e. samples).

The NQP results in average errors of 10% for all SPEC2006 applications
on both cores. However, the results vary between individual benchmarks with
some outliers (e.g. cactusADM and soplex) exhibiting higher errors. These error
variations can have a significant impact on the ability of the DNN predictor to
properly predict and maximize system throughput.

DNN system performance predictor. The key component behind the DLM
is a DNN system performance predictor which takes as input a set of parameters
from as many individual threads as there are hardware cores and then outputs
an estimated system IPC value. The system we target is a heterogeneous CPU
architecture composed of 4 cores with 2 different core types (1 large core and

12 D. Nemirovsky et al.

(a) The IPC per quantum behavior of perlbench.

(b) The IPC per quantum behavior of gamess.

Fig. 3. The IPC per quantum behavior of four SPEC benchmarks when running on
the large core compared to the small core.

3 small cores, described in Sect. 4.1). The DNN predictor takes as input the 12
normalized parameters from the 4 threads (selected for execution by the CS) for
a total of 48 input parameters.

The order in which the threads are inputted to the DNN correspond to which
physical core they would be mapped to with the first 12 thread parameters as
corresponding to the thread mapped to the large core, and the next 36 param-
eters corresponding to the threads mapped to the three small cores. This way,
we are able to estimate what the system IPC would be for different mapping
combinations.

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 13

Fig. 4. An example of how the DLM uses the DNN to predict for 4 different mapping
combinations once it is passed the 4 threads selected by the CS (A, B, C, and D).

An example of this is given in Fig. 4. Here the CS has selected 4 threads
(A, B, C, and D) from a larger pool of available threads to execute next quantum.
There are 4 different combinations which we can map the 4 threads onto the
hardware where each combination will have a different thread mapped onto the
large core. The different mapping combinations represent the different ordering
of the thread parameter inputs to the DNN. For instance, combination 1 will have
the first 12 inputs correspond to thread A, the next 12 to thread B and so on. We
can also consider all mapping permutations but since the only shared structure
is the L3, there should be negligible differences in performance and interference
effects. In the example, the DNN predictions for the 4 different combinations are
given in the last column. Combination 2 has the highest estimated system and
will be chosen as the optimal mapping scheme for the upcoming quantum.

We have implemented the DNN performance predictor using Python and the
machine learning library scikit-learn [20]. An extensive exploration into the DNN
architecture was conducted before settling upon the chosen design. Due to space
concerns and the objective of this work being the proof of concept of the DLM,
only a brief summary of the DNN design study is provided here.

Once the 12 input parameters were chosen, we evaluated numerous DNNs
by modifying the hyperparameters of each including using different numbers
of hidden layers, hidden units, activation functions, and training regularization
techniques. We sought to balance prediction accuracy with implementation fea-
sibility and made use of learning curves to gain insight into how many training
samples the DNN needs to start predicting consistently for unseen data and
how accurate these predictions are. Each training data sample consists of 48
input parameters and 1 target system IPC value. These are collected after each
scheduling quantum which has resulted in the execution of 4 threads on the 4
cores. The algorithm used for training is a stochastic gradient based optimizer
with L2 regularization which is readily used in machine learning models. During
training, the weights of the neural network are adjusted after each full iteration
of a batch of training data, always aiming to minimize the mean square error
(mse) between the predicted output and the target output.

At the end of the design study, we settled upon a DNN implementation con-
sisting of 48 total inputs, 5 hidden layers of 25 hidden units each, and a single
output unit that use a rectified linear activation function. Figure 5 plots the
learning curves of the training and 10-fold cross-validation results of the chosen

14 D. Nemirovsky et al.

DNN. It highlights how, as the quantity of training data grows, so too does the
accuracy and generalizability of the predictor when executing all the applications
from SPEC2006. The score is measured in terms of correlation between the pre-
dicted system performance and the observed system performance using an R2

coefficient. In particular, the figure shows that after about 15000 quanta, the
correlation between the predicted performance and the observed performance
on the data used to train is very high (about 0.96) and after about 35000
quanta, the correlation of stabilizes for the unseen validation data at about
0.64. The difference between the training and validation curves illustrates that
the model has high variance which may indicate overfitting but can be explored
in future work by adding more regularization and fine tuning the input param-
eters, hyperparameters, and sample data. Since our model is capable of online
learning, however, the prediction errors introduced by running new applications
will gradually settle at lower levels after training dynamically. Online learning
works by continuing to train our DNN periodically after a certain number of new
data samples are gathered. For our online DNN implementation, we have chosen
to keep training our predictor every 20 execution quanta (i.e. a micro-batch of
20 samples). This requires needing to save only 20 quantum samples of data a
time. The frequency of online training is related to the average number of quanta
the benchmarks take to complete. A larger micro-batch could be used for longer
applications or when the system is exceedingly busy in order to lower overheads.

3.2 Overheads

Schedulers typically add overheads due to the mapping calculations and resulting
context swaps after each scheduling quantum. Since the DLM is triggered 4 times
as often as the CS (1 ms vs 4 ms quantum), the DLM can also cause context swaps
before the next CS quantum. A minimum of 0 and maximum of 4 extra context
swaps can be issued by the DLM before the next CS quantum. However, the DLM
will only trigger a swap if the resulting mapping is beneficial to overall system
performance. The overheads due to the NQP and performance predictor amount
to less than 4000 floating point operations per predicted mapping combination
and less than 16000 in total. However, not only can a large quantity of these
calculations be done in parallel, but this overhead is still orders of magnitude less
than it costs to swap contexts and load the caches. Online training also adds
overheads but is only done after every 20 quanta (or the chosen frequency of
micro-batch training) and can be hidden by running it in the background when
a core is idle.

Storing the 64-bit weights of the DNN requires about 21 KB of memory.
The introduction of new statistical fields to save for each thread is also a minor
overhead (96 bytes per thread) as is the memory needed to store the online
training data (¡8 KB for 20 samples of 4 threads’ worth of parameters). Lowering
these overheads is a topic for future work but are still reasonable for a viable
implementation of the scheduling model.

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 15

Fig. 5. The learning curve of the online DNN predictor. As the amount of training data
increases the predictor becomes more generalized to account for different applications
and behaviors. Higher y-axis numbers are better.

4 Evaluation

4.1 Methodology

This work uses the Sniper [3] simulation platform. Sniper is a popular hardware-
validated parallel x86-64 multicore simulator capable of executing multithreaded
applications as well as running multiple programs concurrently. The simulator
can be configured to run both homogeneous and heterogeneous multicore archi-
tectures and uses the interval core model to obtain performance results.

The processor that is used for all experimental runs in this work is a quad-
core heterogeneous asymmetric multi-core processor consisting of 1 large core
and 3 identical small cores. Both core types are based on the Intel Nehalem x86
architecture running at 2.66 GHz. Each core type has a 4 wide dispatch width,
but whereas the large core has 128 instruction window size, 16 cycle branch mis-
prediction penalty (based on the Pentium M predictor), and 48 entry load/store
queue, the small core has a 16 instruction window size, 8 cycle branch mispre-
diction penalty (based on a one-bit history predictor), and a 6 entry load/store
queue. The 1-large 3-small multi-core system configuration is based on the exper-
imental framework used in previous work [15,27] that we evaluate our proposal
against. These works also make use of Sniper, which unfortunately does not
provide for a wide selection of different architectures such as ARM but does
support hardware validated x86 core types. We believe that using the (admit-
tedly limited) experimental setup as employed in previous work allows for the
fairest comparison.

16 D. Nemirovsky et al.

We have used the popular SPEC2006 [9] benchmark suites to evaluate and
train our scheduling model. This is an industry-standardized, CPU-intensive
benchmark suite, stressing a system’s processor and memory subsystem. The
entirety of the benchmark suite is used with the exception of some applications
which did not compile in our platform (dealII, wrf, sphinx3). All 26 benchmarks
are run from start to finish and the simulation ends after all the benchmarks
finish. This is done to emulate a busy system which must execute a diverse set of
applications. This setup is also useful in demonstrating the ability of the DLM
to improve system throughput.

We evaluate the performance for three different conventional schedulers
(round-robin [15], fairness-aware [27], and CFS [19]) with and without the use
of a fully trained DLM. That is to say we compare how much each conventional
scheduler may be improved (in terms of system throughput) by using the DLM
instead of its typical mapping mechanism. To account for context switch over-
heads due to architectural state swapping, we apply a 1000 cycle penalty which
is consistent with the value utilized in the round robin study. The additional
cache effects from the context switches are captured by the simulation.

Fig. 6. Average system throughput (IPC) improvements when using the DLM for all
SPEC2006. Higher numbers are better.

Figure 6 compares the system throughput improvements achieved for all 3
schedulers when using a DLM after running SPEC2006. The results show an
average percentage throughput increase of 8%, 20%, and 30% for the round-
robin, fairness-aware, and CFS schedulers respectfully. These improvements are
significant especially for a preliminary study with a simple deep neural network
predictor. They also highlight how effective the DLM is at benefitting all 3 differ-
ent state-of-the-art schedulers. The improvements demonstrate the ability of the
DLM to find more optimal mappings than the schedulers can by themselves. It
achieves this thanks to two main factors. The DNN predictor allows the DLM to
make highly accurate predictions for different mapping combinations while the
1ms quantum provides the opportunity to detect and adjust the mapping for

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 17

variations in thread behaviors. The differences in the throughput gains for the
3 schedulers are also consistent with how they perform relative to one another
without the DLM. On a heterogeneous system, the round-robin scheduler has
been shown to perform better than the fairness-aware scheduler, which in turn
performs better than the CFS.

The average total percentage prediction error of the DLM (calculated using
Eq. 1) for the experiments was 12%. The DLM errors are slightly higher than
those of the DNN shown earlier (see Sect. 3.1) because the DLM includes errors
from both the NQP and the DNN. This error rate is within reasonable margins
and our results are notable when considering that the DLM still showed such
significant throughput benefits.

5 Related Work

Much of the previous work using machine/deep learning for scheduling has been
to classify applications, as well as to identify process attributes and a program’s
execution history. This is the approach of [18] which used decision trees to char-
acterize whole programs and customize CPU time slices to reduce application
turn around time by decreasing the amount of context swaps. The work pre-
sented in [13] studies the accuracy of SVMs and linear regression in predicting
the performance of threads on two different core types. However, they do so at
the granularity of 1 s, use only a handful of benchmarks, and do not implement
the predictor inside of a scheduler.

The studies by Dorronsoro and Pinel [6,21] investigates using machine learn-
ing to automatically generate desired solutions for a set of problem instances
and solve for new problems in a massively parallel manner. An approach that
utilized machine learning for selecting whether to execute a task on a CPU or
GPU based on the size of the input data is done by Shulga et al. [25]. Predicting
L2 cache behavior is done using machine learning for the purpose of adapting a
process scheduler for reducing shared L2 contention in [23].

In the work done by Bogdanski et al. [2], choosing parameters for task
scheduling and loadbalancing is done with machine learning. However, their pre-
diction is whether it is beneficial to run a pilot program that will characterize a
financial application. They also assume that the computational parameters of the
workload stay uniform over certain periods of time. Nearly all of these approaches
deal with either program or process level predictions and target homogeneous
systems.

Characterizing and exploiting program behavior and phases has been the
subject of extensive research. Duesterwald et al. [7] and Sherwood et al. [24]
showed that programs exhibit significant behavioral variation and can be cate-
gorized into basic blocks and phases which can span several millions to billions
of instructions before changing. Work done in [26] has taken advantage of the
compilers ability to statically estimate an applications varying level of instruc-
tion level parallelism in order to estimate IPC using monotonic dataflow analysis
and simple heuristics for guiding a fetch-throttling mechanism.

18 D. Nemirovsky et al.

A heterogeneous system containing various cores of the same ISA but of
different types was proposed by Kumar et al. in [11]. Their process consists of
deciding on the core that will perform in the most power efficient manner each
time a new phase or program is detected using sampling techniques. Moncrieff
et al. [17] and Menasce and Almeida [16] analytically examined the tradeoffs
between utilizing fast and slow processors in heterogeneous processors. Their
study showed that a system composed of few fast cores and many slow cores are
effective in terms of cost and performance. Optimal scheduling of independent
applications running on a preemptive heterogeneous CMP has been studied by
Liu and Yang [14]. A separate study [1] aims to create a contention-aware sched-
uler that maximizes throughput by learning and mimicking the decisions of an
oracle scheduler.

Chronaki et al. [4,5] propose a heterogeneous scheduler for a dataflow pro-
gramming model which improves performance using a prioritization scheme and
dynamic task dependency graph to assign newly created and critical tasks to fast
cores. A statistical method using extreme value theory is used in [22] to deter-
mine the probabilities for optimal task assignment in massively multithreaded
processors.

6 Future Work and Conclusion

In this paper we have presented a preliminary study which pioneers applying
DL to heterogeneous scheduling. We outlined a scalable scheduling model that
decouples thread selection and mapping routines. The thread selection mech-
anism of a conventional scheduler is used in conjunction with a deep learning
mapper (DLM) to maintain fairness and increase system performance. The DLM
uses a deep neural network to predict the system performance for different map-
ping options at the scheduling quantum granularity. This lightweight deep neural
network can provide highly accurate predictions for a diverse set of applications
while continuing to train dynamically. The validation of our approach shows that
even a simple DL based mapper can significantly improve system performance
for state-of-the-art schedulers by 8% to 30% for CPU and memory intensive
applications.

We seek to expand the scope of our work in the future by further exploring
thread behavioral statistics, alternative DL models, improving the NQP, and
scalability issues. We would also like to study ensemble models could be used to
further widen the scope of the DLM for dealing with irregular applications.

We hope that the novelty of this work has helped to highlight the value that
using deep learning can offer towards improving system performance.

Acknowledgments. This work has been supported in part by the European Union
(FEDER funds) under contract TIN2015-65316-P.

A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems 19

References

1. Anderson, G., Marwala, T., Nelwamondo, F.V.: Multicore scheduling based on
learning from optimization models. Int. J. Innov. Comput. Inf. Control 9(4), 1511–
1522 (2013)

2. Bogdanski, M., Lewis, P.R., Becker, T., Yao, X.: Improving scheduling techniques
in heterogeneous systems with dynamic, on-line optimisations. In: 2011 Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems (CISIS),
pp. 496–501. IEEE (2011)

3. Carlson, T.E., Heirmant, W., Eeckhout, L.: Sniper: exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation. In: 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12. IEEE (2011)

4. Chronaki, K., Rico, A., Badia, R.M., Ayguade, E., Labarta, J., Valero, M.:
Criticality-aware dynamic task scheduling for heterogeneous architectures. In: Pro-
ceedings of the 29th ACM on International Conference on Supercomputing, pp.
329–338. ACM (2015)

5. Chronaki, K., et al.: Task scheduling techniques for asymmetric multi-core systems.
IEEE Trans. Parallel Distrib. Syst. 28(7), 2074–2087 (2017)

6. Dorronsoro, B., Pinel, F.: Combining machine learning and genetic algorithms to
solve the independent tasks scheduling problem. In: 2017 3rd IEEE International
Conference on Cybernetics (CYBCON), pp. 1–8. IEEE (2017)

7. Duesterwald, E., Cascaval, C., Dwarkadas, S.: Characterizing and predicting pro-
gram behavior and its variability. In: 12th International Conference on Parallel
Architectures and Compilation Techniques, PACT 2003, Proceedings, pp. 220–231.
IEEE (2003)

8. Greenhalgh, P.: big.little processing with arm cortex-a15 & cortex-a7 (2011).
http://www.arm.com/files/downloads/bigLITTLE Final Final.pdf

9. Henning, J.: SPEC CPU2006 benchmark descriptions. In: Proceedings of the ACM
SIGARCH Computer Architecture News, pp. 1–17 (2006)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

11. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA
heterogeneous multi-core architectures: the potential for processor power reduc-
tion. In: 36th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-36, Proceedings, pp. 81–92. IEEE (2003)

12. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 253–256. IEEE (2010)

13. Li, C.V., Petrucci, V., Mossé, D.: Predicting thread profiles across core types via
machine learning on heterogeneous multiprocessors. In: 2016 VI Brazilian Sympo-
sium on Computing Systems Engineering (SBESC), pp. 56–62. IEEE (2016)

14. Liu, J.W., Yang, A.T.: Optimal scheduling of independent tasks on heterogeneous
computing systems. In: Proceedings of the 1974 Annual Conference, vol. 1, pp.
38–45. ACM (1974)

15. Markovic, N., Nemirovsky, D., Milutinovic, V., Unsal, O., Valero, M., Cristal, A.:
Hardware round-robin scheduler for single-ISA asymmetric multi-core. In: Träff,
J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 122–134.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-0 10

http://www.arm.com/files/downloads/bigLITTLE_Final_Final.pdf
https://doi.org/10.1007/978-3-662-48096-0_10

20 D. Nemirovsky et al.

16. Menasce, D., Almeida, V.: Cost-performance analysis of heterogeneity in supercom-
puter architectures. In: Proceedings of Supercomputing 1990, pp. 169–177. IEEE
(1990)

17. Moncrieff, D., Overill, R.E., Wilson, S.: Heterogeneous computing machines and
Amdahl’s law. Parallel Comput. 22(3), 407–413 (1996)

18. Negi, A., Kumar, P.K.: Applying machine learning techniques to improve Linux
process scheduling. In: TENCON 2005, 2005 IEEE Region 10, pp. 1–6. IEEE (2005)

19. Pabla, C.S.: Completely fair scheduler. Linux J. 2009(184), 4 (2009)
20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

21. Pinel, F., Dorronsoro, B.: Savant: automatic generation of a parallel scheduling
heuristic for map-reduce. Int. J. Hybrid Intell. Syst. 11(4), 287–302 (2014)

22. Radojković, P., Čakarević, V., Moretó, M., Verdú, J., Pajuelo, A., Cazorla, F.J.,
Nemirovsky, M., Valero, M.: Optimal task assignment in multithreaded processors:
a statistical approach. ACM SIGARCH Comput. Architect. News 40(1), 235–248
(2012)

23. Rai, J.K., Negi, A., Wankar, R., Nayak, K.: A machine learning based meta-
scheduler for multi-core processors. In: Technological Innovations in Adaptive and
Dependable Systems: Advancing Models and Concepts, pp. 226–238. IGI Global
(2012)

24. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro 23(6), 84–93 (2003)

25. Shulga, D., Kapustin, A., Kozlov, A., Kozyrev, A., Rovnyagin, M.: The scheduling
based on machine learning for heterogeneous CPU/GPU systems. In: NW Russia
Young Researchers in Electrical and Electronic Engineering Conference (EICon-
RusNW), 2016 IEEE, pp. 345–348. IEEE (2016)

26. Unsal, O.S., Koren, I., Khrishna, C., Moritz, C.A.: Cool-Fetch: a compiler-enabled
IPC estimation based framework for energy reduction. In: Eighth Workshop on
Interaction between Compilers and Computer Architectures, INTERACT-8 2004,
pp. 43–52. IEEE (2004)

27. Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A., Eeckhout, L.: Fairness-
aware scheduling on single-ISA heterogeneous multi-cores. In: Proceedings of the
22nd International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 177–188. IEEE Press (2013)

Power Consumption Characterization
of Synthetic Benchmarks in Multicores

Jonathan Muraña1(B), Sergio Nesmachnow1, Santiago Iturriaga1,
and Andrei Tchernykh2

1 Universidad de la República, Montevideo, Uruguay
{jmurana,sergion,siturria}@fing.edu.uy

2 CICESE Research Center, Ensenada, Baja California, Mexico
chernykh@cicese.mx

Abstract. This article presents an empirical evaluation of power con-
sumption of synthetic benchmarks in multicore computing systems. The
study aims at providing an insight of the main power consumption char-
acteristics of different applications when executing over current high
performance computing servers. Three types of applications are studied
executing individually and simultaneously on the same server. Intel and
AMD architectures are studied in an experimental setting for evaluating
the overall power consumption of each application. The main results indi-
cate the power consumption behavior has a strong dependency with the
type of application. An additional performance analysis shows that the
best load of the server regarding energy efficiency depends on the type
of the applications, with efficiency decreasing in heavily loaded situa-
tions. These results allow characterizing applications according to power
consumption, efficiency, and resource sharing, and provide useful infor-
mation for resource management and scheduling policies.

Keywords: Green computing · Energy efficiency · Multicores
Computing efficiency

1 Introduction

Nowadays, data centers are key infrastructures for executing industrial and sci-
entific applications. Data centers have become highly popular for providing stor-
age, computing power, middleware software, and others information technology
(IT) utilities, available to researchers with ubiquitous access [3]. However, their
energy efficiency has become a major concern in recent years, having a signif-
icant impact on monetary cost, environment, and guarantees for service-level
agreements (SLA) [4].

The main sources of power consumption in data centers are the computa-
tional resources and the cooling system [13]. When focusing on power consump-
tion due to resource utilization, several techniques for hardware and software
optimization can be applied to improve energy efficiency. Software characteri-
zation techniques [1] are used to determine features that are useful to analyze
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 21–37, 2018.
https://doi.org/10.1007/978-3-319-73353-1_2

22 J. Muraña et al.

the software behavior, including power consumption [2]. Estimation of power
consumption is an important issue that can determine the quality and even the
feasibility of both software products and big data center infrastructures.

In this line of work, this article focuses on the characterization of power con-
sumption for scientific computing applications over nowadays multicore hard-
ware used in scientific computing platforms. Such characterization is useful for
designing energy efficient scheduling strategies for scientific computing platforms.
Three synthetic benchmarks are studied over two physical setups from a real
High Performance Computing (HPC) platform, registering their power consump-
tion with a power meter device. Furthermore, the experimental analysis studies
the power consumption of different applications sharing a computing resource
via simultaneous execution. The proposed study is very relevant for nowadays
data centers and HPC infrastructures, where many applications are executed at
the simultaneously. This impacts on both the energy efficiency and the quality
of service (QoS) offered to the users of the platform.

The article is organized as follows. Section 2 reviews related works on energy
characterization in multicores. Section 3 describes the proposed methodology for
energy characterization, the benchmarks, and the physical setup for experiments.
The experimental results are reported and discussed in Sect. 4. The conclusions
and the main lines for future work are presented in Sect. 5.

2 Related Work

The analysis of related works allows identifying two types of studies. A first
group proposes the empirical evaluation of scientific applications to develop spe-
cific models or to adjust existing models for studying power and performance
behavior. Other works introduces optimization techniques over existing models
and presents optimized results. This section focuses on reviewing those articles
about empirical measurements and evaluation of power consumption models.

Iturriaga et al. [7] studied the problem of finding schedules with appropriate
trade-off between power consumption and execution time in heterogeneous com-
puters systems, considering uncertainty. Specific versions of well-known heuristic
were proposed for scheduling on realistic scenarios, applying the power consump-
tion model in [12] and considering only CPU-bound workloads. A model for
uncertainty on power consumption was determined through empirical evalua-
tions using three CPU-bound benchmarks. Regarding scheduling results, online
heuristics computed better schedules than offline approaches. Results also con-
firmed that uncertainly has a significant impact in the accuracy of the scheduling
algorithms. The power consumption behavior of CPU-bound benchmarks shown
in [7] is consistent with the one in our research. Moreover, we propose a fully
empirical power consumption characterization, considering also two additional
types of benchmarks: memory bound and disk bound.

Srikantaiah et al. [14] studied workload consolidation strategies for energy
optimization in cloud computing systems. An empirical study of the relation-
ship between power consumption, performance, and resource utilization was pre-
sented. The experiments were executed in four physical server connected to a

Power Consumption Characterization of Synthetic Benchmarks in Multicores 23

power meter to track the power consumption. The resource utilization was moni-
torized using the Xperf toolkit. Only two resources were considered in the study:
processor and disk. The performance degraded for high levels of disk utilization,
and variations in CPU usage did not result in significant performance variations.
Energy results were presented in terms of power consumption per transaction
(including power consumption in idle state), resources utilization, and perfor-
mance degradation. On the other hand, results showed that power consumption
per transaction, is more sensitive to CPU utilization than disk utilization. The
authors also proposed an heuristic method to solve a modified bin packing prob-
lem where the servers are bins and the computing resources are bin dimensions.
Results were reported for small scenarios where the power consumption of the
solutions computed by the heuristic is about 5% more than the optimal solution.
The tolerance for performance degradation was 20%.

Du Bois et al. [5] presented a framework for generating workloads with spe-
cific features, applied to compare energy efficiency in commercial systems. CPU-
bound, memory-bound, and disk-bound benchmarks were executed on a power
monitoring setup composed of an oscilloscope connected to the host and a logging
machine to persist the data. Two commercial systems were studied: a high-end
with AMD processors and a low-end with Intel processors. Benchmarks were exe-
cuted independently, isolating the power consumption of each resource. Results
confirmed that energy efficiency depends on the workload type. Comparatively,
the high-end system had better results for the CPU-bound workload, the low-
end system was better for disk-bound, and both had similar efficiency for the
memory-bound workload. Our work complements this approach by including a
study of the power consumption behavior when executing different types of tasks
simultaneously on specific architectures for high performance computing.

Feng et al. [6] evaluated the energy efficiency of a high-end distributed system,
with focus on scientific workloads. The authors proposed a power monitoring
setup that allows isolating the power consumption of CPU, memory, and disk.
The experimental analysis studied single node executions and distributed exe-
cutions. In the single node experiments, results of executing a memory-bound
benchmark showed that the total power consumption is distributed as follow:
35% corresponds to the CPU, 16% corresponds to the physical memory and 7%
corresponds to the disk. The rest is consumed by power supply, fans, network,
and other components. Idle state represented 66% of the total power consump-
tion. In distributed experiments, benchmarks that are intensive in more than one
computing resource were studied. Results showed that energy efficiency increased
with the number of nodes used for execution.

Kurowski et al. [9] presented a data center simulator that allows specify-
ing various energy models and management policies. Three types of theoretical
energy models are proposed: (i) static approach, which consider a unique power
value by processing unit; (ii) dynamic approach, which consider power levels,
representing the usage of the processing unit; and (iii) application specific app-
roach, which consider usage of application resources to determine the power
consumption. Simulation results were compared with empirical measurements

24 J. Muraña et al.

over real hardware to validate the theoretical energy models in arbitrary scenar-
ios. All models obtained accurate results (error was less than 10% with respect
to empirical measurements), and the dynamic approach was the most precise.

Langer et al. [10] studied energy efficiency of low voltage operations in
manycore chips. Two scientific applications were considered for benchmarking
over a multicore simulator. The performance model considered for a chip was
S = ak(

∑
fi) + bk, where S are the instructions per cycle, f is the frequency of

the core i and ak,bk are constants that depend on k, the number of cores in the
chip. A similar model is used for power consumption. Across 25 different chips,
an optimization method based on integer linear programming achieved 26% in
energy savings regarding to the power consumption of the faster configuration.

Several works in literature have focused on modeling and characterizing
power consumption of scientific applications. However, to the best of our knowl-
edge there is no empirical research focused on the inter-relationship between
power consumption and CPU, memory, and disk utilization. Also, there is no
experimental analysis of critical levels of resource utilization (close to 100%) and
its impact on power consumption and performance. This article contributes in
this line of research, proposing empirical analysis for both aforementioned issues.

3 Methodology for Power Consumption Evaluation

This section describes the proposed methodology for power consumption eval-
uation, the benchmarks and architectures studied, the power evaluation setup,
and the experiments designed.

3.1 Overview of the Proposed Methodology

Experiments characterize the power consumption of the most relevant comput-
ing resources: CPU, memory, and disk [5–7]. We aim at studying holistic behav-
iors and analyzing the power consumption of hosts close to 100% of comput-
ing resource utilization. The analysis is complemented with performance experi-
ments to study the trade-off between power consumption and performance degra-
dation.

3.2 Benchmarks

The benchmarks used in the analysis are part of the Sysbench toolkit [8]. Sys-
bench is a cross-platform software written in C that provides CPU, memory, and
disk intensive benchmarks for performance evaluation. The components used in
the experiments are:

1. CPU-bound : an algorithm that calculates π(n) (the prime counting function)
using a backtracking method. The algorithm contains loops, square root and
module operations, as described in Algorithm 1.

Power Consumption Characterization of Synthetic Benchmarks in Multicores 25

Algorithm 1. CPU-bound benchmark code
1: C ← 3
2: while C < MAX PRIME do
3: T ← sqrt(C)
4: L ← 2
5: while L < T do
6: if C (mod T) = 0 then
7: break
8: end if
9: if L > T = 0 then

10: N ← N + 1
11: end if
12: L ← L + 1
13: end while
14: C ← C + 1
15: end while
16: return N

2. Memory-bound : a program that executes write operations in memory, as
described in Algorithm 2, where the BUF variable is an array of integers.
The cells of the array are overwritten with value of TMP until the last posi-
tion of the array, i.e., the value of the END variable.

Algorithm 2. Memory-bound benchmark code
1: while BUF < END do
2: ∗BUF ← TMP
3: BUF ← BUF + 1
4: end while

3. Disk-bound : a program that reads/writes content in files. Read or write
requests are generated randomly and executed until a given number of
requests (MAX REQUEST) is reached, as described in Algorithm 3.

Algorithm 3. Disk-bound benchmark code
1: while REQS COUNT < MAX REQS do
2: REQ ← generate rnd request()
3: if is read(REQ) then
4: read(REQ.FILE)
5: end if
6: if is write(REQ) then
7: write(REQ.FILE)
8: end if
9: REQS COUNT + +

10: end while

26 J. Muraña et al.

3.3 Multicore Hosts and Power Monitoring Setup

Experiments were performed on Cluster FING, the HPC platform from Univer-
sidad de la República, Uruguay [11]. Two hosts were chosen according to their
characteristics and availability: HP Proliant DL385 G7 server (2 AMD Opteron
6172 CPUs, 12 cores each, and 72 GB RAM), and HP Proliant DL380 G9 server
(2 Intel Xeon CPU E5-2680v3 CPUs, 12 cores each, and 128 GB RAM).

Figure 1 presents the power monitoring setup. Benchmarks were executed
in a host connected to the power source via a Power Distribution Unit (PDU)
to register the instant power consumption. In an secondary machine, a polling
demon logged data for post-processing. This configuration is similar to the one
used in related works [5,7].

Fig. 1. Power monitoring setup

3.4 Design of Experiments

The power consumption (PC) of each host is computed as the average of 20
independent executions for each benchmark and combination of benchmarks.
Idle consumption (IC), i.e., average consumption of the host without load, is
registered to compute the effective consumption (EC) as EC = PC − IC.

In a first stage, benchmarks are evaluated independently from each other,
analyzing only one resource. Utilization level (UL) is defined as the percentage of
processors being used regarding the total number of processors in the host. Eight
ULs were considered for single benchmark execution: 12%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5% and 100%. Figure 2 shows an example of 37.5% utilization
level: the host has 24 processors of which 9 execute instances of the CPU-bound
benchmark. The remaining processors are in idle state.

In a second stage, the simultaneous execution of benchmarks is evaluated,
analyzing several combinations of resource utilization at the same time. Two and
three benchmarks are executed together in different ULs. In this case, UL is a
vector where each entry represents the percentage of processors being used by

Power Consumption Characterization of Synthetic Benchmarks in Multicores 27

Fig. 2. CPU-bound benchmark, UL of 37.5%

each type of benchmark considered in the study (CPU-bound, memory-bound,
and disk-bound, in that order). The utilization levels chosen were (25%, 25%),
(25%, 50%), (25%, 75%), (50%, 25%), (50%, 50%), (75%, 25%) in pair execu-
tions and (25%, 25%, 25%), (25%, 25%, 50%), (25%, 50%, 25%), (50%, 25%, 25%)
in triple executions. Figure 3 shows CPU-bound and memory-bound executing
together with UL of (25%, 50%) and Fig. 4 shows CPU-bound, memory-bound
and disk-bound executing combined with UL of (25%, 25%, 50%).

Fig. 3. CPU-bound and memory-bound benchmarks, UL of (25%, 50%).

Fig. 4. CPU-, memory-, and disk-bound benchmarks in UL of (25%, 25%, 50%).

Each instance of the memory-bound benchmark is configured to use (100/N)
percent of the available memory, where N is the number of processors of the
host (100% of the memory is used in full utilization mode). Each instance of the

28 J. Muraña et al.

disk benchmark is configured to use 4 GB of disk size in AMD experiments and
2 GB in Intel experiments. These sizes were chosen taking into account the disk
size available in each host. Instances were executed and monitored for 60 s.

Finally, the impact on performance is analyzed. The makespan when execut-
ing multiple applications at the same time is compared with the makespan of
single executions. The reported makespan values are the average computed over
20 independent executions.

4 Experimental Results

This section reports the experimental results of the power consumption and the
performance evaluation. The average idle consumption was 183.4 W for the AMD
host and 57.0 W for the Intel host.

4.1 Single Benchmark Executions

Figure 5 reports PC and EC values for the CPU-bound benchmark and a graphic
comparison of EC values in both hosts. Results show an average difference of
56 W between the EC of the Intel host and the AMD host for all ULs. The almost
linear behavior indicates that power consumption is proportional to the UL.

Fig. 5. CPU-bound PC and EC results

Figure 6 reports the PC and EC values for the memory-bound benchmark and
a graphic comparison of the EC values in both hosts. Results show a significant
increment in EC with regard to CPU-bound executions for all ULs (104% for
the AMD host and 36% for the Intel host, on average).

Power Consumption Characterization of Synthetic Benchmarks in Multicores 29

Fig. 6. Memory-bound PC and EC results

Fig. 7. Disk-bound PC and EC results

30 J. Muraña et al.

A logarithmic behavior is observed for both PC and EC, which does not
occur in CPU-bound case, mainly due to the bottleneck in the access to the
main memory that reduces the CPU usage. No significant increase is detected
on high/critical ULs, possibly by effective resource contention by the operating
system for solving conflicts over access to shared resources.

Figure 7 reports PC and EC values for the disk-bound benchmark and a
comparison of EC values in both hosts. The maximum EC variation through
ULs is 4 W in Intel and 2 W in AMD. These low power variation indicate that
disk usage has low impact in power consumption in comparison with CPU and
memory, mainly due to waits generated by bottlenecks in disk access.

4.2 Combined Benchmark Executions

CPU and memory. Figure 8 reports PC and EC when executing CPU- and
memory-bound benchmarks together and a comparison of EC values on AMD.
Figure 9 reports the same analysis on Intel. Symbol ↑ indicates the EC of the com-
bined benchmarks is higher than the sum of the ECs of each benchmark executed
independently, i.e., the combined execution is less efficient than the independent
execution. Symbol ↓ indicates the opposite, that is, the combined execution is
more efficient. Symbol = indicates that the values are equal (less than 1 W of
difference). Results show that for AMD, combined executions reduces EC com-
pared to independent executions. On the contrary, EC of combined executions
is higher than independent executions for most cases on Intel.

Fig. 8. Combined CPU- and memory-bound PC and EC on AMD

CPU and disk. Figure 10 (AMD) and Fig. 11 (Intel) report PC and EC when
executing CPU- and disk-bound benchmarks combined, and the EC graphics on
each host. Results show that the combined execution of CPU and disk bench-
marks improves energy efficiency for most ULs in both hosts, with regard to EC.

Power Consumption Characterization of Synthetic Benchmarks in Multicores 31

Fig. 9. Combined CPU- and memory-bound PC and EC on Intel

Fig. 10. Combined CPU- and disk-bound PC and EC on AMD

Fig. 11. Combined CPU- and disk-bound PC and EC on Intel

Memory and disk. Figure 12 (AMD) and Fig. 13 (Intel) report PC and EC for
memory- and disk-bound benchmarks combined, and the EC graphics on each
host. Results show that the combined execution presents higher values of EC
than their independent execution, except for low ULs of the AMD host.

32 J. Muraña et al.

Fig. 12. Combined memory- and disk-bound PC and EC on AMD

Fig. 13. Combined memory- and disk-bound PC and EC on Intel

CPU, memory, and disk. Table 1 reports PC and EC of CPU-, memory- and
disk-bound benchmarks executed together. Results show that the combined exe-
cution on AMD has higher EC compared to their independent execution, mainly
at high ULs. However, on Intel, combined executions reduce EC compared to
independent executions for all ULs.

Table 1. Combined CPU-, memory- and disk-bound PC and EC

UL AMD Intel

PC EC PC EC

(25%, 25%, 25%) 265.9±4.3 82.5 = 176.9±3.8 119.9 ↓
(25%, 25%, 50%) 266.6±4.8 83.2 ↓ 178.2±3.3 121.6 ↓
(25%, 50%, 25%) 303.0±3.1 119.6 ↑ 221.3±5.4 164.3 ↓
(50%, 25%, 25%) 287.9±1.8 104.5 ↑ 194.5±1.8 137.5 ↓

Power Consumption Characterization of Synthetic Benchmarks in Multicores 33

4.3 Performance Evaluation

This subsection analyzes the performance evaluation experiments.
Figure 14 reports the makespan of the CPU-bound benchmark and a graphic

comparison for both hosts. Results show that increasing the UL does not impact
significantly the completion time, due to the absence of resource competition.
However, both hosts present a slight degradation for UL 100%, possibly due to
conflicts with operating system processes.

Fig. 14. CPU-bound makespan results

Figure 15 reports the makespan of the memory-bound benchmark and a
graphic comparison for both hosts. Performance degrades in AMD; there is a
gap of 400 s between the lowest and the highest UL. For Intel the difference is
only 48 s. The difference in gaps is possibly due to specific disk features of each
host, such as transfer speed.

Figure 16 reports the makespan of the disk-bound benchmark and a graphic
comparison for both hosts. The disk-bound case presents a notorious degradation
in performance when increasing UL when compared with other benchmarks.

4.4 Energy Efficiency Analysis

This subsection analyzes the energy efficiency from the collected measurements.
The energy efficiency metric PC×makespan

number of instances×3600 is defined for comparing
results. The lower the metric value, the higher energy efficiency of the host.

34 J. Muraña et al.

Fig. 15. Memory-bound makespan results

Fig. 16. Disk-bound makespan results

Power Consumption Characterization of Synthetic Benchmarks in Multicores 35

Table 2 shows the average energy efficiency of all tests for all ULs and all
hosts. Best values for each host are presented in bold. The study shows that for
both hosts the CPU-bound benchmark is more efficient at high ULs, memory-
bound benchmark is more efficient at medium ULs and disk-bound benchmark
is more efficient at low ULs. Intel host is more efficient than AMD for all ULs
and all types of benchmarks. Finally, the high-critic UL (100%) is less efficient
than the high-medium UL (87.5%), except for disk-bound executions.

Table 2. Efficiency (PC×makespan/3600/number of instances)

UL AMD Intel

CPU mem. Disk CPU mem. Disk

12.5% 0.801 1.804 4.106 0.404 0.407 0.226

25.0% 0.422 1.511 4.817 0.191 0.193 0.233

37.5% 0.295 1.429 4.926 0.159 0.226 0.240

50.0% 0.231 1.391 6.147 0.109 0.185 0.246

62.5% 0.193 1.335 5.801 0.089 0.266 0.255

75.0% 0.168 1.410 5.907 0.081 0.216 0.260

87.5% 0.150 1.570 6.367 0.083 0.235 0.265

100.0% 0.154 1.656 5.686 0.107 0.238 0.262

5 Conclusions and Future Work

This article presented an empirical analysis of the power consumption of syn-
thetic benchmarks in high-end multicore systems. The main contribution is an
exhaustive study of the inter-relationship among the power consumption of the
main computing resources at different ULs, over AMD and Intel architectures.

The experimental methodology consisted on executing synthetic benchmarks
over high-end hosts connected to a PDU, considering different ULs and combina-
tions, aimed at characterizing the power consumption of each computing resource
(CPU, memory, and disk). The operations performed by the benchmarks include
mathematical functions and read/write of main memory and disk.

The study was complemented with performance experiments. A total number
of 144 experiments were performed, 96 evaluating the power consumption and
48 evaluating the performance. For each experiment, 20 independent executions
were performed. Results showed that in single executions, CPU utilization has
a linear relation with power consumption. Memory utilization has significant
impact on power consumption when compared to CPU usage, up to 157% more
EC for AMD and 46% more EC for Intel. On the other hand, disk usage presented
low EC variation for all ULs.

Combined executions are able to reduce EC with regard to independent exe-
cutions manly for CPU and disk combined execution. Efficiency analysis showed

36 J. Muraña et al.

that different benchmarks performed more efficiently at different ULs: CPU at
high ULs, memory at medium ULs and disk at low ULs. Critic UL (100%)
showed worse efficiency than high-medium UL (87.5%), except for disk.

The main lines for future work are related to extend the power and perfor-
mance characterization of different benchmarks (including GPU-bound, network-
bound, and no-synthetic benchmarks) and other high-end hosts. We are also
working on using the characterization to build energy models for evaluating
energy-aware scheduling strategies on HPC infrastructures and datacenters.

References

1. Anghel, A., Vasilescu, L., Mariani, G., Jongerius, R., Dittmann, G.: An instrumen-
tation approach for hardware-agnostic software characterization. Int. J. Parallel
Prog. 44(5), 924–948 (2016)

2. Brandolese, C., Corbetta, S., Fornaciari, W.: Software energy estimation based
on statistical characterization of intermediate compilation code. In: International
Symposium on Low Power Electronics and Design, pp. 333–338 (2011)

3. Buyya, R., Vecchiola, C., Selvi, S.: Mastering Cloud Computing: Foundations and
Applications Programming. Morgan Kaufmann, San Francisco (2013)

4. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a
survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2016)

5. Du Bois, K., Schaeps, T., Polfliet, S., Ryckbosch, F., Eeckhout, L.: Sweep: evalu-
ating computer system energy efficiency using synthetic workloads. In: 6th Inter-
national Conference on High Performance and Embedded Architectures and Com-
pilers, pp. 159–166 (2011)

6. Feng, X., Ge, R., Cameron, K.: Power and energy profiling of scientific applica-
tions on distributed systems. In: 19th IEEE International Parallel and Distributed
Processing Symposium, pp. 34–44 (2005)

7. Iturriaga, S., Garćıa, S., Nesmachnow, S.: An empirical study of the robustness
of energy-aware schedulers for high performance computing systems under uncer-
tainty. In: Hernández, G., Barrios Hernández, C.J., Dı́az, G., Garćıa Garino, C.,
Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA 2014.
CCIS, vol. 485, pp. 143–157. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45483-1 11

8. Kopytov, A.: Sysbench repository https://github.com/akopytov/sysbench.
Accessed 1 May 2017

9. Kurowski, K., Oleksiak, A., Pi ↪atek, W., Piontek, T., Przybyszewski, A., W ↪eglarz,
J.: Dcworms-a tool for simulation of energy efficiency in distributed computing
infrastructures. Simul. Model. Pract. Theory 39, 135–151 (2013)

10. Langer, A., Totoni, E., Palekar, U.S., Kalé, L.V.: Energy-efficient computing for
HPC workloads on heterogeneous manycore chips. In: Proceedings of the Sixth
International Workshop on Programming Models and Applications for Multicores
and Manycores, pp. 11–19 (2015)

11. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa. Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay, 61(1), pp. 12–15 (2010). Text in Spanish

12. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling
on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–
680 (2013)

https://doi.org/10.1007/978-3-662-45483-1_11
https://doi.org/10.1007/978-3-662-45483-1_11
https://github.com/akopytov/sysbench

Power Consumption Characterization of Synthetic Benchmarks in Multicores 37

13. Nesmachnow, S., Perfumo, C., Goiri, I.: Holistic multiobjective planning of data-
centers powered by renewable energy. Cluster Comput. 18(4), 1379–1397 (2015)

14. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-
puting. In: Conference on Power Aware Computing and Systems, vol. 10, pp. 1–5
(2008)

Initial Experiences from TUPAC Supercomputer

David Vinazza1, Alejandro Otero1,3, Alejandro Soba1,4,
and Esteban Mocskos1,2(B)

1 Centro de Simulación Computacional p/Aplic. Tecnológicas, CSC-CONICET,
Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina

{dvinazza,aotero}@csc.conicet.gov.ar
2 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
emocskos@dc.uba.ar

3 Facultad de Ingenieŕıa, Universidad de Buenos Aires, Av. Paseo Colón 850,
C1063ACV Buenos Aires, Argentina

4 Centro Atómico Constituyentes, Comisión Nacional de Enerǵıa Atómica,
Av. General Paz 1499, 1650 San Mart́ın, Argentina

soba@cnea.gov.ar

Abstract. High Performance Computing centers boost the development
of a wide range of disciplines in Science and Engineering. The installa-
tion of public shared facilities in a country is an effort that should be
carefully used and must be as open as possible to strengthen the impact
of these resources.

We describe the current status and characteristics of TUPAC super-
computer, which is hosted by a CONICET research institute. Unlike
other experiences in Argentina, TUPAC is focused on supporting exter-
nal scientific and technological communities. In spite of having a reduced
operations staff, this machine provides computational resources and sup-
ports more than 200 external research projects.

In this work we describe the supercomputer setup, tools and poli-
cies implemented to reach the level of efficiency needed to support
this amount of projects. We also characterize jobs, users and projects
with special emphasis on industrial applications and large computational
research initiatives hosted in TUPAC.

Keywords: High performance computing facilities
Operations · Monitoring

1 Introduction

Centro de Simulación Computacional para Aplicaciones Tecnológicas (Computa-
tional Simulation Center for Technological Applications) (CSC) [1] is a recently
created research institute with special focus on a broad range of fields of modeling
and simulation techniques in Science and Engineering. CSC’s professional staff
includes professionals with heterogeneous background and specializations: Infor-
mation Engineering, Advanced Modeling, Energy Generation and Nanoscale
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 38–52, 2018.
https://doi.org/10.1007/978-3-319-73353-1_3

Initial Experiences from TUPAC Supercomputer 39

Processes. In addition to attending their own scientific projects, one of the main
goals of CSC is providing technical and scientific support to public or private
institutions with problems that can be addressed with techniques, processes or
methodologies derived from application of advanced modeling and simulation.

Since 2015 CSC hosts TUPAC supercomputer, a 48 TFLOPS machine with
4352 AMD Opteron cores distributed among 68 computing nodes. Additionally,
32 Tesla 2090 Nvidia boards can be used for GPGPU through a vendor pro-
vided configuration which enables four boards per server. Five separate net-
works support the interconnection of nodes: three separated Ethernet networks
for monitoring and administration, and two QDR Infiniband (very low latency)
designed for message interchange during computing.

In addition to each node local storage (in total 32 TB), a storage infrastruc-
ture is implemented based on an independent optical fiber SAN. This storage is
then exported to the rest of the system using two NFS servers in high availability
configuration. The raw capacity is 72 TB, which can be configured in different
volumes with maximum size of 15 TB. Figure 1 presents a frontal view of this
machine: from left to right, the first rack is an Uninterruptible Power System
(UPS), the second, fourth and fifth racks contain the computing nodes, the third
and sixth are the in-row air conditioning system, and the seventh hosts the stor-
age and monitoring and accessing servers. The air conditioning system is fed by
cold water provided by a system installed in the CSC’s building.

Fig. 1. TUPAC supercomputer. Seven racks hosts all the support and computing equip-
ment, UPS and in-row water based air conditioning system.

The computing capacity of TUPAC is about 3 × 106 core hours per month.
In spite of being considerably lower than other HPC centers in the world, this
computing power represents one of the largest HPC capacity in Argentina. Since
the beginning, TUPAC’s resources are being oriented towards three main actors:
in-house users, general scientific community, and industry. As one of the main

40 D. Vinazza et al.

objectives of CSC is supporting the development of technology in Argentina,
industrial projects have a special priority for resource allocation. The support
provided for this kind of projects is not limited to computing resources, but also
includes application selection, configuration, adaptation and training in the uses
of HPC systems.

Several important projects related to Industry obtained their computing
power from TUPAC. Unlike academic initiatives, this kind of projects has to
rent the use of this machine, there are differential rates depending of the spe-
cific industry: SME’s and state-owned companies have preferential discounts.
The resources generated by these projects allow the buying of spare parts and
hiring of specific technical services to keep the machine in working conditions.
The use of TUPAC by industrial users is one of the distinctive characteristics of
this machine as no other HPC system in Argentina provides a similar amount
of computing resources to this community.

Another distinctive aspect of TUPAC is its external network access. From the
beginning, unlike the usual setup found in Argentina, this machine was designed
to serve external community. For this reason, network access was configured
independently from the rest of the building, having a dedicated fiber based con-
nection with its own firewall. In this way, we avoid any complication from setting
up security policies and virtual networks inside the research institutes network.
This setup also guarantees accessing TUPAC without competing with the rest
of users in the building.

The academic projects are shared between internal members of CSC and the
general community, there are no differences in the rules to access the computing
power. To access the computational resources hosted by CSC, the interested
users have to follow a simple procedure based on an online form. In this form,
the users have to detail their computing requirements and the characteristics of
the application that will be used. Then, the request is analyzed by a commission
composed of technical specialists who evaluate the information and authorize or
not the use of these valuable computational resources. If the project present some
issues or if the user declares that the objective is the application development or
scaling, then a test account is created to allow the user to test and improve their
application. An important point is that, for security reasons, all the accounts
have a limitation in time. When this period approximates to its ending, the
user is informed and a renewal procedure is available to continue the use of the
equipment by providing a brief usage report.

The rest of this paper is organized as follows: in Sect. 2, the users and project
supported by TUPAC are presented, while in Sect. 3 we introduce some tools
and details regarding the operation of this supercomputer. In Sect. 4, we provide
statistical information of the usage of this equipment and in Sect. 5 we draw
some general conclusions.

2 Projects and Users

Although other computer centers in Argentina were providing computational
power to the scientific community, the installation of TUPAC was marked by a

Initial Experiences from TUPAC Supercomputer 41

Fig. 2. Geographical distribution of received requests for using HPC resources in the
context of IPAC (Initiative for Accelerated Computational Projects) initiative.

distinctive characteristic: it was planned to support technological development in
Argentina. Unlike other HPC centers in Argentina, external users to the hosting
institute should be considered a priority and the access to the computational
resources should be guaranteed.

With the objective of increasing the number of users, specially for those who
are limited by need of large computational resources in their research work,
and in cooperation with the Sistema Nacional de Cómputo de Alto Desempeño
(National System for High Performance Computing, SNCAD) a completely new
initiative was launched: Iniciativa de Proyectos Acelerados de Cálculo (Initiative
for Accelerated Computational Projects, IPAC), which is a call for projects with
high need for HPC resources. A country wide call was sent using the diffusion

42 D. Vinazza et al.

network of the national scientific system. IPAC includes resources for two type of
projects: (i) Decisive Advances Projects using 1×106 h to be hosted in TUPAC,
(ii) Computing Projects using between 300× 103 to 500 × 103 h to be hosted in
other centers which are part of the SNCAD.

The received answer for this call surpassed all expectations (Table 1). 52
projects were received in both categories. Figure 2 presents the geographical
distribution of the groups who completed their presentations to IPAC call. As
is expected, the distribution correlates with the places in which research has
more historical support. Buenos Aires leads the list with 24 projects (almost
half of total presented projects) followed by Córdoba with 15. These two places
concentrate 75% of the total amount of projects.

Table 1. The first call for HPC resources in Argentina surpassed all previous expec-
tations confirming the high need in Argentina.

Type Requested Maximum hours per project Total hours requested

PADS 24 1 × 106 24 × 106

PDC 28 300 × 103 to 500 × 103 12 × 106

SNCAD technical commission evaluated the received projects and generated
a ranking according to their different characteristics: justification of resource use,
amount of needed storage, efficiency of application, among others. In October
2016, the first SNCAD call assigned three type (i) projects to be run in TUPAC.
Additionally, six type (ii) projects were assigned to other centers. The second
SNCAD of this type took place on September 2017 and, at the moment of
writing, is under evaluation. Next, we briefly describe the characteristics of the
projects selected to be hosted in TUPAC:

1. Hydrodynamic cosmological simulations of the formation of galaxies in the
Universe (PADS-UNIVERSE): granted to a group of researchers of the
FCEyN of the UBA. The project is part of the theoretical study of the for-
mation process of galaxies within the paradigm that establishes the cold dark
matter model with cosmological constant (ΛCDM). A study that by its char-
acteristics of non-linearity, multi-scale and asymmetry can only be carried
out by means of numerical simulations. They use GADGET3 [12,13] which is
parallelized with MPI and OpenMP. The code has good scalability up to 500
processors and uses approximately 1 GB to 2 GB of memory per processor.
The volume of information generated with these simulations would reach 3 TB
of storage.

2. Computer simulation of structure, electronic and magnetic properties, and
reactivity of metal and organometallic species supported on surfaces (PADS-
STRUCTURE): granted to a group of the Institute of Physics, Rosario. Cen-
tered on the search for methods to develop interfaces with specific properties
for clean energy production. This project analyzes, from the theoretical point

Initial Experiences from TUPAC Supercomputer 43

of view, some chemical reactions on surfaces of materials under study that
favors the catalytic production of H2 from the reforming of Methane and
O2 reduction. For this purpose, they use the Vienna Ab-Initiation Simula-
tion Package (VASP) [6] modeling atomic-scale materials from first principles
by calculations of electronic structure and classical molecular dynamics for
atomic nuclei. The MPI based parallelization has a fine grain level of control
in task assignment which makes it a versatile tool for using in supercomput-
ers. In particular, this project propose to use 1.7 GB of memory per core and
up to 1 TB of storage.

3. Simulation of the laminar-turbulent transition in narrow channels with rough-
ness effects and transport of a passive scalar (PADS-TRANSPORT): assigned
to a group of the CNEA, they propose to approach the study of heat transfer
in flows that goes from the laminar regime to the turbulent one by direct
numerical simulation of the fluid dynamics. They solve the Navier-Stokes
equations with the transport of a passive scalar in rectangular geometries. It
is proposed in particular to analyze the thermo-hydraulic performance of the
fuel elements of the research reactor RA6, located in Bariloche Atomic Center
(Ŕıo Negro, Argentina). They propose to use INCOMPACT3D [7,8], a high order
tool to solve flows for academic studies parallelized using MPI paradigm. It
will use near 0.3 GB of memory per process and 2.4 TB of storage.

2.1 Scientific Projects

In addition to the projects assigned by IPAC call, since December 2015, more
than 125 research projects were evaluated by the CSC’s technical commission
and served by TUPAC and its operations staff. 100 of these comes from the
external scientific community.

Fig. 3. Visualization of the wake field in a wind farm composed by 43 horizontal axis
wind turbines.

44 D. Vinazza et al.

We mention some examples next:

– Theoretical study of organo-metallic self-assembled structure formation in
surfaces. This project is being boarded by a group in Bariloche Atomic Center
(Rio Negro, Argentina). The main objective is the analysis and determina-
tion of electronic and catalytic properties of these structures, which could
potentially lead to new materials.

– Wind turbine wake interference inside large wind farms. This project belongs
to one of the research lines of CSC. The objective is to study how turbines
installed in a large wind farm interact and how the power production is
affected by the layout at different wind speed and direction. This will allow to
predict wind energy production before construction, besides analyzing other
fluid dynamic effects. They use the open source finite volume method soft-
ware OpenFOAM [15] with an in-house implementation of the actuator disks
that represent the effect of each turbine [11]. An example of the wake field in
a real wind farm in the Argentinean Patagonia is shown in Fig. 3, in which
the wake of each turbine is superimposed to the farm layout.

2.2 Industrial Projects

As was previously mentioned, TUPAC supports the development of several engi-
neering projects for industrial applications. As the best of our knowledge, this
is the only HPC center offering so large amount of computational resources to
this community in Argentina. As an example, we include details about some of
them:

– The state-owned company INVAP [2] needed to study a multiphase tran-
sient model of emptying a reflector tank. The fluid to be simulated has two
phases, water-air and the time of emptying of the tank is analyzed firstly with
high granularity mesh to advance later to analyze more demanding models
(between 1.4 × 105 and 5 × 106 of elements) that were solved in TUPAC
using 1056 cores with ANSYS Fluent software [4]. The model was validated
by comparison with experimental measurements in a 1:1 scale model (see
Fig. 4).

– Another use example of TUPAC computational resources in industrial
projects is the analysis of the cooling rate of the Atucha I vessel. Atucha
I is one of three operational nuclear power plants in Argentina. In this case,
turbulence models were included in order to model the dissipation and the
fluid flow resistance, which could affect the thermal mixture into the fluid.
Heat transfers between the solid wall and the cooling fluid are refined using
boundary layer with conduction. In Fig. 5, thermal behavior of the fluid in
contact with the vessel wall and the flow lines across the entire domain are
plotted. ANSYS CFX [4] using volume finite method was executed in TUPAC.

3 Cluster Operations

Keeping any supercomputer serving users demands a large amount of infrastruc-
ture and applications to detect hardware and software malfunctioning, support

Initial Experiences from TUPAC Supercomputer 45

developing of applications, detect bottlenecks, etc. We detail some of applications
that are used in TUPAC to keep it working and serving projects.

Fig. 4. Simulated Emptying reflector Tank. Case study by INVAP S.E. used 1056 of
TUPAC cores to analyze a transient process.

Fig. 5. Atucha I Vessel cooling behavior: thermal transfer and fluid flow lines pictures

3.1 Resource Management

As the procurement procedure of the supercomputer did not include license
specifications of the needed software (i.e. if commercial or not), the equipment
was installed based on a Redhat Linux distribution. The resource manager, which
is a key component in every shared HPC facility was, originally, Red Hat MRG
Grid, which is a commercial software module derived from a widely used open
source grid scheduler and CPU harvesting tool (HT Condor [14]).

46 D. Vinazza et al.

After an initial unsuccessful installation period, this component was replaced
by SLURM [10,16], which is an open source, fault-tolerant, and highly scalable clus-
ter management and job scheduling system for large and small Linux clusters. It
was straightforward to configure and deploy, due to its very complete documen-
tation and broad user community, presenting almost no computing overhead.
SLURM allows the nodes to be assigned to partitions according to its specific
hardware components and manages both user/job priorities and quota. It also
includes reporting tools and API to obtain additional usage statistics and data
using SQL queries.

3.2 Infrastructure Monitoring

An HPC infrastructure, specially in the case of public-funded centers, should
provide clear information about its status and usage level. This information
could also be consumed by active users to evaluate their own simulations and the
efficiency in the use of parallel resources. Additionally, the system state is a key
information for the operations staff, as any hardware or software malfunctioning
should be found as soon as possible (ideally before users report a failure).

The tools used for these two needs are: Ganglia and Nagios. Ganglia [9] aims
to provide information (both historical and current) focused on user level. This
tool shows the current resources availability and its usage metrics. The informa-
tion can be easily accessed by anyone (not only registered users) at TUPAC’s
site (http://tupac.conicet.gov.ar/ganglia/). For instance, once a job starts, the
user can create an aggregate graph of a desired metric (e.g. load average) on
job’s assigned nodes and follow their evolution in real time. Ganglia also pro-
vides tools to inspect the created graph on the fly using its inspect function. As
an example, Fig. 6 presents TUPAC’s average load during the last month. Vari-
ations come from natural changes in user needs but also from monthly test of
electrical emergency generators which produces a total electrical supply shortage
each second Saturday of every month.

To get the detailed status of the computational infrastructure, operations
staff rely on Nagios [5], a widely adopted open source enterprise-grade moni-
toring solution. Nagios covers monitoring most common services like processor
load, networking status and disk partitions without the need of complex config-
uration. In spite of having a range of prebuilt tools and monitoring modules, we
built some custom tests using Simple Network Management Protocol (SNMP),
Intelligent Platform Management Interface (IPMI) and Nagios Remote Plugin
Executor (NRPE) to cover all the details of the infrastructure. Figure 7 shows
the services being monitored with Nagios, each square represents a different
service and its color identifies its state. In this case, Ping NRPPE is marked as
failed and needs attention from the staff.

Nowadays, based on a strong development of operations staff, all the infras-
tructure is monitored using Nagios including UPS and air conditioning sys-
tem. Moreover, emergency scripts were configured, installed and tested to allow
automatic shutdown when electrical or cooling troubles arise, protecting both
hardware and user data sanity.

http://tupac.conicet.gov.ar/ganglia/

Initial Experiences from TUPAC Supercomputer 47

Fig. 6. Ganglia monitoring tool showing the average load during the last month (from
17/6 to 17/7/2017).

Fig. 7. Nagios monitoring tool is used to control status of a wide variety of node and
system properties. Here, a view of node-level checks are shown. (Color figure online)

3.3 User Support

Having an HPC facility oriented to serve a mainly external user community poses
an additional pressure for a research institute like CSC, which only accounts with
a very limited operations staff. Under such circumstances, an efficient operation
is required to comply with users and keep the equipment under good working
conditions. To organize the interaction with the TUPAC’s increasing number of
users, we adopted the use of Redmine [3] an online ticket system and integrated
knowledge base (i.e. wiki).

Despite Redmine is intended mainly for application development, it also fits
in an HPC environment. Redmine enables the user to quote their problems with
text formatting, code syntax and links to other tickets. The operations and
support staff can organize the tickets depending of their topic and can delegate
them to specialists. Previous tickets also form a knowledge database that can
be browsed by the users to help them during the search of solutions for their
problems.

48 D. Vinazza et al.

4 Usage of TUPAC

In this section, we present some characteristics of users and jobs during past
year. The information is obtained directly from SLURM database in base to the
registered usage. TUPAC has three differentiated groups of users:

(i) CSC: internal research and operation staff.
(ii) Research: includes all the accounts from external users belonging to the

scientific and technological system. The usage of TUPAC for this group
with has no limitations and is free of charge.

(iii) Industry: groups all the accounts involved in industrial projects. This users
have to contract the usage of TUPAC following a specific CONICET admin-
istrative procedure.

Figure 8 presents the grouped use of computational resources by the three
identified user groups from 7/2016 to 06/2017. Near 90% of computational
resources are fairly shared with external community. Almost 30% of total core
hours are destined to engineering projects generated in local companies, while
60% of these hours are consumed by researchers from different research institutes
and universities of Argentina completely free of charge.

The evolution of monthly usage is presented in Fig. 9. The variations of indus-
trial projects derive from the natural cycle of start-end of each one. Although
TUPAC serves with high priority this kind of projects, the administrative process
to start a new project takes some time to be finished preventing the continuous
flow of projects. This lag in industrial projects can be seen during September
and October, but after these months, a new set of projects started increasing the
usage of computational resources. On the other hand, the variations of external
scientific projects can not be associated with administrative delays, as all the
account creation procedure lasts only a few days. In this case, the user experi-
ence differences produced by the cycle “simulate-analyze-refine”, in which the
researchers need to review obtained results before advancing or modifying their

Fig. 8. Consumed CPU time (hours) per group from 7/2016 to 06/2017. Research and
Industry include external accounts, while CSC represents the hours used by in-house
projects.

Initial Experiences from TUPAC Supercomputer 49

Fig. 9. Monthly evolution of consumed CPU time (hours) per group during last year.

simulation strategies. Finally, the internal demand shows a light decrease after
January keeping constant until the end of analyzed period, but in all the months,
its impact is lower than the other groups registered usage.

The amount of nodes used in each computational job enables understanding
of the need for large scale computing facilities. Specially, to decide if a large
shared computing facility could take advantage of having a low latency intercon-
nection between nodes. If most of the jobs uses only one or two nodes, having
this special network interconnection renders useless. Figure 10 presents the char-
acterization of parallel usage by each group. As is expected the usage profile for
internal and external scientific users is similar, showing near 90% of jobs using
single or dual nodes. Thus, only a small fraction of this jobs can take advantage
of the low latency network interconnecting the computing nodes. This situation
can be related with some applications lacking scalability but also to the size of
the system under study. Industrial jobs have a different usage profile, the amount
of single or dual decreases to near 50%, while near 40% of the jobs use between 4
and 8 nodes. Moreover, some jobs involve more than 16 nodes which represents
more than 25% of available computational resources of TUPAC used for single
industrial simulations.

The projects that were selected in the context of IPAC initiative had to
proceed through a competitive evaluation. One of the evaluated aspects was
the experience of research group in terms of usage of parallel resources and
the impact of the scientific problem to be attacked. This poses the question
if the usage of TUPAC’s resource by these groups of users is different from the
rest of the scientific community. Figure 11 reveals that PADS-UNIVERSE shows
near 86% of jobs use between 3 and 8 nodes, but no job use more than 8, not

50 D. Vinazza et al.

Fig. 10. Number of nodes used in each job per group from 7/2016 to 06/2017.

even a test. PADS-TRANSPORT presents higher usage of jobs with single or
dual nodes, but still near 70% includes between 3 and 8 nodes. In this case, a
few jobs with more nodes are registered which could correspond to a scalability
test. Finally, PADS-STRUCTURE presents similar usage pattern than standard
scientific user, 76% of the jobs fall in one or two nodes, while only 24% uses more
than three and less than 9. Also, some test are found corresponding to jobs using
larger amount of nodes. The results presented in Fig. 11 supports that selecting

Fig. 11. Number of nodes used in each job per group in IPAC projects from 7/2016 to
06/2017

Initial Experiences from TUPAC Supercomputer 51

projects by a competitive process in which research groups have to state their
previous experience in the use of HPC resources helps to direct the efforts to
those researchers who could take real advantage of this highly valued equipments.

5 Conclusions

High Performance Computing (HPC) techniques have the potentiality of boost-
ing development of both academic and industrial projects. Establishing a HPC
center is an effort which involves great amount of resources for buying, installing
and maintaining the required equipment. Moreover, additional support is needed
to involve the specialized human resources needed to support operations of this
kind of facilities.

TUPAC supercomputer is serving scientific and engineering projects since
the end of 2015. During this time, despite having a reduced operation staff,
more than 200 projects were executed in this machine. Due to a combination of
monitoring tools and online communication applications, this group efficiently
treats issues and questions from a community of users with very different levels
of technical knowledge and projects coming from diverse fields of science and
engineering.

The usage profile shows a strong component of projects coming from indus-
trial users. The general scientific community finds in TUPAC a source of com-
putational resources. Although most of execution uses a low number of nodes,
additional training and developing of parallel application will evolve the usage
profile towards massive parallelism.

Centro de Simulación Computacional p/Aplic Tecnológicas (CSC) is an
example of an institute in which research continue to be its main concern, but
at the same time can host a machine mainly serving a growing community of
external users keeping an acceptable level of quality.

References

1. Centro de simulación computacional p/aplic tecnológicas. http://www.csc-conicet.
gob.ar/. Accessed 2 Dec 2017

2. INVAP S.E.: Company devoted to the design and construction of complex techno-
logical systems. http://www.invap.com.ar/. Accessed 2 Dec 2017

3. Redmine: A flexible project management web application written using ruby on
rails framework. http://www.redmine.org. Accessed 2 Dec 2017

4. ANSYS: Fluent software (2015). http://www.ansys.com/Products/Fluids/
ANSYS-Fluent. Accessed 2 Dec 2017

5. Barth, W.: Nagios: System and Network Monitoring. No Starch Press,
San Francisco (2006)

6. Hafner, J., Kresse, G., Vogtenhuber, D., Marsman, M.: Vienna Ab initio simulation
package (2017). http://www.vasp.at/. Accessed 2 Dec 2017

7. Laizet, S., Lamballais, E.: High-order compact schemes for incompressible
flows: a simple and efficient method with quasi-spectral accuracy. J. Comput.
Phys. 228(16), 5989–6015 (2009). http://www.sciencedirect.com/science/article/
pii/S0021999109002587

http://www.csc-conicet.gob.ar/
http://www.csc-conicet.gob.ar/
http://www.invap.com.ar/
http://www.redmine.org
http://www.ansys.com/Products/Fluids/ANSYS-Fluent
http://www.ansys.com/Products/Fluids/ANSYS-Fluent
http://www.vasp.at/
http://www.sciencedirect.com/science/article/pii/S0021999109002587
http://www.sciencedirect.com/science/article/pii/S0021999109002587

52 D. Vinazza et al.

8. Laizet, S., Li, N.: Incompact3d: a powerful tool to tackle turbulence problems with
up to o(105) computational cores. Int. J. Numer. Meth. Fluids 67(11), 1735–1757
(2011)

9. Massie, M., Li, B., Nicholes, B., Vuksan, V., Alexander, R., Buchbinder, J., Costa,
F., Dean, A., Josephsen, D., Phaal, P., Pocock, D.: Monitoring with Ganglia, 1st
edn. O’Reilly Media Inc., Sebastopol (2012)

10. Pascual, J.A., Navaridas, J., Miguel-Alonso, J.: Effects of topology-aware allocation
policies on scheduling performance. In: Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2009. LNCS, vol. 5798, pp. 138–156. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04633-9 8

11. Sanderse, B., van der Pijl, S., Koren, B.: Review of computational fluid dynamics
for wind turbine wake aerodynamics. Wind Energy 14(7), 799–819 (2011)

12. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. R. Astron.
Soc. 364(4), 1105–1134 (2005)

13. Springel, V., Yoshida, N., White, S.D.: GADGET: a code for collisionless
and gasdynamical cosmological simulations. New Astron. 6(2), 79–117 (2001).
http://www.sciencedirect.com/science/article/pii/S1384107601000422

14. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the con-
dor experience: research articles. Concurr. - Pract. Exp. 17(2–4), 323–356 (2005)

15. The OpenFOAM Foundation: Open source software for computational fluid
dynamics (CFD). http://www.openfoam.org. Accessed 2 Dec 2017

16. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

https://doi.org/10.1007/978-3-642-04633-9_8
https://doi.org/10.1007/978-3-642-04633-9_8
http://www.sciencedirect.com/science/article/pii/S1384107601000422
http://www.openfoam.org
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

HPC Industry and Education

romeoLAB: A High Performance Training
Platform for HPC, GPU and DeepLearning

Arnaud Renard(B), Jean-Matthieu Etancelin, and Michael Krajecki

ROMEO HPC Center and Department of Computer Science,
CReSTIC (Centre de Recherche en STIC) EA3804, University of Reims

Champagne-Ardenne, Moulin de la Housse, 51687 Reims, France
{arnaud.renard,michael.krajecki}@univ-reims.fr,

jean-matthieu.etancelin@univ-pau.fr

https://romeo.univ-reims.fr

Abstract. In this pre-exascale era, we are observing a dramatic increase
of the necessity of computer science courses dedicated to parallel pro-
gramming on heterogeneous architectures. The full hybrid cluster Romeo
has been used in that purpose since a long time in order to train mas-
ter students and cluster users. The main issue for trainees is the cost
of accessing and exploiting a production facility in a pedagogic con-
text. The use of some specific techniques and software (SSH, workload
manager, remote file system, . . .) is mandatory without being part of
courses prerequisites nor pedagogic objectives. The romeoLAB platform
we developed at ROMEO HPC Center is an online interactive pedagogic
platform for HPC and GPU technologies courses. Its main purpose is to
simplify the process of resources usage in order to focus on the taught
subjects. This paper presents the romeoLAB architecture as well as its
motivations, usages and future improvements.

Keywords: Programming education · Online education · HPC
GPU · Parallel programming · Web application · Teaching and learning

1 Introduction

The ROMEO HPC Center—France Grand-Est—is a High Performance Com-
puting (HPC) platform hosted by the University of Reims Champagne-Ardenne
(URCA) since 2002. Its goal is to deliver high performance computing resources
for both local industrial and academic researchers, along with an entire ecosys-
tem of services like secured storage space, innovation in processor architecture,
Artificial Intelligence, specific software and support in its usage, as well as an
in-depth expertise in scientific application domains. This ecosystem leads to the
acquisition of Romeo a full hybrid CPU-GPU cluster, in 2013. ROMEO is now
recognized as the regional HPC center specialized in GPU, member of the French
regional centers group Equip@meso, with specific mission related to GPU tech-
nology: innovation, research, supporting companies and education.
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 55–67, 2018.
https://doi.org/10.1007/978-3-319-73353-1_4

56 A. Renard et al.

One of the HPC Center missions is to lead some educational activities related
to HPC, GPU and hybrid computing. Since 2016, the ROMEO HPC Center is
awarded as a GPU Education Center for supporting the educational activities in
the specific field of GPU technologies. This label rewards and supports training
and master degree courses organized by ROMEO HPC Center through romeo-
LAB platform.

The presence of a hybrid cluster like Romeo is a unique opportunity for
URCA students to be trained on a real and large scale HPC facility. There-
fore, some HPC and computer science related courses are using the computing
resources since a long time, especially in the computer science Master curricu-
lum. From a production usage, there exists a strong need to train our users
to the architecture and they are strongly interested and demanding of perfor-
mances. Training and teaching is an important mission for the ROMEO HPC
Center. In 2016, this romeoLAB project was started in this context not only for
specific software, architecture and technologies used in HPC but also for general
computer science and mathematical contents.

The rest of this paper is organized as follows. In Sect. 2, we present a dis-
cussion about related works regarding the motivations and objectives of the
romeoLAB platform. Section 3 describes the solution architecture in the con-
text of an HPC cluster. Then, we provide an overview of features and usages.
Section 5 presents the practical usages and courses overview. Finally, in Sect. 6,
we discuss the limits of the platform and the future works before concluding.

2 Related Work and Motivations

2.1 Online Tools for Specific Code Development

Dakkak et al. [1] propose a wide survey of existing solutions for online courses
in the field of computer science especially in high performance computing and
GPU technologies.

First of all, the WebGPU platform [1] is providing a scalable and online
environment for GPU programming where code compiling and execution is per-
formed on dedicated resources after web based code edition. This solution imple-
ments an advanced control interface for both student and teacher in order to
manage courses, discussions and attendees graduating. WebGPU seems quite
efficient in terms of access simplification for students but it focuses only on basic
GPU technologies.

Some other solution implements this web-based integrated IDE, with pro-
viding code edition, compilation and execution as a black box, while target-
ing academic situations, but without pedagogic approach or related content.
SAUCE [4] for System for AUtomated Code Evaluation is a free software avail-
able on GitHub and allows interactive programming exercises for the teaching
of parallel programming: C++ 11 multi-threading, OpenMP, MPI and CUDA.
One interesting feature of SAUCE is his compliance with Learning Tools Inter-
operability (LTI) specification.

romeoLAB: A High Performance Training Platform 57

The principal concept of LTI is to establish a standard way of integrating
rich learning applications and Tools with platforms like learning management
systems, portals, learning object repositories, or other educational environments
that present tools to users. Moodle and Chamilo, the learning management plat-
forms available at URCA, are part of those Tools.

In LTI specification, Tools are applications and content, often remotely
hosted and provided through third-party services by Tool Providers: from simple
communication applications like chat, to domain-specific learning environments
for complex subjects like math, science or Parallel Programming. In other words,
if one have an interactive assessment application or virtual chemistry lab, it can
be securely connected to an educational platform in a standard way without
having to develop and maintain custom integration for each platform. This LTI
compliance is an objective for romeoLAB future works.

There are also current projects having a web-based editing interface and
performing automated assessment of the written programs. Most of them are
embedded within a classical university course structure include WebLab (TU
Delft) [15], Jack (University of Duisburg-Essen) [9] (both closed source) and
Praktomat (KIT) [5] (open source).

2.2 Online Tools for Educational Purposes

romeoLAB and some other solutions like modern MOOCs (Massive Open Online
Courses) are build with development environments (edition, compilation and
execution from web-based interface) completely integrated into pedagogical con-
tent. This kind of solution offers a level of side functionalities such as code
analysis, engineering tools and debugging. Their goal is to provide the simplest
interface to focus on pedagogical objectives. Nevertheless, as described later,
romeoLAB can be used for dedicated software engineering tools courses such as
debuggers and profilers.

Jupyter [7] is an open-source project started in 2014 as IPython Notebooks.
It provides an interactive interface for data science and scientific computing
on top of IPython—an interactive and web-based python shell. Contents are
JSON data stored as .ipynb files that can be shared, versioned and rendered as
various different formats. Notebook’s strength is the ability to expose in a single
document both rich text contents, documents, images or videos for courses and
instructions and interactive code execution. Jupyter is also used by several other
integrated solutions such as Qwiklab and CoCalc.

An integrated solution, Qwiklab [12], is used by NVIDIA [10] for self-placed
labs and instructor-led sessions on cloud computing resources from Google Cloud
Platform and Amazon Web Services. Taking advantage of on-demand resources
provisioning, they are able to provide a wide range of architecture to learn about.
Another cloud-based fully integrated solution is provided by CoCalc project [13],
formerly known as SageMathCloud. They provide Jupyter Notebooks for many
interactive mathematical frameworks and utilities for collaborative development,
teaching and authoring. All these cloud-based solutions can take advantage of
on-demand provisioning and resources scalability to handle a varying number

58 A. Renard et al.

of students and users. A complete teaching environment is offered with chat,
backups, assignments and grading services.

With a completely different physical resources management and access, the
main purpose of romeoLAB is to provide courses on real HPC systems with a
dedicated infrastructure that are not provided in the clouds systems.

2.3 romeoLAB Motivations

Learning parallel programming has become increasingly important as parallel
processors are now present everywhere, from autonomous vehicle, to smart-
phone, workstation and supercomputer. This omnipresence is particularly true
for GPUs architectures present at ROMEO. A theoretical design of efficient par-
allel algorithms must be completed by practical experimentations. Not only, it
delivers a stronger educational message, but also permits to face some architec-
ture and hardware specific phenomenon like deadlocks, bandwidth bottleneck
or cache page issues. Furthermore, as mentioned in Sect. 1, our cluster Romeo
is equipped with all modern hardware we need for courses. We operate large
resources for multiple-nodes labs, and we can rely on our system engineer to
make the software available and the whole solution works.

Unfortunately, usual tools for exploiting a high performance computing clus-
ter are rarely part of prerequisite and pedagogic objectives of courses. In a tra-
ditional training, students and participants have to use, among others, an ssh
client, the cluster workload manager and remote file systems. An introduction
part dedicated to these tools is therefore mandatory and time consuming. These
are obstacles to the pedagogical process efficiency and consists in the most impor-
tant motivation for the romeoLAB development. Furthermore, compatibility of
all the different client tools and server-side service is always an issue and we want
to avoid that lab sessions to become support sessions for student heterogeneous
laptop configuration.

As HTML5 (Hypertext Markup Language) is the most universal standard
for creating interface and because it makes it possible to create modern and
advanced interface available for nearly everyone on earth, we selected web-
based technology for this platform. It will provide a simple access to computing
resources without needing any client software except a recent web-browser that
everyone already has. This aspect is important because ROMEO developed col-
laborations with universities in Africa (Cheikh-Anta-Diop in Senegal and Virtual
University in Tchad).

Our platform is running on a production high performance cluster, in the
same single environment for cluster users and platform users. It enables us to
propose both general purpose programming courses and advanced HPC and
hybrid computing specific training based on an underlying high performance
architecture (Infiniband, lustre file system, GPU, . . .). We can also provide
site dependent training on specific softwares or architectures that we have on
ROMEO.

romeoLAB: A High Performance Training Platform 59

3 A Web-Based Solution in a HPC Cluster

3.1 User View of the Lab Starting Process

Figure 1 presents the user view of accessing an interactive content in romeoLAB.
First of all (1), the user creates an account, and log in to the platform https://
romeolab.univ-reims.fr. Then (2) user must reach an active Session with an
access code given by teacher or instructor. The access code can also be provided
by an activation link provided by email or on a webpage. At this point, a user
can list available labs and their description, to finally start (3) and reach (reach)
a lab. At this point, the user can work in his own IPython Notebook, watch
videos and documents, fill table with performance results, edit, compile and also
profile code via a remote desktop.

Fig. 1. Starting a lab with romeoLAB: the user view

3.2 Server Part

The romeoLAB web-server himself is written in the PHP programming lan-
guage. PHP is well suited for creating web service easily: it has a simple syntax,
an advanced Object programming model, a lot of plug-ins or libraries and is
really specialized for web sites when combined with Apache. We developed our
in-house MVC (Model-View-Controler) over RedBean as an object relational
mapper (ORM) to access MariaDB database. The whole solution also relies on
existing tools, mainly written in Python or NodeJs.

Before starting the lab, the server will assign a temporary cluster-user to
the romeoLAB-user and dynamically load initial content of the lab from the lab
repository with GIT protocol. This step is represented as (4) on Fig. 2. When
starting a lab, the platform launches a regular job through the cluster workload
scheduler (5) and possibly via reserved dedicated resources. This job consists in
setting up all resources parameters and starting all services (6) while romeoLAB
is probing their start (7). Once everything is started, the proxy routes are setup

https://romeolab.univ-reims.fr
https://romeolab.univ-reims.fr

60 A. Renard et al.

on the romeoLAB gateway—also called main proxy—(8) in order to provide a
direct access to these services to the user.

Fig. 2. Starting a lab with romeoLAB: user, server and cluster view

Git versioning system. This platform really interfaces with a Git versioning
system that enables a decentralized collaborative working environment. In prac-
tice, we use the Git service from the ROMEO HPC Center ecosystem, which
offers GIT solution for researchers of University of Reims Champagne-Ardenne.
romeoLAB allow special users identified as teachers to update GIT repository
with updated lab content as described in Sect. 4. This solution make it possible
to delegate production of courses content to teachers of the university or from
external collaborating institution.

Server view of the lab starting process. As the pedagogic platform is running
on the production cluster, it must use the resources manager. Communication
between cluster, server and user is done by websockets mainly in Python.

Dynamic proxy. The Node.js [14] configurable-http-proxy is a lightweight proxy
which is configurable on runtime through a REST API. The romeoLAB server
rely on this module to dynamically manage network urls and ports redirection
to let users access the proper services across the cluster network. For each public
url provided by the user on classical https port—and prefixed with the platform
main url, the main proxy gateway redirects it to the specific compute node—
selected by the job scheduler—with a specific and dynamic port—depending
ports availability on this compute node.

3.3 Jupyter Resources

We use Jupyter as the main part for pedagogic contents. The Jupyter service is
running on a compute node and executes Jupiter Notebooks with a direct access

romeoLAB: A High Performance Training Platform 61

to HPC resources. The access is quite simple as the entire API is exposed on a
specific network port. This port is the one targeted by the main proxy and is
the single entry point for users. Main part of Jupyter is made of Notebooks that
gather rich text, video, images and interactive code cells, as shown on Fig. 3.
Jupyter service is offering several services such as IPython kernels for notebooks
interactivity, standard terminal access and remote file editor. An even richer
service is available through the more recent Jupyter-Lab flavor. Finally, Jupyter-
Hub [11] is a side project for a multi-user Jupyter platform. This project is not
integrated in our infrastructure in order to keep our full customized entry point
and a cluster-specific access and resource management.

Fig. 3. Jupyter Notebook overview

62 A. Renard et al.

3.4 Additional Tools

With a tight integration between IPython kernels and web-based interface, we
gather several side services into notebook pages. These functionalities are gener-
ally provided through Python functions loaded in IPython kernels. This enables
us to emphasize the interactivity and usability. Among those improvements,
within the notebook, we provide high level Python functions for either side tools
access or native Jupyter functionalities:

– displaying pdf files (native),
– displaying html iframes with additional resources like videos (native),
– using a remote file browser and editor, (NodeMirror and native),
– access a Linux Desktop to run graphical softwares (VNC and x11vnc),
– allow file uploading (native),
– executing cells to bash (native),
– executing cells through the cluster batch manager (in-house Python module),
– creation and serving reveal.js slideshow of the notebook (native).

External tools are described below. As their activation is described in a con-
figuration file specific for each lab, their availability from a single entry-point
exposed to the user is done again with the Node.js configurable-http-proxy which
allow to redirect a specific URL to a specific port inside on the compute node.

NodeMirror. NodeMirror is a server-side Node.js file editor that is used in a inte-
grated way within notebooks as html iframes. It enhances the pedagogic effort
with close view of both explanations and source code edition with coloration
and indentation. This tool is richer than the native Jupyter file editor and is a
standalone application that is more suited to be embedded in iframes.

VNC Desktop. For some specific courses, we need to use softwares with graphical
user interface such as profilers, scientific data visualization. In this case, we
integrate the ability to reach a VNC graphical desktop on the compute nodes
through a websockified noVNC client. Availability of VNC Desktop is specified
in the lab configuration file. The size of the desktop is computed from the size
of the user browser screen. The current limitation is that we do not provide
graphics acceleration on the compute nodes.

Ipython-batch-execution-magics. A second level of job scheduling was introduced
to enables a higher availability of computing resources and allow scalability of
romeoLAB. For instance, a course on distributed parallel computing may request
two or more computing nodes per student. In practice it would unnecessary lock
a large amount of resources to run the notebooks. In that cases, we execute
single-core jobs for notebooks and IPython kernel with the ability to execute
code samples on large computing resources as another and independent jobs.
Thereby, each of the 40 students of a course can run 16 nodes MPI process in
their lab with only 32 nodes available in total. This functionality is quite generic
and has been distributed as a IPython batch scheduler magics [2].

romeoLAB: A High Performance Training Platform 63

3.5 Security

As labs are executed on compute nodes, with the same hardware access than
classical ROMEO users, security of the platform is an important issue.

First of all, we consider the security of our cluster is already managed (patchs,
logs, monitoring, . . .), we just have to secure the lab access. For this reason
the entire communication between the user and the romeoLAB server is https
encrypted, from the browser to the proxy, with a valid certificate created by a
reliable agency. Https (HyperText Transfer Protocol Secure) also called HTTP
over Transport Layer Security (TLS) is the standard to secure communication
over internet. It has the advantage to be supported without any modification
by all browsers and is open almost on every internet connection. As the cluster
environment is under our control, communication inside the cluster is http only.
Furthermore, nodes dedicated for labs receive a special configuration with home
isolation (lab user cannot see other user homes), and network filtering.

To register, a user must provide a valid email which is checked with a con-
firmation email. The user must authenticate with the password he can manage.
Of course, a user can start a lab only if he enters the session specific access-code
provided by the teacher. That allow us to limit access to the labs to known
people. Of course, multiple unsuccessful login attempt will be detected by the
system, and managed with banishment of the client.

As a last security restriction, syndication of the authentication is done across
all the services: the web-server, the proxy and the lab. By that way, only the
user who is authenticated on the web platform can use the proxy and can start
the notebook: we have the certitude that the user loading the notebook is the
same who log in to the web platform.

4 Features and Usages

Within romeoLAB we can distinguish two major developments:

– The pedagogic contents which run on compute nodes without any usage
restrictions of the hardware. A user can therefore upload any code and exe-
cute it. The pedagogic contents are described through the different usages of
the platform in Sect. 5.

– The web-portal where a user can log in to manage, start and stop his activities
and labs. As each lab is running on compute nodes, we limit extra-exploitation
of the resources via restricted and time-limited sessions which are accessible
only via a specific token code.

4.1 The Web-Portal Use Cases

Web-portal features are separated in three hierarchical roles: student, teacher
and administrator.

As a student, the user can reach and leave Session in order to start, stop
and re-initialize available labs. For simplicity we provide to users only the con-
tents they are attending to run. This leads to a specific database layout managed

64 A. Renard et al.

by teachers. These sessions are tightly linked with the resources manager reser-
vations. Within a lab one can edit code samples, interactive code cells, open a
Jupyter terminal, access a VNC graphic desktop, generate slides from current
notebook, download all the contents and exported notebook. From code cells
and terminal, user can load any modulefile available on the cluster and run any
code or software. User can also launch jobs in the global cluster queue.

Teachers and instructors use the platform as a user with two additional
features on specific sessions they are privileged. As romeoLAB is a fully inte-
grated platform: pedagogic content development is possible inside the platform.
Teachers have read-write access on their labs: they can save current state of
each lab data into the Git versioning system in order to update courses. Diff
and merge between local notebook and Git reference is also available. Secondly,
teachers can administrate their sessions. It enables an instructor to schedule
physical resources provision and dedicate it to run labs immediately. Teachers
can also observe log information generated by student activity and manage run-
ning labs and students.

Finally, the platform administrator has all permissions and can manage
user’s roles and manage labs and sessions. Administrator has also full access to
all parameters, like proxy information, system logs or users management.

5 Practical Usages

This platformhas been successfully used in various contexts as shown in theTable 1
with a number of participants varying from 17 to 60. All these usages have been
performed in an instructor-led course but it also can be used in a self-led format
without any restrictions. A qualitative feedback from attendees and teachers is
very satisfactorywith the high disponibility of resources and the intuitive interface.
The few negative comments have been turned into new functionalities.

Table 1. List of romeoLAB usages in chronological order

Name Attendees Duration Courses

2017

JDEV2017 24 4 days GPU programming

Groupe calcul 38 3 days Advanced Python for HPC

Profiler days 17 3 days Profiling tools for parallel codes

2016

Master courses 40 4 months GPU programming and HPC

OpenFOAM school 20 3 days OpenFOAM software

10th LoOPS day 60 2 days C++ (HPX) vs Python (DSLs)

GTCEU2016 55 90min MPI and OpenACC

GPU spring school 36 1 week GPU programming

GTC2016 60 90min Advanced tools for hybrid cluster

romeoLAB: A High Performance Training Platform 65

As shown on the Table 2, romeoLAB is addressing a wide range of technolo-
gies and levels. The contents of all these sessions came from a list of available
labs, that is growing. The idea is to mutualize pedagogic efforts at ROMEO
scale, regardless of context usage. We encourage teachers of the University to
collaborate on courses through the usage of this platform in order to benefit
from others’ experiences, cluster hardware and softwares.

Table 2. List of romeoLAB current labs

Title Level Technologies and
softwares

Introduction to Python Beginner Python

Introduction to OpenMP Beginner OpenMP

Introduction to MPI Beginner MPI

GPU accelerated applications Beginner GPU, CUDA,
OpenACC, Python

GPU accelerated librairies Beginner GPU, cuBLAS,
cuRand, cuFFT

Introduction to CUDA Beginner GPU, CUDA

OpenACC Beginner GPU, OpenACC

OpenFOAM Intermediate OpenFOAM

OpenCL Intermediate GPU, OpenCL

CUDA asynchronism Intermediate GPU, CUDA

Profiling with TAU Advanced TAU

Profiling with MAQAO Advanced MAQAO

Python-Cython Advanced Python, Cython

Python-Numba Advanced GPU, Python, Numba

Python-Pythran Advanced Python, Pythran

CUDA optimizations Advanced GPU, CUDA

Multi-GPU with CUDA Advanced GPU, MPI, CUDA

Multi-GPU with OpenACC and MPI Advanced GPU, MPI, OpenACC

6 Discussions and Future Work

The platform is currently in production and evolution as we are increasing use
cases and pedagogic contexts. In this section, we discuss the interests of future
features.

First of all, regarding gathered tools within Notebooks, VNC graphical access
shows some lack of performances and usability. Therefore, we plan to enhance it
with VirtualGL. For specific labs, we plan to replace it by a solution developed at
URCA: USE [8]. It provides a real graphic desktop in a collaborative usage with
a low latency technologies and a Windows OS access. The romeoLAB platform is

66 A. Renard et al.

a complementary to a scientific cloud developed for the Romeo cluster. A tight
coupling would provide a specific systems environment for running notebooks
that can provide specific pedagogic contents.

Then, for new functionalities related to the user experience, we are cur-
rently investigating how to introduce some courses management, with interac-
tions between teachers and students. We are strongly interested in a discussion
functionality such as live chat, messages, work evaluation or multiple choice tests
in order to reinforce pedagogic efficiency in non-teacher-led courses. A progres-
sion management by means of intermediate validation and final grading would
enhance customized teaching efforts. We also plan to enhance lab list with Arti-
ficial Intelligence and Deep Learning courses.

We plan to benefit from dedicated resources usage to provide some basic
computer science courses and even more in the field of introduction to program-
ming and parallel programming to undergraduate curriculum. As preliminary
step we are currently looking for an integration of the Snap! [3] visual program-
ming language. We also plan to make romeoLAB accessible as public portals for
scientific software, for reproducibility issues, and with a pay-per-use model.

For security reasons, we choose to separate regular cluster and romeoLAB
usages. As we are able to provide courses on specific architecture and software,
it becomes interesting to provide an access for regular users to the platform in
their own environment (ie. in their home directory) in order to let them directly
reuse samples codes or examples in their usage of Romeo. This functionality
would also enable a production access to Romeo for managing parallel executions
and experiments. For instance, users could manage their jobs in an interactive
and persistent way with integrated monitoring, visualization, pre-processing and
post-processing.

Finally, a software re-engineering process of the current solution is started
to be able to distribute it in reusable parts. For this purpose, Web-design (for
ergonomics), security (for proxy authentication) and compatibility (with LTI)
are works in progress. Actually only the IPython magics for remote execution
through a workload scheduler [2] has been distributed.

7 Conclusion

A new platform for interactive courses in computer science, HPC and GPU
technologies has been presented. The originality of this solution consists in the
usage of a real hybrid cluster, Romeo. It enables both in-situ and generic prac-
tical training on technologies that cannot be easily setup on desktops or mobile
devices or rely on hardware support. As our computing center is specialized in
leading edge architectures with GPU we started this activity with GPU tech-
nologies courses. We are able to provide a wide range of courses and pedagogic
resources from basic computer science and programming languages to advanced
high performance, hybrid and parallel computing. This platform main purpose
is to simplify to a minimal entering point in order to dedicate all training time
to specific pedagogic objectives.

romeoLAB: A High Performance Training Platform 67

The romeoLAB platform is currently in production and has been presented at
GTC conference [6]. It is intended to be improved, to receive new applications—
teaching purpose and not—and to be distributed to others HPC Centers who
showed their interest after public sessions or presentations.

References

1. Dakkak, A., Pearson, C., Hwu, W.M.: WebGPU: a scalable online development
platform for GPU programming courses. In: 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, pp. 942–949. IEEE (2016)

2. Etancelin, J.-M.: IPython batch scheduler magic (2017). https://github.com/
jmetancelin/ipython-batch-scheduler-magic

3. Feng, A., Gardner, M., Feng, W.C.: Parallel programming with pictures is a Snap!.
J. Parallel Distrib. Comput. 105, 150–162 (2017)

4. Hundt, C., Schlarb, M., Schmidt, B.: SAUCE: a web application for interactive
teaching and learning of parallel programming. J. Parallel Distrib. Comput. 105,
163–173 (2017). https://doi.org/10.1016/j.jpdc.2016.12.028

5. Breitner, J., Hecker, M., Snelting, G.: Der Grader Praktomat. Automatisierte Bew-
ertung in der Programmierausbildung

6. Etancelin, J.M., Krajecki, M., Renard, A.: romeoLAB: turn your GPU-
supercomputer to an high performance training platform (2017)

7. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,
J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., et al.: Jupyter notebooks - a
publishing format for reproducible computational workflows. In: Positioning and
Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90 (2016)

8. Lucas, L., Deleau, H., Battin, B., Lehuraux, J.: USE together, a WebRTC-based
solution for multi-user presence desktop. In: Luo, Y. (ed.) CDVE 2017. LNCS, vol.
10451, pp. 228–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66805-5 29

9. Goedicke, M., Striewe, M., Balz, M.: Computer aided assessments and program-
ming exercises with JACK. ICB Research Reports 28, University Duisburg-Essen,
Institute for Computer Science and Business Information Systems (ICB) (2008).
http://ideas.repec.org/p/zbw/udeicb/28.html

10. NVIDIA: qwikLABS (2017). https://nvidia.qwiklab.com
11. Project Jupyter: JupyterHub (2017). https://github.com/jupyterhub/jupyterhub
12. qwikLABS (2017). https://qwiklab.com
13. SageMath Inc.: CoCalc Collaborative Computation Online (2016). https://cocalc.

com/
14. Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Node.Js. Betascript Publishing,

Mauritius (2010)
15. Delft University of Technology. WebLab, Online Learning Management System

(2016). https://weblab.tudelft.nl/

https://github.com/jmetancelin/ipython-batch-scheduler-magic
https://github.com/jmetancelin/ipython-batch-scheduler-magic
https://doi.org/10.1016/j.jpdc.2016.12.028
https://doi.org/10.1007/978-3-319-66805-5_29
https://doi.org/10.1007/978-3-319-66805-5_29
http://ideas.repec.org/p/zbw/udeicb/28.html
https://nvidia.qwiklab.com
https://github.com/jupyterhub/jupyterhub
https://qwiklab.com
https://cocalc.com/
https://cocalc.com/
https://weblab.tudelft.nl/

GPU, Multicores, Accelerators

Analysis and Characterization of GPU
Benchmarks for Kernel Concurrency Efficiency

Pablo Carvalho1, Lúcia M. A. Drummond1, Cristiana Bentes2(B),
Esteban Clua1, Edson Cataldo3, and Leandro A. J. Marzulo4

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
pablocarvalho@id.uff.br, {lucia,esteban}@ic.uff.br

2 Eng. de Sistemas e Computação, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, Brazil
cris@eng.uerj.br

3 Programa de Pós-graduação em Engenharia Elétrica e de Telecomunicações,
Universidade Federal Fluminense, Niterói, Brazil

ecataldo@im.uff.br
4 Ciência da Computação, Universidade do Estado do Rio de Janeiro,

Rio de Janeiro, Brazil
leandro@ime.uerj.br

Abstract. Graphical Processing Units (GPUs) became an important
platform to general purpose computing, thanks to their high performance
and low cost when compared to CPUs. However, programming GPUs
requires a different mindset and optimization techniques that take advan-
tage of the peculiarities of the GPU architecture. Moreover, GPUs are
rapidly changing, in the sense of including capabilities that can improve
performance of general purpose applications, such as support for con-
current execution. Thus, benchmark suites developed to evaluate GPU
performance and scalability should take those aspects into account and
could be quite different from traditional CPU benchmarks. Nowadays,
Rodinia, Parboil and SHOC are the main benchmark suites for eval-
uating GPUs. This work analyzes these benchmark suites in detail and
categorizes their behavior in terms of computation type (integer or float),
usage of memory hierarchy, efficiency and hardware occupancy. We also
intend to evaluate similarities between the kernels of those suites. This
characterization will be useful to disclosure the resource requirements
of the kernels of these benchmarks that may affect further concurrent
execution.

1 Introduction

Graphics Processing Units (GPUs) have been gaining prominence in general-
purpose computing. Their cost/performance ratio combined with their high com-
putational power, have attracted a broad range of users, going from the world
fastest supercomputers to the shared virtual infrastructures such as cloud envi-
ronments.

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 71–86, 2018.
https://doi.org/10.1007/978-3-319-73353-1_5

72 P. Carvalho et al.

Some benchmark packages have been created over the years to evaluate per-
formance of GPUs in a number of real-world applications. The most important
benchmark suites for GPUs are: Rodinia [1], Parboil [2], and SHOC [3]. Unlike
benchmarks proposed for CPUs, these benchmarks are composed of a series of
kernels, where each kernel represents a task submitted for fine-grain parallelism
on the GPU and may have different needs for resources during execution.

The benchmark suites have been used over the years to evaluate aspects of
the GPU architecture and its fine-grain parallelism, helping in determining the
benefits of new hardware features. In this paper, we are particularly interested
in analyzing the individual behavior of the kernels of these benchmarks in terms
of resource usage. Our main motivation is the impact that the kernel resource
requirements has in further concurrent kernel execution.

Concurrent kernel execution is a relatively recent feature in NVIDIA GPUs.
The scheduling policy follows a left-over strategy, where the hardware assigns as
many resources as possible to one kernel and then assigns the remaining resources
to other kernels. In other words, the blocks of one kernel are distributed to the
SMs for execution, and if there is space left for more blocks to execute, the
blocks of other kernels can execute concurrently. The number of blocks which
can execute concurrently on an SM is limited by: (i) the maximum number
of active warps per SM imposed by the hardware, (ii) the maximum number
of active thread blocks per SM imposed by the hardware, (iii) the number of
thread blocks that the shared memory can accommodate given the consumption
of each thread block, (iv) the number of thread blocks that the registers can
accommodate given the consumption of each thread block. Therefore, a resource-
hungry kernel could prevent the concurrent execution of other small kernels.
According to Pai et al. [4], around 50% of the kernels from the Parboil and
Rodinia benchmark suites consume too many resources and prevent concurrent
execution of other kernels.

In this scenario, little is known about the behavior of the kernels of these
benchmarks in terms of the resources requirements that affect concurrent exe-
cution. This work aims at presenting a detailed analysis of the execution of ker-
nels from the three main benchmarks suites, considering the following resource
utilization: integer, single and double precision floating point operations, SM
efficiency, GPU occupancy and memory operations. Through this analysis, we
intend to extend the comprehension of the kernels execution in order to guide
further decisions on convenient and more efficient concurrent execution. We also
propose to group the kernels with similar characteristics in terms of resource
usage. For so, we use the Principal Component Analysis (PCA) statistical
method for reducing information dimensionality and K-means clustering for cre-
ating the proposed groups.

Our results show that Rodinia and Parboil, although less updated than
SHOC, have applications with the highest resource usage. We observed four
distinct groups of kernels in the three benchmark suites. The first group concen-
trates kernels with low resource usage. The second group contains kernels that
stress resource usage. The third and fourth groups have kernels with medium

Analysis and Characterization of GPU Benchmarks 73

resource utilization and relatively low occupancy. We conclude that the kernels
from the third and fourth groups are good candidates for concurrent execution,
since they are more likely to leave unused resources.

The rest of the paper is organized as follows. Section 2 presents previous work
on GPU benchmark characterization. Section 3 discusses the benchmark suites
studied. Section 4 describes the methodology used in our experiments. Section 5
discusses and analyzes our experimental results. Finally, Sect. 6 presents our
conclusions and directions for future work.

2 Related Work

There are few previous effort in benchmark suite characterization for GPUs. The
work by Che et al. [5] characterizes Rodinia applications in terms of instructions
per cycle (IPC), memory instruction mix, and warp divergence. Their focus, how-
ever, is to compare with the CPU benchmark Parsec. Kerr et al. [6] analyze GPU
applications from NVIDIA SDK and Parboil in terms of control flow, data flow,
parallelism and memory behavior. This work, however, performs the study on a
GPU emulator that execute the PTX code of the kernels. The work of Goswami
et al. [7] presents a set of microarchitecture independent GPU workload char-
acteristics that are capable of capturing five important behaviors: kernel stress,
kernel characteristics, divergence characteristics, instruction mix, and coalescing
characteristics. They studied Rodinia, Parboil and CUDA SDK, but their study
is based on a simulation of a generic GPU, that they have heavily instrumented
to extract the studied characteristics.

Burtscher et al. [8] study a suite of 13 irregular benchmarks in terms of
control-flow irregularity and memory-access irregularity, and compare with reg-
ular kernels from CUDA SDK. In a later work, O’Neil and Burtscher [9] presents
a microarchitectural workload characterization of five irregular GPU applications
from the LonestarGPU benchmark suite1. Their study is based on simulations
and they also focus on the impact of control flow and memory access irregularity.
Bakhoda et al. [10] characterizes 12 non-graphics kernels on a GPU simulator.
They study the performance impact of some microarchitecture design choices:
interconnect topology, use of caches, design of memory controller, parallel work-
load distribution mechanisms, and memory request coalescing hardware.

Our study, on the other hand, is the first to perform the characterization on
the kernels of the three main GPU benchmark suites, rather on the applications
as a whole. Our analysis is based on actual executions of the benchmarks on
recent GPU Maxwell architecture and rises important characteristics for further
understanding concurrent kernel executions.

3 Benchmark Suites

Benchmarks are programs designed to evaluate computational systems. By ana-
lyzing the execution of these programs through well-defined metrics, it is possi-
ble to learn about the operation of a specific architecture, identify bottlenecks
1 http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu.

http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

74 P. Carvalho et al.

in a program execution and compare different architectures [11]. Nevertheless,
it is essential to choose benchmark suites that are able to stress the resource
usage of the hardware being evaluated. In [12], authors recommend the use of
algorithmic methods that capture a pattern of computation and communica-
tion (called “Dwarfs”) to design and evaluate parallel programming models and
architectures. Moreover, they recommend the use of thirteen Dwarfs instead of
traditional benchmarks.

The focus of this paper is to evaluate the benchmarks developed for general
purpose computing. The analyzed benchmarks, Rodinia [1,5], Parboil [2] and
SHOC [3,13], provide implementations for other processors. However, our goal
here is to study their behavior in the context of GPUs.

The Rodinia benchmark package, released in 2009 (now in version 3.1),
focuses on the analysis of heterogeneous systems. Rodinia offers 23 applications
with CUDA, OpenCL and OpenMP implementations, covering nine of the thir-
teen Dwarfs.

The Parboil package was developed in 2008 to test and demonstrate the
capability of the first generation of GPUs with CUDA technology. According
to the concept of its development, the package’s composition was designed nei-
ther to deliver fully optimized and low-level versions for a particular device,
nor to deliver full versions of applications that would discourage modifications.
Currently, Parboil is composed of 11 applications, covering a subset of the thir-
teen Dwarfs. Most of these applications are only implemented in CUDA, while
some have a basic CPU implementation. Therefore, this benchmark suite does
not seem appropriate for comparing CPUs with GPUs nor evaluating hybrid
(GPU+CPU) systems.

Scalable Heterogeneous Computing (SHOC) benchmark suite was designed
for GPUs and multi-core processors. Moreover, it provides MPI+CUDA versions
that allow the execution using multiple GPUs in a cluster. SHOC applications
are organized in three levels: (i) level 0 has 6 applications that measure low-level
hardware characteristics, such as memory bandwidth and peak FLOPS; (ii) level
1 provides 10 applications that correspond to a subset of the thirteen Dwarfs;
and (iii) level 2 consists of 2 real applications.

4 Methodology

Our kernel characterization targets on their behavior on integer and floating-
point operations, SM efficiency, GPU occupancy and memory operations. We
extracted these metrics from the NVIDIA nvprof tool [14] as seen in Table 1.

Although nvprof returns the maximum, average and minimum values, for
each metric, we used only the average values, since the variance is not high. From
the extracted data, the sum of shared load transactions and shared store tran-
sactions provides the total transactions on shared memory. The sum of
local load transations and local store transactions provides the total local tran-
sations. The sum of gld transactions and gsd transactions provides total trans-
actions on global memory.

Analysis and Characterization of GPU Benchmarks 75

Table 1. Selected metrics and characteristics

Metric Description

sm efficiency Time percentage that at least one warp is active in a
SM in relation to all the GPU SMs

achieved occupancy Active warps rate in a single SM in relation to the
maximum number of active warps supported by the SM

shared load transactions Number of loading operations at the shared memory

shared store transactions Number of writing operations at the shared memory

local load transactions Number of loading operations at the local memory

local store transactions Number of writing operations at the local memory

gld transactions Number of reading operations at the global memory

gst transactions Number of storage operations at the global memory

inst fp 32 Number of single precision floating point operations

inst fp 64 Number of double precision floating point operations

inst integer Number of integer operations

The analysis of the measured data follows past work in benchmark charac-
terization [5,7,15–17] in using Principal Component Analysis (PCA) and clus-
tering. The data is first mean-centered and normalized to make it comparable.
After that, we used the PCA to reduce the data dimensionality and show the
characteristics that contribute most to its variance. PCA returns a number of
principal components, that are linear combinations of the original features. The
first principal component (PC1) exhibits the largest variance, followed by the
second principal component (PC2).

With the results of PC1 vs PC2, we group similar kernels using the
K-means grouping technique. The values of K used in the K-means clustering
were obtained experimentally for each analysis.

5 Experimental Results

5.1 Experimental Environment

Our experiments were conducted on a GPU GTX 980 (Maxwell architecture)
with 2048 CUDA cores running at 1126 MHz in 16 SMs, with 4 GB of global
memory and 2 MB of L2 cache. Each SM has 96 KB of shared memory and
256 KB of registers. To compile and run the benchmarks we used CUDA version
7.5. The statistical analysis was performed using the R language. All applications
were executed with the standard input data sets.

5.2 Individual Analysis

We first analyze kernels belonging to each benchmark suite separately. In order
to distinguish the kernels in the presented charts, without compromising visi-
bility, we used a coding scheme where each kernel is identified by a letter that

76 P. Carvalho et al.

corresponds to the application it belongs, and a number that distinguishes it
from the other kernels of the same application.

Parboil. For the Parboil analysis, we did not use double precision floating-point
operations in the metrics. This is the oldest benchmark suite from the three
studied, launched before GPUs had double precision support. Parboil has 11
applications with 26 kernels. We first detect what we call low-expressive kernels.
These kernels use a small amount of resources and run in a very short time.
Thus, they were removed from our analysis. Consider that PK is the percentage
of total execution time required to run kernel K in some application and that
M is the mean of the execution times for all kernels of that same application.
We will remove K from the analysis if PK is one standard deviation bellow M .
Only 3 kernels were removed.

Parboil applications do not make use of concurrent execution. All kernels are
executed on the same stream.

Figure 1 shows the biplot chart for the results of PC1 vs PC2 followed by
the K-means clustering (K = 5). Each point in the chart represents a kernel
(named according to our coding scheme). Arrows denote vectors that correspond
to the metrics analyzed. Vector lengths are proportional to the magnitude of each
metric, and the angle between two vectors represent the correlation between
the corresponding metrics. Vectors with a small angle indicate that metrics are
highly correlated. Vectors forming a 90◦ angle are uncorrelated, and vectors in
opposite directions have negative correlation. The proximity of points to the
vectors shows kernels with the greater values obtained in that metric.

The direction of vectors in the chart indicates a correlation between the
number of shared memory transactions with the number of floating-point oper-
ations. This means that Parboil kernels normally use shared memory to store
floating point data. We have also noticed a correlation between global memory
transactions and SM efficiency. This means that the applications usually have a
good number of warps to hide global memory latency, when global memory is
intensively used.

The five groups identified by K-means are represented in different colors in
Fig. 1 and specified in Table 2. Group 1 is composed of 10 kernels. This group
contains Parboil’s most representative kernels. These are compute-intensive ker-
nels with high efficiency, a large number of operations with integers and single-
precision floating-point, and a relatively high occupancy.

Group 2 contains 2 kernels with high efficiency, but low occupancy. In these
kernels, the large number of integer and floating-point operations are enough to
maintain the SM busy, and there is no need for more warps to hide latency.

Group 3 has 6 kernels. These kernels are characterized by the average resource
usage. The position of its kernels in the chart suggests that the metrics present
average values when compared to the more resource-consuming groups (groups
1 and 2) and the less resource-consuming groups (groups 4 and 5).

Group 4 has 3 small kernels from the mri-gridding application. These kernels
are the less representative in terms of execution time.

Analysis and Characterization of GPU Benchmarks 77

Fig. 1. Parboil results

Table 2. Parboil kernels for each group.

Group Application # kernels Kernels

1 cutcp 1 cuda cutoff potential lattice6overlap(B1)

lbm 1 performStreamCollide kernel(D1)

mri-gridding 3 splitRearrange(E2), splitSort(E8),
gridding GPU(E7)

mri-q 1 ComputeQ GPU(F1)

sad 2 mb sad calc(G2), larger sad calc 8(G3)

spmv 1 spmv jds(I1)

sgemm 1 mysgemmNT(H1)

2 bfs 1 BFS kernel multi blk inGPU(A1)

stencil 1 block2D hybrid coarsen x(J1)

3 histo 4 histo prescan kernel(C1),
histo main kernel(C2), histo final kernel(C3),
histo intermediates kernel(C4)

mri-gridding 1 scan L1 kernel(E9)

sad 1 larger sad calc 16(G1)

4 mri-gridding 3 reorder kernel(E1), uniformAdd(E4),
binning kernel(E6)

5 bfs 1 BFS in GPU kernel(A2)

tpacf 1 gen hists(K1)

78 P. Carvalho et al.

Group 5 contains only 2 kernels. These are the kernels with the smallest
occupancy, which make them good candidates for concurrent execution with
other applications kernels. During their execution there is a higher probability
of having unused resources that could be allocated to a concurrent application.

Rodinia. In Rodinia, 58 kernels from 22 applications were analyzed2. In the
detection of low-expressive kernels, 14 kernels were removed.

Rodinia applications do not make use of concurrent execution. Except for
the Huffman application included in version 3.0 (2015), all other Rodinia appli-
cations execute their kernels on the same stream.

Fig. 2. Rodinia results

Figure 2 shows the biplot chart for the results of PC1 vs PC2 followed by the
K-means clustering (K = 4). We can observe in this chart that most of the ana-
lyzed kernels that make transactions in global memory, also make transactions
in shared memory, indicating that Rodinia applications are mostly optimized
to take advantage of shared memory. We can also observe a high correlation
between single and double precision floating-point operations, although double

2 We did not analyze the CFD application, since nvprof was not able to correctly
extract the corresponding metrics.

Analysis and Characterization of GPU Benchmarks 79

precision operations are less pronounced in this benchmark suite. In addition, the
correlation between integer operations, SM efficiency, and occupancy indicates
that integer-based applications are compute-intensive and have a great number
of warps. This maintains the SM busy most of the time.

Four groups were identified and are shown in Table 3. Group 1 has memory-
intensive kernels and consists of 14 kernels from 8 applications. Although the
most remarkable characteristic of kernels in this group is the amount of memory
operations, there are other interesting characteristics: (i) the group does not
perform double-precision floating-point operations, (ii) it has variable occupancy
while its efficiency is high for the majority of the members, and (iii) most of the
kernels perform integer operations.

Group 2 contains 5 kernels. These kernels presented low resource usage and
short execution time. All five kernels have little relevance in terms of resource
usage, compared to the other groups, and are probably not recommended for
assessing the GPU architecture and its parallelism. It is important to notice
that all the kernels of the Myocite application are in this group.

Group 3 has 6 kernels. This group is characterized by intensive double-
precision floating point operations, although it also performs a large number of
single precision floating-point operations. These kernels are floating-point based
compute intensive.

Group 4 is the one with more kernels (19). The group is characterized by high
GPU occupancy and by the large number of integer operations. We can observe
in the chart that kernels of this group are plotted in the opposite direction of
the vectors corresponding to the memory operations metrics. This means that
these kernels are not memory intensive.

SHOC. Compared to the other benchmark suites, SHOC is the suite that
received updates more recently. For this reason, the applications S3D and Triad
make massive use of concurrent execution, using multiple streams. SHOC con-
tains not only real applications, but also some microbenchmarks. The SHOC
level zero applications contains only microbenchmark kernels to test low-level
details of the hardware. We did not include these applications in our study. Our
analysis focused on 47 kernels of level one and 59 kernels of level two applications.
In SHOC, we did not remove low-expressive kernels, since level one applications
are much smaller than level two applications.

Figure 3 shows the biplot chart for the results of PC1 vs PC2 followed by the
K-means clustering (K = 3). The chart presents a strong correlation between
the percentage of the execution time and the number of operations in shared
memory, which means that kernels that take more time to execute are optimized
to take advantage of shared memory. Operations in global memory are highly
correlated with SM efficiency, which means that kernels that need to access
the global memory are able to efficiently hide memory access latency. There
is also a certain proximity between operations with integers and with single
precision floating point, integers are probably used for controlling loops that
contain floating point operations.

80 P. Carvalho et al.

Table 3. Rodinia kernels for each group.

Group Application # kernels Kernels

1 backprop 1 bpnn layerforward CUDA(B1)

dwt2d 4 dwt cuda::fdwt97Kernel<int=128,
int=6>(D1),
dwt cuda::fdwt97Kernel<int=192,
int=8>(D2),
dwt cuda::fdwt97Kernel<int=64,
int=6>(D3),
c CopySrcToComponents<float>(D4)

huffman 1 vlc encode kernel sm64huff(I1)

hybridsort 2 bucketsort(J4) bucketcount(J7)

lud 2 lud perimeter(N2), lud internal(N3)

nw 2 needle cuda shared 1(R1),
needle cuda shared 2(R2)

pathfinder 1 dynproc kernel(U1)

srad-v1 1 reduce(W2)

2 gaussian 1 Fan1(E2)

lud 1 lud diagonal(N1)

myocyte 10 1 kernel(P1)

particlefilter-float 2 likelihood kernel(S2),
normalize weights kernel(S3)

3 heartwall 1 kernel(F1)

hotspot 1 calculate temp(H1)

lavaMD 1 kernel gpu cuda(L1)

leukocyte 1 IMGVF kernel(M2)

srad-v2 2 srad cuda 1(X1), srad cuda 2(X2)

4 b+tree 2 findRangeK(A1), findK(A2)

backprop 1 bpnn adjust weights cuda(B2)

bfs 2 Kernel(C1), Kernel2(C2)

gaussian 1 Fan2(E1)

hotspot3d 1 hotspotOpt1(G1)

hybridsort 1 mergeSortPass(J5)

kmeans 2 invert mapping(K1), kmeansPoint(K2)

mummergpu 2 mummergpuKernel(O1), printKernel(O2)

nn 1 euclid(Q1)

particlefilter-float 1 find index kernel(S4)

particlefilter-naive 1 kernel(T1)

sc gpu 1 kernel compute cost(V1)

srad-v1 3 srad2(W3), prepare(W5), srad(W6)

Analysis and Characterization of GPU Benchmarks 81

Fig. 3. SHOC results

Three groups of kernels were identified as show in Table 4. Group 1 is com-
posed of 28 memory-intensive kernels that present the higher execution time.
This group is mostly composed of level one parallel algorithms, and is the most
diverse group. Kernels in this group use more operations with integers than the
others.

Group 2 contains 20 kernels that have low significance. The chart shows that
kernels of this group are positioned in the opposite direction of the vectors of
the metrics, indicating that kernels in this group do not consume much of the
analyzed resources.

Group 3 contains 58 kernels mostly from the S3D application. For these
kernels, we observed short execution times and low occupancy. These character-
istics confirm the capability of S3D to massively exploit concurrent execution.
Kernels warps do not occupy the whole SM, and the underutilized resources
can be allocated to other kernels. Most of the kernels do not take advantage of
shared memory, but provide high efficiency. We can also observe two subgroups
among the S3D kernels, one that performs a high number of double-precision
floating-point operations, while the other subgroup does not.

5.3 Global Analysis

In this analysis, we assembled all kernels of the benchmark suites, with a total
number of 173 kernels. The motivation for this analysis is to show the similarities
and differences between applications of the benchmark suites.

Figure 4 shows the biplot chart for the results of PC1 vs PC2 followed by the
K-means clustering (K = 4). The name of the kernels in this chart is formed

82 P. Carvalho et al.

Fig. 4. Results for the kernels of all benchmarks suites.

with a similar coding scheme used in the previous analysis, but each kernel
name starts with a letter indicating which benchmark suite it belongs (R, P or
S). Comparing the direction of the vectors in this chart with the SHOC chart, we
can observe that the large number of kernels in SHOC influenced the position of
some vectors such as the percentage of execution time and the number of double-
precision floating-point instructions. The position and angle between these two
vectors are very similar.

Four groups of kernels were identified and are analyzed separately as follows.

Group 1 - Little Resource Usage. This group contains 27 kernels, and is
a result of the combination of the kernels from benchmark suites that present
low use of all the resources analyzed (integer and floating-point operations, SM
efficiency, GPU occupancy and memory operations). Table 5 shows the number
of kernels of each benchmark suite that comprises this group. We can observe in
this table that most of the kernels in this group belongs to SHOC. Most of them
are level one SHOC parallel algorithms.

Group 2 - High Resource Utilization. Group 2 consists of 26 kernels
that have high efficiency, due to a great number of integer and single-precision
floating-point operations. These kernels also have an average occupancy of about
70%. This is the group that present the highest resource utilization. Table 5
shows the number of kernels per benchmark suite. We can observe that Rodinia
and Parboil have more kernels that intensively exploit the GPU resources than
SHOC.

Analysis and Characterization of GPU Benchmarks 83

Table 4. SHOC kernels from each group.

Group Application # kernels Kernels

1 FFT 4 FFT512 device(D3), IFFT512 device(D4),
IFFT512 device(D5), FFT512 device(D6)

GEMM 4 maxwell sgemm 128x64 nn(E1),
gemm kernel2x2 tile multiple core(E2),
maxwell sgemm 128x64 nt(E3),
gemm kernel2x2 tile multiple core(E4)

MD5Hash 1 FindKeyWithDigest Kernel(F1)

MD 1 compute lj force(G1)

NeuralNet 3 axpy kernel val(H3), kernelBackprop1(H7),
gemm kernel1x1 core(H8)

Reduction 2 reduce(I1), reduce(I2)

Scan 4 reduce(J1), reduce(J2), bottom scan(J3),
bottom scan(J6)

Sort 3 findRadixOffsets(K2), radixSortBlocks(K3),
reorderData(K5)

Spmv 2 spmv csr vector kernel(L1),
spmv csr vector kernel(L7)

Stencil2D 2 StencilKernel(M1), StencilKernel(M2)

Triad 1 Triad(N1)

QtClustering 1 QTC device(O1)

2 BFS 1 BFS kernel warp(C1)

NeuralNet 6 kernelFeedForward3(H1),
kernelBackprop3b(H2),
kernelBackprop3a(H4),
kernelInitNablaB(H5), kernelBackprop2(H6),
kernelInitNablaW(H9)

Scan 2 scan single block(J4), scan single block(J5)

Sort 2 scan(K1), vectorAddUniform4(K4)

Spmv 6 zero(L2), zero(L3), spmv ellpackr kernel(L4),
spmv csr scalar kernel(L5),
spmv ellpackr kernel(L6),
spmv csr scalar kernel(L8)

QtClustering 3 reduce card device(O2),
trim ungrouped pnts indr array(O4),
update clustered pnts mask(O5)

3 FFT 2 void chk512 device(D1), chk512 device(D2)

MD 1 compute lj force(G2)

QtClustering 1 compute degrees(O3)

s3d 54 all kernels (P1 to P54)

84 P. Carvalho et al.

Group 3 - Medium Resource Utilization. This group is composed of 51
kernels, and has some similar characteristics to group 2, high number of integer
operations and average occupancy around 60%. Kernels in this group are smaller
than the ones in group 2, presenting a less significant percentage of execution
time. Table 5 shows the number of kernels from each suite in this group. We
observe that this group contains a similar number of kernels from the three
suites.

Group 4 - Low Occupancy and High Efficiency. This group is composed
of 69 kernels, characterized by low occupancy, high efficiency and low percent-
age of execution time. This group contains mostly S3D kernels from the SHOC
suite. From the 69 kernels, 44 are from S3D. This application is a computa-
tional chemistry application that solves Navier-Stokes equations for a regular
3D domain [18]. The computation is floating-point intensive, and it was paral-
lelized by assigning each 3D grid point to one thread. The low occupancy of
each of its kernels impels their concurrent implementation. Another feature of
this group is the smaller number of operations with integers and the highest
average use of registers than the other groups. Table 5 shows the distribution of
kernels of this group in the suites. Notice that rhere are no Parboil kernels in
this group, and there are only three kernels from Rodinia.

Table 5. Number of kernels for each group and benchmark suite.

Group Patboil Rodinia SHOC

1 1 6 20

2 11 12 3

3 11 23 17

4 0 3 66

5.4 Discussion

Our results show that Rodinia and Parboil presented more diversity in their
kernels. SHOC, on the other hand, provides less diversity but it is the only suite
that exploits kernel concurrency massively. When the three suites are analyzed
together, we observed four distinct groups of kernels: (1) Low significance, (2)
High resource utilization, (3) Medium resource utilization and (4) Low occu-
pancy and high efficiency. Kernels from group 1 are the ones with short execu-
tion time and low resource usage, which means that they are not appropriate for
assessing the GPU hardware. Kernels from group 2 present high resource uti-
lization, which indicates that they are not good candidates for concurrent kernel
execution. Kernels from groups 3 and 4 have medium resource utilization and
relatively low occupancy. These kernels are more likely to leave unused resources
and provide space for concurrent execution.

Analysis and Characterization of GPU Benchmarks 85

6 Concluding Remarks

This work presented a detailed characterization of the three most important
benchmark suites for GPUs, Rodinia, Parboil and SHOC. Our study focused
on revealing the behavior of the kernels in terms of integer, single and double
precision operations, SM efficiency, GPU occupancy and memory operations. We
also proposed to group similar kernels in order to identify the ones with similar
behavior.

The analysis and characterization of representative GPU kernels is an essen-
tial step to understand the effect of resource requirements in further concurrent
execution in modern GPUs. Cross-kernel interference can drastically affect per-
formance of applications executed in GPUs concurrently. The problem is caused
by concurrent access of co-located kernels to shared resources. We believe that
identifying kernels with complementary access profiles to execute concurrently
can reduce interference among them. Thereby, the characterization is a first and
fundamental step to be used in future strategies of kernels scheduling in GPUs.

Our results showed that the benchmarks have kernels with good diversity in
terms of resource usage. We identified groups of kernels with similar behavior
and distinguished the kernels that are more likely to leave unused resources.
These kernels are better candidates for efficient concurrent execution.

Concurrent kernel execution is a relatively new feature in GPUs. It would
be interesting that future benchmark suites for GPU exploit this feature to the
full. As future work, we intend to analyze the kernels behavior in different GPU
architectures. We also intend to perform a study on the performance interference
of the concurrent execution of different types of kernels, and propose a intelligent
strategy to benefit from all the information gathered.

References

1. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–54
(2009)

2. Stratton, J.A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N.,
Liu, G.D., Hwu, W.M.W.: Parboil: a revised benchmark suite for scientific and
commercial throughput computing (2012)

3. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K.,
Tipparaju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) bench-
mark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, pp. 63–74 (2010)

4. Pai, S., Thazhuthaveetil, M.J., Govindarajan, R.: Improving GPGPU concurrency
with elastic kernels. In: ACM SIGPLAN Notices, vol. 48, pp. 407–418. ACM (2013)

5. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A char-
acterization of the Rodinia benchmark suite with comparison to contemporary
CMP workloads. In: Proceedings of the IEEE International Symposium on Work-
load Characterization (2010)

86 P. Carvalho et al.

6. Kerr, A., Diamos, G., Yalamanchili, S.: A characterization and analysis of PTX
kernels. In: IEEE International Symposium on Workload Characterization, IISWC
2009, pp. 3–12. IEEE (2009)

7. Goswami, N., Shankar, R., Joshi, M., Li, T.: Exploring GPGPU workloads: char-
acterization methodology, analysis and microarchitecture evaluation implications.
In: 2010 IEEE International Symposium on Workload Characterization (IISWC),
pp. 1–10. IEEE (2010)

8. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on GPUs. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE (2012)

9. O’Neil, M.A., Burtscher, M.: Microarchitectural performance characterization of
irregular GPU kernels. In: 2014 IEEE International Symposium on Workload Char-
acterization (IISWC), pp. 130–139. IEEE (2014)

10. Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: IEEE International Sympo-
sium on Performance Analysis of Systems and Software, ISPASS 2009, pp. 163–174.
IEEE (2009)

11. Bienia, C.: Benchmarking Modern Multiprocessors. Princeton University,
Princeton (2011)

12. Asanovic, K.: The landscape of parallel computing research: a view from Berkeley,
Technical report UCB/EECS-2006-183, EECS Department, University of Califor-
nia, Berkley, CA, USA (2006)

13. SHOC (2012). https://github.com/vetter/shoc/wiki
14. NVIDIA Corporation: Profiler user’s guide (2017). http://docs.nvidia.com/cuda/

profiler-users-guide/index.html#nvprof-overview, an optional note
15. Bienia, C.: Benchmarking modern multiprocessors, Ph.D. thesis, Princeton Uni-

versity (2011)
16. Joshi, A., Phansalkar, A., Eeckhout, L., John, L.K.: Measuring benchmark similar-

ity using inherent program characteristics. IEEE Trans. Comput. 55(6), 769–782
(2006)

17. Che, S., Skadron, K.: Benchfriend: correlating the performance of GPU bench-
marks. Int. J. High Perform. Comput. Appl. 28(2), 238–250 (2014)

18. Spafford, K., Meredith, J., Vetter, J., Chen, J., Grout, R., Sankaran, R.: Accelerat-
ing S3D: a GPGPU case study. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer,
A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009. LNCS, vol. 6043, pp.
122–131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14122-
5 16

https://github.com/vetter/shoc/wiki
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://doi.org/10.1007/978-3-642-14122-5_16
https://doi.org/10.1007/978-3-642-14122-5_16

Parallel Batch Self-Organizing Map
on Graphics Processing Unit Using CUDA

Habib Daneshpajouh1,2(&), Pierre Delisle1, Jean-Charles Boisson1,
Michael Krajecki1, and Nordin Zakaria2

1 Centre de Recherche en STIC (CReSTIC),
Université de Reims Champagne-Ardenne, Reims, France

daneshpajouh.habib@gmail.com, {pierre.delisle,

jean-charles.boisson,michael.krajecki}@univ-reims.fr
2 High Performance Cloud Computing Center (HPC3),

Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
nordinzakaria@utp.edu.my

Abstract. Batch Self-Organizing Map (Batch-SOM) is being successfully used
for clustering and visualization of high-dimensional datasets in a wide variety of
domains. Although the structure of its training algorithm has a high potential for
parallelization, focus of the previous efforts has been on the original Step-wise
SOM. This gap is due to the facts that Batch-SOM requires some extra precautions
(specially in its initialization phase), and it took quite a while since its introduction
that researchers affirmed the desirability of using it in practice over the Step-wise
SOM. Hence, the purpose of this paper is to propose a GPU parallelization model
and implementation for the Batch-SOM using CUDA. The most computationally
expensive parts of its training algorithm (such as steps to compute distance
between each data vector and neuron, and determining the Best Matching Unit
based onminimum distance) are identified andmapped on GPU to be processed in
parallel. The proposed implementation shown significant speedups of 11� and
5� compared to the sequential and parallel CPU implementations respectively.

Keywords: Self-Organizing Map � CUDA � Clustering � Parallel SOM
GPGPU

1 Introduction

Self-Organizing Map (SOM) proposed by Kohonen [1] is an unsupervised neural
network that provides a low-dimensional (i.e. one or two dimensional) representation
of multidimensional data vectors. SOM uses a data compression technique called
Vector Quantization (VQ) to perform dimensionality reduction. VQ compression
works by finding local averages of the dataset (represented by centroids in K-Means
algorithm and neuron weights in SOM). In contrast to classical neural networks which
require an input vector together with an associated target vector to be provided
beforehand, the key feature of SOM is the ability to find internal structure of data
without any supervision. In a nutshell, SOM works by associating each of the input
vectors to one of its neurons in an iterative process in such a way that the overall

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 87–100, 2018.
https://doi.org/10.1007/978-3-319-73353-1_6

distance between the neurons and their associated input vectors is minimized. The main
goal of this process is to maintain the most important topological and/or metric rela-
tionships within the dataset in resulted low-dimensional network.

Since its introduction, SOM is being frequently used for clustering, visualization
and data exploration problems in different domains such as industry, finance, natural
sciences, biomedical analysis and linguistics [2]. SOM has a large application potential
in engineering domain as well such as visualization of machine states, fault identifi-
cation, process analysis and monitoring, and adaptive detection of quantized signals.
By applying SOM to clustering problems, it will not only approximate the density
function of the input samples (as most of classical clustering algorithms like K-Means
do using VQ), but also provides a low-dimensional nonlinear projection of the
high-dimensional datasets by topological arrangement of its neurons.

However, with the size of today’s real-world datasets increasing sharply and
complexity of data mining algorithms like SOM, quality of the result is not the only
factor to measure the success of an algorithm, but its computational performance
matters a lot too. Fortunately, just like other members of neural networks family, by
having multiple computing nodes called neurons, SOM has a high potential of being
parallelized. Moreover, a variation of SOM with modified training algorithm called
Batch-SOM (in contrast to the original SOM with sequential step-wise training algo-
rithm) makes it even more suitable for parallelization. According to Kohonen [3], by
taking care of certain preliminaries, the result quality of the Batch-SOM is equal to (or
even better than) the original SOM for majority of datatypes.

Several works have been done in the past for parallelization of SOM using different
platforms on both Central Processing Unit (CPU) and Graphics Processing Unit (GPU).
However, majority of the previous works emphasized on the original step-wise SOM
and there is a lack of effort for parallelizing the Batch-SOM on GPU. Hence, the aim of
this paper is to provide a parallelization model for the Batch-SOM using NVIDIA
Compute Unified Device Architecture (CUDA) platform. The proposed GPU imple-
mentation shown significant speedups compared with the famous SOMToolbox [4]
(a reference CPU implementation for the Batch-SOM provided by the Kohonen’s
team), and also the authors’ own sequential and parallel CPU implementations.

The remaining of this paper is structured as follows. Section 2 presents the original
SOMalgorithm andBatch-SOM. Section 3 surveys the previousworks on parallelization
of SOMonGPU. The proposedGPU parallelizationmodel of Batch-SOM is explained in
Sect. 4. The performance and comparison results of the proposed model are presented in
Sect. 5. Finally, Sect. 6 concludes the paper and proposes some future works.

2 SOM Algorithm

We follow Kohonen [3] to explain the two variations of SOM algorithm, and will be
using the following notations for this section and also the rest of this paper:

• x(t): a real n-dimensional Euclidean input vector, where integer t signifies a step in
the sequence.

• X: sequence of all input vectors {x(t)}.
• mi: a model (neuron), where i is its spatial index in SOM lattice.

88 H. Daneshpajouh et al.

• Mi: a variable sequence of all models (neurons) {mi(t)}.
• mc: a model (neuron) with closest distance to the input data vector passed to SOM

lattice, and is located in the center of its neighbourhood. It is also called
Best-Matching Unit (BMU) in SOM terminology.

• Di: a variable set of all distances between each data vector x(t) andmodel (neuron) mi.

Some parameters of SOM like number of neurons in each dimension of the lattice,
maximum number of epochs (iterations) and learning rate (in case of Step-wise SOM)
should be found using some statistical methods and heuristics that work on the basis of
input data.

Learning algorithm of the original Step-wise SOM (shown in Fig. 1) known as
“competitive learning” is described in the following:

1. Weights of the neurons are initialized. Initialization can be done either randomly or
linearly using Principal Component Analysis (PCA) technique.

2. An input vector x(t) is chosen at random from X and broadcasted to lattice.
3. The x(t) is compared to each and every mi(t) to find the winner (BMU) in such a

way that the neuron with index c is in the smallest distance from x(t) compared to all
other neurons as in the following formula:

c ¼ argmini x tð Þ � mi tð Þk kf g ð1Þ

4. The neighbourhood radius of the BMU hci(t) is now calculated. The neighbourhood
function has a vital role in SOM and its smooth convergence by producing large
values at initial stages (typically covers the whole lattice) and decreasing overtime.
This function can be defined as follows:

hci tð Þ ¼ a tð Þ e �½ ½x tð Þ �mc�2=2a2 tð Þ� ð2Þ

Fig. 1. Illustration of a Step-wise SOM.

Parallel Batch SOM on Graphics Processing Unit Using CUDA 89

where a(t) < 1 (also called “learning rate”) and r(t) are monotonically (e.g.
exponentially) decreasing scalar functions of t, and [x(t) − mc]

2 is the square
distance between the neuron mc and vector x(t).

5. The weights of the BMU and each of its neighbouring neurons (found in step 4) are
adjusted to be closer to the input vector. The closer a neuron is to BMU, the more its
weights get altered. The formula in below calculates the new weights for each
affected neuron:

mi tþ 1ð Þ ¼ mi tð Þ þ hci tð Þ x tð Þ � mi tð Þ½ � ð3Þ

where mi(t) and mi(t + 1) are the current and new weights of the neuron mi

respectively.
6. Steps 2 to 5 are repeated until the maximum number of epochs (i.e. iterations) is

reached.

On the other hand, as Fig. 2 shows, the Batch-SOM works as in the following
steps:

1. Weights of the neurons are initialized. Initialization can be done either randomly or
linearly using PCA technique.

2. All the data vectors are passed to the lattice at once, with each neuron having its
own sub-list. Each data vector is compared with each and every neuron to find its
BMU. The index of each data vector goes to the sub-list of its BMU.

3. Finally, the new weights of each neuron are calculated as the weighted mean (the
term “generalized median” is used by Kohonen to cover any type of data including
the non-numeric types) of all the sub-lists in its neighbourhood. The mean’s weight
is determined by the distance of each neuron to the neuron that is getting the update.

4. Steps 2 to 3 are repeated until the maximum number of epochs is reached.

Fig. 2. Illustration of a Batch-SOM.

90 H. Daneshpajouh et al.

3 Related Work

Although there is a wide range of parallelization efforts for SOM, the focus of this
report is only on those implemented on GPUs. The works on GPU implementations of
SOM can be divided into two groups: first group includes those works that used
graphics programming techniques and (vertex and fragment) shaders, while the second
group belongs to those works that used CUDA and Open Computing Language
(OpenCL) platforms to perform general computing on GPU. These two platforms
completely revolutionized the way in which the programs are implemented on GPUs.

One of the early works on GPU parallelization of SOM is done by Zhongwen et al.
[5] in which a GPU implementation of SOM is provided by converting the compu-
tational data into texture format and using the OpenGL texture buffers to perform the
computation and data storage directly on GPU. The test environment for the proposed
implementation contained Intel Pentium-4 2.4 GHz for CPU computation, and ATI
9550 and NVIDIA 5700 for GPU computation. By using 80 data vectors for training,
the authors claimed speedups of up to 2� and 4� on the NVIDIA and ATI cards
respectively.

Another work proposed at the same year as the above work is by Campbell et al. [6]
in which the authors proposed a variation of SOM called Parameter-less SOM
(PLSOM) which does not require to manually choose the “learning rate” parameter.
They used shader functions to port SOM training computations on GPU. By trying
different number of nodes for SOM lattice and a dataset including 1000 randomly
generated and uniformly distributed 2-dimensional vectors, the authors claimed a
speedup of up to 9� using their GPU implementation run on a GeForce 6800 card
compared to a sequential CPU implementation run on a machine with 6 Intel Itanium-2
processors.

Xiao et al. [7] proposed a parallel GPU implementation for Batch-SOM using
shader functions with the lattice of neurons being organized in 2D texture format.
A vertex shader is responsible for finding the nearest neuron as well as the corre-
sponding texel position for each training vector. Then, two fragment shaders are used
to update the training vector and its neighbours. The authors evaluated the performance
of their algorithm on an Intel Core2 Q8200 CPU and GeForce GTX 280 GPU. They
claimed to achieve 15� to 40� speedup compared to a sequential CPU implementation
by using different sizes of input data.

Despite the speedups that the aforementioned works achieved compared to CPU
implementations, the high level of required knowledge (of graphics programming) and
extra works that they were facing for converting the data structure and processing style
of SOM to somewhat compatible with graphics APIs (like OpenGL) makes their
approaches inconvenient in practice.

On the other hand, the major works after the introduction of CUDA are reviewed in
the following. A GPU implementation of SOM is presented by Hasan et al. [8] using an
open-source GPU Machine Learning Library called GPUMLib which is based on
CUDA. In this work, weights initialization of neurons and subsequent update of the
weights are done on host (CPU) while middle steps for finding the distance between
neurons and input vectors followed by finding the BMU are done on device (GPU).

Parallel Batch SOM on Graphics Processing Unit Using CUDA 91

They performed an experiment on biomedical gene expression data using a NVIDIA
Tesla C2075 graphics hardware and an Intel Xeon high-performance computer. The
authors claimed that their GPU implementation achieved more than 3� speed up
compared to the CPU implementation.

Davidson [9] proposed a parallel implementation of SOM using OpenCL on
NVIDIA GPUs. In this work, Euclidean distance as the most common distance mea-
sure for SOM is replaced by Manhattan distance. Two kernels are used to find the
BMU for each input vector in parallel. The performance of the OpenCL implemen-
tation is compared with a well-known SOM (CPU implementation) library called
SOM_PAK [10] and shown a speedup factor of 10�.

Wang et al. [11] proposed a GPU implementation of SOM applying to travelling
salesman problem using a concept called “parallel cellular matrix” that partitions the
Euclidean plane of input data into a suitable number of uniform cell units. They used
Nvidia GeForce GTX 570 Fermi graphics card containing 480 CUDA cores for
their experiment which resulted average acceleration factors of 5.49, 12.68 and 39.74
(with respect to small, medium and large size of input data) compared to the CPU
implementation.

Although the works reviewed above resulted significant speedups by their GPU
implementations, one must note that the focus of these works has been mostly on the
original SOM algorithm and there is a lack of effort on GPU parallelization of the
Batch-SOM. While the original SOM algorithm was proposed in 1980s and the batch
training algorithm a couple of years later, it took quite a while (by using it for different
application areas in several research works) to confidently use the Batch-SOM as an
alternative of the original SOM that might justify the lack of effort for GPU paral-
lelization of this algorithm. As mentioned by Kohonen in [3], despite the need for
taking care of some extra preliminaries (specially in the initialization phase) when
working with the Batch-SOM, it is usually preferred over the original SOM in practice
for several reasons:

• It does not have the time-variable learning rate parameter.
• It converges faster than the step-wise method.
• It can be generalized for the non-vectorial data too.

In addition, the Batch-SOM is more scalable to data size because of its high
potential for parallelization. Therefore, the parallel-GPU model proposed in this paper
focuses on the Batch-SOM by first, identifying the most computationally expensive
stages of its learning algorithm, and then, using high-parallelizm potential of GPUs and
also efficient processing techniques provided by CUDA platform to perform the
computation of these stages.

4 Parallel Batch-SOM on CUDA

As explained by Kohonen [1], the most computationally expensive part of the
Batch-SOM is the step to find the BMU for each data vector which consists of many
distance comparisons. Our profiling analysis affirmed this too by showing that finding

92 H. Daneshpajouh et al.

BMUs takes about 81 to 95.6% of the training’s total processing time when it is run
sequentially on CPU for 1000 and 7000 sizes of input data respectively. One may note
that the step to update the weights takes a much smaller portion of the total processing
time due to the fact that the radius of neighbourhood reduces overtime, requiring less
and less computation to update the neurons. Hence, in our proposed parallelization
model, computation of the step to find BMUs is ported to GPU.

Figure 3 depicts flowchart of our proposed parallel Batch-SOM. It starts with
reading input data on the host side. Then, some SOM parameters such as data size, a
single vector size, lattice radius etc. are computed and set. The next step (which plays a
vital role in the result’s quality of the Batch-SOM) is to initialize the lattice by setting
the weights of its neurons to some initial values. The choice of initialization method
(either randomly or linearly) depends on the data and problem types. Describing the
subtleties of this choice is beyond the scope of this paper, but some useful suggestions
are provided by Principe and Miikkulainen [12].

Following the initialization phase, the training loop begins by going through the
procedure to find BMUs for all the input data vectors. This procedure consists of two
major parts, both ported to GPU using two kernels to be processed. In its first part,
distance between each data vector and neuron is computed. Then, in its second part, the
BMU of each data vector is determined by finding the neuron in closest distance. The
next step of the training algorithm is to update the weights of neurons based on the
calculations of the previous step. The update step aims to transform the SOM lattice in
such a way that it would be closer to distribution of the input dataset. At the end of the

Fig. 3. Parallel Batch-SOM flowchart.

Parallel Batch SOM on Graphics Processing Unit Using CUDA 93

training loop, all the sub-lists associated with neurons are cleaned and termination
condition (which is usually a fixed value for maximum number of iterations) is
checked. If the condition is met, Quantization Error of the resulted clustering is
computed and the output is displayed/stored; otherwise, the loop continues to iterate by
going back to the step of finding BMUs.

As mentioned above, computational burden of the procedure to find BMUs for each
data vector is carried out by GPU. Algorithm 1 provides the pseudocode of this
procedure. It begins by defining an array of CUDA streams [13] in order to be able to
perform the data transfer from host to device and kernel execution in an asynchronous
manner. The idea of CUDA streams comes from the fact that kernel execution in
CUDA is an asynchronous action and once the host launches the kernel, it can proceed
with next instruction in the program. We follow a 2-Way concurrency model (Fig. 4)
for using streams in which the weights data is split into chunks to be transferred to
GPU. Following the transfer of each chunk of data, our first kernel computeDistances
(Algorithm 2) is called to operate on the respective chunk. This kernel is responsible
for taking a single n-dimensional data vector and neuron, computing the Euclidean
distance between them and storing the result in a global distance array. The global
distance array is one-dimensional and stores distance values in a linear hierarchical
structure consisting of streams, blocks and threads. After processing all the streams, the
second kernel minReduction is launched to find the minimum distance for each data
vector using the famous “parallel minimum reduction” algorithm. The minReduction
kernel is lunched with the number of blocks equal to number of input vectors (so each
block is responsible for finding the BMU for one input vector), and number of threads
per block equal to half of total number of neurons. This kernel works on the global
distance array that was initially stored in the device memory. Following the execution
of the second kernel, the distance data is transferred from device to host. Eventually,
the findBMUs procedure ends with calling the function fillInSubLists which puts the
index of each data vector in its BMU’s sub-list.

Algorithm 1. Pseudocode of the findBMUs procedure

94 H. Daneshpajouh et al.

Algorithm 2. Pseudocode of the computeDistances kernel

To further describe the details of computations on GPU, Fig. 5 illustrates data
transfers and execution of the proposed parallel implementation. There are three major
sets of data in this program, each stored in a one-dimensional array. First (before the
start of training loop), the set of all input data vectors X is transferred to device
memory. Then, the set of weights of all neuronsMi is divided into chunks (three chunks
in the case of Fig. 5) and transferred to the device memory using streams. Determining
the number of streams depends on the factors such as the GPU architecture (number of
connections between host and device, available registers etc.) and also data size.
Although the recent GPU architectures provide the ability to have a high number of
streams, the balance between data size and overhead of creating too many streams must
be taken into account in order to achieve an efficient concurrency.

After transferring each chunk of the weights data, the host (CPU) launches an
instance of the computeDistances kernel on multiple blocks of threads. Since in our
implementation each thread is responsible for computing the distance between a single
data vector and neuron, the total number of threads required is the total number of data
vectors times the total number of neurons in the lattice. It is noteworthy that all the
streams launch an almost equal number of threads and blocks. The maximum number
of threads allowed in each block and the amount of available per-block resources such
as shared memory determine the number of blocks and number of threads per block in
each stream. The part of the weights data assigned to each block is loaded into shared
memory. This is because the number of neurons is usually much smaller than the
number of data vectors. So, each neuron weights are accessed many more times than

Fig. 4. 2-Way concurrency pipeline of CUDA streams used in our parallel implementation

Parallel Batch SOM on Graphics Processing Unit Using CUDA 95

the data vectors. Finally, each thread writes the result of its distance computation into
the distance array that will be transferred to host memory after the reduction kernel
finishes its computation.

5 Comparison and Results

In order to test the performance of the proposed parallelization model, we compared
our implementation with three different implementations:

• SOMToolbox: A CPU-based single-thread reference implementation of the
Batch-SOM, developed in MATLAB by the Kohonen’s team. This package pro-
vides the ability to train a SOM network with different parameters and compute
various errors, quality and measures for the SOM. It also provides visualization of
the result, and correlation and cluster analysis.

• Our own sequential CPU implementation: This is developed in C by following the
SOMToolbox and acts as the groundwork of our parallel implementations.

Fig. 5. Data transfers and execution of the proposed parallel implementation on GPU

96 H. Daneshpajouh et al.

• Our own OpenMP implementation: This is developed in C in order to have an
alternative parallel implementation to be compared with our CUDA implementa-
tion. Exactly like the proposed Batch-SOM on CUDA, in the OpenMP imple-
mentation, computation of the procedure findBMUs is done in parallel using
different number of processing cores ranging from 2 to 16.

All the implementations work on double precision and the necessary optimization
flags are used in compilation of CPU implementations. The specifications of the
machine used in our experiments are presented in Table 1. We used the dataset which
was the result of Non-dominated Sorting Genetic Algorithm II (NSGA-II) runs applied
to an instance of Vehicle Routing Problem with Time Windows (VRPTW) having 100
customer points with 200-dimensional integer data vectors. Each data vector occupies
800 bytes of memory. These data vectors are essentially GA chromosomes, each of
which is a solution to this instance of VRPTW.

With respect to fine tuning of GA parameters for this instance of VRPTW, the
population size was set to 100 with 70 as number of generations. Hence, the GA
produced 7000 solutions (vectors) which we used as input data for SOM clustering.
However, to see the behaviour of our parallel SOM against different sizes of input data,
we extracted random subsets of 1000, 2000 and 4000 vectors from this data. The
dataset being used can be retrieved from [14]. By using a heuristic provided in
SOMToolbox, the maximum number of SOM iterations was set to 12 with a 15 � 7
lattice of neurons. Each implementation was run 50 times on different sizes of datasets.

Table 2 presents runtime comparison of the training part (as indicated in Fig. 3) of
the CUDA, the OpenMP (on 2, 4, 8 and 16 cores), the sequential CPU and the
SOMToolbox implementations on different sizes of input data which clearly shows that
the proposed CUDA implementation is by far performing better compared to the other
implementations. The speedup is more evident when the data size is increased. At its
best performance when the number of input vectors is 7000, the proposed CUDA
implementation provides a speedup of 5�, 11� and 11� compared to the OpenMP, the
CPU and the SOMToolbox implementations respectively. Profiling information for the
case of 7000 input vectors is presented by Table 3.

It is noteworthy that the slight advantage of our CPU implementation over the SOM
Toolbox is because of two reasons. First, SOM Toolbox is implemented in Matlab
which is typically slower than C programs. Second, unlike our implementation, SOM
Toolbox includes some extra error checking and exception handling commands that is
usual in all the public packages. Otherwise, our CPU implementation is the same as the
one in SOM Toolbox.

Table 1. The specifications of the machine used in our experiments

CPU (Bi-processors) Memory GPU OS

Intel Xeon E5-2650V2
16 Cores (in total)
2.60 GHz

64 GB NVIDIA Tesla K20x Bullx Linux Server
Release 6.1

Parallel Batch SOM on Graphics Processing Unit Using CUDA 97

Moreover, from the perspective of clustering quality, Table 4 provides the results
of comparing our CUDA implementation with the SOMToolbox in terms of two
well-known measures. The first measure is Average Quantization Error (AQE) which
indicates the average of total distances of all data vectors to their respective cluster’s
centroids (i.e. their BMUs weights in case of SOM algorithm). The second measure is
Average Silhouette Coefficient (ASC) which is one of the intrinsic methods for eval-
uating clustering quality by reflecting the average ratio of intra-cluster closeness to
inter-cluster compactness. ASC has a range of [−1, 1]. The goal of SOM clustering is to
minimize the AQE and maximize the ASC. In majority of cases, our CUDA imple-
mentation provided an equal quality to SOMToolbox while in some cases there is a
slight difference (both higher and lower) between the two, which is normal because of
random nature of the SOM algorithm.

Table 2. Runtime (of the training part) comparison between CUDA, OpenMP, sequential CPU
and SOMToolbox implementations (time in milliseconds)

No. of Input
vectors

Runtime CUDA OpenMP Seq.
CPU

SOM
Toolbox2Cores 4Cores 8Cores 16Cores

1000 Best 136 538 487 428 322 569 597
Worst 151 549 504 433 365 584 607
Std. dev. 142 541 495 430 341 577 601

2000 Best 215 1043 940 802 632 1137 1163
Worst 232 1055 947 809 669 1152 1192
Std. dev. 226 1049 942 806 651 1142 1181

4000 Best 287 1813 1571 1283 934 2012 2025
Worst 297 1825 1593 1291 973 2029 2051
Std. dev. 292 1817 1579 1287 959 2022 2036

7000 Best 371 3796 3288 2664 1952 4211 4262
Worst 388 3803 3308 2685 1991 4256 4296
Std. dev. 382 3797 3295 2672 1975 4230 4271

Table 3. Profiling information of the training part (as indicated in Fig. 3) for the case of 7000
input vectors

Section Initialize
weights ()

memcpy
HtoD

Compute
distances
<<< >>> ()

Min
reduction
<<< >>> ()

memcpy
DtoH

Update
weights
()

Others

Time
(ms)

37 9 132 24 21 141 7

Time
(%)

9.97 2.43 35.58 6.47 5.66 38.01 1.88

98 H. Daneshpajouh et al.

6 Conclusion and Future Work

The Self-Organizing Map is a data mining algorithm being extensively used nowadays
for clustering and visualization problems in different domains. SOM has a unique
feature of not only providing an approximation of density function of the dataset, but
also a nonlinear projection of the high-dimensional data vectors to a low-dimensional
space. However, the complexity of its training algorithm and the size of today’s
real-world datasets makes it necessary to use some kinds of parallelization for its
computation. GPUs proved to be one of the most powerful computing hardware
nowadays. Hence, this paper proposed a parallelization model for the Batch-SOM, as it
proved to have equal quality of the result compared to the original SOM, and it is more
suitable for parallel computing. We compared our GPU implementation with other
sequential and parallel CPU implementations and got significant speedups.

However, some developments can be done in future to enhance the model and
implementation. From an algorithmic perspective, some useful suggestions are pro-
vided by Kohonen [3] such as multiplying the number of neurons to save computing
time in constructing large SOMs, estimating the BMU location based on the previous
searches, tabulating the indices of non-zero elements of sparse vectors to speed up the
BMU search process and using a coarse numerical accuracy of the vectors to reduce the
memory requirements of high-dimensional input data. On the other hand, the GPU
architecture can benefit from future developments as well. Although the experimental
case used in Sect. 5 conveniently fits a single GPU, this is not always the case.
Considering the fact that the size of today’s datasets (e.g. those from operations
research, biology, medical image analysis etc.) might go beyond the capabilities of a

Table 4. Clustering quality comparison between CUDA and SOMToolbox implementations
(Average Quantization Error: lower is better – Average Silhouette Coefficient: higher is better)

No. of
Input
vectors

Quality CUDA SOMToolbox
Avg.
quantization
error

Avg.
silhouette
coefficient

Avg.
quantization
error

Avg.
silhouette
coefficient

1000 Best 60.8 0.9896 60.8 0.9896
Worst 69.4 0.9854 68.6 0.9851
Std. dev. 61.9 0.9875 62.1 0.9877

2000 Best 110.2 0.9892 110.2 0.9892
Worst 113.7 0.9838 114.1 0.9838
Std. dev. 110.3 0.9866 111.1 0.9869

4000 Best 195.1 0.9873 194.6 0.9873
Worst 192.3 0.9783 191.4 0.9781
Std. dev. 193.8 0.9823 193.5 0.9818

7000 Best 209.2 0.9625 209.2 0.9625
Worst 211.6 0.9523 212.3 0.9566
Std. dev. 210.7 0.9581 209.4 0.9598

Parallel Batch SOM on Graphics Processing Unit Using CUDA 99

single GPU, extending the model and implementation to use multi-GPUs and also a
super-computer-based implementation with multiple computing nodes, each with
multiple GPUs might be useful.

Acknowledgments. This work is partially supported by Malaysia Fundamental Research Grant
Scheme (FRGS) 1/2017/ICT01/UTP/02/2. The experiments reported in this work were per-
formed on the ROMEO computational centre of Champagne-Ardenne, France (http://romeo.
univreims.fr). The authors would like to thank J. Loiseau for his useful advices on the GPU
implementation.

References

1. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001). https://doi.org/10.1007/
978-3-642-56927-2

2. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)
3. Kohonen, T.: MATLAB Implementations and Applications of the Self-Organizing Map, 201

p. Unigrafia Oy, Helsinki (2014)
4. Alhoniemi, E., Himberg, J., Parhankangas, J., Vesanto, J.: SOM Toolbox, http://www.cis.

hut.fi/projects/somtoolbox. Accessed 15 Jan 2017
5. Zhongwen, L., Zhengping, Y., Xincai, W.: Self-organizing maps computing on graphic

process unit. In: ESANN’ 2005 - European Symposium on Artifitial Neural Networks,
Bruges, Belgium, pp. 27–29 (2005)

6. Campbell, A., Berglund, E., Streit, A.: Graphics hardware implementation of the
parameter-less self-organising map. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL
2005. LNCS, vol. 3578, pp. 343–350. Springer, Heidelberg (2005). https://doi.org/10.1007/
11508069_45

7. Xiao, Y., Leung, C.S., Ho, T.-Y., Lam, P.-M.: A GPU implementation for LBG and SOM
training. Neural Comput. Appl. 20, 1035–1042 (2011)

8. Hasan, S., Shamsuddin, S.M., Lopes, N.: Soft computing methods for big data problems. In:
Cai, Y., See, S. (eds.) GPU Computing and Applications, pp. 235–247. Springer, Singapore
(2015). https://doi.org/10.1007/978-981-287-134-3_15

9. Davidson, G.: A parallel implementation of the self organising map using OpenCL, (2015)
10. Kohonen, T.K., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK: The Self-Organizing

Map Program Package, 27 p. (1996)
11. Wang, H., Mansouri, A., Creput, J.-C.: Massively parallel cellular matrix model for

self-organizing map applications. In: 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), pp. 584–587. IEEE (2015)

12. Príncipe, J.C., José, C., Miikkulainen, R.: WSOM 2009. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-35230-0

13. NVIDIA: CUDA C Programming Guide (2017)
14. Daneshpajouh, H.: NSGA_II-VRP_C101 Dataset, https://drive.google.com/open?id=

0ByIxLNivsQhyMVgtN0VFdTRsRms. Accessed 23 Apr 2017

100 H. Daneshpajouh et al.

http://romeo.univreims.fr
http://romeo.univreims.fr
http://dx.doi.org/10.1007/978-3-642-56927-2
http://dx.doi.org/10.1007/978-3-642-56927-2
http://www.cis.hut.fi/projects/somtoolbox
http://www.cis.hut.fi/projects/somtoolbox
http://dx.doi.org/10.1007/11508069_45
http://dx.doi.org/10.1007/11508069_45
http://dx.doi.org/10.1007/978-981-287-134-3_15
http://dx.doi.org/10.1007/978-3-642-35230-0
https://drive.google.com/open?id=0ByIxLNivsQhyMVgtN0VFdTRsRms
https://drive.google.com/open?id=0ByIxLNivsQhyMVgtN0VFdTRsRms

Performance Prediction of Acoustic Wave
Numerical Kernel on Intel Xeon Phi Processor

Vı́ctor Mart́ınez1(B), Matheus Serpa1, Fabrice Dupros2, Edson L. Padoin3,
and Philippe Navaux1

1 Informatics Institute (INF), Federal University of Rio Grande do Sul (UFRGS),
Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre 91501-970, Brazil

{victor.martinez,msserpa,navaux}@inf.ufrgs.br
2 BRGM, Orléans, France

f.dupros@brgm.fr
3 Regional University of Northwest of Rio Grande do Sul (UNIJUI), Ijúı, Brazil

padoin@unijui.edu.br

Abstract. Fast and accurate seismic processing workflow is a critical
component for oil and gas exploration. In order to understand complex
geological structures, the numerical kernels used mainly arise from the
discretization of Partial Differential Equations (PDEs) and High Perfor-
mance Computing methods play a major in seismic imaging. This leads
to continuous efforts to adapt the softwares to support the new features
of each architecture design and maintain performance level. In this con-
text, predicting the performance on target processors is critical. This is
particularly true regarding the high number of parameters to be tuned
both at the hardware and the software levels (architectural features,
compiler flags, memory policies, multithreading strategies). This paper
focuses on the use of Machine Learning to predict the performance of
acoustic wave numerical kernel on Intel Xeon Phi many-cores architec-
ture. Low-level hardware counters (e.g. cache-misses and TLB misses) on
a limited number of executions are used to build our predictive model.
Our results show that performance can be predicted by simulations of
hardware counters with high accuracy.

Keywords: Machine Learning · Geophysics applications
Many-core systems · Performance model

1 Introduction

Geophysics exploration remains fundamental to the modern world to keep up
with the demand for energetic resources. This endeavor results in expensive
drilling costs (100M$–200M$), with less than 50% of accuracy per drill. Thus,
Oil and Gas industries rely on software focused on High-Performance Comput-
ing (HPC) as an economically viable way to reduce risks.

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 101–110, 2018.
https://doi.org/10.1007/978-3-319-73353-1_7

102 V. Mart́ınez et al.

Acoustic wave propagation approximation is the current backbone for seismic
imaging tools. It has been extensively applied for imaging potential oil and gas
reservoirs beneath salt domes for the last five years. Such acoustic propagation
engines should be continuously ported to the newest HPC hardware available to
maintain competitiveness. At the same time, on the HPC hardware front, the
days of faster single core CPUs are over, and the solutions adopted are being
replaced by many-core technologies [4,5].

On one hand, the trend for High Performance Computing (HPC) applica-
tions is to pay a higher cost in order to optimize the overall performance. This
comes from the complexity of many interdependent factors (non-uniform mem-
ory access, vectorization, compiler optimizations, memory policies) at an archi-
tectural level that may severely influence the application’s behavior. This is
particularly true for stencil numerical kernels that are usually memory-bound.

On the other hand, Machine Learning (ML) is a comprehensive methodology
for optimization that could be applied to find patterns on a large set of input
parameters. Recently, ML algorithms have been used on HPC systems under
different situations. In [16] the authors used ML algorithms to select the best
job scheduling algorithm on heterogeneous platforms whereas in [2] the authors
proposed an ML-based scheme to select the best I/O scheduling algorithm for
different applications and input parameters. And recently, in [13] the authors
used ML algorithms to predict the performance of stencil computations on mul-
ticore architectures.

In this paper, we extend the procedure to build a suitable ML-based per-
formance model for a classical numerical model based on isotropic acoustic
wave propagation for many-core architectures. The paper is organized as fol-
lows. Section 2 provides the fundamentals of the geophysical application under
study. Section 3 describes the methodology of our ML-based approach. Section 4
presents configuration, simulation performance, and model accuracy. Section 5
describes related works. And finally, Sect. 6 concludes this paper.

2 Acoustic Wave Equation

In this section, we describe the application used as benchmark that simulates
the propagation of a single wavelet over time over a three-dimensional domain.

We consider the model formulated by the isotropic acoustic wave propagation
(Eq. 1) under Dirichlet boundary conditions over a finite 3D rectangular domain,
prescribing p = 0 to all boundaries, and the isotropic acoustic wave propagation
(Eq. 2) with variable density where p(x, y, z, t) is the acoustic pressure, V (x, y, z)
is the propagation speed and ρ(x, y, z) is the media density.

1
V 2

.
∂2p

∂t2
= ∇2p (1)

1
V 2

.
∂2p

∂t2
= ∇2p − ∇ρ

ρ
.∇p (2)

Performance Prediction of Acoustic Wave Numerical Kernel 103

The Laplace operator is discretized by a 12th order finite differences approxi-
mation and the time derivatives are approximated by a 2nd order finite differences
operator. Petrobras, the leading Brazilian oil company, provides a standalone
mini-app of the previously described numerical method. This kernel represents
the cornerstone of the classical Reverse Time Migration imaging procedure.

The code was written in standard C and leverage from OpenMP directives
for shared-memory parallelism. But Indeed, the parallelization strategy relies
on the decomposition of the three-dimensional domain based on OpenMP loop
features. There is another implementation for GPU architectures, but it is out
of scope of this work and could be analyzed in future works.

Advanced optimizations (loop interchange, vectorization, thread and data
mapping) strategies have been implemented to speedup the performance on Intel
Xeon Phi processors. For sake of clarity of this paper focused on the impact of
machine learning methodology, we will not go into too many details regarding
the implementation and interesting readers can refer to [1].

3 Testbed and Machine Learning Methodology

In this section we describe our testbed configurations and the Machine Learning
(ML) model. We used Intel Xeon Phi (Knights Landing) many-core platform to
carry out the experiments. The detailed configurations are shown in Table 1.

Table 1. Description of the Intel Xeon Phi architecture used for our experiments.

Processor Intel Xeon Phi 7520

Clock (GHz) 1.40

Cores 68

Sockets 1

Threads 272

L2 cache size (MB) 34

Based on this platform, Table 2 details all the configurations available for
our optimization categories. As it can be noted, a brute force approach would
be unfeasible due to the large number of simulations required (147,968), because
some of these executions can take many hours (or days).

3.1 Feature Vectors

We emphasize that the selection of the relevant feature vectors is a key ingredient
of our method. In our case, we considered a classical ML model with three layers
of measurements (input, hidden, and output), which are described below:

104 V. Mart́ınez et al.

Table 2. Configurations available for our optimization procedure.

Optimization Parameters Total configurations

Number of threads 1 272

Scheduling policy 1 2

Chunk size 1 272

Total 3 147,968

1. Input Layer is defined by OpenMP implementation features such as the
number of threads, the loop scheduling policy (static or dynamic), and the
chunk size (which defines how many loop iterations will be assigned to each
thread at a time).

2. Hardware Counters Layer is built on top of PAPI library to collect the
most relevant metrics from the hardware counters total of last level total cache
misses (measured by PAPI L2 TCM event), and total of data translation
lookaside buffer misses (measured by PAPI TLB DM event). We decided
to use related cache values because stencils are memory bounded problems
and the number of available counter is determined by the architecture.

3. Performance Layer represents the total elapsed time to solve the geophys-
ical problem.

As we can see, the output depends on several parameters that create a
n-dimensional problem and if we try to model it by a regression method it can
not be solved by 2D or 3D classical models.

3.2 Machine Learning Model

Our ML model which is based on Support Vector Machines (SVM). This super-
vised ML approach has been introduced in [6] and then extended to regression
problems for n-dimensional problems where support vectors are represented by
kernel functions [8].

The main idea of SVMs is to expand hyperplanes through the output vector.
It has been employed to classify non-linear problems with non-separable training
data by a linear decision (i.e. hardware counters behavior in next section).

Our ML model was built on top of three consecutive layers, where output val-
ues of a layer are used as input values of the next layer (Fig. 1). The input layer
contains the configuration values from the input vector. The hidden layer con-
tains two SVMs that take values from the input vector to simulate the behavior of
hardware counters presented in the previous section. Because hardware counters
have very large values it was necessary to perform a dynamic range compression
(log transformation) between the hidden layer and the output layer, this is a
very common technique used in digital image processing to avoid raw data [11].
Finally, the output layer contains one SVM that takes each simulated value from
the hidden layer to obtain the corresponding execution time value.

Performance Prediction of Acoustic Wave Numerical Kernel 105

Fig. 1. Flowchart of our machine learning model.

4 Experiments

In this section we present the results of our prediction model. The use-case used
as benchmark for our experiments corresponds to a three-dimensional stencil of
size 1024 × 256 × 256.

4.1 Preliminary Results

Hardware Counters. Figures 2 and 3 illustrate how the performance of our
kernel is affected by the input variables and their relations with hardware coun-
ters. Each point represents one experiment.

For instance, Fig. 2 shows that the scheduling policy creates two separated
sets when Time values are related with L2 cache misses. The same behavior
is observed in Fig. 3 when chunk size create several sets if the elapsed time is
observed with respect to the amount of TLB data misses.

We can resume this behavior as follows, changing input values affects the
performance creating several separated areas in the graphic representation, each
color represents a different value for the input value, then these areas could be
separated by hyperplanes from SVM. And we note that minor cache misses are
related with better performance, as expected. The sparse values are related with
number of threads, chunk and scheduler changes in the input vector.

106 V. Mart́ınez et al.

Fig. 2. L2 cache misses when varying the scheduling policy.

Elapsed Time. This work is focused on performance prediction, and we use
the time as measurement to be analyzed. Firstly, we found that timing is highly
affected by the input values, the standard deviation of time measure shows this
variability. Some configurations take more time than the walltime available on
cluster (3 h), and we can not use these input values for our experiments.

In Table 3 we present the common statistical values: mean, minimum and
maximum values, and standard deviation. We can see that difference between
best and worst performance is more than 400×, and standard deviation is more
than 2× the mean.

Table 3. Impact of the input parameters (OpenMP scheduling policies, chunks or
number of threads) on the elapsed time.

Mean Min Max Standard deviation (SD)

Time (s) 164.88 13.66 5,530.95 367.72

4.2 Performance Prediction

Training and Validation. We created a training set by randomly selecting
a subset from the configuration set presented in Table 2. Then, for each experi-

Performance Prediction of Acoustic Wave Numerical Kernel 107

Fig. 3. TLB data misses when varying the chunk size.

ment we measured the hardware counters (L2 cache misses, and data translation
lookaside buffer misses) and performance values (execution time).

A random testing set was used since all SVMs in both the hidden and the
output layers are trained to calculate new execution time values. After that, we
measured the accuracy of the model using statistical estimators. Table 4 presents
the total number of experiments that were performed to obtain the training and
validation sets.

Table 4. Number of experiments in the training and the testing sets.

Set Number of experiments

Training 808

Testing 203

Total 1,011

Results and Discussions. We use the performance values from validation set
and predicted values from our model to evaluate the model with two statistical
estimators: root mean square error (RMSE) and the coefficient of determina-
tion (R-square). The former represents the standard deviation of the differences

108 V. Mart́ınez et al.

between predicted values and real values whereas the latter represents how close
the regression approximates the real data (R-square ranges from zero to one,
equal to zero indicates regression with no one prediction and equal to one indi-
cates a perfect fit of data prediction).

As it can be noted in Table 5, the RMSE value confirms that deviation of
time value is high, and the approximation of R-square is close to 94%, then we
get a highly accurate regression.

Table 5. Accuracy of our predictive modelling based on ML. We provide two statistical
estimators.

Estimators Value

RMSE 154.04

R-square 0.94

5 Related Works

Recent architectures, including accelerators and coprocessors, proved to be well
suited for geophysics, magneto-hydrodynamics and flow simulations, outperform-
ing the general purpose processors in efficiency. And some works are developed
to optimize and predict the performance of these kind of applications.

Thus, in [12], the authors automatically generate a highly optimized stencil
code for multiple target architectures. In [14], the authors suggest using run-
time reconfiguration, and a performance model, to reduce resource consumption.
In [3], the authors studied the effect of different optimizations on elastic wave
propagation equations, achieving more than an order of magnitude of improve-
ment compared with the basic OpenMP parallel version.

In [1], the authors focused on acoustic wave propagation equations, choosing
the optimization techniques from systematically tuning the algorithm. The usage
of collaborative thread blocking, cache blocking, register re-use, vectorization
and loop redistribution. In the same way, in [9], the authors worked on target
cache reuse methodologies across single and multiple stencil sweeps, examining
cache-aware algorithms as well as cache-oblivious techniques in order to build
robust implementations.

Other works investigated the accuracy of regression models and ML algo-
rithms in different contexts. In [15] the authors compared ML algorithms for
characterizing the shared L2 cache behavior of programs on multi-core proces-
sors. The results showed that regression models trained on a given L2 cache
architecture are reasonably transferable to other L2 cache architectures. In [17]
the authors proposed a dynamic scheduling policy based on a regression model
that is capable of responding to the changing behaviors of threads during exe-
cution.

Finally, in [10] the authors applied ML techniques to explore stencil config-
urations (code transformations, compiler flags, architectural features and opti-
mization parameters). Their approach is able to select a suitable configuration

Performance Prediction of Acoustic Wave Numerical Kernel 109

that gives the best execution time and energy consumption. In [7], the authors
improved performance of stencil computations by using a model based on cache
misses. In [13], the authors proposed a ML model to predict performance of
stencil computations on multicore architectures.

6 Conclusion

In this paper, we introduced a predictive performance modeling strategy for
geophysical numerical kernel on many-core architectures. We showed that per-
formance of the simplified acoustic wave equation can be predicted with a high
accuracy (95%) based on hardware counters.

Moreover, the results from this work extend the based-ML strategy described
in [13] for performance optimization of the elastodynamics equation on multi-
core architectures. Our model is not restricted to Xeon Phi platforms and can
also be implemented into architectures with the available hardware counters to
measure the cache-related behavior, we use the PAPI library but we believe that
it don’t limit our model and could be implemented with another library. Our
future works can be summarized in the following lines.

Firstly, we expect to extend our methodology in order to capture complex
behaviors (vectorization capabilities, data mapping). Secondly, we intend to
design a model based on unsupervised ML algorithms to further improve our
results. Finally, we believe that a general model can be integrated into an auto-
tuning framework to find the best performance configuration for a given stencil
kernel.

Acknowledgments. For computer time, this research partly used the resources of
Colfax Research. This work has been granted by Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES), Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande
do Sul (FAPERGS). The authors thank Jairo Panetta from Aeronautics Institute of
Technology (ITA) and PETROBRAS oil company for providing the acoustic wave
numerical kernel code. It was also supported by Intel Corporation under the Modern
Code Project. Research has received funding from the EU H2020 Programme and
from MCTI/RNP-Brazil under the HPC4E Project, grant agreement n◦ 689772. We
also thank to RICAP, partially funded by the Ibero-American Program of Science and
Technology for Development (CYTED), Ref. 517RT0529.

References

1. Andreolli, C., Thierry, P., Borges, L., Skinner, G., Yount, C.: Chapter 23 - char-
acterization and optimization methodology applied to stencil computations. In:
Reinders, J., Jeffers, J. (eds.) High Performance Parallelism Pearls, pp. 377–396.
Morgan Kaufmann, Boston (2015)

2. Boito, F.Z., Kassick, R.V., Navaux, P.O.A., Denneulin, Y.: Automatic I/O schedul-
ing algorithm selection for parallel file systems. Concur. Comput. Pract. Exp.
28(8), 2457–2472 (2016). cpe. 3606

110 V. Mart́ınez et al.

3. Caballero, D., Farrés, A., Duran, A., Hanzich, M., Fernández, S., Martorell, X.:
Optimizing Fully Anisotropic Elastic Propagation on Intel Xeon Phi Coprocessors.
In: 2nd EAGE Workshop on HPC for Upstream (2015)

4. Clapp, R.G.: Seismic processing and the computer revolution(s). SEG Tech. Progr.
Expanded Abs. 2015, 4832–4837 (2015)

5. Clapp, R.G., Fu, H., Lindtjorn, O.: Selecting the right hardware for reverse time
migration. Lead. Edge 29(1), 48–58 (2010)

6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

7. de la Cruz, R., Araya-Polo, M.: Modeling stencil computations on modern HPC
architectures. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2014.
LNCS, vol. 8966, pp. 149–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17248-4 8

8. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector
regression machines. In: Advances in Neural Information Processing Systems, vol.
9, pp. 155–161. MIT Press (1997)

9. Dupros, F., Boulahya, F., Aochi, H., Thierry, P.: Communication-avoiding seismic
numerical kernels on multicore processors. In: International Conference on High
Performance Computing and Communications (HPCC), pp. 330–335, August 2015

10. Ganapathi, A., Datta, K., Fox, A., Patterson, D.: A case for machine learning to
optimize multicore performance. In: Proceedings of the First USENIX Conference
on Hot Topics in Parallelism, HotPar 2009, Berkeley, CA, USA , p. 1. USENIX
Association (2009)

11. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall
Inc., Upper Saddle River, NJ, USA (2006)

12. Kukreja, N., Louboutin, M., Vieira, F., Luporini, F., Lange, M., Gorman, G.:
Devito: automated fast finite difference computation. In: Proceedings of the 6th
International Workshop on Domain-Specific Languages and High-Level Frame-
works for HPC, WOLFHPC 2016, pp. 11–19. IEEE Press (2016)

13. Mart́ınez, V., Dupros, F., Castro, M., Navaux, P.: Performance improvement of
stencil computations for multi-core architectures based on machine learning. Proce-
dia Comput. Sci. 108, 305–314 (2017). International Conference on Computational
Science, ICCS 2017, Zurich, Switzerland, 12–14 June 2017

14. Niu, X., Jin, Q., Luk, W., Weston, S.: A self-aware tuning and self-aware evaluation
method for finite-difference applications in reconfigurable systems. ACM Trans.
Reconf. Technol. Syst. 7(2), 15 (2014)

15. Rai, J.K., Negi, A., Wankar, R., Nayak, K.D.: On prediction accuracy of machine
learning algorithms for characterizing shared L2 cache behavior of programs on
multicore processors. In: International Conference on Computational Intelligence,
Communication Systems and Networks (CICSYN), pp. 213–219, July 2009

16. Vladuic, D., Cernivec, A., Slivnik, B.: Improving job scheduling in grid environ-
ments with use of simple machine learning methods. In: International Conference
on Information Technology: New Generations, pp. 177–182, April 2009

17. Weng, L., Liu, C., Gaudiot, J.L.: Scheduling optimization in multicore multi-
threaded microprocessors through dynamic modeling. In: Proceedings of the ACM
International Conference on Computing Frontiers, CF 2013, pp. 5:1–5:10. ACM,
New York (2013)

https://doi.org/10.1007/978-3-319-17248-4_8
https://doi.org/10.1007/978-3-319-17248-4_8

Evaluating the NVIDIA Tegra Processor
as a Low-Power Alternative for Sparse GPU

Computations

José I. Aliaga1, Ernesto Dufrechou2(B),
Pablo Ezzatti2, and Enrique S. Quintana-Ort́ı1

1 Dep. de Ingenieŕıa y Ciencia de la Computación,
Universidad Jaime I, 12701 Castellón, Spain

{aliaga,quintana}@icc.uji.es
2 Instituto de Computación, Universidad de la República,

11300 Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

Abstract. In the last years, the presence of heterogeneous hardware
platforms in the HPC field increased enormously. One of the major rea-
son for this evolution is the necessity to contemplate energy consump-
tion restrictions. As an alternative for reducing the power consumption
of large clusters, new systems that include unconventional devices have
been proposed. In particular, it is now common to encounter energy-
efficient hardware such as GPUs and low-power ARM processors as part
of hardware platforms intended for scientific computing.

A current line of our work aims to enhance the linear system solvers
of ILUPACK by leveraging the combined computational power of GPUs
and distributed memory platforms. One drawback of our solution is the
limited level of parallelism offered by each sub-problem in the distributed
version of ILUPACK, which is insufficient to exploit the conventional
GPU architecture.

This work is a first step towards exploiting the use of energy efficient
hardware to compute the ILUPACK solvers. Specifically, we developed
a tuned implementation of the SPD linear system solver of ILUPACK
for the NVIDIA Jetson TX1 platform, and evaluated its performance in
problems that are unable to fully leverage the capabilities of high end
GPUs. The positive results obtained motivate us to move our solution
to a cluster composed by this kind of devices in the near future.

Keywords: ILUPACK · Jetson TX1 · Sparse linear systems
High performance

1 Introduction

In a large number of scientific applications one of the most important stages,
from a computational point of view, is the solution of large sparse systems of
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 111–122, 2018.
https://doi.org/10.1007/978-3-319-73353-1_8

112 J. I. Aliaga et al.

equations. Examples are in problems related with circuit and device simulation,
quantum physics, large-scale eigenvalue computations, nonlinear sparse equa-
tions, and all sorts of applications that involve the discretization of partial dif-
ferential equations (PDEs) [4].

ILUPACK1 (incomplete LU decomposition PACKage) is a well known numer-
ical toolbox that offers highly efficient sparse linear systems solvers, and can han-
dle large-scale application problems. The solvers are iterative procedures based
on Krylov subspace methods [13], preconditioned with an inverse-based mul-
tilevel incomplete LU (ILU) factorization, which keeps a unique control of the
growth of the inverse triangular factors that determines its superior performance
over other preconditioners in many cases [8,14,15].

Despite the remarkable mathematical properties of ILUPACK’s precondi-
tioner, it implies a larger number of computations when it is compared with
other more simple ILU preconditioners, e.g. ILU with zero fill-in. In [1] we pro-
posed the exploitation of the task-level parallelism in ILUPACK, for distributed
memory platforms, focusing on symmetric positive definite (SPD) systems, by
using the preconditioned Conjugate Gradient (PCG) method. Recently, we have
aimed to enhance the task-parallel approach by leveraging the data-level paral-
lelism present in some operations by the use of graphics accelerators.

One drawback of our solution is the limited level of parallelism offered by
each sub-problem in the distributed version of ILUPACK, which is insufficient
to exploit the conventional GPU architecture.

On the other hand, in the last years the presence of heterogeneous hardware
platforms in the HPC field increased enormously. One of the major reasons for this
evolution is the necessity to contemplate energy consumption restrictions. As an
alternative for reducing the power consumption of large clusters, new systems that
include unconventional devices have been proposed. In particular, it is now com-
mon to encounter energy efficient hardware such as GPUs and low-power ARM
processors as part of hardware platforms intended for scientific computing.

This work is a first step towards exploiting the use of energy efficient hardware
to compute the ILUPACK solvers. Specifically, we developed a tuned implemen-
tation of the SPD linear system solver of ILUPACK for the NVIDIA Jetson TX1
platform, based on an NVIDIA Tegra X1 processor, and evaluated its perfor-
mance in problems that are unable to fully leverage the capabilities of high end
GPUs. The obtained results show that the use of this kind of lightweight devices
achieves interesting runtimes, specially if it is considered that we are address-
ing a memory-bound problem and the gap between the memory bandwidth of a
general GPU and the Jetson GPU is in the order of 8–10×.

The rest of the paper is structured as follows. In Sect. 2 we revisit the SPD
solver integrated in ILUPACK and we offer a brief study about the application
of the parallel preconditioner. This is followed by a description of our implemen-
tations of ILUPACK to run over the Jetson TX1 in Sect. 3, and the experimental
evaluation in Sect. 4. Finally, Sect. 5 summarizes the work and makes some con-
cluding remarks, stating the most important lines of future work derived from
this effort.

1 http://ilupack.tu-bs.de.

http://ilupack.tu-bs.de

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 113

2 Accelerated Solution of Sparse Linear Systems with
ILUPACK

ILUPACK is a software package that deals with solving the linear system Ax = b,
where the n×n coefficient matrix A is large and sparse, and both the right-hand
side vector b and the sought-after solution x contain n elements. It does so by
applying Krylov subspace-based iterative solvers preconditioned with an inverse-
based multilevel ILU preconditioner M , of dimension n×n. The package includes
numerical methods for different matrix types, precisions, and arithmetic, cover-
ing Hermitian positive definite/indefinite and general real and complex matrices.
Although the preconditioner has proven to effectively boost the convergence rate
in many problems, its application is usually the most computationally demand-
ing task of each iteration of the solver.

Following, we briefly describe the main aspects related to the construction
of the preconditioner in order to ease the understanding of its application in the
context of iterative solvers, which is the focus of our work.

2.1 Computation of the Preconditioner

For simplicity, we base the following description on the SPD real case, where
A,M ∈ R

n×n are SPD, and x, b ∈ R
n. The computation of ILUPACK’s precon-

ditioner is organized as follows:

1. First, a preprocessing stage scales A and reorders the result in order to reduce
the fill-in in the factorization.

2. Later, Â ≈ LDLT is computed by an incomplete Cholesky factorization pro-
cess, where L ∈ R

n×n is unit lower triangular and D ∈ R
n×n is a diagonal

matrix. The partial ILU factorization obtained in this stage is of the form:

Â ≡
(

B GT

G C

)
= LDLT + E =

(
LB 0
LG I

)(
DB 0
0 Sc

)(
LT
B LT

G

0 I

)
+ E. (1)

where E contains the elements “dropped” during the ILU factorization. The
factorization procedure postpones the processing of a row/column of A when-
ever it estimates that it would produce ‖L−1‖ � κ, being κ a user-defined
threshold. The postponed rows and columns are moved to the bottom right
corner of the matrix and processed in a subsequent stage, yielding a multi-
level structure. In the previous equation SC represents the approximate Schur
complement assembled from the “rejected” rows and columns.

3. The process is then restarted with A = Sc, (until Sc is void or “dense enough”
to be handled by a dense solver,) yielding a multilevel approach.

At level l, the multilevel preconditioner can be expressed as

Ml ≈
(

LB 0
LG I

) (
DB 0
0 Ml+1

) (
LT
B LT

G

0 I

)
(2)

114 J. I. Aliaga et al.

where LB and DB are blocks of the factors of the multilevel LDLT preconditioner
(with LB unit lower triangular and DB diagonal); and Ml+1 stands for the
preconditioner computed at level l + 1.

A detailed explanation of each stage of the process can be found in [6].

2.2 Application of the Preconditioner During the Iterative Solve

The application of the preconditioner at a given level l requires solving a system
of linear equation involving the preconditioner Ml and the permuted and scaled
residual r̂:

(
LB 0
LG I

)(
DB 0
0 Ml+1

)(
LT
B LT

G

0 I

)
w = r̂. (3)

This is then solved for w in three steps,
(

LB 0
LG I

)
y = r̂,

(
DB 0
0 Ml+1

)
x = y,

(
LT
B LT

G

0 I

)
w = x, (4)

where the recursion is defined in the second one.
Considering a partition of y and r̂ conformable with the factors, the expres-

sions in (4) can also be solved by
(

LB 0
LG I

)(
yB
yC

)
=

(
r̂B
r̂C

)
⇒ LByB = r̂B , yC := r̂C − LGyB . (5)

Splitting the vectors in a similar way, the expression in the middle of (4) involves
a diagonal-matrix multiplication and the effective recursion:

(
DB 0
0 Ml+1

) (
xB

xC

)
=

(
yB
yC

)
⇒ xB := D−1

B yB , xC := M−1
l+1yC . (6)

In the base step of the recursion, Ml+1 is void and only xB has to be computed.
Finally, the expression on the right of (4) can be reformulated as

(
LT
B LT

G

0 I

) (
wB

wC

)
=

(
xB

xC

)
⇒ wC := xC , LT

BwB = xB − LT
GwC , (7)

where z is simply obtained from z := D̃(P̃ (P̂w)).
To save memory, ILUPACK discards the off-diagonal blocks LG once it is

done calculating the level of the preconditioner, keeping only the much sparser
rectangular matrix G. Thus, (5) is changed into:

LG = GTL−T
B D−1

B ⇒ yC := r̂C − GTL−T
B D−1

B yB = r̂C − GTL−TD−1
B L−1

B r̂B ,
(8)

while the expressions related to (7) are modified to

LG = GL−T
B D−1

B ⇒ LT
BwB = D−1

B yB − D−1
B L−1

B GTwC . (9)

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 115

Operating with care, the final expressions are thus obtained,

LBDBLT
BsB = r̂B

LBDBLT
B ŝB = GTwC

⇒ yC := r̂C − GsB
wB := sB − ŝB

(10)

In summary, the application of the preconditioner requires, at each level of the
factorization, two SpMV, solving two linear systems with coefficient matrix of
the form LDU , and a few vector kernels.

3 Proposal

In this section we describe the design and implementation details of the solution
that will be analyzed numerically in the following sections. First, we provide a
general description of our data-parallel variant of ILUPACK and then, we specify
the particular strategies that were adopted for the Jetson TX1.

3.1 Exploiting the Data Parallelism in ILUPACK

Although ILUPACK is a sophisticated preconditioner that manages to sig-
nificantly improve the convergence of Krylov subspace methods in many
cases [5,6,16], its application is computationally expensive. We then aim to
reduce the cost of the iteration by exploiting the data-level parallelism present in
the operations that compose the application of the preconditioner using GPUs.

In most cases, the portion of the runtime related with the application of
the preconditioner is concentrated by two main types of operation, i.e. sparse
triangular system solves (SpTrSV) and the SpMV that appears in Eq. (10).
NVIDIA’s CUSPARSE library provides efficient implementations for these oper-
ations, so we rely on the library to offload this kernels to the GPU. The vector
scalings and reorderings that are performed in the GPU via ad-hoc CUDA ker-
nels, and their execution time is completely negligible when compared to that
of the triangular systems or the SpMV.

The use of CUSPARSE makes necessary to make an adaptation of the struc-
tures employed by ILUPACK to store the submatrices of the multilevel pre-
conditioner to the format accepted by CUSPARSE routines. Specifically, the
modified CSR format [4] in which ILUPACK stores the LB needs to be rear-
ranged into plain CSR. This transformation was done only once, during the
construction of each level of the preconditioner, and occurred entirely in the
CPU. In devices equipped with physical Unified Memory2, like the Jetson TX1,
no transference is needed once this translation has been done, and the triangular
systems involved in the preconditioner application can be solved via two consec-
utive calls to cusparseDcsrsv solve. It is also necessary to perform the analysis
phase of the CUSPARSE solver, in order to gather information about the data
dependencies, generating a level structure in which variables of the same level

2 See: JETSON TX1 DATASHEET DS-07224-010 v1.1.

116 J. I. Aliaga et al.

can be eliminated in parallel. This is executed only once for each level of the
preconditioner, and it runs asynchronously with respect to the host CPU.

Regarding the computation of the SpMV in the GPU, it is important to
remember from Eq. (10) that each level of the preconditioner involves a matrix-
vector multiplication with F and FT . Although CUSPARSE provides a modifier
of its SpMV routine that allows to work with the transposed matrix without
storing it explicitly, this makes the routine dramatically slow. We then store
both F and FT in memory, accepting some storage overhead in order to avoid
using the transposed routine.

3.2 Threshold Based Version

Our data parallel variant of ILUPACK is capable of offloading the entire applica-
tion of the preconditioner to the accelerator. This strategy has the primary goal
of accelerating the computations involved while minimizing the communications
between the CPU and the GPU memory.

However, the multilevel structure of the preconditioner usually produces some
levels of small dimension, which undermines the performance of some CUS-
PARSE library kernels. Specifically, the amount of data-parallelism available
in the sparse triangular linear systems is severely reduced, leading to a poor
performance of the whole solver.

To address this situation, in recent work [2] we have proposed the inclusion
of a threshold that controls whether there is sufficient parallelism to take profit
of computing a given level of the preconditioner in the GPU or if it is better to
move the computations to the CPU. This has proven to boost the performance in
some applications although it implies an additional CPU-GPU communication
cost.

We further enhanced the procedure by moving only the triangular solves
corresponding to low levels, given that it is this operation the one which dra-
matically degrades the performance, while in most cases we are able to take some
advantage of the data parallelism present in the sparse matrix-vector products
and the vector operations that remain. For the rest of the work we will consider
three different implementations:

– GPU 1 level: computes the triangular systems of all levels but the first in the
CPU while using the GPU for the rest of the operations.

– GPU all levels: computes the entire preconditioner application (all levels) on
the GPU.

– ARM-based: makes all the computations in the ARM processor. This variant
does not leverage any data parallelism.

We believe that the GPU 1 level strategy can be specially beneficial for
devices like the Jetson, where each device can perform the operations for which
it is better suited without adding the communication overhead necessary in other
platforms.

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 117

4 Experimental Evaluation

In this section we present the results obtained in the experimental evaluation
of our proposal. First we describe the hardware platform and the test cases
employed in this stage, and later, we analyze the numerical and runtime results.
Specifically, our primary goal is to evaluate if this kind of devices are able to
solve sparse linear systems of moderate dimensions efficiently using ILUPACK.
In order to do so, we start evaluating our developed variants to identify the
best one. All experiments reported were obtained using IEEE single-precision
arithmetic.

4.1 Experimental Setup

The evaluation was carried out in an NVIDIA Jetson TX1 that includes a 256-
core Maxwell GPU and a 64-bit quad-core ARM A57 processor configured in
maximum performance. The platform is also equipped with 4 GB of LPDDR4
RAM that has a theoretical bandwidth of 25.6 GB/s (see [12]).

The code was cross-compiled using the compiler gcc 4.8.5 for aarch64 with
the -O3 flag enabled, and the corresponding variant of CUDA Toolkit 8.0 for the
Jetson, employing the appropriate libraries.

The benchmark utilized for the test is a SPD case of scalable size derived
from a finite difference discretization of the 3D Laplace problem. We generated
3 instances of different dimension; see Table 1. In the linear systems, the right-
hand side vector b was initialized to A(1, 1, . . . , 1)T , and the preconditioned CG
iteration was started with the initial guess x0 ≡ 0. For the tests, the parameter
that controls the convergence of the iterative process in ILUPACK, restol, was
set to 108. The drop tolerance, and the bound to the condition number of the
inverse factors, that influence ILUPACK’s multilevel incomplete factorization
process, where set to 0.1 and 5 respectively.

Table 1. Matrices employed in the experimental evaluation.

Matrix Dimension n nnz nnz/n

A126 2,000,376 7,953,876 3.98

A159 4,019,679 16,002,873 3.98

A171 5,000,211 19,913,121 3.98

It should be noted that these test cases present dimensions that are often
too small to take profit of regular GPUs. These dimensions are comparable
with those of each sub-problem derived from the application of the distributed
ILUPACK variant on large matrices.

118 J. I. Aliaga et al.

4.2 Results

The first experiment evaluates the performance of our 3 variants of ILUPACK
developed for the Jetson TX1 platform to solve the sparse linear systems from
the Laplace problem. In this line, Table 2 summarizes the runtimes implied by
ARM-based, GPU 1 level and GPU all levels versions to solve the test cases
described in Table 1. Specifically, we include the number of iterations taken by
each variant to converge (iters), the runtimes for the application of the pre-
conditioner (Prec. time), the total runtime (Total time), the numerical preci-
sion (i.e. the numerical error computed as R(x∗) := ||b − Ax∗||2/||x∗||2) and
finally, the speedup associated with both the accelerated stage with the GPU
(Prec. speedup) and the whole method (Total speedup).

Table 2. Runtime (in seconds) of the three data-parallel variants of ILUPACK in
Jetson TX1. Prec. time corresponds to the time spent applying the preconditioner
during the entire solver.

Variant Case Iters Prec. time Total time Error Prec. Total

speedup speedup

ARM-based A126 156 60.33 84.57 2.31E−07 - -

GPU 1 level 156 59.00 84.85 2.37E−07 1.02 1.00

GPU all levels 156 44.36 70.30 2.45E−07 1.36 1.20

ARM-based A159 206 161.90 228.26 3.07E−07 - -

GPU 1 level 206 177.33 243.09 3.15E−07 0.91 0.94

GPU all levels 206 123.93 187.93 3.15E−07 1.31 1.21

ARM-based A171 222 218.53 306.78 3.02E−07 -

GPU 1 level 222 170.76 253.84 3.03E−07 1.28 1.21

GPU all levels 222 146.09 229.45 3.10E−07 1.50 1.34

First of all we focus on the numerical aspects of our variants. In this sense, it
can be noted that all variants needed the same number of iterations to reach the
convergence criteria for each of the test cases addressed. In the other hand, the
residual errors attained are not exactly the same. However, the differences are
not at all significant and can be explained by the use of single precision floating
point arithmetic in conjunction with the parallel execution.

Considering the performance results, it should be highlighted that the GPU
all levels version outperforms the GPU 1 level counterpart for all test cases. This
result is not aligned with our previous experiences (see [2]) and can be explained
by the elimination of the overhead caused by transferring data between both
processors (ARM and GPU), allowed by the Unified Memory capabilities of the
Jetson platform.

In the same line, the GPU all levels version implies lower runtimes than the
ARM-based variant, but these improvements are decreasing with the dimension

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 119

of the addressed problem. This result is consistent with other experiments, and
relates to the fact that GPUs requires large volumes of data to really exploit
their computational power.

If we take the performance of GPU all levels in other kind of hardware plat-
form into consideration, it is easy to see the benefits offered by the Jetson device.
To illustrate this aspect we compared our previous results for the GPU-based
ILUPACK from [3], run on an NVIDIA K20 GPU, to compare the runtimes.
Table 3 summarizes these results, focusing only in the preconditioner application
runtime, and contrasting it with the one obtained in the Jetson TX1 platform.

It should be recalled that ILUPACK, as a typical iterative linear system
solver, is a memory-bounded algorithm. Hence, when comparing the performance
allowed by the Jetson with other GPU-based general hardware platforms, it is
necessary to analyze the differences between their memory bandwidth. As an
example, the NVIDIA K20 GPU offers a peak memory bandwidth of 208 GB/s
[11], while the NVIDIA Jetson only allows to reach 25.6 GB/s, i.e. a difference
above 8×.

Table 3. Runtime (in seconds) of GPU-based ILUPACK in a K20 (from [3], using
double-precision arithmetic) and the GPU-all variant of ILUPACK in Jetson TX1 (in
single-precision).

Case K20 Jetson

Iters Prec. time T ime by iter Iters Prec. time T ime by iter

A126 44 11.38 .26 156 44.36 .28

A159 52 19.75 .38 206 123.93 .60

A171 - - - 222 146.09 .66

A200 76 28.28 .37 - - -

Before analyzing the results, it is important to remark that the computations
in both works are not exactly the same. Note that preconditioners generated by
executing ILUPACK have a different drop tolerance input parameter, and hence
are distinct since this parameters affects the amount of fill-in allowed in the
triangular factors. However, the runtime by iteration is an acceptable estimator
for the performance of each version.

The results summarized in Table 3 show that the time per iteration for the
smallest case is similar in the two platforms. Considering that the experiments in
the K20 GPU were performed using double precision, it is reasonable to expect
this runtimes to be reduced in half3 if single precision is used. This means that
the difference in performance is of about 2× in favour of the K20. Nevertheless,
this gap is considerably smaller than the difference in the bandwidth of both
devices, which is of approximately 8×. However, it can also be observed that the
benefits offered by the Jetson hardware start to diminish when the dimension of
3 Assuming a memory-bound procedure.

120 J. I. Aliaga et al.

the test cases grow (note that in the case A159 is near to 3× if we estimate the
single precision performance of the K20 as before).

This result shows that when the dimension of the addressed test case is
enough to leverage the computational power of high end GPUs this kind of
lightweight devices are not competitive. On the other hand, in contexts where
the problem characteristics do not allow exploiting commodity GPUs efficiently,
this kind of devices (e.g. the Jetson TX1) are a really good option. Additionally,
the important difference in power consumption between the two devices (the K20
has a peak power consumption of 225W4, while the Jetson only 15W5) should
also be taken into account.

With the obtained results, our next step is to develop a distributed variant
of ILUPACK specially design to run over a cluster of low power devices, as a
NVIDIA Jetson TX1, and evaluate the energy consumption aspects. It should be
noted that this kind of clusters are not yet widespread, but some examples are the
one built in the context of the Mont-Blanc project, leaded by the Barcelona Super
Computing (BSC) Spain [7], and the one constructed by the ICARUS project of
the Institute for Applied Mathematics, TU Dortmund, Germany [9,10].

5 Final Remarks and Future Work

In this work we have extended the data-parallel version of ILUPACK with the
aim to contemplate low power processors, as the NVIDIA Jetson TX1 hardware
platform. In particular, we implemented three different versions of the solution
that take into account the particular characteristics of this kind of devices, two
GPU-based variants (GPU 1 level and GPU all levels) and the other centered
on the use of the ARM processor (ARM-based).

The numerical evaluation exhibits that the GPU all levels variant out-
performs the other options for the test cases addressed. However, when the
dimension of the problems decreases the ARM-based version starts to be more
competitive. Additionally, as the dimension of the problem grows the benefits
related to the use of restrictive platforms such as the Jetson start to disappear,
and the utilization of conventional GPU platforms becomes more convenient.

Given the importance of the results obtained we plan to advance in several
directions, which include:

– Assessing the use of other kinds of small devices, such as the recently released
Jetson TX2 (with 8 GB of memory and 59.7 GB/s of memory bandwidth).

– Developing a distributed variant of ILUPACK specially designed to run over
a cluster of lightweight devices, as a NVIDIA Jetson TX1.

– Evaluate the distributed variant in a large Jetson-based cluster, such as the
ones developed in the context of Mont-Blanc or ICARUS projects.

– Studying the energy consumption aspects of this distributed version of ILU-
PACK for small devices.

4 TESLA K20 GPU ACCELERATOR - Board Specifications - BD-06455-001 v05.
5 JETSON TX1 DATASHEET DS-07224-010 v1.1.

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 121

Acknowledgments. The researchers from the Universidad Jaime I were supported by
the CICYT project TIN2014-53495R of The researchers from UdelaR were supported
by PEDECIBA and CAP-UdelaR Grant.

References

1. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 162–172. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28151-8 16

2. Aliaga, J.I., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Design of a task-
parallel version of ILUPACK for graphics processors. In: Barrios Hernández, C.J.,
Gitler, I., Klapp, J. (eds.) CARLA 2016. CCIS, vol. 697, pp. 91–103. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57972-6 7

3. Aliaga, J.I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Lever-
aging data-parallelism in ILUPACK using graphics processors. In: Muntean, T.,
Rolland, R., Mugwaneza, L. (eds.) IEEE 13th International Symposium on Parallel
and Distributed Computing, ISPDC 2014, Marseille, France, 24–27 June 2014, pp.
119–126. IEEE (2014)

4. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, vol. 43. SIAM,
Philadelphia (1994)

5. Bollhöfer, M., Grote, M.J., Schenk, O.: Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media. SIAM J. Sci. Comput. 31(5), 3781–
3805 (2009)

6. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based
ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

7. Anonymous Contributors: start—mont-blanc prototype (2016). Accessed 10 July
2017

8. George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of
preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1–24:30
(2012)

9. Geveler, M., Ribbrock, D., Donner, D., Ruelmann, H., Höppke, C., Schneider, D.,
Tomaschewski, D., Turek, S.: The ICARUS white paper: a scalable, energy-efficient,
solar-powered HPC center based on low power GPUs. In: Desprez, F., et al. (eds.)
Euro-Par 2016. LNCS, vol. 10104, pp. 737–749. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58943-5 59. ISBN 978-3-319-58943-5

10. Geveler, M., Turek, S.: How applied sciences can accelerate the energy revolution-a
pleading for energy awareness in scientific computing. In: Newsletter of the Euro-
pean Community on Computational Methods in Applied Sciences, January 2017,
accepted

11. NVIDIA: TESLA K20 GPU Accelerator (2013). https://www.nvidia.com/content/
PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf. Accessed 10 July 2017

12. NVIDIA: NVIDIA Tegra X1 NVIDIAs New Mobile Superchip (2015). http://
international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf.
Accessed 10 July 2017

13. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publica-
tions, Philadelphia (2003)

https://doi.org/10.1007/978-3-642-28151-8_16
https://doi.org/10.1007/978-3-319-57972-6_7
https://doi.org/10.1007/978-3-319-58943-5_59
https://doi.org/10.1007/978-3-319-58943-5_59
https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

122 J. I. Aliaga et al.

14. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2009)

15. Schenk, O., Bollhöfer, M., Römer, R.A.: On large scale diagonalization techniques
for the Anderson model of localization. SIAM Rev. 50, 91–112 (2008)

16. Schenk, O., Wächter, A., Weiser, M.: Inertia revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2008)

HPC Applications and Tools

Benchmarking Performance: Influence of Task
Location on Cluster Throughput

Manuel Rodŕıguez-Pascual, José Antonio Moŕıñigo(B),
and Rafael Mayo-Garćıa

Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas CIEMAT, Madrid, Spain

{manuel.rodriguez,josea.morinigo}@ciemat.es
http://rdgroups.ciemat.es/web/sci-track

Abstract. A variety of properties characterizes the execution of scien-
tific applications on HPC environments (CPU, I/O or memory-bound,
execution time, degree of parallelism, dedicated computational resources,
strong- and weak-scaling behaviour, to cite some). This situation causes
scheduling decisions to have a great influence on the performance of the
applications, making difficult to achieve an optimal exploitation with
cost-effective strategies of the HPC resources. In this work the NAS Par-
allel Benchmarks have been executed in a systematic way in a modern
state-of-the-art and an older cluster, to identify dependencies between
MPI tasks mapping and the speedup or resource occupation. A full char-
acterization with micro-benchmarks has been performed. Then, an exam-
ination on how different task grouping strategies and cluster setups affect
the execution time of jobs and infrastructure throughput. As a result,
criteria for cluster setup arise linked to maximize performance of indi-
vidual jobs, total cluster throughput or achieving better scheduling. It
is expected that this work will be of interest on the design of scheduling
policies and useful to HPC administrators.

Keywords: MPI application performance · Benchmarking
Cluster throughput · NAS Parallel Benchmarks

1 Introduction

The evolution in processors during the last decade has been oriented towards
an increasing degree of parallelism and this fact has deeply impacted all levels
of computing hardware and software. The design of clusters and supercomput-
ers is also following this path. For example, the number of cores according to
the TOP500 list [1] has grown exponentially since 1993. Current trends include
the use of many-core processors, driving the number of computing units even
further. An obvious way of getting the most of this is the usage of highly paral-
lel applications. MPI and OpenMP continue being instrumental to create highly
scalable applications suitable for this environment. Applications can be classified
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 125–138, 2018.
https://doi.org/10.1007/978-3-319-73353-1_9

126 M. Rodŕıguez-Pascual et al.

into CPU, I/O or memory-bound depending on which factor limits its execution
speed. Other common issues regarding requirements are execution time, degree
of parallelism and required computational resources, to cite some. This leads
to many questions and specific scheduling decisions. Probably the first is what
should we do with partially-filled multi-core processors? When a given job is
only using some of the CPUs of a node, or just some of the cores of a CPU, what
is the most efficient decision? On one side, executing some other job at the same
time would lead to a most intensive usage of the resources; on the other, sharing
the resources (namely memory at different levels and I/O) may force both jobs
to compete for them and slow down, having in fact a negative impact on the
total execution time. The problem is complex and has extra dimensions, and the
scope of this work aims to shed some light on performance issues.

2 Related Work

Impact of MPI task locality has been investigated in [2] with three kernels of
NPB and application codes running in a cluster of 32 CPUs. They show that
an execution time saving of up to 25% is possible. Their number of used CPUs
is small and the authors plan to extend the experiments to large-scale machines
since it seems necessary to be conclusive about what happens in situations of
many processors. In [3] it is summarized the results of mapping MPI tasks onto
sockets, taking into account the machine topology. Results show that it is bene-
ficial to map tasks onto as many sockets per node as possible (the bigger savings
in execution time, up to 30%, are obtained precisely for those cases). Similar
experiments are done in [4], reporting an improvement of about 15%. In par-
ticular, research dealing with multicore architectures has been focused in the
last years. To this regard, [5] presents the gain in computational efficiency of a
MPI-based production application that exhibits a performance peak improve-
ment of about 9% (with averaged performance improvement of 6%), attributed
to a better use of cache-sharing at the same node and to the high intra- to intern-
ode communication ratio of the cluster. Although it is a modest speedup, it is
noticed that it is obtained with minor source code modifications. The work in [6]
points to the same direction by evaluating the impact of multicore architectures
in a set of benchmarks; but on the contrary, they conduct a non-straightforward
adaptation of the original application. Their characterization of the inter- to
intranode communications ratio throws a figure of 4 to 5 in the worst case. This
kind of node mappings is an area where little to moderate efforts are required
for significant gains in application performance. The impact of internode and
intranode latency is analyzed in [7] using a parallel scientific application with
MPI tasks mapped onto the CPUs of an infiniband-based cluster of 14 nodes.
With the objective of improving the computational efficiency, [8] analyzes how
many cores per node should be used for applications execution. Here, both NPB
and a large-scale scientific application code are executed in three single-socket-
per-node clusters. They identify that task mapping is an important factor on
performance degradation, being the memory bandwidth per core the primary

Benchmarking Performance: Influence of Task Location 127

source of performance drop when increasing the number of cores per node that
participate in the computation. Something similar concludes [9], showing a high
sensitivity of the attained NAS kernels performance to the multi-core machines.
In [10] it is detected that NPB exhibit high sensitivity to the cluster architecture.
Also, MPI tasks mapping reveals that distributing them over the nodes is better
from a computational standpoint in most cases. According to their experiments,
an up to 120% speedup is attained for most of the NAS kernels. They explain
this behaviour because by distributing the tasks they do not have to compete
for node local resources, a scenario that seems to occur when running tasks are
sharing a slot or are located in slot of the same node. In [11] a semi-empirical
predictive model is formulated and tested with a large-scale scientific applica-
tion code, which provides good results for weak scalability cases and show that
it can lead to a 5% increase of the execution time. The study conducted in [12]
on mapping MPI tasks to cores using micro-benchmarks and NPB, shows that
it may affect significantly the performance of intranode communication, which
is closely related to the inter- to intranode communication ratio.

These previous investigations point out to the large sensitivity of the exe-
cution time to the task mapping. The impact of grouping or not MPI tasks
“outside of the box” (out of the same node), over sockets or cores within the
node is high as it is seen that execution time varies significantly. Also the lack
of understanding of how to proceed in a systematic manner with an application
in a specific cluster remains and further clarifications are needed to improve the
cluster efficiency and usage. The present investigation summarizes the results
of mapping MPI tasks onto cores in two different infiniband-based clusters at
CIEMAT.

Then, processor mapping combinations have been tested to explore the
impact on cluster throughput and hence, to build usage criteria aiming at feeding
better scheduling strategies to support the scientific groups.

Hence, the present work explores the behaviour of different scientific kernels
on modern infrastructures and the impact on clusters throughput. An analysis on
how task location, network traffic and resource sharing affect their execution time
has been carried out to infer a generalization of their behavior. This information
can then be useful to improve scheduling algorithms and cluster setups. In the
text, a job is composed by one or more tasks. The assignment of those tasks
to computational resources (mapping) determining when and where to run each
job constitutes the scheduling process.

3 Characterization of HPC Facilities

3.1 Benchmarking

The chosen applications for systematic benchmarking can be divided in two
groups. The first one is system benchmarks, to measure the raw performance
of the components of our clusters. The second one is application benchmarks
(NPB), to test the behavior of the infrastructure when running real applications.

128 M. Rodŕıguez-Pascual et al.

STREAM benchmark [13] measures sustainable memory bandwidth and tests
the communication bandwidth between the socket and its RAM. In multicore
sockets an OpenMP flag is set for building one thread/core during compilation.

OSU micro-benchmark [14] measures the latency and bandwidth of MPI
libraries and interconnects. It implements a set of routines with various commu-
nication patterns. It measures intra- and internode communication bandwidths.

Bonnie++ [15] is a small yet powerful benchmark to measure disk perfor-
mance. It provides a number of tests of hard drive and file system performance.

Intel Memory Latency Checker 3.1 [16] allows accessing memory chunks
located in the elements of the memory hierarchy, measuring the latency time.

All together, these benchmarks allow characterizing the cluster raw perfor-
mance. Hence, a better understanding of the results gathered with a set of sci-
entific kernels is intended. The NAS Parallel Benchmarks (in short NPB) [17] is
developed at the Numerical Aerodynamic Simulation (NAS) program at NASA.
It has evolved as a group of kernels, set for a variety of problem sizes (classes) of
increasing computing cost. All together are representative of algorithmic build-
ing blocks found in the aforementioned scientific. Among them are examples
of memory-bound and CPU-bound, or weak-scaling and strong-scaling kernels.
The present investigation uses NPB v2.0, which includes seven portable ker-
nels (Fortran90, MPI parallelised) whose acronyms corresponds to: BT- Block
Tridiagonal solver; CG- Conjugate Gradient; EP- Embarrassingly Parallel; FT-
Discrete fast Fourier Transform; IS- Integer Sort; LU- Lower-Upper Gauss-Seidel
solver; MG- MultiGrid on a sequence of grids.

Fig. 1. Major architecture and communications for clusters ACME and EULER (band-
widths are approximate best cases sustained values).

3.2 Infrastructure Characterization

Two computing facilities of different generations based at CIEMAT have been
employed. The first one, EULER, is a production HPC shared among the scien-
tific groups. It consists in 480 Xeon R©5450 quadcore@3.0 GHz, 2 GB RAM/core,
mounted on Dell PowerEdge M610 blades. When EULER was installed in
Autumn 2008, its performance according to LINPACK (23 TFlops peak) would

Benchmarking Performance: Influence of Task Location 129

have ranked it around position 300 of TOP500. Because it is under full usage,
the experiments have been done while sharing the resource and the restriction of
accessing to a reserved set of 8 nodes within a limited timeframe (this matches
with how the analyzed applications behave in real environments).

Fig. 2. Latency of a core accessing increasingly larger data blocks in ACME, corre-
sponding to cache, RAM and disk. ‘Same slot’ and ‘Remote slot’ refer to the location
of the processor to which the accessed memory is connected in the NUMA system.

The second one, ACME, is a smaller, state-of-the-art HPC for research pur-
poses and fully devoted to this project, which counts with 10 nodes (8 of them are
computing nodes): 2 Bull R424-E4 chassis with 4 nodes each, plus another two
devoted to host accelerators and fast network storage. Each node consists in a
Supermicro X10DRT-P motherboard with two 8-core Xeon R©E5-2640 v3@2.60.
Each node counts with 32 GB DDR4 RAM memory @2133 MHz, in the form
of 4× 8 GB modules. Two of these modules are connected to each processor
(NUMA). Each core accesses to half the memory with rather smaller access time
than to the other half, as show in Fig. 2. Network is provided by Infiniband
FDR. The MPI library mvapich2-2.2b is installed in both. Figure 1 displays the
hardware of ACME and EULER nodes. It includes some performance metrics
obtained with the benchmarks and from the official documentation. It is worth
noticing that most the results match their counterparts provided by the hard-
ware vendors. ACME has higher intranode communication bandwidth (3 to 4
times higher than EULER’s); 2.5 times larger shared L3 cache; and 3 times
higher infiniband bandwidth. Both clusters have a ratio of intra- to internode
bandwidth within 3 to 3.5.

3.3 Influence of Node Sharing on Memory Access Time

In multi-core CPUs and in multi-CPUs nodes, there is a decision concerning
whether it is better or not to share the resources among pending jobs, or should
a sole application be executed at the same time. It can be inferred that sharing
a node between two or more jobs may increase RAM misses, as the available

130 M. Rodŕıguez-Pascual et al.

memory is shared between the running jobs, so they have less space for data and
executable. This same issue happens when sharing a multi-core CPU, leading to
an increased number of misses in L3 cache. Hence, it is necessary to measure the
access time to the different memory layers in order to quantify its influence.

Figure 2 shows latency in ACME when a given core is accessing to memory.
As expected, L1 cache is the fastest one but only stores up to 32 KB of data;
then comes L2 with 128 KB, L3 with 20 MB, and after that the RAM mem-
ory. In this case, as pointed out before, there is a significant difference (60%)
between accessing the modules connected to the same processor and those con-
nected to the other one in the other slot of the same motherboard. The last step
corresponds to the sizes between 32 and 64 GB, where both RAM modules are
accessed to store/read. The last step of the memory hierarchy is represented by
the persistent storage. It counts with a HD (1 TB) for scratch and temporary
files and network storage for the users’ home directory and the non-OS appli-
cations (scientific codes). Measured latency is 1.5µs for the HD and 7.35µs for
the network storage, roughly an order of magnitude larger than RAM latencies.

Summing up, results show that a miss in any cache level implies accessing
an upper layer of the memory hierarchy with a penalization of about an order
of magnitude in latency. Resource sharing will then have an impact on the job
execution due to the influence on the access time of the different cache levels.

4 Results

4.1 Cluster Performance

The experiments with NPB have been repeated under four Slurm setups:

– Dedicated Cores: one-to-one assignment of cores to MPI tasks of the parallel
job (a core executes only one MPI task of that job; set in ACME and EULER).

– Dedicated Sockets: a socket may only execute MPI tasks of the same job.
Once the socket is occupied by at least one MPI task of a job, no other part
of another job may be executed on it in the meanwhile (set in ACME).

– Dedicated Nodes: an entire node is assigned in exclusivity to execute MPI
tasks of the same job (set in both ACME and EULER).

– Dedicated Network (reference case): the whole cluster executes only one par-
allel job at the same time, thus avoiding any overhead due to network conges-
tion (set in ACME). This is a scenario devoted to obtain reference execution
times.

Table 1 compares the total execution time of a set of NAS kernels. To mimic
real-life workloads, all jobs corresponding to different kernel classes (sizes of
computed problems) and degrees of parallelism (about 4,000 jobs sent for each
cluster setup) were submitted at the same time, letting Slurm scheduler to decide
where and when to execute them using 8 nodes (16 cores/node) in ACME and 16
nodes (8 cores/node) in EULER. There was no indication of any job maximum
execution time, thus no preemption techniques were employed. Table 2 shows

Benchmarking Performance: Influence of Task Location 131

Table 1. Total execution time of NAS kernels in ACME with different cluster setups
(time ratio is referred to the Dedicated Network setup)

Setup Execution time (s) Time ratio (%)

Dedicated nodes 36533 32.6

Dedicated cores 19442 17.5

Dedicated sockets 28989 25.8

Table 2. Submitted jobs of all NAS kernels partitioned per degree of parallelism.

Degree of parallelism 1 2 4 8 16 32 64 128

Number of jobs 210 360 630 720 840 540 400 170

Percentage of jobs (%) 5.4 9.3 16.3 18.6 21.7 14 10.3 4.4

the jobs according to their degree of parallelism; note that 128 is the number of
cores in the cluster ACME. This way, the impact of MPI tasks location inside the
clusters has been analysed under the Slurm setups. It is noted that the Dedicated
Sockets setup is the 2nd more efficient after the Dedicated Cores setup (about
30% of the jobs counts for 8 or even less MPI tasks), which is able to allocate
more than one job at the same time.

4.2 NAS Benchmarking

The number of nodes (nN) times the number of MPI tasks per node (nT),
in short nNxnT (see Fig. 3), that define the configuration of each experiment
(say, a definite kernel of a given class, executed under a cluster setup) has been
repeated 10 times, with their average referred in what follows as a computed
case. The experiments conducted under Dedicated Network setup include the
kernels of class D to enlarge the population of computed cases. For the other

Fig. 3. Example of 1× 4 and 2× 2 MPI tasks mapping in cluster ACME.

132 M. Rodŕıguez-Pascual et al.

cluster setups, only experiments with the A, B and C classes of the kernels have
been conducted to guarantee that the running MPI processes fit into the RAM
memory as well as to bound the workload computing time. All exhibit standard
deviation <1%.

4.3 Dedicated Nodes Cluster Setup

Bearing in mind that the Dedicated Cores setup is a realistic scenario of pro-
duction clusters, a general trend can be stated out of Fig. 4, which depict the
execution time of the seven NAS kernels (sectors of the circles) for ACME. The
nondimensional execution time (referred to the execution time obtained in the
cluster configuration of the fewest number of nodes, which corresponds to the
circle’s centers) is shown in the figure. Figure 4 shows that most computed cases
takes more execution time as far as more nodes are involved.

Fig. 4. Relative execution time for the Dedicated Cores setup in ACME. Nondimen-
sional computing time is referred to the case of all processes running in one node.

Hence, it can be said that grouping MPI tasks within as few nodes as possible
is good to achieve shorter execution times. This seems a general rule inferred
out of the plot after examining the behaviour of the kernels as a whole. But
two points must be made. On one hand, a case by case examination reveals

Benchmarking Performance: Influence of Task Location 133

that there are exceptions to this rule, as it is the case of the LU kernel (class
B - 8 tasks); IS kernel (class C - 4 tasks); and others. So awareness of non
consistent tendencies of the kernels has to be considered. And on the other
hand, non monotone behaviour occurs in several computed cases. Some of these
may be explained by the kernel requirements (CPU- or memory intensive,. . .),
but also it is suggested that the execution is affected by the MPI tasks of rather
different behaving kernels located in neighboring cores by the scheduler, which
compete for resources (RAM and traffic). However, it is interesting to notice such
a pattern (and criterium) related to grouping MPI tasks in fewer nodes, which
seems to be more effective in saving execution time as the degree of parallelism
and size (class) increase. On the contrary, computed cases of low number of tasks
(see column of 4 MPI tasks in Fig. 4) show a small variation of the execution time
(within 5–10%) with the number of nodes. This general trend observed in ACME,
it is not so definite in EULER, which shows greater sensitiveness of the execution
time (the equivalent figure is not included because of space constrains). The
number of computed cases in EULER with some speedup when the MPI tasks are
distributed among nodes dominates. Hence, EULER shows a somehow opposite
behaviour compared to ACME (due to extension restrictions, its execution time
plots are not included). As a result, how to proceed in EULER to speedup
kernels execution is unclear and a more in depth kernel-by-kernel analysis seems
necessary. A comparison of the different behaviour found in ACME and EULER
in terms of the execution time for the two MG and EP kernels (memory- and
CPU-intensive, respectively) is depicted in Fig. 5 for Dedicated Nodes setup. The
plots for the MG kernel with classes B and C show that the speedup increases
with monotone trend as more nodes are involved in the nNxnT configuration
(nT = 4, 8, 16 and 32). And it is seen that this speedup is significantly greater
in EULER, which can be explained because EULER nodes are more memory-
bound than ACME’s. The EP kernel in ACME exhibits also a rather small
speedup when tasks are distributed over nodes. But on the contrary, EULER
shows that the EP kernel runs slower when it is taken “out of the box” (that
is, when the tasks are partially migrated from all being grouped in one node).
It is visible in Fig. 5 that a big jump in execution time occurs as the EP kernel
goes from 1xnT to 2xnT (with nT = 4 and 8). It is noticed that the computed
cases in EULER corresponding to nT = 16 and nT = 32 start at configurations
2× 8 and 4× 8, respectively, thus it is not possible to have evidence of the
“out of the box” effect in these cases (but it is plausible that the wavy pattern
observed in these be similar to the wavy one observed for nT = 8 from the 2× 4
configuration on). In resume, the rule derived for the EP kernel in EULER is
that MPI task grouping makes sense as the execution time drops. And besides,
the reversed behaviour seen in ACME for the EP kernel can be justified because
of the much higher internode bandwidth, which compensate the “out of the box”
effect observed in EULER.

134 M. Rodŕıguez-Pascual et al.

Fig. 5. Relative execution time for the Dedicated Nodes setup. NAS kernels MG (upper
row) and EP (lower row) are shown for clusters ACME and EULER.

4.4 Sensitivity to the Clusters Setup

The performance of kernels MG and EP is plotted in Fig. 6 corresponding to
8 MPI tasks and the four clusters setups analysed for the classes A, B and C.
This plot is relevant because it provides four nNxnT configurations that start
at 1× 8 in both clusters, so the “out of the box” effect can be focused, if any.
For both kernels, Dedicated Network and Dedicated Nodes setups provide very

Fig. 6. Impact of cluster setup on the relative execution time for MG (memory-
intensive) and EP (CPU-intensive) kernels with 8 MPI tasks in clusters.

Benchmarking Performance: Influence of Task Location 135

similar execution time, showing a monotone, quasi-linear drop with the number
of nodes, which suggests the benefit (but small) of adding nodes to the computa-
tion. The plot for Dedicated Sockets is similar, but even it is seen a smaller drop
of the execution time. This pattern is observed for the MG and EP kernels with
all classes (it is noted that Dedicated Network and Dedicated Sockets setups
are included only for ACME since EULER is a production cluster and only a
portion of it was assigned to this research). Again, for the MG kernel in EULER
under Dedicated Nodes, it is observed a higher speedup with the number of
nodes, compared to ACME. In particular, for the execution of the EP kernel
in EULER, it is visible the “out-of-the-box” effect under both setups: a large
increase of the execution time when the EP kernel goes from 1× 8 to a 2× 4
configuration, followed by a saturation of the drop when additional nodes are
included. A different conclusion is derived for EULER: while for the memory-
bound MG kernel is beneficial to distribute the MPI tasks over so many nodes
as possible (the smaller host memory of its sockets may explain the significant
improvement), the CPU-bounded EP kernel demands to group them into one
node to attain the best performance. In resume, the MG and EP kernels under
Dedicated cores setup in ACME, points out to the dominance of a performance
drop (but not monotone) when additional nodes are added to the computation
(the execution time shows a pattern of either a moderate increase of up to 20%,
or a slight drop in some cases). Comparison of the speedup obtained with the
Dedicated Nodes and Dedicated Cores setups for the whole set of experiments
conducted in ACME and EULER is given in Figs. 7 and 8, respectively. The plot-
ted boundary lines indicate the unused portion of the cluster due to the Slurm
setup itself, which serves to build criterium about how much speedup is possible

Fig. 7. Map of speedup vs. usage of computational resources for NAS under the Dedi-
cated Nodes setup (locus of % of unused cores is plotted for each number of MPI tasks.
Line color corresponds to the symbols), depicted for clusters ACME and EULER.
(Color figure online)

136 M. Rodŕıguez-Pascual et al.

and which is the extra cost due to not using a portion of the machine (e.g.: say
an ACME 2× 4 configuration with Dedicated Nodes setup. This implies 4 tasks
running on a socket of 8 cores. Since each node has 2 sockets, the occupation
reads 4 of a total of 8 + 8 = 16 cores, which means a 75% of unused cores).

The vertical scales in the plots relate speedup and % of unused cores (i.e.
speedup of 2 corresponds to a 50% of unused cores; speedup of 4 to a 75% of
unused cores; and so on). This criterium remarks the importance of searching
for a balance between significant speedups and not having too many unused
cores. Obviously, it is a matter of settling a sweet point for users and cluster
administrators. But under the Dedicated Nodes setup, it is seen that few points
are over the boundary lines. Only in the Dedicated Cores setup, all boundary
lines collapse into the 0%-unused cores situation (full occupation).

Fig. 8. Map of speedup vs. usage of computational resources for NAS under the Ded-
icated Cores setup depicted for clusters ACME and EULER.

5 Conclusions

The NAS Parallel Benchmarks have been executed in a systematic way on two
clusters with rather different internode and intranode bandwidth properties, to
identify dependencies between MPI tasks mapping and execution time speedup
or resource occupation. The study comprises jobs up to 128 MPI tasks, bounded
accordingly to our clusters size and usage constraints, as well as justified by the
limited strong-scaling properties of NAS kernels.

The findings can be related to two scenarios. When the clusters are config-
ured to run parallel jobs in exclusivity, the results show that in most cases the
execution time drops as the MPI tasks are distributed over the nodes (this agrees
with previous investigations) and it seems efficient to distribute a given parallel
job over cores located in different nodes. However, the other important scenario

Benchmarking Performance: Influence of Task Location 137

found in production HPC clusters corresponds to the need of sharing resources
among set of jobs, such that the socket cores execute MPI tasks of different jobs.
In this situation, a rather different behaviour is observed, much more sensitive
to the type of cluster. In our state-of-the-art cluster ACME, many of the carried
out experiments show a speedup when MPI tasks run in the fewest number of
nodes. This is opposite to what is found in our older cluster EULER, where
execution time trends are more sensitive to the algorithm properties and part of
the experiments points out to task distribution over nodes to shorten the execu-
tion time. This major result found in ACME feeds the discussion about possible
computational efficiency benefits by tailoring live tasks migration and schedul-
ing policies in modern clusters. In production clusters which share a significant
load of serial jobs while running parallel jobs (a 7-year analysis of the executed
tasks in our cluster EULER showed that more than half were serial), the ques-
tion of to which extent serial tasks may act as perturbations to the execution
of parallel jobs arises and deserves consideration to clarify the best live task
migration policies within the context of optimizing clusters occupation. Other
interesting aspect is how different the results would be in the case of hybrid
MPI/OpenMP tasks. These open issues are part of the ongoing research within
our group.

Acknowledgment. This work was supported by the COST Action NESUS (IC1305)
and partially funded by the Spanish Ministry of Economy and Competitiveness project
CODEC2 (TIN2015-63562-R) and EU H2020 project HPC4E (grant agreement n
689772).

References

1. Top 500. www.top500.org
2. Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters: algo-

rithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst. 25(4),
993–1002 (2014)

3. Chavarŕıa-Miranda, D., Nieplocha, J., Tipparaju, V.: Topology-aware tile mapping
for clusters of SMPs. In: Proceedings of the 3rd Conference on Computing Frontiers
(CF 2006), pp. 383–392. ACM (2006)

4. Smith, B.E., Bode, B.: Performance effects of node mappings on the IBM Blue-
Gene/L machine. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 1005–1013. Springer, Heidelberg (2005). https://doi.org/10.1007/
11549468 110

5. Rodrigues, E.R., Madruga, F.L., Navaux, P.O.A., Panetta, J.: Multi-core aware
process mapping and its impact on communication overhead of parallel applica-
tions. In: Proceedings of the IEEE Symposium on Computers and Communica-
tions, pp. 811–817 (2009)

6. Chai, L., Gao, Q., Panda, D.K.: Understanding the impact of multi-core architec-
ture in cluster computing: a case study with Intel dual-core system. In: Proceedings
of the 7th IEEE International Symposium on Cluster Computing and the Grid,
CCGrid, pp. 471–478 (2007)

www.top500.org
https://doi.org/10.1007/11549468_110
https://doi.org/10.1007/11549468_110

138 M. Rodŕıguez-Pascual et al.

7. Shainer, G., Lui, P., Liu, T., Wilde, T., Layton, J.: The impact of inter-node latency
versus intra-node latency on HPC applications. In: Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Systems, pp.
455–460 (2011)

8. Xingfu, W., Taylor, V.: Using processor partitioning to evaluate the performance
of MPI, OpenMP and hybrid parallel applications on dual- and quad-core Cray
XT4 systems. In: Cray UG Proceedings (CUG 2009), Atlanta, USA, pp. 4–7 (2009)

9. Ribeiro, C.P., et al.: Evaluating CPU and memory affinity for numerical scientific
multithreaded benchmarks on multi-cores. IJCSIS 7(1), 79–93 (2012)

10. Wu, X., Taylor, V.: Processor partitioning: an experimental performance analysis
of parallel applications on SMP clusters systems. In: 19th International Conference
on Parallel Distributed Computing and Systems (PDCS 2007), CA, USA, pp. 13–18
(2007)

11. Wu, X., Taylor, V.: Performance modeling of hybrid MPI/OpenMP scientific appli-
cations on large-scale multicore. J. Comput. Syst. Sci. 79(8), 1256–1268 (2013)

12. Zhang, C., Yuan, X., Srinivasan, A.: Processor affinity and MPI performance on
SMP-CMP clusters. In: IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Ph.D. Forum (IPDPSW), Atlanta, USA, pp. 1–8 (2010)

13. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25 (1995)

14. OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks
15. Bonnie++. www.coker.com.au/bonnie++
16. Intel Memory Latency Checker 3.1. www.intel.com/software/mlc
17. Bailey, D., et al.: The NAS parallel benchmarks. Technical report (1994)

http://mvapich.cse.ohio-state.edu/benchmarks
www.coker.com.au/bonnie++
www.intel.com/software/mlc

PRIMULA: A Framework Based on Finite
Elements to Address Multi Scale and Multi

Physics Problems

Alejandro Soba(&)

CNEA - CONICET Centro Atómico Constituyentes,
Av. Gral. Paz 1499, San Martín, Argentina

soba@cnea.gov.ar

Abstract. The PRIMULA code, a multi scale and multithreads open source
framework based on finite elements applicable to the numerical resolution of
partial differential equations is presented. PRIMULA is portable to LINUX/
UNIX, where it is compiled with gfortran, and to WINDOWS, compiled in the
Visual Studio environment. It can be compiled to run in series, with shared
memory under the Standard OPENMP, in a distributed environment under
Standard MPI and on hybrid systems, with a compilation that combines
MPI-OPENMP. The code was tested with non-linear problems in a 16 cores
Intel Xeon (R) E5-2630 v3 multiprocessor of 2.4 GHz and in TUPAC, with
4 � Hexadeca core AMD Opteron 6276s processors. This paper presents results
of scalability and computation times of some of the multiple tests to which it
was submitted.

Keywords: PRIMULA � MPI-OPENP � FEM solver

1 Introduction

There are numerous software packages focused on problems based on differential
equations in partial derivatives using the finite element method. The offer is wide for
user looking for paid [13, 14], restricted [12] or free [11] licensed codes. Most of them
consist of robust solvers that can be applied to the resolution of nonlinear, stationary or
time-dependent problems, allowing them to approach numerical solutions of very
complicated real systems. These packages usually support several parallelization
modes that allow them to take advantage of the computing capacity of large computers,
either distributed memory [22], shared [21] or lately with hybrid format, to profit the
new generations of multithreads machines.

The geometries that these packages manipulate are also of great complexity. They
are discretized using both structured and unstructured meshes with equal efficiency, to
cover a wide range of problems from the spatial point of view, as well as numerical
precision. In particular, this way of facing certain problems in simulation enters into
what is ambiguously called multiphysics-multiscale. The multiplicity of analyzed
physical problems as well as the different ranges of work scales supports this form of
denomination. The method of finite elements [8], often combined with finite differences

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 139–153, 2018.
https://doi.org/10.1007/978-3-319-73353-1_10

and finite volumes, so versatile and adaptable to all kinds of geometries, has come to
synergistically favour the limits of applicability of the packages mentioned in such a
way that today it seems there is no physical problem that cannot be numerically dealt
with.

Due not only to the cheapness of hardware but also to the growing importance of
numerical simulation in various branches of science and technology, the acquisition of
a computer with several thousand processors is an accessible goal even for developing
countries, companies or scientific institutes at our national level. However, this supply
of increasingly fast and powerful equipment is not accompanied by the development in
equal measure and intensity of codes that take advantage of this availability. Rather,
users often fall into the automatic use of packages already established in the market,
either under paid or free license, but which show a certain robustness based on the
number of groups in the world that use them or the number of publications that cite
them. In some instances the scientific communities of certain countries can afford a
supercomputer, but they do not seem to understand that such acquisition should be
accompanied by a similar effort in time and money for the development of appropriate
software, which would guarantee independence from the point of view of the gener-
ation and utilization of knowledge.

Currently in a computer like TUPAC [7], not only the administration tools are of
foreign origin, but of free license [9, 10], but the 80% of the software that runs on the
machine belongs to packages not developed by local groups. A great part of that time is
dedicated to calculations with codes of first principle, of the so-called ab initio or
similar, where by means of molecular dynamics or other approximate methods cal-
culations at the atomic scale are performed. Also finite element codes like FLUENT
[14], OPENFOAM [11], and the WRF-ARW [15] for climate analysis are employed in
80% of the studies. The remaining 20% uses more specific software, and only a
minority of them written by local scientists.

Without diminishing merit to those groups that identify particular software and
understand that this development is what they need for their research, this lack of local
developments marks a trend towards dependence on the way in which scientific
knowledge is manipulated. It also limits in a certain way the problems that can be
faced. Due to the impossibility of adapting the code, a certain degree of simplification
or idealization of the particular problem has to be assumed by the user so that the code
can provide a solution.

In the Codes and Models Section of the Nuclear Fuel Cycle Management, CNEA we
have started from a philosophy opposite to the one described above. Certainly, the type
of institution we belong to and the character of the numerical challenges that the group
needs to solve imposes that route. The confidentiality of certain problems as well as the
difficulty of adapting these problems to the pre-existing packages in the market impelled
us to develop our code at home, building the package that we have called DIONISIO
[16–20], owned by CNEA. This code is devoted to the simulation of nuclear fuels
behaviour during reactor operation, under normal and/or accident conditions. Until now
it runs in desktop machines, with some computation sections parallelized under the
standard Openmp [21]. DIONISIO is a multi-physic and multi-scale code, since it has
models ranging from the level of a fuel grain, to the thermal-hydraulic description of
heat removal by the coolant from a whole rod (typically some meters long).

140 A. Soba

The code has one, two and three-dimensional models, which operate in coupled
form. However, the pretension to extend the analysis to the description of more realistic
geometries, and to increase the dimension of the involved models, multiplies the
computing time required. For this reason, the PRIMULA framework was designed. It is
destined to solve coupled, non-linear differential equations, in two and three-
dimensional geometries.

As the DIONSIO programmers and in general those of any type of application, are
not experts in the writing of a distributed code, it is fundamental for the PRIMULA
user that the framework structure remains hidden for him in such a way that he can
parallelize his code without entering into the framework details. On the other hand, we
intended to build a code that does not distinguish between operating systems (PRI-
MULA can be executed in a WINDOWS as well as in a LINUX environment without
any further modification than, obviously, the way of compiling) or in which type of
machine it is executed (it should be irrelevant for the user if the code is executed on a
desktop machine or a supercomputer, so that it is transparent to serial or parallel use).
Thus, through the modification of a couple of variables in the input file, the user
decides whether the code will be executed serially or in parallel, and in the latter case, if
the chosen parallelization will be over distributed or shared memory or a hybrid of
both.

A final detail was considered in the design of PRIMULA: even for the simplest
finite element packages users must be involved in programming certain details of the
code to adapt it to their own particular problem. In many cases packages such as
ABAQUS or OPENFOAM support writing and recompiling code segments. That is
why today it is increasingly difficult to find pure users of a code, and in general, to
achieve maximum software performance, the user becomes a programmer. Under-
standing this mutation of roles, PRIMULA also requires that the user actively intervene
in the programming of certain code sectors. In the modification of the input and the
output, as well as in the manipulation and creation of the variables that each user needs
to introduce in his simulation, new programming is required. It should be noted that for
each type of intervention, there are portions of code already written that facilitate the
rapid learning of the novel programmer. Figure 1 shows a diagram of PRIMULA in
which the separation between the systems to be solved and the kernel of the code is
schematized. The IO of the same works through a series of input files that allow the
selection of the different types of possible executions programmed so far in the kernel,
as well as the manipulation of the system that the user wishes to solve.

PRIMULA is a code in development, which never seeks to consolidate in a fixed
package, but is proposed as a framework that the user must adapt to his own particular
problem and then continue with his own development. PRIMULA is completely ver-
satile and has as one of its peculiarities of style (in its “to be delivered” state) to avoid
FORTRAN language features that are not specific to the gfortran standard, this is, the
most usual and common of the compilers of the moment. Each user, once he takes over
the framework, can give him personal guidance related to the environment where he
wants to execute the code under his own responsibility.

PRIMULA: A Framework Based on Finite Elements 141

This work is proposed as a brief summary of the main characteristics of PRIMULA,
in addition to a brief presentation of its capabilities, some results obtained and analysis
of scalability and performance in the different environments where it was tested.
Naturally, this report does not cover all the possible problems or tests to which it will
be subjected in the near future, but is only intended to show the perspectives of its
development.

2 PRIMULA General Features

i. Mesh Generator: The code has a built-in structured mesh generator, which
allows meshing simple domains. The user can to modify the mesh and adapt it to
others simples geometry. On the other hand the code can acquire meshes in files
that agree with the preset format. The types of elements supported by the code are
listed in Table 1. The integrations can be open or closed, with Gauss quadrant
formulas for user defined points.

ii. Mesh partition: Work distribution is achieved by partitioning the original mesh
into sub domains (sub meshes) that run concurrently by the corresponding MPI
processes. Mesh partitioning is carried out using METIS [2]. The mesh parti-
tioning is done sequentially by the master while the workers wait for receiving
their parts of the mesh.
In order to establish the communication scheme between processes, a common
graphing algorithm is used. [1, 3]: firstly the nodes-elements adjacency graph is
created, then for each node the elements it belongs to are obtained. Secondly the
adjacency elements graph is created, to know the neighboring elements of each
element.
After that METIS uses the adjacency elements graph and the number of
sub-domains and gives an array assigning the sub domain to each element.
Based on this information, the communication arrays needed to exchange data
between the workers are created. Finally the communication scheduling needed to

Fig. 1. Scheme of the engineering of the PRIMULA framework.

142 A. Soba

determine in which order the workers have to interchange its data in pairs
(through MPI_SendReceive) is computed. Once all this work is done, the dis-
tribution of the sub-meshes and corresponding element, boundary and node arrays
to the corresponding workers is carried out (Fig. 2).

Table 1. I: Bi and tri-dimensional elements programmed in PRIMULA.

Lagrangian bi-dimensional Tri-dimensional

Triangular three nodes
Tetrahedrons four

nodes

Open or
closed inte-
gration with
triangular or
tetrahedral
coordinates.

Triangular six nodes Tetrahedrons ten nodes

Quadrangular four nodes
Hexahedrons eight

nodes

Gaussian
integration

Quadrangular nine nodes
Hexahedrons twenty

seven nodes

Quadrangular sixteen nodes

PRIMULA: A Framework Based on Finite Elements 143

iii. Programmed systems: PRIMULA is oriented to the resolution of stationary or
time dependent equations in nonlinear partial derivatives. Field, bio-heat and
mechanical equations for elasto-plasticity are presently codified (see Table 2), all
types with Dirichlet, Neumann and Robin boundary conditions.
Problems can be solved in two and three dimensions. In the case of two
dimensions, approximations of plane stress, plane strain and axy symmetry are
possible.

Where k, c, a and k are the non linear parameters of each physical problem and
q corresponds to the volumetric heat source term.

iv. Linear Equation Systems Solution: The solver of the linear system is a gradient
conjugated with Jacobi preconditioner designed to work in hybrid systems [4, 5].
Among the iterative methods, the Conjugate Gradient method is an algorithm for
the numerical solution of particular systems of linear equations, for which matrix
(A) is symmetric and positive-definite. Every iteration of the algorithm requires
only a single Sparse Matrix-Vector multiplication (SpMV) and a small number of
dot products.

Fig. 2. Two tri-dimensional domains partitioned in 64 local regions using METIS.

Table 2. scheme of the main equations solved in PRIMULA until now

144 A. Soba

The storage requirements are also very modest, since vectors can be overwritten.
In practice, this method often converges in far fewer than a number of iterations
less than the order of the matrix A. However, the conjugate gradient can still
converge very slowly if the matrix A is ill-conditioned. The convergence can
often be accelerated by preconditioning. The choice of P is crucial in order to
obtain a fast converging iterative method. The Jacobi preconditioner is one of the
most popular forms of preconditioning, in which P is a diagonal matrix with

Fig. 3. Hybrid algorithm of JPCG. One matrix vector operation (spmv) and two reduction of dot
product are needed in each iteration. After each iteration the communication between processors
are needed in order to update the values of the coefficients in shared nodes.

PRIMULA: A Framework Based on Finite Elements 145

diagonal entries equal to those of A. The advantages of this preconditioner are the
facility of its implementation and the low amount of memory it needs.
A hybrid version of the JPCG was implemented in this work (see Fig. 3),
establishing the parallelization across MPI of the matrix vector multiplication and
the dot product using the portion of the matrix that each processor locally has. The
algorithm also allows the OPENMP strategy (highlighted in the windows) of
distribution in the internal and local operations in each processor. After each
iteration the communication between processors are needed in order to update the
values of the coefficients in shared nodes.

v. Post Process: The entire post-process of the information generated in PRIMULA
is adapted to the free distribution software PARAVIEW [6] under the data formats
Comma Separate Values (CSV) and ENSI. ParaView is an open-source,
multi-platform data analysis and visualization application. ParaView was devel-
oped to analyze extremely large datasets using distributed memory computing
resources. It can be run on supercomputers to analyze datasets of petascale as well
as on laptops for smaller data. The ParaView flexibility allows developers to
quickly create applications that have specific functionality for a specific problem
domain (Fig. 4).

vi. Parallel environment: The code is designed to be run on hybrid machines, taking
advantage of the availability of multiprocessors that share their node with multiple
threads. In the case of TUPAC, each node is a 4x Hexadeca core AMD Opteron

Fig. 4. A contours plot data from a field problem solved using PRIMULA.

146 A. Soba

6276s, with 64 threads and 8 gigabytes of RAM. In this way a correct use of this
computing capacity must have the possibility of combining algorithms that work
in a distributed and shared form. To this end, the standards Message Passing
Interface [22] and OPENMP [21] will be used. The user selects the parallelization
mode he wants to use and the amount of threads and MPI processes needed for his
problem through input files.

3 Scalability Results

Intel Xeon(R) E5-2630 v3 2.4 Hgz: Has 8 independent processing units (cores) and 2
threads per core, giving a total of 16 working threads. This allows using MPI and
OPENMP or some combinations of both. In particular, to program PRIMULA in
Windows OS we use FORTRAN in the VISUAL studio environment Visual Studio Pro
2012 [23]. Also we use MS-MPI [24] for distributed memory functionalities and
OPENMP feature that by default contains the VS.
The main limitation that a code that handles large amounts of data possesses in the
Windows environment is memory. Manipulating the variable STACK is inevitable if it
is intended to work with a system of several million elements. On the other hand, there
is a physical limit that can not be crossed and eventually works as a limiting problem to
be established by RAM. Nevertheless, work in a desk computer with systems with
several million of nodes efficiently, already is acceptable given the comfort they offer.

We have analyzed PRIMULA with a field problem (see Table 2) for domains with
approximately one million variables obtaining some interesting results, plotted in
Fig. 5 where the speedup for different code portions is showed. First of all, the solver of
JPCG was always measured independently, since is the more demanding portion of the
code. We plot too the pre-processing time, the general calculation zone (that includes
the solver but also the time used in assembly the finite element matrix) and a measure
of the total computing time of the code.

Analyzing these graphs, the first thing we observed is the region of super-scalability
for the limit p � 4. It is interesting to note that the solver PJCG works optimally in
this type of machines with a number of threads close to 4. From there the scalability is
reduced to 86% with 8p and 58% with 16. The total computer time has an acceptable
speedup up to 8 processors while the performance is greatly reduced to 16 where both
the pre-process and the calculation saturate the computation times.

AMD OPTERON 6200: With 4 Hexadeca cores whereby each node has 64 threads.
Two ways of executing the code were measured in this graph. First the application was
executed in fully distributed mode, using pure MPI (plotted with dotted lines). Sec-
ondly, the code was run in hybrid form, with MPI + OPENMP, with 64 shared
memory threads per node. We use an example of approximately 30 million elements
for the calculation. There are several points in this comparison that are shown jointly in
Figs. 6 and 7:

PRIMULA: A Framework Based on Finite Elements 147

(i) The solver time in distributedmode has scalability similar to that of the hybridmode.
However it is remarkable how the distributed mode loses scalability in the section
that we call calculus, which is the arming of matrices and calculation of all the
coefficients by elements. Clearly the use of hybridization reduces the time consumed
in communication between processes and accelerates the computation locally.

(ii) It is observed in the graph that for the pure MPI mode, we obtain compute times
for 32 and 64 processors. However, it is not possible to obtain reasonable
computing time for the hybrid case. This is because dividing the general domain
(2 nodes) into two local parts, the amount of information of a mesh of 30 million
degrees of freedom that must be transferred between nodes is so large that the
calculation is notoriously slowing down. On the other hand, structures also grow
in size considerably so memory management is also affected. In fact already for
the case of 2 nodes (128 threads) the processing time increases disproportion-
ately, (see Fig. 7). For the hybrid case, it improves the performance of the solver
for 1024 processors in relation to 512. This is related to the improvement in
communication that is established for 16 nodes with respect to that of 8 MPI
nodes. The graph colouring algorithm shows that there is an optimal number of
divisions to minimize communication in the global domain and in the case of the
type of problem we are solving, this happens for that number of 16.

(iii) Figure 7 shows the pre-processing time each case consumes. We expect a
similar time consumed in pre-processing for all the systems, with a grow of time
consumed with the number of communication, but in case of 2 nodes plus 64
threads we highlight the fact mentioned in point (ii) about the time of
post-processing in a hybrid case for low number of nodes. We have also added a
point for 2048 processors. This point, although it degrades scalability

Fig. 5. Speed up for systems of 1M of elements approximately.

148 A. Soba

dramatically for the analyzed case, shows that PRIMULA works correctly for
that number of processors. Finally, this graph tells us that the pre-processing
times are lower for the hybrid case. This is for the same reason observed in item
(i) in where we saw better calculation times in hybrid systems.

Fig. 6. Speed up for a system of 30 Millions of elements.

Fig. 7. (a) PRIMULA pre-processing times for a 30M system (approx). In the case 2 nodes and
64 threads the pre-processing time increases disproportionately due to the size of the generated
arrays. (b) Use of processors per node in selected cores done by PRIMULA (Color figure online)

PRIMULA: A Framework Based on Finite Elements 149

(iv) In Fig. 7(b) we presents some results performed by the monitoring system
GANGLIA that analyze cluster behaviour on real time. We follow the local
behaviour of PRIMULA running on the highlighted nodes. Is necessary to note
that if an efficient use of the cluster is wanted, it is advisable to write applications
that use the 64 threads of each node, since the access of each user to each node is
individual. That’s mean that if one user occupied one node alone using only 50%
of the computer capacity (as in the case highlighted in yellow) is a waste of
computing time with the consequent wasted cost in cash.

4 An Example of Field: PLATE Fuel

The fuels used by the vast majority of research reactors currently in operation are
so-called dispersed fuels, which consist of particles of a uranium compound dispersed
in a matrix of a metal (generally aluminium), which ensures a good extraction of heat
of the combustible particle. This material thus formed is sheathed by co lamination
between two metal plates (also generally aluminium) to be introduced into the reactor.
This type of fuel is built by joining a number of plates into prismatic cavities that will
occupy certain positions within the core. Other plate configurations may curve or form
rings, always looking for an optimal neutron flux distribution, better dispersion of
generated heat, plus adequate mechanical stability of the system. (See Fig. 8).

One of the most important codes that make up the DIONISIO package refers to the
so-called PLACA3D, whose function is to simulate the behaviour of a combustible
plate under irradiation in a research reactor in operation. The different phenomena that
occur in each of the plate materials are motorized by temperature. It is generated inside
the fissile material inside the plate and the heat is extracted through the passage of
water by the outer coating, generally constructed of aluminium. Note that a com-
bustible plate has a dimension of 1.4 mm thick, with a region of material fisil of 750
microns of thickness, 65 mm wide and 650 mm long, thus dimensionally establishing a
complicated domain to solve due to the differences in scale of its geometry. On the
other hand, physically interesting problems occur within the fissile region, due to being
the zone of fission heat production, but in addition, the temperature on the plate must be
determined through a water contour condition flowing at the rate of about 10 m per
second. On the other hand, the plate is growing as time passes in the reactor a layer of
oxide that functions as a thermal insulation. This complex problem with models at such
dissimilar scales must be solved in more or less discrete time steps.

As the first field test of the PRIMULA framework we used the geometry of a
discretized fuel plate with 1.256 million elements. The objective of this first test was to
analyze the performance of the framework in a unique analysis of nonlinear temper-
ature, to obtain the temperature distribution over the whole domain with Robin
boundary conditions and a stationary generation of heat. Note that the complete history
of a fuel within a reactor may range from 140 to 160 days of permanence, which is
usually equivalent to a number of numerical steps of approximately 200.

150 A. Soba

In this first estimation it was established that the calculation time by time step for a
purely MPI computation with 64 processors (a TUPAC node) is approximately 36 s, so
a complete history of this fuel element will oscillate between 2 and 2:30 h of com-
putation. Figure 9 shows the temperature of the refrigerant, that obtained on the oxide
layer that covers the plate and the temperature on the outside of the aluminium plate. In
the inferior part the central temperature of the plate with the scale that appears in the
same graph is presented. These values are correlated with knower experimental and
analytical results.

5 Conclusions

Throughout this work we have given a first bounded description of the PRIMULA
code, designed as a framework adaptable to problems of numerical resolution of dif-
ferential equations in partial derivatives by the finite elements method. It responds to
the usual denominations of multiscale and multiphysical, given the quality and pre-
cision with which it solves coupled problems of different dimensionalities and
described physics through models of one two and three dimensions.

Fig. 8. Different types of fuel elements for research reactors: straight plates, curves or forming
rings.

Fig. 9. Graph of temperature on the refrigerant, on the rust cover and on the aluminum cladding
of the analyzed domain. The lower graph represents the central temperature of the plate.

PRIMULA: A Framework Based on Finite Elements 151

The code respects other interesting features such as:

(i) It works for any operating system with minimal modifications in its compilation.
(ii) It works in series or in parallel with minimal modifications in its input variables.
(iii) Works for bi and tri-dimensional geometries.
(iv) It is designed for any user to program their problem with a minimal intervention

in the distribution of the particular information. That is, the user does not
intervene in the distributed manipulation of its geometry or in the solver of its
system.

Scalability analyzes have been performed for field problems, obtaining in different
operative systems, results that justify its use given the savings in computing time that
PRIMULA provides. Due to the characteristics of the problem analyzed and the type of
solver used, a scalability that reaches 67% for 1024 processors is adequate.

The code is by no means finished and in fact as already warned in the introduction,
it does not pretend to ever reach its final state. However there are some items in which
we must continue working to make it a robust tool:

(i) Firstly, the supply of linear system solvers available in the code should be
expanded. For this purpose, it is planned to include the possibility of using the
Petsc package in addition to programs other solvers of the type of Krilov spaces
with specific preconditioners optimized for distributed calculation.

(ii) The finite element types and the shapes functions offered in the code must be
expanded. This is fundamental to more accurately encompass complicated
domains.

(iii) The number of systems treated by PRIMULA should be increased considerably.
We are working on the inclusion of field equations coupled with thermal phe-
nomena and also on including equations of fluid mechanics such as the
incompressible Navier Stokes equation. However the list is still short and this
point should be a priority if PRIMULA is intended to compete with packages
already established.

In short, the concept of PRIMULA will not be exploited in all its possibilities until
the number of users grows.

Acknowledgment. I would like to thank CSC researchers and the TUPAC team of adminis-
trators for ongoing support they provided me during all of PRIMULA’s writing, installation and
scalability analysis tasks.

References

1. Artigues, A., Houzeaux, G.: Parallel mesh partitioning in alya. www.prace-ri.eu
2. Metis: Serial Graph Partitioning and Fill-reducing Matrix Ordering (metis documentation)
3. Coloración de Grafos. María Rosa Murga Días. Tesis de Grado. U. de Cantabria (2013)
4. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing

pain. Carnegie Mellon University (1994)

152 A. Soba

http://www.prace-ri.eu

5. Sáez, X., Soba, A., Sánchez, E., Kleiber, R., Castejón, F., Cela, J.M.: Improvements of the
particle-in-cell code EUTERPE for petascaling machines. Comput. Phys. Commun. 182(9),
2047–2051 (2011)

6. www.paraview.org
7. tupac.conicet.gov.ar/stories/home/
8. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 1, 2 & 3. Butterworth

Heinemann, Oxford (2000)
9. slurm.schedmd.com/
10. ganglia.sourceforge.net/
11. www.openfoam.com/
12. www.bsc.es/es/computer-applications/alya-system
13. www.3ds.com/products-services/simulia/products/abaqus/
14. www.ansys.com/Products/Fluids/ANSYS-Fluent
15. www.wrf-model.org/index.php
16. Soba, A., Denis, A.: Simulation with DIONISIO 1.0 of thermal and mechanical

pellet-cladding interaction in nuclear fuel rods. J. Nucl. Mater. 374, 32–43 (2008)
17. Lemes, M., Soba, A., Daverio, H., Denis, A.: Inclusion of models to describe severe accident

conditions in the fuel simulation code DIONISIO. Nucl. Eng. Design 315, 1–10 (2017)
18. Soba, A., Denis, A., Lemes, M., González, M.E.: Modelado del comportamiento del

combustible nuclear bajo irradiación mediante DIONISIO 2.0 Revista de la CNEA, Vol. 53–
54 (2014)

19. Soba, A., Denis, A., Romero, L., Villarino, E., Sardella, F.: A high burnup model developed
for the DIONISIO code. J. Nucl. Mater. 433, 160–166 (2013)

20. Soba, A., Denis, A.: PLACA/DPLACA: código para la simulación de un combustible tipo
placa monolítico/disperso. Rev. Int. Mét. Num. Cál. Dis. Ing. 23(2), 205–224 (2007)

21. www.openmp.org/
22. www.open-mpi.org/
23. Visual_Studio_Pro_2013. https://www.visualstudio.com/es/ (License 62739385 COM.NAC.

DE ENERGÍA ATÓMICA)
24. msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx

PRIMULA: A Framework Based on Finite Elements 153

http://www.paraview.org
http://tupac.conicet.gov.ar/stories/home/
http://slurm.schedmd.com/
http://ganglia.sourceforge.net/
http://www.openfoam.com/
http://www.bsc.es/es/computer-applications/alya-system
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.ansys.com/Products/Fluids/ANSYS-Fluent
http://www.wrf-model.org/index.php
http://www.openmp.org/
http://www.open-mpi.org/
https://www.visualstudio.com/es/
http://msdn.microsoft.com/en-us/library/bb524831(v%3dvs.85).aspx

FaaSter, Better, Cheaper: The Prospect
of Serverless Scientific Computing and HPC

Josef Spillner1(B), Cristian Mateos2, and David A. Monge3

1 School of Engineering - Service Prototyping Lab,
Zurich University of Applied Sciences, 8401 Winterthur, Switzerland

josef.spillner@zhaw.ch
2 ISISTAN-UNICEN-CONICET,

Campus Universitario, Paraje Arroyo Seco, 7000 Tandil, Buenos Aires, Argentina
cristian.mateos@isistan.unicen.edu.ar

3 ITIC Research Institute, National University of Cuyo,
Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina

dmonge@uncu.edu.ar

https://blog.zhaw.ch/icclab/

Abstract. The adoption of cloud computing facilities and program-
ming models differs vastly between different application domains. Scal-
able web applications, low-latency mobile backends and on-demand pro-
visioned databases are typical cases for which cloud services on the
platform or infrastructure level exist and are convincing when con-
sidering technical and economical arguments. Applications with spe-
cific processing demands, including high-performance computing, high-
throughput computing and certain flavours of scientific computing, have
historically required special configurations such as compute- or memory-
optimised virtual machine instances. With the rise of function-level com-
pute instances through Function-as-a-Service (FaaS) models, the fitness
of generic configurations needs to be re-evaluated for these applications.
We analyse several demanding computing tasks with regards to how
FaaS models compare against conventional monolithic algorithm execu-
tion. Beside the comparison, we contribute a refined FaaSification process
for legacy software and provide a roadmap for future work.

1 Research Direction

The ability to turn programmed functions or methods into ready-to-use cloud
services is leading to a seemingly serverless development and deployment expe-
rience for application software engineers [1]. Without the necessity to allocate
resources beforehand, prototyping new features and workflows becomes faster
and more convenient to application service providers. These advantages have
given boost to an industry trend consequently called Serverless Computing.
The more precise, almost overlapping term in accordance with Everything-as-
a-Service (XaaS) cloud computing taxonomies is Function-as-a-Service (FaaS)
[4]. In the FaaS layer, functions, either on the programming language level or
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 154–168, 2018.
https://doi.org/10.1007/978-3-319-73353-1_11

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 155

as abstract concept around binary implementations, are executed synchronously
or asynchronously through multi-protocol triggers. Function instances are provi-
sioned on demand through coldstart or warmstart of the implementation in con-
junction with an associated configuration in few milliseconds, elastically scaled
as needed, and charged per invocation and per product of period of time and
resource usage, leading to an almost perfect pay-as-you-go utility pricing model
[11]. FaaS is gaining traction primarily in three areas. First, in Internet-of-Things
applications where connected devices emit data sporadically. Second, for web
applications with light-weight backend tasks. Third, as glue code between other
cloud computing services. In contrast to the industrial popularity, no work is
known to us which explores its potential for scientific and high-performance
computing applications with more demanding execution requirements.

From a cloud economics and strategy perspective, FaaS is a refinement of the
platform layer (PaaS) with particular tools and interfaces. Yet from a software
engineering and deployment perspective, functions are complementing other
artefact types which are deployed into PaaS or underlying IaaS environments.
Figure 1 explains this positioning within the layered IaaS, PaaS and SaaS service
classes, where the FaaS runtime itself is subsumed under runtime stacks. Per-
forming experimental or computational science research with FaaS implies that
the two roles shown, end user and application engineer, are adopted by a single
researcher or a team of researchers, which is the setting for our research.

Fig. 1. Positioning of FaaS in cloud application development

The necessity to conduct research on FaaS for further application domains
stems from the unique execution characteristics. Service instances are heuris-
tically stateless, ephemeral, and furthermore limited in resource allotment and
execution time. They are moreover isolated from each other and from the func-
tion management and control plane. In public commercial offerings, they are
billed in subsecond intervals and terminated after few minutes, but as with
any cloud application, private deployments are also possible. Hence, there is a
trade-off between advantages and drawbacks which requires further analysis. For
example, existing parallelisation frameworks cannot easily be used at runtime

156 J. Spillner et al.

as function instances can only, in limited ways, invoke other functions without
the ability to configure their settings. Instead, any such parallelisation needs to
be performed before deployment with language-specific tools such as Pydron for
Python [10] or Calvert’s compiler for Java [3]. For resource- and time-demanding
applications, no special-purpose FaaS instances are offered by commercial cloud
providers. This is a surprising observation given the multitude of options in other
cloud compute services beyond general-purpose offerings, especially on the infras-
tructure level (IaaS). These include instance types optimised for data processing
(with latest-generation processors and programmable GPUs), for memory allo-
cation, and for non-volatile storage (with SSDs). Amazon Web Services (AWS)
alone offers 57 different instance types. Our work is therefore concerned with the
assessment of how current generic one-size-fits-all FaaS offerings handle scien-
tific computing workloads, whether the proliferation of specialised FaaS instance
types can be expected and how they would differ from commonly offered IaaS
instance types. In this paper, we contribute specifically (i) a refined view on
how software can be made fitting into special-purpose FaaS contexts with a high
degree of automation through a process named FaaSification, and (ii) concepts
and tools to execute such functions in constrained environments.

In the remainder of the paper, we first present background information
about FaaS runtimes, including our own prototypes which allow for provider-
independent evaluations. Subsequently, we present four domain-specific scien-
tific experiments conducted using FaaS to gain broad knowledge about resource
requirements beyond general-purpose instances. We summarise the findings and
reason about the implications for future scientific computing infrastructures.

2 Background on Function-as-a-Service

2.1 Programming Models and Runtimes

The characteristics of function execution depend primarily on the FaaS runtime
in use. There are broadly three categories of runtimes:

1. Proprietary commercial services, such as AWS Lambda, Google Cloud Func-
tions, Azure Functions and Oracle Functions.

2. Open source alternatives with almost matching interfaces and functionality,
such as Docker-LambCI, Effe, Google Cloud Functions Emulator and Open-
Lambda [6], some of which focus on local testing rather than operation.

3. Distinct open source implementations with unique designs, such as Apache
OpenWhisk, Kubeless, IronFunctions and Fission, some of which are also
available as commercial services, for instance IBM Bluemix OpenWhisk [5].
The uniqueness is a consequence of the integration with other cloud stacks
(Kubernetes, OpenStack), the availability of web and command-line inter-
faces, the set of triggers and the level of isolation in multi-tenant operation
scenarios, which is often achieved through containers.

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 157

In addition, due to the often non-trivial configuration of these services, a
number of mostly service-specific abstraction frameworks have become popular
among developers, such as PyWren, Chalice, Zappa, Apex and the Serverless
Framework [8]. The frameworks and runtimes differ in their support for pro-
gramming languages, but also in the function signatures, parameters and return
values. Hence, a comparison of the entire set of offerings requires a baseline.

The research in this paper is congruously conducted with the mentioned com-
mercial FaaS providers as well as with our open-source FaaS tool Snafu which
allows for managing, executing and testing functions across provider-specific
interfaces [14]. The service ecosystem relationship between Snafu and the com-
mercial FaaS providers is shown in Fig. 2. Snafu is able to import services from
three providers (AWS Lambda, IBM Bluemix OpenWhisk, Google Cloud Func-
tions) and furthermore offers a compatible control plane to all three of them in its
current implementation version. At its core, it contains a modular runtime envi-
ronment with prototypical maturity for functions implemented in JavaScript,
Java, Python and C. Most importantly, it enables repeatable research as it can
be deployed as a container, in a virtual machine or on a bare metal workstation.
Notably absent from the categories above are FaaS offerings in e-science infras-
tructures and research clouds, despite the programming model resembling widely
used job submission systems. We expect our practical research contributions to
overcome this restriction in a vendor-independent manner. Snafu, for instance,
is already available as an alpha-version launch profile in the CloudLab testbed
federated across several U.S. installations with a total capacity of almost 15000
cores [12], as well as in EGI’s federated cloud across Europe.

Fig. 2. Snafu and its ecosystem and tooling

Using Snafu, it is possible to adhere to the diverse programming conven-
tions and execution conditions at commercial services while at the same time
controlling and lifting the execution restrictions as necessary. In particular, it is
possible to define memory-optimised, storage-optimised and compute-optimised

158 J. Spillner et al.

execution profiles which serve to conduct the anticipated research on generic
(general-purpose) versus specialised (special-purpose) cloud offerings for scien-
tific computing. Snafu can execute in single process mode as well as in a load-
balancing setup where each request is forwarded by the master instance to a
slave instance which in turn executes the function natively, through a language-
specific interpreter or through a container. Table 1 summarises the features of
selected FaaS runtimes.

Table 1. FaaS runtimes and their features

Runtime Languages Programming
model

Import/export

AWS Lambda JavaScript, Python,
Java, C#

Lambda –

Google Cloud
Functions

JavaScript Cloud Functions –

IBM Bluemix
OpenWhisk

JavaScript, Python,
Swift, Docker

OpenWhisk –

Fission JavaScript, Python,
Go, C#, PHP

Fission –

Kubeless JavaScript, Python Kubeless –

Snafu JavaScript, Python,
C, Java

Lambda,
OpenWhisk,
Cloud Functions

Lambda, OpenWhisk,
Cloud Functions,
Fission

2.2 Providers and Performance

Commercial FaaS offerings differ not only in their programming conventions,
but also vastly by performance, cost and the combined utility defined as cost-
duration product. Figure 3 informs about the benchmark of a compute-intensive
function, fib(38), implemented in Python as a portable hosted function which
runs on bare metal as well as in AWS Lambda, IBM Bluemix OpenWhisk and
Azure Functions. The performance in the FaaS environments will unlikely be
faster than an approximate performance barrier indicated by the benchmark’s
runtime with the fastest widely available processor cores, exemplified by a 9.5 s
execution time on a recent Intel Xeon E5-2660 v3 (Haswell) with 2.6 GHz and
8.5 s on an Intel i7-4800MQ with 2.7 GHz. Conversely, it is often much slower,
and the offerings do not allow for explicitly paying more for better performance.
The rather odd (although even) number 38 has thus been chosen so that on the
slowest commercial FaaS offering, Lambda with 128 MB instances, the function
terminates successfully before the obligatory five minutes timeout.

Lambda performs proportional to the memory assignment, thus leading to a
constant price. OpenWhisk raises the price proportional to the memory assign-
ment while keeping a constant performance. In contrast, Azure measures the

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 159

Fig. 3. CDP benchmark of FaaS providers, averaged over ten iterations, without free
tier discounts

memory use but does not allow for its configuration. Finally, while Google Cloud
Functions do not appear in the same diagram due to its limitation to JavaScript,
its pricing model almost resembles the one of Lambda although the high-memory
instances performance decreases in relation. The compute-intensive recursive
benchmark implementation is shown in Listing 1.1. Functions with other char-
acteristics will be analysed in detail in the next section.

Listing 1.1. Compute-intensive portable hosted Fibonacci function in Python

import time

def fib(x):

if x in (1, 2):

return 1

return fib(x - 1) + fib(x - 2) # recursion

AWS Lambda entry point

def lambda_handler(event , context):

return fib (38)

IBM Bluemix OpenWhisk entry point

def main(event):

return {’ret’: fib (38)}

Microsoft Azure entry point (could be conditional)

import os

datain = open(os.environ[’req’]).read()

response = open(os.environ[’res’], ’w’)

response.write(str(fib (38)))

response.close ()

160 J. Spillner et al.

3 Scientific Computing Experiments with Functions

In order to get a broad understanding of the feasibility and utility of FaaS models
for diverse computing tasks, four experiments are conducted to compare the
performance and other resource-related characteristics. The selected domains are
mathematics (calculation of π), computer graphics (face detection), cryptology
(password cracking) and meteorology (precipitation forecast). The first three
experiments are synthetic, while the fourth one uses FaaSification to analyse
an existing non-FaaS application. We will refer to the domain and function
execution characteristics to infer statements about the possible and desirable
degree of parallelisation without resource contention.

3.1 Mathematics: Calculation of π

A common formula to calculate arbitrary digits of π in parallel sequences for
unlimited precision is Baily-Borwein-Plouffe (BBP). The implementation in
Python uses the Decimal type explicitly due to the otherwise limited preci-
sion of built-in floating point numbers, which contrasts the unlimited digits of
built-in integer numbers. The experiment is set up to calculate 2000 digits with
a theoretic precision of 10000 digits.

Figure 4 compares the BBP calculation performance between the native
Python 3 execution, the optimised (JiT-compiled) PyPy 3 execution, as well
as the FaaS equivalents with in-process and out-of-process parallelisation, or
multi-threading and multi-processing, respectively.

Fig. 4. Comparison of BBP(2000/10000) implementation performance with
Python/PyPy 3.5

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 161

Fig. 5. Comparison of BBP(2000/2500) implementation performance with Python 2.7

Figure 5 shows the equivalent performance measurements when running all
implementations with Python 2. While this version is in maintenance mode and
any development of the language and libraries will cease around the year 2020,
it is still widely used, most prominently in the AWS Lambda service which is
one of the few commercial FaaS services offering a native Python runtime. An
interesting observation is that the programming language version matters. While
PyPy 3 scales much better than the corresponding CPython implementation for
a number of threads equal to or larger than the number of physical cores, PyPy 2
shows no such behaviour. In both cases, an external out-of-process function exe-
cution or hosted function execution is faster despite network transmission, due
to overcoming multi-threading restrictions in the Python interpreters. Conse-
quently, using compute-optimised FaaS is beneficial from a performance point
of view when multi-processing, especially at scale, is not an option.

3.2 Computer Graphics: Face Detection

Face detection and recognition have become widely used techniques in social
networks, robotics and photo management applications, but also in surveillance
networks. The OpenCV library is among the commonly used tools to perform
face detection and mark or extract the corresponding sections in photos. Figure 6
shows an example of a person’s face detected and marked by OpenCV in a lake
scenery photo. This experiment performs the same detection and marking on a
large number of photos.

A reference dataset with faces is provided by Faces in the Wild [2] which
serves as useful input for input-output-centric file processing. The dataset con-
tains 30281 images with a total size of 1.4 GB.

162 J. Spillner et al.

Fig. 6. Face detection and marking in photos using OpenCV with Python 2.7

As OpenCV is not yet widely available for Python 3, the implementation
is based on Python 2. Figure 7 shows the performance measurements for the
function of the face detection using the public dataset again using pure local
execution as well as function execution in Snafu and Lambda. Due to the I/O-
centric nature of the function, the Lambda performance lags significantly and
only becomes competitive when 19 or more threads are used. With in-function
parallelisation, this effect can be remedied so that Lambda already executes
faster with 10 threads or more. Slower Lambda functions are furthermore forcibly
terminated due to reaching the timeout barrier.

Fig. 7. Comparison of FacesDetect implementation performance with Python 2.7

The I/O lag in Lambda results from the use of the S3 object storage service
compared to direct file system access in the other cases. This discrepancy makes

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 163

evident the need for research tools beyond just the FaaS execution, as functions
are often interlocked with additional cloud services. First prototypes such as
the Atlassian LocalStack which simulates AWS services are already available [7].
Furthermore, the latency could be reduced by deploying function instance-affine
local storage, preferably in memory, a storage-optimised facility not yet offered
commercially by any of the FaaS providers.

3.3 Cryptology: Password Cracking

Digital forensics tools include functionality to crack passwords based on leaked
or otherwise published hashes. Research on secure hashes ensures that only a
brute-force attempt to crack them will succeed. Parallelisation and map-reduce
operations are helpful to speed up the process.

The associated experiment consists of 100 SHA256-hashed passwords of up to
3 characters for which all possible combinations are tried in a comparison. The
implementation makes use of two layers of parallelisation: Conventional paral-
lel processing of up to 10 workers dividing the passwords among them, always
returning a single result, and map-reduce processing of up to 10 mappers divid-
ing the character ranges per character, returning the first successful match.
The implementation in Python further makes use of the built-in concurrency
framework which provides a unified futures interface for multi-threading and
multi-processing. Due to the compute-centric algorithm and Python’s global
interpreter lock, the use of multi-threading does not lead to speed-ups. Hence,
multi-processing is compared with a multi-function mode called function futures
contributed by us which outsources the function and mapping calls to Lambda
similar to the processing mode of PyWren [8].

Fig. 8. Cracking of 100 passwords through a double-map-reduce process with combi-
nations of workers and mappers; left: local multi-processing; right: multi-function on
Lambda (darker is faster)

Figure 8 compares the local multi-processing execution and the multi-
function execution on Lambda. The Lambda setup consists of 512 MB of

164 J. Spillner et al.

memory assignment to each function instance which affects the absolute per-
formance. This is why the z-axis (brightness scale) has been normalised between
the graphs. Comparing both results, the linear worker scaling is evidently more
predictable whereas the mapper scaling is not contributing due to the overhead
compared to the tiny processing spans of each mapper. Furthermore, the local
system exposed a bug in Python’s multi-processing code which led to some com-
binations fail sometimes, any with 6 mappers fail consistently, and any with 9
mappers resulting in a runtime almost twice as high as the preceding ones.

3.4 Meteorology: Precipitation Forecast

Weather forecasting is a typical use case for supercomputing environments. The
forecast of precipitation in particular relies on many different models, including
heuristic and fuzzy ones, which are parameterised with a multitude of vari-
ables and hyperparameters. However, while some forecasts run continuously,
specialised forecasts only need to be run at certain times at full scale with high
re-use factor of smaller proven functions, which could mean that FaaS is a suit-
able deployment model for this domain.

The experiment consists of running an implementation which confirms pre-
cipitation data from the Buenos Aires and Mendoza metropolitan regions in
Argentina. It is based on neuronal nets implemented in Python, the Keras
library and TensorFlow. As it is an existing application which can not readily be
deployed into a FaaS environment, the research interest shifts to an earlier stage
in the service provisioning lifecycle, to the pre-deployment software develop-
ment. Tools are required which transform existing code into functions in confor-
mance with the programming conventions expected by the target provider. The
transformation process is consequently called FaaSification. In the experiment
in question, several monolithic functions are used which need to be subdivided
into several functions as part of this process to not exceed the FaaS providers’
execution time limits. We have designed and implemented a tool called function
splitter for evaluating the feasibility to split Python functions automatically.
The tool employs the concept of worm functions. While a function instance may
be terminated early due to a timeout, any other instance invoked by it just
before the timeout will not be affected and will get its own counter. Thus, a
function instance’s state can be carried on to another instance of the same or
another, sequentially related, partial function. The function splitter traces the
use of local variables in a first partial function F1 and adds them to the signature
of the subsequent partial function F2. The concept is explained with an example
in Listing 1.2 which shows the split after line 1 of the original function F which
contains a call to another function G.

Figure 9 shows the performance of the forecast function F split into two
partial functions, F1 and F2, with an increasing number of lines in F1 instead of
F2. One interesting observation is that independent from the division into two
functions, the runtime of each successive function instance increases substantially
in the long term. A second observation is the pivotal point in which F1 almost
swaps its execution time with F2, which happens in line 18 of the code.

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 165

Listing 1.2. Example for function splitting based on worm functions

original # partials

def F(x): def F1(x):

y = x + 1 y = x + 1

−−−−−−− return F2(x, y)
−−−−−−− def F2(x, y):
z = y - 2 z = y - 2

z += G(x) z += G(x)

return z return z

This effect is a sure signal of a call to another function, either local or remote,
which in turn needs to be subdivided to bring the partial function runtimes below
the acceptable limits, corresponding to the call to G in the example. Currently,
even the fastest partial execution time of F2, which is 289 s, would almost reach
Lambda’s 300 s limit, and some even exceed Cloud Function’s 540 s limit.

Fig. 9. Characteristics of forecast function splitting

The function splitter has been integrated with Lambada, a FaaSification tool
for Python which is publicly available [13], which otherwise had performed a 1:1
translation of functions in the code to hosted functions in FaaS environments.

4 Findings

A general observation is that despite the still immature programming and deploy-
ment models for FaaS, experimental implementations from four different scien-
tific computing domains have been successfully executed on both commercial
and self-hosted FaaS runtimes.

166 J. Spillner et al.

The computing requirements of the four domains differ significantly with
respect to the utilisation of compute, storage and network resources. Figure 10
gives an exemplary insight into the processing as well as disk and network input-
output characteristics of the face detection function from the computer graphics
domain and the password cracking function from the cryptology domain. Heavy
spikes of usually 5 MB/s read and write operations, peaking in more than 9 MB/s,
can be observed in the first, and low CPU use due to network I/O waiting in
the second.

Fig. 10. Resource characteristic of two selected functions

Apart from the runtime, the findings also cover the development time.
Through our work on scientific applications, we are now able to suggest the
following refined classification of FaaSification process levels.

– Shallow FaaSification: classes or function collections divided into correspond-
ing FaaS units. Functions or methods are the atomic units on this level.

– Medium FaaSification: functions divided by lines into regrouped or split FaaS
units. Lines of code are the atomic units on this level.

– Deep FaaSification: single lines divided into multiple FaaS units or parame-
terised FaaS instances. Instructions are the atomic units on this level.

Existing function deployment and execution implementations cover these lev-
els to various degrees, calling for future work towards deep FaaSification for
special-purpose FaaS instances. The function execution environment Snafu per-
forms a simple shallow FaaSification for different programming languages assum-
ing single-file implementations. Existing transformation tools such as the triaged
Lambada, but also structurally similar ones such as Podilizer or Termite, per-
form a thorough shallow FaaSification which also works for complex projects
with multiple source files for Python and Java, respectively. Lambada further-
more now contains an implementation for medium and partial deep FaaSification,
although in the case of subdivided functions, all statements are still executed
serially instead of in parallel, suggesting further research to combine the work
with automated parallelisation.

In order to become useful for a wider group of users in scientific computing,
future research needs to concentrate on deep FaaSification, linking it to compiler

FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing 167

research in which optimisations, code rewrites and parallelisation take place
behind the scenes from an engineering point of view, outperforming almost any
manual target-specific optimisation.

Table 2 summarises means to overcome limitations in contemporary FaaS
environments with the purpose to execute resource-demanding scientific com-
puting jobs, divided into three categories. Our contributions are found within
all of the categories.

Table 2. Limitations and solutions

Limitation Solution Status

Resources

CPU Compute-optimised
hardware

Not commercially offered

Manual parallelisation Function futures (in this paper n)

Automated parallelisation Pydron [10]

Memory Map-reduce Reference architecture [9]

Network Local/function-affine
services

Not commercially offered

Time and cost

Runtime Bypassing temporal limits Worm functions (in this paper n)

Standard benchmarks Future work

Cost Self-hosted runtimes Available, but lack adaptive function
migration

Software

Environment Simulated services Localstack [7]

Development Function subdivision Deep FaaSification (in this paper n)

5 Summary and Repeatability

The execution of resource-intensive jobs in controlled environments with require-
ments on repeatability is an atypical use case for serverless computing whose
predominant value proposition is exactly hiding any infrastructural configura-
tion. On the other hand, the true on-demand provisioning and billing of hosted
functions makes them attractive for research tasks. Our analysis has shown that
in many domains of scientific and high-performance computing, solutions can
be engineered based on simple functions which are executed on commercially
offered or self-hosted FaaS platforms. In this paper we have contributed novel
FaaS-related concepts (worm functions, function futures, deep FaaSification) and
tools (function subdivision) to improve this engineering process. Furthermore,
we have argued for the usefulness of our previous tools (Snafu, Lambada) for
researchers and practitioners in this context.

168 J. Spillner et al.

We still see the need for future work in standard benchmarks, tooling for
debugging and autotuning, and improved transformation tools to allow for more
conventional software to run natively as functions without the need to use
abstraction layers such as containers.

All applications, data and scripts used in our experiments are made available
for anybody interested to recompute the results and repeat the analysis through
the corresponding Open Science Framework repository located at https://osf.
io/8qt3j/.

References

1. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell,
N., Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless Computing:
Current Trends and Open Problems. arXiv:1706.03178, June 2017

2. Berg, T.L., Berg, A.C., Edwards, J., Forsyth, D.A.: Who’s in the picture. In: Neural
Information Processing Systems (NIPS), Vancouver, British Columbia, Canada,
pp. 137–144, December 2004

3. Calvert, P.: Parallelisation of Java for graphics processors. Ph.D. thesis, Trinity
College, May 2010

4. Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N.C., Hu, B.: Everything as a
service (XaaS) on the cloud: origins, current and future trends. In: 8th IEEE Inter-
national Conference on Cloud Computing (CLOUD), New York City, New York,
USA, pp. 621–628, June 2015

5. Glikson, A., Nastic, S., Dustdar, S.: Deviceless edge computing: extending server-
less computing to the edge of the network. In: 10th ACM International Systems
and Storage Conference (SYSTOR), Haifa, Israel, May 2017

6. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with OpenLambda. In: 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), Denver, Col-
orado, USA, June 2016

7. Hummer, W.: A fully functional local AWS cloud stack, July 2017. https://github.
com/localstack/localstack

8. Jonas, E., Venkataraman, S., Stoica, I., Recht, B.: Occupy the Cloud: Distributed
Computing for the 99%. Preprint at arXiv:1702.04024, February 2017

9. Mallya, S., Li, H.M.: Serverless Reference Architecture: MapReduce, October 2016.
https://github.com/awslabs/lambda-refarch-mapreduce

10. Müller, S.C., Alonso, G., Amara, A., Csillaghy, A.: Pydron: semi-automatic paral-
lelization for multi-core and the cloud. In: 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broomfield, Colorado, USA, pp. 645–
659, October 2014

11. Rao, D., Ng, W.K.: Information pricing: a utility based pricing mechanism. In: 14th
IEEE International Conference on Dependable, Autonomic and Secure Computing,
Auckland, New Zealand, pp. 754–760, August 2016

12. Ricci, R., Eide, E.: Introducing CloudLab: scientific infrastructure for advancing
cloud architectures and applications. ;login: Usenix Mag. 39(6), 36–38 (2014)

13. Spillner, J.: Transformation of Python Applications into Function-as-a-Service
Deployments. arXiv:1705.08169, May 2017

14. Spillner, J.: Snafu: Function-as-a-Service (FaaS) Runtime Design and Implemen-
tation. arXiv:1703.07562, March 2017

https://osf.io/8qt3j/
https://osf.io/8qt3j/
http://arxiv.org/abs/1706.03178
https://github.com/localstack/localstack
https://github.com/localstack/localstack
http://arxiv.org/abs/1702.04024
https://github.com/awslabs/lambda-refarch-mapreduce
http://arxiv.org/abs/1705.08169
http://arxiv.org/abs/1703.07562

AccaSim: An HPC Simulator for Workload
Management

Cristian Galleguillos1,2(B), Zeynep Kiziltan1, and Alessio Netti1

1 Department of Computer Science and Engineering,
University of Bologna, Bologna, Italy

zeynep.kiziltan@unibo.it, alessio.netti@studio.unibo.it
2 Escuela de Ing. Informática, Pontificia Universidad Católica de Valparáıso,

Valparáıso, Chile
cristian.galleguillos.m@mail.pucv.cl

Abstract. We present AccaSim, an HPC simulator for workload man-
agement. Thanks to the scalability and high customizability features of
AccaSim, users can easily represent various real HPC system resources,
develop dispatching methods and carry out large experiments across dif-
ferent workload sources. AccaSim is thus an attractive tool for conducting
controlled experiments in HPC dispatching research.

1 Introduction

High Performance Computing (HPC) systems have become fundamental tools to
solve complex, compute-intensive, and data-intensive problems in diverse engi-
neering, business and scientific fields, enabling new scientific discoveries, inno-
vation of more reliable and efficient products and services, and new insights in
an increasingly data-dependent world. This can be witnessed for instance in the
annual reports1 of PRACE and the recent report2 by ITIF which accounts for
the vital importance of HPC to the global economic competitiveness.

As the demand for HPC technology continues to grow, a typical HPC sys-
tem receives a large number of variable requests by its end users. This calls for
the efficient management of the submitted workload and system resources. This
critical task is carried out by the software component Workload Management
System (WMS). Central to WMS is the dispatcher which has the key role of
deciding when and on which resources to execute the individual requests by
ensuring high system performance and Quality of Service (QoS), such as high
utilization of resources and high throughput. An optimal dispatching decision is
a hard problem [4], and yet suboptimal decisions could have severe consequences,
like wasted resources and/or exceptionally delayed requests. Efficient HPC dis-
patching is thus an active research area, see for instance [9] for an overview.

One of the challenges of the dispatching research is the amount of experimen-
tation necessary for evaluating and comparing various approaches in a controlled
1 http://www.prace-ri.eu/praceannualreports/.
2 http://www2.itif.org/2016-high-performance-computing.pdf.

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 169–184, 2018.
https://doi.org/10.1007/978-3-319-73353-1_12

http://www.prace-ri.eu/praceannualreports/
http://www2.itif.org/2016-high-performance-computing.pdf

170 C. Galleguillos et al.

environment. The experiments differ under a range of conditions with respect
to workload, the number and the heterogeneity of resources, and dispatching
method. Using a real HPC system for experiments is not realistic for the follow-
ing reasons. First, researchers may not have access to a real system. Second, it is
impossible to modify the hardware components of a system, and often unlikely to
access its WMS for any type of alterations. And finally, even with a real system
permitting modifications in its WMS, it is inconceivable to ensure that distinct
approaches process the same workloads, which hinders fair comparison. There-
fore, simulating a WMS in a synthetic HPC system is essential for conducting
controlled dispatching experiments. Unfortunately, currently available simula-
tors are not flexible enough to render customization in many aspects, limiting
the scope of their usage.

The contribution of this paper is the design and implementation of AccaSim,
an HPC simulator for workload management. AccaSim is an open source,
freely available library for Python, executable in any major operating system.
AccaSim is scalable and highly customizable, allowing to carry out large experi-
ments across different workload sources, resource settings, and dispatching meth-
ods. Moreover, AccaSim enables users to design novel advanced dispatchers
by exploiting information regarding the current system status, which can be
extended for including custom behaviors such as power consumption and fail-
ures of the resources. The researchers can use AccaSim to mimic any real system
by setting up the synthetic resources suitably, develop advanced such as power-
aware, fault-resilient dispatching methods, and test them over a wide range of
workloads by generating them synthetically or using real workload traces from
HPC users. As such, AccaSim an attractive tool for developing dispatchers and
conducting controlled experiments in HPC dispatching research.

This paper is organized as follows. After introducing the concept of WMS in
Sect. 2, we present in Sect. 3 the architecture and main features of AccaSim, and
recap its implementation, instantiation, and customization. In Sect. 4, we show
a case study to illustrate the use of AccaSim for evaluating dispatching methods
and highlight its scalability. We discuss the related work in Sect. 5 and conclude
in Sect. 6.

2 Workload Management System in HPC

A WMS is an important software of an HPC system, being the main access for
the users to exploit the available resources for computing. A WMS manages user
requests and the system resources through critical services. A user request con-
sists of the execution of a computational application over the system resources.
Such a request is referred to as job and the set of all jobs are known as workload.
The jobs are tracked by the WMS during all their states, i.e. from their submis-
sion time, to queuing, running, and completion. Once the jobs are completed,
the results are communicated to the respective users. Figure 1 depicts a general
scheme of a WMS.

AccaSim: An HPC Simulator for Workload Management 171

Fig. 1. HPC workload management system.

A WMS offers distinct ways to users for job submission such as a GUI and/or
a command line interface. A submitted job includes the executable of a computa-
tional application, its respective arguments, input files, and the resource require-
ments. An HPC system periodically receives job submissions. Some jobs may
have the same computational application with different arguments and input
files, referring to the different running conditions of the application in develop-
ment, debugging and production environments. When a job is submitted, it is
placed in a queue together with the other pending jobs (if there are any). The
time interval during which a job remains in the queue is known as waiting time.
The queued jobs compete with each other to be executed on limited resources.

A job dispatcher decides which jobs waiting in the queue to run next (schedul-
ing) and on which resources to run them (allocation) by ensuring high system
performance and QoS, such as high utilization of resources and high through-
put. The dispatching decision is generated according a policy using the current
system status, such as the queued jobs, the running jobs and the availability
of the resources. A suboptimal dispatching decision could cause resource waste
and/or exceptional delays in the queue, worsening the system performance and
the perception of its users. A (near-)optimal dispatching decision is thus a critical
aspect in WMS.

The dispatcher periodically communicates with a resource manager of the
WMS for obtaining the current system status. The resource manager updates
the system status through a set of active monitors, one defined on each resource
which primarily keeps track of the resource availability. The WMS systematically
calls the dispatcher for the jobs in the queue. An answer means that a set of jobs
are ready for being executed. Then the dispatching decision is processed by the
resource manager by removing the ready jobs from the queue and sending them
to their allocated resources. Once a job starts running, the resource manager
turns its state from “queued” to “running”. The resource manager commonly
tracks the running jobs for giving to the WMS the ability to communicate their

172 C. Galleguillos et al.

state to their users through the interface, and in a more advanced setting to
(let the users) submit again their jobs in case of resource failures. When a job is
completed, the resource manager turns its state from “running” to “completed”
and communicates its result to the interface to be retrieved by the user.

3 AccaSim

AccaSim enables to simulate the WMS of any real HPC system with minimum
effort and facilitates the study of various issues related to dispatching meth-
ods, such as feasibility, behavior, and performance, accelerating the dispatching
research process.

In the rest of this section, we first present the architecture and the main
features of AccaSim, and then recap its implementation, instantiation and cus-
tomization.

Fig. 2. AccaSim architecture.

3.1 Architecture and Main Features

AccaSim is designed as a discrete event simulator. The simulation is guided
by certain events that belong to a real HPC system. These events are mainly
collected from workload and correspond to the job submission, starting and com-
pletion times, referred to as Tsb, Tst and Tc, resp. The architecture of AccaSim
is depicted in Fig. 2. Since there are no real users for submitting jobs nor real
resources for computation during simulation, the first step for starting a simu-
lation is to define the synthetic system with its jobs and resources.

AccaSim: An HPC Simulator for Workload Management 173

The job submission component mimics the job submission of users. The main
input data is the workload provided either in the form of a file, corresponding
to the descriptions of the existing workloads, or in the form of an external work-
load generator producing synthetic workload descriptions based on statistical
data. The default reader subcomponent reads the input from a file in Standard
Workload Format (SWF)[11] and passes the parsed data to the job factory sub-
component for creating the synthetic jobs for simulation, keeping the information
related to their identification, submission time, duration and request of system
resources. The created jobs are then mapped to the event manager component,
simulating the job submission process. The main data input is customizable in
the sense that any workload description file and any synthetic workload genera-
tor can be used. The reader can be adapted easily for this purpose to parse any
workload description file format or to read from any workload source.

Event manager is the core component of the simulator, which mimics the
behaviour of the synthetic jobs and the presence of the synthetic resources, and
manages the coordination between the two. Differently from a real WMS, the
job manager subcomponent tracks the jobs during their artificial life-cycle by
maintaining all their possible states “loaded”, “queued”, “running” and “com-
pleted” via the events handled by the event manager. During simulation, at each
time point t:

– the event manager checks if t = Tsb for some jobs. If the submission time
of a job is not yet reached, the job manager assigns the job the “loaded”
state meaning in the real context that the job has not yet been submitted. If
instead the submission time of a job is reached, the job manager updates its
status to “queued”;

– the dispatcher component gives a dispatching decision on (the subset of) the
queued jobs, assigning them an immediate starting time. The event manager
reveals that t = Tst for some waiting jobs and consequently the job manager
updates their status to “running”;

– the event manager checks if t = Tc for currently running jobs. Since these
jobs were dispatched in a previous time point, their starting and completion
times are known (the completion time of a job is the sum of its starting time
and duration). If the completion time of a job is reached, the job manager
updates its status to “completed”.

The resource manager subcomponent of the event manager defines the syn-
thetic resources of the system using a system configuration file in input, and then
mimics their allocation and release at the job starting and completion times.
Hence, at a time point t, if a job starts, the resource manager allocates for the
job the resources decided by the dispatcher ; and if it completes, the resource
manager releases its resources. The system configuration file can be customized
according to the needed types of resources in the simulation.

AccaSim is designed to maintain a low consumption of memory for scalability
concerns, therefore job loading is performed in an incremental way, loading only
the jobs that are near to be submitted at the corresponding simulation time, as

174 C. Galleguillos et al.

opposed to loading them once and for all. Moreover, completed jobs are removed
from the system so as to release space in the memory.

The dispatcher component responsible for generating a dispatching decision
interacts with the event manager for retrieving the current system status regard-
ing the queued jobs, the running jobs, and the availability of the resources.
Note that the dispatcher is not aware of the job durations. This information
is known only by the event manager to stop the jobs at their completion time
in a simulated environment. The scheduler and the allocator subcomponents
of the dispatcher are customizable according to the methods of interest. Cur-
rently implemented and available methods for scheduling are: First In First Out
(FIFO), Shortest Job First (SJF), Longest Job First (LJF) and Easy Backfilling
with FIFO priority [20]; and for allocation: First Fit (FF) which allocates to the
first available resource, and Consolidate (C) which sorts the resources by their
current load (busy resources are preferred first), thus trying to fit as many jobs
as possible on the same resource, to decrease the fragmentation of the system.

It has been shown in the last decade that system performance can be
enhanced greatly if the dispatchers are aware of additional information regarding
the current system status, such as power consumption of the resources [2,5,6,24],
resource failures [7,15], and the heating/cooling conditions [3,23]. The addi-
tional data component of AccaSim provides an interface to integrate such extra
data to the system which can then be utilized to develop and experiment with
advanced dispatchers which are for instance power-aware, fault-resilient and
thermal-aware. The interface lets receive the necessary data externally from the
user, make the necessary calculations together with some input from the event
manager, all customizable according to the need, and pass back the result to the
event manager so as to transfer it to the dispatcher.

We conclude the overview of the architecture with the tools component and
the output data which help the users to follow the simulation process and ana-
lyze the results. The watcher allows tracking the current system status, such as
the number of queued jobs, the running jobs, the completed jobs, the availability
of the resources, etc. The visualization instead shows in a GUI a representation
of the allocation of resources by the running jobs during the simulation. The
output data are of two types: (i) the data regarding the execution of the dis-
patching decision for each job, and (ii) the data related to the simulation process,
specifically the CPU time required by the simulation tasks like the generation of
the dispatching decision, job loading etc. Such data is useful for analyzing the
dispatching results and the performance of the simulation process.

To sum up the main features, AccaSim is customizable in its workload source,
resource types, and dispatching methods; AccaSim enables users to design novel
advanced dispatchers by exploiting information regarding the current system
status, which can be extended for including custom behaviors such as power
consumption and failures of the resources; and Accasim provides tools and out-
put data to follow the simulation process and analyze the results.

AccaSim: An HPC Simulator for Workload Management 175

3.2 Implementation, Instantiation and Customization

AccaSim is implemented in Python (compatible with version 3.4 or above) which
is an interpreted, object-oriented, high-level programming language, freely avail-
able for any major operating system, and is well established with a large commu-
nity in academia and industry3. All the dependencies used by AccaSim are part of
any Python distribution, except the matplotlib and psutil packages which can be
easily installed using the pip management tool. The source code is available under
MIT License, together with a documentation at http://accasim.readthedocs.io/
en/latest/. A release version is available as a package in the PyPi repository4.

The highly customizable characteristic of AccaSim is driven by its abstract
classes and the inheritance capabilities of Python. The UML diagram of the
main classes is shown in Fig. 3 where the abstract classes associated to the cus-
tomizable components are highlighted in bold.

Fig. 3. AccaSim class diagram.

The starting point for launching a simulation is to instantiate the
hpc simulator class. It must receive as arguments at least a workload description
– such as a file path in SWF format, a system configuration file path in JSON

3 https://www.python.org/events/python-events/.
4 https://pypi.org.

http://accasim.readthedocs.io/en/latest/
http://accasim.readthedocs.io/en/latest/
https://www.python.org/events/python-events/
https://pypi.org

176 C. Galleguillos et al.

format, and a dispatcher instance, with which the synthetic system is generated
and loaded with all the default features. An example instantiation is detailed in
Fig. 4.

Fig. 4. A sample AccaSim instantiation.

The workload description file is handled by an implementation of the abstract
reader class, which is default reader by default. The file is read and parsed by
the read() and parse() methods. AccaSim can be customized in its workload
description file format by modifying these methods suitably. AccaSim can as
well be customized so as to read workloads from any source, not necessarily
from a file, by implementing the abstract reader class appropriately.

The system configuration file, which is processed by the resource manager
class, defines the synthetic resources. The file has two main contents. The first
specifies the resource types and their quantity in each group of nodes, which is
useful for modeling heterogeneous HPC systems. The second instead determines
the number of nodes of each group. See Fig. 5 for an example. The user is free
to mimic any real system by customizing this configuration file suitably.

The dispatcher instance is composed by implementations of the abstract
scheduler base and allocator base classes. Both classes must implement their
main methods, schedule() and allocate() respectively, to deal with the scheduling
and the allocation decisions of the dispatching. In this illustrative instantiation
of the hpc simulator class, fifo sched implements scheduler base using FIFO,
whereas ff alloc implements allocator base using FF, and both fifo sched and
ff alloc classes are available in the library for importing, as done in lines 2–3 of
Fig. 4. AccaSim can be customized in its dispatching method by implementing
the abstract scheduler base and allocator base classes as desired.

After instantiating the hpc simulator class in line 10 of Fig. 4, the simula-
tion process starts in line 11 with the start simulation() method which has the
following optional arguments:

simulator.start simulation(debug=True, watcher=True,visualization=True,
↪→ additional data=None)

which serve to require the use of a debugger, as well as the watcher, the visualiza-
tion, and the additional data components of the simulator. The additional data

AccaSim: An HPC Simulator for Workload Management 177

argument is an array of objects where each object is an implementation of the
abstract additional data class, giving the possibility to customize AccaSim in
terms of the extra data that the user may want to provide to the system for
dispatching purposes.

4 Case Study

In this section, we show a case study to illustrate the use of AccaSim for evalu-
ating dispatching methods in a simulated environment and highlight AccaSim’s
scalability. The experiments are done on a Macbook Pro machine with Intel Dual
Core i5@2.2 Ghz CPU, 8 GB of RAM, and Python 3.6.

Workload source and synthetic system configuration. We rely on a public
workload trace collected from the Seth cluster5 belonging the High Performance
Computing Center North (HPC2N) of the Swedish National Infrastructure for
Computing. The workload trace file includes 200,735 jobs spanning through 4
years, from July 2002 to January 2006, and is available on-line6 in the SWF
format. Seth was built in 2001 and is already retired by now. It ranked 59th in
Top500 list7, the world’s 500 fastest computers. It was composed of 120 nodes,
each node with two AMD Athlon MP2000 + dual core processors with 1.667 GHz
and 1 GB of RAM. For high parallel performance, the system was equipped
with a low latency network. Because multiple jobs can co-exist on the same
node, we consider a better representation of the system, made of cores instead
of processors. Therefore, we define the synthetic system in the configuration file
with 120 nodes each with 4 cores and 1 GB of RAM, as depicted in Fig. 5.

Fig. 5. System configuration of Seth.

Dispatching Methods. As we previously mentioned in Sect. 3.1, currently
implemented and available methods for scheduling are: First In First Out
(FIFO), Shortest Job First (SJF), Longest Job First (LJF) and Easy Backfilling
with FIFO priority (EBF); and for allocation are: First Fit (FF) and Consol-
idate (C). In the experiments, we consider every combination of the available
5 https://www.hpc2n.umu.se/resources/hardware/seth.
6 http://www.cs.huji.ac.il/labs/parallel/workload/l hpc2n/index.html.
7 http://www.top500.org/.

https://www.hpc2n.umu.se/resources/hardware/seth
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
http://www.top500.org/

178 C. Galleguillos et al.

scheduling and allocation methods, which gives rise to the 8 dispatching meth-
ods: FIFO-FF, FIFO-C, SJF-FF, SJF-C, LJF-FF, LJF-C, EBF-FF, and EBF-C.
To employ the various dispatching methods, we modify lines 2–3 and 8–9 of Fig. 4
so as to import from the library and use the corresponding implementations of
the abstract scheduler base and allocator base classes. Then we run AccaSim 8
times on the entire workload each time with a different dispatching method.

Scalability of AccaSim. We parallelize the experiments in two different
threads. The usage of CPU time and memory of each experiment are reported in
Table 1, where the time columns correspond to the total CPU time spent by the
simulator and the time spent in generating the dispatching decision; whereas
the memory columns give the average and the maximum amount of memory
utilized over the total simulation time points. In the first thread, FIFO and LJF
based experiments are completed in 110 min, while in the second, the SJF and
EBF based experiments are completed in 193 min. Each of the experiments took
around 30 min. The exceptions are the EBF-based experiments which require
around an hour because the underlying dispatching methods are computation-
ally more intensive. As can be observed in the table, the time spent by the
simulator, other than generating the dispatching decision, is constant (around
22 min) across all the experiments. The total CPU usage is thus highly dependent
on the complexity of the dispatcher.

Table 1. CPU time and memory usage of the simulator.

Thread 1 Thread 2

Simulator Time (MM:SS) Memory (MB) Simulator Time (MM:SS) Memory (MB)

Total Disp. Avg. Max. Total Disp. Avg. Max.

FIFO-FF 24:44 03:23 27.8 41.4 SJF-FF 25:48 05:19 32.5 54.7

FIFO-C 26:31 04:43 27.5 40.9 SJF-C 27:19 06:14 32.5 55.4

LJF-FF 29:45 07:26 32.7 54.7 EBF-FF 68:27 46:15 26.8 40.2

LJF-C 30:26 08:12 32.9 54.7 EBF-C 71:43 48:31 26.89 40.2

As for the memory usage, thanks to the incremental job loading and job
removal capabilities, AccaSim consumes low memory. The average memory usage
is around 30 MB with a peak at 55 MB across all the experiments. Such low
memory usage makes it possible to execute experiments in parallel. Considering
the large size of the workload, these numbers are very reasonable, supporting
the claim that AccaSim is scalable.

Evaluation of the dispatching methods. The dispatching methods can be
evaluated and compared from different perspectives thanks to AccaSim’s tools
and output data. In Fig. 6, sample snapshots of the watcher and the visualization

AccaSim: An HPC Simulator for Workload Management 179

tools taken at certain time points during the FIFO-FF experiment are shown.
The watcher receives command line queries to show a variety of information
regarding the current synthetic system status, such as the queued jobs, the run-
ning jobs, the completed jobs, resource utilization, the current simulation time
point, as well as the total CPU time elapsed by the simulator. The visualization
tool summarizes the allocation of resources by the running jobs each indicated
with a different color, using an estimation (such as wall-time) for job duration.
The display is divided by the types of resources. In our case study, the core and
memory usage are shown separately.

Fig. 6. Following a simulation process.

The output file contains two types of data. The first regards the execution of
the dispatching decision for each job, such as the starting time, the completion
time and its resource allocation, which gets updated each time a job completes its
execution. This type of data can be utilized to contrast the dispatcher methods in
terms of their effect on system resource utilization: how many resources are used
and to what extend they are consumed. Alternatively, the data can be utilized to
compare them in terms of their impact on system throughput, using some metrics
like the well-know job slowdown [10]. Slowdown of a job j is a normalized waiting
time and is defined as slowdownj = (Tw,j + Tr,j)/Tr,j where Tw,j is the waiting
time and Tr,j is the duration of job j. A job waiting more than its duration has a
higher slowdown than a job waiting less than its duration. Another useful metric
could be the queue size, which is the number of jobs waiting in the queue at a
given time point. The lower the slowdown and the queue size are, the higher the
throughput is.

In Fig. 7, we show the distributions of the slowdown and the queue size for
each of the 8 experiments in box-and-whisker plots. We can see that SJF and
EBF based dispatching methods achieve the best results, independently of their
allocation methods probably due to the homogeneous nature of the synthetic
system. Their slowdown values are mainly lower than the median of the FIFO

180 C. Galleguillos et al.

and LJF based methods. SJF maintains overall lower slowdown values than the
other methods, but a higher mean than the EBF. SJF maintains also slightly
higher mean in the queue size than the EBF. The scheduling policy of EBF
does not sort the jobs, like SJF, instead it tries to fit as many jobs as possible
into the system, which can explain the best average results achieved in terms of
slowdown and queue size.

Fig. 7. QoS of the dispatchers.

The second type of output data regards the simulation process, specifically
the CPU time required by the simulation tasks like job loading and generation of
the dispatching decision, which gets updated at each simulation time point. This
type of data can be used to evaluate the performance of the dispatchers in terms
of the time they incur for generating a decision. In Fig. 8a, we report the average
CPU time required at a simulation time point for each of the 8 experiments.
In accordance with Table 1, the time spent in simulation, other than generating
the dispatching decision, is constant (around 2 ms in this case) across all the
experiments and the EBF based methods spent much more time in generating
a decision than the others. In Fig. 8b, we instead analyze the scalability. Specifi-
cally, we report for each queue size the average CPU time spent at a simulation
time point in generating a dispatching decision for each of the 8 experiments.
While all the dispatchers scale well, the EBF based methods require more CPU
time for processing bigger queue sizes, due to their scheduling policy which tries
to fit as many jobs as possible into the system.

Our analysis restricted to the considered workload and resource settings
reveals that, while the EBF based dispatchers give the best throughput, they are
much more costly in generating a dispatching decision. Simple dispatchers based
on SJF are valid alternatives with their excellent scalability and high through-
put comparable to the EBF based methods. The job durations in the current
workload are distributed as 56,63% short (duration under 1 h), 34,66% medium
(duration between 1 and 12 h), and 8,71% long (duration over 12 h). The syn-
thetic system has a very homogeneous structure with all the nodes having the

AccaSim: An HPC Simulator for Workload Management 181

Fig. 8. Performance of the dispatchers.

same number of the same type of resources. It would be interesting to experi-
ment further with the dispatching methods using workloads with different job
duration distributions and more heterogeneous resource structures. Thanks to
AccaSim, such experiments can be conducted smoothly.

5 Related Work

HPC systems have been simulated from distinct perspectives, for instance to
model their network topologies [1,14,17] or storage systems [18,21]. There also
exist HPC simulators dealing with the duties of a WMS, as in our work, which
are mainly focused on job submission, resource management and job dispatching.

To the best of our knowledge, the most recent WMS simulator is presented
in [19]. The Scheduling Simulation Framework (ScSF) emulates a real WMS,
Slurm Workload Manager8 which is popular in many HPC systems. In [16,22]
Slurm is modified to provide job submission, resource management and job dis-
patching through distinct daemons which run in diverse virtual machines and
which communicate over RPC calls, and dedicated simulators are implemented.
ScSF extends these simulators with automatic generation of synthetic work-
load descriptions based on statistical data, but does not give the possibility to
read real workload descriptions, for instance from a file, for job submission. The
dependency on a specific WMS does not render the customization of the WMS,
and together with the additional dependency on virtual Machines and MySQL,
the set up of ScSF is rather complex. Moreover, ScSF requires a significant
amount of resources in the machines where the simulation will be executed.

In [12], an energy aware WMS simulator, called Performance and Energy
Aware Scheduling (PEAS) simulator is described. With the main aim being to
minimize the power consumption and to increase the throughput of the system,

8 Slurm Workload Manager: https://slurm.schedmd.com/.

https://slurm.schedmd.com/

182 C. Galleguillos et al.

PEAS uses predefined dispatching methods and workload description file format,
and the system power calculations are based on a fixed data from SPEC bench-
mark9 considering the entire processor at its max load. PEAS is available only
as GNU/Linux binary, therefore it is not customizable in any of these aspects.

Brennan et al. [8] define a framework for WMS simulation, called Cluster
Discrete Event Simulator (CDES), which uses predefined scheduling algorithms
and relies on specific resource types. Although CDES allows reading real work-
load descriptions for job submission, as apposed to having to generate them
automatically as in ScSF, all jobs are loaded at the beginning which can hinder
the performance when experimenting with a large number of jobs. Moreover, the
implementation is not available which prevents any form of customization.

In [13], a WMS simulator based on a discrete event library called Omnet++10

is introduced. Similar to ScSF, only automatically generated synthetic workload
descriptions are accepted for job submission. Since Omnet++ is primarily used
for building network simulators and is not devoted to workload management,
there exist issues such as the inability to consider different types of resources as
in CDES. Moreover, due to lack of documentation, it is hard to understand to
what extend the simulator is customizable.

The main issues presented in the existing WMS simulators w.r.t. to AccaSim
can be summarized as complex set up and need of many virtual machines and
resources, inflexibility in the workload source, performance degrade with large
workloads, no customization of the WMS, and unavailable or undocumented
implementation.

6 Conclusions

In this paper, we presented AccaSim, a library for simulating WMS in HPC
systems, which offers to the researchers an accessible tool to aid them in their
HPC dispatching research. The library is open source, implemented in Python,
which is freely available for any major operating system, and works with depen-
dencies reachable in any distribution, making it easy to use. AccaSim is scalable
and is highly customizable, allowing to carry out large experiments across dif-
ferent workload sources, resource settings, and dispatching methods. Moreover,
AccaSim enables users to design novel advanced dispatchers by exploiting infor-
mation regarding the current system status, which can be extended for including
custom behaviors such as power consumption and failures of the resources.

In future work, we plan to do experimental comparison to other simulators
and assess further the scalability of AccaSim in terms of distinct system config-
urations. Besides, in order to aid the users further in evaluating dispatchers, we
are currently working on showing more information in the tools regarding system
utilization, such as the amount of allocation of each resource individually, and
on automatically generating the performance and QoS plots used in this paper.

9 https://www.spec.org/power ssj2008/.
10 http://www.omnetpp.org/.

https://www.spec.org/power_ssj2008/
http://www.omnetpp.org/

AccaSim: An HPC Simulator for Workload Management 183

In addition, we plan to externalize the visualization tool by executing it in an
independent application to reduce the simulation resource usage.

Acknowledgments. C. Galleguillos is supported by Postgraduate Grant PUCV 2017.
We thank Alina Ŝırbu for fruitful discussions on the work presented here.

References

1. Acun, B., Jain, N., Bhatele, A., Mubarak, M., Carothers, C.D., Kalé, L.V.: Pre-
liminary evaluation of a parallel trace replay tool for HPC network simulations. In:
Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E.,
Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander,
M. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 417–429. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27308-2 34

2. Auweter, A., Bode, A., Brehm, M., Brochard, L., Hammer, N., Huber, H., Panda,
R., Thomas, F., Wilde, T.: A case study of energy aware scheduling on SuperMUC.
In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
394–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07518-1 25

3. Banerjee, A., Mukherjee, T., Varsamopoulos, G., Gupta, S.K.: Integrating cooling
awareness with thermal aware workload placement for HPC data centers. Sustain.
Comput. Inf. Syst. 1(2), 134–150 (2011)

4. Blazewicz, J., Lenstra, J.K., Kan, A.H.G.R.: Scheduling subject to resource con-
straints: classification and complexity. Discrete Appl. Math. 5(1), 11–24 (1983)

5. Bodas, D., Song, J., Rajappa, M., Hoffman, A.: Simple power-aware scheduler
to limit power consumption by HPC system within a budget. In: Proceedings of
E2SC@SC, pp. 21–30. IEEE (2014)

6. Borghesi, A., Collina, F., Lombardi, M., Milano, M., Benini, L.: Power capping
in high performance computing systems. In: Pesant, G. (ed.) CP 2015. LNCS,
vol. 9255, pp. 524–540. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23219-5 37

7. Brandt, J.M., Debusschere, B.J., Gentile, A.C., Mayo, J., Pébay, P.P., Thompson,
D.C., Wong, M.: Using probabilistic characterization to reduce runtime faults in
HPC systems. In: Proceedings of CCGRID, pp. 759–764. IEEE CS (2008)

8. Brennan, J., Kureshi, I., Holmes, V.: CDES: an approach to HPC workload mod-
elling. In: Proceedings of DS-RT, pp. 47–54. IEEE CS (2014)

9. Bridi, T., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A constraint
programming scheduler for heterogeneous high-performance computing machines.
IEEE Trans. Parallel Distrib. Syst. 27(10), 2781–2794 (2016)

10. Feitelson, D.G.: Metrics for parallel job scheduling and their convergence. In: Feitel-
son, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 188–205. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 11

11. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-
loads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

12. Gómez-Mart́ın, C., Vega-Rodŕıguez, M.A., Sánchez, J.L.G.: Performance and
energy aware scheduling simulator for HPC: evaluating different resource selec-
tion methods. Concurrency Comput. Pract. Exp. 27(17), 5436–5459 (2015)

13. Hurst, W.B., Ramaswamy, S., Lenin, R.B., Hoffman, D.: Modeling and simula-
tion of HPC systems through job scheduling analysis. In: Conference on Applied
Research in Information Technology. Acxiom Laboratory of Applied Research
(2010)

https://doi.org/10.1007/978-3-319-27308-2_34
https://doi.org/10.1007/978-3-319-07518-1_25
https://doi.org/10.1007/978-3-319-23219-5_37
https://doi.org/10.1007/978-3-319-23219-5_37
https://doi.org/10.1007/3-540-45540-X_11

184 C. Galleguillos et al.

14. Jain, N., Bhatele, A., White, S., Gamblin, T., Kalé, L.V.: Evaluating HPC networks
via simulation of parallel workloads. In: Proceedings of SC, pp. 154–165. IEEE CS
(2016)

15. Li, Y., Gujrati, P., Lan, Z., Sun, X.: Fault-driven re-scheduling for improving
system-level fault resilience. In: Proceedings of ICPP, pp. 39. IEEE CS (2007)

16. Lucero, A.: Simulation of batch scheduling using real production-ready software
tools. In: Proceedings of IBERGRID, pp. 345–356, Netbiblo (2011)

17. Mubarak, M., Carothers, C.D., Ross, R.B., Carns, P.H.: Enabling parallel sim-
ulation of large-scale HPC network systems. IEEE Trans. Parallel Distrib. Syst.
28(1), 87–100 (2017)

18. Nuñez, A., Fernández, J., Garćıa, J.D., Garćıa, F., Carretero, J.: New techniques
for simulating high performance MPI applications on large storage networks. J.
Supercomput. 51(1), 40–57 (2010)

19. Rodrigo, G.P., Elmroth, E., Östberg, P.-O., Lavanya, R.: ScSF: a scheduling sim-
ulation framework. To appear in the Proceedings of JSSPP. Springer (2017)

20. Skovira, J., Chan, W., Zhou, H., Lifka, D.: The EASY — LoadLeveler API project.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1996. LNCS, vol. 1162, pp. 41–47.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0022286

21. Snyder, S., Carns, P.H., Latham, R., Mubarak, M., Ross, R.B., Carothers, C.D.,
Behzad, B., Luu, H.V.T., Byna, S., Prabhat, S.: Techniques for modeling large-scale
HPC I/O workloads. In: Proceedings of PMBS@SC, pp. 5:1–5:11. ACM (2015)

22. Stephen, T., Benini, M.: Using and modifying the BSC slurm workload simulator,
Technical report, Slurm User Group Meeting (2015)

23. Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient thermal-aware task
scheduling for homogeneous high-performance computing data centers: a cyber-
physical approach. IEEE Trans. Parallel Distrib. Syst. 19(11), 1458–1472 (2008)

24. Zhou, Z., Lan, Z., Tang, W., Desai, N.: Reducing energy costs for IBM blue gene/P
via power-aware job scheduling. In: Desai, N., Cirne, W. (eds.) JSSPP 2013. LNCS,
vol. 8429, pp. 96–115. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43779-7 6

https://doi.org/10.1007/BFb0022286
https://doi.org/10.1007/978-3-662-43779-7_6
https://doi.org/10.1007/978-3-662-43779-7_6

SherlockFog: Finding Opportunities for MPI
Applications in Fog and Edge Computing

Maximiliano Geier1 and Esteban Mocskos1,2(B)

1 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina

{mgeier,emocskos}@dc.uba.ar
2 Centro de Simulación Computacional p/Aplic. Tecnológicas, CSC-CONICET,

Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina

Abstract. The Fog and Edge Computing paradigms have emerged as
a solution to limitations of the Cloud Computing model to serve a huge
amount of connected devices efficiently. These devices have unused com-
puting power that could be exploited to execute parallel applications.

In this work we present SherlockFog, a tool to experiment with par-
allel applications in Fog and Edge network setups, specially focused on
the MPI based applications. We propose a methodology to study feasi-
bility of running parallel applications in Fog or Edge environments. We
validate this tool contrasting experimental results with theoretical pre-
dictions reaching remarkable agreement between both.

We analyze the effect of worsening network conditions for several
benchmarks of the MPI version of NAS Parallel Benchmarks on fog-
like network topologies. Our results show that this impact is sublinear
in some cases, opening up opportunities to use distributed, increasingly
ubiquitous computational resources.

Keywords: Distributed systems · Fog and Edge Computing
Parallel applications · Benchmarks

1 Introduction

In the last years, the Cloud Computing model has emerged as an alternative to
owning and managing computing infrastructure, thus reducing operation costs.
These operations provide an efficient solution to serve several types of applica-
tions, such as web servers, databases, storage and batch processing. However,
it is not without limitations. As the Cloud is usually farther away from the
clients, latency-sensitive applications could suffer from performance degradation
in this setup. The Fog Computing model is defined by Bonomi et al. [6] as a
highly virtualized platform that provides compute, storage and networking ser-
vices between end devices and the Cloud. This model allows certain services
to be offloaded to end nodes, thus enabling services with lower latency require-
ments. Going further, the proliferation of IoT devices with increasing computing
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 185–199, 2018.
https://doi.org/10.1007/978-3-319-73353-1_13

186 M. Geier and E. Mocskos

power has given an identity to nodes at the edge of the network, defining the
Edge Computing model [17]. In this model, nodes at the edge of the network
cooperate among themselves to provide solutions at lower response time or band-
width requirements, while improving data safety and privacy with respect to
handling processing at the Cloud. As the number of nodes at the edge increase,
it is also becoming increasingly difficult to serve all clients at the cloud with
this infrastructure in terms of server load and required bandwidth. End nodes
are usually slower and have worse connectivity than the main infrastructure, but
both aspects have been steadily improving, enabling execution of more and more
applications.

Scientific computing has gone down another path. The standard infrastruc-
ture to support this type of applications is cluster computing. It is commonplace
that a cluster is homogeneous in computing power and topology (i.e. every node
is connected to each other directly and runs at the same speed). This homogene-
ity allows developers not to worry about process placement. A variation that has
appeared during the last decade is multi-core clusters. In this case, processes run-
ning on the same computer can communicate with each other faster than with
processes on different nodes. Multi-cores are Symmetric Multiprocessing (SMP)
machines: each node acts as an homogeneous cluster of CPU cores, which is con-
nected to the outer world homogeneously as well. This paradigm is ubiquitous
in scientific computing, driving research and improvements in simulation models
and techniques.

The standard API used in scientific applications is MPI [11,12]. It has been
designed to provide an abstraction to handle data exchange and synchroniza-
tion among processes in the same node or in different ones. Developers of MPI
implementations target their code to be used on clusters, often requiring full
node connectivity and implementing optimizations for collective operations that
work more efficiently in homogeneous environments. MPI is also very sensitive to
network changes, bringing the computation to a halt if just one node disconnects
or changes its network location.

This begets the question of whether it is possible to do scientific comput-
ing in the Edge Computing paradigm, taking advantage of unused computing
power of nodes at the edge of network. The Edge/Fog paradigm poses new chal-
lenges in this regard, such as the variability on the processing power of nodes
and the volatility of nodes due to the dynamic nature of the network in terms
of churn, latency and bandwidth. Even though Edge Computing could provide
better latency than having to offload data to do computing on the Cloud, spe-
cialized clusters are connected using a faster dedicated network. This difference
could impair application performance greatly, making it unfeasible to use such an
infrastructure. We approach this question by introducing a methodology to ana-
lyze distributed scientific applications in an heterogeneous environment, using
different emulated network settings. It is important to note that assessing per-
formance degradation is not easy from a theoretical standpoint. Factors such
as link bandwidth and latency, communication patterns, message sizes, traffic
congestion issues and implementation details of the underlying communication
framework make it complex to model accurately.

SherlockFog: MPI in Fog and Edge Computing 187

Most work on leveraging MPI in heterogeneous environments has been
focused on multi-core cluster architectures. This has been a natural step from
traditional homogeneous clusters since the introduction of this type of processors
into the market.

In this work, we present SherlockFog, a tool that aims to bridge the gap
between existing scientific computing applications and Edge/Fog Computing.
Our approach explores feasibility of running MPI applications in Edge Comput-
ing environments. This kind of architecture is inherently dynamic and has differ-
ent topologies, performance characteristics and exploitable computing power per
node than typical multi-core clusters. MPI on Edge Computing is still mostly
unexplored, since computing power and communication capabilities of fog and
edge nodes have only been made possible to compute High Performance Com-
puting (HPC) applications very recently. Since implementations of existing MPI
libraries have not been designed for this type of environments, providing a frame-
work to test the library itself is also a key feature we have considered in our
approach.

This work is focused on MPI as it is widely used by the scientific applications
community, aiming to reuse existing code. However, our proposal provides a
framework that allows the full software stack to be used unmodifed and it is
therefore not limited to MPI applications.

2 Related Work

We discuss some representative examples of tools and metholodogies that can
support the use of MPI applications in heterogeneous environments.

Brandfass et al. [7] propose a rank-reordering scheme to increase performance
of unstructured Computer Fluid Dynamics (CFD) code on parallel multi-cores.
This optimization produces a mapping of MPI processes to CPU cores such
that main communication happens within compute nodes, exploiting the fact
that intra-node communication is much faster than inter-node in this kind of
architectures, using characteristics of the target application. Since load per pro-
cess is not uniform in unstructured code, it makes sense to reorder processes to
reduce frontier communication. Dichev et al. [10] show two novel algorithms for
the scatter and gather MPI primitives that improve performance in multi-core
heterogeneous platforms. This work focuses on optimizing broadcast trees used
by most MPI implementations using a weight function that depends on topol-
ogy information. However, the user can not experiment using virtual topologies,
thus difficulting the study of MPI applications in edge-like environments. Mercier
and Clet-Ortega [15] study a more sophisticated process placement policy that
takes into account the architecture’s memory structure to improve multi-core
performance. This proposal is also not suitable for our purposes since the tar-
get platform is potentially dynamic and virtual topologies cannot be analyzed.
Navaridas et al. [16] study process placement in torus and fat-tree topologies
through scheduling simulation using synthetic workloads. This work relies on an
execution model which would have to be adapted to study our target platform.

188 M. Geier and E. Mocskos

Simulation tools are also widely used to analyze distributed systems. This
approach allows the user to explore environments that are difficult to set up
in real life. In this case, the application is executed completely in a simulated
environment, be it online or offline. This approach usually requires the user
to modify application code in order to use the simulator. In the offline case,
execution traces must be generated for a defined set of input parameters that
are then fed to the simulator. A few representative examples thereof follow:

NS-3 [3] is a widely-used full-stack detailed discrete event simulator designed
for network applications. However, since the simulator is not a parallel appli-
cation itself, it is not possible to scale simulation of MPI applications beyond
tens of nodes. It does not provide mechanisms to transform MPI applications
directly into NS-3 simulations. An extension called DCE (Direct Code Execu-
tion) [2] wraps C library calls to be simulated by NS-3. However, this virtual C
library is limited and does not implement all system calls required to run MPI
applications.

SimGrid [8] is another widely used discrete event simulator. It is aimed at
simulating large-scale distributed systems efficiently. Moreover, it provides an
online mechanism to execute MPI applications by wrapping MPI calls to the
simulator engine, called SMPI [9]. This API allows MPI applications to be ported
to SimGrid simulations easily if the source code is available. In order to scale
simulations on a single node, allowing up to thousands of simulated nodes, Sim-
Grid implements a simplified communication model. While this simulator allows
to experiment using heterogeneous network topologies, its communication mod-
els have only been validated for performance prediction accuracy on fine-tuned
homogeneous environments. Moreover, this approach doesn’t allow the user to
experiment with different MPI libraries. The behavior of the HPC application
itself, at the MPI primitives level, relies on implementation details of the simu-
lation engine.

Dimemas [1] is a performance analysis tool for MPI applications, which is
able to simulate execution offline on a given target architecture, ranging from
single- or multi-core networked clusters to heterogeneous systems. Performance
is calculated by means of replaying the execution trace of an application on
a built-in simulator. Similarly to SimGrid, this approach relies on a particular
implementation of MPI primitives and the communication model itself. We aim
towards building a complete framework for analyzing distributed applications on
Edge Computing, whereas simulation forces a particular model which depends
deeply on the tool.

In all aforementioned simulation tools, traffic is simulated using a model that
depends on the particular simulator implementation and on user-provided input
parameters. Our work focuses not just on the applications themselves, but also
on building a framework for analyzing and developing distributed applications
and support libraries on the edge of the network.

Another approach is network emulation, which consists of building the exe-
cution environment using real nodes on a virtual network topology. Emulation
allows using the same software environment as it would be used in a real system,

SherlockFog: MPI in Fog and Edge Computing 189

while providing different network conditions. This solves modelling the applica-
tion and the communication framework. Several tools make use of traffic shap-
ing facilities in modern operating systems to emulate the network and run dis-
tributed applications on it, but none of them focus on MPI applications in het-
erogeneous architectures. We cite a few examples:

Lantz et al. [14] present Mininet, a tool to emulate Software-Defined Net-
works (SDNs) in a single host. It leverages network namespaces and traffic shap-
ing technologies of the Linux operating system to instantiate arbitrary network
topologies. This tool requires virtual nodes to execute on a single host, impair-
ing scalability. Moreover, as isolation occurs only at the network level, intelligent
MPI implementations can determine that virtual hosts reside on the same real
host and thus communicate more efficiently than expected.

Wette et al. [18] extend Mininet in order to span an emulated network over
several real hosts. However, it does not address design limitations in the original
tool that prevent it from running MPI code, such as hostname isolation on
namespaces that share a filesystem.

White et al. [19] propose Emulab, a shared testbed that allows running MPI
code on it, but it has dedicated hardware requirements that make it expen-
sive to self-deploy. While it is possible for researchers to use the shared testbed
at University of Utah, there is very little control of job allocation and band-
width usage, and is therefore not suitable for performance analysis of CPU and
network-intensive applications.

3 Methodology

We propose a novel methodology to support the analysis and porting of dis-
tributed computing applications to be executed following the paradigm of Edge
Computing. Our proposal focus on the impact of different traffic patterns in
applications. We have focused our work on MPI applications, as it is the most
widely used API for message-passing distributed computing, but our approach
is valid for other distributed programming models.

Figure 1 shows the process schematically.

1. The user selects an application and a topology and creates an experiment
script for SherlockFog to deploy it on a set of physical nodes.

2. SherlockFog connects to every node and initializes network namespaces for
each virtual node.

3. Virtual links are generated to match input topology.
4. Static routing is used to allow applications on each namespace to communi-

cate to each other.

The tool allows the user to change network parameters during the run. This
process can be repeated, comparing different topologies or input parameters.
Application output is then analyzed, comparing behavior on different scenarios.

In the next paragraphs, we present the tool further and show the topolo-
gies we have used in our experiments. Moreover, we describe the experimental
methology in detail.

190 M. Geier and E. Mocskos

Fig. 1. SherlockFog allows the user to analyze application behavior while varying net-
work topologies and their properties in a reproducible procedure.

3.1 SherlockFog: A Distributed Experimental Framework to Enable
Fog and Edge Computing

SherlockFog is a tool that takes care of automating the deployment of a given
topology and running the experiments. It makes extensive use of the ip tool–
found on most GNU/Linux installations–to set up virtual Ethernet interfaces on
Linux Network Namespaces. These interfaces are cloned using the macvlan fea-
ture1. A pair is connected by assigning IP addresses in the same point-to-point
subnet2 to both endpoints. Traffic flows through the carrier of the host network
interface. This new interface has different MAC address and configuration (eg.
name resolution dictionary, firewall, ARP and routing tables). Routing is also
configured statically on every namespace in order to match the input topology.
All virtual nodes act as routers, forwarding packets to its neighbors. Moreover,
ARP is disabled on all virtual interfaces to prevent virtual nodes which are not
neighbors in the input topology to find each other by sending ARP requests,
thus bypassing our configuration. An SSH server is brought up on every con-
tainer automatically to be able to run MPI applications. It runs on a different
UTS namespace3, whose hostname matches that of the virtual host. This fea-
ture is required for MPI applications to work on the virtual infrastructure, as
some implementations check the hostname to define whether shared memory
or a network transport should be used for communication. To the best of our
knowledge, no other network experimentation tool takes this into account. It
also allows MPI hostfiles or rankfiles to be set up more easily using consistent
names, the choice of real nodes notwithstanding. Name resolution is handled
by generating appropriate /etc/hosts files for each namespace automatically.

1 https://hicu.be/bridge-vs-macvlan.
2 A/30 network prefix.
3 http://windsock.io/uts-namespace/.

https://hicu.be/bridge-vs-macvlan
http://windsock.io/uts-namespace/

SherlockFog: MPI in Fog and Edge Computing 191

These files are bound by the ip netns exec command. Finally, using the NetEm
traffic control extension [13] via the tc tool, link parameters can be modified on
a given virtual network interface’s outbound port.

3.2 Features of SherlockFog

SherlockFog runs on commodity hardware, such as interconnected desktop com-
puters in an university campus. No special interconnection technology or pro-
grammable switch is required, lowering the cost of ownership significantly with
respect to similar solutions.

The scripting language allows to set up experiment parameters and runs,
enabling for reproducible experimentation.

The tool can connect namespaces in the same physical computer or in dif-
ferent hosts, provided that the traffic that every host generates is reachable
from the rest. This allows to grow experiment scale by using hosts on different
interconnected switches.

Application code can be executed unmodified. The user can execute open-
or closed-source programs in the same software environment as they would in a
real environment.

It is also possible to experiment with changes to the MPI library, such as
broadcast implementations for edge environments or features that make it more
resilient to churn or changes in latency or bandwidth. As we are exploring MPI
on non-standard network settings, our tool could be used as a testing framework
for these use cases.

Modeling mobility is also an important aspect in Fog or Edge Computing
environments. Our tool provides a mechanism to do so by changing bandwidth
and packet loss for a link.

We show a sample experiment script in Fig. 2. In this example, 4 nodes
named n0 to n3 (line 2) are initialized and connected sequentially, generating a

1 ### node de f
2 for n in 0 . . 4 do def n{n} {nextRealHost}
3 ### connect nodes
4 connect n0 n1
5 connect n1 n2 5ms
6 connect n2 n3
7 ### bu i l d
8 build−network
9 ### run exp

10 for m in 1 0 . . 1 0 1 . . 1 0 do
11 runas n0 netns n0 myuser mpirun −f h . txt . / p {m} > {m} . l og
12 set−delay n1 n2 {m}ms
13 end for

Fig. 2. Example SherlockFog experiment script to launch a virtual topology of 4 nodes
and execute an MPI application in different network conditions.

192 M. Geier and E. Mocskos

“linked-list”, while setting up a 5 ms delay between nodes n1 and n2 (lines 4–
6). Line 8 configures IP addresses for all nodes and sets up static routing tables
accordingly. Finally, lines 10–13 run the actual experiment: an MPI application
is repeatedly executed with argument m ranging from 10 to 100 in steps of 10,
increasing latency between n1 and n2 on each step while saving its output for
offline analysis.

3.3 Considerations When Using SherlockFog

We discuss a few usage considerations for SherlockFog:
Due to the usage of static routing, two different paths from one node to

another are not allowed. Minimum Spanning Tree (MST) can be calculated on
any topology to define unique paths for every pair of nodes. Real (dynamic)
routing protocols on the network could give us one such path configuration.

As traffic is routed from the host carrier to the right namespace by looking up
its destination MAC address, it is not possible to experiment with applications
that make use of multicast messages. However, as our main focus is MPI appli-
cations and most implementations handle global communication using multiple
unicast messages on some sort of virtual tree, this is not a limitation for our
experiments.

Total bandwidth is shared among nodes. The user must be careful not to
overflow the actual carrier. It is possible avoid this by limiting maximum band-
width in each virtual network interface.

Finally, real link latency must be taken into account when designing the
experiment. Since SherlockFog can scale on nodes on different switches, it is
likely that pairwise latencies differ. They must be taken into account, as latency
is increased on top of the actual link’s. As it is the case for all network emulation
tools, this could lead to inaccurate results if latency increments are closer to the
underlying link’s values.

3.4 Underlying Topology

All experiments in this work were run on an 8-node cluster of AMD Opteron
6276 processors with 128 GB of RAM. Each node has 64 cores and runs Debian
GNU/Linux 8.7 amd64 with kernel version 4.9.18. MPI applications were com-
piled and executed using MPICH version 3.2.

Initial tests using this hardware show that no more than 48 cores can be used
at the same time without incurring in performance hiccups. This is consistent
with behavior of other applications used in this hardware and is related to a
bottleneck of the memory bus.

4 Validation

In this section, we propose experiments to study the accuracy of our methodology
in representing different network scenarios, which are defined in Table 1.

SherlockFog: MPI in Fog and Edge Computing 193

Table 1. Network topologies.

Topology name Sizes Description Reference in text

Barabási-Albert 100 nodes Random graph generated
using the Barabási-Albert
model for scale-free networks
with preferential attachment

barabasi

Isles 16, 64 and
256 nodes

Two clusters of nodes (star
topology) connected through
a single path

isles

The isles topologies represent two interconnected clusters of computational
resources. These clusters are connected to each other through a single distin-
guished link. The latency of this link indicates the distance in terms of commu-
nication. This scenario represents, for example, two sets of nodes in the edge
of the network which are connected to a common infrastructure such as the
Internet.

Let n be the size of the network, the process placement rules are:

1. The distinguished link connects the first node (node 0) to the last one (node
n − 1).

2. The nodes are partitioned evenly on each cluster.
– Nodes 0 to �n−1

2 � go to the first cluster.
– Nodes �n−1

2 � to n − 1 go to the second cluster.
3. The nodes connected by the distinguished link become the exit nodes for each

cluster.
4. Every other node is connected to its respective exit node.

The barabasi topology is a random graph generated using the the Barábasi-
Albert model for scale-free networks with preferential attachment. It represents
a connectivity model which is found on the Internet [5]. This topology was
generated using model parameter m0 = 2. In this case, processes are assigned
randomly.

We will show that SherlockFog can emulate different network conditions by
analyzing prediction output compared to the expected theoretical results.

4.1 Latency Emulation

In order to show how latency emulation works, we need to use an application with
a traffic pattern for which we can obtain an analytical expression for the total
communication time. By doing so, we can then compare the expected theoretical
time to the output of our tool.

In particular, we have used an implementation of a passing token through a
ring logical topology. Each node knows its neighbors and its order in the ring.
Token size is configured to be a single integer (4 bytes) throughout this work.

194 M. Geier and E. Mocskos

The number of times the token is received by the initiator (rounds) is also a
parameter of the application.

We have analyzed total number of messages on the network and execution
time for this application, using two different implementations:

– Token Ring: implements communication using TCP sockets. This version
allows us to have fine grain control of message generation and protocol.

– MPI Token Ring: same application, but using MPI for communications. In
this case, we can test if the use of the MPI library could also be managed by
our tool.

Since we know the traffic pattern, if we were to keep the topology unchanged,
but increased latency of one or more links, it would be easy to estimate how
much longer the application would take to complete with respect to the original
network settings. This increment is calculated as follows: let N be the number
of nodes in the topology, t0 the original execution time, ci,j the total send count
from node i to node j and wi,j the shortest path weight4 from node i to node j,
the expected execution time te is defined by:

te = t0 +
N−1∑

i=0

N−1∑

j=0

ci,j · wi,j (1)

It is important to emphasize that Eq. 1 represents the expected execution
time accurately only since Token Ring’s traffic pattern is sequential. Otherwise,
we would have to take into account communication overlapping.

We calculated the original execution time, with a fixed latency value on all
links, the estimated times for different latency settings and the actual execution
times when using SherlockFog with those settings. The full description of the
runs is shown in Table 2.

Table 2. Parameter configuration for validation experiments

Application Topologies Argument range Latency Comments

Token Ring barabasi and
isles

100–1000 rounds 10, 90, 170ms Latency increased
on all edges

MPI Token Ring 100–1000 rounds 5–25ms Latency increased
on a single edge

4.2 Token Ring

In Table 3, a partial view of the results is shown. We can observe that the pre-
dicted time differs from the measured time by less than 1% in all cases. This
is also consistent with the rest of the results for all round counts, latencies and
topologies in our experiment set.
4 Each link’s weight is set to how much its delay is increased with respect to the

underlying platform.

SherlockFog: MPI in Fog and Edge Computing 195

Table 3. Excerpt of validation results for Token Ring, 300–500 rounds, on barabasi
(100 nodes). Latency added uniformly to all edges.

Rounds Latency (ms) Predicted (s) Measured (s) Error

300 5.00 615.84 619.39 0.0057

300 15.00 1801.78 1810.63 0.0049

300 25.00 2987.72 2983.03 0.0015

300 35.00 4173.66 4177.55 0.0009

300 45.00 5359.60 5347.30 0.0022

400 5.00 820.27 826.30 0.0073

400 15.00 2400.21 2402.16 0.0008

400 25.00 3980.15 3978.04 0.0005

400 35.00 5560.09 5554.26 0.0010

400 45.00 7140.03 7130.86 0.0012

500 5.00 1024.79 1033.60 0.0085

500 15.00 2998.73 3007.53 0.0029

500 25.00 4972.67 4973.75 0.0002

500 35.00 6946.61 6943.70 0.0004

500 45.00 8920.55 8955.64 0.0039

4.3 MPI Token Ring

The MPI version produces similar results. In this case, error ranges are slightly
higher, but also remain below 1% in all cases, even on a topology on which
the logical order of the nodes produces a complex communication path in this
application, such as barabasi. We consider that this is due to the fact that MPICH
handles messaging differently than in our plain TCP implementation, though we
find this difference not to be significant.

We can conclude that latency is accurately represented in our tool when
executing applications that use MPI for communication on different emulated
topologies.

5 Results

In this section, we show the effects of latency on different scenarios in the MPI
version of NAS Parallel Benchmarks [4]. These benchmarks are derived from
Computational Fluid Dynamics applications and have been throughly tested
and analyzed by the community.

We have chosen three kernels (IS, CG and MG) and two pseudo applications
(BT and LU) and evaluated performance loss on the isles topologies.

All benchmarks were executed using SherlockFog to increase the latency of
the distinguished link up to 100 times for three different problem sizes (A, B

196 M. Geier and E. Mocskos

and C). These problem sizes are standard for this kind of applications and are
defined such that going from one class to the next represents a four-fold increase.
All experiments were repeated 5 times.

Our interest lies in finding out how the performance of these benchmarks–
which were designed to be executed on a single cluster of nodes with low com-
munication overhead–fares in this use case, comparing total execution time for
each latency value to its no-extra-latency counterpart5.

Each of the plots presented in this section describes the increment in total
execution time as a function of the increment in latency for all network sizes.
The semi-transparent patches over the curves show the standard deviation for
each data series.

The results for all benchmarks are shown in Fig. 3. We can observe similar
patterns for each network size.

On 16 nodes, total execution time for all network sizes grows linearly as
latency is increased. In the worst case, a 100-fold latency increase results in 14
times slower total execution time. The slope of the curve is usually lower as the
problem size grows: problem size C has less of an impact than the smaller sizes
on most cases. We believe this to be related to the fact that each process has
more work to do, reducing the impact of the overhead in communication.

On 64 nodes, the difference between problem sizes A and C is more significant.
Moreover, we can also observe that the maximum increment is much lower than
in the smaller network, up to 3.5 times for a 100-fold latency increase. For BT,
CG and MG (problem size A), the incidence is also much more significant for
smaller latency values. For example, increasing latency 10 times in CG, size A,
results in the application taking 2.5 times more to complete. However, increasing
latency 100 times results in it only taking 3.4 times more. LU, on the other hand,
doesn’t show a significant performance loss for all latency values.

On 256 nodes, we can observe similar results to 64 nodes. However, in this
case, the scale is much smaller: the worst case is shown in MG, size A, which takes
twice as much time to complete when subject to a 100-fold latency increment.
The case of CG is also interesting, as going from no latency to 1 ms results in the
benchmark taking 1.6 times more to complete. However, increasing the latency
further doesn’t produce a noticeable effect. This is similar to the results for 64
nodes, but the effect is more pronounced. We believe this to be related to the
communication that goes through the distinguished link representing a much
smaller ratio with respect to smaller networks.

Finally, in the case of IS, the increments in total execution time are much less
noticeable than in the previous cases. On 16 nodes, the curves for each problem
size tend to drift away from each other as the latency goes up. However, as the
node count goes up, the effects of changes in latency on this topology are much
less noticeable. We can conclude that this application is not greatly impaired,
being the most fog-ready of all these benchmarks in this particular scenario.

5 In the no extra latency case, the topology remains unchanged, but the latency of
every link is exactly the same.

SherlockFog: MPI in Fog and Edge Computing 197

Fig. 3. Slowdown on the isles topologies as a function of the increment in latency of
the distinguished link in different NAS parallel benchmarks.

198 M. Geier and E. Mocskos

6 Conclusions

In this work we introduced SherlockFog, a tool that enables experimentation
with MPI applications in Fog and Edge Computing scenarios. We proposed a
methodology to analyze if an MPI application can be deployed on a Fog or Edge
scenario without incurring in a big performance loss, given its communication
pattern and that particular network setting. Our tool also provides a testing
framework to explore MPI applications and library implementations in hetero-
geneous scenarios.

Latency emulation in SherlockFog was validated by estimating the commu-
nication overhead in a custom application that implements a token ring. This
application describes a sequential communication pattern and is therefore suit-
able for estimating the overhead theoretically.

We have analyzed five well-known benchmarks that use MPI to reproduce
patterns in computation similar to those of CFD applications. We proposed a
network topology in which two clusters are connected to each other through
a single distinguished link. Using this topology, we have evaluated the impact
of increasing the latency of the distinguished link on the performance of each
application.

All results show a linear or sublinear impact on this particular topology, open-
ing up opportunities to use distributed, increasingly ubiquitous computational
resources.

As future work, other aspects of the Edge/Fog paradigm such as the dynamic
nature of the network have to be studied. This requires adapting the MPI pro-
gramming model to handle node churn and changes in logical topology. Sherlock-
Fog also models changes in bandwidth. This feature should also effect application
performance but have not yet been evaluated.

Acknowledgements. The authors would like to thank D. González Márquez for
his assistance with schematic drawings and the Centro de Simulación Computacional
para Aplicaciones Cient́ıficas/CSC-CONICET and the Centro de Cómputos de Alto
Rendimiento (CeCAR, FCEN-UBA) for providing the equipment we haved used in the
experimental setup.

References

1. Dimemas. http://tools.bsc.es/dimemas. Accessed 2 Dec 2017
2. ns-3 Direct Code Execution. https://www.nsnam.org/overview/projects/direct-

code-execution/. Accessed 2 Dec 2017
3. ns-3 Overview. https://www.nsnam.org/docs/ns-3-overview.pdf. Accessed 2 Dec

2017
4. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,

R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakr-
ishnan, V., Weeratunga, S.: The NAS parallel benchmarks. Report RNR-94-007,
Department of Mathematics and Computer Science, Emory University, March 1994

5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

http://tools.bsc.es/dimemas
https://www.nsnam.org/overview/projects/direct-code-execution/
https://www.nsnam.org/overview/projects/direct-code-execution/
https://www.nsnam.org/docs/ns-3-overview.pdf

SherlockFog: MPI in Fog and Edge Computing 199

6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012). http://
doi.acm.org/10.1145/2342509.2342513

7. Brandfass, B., Alrutz, T., Gerhold, T.: Rank reordering for MPI communica-
tion optimization. Comput. Fluids 80, 372–380 (2013). Selected Contributions
of the 23rd International Conference on Parallel Fluid Dynamics ParCFD2011.
http://www.sciencedirect.com/science/article/pii/S004579301200028X

8. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899–2917 (2014). http://hal.inria.fr/hal-01017319

9. Degomme, A., Legrand, A., Markomanolis, G., Quinson, M., Stillwell, M., Suter,
F.: Simulating MPI applications: the SMPI approach. IEEE Trans. Parallel Distrib.
Syst. PP(99), 1 (2017)

10. Dichev, K., Rychkov, V., Lastovetsky, A.: Two algorithms of irregular Scatter/-
Gather operations for heterogeneous platforms. In: Keller, R., Gabriel, E., Resch,
M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp. 289–293. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15646-5 31

11. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface, 2nd edn. MIT Press, Cambridge (1999)

12. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-
Passing Interface, 2nd edn. MIT Press, Cambridge (1999)

13. Hemminger, S.: Network emulation with NetEm. In: Pool, M. (ed.) LCA 2005,
Australia’s 6th National Linux Conference (linux.conf.au). Linux Australia, Sydney
(2005). http://developer.osdl.org/shemminger/netem/LCA2005 paper.pdf

14. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, Hotnets-IX, pp. 19:1–19:6. ACM, New York (2010).
http://doi.acm.org/10.1145/1868447.1868466

15. Mercier, G., Clet-Ortega, J.: Towards an efficient process placement policy for MPI
applications in multicore environments. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 104–115. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03770-2 17

16. Navaridas, J., Pascual, J.A., Miguel-Alonso, J.: Effects of job and task placement on
parallel scientific applications performance. In: 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pp. 55–61,
February 2009

17. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Int. Things J. 3(5), 637–646 (2016)

18. Wette, P., Dräxler, M., Schwabe, A.: Maxinet: distributed emulation of software-
defined networks. In: 2014 Networking Conference, IFIP, pp. 1–9, June 2014

19. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation, pp. 255–270. USENIX Association, Boston,
December 2002

http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://www.sciencedirect.com/science/article/pii/S004579301200028X
http://hal.inria.fr/hal-01017319
https://doi.org/10.1007/978-3-642-15646-5_31
http://developer.osdl.org/shemminger/netem/LCA2005_paper.pdf
http://doi.acm.org/10.1145/1868447.1868466
https://doi.org/10.1007/978-3-642-03770-2_17

Big Data and Data Management

IoT Workload Distribution Impact
Between Edge and Cloud Computing

in a Smart Grid Application

Otávio Carvalho(B), Manuel Garcia, Eduardo Roloff,
Emmanuell Diaz Carreño, and Philippe O. A. Navaux

Informatics Institute, Federal University of Rio Grande do Sul (UFRGS),
Porto Alegre, RS, Brazil

{omcarvalho,magnapa,eroloff,edcarreno,navaux}@inf.ufrgs.br

Abstract. The advent of Internet of Things is now part of our reality.
Increasing amounts of data are being continuously generated and mon-
itored through widespread sensing technologies such as personal smart-
phones, large scale smart cities sensor deployments and smart electrical
grids.

However, the ability to aggregate and act upon such data gathered
by sensors is still a significant research and industrial challenge. Devices
that are able to collect and act on data at network edges are bounded
by the amount of data that can be sent over networks.

In this paper, we analyze the impact of workload distribution in a
smart grid application, evaluating how we can increase processing rates
by leveraging each time more powerful edge node processors.

Our results show that our test bed application, leveraging cloud nodes
processing and processing windows, is able to achieve processing rates
of approximately 800k measurements per second using four edge node
processors and a single cloud node.

1 Introduction

The Internet of Things (IoT) is now a reality, and we are connecting each time
more devices – such as personal consumer electronic devices, home appliances,
cameras, medical devices, and all types of sensors – to the Internet environment.
This ubiquity unlocks the potential to innovations that can use the data gen-
erated by those devices to enable smart cities, smart infrastructures and smart
services that can improve quality of life.

By 2025, researchers estimate that the IoT will have a potential economic
impact of 11 trillion per year – which would be equivalent to about 11% of the
world economy. They also expect that one trillion IoT devices will be deployed
by 2025. In majority of the IoT domains such as infrastructure management and
healthcare, the major role of IoT is the delivery of highly complex knowledge-
based and action-oriented applications in real-time [9].

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 203–217, 2018.
https://doi.org/10.1007/978-3-319-73353-1_14

204 O. Carvalho et al.

Technologies and applications being created for mobile computing and the
Internet of Things (IoT) are driving computing toward dispersion. Edge com-
puting is a new paradigm in which substantial computing and storage resources
– variously referred to as cloudlets, micro datacenters, or fog nodes – are placed
at the Internet’s edge in close proximity to mobile devices or sensors [30].

Smart grids will allow consumers to receive near real-time feedback about
their energy consumption and price, enabling them to make their own informed
decisions about consumption and spending. On the producer point-of-view, we
can leverage home consumption data to produce energy forecasts, enabling near
real-time reaction and a better scheduling of energy generation and distribution
[7]. In this way, smart grids will save billions of dollars on both sides in the long
run, for consumers and the generators, according to recent forecasts [26].

Since millions of end-users will be taking part into processes and information
flows of smart grids, high scalability of these methods turns into an important
issue. To solve these issues, cloud computing services present themselves as a
viable solution, by providing reliable, distributed and redundant capabilities at
global scale [10]. However, there is a large set of applications which cannot accept
the delay caused by transferring data to the cloud and back, being bounded by
latency. Also, it is not efficient to send a large number of small packages of data
to the cloud for processing, as it would saturate network bandwidth and decrease
scalability of the applications [13].

In this paper, we explore what is achievable in a realistic application for
Short-Term Load Forecast (STLF), in terms of latency and bandwidth, by mov-
ing varying portions of computation from cloud to edge nodes. By building a dis-
tributed application that handles communication and processing through edge
processors and cloud computing machines, we are able to distribute load between
cloud and edges nodes and analyze what is possible to obtain in terms of pro-
cessing speedup in comparison with a pure cloud-based application.

2 Related Work and Discussion

The state-of-the-art works on edge computing includes platforms and frameworks
that aim to provide scalable processing closer to the network border, in order not
only to provide low latency results, but also to better utilize resources available
on the network. The approaches to solve these problems include predominantly
cloud-like deployments at the edge (often described as cloudlets). The most
prominent approaches and how they relate to our work are briefly described
below. In the end of Sect. 2 we explain how these works relate to the proposed
solution on the Sect. 3.

Femtoclouds [19], REPLISOM [1], CloudAware [24] and ParaDrop [22] are
examples of applications that explore computational offloading to nearby devices.
The most predominant usages either rely on offloading to edges that are under-
utilized or offload processing to nearby network centralizers (modified wireless
network access points or specialized mobile network base station hardware). The
only work that explores computation to considerably more performant nodes is
EdgeIoT, which provisions virtual machines in a nearby mobile base station.

IoT Workload Distribution Impact Between Edge and Cloud Computing 205

Most of the related works differ from ours by relying on hardware changes or
significant modifications on the underlining communication protocols. ParaDrop
applies changes to nearby wireless access points in order to provide its function-
ality. HomeCloud [25] relies on a Software Defined Networking (SDN) implemen-
tation on the networks in order to schedule its Network Function Virtualization
(NFV) capabilities. EdgeIoT [31] relies on changes on the nearby mobile base
stations in order to deploy Virtual Machines (VMs) which are used for compu-
tation offloading.

Several of the state-of-the-art works go ahead of the scope this work on
the regarding of work scheduling capabilities. Cumulus [15] provide a complete
framework that controls task distribution under a heterogeneous set of devices on
its cloudlet. FemtoClouds and CloudAware monitor device usage on its cloudlets
in order to improve device usage as part of its scheduling algorithms. CloudAware
also provides a specific Application Programming Interface (API) to improve the
experience of implementing applications using their framework.

Although the related works present multiple initiatives towards Edge Com-
puting that improve computational offloading to nearby nodes, none of them
explore the potential of combining the low latency edge nodes processing with
scalable and more performant sets of commodity machines on public clouds.

In the next sections, we describe and evaluate our approach to this problem,
applying edge processing capabilities as a complement to long running jobs on
private clouds, in order to improve throughput, decrease network traffic and
minimize latency.

3 Architecture and Implementation

The architectural infrastructure of our test bed application deployment can
be described as a composition of three layers, as it is represented on Fig. 1:
(1) Cloud layer, where we execute long running scalable jobs that can provide
more performant processing at the cost of latency; (2) Edge layer, composed by
edge nodes that are used to pre-process and aggregating data before sending
to the Cloud; and the (3) Sensor layer, which is composed by the sensors that
communicate directly with Edge layer nodes to receive actuation requests and
provide measurements to the network.

3.1 Cloud Layer

In this layer, we create virtual machines to execute our application in order to
aggregate data to be received from the Edge layer nodes. The Cloud layer should
be composed by elements that can be able to process data as it arrives. It can be
instantiated by implementing the same application logic from the layer below,
but instead it should be configured to receive data from multiple edge nodes.

This layer receives data from queues and exchanges through a message hub,
so that the inputs can be parallelized through multiple consumers. It can also

206 O. Carvalho et al.

Fig. 1. The architecture is composed by 3 layers: cloud, edge and sensor

Table 1. Cloud layer configuration: virtual machine type and toolset description

Parameter Description

Instance type Basic A3 (4 cores, 7GB of RAM)

Operating system Ubuntu 16.04 LTS

Location Brazil south

Golang version 1.8

GRPC version 1.3.0-dev

Protocol Buffers version 3.2.0

Network interconnection 5 Mbps HFC (between edge and cloud)

be configured to support clusters of machines to execute transformations as
distributed stream processing jobs over these queues and exchanges.

In our evaluation work, it is implemented as an application running in a single
node inside a Linux VM at Microsoft Azure, which was chosen due to its avail-
ability at our research lab due to its cost benefits over other cloud platforms [28].
This application was written in Go programming language and receives process-
ing request from the layer below through GRPC communication framework. The
VM instance utilized was configured as it is described in Table 1.

IoT Workload Distribution Impact Between Edge and Cloud Computing 207

3.2 Edge Layer

The Edge layer is composed by a set of nodes that receive sensor measurements
one-at-time and executes its operators. Operators can be either transformations
over results, combinations with sets of measurements received or mappings to
machines on the Cloud layer above.

On this layer, the application code will be expressed to define which compu-
tation will be done inside of edge nodes and which computation will be managed
by VMs on the Cloud Computing environment. The degree of control provided
by this level makes possible to decrease the number of messages sent to the
Cloud. In this way, it is possible to decrease the amount of data that is sent
to the Cloud. Also, by processing certain amounts of data directly on the edge
nodes, the latency experienced by actuator sensors is in the order of tenths of
milliseconds instead of a couple of seconds of cloud processing latencies.

Actuator sensor logic can also be implemented on this layer, in such a way
that when a given condition is matched by an edge node, it can trigger actuators
on the Sensor layer in order to act on external applications. For example, a
consumer can configure its smart grid energy meter to maintain the energy
consumption below a certain level during peak cost energy hours. In this way, the
smart grid meter can turn off certain machines when the average consumption
reaches a certain threshold.

In our evaluation test bed, this layer was composed by a set of Raspberry
Pi edge nodes connected to the internet through wireless connection. Each edge
node is a complete Linux machine running our application in an ARM architec-
ture. They were configured to communicate with the underlining sensors directly,
as well as the Linux VM on the Azure Cloud service. The configuration of our
edge nodes is described in details on Table 2.

Table 2. Edge layer configuration: architecture and software description

Parameter Description

Number of edge nodes 4

Hardware Raspberry Pi Zero W

Hardware CPU 1GHz single core CPU

Hardware RAM 512MB

Operating system Raspbian Jessie Lite 4.4 (Debian Jessie based)

Golang version 1.8

GRPC version 1.3.0-dev

Protocol Buffers version 3.2.0

Wireless router HUMAX HG100R (802.11a/b/g/n)

208 O. Carvalho et al.

3.3 Sensor Layer

The Sensor layer is represented by a given set of sensors that communicate with
the Edge nodes. Ideally, sensors should communicate with Edge Nodes through
their available input/output hardware interconnections or lightweight wireless
connection such as Bluetooth or LTE networks. However, in order to limit the
analysis scope of this work, we only rely on a sensor network dataset that was
previously loaded into edge nodes prior to execution of tests.

Smart grid environments rely on specific meters and plugs on households to
collect data, which are provided by the energy grid provider or standardized to
support only a set of accepted and verified plugs and meters types. The data
types generated by these environments also need to respect a certain schema to
be shared, aggregated and analyzed by the energy provider companies.

The dataset used to the evaluation of this work is based on the dataset
provided by the 8th ACM International Conference on Distributed Event-Based
Systems (DEBS). This conference provides competitions with problems which
are relevant for the industry. In the year of 2014, the conference challenge focus
was on the ability of Complex Event Processing (CEP) systems to apply on real-
time predictions over a large amount of sensor data. For this purpose, household
energy consumption measurements where generated, based on simulations driven
by real-world energy consumption profiles, originating from smart plugs deployed
in households [35]. For the purpose of this challenge, a large number of smart
plugs has been deployed in households with data being collected roughly every
second for each sensor in each smart plug.

3.4 Communication Protocol

Although multiple protocols for communication in IoT systems have been pro-
posed in the recent years, the protocols in use today are still being evaluated and
are subject of discussion and standardization initiatives, mainly due to advance-
ments of internet protocols to support mobile and IoT applications. The most
widely adopted protocols in use today are, respectively, MQTT [4] and CoAP [6].

One of the most prominent proposals on this area is the HTTP/2 proto-
col. The standard was finished in 2005 and provides several improvements over
previous protocols, mainly due to the capability of multiplexing data, avoiding
handshake overhead and their data compression capabilities [5,29].

As an alternative to broker centric communications protocols and synchro-
nization costly protocols such as REST [27], Google Inc. has adopted a RPC
protocol and service discovery framework Stubby/Chubby [8]. The open source
version of its tool is called GRPC [18], which relies on HTTP/2 in order to avoid
handshake overhead, and Protocol Buffers [16] to communicate using a binary
method, which provides better data compaction by reducing the message size.

Due to the performance benefits reported from the usage of HTTP/2 pro-
tocols over standard HTTP, and their ease of usage for flexible prototyping of
distributed applications, GRPC was used to build a reliable and fast communi-
cation channel for all of the communication layers implemented on this work.

IoT Workload Distribution Impact Between Edge and Cloud Computing 209

GRPC as a communication platform presents several advantages over TCP
only connections and communication protocols such as REST. It does not only
hides complexity but also provides connections to keep alive for long periods,
avoiding unnecessary handshake communication but also multiplexing several
requests inside of the same channel. However, their usage is still subject of evalua-
tion, mainly on networks with high package loss percentages, which are a limiting
factor not only for HTTP/2 but also for AMQP based applications [12,17,21,32].

3.5 Measurement Algorithm

Smart grids promise to provide better control and balance of energy supply
and demand through near real-time, continuous visibility into detailed energy
generation and consumption patterns. Methods to extract knowledge from near
real-time and accumulated observations are hence critical to the extraction of
value from the infrastructure investment.

In this context, Short-Term Load Forecasting (STLF) refers to the prediction
of power consumption levels in the next hour, next day, or up to a week ahead.
Methods for STLF consider variables such as date (e.g., day of week and hour
of the day), temperature (including weather forecasts), humidity, temperature-
humidity index, wind-chill index and most importantly, historical load. Residen-
tial versus commercial or industrial uses are rarely specified.

Time series modeling for STLF has been widely used over the last 30 years
and a myriad of approaches have been developed. These methods [20] can be
summarized as follows:

– Regression models that represent electricity load as a linear combination of
variables related to weather factors, day type, and customer class.

– Linear time series-based methods including the Autoregressive Integrated
Moving Average (ARIMA) model, auto regressive moving average with
external inputs model, generalized auto-regressive conditional heteroscedastic
model and State-Space Models (SSMs).

– SSMs typically relying on a filtering-based (e.g., Kalman) technique and a
characterization of dynamical systems.

– Nonlinear time series modeling through machine learning methods such as
nonlinear regression.

Ali [2] argues that the three most accurate models for load prediction are,
respectively, Multilayer Perceptron (MLP), Support Vector Machine and Least
Mean Squares. Due to the model fit in relation to the distributed architecture,
we decide to pursue an approach similar to the suggested by the DEBS 2014
conference committee [35], that is schematically described in Eq. (1). This app-
roach could be interpreted as a mixed approach between MLP and ARIMA. It
brings together characteristics from both Linear time series-based methods and
SSMs [11].

More specifically, the set of queries provide a forecast of the load for: (1)
each house, i.e., house-based and (2) for each individual plug, i.e., plug-based.
The forecast for each house and plug is made based on the current load of the

210 O. Carvalho et al.

connected plugs and a plug specific prediction model. The aim of these queries
is not at the over the better prediction model, but at stressing the interplay
between modules for model learning that operate on long-term (historic) data
with components that apply the model on top of live, high velocity data.

L(si+2) =
avgL(si) + median(avgL(sj))

2
(1)

In the Eq. (1), avgL(si) represents the current average load for the slice si.
The value of avgL(si), in case of plug-based prediction, is calculated as the
average of all load values reported by the given plug with timestamps ∈ si. In
case of a house-based prediction the avgL(si) is calculated as a sum of average
values for each plug within the house. avgL(sj) is a set of average load value for
all slices sj such that:

sj = si+2−n∗k (2)

In the Eq. (2), k is the number of slices in a 24 hour period and n is a
natural number with values between 1 and floor(i+2

k). The value of avgL(sj) is
calculated analogously to avgL(si) in case of plug-based and house-based (sum
of averages) variants.

4 Evaluation

The evaluation of our test bed application is made in two phases: Communication
evaluation and application evaluation. In each step, we evaluate aspects of the
application that build on top of each other to improve our overall processing
throughput, such as: Latency, message sizes, concurrency degree and message
windows.

4.1 Communication Evaluation

In order to successfully evaluate our test bed middleware implementation, we first
evaluate the underlining network connection. The network evaluation started by
measuring the maximum amount of data that could be sent from our edge nodes
to the cloud provider, using the specified network router and the given network
connection described on Sect. 3.

Our measurements started by analyzing throughput through the Iperf
tool [33]. Those experiments have shown us that the average throughput was
slightly below the network bandwidth described by the provider, which is com-
mon on internet providers of cable connections and was expected on our measure-
ments [14]. The results of this first measurement step are described on Table 3.

After have a glimpse about the real throughput of our underlining network,
we designed a simple application in order to evaluate the performance or the
GRPC middleware and the HTTP/2 protocol with varying message sizes.

The simple application designed for this task is called PingPong, which exe-
cutes the following steps: (1) sends a message from the edge node to the cloud
node; (2) the cloud node receives the message and sends it back to the edge
node, completing a round-trip.

IoT Workload Distribution Impact Between Edge and Cloud Computing 211

Table 3. Network measurements with Iperf

Connection Type TCP window size Interval Transfer Bandwidth

Edge node to edge node 43.8 KByte 60 s 388MBytes 54.1 Mbits/sec

Edge node to cloud 43.8 KByte 60 s 7.76 MBytes 1.03 Mbits/sec

0

5000

10000

15000

50th 90th 99th
Percentiles (ms)

La
te

nc
y

(m
s)

32KB

64KB

128KB

256KB

512KB

1024KB

Fig. 2. PingPong: latency percentiles by message sizes (32 KB to 1 MB)

It is a known fact that distributed applications suffer from latency tails that
can be several times greater than the expected average latency. On applications
with multiple users that send thousands of messages per second, these fat tail
latencies might be experienced by several users of the systems [3,23].

In the Fig. 2 we analyze the impact of message sizes, from 32 KB up to 1 MB,
in the latency of the messages being sent over the network. As we can see, the
50th percentile (the median), is as low as a couple of milliseconds for small
messages sizes, but it increases highly when we analyze the tail latencies. The
impact of messages that are delayed by Garbage Collection (GC) pauses, package
losses or other network failures is a limiting factor depending on the application.
These measurements also serve to us a guideline to build message windows,
given that we should expect, for example, messages latencies up to 2.5 s for
64 KB messages at 99th percentile.

We have also used the PingPong method to evaluate the maximum achievable
network throughput under our communication middleware, which can be seen

212 O. Carvalho et al.

0.0

0.5

1.0

1.5

32KB 64KB 128KB 256KB 512KB 1024KB
Size (KB)

Th
ro

ug
hp

ut
 (Q

P
S

) 32KB

64KB

128KB

256KB

512KB

1024KB

Fig. 3. PingPong: Maximum Throughput by Message Size (32 KB to 1 MB)

on Fig. 3. This evaluation was important to understand that the usage of 64 KB
messages increases the throughput, probably due to a better fit on TCP windows
used by the GRPC communication framework.

4.2 Application Evaluation

The application evaluation was done by distributing the aggregation step of the
application processing between edge and cloud nodes. Our main objectives for
this evaluation were to understand how latency affects processing throughput,
as well as to analyze the performance gains obtained by aggregating data on
edge nodes before sending data to the cloud.

In our evaluations, we preload our edge nodes with necessary sample sizes
before running the algorithm. The schema is quite similar to the original dataset
and is composed by a timestamp, the value of the energy measurement (in Watts)
and an identifier id of the house/plug that is been measured. As it is compressed
by the Protocol Buffers binary protocol, the final message payload size is 32
bytes.

Our evaluation can be better described in three phases: (1) Evaluation of
the impact of the concurrency degree on the throughput; (2) Scalability evalua-
tion to understand how the number of edge nodes impacts into the cloud node
throughput; (3) Windowing and strategies to aggregate data on the edge node
before sending data to the cloud node.

IoT Workload Distribution Impact Between Edge and Cloud Computing 213

Concurrency evaluation. Given that our edge nodes execute multiple
requests per second to its respective cloud nodes, it is important to explore
concurrency strategies to obtain performance gains by executing multiple con-
current requests to the remote services.

In the Go programming language, the concurrency execution is done not
directly through the creation of threads directly, but through Go’s green threads
model which are called Goroutines [34] (Fig. 4).

0

2000

4000

6000

8000

1 10 100
Concurrency (Number of Goroutines)

Th
ro

ug
hp

ut
 (Q

P
S

)

Edge

Cloud

Fig. 4. Concurrency analysis: impact of Goroutines usage on throughput (edge and
cloud nodes)

This experiment explored the impact of the Goroutines usage into the
throughput the application. The outcome of this experiment suggests that both
edge and cloud nodes are able to benefit from concurrency. Our experiments
show that, in comparison with the sequential approach, it is possible to achieve
a 4 times speedup on our test bed application by using 100 Goroutines.

Scalability evaluation. Another important aspect for our application is the
ability of our cloud node to being able of aggregate messages from multiple edge
nodes. In order to evaluate the scalability of our application, we have maintained
a single cloud node and increased the number of edge nodes from one to four. As
it is shown on Fig. 5, a single cloud node is able to scale linearly up to four edge
nodes, each one of them maintaining an average of approximately 500 requests
per second.

Impact of message windowing. Finally, in order to explore our limitations
of communication bandwidth and latency, we decided to explore possibilities of
aggregating multiple energy measurements into edge nodes before sending data

214 O. Carvalho et al.

0

500

1000

1500

2000

1 2 4
Number of Edge Nodes

Th
ro

ug
hp

ut
 (Q

P
S

)

1

2

4

Fig. 5. Scalability analysis: throughput with multiple consumers (1 to 4 edge nodes)

0

200000

400000

600000

800000

1 2 4
Number of Edge Nodes

Th
ro

ug
hp

ut
 (Q

P
S

)

1

10

100

1000

Fig. 6. Windowing analysis: windowing impact on throughput (1 to 1000 messages per
request)

to cloud nodes. Prior to that, our experiments relied on the idea of receiving
measurements on edge nodes, sending data to be processed on the cloud and
finally receiving the updated forecast for each new measurement.

In our experiments, as it is presented on Fig. 6, we have analyzed the behavior
of the test bed application when processing locally grouped sets of messages
before sending to the cloud. In this way, we could evaluate our assumption that
by processing more messages at the edge, and reducing the number of requests
to the cloud node, we would be able to improve our overall throughput and

IoT Workload Distribution Impact Between Edge and Cloud Computing 215

increase scalability (by decreasing the number of measurements being processed
on the cloud node).

Our results show that the overall application (the combination of cloud and
edge nodes) was able to process almost 800k messages per second by using 4
edge nodes and window sizes of 1000 combined messages.

The approach we have used to build windows of processing consists in aggre-
gating the local measurements into a unified representation of the set, so that
we could send the grouped view with the same payload size a single message of
the window.

5 Conclusion and Future Works

In this work, we have studied the implementation of a smart grid application
over a mixed cloud and edge processing middleware. This application was able
to achieve a higher throughput by leveraging processing on edge nodes and data
aggregation to reduce communication with the cloud environment.

In our future works, we would like to explore how the middleware used could
be evolved into a generic framework for applications that span processing over
edge and cloud. Also, it would be important to study how other communication
protocols behave in this given setup.

Furthermore, we would like to explore the possibility of providing a generic
method to schedule distributed tasks on this system, as well as to provide opera-
tors and potentially a query language to specify those generic data aggregations.

Acknowledgments. This research received partial funding from CYTED for the
RICAP Project.

It has also received partial funding from the EU H2020 Programme and from
MCTI/RNPBrazil under the HPC4E project, grant agreement no. 689772.

Additional funding was provided by FAPERGS in the context of the GreenCloud
Project.

References

1. Abdelwahab, S., Hamdaoui, B., Guizani, M., Znati, T.: REPLISOM: disciplined
tiny memory replication for massive IoT devices in LTE edge cloud. IEEE Internet
Things J. 3(3), 327–338 (2016)

2. Ali, A.B.M.S.: Smart Grids: Opportunities, Developments, and Trends. Springer
Science & Business Media, Berlin (2013). https://doi.org/10.1007/978-1-4471-
5210-1

3. Bailis, P., Kingsbury, K.: The network is reliable. Queue 12(7), 20 (2014)
4. Banks, A., Gupta, R.: MQTT Version 3.1.1. OASIS standard (2014)
5. Belshe, M., Thomson, M., Peon, R.: Hypertext transfer protocol version 2

(HTTP/2). Internet Engineering Task Force (IETF) - RFC-7540 (2015)
6. Bormann, C., Castellani, A.P., Shelby, Z.: CoAP: an application protocol for bil-

lions of tiny internet nodes. IEEE Internet Comput. 16(2), 62–67 (2012)

https://doi.org/10.1007/978-1-4471-5210-1
https://doi.org/10.1007/978-1-4471-5210-1

216 O. Carvalho et al.

7. Brown, R.E.: Impact of smart grid on distribution system design. In: 2008 IEEE
Power and Energy Society General Meeting-Conversion and Delivery of Electrical
Energy in the 21st Century, pp. 1–4. IEEE (2008)

8. Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th symposium on Operating systems design and implementa-
tion, pp. 335–350. USENIX Association (2006)

9. Buyya, R., Dastjerdi, A.V.: Internet of Things: Principles and paradigms. Elsevier,
Amsterdam (2016)

10. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

11. Bylander, T., Rosen, B.: A perceptron-like online algorithm for tracking the
median. In: International Conference on Neural Networks, vol. 4, pp. 2219–2224.
IEEE (1997)

12. Chowdhury, S.A., Sapra, V., Hindle, A.: Is HTTP/2 more energy efficient than
HTTP/1.1 for mobile users? PeerJ PrePrints 3, e1280v1 (2015)

13. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize
its potential. Computer 49(8), 112–116 (2016)

14. Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing residen-
tial broadband networks. In: Internet Measurement Conference, pp. 43–56 (2007)

15. Gedawy, H., Tariq, S., Mtibaa, A., Harras, K.: Cumulus: a distributed and flexible
computing testbed for edge cloud computational offloading. In: Cloudification of
the Internet of Things (CIoT), pp. 1–6. IEEE (2016)

16. Gligorić, N., Dejanović, I., Krčo, S.: Performance evaluation of compact binary
XML representation for constrained devices. In: 2011 International Conference
on Distributed Computing in Sensor Systems and Workshops (DCOSS), pp. 1–5.
IEEE (2011)

17. Goel, U., Steiner, M., Wittie, M.P., Flack, M., Ludin, S.: HTTP/2 performance in
cellular networks. In: ACM MobiCom (2016)

18. Google: gRPC Motivation and Design Principles (2015). http://www.grpc.io/blog/
principles

19. Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds: leveraging mobile
devices to provide cloud service at the edge. In: 2015 IEEE 8th International Con-
ference on Cloud Computing (CLOUD), pp. 9–16. IEEE (2015)

20. Kyriakides, E., Polycarpou, M.: Short term electric load forecasting: a tutorial. In:
Chen, K., Wang, L. (eds.) Trends in Neural Computation, vol. 35, pp. 391–418.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-36122-0 16

21. Lee, S., Kim, H., Hong, D.K., Ju, H.: Correlation analysis of MQTT loss and
delay according to QoS level. In: 2013 International Conference on Information
Networking (ICOIN), pp. 714–717. IEEE (2013)

22. Liu, P., Willis, D., Banerjee, S.: ParaDrop: enabling lightweight multi-tenancy
at the network’s extreme edge. In: IEEE/ACM Symposium on Edge Computing
(SEC), pp. 1–13. IEEE (2016)

23. Maas, M., Harris, T., Asanovic, K., Kubiatowicz, J.: Trash day: coordinating
garbage collection in distributed systems. In: HotOS (2015)

24. Orsini, G., Bade, D., Lamersdorf, W.: CloudAware: a context-adaptive middle-
ware for mobile edge and cloud computing applications. In: IEEE International
Workshops on Foundations and Applications of Self* System, pp. 216–221. IEEE
(2016)

http://www.grpc.io/blog/principles
http://www.grpc.io/blog/principles
https://doi.org/10.1007/978-3-540-36122-0_16

IoT Workload Distribution Impact Between Edge and Cloud Computing 217

25. Pan, J., Ma, L., Ravindran, R., TalebiFard, P.: HomeCloud: an edge cloud frame-
work and testbed for new application delivery. In: 2016 23rd International Confer-
ence on Telecommunications (ICT), pp. 1–6. IEEE (2016)

26. Reuters: U.S. Smart Grid to Cost Billions, Save Trillions (2011). http://www.reute
rs.com/article/2011/05/24/us-utilities-smartgrid-epri-idUSTRE74N7O420110524

27. Richardson, L., Ruby, S.: RESTful web services. O’Reilly Media, Inc., Sebastopol
(2008)

28. Roloff, E., Diener, M., Carissimi, A., Navaux, P.O.A.: High performance comput-
ing in the cloud: deployment, performance and cost efficiency. In: 2012 IEEE 4th
International Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 371–378. IEEE (2012)

29. Ruellan, H., Peon, R.: HPACK: Header Compression for HTTP/2. Internet Engi-
neering Task Force (IETF) - RFC-7541 (2015)

30. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

31. Sun, X., Ansari, N.: EdgeIoT: mobile edge computing for the internet of things.
IEEE Commun. Mag. 54(12), 22–29 (2016)

32. Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.: Performance evaluation
of MQTT and CoAP via a common middleware. In: 2014 IEEE Ninth International
Conference on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), pp. 1–6. IEEE (2014)

33. Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K.: Iperf: the TCP/UDP
bandwidth measurement tool (2005). http://iperf.fr

34. Togashi, N., Klyuev, V.: Concurrency in Go and Java: performance analysis. In:
2014 4th IEEE International Conference on Information Science and Technology
(ICIST), pp. 213–216. IEEE (2014)

35. Ziekow, H., Jerzak, Z.: The DEBS 2014 grand challenge. In: Proceedings of the 8th
ACM International Conference on Distributed Event-based Systems, DEBS, vol.
14 (2014)

http://www.reuters.com/article/2011/05/24/us-utilities-smartgrid-epri-idUSTRE74N7O420110524
http://www.reuters.com/article/2011/05/24/us-utilities-smartgrid-epri-idUSTRE74N7O420110524
http://iperf.fr

Model-R: A Framework for Scalable and
Reproducible Ecological Niche Modeling

Andrea Sánchez-Tapia1, Marinez Ferreira de Siqueira1(B),
Rafael Oliveira Lima1, Felipe Sodré M. Barros2, Guilherme M. Gall3,

Luiz M. R. Gadelha Jr.3(B), Lúıs Alexandre E. da Silva1, and Carla Osthoff3

1 Rio de Janeiro Botanic Garden, Rio de Janeiro, Brazil
{andreasancheztapia,marinez,rafael,estevao}@jbrj.gov.br

2 International Institute for Sustainability, Rio de Janeiro, Brazil
f.barros@iis-rio.org

3 National Laboratory for Scientific Computing, Petrópolis, Brazil
{gmgall,lgadelha,osthoff}@lncc.br

Abstract. Spatial analysis tools and synthesis of results are key to iden-
tifying the best solutions in biodiversity conservation. The importance
of process automation is associated with increased efficiency and perfor-
mance both in the data pre-processing phase and in the post-analysis
of the results generated by the packages and modeling programs. The
Model-R framework was developed with the main objective of unifying
pre-existing ecological niche modeling tools into a common framework
and building a web interface that automates steps of the modeling process
and occurrence data retrieval. The web interface includes RJabot, a func-
tionality that allows for searching and retrieving occurrence data from
Jabot, the main reference on botanical collections management system in
Brazil. It returns data in a suitable format to be consumed by other com-
ponents of the framework. Currently, the tools are multi-projection, they
can thus be applied to different sets of temporal and spatial data. Model-
R is also multi-algorithm, with seven algorithms available for modeling:
BIOCLIM, Mahalanobis distance, Maxent, GLM, RandomForest, SVM,
and DOMAIN. The algorithms as well as the entire modeling process may
be parametrized using command-line tools or through the web interface.
We hope that the use of this application, not only by modeling special-
ists but also as a tool for policy makers, will be a significant contribution
to the continuous development of biodiversity conservation analysis. The
Model-R web interface can be installed locally or on a server. A software
container is provided to automate the installation.

Keywords: Species distribution modeling
Ecological niche modeling · Science gateways · Scalability · Provenance

1 Introduction

Ecological Niche Modeling (ENM) has been widely used for over a decade [1–4].
In recent years ENM approaches have become an essential tool for species con-
servation, ecology and evolution studies, as well for systematic conservation and
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 218–232, 2018.
https://doi.org/10.1007/978-3-319-73353-1_15

Model-R: A Framework for Scalable and Reproducible ENM 219

restoration planning [5]. These models use species occurrence data and predictor
variables that are combined to form statistical and theoretical models resulting
in projections in the geographic space that represent the potential geographic
distribution of a species [6]. The environmental suitability maps [7], generated
by the models inform how similar a particular area is to the area where the
species occurs, thus identifying the potential area for occupation by the species,
from the predictor variables selected.

Ecological niche modeling comprises several stages, which require knowledge
of many concepts and techniques related to various fields of biology, such as
biodiversity, biogeography, as well as climate and data processing tools, before,
during and after obtaining the model [5,8]. The biotic data processing step con-
sists of obtaining, evaluating and preparing the points of presence and, in some
cases, of absence of the species to be modeled. In this process, it is fundamental
to perform data cleaning with the removal of inaccurate or unreliable data. In
the step of treatment and choice of environmental layers, one obtains and selects
the layers to be used in the analysis. Traditionally, it is necessary to use a Geo-
graphic Information System (GIS) tools for clipping and adjusting the resolution
and cropping the raster layers to the modeling extension, requiring a reasonable
knowledge of the tool. This task can be even more time-consuming when dealing
with a large dataset. The use of specific data types by the algorithms, and their
various forms of parametrization, requires a reasonable knowledge of program-
ming for their full use. The importance of process automation is associated with
increased efficiency and performance both in the data pre-processing phase and
in the post-analysis of the results generated by the packages and modeling pro-
grams, which is the main objective of this work. The elimination of external tools
for data acquisition and preparation, as well as their standardization, reduces
the possibility of errors, confers reproducibility and improves the speed of the
modeling process, making the whole process more efficient.

The modeling process consists of many steps, as described in [8], some
of which consume considerable time to be performed by traditional means.
A resource available for tackling this problem is the R statistical environment,
which features various possibilities of automation but does require some knowl-
edge of programming for obtaining the desired outcomes in this process. The
main objective of this work was to package modeling procedures as R functions
and to create an application (Model-R) that allows, either via command-line
or through a web interface, to perform ecological niche modeling, overcoming
the most common barriers and providing approaches for data entry steps, data
cleaning, choice of predictor variables, parametrization of algorithms, and post-
analysis as well as the retrieval of the results. A list of acronyms and variable
definitions is presented in Table 1.

2 Model-R Framework

The Model-R framework for ecological niche modeling is given by a set of ecolog-
ical niche modeling functions (dismo.mod, final.models, ensemble), functions

220 A. Sánchez-Tapia et al.

for retrieving species occurrences records (Rjabot and Rgbif [49]) and the graphic
user interface. It allows researchers to use their own data. The framework is
divided in front and backend; some functions are presented at web interface that
abstracts and automates the main steps involved in the ecological niche modeling
process. This is a dynamic process, and our goal is that this interface will evolve
and incorporate more and more aspects of the framework. All these components
were implemented in R and are described in the subsections that follow.

2.1 Frontend

The main focus of the web application for Model-R is the development of an
interface for the modeling process, allowing users without programming knowl-
edge to perform the steps of the modeling process consistently, avoiding the
concern with script coding and concentrating on the data and its processing
workflow. To do so, we adapted the modeling functions into a Shiny application
[9]. The Shiny package [9] is a web application framework for R, allowing the
creation of interactive applications that can be accessed from devices with inter-
net access, such as computers, tablets, and mobile phones. Thus, the application
provides a graphical interface where users can easily choose biotic and abiotic
data, perform the data cleaning on occurrence records, choose algorithms and
their parameters. They can also download the results, as well as the script of
the modeling process that allow its execution without the use of the Model-R
web application. The use of the script as a stand-alone application allows for
more precise adjustment of the parameters or adjustments that were not possi-
ble in the web interface. To make the application and process user-friendly, we
separated the features by steps, following the modeling process described in [8].

The following steps of the modeling process are available in the application:
biotic data entry; data cleaning; choice of abiotic variables; cutting off the geo-
graphic extension; choosing the algorithm and its parameters; visualization of
results; and downloading the resulting data.

Biotic data entry. This stage represents the entry of biotic data in the sys-
tem. A modeling project can be created using the “Create Project” feature,
this allows for keeping track of the modeling experiments performed. Creating a
project allows one to assign a name and thus organize and store the information
generated. Biotic data can be given as input to the application in three ways:
queries to the GBIF database, queries to the Jabot database, and uploading CSV
files. CSV files allow for uploading occurrence records not present in GBIF and
Jabot from other databases after conversion to this format. The RJabot pack-
age makes the query to the Jabot database (Fig. 1). These records are given by
species name, latitude, and longitude. At the end of the biotic data entry step,
a map with the occurrence records is displayed. In July 2017, GBIF contained
approximately 10 million species occurrence records about Brazil, 70% of which
were published by its Brazilian node, the Brazilian Biodiversity Information
System (SiBBr) [10].

Model-R: A Framework for Scalable and Reproducible ENM 221

Fig. 1. Output of getOccurrence showing occurrence points obtained from Jabot.

Data cleaning. This step allows cleaning the biotic data entered into the appli-
cation. It has two features: “Eliminate duplicate data” and “Delete Occurrence
point”. “Eliminate Duplicate Data” removes occurrence records entered to the
application that have the same value for latitude and longitude. “Delete occur-
rence point” eliminates points that were evaluated by the user as erroneous in
their location and will not be used in modeling. Using the interface, the user
clicks the button “Delete duplicate” or selects the point it wants to eliminate
suspicious data. After that, the user can also save the final biotic dataset, after
the data cleaning process.

Abiotic data entry. This step is responsible for the entry of abiotic variables
and definition of the geographic extensions of the modeling process and its pro-
jection. The first step is to set the spatial extension of modeling process (i.e.: the
extent to which the modeling will be done, also understood as study area). The
extensions can be defined directly on the map, which displays the occurrence
points selected in the previous steps. Regarding spatial projection, the applica-
tion allows users to define a different extent to project ENM in another region.
This can be useful, for instance, for checking the ability of a species to become
invasive in the given region. Also, it is possible to define a projection in time,
in instance, to the past (Pleistocene/Holocene) or future (2050 and 2070) using
Worldclim dataset1 and Bio-ORACLE variables [11]. Independently of the spa-
tial and temporal projection chosen, the user might define the spatial resolution
(i.e. pixel size) of the abiotic dataset. For development, we used the resolu-
tion of 10 arc minutes (for Worldclim variables) and 9.2 km (for Bio-ORACLE

1 http://www.worldclim.org.

http://www.worldclim.org

222 A. Sánchez-Tapia et al.

variables), due to storage space and processing speed reasons. The main database
technologies that optimize storage and speed processing are already under study,
so the application supports others resolutions, like 30 s, 2.5, 5 arc minutes.

The map, the occurrence points, and the geographic extensions are displayed
using the Leaflet [12]. The package allows for zooming and interacting with the
map. The application is configured to work with Wordclim and Bio-ORACLE
to retrieve abiotic data and allow for other variables to be added manually to
the application.

Once the abiotic variables are defined, the Model-R application displays the
variables considering the extension defined by the user, and a table with charts
containing the correlation values between them (see Fig. 2, step 4), allowing
to verify the correlated variables. Strongly correlated variables can impair the
prediction performance and statistics of the modeling process [13,14].

Fig. 2. Modeling steps in the web interface of Model-R.

3 Modeling Process and Backend

The next step in the web application, modeling process, is the core of the species
distribution modeling workflow and was implemented as a three-step proce-
dure, wrapped in R functions, called dismo.mod() (in reference to the dismo

Model-R: A Framework for Scalable and Reproducible ENM 223

package [15] from which it draws the main structure and functions),
final.models() and ensemble().

dismo.mod() takes the input data, partitions it by cross-validation, fits the mod-
els for each partition and writes the evaluation statistics tables, using function
evaluate () in the dismo package, with some modifications, such as the cal-
culation of TSS for each partition. It writes the raw models, i.e. the continuous
outputs, in raster and image formats. Writing to the hard disk allows keeping
the main memory uncluttered. The structure of the function draws both on
the dismo [15] and the biomod2 [16] tutorials.

final.model() joins the fitted models for each partition into a final model per
species per algorithm. It can select the best partitions according to their
TSS or AUC value. The default is selecting by TSS > 0.7, but this can
be changed by the user. The function also allows choosing which algorithms
will be processed. Otherwise, it will read all algorithms available from the
statistics table, and to use a mask to crop the models to a subset of the fitting
geographic area. Finally, it cuts the continuous models by the threshold that
maximizes the TSS of the model and averages these models.

ensemble() computes the average of the final models, to obtain an ensemble
model per species and retaining only the algorithms and partitions that were
selected previously. It can also focus on the areas where the algorithms exhib-
ited consensus. The default is 0.5, which corresponds to a Weighted Majority
Rule Ensemble to reduce variability between the algorithms in final models
so that the final models only retains areas predicted by at least half of the
algorithms [17].

The application interface runs this framework in the background, but the
user can adjust the following parameters:

Partition Number. The number of times the model will be generated for each
selected algorithm and, consequently, the number of times the k-fold parti-
tioning will be performed. (dividing the total data set in k mutually exclusive
subsets of the same size, using k− 1 for parameter estimation and algorithm
training and the remaining subset to evaluate the accuracy of the model).

Number of pseudo-absences. Number of points sampled randomly in the
background for use in the modeling process.

Modeling algorithms. Seven algorithms are available: BIOCLIM, Maha-
lanobis, Maxent, DOMAIN available in the dismo package [15] GLM (‘stats’),
RandomForest (‘randomForest’ [50]) and SVM (‘kernlab’ [51]). BIOCLIM,
Malahanobis, and DOMAIN are based on simple statistical techniques, such
as environmental distance. GLM is based on regression techniques. Lastly,
Maxent, RandomForest, and SVM are based on machine learning techniques.

Buffer should be applied during the sampling of pseudo-absences. This is an
inclusive buffer, it calculates the distance between the occurrence points and
use the maximum or the mean geographic distance between the occurrences
of the species within which pseudo-absences will be generated.

224 A. Sánchez-Tapia et al.

Project on another extension. The application reprojected the model to
different extensions (spatial or temporal) from the modeling process obtained
on the creation extension.

At the end of the execution, k continuous models, k binary models and one
ensemble model are generated for each species and algorithm, as displayed in
Fig. 2 (step 5). The values obtained from the validation process are stored as
a table, and their values are presented in Fig. 2 (step 6). A brief description of
each variable is presented in Table 1.

Table 1. Description of variables generated by the modeling process.

Variable name Description

Sp Species name

Part Partition number

Algorithm Modeling algorithm employed

AUC Computed Area Under Curve

TSS True skill statistic = (sensitivity + specifity) - 1

Kappa Cohen’s Kappa coefficient

No omission Threshold where there is no omission

Prevalence Prevalence

Sensitivity Sensitivity

TSSth Threshold = (sens + esp)

Np Number of presences

Na Number of absences

4 Reproducibility

Provenance information [18] is given by the documentation of the conception and
execution of computational processes, including the activities that were executed
and the respective data sets consumed and produced by them. Applications of
provenance include reproducibility of computational processes, sharing and reuse
of knowledge, data quality evaluation and attribution of scientific results [19].
Reproducibility is one of the important features of Model-R. The inclusion of
this feature is motivated by many academic journals recommending that authors
of computational studies should also provide the required data sets, tools, and
workflows used to generate the results [20,21] so that reviewers and readers
could better validate them. For each modeling project specified and executed in
Model-R, the following information is available for download: the R script, illus-
trated in Fig. 2 (step 6) that allows for reproducing the steps that were performed
to produce results of the modeling process and to re-execute the modeling process

Model-R: A Framework for Scalable and Reproducible ENM 225

without using the web interface of Model-R; a CSV file containing the result-
ing variables from the modeling process; the occurrence records used after data
cleaning; the raster files in the GeoTIFF format generated by the application;
a raster file in the GeoTIFF format with an ensemble of the models generated;
raster files in the GeoTIFF format with the projection of the model into another
geographic extension. These are only generated when the “Project into another
extension” option is selected.

5 Case Study and Evaluation

A case study was performed with woody plants of the Brazilian Atlantic Forest
and is described next.

Species occurrence data. The original plant names database (3,952 plant
names and 171,144 original records) were compiled from SpeciesLink2 and Neo-
TropTree3 (List of species with number of records – appendix 1) and corrected
according to the Catalog of Plants and Fungi of Brazil (CPFB)4, using R pack-
age flora [22], which is based on the List’s IPT database. The CPFB publishes
the official List of the Brazilian Flora, meeting Target 1 of the Global Strat-
egy for Plant Conservation. The catalog recognized and checked 3,910 names.
The 42 names that were not found by the LSBF were looked for in The Plant
List5 (TPL) and then in the Taxonomic Name Resolution Service6 (TNRS), as
implemented in the R packages Taxonstand [23] and taxize [24,25]. The infor-
mation from the CPFB, TPL, and TNRS was cross-checked, and when there
were conflicts, the names from the CPFB were given priority. For each species
the complete occurrence data was treated for (1) records that fell out of the
Brazilian limit, (2) duplicated records, (3) non-duplicated records that fell in
the same 1 km-pixel. Only species with at least 100 unique occurrences (deleting
duplicated within each pixel) were maintained, and of these, to overcome bias of
with marginal occurrence for Atlantic Rainforest, only species with more than
50% of occurrences in the Atlantic Rain Forest were considered. After all these
procedures, a sub-sample of the 96 species (35,672 presence records) that pre-
sented the largest numbers of samples was chosen to compose the given woody
plants case study (Fig. 3, left).

Environmental data. As environmental predictors, 28 variables with spatial
resolution of 1 km2 were compiled and organized. Those variables were sum-
marized by PCA axes, from which the first ten axes (about 95% of the data
variation) were used to run models. Aspect variable was edited and had its sin
and cosin created to be used as variables.

2 http://splink.cria.org.br/.
3 http://prof.icb.ufmg.br/treeatlan/.
4 http://floradobrasil.jbrj.gov.br/.
5 http://www.theplantlist.org/.
6 http://tnrs.iplantcollaborative.org/.

http://splink.cria.org.br/
http://prof.icb.ufmg.br/treeatlan/
http://floradobrasil.jbrj.gov.br/
http://www.theplantlist.org/
http://tnrs.iplantcollaborative.org/

226 A. Sánchez-Tapia et al.

Environmental Niche Modeling. Environmental niche models were built for
each species, using dismo.mod, final.model, and ensemble functions.

A three-fold cross validation procedure was performed. Random pseudo-
absence points (nback = 2 × n) were sorted within a maximum distance buffer
(the radius of the buffer is the maximal geographic distance between the occur-
rence points) and divided into three groups, for training and testing purposes.

For each partition (k = 3) and algorithm, a model was built, and its perfor-
mance was tested by calculating the True Skill Statistic [26]. The authors found
that TSS scores were largely unaffected by prevalence and values from 0.6 to
1.0 were considered as a good adjustment of the model accuracy. Because of
that, only models with TSS > 0.7 were retained. Selected partitions were cut by
the threshold that maximizes their TSS, and the resulting binary models were
averaged to generate a model per algorithm. The scale in these final models
is equivalent to the number of partitions that predict the species presence (it
goes from 0 to n

n in 1
n intervals where n is the number of selected models). The

ensemble model (e.g. joining models from different algorithms) was obtained by
averaging the final models for each algorithm. A species potential richness map
was generated by summing the binary final models, cut by the average threshold
that maximizes TSS values (Fig. 3, right).

Fig. 3. Map with original occurrence records (left) and richness map generated by
analyzing Model-R output data (right).

Performance and Parallelization. The dismo.mod() function, in which the
modeling process of Model-R is based, was entirely sequential in its first version.

Model-R: A Framework for Scalable and Reproducible ENM 227

Models for all species of interest were generated one after another. To improve
performance, parallel processing was employed. Now, if n cores are available,
models for n species can be generated simultaneously. The snowfall [27] R pack-
age provided support for the parallelization. It provides functions for parallel
collection processing. sfLapply, for instance, is the parallel version of the stan-
dard lapply, which applies some function to every element of an array, producing
a new array with the results.

The effects of the parallelization on performance can be seen in Fig. 4. Each
point in the plot is the arithmetic mean of the time elapsed to do three executions
of dismo.mod(). Models for 96 species were generated, varying the number of
cores from 1 to 64. The algorithms used were RandomForest, SVM, and Maxent.
The variability in execution time for 96 species can be explained in part by the
parallelization strategy used, i.e. one thread per species. The total time that it
takes to apply all the modeling algorithms can be significantly different from one
species to another.

20
50

10
0

20
0

50
0

Average time varying the number of cores

cores

tim
e

(m
in

)

1 2 4 6 8 10 14 18 22 28 34 42 52 64

Fig. 4. Parallelization effects on performance.

The creation of separate functions for each of the modeling algorithms that
dismo.mod() can fit was another important optimization. In its first version,
all algorithms were generating models in the context of a single function. The
memory allocated to the variables used by one algorithm was never released even
if the referenced algorithm had finished its work. R is a programming language
with garbage collector [28] meaning it releases memory when an object is no
longer used. It does this by counting how many references point to each object
and when the counter reaches zero, removes that object. Since dismo.mod() was

228 A. Sánchez-Tapia et al.

keeping at least one reference to the variables used by all selected algorithms for
all the runtime of the function, a lot of memory was being occupied unneces-
sarily. The separation did not make the modeling process faster but allowed the
generation of more models per node because of the smaller memory footprint.
The generation of models for a single species was performed using approximately
5 GB of resident memory. Resident memory is a metric that gets closer to the
actual memory budget of a process [29]. The version with separate functions for
each modeling algorithm uses half of this memory.

6 Related Work

As parameters for comparison, two related services in this area were considered:
the Biomodelos portal [30], developed by the Humboldt Institute in Colombia,
and the Virtual Biodiversity e-Laboratory (BioVel) [31], an initiative supported
by the European Union. These two examples were chosen because they repre-
sent two distinct efforts from the standpoint of the internal and external target
audience of the system.

BioVel provides, via a web interface, a service that allows management of
scientific workflows [32] for biodiversity. Several pre-defined activities can be
composed to form these workflows, as an example, the following features were
developed and are available in BioVel: geographic and temporal selection of
occurrences; data cleaning; Taxonomic name resolution; modeling algorithms
ecological niches (openModeller) [33]. Such activities can be composed freely
in complex scientific workflows for performing various analyses on biodiversity.
This flexibility of service and the range of applications available in its catalog,
generate a plurality of results provided by the service that can be difficult to
assess regarding quality and suitability, since the service is freely accessible and
does not have a methodology systematic qualification of models where experts
can criticize, comment and change the generated results.

The Biomodelos portal [30] is intended for species distribution modeling,
which is carried out and published on the website by the Humboldt Institute
modeling team. The most interesting feature of biomodelos, absent from similar
portals is the existence of a network of taxonomists, who are also users of the
portal, which evaluates each species distribution published on the website. The
taxonomy experts have access to metadata about how the species distribution
models were executed and can assign a note to the generated model, add notes
to them or geographically edit the distribution map (excluding, for example,
records in areas with known absences). Thus, species distributions published in
Biomodelos are accompanied by information to support the decision maker in
assessing their quality and fitness for the use.

Other initiatives based on R include SDM [34] and Wallace [35], and based
on scientific workflow management system include Kepler [36], VisTrails [37,
38] or in the cloud computing environment [39–41]. They have some similarity
with our application as well as some striking differences, especially in terms of
functionality, such as the lack of scalability in the implementation of the models
and the absence of provenance recording.

Model-R: A Framework for Scalable and Reproducible ENM 229

7 Conclusion

In this work, we presented Model-R, a framework for species distribution mod-
eling. It abstracts away cumbersome steps usually involved in this type of mod-
eling, such as data acquisition and cleaning, by providing a productive web
interface that allows for customizing key steps of the process, including the
pre-processing of biotic and abiotic data and the post-analysis of the results.
The RJabot package, for instance, allows for easy retrieval of species occurrence
records from the Rio de Janeiro Botanical Garden Herbarium (RB) [42], one of
the most complete sources of information about the Brazilian flora. The scalable
execution of the modeling process is enabled through the use of parallel pro-
gramming libraries available for the R environment. Having separate functions
per algorithm also presents an opportunity for further exploration of parallelism.
Currently only parallelism by species is used. All models for a given species are
generated by the same core even if more than one algorithm is used. Paral-
lelism by algorithm is feasible as well. Model-R also enables reproducibility of
the modeling process by providing the data sets generated and scripts in R that
allow for reproducing the steps used to generate them. The application supports
applying the modeling process to different sets of temporal or spatial data. Max-
ent, RandomForest, and all the algorithms supported by the dismo package are
supported by Model-R, and their parameters can be customized through its web
interface. We expect the application to become a valuable tool for scientist work-
ing with analysis and synthesis of biodiversity data, and for decision-makers in
biodiversity conservation.

As future work, we plan to better automate the generation of raster files
containing abiotic data by using GIS tools, such as PostGIS. These are cur-
rently generated manually for some pre-defined resolutions and copied to the
Model-R application server. We also plan to further improve the scalability of
the application by adapt it to run on petascale computing resources of the Brazil-
ian National System for High-Performance Computing7 [43] using the Swift [44]
parallel scripting system, which gathers provenance information [45,46]. Addi-
tionally, we are working on porting the modeling scripts to Big Data platforms.
In particular, we are adapting them to the Spark platform [47] using its R inter-
face [48].

Model-R is available as open-source software on Github8. To facilitate its
installation, we also built a software container that is available on Docker Hub9.
This software container is synchronized to the Github repository, i.e. any update
to the source code on Github triggers the production of an updated software
container.

Acknowledgments. This work has been supported by CNPq (Grants 461572/2014-1
SiBBr - SEPED/MCTIC and 441929/2016-8 Edital MCTI/CNPQ/Universal).

7 http://sdumont.lncc.br.
8 https://github.com/Model-R/Model-R.
9 https://hub.docker.com/r/modelr/shinyapp/.

http://sdumont.lncc.br
https://github.com/Model-R/Model-R
https://hub.docker.com/r/modelr/shinyapp/

230 A. Sánchez-Tapia et al.

References

1. Araújo, M.B., Williams, P.H.: Selecting areas for species persistence using occur-
rence data. Biol. Conserv. 96(3), 331–345 (2000)

2. Engler, R., Guisan, A., Rechsteiner, L.: An improved approach for predicting the
distribution of rare and endangered species from occurrence and pseudo-absence
data. J. Appl. Ecol. 41(2), 263–274 (2004)

3. Ortega-Huerta, M.A., Peterson, A.T.: Modelling spatial patterns of biodiversity for
conservation prioritization in North-Eastern Mexico. Divers. Distrib. 10(1), 39–54
(2004)

4. Chen, Y.: Conservation biogeography of the snake family colubridae of China.
North-West. J. Zool. 5(2), 251–262 (2009)

5. Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Mart́ınez-Meyer, E.,
Nakamura, M., Araújo, M.B.: Ecological Niches and Geographic Distributions.
Princeton University Press, Princeton (2011)

6. Anderson, R.P., Lew, D., Peterson, A.: Evaluating predictive models of species’
distributions: criteria for selecting optimal models. Ecol. Model. 162(3), 211–232
(2003)

7. Sillero, N.: What does ecological modelling model? A proposed classification of
ecological niche models based on their underlying methods. Ecol. Model. 222(8),
1343–1346 (2011)

8. Santana, F., de Siqueira, M., Saraiva, A., Correa, P.: A reference business process
for ecological niche modelling. Ecol. Inf. 3(1), 75–86 (2008)

9. Chang, W.: Shiny: Web Application Framework for R (2016). https://cran.r-
project.org/web/packages/shiny

10. Gadelha, L., Guimarães, P., Moura, A.M., Drucker, D.P., Dalcin, E., Gall, G.,
Tavares, J., Palazzi, D., Poltosi, M., Porto, F., Moura, F., Leo, W.V.: SiBBr: Uma
Infraestrutura para Coleta, Integração e Análise de Dados sobre a Biodiversidade
Brasileira. In: VIII Brazilian e-Science Workshop (BRESCI 2014). Proceedings
XXXIV Congress of the Brazilian Computer Society (2014)

11. Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., De Clerck,
O.: Bio-ORACLE: a global environmental dataset for marine species distribution
modelling. Global Ecol. Biogeogr. 21, 272–281 (2012)

12. Agafonkin, V.: Leaflet - a JavaScript library for interactive maps (2016). http://
leafletjs.com/

13. Guisan, A., Zimmermann, N.E.: Predictive habitat distribution models in ecology.
Ecol. Model. 135(2–3), 147–186 (2000)

14. Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., Guisan,
A.: Overcoming the rare species modelling paradox: a novel hierarchical framework
applied to an Iberian endemic plant. Biol. Conserv. 143(11), 2647–2657 (2010)

15. Hijmans, R.J., Elith, J.: dismo: Species Distribution Modeling (2016). https://
cran.r-project.org/web/packages/dismo

16. Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B.: BIOMOD - a platform for
ensemble forecasting of species distributions. Ecography 32(3), 369–373 (2009)

17. Araújo, M.B., Whittaker, R.J., Ladle, R.J., Erhard, M.: Reducing uncertainty in
projections of extinction risk from climate change: uncertainty in species’ range
shift projections. Glob. Ecol. Biogeogr. 14(6), 529–538 (2005)

18. Freire, J., Koop, D., Santos, E., Silva, C.: Provenance for computational tasks: a
survey. Comput. Sci. Eng. 10(3), 11–21 (2008)

https://cran.r-project.org/web/packages/shiny
https://cran.r-project.org/web/packages/shiny
http://leafletjs.com/
http://leafletjs.com/
https://cran.r-project.org/web/packages/dismo
https://cran.r-project.org/web/packages/dismo

Model-R: A Framework for Scalable and Reproducible ENM 231

19. Gadelha Jr., L.M.R., Mattoso, M.: Applying provenance to protect attribution in
distributed computational scientific experiments. In: Ludäscher, B., Plale, B. (eds.)
IPAW 2014. LNCS, vol. 8628, pp. 139–151. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16462-5 11

20. Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E.: Ten simple rules for repro-
ducible computational research. PLoS Comput. Biol. 9(10), e1003285 (2013)

21. Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P., Davis, M., Guy, R.T.,
Haddock, S.H.D., Huff, K.D., Mitchell, I.M., Plumbley, M.D., Waugh, B., White,
E.P., Wilson, P.: Best practices for scientific computing. PLoS Biol. 12(1), e1001745
(2014)

22. Carvalho, G.: Flora: tools for interacting with the Brazilian flora 2020 (2016).
https://cran.r-project.org/web/packages/flora/index.html

23. Cayuela, L., Oksanen, J.: Taxonstand: taxonomic standardization of plant species
names (2016). https://cran.r-project.org/web/packages/Taxonstand

24. Chamberlain, S.A., Szöcs, E.: Taxize: taxonomic search and retrieval in R.
F1000Research 2, 191 (2013)

25. Chamberlain, S., Szoecs, E., Foster, Z., Boettiger, C., Ram, K., Bartomeus, I.,
Baumgartner, J., O’Donnell, J.: Taxize: taxonomic information from around the
web (2016). https://cran.r-project.org/web/packages/taxize

26. Allouche, O., Tsoar, A., Kadmon, R.: Assessing the accuracy of species distribution
models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6),
1223–1232 (2006)

27. Knaus, J.: Snowfall: easier cluster computing (based on snow) (2016). https://cran.
r-project.org/web/packages/snowfall

28. Wickham, H.: Advanced R. Chapman and Hall/CRC, Boca Raton (2014)
29. Simmonds, C.: Mastering embedded linux programming. Packt, Birmingham

(2015)
30. Biomodelos: Instituto Alexander von Humboldt (2016). http://biomodelos.

humboldt.org.co
31. Vicario, S., Hardisty, A., Haitas, N.: BioVeL: Biodiversity virtual e-Laboratory.

EMBnet.journal 17(2), 5 (2011)
32. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific

workflow management. J. Grid Comput. 13(4), 457–493 (2015)
33. Souza Muñoz, M.E., Giovanni, R., Siqueira, M.F., Sutton, T., Brewer, P., Pereira,

R.S., Canhos, D.A.L., Canhos, V.P.: openModeller: a generic approach to species’
potential distribution modelling. GeoInformatica 15(1), 111–135 (2009)

34. Naimi, B., Araújo, M.B.: Sdm: a reproducible and extensible R platform for species
distribution modelling. Ecography 39(4), 368–375 (2016)

35. Kass, J., Anderson, R.P., Aiello-Lammens, M., Muscarella, B., Vilela, B.: Wallace
(beta v0.1): Harnessing Digital Biodiversity Data for Predictive Modeling, Fueled
by R (2016). http://devpost.com/software/wallace-beta-v0-1-harnessing-digital-
biodiversity-data-for-predictive-modeling-fueled-by-r

36. Pennington, D.D., Higgins, D., Peterson, A.T., Jones, M.B., Ludäscher, B., Bowers,
S.: Ecological niche modeling using the kepler workflow system. In: Taylor, I.J.,
Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 91–108.
Springer, London (2007). https://doi.org/10.1007/978-1-84628-757-2 7

37. Talbert, C., Talbert, M., Morisette, J., Koop, D.: Data management challenges
in species distribution modeling. IEEE Bull. Techn. Committee Data Eng. 36(4),
31–40 (2013)

https://doi.org/10.1007/978-3-319-16462-5_11
https://doi.org/10.1007/978-3-319-16462-5_11
https://cran.r-project.org/web/packages/flora/index.html
https://cran.r-project.org/web/packages/Taxonstand
https://cran.r-project.org/web/packages/taxize
https://cran.r-project.org/web/packages/snowfall
https://cran.r-project.org/web/packages/snowfall
http://biomodelos.humboldt.org.co
http://biomodelos.humboldt.org.co
http://devpost.com/software/wallace-beta-v0-1-harnessing-digital-biodiversity-data-for-predictive-modeling-fueled-by-r
http://devpost.com/software/wallace-beta-v0-1-harnessing-digital-biodiversity-data-for-predictive-modeling-fueled-by-r
https://doi.org/10.1007/978-1-84628-757-2_7

232 A. Sánchez-Tapia et al.

38. Morisette, J.T., Jarnevich, C.S., Holcombe, T.R., Talbert, C.B., Ignizio, D., Tal-
bert, M.K., Silva, C., Koop, D., Swanson, A., Young, N.E.: VisTrails SAHM: visual-
ization and workflow management for species habitat modeling. Ecography 36(2),
129–135 (2013)

39. Candela, L., Castelli, D., Coro, G., Pagano, P., Sinibaldi, F.: Species distribution
modeling in the cloud. Concurrency Comput. Pract. Exp. 28(4), 1056–1079 (2016)

40. Candela, L., Castelli, D., Coro, G., Lelii, L., Mangiacrapa, F., Marioli, V., Pagano,
P.: An infrastructure-oriented approach for supporting biodiversity research. Ecol.
Inf. 26, 162–172 (2014)

41. Amaral, R., Badia, R.M., Blanquer, I., Braga-Neto, R., Candela, L., Castelli, D.,
Flann, C., De Giovanni, R., Gray, W.A., Jones, A., Lezzi, D., Pagano, P., Perez-
Canhos, V., Quevedo, F., Rafanell, R., Rebello, V., Sousa-Baena, M.S., Torres, E.:
Supporting biodiversity studies with the EUBrazilOpenBio hybrid data infrastruc-
ture. Concurrency Comput. Pract. Exp. 27(2), 376–394 (2015)

42. Forzza, R., Mynssen, C., Tamaio, N., Barros, C., Franco, L., Pereira, M.: As
coleções do herbário. 200 anos do Jardim Botânico do Rio de Janeiro. Jardim
Botânico do Rio de Janeiro, Rio de Janeiro (2008)

43. Mondelli, M.L., Galheigo, M., Medeiros, V., Bastos, B.F., Gomes, A.T.A., Vascon-
celos, A.T.R., Gadelha Jr., L.M.R.: Integrating scientific workflows with scientific
gateways: a bioinformatics experiment in the brazilian national high-performance
computing network. In: X Brazilian e-Science Workshop. Anais do XXXVI Con-
gresso da Sociedade Brasileira de Computação, SBC, pp. 277–284 (2016)

44. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: a
language for distributed parallel scripting. Parallel Comput. 37(9), 633–652 (2011)

45. Gadelha, L.M.R., Wilde, M., Mattoso, M., Foster, I.: Exploring provenance in high
performance scientific computing. In: Proceedings of the 1st Annual Workshop on
High Performance Computing meets Databases - HPCDB 2011, pp. 17–20. ACM
Press (2011)

46. Mondelli, M.L., de Souza, M.T., Ocaña, K., de Vasconcelos, A.T.R., Gadelha Jr.,
L.M.R.: HPSW-Prof: a provenance-based framework for profiling high performance
scientific workflows. In: Proceedings of Satellite Events of the 31st Brazilian Sym-
posium on Databases (SBBD 2016), SBC, pp. 117–122 (2016)

47. Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Stoica, I.,
Wendell, P., Xin, R., Zaharia, M.: Scaling spark in the real world: performance
and usability. Proc. VLDB Endowment 8(12), 1840–1843 (2015)

48. Venkataraman, S., Stoica, I., Zaharia, M., Yang, Z., Liu, D., Liang, E., Falaki, H.,
Meng, X., Xin, R., Ghodsi, A., Franklin, M.: SparkR: scaling R programs with
spark. In: Proceedings of the 2016 International Conference on Management of
Data - SIGMOD 2016, 1099–1104. ACM Press, New York, USA (2016)

49. Chamberlain, S.: rgbif: Interface to the Global ‘Biodiversity’ Information Facility
‘API’ (2017). R package version 0.9.8. https://CRAN.R-project.org/package=rgbif

50. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3),
18–22 (2002)

51. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for
kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004). http://www.jstatsoft.org/
v11/i09/

https://CRAN.R-project.org/package=rgbif
http://www.jstatsoft.org/v11/i09/
http://www.jstatsoft.org/v11/i09/

Parallel and Distributed Algorithms

Task Scheduling for Processing Big Graphs
in Heterogeneous Commodity Clusters

Alejandro Corbellini(B), Daniela Godoy, Cristian Mateos, Silvia Schiaffino,
and Alejandro Zunino

ISISTAN-CONICET, UNICEN, Tandil, Buenos Aires, Argentina
alejandrocorbellini@gmail.com

Abstract. Large-scale graph processing is a challenging problem since
vertices can be arbitrarily connected, reducing locality and easily expand-
ing the solution space. As a result, in recent years, a new breed of dis-
tributed frameworks that handle graphs efficiently has emerged. In large
clusters with many resources (RAM, CPUs, network connectivity), these
frameworks focus on exploiting the available resources as efficiently as
possible. However, on situations where the cluster hardware is unbal-
anced or low in computing resources, the framework must correctly allo-
cate tasks in order to complete execution. In this work, we compare three
frameworks, the generic Fork-Join framework adapted to graph process-
ing, and the Pregel and DPM frameworks that were originally designed
for computing graphs. A link-prediction algorithm was used as case study
to analyze several scheduling strategies that allocate tasks to servers in a
cluster of heterogeneous characteristics. The dataset used for the exper-
iments is a snapshot from the Twitter graph, and specifically, a subset
of its users that pushed the memory requirements of the algorithm.

1 Introduction

In recent years, processing large graphs in distributed environments has been
a major academical and industrial concern. Graphs are structures that are
ubiquitous across many fields of study. For example, they have been used to
model social networks [1], protein interactions [2], or the structure of the human
brain [3]. Mining data from these real-world graphs may uncover interesting
information such as the most important vertices in the graph or regions that are
highly connected. In the context of Social Networks (SNs), users establish friend-
ship, commercial and/or academic ties that are represented by links in a graph.
The resulting social graph can help to predict future interactions through link-
prediction [4] or to discover relevant sub-graphs using community detection [5]
or graph clustering algorithms [6].

In practice, algorithms running on large-scale, real-world graphs can easily
surpass the capabilities of a single computer node. For example, a simple algo-
rithm that collects friends of a friend in a social network may reach, in a few
traversal steps, large portions of the graph or even the whole graph. A common

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 235–249, 2018.
https://doi.org/10.1007/978-3-319-73353-1_16

236 A. Corbellini et al.

alternative to process these complex networks is running the algorithm in a
distributed environment.

In consequence, distributed large-scale graph processing frameworks that
leverage the capabilities of computer clusters have become an important tool
to capitalize the vast information kept in complex networks. In part, this is an
effect of the recent proliferation of processing frameworks that run on commod-
ity hardware, which has empowered both large organizations and small teams.
In some scenarios, the available resources are scarce, a common situation in
small clusters of commodity hardware. Although there are cloud services that
offer enormous amounts of processing capabilities, in testing environments that
use large-scale datasets the cost of running an experiment multiple times in
such a platform may be prohibitively high. Thus, re-using the available cluster
infrastructure may lower costs, with the natural performance penalty of using a
low-resource infrastructure.

The main purpose of this work is to show through a set of experiments
that graph processing frameworks may benefit from using task scheduling to
overcome the limitations of a very unbalanced cluster of computers, in terms
of hardware capabilities. In particular, we propose two scenarios that limit the
available memory of several nodes. One of those scenarios limits the amount of
memory of a key component that is usually present in processing frameworks,
in order to further stress the running algorithm.

An specific graph algorithm, called Twitter Followee Recommender [7]
(TFR), was chosen as a case study due to its large memory usage. TFR is a
simple recommendation algorithm that traverses the graph looking for vertices
to recommend. On each step, this algorithm gathers vertices by following their
edges, and builds a ranking according to how many times those vertices appear
in the traversal. In a few steps, the amount of gathered vertices may reach the
size of the graph.

This work is organized as follows. Section 2 provides insights on related lit-
erature. Section 3 gives some background in the processing frameworks used in
the experiments. Section 4 describes the scheduling strategies considered for the
experiments. Section 5 presents the algorithm used as case-study, the dataset,
the computer cluster, the low-memory scenarios, and the results from running
the experiments. Finally, in Sect. 6 we provide some conclusions.

2 Related Work

Graph processing has been supported by ad-hoc tools, which solve an specific
graph algorithm, and alternatively frameworks that provide a general-purpose
tool to run graph algorithms. Regarding the first graph processing technique, the
authors in [8] analyzed the challenges of distributed graph processing, in general,
and considered two ad-hoc implementations over different distributed memory
architectures. [9] built an ad-hoc implementation of low-rank approximation of
graphs and applied it to link-prediction. Unfortunately, without proper knowl-
edge of the implementation details, ad-hoc solutions are usually hard to reuse
and maintain.

Task Scheduling for Processing Big Graphs 237

Several general-purpose frameworks that have been used to process large-
scale graphs can be found in the literature. Frameworks such as MapRe-
duce [10], Fork-Join [11] or RDD (Spark) [12] have been applied to various
graph-related processing problems [13–15]. Other frameworks, like Pregel [16]
or GraphLab [17] were specifically designed for graph-based algorithms [18,19].
Distributed GraphLab [17] bases upon the GraphLab abstraction and extends it
to distributed settings. HipG [20] is a graph framework that allows the user to
model hierarchical parallel algorithms, which includes divide-and-conquer graph
algorithms. Similarly, PBGL [21] and CGMGraph [22] are also open-source graph
processing frameworks that allow the user to model graph algorithms. DPM [23]
is a graph processing framework that provides a Fork-Join programming style,
while preserving some of the benefits of the Pregel or MapReduce frameworks. In
the experiments in this paper, we considered Fork-Join, Pregel and DPM for our
task scheduling comparison. In order to provide a common ground of compari-
son, we based our efforts on an in-house developed graph processing framework,
called Graphly [24], that included the implementation of the three aforemen-
tioned frameworks and provided the needed support for developing scheduling
strategies. In particular, Graphly provided a flexible support to extend these
frameworks and include task scheduling techniques that dynamically adjust the
load balance across the cluster at runtime.

Job scheduling or mapping [25] is a well-studied problem in distributed com-
puting. On heterogeneous clusters, i.e., clusters of computers with different capa-
bilities (main memory, CPU speed, number of CPU cores, storage capacity), the
allocation of jobs to computing nodes allows distributed and parallel applications
to maximize a given performance criterion [26].

3 Graph Processing Frameworks

A distributed processing framework describes the set of software components and
the way they must interact in order to execute an algorithm on a given dataset.
This type of framework usually has an associated programming model that not
only describes the way user programs must be written, but also impacts the way
the components are designed for supporting such model. In the next sub-sections
we describe the frameworks compared in the experiments: Fork-Join, Pregel and
DPM. All their components and their programming models were implemented
in the context of a more comprehensive framework, called Graphly [24].

3.1 Fork-Join for Graphs

The Fork-Join processing model uses the concept of jobs and tasks to imple-
ment a generic distributed framework. Under this framework a job may spawn
many tasks, distribute them among available workers (i.e. a process that per-
forms the tasks) and then the jobs waits for the result of the work carried out
by the tasks. Adapting Fork-Join to graph processing is very simple. Figure 1
shows the Fork-Join workflow in Graphly. In the fork stage tasks are delivered

238 A. Corbellini et al.

Fig. 1. The Fork-Join workflow in graphly.

to workers and in the join stage results are joined (by the parent job). A Job
component executes and manages the results of the specified Tasks. Firstly,
input vertices are partitioned using a Scheduling Strategy resulting in a list of
(worker, partition) pairs, as shown in (1). Secondly, a user-defined Task is cre-
ated for each (worker, partition) pair, as shown in (2) in the same figure. Each
{K0,K1, . . . ,KR} emitted by the workers represent the intermediate results and
have an associated value (3). Finally, as Tasks complete execution and return
results, the join function merges sub-results (4).

One of the main advantages of Fork-Join is the simplicity of its fork-join pro-
gramming model. As a consequence, Fork-Join is the natural choice for graph
traversals. For iterative algorithms, however, Fork-Join suffers from a large net-
work transfer overhead in comparison to other models. Fork-Join sends the
data to be processed to all workers on every iteration. This back and forth
of data happens on each iteration. Moreover, the bottleneck at the join stage
affects each iteration, making the whole process more time-consuming than other
alternatives.

3.2 Pregel

At its core, Pregel uses a logical synchronization barrier to establish the iteration
boundaries and prevent access to inconsistent to results, a technique based on
the well-known BSP (Bulk-Synchronous Parallel) [27] framework. In Graphly,
Pregel is implemented through three main modules as shown in Fig. 2: a Pregel
Client (1), a Coordinator (2) and a Pregel Worker (3). The Coordinator’s main
responsibility is to receive the vertex function (i.e. the user’s algorithm) and a
list of vertices, set up workers and manage their execution. Initially, the coordi-
nator sends an activation message to all vertices involved in the first superstep

Task Scheduling for Processing Big Graphs 239

Fig. 2. The Pregel workflow in graphly.

of computation. A vertex is considered active if it has received one or more
messages. Afterwards, the coordinator enters in a loop that executes until all
vertices finish execution. A Pregel Worker follows a simple workflow: execute
active vertices and send messages. On setup, Workers receive the initial set of
vertices that must be activated, which involves putting a initial message on each
vertex message queue. Then the Worker applies the user-defined vertex function
to all active vertices (4). Finally, all messages generated by the execution are
sent to their corresponding workers (5). Pregel Workers may receive messages
from other workers at any time and must store them for the next superstep.
A combiner may be applied to merge messages from different workers to reduce
memory consumption (6). The user-defined vertex function can announce that
it stopped computing a given vertex by voting to halt execution.

One of the major differences with Fork-Join is that Pregel distributes the
merging of results across the cluster by using a vertex-to-vertex messaging mech-
anism. This mechanism distributes network and processing load among available
workers. As a consequence, results are stored locally on each worker, instead of
using a central fork-join component (the Fork-Join Job). An extra operation
might be needed to collect the results from each worker but on many cases this
is not necessary as the results stored on each worker are used as input to another
computation.

3.3 DPM

The Distributed Partitioned Merge (DPM) framework aims at reducing the per-
formance bottleneck observed in the Fork-Join framework while still keeping a

240 A. Corbellini et al.

Fig. 3. Distributed partitioned merge model: Overview

fork-join programming style. In opposition to Pregel, the management of the
active vertices is centralized, which produces a bottleneck as DPM needs to join
the set of active vertices into one final list. Centralizing computation is often
harmful in distributed systems, however, merging a set of vertex identifiers is
cheap and reduces the complexity of the worker implementation. Additionally,
the amount of vertices in real-world graphs is often exponentially smaller than
the amount of edges [28]. Due to the fact that most graph algorithms are edge-
based, the penalization from managing active vertices in a single location is often
negligible in comparison to edge processing.

Figure 3 shows an example of a DPM computation step. In this simple setup,
three workers (labeled Worker1, Worker2 and Worker3) process a user-defined
algorithm over a graph G of 30 vertices. The first stage of DPM is the Parti-
tioning Stage (1), in which the DPM Job (the master component that controls
the execution) splits the input vertex list V = {v | vεG} into a set of partitions
(from P1 to P3) that are assigned to each Worker, along with a copy of the user-
defined algorithm. In this example, Worker1 stores (in its local node) vertices
from V1 to V10, Worker2 from V11 to V20, and so on. After this stage, each worker
may execute the user task on its assigned partition, beginning the Distributed
Merge Stage. The (vertex, subresult) pairs emitted from the user-defined task
are combined into a map of vertices and results (2). In this example, Worker1
generates results for all vertices, from 1 to 30. Once the execution is completed,
the current sub-results are partitioned (3) and sent to their corresponding Work-
ers (4). Concurrently, the list of vertices that were part of the output, are sent
to the DPM Job (5) so that they can be processed in the next step. At any
given time, other workers may finish their execution and send their sub-results
to other workers. In this example, Worker1 receives results from Worker2 and
Worker3, and combines them with its local sub-results table (6).

Task Scheduling for Processing Big Graphs 241

4 Scheduling Strategies

Each of the aforementioned framework implementations use Scheduling Strate-
gies [24] to transform a list of vertices into a set of partitions grouped by worker.
Using this mechanism, the user may configure each framework to distribute ver-
tices according to the workers’ nodes capabilities to achieve lower algorithm
execution times, balancing vertex assignment or reducing resource usage. These
strategies work as a configurable and transparent connection between the graph
algorithm and the underlying infrastructure.

In particular, the cluster used in this work consisted of a set of nodes with
different memory capacities. Based on this setup, the following scheduling strate-
gies were used:

– Location Aware: This strategy takes advantage of the locality of the graph ver-
tices. It divides the input into different lists of vertices grouped by their stor-
age location. For example, let worker w1 be responsible for vertices a1, a3, a5
and worker w2 for vertices a2, a4. If a Location Aware strategy is used to
map vertices a1, a2, a5, it will divide the original list into: a1, a5 → w1 and
a2 → w2.

– Round Robin: This strategy simply divides the given list of vertices by the
amount of workers available and it assigns a sublist to each node. This divi-
sion of partitions among nodes makes this strategy the most fair in terms of
computing load. However, it does not consider either the locality of the data
nor the node’s characteristics such as available memory, CPU or physical
network speed.

– Available Memory: This strategy obtains the memory currently available on
each worker and then divides the given list of vertices accordingly. Naturally,
this strategy is dynamic, i.e., it adapts to the current status of the cluster.

– Maximum Memory: Similarly, to the Available Memory strategy, the Total
Memory strategy considers the maximum amount of memory that a worker
can use to divide the list of vertices. It is a fixed strategy that assigns more
requests to workers that have more memory installed.

The classic Round Robin strategy was used as a baseline strategy. The Location
Aware strategy is the most common technique used in processing frameworks
to maintain data locality. Both memory-based strategies were proposed in [24]
to tackle algorithms with large memory profiles. However, the Location Aware
strategy is, in most cases, the fastest alternative. In this work, we used two
low-memory scenarios to show that, in these configurations, the memory-based
strategies may be the only alternative to process a memory-intensive algorithm
on a large graph.

5 Experiments

As mentioned above, the experiments consisted on running the TFR link-
prediction algorithm [7], on a cluster with unbalanced memory capabilities over
a large dataset obtained from the Twitter graph. In this Section, we describe
each part of the experiments in more detail.

242 A. Corbellini et al.

5.1 Twitter Followee Recommender

The Twitter Followee Recommender [7] (TFR) algorithm is a link-prediction
algorithm that performs an exploratory traversal of the graph surrounding a
target user to select a set of followees to recommend. This algorithm can be
represented by the equation S = ((AA′) • T)A) • T , where T = (1 − A − I), A
is the adjacency matrix of the graph, and S is the similarity matrix. From its
matrix form, it can be seen that the algorithm performs a series of traversals:
first, it performs a traversal in the out direction (i.e. AA′), then another in the
in direction and, finally, a final traversal in the out direction. On each step,
direct followees of each user are removed from the sub-results (by multiplying
element-by-element the matrix T). Figure 4 shows a simple example of a traversal
performed by TFR. The starting vertices (users that are already friends of the
target) are filtered from the second and third-level set. Second-level vertices are
used to find the result vertices. Is important to note that second-level vertices
can be part of the result set. It is important to note that some edges are never
used in the final step because they always point to the initial set. TFR performs
almost no result pruning and, as a consequence, is very memory-intensive, which
makes it a good candidate for testing memory-based scheduling strategies.

Fig. 4. TFR traversal example.

5.2 Dataset

Experiments were carried out using a Twitter dataset1 containing the complete
follower-following network as of July 2009, presented in [28]. Since Twitter data
are no longer available to researchers, this remains as the largest snapshot of
Twitter accessible [29]. The dataset contains approximately 1,400 million rela-
tionships between more than 41 million users, but it does not include tweets.
1 Twitter 2010 dataset, http://an.kaist.ac.kr/traces/WWW2010.html.

http://an.kaist.ac.kr/traces/WWW2010.html

Task Scheduling for Processing Big Graphs 243

Table 1. The “Followees Set” used in the experiments along with the size of the graph
explored by the TFR algorithm (in millions of vertices)

User Followees Followers Size

Fee1 @jimmyeatworld 134788 920556 35

Fee2 @Starbucks 138045 271215 37

Fee3 @GuyKawasaki 140903 157878 37

Fee4 @charitywater 143408 705663 39

Fee5 @threadless 263317 933726 38

Fee6 @BJMendelson 283435 937627 36

Fee7 @TheOnion 369569 1380160 38

Fee8 @tonyhsieh 407705 1075935 36

Fee9 @WholeFoods 498700 1112628 38

Fee10 @Number10gov 505613 1105469 37

This is not a limitation since the implemented TFR algorithm is based on user
relationships only. The authors in [28] conducted a study on the entire crawled
graph, observing some notable properties of Twitter, such as a broken-power-
law follower distribution, a short effective diameter, and low reciprocity of rela-
tionships, marking a deviation from known characteristics of human social net-
works [30]. Most relationships in this graph are not reciprocal: only 22.1% of
edges are reciprocal (i.e. users that follow each other) and 67.6% of users are not
followed by any of its followees.

To test our low-memory scenarios, a group of users was selected out of the
complete dataset with the goal of stressing the cluster with high processing load.
From the analysis of the dataset and the way the TFR algorithm behaves, we
selected a “Followees Set”, numbered from Fee1 to Fee10, that contains the
top-10 users ordered by amount of followees. Since TFR starts its traversal in
the outgoing direction (i.e. the user’s followees), this group of users generates the
largest exploration of the graph and, as a consequence, it produces the highest
resource usage. The number of followees and followers of this Followees Set, can
be seen in Table 1. The graph explored by TFR for each followee is almost the
size of the entire dataset, as it is shown in the last column.

5.3 Scenarios

To test our approach of task scheduling using graph processing frameworks, we
proposed two very unbalanced scenarios in terms of the available RAM memory
of the nodes that are part of the cluster. We hypothesize that some scheduling
strategies will help the algorithm run until completion in these harsh conditions,
while other strategies will have difficulties in completing execution.

The cluster used in both scenarios was a heterogeneous cluster of 8 nodes,
that can be further divided in three sets of machines (A, B and C). Table 2

244 A. Corbellini et al.

Table 2. Cluster hardware characteristics.

A: 3 nodes B: 3 nodes C: 2 nodes

CPU AMD PII X6 1055T 2.8Ghz AMD FX 6100 3.3Ghz AMD FX 6300 3.5Ghz

of cores 6 6 6

RAM 8GB 16GB 16GB

Physical network 1Gbit Ethernet 1Gbit Ethernet 1Gbit Ethernet

Hard disk 500GB – 7200RPM 500GB – 7200RPM 500GB – 7200RPM

summarizes the most relevant characteristics of each set of nodes. The graph
data (in this context, the Twitter dataset) is equally distributed across all nodes,
as the storage capabilities of the nodes are the same.

As an example of the memory requirements of TFR, we performed a set of
experiments over the user @BarackObama, a large vertex in the Twitter net-
work, using the Location-Aware strategy. For this user, the algorithm gathers
more than 37M users at the final traversal stage. The memory profile of the algo-
rithm depends on the processing model used. The Pregel model uses between
2 GB and 4 GB of memory on each node. Both DPM and FJ exhibit larger mem-
ory requirements for the node where the merging of results is performed. DPM
requirements on the last stage of TFR vary between 2 GB and 3 GB of memory,
but requires 4, 5 GB for the node where the lists of vertices are merged. The
FJ model uses between 2 GB and 4 GB of memory, but requires almost 5 GB
for the node where the subresults are joined together. Taking into account these
memory usage profiles, we propose the following scenarios.

First Scenario. The first scenario has the following setup: half of the machines
were configured to use up to 2 GB of RAM and the rest up to 16 GB of RAM.
This means that half of the cluster may not be able to cope with the computing
requests generated by TFR. In this scenario, Fork-Join and DPM were configured
to perform the joining of results in a 16 GB node (i.e. the node where the Fork-
Join Job and the DPM Job runs).

Second Scenario. This is a variation of the first scenario. It consists in performing
the merging of results, i.e. for the Fork-Join and DPM models, on a relatively
low-memory node. Thus, one node was configured to use up to 4 GB of RAM, 4
nodes up to 2 GB and the rest up to 16 GB. The rationale behind this scenario
is that the selected “joining node” will use increasingly more memory on each
stage of the TFR algorithm, as more and more results are gathered.

5.4 Results

As shown in the results in Fig. 5 most round robin and location-aware execu-
tions failed. The only model that provided a solution on some users was the
DPM model. As expected, the maximum memory strategy performed poorly
but it did not fail on any of the executions. The available memory alternative

Task Scheduling for Processing Big Graphs 245

Fig. 5. TFR results using different scheduling strategies for scenario 1.

provided almost the same performance results. This scenario was very important
to show that a balanced assignment of work is not always possible. Particularly,
the Location Aware and Round Robin strategies suffered from out-of-memory
errors and failed to provide a recommendation. However, memory-based sce-
narios helped to reallocate vertices that cannot be processed due to memory
limitations.

Figure 6 shows the results of running TFR under the second scenario. In
this scenario, both Round Robin and Location Aware strategies fail to provide
results, except for two DPM executions. In fact, all balanced strategies failed,
including the Maximum Memory strategy for the Fork-Join framework, which
worked in the previous scenario. Restricting the joining node to 4 GB of RAM
harmed Fork-Join since it needs large amounts of RAM on a central node. In
consequence, many of the Fork-Join tests failed for non-dynamic strategies, such
as the Maximum Memory strategy. However, the dynamic nature of the Avail-
able Memory strategy helped to avoid the out of memory errors by reallocating
vertices that were once allocated to the joining node. Note that DPM and Pregel

246 A. Corbellini et al.

Fig. 6. TFR results using different scheduling strategies for scenario 2.

are unaffected by this situation because merging is distributed throughout the
cluster. Finally, as expected, the available memory strategy helps to finish the
TFR tests for all users in the Followees set.

In summary, the Location-Aware strategy fails in these scenarios due to its
inability to assign processing requests based on memory availability. Round-
Robin, as expected, also fails to execute the algorithm on most cases. On the
other hand, memory-based strategies assign requests not only using the locality
of the vertices, but also take into account memory capabilities of the nodes, and
thus, provide results on most executions.

6 Conclusions

Scheduling strategies account for the customized assignment of graph tasks to
nodes and their main objective of these strategies is adjusting the partition
assignment according to the cluster characteristics. In this work, two scenarios

Task Scheduling for Processing Big Graphs 247

were studied to test a set of scheduling strategies designed for low-memory sce-
narios. Besides, for each scheduling strategy we evaluated their impact on differ-
ent distributed frameworks. Naturally, the objective was to rebalance the vertex
computation to nodes with more memory, instead of providing an equal assign-
ment of partitions. On both scenarios for all frameworks, the location-aware and
round robin strategies failed to deliver a result for most test users, due to out-
of-memory errors. This was an expected behavior, because the location-aware
strategy uses the graph storage layout (i.e. where the vertex data is stored in
the cluster) to assign tasks and the round robin strategy assigns tasks equally
across workers disregarding any node characteristic.

Both memory-based strategies succeeded in providing a recommendation for
most frameworks, although with a sustainable time penalty. This proved that on
low-memory scenarios it is critical to use a mechanism to rebalance the execution
of vertices. As shown in the experiments most of the Fork-Join executions in the
second scenario failed, except when the Available Memory strategy was used.
Thus, this type of framework, which merge results on a central node, may benefit
with a dynamic strategy.

References

1. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-
of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015). http://arxiv.org/abs/1411.5118

2. Mallek, S., Boukhris, I., Elouedi, Z.: Community detection for graph-based
similarity: application to protein binding pockets classification. Pattern Recog-
nit. Lett. 62, 49–54 (2015). http://www.sciencedirect.com/science/article/pii/
S0167865515001488

3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

4. Lu, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6),
1150–1170 (2011)

5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174
(2010). http://www.sciencedirect.com/science/article/pii/S0370157309002841

6. Rausch, K., Ntoutsi, E., Stefanidis, K., Kriegel, H.-P.: Exploring subspace clus-
tering for recommendations. In: Proceedings of the 26th International Conference
on Scientific and Statistical Database Management (SSDBM 2014), pp. 42:1–42:4,
Aalborg, Denmark (2014)

7. Armentano, M., Godoy, D., Amandi, A.: Towards a followee recommender sys-
tem for information seeking users in Twitter. In: Proceedings of the International
Workshop on Semantic Adaptive Social Web (SASWeb 2011), ser. CEUR Work-
shop Proceedings, vol. 730, Girona, Spain (2011)

8. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Proces. Lett. 17(1), 5–20 (2007)

9. Sui, X., Lee, T.-H., Whang, J.J., Savas, B., Jain, S., Pingali, K., Dhillon, I.: Parallel
clustered low-rank approximation of graphs and its application to link prediction.
In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760, pp. 76–95.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37658-0 6

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

http://arxiv.org/abs/1411.5118
http://www.sciencedirect.com/science/article/pii/S0167865515001488
http://www.sciencedirect.com/science/article/pii/S0167865515001488
http://www.sciencedirect.com/science/article/pii/S0370157309002841
https://doi.org/10.1007/978-3-642-37658-0_6

248 A. Corbellini et al.

11. Mateos, C., Zunino, A., Campo, M.: An approach for non-intrusively adding mal-
leable fork/join parallelism into ordinary JavaBean compliant applications. Com-
put. Lang. Syst. Struct. 36(3), 288–315 (2010)

12. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed
graph system on spark. In: Proceedings of the 1st International Workshop on Graph
Data Management Experiences and Systems (GRADES 2013), New York, USA,
pp. 2:1–2:6 (2013)

13. Cao, L., Cho, B., Kim, H.D., Li, Z., Tsai, M.-H., Gupta, I.: Delta-SimRank com-
puting on MapReduce. In: Proceedings of the 1st International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Program-
ming Models and Applications (BigMine 2012). ACM, Beijing, China, pp. 28–35
(2012). http://doi.acm.org/10.1145/2351316.2351321

14. Lu, H., Halappanavar, M., Kalyanaraman, A.: Parallel heuristics for scalable com-
munity detection. Parallel Comput. 47, 19–37 (2015)

15. Buzun, N., Korshunov, A., Avanesov, V., Filonenko, I., Kozlov, I., Turdakov, D.,
Kim, H.: EgoLP: fast and distributed community detection in billion-node social
networks. In: 2014 IEEE International Conference on Data Mining Workshop, pp.
533–540 (2014)

16. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 International Conference on Management of Data (SIGMOD 2010),
Indianapolis, USA, pp. 135–146 (2010)

17. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endowment 5(8), 716–727 (2012)

18. Han, M., Daudjee, K., Ammar, K., Özsu, M.T., Wang, X., Jin, T.: An experimen-
tal comparison of pregel-like graph processing systems. Proc. VLDB Endowment
7(12), 1047–1058 (2014)

19. Heitmann, B.: An open framework for multi-source, cross-domain personalisation
with semantic interest graphs. In: Proceedings of the Sixth ACM Conference on
Recommender Systems - RecSys 2012, p. 313 (2012)

20. Krepska, E., Kielmann, T., Fokkink, W., Bal, H.: HipG: parallel processing of
large-scale graphs. ACM SIGOPS Oper. Syst. Rev. 45(2), 3–13 (2011)

21. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed
graph computations. Parallel Object-Oriented Sci. Comput. (POOSC) (2005)

22. Chan, A., Dehne, F.: CGMgraph/CGMlib: implementing and testing CGM graph
algorithms on PC clusters. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.)
EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 117–125. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39924-7 20

23. Corbellini, A., Godoy, D., Mateos, C., Schiaffino, S., Zunino, A.: DPM: a novel
distributed large-scale social graph processing framework for link prediction algo-
rithms. Future Generation Computer Systems (2017). http://www.sciencedirect.
com/science/article/pii/S0167739X17302352

24. Corbellini, A., Mateos, C., Godoy, D., Zunino, A., Schiaffino, S.: An
architecture and platform for developing distributed recommendation algo-
rithms on large-scale social networks. J. Inf. Sci. 41(5), 686–704 (2015).
http://jis.sagepub.com/content/early/2015/06/06/0165551515588669.abstract

25. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

http://doi.acm.org/10.1145/2351316.2351321
https://doi.org/10.1007/978-3-540-39924-7_20
http://www.sciencedirect.com/science/article/pii/S0167739X17302352
http://www.sciencedirect.com/science/article/pii/S0167739X17302352
http://jis.sagepub.com/content/early/2015/06/06/0165551515588669.abstract

Task Scheduling for Processing Big Graphs 249

26. Kim, J.-K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider,
M., Tideman, S., Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A.,
Sripada, S., Vangari, P., Yellampalli, S.S.: Dynamic mapping in a heterogeneous
environment with tasks having priorities and multiple deadlines. In: Proceedings of
the International Parallel and Distributed Processing Symposium (IPDPS 2003),
Nice, France (2003)

27. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

28. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web
(WWW 2010), Raleigh, NC, USA, pp. 591–600 (2010)

29. Faralli, S., Stilo, G., Velardi, P.: Large scale homophily analysis in Twitter using
a twixonomy. In: Proceedings of the 24th International Conference on Artificial
Intelligence (IJCAI 2015). AAAI Press, Buenos Aires, Argentina, pp. 2334–2340
(2015)

30. Newman, M.E., Park, J.: Why social networks are different from other types of
networks. Phys. Rev. E 68(3), 036122 (2003)

Exploring Application-Level Message-Logging
in Scalable HPC Programs

Esteban Meneses(B)

National Advanced Computing Collaboratory,
National High Technology Center and School of Computing,

Costa Rica Institute of Technology, Cartago, Costa Rica
esteban.meneses@acm.org

Abstract. The next generation of supercomputers will require HPC
applications to handle failures. This paper presents, through an example
application, the benefits of logging messages at the application level. The
proposed method will do both, provide resilience to failures and improve
performance.

Keywords: Resilience · Fault tolerance · Message logging

1 Resilience in HPC Applications

Resilience is one of the most pressing challenges the High Performance Comput-
ing (HPC) community faces for the next generation of machines [6]. The vast
amount of computing components assembled into a single supercomputer at exas-
cale makes the failure rate worryingly high. It will be crucial for HPC applications
to incorporate some sort of fault-tolerance mechanism. Various resilience strate-
gies have been devised. One family of techniques is referred to as algorithm-based
fault tolerance (ABFT) [3], in which the original algorithm is modified to also
run encoded computations that will be later used to detect and correct failures.
Other, more traditional, family of techniques is known as rollback-recovery [1],
in which the system periodically saves the state of the computation. Should a
failure happen, the system rolls back to the latest saved state. The basic imple-
mentation of this idea is the well-known checkpoint/restart mechanism, where
minimal changes to the application’s algorithm are required. There are several
extensions to checkpoint/restart. One such extension is message logging, which
stores just the necessary communication to only restart the failed component,
saving time and energy [5].

This paper explores the potential of a hybrid resilience strategy that combines
both ABFT and message-logging philosophies. The strategy is called application-
level message-logging and it is based on the fundamental principles of rollback-
recovery with message-logging. However, it requires some intervention to the
application’s algorithm to store some communication at the application level.
The method should tolerate the crash of one processing entity (PE). In this
paper, a PE may refer to a core, a processor, or a node. The distinctive feature
of a PE is that it runs an operating system heavyweight process.
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 250–254, 2018.
https://doi.org/10.1007/978-3-319-73353-1_17

Exploring Application-Level Message-Logging in Scalable HPC Programs 251

2 Application-Level Message-Logging

We will introduce our proposed method through an application called
ChaNGa [2], written in the Charm++ object-oriented parallel programming
language [4]. ChaNGa (Charm++ N-body GrAvity solver) is a program that
computes gravitational forces among a set of particles. It performs collision-
less N-body simulations. The major application of ChaNGa is to cosmological
simulations with periodic boundary conditions in comoving coordinates. It has
also been used for simulations of isolated stellar systems. Additionally, it can
include hydrodynamics using the Smooth Particle Hydrodynamics (SPH) tech-
nique. ChaNGa relies on a Barnes-Hut tree to calculate gravity, with hexade-
capole expansion of nodes and Ewald summation for periodic forces. Timestep-
ping is achieved with a leapfrog integrator with individual timesteps for each
particle.

There are four major stages in each step of ChaNGa: (i) domain decom-
position, which creates a division of the space according to the set of particles
and their positions, (ii) load balancing, which migrates particles to balance the
load across the set of processors, (iii) tree building, where a Barnes-Hut tree
is rebuilt for the new set of particle positions and their distribution, and (iv)
gravity computation, which performs the actual computation on each particle.

It is the gravity computation step we will focus on. After the tree building, a
set of objects called Tree Pieces will hold each a subset of the particles. During
the gravity computation, each Tree Piece is responsible for computing the total
gravity on its particles. In doing so, it may require the particle information from
potentially many other Tree Pieces. Several Tree Pieces will reside on the same
PE. To avoid multiple identical requests, ChaNGa has a receiver-side Cache
object. This set of objects behave as a group in Charm++, meaning there is
exactly one object per PE. Thus, each Tree Piece will try contacting its local
Cache first to get the particles it needs. If the Cache has the particular set of
particles stored, it will return them to the requesting Tree Piece. Otherwise, the
Cache will contact the remote Tree Piece, cache the content of the message and
forward it to the requesting Tree Piece. Figure 1 shows a diagram of the overall
scheme of objects in ChaNGa where Tree Piece A requires the information from
Tree Piece B and that request always goes through the local Cache on PE X.

The current implementation of ChaNGa provides (accidentally) a receiver-
based message-logging mechanism [1]. However, failure of a PE will immediately
make the Cache object disappear, along with all its content. Additionally, mes-
sages are cached per iteration. Therefore, not all messages would be available for
recovering a Tree Piece, even if the Cache survives the crash. What is encour-
aging about this scenario is the relative advantage of logging the messages, at
least in terms of performance. Most of the traditional message-logging techniques
belong to the sender-based family, where messages are stored in the main mem-
ory of the sender. If ChaNGa were to be seen from that perspective, there would
be a fertile land to implement a message-logging protocol for resilience.

To understand the potential of application-based message-logging in
ChaNGa, we measured the average number of requests per iteration. We ran

252 E. Meneses

Fig. 1. Simplified diagram of objects in ChaNGa. A Tree Piece that requires the particle
information of another Tree Piece will first contact its local Cache to avoid a remote
transmission. If the local Cache has the particle message, it will provide the message.
Otherwise, the Cache will contact the remote object.

for 10 iterations the dwf1.2048 dataset with 8,192 Tree Pieces. The dataset
contains 5 million particles. The results were gathered on Intrepid supercomputer
with 1,024 cores. Figure 2 shows the distribution of requests for ChaNGa. We
only counted remote requests, i.e., coming from a remote PE. In Fig. 2(a) appears
the distribution of the average number of requests per TreePiece. Although most
of the distribution follows a bell shape, the tail is significant with a few Tree
Pieces showing a high number of requests per iteration. The story changes a lit-
tle once PEs are considered. Figure 2(b) offers the distribution of average number
of requests per iteration per PE. Both distributions show the immense potential
for having a sender-based message-logging at the Cache objects. On average, the
number of requests per iteration is higher than 100, meaning per iteration the
very same message has to be built at least 100 times.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350

Fr
eq

ue
nc

y
(%

)

Average Number of Requests per Iteration

(a) Distribution of requests per Tree Piece.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350

Fr
eq

ue
nc

y
(%

)

Average Number of Requests per Iteration

(b) Distribution of requests per PE.

Fig. 2. Distributions of average number of requests per iteration on ChaNGa.

Using a strong-scale approach, we ran the same experiment from 512 to 4,096
cores. Table 1 summarizes the results of this experiment. As the number of cores
increases, the average number of requests raises. This can be explained by the
fact that more cores, means a higher chance that the Tree Piece is not local,
requiring a remote request. However, the dispersion of the data also changes

Exploring Application-Level Message-Logging in Scalable HPC Programs 253

drastically. The absolute maximum of requests reports the Tree Piece with the
maximum number of requests and it roughly doubles as we go from 512 to 4,096
cores. The averages in the number of requests per iteration are always higher
for the Tree Piece version. This is a natural result of load balancing that will
balance Tree Pieces with different request profiles on the different PEs.

Table 1. Average number of requests per iteration in ChaNGa.

Number of requests Number of cores

512 1024 2048 4096

Absolute average 97.05 124.50 160.51 202.28

Absolute maximum 508.00 670.00 936.00 1154.00

Average per PE 100.99 131.45 171.66 218.95

Maximum average per PE 165.89 252.90 407.33 521.00

Average per Tree Piece 92.04 118.46 152.87 192.68

Maximum average per Tree Piece 260.00 312.40 473.40 607.30

The lesson extracted from ChaNGa is that applications may have a high
potential to eliminate unnecessary creation of messages and at the same time
provide a useful infrastructure for message-logging and resilience. In the partic-
ular case of ChaNGa, the Cache objects could be made sender-based too. This
would avoid the cost of generating the same message multiple times and serve
as the fundamental basis for message-logging protocols.

Acknowledgments. This work was partially supported by a machine allocation on
Argonne Leadership Computing Facility awarded by the U.S. Department of Energy
under contract DE-AC02-06CH11357.

References

1. Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408
(2002)

2. Gioachin, F., Sharma, A., Chakravorty, S., Mendes, C., Kalé, L.V., Quinn, T.: Scal-
able cosmological simulations on parallel machines. In: Daydé, M., Palma, J.M.L.M.,
Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol.
4395, pp. 476–489. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71351-7 37

3. Huang, K.-H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. 33(6), 518–528 (1984)

4. Kalé, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system
based on C++. In: Paepcke, A. (ed.) Proceedings of OOPSLA 1993, pp. 91–108.
ACM Press, September 1993

https://doi.org/10.1007/978-3-540-71351-7_37
https://doi.org/10.1007/978-3-540-71351-7_37

254 E. Meneses

5. Meneses, E., Sarood, O., Kale, L.V.: Energy profile of rollback-recovery strategies
in high performance computing. Parallel Comput. 40(9), 536–547 (2014)

6. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P.,
Belak, J., Bose, P., Cappello, F., Carlson, B., Chien, A.A., Coteus, P., DeBardeleben,
N., Diniz, P.C., Engelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R., Johnson,
F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S., Munson, T., Schreiber, R.,
Stearley, J., Hensbergen, E.V.: Addressing failures in exascale computing. IJHPCA
28(2), 129–173 (2014)

Accelerated Numerical Optimization
with Explicit Consideration of Model

Constraints

Lucia Damiani1, Ariel Ivan Diaz2, Javier Iparraguirre2(&),
and Aníbal M. Blanco1

1 PLAPIQUI (CONICET-UNS), Bahía Blanca, Argentina
{ldamiani,ablanco}@plapiqui.edu.ar

2 UTN-FRBB, Bahía Blanca, Argentina
arielivandiaz@gmail.com, j.iparraguirre@computer.org

Abstract. Population based metaheuristics can benefit from parallelization in
order to address complex numerical optimization problems. Typical realistic
problems usually involve non-linear functions, integer variables and many
constraints, making the identification of optimal solutions mathematically
challenging and computationally expensive. In this work, a parallelized version
of the Particle Swarm Optimization technique is proposed, whose main con-
tribution is the explicit consideration of constraints. The implementation is
tested on a classic set of optimization problems. Speedups up to 101x were
obtained using a single GPU on a standard PC using the Py-Cuda technology.

Keywords: Numerical optimization � Particle swarm optimization � GPU

1 Introduction

Numerical optimization has an outstanding role in science and engineering. The
objective is to find the set of variables that optimizes a performance index (objective
function) while verifying a set of equality and inequality constraints. A particularly
challenging version arises when the variables are combined in a non-linear fashion in
the involved functions. Additional complexity is introduced if some of the variables are
required to be integer. A huge body of literature on numerical optimization exists from
many disciplines, which addresses both theoretical and practical aspects. Regarding
solution techniques, a broad classification involve deterministic and metaheuristic
approaches.

Deterministic optimization relies on information of derivatives to deal with
non-linearities. Additionally, branch and cut type algorithms deal with integrality [1].
This class of optimization algorithms is mathematically sophisticated and the most
competitive implementations are proprietary products. Although global optimality can
be guaranteed under certain conditions, deterministic algorithms are very computa-
tionally demanding. A typical case is when the execution runs out of memory or when
the process reaches time limits for even medium size instances in terms of variables and
equations.

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 255–261, 2018.
https://doi.org/10.1007/978-3-319-73353-1_18

In contrast, metaheuristics rely on stochastic explorations of the search space [2, 3].
A particularly important family of metaheuristics is based on the evolution of an initial
population of solutions through rather simple rules usually inspired on natural (bio-
logical) processes. Genetic Algorithms, Ant Colony Optimization, and Particle Swarm
Optimization (PSO) are amongst the most developed techniques. In particular PSO has
acquired notable popularity in recent years since it is easy to code and shows good
performance in multimodal box-constrained problems such as parameter estimation
studies [4]. However, its major weaknesses are related to the handling of constraints
(equality and inequality) and integer variables. Moreover, PSO is computationally
intensive since a large number of evaluations of the objective function and constraints
are usually required to achieve convergence. Due to its inherent parallel nature, PSO
can benefit from parallelization strategies to improve speed. In fact, there exist a large
number of parallel implementations of PSO on many architectures. Since a thorough
review of related work is beyond the scope of this contribution, the interested reader is
referred to the recent survey on GPU implementations of swarm metaheuristics by Tan
and Ding [5].

In this work a GPU based implementation of the PSO algorithm is presented. The
major contribution regarding previous developments is the explicit consideration of a
constraint handling methodology, which is unavoidable to address realistic problems
arising from engineering applications. Additionally, the implementation is based on the
PyCUDA platform, which allows the flexibility of an interpreted language such as
Python and the efficiency provided by CUDA technology. After introducing the basics,
performance is tested on a set of typical benchmark problems.

The next section briefly introduces the mathematical formulation of the PSO
algorithm. Section 3 describes the implementation details of the proposal. Section 4
presents the results. Finally, the conclusions and the future work are presented in
Sect. 5.

2 Particle Swarm Optimization

A general formulation of the optimization problem addressed in this work is:

Minxf xð Þ; st:h xð Þ ¼ 0; g xð Þ� 0; x 2 X ð1Þ

where f(.) is an objective function and h(.) and g(.) stand for equality and inequality
constraints respectively. Vector x is the set of optimization variables described by a
lower and upper bounds on each element. Mathematically, PSO is described by two
simple equations [4]:

xkþ 1
i ¼ xki þ vkþ 1

i ð2Þ

vkþ 1
i ¼ wkvki þ c1rk1 pki � xki

� �þ c2rk2 qk � xki
� � ð3Þ

Vectors xi and vi represent position and velocity of particle i respectively. Supra
index k denote iteration. Velocity is updated on the basis of a cognitive term which

256 L. Damiani et al.

involves the best position ever reached by each particle along its trajectory (pki) and a
social term which considers the best position ever reached by the swarm along its
evolution (qk). Parameters w, c1 and c2, are fixed or may vary with the iterations
according to some strategy. Vectors r1 and r2 have random elements between 0 and 1.

The best positions (pki and qk) are related with some measure of the performance of
the system, based on the objective function f(.), and constraints h(.) and g(.). Con-
straints handling in swarm optimization has received considerable attention [6]. In this
work we adopted the approach proposed by Zhang and Rangaiah [7] to deal with
constraints. This approach is based on the definition of the Total Absolute Violation of
each particle of the swarm (TAVi) defined as:

TAVk
i ¼

X
n
hn xki
� ��� ��þ

X
m
max 0; gm xki

� �� �
i ¼ 1; . . .; N ð4Þ

If TAVk
i is lower than a relaxation value µ, particle i is considered feasible in

iteration k, otherwise it is unfeasible. In this method, parameter µ is dynamically
reduced according to Eq. (5), where FkF represents the number of feasible particles in
iteration k.

lkþ 1 ¼ lk 1� FkF=N
� � ð5Þ

In each iteration the following criteria is adopted to update the swarm (pki and qk):
(i) a feasible solution is preferred over an unfeasible solution, (ii) between two feasible
solutions, the selected one is that with the better value of objective function f(.),
(iii) between two unfeasible solutions, that with the lower TAV is preferred. Although
the TAV strategy was originally proposed for “Differential Evolution” algorithms in
[7], it is straightforwardly implementable under PSO and any other evolutionary
technique. It was preferred over other constraint handling methodologies since it
gradually enforces the swarm to the feasible region while ensuring a convenient
exploration of the search space.

3 PSO Implementation

The methodology described in the previous section was implemented in Python,
making use of the capabilities provided by the NumPy library [8] to produce a com-
petitive serial version of the algorithm. Then, a parallelized version was implemented
using the Py-CUDA [9] programming language to exploit the potential of NVIDIA
GPUs. The use of Python as a programming language allows a highly productive
environment and provides a solid set of numeric libraries, which facilitates the
implementation. In a similar way, the use of PyCUDA allows the use of an accelerator
without losing the benefits of an interpreted programming language.

The implemented algorithm is described in the pseudo code shown in Algorithm 1.
Although all parts of the algorithm admit some level of parallelization, in this work
only some were actually accelerated. Specifically steps a, b, c and e of Algorithm 1
were parallelized, while reduction d was left as a serial process in the proposed kernel.

Accelerated Numerical Optimization with Explicit Consideration 257

Although reductions are quite standard procedures, the identification of the global best
(step d) represents a rather challenging operation to be parallelized for a general swarm.
Therefore, its implementation was postponed as future work.

Following the classifications proposed by Tan and Ding [5], the implementation
presented in this work can be described as an all-GPU parallel model. Except for the
random number initializations, all steps involved in the PSO computation are per-
formed on the GPU. This strategy minimizes the overhead caused by the process of
data exchange between the GPU and the CPU.

In terms of resources, one particle is assigned to a CUDA block and the number of
threads per block equals the dimension of the problem under study. This decision
allows the use of the shared block memory. Only one GPU is involved in the com-
puting process.

1. Randomly initialize xi

0 and vi

0 for i=1,…,N
2. For k=1,…,kmax repeat

a. Evaluate xi

k from Eq.(2)
b. Evaluate f(xi) and TAVi

k from Eqs.(1) and (4)
c. Identify pi

k (local best) according to the feasibility criteria
d. Identify qk (global best) according to the feasibility criteria

 e. Evaluate vi

k from Eq.(3)

Algorithm 1.Pseudocode for PSO

4 Results

The serial and the parallelized versions of the PSO, were tested with a set of opti-
mization problems in order to investigate speedups. The problems were taken from a
compilation of benchmark models typically used to assess the performance of meta-
heuristic algorithms [10]. Such compilation provides constrained models of different
sizes and complexities.

In all cases the experiments were performed using the following parameterization
of the algorithm: w = 0.9, c1 = 2.0, c2 = 2.0, N = 50 and kmax = 2500. It should be
noted that many parallelization studies use the swarm size (N) to investigate perfor-
mance since speedups sensibly increase as this parameter increases. However, it has
been shown that PSO performance becomes insensitive to swarms larger than 30–60
particles for most problems [4]. Therefore, N = 50 was adopted for all purposes in this
study.

As stated in related work, Speedup was selected to evaluate performance. Equa-
tion 6 defines the metric. TCPU represents the time that the CPU version required to
achieve a solution and TGPU is the time required by the same problem executed by the
accelerated version.

Speedup ¼ TCPU=TGPU ð6Þ

In Table 1, a detail of the problems and the obtained speedups are reported. In
column “Ref. [10]” the problem number corresponding to report [10] is provided as a
reference for the complete formulation and global solution of each problem for the

258 L. Damiani et al.

interested reader. In columns “D”, “n”, and “m” the number of variables, equality
constraints and inequality constraints of each problem are respectively informed. The
models reported in this study is a rather small subset of the original collection [10]
selected to perform a preliminary investigation of problems of different sizes and types
of nonlinearities.

The experiments were carried out in two different systems to investigate perfor-
mance. System 1 corresponds to a PC Intel Skylake Core i7 6700 3.4 GHz, 8 GB
DDR4 RAM Memory, associated with a GTX480 GPU running Linux Mint 18.1.
System 2 is equipped with an AMD FX-4100 Quad-Core Processor, 8 GB of
DDR3 RAM memory, a GeForce GTX TITAN X GPU, running Linux Mint 18.1.
Since PSO contains components that rely on random numbers, multiple independent
runs are provided for each of the reported measurements. This decision provides sta-
tistical validity of the convergence of the different versions of the algorithm. In par-
ticular, column “TCPU” reports the average time of 20 independent runs of the serial
PSO version. Column “Speedup” reports the average speedup obtained, also from 20
independent runs, using the parallelized version on the GPU in the corresponding
system. In both cases significant speedups were obtained averaging 32x for system 1
and 51x for system 2.

In all problems, the algorithm converged to feasible solutions. Success rate, defined
as the percentage of the runs that converged to the known global solution (within a
tolerance), was superior to 75% in most cases. Problems were feasible but sub-optimal
solutions were achieved in less than 75% are marked with an asterisk in column P#. It
should be mentioned that since the focus of this study was on the speedup of the
parallelized version of the algorithm, the PSO was not tuned for the different problems
and a standard parameterization was adopted in all cases as described above. For this
reason, success rate might not look as impressive as in other studies where the
emphasis is on the convergence of the solvers to the global optimum.

Table 1. Detail of problems and speedups.

P# Ref. [10] D n m System 1 System 2
TCPU (sec) Speedup TCPU (sec) Speedup

1* 13 0 9 4.76 28.12 13.13 44.30
3 10 1 0 3.27 25.94 8.99 41.86
4 5 0 6 4.24 40.39 12.21 60.30
5 4 3 2 2.93 28.92 8.70 43.34
7* 10 0 8 8.17 57.63 24.37 101.64
8 2 0 2 1.69 17.91 4.88 24.78
9 7 0 4 6.07 50.50 16.10 73.65
11 2 1 0 0.94 10.02 2.68 14.40
13* 5 3 0 2.22 22.58 6.10 32.55
14* 10 3 0 8.00 47.13 22.08 84.12
18 9 0 13 5.44 42.06 14.52 64.20
24 2 0 2 2.02 22.78 5.50 30.22

Accelerated Numerical Optimization with Explicit Consideration 259

5 Conclusions and Future Work

A GPU accelerated particle swarm optimization with explicit consideration of con-
straints was presented. Regarding most previous implementations of swarm meta-
heuristics on GPUs, which mainly addresses box constrained objective functions, our
implementation included the TAV methodology to handle equality and inequality
constraints. Although the parallelization potential of the algorithm was not fully
exploited, and the PSO can be improved as well, satisfactory performance was
obtained, both in terms of speedups and success rate. These results are encouraging to
address even more challenging problems and actual engineering applications.

The proposed kernel can be further developed in several ways. Specifically, future
work considers the implementation of a parallel reduction to identify the best member
of the swarm (step d in pseudo code of Algorithm 1). Also the optimization of the use
of the shared memory will be investigated.

The PSO algorithm admits many improvements as well, in order to increase success
rate and overall performance. In particular, parameter w can change dynamically with
iterations in order to adjust the exploration/exploitation tradeoff of the search space.
Alternative termination criteria, other than a maximum number of iterations, can be
also implemented. For example, exploration time can be saved if it is detected that no
improvement on the objective function occurs in a given number of consecutive
iterations.

Current and improved versions will be tested with a larger set of problems and
number of independent runs in order to provide results with statistical significance.

Acknowledgments. This research was partially supported by grants from Consejo Nacional de
InvestigacionesCientíficas y Técnicas (CONICET) and Universidad Tecnológica Nacional
(UTN) of Argentina. The authors also gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the TITAN X GPU used in this research.

References

1. Tawarmalani, M., Sahinidis, N.: 2002: Convexification and Global Optimization in
Continuous and Mixed Integer Programming. Kluwer Academic Publisher, Dordrecht
(2002)

2. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237,
82–117 (2013)

3. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new
trends. Int. Trans. Oper. Res. 20, 1–48 (2013)

4. Marini, F., Walczak, B.: Particle swarm optimization (PSO). A tutorial. Chemom. Intell.
Lab. Syst. 149, 153–165 (2015)

5. Tan, Y., Ding, K.: A survey on GPU-based implementation of swarm intelligence
algorithms. IEEE Trans. Cybern. 46(9), 2028–2041 (2016)

6. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Comput. Meth. Appl. Mech.
Eng. 191, 1245–1287 (2002)

260 L. Damiani et al.

7. Zhang, H., Rangaiah, G.P.: An efficient constraint handling method with integrated
differential evolution for numerical and engineering optimization. Comput. Chem. Eng. 37,
74–88 (2012)

8. NumPy Homepage. http://www.numpy.org/
9. PyCuda reference. https://developer.nvidia.com/pycuda
10. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C.,

Deb, K.: Problem definitions and evaluation criteria for the CEC 2006 special session on
constrained real-parameter optimization. Technical report (2006)

Accelerated Numerical Optimization with Explicit Consideration 261

http://www.numpy.org/
https://developer.nvidia.com/pycuda

Parallel Processing of Intra-cranial
Electroencephalogram Readings on Distributed

Memory Systems

Leonardo Piñeyro(B) and Sergio Nesmachnow

Centro de Cálculo, Facultad de Ingenieŕıa, Universidad de la República,
Montevideo, Uruguay

{leonardo.pineyro,sergion}@fing.edu.uy

Abstract. This article presents an approach for parallel processing of
electroencephalogram readings over distributed memory systems. This is
a complex problem that deals with a significantly large amount of data,
especially considering that the volume of electroencephalogram readings
has been growing for the last few years due to their handling in medical
and health applications. Different parallelization and workload distribu-
tion techniques applied to processing intra-cranial electroencephalogram
readings are studied, in order to efficiently detect whether a patient may
suffer a seizure or not. More precisely, two separate approaches are pre-
sented: a first one describing a traditional Message Passing Interface
implementation for cluster systems, and a second implementation using
Apache Hadoop, more adapted to large-scale processing in cloud systems.
The experimental evaluation performed on standard datasets demon-
strates that it is possible to remarkably speedup electroencephalogram
processing by applying efficient data distribution strategies. The par-
allel/distributed approach allows accelerating the execution time up to
22× when compared with the sequential version.

Keywords: Feature extraction · Distributed computing
Large-scale processing

1 Introduction

Epilepsy afflicts nearly 1% of the world’s population and is characterized by the
occurrence of spontaneous seizures. For many patients, anticonvulsant medicine
can be given at sufficiently high doses to prevent seizures, but patients frequently
suffer side effects. For 20–40% of patients with epilepsy, medications are not
effective. Despite the fact that seizures occur infrequently, patients with epilepsy
experience persistent anxiety due to the possibility of a seizure occurring [1,2].

Intra-cranial electroencephalography (iEEG) is a type of monitoring tech-
nique that reads the brain activity of a patient by placing electrodes directly
onto the brain surface. Most patients with severe epilepsy are treated with surg-
eries which involve the use of iEEG. Fortunately, the technology improvements in
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 262–276, 2018.
https://doi.org/10.1007/978-3-319-73353-1_19

Parallel Processing of Intra-cranial Electroencephalogram Readings 263

this area make possible collecting high-quality long-term electrical brain activity
from human patients, spanning from months to even years [3].

With the intention of giving the patients a faster medical attention and a
better quality of life, researchers have proposed developing software packages
that are capable of predicting, with the highest possible precision, the occurrence
of seizure events. Most of the times it is hard for experts to find clues by just
looking at the raw data of the patients. Automated large-scale analysis of iEEG
data provides useful information to understand brain processes, as processing a
large number of data allows obtaining more accurate and robust brain models.
Real-world brain imaging using sophisticated sets of transformations (most of
which belong to the signal processing area) helps experts to find more valuable
and reliable information out of the raw iEEG readings. It is a fact that giving this
information, instead of the raw iEEG data, to a software capable of detecting
patterns and classify different kinds of brain activity increases significantly the
accuracy of the detection process [4].

High Performance Computing (HPC) [5] is a paradigm that helps researchers
to solve complex data processing problems such as the feature extraction prob-
lem related to iEEG data processing. Distributed and parallel programming
techniques play a key role to significantly reduce the execution times of data
processing algorithms. In the case of iEEG processing, the problem involves
working with huge datasets of iEEG readings (likely to grow in size to several
TeraBytes) and synchronizing different tasks applied to different sections of the
measurements.

This article presents two different approaches for dealing with the iEEG read-
ings processing problem using distributed memory HPC strategies: (i) a tradi-
tional implementation developed using a message passing interface library, capa-
ble of executing in cluster systems, and (ii) an implementation using the Apache
Hadoop platform, taking advantage of the Map-Reduce programming paradigm
to work with large-scale datasets, to be executed on cloud-based infrastructures.

The experimental evaluation on the proposed implementations is performed
on real distributed memory HPC platforms and considering benchmark instances
of the iEEG data processing problem. Efficiency results demonstrate that the
execution time of the iEEG data processing algorithms can be remarkably
reduced when compared to the sequential versions. The distributed versions
achieved an acceleration of up to 22× for the message passing implementation
and 9.16× for the Hadoop implementation.

The article is organized as follows. Section 2 presents a review of related works
describing different approaches for processing data from iEEG readings. Section 3
introduces the problem and the proposed approach for iEEG data processing.
The specific methods proposed for applying distributed memory HPC techniques
to the iEEG processing problem are described in Sect. 4. Section 5 reports the
experimental evaluation of the proposed methods over a specific dataset of iEEG
measurements. Finally, Sect. 6 presents the conclusions and the main lines for
future work.

264 L. Piñeyro and S. Nesmachnow

2 Related Work

This section reviews articles that describe different processing methods for iEEG
readings.

2.1 Historic Review

Seizure prediction studies have grown significantly since the first experiments
done in the 1970 decade. Studies largely improved over the 90’s and the beginning
of the millennium. Nevertheless, many of these studies were not sophisticated
enough and had irreproducible results. Thus, solutions were not better than a
random guessing algorithm when working with real-world brain activity [1].

Recent studies have proven that better results can be achieved, with up to
83% of accuracy in some scenarios. Although these results seem to be promising,
they are still not good enough for real-life medical applications [1,6].

The application of signal-processing techniques has been of great importance
on this field. These methods are used to extract the most valuable information
out of the iEEG by performing signal-processing operations such as Fourier
transformations, different kind of correlations, statical analysis like kurtosis, and
skewness, among others [7].

2.2 Distributed Approaches to Process iEEG Readings

It is well known that the volume of data of these recordings can easily get to
the order of Tera or Peta bytes [8]. Therefore, there is a real need for efficient
algorithms that support processing a big amount of data in reasonable execution
times. Distributed computing adjusts to this need, making multiple computa-
tional resources collaborate to get the results faster by performing operations
on smaller sets of data. A common practice is to perform all the computations
on cloud systems, especially because of the high availability of computational
and storage resources and their low costs. For example, solutions applying the
Map-Reduce programming paradigm have been proposed with the main goal of
partitioning computationally expensive tasks into smaller and disjoint tasks that
can be executed in a distributed computing environment [9].

A review of the related literature allows identifying a few publications that
describe different approaches to deal with massive iEEG recordings. Among
these, the approach proposed by Burns and Freund [10] used a cloud-based
Map-Reduce strategy implementing in Apache Hadoop to perform the process-
ing and analysis of EEG data. An interesting fact about the solution by Burns
and Freund is the way they propose to serialize data to make possible breaking
the data clips and achieve a better distribution system. This feature is discussed
in detail in Sect. 4, as we considered this approach for our proposal. This strat-
egy allowed Burns and Freund to process and analyze almost 200 GB of EEG
recordings in 4.5 h using 16 computing nodes, each of them with 16 processing
units, whereas running the same test using a single computing resource took
approximately 56 h.

Parallel Processing of Intra-cranial Electroencephalogram Readings 265

Cloudwave is another cloud-based solution presented by the Division of Med-
ical Informatics and the Department of Neurology of the Case Western Reserve
University [9]. The Cloudwave project developed a platform that uses Apache
Hadoop to process a large number of EEG readings. In the case study pre-
sented, the proposed solution managed to reduce the EEG processing time from
91–177 min on a standalone system, to just 7–11 min using Cloudwave.

Summarizing, implementations for processing extensive amounts of EEG
data have shown promising efficiency and scalability results when executing over
distributed memory systems. Our proposal explores two different parallel imple-
mentations: a message passing implementation to execute in a cluster system,
for which we did not find related work in the related literature, and an imple-
mentation using Apache Hadoop, following the main ideas from related works
about the distributed processing of iEEG data in the cloud.

3 Distributed Approaches for Processing iEEG Readings

This section describes the main challenges when working with the iEEG mea-
surements in a distributed environment.

3.1 Working with iEEG Data in a Distributed Environment

When it comes to processing iEEG recordings, applying signal processing tech-
niques for feature extraction are of utter importance. These techniques have
scientifically proved that they are able to extract real useful information out of
bare brain activity recordings [7]. However, in a distributed environment, the
application of these methods is not straightforward.

Several decisions are needed to be taken in order to choose the appropriate
HPC/distributed computing methodologies that, in combination with feature
extraction algorithms, help to build a solution to deal with a real large scale
datasets of iEEG measurements. Among these decisions, the most relevant ones
concern the data and functional distribution.

3.2 Data and Functional Distribution Approaches

When working with data from hours-long brain activity recordings, an important
decision to make involves choosing a strategy for splitting these recordings into
smaller chunks with the main goal of improving the data distribution of the
algorithm. This task implies knowing the data structure and its size.

A standard definition for the structure of large datasets of iEEG recordings
specifies that the brain activity recordings must be split in clips of ten min-
utes long. Furthermore, the structure of a clip may variate depending on the
measuring equipment used. Specific parameters that change are the number of
measurements per second (i.e., the recording frequency), and also the number of
channels of brain activity, which is given by the number of electrodes implanted
into the brain of each patient [11].

266 L. Piñeyro and S. Nesmachnow

Another key decision involves how the whole processing algorithm will be
executed in a distributed environment. Because of many signal processing meth-
ods are computationally expensive, it is important to take into consideration the
possibility of distributing certain steps of the processing algorithm in order to
make all the computational resources work balanced, and consequently, generally
improve the overall performance of the algorithm.

A final issue to consider is how the extracted features are persisted for later
utilization. Due to the fact that the algorithms execute in a distributed environ-
ment, it is possible for certain iEEG clips to be processed in a different order
than the original order given in the dataset. This is a problem considering that
the feature extraction process requires all the features of the processed clips to
respect a specific order, otherwise, the extracted features lack of meaning. Thus,
a specific processing is needed to get the right order for clips.

Summarizing, defining the correct data and functional distribution strategies
are very important when developing a distributed iEEG processing algorithm.
The following section describes how these strategies are taken into account in
the proposed implementations.

4 Two Implementations for Processing iEEG Readings
on Distributed Computing Systems

This section presents a feature extraction algorithm and two different approaches
for a distributed iEEG processing implementation.

4.1 The Proposed Processing Algorithm

As discussed in previous sections, the use of signal processing methods and stat-
ical analysis on iEEG data is very important for the feature extraction process.
The proposed processing algorithm applies a similar approach to the one pre-
sented by Brinkmann et al. [12], which proved to be effective to predict seizures
in human brain activity, reaching more than 80% of accuracy. The feature extrac-
tion process consists of applying complex signal-processing and statical analy-
sis operations, such as computing Shannon entropy [13] and spectrum corre-
lations [14] over all brain activity channels on the recordings. Because of the
high computational complexity of these operations, implementations using HPC
techniques are promising approaches to reduce the execution times.

4.2 Proposed Implementation Using a Message Passing Approach

The approach using message passing is based on different tasks that implement
different parts of the whole distribution process, such as the way the data is
partitioned, how it is processed, as also how the results are joined and persisted.
More specifically, five different tasks were defined, namely master, splitter, map-
per, sorter, and reducer. The implementation was developed using the Message
Passing Interface (MPI) library [15].

Parallel Processing of Intra-cranial Electroencephalogram Readings 267

Fig. 1. Tasks communication and flow in the MPI implementation

A diagram of the MPI tasks and their relationships is shown in Fig. 1. Ini-
tially, a master task officiates as an orchestrator. It distributes the clips to be
analyzed and keeps track on the processing status of each of them. This task
knows the global state of the execution of the algorithm and takes actions accord-
ingly. After that, a splitter task divides the iEEG data into smaller brain activity
chunks. In the third step, a set of mapper tasks perform the processing of each
iEEG chunk. Finally, a sorter task and a set of reducer tasks takes the mappers
results and persist the processed clips for later utilization.

268 L. Piñeyro and S. Nesmachnow

The proposed implementation needs at least one instance of each task in
order to complete the whole process. Particularly, the more mapper and reducer
tasks there are running, the better the algorithm distributes the iEEG data to
these tasks to process.

This implementation was developed using MPI for Python [16], an open-
source Python library that provides the standard MPI primitives and can handle
and work with Python specific objects.

4.3 Map-Reduce Implementation Using Apache Hadoop

The second proposed implementation applies the Map-Reduce paradigm pro-
vided by the Apache Hadoop software. In this case, the mappers are the pro-
cesses that receive the iEEG recordings, split them into smaller chunks, and
perform the processing algorithm to each of these chunks. Once the processing
algorithm finishes, the mappers output a tuple containing the name of the clip
from which the iEEG chuck was retrieved, the index of that chunk, and finally,
the processing result. These tuples are supplied to the reducers with the objec-
tive of joining all the chunk results of an iEEG clip, taking special consideration
to the index to keep the correct order of the features. Once the reducers join all
the expected chunks of a clip, they persist the results for later purposes.

Several decisions were taken in order to achieve a better performance when
running the algorithm in Hadoop. Particularly, a preliminary efficiency analysis
indicated that the format in which the iEEG chunks were received on the map-
pers drastically affected the performance of reading the brain activity channels.
Three approaches were explored to overcome these efficiency drawbacks.

The first approach consisted of applying a solution similar to the one pro-
posed by Burns and Freund [10], as described in Sect. 2. This approach proposes
transforming the iEEG readings into serializable objects so that the raw brain
activity channels could be streamed into the standard input of the mappers while
they were active. A preliminary efficiency analysis of this approach demonstrated
that the streaming speed of the brain activity to the mappers is not as fast as
reading the same brain recordings from the file-system: in the experiments, the
serializing approach took almost 2 s to retrieve all the iEEG data from a clip by
applying streaming, whereas loading the same data from the file-system took less
than 100 ms. On top of that, the process of making the iEEG data serializable
(i.e., converting the data to the JSON format) is slow and results in a significant
increase in the dataset size, which grow up to three times the original size in
the preliminary experiments. Because of these efficiency results, the serializing
approach was discarded.

A second approach consisted on compressing the serialized data, which
reduced the size of the clips on disk. However, adding a decompression pro-
cess on the mappers to read the iEEG data slows down the whole algorithm
even more. Therefore, this alternative was also discarded.

Finally, a third proposal implied passing to the mappers a list of paths point-
ing to the clips locations in the file-system. Using this approach, preliminary
efficiency experiments demonstrated that the streaming activity on the mappers

Parallel Processing of Intra-cranial Electroencephalogram Readings 269

is significantly reduced and the brain activity recordings are loaded by reading
directly from the iEEG data files. Consequently, the reading time of the raw
iEEG readings was speeded up, taking around 90 ms instead of few seconds.
Because of these results, we decided to base the proposed Hadoop implementa-
tion on this approach.

Figure 2 presents a diagram of the final Map-Reduce structure used in
the Hadoop implementation. The task distribution applied in the algorithm is
directly affected by the number of mappers and reducers available for concurrent
execution, which can be set up from the configurations definitions of Hadoop. A
sequential version of this algorithm only needs one mapper and one reducer in
order to perform the whole execution.

Fig. 2. Map-Reduce scheme used in the Apache Hadoop implementation

5 Experimental Evaluation

This section describes the experimental analysis of the proposed algorithms to
evaluate and compare their performance. The main details about the execu-
tion environments and the working datasets are presented, and the performance
results are reported and analyzed.

270 L. Piñeyro and S. Nesmachnow

5.1 Execution Environments

Both proposals were evaluated in different execution environments, as well as
using different dataset, according to the main features of each proposal and the
environment itself.

MPI implementation. The MPI algorithm was evaluated on HP Proliant
DL385 G7 servers (two AMD Opteron 6172 processors with 12 cores each,
72 GB RAM) from Cluster FING, the HPC infrastructure from Universidad
de la República, Uruguay [17]. The iEEG data consisted 217 h of brain activity
recorded at 400 Hz, with a total size of 5 GB of data.

Apache Hadoop implementation. The Hadoop algorithm was evaluated on a
HP Proliant DL585 server (four AMD Opteron 6272 processors at 2.09 GHz,
with 16 cores each, 48 GB RAM) also from Cluster FING. The working dataset
consisted of 40 h of recordings at 5000 Hz, accounting for 27 GB of data.

5.2 Evaluation Metrics

All tests were executed four times to ensure the efficiency results were not
affected by unpredictable factors in the execution environment, such as memory
and CPU utilization levels.

The analysis considered the traditional metrics to evaluate the performance
of parallel algorithms: the speedup and the efficiency. The speedup evaluates how
much faster is a parallel algorithm than its sequential version. It is defined as
the ratio of the execution times of the sequential algorithm (T1) and the parallel
version executed on N computing elements (TN) (Eq. 1). The ideal case for a
parallel/distributed algorithm is to achieve linear speedup (SN = N). However,
the common situation is to achieve sublinear speedup (SN < N), due to the times
required to communicate and synchronize the parallel/distributed processes or
threads. The efficiency is the normalized value of the speedup, regarding the
number of computing elements used for execution (Eq. 2). This metric allows
comparing algorithms executed in non-identical computing platforms. The linear
speedup corresponds to EN = 1, and usually EN < 1 [5].

SN =
T1

TN
(1)

EN =
SN

N
(2)

5.3 Computational Efficiency Analysis

This subsection reports and analyzes the performance results for both proposed
implementations.

Parallel Processing of Intra-cranial Electroencephalogram Readings 271

MPI implementation. The MPI algorithm was executed using 5, 6, 8, 12, 16,
24, and 32 computational resources, to process a dataset with 217 h of iEEG
readings. For each number of computational resources, the implementation was
executed four times. The average execution times of these executions are reported
in Fig. 3. In addition, Fig. 4 reports the speedup and efficiency results.

computing execution
resources time

5 1765.0s
6 931.2s
8 502.3s

12 270.4s
16 123.3s
24 93.8s
32 86.5s

5 10 15 20 25 30
0

500

1,000

1,500

computing resources

E
xe

cu
ti
on

ti
m

e
(s

ec
on

ds
)

Execution time

Fig. 3. Execution time results of the proposed implementation using MPI

The sequential version of the MPI algorithm demanded 31 min to process
the studied iEEG dataset. However, using 32 computing resources in the cluster
environment, the execution time was reduced to just 1 min and 27 s. Therefore,
the speedup metric for the best execution time, using 32 computing resources,
was 20.4 and the efficiency was of 0.64.

Efficiency results in Fig. 3 show a clear pattern; execution times rapidly
reduce as the computing resources increase. However, for executions using more
than 16 computing elements the execution time is slightly lower than the one
using 16 resources.

The speedup results reported in Fig. 4a show a sublinear behavior, reaching a
maximum of 22.4 when using 32 resources. Speedup is closer to linear when the
algorithm was executed with 16 computing resources, obtaining a value of 15.45.
This particular event is shown in the efficiency chart in Fig. 4b; efficiency reaches
a peak of 0.89 at that exact point, meaning that the algorithm performing on
16 computing elements is more efficient when compared to the executions using
24 or 32 resources.

272 L. Piñeyro and S. Nesmachnow

10 20 30
0

10

20

computing resources

sp
ee

du
p

Speedup

(a) Speedup results

10 20 30

0.2

0.4

0.6

0.8

computing resources

effi
ci

en
cy

Efficiency

(b) Efficiency results

computing resources speedup computational efficiency

5 1.07 0.20
6 2.04 0.32
8 3.79 0.44

12 7.04 0.55
16 15.45 0.89
24 20.30 0.78
32 22.04 0.64

Fig. 4. Speedup and computational efficiency results for the MPI implementation

Hadoop implementation. For the experimental evaluation, the proposed
Hadoop algorithm was set up to process the whole 27 GB dataset using 8, 12,
16 and 24 computing resources concurrently. For each of these executions, only
one reducer task was created. The remaining processes were assigned to mapper
tasks since the mappers resulted to be the most complex tasks and they perform
the most time-consuming operations.

The average execution times for all proposed executions are reported in Fig. 5.
Finally, Fig. 6 reports the detailed speedup and computational efficiency metrics
results.

The sequential version of the proposed Hadoop algorithm, which uses just
one mapper and one reducer to process the whole working dataset, demanded
more than 13 h to finish. When using all the 24 available computing resources in
the execution environment, the execution time was reduced to 1 h and 23 min.
This execution time reduction implied a speedup of 9.16 and a computational
efficiency of 0.38 when using all the computing resources.

Overall, efficiency results indicate that the Hadoop implementation obtained
lower performance improvements than the MPI implementation, probably
because Hadoop is not only in charge of running the mapper and reducer
tasks but also many other services to make the Hadoop ecosystem more robust
(including failover mechanisms and auditing input/output interactions within
the tasks). These results are consistent with situations reported in related
works [18,19].

Parallel Processing of Intra-cranial Electroencephalogram Readings 273

CPUs execution time

1 45,542s–12.65h
8 8,352s–2.32h

12 7,416s–2.06h
16 6,292s–1.75h
24 4,980s–1.38h

0 5 10 15 20 25

2

4

6

8

10

12

computing resources

E
xe

cu
ti

on
ti

m
e

(h
)

Execution time

Fig. 5. Execution time results of the proposed solution using Apache Hadoop

0 10 20

2

4

6

8

computing resources

sp
ee

du
p

speed up

(a) Speedup results

0 10 20

0.4

0.6

0.8

1

computing resources

effi
ci

en
cy

efficiency

(b) Efficiency results

computing resources speedup computational efficiency

1 1.00 1.00
8 5.45 0.68

12 6.14 0.51
16 7.23 0.45
24 9.16 0.38

Fig. 6. Speedup and computational efficiency results for the implementation on Apache
Hadoop

As well as in the MPI implementation, execution times reduce when using a
larger number of computing elements. Even though the speed up values grow,
it demands the algorithm using many computational resources to reduce the
execution time to a small degree. For example, when comparing the results

274 L. Piñeyro and S. Nesmachnow

obtained using 8 resources, it required 3× more resources to reduce the execution
time by 40 min. This issue can be appreciated in detail in the efficiency chart
in Fig. 6b, showing a clear descending behavior towards less efficient execution
times when the number of computing resources increases.

6 Conclusions and Future Work

This article presented two implementations for a parallel algorithm to process
iEEG readings on distributed environments. The first implementation applied a
traditional approach for parallel and distributed algorithms based on message
passing, adapted for executing on cluster systems. The second implementation
was developed using Apache Hadoop, a software platform that uses Map-Reduce
programming techniques to work with large volumes of data on cloud environ-
ments. Both strategies processed brain activity recordings by applying sophisti-
cated and complex signal processing and statical analysis methods. Sequential
versions of these algorithms demanded several hours to process standard iEEG
datasets. However, parallel and distributed computing techniques can be applied
with the main goal of reducing the processing time of the brain recordings.

The experimental evaluation of the proposed algorithms demonstrated that
applying HPC techniques in distributed systems allows reducing the execution
time of processing brain activity recordings. When compared with proposals
from the related literature, the implemented algorithms obtained similar results
with regard to the reduction of the execution times in distributed environments.
The results showed that the proposed MPI implementation is able to process
in 1 min and 27 s a 270 h dataset of brain recordings that demands 31 min to
be processed with a sequential version of the algorithm. On the other hand,
the distributed Hadoop implementation performed the processing on a 27 GB
dataset in 1 h and 23 min, whereas a sequential version of the same algorithm
demanded more than 13 h to conclude.

Regarding the efficiency of the algorithms, the MPI implementation per-
formed better than the proposed Hadoop implementation. The main reason
for this performance behavior is that the MPI implementation is much lighter
than the one using Hadoop. More precisely, additional actions performed by
the Hadoop ecosystem causes a significant overhead on the tasks, thus the MPI
implementation resulted more efficient when using more computing resources.
The MPI algorithm achieved a maximum speedup of 22.4 and an efficiency of
0.64 when using 32 computing elements. However, the MPI algorithm was more
efficient when using 16 computing resources achieving an efficiency of 0.89 and
a speedup of 15.45. On the other hand, the Hadoop implementation reached a
speedup of 9.16 and an efficiency of 0.38 when using 24 computing elements and
the best efficiency result of 0.68 when using 8 resources.

The main lines for future work are related to extending the capabilities and
the computational efficiency of the proposed algorithms. The first issue involves
including in the distributed algorithms a classification system capable of detect-
ing if a patient may or not have a seizure, advancing on building a complete

Parallel Processing of Intra-cranial Electroencephalogram Readings 275

solution for the seizure prediction problem. The classification system can also be
speeded up by using HPC techniques. Regarding the computational efficiency,
specific improvements can be achieved for processing larger iEEG datasets by
using the computing power available in nowadays distributed computing plat-
forms (Azure, AWS, etc.). Studying the scalability of the proposed approaches
over these realistic platforms is another promising line for future work.

References

1. Mormann, F., Andrzejak, R., Elger, C., Lehnertz, K.: Seizure prediction: the long
and winding road. Brain 130(2), 314–333 (2006)

2. Gadhoumi, K., Lina, J., Mormann, F., Gotman, J.: Seizure prediction for thera-
peutic devices: a review. J. Neurosci. Methods 260, 270–282 (2016)

3. Davis, K., Sturges, B., Vite, C., Ruedebusch, V., Worrell, G., Gardner, A., Leyde,
K., Sheffield, W., Litt, B.: A novel implanted device to wirelessly record and analyze
continuous intracranial canine EEG. Epilepsy Res. 96(1), 116–122 (2011)

4. Feldwisch-Drentrup, H., Schelter, B., Jachan, M., Nawrath, J., Timmer, J.,
Schulze-Bonhage, A.: Joining the benefits: combining epileptic seizure prediction
methods. Epilepsia 51(8), 1598–1606 (2010)

5. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Par-
allel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston
(1995)

6. Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N., Fernández, I., Klehm,
J., Bosl, W., Reinsberger, C., Schachter, S., Loddenkemper, T.: Seizure detection,
seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav.
37, 291–307 (2014)

7. Ting, W., Guo-zheng, Y., Bang-hua, Y., Hong, S.: EEG feature extraction based
on wavelet packet decomposition for brain computer interface. Measurement 41(6),
618–625 (2008)

8. El Kassabi, H., Serhani, M., Dssouli, R.: Neurodegenerative diseases monitoring
(NDM) main challenges, tendencies, and enabling big data technologies: a survey.
Neurodegenerative Dis. 5(01), 158–173 (2016)

9. Jayapandian, C., Chen, C., Bozorgi, A., Lhatoo, S., Zhang, G., Sahoo, S.: Cloud-
wave: distributed processing of “big data” from electrophysiological recordings for
epilepsy clinical research using Hadoop. In: AMIA Annual Symposium Proceed-
ings, pp. 691–700 (2013)

10. Burns, M., Freund, Y.: Large scale electroencephalography processing with Hadoop
(2013). https://github.com/mattb243/EEGLAB2Hadoop. Accessed July 2017

11. Nuwer, M., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J., Hinrichs,
H., Ikeda, A., Luccas, F., Rappelsberger, P.: IFCN standards for digital recording
of clinical EEG. Electroencephalogr. Clin. Neurophysiol. 106(3), 259–261 (1998)

12. Brinkmann, B., Wagenaar, J., Abbot, D., Adkins, P., Bosshard, S., Chen, M.,
Tieng, Q., He, J., Muñoz-Almaraz, F., Botella-Rocamora, P., Pardo, J.: Crowd-
sourcing reproducible seizure forecasting in human and canine epilepsy. Brain
139(6), 1713–1722 (2016)

13. Bruhn, J., Lehmann, L., Röpcke, H., Bouillon, T., Hoeft, A.: Shannon entropy
applied to the measurement of the electroencephalographic effects of desflurane.
Anesthesiol.: J. Am. Soc. Anesthesiol. 95(1), 30–35 (2001)

https://github.com/mattb243/EEGLAB2Hadoop

276 L. Piñeyro and S. Nesmachnow

14. Bendat, J., Piersol, A.: Engineering Applications of Correlation and Spectral Anal-
ysis. Wiley-Interscience, New York (1980)

15. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-passing Interface. MIT Press, Cambridge (1999)

16. Dalcin, L., Paz, R., Kler, P., Cosimo, A.: Parallel distributed computing using
Python. Adv. Water Resour. 34(9), 1124–1139 (2011)

17. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la facultad de inge-
nieŕıa, universidad de la república. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010). (Text in Spanish)

18. White, T.: How MapReduce works (Chap. 6). In: Hadoop: The Definitive Guide.
O’Reilly Media Inc. (2012)

19. Dittrich, J., Quiané-Ruiz, J.: Efficient big data processing in Hadoop MapReduce.
Proc. VLDB Endow. 5(12), 2014–2015 (2012)

Support Vector Machine Acceleration for Intel
Xeon Phi Manycore Processors

Renzo Massobrio1,2(B), Sergio Nesmachnow1, and Bernabé Dorronsoro2

1 Universidad de la República, Montevideo, Uruguay
{renzom,sergion}@fing.edu.uy

2 Universidad de Cádiz, Cádiz, Spain
bernabe.dorronsoro@uca.es

Abstract. Support vector machines are widely used for classification
and regression tasks. However, sequential implementations for support
vector machines are usually unable to deal with the increasing size
of current real-world learning problems. In this context, Intel®Xeon
PhiTM processors allow easily incorporating high performance comput-
ing strategies to improve execution times. This article proposes a parallel
implementation of the popular LIBSVM library, specially adapted to the
Intel®Xeon PhiTM architecture. The proposed implementation is evalu-
ated using publicly available datasets corresponding to classification and
regression tasks. Results show that the proposed parallel version com-
putes the same results than the original LIBSVM while reducing the time
needed for training by up to a factor of 4.81.

1 Introduction

Support vector machines (SVMs) are supervised learning models which are used
for classification and regression analysis [2]. SVMs have been widely applied to
solve various real world problems, e.g., text categorization, image classification,
hand-written text recognition, protein classification.

In their simplest form, SVMs are non-probabilistic binary linear classifiers.
SVMs build a model given a set of training samples, each marked as members
of one of two possible classes. This model is a representation of the training
samples as points in space that aims at separating samples from different classes
by the widest possible gap. Figure 1 shows an example of a linear binary SVM
classifier, with three possible classifications, where H1 does not separate the two
classes, H2 separates them, but H3 separates the classes creating the widest gap
between both groups. Once the model is built, new, unknown samples can be
mapped into that same space in order to predict the class to which they belong.

More generally, a SVM builds a hyperplane (or set of hyperplanes) in a
high-dimensional space that has the largest distance to the nearest training-
data point of any class (known as the functional margin). In most cases, the
points to be classified are not linearly separable in the input dimensional space.
Therefore, the input points can be mapped into a higher-dimensional space, to

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 277–290, 2018.
https://doi.org/10.1007/978-3-319-73353-1_20

278 R. Massobrio et al.

Fig. 1. Example of a linear binary SVM classifier

make the separation task easier. For this purpose, several kernel functions have
been proposed, which project the original points into higher dimensional spaces.
Then, the SVM finds a linear hyperplane that separates the points with the
maximal margin in this higher dimensional space.

Classification and regression tasks demand increasing computational
resources due to the growing size of datasets and input vectors used in real appli-
cations nowadays. Therefore, sequential SVM implementations are not able to
efficiently cope with large learning tasks. Parallel implementations are necessary
to be able to handle large learning problems with SVMs. In this context, many-
core processors, such as Intel®Xeon PhiTM, are an interesting option to exploit
parallelism using a standard CPU form factor, without the need for large and
expensive HPC infrastructure.

This article proposes a parallel implementation of the popular library for sup-
port vector machines LIBSVM [3], specifically adapted to the latest Intel®Xeon
PhiTM architecture. LIBSVM is an easy-to-use research tool that supports vector
classification, regression, and distribution estimation problems, includes several
SVM formulations, and various kernel functions. The proposed implementation
is evaluated using datasets of classification and regression problems. Results
show that the proposed implementation is able to significantly reduce training
times, which are the most demanding in most learning problems, while com-
puting exactly the same results than the original LIBSVM. For the evaluated
datasets, the best results indicate that the proposed implementation accelerates
LIBSVM in up to 4.81x.

The remainder of the manuscript is organized as follows. Section 2 introduces
manycore processors, the Intel®Xeon PhiTM architecture, and the software used
in the parallel implementation of LIBSVM. A brief review of related works is
presented in Sect. 3. Then, Sect. 4 presents in detail the proposed LIBSVM imple-
mentation and Sect. 5 presents the experimental results. Finally, Sect. 6 presents
the conclusions and main lines of future work.

Support Vector Machine Acceleration for Intel Xeon Phi 279

2 Hardware and Software Platform

This section introduces manycore processors and presents the main character-
istics of the Intel®Xeon PhiTM architecture. Then, a brief introduction to the
software used for the parallel implementation is presented.

2.1 Manycore Processors and Intel®Xeon PhiTM

Manycore processors are multi-core processors specially designed for a high
degree of parallelism, consisting of tens or thousands of simpler independent
cores. The use of manycore processors has been increasing in the past years,
with extensive applications in embedded systems and high-performance comput-
ing platforms. Sunway TaihuLight is the fastest supercomputer as of June 2017
according to the TOP500 ranking [15]. This Chinese supercomputer, installed
at the National Supercomputing Center in Wuxi, consists of 40,960 manycore
processors with 260 cores each, totalling 10,649,600 cores [5].

Xeon PhiTM is a brand name given to a series of manycore processors com-
mercialized by Intel®. This family of processors was initially designed as an
add-on PCIe card which could be connected to a standard CPU and used for
computing intensive tasks. A second generation of Xeon PhiTMproducts, with
codename Knights Landing, was announced on June 2013. The main difference
with its prior generation is that Knights Landing are stand-alone processors that
can boot an off-the-shelf operating system. Therefore, Knights Landing avoids
the bottlenecks in PCIe communications —which are inherent in coprocessors—
and provides a powerful HPC platform in a standard CPU form factor. Sodani
et al. [14] presents an interesting overview of the Knights Landing architecture.
A brief description of the main characteristics of the Knights Landing architec-
ture are described next.

The Knights Landing architecture consists of 38 physical tiles: at most 36 are
active and the remaining two are used for recovery purposes. Each tile has two
cores, two vector processing units (VPUs) per core, and a shared 1 MB L2 cache.
The processing cores derive from the Intel®AtomTM core microarchitecture, but
incorporate several modifications specially designed to suit HPC workloads, e.g.,
support for four threads per core, larger and faster caches, and larger transla-
tion look-aside buffers (TLBs). Each core supports up to four hardware contexts
or threads by means of hyperthreading techniques. Additionally, Knights Land-
ing incorporates a new instruction set named AVX-512, which supports 512
bit vector instructions and a 2D mesh that interconnects the tiles with other
components of the chip such as memory and I/O controllers. Knights Landing
introduces an innovative memory architecture comprising two types of memory:
Multichannel DRAM (MCDRAM), which provides high bandwidth, and double
data rate (DDR) memory for larger capacity. These two types of memory can
be used in three different memory modes: (i) cache mode, where MCDRAM acts
as cache for DDR; (ii) flat mode, where MCDRAM is used as standard memory
sharing the same address space as DDR; and hybrid mode, where a portion of

280 R. Massobrio et al.

MCDRAM is in cache mode and the remainder is in flat mode. All these fea-
tures make the Knights Landing architecture a good candidate for HPC tasks,
without requiring any special way of programming other than the standard CPU
programming model, and even having decent support for serial legacy code.

2.2 Intel®C++ Compiler

The Intel®C++ compiler is part of the Intel®Parallel Studio XE suite. The
compiler incorporates many optimizations to take advantage of specific processor
features, such as the number of available cores and wider vector registers, to
speed up computations. Intel®C++ compiler has broad support for current and
previous C and C++ standards, including full support for C++11 and C99.
Furthermore, it supports integration with OpenMP for parallel implementations.

2.3 Intel®Math Kernel Library

Intel®Math Kernel Library (MKL) supports a series of optimized and threaded
math functions to take advantage of the architecture of Intel®processors to solve
large computational problems. MKL performs a hardware check on runtime and
selects suitable functions to improve execution time by means of instruction-level
and register-level SIMD parallelism [16]. Intel®MKL also incorporates thread-
safe functions to speedup computations using OpenMP. Although Intel®MKL
is optimized for the latest Intel®processors, including processors with multiple
cores, it can also be used in non-Intel®CPUs. The library provides Basic Linear
Algebra Subprograms (BLAS) and Linear Algebra PACKage (LAPACK) rou-
tines, fast Fourier transforms, vectorized math functions, random number gener-
ation functions, and many other features. In this work, we use specific functions
in the BLAS Level 1 suite, which includes routines and functions that perform
vector to vector math operations.

3 Related Work

There are multiple libraries and frameworks that implement SVMs in a variety
of programming languages. In 2007, Ivanciuc [11] provided a thorough list and
comparison of different SVM implementations.

LIBSVM (Library for Support Vector Machines) was developed by Chang
and Lin [3] and supports vector classification, regression, and distribution esti-
mation problems. It was developed with the goal of helping users from other
fields to easily use SVM as a research tool. LIBSVM provides a simple interface
for users to link with their own programs. The main features of this framework
include: several SVM formulations, efficient multi-class classification, cross val-
idation, probability estimates, various kernels (e.g., linear, polynomial, radial
basis function (RBF), and sigmoid), and weighted SVM for unbalanced data.
It is implemented in both C++ and Java, and also has interfaces in the follow-
ing languages: Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP,
Haskell, OCaml, LabVIEW, and PHP.

Support Vector Machine Acceleration for Intel Xeon Phi 281

GPU-accelerated LIBSVM [1] is a modified version of the original LIBSVM
code that takes advantage of the CUDA framework to significantly reduce pro-
cessing time while producing identical results to the original framework. This
GPU version does not currently supports all the features of the original LIB-
SVM and is only compatible with C-SVC classification mode using the RBF
kernel. From the users perspective, the functionality and interface of LIBSVM
remains the same. However, the kernel computation is performed using a GPU.
The authors propose a combined CPU + GPU approach where the computation
of the kernel matrix elements is offloaded to the GPU, to decrease the pro-
cessing time for the training phase. The experimental evaluation was performed
using a training dataset consisting of high level features in video shots. Unfor-
tunately, the datasets used are not publicly available for comparison. In small
datasets, the difference between using only CPU and the combined CPU + GPU
approach is hardly noticeable. However, for larger instances, the execution time
when exploiting the GPU is up to one order of magnitude lower in comparison
to using the CPU alone. The authors mention that it is important to notice the
memory issues that can arise in very large instances due to the limited memory
resources in GPU cards.

You et al. [17] presented a custom implementation of binary classification
SVM for multi-core and many-core architectures. The proposed framework is
evaluated using Intel®Ivy Bridge CPUs and Intel®Xeon PhiTM co-processor
(MIC) from the previous generation to the one used in our proposal (Knights
Landing). Several strategies are presented to improve the parallelism and opti-
mize the implementation to the underlying architectures, including: parallel
kernel evaluation, affinity models for thread-to-core assignment, vectorization,
and memory alignment. The authors suggest using both “sparse” and “dense”
formats to represent training vectors, depending on the characteristics of the
training dataset, as it will be discussed in Sect. 4.3. An interesting approach
is suggested to choose the format automatically. The authors propose training
different datasets using both “sparse” and “dense” formats and measuring exe-
cution times. Afterwards, they propose building a classifier with features of each
trained dataset (e.g., number of vectors, size of vectors, density) and labels indi-
cating whether it was faster to use the “sparse” or the “dense” format. With
this trained classifier, a user could predict whether their dataset would bene-
fit from using a specific representation format. This is an interesting approach
that could also be applied to our proposal. However, the authors do not provide
specific details about the accuracy of the implemented format predictor. The
proposed SVM implementation is able to improve LIBSVM by 4.4x–84x on MIC
and 18x–47x on Ivy Bridge CPU. The training results are not exactly the same
as those computed by LIBSVM due to implementations nuances. However, the
authors show that the differences in accuracy for the studied datasets are min-
imal. Unfortunately, the proposed library does not have an official release and
the only code available online has not been updated for two years as of 2017.

The analysis of related works shows that there is an interest in the research
community for optimizing SVMs due to the growing size of learning problems.

282 R. Massobrio et al.

However, the most popular SVM libraries are serial and do not exploit the par-
allelism offered by modern manycore and multi-core architectures. Some efforts
have been made either to adapt existing libraries or to implement new ones, that
take advantage of highly parallel computing architectures. There is still room
to contribute in adapting popular SVM implementations, such as LIBSVM, to
modern manycore architectures like Intel®Xeon PhiTM.

4 LIBSVM Implementation for Intel®Xeon PhiTM

This section presents the specific modifications performed to the LIBSVM code
to adapt it to the Intel®Xeon PhiTM architecture. The proposed changes were
implemented over version 3.22 of the LIBSVM code.

4.1 Coarse-Grain Parallelism Using OpenMP

The original LIBSVM code is sequential. Therefore, it does not take advantage
of the multiple cores present in Intel®Xeon PhiTM machines. A simple way to
exploit the availability of multiple cores is by using OpenMP to parallelize the
loop that processes each training vector, as suggested in the LIBSVM FAQ [4].
This approach involves two simple modifications to the original LIBSVM code:
(i) adding two OpenMP pragmas: one before the for loop in function get Q of
class SVC Q and one before the for loop in function svm predict values; (ii)
adding the -fopenmp flag to the LIBSVM Makefile. This modification applies to
classification tasks, the approach is similar for regression tasks.

The pragma line added to the LIBSVM code is the following, where j is the
loop variable:

#pragma omp parallel for private(j) schedule(guided).

The guided option uses a work queue to give each thread a chunk-sized block of
loop iterations. When a thread finishes processing the assigned block, it retrieves
the next block of loop iterations from the top of the work queue. Thus, an auto-
matic load balancing scheme is implemented. The size of the chunk is initially
large and decreases over time to better handle load imbalance between iterations.
By default, the starting chunk size is approximately equal to the ratio between
the number of iterations of the loop and the number of threads.

The number of threads to be used can be set on runtime by setting the
appropriate value in the environment variable OMP NUM THREADS.

4.2 Compiling with Intel®C++ Compiler

The previous modification works with any C++ compiler that supports
OpenMP, without the need of compiling using the Intel®C++ compiler.
However, in order to exploit the specific characteristics of the Intel®Xeon
PhiTM architecture, and to be able to use the Intel®MKL, we propose chang-
ing the compiler used in the original LIBSVM code (g++) for the Intel®C++
compiler.

Support Vector Machine Acceleration for Intel Xeon Phi 283

The compiler options were set according to the recommendations of the
Intel®Math Kernel Library Link Line Advisor [10]. This allows to optimize
the compiled code to the specific hardware architecture where the program will
execute. In addition to the recommended optimization flags, it was necessary
to include the -fp-model precise option. This flag instructs the compiler to
avoid performing several optimizations targeted to floating point arithmetic.
While this prevents from further optimization, it guarantees returning the same
results as the original LIBSVM library. If the user allows some float precision
differences with the original LIBSVM, this flag can be removed and achieve an
extra improvement in performance.

4.3 Integration with Intel®MKL

The previous modifications apply to all learning tasks, independently of the
chosen kernel function. However, in the rest of the work we focus on accelerating
the training time for classification and regression tasks using the RBF kernel
function. The rationale behind this decision is that the RBF kernel is, in general,
a reasonable choice for many learning tasks, as recommended by the LIBSVM
Practical Guide [8]. The RBF kernel function maps training samples into a higher
dimensional space, so it can handle non-linear relations between attributes and
class labels. Additionally, it has fewer hyperparameters than other kernels (e.g.,
polynomial kernel) and presents fewer numerical difficulties than other kernels.
The RBF kernel on two samples x and x′, represented as feature vectors in some
input space, is defined by Eq. 1, where γ > 0 is a free parameter.

K(x, x′) = e−γ||x−x′||2 (1)

An initial profiling experiment of the svm-train program was performed to
identify bottleneck functions. The profiling was performed using gprof [6] and
training on the connect-4 dataset [13] available at the LIBSVM dataset reposi-
tory [3]. This dataset is not used in the experimental evaluation of the proposed
solution in order to avoid bias and to demonstrate that the implementation scales
well on different datasets.

The profiling of the svm-train program revealed that 87.2% of the total
execution time was spent in the dot function of class Kernel. This function per-
forms the dot product of two vectors. The dot product is used when computing
the RBF kernel, since the LIBSVM implementation expands Eq. 1 into the form
presented in Eq. 2.

K(x, x′) = e−γ((x•x)+ (x′•x′)−2(x•x′)) (2)

The profiling results suggest that an improvement in the dot product calcula-
tion would greatly impact the overall training time. To improve the dot function
we propose using the cblas ddot routine available in the BLAS Level 1 group
of functions and routines of Intel®MKL, which has the following header:

double cblas ddot (const MKL INT n, const double *x, const
MKL INT incx, const double *y, const MKL INT incy);

284 R. Massobrio et al.

where the parameters are:

– n, the number of elements in vectors x and y.
– x, an array with size at least (1 + (n − 1) × abs(incx)).
– incx, the increment for the elements of x.
– y, an array with size at least (1 + (n − 1) × abs(incy)).
– incy, the increment for the elements of y.

Using the cblas ddot function instead of the original code in LIBSVM is
not as straightforward as interchanging only that portion of the code, due to the
format in which LIBSVM stores the training vectors. LIBSVM uses a “sparse”
format, in which zero values are not stored. Instead, training vectors are stored
as <index:value> pairs. For instance, the training vector <0,1,0,3> is inter-
nally represented as (2:1 4:3). This format does not allow using the cblas
ddot function directly. Therefore, it was necessary to modify other sections of
the LIBSVM code to implement a “dense” format, in which vectors are stored
directly as arrays, including zero values. As it will be presented in the exper-
imental analysis discussion in Sect. 5, this design decision may achieve better
or worse performance depending on the specific characteristics of the training
set used. Therefore, we implemented this modification in a way that the user
can decide at compiling time whether to use the original ‘sparse’ format or the
proposed ‘dense’ format, depending on the specific characteristics of the training
dataset.

The cblas ddot implementation is threaded. The number of threads to
be used can be set on runtime by setting the environment variable MKL NUM
THREADS.

5 Experimental Analysis

This section presents and discusses the experimental results of the proposed
parallel implementation of LIBSVM for Intel®Xeon PhiTM Knights Landing
systems.

5.1 Execution Platform

The experimental evaluation was performed on an Intel®Xeon PhiTM 7250 pro-
cessor, with 68 cores, and 64 GB of RAM. The server ran Linux Ubuntu 16.04
and had version 17.0.1 of the Intel®C++ compiler. The server was not shared
with other users or performed any other intensive tasks during the experiments,
in order to accurately measure the execution times.

5.2 Problem Instances

Three learning datasets were used for the experimental evaluation of the pro-
posed implementation. These datasets were obtained from the LIBSVM dataset
repository [3]. The datasets, which correspond to classification and regression
problems, are:

Support Vector Machine Acceleration for Intel Xeon Phi 285

– gisette, a dataset corresponding to a handwritten digit recognition problem
with the goal of separating the digits ‘4’ and ‘9’. This dataset was one of five
datasets of the NIPS 2003 feature selection challenge [7].

– E2006, a dataset with reports from thousands of publicly traded U.S. com-
panies, published in 1996–2006, and stock return volatility measurements
in the twelve-month period before and the twelve-month period after each
report [12].

– usps, a database for handwritten text recognition research, consisting of digi-
talized images at 300 pixels/in. in 8-bit gray scale, corresponding to U.S. post
codes scanned from real mail [9].

The datasets gisette and E2006 were sub-sampled using the subset.py script
included in LIBSVM, which allows making a stratified selection of training sam-
ples, keeping the rate of appearance of each label in the dataset. We used a sub-
set of 1000 samples of each dataset. Therefore, we will refer to them as gisette
1000 and E2006 1000 for the remainder of the manuscript. Table 1 shows the
main characteristics of each of the datasets used in the experimental evaluation,
including the type of problem (classification or regression), the number of train-
ing vectors (# samples), the length of each training vector (# features) and, for
classification problems, the number of classes (# labels).

Table 1. Datasets used for the experimental evaluation

Problem # samples # features # labels

gisette 1000 Classification 1000 5000 2

E2006 1000 Regression 1000 150360 -

usps Classification 7291 256 10

5.3 Coarse-Grain Parallelization

Initially, we report the results achieved when using the Intel®C++ Compiler
and OpenMP for coarse-grain parallelism of the outer loop that performs the
kernel evaluations. These results correspond to the modifications described in
Sects. 4.1 and 4.2, i.e., without changing the vector representation format and
without using Intel®MKL. Figure 2 shows the average execution time in seconds
for the three studied instances, when varying the number of threads (OMP NUM
THREADS environment variable) assigned to the loop. The results correspond to
30 independent executions of each instance with each studied number of threads.

Results in Fig. 2 show that acceptable execution time improvements are
achieved when using more than one core on all studied instances. However, exe-
cution times do not improve when using more than 64 cores for both gisette
1000 and E2006 1000 datasets, and there is even a significant negative impact
when using large number of cores with the usps dataset. This could be explained
due to the fact that the Intel®Xeon PhiTM processor used has 68 physical cores.
Therefore, when using more threads, some of the CPU resources are shared
among the threads, incurring in a noticeable overhead.

286 R. Massobrio et al.

(a) gisette 1000 (b) E2006 1000

(c) usps

Fig. 2. Mean execution time with different number of OMP threads

5.4 Vectorized Dot Product Computation

In a second stage, we evaluated the results of implementing the modifications
described in Sect. 4.3, i.e., changing from a “sparse” to a “dense” vector rep-
resentation and including Intel®MKL for the dot product calculation. Figure 3
shows the average execution time in seconds for the three studied instances,
when varying the number of threads (MKL NUM THREADS environment variable)
assigned to the dot product calculation. There is no coarse-grain parallelization
in these executions (i.e., OMP NUM THREADS = 1). The results correspond to 30
independent executions of each instance with each studied number of threads.

Results in Fig. 3 give information on two aspects. Firstly, on the convenience
(or not) of using the “dense” format and including Intel®MKL for the dot prod-
uct calculation. Secondly, to discuss the usefulness of adding parallelism at the
vector level when computing the dot product.

To discuss the first aspect, we should compare the execution times when using
only one OMP thread in Fig. 2 vs using one MKL thread in Fig. 3. It can be seen
that execution times significantly improve when running a sequential version

Support Vector Machine Acceleration for Intel Xeon Phi 287

(a) gisette 1000 (b) E2006 1000

(c) usps

Fig. 3. Mean execution time with different number of MKL threads

with the “dense” representation format and the MKL dot product calculation
for both gisette 1000 and usps instances. However, for E2006 1000 instance,
since the training vectors are much larger, using the “dense” format and only
one MKL thread negatively impacts the execution time. In this case, the effects
of the “dense” representation are only mitigated when adding more MKL threads
to reduce the execution times.

Regarding the second aspect, results show that when using the “dense” for-
mat, the improvements achieved by using a larger number of threads for the
dot product computation are only noticeable for very large vectors. For usps
instance, with vectors of size 256, the improvements when using more than one
thread are marginal. For gisette 1000, with vectors of size 5000, there is even
some minor performance decline when using more than one thread. Addition-
ally, there is a strange behaviour when using exactly two threads, possibly due
to the overhead of creating the pool of threads. However, for instance E2006
1000, with training vectors of size 150360, there is a noticeable improvement
when using more threads for the dot product calculation.

288 R. Massobrio et al.

In conclusion, dense vectors benefit from changing the original LIBSVM rep-
resentation and using Intel®MKL for the dot product calculation, but only dense
and large vectors benefit from using multiple threads when computing each dot
product. The proposed implementation allows the user to control both the vec-
tor representation and the number of outer (OMP) and inner (MKL) threads,
thus, enabling the user to tune the library to the specific needs or their learning
task. A tool like the one suggested by You et al. (2014) [17] would be interesting
to develop, in order to suggest users the values for these parameters that best
fit their dataset.

5.5 Two-Level Parallelization Approach

Taking into account the results discussed in the previous sections, we performed
30 independent executions of each training dataset, using the configuration of
threads that achieved best results. The selected configurations are reported in
Table 2, where OMP NUM THREADS indicates the number of threads used for the
outer loop of kernel evaluations (i.e., coarse-grain parallelism) and MKL NUM
THREADS indicates the number of threads assigned to compute each vector dot
product, when the “dense” format is used. Additionally, 30 independent execu-
tions of the original LIBSVM library were performed over each dataset.

Table 2. Thread configurations used for each problem instance

Format OMP NUM THREADS MKL NUM THREADS

gisette 1000 dense 64 1

E2006 1000 sparse 64 -

usps dense 32 32

Table 3 presents the execution times achieved by the original LIBSVM code
and the proposed implementation using the best configuration for each problem
instance. For each instance the minimum (best), average, and standard devi-
ation are presented with the following format: mean± std (min). All times are
expressed in seconds. Additionally, the average acceleration achieved is presented
for each instance. The average acceleration is computed as the ratio between the
average execution time of LIBSVM and the average execution time of the pro-
posed implementation.

Results in Table 3 show that the proposed implementation is able to effi-
ciently improve the training time while computing exactly the same results than
the original LIBSVM. The proposed implementation achieves an acceleration of
up to 4.81x on average on the usps instance. These training time improvements
are significant, specially when considering larger training datasets that would
otherwise be intractable for sequential SVM implementations.

Support Vector Machine Acceleration for Intel Xeon Phi 289

Table 3. Execution time in seconds (mean ± std (min)) and average acceleration of
the proposed approach against the original LIBSVM

LIBSVM Best configuration acceleration

gisette 1000 22.66 ± 0.06 (22.59) 7.07 ± 0.02 (7.03) 3.21x

E2006 1000 20.59 ± 0.03 (20.56) 4.98 ± 0.02 (4.96) 4.13x

usps 18.46 ± 0.06 (18.24) 3.84 ± 0.01 (3.81) 4.81x

6 Conclusions and Future Work

This article presented a parallel implementation of the popular LIBSVM soft-
ware, specifically adapted to the Intel®Xeon PhiTM architecture. The proposed
implementation allow reducing the training time while computing the exact same
results than the original LIBSVM. The modifications proposed include: coarse-
grain parallelization of kernel evaluations, a new format for representing training
vectors, the integration with Intel®MKL for kernel computation, and optimiza-
tions at compiling time to exploit the underlying architecture. The experimental
evaluation was performed using three publicly available datasets, corresponding
to different classification and regression problems, and with different character-
istics in terms of number, size, and density of the training vectors.

The main lines of future work include exploring more techniques to further
improve the optimization of LIBSVM code. Some of the possible techniques to
explore include: aligning vectors in memory to make a better use of caches in
Intel®Xeon PhiTM cores, improve affinity in the thread-to-core assignment, and
optimize other parts of the LIBSVM code that could benefit from the manycore
architecture. Additionally, it will be interesting to generalize the proposed app-
roach to other kernels and evaluate the results over larger learning problems,
with bigger and denser training vectors. Finally, a tool to help users decide the
best vector representation format and number of threads to assign to each level
of parallelism should be developed.

Acknowledgement. The work of R. Massobrio and S. Nesmachnow was partly sup-
ported by PEDECIBA and ANII, Uruguay. R. Massobrio would like to thank ANII,
Uruguay and Fundación Carolina, Spain. B. Dorronsoro would like to acknowledge the
Spanish MINECO-FEDER for the support provided under contracts TIN2014-60844-R
(the SAVANT project) and RYC-2013-13355.

References

1. Athanasopoulos, A., Dimou, A., Mezaris, V., Kompatsiaris, I.: GPU acceleration
for support vector machines. In: Proceedings of the 12th International Workshop
on Image Analysis for Multimedia Interactive Services (WIAMIS) (2011)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT 1992, pp. 144–152. ACM, New York (1992)

290 R. Massobrio et al.

3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/∼
cjlin/libsvm

4. Chang, C.C., Lin, C.J.: LIBSVM FAQ (2015). Accessed 14 July 2017. http://www.
csie.ntu.edu.tw/∼cjlin/libsvm/faq.html#f432

5. Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W.,
Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J.,
Wang, Y., Zhou, C., Yang, G.: The Sunway TaihuLight supercomputer: system
and applications. Sci. China Inf. Sci. 59(7), 072001 (2016)

6. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler.
SIGPLAN Not. 17(6), 120–126 (1982)

7. Guyon, I., Gunn, S., Hur, A.B., Dror, G.: Result analysis of the NIPS 2003 feature
selection challenge. In: Proceedings of the 17th International Conference on Neural
Information Processing Systems, NIPS 2004, pp. 545–552. MIT Press, Cambridge
(2004)

8. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifica-
tion (2003). Accessed 14 July 2017. https://www.csie.ntu.edu.tw/∼cjlin/papers/
guide/guide.pdf

9. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pat-
tern Anal. Mach. Intell. 16(5), 550–554 (1994)

10. Intel®Software: Intel®Math Kernel Library Link Line Advisor (2017). Accessed
14 July 2017. https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

11. Ivanciuc, O.: Applications of Support Vector Machines in Chemistry, pp. 291–400.
Wiley, Hoboken (2007)

12. Kogan, S., Levin, D., Routledge, B.R., Sagi, J.S., Smith, N.A.: Predicting risk from
financial reports with regression. In: Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics, NAACL 2009, pp. 272–280. Association for
Computational Linguistics, Stroudsburg (2009)

13. Lichman, M.: UCI machine learning repository (2013). Accessed 14 July 2017.
http://archive.ics.uci.edu/ml

14. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hut-
sell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon Phi
product. IEEE Micro 36(2), 34–46 (2016)

15. TOP500.org: Top500 List - June 2017 (2017). Accessed 14 July 2017. https://www.
top500.org/list/2017/06/

16. Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: Intel math
kernel library. High-Performance Computing on the Intel® Xeon Phi™, pp. 167–
188. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06486-4 7

17. You, Y., Song, S.L., Fu, H., Marquez, A., Dehnavi, M.M., Barker, K., Cameron,
K.W., Randles, A.P., Yang, G.: MIC-SVM: designing a highly efficient support
vector machine for advanced modern multi-core and many-core architectures. In:
2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp.
809–818 (2014)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f432
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f432
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://archive.ics.uci.edu/ml
https://www.top500.org/list/2017/06/
https://www.top500.org/list/2017/06/
https://doi.org/10.1007/978-3-319-06486-4_7

Performance Improvements of a Parallel
Multithreading Self-gravity Algorithm

Nestor Rocchetti1(B), Daniel Frascarelli1, Sergio Nesmachnow1,
and Gonzalo Tancredi2

1 Facultad de Ingenieŕıa, Universidad de la República,
Herrera y Reissig 565, 11300 Montevideo, Uruguay

{nrocchetti,sergion}@fing.edu.uy, dsanfra@gmail.com
2 Facultad de Ciencias, Universidad de la República,

Iguá 4225, 11400 Montevideo, Uruguay
gonzalo@fisica.edu.uy

Abstract. This article presents the application of performance opti-
mization techniques to improve the computational efficiency of a parallel
multithreading algorithm for self-gravity calculation on agglomerates.
The studied algorithm applies the Discrete Element Method to simu-
late an ensemble of interacting particles under several contact and body
forces. Based on the time scales of the process involved in the problem, we
used a computation algorithm that speed up the self-gravity calculation
based on defining a mesh over the simulated space. Specific performance
improvements are presented, including the update of the occupied regions
of the space, profiling and reimplementation of the most time consum-
ing routines. Results indicate that the proposed implementation scale
appropriately (almost-linear behavior) with the number of computational
resources and the number of particles. The proposed improvements allow
accelerating up to 50× the execution times over the previous version of
the self-gravity algorithm in the studied scenarios.

1 Introduction

Gravitational potential is the main force that holds together astronomical
objects, including agglomerates of small particles such as comets and aster-
oids [1]. Small particles that conform the agglomerates (called grains) are
affected by short range interactions (e.g., contact forces) and also by long range
interactions (e.g., self-gravity) [2,3]. Self-gravity interactions keep the particles
together, creating a so-called rubble-pile asteroid or comet. Also, self-gravity
gives shape to this type of celestial objects [4]. In addition, long-range interac-
tions allow space bodies to interact causing mutual attraction and deformations.

The motion and interactions of rubble-pile asteroids and comets is a matter
of interest for astronomers. In order to study the evolution of these systems,
researchers have to solve numerically the equations of motion of the particles in
the agglomerate. Given an agglomerate of particles, if the interaction between
every pair of particles must be calculated, the computational cost is O(N2).
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 291–306, 2018.
https://doi.org/10.1007/978-3-319-73353-1_21

292 N. Rocchetti et al.

Besides, if the agglomerate has millions of particles it turns computationally
difficult to study the behavior of those big systems for extended periods of time.

High Performance Computing (HPC) is a paradigm that helps researchers to
solve complex problems and perform simulations on big domains. HPC allows
dealing with complex problems that demand high computer power, while comply-
ing with the time restrictions imposed by todays scientific standards. Instead of
using a single computing resource, HPC proposes using multiple resources simul-
taneously applying a coordinated approach. This way, a cooperation strategy is
implemented, allowing the workload to be divided between the computational
units available to solve a complex problem in reasonable execution times [5].

Discrete Element Method (DEM) [6] is a numerical method used to simulate
the interaction of particles. It was created to simulate short-range interactions
between particles. The idea was to simulate physical phenomena by dividing
the problem in particles and defining their properties and interactions between
them. Given the nature of the problem, it is possible to improve its performance
applying parallel programming techniques. ESyS-Particle [7] is a software for
simulating geological phenomena (e.g.: rock fragmentation, failure opening, and
granular flows) that implements the DEM method. ESyS-Particle includes par-
allel programming techniques that allow its execution on parallel/distributed
high end environments, such as clusters or grids. Given that the contact forces
can be calculated separately for each particle, the system is parallelized by a
static spatial domain division. The first applications of ESyS-Particle in plane-
tary sciences was presented by our research group [8]. Several surface processes
in low-gravity environments, such as on the surface of asteroids and comets, were
studied, and new models to simulate contact forces were introduced.

A typical shortcoming of most DEM codes, in particular ESyS-Particle, is
the lack of models to simulate long-range forces like gravity among particles (i.e.,
self-gravity). This is a relevant problem in the case of asteroids and comets, which
are in many cases agglomerates of rocks with a certain size distribution. In order
to incorporate a self-gravity module into ESyS-Particle, we developed a program
to compute the gravity interactions between the grains of the agglomerate [9]. It
was implemented using parallel programming, allowing to perform simulations
of thousands of particles efficiently, by exploiting the resources available at HPC
infrastructures. The main details of the computational approach were presented
in [9]. Later [10], we described several strategies for designing an efficient and
accurate parallel multithreading algorithm for the self-gravity computation.

This article proposes specific performance improvements of the self-gravity
algorithm introduced in [10]. The improvements consist of updating the self-
gravity specifically on the sectors of the simulated space that are occupied
by particles. Also, a profiling of the implementation was performed after the
improvements were included to help identifying the most time consuming rou-
tines. Then, appropriate changes were implemented to mitigate the impact
of those time consuming routines. The main goal of the improvements is to
achieve lower execution times compared to the previous version, in which the
update was calculated on every node of the simulated space, therefore allowing

Performance Improvements of a Parallel Multithreading 293

ESyS-Particle simulations with self-gravity forces between the particles to scale
to a higher number of particles.

The article is organized as follows. Section 2 reviews related works on domain
decomposition for particle simulators and describes the parallel self-gravity
implementation on ESyS-Particle. Section 3 describes the proposed modifications
to improve the performance of the self-gravity simulations. Section 4 reports the
experimental analysis focusing on the computational efficiency of the proposed
implementation. Finally, the conclusions are presented in Sect. 5.

2 Spatial Domain Decomposition Techniques and the
Parallel Self-gravity Implementation on ESyS-Particle

This section introduces static and dynamic spatial domain decomposition tech-
niques and the parallel self-gravity implementation on ESyS-Particle. A review
of related work on spatial domain decomposition techniques is also presented.

2.1 Spatial Domain Decomposition Techniques

Domain decomposition techniques are applied to speed up the calculation of
interactions between particles, in order to reduce the O(N2) complexity order
of a straightforward particle-by-particle algorithm.

Static domain decomposition techniques are based on a decomposition that
remains invariant during the simulation. A typical example is implemented in
the DEM simulator for soft spheres by Sanchez and Scheeres [11]. The same
static domain decomposition technique is used to calculate short range interac-
tions (e.g., contact forces) as well as long range interactions (e.g., gravitational
forces). The space is divided in cubical cells that are bigger than the particles
simulated. Then, to calculate the gravitational potential, instead of considering
individual particles, the whole cell is considered as a particle. The calculations for
N particles are still O(N2), but the authors claimed that the amount of calcula-
tions required decreased in one order of magnitude. The short range interactions
and the long range interactions are computed concurrently. However, the authors
did not propose a parallel implementation. Thus, simulations of systems with
only up to 8, 000 particles were executed.

Dynamic domain decomposition techniques use adaptable structures or
reconstructed from scratch during the simulation. A classic technique in this
field is the one proposed by Barnes and Hut [12]. In this method, the simu-
lated domain is divided in a hierarchical tree to accelerate the calculation of
the gravitational potential in a N-Body simulation. The root node of the tree
represents the complete space of the simulation. If the space that a node repre-
sents has more than one particle, the space is divided into smaller pieces. In a
two-dimension simulation, the space is divided in four smaller pieces. However,
in a three-dimension simulation, the space is divided into eight pieces. Applying
this domain decomposition the authors affirm that the long-range interactions
are calculated in O(N logN), being N the number of particles in the domain.

294 N. Rocchetti et al.

2.2 A Parallel Algorithm for Self-gravity Calculation

The gravitational potential vector of a particle must be computed on each
timestep of a simulation. The mathematical model for computing the gravi-
tational potential as the gravitational interaction with the rest of the particles
in the studied system [9] is expressed in Eq. 1, where G is the gravitational con-
stant, ‖−→r ‖ is the norm of vector −→r , Mi is the mass of the particle, and Vj is
the gravitational potential of particle j.

Vj =
∑

i�=j

GMi

‖−→rj − −→ri ‖ (1)

A straightforward implementation of the gravitational potential calculation
according to Eq. 1 results in a computational cost of O(N2) for each particle
in each time step. This approach turns to be inefficient when the simulation
scenario scales to hundreds of thousands of particles.

In order to overcome that efficiency problem, our previous work [9] proposed
a state-of-the-art multi-threading algorithm for self-gravitating agglomerates.
A hierarchical grouping approximation method (Mass Approximation Distance
Algorithm, MADA) was introduced to improve the performance of the calculation
of the gravitational potential of a particle in a given timestep, by considering a
group of distant particles as a single big particle located in the center of mass of
the group. Our proposed parallel algorithm calculates the self-gravity of million-
particle objects using MADA and a pool of worker threads that execute the
most compute-intensive tasks in parallel sections. The algorithm scales linearly
with the number of particles in the system, and it scales with an inverse power
law (exponent 0.87) with the number of threads used in the computation. The
observed speedup is close to linear for systems containing up to 2×105 particles.

2.3 Self-gravity Implementation on ESyS-Particle

A detailed description of the self-gravity implementation into ESyS-Particle is
out of the scope of this paper. The main implementation issues are outlined next.

In a DEM simulation that includes self-gravity, two type of forces acting
on the particles have to be considered: short-range contact forces and the long-
range gravity force. The typical time scales for these interactions are generally
very different; the contact forces have a timescale on the order of the duration
of the contact, while the variation of the gravity force depends on the velocity of
the particles. For low-velocity displacements, the difference in timescales could
be many order of magnitudes. Taking into account these considerations, the
computation scheme in the self-gravity module implemented into ESyS-Particle
applies the following steps: (1) compute the gravity acceleration field in a grid
of nodes enclosing the ensemble of particles; (2) for every particle at each time
step, compute the contact forces over the particle and interpolate the value of the
acceleration for the location of the particle using the values of the acceleration
on the surrounding nodes; (3) apply the forces and advance the systems; (4) if a

Performance Improvements of a Parallel Multithreading 295

large displacement of the particles is found, the gravity field is updated; if not,
the previous gravity field is used for the next time step and (2) is executed again.

The previously commented procedure requires an efficient method to com-
pute the acceleration on the nodes, because the number of operations for N parti-
cles and M nodes is of the order of O(N ×M). ESyS-Particle implements spatial
domain decomposition using a master-worker model implemented on Message
Passing Interface (MPI) [13]. The master process provides a high level of con-
trol: the workers execute the activities assigned by the manager, and the manager
node is in charge of the communications between them. Regarding the workload
distribution, ESyS-Particle requires a vector (dx, dy, dz) to determine the way
the domain is divided among the worker processes. When executing a simulation,
dx × dy × dz worker process are created, and each coordinate di in the vector
indicates the number of subdivisions in the i-direction. Weatherley et al. [14]
presented a benchmarking of ESyS-Particle to analyze the scalability and the
accuracy of the calculations. Regarding the self-gravity algorithm implementa-
tion, it also applies a master-worker model but includes a two-level parallelization
scheme implemented with multithreading. Thus, two different implementations
(distributed memory and shared memory) are included in the proposed model.

Before starting a simulation, the self-gravity module builds and overlays a
grid to divide the spatial domain of the simulation. The grid is composed of
boxes, whose vertexes are called nodes. The number of nodes and their location
are defined depending on the spatial domain and the size of the boxes. The
acceleration along the x-axis on a node located at position (x, y, z) due to an
ensemble of N particles of individual mass mj and positions (xj , yj , zj) is given
by Eq. 2. Similar equations are formulated for the acceleration along y and z-axis.

ax(x, y, z;xj , yj , zj , j = 1...N) =
∑

j=1,N

Gmj
xj − x

‖−→rj − −→r ‖3 (2)

In order to get the value of the acceleration on a particle in a future time step,
the closest eight nodes surrounding the particle (see Fig. 1) must be determined.
Once the values of the acceleration in those nodes is known, interpolation can
be applied to obtain the acceleration on the particle position.

Fig. 1. Box of the self-gravity grid with nodes numbered.

296 N. Rocchetti et al.

3 Improvements of the Baseline Implementation

This section describes the strategies to speed up the self-gravity calculation.

3.1 Reducing the Execution Time of the Self-gravity Computation

The previous implementation [9] updated the gravity acceleration field on every
node of the self-gravity grid. However, computing the acceleration of each particle
only requires the values of the acceleration on the occupied nodes. Therefore, a
scheme in which only the occupied nodes are eligible to be distributed over the
resources available to compute the self-gravity on particles is proposed. The new
scheme improves the utilization of the computational resources available, thus
accelerating the self-gravity computations and the simulations.

The self-gravity field is updated not on each ESyS-Particle time step, but
when the average displacement of all particles (from the last self-gravity update)
is larger than a predefined distance. Thus, a particle can migrate to a different
box to where it was when the acceleration on the nodes was previously updated.
On this scenario, the eight surrounding nodes needed to interpolate the accel-
eration in the particle position are different from the initial node. In order to
guarantee that the acceleration is updated on all the nodes involved in the inter-
polation, the surrounding 64 nodes of the grid are considered for the update.
Figure 2 shows the 64-node surrounding box for a particle.

Fig. 2. The expanded 64 surrounding nodes.

In order to build the list of nodes where the self-gravity needs to be updated,
the first step is retrieving from the ESyS-Particle context the list of occupied
nodes for the current step of simulation. After that, for each node in this list,
a 64-node expansion is performed, as shown in Fig. 2. The acceleration is only
updated on the nodes of the list plus the nodes resulting from the expansion.

After that, each node in the list is assigned in a first-come first-serve manner
to each self-gravity thread. Load balancing is implemented by assigning nodes
on demand, thus accounting for different execution times of each calculation.

Performance Improvements of a Parallel Multithreading 297

Finally, the updated acceleration value in each node is stored in memory to be
available when the gravitational potential in the particles’ position is calculated.

3.2 Profiling the Self-gravity Calculation

In order to analyze and identify bottlenecks in the performance of the self-gravity
implementation (after including the improvements described in the previous sub-
section), a profiling was performed using the VTune Amplifier tool by Intel [15].

Figure 3 reports the results of the profiling performed to the self-gravity code
before including the proposed improvements. The hot spots detected by the tool
are considered to prioritize the modules to be improved. The efforts were focused
on the nine routines with the larger execution times.

Fig. 3. Profile report of the code.

According to Fig. 3, the most time consuming routine is BoxCoords::getZ,
the routine that retrieves the z axis of the position for each particle. This routine
is time consuming because it is called in every update of the acceleration for each
node. In addition, the routine is also affected by memory management. Due to
the number of particles involved, the total memory required to maintain these
structures is usually larger than the CPU cache. This requires the CPU cache to
be cleared and filled as different nodes are processed. Thus, this is the first routine
executed (in the self-gravity context) when accessing a node to process. The time
required to transfer data from the main memory also increases the total time
spent by the routine. A similar behavior is detected for routines Point::getX,
SharedMemory::getBox, BoxCoords::compare, Box::getParticleCount, and
Particle::getCenter. The same arguments hold in these cases.

298 N. Rocchetti et al.

The fifth routine identified to consume the most execution time is
OnlyOccupiedCellsProcessingStrategy::getNextOrigin. This routine is
used to find the coordinates of the next node where the acceleration needs to
be updated, by iterating over all the nodes of the simulation domain. Finally,
calculateDeltaForceVectorUsingDifEcuations was identified as a time con-
suming routine. However, the routine implements a simple mathematical equa-
tion, with less space to achieve optimizations than the other routines analyzed.
Because of this, it was not selected as a routine to improve.

After identifying the hot spots in a simulation, specific changes were intro-
duced on the core components of the self-gravity module to improve performance,
specifically in the component that updates the value of the acceleration of the
nodes. In the acceleration update, instead of iterating over all the nodes of the
self-gravity grid, routines were adapted to process the list of occupied nodes
and the 64-node surrounding box. This way, the self-gravity acceleration update
is optimized by reducing the number of times that each routine is called. This
change affects all the routines that were chosen to be optimized.

4 Experimental Evaluation

This section reports the performance evaluation of the self-gravity module after
implementing the performance improvements. A description of the test scenario
and instances is presented, and efficiency results are reported and discussed.

4.1 Description of the Test Scenario and Instances

The test scenario consists of two identical agglomerates of particles. One agglom-
erate is created using the GenGeo package included in ESyS-Particle and the
other is identical but the positions of the particles are central mirrored. The
initial speed vector for all particles in the agglomerate is perpendicular to the
radius vector of the each center of mass, with the same magnitude but in opposite
direction. The contact forces among the particles are pure elastic forces. Under
such conditions, both agglomerates move in a circular orbit with respect to the
center of mass of them. The initial velocity of the agglomerates for every instance
is 5 m/s, and should remain invariant during the simulation. The density of the
individual particles is 3000 g/cm3.

Three instances of the two-agglomerate scenario were defined to study the
computational efficiency of the proposed implementation. A small instance with
3, 866 particles and radii from 50 m to 100 m, a medium instance of 11, 100
particles and radii from 35 m to 70 m, and a big instance of 38, 358 particles and
radii from of 20 m to 60 m. The total mass of the agglomerates is not equal for
all the instances, it goes from 1.2 × 1012 kg to 1.7 × 1012 kg. Nevertheless, the
masses of the agglomerates have the same order of magnitude.

All instances were simulated for 100, 000 time steps. To evaluate speedup
and scalability, simulations were executed with different number of computa-
tional resources assigned to perform the computations. In all instances, particles

Performance Improvements of a Parallel Multithreading 299

move at the same initial velocity. So, instances with smaller particles have more
updates of the self-gravity than instances with bigger particles. For this reason,
simulations with more particles take longer to end.

The experimental evaluation was performed on a Dell PowerEdge M620
Server (Intel Xeon E5-2680 processor at 2.50 GHz, 24 cores and 32 GB RAM)
from Cluster FING, the High Performance Computing platform from Universi-
dad de la República, Uruguay [16].

4.2 Profiling of the Optimized Version

Figure 4 shows the results of the profiling of the self-gravity calculation after the
improvements were implemented and Table 1 reports the execution time of the
most time consuming routines before and after the improvements.

Fig. 4. Profiling of ESyS-Particle with self-gravity, after the improvements.

Table 1. Comparison of the most time consuming routines before and after imple-
menting the performance improvements.

Routine Execution time (s)

Before After

BoxCoords::getZ 2269 Negligible

SharedMemory::getBox 1669 Negligible

BoxCoords::compare 1551 Negligible

Point::getX 876 109

:: getNextOrigin 704 Negligible

Box::getParticlesCount 649 Negligible

Particle::getCenter 570 80

::calculateDeltaForceVectorUsingDifEcuations 509 91

SharedMemoryManager::getBox 451 9

std::vector<>::size 370 Negligible

300 N. Rocchetti et al.

Results in Table 1 indicate that the method BoxCoords::getZ, which con-
sumed 2269 s in the original version, has a negligible contribution to the execu-
tion time in the improved version. A similar behavior is identified for routines
SharedMemory::getBox, BoxCoords::compare, SharedMemoryManager::get
Box, and Box::getParticlesCount. The modifications in the routine that
searches for the next node to process (::getNextOrigin) improves the execu-
tion time from 704 s to a negligible time compared to the other routines. Finally,
improvements on routine Point:getX allows it to execute 8 times faster (from
876 s to 109 s).

4.3 Performance Evaluation Results

Small size instance. Table 2 shows the results of the performance evaluation
tests for the small instance with 3866 particles. The table reports the configura-
tion of processes and threads used for execution, the execution time in seconds,
the percentage of the overall execution time spent on calculating self-gravity,
the number of self-gravity updates performed, and the average time spent in
self-gravity calculations. The lowest execution time was 2.57 × 103 s, using two
process for ESyS-Particle and two threads for self-gravity calculation. In the
small instance, the lowest percentage of time calculating self-gravity was 74%,
when using a configuration with one process assigned to ESyS-Particle and two
threads assigned to the self-gravity module. These values indicate that there is
more space for improving the performance in the self-gravity module than in the
ESyS-Particle core. Finally, all configurations performed 456 updates.

Table 2. Performance results for the two agglomerate scenario with 3,866 particles
(small instance).

particle
processes

gravity
threads

Execution
time (s)

Time computing
self-gravity

self-gravity
updates

Avg. self-gravity
time (s)

1 1 3.98× 103 82% 456 7.22

1 2 2.79× 103 74% 456 4.57

2 1 3.71× 103 84% 456 6.87

2 2 2.57× 103 76% 456 4.33

Medium size instance. Table 3 shows the experimental results of the execution
for the medium size instance with 11,100 particles. The configuration with two
processes and four threads had the lowest execution time with 1.47 × 104 s. In
this instance, the lower value for the percentage of time spent on self-gravity
calculation is 84%, which is 10% higher than on the small instance. The number
of gravitational force interactions grows in a upper-linear manner compared to
the linear growth of the contact forces, which causes the increase in the time
calculating the self-gravity. The best average update of self-gravity is of 17.79 s,
using the configuration with two processes and four threads.

Performance Improvements of a Parallel Multithreading 301

Table 3. Performance results for the two agglomerate scenario with 11,100 particles
(medium instance).

particle
processes

gravity
threads

Execution
time (s)

Time computing
self-gravity

self-gravity
updates

Avg. self-gravity
time (s)

1 1 3.20× 104 93 703 42.61

1 2 2.19× 104 89 703 27.88

1 4 1.53× 104 84 703 18.35

2 1 3.39× 104 94 705 45.19

2 2 2.15× 104 90 705 27.68

2 4 1.47× 104 85 705 17.79

Large size instance. Table 4 reports the performance results for the large instance
with 38,358 particles. The lowest execution time was 5.26 × 104 s, using the
configuration with 8 processes and 16 threads. The percentage of time spent
on gravity calculations varies from 89% to 98%, which means that most of the
execution time is spent on self-gravity calculations rather than on contact forces
calculation.

Table 4. Performance results for the two-agglomerate scenario with 38,538 particles
(large instance).

particle
processes

gravity
threads

Execution
time (s)

Time computing
self-gravity

self-gravity
updates

Avg. self-gravity
time (s)

1 1 2.58× 105 95% 1293 191.25

1 2 1.85× 105 93% 1412 121.53

1 4 1.19× 105 89% 1412 74.98

2 1 2.46× 105 96% 1417 168.01

2 2 1.86× 105 95% 1417 124.94

2 4 1.25× 105 91% 1417 80.69

4 1 3.20× 105 98% 1434 218.33

4 2 2.24× 105 97% 1434 152.15

4 4 1.39× 105 95% 1434 92.34

4 8 9.10× 104 94% 1434 59.94

4 16 5.93× 104 90% 1435 37.30

8 4 1.28× 105 96% 1411 86.88

8 8 7.67× 104 92% 1411 50.28

8 16 5.26× 104 92% 1432 33.96

16 4 1.72× 105 97% 1411 118.19

16 8 6.63× 104 94% 1411 44.09

302 N. Rocchetti et al.

Overall comparison. In the small instance, self-gravity was updated 456 times,
whereas on the medium instance it was updated from 703 to 705 times and on
the large instance it was updated between 1293 and 1435 times. The number of
gravity updates is larger when the size of the boxes of the mesh increases.

Execution times results indicate that only varying the number of processes
assigned to ESyS-Particle, without varying the number of threads assigned to the
self-gravity calculation, allows achieving a small improving the overall execution
time of simulations. Doubling the number of processes only accounts for an
execution time reduction of 7.34% for the small instance, while for the medium
instance is 1.92%, and for the large instance is 5.88%.

The most significant improvements are obtained when increasing the num-
ber of threads assigned to the self-gravity calculation. Improvements of 31%
are obtained for the small instance, ranging from 52% to 57% for the medium
instance, and 54% to 61% for the large instance. This situation is directly related
to the time spent in self-gravity updates: 74% to 84% of the time for the small
instance, 84% to 94% for the medium instance and 89% to 98% for the large
instance. Thus, the larger performance improvements are obtained when increas-
ing the number of threads to perform the most time consuming operations.

In order to further analyze the self-gravity execution time improvements,
Table 5 reports the acceleration values when using different configurations (num-
ber of parallel processes and threads) for the three problem instances studied.
The acceleration metric is defined as the ratio of the execution time of a simula-
tion when using a baseline configuration with a single process for ESyS-Particle
and a single thread for self-gravity calculation and the execution time of the con-
figuration using nP processes for ESyS-Particle and nT threads for self-gravity.

The best acceleration for the small instance was 1.55, obtained with the con-
figuration using 2 processes and 2 threads. For the medium instance, the best
acceleration was 2.17, using 2 processes and 4 threads. Finally, the best acceler-
ation for the large instance was 4.90, computed with the configuration using 8
processes and 16 threads. This was the largest acceleration value obtained when
varying the number of processes and threads for the studied problem instances.

Results show that in every instance, when increasing the number of processes
for a fixed number of threads, the acceleration stagnates. The reason of this
stagnation is the time spent on ESyS-Particle during a simulation, which is in
average 21.0% for the small instance, 10.8% for the medium instance, and 5.9%
for the large instance. Thus, the parallel algorithm cannot take advantage of
using more computing resources due to the limited computing demands of those
tasks not related with self-gravity computation.

Figure 5 presents a graphical comparison of the relative execution time reduc-
tion over the baseline configuration (one process, one thread) for the studied
configurations on the large instance. Results are grouped by the number of pro-
cesses defined for those configurations, which are shown in different colors. The
growth of the execution time reduction is clearly shown for the configurations
that use different number of threads for the same number of processes. Results
show that execution times reduces following a linear tendency. The higher exe-
cution time reduction was 79%, using the configuration with 8 processes and 16

Performance Improvements of a Parallel Multithreading 303

Table 5. Acceleration values for the two agglomerate scenario

particle module
processes

gravity module
threads

Acceleration

Small instance (3,866 particles)

1 1 1.000

1 2 1.429

2 1 1.072

2 2 1.549

Medium instance (11,100 particles)

1 1 1.000

1 2 1.462

1 4 2.095

2 1 0.944

2 2 1.486

2 4 2.170

Large instance (38,358 particles)

1 1 1.000

1 2 1.395

1 4 2.168

2 1 1.049

2 2 1.389

2 4 2.059

4 1 0.806

4 2 1.150

4 4 1.856

4 8 2.837

4 16 4.356

8 4 2.020

8 8 3.366

8 16 4.906

16 4 1.501

16 8 3.891

threads. Nevertheless, similar results were achieved with the configuration using
4 processes and 16 threads, which accounted for an execution time reduction of
77%. On the other hand, Fig. 5 also clearly shows that increasing the number
of processes does not improve the performance significantly: the configuration
using 2 processes and 1 thread had 5% of reduction, and for the configuration
using 4 processes and 1 thread no reduction was computed.

304 N. Rocchetti et al.

Fig. 5. Execution time reductions for a self-gravity simulation on the large instance.

Overall, after including all the proposed performance improvements, the opti-
mized ESyS+self-gravity version achieved an acceleration factor of more than
50× when compared with the original (non-optimized version), on simulations
performed on all studied scenarios. This performance improvement allows scal-
ing up to perform realistic simulations with a large number of particles (from
100,000 to one million) is reasonable execution times.

5 Conclusions

This article presented strategies for performance improvement of a self-gravity
algorithm for agglomerates, implemented over ESyS-Particle. The main modifi-
cations consisted of updating the acceleration of the occupied nodes of the grid,
plus a buffering structure where nodes can move to in future time steps. After
including that improvement, a profiling tool was used to identify hot spots in the
implemented code and specific modifications were included in order to reduce
the number of time each time consuming routine is called.

The experimental evaluation of the proposed modifications was performed
over a realistic scenario consisting of two identical agglomerates orbiting each
other. Three problem instances were defined considering 3,866 (small), 11,100
(medium), and 38,538 (large) particles. The two-level parallel model was studied,
by assigning different computing resources to ESyS calculation processes and
self-gravity calculation threads.

Experimental results show that, depending on the size of the problem
instance, 74% to 98% of the execution time of the simulations is spent on
self-gravity calculation. As a consequence, the best performance improvements
are obtained when assigning more computational resources to the threads that

Performance Improvements of a Parallel Multithreading 305

compute the self-gravity in parallel than to the processes that perform the ESyS-
Particle calculations.

Regarding the performance of the self-gravity simulations, the higher accel-
eration with respect to a baseline configuration using only one process and one
thread was 4.9×, achieved with the configuration using 8 processes for ESyS-
Particle and 16 threads for self-gravity calculations. Overall, the optimized ver-
sion of ESyS including self-gravity allowed improving the performance in a factor
of 50×, when compared to the previous version without optimizations. This per-
formance improvements are obtained without affecting the numerical results of
the simulations. Thus, they allow scaling up to perform simulations with larger
numbers of particles in realistic execution times.

The main lines for future work include extending the performance evaluation
of the implemented self-gravity simulations to consider larger problem instances
and different scenarios. In addition, we are currently working on developing a
comprehensive benchmark for performance comparison with other self-gravity
simulators proposed in related works.

Acknowledgments. The work of Néstor Rocchetti, Sergio Nesmachnow, and Gonzalo
Tancredi has been partly supported by CSIC, ANII, and PEDECIBA (Uruguay).

References

1. Sánchez, P., Scheeres, D.: The strength of regolith and rubble pile asteroids. Mete-
orit. Planet. Sci. 49(5), 788–811 (2014)

2. Harris, A., Fahnestock, E., Pravec, P.: On the shapes and spins of “rubble pile”
asteroids. Icarus 199(2), 310–318 (2009)

3. Fujiwara, A., Kawaguchi, J., Yeomans, D., Abe, M., Mukai, T., Okada, T., Saito,
J., Yano, H., Yoshikawa, M., Scheeres, D., et al.: The rubble-pile asteroid Itokawa
as observed by Hayabusa. Science 312(5778), 1330–1334 (2006)

4. Rozitis, B., MacLennan, E., Emery, J.: Cohesive forces prevent the rotational
breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512(7513), 174–176
(2014)

5. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists
and Engineers. CRC Press, Boca Raton (2010)

6. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies.
Geotechnique 29(1), 47–65 (1979)

7. Abe, S., Altinay, C., Boros, V., Hancock, W., Latham, S., Mora, P., Place, D.,
Petterson, W., Wang, Y., Weatherley, D.: ESyS-Particle: HPC Discrete Element
Modeling Software. Open Software License version 3 (2009)

8. Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular
physics in low-gravity environments using discrete element method. MNRAS 420,
3368–3380 (2012)

9. Frascarelli, D., Nesmachnow, S., Tancredi, G.: High-performance computing of
self-gravity for small solar system bodies. Computer 47(9), 34–39 (2014)

10. Nesmachnow, S., Frascarelli, D., Tancredi, G.: A parallel multithreading algorithm
for self-gravity calculation on agglomerates. In: Gitler, I., Klapp, J. (eds.) ISUM
2015. CCIS, vol. 595, pp. 311–325. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32243-8 22

https://doi.org/10.1007/978-3-319-32243-8_22
https://doi.org/10.1007/978-3-319-32243-8_22

306 N. Rocchetti et al.

11. Sánchez, P., Scheeres, D.: Dem simulation of rotation-induced reshaping and dis-
ruption of rubble-pile asteroids. Icarus 218(2), 876–894 (2012)

12. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-passing Interface. MIT Press, Cambridge (1999)

14. Weatherley, D., Boros, V., Hancock, W., Abe, S.: Scaling benchmark of ESyS-
particle for elastic wave propagation simulations. In: IEEE Sixth International
Conference on e-Science, pp. 277–283. IEEE (2010)

15. Intel R© vtuneTM amplifier 2017 (2006). https://software.intel.com/en-us/intel-
vtune-amplifier-xe. Accessed July 2017

16. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010)

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

A Fast GPU Convolution/Superposition Method
for Radiotherapy Dose Calculation

Diego Carrasco1(B), Pablo Cappagli2, and Flavio D. Colavecchia1,3

1 Laboratorio de F́ısica Médica Computacional,
Centro Integral de Medicina Nuclear y Radioterapia de Bariloche,
Comisión Nacional de Enerǵıa Atómica, Buenos Aires, Argentina

diego.carrasco@cab.cnea.gov.ar
2 Centro Atómico Bariloche, Comisión Nacional de Enerǵıa Atómica,

Buenos Aires, Argentina
3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),

Buenos Aires, Argentina

Abstract. An algorithm based on Convolution/Superposition with
collapsed cone approximation was developed for radiotherapy dose calcu-
lation, reducing numerical complexity and enabling a high accuracy com-
putation in a dense grid. By analyzing the specific integrals and reducing
them into a ray tracing problem, we show that both calculation and data
evaluations can be mapped to specific and optimized memories types in
the GPU. Using constant memory and texture fetches in the algorithm,
an 144X speedup is obtained compared to an equivalent multi-threaded
CPU code, without precision loss. The developed software is the founda-
tion for a high performance calculation system with a fidelity equivalent
to commercial planning systems and with a few seconds of execution.

Keywords: GPU · Convolution · Superposition · Dose · Radiotherapy

1 Introduction

There is a variety of energy transport problems that can be cast into a convo-
lution equation. Given a source of energy and a point distribution function (or
kernel), the convolution equation describes the deposition of energy in any region
of space as it spreads out from the source [1]. The convolution equation can be
solved in the three-dimensional space by means of a Fourier transform, resulting
in a complexity proportional to the space discretization. The problem arises when
the kernel function of the Fourier transform is not invariant under translations,
increasing the complexity in several orders. One of such cases is the calculation
of energy deposition in external radiotherapy. In this situation, a linear acceler-
ator generates a photon beam that interacts inside the body depositing energy
within it [2]. Therefore, the photon beam represents the main source while the
local particle transportation is described by a kernel [3,4]. Several types of algo-
rithms have been developed to deal with this problem, which in turn gave rise to
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 307–318, 2018.
https://doi.org/10.1007/978-3-319-73353-1_22

308 D. Carrasco et al.

many commercial software, allowing medical physicists to optimize and obtain
with high precision the parameters needed to treat an oncological patient [5].

Among all these methods to obtain the therapeutic energy distribution, the
Convolution/Superposition based algorithms account for the physical principles
of ionization radiation by dividing the calculation in two terms. The first term is
an energy transport function called TERMA (acronym for Total Energy Released
per unit Mass) that represents the primary fluence generated from the linear
accelerator that is attenuated inside the patient. This primary fluence consists
of photons that have not yet interacted. The second term is a function that
transports the energy spread by particles generated after interactions of the
primary fluence with the tissues [6]. This second term is usually referred as
secondary fluence, and is represented by a convolution kernel.

The complete calculation region is well defined by a dense three-dimensional
partition depicting the mass density or the relative electron density. Such array
is called tomography and represents a patient volumetric treatment section with
a typical voxel size of 0.1 cm. The resulting calculation is represented as energy
per unit mass and named dose.

2 Theory

Given that particle transportation depends strongly on the medium density,
every calculation point or voxel generates a different energy propagation, i.e. a
different kernel. To take into account these density variations in humans tissues,
the energy transportation is subject to a transformation ruled by the radiolog-
ical path [7]. Convolution/Superposition methods can therefore be defined as a
three dimensional spatial convolution between the TERMA and a kernel, both
corrected by means of the radiological path, allowing dose calculation to be
employed in irregular fields, complex and heterogeneous materials, with a preci-
sion comparable to those of Monte Carlo solutions but reducing the computation
time [8].

2.1 Radiological Path

The heterogeneities present in the volume of irradiation affect the primary and
secondary fluence. The effect on the former is dependent only on the heterogene-
ity traversed, while on the later depends on the position and lateral variations [2].

Using the O’Connor theorem, a simple transformation that removes the het-
erogeneous dependence from the TERMA and kernel can be accomplished [2]:

d(r, ro) =
∫ r

ro

η(x)dx (1)

where η(x) is the relative electron density, and d(r, ro) is the radiological path
from position ro to r, defined as the relative electron density integral over such
line. Equation (1) implies the construction of an optimized ray tracing algorithm
for the complete energy calculation.

A Fast GPU Convolution/Superposition Method 309

2.2 Convolution/Superposition

A dose calculation equation in a volume with mass density ρ(r) is defined as [2]:

D(r) =
η(r)
ρ(r)

∫
T (s)ρ(s)η2h(d(r, s))dVs (2)

In this representation, s is a point where free energy is distributed as sec-
ondary fluence (scattered photons, electrons and positrons) and r is the point of
energy deposition. The TERMA function T (s) is the free energy generated from
the primary fluence (photons originated in the linear accelerator) interacting in
a volume element dVs with mass density ρ(s). The kernel h represents the spa-
tial energy deposition in water, scaled by the radiological path d(r, s) and the
electron relative density η(r) to account for the heterogeneous media [9].

This dose equation is based on the primary fluence releasing energy at any
point in the tomographic volume, and distributing it through a kernel that repre-
sents the transport and energy deposition of the secondary fluence in the media.
This mode of abstraction allows the calculation to be based on a sense of convo-
lution (see Fig. 1). However, given the heterogeneities present in the medium, the
kernel varies point to point with the radiological path, making the superposition
necessary. The numerical complexity can be estimated as O(N7), where a typi-
cal number of voxels in the tomography is N3 = 2563, resulting in an unfeasible
time for clinical needs. Although GPU implementations of this dose calculation
method were presented in the literature [10], opaque numerical approximation
were included.

Fig. 1. Dose calculation representation. The TERMA T (s) releases energy in the
patient by a fluence Φ(r). The kernel k(x) represents the spatial distribution of such
energy.

310 D. Carrasco et al.

2.3 Collapsed Cone Approximation

Although spherical coordinates can generate the best representation of a convo-
lution kernel, the attenuation medium and irradiation volumes are characterized
by a cartesian system defined in the tomography. Any transformations between
both representations will certainly generate an error propagation, but maintain-
ing separate systems would produce a slow and complex algorithm.

The energy transportation of a kernel can be simplified by supposing that
all energy passing through consecutive spherical planes x2dΩ can be assigned to
the direction dΩ (see Fig. 2a and b). Therefore, all the energy associated with
these divergent spherical sectors is collapsed and mapped to the corresponding
cylinder’s central axis (see Fig. 2c). This kind of transformation introduced by
Ahnesjö removes all natural divergences from the secondary fluence and con-
serves energy [6]. With the collapsed cone approximation, (2) is simplified to a
sum of unidimensional integrals accounting for every collapsed cone direction.

Fig. 2. Schematics of collapsed cone approximation. (a) Spatial distribution generated
by the primary fluence interacting in (s). (b) Energy transportation in specific cone
direction dΩ. (c) Spherical cone transportation is approximated and collapsed to a
cylinder.

Therefore, the energy deposition kernel is collapsed to a discrete number of
directions (θm, φn) that define the Ωm,n solid angle [9]:

km,n(x) =
∫

Ωm,n

x2h(x)dΩ. (3)

With such transformation, all natural divergences are removed, and the cal-
culation is transformed to a finite number of unidimensional transport problems,
whose solution can be estimated with a convolution integral scaled by the radio-
logical path. Although this approach seems to underestimate the energy deposi-
tion to small distances and overestimate it at great distances (comparable to the
electron average free path), the conservation of radiant energy is compensated

A Fast GPU Convolution/Superposition Method 311

by the adjacent dVs volumes, as long as the variations of the local density are
small enough [6].

With the collapsed cone approximation and the radiological path transfor-
mation, the dose equation represented by (2) is simplified to a linear problem [9]:

Dm,n(x) =
∫ x

so

T (s)η(s)km,n(d(x, s))ds (4)

This means that every point in the tomography where dose needs to be
computed can be resolved by means of a finite number of line integrals covering
all the volume.

The discretization of such line integrals allows the generation of an efficient
GPU code given a defined step sizes and finite number of them. Several opti-
mization efforts have been made to reduce the complexity in (4), namely by
reducing the amount of integrals used in the collapsed cone approximation [10]
or by simplifying km,n to a sum of exponentials [11]. Such simplifications result
in faster calculations, but with increasing precision loss. In this paper the main
effort is to improve the integral in (4) by means of an ray tracing algorithm
mapped with specific GPU memory, without degrading precision.

3 The Parallel Collapsed Cone Kernel Algorithm

In this section we present the main steps to compute the dose with the Col-
lapsed Cone Kernel (CCK) algorithm, and comment the details of the parallel
implementation in CUDA capable GPUs.

3.1 Ray Tracing

As mentioned in the precedent sections, the relative electron density η and mass
density ρ in the tomography are discretized in voxels of finite size defined by
Δx, Δy and Δz. For every calculation line located in a partitioned space, the
radiological path should be approximated by the sum of segments belonging to
each voxel traversed, weighed by the local relative density.

To simplify the derivation of the algorithm, let us consider a two-dimensional
tomography slice along the Z plane. We consider a ray l inside this plane and
define the entering points (xo, yo) and the exit point (xp, yp) in a volume of
interest (see Fig. 3). To compute the radiological path (1), it is necessary to
compute each segment lk and obtain the relative density [12].

To calculate every density section, the intersection between the transport ray
l and the tomography default partition in X,Y direction need to be accounted
for (black points in Fig. 3). Let us define the coefficients (αx, αy) as:

αx =
(√

(xp−xo)2+(yp−yo)2

|xp−xo|

)
(5)

αy =
(√

(xp−xo)2+(yp−yo)2

|yp−yo|

)
(6)

312 D. Carrasco et al.

From the starting point (xo, yo), the transportation line will traverse the
tomography, intersecting with every X,Y partition line in I or J steps, gener-
ating the sequence:

Δxi = I ∗ Δx, Δyj = J ∗ Δy (7)

Fig. 3. Indexed density matrix associated with a patient tomography. A line l defined
by entering (xo, yo) and exiting (xp, yp) points passes through different density values
represented by the η gray bar. Each lk segments is defined between two consecutive
intersection between the l and X , Y partitions. For every Δx increase in X direction,
the line length increases by αxΔx.

We define the functions f : N
2 → N

2 and g : N
2 → R according to the

increasing (I, J) indexes as:

f(I, J) =

⎧⎪⎨
⎪⎩

(I + 1, J) if αxΔxi+1 < αyΔyj+1

(I, J + 1) if αxΔxi+1 > αyΔyj+1

(I + 1, J + 1) if αxΔxi+1 = αyΔyj+1

(8)

and
g(I, J) = min(αxΔxi+1, αyΔyj+1). (9)

The total length traversed until an interaction with a X,Y partition line
is by definition the corresponding g(I, J) evaluation. For every step in the tra-
verse iteration, the local length lk inside every voxel was calculated by following
subtraction:

lk = g

⎛
⎝f ◦ · · · ◦ f ◦ f︸ ︷︷ ︸

k

⎞
⎠ − g

⎛
⎜⎝f ◦ · · · ◦ f︸ ︷︷ ︸

k−1

⎞
⎟⎠ (10)

A Fast GPU Convolution/Superposition Method 313

where ◦ represents function composition. This implementation of ray tracing
algorithm is completely iterative and avoids branching, allowing the full algo-
rithm to reduce thread divergence during execution to a minimum.

3.2 Discrete CCK Algorithm

The final ingredient of the algorithm is the dose calculation. Let us consider
now a ray with a (θm, φn) collapsed cone direction from a starting point in the
patient tomography.

An efficient discretization can be defined in terms of a double integration
of the collapsed kernel km,n by expanding the line convolution represented in
(4) and using the Stieltjes integral definition. To this end, we define qk as the
distance between the borders of segment lk and lo, as seen in Fig. 4. the dose
calculation for point x was transformed into (12) using a double integration of
the collapsed kernel defined in (11):

cm,n
k =

∫ qk+p

qk

(∫ t

0

km,n(u)du

)
dt (11)

With this definition, the η is no longer explicitly present and the dose cal-
culation in every voxel point ends up being the sum of a Stieltjes integral for
every different defined direction. A discretization is obtained by using the CCK
(Collapsed Cone Kernel) method defined by Lu et al. where the collapsed kernel
is allowed to vary inside each voxel [9]:

Dm,n =
1
p

(
Toc

m,n
o +

∑
k

Tk

(
cm,n
k+1 − cm,n

k

))
(12)

This discretization allows a complete variation of the collapsed cone kernel,
defining the radiological distances between the ends of each voxel and integrating
in the corresponding segments (see Fig. 4).

3.3 GPU Implementation

The approximations presented enables one to cast the multidimensional con-
volution integral into a complex, ray tracing problem, which is embarrassingly
parallel, since every line of integration and voxel are independent from the oth-
ers. Therefore, a CUDA code to be deployed in a GPU is an obvious solution.
However, one of the main issues when resolving this type of convolutions is
the amount of reading operations needed in every iteration, as the kernel con-
tribution is always relevant and memory access could easily be non coalesced.
Hence, all access to global memory must be optimized to ensure the best per-
formance [13].

Most of the optimization work was devoted to the ray tracing algorithm,
because there are at least three reads from memory and performs 17 single clock

314 D. Carrasco et al.

Fig. 4. Schematics of radiological paths needed to numerically resolve the dose calcu-
lation and account for kernel variation inside each voxel. A line l traverse a group of
voxels defining each lk segment and radiological segments ηklk as well as radiological
distances qk.

operations in every iteration step (Algorithm1). As every transport line is inde-
pendent from each other, they cover all tomography and start from independent
voxels. Therefore, a fully coalesced memory approach was unfeasible. We devel-
oped two different implementations of the CCK algorithm, using global memory
and texture memory to store the density and TERMA information, as both need
to be read in every iteration (see Eq. (12)).

The parallelization relies in the independence of every thread: each one starts
the calculation in one voxel using the threadIdx variable, and loops accounting
for the dose coming from every collapsed cone direction. In such way, all threads
move in the same direction and access memory in the same neighborhood. With
this implementation, the texture memory should be the best option to optimize
local memory access [13]. Therefore, each thread must resolve the sum in (12) and
fetch all cm,n

k values, increasing memory overhead but reducing precision loss.
The double integral over the collapsed cone represented in (11) was stored

in texture memory, as its hardware interpolation capabilities allow to develop a
simpler code and increase performance when calculating the specific cm,n

k values.
Although there are cases where such array can be condensed into shared mem-
ory, this are usually rare and depend strongly on the amount of line integrals
used. Optimization tests consisted in four function implementations and were
compared with an equivalent multi-threaded CPU code, executed and profiled
on a system with a NVIDIA GTX 980 GPU, Intel Core i7 4790 CPU and 32 Gb
of 1333 MHz memory.

A Fast GPU Convolution/Superposition Method 315

Algorithm 1. Ray tracing implementation
1: function ray moving(. . .)
2: (test x, test y) = (Δx · |αx|, Δy · |αy|) � test vector
3: step x = (test x ≤ test y) ? 1:0 � f selection
4: step y = (test y ≤ test x) ? 1:0 � f selection
5: lk =

√
(test · step)/(step x + step y) − l � local distance

6: l =
√

(test · step)/(step x + step y) � g function application
7: (Δx, Δy) += (step x, step y)
8: (I, J) += sign(α) · step � f function application
9: end function

The code was divided in a ray moving function whose parameters are the
local index (I, J), total cartesian distance and the ray parameters (αx, αy, αz).
This function uses the (f, g) pair to represent the equations described from (5)
to (10) and resolve together with global/texture memory access, the ray tracing
algorithm. Another function called getCCK fetches the texture on a cuArray and
calculates the local energy deposition of the current ray, resolving (11).

The terma data was pre-calculated with a Monte Carlo simulation of the
linear accelerator complete system [4], as is customary in radiotherapy. With
such implementation, as long as there are no structural changes, the photon
beam remains unchanged. Finally, the dose calculation depicted on (12) was
implemented on a different function, using the ray tracing in conjunction with
global or texture memory. The four algorithms are summarized in Table 1.

Table 1. Main CCK functions with memory access and arithmetic operations.

Function Memory Arithmetic Optimization Resolution Eq.

ray moving 0 17 No flux control Thread moving (5)–(10)

getCCK 4 8 Texture Texture fetching (11)

terma 4 4 Pre calculated Dose preparation (12)

dose 6 18 Global/Texture Dose calculation (12)

4 Results and Discussion

4.1 Dose Accuracy

A complete comparison of CCK algorithm was made against experimental and
numerical data provided by FUESMEN (Fundación Medicina Nuclear, Men-
doza, Argentina). The simulation used a 128 × 128 × 128 virtual tomography
composed from different materials and 0.2 cm width voxels. To validate the per-
centage depth dose data (PDD) and profiles in different directions we used the
maximum relative error existing between the two sets of data. Depth curves for

316 D. Carrasco et al.

homogeneous and heterogeneous completed the acceptance test with a maximum
percent error under 3%, compared with the experimental data provided [14]. In
Fig. 5 both numerical calculation and experimental data are shown. This is an
example of the good physical behavior of the collapsed cone approximation, and
has been thoroughly tested for different experimental conditions.

Fig. 5. Depth dose calculation with CCK algorithm compared with experimental data
from FUESMEN and numerical solutions from commercial planning system. Simulation
in full water tomography.

4.2 Calculation Performance

Performance comparisons were made between the two main implementations of
the CCK algorithm schemed in Table 1, and the equivalent multi-threaded CPU
code. The main difference in time execution was the memory used to store the
density and TERMA arrays, resulting in different speedups compared to those of
the CPU code. As every thread started from a one-to-one mapping in the density
array, each iteration needed a memory read of near spatial location, making
texture memory a better option overall. Although global memory contains a
local cache implementation for reducing memory access, the efficiency observed
from texture fetching from cuArrays improved the global implementation by a
1.4X and the CPU code by an 144X.

With the texture implementation, the memory access bottleneck was reduce
given the 3D locality of cuArrays type, while the allocation cost increased by
the texture binding, the arithmetic time remains almost the same (see Table 2).

Different grid sizes where computed to quantify the GPU dependency with
tomography size. We determine that the overall most efficient block size corre-
sponded to a threads distributed in a (4, 4, 4) array. Bigger grid blocks resulted
in blocks not executing simultaneously at the same time because of GPU occu-
pancy, meanwhile smaller grid blocks reduced the total occupancy and increased
the warp execution and corresponding overhead.

A Fast GPU Convolution/Superposition Method 317

Table 2. Final calculation time and speedup for 128 grid size and different GPU and
CPU implementations.

Implementation Block size Time (s) Speedup Calculation fraction

Allocation Access Arithmetics

CPU version 8 cores 620 1 0.0 0.91 0.09

GPU global
memory

(4, 4, 4) 6.02 103 0.10 0.73 0.17

GPU texture
memory

(4, 4, 4) 4.32 144 0.13 0.62 0.25

(8, 8, 8) 6.12 101 0.13 0.59 0.27

(4, 4, 2) 5.41 115 0.13 0.66 0.22

5 Conclusions

The purpose of radiotherapy planning treatment is to obtain the spatial dose
distributions to exactly predict quantitatively the delivered dose. However, the
continuous development of new calculation tools for advanced implementation
in clinical practice, has managed to reduce the uncertainties to acceptable
levels. Nowadays, algorithms based on Convolution/Superposition models of
a point kernel have the highest accuracy if one takes into account the time
required in clinical practice These are the algorithms mostly present in com-
mercial treatment planning systems. In the present contribution, a Convolu-
tion/Superposition algorithm was developed, provided that energy fluence gen-
erated by a linear accelerator is known, as is the case in clinical practice. Besides,
the algorithm was implemented in CUDA capable GPUs. The dose calculation
was obtained using the collapsed cone approximation, that reduces the numerical
complexity and enables a high resolution grid of calculation points. Dose profiles
and depth dose rates were calculated and validated with experimental data and
Monte Carlo gold standard. The full GPU implementation of the present CCK
algorithm, using ray tracing and texture memory brings a 144X speedup in com-
parison with equivalent multicore CPU codes. A block size of (4, 4, 4) threads
was found to be the perfect match for speed increase as it represents a good bal-
ance between warp execution count and GPU register occupancy. Future work
includes the use of managed memory and warp-wise operations and porting the
code to multiGPU architectures.

References

1. Cowley, J.: Diffraction Physics. Elsevier, Amsterdam (1995)
2. Ahnesjö, A., Aspradakis, M.: Dose calculations for external photon beams in radio-

therapy. Phys. Med. Biol. 44(11), R99 (1999)
3. Ahnesjö, A., Andreo, P., Brahme, A.: Calculation and application of point spread

functions for treatment planning with high energy photon beams. Acta Oncol. 26,
49–56 (1997)

318 D. Carrasco et al.

4. Fippel, M., Haryanto, F., Dohm, O., Nüsslin, F., Kriesen, S.: A virtual photon
energy fluence model for Monte Carlo dose calculation. Med. Phys. 30, 301–311
(2003)

5. Childress, N., Stephens, E., Eklund, D., Zhang, M.: Mobius3D white paper: dose
calculation algorithm. Mobius Med. Syst. (2012)

6. Ahnesjö, A.: Collapsed cone convolution of radiant energy for photon dose calcu-
lation in heterogeneous media. Med. Phys. 16, 577–592 (1989)

7. Batho, H.: Lung corrections in cobalt 60 beam therapy. J. Can. Assoc. Radiol. 15,
79 (1964)

8. Vanderstraeten, B., Reynaert, N., Paelinck, L., Madani, I., De Wagter, C., De
Gersem, W., De Neve, W., Thierens, H.: Accuracy of patient dose calculation for
lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil
beam computations. Med. Phys. 33, 3149–3158 (2006)

9. Lu, W., Olivera, H., Chen, M., Reckwerdt, P., Mackie, T.: Accurate convolu-
tion/superposition for multi-resolution dose calculation using cumulative tabulated
kernels. Phys. Med. Biol. 50, 655 (2005)

10. Jacques, R., Wong, J., Taylor, R., McNutt, T.: Real-time dose computation: GPU-
accelerated source modeling and superposition/convolution. Med. Phys. 38, 294–
305 (2011)

11. Chen, Q., Chen, M., Lu, W.: Ultrafast convolution/superposition using tabulated
and exponential kernels on GPU. Med. Phys. 38, 1150–1161 (2011)

12. Xiao, K., Chen, D., Hu, X., Zhou, B.: Efficient implementation of the 3D-DDA ray
traversal algorithm on GPU and its application in radiation dose calculation. Med.
Phys. 39, 7619–7625 (2012)

13. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. Queue 6, 40–53 (2008)

14. Low, D., Harms, W., Mutic, S., Purdy, J.: A technique for the quantitative evalu-
ation of dose distributions. Med. Phys. 25, 656–661 (1998)

Grid, Cloud and Federations

Eeny Meeny Miny Moe: Choosing the Fault
Tolerance Technique for my Cloud Workflow

Leonardo Araújo de Jesus, Lúcia M. A. Drummond, and Daniel de Oliveira(B)

Instituto de Computação, Universidade Federal Fluminense (UFF), Niterói, Brazil
leonardoaraujo@id.uff.br, {lucia,danielcmo}@ic.uff.br

Abstract. Scientific workflows are models composed of activities, data
and dependencies whose objective is to represent a computer simula-
tion. Workflows are managed by Scientific Workflow Management Sys-
tem (SWfMS). Such workflows commonly demand for many computa-
tional resources once their executions may involve a number of differ-
ent programs processing a huge volume of data. Thus, the use of High
Performance Computing (HPC) environments allied to parallelization
techniques provides the support for the execution of such experiments.
Some resources provided by clouds can be used to build HPC environ-
ments. Although clouds offer advantages such as elasticity and availabil-
ity, failures are a reality rather than a possibility. Thus, SWfMS must be
fault-tolerant. There are several types of fault tolerance techniques used
in SWfMS such as checkpoint-restart and replication, but which fault
tolerance technique best fits with a specific workflow? This work aims
at analyzing several fault tolerance techniques in SWfMSs and recom-
mending the suitable one for the user’s workflow using machine learning
techniques and provenance data, thus improving resiliency.

1 Introduction

Scientific Workflows can be defined as abstractions used to define sequences of
activities and data dependencies among them [1]. Each activity in a workflow
represents the invocation of a program. Workflows are modeled, executed and
monitored by complex engines named Scientific Workflow Management Systems
(SWfMS). Many domains of science use scientific workflows and SWfMSs in
their daily duties such as biology, chemistry and astronomy [2]. Several existing
workflows are large-scale, which means they produce and consume large amounts
of data and are usually executed repeatedly until a hypothesis can be confirmed
or refuted. Due to the high volume of data involved in such executions, as well
as the high demand for processing, many workflows need to be executed in High
Performance Computing (HPC) environments, such as well-known clusters and
supercomputers [2].

However, in the last decade, clouds [3] have been used as HPC environments,
since they offer HPC resources in their (commonly huge) pool of resources.
Clouds offer a wide variety of on demand resources (e.g. Virtual Machines -
VMs and storage). In addition, clouds offer elasticity, which may be valuable for
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 321–336, 2018.
https://doi.org/10.1007/978-3-319-73353-1_23

322 L. A. de Jesus et al.

executing large-scale experiments. This means the scientist deploys (or unde-
ploys) resources on demand and one pays according to the quantum of time the
resources were used. Many SWfMS already allow for running workflows in clouds
such as Pegasus [4] and SciCumulus [5].

However, executing workflows in clouds raises some challenges. Even when
using HPC and dedicated VMs, activities are usually executed several times
and each execution may last for several hours, which increases the possibility
of a failure. Especially in clouds, data centers that host VMs are traditionally
composed of thousands (or even millions) of computers, and failures are a reality
rather than a possibility. In fact, some papers have investigated and discussed the
failure growth when the amount of resources involved in the execution increases
[6]. Even if a VM does not fail, its performance is subject to variations due
to providers’ procedures such as live migrations [7]. When one or more failures
indeed occur, the workflow execution must be able to continue.

Many programs implement their own application-level fault tolerance mecha-
nisms, i.e. the program has a specific strategy to be adopted to recover from fail-
ures. However, this strategy cannot be adopted for scientific workflows. In many
existing workflows, the programs associated to the activities are black-boxes i.e.
users do not have access to their source code. This way, the SWfMS must be
fault-tolerant instead of the invoked programs. Unfortunately, adding fault tol-
erance mechanisms into cloud-based SWfMS brings an additional overhead. The
SWfMS is no longer responsible only for managing the workflow (e.g. scheduling
activities on VMs, collecting and storing provenance [8] data) but also for mon-
itoring the entire environment, aiming at minimizing costs and maximizing the
overall quality of the results. It is important to stress that these mechanisms are
no longer optional since failures are rather a rule than an exception in clouds.

Many existing fault tolerance techniques (FTT) [9–15] can be coupled to
existing SWfMS. These techniques, such as checkpointing, re-executions and
replication, can be applied in many scenarios. However, different workflows
present different characteristics, and thus choosing the best suitable fault toler-
ance technique may vary according to the each specific workflow. It is commonly
unfeasible to apply all possible fault-tolerance techniques in a single workflow
execution, since the imposed overhead would be non-negligible when compared
to the total execution time of the workflow. Thus, scientists (or the SWfMS)
must choose the suitable (which will introduce a negligible overhead and guar-
antees that the worflow will run) technique for their own workflow (or even
for a specific activity of the workflow). It is worth mentioning that there is no
“one-size-fits-all” technique, i.e. there is no fault tolerance technique that will
introduce the smallest overhead for any workflow.

This paper aims at exploring a series of fault tolerance techniques in cloud-
based scientific workflows and chooses the best one for a specific workflow execu-
tion using machine learning techniques (decision trees [16] and CN2 rule inducer
[17]). Such algorithms produce a set of predictive rules that can be implemented
within SWfMSs in order to determine the fault-tolerance technique for a work-
flow. In this paper, we evaluated 3 types of fault tolerance mechanisms in the Sci-

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 323

Cumulus SWfMS: Checkpoint/Restart (C/R), Retrying, and Replication. Thus,
the main contributions of this paper are: (i) a monitoring mechanism imple-
mented in the SciCumulus SWfMS for the VMs and network in order to detect
slow running tasks, VMs that fail, slow network, etc.; (ii) a checkpoint-restart
mechanism implemented in SciCumulus SWfMS that does not require modifying
any program source code; (iii) an activity replication mechanism implemented in
SciCumulus; (iv) an experimental evaluation using machine learning algorithms
that supports the decision making process to choose the FTT that is best suitable
for each activity in a given workflow; and (v) a decision module that evaluates
the workflow class and decides which of the available FTT is best suitable for it.

2 Related Work

As previously discussed, fault tolerance is a key issue in cloud-based scientific
workflow execution. Thus, many approaches and algorithms have been proposed
in the last years. These approaches and algorithms aim both at preventing the
occurrence of faults and at recovering once the failure has already occurred.
Hu et al. [9] proposes a scheduling heuristic that may choose to replicate tasks
in certain situations such as when idle resources are detected. The schedule
of replicated tasks, specially the ones in the critical path of the workflow, is
interesting in case of a slowdown in one of the VMs involved in the execution,
as the replicated task may finish earlier than the original one, or when a failure
occurs thus allowing the execution of its successors. Gu et al. [10] aims at solving
the resource mapping problem for a scientific workflow while minimizing failure
occurrences and maximizing throughput. Although it mentions well-known fault
tolerance techniques such as retrying, replication and checkpoint-restart, it relies
on mapping tasks into resources whose failure rate is as low as possible in order
to minimize failures. Costa et al. [15] proposes a fault tolerance heuristic for
cloud-based workflows. It is based on re-executions, instead of trying to recover
some partial result of the previous execution. Re-executions can be effective
when the workflow is composed of many short-term activities, i.e. if one activity
fails, the re-execution will be short-term as well. However, when the workflow
is composed of long-term activities, re-executions can impose a non-negligible
overhead.

Bala and Chana [11] propose a scheduling approach which takes into account
the possibility of having a failure due to overusage of resources. It prioritizes the
schedule of the activity with the higher number of data dependencies, thus reduc-
ing the makespan of the workflow. To avoid failures, VMs can be migrated to less
used hosts. However, in a practical situation, public cloud providers as Amazon
AWS, Google Cloud or Microsoft Azure do not allow for this sort of control by
their customers. Jain et al. [12] present a framework named FireWorks that aims
at providing a fault-tolerant platform for scientific workflows. It has several fea-
tures, allowing for gathering provenance data, executing concurrent activations,
etc. In terms of fault tolerance, authors detect 3 types of failures: “soft” (script
throws an error), “hard” (machine stops working) and queue failures.

324 L. A. de Jesus et al.

To the best of authors’ knowledge, existing SWfMS grounds its resiliency into
some of the aforementioned techniques. Retrying (re-submission) and Replica-
tion seem to be more popular as in [10–12,15]. Although C/R techniques are also
common, it is usually applied at workflow level [18,19]. When using C/R, the
SWfMS stores information regarding the execution progress in terms of finished
activities. If a failure occurs and a workflow needs to be restarted, it is possible
to continue the execution from the last completely finished activities onwards.
However, this technique is not able to recover the partial work of a failed activ-
ity. If this is a long-term activity, this loss may increase the workflow makespan.
In terms of activity level C/R, SWfMS usually relies on the inclusion of specific
C/R libraries in the activity source code [13,14]. This solution is not feasible
when the workflow comprises the execution of black-box programs, provided by
third parties developers, and this is rather the rule than an exception for most
scientific workflows. In addition, it is worth mentioning that no approach tries
do identify the best fault tolerance technique or mechanism to use. They rely on
the scientists’ choice and configurations, which may be not the best one to use.

3 Background Knowledge

3.1 Failure Detection

In general, faults are detected by monitoring the environment and the work-
flow execution. Most existing SWfMS provide monitoring mechanisms, but to
the best of authors’ knowledge, fault-detection mechanisms are reactive, i.e.
the SWfMS does not try to prevent from failures. In addition there is no fault-
detection mechanism that is coupled to cloud APIs in order to evaluate the status
of VMs, etc. This way, a proactive algorithm was developed in order to detect
failures as soon as possible in activities executing in clouds. This algorithm is
called FTAdaptation (Algorithm1). It tries to detect potential failures before
an activity actually fails. It also tries to detect degraded VMs since they are
more error-prone and, thus, avoid the occurrence of new activity failures. This
algorithm encompasses 2 main methods: VerifyClusterHealth and SelectBadMa-
chine. VerifyClusterHealth is responsible for fetching information about the VMs
and network. In this paper we implemented Algorithm1 in SciCumulus SWfMS
using the Amazon API1 in order to obtain data. Amazon provides information
about connectivity, VM status (executing, initializing or stopped for example),
system status (ok or impaired), etc. This information is stored in the SWfMS’s
provenance database that contains information about the workflow structure,
past executions and performance data. SelectBadMachine queries information
collected by VerifyClusterHealth and combines it with the execution history of
the workflow so it is possible to discover which VMs are in error state or where
a high number of activity failures are occurring - the implementation implies
a VM is problematic if the number of failures exceeds a given threshold. Once

1 http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instance-status.
html.

http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instance-status.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instance-status.html

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 325

these VMs are identified, it is possible to replace them by new ones or to upgrade
them. Unlike the proposed algorithm, most of the SWfMS is reactive, i.e., after
each activity execution, the returned information (the process exit status for
example) is checked and once the failure is detected, the activity is resubmitted
for execution.

Algorithm 1. FTAdaptation()
1: while workflow is not finished do
2: VerifyClusterHealth()
3: $machines = SelectBadMachine()
4: if $machines is not empty then
5: Stop SWfMS
6: RequestMachines($machines)
7: RequestMachineTermination($machines)
8: Start SWfMS

9: Sleep($param)

3.2 Failure Handling

As previously discussed, this paper aims at helping scientists to choose the best
FTT for their cloud-based workflows. In addition, we have investigated that
C/R, Retrying and Replication are the most common techniques used in work-
flows. Since Retrying technique is pretty obvious to understand, this subsection
presents how we implemented the C/R and Replication in SciCumulus SWfMS
[5]2 (SWfMS used in the experiments). Figure 1 pictures SciCumulus execut-
ing a workflow in the cloud computing using 4 VMs. Each VM executes an
instance of the SciCumulus’ Core [5], a component responsible for data transfer,
scheduling etc. Communication between VMs is performed through MPI message
exchange. The Master component has the responsibility of scheduling activities
while the other components (Workers) request activities to process, acting as a
Master/Worker model.

To implement C/R in SciCumulus we had to add a special feature to the
Master VM. This feature is described by Algorithm2, which determines the
activities that are eligible for checkpointing. This is determined by considering
the execution time for each currently executing activity. This information is
available at the SciCumulus provenance database through a simple SQL query
- we assume the used SWfMS has a complete register of the previously and
currently executing activities, as we find in SciCumulus. For each activityi, whose
execution time since the last checkpoint ti is greater than δ, where δ is an input
parameter, a checkpoint request is sent to the SCCore instance responsible for
running activityi. Each Worker instance runs Algorithm3, waiting for checkpoint
requests, and execute Algorithm 4.

2 http://scicumulusc2.wordpress.com/.

http://scicumulusc2.wordpress.com/

326 L. A. de Jesus et al.

Fig. 1. SciCumulus’s distributed checkpoint-restart architecture

Algorithm 2. CheckpointCoordinator()
1: while workflow is not finished do
2: $infoList = GetCheckpointInformation()
3: for each $info in $infoList do
4: SendCheckpointRequest($info.workspace, $info.rank)

5: Sleep($param)

Algorithm 3. CheckpointListener()
1: while workflow is not finished do
2: Receive($msg)
3: Call Checkpoint($msg.workspace)

Algorithm 4. Checkpoint($workspace)
1: $pid = pgrep($workspace) * Queries the process’s PID based on its workspace *
2: Dump($pid,$dest) * Stores the process image and leaves it in STOPPED state *
3: Compress($workspace)
4: kill -SIGCONT $pid * Restarts the process *
5: Compress($dest)
6: Move($compressedFiles,$repository)
7: Delete($oldCheckpoint)

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 327

A checkpoint request contains the activity’s workspace - an operating system
folder - where the activity is executing. Given that each activity is associated
with a unique workspace, it is trivial to obtain the activity’s process id (PID)
through OS commands. The activity is then paused, its image is stored in disk
using, input and partial output files are copied and included to the image files
and this dataset is sent to a safe and scalable repository (in our case, Amazon
S3). Lastly, the activity is restarted.

Whenever a failure occurs in any activity, the SWfMS scheduler tries to
execute it once again (Retrying technique). However, if a checkpoint image for
this activity exists, instead of executing it from the beginning, it has to fetch and
extract the activity’s checkpoint image data from the repository to the activity’s
workspace and restores the process through Algorithm5. C/R is also applicable
to scenarios where an activity has been executing for a very long period of time
at a certain VM. Once this situation is detected, the scheduler may decide to
migrate it to a VM with more processing power and, instead of restarting the
activity from the beginning in the new VM, it is possible to take advantage of
some partial execution previously made at the original VM.

Algorithm 5. Restart($path)
1: $ckpt = Copy($Path)
2: Extract($ckpt,$dest)
3: Restart($dest)

Algorithms 4 and 5 rely on external Checkpoint-Restart tools. This work has
adopted CRIU3 as C/R tool due to its advantages in comparison to some similar
solutions such as BLCR4. Its advantages include: (i) no need to load any libraries
to the activity’s program, (ii) possibility of having C/R without having to modify
or prepare any programs and (iii) storage of open files. These characteristics are
important in the context of scientific workflows since they usually encompass
the execution of multiple third-party programs, which are often black-box and
statically linked.

Besides C/R, we also implemented Replication mechanisms in SciCumulus.
Replication is a technique where a unit of work is copied at least once enabling
some degree of resiliency due to redundancy [20]. Even if a copy of an activity
does not finish properly (due to a failure), the remaining copies may do. Thus,
the execution of the workflow can continue by using the output generated by any
of the successfully finished activities. This implementation includes some extra
attributes to each activity in SciCumulus. These attribute control the priority of
a given activity and include a group identification, which is important in a repli-
cation scheme because activities have to be associated with their replicas. The
priority attribute allows for some flexibility in activity scheduling. It is possible

3 http://criu.org/.
4 crd.lbl.gov.

http://criu.org/
https://crd.lbl.gov/

328 L. A. de Jesus et al.

to give priority to “primary” copies or give copies equal priorities. Giving prior-
ity to primary copies would speed the execution up as redundant copies would
be scheduled after primary ones and perhaps wait for them to finish. However,
in case of a failure, if no activity duplicate is executing at that moment, it would
demand a retry from the beginning. This would be interesting in scenarios where
the possibility of failures is low and activities are short-term. On the other hand,
equal priority would result in activities and their n copies running at “the same
time”, thus tolerating n-1 failures. So, this paper focuses on the priority mode
where activities and their copies are executed relatively at the same time, either
in the same VM in different cores or completely distinct VMs.

Algorithm 6. ExecuteActivity()
1: $activity = SendRequestActivity()
2: Execute($activity)
3: if $activity.finish status == 0 then
4: SendNotification($m)
5: else
6: if $activity.finish status == FINISHED REP then
7: FinishNormally()

Algorithm 6 runs at each SciCumulus Worker instance. It requests activities
from the Master node and executes them. It was extended in order to notify the
Master node about the successful execution of an activity and supporting the
interruption of activations after some replica from its group finishes executing.
SendNotification is a method that simply sends a message containing the activity
id, group number and finished activity id to the Master node. FINISHED REP
is a special finish status created to characterize activities that were finished not
normally but due to a request after the successful execution of some replica of
a given activity. Algorithm 7 runs at Master node. It waits for messages from
finished activities in order to terminate their remaining replicas.

Algorithm 7. WaitForNotifications()
1: $msg = ReceiveNotification()
2: cancelledGroups.add($msg.group id)
3: $machines = Query($msg.activation id, $msg.group id)
4: for each $machine in $machines do
5: SendStopActivations($m.workspace, $m.rank)

4 Experimental Results

This section presents the experiments performed in order to identify the suitable
fault tolerance technique for a specific workflow. Firstly we present the workflows

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 329

chosen as case study, then we discuss about the executions performed to collect
performance data, and finally we propose the mechanism based on machine
learning algorithms.

4.1 Preliminary Analysis of FTT in Montage and SciPhy Workflows

Montage Workflow. Montage is an astronomy workflow that collects data
through telescopes and creates mosaic images from objects in the sky. As pre-
sented in Fig. 2, it consists of 9 activities. Figure 2 does not necessarily show
the exact number of executions of each activity, but provides information about
how each activity works regarding input and output data. Since we need input
data for the machine learning algorithms, we executed Montage several times.
We have induced errors at the end of the execution of the activities. Figure 3
shows the execution times of the Montage’s activities for the 3 available FTT
(Retry, C/R and Replication) with and without faults (NF, at the graph legend,
denotes No Fault).

Fig. 2. Montage workflow

Fig. 3. FTTs performance for Montage with 9 activities

Most activities executed are short-ones - they executed in less than 20 s -
when using Retry or C/R as FTT. The only exception is the activity Projection.
Among all these short-term activities, it is interesting to notice 2 in special due
to a much lower performance while using Replication technique: CalculateDif-
ferences and FitPlane. Table 1 helps to clarify the reasons behind it. It is worth

330 L. A. de Jesus et al.

noticing that these 2 activities are the ones which has to process the biggest
datasets. Replication for these activities would hence result in a high number
of processing and parallel executions, increasing queuing time and wait time in
order to the correct termination of the redundant replica. As a consequence we
observe a worse performance.

Table 1. Activities in the execution of Montage workflow

Name # of processed files Avg time retry Avg time
replication

CalculateDifference 17 0:01.121 0:34.808

CalculateOverlaps 1 0:00.523 0:02.995

CreateMosaic 1 0:04.266 0:08.206

CreateUncorrectedMosaic 1 0:00.809 0:04.549

ExtractDifferences 1 0:00.466 0:03.842

FitPlane 17 0:01.609 0:34.628

ListFits 1 0:00.392 0:02.427

Projection 10 0:45.918 1:22.152

SelectProjections 1 0:11.954 0:13.153

In contrast, activities that process small amounts of data have similar per-
formance for any of the considered FTT. As previously mentioned, replication
of activities carries additional work in order to correctly finish the replicas. If
the activity is a short-term one, the additional work carried by the replication
technique may be grater than the activity execution time. This is seen by the
comparison between the CreateMosaic and SelectProjection to any other short-
term activity. It is worth noticing from Fig. 3 with 4 CPUs that, for the Select-
Projections activity, Replication performs similarly in non-failure scenarios and
better than the other 2 FTT in failure ones. As the performance of the Retry
technique improves (activities execute faster due to the increase in the resource
amount), Replication turns into a not so good technique for the CreateMosaic
activity, but still performs as the best one for SelectProjections.

It is also worth mentioning that no activity was able to restore a check-
point during this experiment since all activities executed in less than 30s (the
checkpointing interval). Thus, even though Checkpoint-Restart was set for the
experiment, as no valid checkpoint was available at the restore moment, recov-
ery was performed through Retrying. Hence the results show basically similar
results for Retry and C/R.

SciPhy Workflow. SciPhy is a workflow from the biology domain that receive a
dataset of DNA, RNA and aminoacid sequences and creates evolutionary models
in order to determine common ancestors between organisms [21]. As presented

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 331

in Fig. 4, it basically consists of a pipeline containing 3 sequential activities fol-
lowed by 2 activities that can be executed in parallel. This experiment was car-
ried similarly to the previously presented for Montage. It involved the repeated
execution of the SciPhy workflow varying the applied fault tolerance technique,
the faulty activity, the number of CPUs involved in the execution and, differ-
ently from the previous experiments, the number of input files (that contains
entire genomes). Thus, Figs. 5, 6 and 7 represent the average execution time of
each activity belonging to the SciPhy workflow with 1, 4 and 8 input genomes,
respectively, running in 3 different computational environments: 2 CPUs/4 GB
RAM, 4 CPUs/8 GB RAM and 8 CPUs/16 GB RAM, except for SciPhy-8 which
was not executed with only 2 CPUs as execution time would boost considerably
due to queuing.

Fig. 4. SciPhy workflow

Similarly to the Montage experiment, most activities do not spend much time
on processing, except for ModelGenerator and RAxML activities. As RAxML
makes use of parallel processing with threads, queuing activities deteriorates the
performance considerably, due to increased cache degradation [22]. RAxML was
set to use 2 threads, the minimum accepted value.

By analyzing Figs. 5, 6 and 7 it is possible to observe the effect of increas-
ing the number of input genomes on the FTTs behavior. Figure 6 shows that
Replication is no longer suitable for ModelGenerator for any of the computa-
tional environments as its performance in both best and worst case scenarios
is comparable to the worst case scenario using the Retry technique. C/R has
the best performance for ModelGenerator in the 3 considered VMs. It is worth
noticing that the Checkpointer developed at this work does not run in parallel

Fig. 5. FTTs performance for SciPhy with 1 input genome

332 L. A. de Jesus et al.

Fig. 6. FTTs performance for SciPhy with 4 input genomes

Fig. 7. FTTs performance for SciPhy with 8 input genomes

at this version due to CRIU limitations. However, as this implementation has a
quite low overhead this does not impact on the results, as it is seen in Figs. 6
and 7. Comparing the execution results from ModelGenerator using Retry and
Checkpoint in different VMs for the best scenarios (with no failures) it is pos-
sible to notice that Checkpointing tends to have a slightly worse performance
(around 4% at these experiments, using the interval parameter as 30 s). This is
observed because while the Retry technique does not need any extra work to be
done, Checkpointing demands message exchanging, monitoring the processes in
execution and their periodical stop and resume in order to store their images.
The use of Checkpointing is, however, justified by the guarantee of the upper
bound loss threshold - related to the checkpoint interval parameter - it gives
to the executions. This benefit comes at a reasonably low cost, while the other
techniques would not deliver such performance in terms of loss limit (Retry) or
incurred overhead (Replication).

4.2 Developing a Predictive Model for FTT in Scientific Workflows

Although the previous qualitative analysis provides some interesting insights
about the best FTT technique to use with each activity of both workflows, it
should be performed in larger scale. Instead of analyzing a few workflow execu-
tions traces, we should consider hundreds or even thousands of traces and then
try to extract useful patterns that help choosing the suitable FTT for a specific

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 333

workflow. It may be very tedious and error-prone (if not unfeasible) to manually
analyze such volume of data.

Thus, we developed predictive models using machine learning algorithms to
help determining the most suitable FTT for a workflow. Those models were
coupled to SciCumulus SWfMS in these experiments. To develop this predictive
model we considered as input a database containing 13,628 execution traces of
both Montage and SciPhy workflows. To infer knowledge about these traces,
machine learning methods are used to discover interesting patterns in such data.
In this specific analysis, we used Decision Trees [23] and the CN2 Induction
Algorithm [17]. The goal of both algorithms is to create a model that predicts the
value of a target variable based on several input variables. The input variables
are represented in the input workflow traces. Each tuple of the input dataset
contains the name of the activity, its type (following the algebraic approach
proposed by Ogasawara et al. [24]), the type of FTT used, the number of parallel
tasks associated with the activity, number of replicas and the checkpoint interval
(if applicable). The target variable is the execution time of the activity since we
are looking for a FTT that provides the best makespan. Systems for inducing
knowledge from examples are valuable tools for assisting in the task of knowledge
acquisition for expert systems, which is our case.

We used Orange Data Mining Framework5 to execute the algorithms on the
input data. The following steps were executed: (i) Attribute Statistic Analysis,
(ii) Discretization, (iii) Data Sample, (iv) Classification Tree and CN2 execution,
and (v) Test Learners. In the Attribute Statistic Analysis we want to check the
distribution of data for each attribute. Before generating the decision tree and
the rules with CN2, we have to evaluate the statistics about each attribute
used in the model. For example, we can state that most of the failures occurred
with activities that follow the MAP type. MAP activities are those receive one
input and produce one output (i.e. similarly to the MapReduce model). On the
other hand, activities that follow the SPLIT-MAP type presents no failures (and
probably do not need to use an FTT). SPLIT-MAP activities receives one input
data and produces several output. They represent a small number of activities
in Montage and they are not cpu-intensive activities, so errors are - predictably
- less frequent.

A discretization step is necessary because the goal attribute is the total exe-
cution time. Since this attribute is continuous, we have to discretize it. We have
chosen to perform an equal-frequency discretization which produced 4 categories
of activities according to the total execution time: SHORT-TERM, MEDIUM-
TERM, LONG-TERM and XLONG-TERM. A common way to organize data
for classifiers (in our case decision trees and CN2) is to split the available data
into 2 sets, a training set and a test set. The predictive model is then built on the
training set and evaluated with the test set. The test set has never been seen by
the model so the resulting performance will be a good guide to what will be seen
when the model is applied to unseen data. Thus, in the Data Sample step we
used a traditional proportion for training/test data, having 70% for the training

5 https://orange.biolab.si/.

https://orange.biolab.si/

334 L. A. de Jesus et al.

set and 30% for the test. With the defined training set we executed the machine
learning algorithms in step (iv). Both decision tree and CN2 produce a set of
rules that can be used by the SWfMS to determine the best FTT to use for an
activity. For example, the following rule was produced by both algorithms:

IF activity_name=sciphy.dataselection AND
ft_type=retry AND
n_tasks=>7.00

THEN D_class=SHORT-TERM

By analyzing this rule the SWfMS can conclude that if the Retry technique
is chosen as FTT for the dataselecion activity of SciPhy when this activity
comprises more than 7 jobs, the total execution time will be classified as SHORT-
TERM, i.e. which is desirable. On the other hand, if we choose Replication FTT
in this case, the total execution time is classified as MEDIUM-TERM, which is a
worse scenario. One advantage of decision trees and CN2 is that both algorithms
generate human-comprehensible rules that can be easily implemented within a
SWfMS, in this case SciCumulus. Although the generated rules seem to make
sense, we have to evaluate both predictive models using the test set generated
in step (iii). Thus, in step (v) we evaluate both algorithms using the test set.

Results are presented in Table 2. Table 2 presents the Precision, Recall and
F-Measure metrics for decision trees and CN2. It is clear that both models
presents values higher than 0.8 for all metrics, which is a promising result. High
Precision means both algorithms correctly classified most of the tuples in the
test dataset, while high Recall means that both algorithms returned most of the
relevant results (>80%). We also used the F-Measure to evaluate the results.
F-Measure is the weighted average precision and recall. F-Measure reaches its
best value at 1 and worst at 0. Since both F-Measures were higher than 0.80,
we can conclude that both predictive models are correctly predicting the total
execution time of a workflow according to the input variables in more than 80%
of the cases. Although these results are promising, more experiments are needed
with different types of the workflows in order to check if the generated rules are
in fact useful. All predictive models and datasets used in this experiment can be
downloaded at https://github.com/UFFeScience/FTT.

Table 2. Metrics obtained from predictive models

Algorithm Precision Recall F-Measure

Classification tree 0.8502 0.8842 0.8669

CN2 0.8510 0.8779 0.8642

5 Conclusions and Final Remarks

In summary, this paper has the following main contributions: (i) the development
of proactive failure detection approach in SciCumulus, (ii) the development of a

https://github.com/UFFeScience/FTT

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique 335

C/R FTT in SciCumulus that does not require changes into programs, (iii) the
development of a Replication FTT in SciCumulus and (iv) the development of
2 predictive models that can be used by existing SWfMS to choose the suitable
FTT for a specific workflow before its execution.

It is important to stress that some parameters in the experiments such as
checkpointing interval were chosen in a purely empirical manner although some
studies as Di et al. [25] and Young [26] derive an optimal checkpoint interval
from failure probability and expected activation makespan. This work, though, is
rather concerned about applicability and potential gains that could be obtained
through the use of the different FTT than about minor performance degradation
due to a poor choice of a parameter value. Thus, the interval was set as 30 s so it
was possible to observe that, even for a not carefully chosen interval parameter
it is possible to achieve good performance in the presence of faults.

As future work we plan to consider the execution traces of other workflows
and to evaluate new classification algorithms such as SVM, Random Forest and
Naive Bayes. Finally, we expect the results provided by this paper can help
scientists in achieving their research goals in a reliable and fast way.

References

1. Mattoso, M., Werner, C., Travassos, G.H., Braganholo, V., Ogasawara, E., de
Oliveira, D., et al.: Towards supporting the life cycle of large scale scientific exper-
iments. IJBPIM 5(1), 79+ (2010)

2. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good,
J.: On the use of cloud computing for scientific workflows. In: eScience 2008, pp.
640–645 (2008)

3. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Rev. 39(1), 50–55 (2008)

4. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani,
R., Chen, W., da Silva, R.F., Livny, M., et al.: Pegasus, a workflow management
system for science automation. FGCS 46, 17–35 (2015)

5. de Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: a lightweight
cloud middleware to explore many task computing paradigm in scientific workflows.
In: 3rd International Conference on Cloud Computing, pp. 378–385 (2010)

6. Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking supernovae
in the clouds: a performance study. In: HPDC 2010, pp. 421–429. ACM, New York
(2010)

7. Lee, K.-H., Lai, I.-C., Lee, C.-R.: Optimizing back-and-forth live migration. In: Pro-
ceedings of the 9th UCC, UCC 2016, pp. 49–54. ACM, New York (2016). https://
doi.org/10.1145/2996890.2996909

8. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:
a survey. Comput. Sci. Eng. 10(3), 11–21 (2008)

9. Hu, M., Luo, J., Wang, Y., Veeravalli, B.: Adaptive scheduling of task graphs with
dynamic resilience. IEEE Trans. Comput. 66(1), 17–23 (2017)

10. Gu, Y., Wu, C.Q., Liu, X., Yu, D.: Distributed throughput optimization for large-
scale scientific workflows under fault-tolerance constraint. J. Grid Comput. 11(3),
361–379 (2013)

https://doi.org/10.1145/2996890.2996909
https://doi.org/10.1145/2996890.2996909

336 L. A. de Jesus et al.

11. Bala, A., Chana, I.: Autonomic fault tolerant scheduling approach for scientific
workflows in cloud computing. Concurr. Eng. 23(1), 27–39 (2015)

12. Jain, A., Ong, S.P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M.,
Petretto, G., Rignanese, G.-M., Hautier, G., et al.: Fireworks: a dynamic work-
flow system designed for high-throughput applications. Concurr. Comput. 27(17),
5037–5059 (2015)

13. Elmroth, E., Hernández, F., Tordsson, J.: A light-weight grid workflow execution
engine enabling client and middleware independence. In: Wyrzykowski, R., Don-
garra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp.
754–761. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-
3 79

14. von Laszewski, G., Hategan, M.: Java cog kit karajan/gridant workflow guide.
Technical report, Argonne National Laboratory, Argonne, IL, USA (2005)

15. Costa, F., de Oliveira, D., Ocaña, K.A.C.S., Ogasawara, E., Mattoso, M.: Enabling
re-executions of parallel scientific workflows using runtime provenance data. In:
Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 229–232. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34222-6 22

16. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
17. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283

(1989)
18. Zhang, Y., Mandal, A., Koelbel, C., Cooper, K.: Combined fault tolerance and

scheduling techniques for workflow applications on computational grids. In: CC-
Grid 2009, pp. 244–251. IEEE Computer Society (2009)

19. Hoheisel, A.: Grid workflow execution service-dynamic and interactive execution
and visualization of distributed workflows. In: Proceedings of the Cracow Grid
Workshop, vol. 2, pp. 13–24. Citeseer (2006)

20. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM CSUR 31(1), 1–26 (1999)

21. Ocaña, K.A.C.S., de Oliveira, D., Ogasawara, E., Dávila, A.M.R., Lima, A.A.B.,
Mattoso, M.: SciPhy: a cloud-based workflow for phylogenetic analysis of drug
targets in protozoan genomes. In: Norberto de Souza, O., Telles, G.P., Palakal, M.
(eds.) BSB 2011. LNCS, vol. 6832, pp. 66–70. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22825-4 9

22. Saavedra-Barrera, R., Culler, D., Von Eicken, T.: Analysis of multithreaded archi-
tectures for parallel computing. In: SPAAACM 1990, pp. 169–178. ACM (1990)

23. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234
(1987)

24. Ogasawara, E., Dias, J., Silva, V., Chirigati, F., de Oliveira, D., Porto, F., Val-
duriez, P., Mattoso, M.: Chiron: a parallel engine for algebraic scientific workflows.
Concurr. Comput. 25(16), 2327–2341 (2013)

25. Di, S., Robert, Y., Vivien, F., Kondo, D., Wang, C.-L., Cappello, F.: Optimization
of cloud task processing with checkpoint-restart mechanism. In: 2013 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12. IEEE (2013)

26. Young, J.W.: A first order approximation to the optimum checkpoint interval.
Commun. ACM 17(9), 530–531 (1974)

https://doi.org/10.1007/978-3-540-68111-3_79
https://doi.org/10.1007/978-3-540-68111-3_79
https://doi.org/10.1007/978-3-642-34222-6_22
https://doi.org/10.1007/978-3-642-22825-4_9
https://doi.org/10.1007/978-3-642-22825-4_9

Energy Aware Multiobjective Scheduling
in a Federation of Heterogeneous Datacenters

Santiago Iturriaga(B) and Sergio Nesmachnow

Universidad de la República, Montevideo, Uruguay
{siturria,sergion}@fing.edu.uy

Abstract. Energy efficiency is key for datacenters, however nowadays
datacenters are far from being energy efficient. This article proposes a
multiobjective evolutionary approach for energy aware scheduling in a
federation of heterogeneous datacenters. The proposed algorithm sched-
ules workflows of tasks aiming at optimizing infrastructure usage, quality
of service and energy consumption. We perform an extensive experimen-
tal evaluation with 100 problem instances, considering a diverse set of
workflows and different size of scenarios. Results show the proposed app-
roach is able to compute accurate schedules, outperforming traditional
heuristic schedulers such as round robin or load balancing algorithm.

1 Introduction

Power consumption has become a critical issue in current high performance
computing facilities [1]. This issue is even more problematic when considering
large distributed platforms built by interconnecting several local resources. Dat-
acenters are a common infrastructure for scientific high performance computing
nowadays, as they provide computing power, networking, and storage for devel-
oping and execute complex applications [28]. A possible way for scaling up the
number of resources is to build a federation of distributed datacenters, usually
by integrating heterogeneous resources to deliver a huge amount of computing
power and benefit end users.

When dealing with large heterogeneous computing systems, intelligent meth-
ods must be applied to guarantee a correct operation, from both the points of
view of users and administrators. In this line of work, different techniques haver
been proposed for reducing power consumption in datacenters and high perfor-
mance computing facilities [5,9,20,28].

This article presents the application of a two-level scheduling approach that
combines a MultiObjective Evolutionary Algorithm (MOEA) and specific ad-hoc
backfilling heuristics for energy-aware planning of workloads into a federation of
heterogeneous distributed datacenters, taking into account task’s dependencies
and quality of service (QoS) provided by the datacenter. The reported research
extends our previous approach [8] by considering a fully heterogeneous approach
for both workloads and computing elements, a realistic assumption for nowadays
high performance computing infrastructures [23].
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 337–352, 2018.
https://doi.org/10.1007/978-3-319-73353-1_24

338 S. Iturriaga and S. Nesmachnow

The experimental evaluation is performed over a set of 100 realistic prob-
lem instances considering both small- and large-sized scenarios. These problem
instances are comprised of five different types of computing workflows, sampling
a wide range of realistic high-performance applications. Each problem instance,
disregarding its type, is comprised of 1000 computing workflows, each of which
is comprised of a number of tasks ranging from 1 up to 132. The proposed
MOEA scheduler is compared on an objective basis with a set of accurate greedy
heuristics.

The main results indicate that the proposed MOEA outperforms the most
accurate greedy heuristics with a makespan improvement of 33%, energy con-
sumption improvement of 6%, and QoS improvement of 60%.

The article is organized as follows. Section 2 presents the problem formulation
and reviews related works. The scheduling approach and the proposed MOEA to
solve the problem is described in Sect. 3. The experimental evaluation is reported
in Sect. 4, including a comparative analysis of the proposed methods. Finally,
Sect. 5 presents the conclusions and the main lines for future work.

2 Energy-Aware Scheduling in a Federation
of Datacenters

This section introduces the problem model and formulation, and reviews related
works.

2.1 Problem Model

The energy-aware scheduling problem proposes allocating resources to parallel
tasks to be executed on a federation of heterogeneous datacenters. The problem
model is presented next.

Let us consider the following elements:

– A distributed federation formed by k heterogeneous datacenters DC =
{dc1, . . . , dck}. Each datacenter dcr is comprised of a set of heterogeneous
multi-core servers Sr = {s1, . . . , ss} organized in racks. All servers inside a
rack are identical but may be different among racks. Each server sj is char-
acterized by its number of cores cj , its performance in FLOPS opsj , and its
power consumption at idle eidle

j and peak emax
j usage. Servers in each rack

are networked using a top-of-the-rack (TOR) switch. A TOR switch net-
works together all servers in its rack with communication speed of rsj , while
an aggregation switch networks all the TOR switches with communication
speed of asj . Communication between tasks in the same server are consid-
ered to be instantaneous similar to the approaches proposed by [2,26,27].

– A set of n independent heterogeneous workflows Q = {q1, . . . , qn}. Each work-
flow q has an associated soft deadline dq before it should be accomplished and
is comprised of a set of tasks WTq = {wt1, . . . wtm} with dependencies. Each
task has different computing requirements. After task wtα finishes its execu-
tion in server sβ , it produces an output dataset that must be transferred to all

Energy Aware Multiobjective Scheduling in a Federation 339

its successor tasks. Data is transferred instantaneously to successors execut-
ing in the same server sβ . However, for successors executing in other servers,
data must be transferred over the network and is bound to communication
speeds rsj and asj . Furthermore, task ŵtα is eligible for execution only after
all its predecessors have finished executing and the dataset generated by them
has been transferred.

– A number p of owners O = {o1, . . . , op} of workflows to be executed and a
SLA agreement that determines the percentage of applications that should
be finished before their deadlines.

– Each task wtα is characterized by the tuple (oα, ncα, dα) defining its length
(number of operations), the number of resources (cores) required for the par-
allel execution, and the networking time required for transferring its output
dataset.

Two system-related objectives are used to take into account the point of view
of the computing system, while a QoS-related objective takes into account the
point of view of the users. The problem formulation proposes the simultaneous
optimization of three functions:

– makespan evaluates the total time to execute a set of workflows, according to
the expression in Eq. (1), where x represents a schedule and CTr represents
the completion time of datacenter dcr.

fM (x) = max
dcr∈DC

CTr (1)

CTr represents the time required for data center r to finish all its assigned
tasks, this considers the execution time and networking time required for
transferring the input data for each task.

– energy consumption for a set of workflows executed in a certain datacen-
ter, defined by Eq. (2), using the energy model for multi-core architectures
proposed in [19], where f1 is the higher-level scheduling function, and f2
is the lower-level scheduling function. The total energy consumption takes
into account both the energy required to execute the tasks assigned to each
computing resource within a datacenter, and the energy that each resource
consumes in idle state.

fE(x) =
∑

r∈DC

∑

q∈Q:
f1(q)=r

∑

wtα∈W Tq :
f2(wtα)=sj

oα

ops(sj)
× emax

sj
+

∑

sj∈Sr

eidle
sj

(2)

– SLA violations is defined as the number of workflows that do not finish
before their deadline, over the allowed limit specified by the SLA, accord-
ing to Eq. (3), where V (q) is 1 when the deadline of workflow q is violated
and 0 otherwise, and W (ui) is the number of workflows submitted by user ui.

fS(x) =
∑

ui∈U

max

⎛

⎝0,
∑

q∈wo(ui)

V (q) − (1 − SLAui
) × W (ui)

⎞

⎠ (3)

340 S. Iturriaga and S. Nesmachnow

2.2 Related Work

Two approaches are widely considered when dealing with energy-aware schedul-
ing in computing systems: the independent and the simultaneous approach. The
first, optimizes objectives as separate goals, not taking into account their rela-
tionships explicitly. The second, optimizes objectives at the same time consid-
ering a multi-constrained multi-objective optimization problem. Our proposed
formulation follows the simultaneous approach. The main related works are
reviewed next.

Some works focus on finding only one trade-off solution instead of a Pareto
set. Following this approach, Khan and Ahmad [11] applied the cooperative game
theory to find optimal trade-off schedules for independent tasks, simultaneously
minimizing makespan and power consumption on a DVS-enabled grid system.
Lee and Zomaya [13] studied DVS-based heuristics to minimize the weighted
sum of makespan and energy, including a local search to modify the schedules
and enhance makespan, if it does not imply increasing the power consumption.
Mezmaz et al. [16] proposed a parallel bi-objective hybrid genetic algorithm (GA)
for the same problem, using the cooperative island/multi-start farmer-worker
model to reduce the execution time. A two-phase bi-objective algorithm based
on Greedy Randomized Adaptive Search Procedure (GRASP) and applying a
DVS bi-objective local search was proposed by Pecero et al. [21]. Li et al. [14]
introduced a MinMin online dynamic power management strategy with multiple
power-saving states to reduce energy consumption of scheduling algorithms. The
approach by Pinel et al. [22] for scheduling independent tasks on grids with
energy considerations, first applies MinMin to optimize makespan, and then
a local search to minimize power consumption. Lindberg et al. [15] proposed
six greedy algorithms and two GAs for solving the makespan-energy scheduling
problem subject to deadline and memory requirements.

The energy consumption model for multi-cores in [19] is based on the power
required: (i) to execute tasks at full capacity, (ii) when multi-core machines are
partially used, and (iii) to keep machines in idle state. Fast scheduling meth-
ods for the bi-objective problem of minimizing the time and power consumption
for Bag-of-Tasks applications were proposed. A similar approach was presented
in [10] applying a parallel multiobjective local search that outperformed previ-
ous algorithms. DAG-based workflows were studied in [5] applying deterministic
schedules to optimize makespan, power consumption, and QoS. Our previous
work [8] studied evolutionary strategies and deterministic lower bounds for the
scheduling problem on a federated cloud infrastructure composed by homoge-
neous processors and taking into account SLA agreements. This article extends
the previous work [8] by considering a fully heterogeneous approach for both
workloads and computing elements. To the best of our knowledge, no other
work has addressed the scheduling of DAG-based workflows for simultaneously
optimizing makespan, energy consumption and SLA objectives in heterogeneous
datacenters.

Energy Aware Multiobjective Scheduling in a Federation 341

3 The Proposed Two-Level Multiobjective Evolutionary
Scheduler

This section describes the proposed methods for energy aware scheduling in a
federation of heterogeneous datacenters.

3.1 Two-Level Scheduling Approach

The proposed two-level scheduling approach works by dividing the scheduling
method into a high-level and a low-level scheduling method. In this approach,
the high-level scheduling method deals with the scheduling of workflows to dat-
acenters. This method considers each workflow as a single computing task and
each datacenter as a single supercomputer. It does not deal with the scheduling
of the actual tasks of each workflow, nor the individual servers in each datacen-
ter. The low-level scheduling method, however, addresses the scheduling of the
tasks of each workflow to the servers of its assigned datacenter. Next, we present
the considered low-level scheduling heuristic and high-level scheduling MOEA.

3.2 Low-Level Scheduling Heuristic

We consider the Earliest Finishing Time Hole (EFTH) algorithm for addressing
the low-level scheduling problem. EFTH is presented in our previous work and
proved to be an efficient and accurate method [8]. It works by scheduling the
workflows in the order established by the first level scheduler. That is, first
it schedules all the tasks in the first workflow, then all the tasks in the second
workflow, and so on. The scheduling of the tasks in the first workflow is performed
exactly as HEFT would do. The next workflows are scheduled following the same
strategy of HEFT, but applying a backfilling strategy. This backfilling strategy
allows the tasks to be scheduled in the gaps (or holes) where processors are idle
due to dependencies among tasks.

3.3 High-Level MOEA Scheduler

Evolutionary Algorithms (EAs) are nondeterministic methods based on the evo-
lution of the species in nature. These algorithm have been successfully applied for
addressing many optimization problems [18]. Multiobjective Evolutionary Algo-
rithms (MOEAs) are EAs for solving multiobjective optimization problems [4].
MOEA explore multiple solutions simultaneously, thus are able to compute sev-
eral trade-off solutions approximating the Pareto front of the problem in a single
execution.

We designed the high-level MOEA scheduler based on the Non-dominated
Sorting Genetic Algorithm, version II (NSGA-II) [4]. NSGA-II is a popular
state-of-the-art MOEA, successfully applied to solve optimization problems in
many application areas. Next, we present the main features of the proposed
high-level MOEA scheduler.

342 S. Iturriaga and S. Nesmachnow

Solution encoding. Solutions are encoded as a vector of integers ranging from
0 to n + k − 1, with n the number of workflows and k the number of datacen-
ters. Integers [0, n− 1] represent workflows while integers [n, n+ k − 1] act as a
separators of workflows assigned to each datacenter. Figure 1 presents an exam-
ple for this enconding where workflows 4, 5, and 2 are assigned to datacenter
1; workflows 0, 3, and 1 to datacenter 2, and so on. This encoding represents
the workflows assigned to each datacenter and the order in which they must be
scheduled by the low-level scheduler. Furthermore, it allows a simple implemen-
tation of variation operators such as reassigning workflows from one datacenter
to another, changing the scheduling order of workflows, etc.

Fig. 1. Solution encoding (n = 9 workflows, k = 4 datacenters).

Fitness values. We define three objective functions, exactly as defined in
Sect. 2.1. The quality of a solution is evaluated according to the NSGA-II fitness
ranking based on non-domination sorting [4].

Population initialization. The initial population is created applying the high-
level heuristics defined in Sect. 4.2. These heuristics are applied in random order
until all initial solutions are created.

Selection. Binary tournament is applied for the selection operator, taking into
account Pareto dominance and crowding distance.

Variation operators. Partially Matched Crossover (PMX) and Exchange Muta-
tion (EM) are applied for combining and mutating solutions. PMX works by
selecting two random positions in the selected solutions and swapping all val-
ues between them. The remaining values are rearranged using position wise
exchanges, maintaining the ordering information. EM operator is much simpler
than PMX and works by randomly selecting two values in a solution vector and
swapping them.

Repair operator. It is used to transform non-feasible solutions, resulting from the
variation operators, into feasible ones. The operator checks for every workflow
if its assigned datacenter is capable of executing all of its tasks. If not, then the
solution is repaired by reassigning unfeasible workflows to a random datacenters
that can execute them.

Energy Aware Multiobjective Scheduling in a Federation 343

Parameter configuration. NSGA-II is configured with population size of 100,
stopping criterion of 25, 000 evaluations, crossover probability of 0.9, and muta-
tion probability of 1/n (with n number of workflows). These values were deter-
mined by an informal parameter setting analysis.

4 Experimental Evaluation

This section presents the experimental evaluation of the proposed scheduling
methods.

4.1 Problem Instances

Each problem instance is defined by a workload of workflows and a scenario of
available computing resources. This work considers the workflow models pre-
sented in [8]. In total five different models are considered: (a) Series-Parallel (b)
Heterogeneous-Parallel, (c) Homogeneous-Parallel, (d) Single-Task, and (e) Mix.
The Series-Parallel model represents workflows that can be split into concurrent
processes. Heterogeneous-Parallel represent a generic workflow composed of non-
identical computational tasks with arbitrary precedences. Homogeneous-Parallel
represents workflows composed of identical computational blocks. Single-Task
represents workflows comprised by a single task. Finally, the Mix model com-
bines workflows from all other models with the following proportion: 30% of
Series-Parallel, 30% of Heterogeneous-Parallel, 30% of Homogeneous-Parallel,
and 10% of Single-Task workflows.

Workflow instances were generated using SchMng [24]. The deadline dq of
each workflow q is randomly generated by extending the completion time of
the critical path of q by a ratio between [0.05, 0.30]. This is a realistic ratio
according to [7,25]. Finally, networking communication time dα for each task
wtα is randomly generated as a ratio between [0.05, 0.50] of the execution time
of wtα, similar to [2,25].

We consider each data center to be organized in racks of servers, each rack
containing 18–42 servers. We consider all processors in the same rack to be
homogeneous. However, different racks may contain different types of processors.
Processors in each rack are randomly chosen from a set of modern Intel processors
ranging from 1 to 6 cores each. The candidate processors are presented in Table 1.

We define three realistic service level agreements, SLA = {90%, 94%, 98%}.
Each SLA represent the minimum ratio of workflows per user that must meet
their deadlines. These are realistic values provided by current datacenter and
cloud computing facilities, similar to the ones considered in the related litera-
ture [3,12,17].

A total of 50 workflow batches were created for the experimental evaluation,
10 for each of the 5 workflow types. Each batch is comprised of a total of 1000
workflows, with the number of tasks in each workflow ranging from 3 to 132,
except for the Single-Task workflows that are comprised of just one task. In total,
50,000 workflows are studied in the experimental analysis. For the datacenter

344 S. Iturriaga and S. Nesmachnow

Table 1. Processors considered for the datacenter scenario

Processor Frequency Cores GFLOPS EIDLE EMAX

Intel Celeron 430 1.80 GHz 1 7.20 75.0 W 94.0 W

Intel Pentium E5300 2.60 GHz 2 20.80 68.0 W 109.0 W

Intel Core i7 870 2.93 GHz 4 46.88 76.0 W 214.0 W

Intel Core i5 661 3.33 GHz 2 26.64 74.0 W 131.0 W

Intel Core i7 980 XE 3.33 GHz 6 107.60 102.0 W 210.0 W

scenario we consider two instances: a small- and a large-sized scenario. Both
involving a federation of five datacenters with up to 3 racks each. The small-
sized scenario is comprised by an average of 150 processors per datacenter, and
the large-sized instance by an average of 325 processors. Racks are communicated
by 1 GB or 10 GB ethernet networks.

Overall, 100 problem instances were evaluated, considering all workflows and
scenarios. The benchmark set of workflows, scenarios, and SLA levels is publicly
available, it can be accessed/downloaded by contacting the authors.

4.2 High-Level Scheduling Heuristics

We consider seven different heuristic scheduling algorithms. These algorithms
work by iteratively applying greedy decisions until a full schedule is constructed.
Each iteration a workflow is selected and scheduled following some heuristic
knowledge that varies for each heuristic. This process is repeated until all work-
flows are scheduled. A short description of the scheduling algorithms is presented
next.

1. Round Robin (RR): Given a list of workflows and datacenters, this algorithm
assigns the first workflow to the first datacenter, the second workflow to
the second datacenter, and so on. Once the last datacenter is reached, the
assignment continues with the first datacenter, following a circular strategy.
If a datacenter is unable to satisfy a workflow requirements, then it is skipped
and the workflow is assigned to the next datacenter suitable for it.

2. Load Balance (LB): This algorithm aims for a balanced workflow assignment.
To accomplish this, workflows are first sorted according to the maximum
number of cores required by any of their tasks. This way, workflows requiring
more cores are prioritized for scheduling. Workflows are scheduled one at a
time in the sorting order to the datacenter with the lowest number of assigned
workflows.

3. MaxMin: This algorithm assigns each workflow to the datacenter that can
execute it faster. In each iteration, the workflow with the maximum estimated
completion time is selected and assigned to a datacenter that can finish it
earlier, considering its core requirements. In this case, the completion time of
each workflow is estimated with the sum of the execution time of the tasks in

Energy Aware Multiobjective Scheduling in a Federation 345

its critical path. This procedure continues until all workflows are assigned. As
a result, longer workflows are scheduled before shorter workflows, following
the heuristic knowledge that scheduling longer workflows first produce a more
balanced schedule.

4. MaxMIN : Just like MaxMin, this algorithm schedules first the workflows
with longest completion estimation time, considering the completion estima-
tion time of all the other workflows scheduled in the datacenters. However,
workflows are scheduled to the datacenter that minimizes their overall energy
consumption estimation. That is, MaxMIN schedules the longest workflows
first to the datacenter consuming the minimum amount of energy. Again,
energy consumption estimation and execution time estimation in this heuris-
tic is based on the total execution time of the tasks in its critical path.

5. MinMIN : Similar to MaxMIN, but in this case in each iteration of the algo-
rithm, the workflow that requires the overall minimum completion time is
selected first and assigned to a datacenter with the lowest energy consump-
tion.

6. Core-Aware MaxMin (CA-MaxMin): The CA-MaxMin works exactly as
MaxMin, but estimates the overall completion time with the execution time
of the tasks in its critical path multiplied by the number of cores required
by all of its tasks. This new estimator prioritizes the scheduling of workflows
with heavy processing requirements.

7. Longest First (LF): Finally, the LF is a simple algorithm based on the LB
heuristic. Both algorithm are identical, except initial workflow sorting is per-
formed differently. The LF heuristic sort workflows are sorted considering the
product of their critical path execution time, the sum of the execution time
of all of the tasks in the workflow, and the sum of the total number of cores
required by all of its tasks. This estimator schedules first the most computing
demanding workflows, balancing these workflows adequately among the data
centers.

The RR, LB, MaxMin, MaxMIN, and MinMIN algorithm were all introduced
in [8], while CA-MaxMin and LF were newly designed for this work. Further-
more, because the EFTH low-level heuristic does not deal with workflow order-
ing, we propose to combine the proposed high-level heuristics with a workflow
sorting algorithm. That is, after the scheduling algorithm assigns each workflow
to a datacenter, a sorting algorithm optimizes the ordering of workflows in each
datacenter. The rationale for this is that the best ordering for the assignment
of workflows to datacenters may not be the same as the best ordering for the
execution of the workflows in each datacenter. The considered sorting criteria
are presented next.

1. Unsorted (U): Applies no sorting algorithm. Workflows remain in the order
the workflow assignment process produced.

2. Average Cores per level (AC): Sorts workflows according to the average num-
ber of total cores per level of the workflow graph.

346 S. Iturriaga and S. Nesmachnow

3. Maximum Cores (MC): Sorts workflows according to the number of cores
required by the task that requires the most cores. Sorting is untied by con-
sidering the length of the critical path of the workflow.

4. Computing Load (L): Sorting is performed based on the total execution time
of the tasks in the critical path of the workflow multiplied by the average
number of cores per level of the workflow graph.

Overall, we considered a total of 56 high-level scheduling heuristics, consider-
ing the combination of each scheduling algorithm with each sorting criterion in
ascending (ASC) and descending (DSC) direction. For simplicity, from now on
heuristics will be referred using the nomenclature: scheduling algorithm + sorting
criterion + sorting direction. For example, the heuristic comprised by the RR
algorithm, with AC sorting in ascending direction is referred as: RR+AC+ASC.

4.3 Development and Execution Platform

The proposed high-level heuristics were implemented Java. The high-level
MOEA was also implemented in Java using the jMetal framework [6]. The low-
level heuristic was implemented in C and compiled using the GNU C compiler.
All the experiments were performed in ClusterFING, the HPC facility of Uni-
versidad de la República, Uruguay (platform website: https://www.fing.edu.uy/
cluster).

4.4 Numerical Results

This section reports the results computed by the proposed methods.

High-level heuristic scheduler. This subsection presents a comparison
between the proposed high-level scheduling heuristics. Since these schedulers
are single-objective algorithms, the comparison is performed separately for each
problem objective using the gap metric.

The gap metric of a given objective for some scheduler is defined as the
unity-based normalization of the objective value. Equation 4 presents the gap
metric for scheduler s, with vs the value for the objective computed by s, and
vw the worst value and vb the best value computed by any scheduler. Because
all considered objectives are minimization objectives, the smaller the gap value
the better the result. That is, when gap = 0 then s is the scheduler computing
the best schedule for that objective. We define the gapM , gapE , and gapS for
measuring the gap of the makespan, energy consumption, and SLA violations
objectives respectively.

gap =
vs − vb

vw − vb
(4)

We perform a statistical analysis over the results of the proposed schedul-
ing heuristics for determining the most accurate heuristics for each objective.
First, normality of the computed values is rejected with p − value ≤ 0.0077

https://www.fing.edu.uy/cluster
https://www.fing.edu.uy/cluster

Energy Aware Multiobjective Scheduling in a Federation 347

after applying a Kormogorov-Smirnov test for normality. After discarding nor-
mality, the Kruskal-Wallis test is applied to test the equality of the medians
of the results. The Kruskal-Wallis test shows significant differences between the
medians with a p − value ≤ 0.0001. Hence, there are significant differences in
the accuracy of at least one of the heuristics. The Dunn’s post hoc test is used
for pinpointing pairwise differences between the results of the heuristics. The
pairwise comparison shows no heuristic is significantly more accurate than all
the rest for any objective. However, a ranking of the pairwise differences (with
p − value ≤ 0.05) shows the overall best performing scheduling algorithms are
CA-MaxMin and LF.

Table 2 presents the average and standard deviation gap computed by the
best performing scheduling heuristics for each problem objective, with the most
accurate results presented in gray. The Dunn’s test shows CA-MaxMin+U, CA-
MaxMin+AC+ASC, CA-MaxMin+MC+ASC, and CA-MaxMin+L+ASC are
all significantly more accurate than around 84% of the remaining heuristics
when optimizing makespan. LF+AC+DSC and LF+MC+DSC are significantly
more accurate than around 87% of the remaining heuristics when optimizing the
energy consumption objective. And finally, CA-MaxMin+L+DSC is significantly
more accurate than around 70% of the remaining heuristics when optimizing the
SLA violations.

Table 2. Average and standard deviation gap values of the most accurate high-level
scheduling heuristics for all the problem instances.

scheduling sorting sorting
gapM gapE gapSalgorithm criterion direction

CA-MaxMin

U none 0.03±0.04 0.63±0.06 0.76±0.16

AC
ASC 0.03±0.04 0.63±0.06 0.76±0.16
DSC 0.09±0.04 0.65±0.06 0.23±0.07

MC
ASC 0.03±0.04 0.63±0.06 0.76±0.16
DSC 0.14±0.05 0.68±0.07 0.31±0.08

L
ASC 0.03±0.04 0.63±0.06 0.76±0.16
DSC 0.12±0.04 0.71±0.06 0.05±0.04

LF

U none 0.90±0.08 0.16±0.08 0.90±0.06

AC
ASC 0.90±0.08 0.16±0.08 0.90±0.06
DSC 0.89±0.07 0.01±0.02 0.71±0.10

MC
ASC 0.90±0.08 0.16±0.08 0.90±0.06
DSC 0.97±0.04 0.03±0.02 0.78±0.11

L
ASC 0.90±0.08 0.16±0.08 0.90±0.06
DSC 0.92±0.05 0.08±0.04 0.65±0.07

Best results for each objective are marked in gray (p − value ≤ 0.05).

The most accurate heuristics are selected for comparison with the high-
level NSGA-II scheduler. Several heuristics showed to be equally accurate for

348 S. Iturriaga and S. Nesmachnow

optimizing the makespan objective. Hence, following the Occam’s razor prin-
ciple we select CA-MaxMin+U for the comparison. Again, LF+AC+DSC and
LF+MC+DSC showed no significant difference between them for optimizing
energy consumption. However, LF+AC+DSC shows a better average gap metric
than LF+MC+DSC. Hence, LF+AC+DSC is selected for comparison. Finally,
CA-MaxMin+L+DSC is selected for comparing of the SLA violations objective.
For simplicity, from now on these heuristics will be simply referred as Makespan
heuristic, Energy heuristic and SLA heuristic respectively.

High-level NSGA-II scheduler. This subsection summarizes the comparison
between the NSGA-II scheduler and the most accurate heuristic schedulers. For
the comparison, a total of 30 independent NSGA-II executions were performed
for each problem instance.

Table 3 shows the average improvement and standard deviation for the best
solution obtained by NSGA-II for each objective comparing with the solution
obtained by the best heuristic for that objective. Overall results show the NSGA-
II outperforms the best heuristics, improving–in average–the best heuristics by
up to 33% in makespan, 6% in energy consumption and 30% in SLA viola-
tions. Nevertheless, there is significant variations in the accuracy of the NSGA-II
results depending on the instance type and scenario size.

Table 3. Average and standard deviation of improvement of the NSGA-II scheduler
for each objective when compared to the best heuristic scheduler

Instance type Improvement over the best heuristic

fM fE fS

Small-sized scenarios

Heterogeneous-Parallel 9.4 ± 4.3% 9.8 ± 0.6% 0.0 ± 1.6%

Homogeneous-Parallel 16.0 ± 4.2% 13.0 ± 0.5% −1.7 ± 2.0%

Serial-Parallel 8.3 ± 4.2% 9.4 ± 0.3% 1.0 ± 0.8%

Single-Task 57.0 ± 5.9% 8.4 ± 0.7% 90.0 ± 2.5%

Mix 11.0 ± 3.2% 12.0 ± 3.1% −0.7 ± 3.0%

Large-sized scenarios

Heterogeneous-Parallel 44.0 ± 2.9% 2.9 ± 0.9% 5.9 ± 2.2%

Homogeneous-Parallel 42.0 ± 8.6% 1.4 ± 0.5% 63.0 ± 9.3%

Serial-Parallel 48.0 ± 2.9% 2.4 ± 0.7% 4.8 ± 2.4%

Single-Task 57.0 ± 10.0% 2.3 ± 0.8% 99.0 ± 0.9%

Mix 40.0 ± 3.3% 4.0 ± 1.2% 41.0 ± 23.0%

For the small-sized scenarios, NSGA-II produces the best makespan and
SLA violations improvements when dealing with Single-Task instances, and
produces the best energy consumption improvements when dealing with

Energy Aware Multiobjective Scheduling in a Federation 349

Homogeneous-Parallel instances. Furthermore, NSGA-II is able to consistently
improve makespan and energy consumption objectives for all instances. How-
ever, although NSGA-II improves SLA violations by up to 90% when dealing
with Single-Task instances, it is unable to improve or even worsens SLA viola-
tions for the remaining type of instances. This is because small-sized instances are
heavily loaded instances with a large number of workflows and a small number
of available computing resources. This makes it difficult for NSGA-II to improve
SLA violations while also improving makespan and energy consumption.

NSGA-II behaves differently when dealing with large-sized scenarios. For
these scenarios, NSGA-II is able to improve makespan consistently, with an
average improvement of 40%–57% for all instances. Furthermore, SLA violations
are also consistently improved on all instances, no longer worsening the heuris-
tics results, and largely improving SLA violations for the Homogeneous-Parallel
instances when compared to small-sized scenarios. However, improvement on
energy consumption drops from 10% in average for small-sized scenarios to 2%
in average for large-sized scenarios.

Overall, results show NSGA-II consistently improves heuristics results for
the Single-Task instances in both scenarios and for all objectives, while the
remaining type of instances present diverse results depending on the objective.
On the one hand, NSGA-II consistently improves makespan in all scenarios. On
the other hand, improvements of energy consumption and SLA violations are
not consistent. Energy consumption is most improved for small-sized scenarios,
with little improvement for large-sized scenarios. While SLA violations are most
improved for large-sized scenarios, with negligible improvements for small-sized
scenarios except when dealing with Single-Task instances. Figure 2 present sam-
ples of Pareto fronts computed by NSGA-II and schedules computed by each of
the best heuristics.

0

0.5

1

1.5

0.911.11.21.31.41.5

x 104

0

200

400

600

800

Makespan
Energy consumption

SL
A

vi
ol

at
io

ns

Makespan heuristic
Energy heuristic
SLA heuristic
NSGA−II

(a) Homogeneous-Parallel

0

0.02

0.04

0.06

350400450500550600
0

100

200

300

400

500

Makespan
Energy consumption

SL
A

vi
ol

at
io

ns

Makespan heuristic
Energy heuristic
SLA heuristic
NSGA−II

(b) Single-Task

Fig. 2. Sample results computed by the best heuristics and NSGA-II for large-sized
scenarios

350 S. Iturriaga and S. Nesmachnow

5 Conclusions

In this paper we propose a multiobjective formulation for modeling the schedul-
ing of a large number of workflows in a federation of datacenters to simultane-
ously minimize three objectives: makespan, energy consumption, and number of
jobs violating a SLA threshold. This formulation extends the formulation pro-
posed in [8] by considering heterogeneous datacenters and networking commu-
nication. This new formulation provides a more realistic modeling for nowadays
datacenters.

We consider a two-level hierarchical scheduling approach to address the pro-
posed problem. The high-level algorithm schedules workflows to datacenters,
while the low-level algorithm schedules the tasks of the workflows assigned to
each datacenter to the servers in that datacenter. This two-level strategy simpli-
fies the scheduling problem by dividing the whole problem into two sub-problems.

Regarding the high-level scheduler, we proposed a total of 56 heuristic algo-
rithms for online scheduling, and a MOEA based on NSGA-II for offline schedul-
ing. We studied and compared the accuracy of all the proposed high-level sched-
ulers considering a set of 100 diverse and realistic problem instances.

The analysis of the proposed high-level heuristics shows CA-MaxMin+U,
CA-MaxMin+AC+ASC, CA-MaxMin+MC+ASC, and CA-MaxMin+L+ASC
are the most accurate heuristics for makespan optimization. LF+AC+DSC and
LF+MC+DSC are the most accurate heuristics for energy consumption opti-
mization, and CA-MaxMin+L+DSC is the most accurate for SLA violations
optimization.

The proposed NSGA-II proved to be an accurate method for addressing the
proposed scheduling problem. In average, NSGA-II is able to improve makespan
by 20%, energy consumption by 10% and SLA violations by 17% over the best
heuristics for the small-sized scenarios. For the large-sized scenarios, NSGA-II
improves makespan by 46%, energy consumption by 2% and SLA violations by
42% in average. Furthermore, NSGA-II is able to compute a diverse set of trade-
off schedules with different levels of compromise between all three objectives.

The main line of future work consists in comparing the NSGA-II scheduler
with other MOEA to analyze the accuracy of its computed Pareto front. On
top of that, we propose to develop an mixed integer programming solution for
computing exact lower-bounds for studying the optimality gap for each objective.
Finally, we propose to evaluate our proposed methods with real-world workflows
and datacenters to further study the behavior of the computed results.

References

1. Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green Computing. Chap-
man & Hall/CRC, Boca Raton (2012)

2. Chen, S., Li, Z., Yang, B., Rudolph, G.: Quantum-inspired hyper-heuristics for
energy-aware scheduling on heterogeneous computing systems. IEEE Trans. Par-
allel Distrib. Syst. 27(6), 1796–1810 (2016)

Energy Aware Multiobjective Scheduling in a Federation 351

3. de Assuncao, M., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters, pp. 141–150 (2009)

4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

5. Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A.Y., Talbi, E.-G., Bou-
vry, P.: A hierarchical approach for energy-efficient scheduling of large workloads
in multicore distributed systems. Sustain. Comput.: Inform. Syst. 4(4), 252–261
(2014)

6. Durillo, J., Nebro, A.: jMetal: a Java framework for multi-objective optimization.
Adv. Eng. Softw. 42, 760–771 (2011)

7. Garg, R., Kumar Singh, A.: Energy-aware workflow scheduling in grid under QoS
constraints. Arab. J. Sci. Eng. 41(2), 495–511 (2016)

8. Iturriaga, S., Dorronsoro, B., Nesmachnow, S.: Multiobjective evolutionary algo-
rithms for energy and service level scheduling in a federation of distributed data-
centers. Int. Trans. Oper. Res. 24(1–2), 199–228 (2017)

9. Iturriaga, S., Nesmachnow, S.: Multiobjective scheduling of green-powered data-
centers considering QoS and budget objectives. In: IEEE Innovative Smart Grid
Technologies Latin America, pp. 570–573 (2015)

10. Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy efficient schedul-
ing in heterogeneous systems with a parallel multiobjective local search. Comput.
Inform. J. 32(2), 273–294 (2013)

11. Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimiza-
tion of energy consumption and response time in computational grids. IEEE Trans.
Parallel Distrib. Syst. 20, 346–360 (2009)

12. Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications
with deadline constraints on DVS-enabled clusters. In: 7th IEEE International
Symposium on Cluster Computing and the Grid, pp. 541–548 (2007)

13. Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing sys-
tems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22,
1374–1381 (2011)

14. Li, Y., Liu, Y., Qian, D.: A heuristic energy-aware scheduling algorithm for het-
erogeneous clusters. In: 15th International Conference on Parallel and Distributed
Systems, pp. 407–413 (2009)

15. Lindberg, P., Leingang, J., Lysaker, D., Khan, S., Li, J.: Comparison and anal-
ysis of eight scheduling heuristics for the optimization of energy consumption
and makespan in large-scale distributed systems. J. Supercomput. 59(1), 323–360
(2012)

16. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E.G., Zomaya, A., Tuyttens,
D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011)

17. Moon, H., Chi, Y., Hacigümüş, H.: Performance evaluation of scheduling algo-
rithms for database services with soft and hard SLAs. In: 2nd International Work-
shop on Data Intensive Computing in the Clouds, pp. 81–90 (2011)

18. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods
for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)

19. Nesmachnow, S., Dorronsoro, B., Pecero, J.E., Bouvry, P.: Energy-aware scheduling
on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–
680 (2013)

20. Nesmachnow, S., Perfumo, C., Goiri, Í.: Holistic multiobjective planning of data-
centers powered by renewable energy. Cluster Comput. 18(4), 1379–1397 (2015)

352 S. Iturriaga and S. Nesmachnow

21. Pecero, J., Bouvry, P., Fraire, H., Khan, S.: A multi-objective grasp algorithm
for joint optimization of energy consumption and schedule length of precedence-
constrained applications. In: International Conference on Cloud and Green Com-
puting, pp. 1–8 (2011)

22. Pinel, F., Dorronsoro, B., Pecero, J., Bouvry, P., Khan, S.: A two-phase heuristic
for the energy-efficient scheduling of independent tasks on computational grids.
Cluster Comput. 16(3), 421–433 (2013)

23. Ren, Z., Zhang, X., Shi, W.: Resource scheduling in data-centric systems. In: Khan,
S.U., Zomaya, A.Y. (eds.) Handbook on Data Centers, pp. 1307–1330. Springer,
New York (2015). https://doi.org/10.1007/978-1-4939-2092-1 46

24. Taheri, J., Zomaya, A., Khan, S.: Grid simulation tools for job scheduling and
datafile replication. In: Scalable Computing and Communications: Theory and
Practice (Chap. 35), pp. 777–797. Wiley, Hoboken (2013)

25. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S., Li, K.: An energy-efficient task
scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14,
55–74 (2016)

26. Wang, Y.-R., Huang, K.-C., Wang, F.-J.: Scheduling online mixed-parallel work-
flows of rigid tasks in heterogeneous multi-cluster environments. Future Gener.
Comput. Syst. 60, 35–47 (2016)

27. Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective workflow schedul-
ing in cloud. IEEE Trans. Parallel Distrib. Syst. 27(5), 1344–1357 (2016)

28. Zomaya, A., Khan, S.: Handbook on Data Centers. Springer, New York (2014).
https://doi.org/10.1007/978-1-4939-2092-1

https://doi.org/10.1007/978-1-4939-2092-1_46
https://doi.org/10.1007/978-1-4939-2092-1

Markov Decision Process to Dynamically Adapt
Spots Instances Ratio on the Autoscaling

of Scientific Workflows in the Cloud

Yisel Gaŕı1(B), David A. Monge1,2, Cristian Mateos4,
and Carlos Garćıa Garino1,3

1 ITIC-CONICET, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
ygari@uncu.edu.ar

2 Facultad de Ciencias Exactas y Naturales, UNCuyo, Mendoza, Argentina
3 Facultad de Ingenieŕıa, UNCuyo, Mendoza, Argentina

4 ISISTAN-UNICEN-CONICET, Tandil, Buenos Aires, Argentina

Abstract. Spot instances are extensively used to take advantage of
large-scale Cloud infrastructures at lower prices than traditional on-
demand instances. Autoscaling scientific workflows in the Cloud con-
sidering both spot and on-demand instances presents a major challenge
as the autoscalers have to determine the proper amount and type of vir-
tual machine instances to acquire, dynamically adjusting the number of
instances under each pricing model (spots or on-demand) depending on
the workflow needs. Under budget constraints, this adjustment is per-
formed by an assignment policy that determines the suitable proportion
of the available budget intended for each model. We propose an app-
roach to derive an adaptive budget assignment policy able to reassign
the budget at any point in the workflow execution. Given the inherent
variability of the resources in a Cloud, we formalize the described prob-
lem as a Markov Decision Process and derive adaptive policies based on
other baseline policies. Experiments demonstrate that our policies out-
perform all the baseline policies in terms of makespan and most of them
in terms of cost. These promising results encourage the future study
of new strategies aiming to find optimal budget policies applied to the
execution of workflows on the Cloud.

1 Introduction

Scientific workflows have been widely used to model complex experiments in
many science disciplines such as Geosciences, Astronomy and Bioinformatics.
Therefore, they often involve experiments with a large number of tasks and
many hours of computation. The Cloud Computing paradigm facilitates the
acquisition of computing infrastructures based on virtualization technologies [1].
In public Clouds, users can access a wide spectrum of hardware and software
configurations offered by several types of Virtual Machine (VM) instances under
a pay-per-use scheme.

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 353–369, 2018.
https://doi.org/10.1007/978-3-319-73353-1_25

354 Y. Gaŕı et al.

Public Cloud providers commonly offer at least two pricing models: on-
demand instances and spot instances. In the first model, on-demand instances
can be purchased for a fixed price, typically charged by the number of used hours.
In the second model, the prices of spot instances fluctuate –i.e. decreasing during
low demand periods– and the user must bid the highest price that he is willing
to pay for each instance. Spot prices can show reductions of more than 50% with
respect to the on-demand prices1. Thus, spot instances seem very attractive to
optimize the trade-off between cost and performance of an infrastructure, but
they in turn compromise cost and reliability. If the spot price overcomes the
user’s bid, an out-of-bid error is produced terminating the affected instances
and interrupting the tasks that may be running.

Autoscaling strategies [2,3] dynamically scale the infrastructure to fulfill the
workflows variable workload patterns and also efficiently schedule the workflow
tasks in the available instances. Autoscaling using spot instances requires to
determine, on each scaling step, the right proportion of spot and on-demand
instances. Under budget constraints, this decision is crucial as we can exploit the
huge parallelism potential offered by spot instances without incurring on costs
that violate the constraints. In this context, we need to endow autoscalers with a
policy that properly assigns the available budget for the acquisition of on-demand
or spot instances according to the variable workflow computational requirements.
Deriving such a policy is not trivial due to the difficulty of estimating tasks
running-times [4]. Even more, spot prices are also very difficult to predict making
very hard to anticipate the occurrence of out-of-bid errors [5].

Although many scientific workflows can be benchmarked [6,7] to provide
accurate information about the tasks workload, it would not be feasible to bench-
mark each new workflow that may appear due to the effort and time implied in
a benchmarking process. Then, we considered the workload as a source of uncer-
tainty, according to the inherent variability of the resources in a Cloud and the
final objective of being able to perform well with completely unknown workflows.

This problem can be seen as a problem of decision making under uncertainty,
which can be defined as a Markov Decision Process (MDP). By defining the
problem in such way we are able to derive new budget assignment policies from
simpler policies, which can decide the most convenient budget assignment based
on the current execution progress and resources availability minimizing workflow
makespan under budget constraints. The contributions of this paper are:

– We formalize (Sect. 3) the problem of obtaining an adaptive budget assign-
ment policy by casting such problem to an MDP. We describe the key elements
required to define an MDP and how we define them for the problem at hand.

– We incorporated different fixed, random and adaptive policies in a start-
of-the-art autoscaler called Spot Instances Aware Autoscaling (SIAA) that
pursues workflow makespan minimization subject to budget constraints by
combining spot and on-demand instances. We proposed this autoscaler in our
previous works [3,8], being the first of them published in a earlier edition of
this conference.

1 Amazon EC2 spot instances. https://aws.amazon.com/ec2/spot/pricing/.

https://aws.amazon.com/ec2/spot/pricing/

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 355

– We assessed the performance of the MDP adaptive policies in comparison
with other simpler policies used as baseline, in terms of makespan and cost
for a well-known workflow benchmark from the area of Geosciences: Cyber-
Shake [6]. Details of the experimental settings and results are discussed on
Sect. 5.

Then, Sect. 6 exposes the most relevant related works in the area of MDPs and
the execution of Cloud-based applications. Finally, Sect. 7 concludes this work
and delineates future research lines.

2 Workflow Autoscaling

Workflow applications include a set of reusable software components denomi-
nated tasks which have dependency relationships. A widely-used way to model
workflows is through a Directed Acyclic Graph (DAG), where tasks are repre-
sented by nodes, and task dependencies are represented by edges in the graph. In
particular, scientific workflows, usually comprise hundred or thousands of tasks,
whose type and duration may vary, involving several calculation hours. In this
work we assume that there is a central storage for data and that transfer oper-
ations are carried out as part of the execution of tasks. Also, there is a wide
spectrum of VM instances types and pricing models available.

Given an input workflow, autoscaling strategies regard two interrelated sub-
problems: (a) determine the proper number and type of VM instances, and (b)
scheduling the workflow tasks on the available instances. Both sub-problems are
NP-hard and therefore the solutions proposed to date are based on heuristics [2,
8]. To adapt the execution to the workflow requirements and mitigate the effect
of the discrepancies between the estimations and the actual progression of the
execution, autoscaling strategies are executed periodically [3].

The workflow autoscaling problem using a mixed infrastructure, namely com-
prising both on-demand and spot instances, poses a new important issue on each
scaling step: how to split the budget between both pricing models and what is
the effect on makespan? Usually, this balance is governed in autoscalers by the
spots ratio parameter (ρ ∈ [0, 1]), which given the original budget B sets the
maximum amount of money available for on-demand and spot instances, respec-
tively. Then, the budget for on-demand instances is Bod = (1 − ρ) · B and the
budget for spot instances is computed as Bs = ρ · B. Periodically, the autoscal-
ing strategy addresses a makespan minimization problem subject to these budget
constraints.

Given T (the set of tasks in the workflow), Itype (the set of available VM
types offered by the Cloud provider) and Ischeme (the two pricing models, i.e. spot
instances and on-demand instances), such optimization problem is defined as:

min{makespan(Xsca,Xsch, S)} (1)
s.t. : costod(Xsca) ≤ Bod, costs(Xsca, Ubid) ≤ Bs,

where Xsca = {Itype × Ischeme → N} define a scaling plan that indicates the
number of necessary on-demand and spot instances of each VM type for the

356 Y. Gaŕı et al.

next hour of computation, Xsch = {T → Itype} is a scheduling plan that maps
each task t ∈ T to a type of instance where it will execute, S represents the
current status of the infrastructure and the workflow. The Ubid = {Itype → R

+}
is the selected bid price for each VM type; bid prices are provided by the user
or by a bidding prediction method [9,10]. The costod and costs functions return
the cost of the on-demand and spots instances respectively, according with the
scaling plan. Finally, Bodand Bs represent the split budget for the next hour of
computation.

In this way, autoscaling strategies aim to adapt the number of required
instances of each pricing model considering the split budget constraint and min-
imize workflow makespan by periodically solving the optimization problem pre-
sented on Eq. (1).

2.1 Problem Definition

Scientific workflows present different dependency structures and workload pat-
terns. Thus, during the execution of a workflow, there are stages with many
tasks that can be executed in parallel and others in which execution must be
performed in a sequential way. Spot instances can help us to increase the infras-
tructure during the high workload stages reducing makespan with low costs, but
such instances involve a compromise between cost and reliability. Depending on
the context, it might be convenient to use more spot instances than on-demand
instances or viceversa.

A fixed budget assignment policy, which keep spots ratio parameter constant
along the entire workflow execution, does not allow to exploit the entire potential
of a mixed infrastructure, reducing the explored makespan-cost balance combi-
nations. Moreover, a random policy could help us to explore the solutions space
in a broader range, but lacks a sense of optimality because of its random nature.
Then, in this paper, we address the problem of finding an optimal adaptive bud-
get assignment policy that improves the adaptability of autoscaling strategies.
Our approach is able to derive an adaptive policy from the feedback obtained
from previous executions using other policies used as baseline, i.e. fixed and
random. The feedback represents the state of the workflow execution and the
infrastructure on each autoscaling period.

Figure 1 shows an example of an adaptive and a fixed budget assignment
policy taken from the experiments presented in Sect. 5.2. The workflow execution
steps are represented starting on the initial state and ending in the terminal
state. Circles represent periodical scaling steps and links the spots ratio values
taken. Inside the circles, it can be seen the number of spot instances (on top),
on-demand instances (bottom) and between them the accumulated execution
cost on each transition. As can be observed the adaptive policy almost doubles
the number of spot instances acquired compared to the fixed policy, allowing
it to execute more tasks in parallel. Notice that the adaptive policy causes the
workflow execution to finish one step earlier (means makespan reduction) than
the fixed policy.

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 357

Initial
 State

Terminal
 State

0
1

0
1

0.0 0.0 1.0 0.7 0.5

Initial
 State

Terminal
 State

0
1

0
1

0.5 0.5 0.5 0.5 0.5

25
1

23
4

13
6

12
6

13
6

0.5

$0.42 $0.84 $1.26 $5.78 $13.00
$0.42 $0.84 $3.27 $7.23 $11.78 $15.28

Adaptive
Policy

Fixed
 Policy

Spots
On-demand

Fig. 1. Example of an adaptive (on top) and a fixed budget assignment policy (bottom).
The cost of the entire execution is highlighted in bold font.

3 Budget Assignment as an MDP

Markov Decision Process [11] is an intuitive and fundamental formalism for
problems of decision making under uncertainty. An MDP comprises a set of states
and a set of possible actions to take on each state, with the goal of determining a
sequence of actions that minimize/maximize some performance criterion. MDPs
have become the de facto standard formalism for learning sequential decision
making [12] and it has been applied to Cloud Computing problems [10,13,14].

Finding an optimal adaptive budget assignment policy in the context of
Cloud workflow autoscaling is similar to an intelligent agent making decisions
in a stochastic environment. On each scaling step the agent has to choose the
proper budget assignment action based on the current state of the workflow
execution and the infrastructure. The agent utility depends on a sequence of
decisions and from each one it achieves a specific local progress related to the
amount of work done. This progress can be seen as a reward. Finally, the agent
goal is to produce an optimal behavior that balances the risks and rewards of
acting under uncertainty. The uncertainty arises from the impossibility of the
performance models to exactly estimate the execution time of workflow tasks,
as well as the impact of the failures of the spots instances on the expected per-
formance of the infrastructure. Thereby, the problem addressed in this paper is
a sequential decision making problem in an stochastic domain and the objective
is to derive an optimal adaptive budget assignment policy. Thus, we propose
a solution approach using an MDP model that allows us to obtain this policy
automatically.

3.1 Theoretical Foundations

An MDP can typically be represented as a 5-tuple (S,A, P·(·, ·), R·(·, ·), γ) where:

– S represents the environmental state space;
– A represents the total action space;
– Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) represents the probability that action

a in state s at time t will lead to state s′ at time t + 1;

358 Y. Gaŕı et al.

– Ra(s, s′) represents the (expected) immediate reward received after transi-
tioning from state s to state s′ due to action a;

– γ ∈ [0, 1] (or discount factor) is the difference in importance between future
and immediate rewards. When γ is close to 0, rewards in the distant future
are viewed as insignificant. When γ is 1 all rewards are equally important
(i.e. additive rewards).

A solution to this problem is the sequence of actions that denote the agent
behavior and is represented as policy function Π(s) ∈ A that defines which
action must be taken on each state. An optimal policy is a policy that yields the
highest expected utility.

Figure 2 depicts a simple MDP model. Choosing Action1 on State1 will lead
to State2 with a transition probability of 0.8 or will stay on State1 with a
probability of 0.2. Otherwise, choosing Action2 on State1 will lead to State2
with a transition probability of 0.6 or will stay on State1 with a probability of
0.4. Thereby, the best chance to get State2 starting on State1 seems to be by
taking Action1 because it provides a greater probability of success. Moreover,
to obtain an optimal policy it is necessary to compute the utility of each state
based on the probabilities and rewards of all possible outcoming transitions and
the utility of the reached states.

State 1

a1

a2

a1

a2

State 2

(0.5, 3)

(0.9, 4)

(0.5, 0)

(0.1, 0)

(0.8, 4)

(0.6, 5)

(0.2, 0)

(0.4, 0)

Fig. 2. MDP with two states and two actions (adapted from [14]). The label under
each transition shows the corresponding probability and reward values.

3.2 Deriving Adaptive Budget Assignment Policies

We propose to derive an adaptive budget assignment policy by casting the prob-
lem to an MDP. We define the state space S = {EW,RTR} as the conjunction
of two state variables, expected workload (EW) and running task ratio (RTR),
which describe the environment on a certain execution moment.

EW represents the workload degree that could be present in the next exe-
cution period, and it is estimated according to the workload and dependencies
present in the sub-workflow formed by the tasks that are likely to be running.
In order to estimate a representative value, we select the sub-workflow level2

with the highest workload, considering the total duration of the tasks based on
2 The task dependencies structure defines workflow levels.

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 359

the amount required machine hours for its completion. Also, we weigh up the
workload of each level, according to the minimum estimated start time of the
tasks, giving more importance to the first levels, since they are more prone to
be executed. Given Υ the set of task belonging to the next period sub-workflow
and Υ (i) the set of the tasks in the level i where Υ (i) ⊆ Υ ⊆ T , EW is defined
as EW = max{workload(Υ (i))Φ(i)}/workload(T).

The factor Φ(i) weigh up the workload value of each level and it is calculated
as EW = Δ−min

kεΥ (i){startTimek−currentTime}/Δ, where Δ is the amount of time
that determines the frequency of the autoscaling steps, startTimek is the esti-
mated start time of the task k in level i and currentTime is the current execution
time. Higher workloads indicate that it might be necessary to increase the infras-
tructure size and thus reduce the waiting time of tasks and thus the workflow
makespan. Because budget is limited, EW is closely related with the amount
of spot instances, as they maximize parallelism at lower costs. Conversely, a
low EW value could indicate a sequential stage of critical tasks, suitable for a
reduced and reliable infrastructure. Critical tasks are those that if delayed, will
produce an increment of the application makespan (see [3]).

The RTR variable represents the relation between the number of tasks run-
ning and all the tasks that will be executed in the next period. This variable
give us a picture of the current infrastructure state in terms of the number of
running tasks and it represents the availability of computational power for all
the new tasks that will be executed in the next period. Then, RTR = |R|/|Υ |
where R ⊆ Υ is the set of running tasks. Assuming that the values taken by
the variables might not follow a uniform distribution, we discretized the vari-
ables by considering intervals defined by percentiles instead of a regular domain
subdivision, which would be the natural choice for uniformly distributed data.
Finally, we select 10 percentiles samples over each variable resulting in at most
100 possible states.

Each action a ∈ A has the form “Assign a ρ percent of the budget B to
acquire spot instances” and exactly matches with the value of the spots ratio
parameter (e.g., 0.1, 0.2, . . . , 1.0). We define 11 possible actions in the inter-
val [0, 1].

The probability function Pa(s, s′) returns the probability of a transition ta,s,s′

from state s to a state s′ by taking the action a based on the number of observed
transitions occurrences on previous workflows executions. Let Ta,s,s′ be the set of
observed ta,s,s′ transitions and Ta,s,s̄ the set of observed transitions that depart
from state s and reach any other state s̄ through the action a. Then, Pa(s, s′) =
|Ta,s,s′ |/|Ta,s,s̄|.

The reward function Ra(s, s′) is the expected work progress through the
transition ta,s,s′ and is based on the local progress of each transition (i.e. the
difference of workflow progress between the target and the source state) con-
sidering the duration of the tasks executed in the period. Note that as we are
rewarding those actions that lead to greater time reductions, the derived poli-
cies will help the autoscaler in finding scaling and scheduling plans that tend
to reduce makespan, i.e. the optimization objective of the problem defined in

360 Y. Gaŕı et al.

Eq. (1). Note also that execution costs are not considered in the rewards as they
are constrained by the available budget. The autoscaler watches over cost to
avoid budget-constraint violations.

Since the same transition may occur several times, as a measure of generality,
the mean value is finally taken as the transition reward. For the MDP model
we use the feedback produced by workflow executions using different fixed and
random policies. In our context such feedback is generated by the autoscaler
on each scaling step by reporting the actual state (EW and RTR values), the
reward for such state (the actual local progress) and the taken action (the spots
ratio used).

Lastly, we use Value Iteration, a dynamic programming algorithm often used
to find an optimal policy on an MDP. Note that the policy is derived off-line
which avoids producing an overhead in the autoscaler. Algorithm1 outlines the
steps involved in Value Iteration. Firstly, the algorithm starts with an arbitrary
value function V0 over all states, then iteratively updates the value of each state
according to:

Vk(s) = max
a

∑

s′
Pa(s, s′)[Ra(s, s′) + γVk−1(s′)], (2)

to get the next value function Vk(k = 1, 2, . . .). It produces the following sequence
of value functions V0 → V1 → V2 → . . . → V ∗. Value Iteration is guaranteed
to converge in the limit towards V ∗, based on Bellman optimality equation,
which states that the value of a state under an optimal policy must be equal
to the expected return for the best action in the state. When the difference
between successive value approximations is lower than a threshold Θ, we assume
convergence and the algorithm approximates an optimal policy by:

Π(s) ← arg max
a

∑

s′
Pa(s, s′)[Ra(s, s′) + γVk(s′)]. (3)

Algorithm 1. Value Iteration
1: procedure ValueIteration(S, A, P, R, γ, Θ):
2: assign V0[S] arbitrarily; k ← 0
3: repeat:
4: k ← k + 1
5: for each state s do: Vk(s) ← update state values according to Eq. (2)
6: until ∀s|Vk[s] − Vk−1[s]| < Θ
7: for each state s do: Π(s) ← update policy according to Eq. (3)
8: return Π, Vk

4 SIAA Strategy Overview

In previous work [3,8], we proposed a novel autoscaling strategy called Spot
Instances Aware Autoscaling (SIAA), which aims for makespan minimization

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 361

subject to budget constraints (established per hour of execution). The distinc-
tive feature of SIAA is to take advantage of spot instances, without losing sight
of the risks they involve. SIAA is executed periodically generating scaling and
scheduling plans for the dynamic adaptation of the infrastructure to the compu-
tational demands of the workflow.

The scaling plan generated by SIAA, indicates the amount of instances to
acquire for each combination of instance type and pricing model. First, the scal-
ing algorithm determines, the total amount of instances of each type needed for
executing the tasks that will be running during the next hour of computation.
Based on that, it calculates the amount of on-demand and spot instances that
can be purchased under the split budget constraints, Bod and Bs respectively.
This process has linear time complexity to the number of running tasks. Then, all
the VM instances on the scaling plan are acquired. At this point, the infrastruc-
ture has been fitted and the workflow must be executed efficiently considering
the available instances.

The scheduling plan of SIAA pursues the objective of makespan minimiza-
tion considering two premises: executing the tasks as fast as possible and mit-
igating the negative effects of instance failures in the overall makespan. The
scheduling algorithm sorts the tasks according to their margin for delays, thus
critical tasks are prioritized for execution. Also, critical tasks are allocated to
on-demand instances whenever possible. This policy favors that failures, if occur,
affect non-critical tasks, which can be rescheduled without a large impact on the
overall makespan. The scheduling algorithm also has linear time complexity to
the number of tasks.

In our previous studies [3,8] the value of ρ was set to 0.5 to maintain a
balance between on-demand and spot instances. Such value was kept fixed during
the entire workflow execution. The main issue with this fixed parameter is that
restricts the parallelism potential of spot instances in cases of many independent
tasks. This approach represents a limitation of SIAA. With the objective of
overcoming such limitation, we propose to derive a budget assignment policy
able to dynamically adapt the value of the parameter ρ during the workflow
execution considering the workload variations. In the next section we use SIAA
as the target autoscaler to evaluate the performance of different fixed, random
and adaptive policies in terms of makespan reductions and cost savings.

5 Experimental Settings and Results

We evaluated the performance of the MDP-based policies against different fixed
and random budget assignment policies. These latter provide in turn the feed-
back necessary to obtain the MDP-based policies. In all cases we used SIAA as
autoscaler, because its novelty and promising performance [3]. We aim to eval-
uate the impact of using an adaptive budget assignment policy versus a fixed
policy, by measuring their performance in terms of makespan and execution cost.
Following the SIAA evaluation [3], we used the actual characteristics of five dif-
ferent types of VM instances of Amazon Elastic Compute Cloud (EC2), belong-
ing to the US-west (Oregon) region. These instances types provide a diverse

362 Y. Gaŕı et al.

spectrum of performance and price configurations. Spot instances have the same
characteristics that on-demand instances, except that their prices vary over time.
We use a history of Amazon EC2 spot prices between March 7th and June 7th

of 2016 for the US-west region.

5.1 Experimental Settings

Case study. For the evaluation of the proposal under real load patterns, we
used a well-known scientific workflow from the area of Geosciences called Cyber-
Shake [6]. The workflow is composed of 1000 tasks belonging to 5 different types
and very different durations for each type. We chose this workflow because its
structure alternates stages of high and low workload suitable for different budget
assignments allowing us to assess the impact of the adaptive budget assignment
policies in makespan and task failures. Figure 3 presents the median durations
and amount of tasks for each type.

Task Type

0.1 0.2 0.5 1 2 5 10 20 50 100
Median Duration in Minutes

PeakValCalcOkaya
ZipPSA
ZipSeis

SeismogramSynthesis
ExtractSGT

x497

x497

x1
x1

x4

1 Minute 1 Hour

Fig. 3. CyberShake: task median durations for a CyberShake workflow with 1000 tasks.
Labels on each bar represent the number of tasks for each type. Duration axis is
presented in logarithmic scale.

Budget assignment policies. For the experiments we evaluate 3 families of bud-
get assignment policies. The two first families are the baseline policies used to
validate our proposal and the last family comprise different configurations of our
MDP policies:

– Eleven Fixed-value policies for which the spot ratios take the values in the
set of possible spot ratios R = {0.0, 0.1, . . . , 1.0}, these policies represent the
strategies that might be set a priori by a user or pre-computed for autoscaling
a workflow as in [3]. Note that this kind of policy lacks dynamism, therefore
we can expect a wrong fit of the infrastructure for variable workload scenarios.

– One Random-value policy. This strategy is included as an example of a simple
dynamic baseline policy. Although intuitively not very effective, it is totally
exploratory in nature and therefore suitable as a source of feedback for obtain-
ing more sophisticated policies like in our proposal. Random values are con-
strained to those in the set of possible spots ratios R.

– Three groups of MDP-based policies resulting from considering the feedback
combinations of the two baseline strategies described above. The MDP-F poli-
cies are derived from the feedback provided by fixed-value policies only, MDP-
R are derived from the random policy only, and MDP-F+R are derived from

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 363

all the baseline strategies. These three configurations are chosen to evaluate
the influence of each type of feedback on the performance of the autoscaler. We
configured the Value Iteration algorithm with Θ = 0.001 (threshold parame-
ter). Also we define a set of values Γ = {0.1, 0.5, 0.9} for the discount factor
γ to explore the impact of long-term rewards on each group, resulting in a
total of nine MDP policies.

Experimental scenarios. The 21 policies described were evaluated using SIAA
with a base budget of 3.55 USD, which represents the 80% of the hourly budget
required to execute a CyberShake workflow with the VM types considered in
this study, and bid prices for spot instances that promise a probability of failure
P < 0.1 to produce scenarios with a moderate amount of task failures. Each
experimental scenario was simulated 30 times (i.e. 630 simulations in total) to
ensure the statistical robustness of results using the CloudSim simulator [15]
version 3.0. In all cases, task durations were affected by a 20% error to offer a
more realistic environment according to the performance variability of the Cloud.

5.2 Results and Discussion

Table 1 summarizes the results obtained per policy including the mean value
for the metrics of the number of acquired instances, percent of spot instances,
the number of out-of-bid errors (OOB) and tasks failures, execution cost and
makespan. Considering the mean values of makespan and execution cost, there
are six Pareto-optimal policies: three of the Fixed-value policies (Fixed-0.8,
Fixed-0.9 and Fixed-1.0) –let us call them Fixed-ManySpots– and the MDP-
based policies with γ = 0.5, whose results are highlighted in the table.

Regarding the Fixed-value policies it can be seen that as the spots ratio
grows always allow the acquisition of a larger amount of instances, tripling the
infrastructure size on the extreme cases (Fixed-0.0 all on-demand and Fixed-1.0
all spots). Also, in presence of a higher percent of spots, the number of out-of-
bid errors increases and therefore more tasks failures occur. Besides, along with
the increase of spots ratio we can appreciate higher makespan reductions and
cost savings. Note that makespan behaves slightly different (i.e. close but with
fluctuating values) in the policies with the spots ratio greater than 0.5. This is
because critical tasks are more exposed to the risk that entails the increment of
the out-of-bid errors.

The Random policy outperforms all fixed policies with spots ratio below
0.4. We must remember that Random compared with the fixed policies dis-
cussed before, has the advantage of being dynamic, but it lacks an optimality
sense. Then, the adaptive policies using the MDP model present different results
according to the γ value: the policies with γ = 0.1 achieve the lowest cost, the
policies with γ = 0.9 perform better in terms of makespan but with higher cost
and the policies with γ = 0.5 are Pareto-optimal with the best makespan results
(even when costs tend to be larger the scaling plans do not violate the budget
constraints). From now on, due to these results, the MDP-based policies will
refer to the case with γ = 0.5. Comparing with the fixed an random policies,

364 Y. Gaŕı et al.

Table 1. Summary of results. Columns present the mean values per policy for each
studied metric.

Policy Instances % Spots OOB Task failures Makespan [s] Cost [USD]

Fixed-0.0 9.0 0 0.0 0.0 29321.9 23.1

Fixed-0.1 11.9 32 0.9 7.2 26531.9 19.8

Fixed-0.2 14.8 51 1.9 14.4 24250.1 17.6

Fixed-0.3 18.0 60 3.2 18.9 21721.6 15.9

Fixed-0.4 19.9 69 3.7 21.3 21068.5 14.1

Fixed-0.5 21.8 77 4.5 19.9 20148.9 12.5

Fixed-0.6 24.3 85 4.2 19.9 22190.0 11.1

Fixed-0.7 26.2 91 4.5 23.0 21631.1 10.4

Fixed-0.8 29.3 92 4.6 23.7 21294.6 10.5

Fixed-0.9 30.8 96 4.9 26.3 21520.8 9.7

Fixed-1.0 32.0 100 5.8 27.8 21620.3 9.1

Random 28.0 74 4.2 23.8 20712.9 15.3

MDP-F (γ = 0.1) 31.9 90 4.9 21.2 21694.5 11.5

MDP-R (γ = 0.1) 33.6 86 4.6 19.5 21519.0 13.4

MDP-F+R (γ = 0.1) 35.0 86 5.3 24.9 21368.0 12.4

MDP-F (γ = 0.5) 31.0 90 4.9 26.5 19116.7 12.0

MDP-R (γ = 0.5) 33.1 88 5.6 30.0 18822.8 12.5

MDP-F+R (γ = 0.5) 35.0 84 5.2 29.6 18598.6 13.7

MDP-F (γ = 0.9) 29.8 75 2.6 10.6 19259.5 16.1

MDP-R (γ = 0.9) 26.3 80 4.2 21.7 19494.4 13.1

MDP-F+R (γ = 0.9) 31.2 74 3.1 20.8 19419.7 16.7

the MDP-based policies acquire the largest infrastructure with a high percent of
spots instances. Also, even with many out-of-bid errors and task failures, these
adaptive policies achieve better results than the most of fixed policies. Moreover,
the fact that the MDP-F+R policy achieves the best makespan result, shows the
potential of partially taking random actions when exploring the solutions space.

Figure 4 presents the mean values and standard deviations for the makespan
and execution cost of the Pareto-optimal policies (Fixed-ManySpots and MDP-
based) and the Random policy. The MDP-based policies present the shortest
makespans and this is the metric that we are optimizing through transition
rewards of the MDP model. Fixed-ManySpots present largest makespans and
largest standard deviations because of the larger impact of out-of-bid errors
on infrastructures comprising a high percent of spot instances. The Fixed-
ManySpots policies also show the best result in terms of cost savings because of
the low prices of the spots instances. In summary, each policy groups optimize a
different objective: MDP-based policies achieve the minimum makespan and the
Fixed-ManySpots policies acquire the cheapest but less reliable infrastructure.

Figure 5 shows the values distributions of makespan and execution cost from
the Pareto-optimal and random policies discussed before. The Fixed-ManySpots

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 365

Policy

0K 5K 10K 15K 20K 25K
Mean Makespan [s]

MDP - F + R
MDP - R
MDP - F
Random
Fixed - 0.8
Fixed - 0.9
Fixed - 1.0

Policy

0 5 10 15
Mean Cost [USD]

Fixed - 1.0
Fixed - 0.9
Fixed - 0.8
MDP - F
MDP - R
MDP - F + R
Random

Fig. 4. Mean makespan (left) and cost comparison (right) for each policy.

policies show a higher dispersion on makespan values indicating the unreliability
inherent to an infrastructure with a high percent of spot instances, doubling the
maximum makespan obtained by an adaptive policy. In terms of cost the Fixed-
ManySpots policies achieves the best values with the smaller median, which is
due to the low prices of the instances acquired. Besides, the MDP-based policies,
present lower makespan values than all of the fixed policies and with much less
dispersion. The Random-value policy shows the worst cost results even when it
outperforms all of the fixed policies w.r.t. makespan.

Policy

15K 20K 25K 30K 35K
Makespan [s]

10 15 20
Cost [USD]

Fixed-0.8

Fixed-0.9

Fixed-1.0

Random

MDP-F

MDP-R

MDP-F+R

Fig. 5. Box-plot comparing the workflow makespan in seconds (left) and the execution
cost in USD (right) values distributions for each policy.

To ensure the statistical significance of our results we grouped the results
of the best-performing MDP and Fixed policies (i.e. MDP-based vs. Fixed-
ManySpots). By applying the Kolmogorov-Smirnov test we found that the
makespan and cost results do not follow a normal distribution. Therefore, we
applied the Mann–Whitney U test, a non-parametric test for median value com-
parison. We applied the test with a significance level of α = 0.1. In terms of
makespan we got the statistic U = 4631 and the p-value = 0.096. In terms of
cost, we got the statistic U = 6910 and the p-value ≤ 0.001. In both cases, the
p-value is less than the significance level, which indicates that our results are
statistically significant with a 90% of confidence.

In summary, the MDP-based policies on states of high workload, usually
choose an action that implies using a higher spots ratio value. This increases the
infrastructure allowing the parallel execution of many tasks. Then, on states of

366 Y. Gaŕı et al.

sequential tasks, the policies reduce the spots ratio value looking for a reliable
infrastructure, ensuring that the critical tasks will not be delayed by the possi-
ble spot instances failures. As explained in Sect. 3.2, rewarding actions that will
potentially reduce execution times produce MDP policies that lead to makespan
reductions when compared with the baseline policies. This observation is consis-
tent with the fact that the autoscaler aims for makespan minimization subject
to budget constraints. Also note that although costs tend to be larger for MDP
than for the baseline policies, SIAA produces scaling plans that do not violate
such budget constraints. These promising results encourage the study of new
strategies aiming to find optimal budget policies applied to the execution of
workflows on the Cloud.

6 Related Work

Decision making under uncertainty is a common scenario in many optimization
problems, thus the MDP has become an interesting approach in the study of a
wide range of problems solved through dynamic programming or reinforcement
learning. Although there have been extensive studies on workflow scheduling and
resource provisioning in Grid and Cloud, to the best of our knowledge, there are
few proposals using MDP to address similar problems.

Barrett et al. [13] proposed a Cloud workflow scheduling approach which
employs an MDP to optimally guide the workflow execution process depending
on environmental state. In addition, the system employs a genetic algorithm
to evolve workflow schedules. In a similar way, Yu et al. [16] proposed a cost-
based workflow scheduling approach based on using MDPs to schedule tasks
on utility Grids. The main objective is to minimize execution cost while meet-
ing the overall deadline. Their approach partitions the workflow into branches
containing sequential tasks with sub-deadlines. Then the branches are mapped
into resources through the solution of an MDP model via the Value Iteration
algorithm. These works address the problem of scheduling workflows through an
MDP, but our proposal is different because it focuses on the problem of bud-
get assignment. We use an MDP model to dynamically determine the optimal
spots ratio on each scaling step, while the scaling and scheduling problems are
delegated to an autoscaler (SIAA in this paper).

Later on, Barrett et al. [14] proposed a method based on MDP and Q-learning
for the autoscaling of independent user requests arriving according to a Poisson
distribution. They model the entire autoscaling problem as deriving policies that
permit request, maintain or kill on-demand VMs. The main differences with our
work are (i) we focus on a policy for the proper assignment of the budget for
on-demand and spot instances, (ii) we focus on scientific workflows instead of
independent user requests.

Tang et al. [10] presented a set of bidding strategies to minimize the cost
and volatility of resource provisioning with the spot instances scheme of Ama-
zon EC2. Essentially, to derive an optimal bidding strategy, the authors formu-
late the problem as a Constrained Markov Decision Process (CMDP). Although

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 367

the authors deal with the problem of spot instances acquisition they focus on
the obtainment of an optimal bidding strategy while our proposal is centered on
the obtainment of an adaptive budget assignment policy for autoscalers, which is
independent of the bidding strategy used. None of the surveyed works addressed
the problem dealt in this paper, which indicates the novelty of our approach.

7 Concluding Remarks

This paper formalizes the problem of finding an adaptive budget assignment pol-
icy as an MDP problem. The approach instantiating the model permits deriving
new policies from the feedback (information about the state of the infrastructure
and the workflow execution) of other policies executed as part of an autoscal-
ing strategy. Obtained policies were compared against baseline policies, fixed
and random. The evaluation was carried out by comparing makespan and exe-
cution cost of a state-of-the-art autoscaler called SIAA using all the studied
policies. Experiments were carried out on the well-known benchmark workflow
(i.e. CyberShake), in the near future, we will extend our analyses by considering
a wider spectrum of workflows applications, e.g. LIGO’s Inspiral, Montage and
SIPHT.

We corroborated that MDP-based policies outperform all the competitor
policies in terms of makespan and most of them in terms of cost. Regarding
makespan, the adaptive policies present important reductions ranging between
2503.6 s and 2696 s (11.6% to 12.7%) without violating the initial budget.
A downside is that the approach incurs in overall cost increases of around 3 USD
in average in comparison with the other Pareto-optimal policies, i.e. fixed policies
with intensive use of spot instances. These are very encouraging results consider-
ing that the MDP policies were obtained only rewarding larger time reductions
and disregarding cost savings. Notice that in our context, the makespan is of
utmost importance because underlying there is a problem of makespan min-
imization under budget constraints. Based on these results and following the
intuition that the MDP-based policies are more adaptable and capable of per-
forming better even facing unknown situations, we will continue improving our
proposal in different ways cited below.

First, we will incorporate a notion of cost saving along with time reduc-
tion into rewards to obtain more balanced policies. Second, we are interested
in studying the applicability of reinforcement learning techniques to update the
policies over time taking advantage of exploration/exploitation approach of these
techniques. Finally, we are interested on redefining our MDP model in order to
capture generic characteristics of the workflow and status of the environment.
The ultimate goal is to be able to obtain policies capable of performing well in
workflows that were not seen previously. This could be a distinctive and valuable
feature for these policies that would really make the MDP approach worth the
effort. All of these issues could have a great impact finding an optimal adaptive
budget assignment policy and in a general sense would be an important step for
achieving a real dynamism and adaptability in autoscaling strategies and Cloud
infrastructure provisioning.

368 Y. Gaŕı et al.

Acknowledgements. This research is supported by the ANPCyT projects No. PICT-
2012-2731 and PICT-2014-1430; and by the UNCuyo project No. SeCTyP-M041. The
authors want to thank the anonymous reviewers for their valuable comments and sug-
gestions that helped to improve the quality of this paper.

References

1. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the
5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

2. Mao, M., Humphrey, M.: Scaling and scheduling to maximize application perfor-
mance within budget constraints in cloud workflows. In: 2013 IEEE 27th Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS), pp. 67–78. IEEE
(2013)

3. Monge, D.A., Yisel, G., Mateos, C., Garćıa Garino, C.: Autoscaling scientific work-
flows on the cloud by combining on-demand and spot instances. Int. J. Comput.
Syst. Sci. Eng. 32(4 Special Issue on Elastic Data Management in Cloud Systems),
291–306 (2017)

4. Expósito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance
analysis of HPC applications in the cloud. Future Gener. Comput. Syst. 29(1),
218–229 (2013)

5. Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
Amazon EC2 spot instance pricing. ACM Trans. Econ. Comput. 1(3), 16:1–16:20
(2013)

6. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013)

7. Huu, T.T., Koslovski, G., Anhalt, F., Montagnat, J., Vicat-Blanc Primet, P.: Joint
elastic cloud and virtual network framework for application performance-cost opti-
mization. J. Grid Comput. 9(1), 27–47 (2011)

8. Monge, D.A., Garćıa Garino, C.: Adaptive spot-instances aware autoscaling for
scientific workflows on the cloud. In: Hernández, G., Barrios Hernández, C.J.,
Dı́az, G., Garćıa Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez,
M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 13–27. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45483-1 2

9. Turchenko, V., Shultz, V., Turchenko, I., Wallace, R.M., Sheikhalishahi, M.,
Vazquez-Poletti, J.L., Grandinetti, L.: Spot price prediction for cloud computing
using neural networks. Int. J. Comput. 12(4), 348–359 (2013)

10. Tang, S., Yuan, J., Li, X.Y.: Towards optimal bidding strategy for Amazon EC2
cloud spot instance. In: Proceedings of the 2012 IEEE 5th International Conference
on Cloud Computing, CLOUD 2012, pp. 91–98 (2012)

11. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
12. Van Otterlo, M.: The Logic of Adaptive Behavior. Frontiers in Artificial Intelligence

and Applications, vol. 192. IOS Press, Amsterdam (2009)
13. Barrett, E., Howley, E., Duggan, J.; A learning architecture for scheduling workflow

applications in the cloud. In: Proceedings of the 9th IEEE European Conference
on Web Services, ECOWS 2011, pp. 83–90 (2011)

14. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Concurr.
Comput. Pract. Exp. 25, 1656–1674 (2012)

https://doi.org/10.1007/978-3-662-45483-1_2

MDP to Dynamically Adapt Spots Instances Ratio on the Autoscaling 369

15. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–
50 (2011)

16. Jia, Y., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow appli-
cations on utility grids. In: Proceedings of the First International Conference on
e-Science and Grid Computing, e-Science 2005, pp. 140–147 (2005)

Experimental Analysis of Secret Sharing
Schemes for Cloud Storage Based on RNS

Vanessa Miranda-López1 , Andrei Tchernykh1(&) ,
Jorge M. Cortés-Mendoza1 , Mikhail Babenko2 ,

Gleb Radchenko3 , Sergio Nesmachnow4 , and Zhihui Du5

1 CICESE Research Center, Ensenada, BC, Mexico
{vmiranda,chernykh,jcortes}@cicese.edu.mx

2 North-Caucasus Federal University, Stavropol, Russia
mgbabenko@ncfu.ru

3 South Ural State University, Chelyabinsk, Russia
gleb.radchenko@susu.ru

4 Universidad de la República, Montevideo, Uruguay
sergion@fing.edu.uy

5 Tsinghua University, Beijing, China
duzh@tsinghua.edu.cn

Abstract. In this paper, we address the application of Redundant Residue
Number System (RRNS) to improve the security of public data storage, reduce
storage space, and process encrypted data. We provide a comprehensive
experimental analysis of Asmuth-Bloom [14] and Mignotte [15] schemes that
use RRNS and Secret Sharing Scheme (SSS) to design reliable and secure
storage systems. These schemes are studied in real multi-cloud environment to
find compromise between performance, redundancy, and data security. We
analyze and compare the speeds of encoding/decoding and upload/download of
these algorithms for different RRNS settings with 11 well-known cloud storage
providers. We also provide a mathematical analysis of the expected system
behavior.

Keywords: Cloud computing � Storage � Security � Reliability
Residue Number System � Homomorphic encryption

1 Introduction

Cloud computing provides many benefits in terms of low costs, accessibility of data
and efficient computing. In the Cloud, the resources are provided to the users based on
demands from the pool of shared resources. Distributed storage systems play a key role
in the new era of cloud computing and big data.

In the past few years, the concept of multi-clouds, inter-cloud or cloud-of-clouds
has been used as a solution to overcome drawbacks of dealing with a single cloud.
Multi-cloud can be defined as the use of multiple cloud services as a single hetero-
geneous architecture [1].

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 370–383, 2018.
https://doi.org/10.1007/978-3-319-73353-1_26

http://orcid.org/0000-0002-1128-6660
http://orcid.org/0000-0001-5029-5212
http://orcid.org/0000-0001-7209-8324
http://orcid.org/0000-0001-7066-0061
http://orcid.org/0000-0002-7145-5630
http://orcid.org/0000-0002-8146-4012
http://orcid.org/0000-0002-8435-1611

As cloud storages become common, more and more users send sensitive infor-
mation into the cloud due to the increasing development of cloud storage technology.
As a result, transmitted data are increased up to 1.1 exabytes (EB) in 2016. It is
expected that in 2020 data volume will be increased up to 2.3 EB [2].

Despite advantages of the cloud storage, it brings high risks of confidentiality,
integrity, and availability associated with the loss of information, denial of access for a
long time, information leakage, and conspiracy that need to be cope. One of the main
problems in the design of a reliable cloud storage system is to deal with the uncertainty
of the occurrence of technical failures, data security breaches, collusion, etc. [3–5].

It is important to develop techniques to store and process such a data ensuring their
reliability and security. One possible direction is to rely on multiple clouds as a dis-
tributed storage, where data are divided into pieces to be stored in different clouds.
With this approach, availability of data can be ensured, but failures may cause
inconsistency among copies of the same data [6, 7].

A solution that can improve data privacy and confidentiality is to encrypt the data
before outsourcing. However, sometimes, users need to perform calculations over their
data, and a drawback of encryption is that it does not allow data processing.

In [8], authors proposed to use fully homomorphic encryption. Nevertheless, this
framework leads to significant data redundancy, computational complexity of data
encryption algorithms, and low reliability. In [9], a cloud storage system based on
RRNS is proposed to overcome these disadvantages. An approach that considers the
cost implication of using real CSPs was introduced in [10].

Methods like Data Replication, Secret Sharing Schemes (SSS), Redundant Residue
Number System (RRNS), Erasure Codes (EC), Regenerating Codes (RC), Homo-
morphic Encryption (HE), etc. have been used in order to minimize the threats of
corruption or/and data loss, ensuring security and confidentiality [3, 11–13].

Modular SSS was independently introduced by Asmuth-Bloom [14] and Mignotte
[15]. The basis of the both approaches is the Chinese Remainder Theorem (CRT).

In this paper, we present an analysis of the SSS proposed by Asmuth-Bloom and
Mignotte in a multi-cloud environment based on RRNS for different system parame-
ters. We also consider information upload and download into/from real cloud storage
providers (CSPs).

The paper is structured as follows. The next Sect. 2 briefly reviews related works.
Section 3 presents the basis of storage scheme in a multi-cloud, describes our exper-
imental setup, and presents results their analysis. Section 4 highlights the conclusions
of the paper and future work.

2 Related Work

Motivated by the safety issues and risks of technical failures of a distributed storage,
several scientific contributions have been proposed in order to build a reliable, secure
data storage. In one hand, SSS splits data into n segments, and each is uploaded onto a
different clouds. The advantage of using SSS is that only k or more of the n participants

Experimental Analysis of Secret Sharing Schemes 371

can determine the data without sharing information. SSS proposed by [14, 15] ensure
the security and confidentiality of data. However, this approach can lead to high
redundancy.

On the other hand, classical coding theory focuses on the tradeoff between
redundancy and error tolerance. EC [23, 24] and RC [25] aim to reduce the amount of
downloads during repair, while retaining the storage efficiency. Nevertheless, EC and
RC lack of the capability of performing calculations on encrypted data. An alternative
approach studied in [16], named HE, allows to carry out computations on the ciphertext
generating an encrypted result. When decrypted, it matches the result of operations
performed on the original numbers. Later, [17] proposed the first fully HE scheme
capable of performing addition, subtraction and multiplication operations, but, with a
high cost of data redundancy.

Since encryption techniques and security protocols are not sufficient to protect data
in the cloud, researchers have turned their attention to alternative number system
representations as an effort to further boost up cryptosystem performance.

Residue Number System (RNS) is a well-known number theory paradigm [18] and
has emerged as a key-player in this endeavor. RNS allows controlling results of data
processing and reduces data redundancy. In [19] authors proposed a method to reduce
the complexity of modular multiplication, they substitute expensive modular opera-
tions, by fast bit right shift operations and taking low bits. In order to apply RNS for
encryption, the issues of confidentiality, integrity, and cloud collusion need to be
addressed [22].

A particular distributed data storage based on RNS was proposed in [20], which
assures the safety, confidentiality, homomorphism, reliability, and scalability of data.
However, they use the moduli set as the secret key leading to high redundancy and
resource intensive decoding.

Taking advantage of RRNS properties, [9] proposed a reliable and scalable storage
system in a multi-cloud environment. This system allows to minimize the data
redundancy, without loss of reliability, and perform arithmetic operations.

In cloud computing, there exist many types of uncertainties that there should be
considered in order to evaluate the performance, reliability, and security of a storage
system. Uncertainty occurs in data processing, storage, and transmission. In a scenario,
with uncertainties, the authors in [3–5] studied the risks associated with the appearance
of cloud collusion under uncertain conditions. They use a modified threshold
Asmuth-Bloom and weighted Mignotte SSS to mitigate this type of uncertainty, while
minimizing the damages caused by cloud collusion.

To design a configurable, reliable and secure data storage based on cloud-of-clouds
technology, data storage has the following properties: homomorphic cipher, weighted
SSS, and error correction codes. To determine the configuration parameters, the fol-
lowing optimization criteria should be taken into account: accuracy, scalability, and
reliability, confidentiality, security, and performance.

372 V. Miranda-López et al.

3 Experimental Analysis for Reliable and Secure Storage
Schemes

In this section, we present the basis for the storage scheme based on a multi-cloud
approach. For the experimental analysis, in order to obtain realistic results, we use real
upload and download speed access to/from eleven CSPs.

3.1 Storage Model

We consider the scenario where we have a set of n clouds, and users’ data. We use the
properties of RRNS, which can be seen as a SSS and provided an error detection and
correction capability. Data are divided into a set of smaller encrypted chunks, giving
each cloud provider its own unique chunk. To reconstruct the data, some of the chunks
or all of them are needed.

RRNS is an extension of RNS, which represents an integer as a set of its residues
according to a moduli set. We can form RRNS by adding redundant moduli into an
existing moduli set to extend the legitimate range of the original information moduli.
The extended range is called the illegitimate range. Therefore, RRNS represents
integers by means of a ðkþ rÞ-tuple of their residue moduli that consists of a set of
pairwise coprime numbers p1; p2; . . .; pnf g, where n ¼ kþ r, k are the original moduli
set, and r are the redundant moduli.

The range of RRNS is P ¼ Qk
i¼1 pi. Any integer X can be represented by its

residues in ZP with a n-tuple X !RRNS x1; x2; . . .; xnð Þ, where xi ¼ X mod pi or xi ¼ Xj jpi .
For every n-tuple, the corresponding integer X 2 ½0;P� 1Þ can be recover by means of
the CRT:

X ¼
Xk

i¼1
xiPibi

� �
mod P ð1Þ

8i ¼ 1; k, where Pi ¼ P=pi and bi is the multiplicative inverse of Pi modulo pi.
RRNS can be seen as homomorphic cipher, because, it meets the following

property:

X � Y ¼ ðx1; x2; . . .; xnÞ � ðy1; y2; . . .; ynÞ ¼ ð x1 � y1j jp1 ; x2 � y2j jp2 ; . . .; xn � ynj jpnÞ
ð2Þ

where X !RRNS ðx1; x2; . . .; xnÞ, Y !RRNS ðy1; y2; . . .; ynÞ, � denotes one of the operations:
addition, multiplication, subtraction, and jXjpi denotes the remainder of division of X
by pi.

In RRNS settings k; nð Þ, using data from any k remainders from n, we can recover
ðn� kÞ data and use the r remainders to verify the correctness of recover data.
A unique and powerful capability of RRNS is error detection and correction accom-
plished as a result of the extra residues [9, 21]. Operations can be achieved in parallel
since residues are independent of each other. For error detection, if RRNS has r

Experimental Analysis of Secret Sharing Schemes 373

redundant moduli, then it is capable of detect r and correct r � 1 errors. In [13], it is
shown that the reliability of a system depends on r. A bigger value of r, more reliable
the system is, with the cost of growing redundancy. As result, if we take into account
the volume of the data, the redundancy becomes the key factor in terms of distributed
storage of big data.

In the storage model, each CSP receives a chunk of data that consists of a chunk
identifier, chunk properties, projection of the original data, simplified digital signature,
and moduli RNS. To compute the unique secret key, we use hash function based on
SHA-3 algorithm [26].

Let i-th cloud corresponds to RNS module pi of the form 2b � ai, if i is odd, and
2b þ ai, if i is even. The values of b and ai are chosen according to available com-
putational resources of i-th cloud, demanded level of security, and the reliability of the
data storage. For binary conversion method, [13] proposed to use an approximation of
the rank of RNS number based on replacement computation. The rank is calculated
using a modification of Eq. (1). Now, an integer X can be calculated by the Eq. (3):

X ¼
Xk

i¼1
Pi P

�1
i

�� ��xi � rx � P; ð3Þ

where rx ¼
Pk

i¼1

P�1
ij jpi
pi

xi

� �
, and P ¼ Qk

i¼1 pi;Pi ¼ P=pi. For all i ¼ 1; k, xi ¼ Xj jpi is
an integer smaller than xi ¼ Xj jpi . rx determined how many times the RRNS range is
increased.

As depicted in Fig. 1, the system uses RRNS properties to send the segments of the
data across different CSPs. Depending on users’ requirements, the system configures its
parameters, then, data are split with a given degree of redundancy.

The residue-tuples (segments (x1; . . .; x5)) will be copied and stored on different
CSPs. Since data are not stored on a single cloud, but over several CSPs, it leads to
increased confidentiality. On the other hand, due to the redundancy property of RRNS,
user´s datamight still be reconstructed from the remaining segments, even if (n� k) CSPs
are temporary unavailable (clouds 2 and 4 in Fig. 1), or if a provider loss users’ data.

Fig. 1. Encoding and decoding for RRNS settings (3, 5).

374 V. Miranda-López et al.

3.2 Experimental Setup

We simulate two classical schemes used to design storage systems, SSS Asmuth-
Bloom and Mignotte. The system is developed considering the Java programming
language.

To determine the speed of data access, we use a video file divided into chunks of
50, 150, 250, 350 and 450 MB [3]. Experiments were performed on the CPU Intel
(R) Core (TM) i7-6700 CPU @ 3.40 GHz, RAM 16 GB, HDD 1 TB, and Chrome
browser version 58.0.3029.81 with Ethernet connection, which typically averages
143.71 Mbps download and 144.85 Mbps upload on Speedtest.net. Operating system
is Windows 8.1 professional x64.

The chunks are uploaded to the providers, then, downloaded during three days,
each 4 h. Finally, 30 measurements are obtained for corresponding speeds (see
Table 1). We take, as a reference, the average speeds to download/upload from the
CSPs presented in Table 1.

In order to understand the behavior of the system in a real scenario, we considered
files with different sizes: 50 MB, 100 MB, and 200 MB. We analyze two scenarios for
CSPs selection. First, the CSPs are ordered by their average upload speed in a
descending order (see Table 2). In the second scenario, we order the CSPs by their
average download speed in a descending order (see Table 3). For both scenarios, we
send/receive chunks into the different CSPs depending on the sorting criteria used.

In [27], it is shown that the level of protection of secret information processed using
RNS depends on the threshold value used in the SSS and the size of the modules. For
the experiments, we generate our moduli set with a sequence of primes p1; p2; . . .; pn
such that Eq. 4 holds.

Table 1. Speed of access to data, and storage for cloud storage providers.

I Provider Storage (GB) Download (MB/s) Upload (MB/s)
Free Max Low

speed
High
speed

Average
speed

Low
speed

High
speed

Average
speed

1 Elephantdrive 2 1,000 2.50 4.55 3.43 8.65 13.63 10.42
2 Box 10 100 1.04 1.67 1.29 7.53 12.50 10.28
3 Dropbox 2 2,000 2.50 8.92 4.93 5.05 13.63 9.70
4 Justcloud 1 75 10.00 14.29 11.80 6.08 13.63 9.65
5 Cloudmail 25 512 5.49 10.71 7.89 5.35 16.66 9.58
6 Googledrive 15 100 4.55 12.50 7.87 8.33 10.71 9.32
7 Yandexdisk 20 100 3.80 9.78 6.21 7.14 10.00 9.02
8 Idrive 5 1,000 0.02 0.07 0.03 5.31 12.50 8.62
9 Sync 5 2,000 1.61 4.41 2.78 4.36 6.57 5.33
10 Onedrive 5 1,000 1.67 4.78 2.44 4.45 5.83 5.23
11 Icloud 5 200 1.65 5.10 3.32 0.32 0.46 0.40

Experimental Analysis of Secret Sharing Schemes 375

http://Speedtest.net

Yk

i¼1
pi [p0 �

Yk�1

i¼1
pn�kþ 1þ i: ð4Þ

We choose p1; p2; . . .; pk as large as possible but pn�kþ 2; pn�kþ 3; . . .; pn as small as
possible, considering that

Qk
i¼2 pi\

Qk�1
i¼1 pn�kþ 1þ i should also be held. The algorithm

generates n consecutive prime numbers starting from the smallest prime larger than p0.
Next, the algorithm checks if Eq. 4 holds. If this condition is not satisfied, it generates
the next prime, and again checks if the largest n primes satisfy the condition.

Table 2. CSP ranks based on average upload speed

Sorted by upload velocity

I Provider Average speed
(MB/S)
Upload Download

1 Elephantdrive 10.42 3.43
2 Box 10.28 1.29
3 Dropbox 9.70 4.93
4 Justcloud 9.65 11.8
5 Cloudmail 9.58 7.89
6 Google 9.32 7.87
7 Yandex 9.02 6.21
8 Idrive 8.62 0.03
9 Sync 5.33 2.78
10 Onedrive 5.23 2.44
11 Icloud 0.40 3.32

Table 3. CSP ranks based on average download speed

Sorted by download velocity

I Provider Average speed
(MB/s)
Upload Download

1 Justcloud 9.65 11.8
2 Cloudmail 9.58 7.89
3 Google 9.32 7.87
4 Yandex 9.02 6.21
5 Dropbox 9.7 4.93
6 Elephantdrive 10.42 3.43
7 Icloud 0.40 3.32
8 Sync 5.33 2.78
9 Onedrive 5.23 2.44
10 Box 10.28 1.29
11 Idrive 8.62 0.03

376 V. Miranda-López et al.

3.3 Results and Analysis

In this section, we provide the analysis of the threshold schemes varying the number of
segments and threshold values.

Figure 2 shows the graph of encoding velocity by Asmuth-Bloom and Mignotte
schemes. We see that as we generate more chunks (n is increased), additional time to
encode data is required resulting in a decrease of the speed. Mignotte scheme has an
encoding speed 4 times greater than Asmuth-Bloom with values of 5.649 MB/s and
1.495 MB/s, respectively. The lowest speeds in both schemes are 1.284 MB/s for
Mignotte and 0.463 MB/s for Asmuth-Bloom. We observe that Asmuth-Bloom scheme
has more computational overhead for data splitting. Besides, it adds a noise factor into
the data in order to increase security in the system, thus, its encoding velocity is slower
than one of Mignotte.

The decoding performance for both schemes is shown in Fig. 3. Asmuth-Bloom
and Mignotte use CRT to recover the original data. When k ¼ 2, the maximum speed is
6.047 MB/s for Mignotte and 3.17 MB/s for Asmuth-Bloom. For the minimum speed,
Mignotte outperforms 8 times Asmuth-Bloom with a minimum value of 3.42 MB/s.

0

1

2

3

4

5

6

2:
4

3:
4

4:
4

2:
5

3:
5

4:
5

5:
5

2:
6

3:
6

4:
6

5:
6

6:
6

2:
7

3:
7

4:
7

5:
7

6:
7

7:
7

2:
8

3:
8

4:
8

5:
8

6:
8

7:
8

8:
8

2:
9

3:
9

4:
9

5:
9

6:
9

7:
9

8:
9

9:
9

2:
10

3:
10

4:
10

5:
10

6:
10

7:
10

8:
10

9:
10

10
:1

0
2:

11
3:

11
4:

11
5:

11
6:

11
7:

11
8:

11
9:

11
10

:1
1

11
:1

1

M
B/

S

(K,N) se ngs

Asmuth-Bloom Migno e

Fig. 2. The speed of encoding data (MB/s) versus RRNS settings k; nð Þ, with b = 8.

0

1

2

3

4

5

6

7

2:
4

3:
4

4:
4

2:
5

3:
5

4:
5

5:
5

2:
6

3:
6

4:
6

5:
6

6:
6

2:
7

3:
7

4:
7

5:
7

6:
7

7:
7

2:
8

3:
8

4:
8

5:
8

6:
8

7:
8

8:
8

2:
9

3:
9

4:
9

5:
9

6:
9

7:
9

8:
9

9:
9

2:
10

3:
10

4:
10

5:
10

6:
10

7:
10

8:
10

9:
10

10
:1

0
2:

11
3:

11
4:

11
5:

11
6:

11
7:

11
8:

11
9:

11
10

:1
1

11
:1

1

M
B/

s

(k,n) se ngs

Asmuth-Bloom Migno e

Fig. 3. The speed of decoding data (MB/s) versus RRNS settings k; nð Þ, with b = 8.

Experimental Analysis of Secret Sharing Schemes 377

We are focusing on a model of multi-cloud environment, so it is important to
analyze impact of the expected speed of sending data to the CSPs on the overall
performance. As we mentioned before, we use the average speeds of Table 1 to obtain
the upload/download of the chunks into the CSPs. We introduce the following notation
to describe the mathematical analysis of the access to the clouds:
D - size of original data,
di - size of i-th chunk,
vdowi - download speed of i-th chunk. Without loss of generality, we assume that

vdow1 � vdow2 � . . .� vdown (downloading average speed, Table 1),
vupi - upload speed of i-th chunk (uploading average speed, Table 1),
TE - data encryption time (Fig. 2),
TD - data decryption time (Fig. 3),
tdowi - downloading time of one chunk from i-th cloud,
tupi - uploading time of one chunk to i-th cloud,
p - probability of deny of access of one cloud provider, q ¼ 1� p.

The data upload speed is calculated with the following formula:

Vu ¼ D

TE þ
Pn

i¼1
di
vupi

: ð5Þ

Using the data from Tables 2 and 3, and results of encryption in the Fig. 2, we
obtain Figs. 4 and 5 that show access speed depending on the SSS and its settings.

Figure 4 depicts the maximum values for both schemes considering that
encoding/uploading is 2.653 MB/s for Mignotte and 0.681 MB/s for Asmuth-Bloom.
If we consider the rankings presented on Table 3, the CSP with the lowest upload
speed has a rank of 7, affecting the access speeds from settings with n� 7. The upload
speed is decreased up to 2.05 MB/s, for Mignotte, and up to 0.28 MB/s, for
Asmuth-Bloom, as we can see in Fig. 5.

0

0.5

1

1.5

2

2.5

3

2:
4

3:
4

4:
4

2:
5

3:
5

4:
5

5:
5

2:
6

3:
6

4:
6

5:
6

6:
6

2:
7

3:
7

4:
7

5:
7

6:
7

7:
7

2:
8

3:
8

4:
8

5:
8

6:
8

7:
8

8:
8

2:
9

3:
9

4:
9

5:
9

6:
9

7:
9

8:
9

9:
9

2:
10

3:
10

4:
10

5:
10

6:
10

7:
10

8:
10

9:
10

10
:1

0
2:

11
3:

11
4:

11
5:

11
6:

11
7:

11
8:

11
9:

11
10

:1
1

11
:1

1

M
B/

s

(k,n) se ngs

Asmuth-Bloom Migno e

Fig. 4. Velocity of encoding and uploading n chunks based on Table 2.

378 V. Miranda-López et al.

Using the notation describe above, we calculate the characteristics of the system.
The time of downloading the i-th chunk from the i-th cloud is tdowi ¼ di=vdowi .

Under the conditions of limited internet bandwidth, we assume that the chunks are
downloaded from the clouds sequentially. If the first cloud is available, then the first
chunk is downloaded from it, otherwise, the second cloud availability is checked, etc.
The process is terminated when k chunks are downloaded, or when we tried to access
all n clouds. If, in either case, we did not download k chunks, then we do not have
access to the data at that time.

The time of query whether the cloud is available is assumed to be zero, since, we
consider that there is an independent service that makes the queries, so at each point of
time, the system knows, which clouds are available.

In the best case scenario, we download k chunks for tbestdown ¼
Pk

i¼1 di=vdowi , and, in
the worst case scenario, we have tworstdown ¼ Pn

n�kþ 1 di=vdowi .
We consider a set of j clouds. According to the above scheme, the user can access

to the first j cloud providers, if k of them are available, or if from the first j� 1 cloud
providers, if k � 1 are available. We calculate the expectation of download time of k
chunks as follows:

texpectdown ¼
Xn
j¼k

j�1ð Þ!
j�kð Þ! k�1ð Þ! p

j�kqkPn
r¼k

r�1ð Þ!
r�kð Þ! k�1ð Þ! p

j�kqk

Xj

i¼1

di
vdowi

¼
Xn
j¼k

j� 1ð Þ! � pj�k

j� kð Þ!Pn
r¼k

r�1ð Þ!
r�kð Þ! p

r�k

Xj

i¼1

di
vdowi

The access time to the data, in the best case scenario, is calculated by
TD þ Pk

i¼1 di=vdowi , and, in the worst case, T þ Pn
n�kþ 1 di=vdowi .

Finally, the expectation of time access to data is:

TD þ
Xn
j¼k

j� 1ð Þ! � pj�k

j� kð Þ!Pn
r¼k

r�1ð Þ!
r�kð Þ! p

r�k

Xj

i¼1

di
vdowi

0

0.5

1

1.5

2

2.5

3
2:

4
3:

4
4:

4
2:

5
3:

5
4:

5
5:

5
2:

6
3:

6
4:

6
5:

6
6:

6
2:

7
3:

7
4:

7
5:

7
6:

7
7:

7
2:

8
3:

8
4:

8
5:

8
6:

8
7:

8
8:

8
2:

9
3:

9
4:

9
5:

9
6:

9
7:

9
8:

9
9:

9
2:

10
3:

10
4:

10
5:

10
6:

10
7:

10
8:

10
9:

10
10

:1
0

2:
11

3:
11

4:
11

5:
11

6:
11

7:
11

8:
11

9:
11

10
:1

1
11

:1
1

M
B/

s

(k,n) se ngs

Asmuth-Bloom Migno e

Fig. 5. Velocity of encoding and uploading n chunks based on Table 3.

Experimental Analysis of Secret Sharing Schemes 379

Consequently, the data access speeds are calculated as follows:
In the best case:

Vdmax ¼ D

TD þ Pk
i¼1

di
vdowi

: ð6Þ

In the worst case:

Vdmin ¼ D

TD þ Pn
n�kþ 1

di
vdowi

: ð7Þ

The expectation of downloading speed:

VdE ¼ D

TD þ Pn
j¼k

j�1ð Þ! � pj�k

j�kð Þ!
Pn

r¼k

r�1ð Þ!
r�kð Þ!p

r�k

P j
i¼1

di
vdowi

ð8Þ

In [13], it is shown that p � 0:01. Hence, using the data from Tables 2 and 3 and
results from the simulation of decryption in the Fig. 3, we obtain the following graphs
of access speed depending on the SSS and its settings (Figs. 6 and 7).

Figure 6 depicts the behavior of downloading the chunks, when the CSPs are sorted
by their upload speeds. From settings with k� 8, the access speed is decreased to
1.13 MB/s for Mignotte, and to 0.18 MB/s for Asmuth-Bloom, in the best case sce-
nario. For the worst case scenario, when k ¼ 2 and k ¼ 3, the best velocities are
obtained with 0.53 MB/s for Asmuth-Bloom and 1.12 MB/s for Mignotte. On the other
hand, considering the values of Table 2, downloading segments from the CSPs, in the
worst case scenario, showed a speed reduction of 1.75 MB/s for Mignotte and
0.544 MB/s for Asmuth-Bloom, in average, as it is shown in Fig. 7.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2:4 4:4 3:5 5:5 3:6 5:6 2:7 4:7 6:7 2:8 4:8 6:8 8:8 3:9 5:9 7:9 9:9 3:10 5:10 7:10 9:10 2:11 4:11 6:11 8:11 10:11

M
B/

s

(k,n) se ngs

Vmax Vmin Vmax Vmin

Fig. 6. Velocity of downloading k chunks and decoding based on Table 2.

380 V. Miranda-López et al.

The results show that Asmuth-Bloom has slower performance than Mignotte,
especially, if the number of CSPs increases. However, Mignotte is computationally
stable [28], while Asmuth-Bloom is the perfect and asymptotically ideal scheme [29].
Consequently, the user should make a choice between performance and data security.
The advantage of a weighted Mignotte SSS is the optimal load balancing between
CSPs [30]. In this paper, we do not analyze the data redundancy. In [31], it is shown
that to minimize data redundancy of Asmuth-Bloom, it is recommended to use compact
sequences of co-primes moduli.

4 Conclusions

In this paper, we address a multi-cloud secured storage environment comparing
Asmuth-Bloom and Mignotte schemes, which rely on RRNS properties. We analyze
the velocities of encoding/uploading/downloading/decoding for both schemes with 11
well-known cloud storage providers and different system parameters.

Asmuth-Bloom is a perfect and asymptotically ideal scheme. However, the simu-
lations show that, in comparison with Mignotte, it has the slowest speeds for
encoding/decoding with values of 0.463 MB/s and 0.420 MB/s, respectively. While,
Mignotte shows speed 1.284 MB/s, for encoding, and 3.426 MB/s, for decoding.
Hence, Mignotte is 8 times faster for decoding than Asmuth-Bloom.

The velocities of uploading/downloading from the cloud are obtained by two dif-
ferent scenarios of ordering the CSPs. In the first one, we upload data to the clouds with
faster uploading access speed, trying to minimize uploading time, and, in the second
scenario, with faster downloading speed trying to minimize downloading time.

Based on experimental analysis, we conclude that Mignotte outperforms 3.8 times
Asmuth-Bloom for encoding and uploading data. If the cloud providers with the
highest speed of access are unavailable, we show that it causes a velocity degradation
for downloading-decoding. Here, the difference between the maximum and minimum
velocities are 1.33 MB/s for Asmuth-Bloom and 2.50 MB/s for Mignotte, when CSPs
are ordered by their download speeds. The behavior depicted in Figs. 5 and 6 show that
important bottlenecks could reduce dramatically the access speed for uploading/
downloading to the CSPs.

0

0.5

1

1.5

2

2.5

3
2:

4
3:

4
4:

4
2:

5
3:

5
4:

5
5:

5
2:

6
3:

6
4:

6
5:

6
6:

6
2:

7
3:

7
4:

7
5:

7
6:

7
7:

7
2:

8
3:

8
4:

8
5:

8
6:

8
7:

8
8:

8
2:

9
3:

9
4:

9
5:

9
6:

9
7:

9
8:

9
9:

9
2:

10
3:

10
4:

10
5:

10
6:

10
7:

10
8:

10
9:

10
10

:1
0

2:
11

3:
11

4:
11

5:
11

6:
11

7:
11

8:
11

9:
11

10
:1

1
11

:1
1

M
B/

s

(k,n) se ngs

Vmax Vmin Vmax Vmin

Fig. 7. Velocity of downloading k chunks and decoding based on Table 3.

Experimental Analysis of Secret Sharing Schemes 381

Hence, further study of variety of algorithms and multicriteria analysis are required
to assess their actual efficiency and effectiveness. This will be subject of future work for
better understanding of security, redundancy and speed in cloud storages.

References

1. AlZain, M.A., Pardede, E., Soh, B., Thom, J.A.: Cloud computing security: from single to
multi-clouds. In: 2012 45th Hawaii International Conference on System Science (HICSS),
pp. 5490–5499 (2012)

2. OpenFog Reference Architecture for Fog Computing. https://www.openfogconsortium.org
3. Tchernykh, A., Schwiegelsohn, U., Talbi, E., Babenko, M.: Towards understanding

uncertainty in cloud computing with risks of confidentiality, integrity, and availability.
J. Comput. Sci. (2016). https://doi.org/10.1016/j.jocs.2016.11.011

4. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., Talbi, E.: Towards understanding
uncertainty in cloud computing resource provisioning. Procedia Comput. Sci. 51, 1772–1781
(2015). https://doi.org/10.1016/j.procs.2015.05.387

5. Tchernykh, A., Babenko, M., Chervyakov, N., Cortes-Mendoza, J., Kucherov, N.,
Miranda-Lopez, V., Deryabin, M., Dvoryaninova, I., Radchenko, G.: Towards mitigating
uncertainty of data security breaches and collusion in cloud computing. In: Proceedings of
UCC 2017, pp. 137–141. IEEE Press, Lyon (2017)

6. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43. ACM, New
York (2003)

7. Ganesan, A., Alagappan, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Redundancy
does not imply fault tolerance: analysis of distributed storage reactions to single errors and
corruptions. In: Proceedings of the 15th Usenix Conference on File and Storage
Technologies, pp. 149–165. USENIX Association, Berkeley (2017)

8. Chen, X., Huang, Q.: The data protection of MapReduce using homomorphic encryption. In:
2013 IEEE 4th International Conference on Software Engineering and Service Science,
pp. 419–421 (2013)

9. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability, obfuscation,
and encryption to multi-cloud storage systems. J. Netw. Comput. Appl. 59, 208–218 (2016).
https://doi.org/10.1016/j.jnca.2014.09.021

10. Chervyakov, N., Babenko, M., Tchenykh, A., Dvoryaninova, I., Kucherov, N.: Towards
reliable low cost distributed storage in multi-clouds. In: 2017 International Siberian
Conference on Control and Communications (SIBCON), pp. 1–6 (2017)

11. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Network
coding for distributed storage systems. IEEE Trans. Inf. Theory 56, 4539–4551 (2010).
https://doi.org/10.1109/TIT.2010.2054295

12. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9, 1–30 (2006).
https://doi.org/10.1145/1127345.1127346

13. Chervyakov, N., Babenko, M., Tchernykh, A., Kucherov, N., Miranda-López, V.,
Cortés-Mendoza, J.M.: AR-RRNS: configurable, scalable and reliable systems for internet
of things to ensure security. Future Gener. Comput. Syst. (2017). Elsevier. https://doi.org/10.
1016/j.future.2017.09.061

14. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory
29, 208–210 (1983). https://doi.org/10.1109/TIT.1983.1056651

382 V. Miranda-López et al.

https://www.openfogconsortium.org
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://dx.doi.org/10.1016/j.jnca.2014.09.021
http://dx.doi.org/10.1109/TIT.2010.2054295
http://dx.doi.org/10.1145/1127345.1127346
http://dx.doi.org/10.1016/j.future.2017.09.061
http://dx.doi.org/10.1016/j.future.2017.09.061
http://dx.doi.org/10.1109/TIT.1983.1056651

15. Mignotte, M.: How to share a secret. In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149,
pp. 371–375. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-39466-4_27

16. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In:
Foundations of Secure Computation, pp. 169–177. Academic Press (1978)

17. Gentry, C.: A Fully Homomorphic Encryption Scheme (2009)
18. Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J. (eds.): Residue Number System

Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Piscataway
(1986)

19. Chervyakov, N., Babenko, M., Tchernykh, A., Nazarov, A., Garianina, A.: The fast
algorithm for number comparing in three-modular RNS. In: 2016 International Conference
on Engineering and Telecommunication (EnT), pp. 26–28 (2016)

20. Gomathisankaran, M., Tyagi, A., Namuduri, K.: HORNS: a homomorphic encryption
scheme for Cloud Computing using Residue Number System. In: 2011 45th Annual
Conference on Information Sciences and Systems (CISS), pp. 1–5 (2011)

21. Chessa, S., Maestrini, P.: Dependable and secure data storage and retrieval in mobile,
wireless networks. In: Proceedings of the 2003 International Conference on Dependable
Systems and Networks, pp. 207–216 (2003)

22. Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E., Tay, T.F.: Residue number systems: a
new paradigm to datapath optimization for low-power and high-performance digital signal
processing applications. IEEE Circuits Syst. Mag. 15, 26–44 (2015). https://doi.org/10.1109/
MCAS.2015.2484118

23. Lin, S.J., Chung, W.H., Han, Y.S.: Novel polynomial basis and its application to
reed-solomon erasure codes. In: 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 316–325 (2014)

24. Babenko, M., Chervyakov, N., Tchernykh, A., Kucherov, N., Shabalina, M., Vashchenko, I.,
Radchenko, G., Murga, D.: Unfairness correction in P2P grids based on residue number
system of a special form. In: Proceedings of UCC 2017, pp. 147–151. IEEE, Lyon (2017)

25. Chen, H.C.H., Lee, P.P.C.: enabling data integrity protection in regenerating-coding-based
cloud storage: theory and implementation. IEEE Trans. Parallel Distrib. Syst. 25, 407–416
(2014). https://doi.org/10.1109/TPDS.2013.164

26. Pritzker, P., Gallagher, P.: SHA-3 standard: permutation-based hash and extendable-output
functions (2014). National Institute of Standards and Technology. http://dx.doi.org/10.6028/
NIST.FIPS.202

27. Chervyakov, N., Babenko, M., Deryabin, M., Garianina, A.: Development of information
security’s theoretical aspects in cloud technology with the use of threshold structures. In:
2014 International Conference on Engineering and Telecommunication, pp. 38–42 (2014)

28. Quisquater, M., Preneel, B., Vandewalle, J.: On the security of the threshold scheme based
on the Chinese remainder theorem. In: Public Key Cryptography, pp. 199–210 (2002)

29. Kaya, K., Selçuk, A.A.: Threshold cryptography based on Asmuth-Bloom secret sharing.
Inf. Sci. 177, 4148–4160 (2007). https://doi.org/10.1016/j.ins.2007.04.008

30. Drăgan, C.C., Ţiplea, F.L.: Distributive weighted threshold secret sharing schemes. Inf. Sci.
339, 85–97 (2016). https://doi.org/10.1016/j.ins.2016.01.019

31. Barzu, M., Ţiplea, F.L., Drăgan, C.C.: Compact sequences of co-primes and their
applications to the security of CRT-based threshold schemes. Inf. Sci. 240, 161–172 (2013).
https://doi.org/10.1016/j.ins.2013.03.062

Experimental Analysis of Secret Sharing Schemes 383

http://dx.doi.org/10.1007/3-540-39466-4_27
http://dx.doi.org/10.1109/MCAS.2015.2484118
http://dx.doi.org/10.1109/MCAS.2015.2484118
http://dx.doi.org/10.1109/TPDS.2013.164
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1016/j.ins.2007.04.008
http://dx.doi.org/10.1016/j.ins.2016.01.019
http://dx.doi.org/10.1016/j.ins.2013.03.062

Bi-objective Heterogeneous Consolidation
in Cloud Computing

Luis-Angel Galaviz-Alejos1 , Fermín Armenta-Cano1 ,
Andrei Tchernykh1(&) , Gleb Radchenko2 ,

Alexander Yu. Drozdov3 , Oleg Sergiyenko4 ,
and Ramin Yahyapour5

1 CICESE Research Center, Ensenada, Baja California, Mexico
{lgalaviz,armentac}@cicese.edu.mx, chernykh@cicese.mx

2 South Ural State University, Chelyabinsk, Russia
gleb.radchenko@susu.ru

3 Moscow Institute of Physics and Technology, State University,
Moscow, Russia

alexander.y.drozdov@gmail.com
4 Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico

srgnk@uabc.edu.mx
5 University of Göttingen, Göttingen, Germany

ramin.yahyapour@gwdg.de

Abstract. In this paper, we address the problem of power-aware Virtual
Machines (VMs) consolidation considering resource contention. Deployment of
VMs can greatly influence host performance, especially, if they compete for
resources on insufficient hardware. Performance can be drastically reduced and
energy consumption increased. We focus on a bi-objective experimental eval-
uation of scheduling strategies for CPU and memory intensive jobs regarding
the quality of service (QoS) and energy consumption objectives. We analyze
energy consumption of the IBM System x3650 M4 server, with optimized
performance for business-critical applications and cloud deployments built on
IBM X-Architecture. We create power profiles for different types of applications
and their combinations using SysBench benchmark. We evaluate algorithms
with workload traces from Parallel Workloads and Grid Workload Archives and
compare their non-dominated Pareto optimal solutions using set coverage and
hyper volume metrics. Based on the presented case study, we show that our
algorithms can provide the best energy and QoS trade-offs.

Keywords: Virtual machine � Consolidation � Energy aware scheduling
SLA violations � Green cloud

1 Introduction

Facebook, Amazon, Apple, Microsoft, Google, Yahoo, and others IT companies are
transforming the way in which we work, communicate, watch movies or TV, listen to
music, and share files. The growth and scale of investment in the clouds are truly

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 384–398, 2018.
https://doi.org/10.1007/978-3-319-73353-1_27

http://orcid.org/0000-0003-2472-1059
http://orcid.org/0000-0002-4496-9169
http://orcid.org/0000-0001-5029-5212
http://orcid.org/0000-0002-7145-5630
http://orcid.org/0000-0001-5607-2749
http://orcid.org/0000-0003-4270-6872
http://orcid.org/0000-0002-9057-4395

mind-blowing with estimates of a 50-fold increase in the amount of digital information
by 2020 [1]. In the report “Make IT Green: Cloud Computing and its Contribution to
Climate Change” [2] published in March 2010, the authors studied the electricity
demand of the Internet/Clouds. According to it, the combined electricity demand of the
data centers and telecommunications network in 2007 was approximately 623 bil-
lion kWh. If we consider the clouds as a country, it would have the fifth largest
electricity demand in the world. The growing demand for Cloud resources highlights
the importance of advance techniques that help to save energy of data centers.

On a typical cloud environment, there is a group of hosts each one running a Virtual
Machine Monitor (VMM), which enables the creation, management, and monitoring of
Virtual Machines (VMs) and manages the operation of a virtualized environment.
Each VM runs an application. The monitoring engine gathers processor, network
interface, and memory usage, and other data for each host. This information is usually
used by consolidation algorithms [3]. Server consolidation techniques pack a number
of VMs on a fewer number of hosts to optimize resource utilization and reduce energy
consumption. However, a naive consolidation can create resource contention, which
results in a poor performance and high energy consumption. Cloud computing
parameters and main sources of their uncertainty are discussed in [4].

Deployment of VMs can greatly influence host performance, especially, if many of
them run on insufficient hardware. They can start competing for same hardware
resources: CPU, memory, communication system, etc. Performance can be drastically
reduced and energy consumption increased.

In our previous work [11], we proposed an energy model that consider different
types of tasks. We propose Minimum Concentration (Min_c) policy that takes into to
account application types to avoid resource contention and minimize energy
consumption.

In this paper, we focus on a bi-objective experimental evaluation of this model for
CPU and memory intensive jobs regarding QoS violations and energy consumption
objectives. We use MOCell metaheuristic and compare it with multi-objective evolu-
tionary algorithm NSGA-II, for different test cases.

The paper is structured as follows. Section 2 discusses related work. Section 3
presents the problem definition and proposed energy model, while the algorithms and
operators are described in Sect. 4. Section 5 provides the experimental setup. Section 6
present methodology used to analyze results. Section 7 discusses simulation results.
Finally, Sect. 8 concludes the paper by presenting main contribution and future work.

2 Related Work

There are several algorithms in the literature that study consolidation considering
distinct parameters (Table 1).

In MHCPESJ [11], the authors propose an energy model that takes into account
the effect on energy consumption of allocating applications that use distinct hardware
resources. They propose an allocation heuristic method called “Minimal Concentra-
tion” (Min_c) that takes into to account the application types and their combinations.

Bi-objective Heterogeneous Consolidation in Cloud Computing 385

In UACSCV [5], the authors present an algorithm based on ant colony system with
an objective to reduce energy consumption considering VMs migrations and QoS.
Their model considers CPU, memory, and network.

In AESPP [6], the authors consider a scheduling with task replications to overcome
possible bad resource allocation in presence of uncertainty. They analyze speed-aware
and power-aware scheduling algorithms with different grids and workloads considering
two objectives: approximation factor and energy consumption. They show that by
combining objective preferences and replication thresholds a compromise between
better execution time and increased energy consumption can be achieved.

An excessive number of migrations could lead to network congestion in data
centers and increment of energy consumption. The following consolidation algorithms
consider VM migrations costs.

In NAVMC [7], and TNAVMECM [8], the authors evaluate VMPatrol and
Remedy in a GENI testbed on a WAN network with realistic traffic. Both of them use
models of migrations cost on a WAN.

In HVCUIGG [9], the authors use a genetic algorithm to consolidate VMs. They
focus on reducing migration costs and saving energy. The parameters used for
migration are the available bandwidth, the memory size of VM, the rate of dirty pages,
and CPU utilization.

In MEWS [10], the authors present a multi-objective approach for scheduling large
workflows in distributed datacenters to minimize makespan, energy consumption, and
deadline violations.

Several authors consider consolidating of a distinct type of workloads:

Table 1. Consolidation algorithms

Works Parameters Strategy
CPU Memory Net Job

types
Migration
cost

Contention Migration Allocation

MHCPESJ ● ● ● ● ●
NAVMC ● ● ●
HVCUIGG ● ● ● ● ● ●
PACMan ● ●
NASVWIM ● ● ● ● ● ●
ESWCT ● ● ● ● ● ● ●
WCVCA ● ● ● ●
UACSCV ● ● ● ●
AESPP ● ● ●
TNAVMECM ● ● ● ●
DCB3T ● ● ● ●
MEWS ● ●

386 L.-A. Galaviz-Alejos et al.

In ESWCT [12], two algorithms are proposed: Workload-aware Consolidation
Technique (ESWCT) and energy aware Live Migration Algorithm using Workload-
aware Consolidation Technique (ELMWCT). These algorithms are based on the fact
that cloud users share resources and distinct workloads have different energy con-
sumption characteristics. The algorithms work with heterogeneous hosts and VMs with
distinct requirements of CPU, memory, and network. However, this work does not
consider the effect that the combination of distinct VM types to the same server has to
energy consumption.

In WCVCA [13], two dynamic programming algorithms and an approximation
algorithm for consolidation are presented. They consider data intensive and CPU
intensive workloads.

InDCB3T [14], the authors propose amodel of power and network-aware scheduling
that can be tuned to achieve energy-savings, through job consolidation and traffic load
balancing. They describe a methodology to find the best tuning of the adjustable
scheduler for three types of workloads, computation-intensive, communication-intensive
and balanced.

In PACMan [15], the authors present an algorithm that assigns VMs in a way that
the performance is maintained between thresholds defined by the user while mini-
mizing the used resources.

In NASVWIM [16], the authors present an interference model based on the
characteristics of workloads used in a scheduler. Their model considers CPU, cache,
metrics of disks and networks.

In this paper, we present workload-aware consolidation algorithms based on the
energy model that takes into account the consumption profile of each application type
(CPU Intensive and memory intensive), and their combination.

3 Problem Definition

We follow the system model presented in [11]. We consider a set of m heterogeneous
hosts h1; h2; . . .; hmð Þ. Each host mi is defined by its velocity in MIPS fsig. The set of n
virtual machines VM1;VM2; . . .;VMnð Þ executes independent tasks of a specific type,
from the set D ¼ CI;MIf g that contains CPU Intensive (CI) and Memory Intensive
(MI) jobs. The k ¼ Dj j is the quantity of distinct VM types. Each VMj is defined by the
tuple ftypej; vj; pjg, where vj is the requested speed of the VMj in MIPS; typej 2 D is the
type of workload the VMj executes, and pj is the time required by the VMj to finish its
task.

The contributed utilization ui;jðtÞ of the VMj to mi at a time t is defined as
ui;j tð Þ ¼ vj=si. Let VMs of one type l are executed on mi. The aggregated utilization
Ui;lðtÞ at time t is defined as Ui;l tð Þ ¼

Pp
j¼1 ui;jðtÞ, which is the sum of contributions to

utilization of the p VMs of type l executing on mi.
Our objective is to allocate VMs to hosts while reducing the energy consumption

and the number of SLA violations.

Bi-objective Heterogeneous Consolidation in Cloud Computing 387

In order to calculate the energy consumption, we consider the fraction of power
consumption contributed by each type of VMs at time t, as a function of the host
utilization at t. Hence, we have an independent function for each application type.

f1 Ui;1 tð Þ� �
; f2 Ui;2 tð Þ� �

; . . .; fk Ui;k tð Þ� �
; ð1Þ

where fl Ui;l tð Þ
� � ! fCI;MIg represents the independent fraction of power consump-

tion of a VM of type l on mi.
We calculate Fi;TðtÞ as the sum of all the power consumption fractions of each VM

type, taking into account idle energy only once:

Fi;TðtÞ ¼
Xk

i¼1
fl Ui;l tð Þ
� �

; 0 � Fi;TðtÞ � 1 ð2Þ

In our first analysis, the quantity of distinct VM types (CI and MI) is limited to 2.
We analyze a server energy consumption in a server Express x3650 M4, with two
processors E5-2650v2, and default clock speed of 2.6 GHz. Each processor has 8
Cores and two threads per core (16 with hyperthreading), level 1 memory of 32 kB,
level 2 of 256 kB, level 3 of 20 MB and a total memory of 64 GB (NUMA domain).

When executing different application types, we need to define realistic parameters
for the model to take into account types of applications and their combinations.

In Fig. 1, we show the energy profile obtained with a specialized Power Distri-
bution Unit (PDU) outlet metered when executing CI and MI applications versus CPU
utilization. Based on this profile we calculate the fraction of power consumption Fi;TðtÞ.

In Fig. 2, we present the coefficient gCI ai;l tð Þ
� �

that correct energy consumption
due to combinations of types of applications.

If it equals to 1, each server has only one type of applications. If the server
utilization reaches 100%, the server memory may be overcommitted, which results in
degradation of the system performance and increasing energy consumption (due to
thrashing the system spends more time in paging instead of their execution).

500
20500
40500
60500
80500

100500
120500

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

En
er

gy
 c

on
su

m
pt

io
n

(jo
ul

es
)

CPU utilization

CI MI

Fig. 1. Energy consumption versus CPU utilization.

388 L.-A. Galaviz-Alejos et al.

The allocation of distinct types of applications on the same host could help to
reduce energy consumption, even less than the sum of the independent consumptions
[11]. Besides, it has an impact on the performance by avoiding bottlenecks on hardware
(CPU, memory, hard drive, etc.). Our energy model considers the effect of the exe-
cution of a combination of distinct types of VMs on a single host.

The total utilization of mi is defined as Ui;T tð Þ ¼ Pk
l¼1 Ui;lðtÞ. We define ai;l tð Þ ¼

Ui;lðtÞ=Ui;T tð Þ as the concentration of VMs of type l in mi at a time t.
As a first approach, we simplify our model considering only two types of appli-

cations. Based on the combination coefficient presented in Fig. 2, we consider a
function gCI ai;l tð Þ

� �
, where gCI ai;l tð Þ

� �
is a coefficient (0� gCI ai;l tð Þ

� �� 1) that rep-
resent the effect of VM combination on a host. The energy consumption on host mi at
time t is given by:

ehosti tð Þ ¼ oi tð Þ ehostidlei þ ehostmaxi � ehostidlei

� �
� Fi;T tð Þ � gCI ai;l tð Þ

� �h i
; ð3Þ

where ehostidlei is the energy consumed when the host is idle, ehostmaxi is the max energy of the
host, and oi tð Þ is a function that gives the value 1, if the host is active, or 0, otherwise.
If combinations are not considering, then gCI ai;l tð Þ

� � ¼ 1.

4 MOCell Algorithm (MO)

To minimize our objective functions, we use a variant of a Genetic Algorithm
(GA) known as Multi-Objective Cellular Genetic Algorithm (MOCell) [17].

The main difference between MOCell and a classical GA is that in MOCell all the
individuals in the population are placed on a toroidal grid (Fig. 3). The selection,
crossover and mutation operators of the GA are executed only with their neighbors.

0
0.2
0.4
0.6
0.8

1

0 0.125 0.25 0.375 0.50 0.63 0.75 0.88 1.00
C

oe
ff

ic
ie

nt

(
)

Concentration

Fig. 2. Combination coefficient.

Fig. 3. Each individual on the population is placed on a toroidal grid. The GA operators are only
done between an individual (black point) and his neighbors (gray point).

Bi-objective Heterogeneous Consolidation in Cloud Computing 389

The individual is represented by an array of integers, where each slot represents a
VM, and the value of the slot represents the host, where the VM is allocated. Figure 4
shows an example of an individual with five VMs and two hosts. Here, VM1 is assigned
to host one, VM2 and VM3 are assigned to host two, and so on.

4.1 GA Operators

An operator is a mechanism used by a GA to generate, combine and select new
solutions. A typical GA has the operators: parent selection, crossover, mutation, and
survival selection. Each one of these could greatly change the results obtained by the
algorithm. We implemented and compared the behavior of MOCell using distinct
operators with a multi-objective evolutionary algorithm, NSGA-II (NS) [18] with fixed
operators. We want to find the MOCell operators that perform better to our problem.

We tested only one literature classical operator for parent and survival selection.
The parent selection operator is called Binary Tournament, this randomly selects two
parents, one from the neighborhood and one from the archive, it works by selecting two
individuals and returns the non-dominated one, if both of them are not dominated, it
returns one randomly. Survival selection mechanism is the same used on NSGA-II and
presented in [18], it consists in dividing the population on non-dominated sub fronts
where the best has rank 1, a solution is better than the others if it has a smaller rank. If
the two solutions have the same rank, then the one with bigger crowding distance is
selected.

For crossover operator, we use Uniform Crossover (UN), Single Point Crossover
(SP), and the proposed operator called Uniform SLA Crossover (UNSLA). This
operator combines a classical crossover schema UN with a repair step that limits the
quantity of SLA violations on the offspring. The offspring has the same or smaller
amount of SLA violations in comparison with its parents. It ignores exchanges that
increase SLA violations. An example is presented in Fig. 5.

1 2 2 1 2

Fig. 4. An example of an individual chromosome.

Parent 1 (SLA = 3)

1 1 3 3 3 2

Parent 2 (SLA = 3)

2 3 1 1 2 2

Offspring 1 (SLA = 3)

1 1 3 1 2 2

Offspring 2 (SLA = 0)

2 3 1 1 3 2

Fig. 5. An example of Uniform SLA Crossover. Darkly shaded genes correspond to parent 1,
non-shaded genes to parent 2. In gene 2 the cross represents no exchange of value is done, on
gene 4 the value is moved from parent 2 to 1, and on gene 5 both values are exchanged.

390 L.-A. Galaviz-Alejos et al.

For mutation, we use two classic operators: BitFlip Mutation (BF) and Swap
Mutation (SW). In addition, we propose new mutation operators: Balanced Concen-
tration Mutation (BC), Swap VM Mutation (VMSW) and Local Search SLA (LS).
These operators combine a classic mutation scheme with a repair step in order to obtain
feasible solutions that substitute a host with SLA violation for one that does not has
SLA violation.

BC selects two hosts randomly and allocates all the VMs evenly for each type
between the hosts (Fig. 6). VMSW randomly selects a VM with SLA violation and
moves it to a host with low utilization (Fig. 7). LS finds the overloaded hosts (the hosts
that have the maximum number of VMs allocated) and allocates their VMs to the hosts
with the lowest utilization (Fig. 8).

Individual before muta on

1 1 2 3 3 2

Individual before muta on

1 2 2 3 3 1

VMs on hosts before muta on VMs on host a er muta on

Fig. 6. An example of Balance Concentration Mutation. The lightly shaded cells represent CI,
dark shaded cells represent MI.

1 1 1 1 1 1 1

4 3

Individual before muta on

2 2

Individual before muta on

2 3 2

VMs qty. on host before muta on

2 0

VMs qty. on host a er muta on

2 1

Fig. 7. An example of Swap VM Mutation. Darkly shaded cells represent the overloaded hosts.
Lightly shaded cells represent the hosts with lower utilization. White cells represent the hosts
with the lowest utilization.

Individual before muta on

1 3 3 3 3 1

Individual a er muta on

1 2 3 2 3 1

Hosts U l. before muta on
VMs Qty. U liza on

2 100%
0 0%
4 200%

Hosts U l. a er muta on
VMs Qty. U liza on

2 100%
2 100%
2 100%

Fig. 8. An example of LocalSearchSLA. Dark shaded cells represent the VMs with SLA
violation. The host h3 has the biggest utilization and their VMs are moved to the host with the
lowest utilization (h2) until all VMs of the host h3 do not violate SLA.

Bi-objective Heterogeneous Consolidation in Cloud Computing 391

5 Experimental Setup

Our 28 days workload is based on traces of real HPC from Parallel Workloads Archive,
and Grid Workload Archive [19–21]. The workloads include nine traces from
DAS2-University of Amsterdam, DAS2–Delft University of Technology, DAS2–
Utrecht University, DAS2–Leiden University, KHT, DAS2–Vrije University
Amsterdam, HPC2 N, CTC, and LANL.

We consider every task on the log as a VM with 1 MIPS. In Fig. 9, we can observe
the distribution of VM tasks for 28 days, where CI represents CPU intensive VM, and
MI represents memory-intensive VM.

In our environment, we consider that we have enough hosts to ensure no SLA
violation. In a first test case, one host with a speed of 2 MIPS can have two VMs of 1
MIPS. The idle energy ehostidle and the maximum energy ehostmax correspond to the values of
Xeon IvyBridge processors E5-2650v2.

We use Java language (JDK 8) and JMetal Optimization framework 4.5.2 [22, 23],
which includes metaheuristics such as NSGA-II, MOCell, SPEAII, etc.

We execute algorithms under parameters presented in Table 2. We study 14
algorithms for MOCell and 1 for NSGA-II described in Table 3.

As a reference point, we calculate a lower bound for the test cases. These bound
include two points: solution without SLA and solution with SLA equals to the number
of VMs.

To calculate lower bound with no SLA, we order the CI and MI VMs decreasingly
on its execution time, then, we allocate one VM of each kind on the host until it is full.
The last step is to bound runtimes, so all the runtimes of the VMs on a host are set as
the minimum runtime of all the VMs allocated on the host.

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27N
um

be
ro

ft
as
ks

(x
10

³)

Day

CI MI

Fig. 9. VM types per day

Table 2. Configuration of GA operators

Population 100
Iterations 20,000
Crossover probability 0.9
Mutation probability 1=n

392 L.-A. Galaviz-Alejos et al.

The solution with a maximum number of SLA violations is created by allocating all
VMs on a single host and then bounding the runtimes with the same procedure for no
SLA solution.

We obtain an approximation of Pareto front for each day, 28 fronts for each
algorithm. We normalize data by a lower bound. We built a unique front for each
algorithm by taking the nondominated solutions from all the fronts for each day.

6 Methodology Used for the Analysis

In a multi-objective problem, in order to evaluate each algorithm, we need a method to
measure the quality of the fronts. On this paper, we use two quality indicators: Set
Coverage and Hyper volume. Both indicators were proposed on [24]. For hyper vol-
ume we use performance degradation [25] to measure how much each algorithm differs
from the best found, this is calculated as follows: best volume

algorithm volume � 1. We present two
degradations, absolute and relative. The first degradation it is the degradation taking in
account the lower bound.

6.1 Set Cover

We use Set Coverage SC(A, B) to analyze the bi-objective problem. It is a formal and
statistical metric that calculates the proportion of solutions in B, which are dominated
by solutions in A:

SC A;Bð Þ ¼ jfb 2 B; j9a 2 A; a � bg
jBj ð4Þ

Table 3. Tested algorithms

Algorithm GA Operators
Crossover Mutation

MO-SP-BC MOCell Single point Balance concentration
MO-SP-BF MOCell Single point Bit flip
MO-SP-SW MOCell Single point Swap
MO-SP-VMSW MOCell Single point Swap VM
MO-UN-BC MOCell Uniform Balance concentration
MO-UN-BF MOCell Uniform Bit flip
MO-UN-SW MOCell Uniform Swap
MO-UN-VMSW MOCell Uniform Swap VM
MO-UN-LS MOCell Uniform Local search SLA
MO-UNSLA-BC MOCell Uniform SLA Balance concentration
MO-UNSLA-BF MOCell Uniform SLA Bit flip
MO-UNSLA-SW MOCell Uniform SLA Swap
MO-UNSLA-VMSW MOCell Uniform SLA Swap VM
NS-UN-BF NSGA II Uniform Bit flip

Bi-objective Heterogeneous Consolidation in Cloud Computing 393

A metric value SC(A, B) = 1 means that all solutions of B are dominated by A,
whereas SC(A, B) = 0 means that no member of B is dominated by A. This way, the
larger the value of SC(A, B), the better the Pareto front A with respect to B. Since the
dominance operator is not symmetric, SC(A, B) is not necessarily equal to 1 − SC(A,
B), and both SC(A, B) and SC(B, A) have to be computed for understanding how many
solutions of A are covered by B and vice versa.

6.2 Hyper Volume

This indicator calculates the volume of the multi-dimensional region enclosed between
a reference point and the points in the front. This metric has the advantage being
independent (is a property of the front). Its concept is intuitive and allows front ranking
according to this value. In Fig. 10, we observe an example of hyper volume indicator.

7 Experimental Results

We address a bi-objective consolidation problem of minimizing power consumption
and SLA violations.

The non-dominated fronts obtained for each algorithm are presented in Fig. 11.
MO-UNSLA-BF, MO-UNSLA-SW, MO-UNSLA-VMSW and, MO-UNSLA-BC
strategies are in the lower-left corner, being among the best solutions in terms of
SLA violations.

For SLA violation degradation, MO-UNSLA-BF obtains values between 6 and
131, MO-UNSLA-SW between 11 and 93, MO-UNSLA-VMSW between 0 and 159
and MO-UNSLA-BC between 14 and 454.

On the other hand, the best algorithms for energy minimization objective are
NS-UN-BF, MO-UN-BF, MO-SP-BF. NS-UN-BF. Their degradation of energy from
the best found are: for NS-UN-BF between 0 and 3.48, MO-UN-BF between 0.05 and
2.56, and MO-SP-BF between 0.39 and 3.02.

Table 4 reports the SC results for each of the 14 Pareto fronts. The rows of the table
show the values SC(A, B) for the dominance of strategy A over strategy B. The
columns indicate SC(B, A), that is, dominance of B over A. The last two columns show
the average of SC(A, B) for row A over column B, and ranking based on the average
dominance.

Fig. 10. Hyper volume for a bi-objective front Z1, Z2, Z3 and a reference point Zref.

394 L.-A. Galaviz-Alejos et al.

We see that SC (MO-UNSLA-VMSW, B) dominates the fronts of the other
strategies in the range between 44% and 100% and dominates by 82% in average. SC
(A, MO-UNSLA-VMSW) shows that MO-UNSLA-VMSW is dominated by the fronts
of other strategies in 11% in average.

The ranking of strategies is based on the percentage of coverage. The higher mean
dominance of rows implies that the fronts are better. The rank in columns shows that
the smaller the average dominance, the better the strategy. According to the set cov-
erage metric table, the strategy that has the best compromise between minimizing SLA
violation and energy consumption is MO-UNSLA-VMSW, followed by
MO-UNSLA-BC, MO-UNSLA-BF, and MO-UNSLA-SW. MO-UNSLA-VMSW
scores 0.82 of mean dominance and mean dominated of 0.11, MO-UNSLA-BC
scores 0.75 and 0.15, MO-UNSLA-SW scores 0.75 and 0.18 and MO-UNSLA-SW
scores 0.75 and 0.13.

Table 5 presents the hyper volume and rank in dominance over other algorithms.
According to the hyper volume metric, the best algorithms are MO-UN-BF,
MO-UNSLA-BC, MO-UNSLA-SW, MO-UNSLA-BF, and MO-UNSLA-VMSW.
These algorithms show a performance difference less than 1.2% according to hyper
volume relative degradation.

According to both metrics, MO-UN-BF is the best strategy in energy minimization
with lowest absolute degradation value of 20.79%. On the other hand, the strategies
MO-UNSLA-BC, MO-UNSLA-SW, MO-UNSLA-BF, and MO-UNSLA-VMSW are
the best for SLA minimization with differences of relative hyper volume less than
0.5%. The worst algorithms by both metrics are MO-UN-SW, MO-SP-SW,
MO-SP-BC, and MO-SP-VMSW with a relative hyper volume degradation greater
than 20% and rank greater than 11. With the exception of MO-UN-SW, the worst
algorithms use SP crossover.

3

8

13

18

23

28

0 1000 2000 3000 4000 5000

N
or
m
al
ize

d
En

er
gy

(x
10

³)

Normalized SLA Viola ons

MO-SP-BC MO-SP-BF MO-SP-SW
MO-SP-VMSW MO-UN-LS MO-UN-BC
MO-UN-BF MO-UN-SW MO-UN-VMSW
MO-UNSLA-BC MO-UNSLA-BF MO-UNSLA-SW
MO-UNSLA-VMSW NS-UN-BF

Fig. 11. The non-dominated fronts obtained for each algorithm.

Bi-objective Heterogeneous Consolidation in Cloud Computing 395

Table 4. Set coverage.

M
O

-SP-B
C

M
O

-SP-B
F

M
O

-SP-SW

M
O

-SP-V
M

SW

M
O

-U
N

-B
C

M
O

-U
N

-B
F

M
O

-U
N

-L
S

M
O

-U
N

-SW

M
O

-U
N

-V
M

SW

M
O

-U
N

SLA
-BC

M
O

-U
N

SLA
-BF

M
O

-U
N

SL
A

-SW

M
O

-U
N

SL
A

-V
M

SW

N
S-U

N
-BF

M
ean

R
ank

MO-SP-BC 1.00 0.00 0.44 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 12
MO-SP-BF 1.00 1.00 1.00 1.00 1.00 0.00 0.89 1.00 0.83 0.00 0.00 0.00 0.00 0.27 0.57 7
MO-SP-SW 0.07 0.00 1.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 13
MO-SP-VMSW 0.22 0.00 0.11 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 14
MO-UN-BC 1.00 0.00 1.00 1.00 1.00 0.00 0.23 0.69 0.44 0.00 0.00 0.00 0.00 0.00 0.38 10
MO-UN-BF 1.00 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 0.13 0.00 0.00 0.00 0.73 0.70 5
MO-UN-LS 1.00 0.00 1.00 0.90 0.52 0.00 1.00 0.76 0.76 0.00 0.05 0.04 0.06 0.24 0.45 8
MO-UN-SW 0.96 0.00 1.00 0.86 0.28 0.00 0.25 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 11
MO-UN-VMSW 1.00 0.00 1.00 0.87 0.43 0.00 0.25 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.40 9
MO-UNSLA-BC 1.00 0.74 1.00 1.00 0.72 0.81 1.00 0.90 0.83 1.00 0.36 0.16 0.21 0.73 0.75 3
MO-UNSLA-BF 1.00 0.74 1.00 1.00 0.72 0.81 1.00 0.90 0.83 0.33 1.00 0.16 0.24 0.73 0.75 2
MO-UNSLA-SW 1.00 0.74 1.00 1.00 0.72 0.81 0.86 0.90 0.83 0.22 0.45 1.00 0.18 0.73 0.75 4
MO-UNSLA-VMSW 1.00 0.74 1.00 1.00 0.72 0.81 0.86 0.90 0.83 0.44 0.79 0.60 1.00 0.73 0.82 1
NS-UN-BF 1.00 0.26 1.00 1.00 1.00 0.00 0.76 1.00 1.00 0.03 0.00 0.00 0.00 1.00 0.58 6
Mean 0.88 0.37 0.90 0.93 0.61 0.28 0.58 0.74 0.62 0.15 0.18 0.13 0.11 0.41
Rank 12 6 13 14 9 5 8 11 10 3 4 2 1 7

Table 5. Comparison results.

Algorithm Hyper volume Rank
SC(x107) Absolute degradation

(%)
Relative degradation
(%)

Lower bound 11.50 – –

MO-UN-BF 9.49 20.79 0.00% 5
MO-UNSLA-VMSW 9.43 21.56 0.64% 1
MO-UNSLA-BF 9.42 21.74 0.78% 2
MO-UNSLA-BC 9.42 21.75 0.79% 3
MO-UNSLA-SW 9.39 22.14 1.12% 4
NS-UN-BF 9.36 22.44 1.37% 6
MO-SP-BF 8.96 27.95 5.93% 7
MO-UN-LS 8.68 32.11 9.38% 8
MO-UN-BC 8.03 42.71 18.15% 10
MO-UN-VMSW 8.01 43.22 18.57% 9
MO-UN-SW 7.91 44.96 20.01% 11
MO-SP-VMSW 7.72 48.49 22.94% 14
MO-SP-BC 7.68 49.25 23.56% 12
MO-SP-SW 7.63 50.24 24.39% 13

396 L.-A. Galaviz-Alejos et al.

8 Conclusion

In this paper, we conduct a bi-objective analysis for the consolidation problem of 15
algorithms with the objectives of SLA violations minimization and energy optimiza-
tion. With the power profiles of CPU and memory intensive jobs and their combination,
obtained on real 16 core server, we design a heterogeneous power-aware model for
energy consumption estimation.

Simulation results reveal that MO-UN-BF outperforms NS-UN-BF in terms of
hyper volume by 1.37% and SC by 12% (see Tables 4 and 5). These strategies are
MOCell and NSGA-II using the same crossover and mutation operators.

The best strategies in terms of SLA violation are MO-UNSLA-VMSW,
MO-UNSLA-BC, MO-UNSLA-BF, and MO-UNSLA-SW. However, the strategy
MO-UNSLA-VMSW has the best absolute values. In SLA violation degradation, it
obtains values between 0 and 159. In SC, it dominates the fronts of the other strategies
in the range between 44% and 100%, and dominates in 82%, in average. The relative
hyper volume degradation is less than 1%.

For the energy optimization point of view, the strategy MO-UN-BF is the best in
hyper volume analysis. There are only 0.05 and 2.56 times worse than the lowest
possible bound. According to SC, it dominates the fronts of the other strategies in the
range between 0% and 100%, and dominates 70%, on average.

References

1. Cook, G.: How clean is your cloud. Catal. Energy Revolut. 52, 1–52 (2012)
2. Greenpeace International: Make IT Green: Cloud Computing and Its Contribution to Climate

Change, pp. 1–12. Greenpeace International, Amsterdam (2010)
3. Varasteh, A., Goudarzi, M.: Server consolidation techniques in virtualized data centers: a

survey. IEEE Syst. J. 11(2), 772–783 (2015). https://doi.org/10.1109/JSYST.2015.2458273
4. Tchernykh, A., Schwiegelsohn, U., Talbi, E., Babenko, M.: Towards understanding

uncertainty in cloud computing with risks of confidentiality, integrity, and availability.
J. Comput. Sci. (2016). https://doi.org/10.1016/j.jocs.2016.11.011

5. Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I., Tenhunen, H.:
Using ant colony system to consolidate VMs for green cloud computing. IEEE Trans. Serv.
Comput. 8, 187–198 (2015). https://doi.org/10.1109/TSC.2014.2382555

6. Tchernykh, A., Pecero, J.E., Barrondo, A., Schaeffer, E.: Adaptive energy efficient
scheduling in Peer-to-Peer desktop grids. Futur. Gener. Comput. Syst. 36, 209–220 (2014).
https://doi.org/10.1016/j.future.2013.07.011

7. Maziku, H., Shetty, S.: Network aware VM migration in cloud data centers. In: 2014 3rd
GENI Research and Educational Experiment Workshop, pp. 25–28 (2014). https://doi.org/
10.1109/GREE.2014.18

8. Maziku, H., Shetty, S.: Towards a network aware VM migration: evaluating the cost of VM
migration in cloud data centers. In: 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet). pp. 114–119. IEEE (2014)

Bi-objective Heterogeneous Consolidation in Cloud Computing 397

http://dx.doi.org/10.1109/JSYST.2015.2458273
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1109/TSC.2014.2382555
http://dx.doi.org/10.1016/j.future.2013.07.011
http://dx.doi.org/10.1109/GREE.2014.18
http://dx.doi.org/10.1109/GREE.2014.18

9. Wu, Q., Ishikawa, F.: Heterogeneous virtual machine consolidation using an improved
grouping genetic algorithm. In: 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, pp. 397–404. IEEE (2015)

10. Nesmachnow, S., Iturriaga, S., Dorronsoro, B., Tchernykh, A.: Multiobjective energy-aware
workflow scheduling in distributed datacenters. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS,
vol. 595, pp. 79–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32243-8_5

11. Armenta-Cano, F.A., Tchernykh, A., Cortes-Mendoza, J.M., Yahyapour, R., Drozdov, A.Y.,
Bouvry, P., Kliazovich, D., Avetisyan, A., Nesmachnow, S.: Min_c: heterogeneous
concentration policy for energy-aware scheduling of jobs with resource contention. Program.
Comput. Softw. 43, 204–215 (2017). https://doi.org/10.1134/S0361768817030021

12. Hongyou, L., Jiangyong, W., Jian, P., Junfeng, W., Tang, L.: Energy-aware scheduling
scheme using workload-aware consolidation technique in cloud data centres. China
Commun. 10, 114–124 (2013). https://doi.org/10.1109/CC.2013.6723884

13. Yang, J.S., Liu, P., Wu, J.J.: Workload characteristics-aware virtual machine consolidation
algorithms. In: CloudCom 2012 – Proceedings of 2012 4th IEEE International Conference
on Cloud Computing Technology and Science, pp. 42–49 (2012). https://doi.org/10.1109/
CloudCom.2012.6427540

14. Combarro, M., Tchernykh, A., Kliazovich, D., Drozdov, A., Radchenko, G.: Energy-aware
scheduling with computing and data consolidation balance in 3-tier data center. In: 2016
International Conference on Engineering and Telecommunication (EnT), pp. 29–33. IEEE (2016)

15. Nath, A.R., Kansal, A., Govindan, S., Liu, J., Suman, N.: PACMan: performance aware
virtual machine consolidation. In: 10th International Conference on Autonomic Computing,
ICAC 2013, San Jose, CA, USA, pp. 83–94, 26–28 June 2013

16. Verboven, S., Vanmechelen, K., Broeckhove, J.: Network aware scheduling for virtual
machine workloads with interference models. IEEE Trans. Serv. Comput. 8, 617–629
(2015). https://doi.org/10.1109/TSC.2014.2312912

17. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic algorithm for
multiobjective optimization. In: Proceedings of Workshop on Nature inspired cooperative
strategies for optimization, NICSO 2006, pp. 25–36 (2006)

18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.
1109/4235.996017

19. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads
archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014). https://doi.org/10.1016/j.
jpdc.2014.06.013

20. Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/
21. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J.E., Nesmachnow, S.,

Drozdov, A.Y.: Online bi-objective scheduling for IaaS clouds ensuring quality of service.
J. Grid Comput. 14, 5–22 (2016). https://doi.org/10.1007/s10723-015-9340-0

22. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization:
design and architecture. Evol. Comput. 5467, 18–23 (2010). https://doi.org/10.1109/CEC.
2010.5586354

23. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv.
Eng. Softw. 42, 760–771 (2011). https://doi.org/10.1016/j.advengsoft.2011.05.014

24. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. http://www.tik.ee.ethz.ch/sop/publicationListFiles/zitz1999a.pdf, (1999)

25. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Math. Program. Ser. B. 91, 201–213 (2002). https://doi.org/10.1007/s101070100263

398 L.-A. Galaviz-Alejos et al.

http://dx.doi.org/10.1007/978-3-319-32243-8_5
http://dx.doi.org/10.1134/S0361768817030021
http://dx.doi.org/10.1109/CC.2013.6723884
http://dx.doi.org/10.1109/CloudCom.2012.6427540
http://dx.doi.org/10.1109/CloudCom.2012.6427540
http://dx.doi.org/10.1109/TSC.2014.2312912
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.jpdc.2014.06.013
http://dx.doi.org/10.1016/j.jpdc.2014.06.013
http://www.cs.huji.ac.il/labs/parallel/workload/
http://dx.doi.org/10.1007/s10723-015-9340-0
http://dx.doi.org/10.1109/CEC.2010.5586354
http://dx.doi.org/10.1109/CEC.2010.5586354
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zitz1999a.pdf
http://dx.doi.org/10.1007/s101070100263

Scaling the Deployment of Virtual Machines
in UnaCloud

Jaime Chavarriaga1(B), César Forero-González1, Jesse Padilla-Agudelo1,
Andrés Muñoz1, Rodolfo Cáliz-Ospino2, and Harold Castro1

1 COMIT Research Group, Universidad de los Andes, Bogotá, Colombia
{ja.chavarriaga908,ca.forero10,pa.jesse10,

af.munoz1477,hcastro}@uniandes.edu.co
2 Centro de Computación de Alto Desempeño (CECAD),

Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
cecad@udistrital.edu.co

Abstract. UnaCloud is an Opportunistic Cloud Platform that allows
to create virtual clusters in non-dedicated hardware by harvesting idle
resources in computer rooms across a campus. To launch a virtual
cluster, the platform first determines which desktops can run the vir-
tual machines and copies the corresponding images to these computers,
mostly located in the same room. Regretfully, UnaCloud uses a TCP-
based protocol to copy those images that results in large transmission
times. Our diagnostics shows that the main cause for errors when deploy-
ing multiple machines is reaching a timeout. This paper reports our
efforts to scale the deployment in UnaCloud to support clusters with
a large number of nodes. We have implemented and evaluated multiple
protocols for transferring virtual machine images. Our tests showed that
BitTorrent, a P2P file transfer protocol, outperforms copying a single
image using other protocols. Using it, we can deploy up to 100 virtual
machines, one per desktop, in less than 10 min. Although this time is
twice the offered by Amazon EC2, it is better than the exhibited by ded-
icated private clouds using software such as OpenStack and VMWare
vCloud.

Keywords: Cloud provisioning · Virtual machine images · BitTorrent

1 Introduction

UnaCloud1 is an Opportunistic Cloud Platform [11]. It harvests idle resources
of computers in a campus to offer Infrastructure as a Service (IaaS). Using
this platform, Cloud users can define and use virtual clusters that run on non-
dedicated computers. For instance, in a university, researchers may use UnaCloud
to execute a cluster of virtual machines using desktop computers in the academic
campus that are idle or are being used below their capacity.

1 https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/es/inicio/.

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 399–413, 2018.
https://doi.org/10.1007/978-3-319-73353-1_28

https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/es/inicio/

400 J. Chavarriaga et al.

As in other IaaS platforms, Cloud users must first define the images of the
virtual machines for the clusters they want to run on UnaCloud. When these
users decide to use them, the platform copies these images to the hardware
that run the virtual machines and starts the corresponding instances. The time
spent copying the images is key to initialize smoothly the virtual infrastructure
requested by the users.

Nowadays, UnaCloud creates copies of the images of virtual machines using
a custom TCP-based protocol. The images are stored permanently in a central
server and copied on-demand to the machines where the virtual machines will
run. Regretfully, this process may spent a lot of time, specially when the same
image must be copied to a large number of machines and when the size of the
image is significant. This paper presents our efforts to scale the process to deploy
the virtual machines to multiple desktops.

Considering that the typical installations of UnaCloud use computer rooms
and labs located in an university, we implemented and evaluated diverse proto-
cols that may reduce the transfer time in these environments. According to our
evaluations, BitTorrent exploits the presence of multiple computers in the same
room to transfer the image files in less time. As a result, we have developed
UnaCloud P2P, an extension that transfers the images using BitTorrent and
supports the deployment of tens of virtual machines in less than 10 min. This
time is a big improvement over the current implementation and it is comparable
to the offered by other platforms. This paper presents the evaluations we have
done and the extensions we made to UnaCloud in order to scale the deployment
process.

The rest of this paper is organized as follows: Sect. 2 presents the process
implemented in UnaCloud to deploy virtual machines and the problems caused
by delays in the transmission. Section 3 presents diverse protocols that may be
used to reduce the time spent copying the images. Section 4 compares these
protocols to determine which one offers the best option for transferring large
images to multiple nodes. Section 5 evaluates the performance of the UnaCloud
deployment process using the protocol that exhibited the best performance and
Sect. 6 compares it with existing public and private cloud platforms. Finally,
Sect. 8 concludes the paper.

2 Image Provisioning in UnaCloud

Reducing the time spent copying virtual machine images has been a challenge
during the development of UnaCloud. The main reason for failures while deploy-
ing virtual machines is reaching a timeout in this task. This section presents the
current approach and the problems we have detected.

2.1 UnaCloud Architecture

UnaCloud harvests idle computing resources from selected desktop workstations
in an organization. The platform deploys in these desktops virtual machines

Scaling the Deployment of Virtual Machines in UnaCloud 401

that run in parallel to the tasks performed by an end user. In order to work, it
requires that some software components must be installed in the organization.

Figure 1 shows an overview of the UnaCloud Architecture. It comprises three
elements: (1) A UnaCloud server that maintains information of all the virtual
machines and services running in the platform and interacts with the cloud
users by a web-based interface, and (2) A UnaCloud File server that stores
the images for the virtual images, and (3) a set of UnaCloud agents that run
on each participating desktop receiving commands from the server, controlling
the virtual machines running in that node and reporting information to the
UnaCloud Server.

Fig. 1. Overview of the UnaCloud Architecture

Cloud users interact with the UnaCloud servers to upload the images of the
virtual machines they want to use, to deploy a number of virtual machines with
these images and to access and manage those virtual machines while they are
running.

2.2 Deployment of Virtual Machines

When a Cloud user requests to deploy a number of machines, the UnaCloud
server must locate the image for the virtual machines and instruct the corre-
sponding UnaCloud agents to obtain a copy of the image from the UnaCloud
File Server and start a virtual machine using that image.

In UnaCloud, the deployment process starts when a Cloud user requests a
virtual machine and ends when that machine is running in a participating desk-
top or when an error occurs. During that process, each virtual machine has one
of the 10 states described in the Fig. 2. First, the virtual machine is QUEUED
until the UnaCloud Server has determined which desktop (a.k.a. node) has the

402 J. Chavarriaga et al.

Fig. 2. States for deploying a virtual machine in UnaCloud

resources to run it. Then, it starts tasks for CONFIGURING the virtualization
software on that node and DEPLOYING the virtual machine. If that desktop has
a copy of the image of the virtual machine, e.g. if that node has run it before, the
virtual machine can be DEPLOYED after starting its execution. If the image is
not available in that desktop, CONFIGURING the machine requires to transfer
the image from the server before get DEPLOYED.

Each one of the states during the deployment implies a set of tasks that must
be accomplished in a predefined time. If the tasks are not performed on time,
the process is halted and the virtual machine turns FAILED. The process may
halt by a request of the user, an error or a timeout.

Deployment time (Tdeployment), i.e. the time for deploying a virtual machine,
is measured by the time that it takes to go from QUEUED to DEPLOYED.
When multiple virtual machines are requested, the deployment time is deter-
mined by the maximum Tdeployment recorded across all the machines.

Transfer time (Ttransfer), i.e. the time for copying the image of a virtual
machine, is measured by the agent taking a time-stamp when the images
are requested and another time-stamp when the files are completely received.
When requesting multiple virtual machines, the transfer time is determined
by the maximum Ttransfer of these machines.

2.3 Errors in the Deployment Process

In UnaCloud, the deployment of a virtual machine may fail for many reasons:
(1) An Error in the Image that prevents the virtual machine to start, e.g. when
the VM has configuration errors; (2) An Error in the Network that prevents the
image from being copied to the destination machine, e.g. when a switch fails;
(3) An Error in the Desktop that prevents the virtual machine to run, e.g. when
the desktop is blocked or is rebooted; and (4) A Delay in the Transmission that
causes a timeout in the deployment process.

Scaling the Deployment of Virtual Machines in UnaCloud 403

While the errors in the configuration of the virtual machines can be attributed
to the users and the problems with the hardware can be fortuitous, we consider
that the failures caused by delays in the transmission must be handled by the
platform.

Table 1. UnaCloud behaviour when deploying a large number of instances

ins. time reliab. % channel payload (GB) overhead (GB) % overhead

1 330,33 100% 19,60% 1,620 0,061 3,8%

5 340,53 100% 71,20% 8,100 1,567 19,3%

10 394,30 100% 72,00% 16,200 9,679 59,7%

25 605,61 100% 72,10% 40,500 21,529 53,2%

50 959,73 98% 72,00% 81,000 41,618 51,4%

75 1331,16 99% 72,10% 119,880 61,091 51,0%

100 2908,37 99% 72,00% 162,000 80,917 49,9%

time: deployment time for all the n instances, given in seconds.
reliab.: reliability, i.e. number of correctly deployed instances over the total.
% channel: peek of channel utilization.
payload: total size of the images transmitted.
overhead: total size of data transmitted.
% overhead: ratio of the overhead over the payload.

Table 1 describes the behaviour of the deployment process when the number
of requested machines increases. It presents the time for deploying a number
of virtual machines from a single image file of 3.1 GB that, after compressed,
is transmitted as a file of 1.62 GB. These values represent the average of three
executions of each deployment in real infrastructure of the Universidad de los
Andes, where the participant desktops were not used by final users and the
communication problems were the only possible source of deployment errors.

Note that the reliability of the process, i.e. the number of correctly deployed
virtual machines over the total number of requested ones, decreases as the num-
ber of instances grew. For more than 50 instances, there was 2 or 3 failed deploy-
ments every time, caused by reaching a timeout in the TCP communication. Also
note that the level of utilization of the channels of the servers increased. Deploy-
ments with more than 5 instances consumed more than 70% of the channel. The
deployment time increases too. For 100 instances, the spent time is more than
2900 s. Considering that starting the virtual machines takes 244 to 250 s, that
means a transfer time of more than 2600 s. In fact, that is a reason because we
cannot deploy that number of machines in the University, because that time is
higher than the 30 min (1800 s) that we have configured as the limit for timeout
in UnaCloud.

Our evaluations showed that deploying a large number of instances in the
current implementation of UnaCloud produces a high congestion in the network
and, therefore, takes a lot of time. In order to scale the process and be able to

404 J. Chavarriaga et al.

deploy hundreds of virtual machines, it is necessary to reduce the congestion and
the transfer time.

3 Alternative Protocols that May Improve Image
Transferring

To scale the deployment process in UnaCloud, we started to consider alternative
protocols that may reduce the transfer time and the congestion in the network
segments. This section presents the diverse alternatives we considered.

3.1 Transfer Protocol in the Current Implementation

The current implementation of UnaCloud relies on a TCP-based file transfer that
we will name UnaCloud TCP for this paper. This protocol takes advantage of
the reliability of the TCP-transport to copy the files without including complex
processes to check the result at the target machines.

UnaCloud TCP is our current implementation. It (1) creates a socket-based
communication between the server and each client, and (2) transfers a stream
of bytes obtained by reading the file. The socket is configured to use the TCP
transport that guarantees completeness and data integrity.

3.2 Alternative Transfer Protocols

Existing literature describes many protocols aimed to transfer files between
computers that may produce better results than our implementation. On the
one hand, there are some modern protocols that have been reported as more-
performing. For instance, there are protocols such as SMB that may use different
transports, e.g. UDP or TCP, trying to reduce the overhead and transfer files
in less time. On the other hand, there are protocols where the clients requesting
the same file cooperate to reduce the transfer time. Protocols such as BitTorrent
defines Peer-to-Peer (P2P) overlay networks where each node can obtain and
serve content and can coordinate with the others to reduce the transfer time.

Considering the alternatives, we evaluated three different protocols: (1) FTP,
a traditional protocol based on TCP, (2) SMB, a modern disk sharing protocol
that may use TCP or UDP in local networks, and (3) BitTorrent, a widely
used protocol for sharing files in P2P.

File Transfer Protocol (FTP) [10] is probably the most known protocol for
transferring files between a client and a server. It was defined at the beginning
of the Internet [2] and has been updated constantly since then. Nowadays,
command-line FTP clients are shipped with most Microsoft Windows, Unix
and Linux operating systems. In addition, web browsers such as Internet
Explorer and Chrome supports fetching files using this protocol.

Server Message Block (SMB) [8] is an application-layer protocol well known
for providing shared access to files, printers and serial ports for networks
based on Microsoft Windows. It is supported by the Samba project2 in other

2 https://www.samba.org.

https://www.samba.org

Scaling the Deployment of Virtual Machines in UnaCloud 405

operating systems. SMB runs on top of diverse transport protocols using a
thin layer known as NetBIOS [9].

BitTorrent [3] is a protocol widely used to share large files in the Internet3.
In this protocol, files are transmitted by chunks from multiple machines that
hold copies of the file. Each node can request for a chunk, and later transmit
to others that may need it. One of the nodes is a tracker that maintains
information of which nodes have which chunks. The other nodes are clients
that interact with the tracker and with the other nodes trying to obtain the
chunks from a near-location machine and reduce the transfer time [12].

4 Evaluating the Protocols for Transferring Files

To improve the deployment process our first step aimed to determine which
alternative protocol can be used to transfer image files. We defined a test suite to
compare the performance of the protocols mentioned above. The best performing
protocol in our tests,i.e. the one that minimizes transfer errors and transfer time,
will be used to replace the current transfer protocol in the platform.

4.1 Test Suite

Our tests for evaluating protocols for transferring files consisted on measuring
the transfer time (Ttransfer) of a virtual machine image of 3.1 GB that results
in a file of 1.7 GB after ZIP compression. The same image was transferred from
a single UnaCloud server to a varying number of desktops running a UnaCloud
agent in each one. We defined seven scenarios by varying the number of desktop
machines between 1, 5, 10, 25, 50, 75 and 100. For each scenario, the tests for
each protocol was repeated three times to reduce random errors obtaining the
time.

Fig. 3. Network elements used in the deployment of virtual machines

3 http://www.bittorrent.org.

http://www.bittorrent.org

406 J. Chavarriaga et al.

The tests were performed in two laboratories (the Waira and the Turing
labs) in the Universidad de los Andes. Figure 3 describes the network elements.
There are 100 computers located in two rooms with different network segments:
65 machines are in one VLAN and 35 in the other one. Both network segments
and the UnaCloud server are interconnected by a 10 Gbps backbone. All these
machines have 1 Gbps connections to the switches.

Each file transfer protocol was tested using a customized version of UnaCloud
that allows to execute command line tools to transfer the images. The only
exception was the test for BitTorrent where we created an UnaCloud extension.
The following is a description of the tests we made for each protocol.

UnaCloud TCP: We tested the same protocol currently used in the UnaCloud
to establish the baseline for further comparisons. Basically, we took the exist-
ing implementation and removed the time limit to prevent errors by timeout.

FTP: We tested the FTP protocol by using a FileZilla server4 in a Windows
host and a web browser as the FTP client in the agents. The UnaCloud agents
were modified to execute the FTP transfer without starting the corresponding
virtual machine. We collect the transfer time by using the logs normally
collected by the agents. Table 2 reports the results.

SMB: We tested the file transfer with SMB using the tools included in the
Windows Operating System. We defined a shared disk in the server and used
the command line tools to access the files. The UnaCloud agent executed
commands such as NET USE and XCOPY to obtain the files from the server.
The time was collected using the same logs mentioned above. Table 2 reports
the results of our evaluation of SMB.

BitTorrent: We evaluated the BitTorrent protocol by using an extension to
UnaCloud based on the Turn’s BitTorrent library5, a pure-Java library sup-
porting both tracker and client roles. We had to install the extension into the
UnaCloud server and agents to perform the tests. Table 2 reports the results.

4.2 Evaluation

We were able to perform all our tests without problems except for those copy-
ing an image to 100 desktops using FTP. In such protocol, the time spent by
transferring the images grew exponentially and we got communication errors
in more than 20 images each time. Although we configured the FileZilla FTP
server allowing more than 100 connections and a timeout of 1 h, we were not
able to deploy these machines without errors. Considering that we had results
for deploying 1 to 75 machines, we decided to omit this test for the evaluation.

Table 2 summarizes the results of our tests6. It reports the average time (in
seconds) to copy the 1.7 GB image file to each number of instances using each
protocol. It also presents the ratio of the time spent by each protocol over the
time spent by our custom TCP-based implementation.
4 https://filezilla-project.org/.
5 http://mpetazzoni.github.io/ttorrent/.
6 Datasets available at https://goo.gl/NXJVZF.

https://filezilla-project.org/
http://mpetazzoni.github.io/ttorrent/
https://goo.gl/NXJVZF

Scaling the Deployment of Virtual Machines in UnaCloud 407

Table 2. Transfer times obtained copying images using FTP, SMB and BitTorrent

time: average transfer time, in seconds, for each of the n copies of a 1.7 GB file.
ratio: transfer time using a protocol over the transfer time using UnaCloud TCP.
reliab. (reliability): number of correctly transferred files over the total requested.

Note that all the evaluated protocols perform better than our original imple-
mentation. SMB performs better than BitTorrent when the same image is copied
to less than ten desktops, and FTP when the image is copied to less than five.
BitTorrent, in contrast, performs better than all the others when the image is
copied to ten or more machines.

Fig. 4. Transmission time using the evaluated protocols

Figure 4 compares the transfer time of the evaluated protocols. Note that
the time spent by the UnaCloud TCP, FTP and SMB protocols increases as
the number of machines grows. In contrast, the time spent by BitTorrent is
under 230 s between 5 and 100 machines. FTP, SMB and our original TCP-
based protocol exceeds 200 s before 20 machines.

Table 3 compares the use of channel and the overhead during the transfer
of the image using the evaluated protocols. This values were measured in the
network interfaces of the UnaCloud File Server that transmitted the images dur-
ing all the experiments. In Table 3, the overhead represents the amount of bytes

408 J. Chavarriaga et al.

Table 3. Channel use and overhead copying images using FTP, SMB and BitTorrent

% channel: peek of channel utilization.
ratio: % use of channel of a protocol over the % of channel using UnaCloud TCP.
% overhead: ratio of the overhead over the payload.

transmitted over the total size of the images transmitted. A larger overhead
represents a larger number of re-transmitted data and control packages. Note
that UnaCloud TCP, our custom implementation, exhibits the largest overhead.
In contrast, note that BitTorrent has a negative overhead, i.e. the UnaCloud
File server transmitted less than the total size of the images because part of
the communications were performed among the desktops without server inter-
vention. In addition, Note that use of the channel of the UnaCloud TCP, FTP
and SMB protocols goes higher than 70% after 5 instances while the BitTorrent
remains less than that value even for 100 instances. That means that BitTorrent
produces less network congestion than the other protocols.

5 Evaluating the Deployment of Virtual Machines Using
BitTorrent

Considering that BitTorrent outperformed the other protocols while transferring
many copies of the same image, we performed further evaluations using this
protocol to deploy the virtual machines in UnaCloud. This section compares
the time spent deploying virtual machines using our custom UnaCloud TCP file
transfer and an alternative BitTorrent implementation.

5.1 Test Suite

We performed tests comparing the deployment time (Tdeployment) in an oppor-
tunistic desktop cloud running UnaCloud using our TCP-based protocol and
using BitTorrent. We modified UnaCloud to ignore the predefined time for each
state and avoid the related timeouts during deployment, and developed a new
UnaCloud P2P that supports BitTorrent for the transmission of the virtual
machine images.

To compare both UnaCloud implementations, we choose an image for a
Debian 6.0 virtual machine with a 3.1 GB disk, 1 GB in RAM and a single
core. Considering that UnaCloud transfers compressed images, the file to trans-
mit is 1.7 GB. Note that the time required to deploy a virtual machine includes

Scaling the Deployment of Virtual Machines in UnaCloud 409

the time for transferring and decompressing the file in addition to starting the
virtualization.

We used that image to deploy 1, 5, 10, 25, 50, 75 and 100 virtual machines
(a.k.a. instances). In such tests, the UnaCloud server was able to allocate each
virtual machine in a different desktop and the image file was transferred to an
equal number of different computers.

5.2 Evaluation

Table 4 summarizes the results of our tests. It reports the time spent to deploy
multiple virtual machines using our TCP-based protocol and using BitTorrent.

Table 4. Deployment times using UnaCloud TCP and UnaCloud BitTorrent

time: time for deploying all the n virtual machines, in seconds.
deploy: number of virtual machines per desktop.
ratio: deployment time using UnaCloud BitTorrent over the time of UnaCloud TCP.
reliab. (reliability): number of correctly deployed instances over the total.

Note that the UnaCloud BitTorrent extension outperforms the existing
implementation for deploying multiple virtual machines. While the deployment
time of the existing implementation increases as the number of instances grows,
the time spent by our BitTorrent-based implementation remains almost constant
(410 s aprox. after 5 machines).

6 Comparison to Other Cloud Platforms

Based on our results, we performed additional tests to compare the time spent
deploying virtual machines on UnaCloud using BitTorrent to the required in
other existing public and private cloud platforms. Basically, these tests aim to
determine if the resulting time to deploy is acceptable and competitive with
respect to other existing platforms. This section presents the results of our tests.

410 J. Chavarriaga et al.

6.1 Test Suite

We performed the test suite described in Sect. 5, deploying the same virtual
machine image into multiple instances on (1) a public cloud, the Amazon Elastic
Computing (EC2) service7, and (2) two private clouds, one running OpenStack8

and another running VMware vCloud Suite9.
For each platform, we created the corresponding image and deployed it into 1,

25, 50, 75 and 100 instances. Each test was repeated three times. The deployment
time was measured using the tools provided by each platform.

Amazon Elastic Compute Cloud (EC2): To deploy the virtual machines, we
first created an Amazon Machine Image (AMI) with the same specifications of
the previous tests. An AMI can be created from scratch using the command-
line EC2 API Tools or by modifying an existing AMI in the web. We created
the AMI from the image we used in UnaCloud and started multiple instances
from it. Because we were using an academic license for EC2, we were not
allowed to start 100 instances without requesting first an authorization. The
results of our tests are presented in Table 5.

An OpenStack-based private cloud: In addition, we executed the tests on
Caldas I, an existing OpenStack-based private cloud in the CECAD, the High
Performance Computing Center of the Universidad Distrital Francisco Jose de
Caldas10. To do it, we created first a QCOW2 image for the virtual machine
using a VirtualBox’s VDI hard disk image with the same specifications we
used in the previous tests. The resulting image had a size of 3.05 GB. We used
that image to start the multiple instances. Table 5 presents the results of our
tests.

A VMWare vCloud-based private cloud: Finally, we executed the tests on
ISCloud, an existing VMWare vCloud-based private cloud in the Universidad
de los Andes. We created an image with the same specification of the used
in the other tests. The resulting image of 3.0 GB was uploaded to the system
and used to deploy the virtual machines using two types of storage, one based
on hybrid HDD/SSD and other on HDD drives. Table 5 reports the average
time spent by deploying these instances.

6.2 Comparison

Table 5 reports the results of our tests. It compares the total time spent by our
Bit-Torrent extension to UnaCloud to the time reported by Amazon EC2 and
the Caldas I and ISCloud private clouds.

Note that the time exhibited by Amazon EC2 remains almost constant inde-
pendently of the number of instances requested. Although the behaviour of our
BitTorrent extension is similar and the time remains almost constant, the time
7 https://aws.amazon.com/ec2.
8 https://www.openstack.org/.
9 https://www.vmware.com/products/vcloud-suite.html.

10 http://cecad.udistrital.edu.co/.

https://aws.amazon.com/ec2
https://www.openstack.org/
https://www.vmware.com/products/vcloud-suite.html
http://cecad.udistrital.edu.co/

Scaling the Deployment of Virtual Machines in UnaCloud 411

Table 5. Deployment times using UnaCloud P2P and other public and private clouds

time: deploying time for all the n instances, given in seconds.
ratio: deploying time on a platform over the deployment time on the UnaCloud
BitTorrent.

exhibited by Amazon EC2 is a few more than a half. While the time in Amazon
EC2 is approximately 250 s, the time of UnaCloud P2P is close to 410 s.

UnaCloud P2P exhibits a better deployment time than the Caldas I.
Although Caldas I is widely used, it is optimized to support high loads of com-
puting power but not to deploy a large number of instances simultaneously. This
OpenStack-based private cloud offers better performance for deploying a single
virtual machine (186 s vs. 410 s on UnaCloud), but lacks behind for deploying
25 or more instances.

After some preliminary tests on the VMWare vCloud-based ISCloud, we
created an image using a suspended virtual machine to optimize the time for
deploying the instances. However, in order to reduce the impact on the other
virtual machines running on the platform, the deployments were enqueued and
performed four machines at a time. The deployment times result comparable to
the obtained in the Caldas I private cloud. Note that it deploys a single machine
in less time than UnaCloud P2P but takes more time for 25 or more instances.

7 Discussion

Related Work. Our research confirms other works comparing BitTorrent to
other protocols for provisioning data and virtual machines. BitTorrent has many
features that reduce the transfer time when a single file is transmitted to multiple
machines [12]. Commonly used to share music and movies, it has been recently
used to support provisioning for Grid and Cloud computing [1,4,7]. In contrast to
these works focused on traditional cloud platforms [5,6], our research is focused
on applying BitTorrent for deploying virtual machines in desktop clouds. In
addition, we have performed some comparisons to existing cloud platforms that
showed that it may be applied to improve not only opportunistic platforms but
also private cloud platforms.

412 J. Chavarriaga et al.

Deployment time in private clouds. Our findings show that public clouds
as Amazon EC2 offer better deployment times that the exhibited in the evalu-
ated private clouds11. There are many reasons for these differences. On the one
hand, while Amazon EC2 is surely designed to support peaks where hundreds
of new instances are required, the private clouds are often designed to introduce
few instances at a time. We evaluated two academic private-clouds that support
scientific research and class-related activities. The instances can be deployed at
the beginning of a period without a rush. On the other hand, the private cloud
we reviewed use the storage for the virtual machine images also for other appli-
cations, e.g. to store the virtual disks used by the instances and the databases
used by the scientific software. In addition, all the instances runs virtualized on
the same bare-metal. This may cause disk and CPU contention at lower that
may not occurs in public cloud with a larger number of computer nodes.

8 Conclusions

The protocol used to transfer the virtual machine images may affect the time for
deploying instances in IaaS platforms, specially when a large number of instances
is requested or the image files are large. In UnaCloud the time spent transferring
the images was the main cause of delays and errors during deployment.

We evaluated several protocols, namely FTP, SMB and BitTorrent, to replace
the currently used in UnaCloud. According to our tests, SMB is the more per-
formant when one to five machines were requested. BitTorrent offers the best
performance when 10 or more instances are requested. Furthermore, we were able
to transfer 50 images using it and the transfer time remains almost constant after
5 (410 s in average for an image file of 1.7 GB).

We created an UnaCloud extension to deploy virtual machines using Bit-
Torrent. It not only outperforms the current implementation but also exhibits
deployment times comparable to the achieved in public and private clouds. The
times were compared with the offered by Amazon EC2 and other two private
clouds. Amazon EC2 deploys multiple instances in an almost constant time,
just like our extension, but its time is a few more than a half (250 vs 410 s
approx.). Caldas I, an OpenStack-based private cloud, exhibits better deploy-
ment time when a single instance is requested but lacks behind when 5 or more
instances are requested. ISCloud, a VMWare vCloud-based cloud, exhibits a
similar behaviour than the exposed by the Caldas I.

Based on our findings, we are planning some new enhancements and evalua-
tions. First, we have detected a bottleneck when multiple virtual machines are
deployed in a single desktop. Apparently, the time spent by cloning the virtual
machine in the desktop is almost a half of the time spent by copying it. We are
considering a modification to the UnaCloud agents to use the same stream of
BitTorrent to create multiple copies in the machine that will run them. In addi-
tion, we are interested in further evaluations of the impact of the protocols for
transferring the images on the work that end-users perform on the desktops that
11 More information of the evaluated private clouds at https://goo.gl/NXJVZF.

https://goo.gl/NXJVZF

Scaling the Deployment of Virtual Machines in UnaCloud 413

run the virtual machines. We want to confirm if the use of BitTorrent reduces the
network congestion as perceived by these users. Finally, our comparisons with
other cloud platforms showed some differences in the way which them manage
and transfer the images. We are interested on exploring techniques to improve
the deployment time on private clouds using software such as OpenStack.

Acknowledgments. This research was performed by the Center of Excellence and
Appropriation in Big Data and Data Analytics (CAOBA), financed by the Ministerio
de Tecnoloǵıas de la Información y Telecomunicaciones de la República de Colombia
(MinTIC) through the Departamento Administrativo de Ciencia, Tecnoloǵıa e Inno-
vación (COLCIENCIAS), contract No FP44842-anexo46-2015.

References

1. Babaoglu, O., Marzolla, M., Tamburini, M.: Design and implementation of a P2P
cloud system. In: 27th Annual ACM Symposium on Applied Computing (SAC
2012), pp. 412–417. ACM (2012)

2. Bhushan, A.: A File Transfer Protocol. RFC 114. IETF Network Working Group
(1971). https://tools.ietf.org/html/rfc114

3. Cohen, B.: The BitTorrent Protocol Specification (2008). http://www.bittorrent.
org/beps/bep 0003.html

4. Costa, F., Silva, L., Fedak, G., Kelley, I.: Optimizing the data distribution layer of
BOINC with BitTorrent. In: 2008 IEEE International Symposium on Parallel and
Distributed Processing, pp. 1–8, April 2008

5. Laurikainen, R., Laitinen, J., Lehtovuori, P., Nurminen, J.K.: Improving the effi-
ciency of deploying virtual machines in a cloud environment. In: 2012 International
Conference on Cloud and Service Computing, pp. 232–239, November 2012

6. Lopez-Garcia, A., del Castillo, E.F.: Efficient image deployment in cloud environ-
ments. J. Netw. Comput. Appl. 63, 140–149 (2016)

7. Mantoro, T., Ali, H.S.: BitTorrent: extra-locality P2P approach for grid content
distribution networks. In: 7th International Conference on Advances in Mobile
Computing and Multimedia (MoMM 2009), pp. 406–411. ACM (2009)

8. Microsoft: Microsoft SMB Protocol and CIFS Protocol Overview (2017). https://
msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx.
Accessed June 2017

9. NetBIOS Working Group: Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Concepts and Methods. RFC 1001. IETF (1987). http://
ubiqx.org/cifs/rfc-draft/rfc1001.html

10. Postel, J., Reynolds, J.: File Transfer Protocol (FTP). RFC 959. IETF (1971).
https://tools.ietf.org/html/rfc114

11. Rosales, E., Castro, H., Villamizar, M.: UnaCloud: opportunistic cloud computing
infrastructure as a service. In: 2nd International Conference on Cloud Computing
GRIDs and Virtualization (CLOUD COMPUTING 2011), pp. 187–194 (2011)

12. Sharma, P., Bhakuni, A., Kaushal, R.: Performance analysis of BitTorrent protocol.
In: 2013 National Conference on Communications (NCC), pp. 1–5 (2013)

https://tools.ietf.org/html/rfc114
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
http://ubiqx.org/cifs/rfc-draft/rfc1001.html
http://ubiqx.org/cifs/rfc-draft/rfc1001.html
https://tools.ietf.org/html/rfc114

Distributed Cosmic Ray Detection Using
Cloud Computing

Germán Schnyder(B), Sergio Nesmachnow, and Gonzalo Tancredi

Universidad de la República, Montevideo, Uruguay
{german.schnyder,sergion}@fing.edu.uy, gonzalo@fisica.edu.uy

Abstract. This article presents a distributed computing approach to
detect cosmic rays in images taken by the Hubble Space Telescope (HST).
A cloud computing implementation is developed to improve the overall
processing time for the available images dataset (15TB), containing dark
images from several HST instruments. A specific architecture is presented
where images are stored in a replicated and highly available storage sys-
tem. Image processing is performed on virtual machines from the Azure
Batch framework using a developed Python application. The experimen-
tal evaluation shows that the architecture accomplished the purpose of
processing the complete dataset based on scaling computing resources in
terms of processing nodes. Speedup improved in a factor of 6.57× over
a previous implementation using Apache Mesos. The overall computa-
tion took 10 days to complete and results are stored on a non-relational
database available to astronomers and researchers.

Keywords: Cosmic rays · HST · Azure · Python

1 Introduction

Cosmic rays are energy-charged particles whose origin can be associated with
solar storms and radiation from the confines of the universe [2]. Studying cosmic
rays allows understanding several phenomena, such as winds and solar eruptions.
Cosmic rays are a problem for scientific instruments used in astronomy, especially
for those sent to outer space. However, this problem can also be beneficial.
Instruments sent to outer space are able to provide information about the impact
of cosmic rays to estimate the magnetic field. Hubble Space Telescope (HST) is
a remarkable device appropriate for this task. HST has several instruments on
board and orbits the planet on regions for which cosmic rays information is not
available. In this way, images captured periodically by HST instruments can
determine the impact of the cosmic rays in the Earth’s atmosphere [10].

HST dark frames are suitable for cosmic ray studies because they are acquired
with closed shutters. Thus only cosmic ray events are recorded. Cosmic ray flux
information from HST instruments can be used to compare the magnetic field
strength, the gamma ray flux, and other geophysical data measured by geomag-
netic observatories in the Earth. HST results certainly complement that of the
existing cosmic rays detectors, contributing to understand those phenomena.
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 414–429, 2018.
https://doi.org/10.1007/978-3-319-73353-1_29

Distributed Cosmic Ray Detection Using Cloud Computing 415

This work proposes studying the set of dark images from the entire period
of HST activity to study the cosmic rays traces that impacted on their instru-
ments [11]. The volume of data corresponding to this set of images is around
15 TB, so High Performance Computing comes to help in the information pro-
cessing. Considering the potential of information available through the HST
darks, the scientific contribution of the approach is high. An enormous data
source is available with a very important characteristic: it extends over time,
allowing analysis of the fluctuation of the density of the magnetosphere.

A distributed computing approach is presented for executing in the Microsoft
Azure cloud platform. A specific architecture is proposed for image process-
ing. Efficiency analysis is performed using real HST data over virtual machines
from the Microsoft Azure cloud infrastructure. Accurate efficiency results are
reported for both data storage and processing, improving over a previously pro-
posed implementation using Apache Mesos in a locally distributed infrastructure.
Results of the processing are made available in a data structure designed to be
consulted by researchers. Two tables are built to store specific information on
each processed image and on each cosmic ray that impacted each image. The
design of tables takes into account different options for users interaction (e.g.,
consulting results by instrument, by image, by date range, and other attributes).

The article is organized as follows. Next section describes the approach for
cosmic rays detection. The proposed distributed implementation on Microsoft
Azure is described in Sect. 3. Section 4 describes how images were acquired and
manipulated in the analysis. Section 5 reports the experimental evaluation of the
proposed system, focused on the efficiency results. Finally, Sect. 6 presents the
conclusions and formulates the main lines for future work.

2 Cosmic Ray Detection

This section introduces cosmic rays and describes instruments on HST and spe-
cific software for image processing.

2.1 Cosmic Rays

Cosmic rays are energetic particles that travel through the universe [3]. Cosmic
radiation affects the operation of electronic devices in a testable and measurable
way. In particular, HST instruments are exposed to this phenomenon and there-
fore they are a very rich source of detection of low energy cosmic rays, since they
are not under the protection of the Earth’s atmosphere.

Figure 1 shows the impact of energy particles in form of cosmic rays on the
lens of the Advanced Camera for Surveys, from HST. The affected pixels in the
image reveal important information about the cosmic rays that hit. Using specific
image formats, such as Flexible Image Transport System (FITS), and applying
processing software, such as Image Reduction and Analysis Facility (IRAF),
the main features of impacting cosmic rays can be extracted. The information
gathered in the image processing determines the geographic location of cosmic
ray impacts, allowing to build a map of cosmic rays incidence on Earth.

416 G. Schnyder et al.

Fig. 1. Dark image with cosmic rays impacts (j6mf16lhq raw.fits)

2.2 HST Instruments

HST includes camera-type instruments, spectrographs, and various types of sen-
sors. This work uses images of those instruments that are capable of recording
the impact of cosmic rays. HST instruments operate synchronously; observa-
tions of different instruments are performed simultaneously and on the same
beam of light reflected by the main mirror. Each instrument analyzes a range of
the specific light spectrum.

Instruments that captured the images analyzed in this work include:

– Advanced Camera for Surveys (ACS), an instrument composed of three cam-
eras: wide-field camera (WFC), high resolution camera (HRC), and solar blind
channel (SBC). Following a flaw in January 2007, the WFC and HRC ceased
operations for approximately two years. During the fourth HST maintenance
mission the WFC was recovered but HRC was not, so it is not available for
use thereafter. Images captured by ACS have a size of 2048 × 4096 pixels.
The camera exposure data is in file with ‘flt’ extension and the positioning
data of the instrument is in file with ‘spt’ extension.

– Space Telescope Imaging Spectrograph (STIS), a spectrograph containing a
camera. Installed in 1997, operated until 2004, was repaired in 2009, and
continues in use to date. STIS analyzes the ultraviolet spectrum and performs
important tasks, such as the analysis of atmosphere on extrasolar planets and
the search for black holes. STIS has three detectors that generate images of
1024 × 1024 pixels, stored in a ‘ftl’ file, and positioning data is in a ‘spt’ file.

– Cosmic Origins Spectrograph (COS), an ultraviolet spectrograph installed in
2009 to complement STIS, designed to observe bright spots like stars and
quasars. COS has two channels to capture waves: far ultraviolet (FUV) and
near ultraviolet (NUV). COS images have 16384 × 1024 pixels and come in

Distributed Cosmic Ray Detection Using Cloud Computing 417

two separate files with extensions ‘flt a’ and ‘flt b’ for FUV and a single ‘flt’
file for NUV. The positioning data of the instrument is in a ‘spt’ file.

– Near Infrared Camera and Multi-Object Spectrometer (NICMOS), an instru-
ment that captures infrared images and spectroscopic observation of astro-
nomical objects. It operated in two periods: from 1997 to 1999, and from 2002
to 2008. NICMOS images have 256 × 256 pixels and are consolidated into a
single image generated by an internal pipeline.

– Wide Field Planetary Camera 2 (WFPC2), an instrument for image capture
that was installed in the HST in a period of about 26 years. It was supplanted
by WFC3. WPFC2 took the most famous photos of the HST, such as Pillars
of Creation and Hubble Deep Field. It consisted of three wide-field (WFC)
sensors and a high-resolution camera (PC). A typical WFPC2 image has four
components of 800 × 800 pixels, due to the 3 WFCs and the PC. The latter
usually appears smaller in images because of its smaller visual field.

– Wide Field Camera 3 (WFC3), an instrument that captures images in
infrared (IR) and ultraviolet (UVIS), installed in 2009 to replace WFPC2.
A channel selector in the observation parameters indicates the detector to
use (IR/UVIS). WFC3 images have 2051×4096 pixels. The camera exposure
data is in the ‘flt’ file and the positioning data is in the ‘spt’ file.

Table 1 summarizes the details of each instrument, namely: the extensions
for raw data and instrument positioning data, the image size in pixels (width ×
height); and the period in which data was made available (it represents a subset
of the total period of operation of each instrument).

Table 1. Summary of data from HST instruments

Instrument Files Image size (pixels) Operation period

Data Position

ACS flt spt 2048 × 4096 2002–2014

COS flt a, flt b spt 16384 × 1024 2009–2017

NICMOS raw, mos spt 256 × 256 1997–2009

STIS flt spt 1024 × 1024 1997–2017

WFC3 flt spt 2051 × 4096 2009–2014

WFPC2 c0m shm 800 × 800 1993–2009

2.3 The FITS Format and the IRAF and Astropy Processing
Software

FITS. FITS is a universal format defined for exchange of astronomical images [7].
Each FITS image is made up of one or more Header Data Units (HDUs). Each
HDU specifies a special type of information. The first part of an HDU declares
entries of type <key, value> that determine the structure of the binary content
that follows in the FITS file. These entries contain diverse information, from

418 G. Schnyder et al.

the configuration of the instrument used to capture the image to data of the
investigator who requested the capture. A FITS image with a single HDU is
called ‘Basic FITS’ and constitutes the minimum expression of the format. From
this basic form, extensions can be added to enrich the information related to
the captured image. FITS allows each instrument to establish how the different
format variants are used and what type of headers and extensions are included
as a result of an observation. Some types of files are used by all instruments to
preserve information regarding the spatial positioning of the instrument, the type
of observation, and the manipulations that the dataset suffered when processed
with specific software. Support, Planning and Telemetry (SPT) files contain
the information of the researcher who requested the original observation and
the proposed observation (dates, telemetry, location, etc.). Trailer (TRL) files
contain information about the type of processing performed on the dataset and
are used as system output for internal tuning and analysis algorithms.

IRAF. Specific software is needed to process FITS images. IRAF is a general
purpose software designed by developers from National Optical Astronomical
Observatory to process images and astronomical data sets [13]. IRAF allows
building scripts and executable files using the IRAF Common Language (IRAF
CL) development and execution environment. The proof of concept from which
this work starts is based on IRAF CL, which interacts with the Linux file system
and a set of images, in order to obtain relevant information about the cosmic
rays (see Algorithm 1). First, images are searched in the current directory and
discard filters are applied (e.g., to assure the image is dark). Finally, xzap tasks
of the dimsum package are applied to clean the cosmic rays. Once the clean
image is obtained, it is subtracted from the original. Thus an image composed
only of cosmic rays is obtained. Several parameters can be used to configure a
xzap task for image analysis using IRAF. Parameters indicate different aspects
of the algorithm, such as the median value of the filters, the number of pixels to
be used as buffer around the image and the cosmic rays, the maximum number
of iterations to be executed, etc. Table 2 shows the parameters used to configure
the xzap task on the executions.

Algorithm 1. Obtaining cosmic rays using xzap
begin

foreach image in the current dir do
if image IS DARK and CHINJECT != NONE and FLASHCUR !=
LOW then

headers := getHeaders(image);
cleanImage := dimsum.xzap(image, ...);
crs := image - cleanImage;

end

end

Distributed Cosmic Ray Detection Using Cloud Computing 419

Table 2. Parameters used on xzap task configuration

Parameter Value Description

zmin 2000 Minimum data value for fmedian filter

zmax 4000 Maximum data value for fmedian filter

zboxsz 10 Box size for fmedian filter

skyfiltsize 15 Median filter size for local sky evaluation

subsample 0 Block averaging factor before median filtering

ngrowobj 3 Number of pixels to flag as buffer around objects

nrings 0 Number of pixels to flag around CRs

nsigneg 0 Number of sky sigma for negative zapping

nsigobj 1.5 Number of sky sigma for object identification

nsigrej 2.0 The n-sigma sky rejection parameter

maxiter 20 The maximum number of iterations

statsec “” Image section to use for computing sky sigma

nsigzap 1 Zapping threshold in number of sky sigma

Astropy. Astropy is a package of common features and tools for astronomical
research and astrophysics in python [12]. This work uses Astropy for the manip-
ulation of FITS files. IRAF CL allows working with FITS files in the context of
IRAF, but in the last years scientists used general purpose programming lan-
guages more often. Special packages have been developed to solve common issues
in scientific research, such as Astropy. Astropy contains several utilities to pro-
cess files with scientific formats, among them astropy.io.fits. This utility allows
reading files that comply with FITS format as well as load extensions and file
headers as native python data types. Using the data representation in Astropy
makes easier to construct abstractions for manipulating files from HST instru-
ments, since there are classes that allow to map HDUs, extensions, and headers.
In addition, astropy.io.fits contains utilities that facilitate the implementation of
recurring tasks such as value parsing, characters removal, that appear frequently
in FITS files. Regarding the spatial positioning of HST instruments, Astropy con-
tains utilities for calculating coordinates in different reference systems through
the astropy.utils.iers package [1].

3 Distributed Cosmic Rays Detection in Microsoft Azure

The basic procedure for detecting the cosmic rays impacts on HST images con-
sist of extracting the image noise and then distinguish the cosmic ray trace in the
noise. As described in Sect. 2.3, IRAF includes tools for manipulating standard
FITS images, such as the ones published by HST and other instruments from
Space Telescope Science Institute (STScI). The first stage, described in Algo-
rithm 1, allows obtaining a mask with the pixels identified as noise. The second

420 G. Schnyder et al.

stage consists on applying a basic algorithm for finding connected components
on the image and establish if it is a cosmic ray impact. From the trace of the
cosmic ray impact it is possible to estimate how strong the incident ray was.
This impact information is added up to the instrument positioning to constitute
the core of the statistical information to be gathered. For example, for every
image, several features are obtained, including: the mean cosmic ray flux, the
mean cosmic ray length, the n-th percentile of flux and length, etc.

This article reports our implementation for distributed cosmic rays detection
using Microsoft Azure. This platform was selected because of an economic spon-
sorship that was obtained from Microsoft based on a preview of our work sent
to them.

There are several aspects of the desired architecture that must take into
account specific usage requisites. For example, images need to be replicated in
order to allow the processing nodes to access the information at any time and
from anywhere. Also, bottlenecks need to be avoided, so the tasks can per-
form immediately after started and hardware resources are available. Finally,
the results of the processing has to be available on a partitioned storage to the
queries can be optimized by date and by instrument name.

Therefore, the architecture must comprise four fundamental aspects that can
be mapped to specific technologies on Microsoft Azure platform:

1. Replicated data storage for images, mapped to Azure Storage Blobs.
2. Scheduling, mapped to Azure Batch.
3. Computing nodes, mapped to Azure Virtual Machines.
4. Partitioned and replicated results, mapped to Azure Storage Tables.

A diagram of the basic operations of Microsoft Batch components is presented
in Fig. 2. Client application uploads the bootstrap scripts and the task binaries
to the storage account. After these initial steps, the client application triggers
the jobs to run the processing tasks in virtual servers. The output from the
processing tasks is also stored on the storage account.

Regarding the programming language, the choice must consider both code
maintenance and extensibility. Also, IRAF Common Language is not suitable for
binaries distribution to the computing nodes, so it must be replaced. The first
alternative explored was rewriting any existing code, and adding all the new
code, using Python. This programming language is widely used on the scientific
community in research projects that require intensive processing and also is
the one chosen by JPL itself for building the astronomic tools they distribute.
Having the code in Python presents two advantages: its understandable for most
of the programmers that may intend to improve, extend or either fix it, and its
immediately compatible with the whole IRAF analysis tools.

The developed software holds two main responsibilities. First, it computes the
cosmic rays incidence over the assigned image on each computing node. Second,
it calculates the exact instrument position at the time the image was captured,
in terms of terrestrial coordinates. The model built is presented on Fig. 3.

For each step in the algorithm a specific module was designed plus other
custom libraries. There is no need to follow a specific interface or architecture in

Distributed Cosmic Ray Detection Using Cloud Computing 421

Fig. 2. Primary operations performed by the client and task scripts on Azure Batch
platform (public domain image, taken from [5])

Fig. 3. Sequence diagram for the application executed on Azure

422 G. Schnyder et al.

order to deploy an application in Azure Batch processing nodes but as usual the
code needs to be maintainable and extensible. Also, Azure Batch provides access
control signatures to blobs and databases for a specific period of time. Here the
list of classes and utilities developed for interacting with Azure platform in order
to accomplish the astronomical images processing task:

– image.py. This class represents IRAF format and provides utilities for access-
ing individual headers and extensions. It works as a wrapper over astropy.iraf
libraries.

– instruments.py. This class represents the HST instruments considering each
instrument particularities (e.g. file extensions containing the data, file exten-
sions containing the positioning information, image size, etc.).

– cosmics.py. This class implements the LA Cosmic algorithm for cosmic ray
detection (created by Malte Tewes, credited in the source file).

– crutils.py. This class provides methods to load images from a file into a
custom model (image.py), to apply LA Cosmic algorithm (cosmics.py) and
to compute metrics over it.

– calc pos.py. This class is a direct translation from the class written in CL
(present on the original proof of concept). It provides utilities to calculate the
exact position of the image in terms of the terrestrial atmosphere (based on
the instrument positioning information preserved in the image).

– tests. These classes provides tests and validations over the complete set of
features developed. It includes several testing cases for the different instru-
ments, from loading images to computing the cosmic rays and terrestrial
coordinates for every kind of image.

– azure task.py. This class contains the code for instantiate the complete
pipeline in an Azure Batch processing node. It contains all the invocations
for the different methods and the code for persist the results on the result
tables.

– azure client.py. This class works as an orchestrator for the whole process.
It manages the echosystem lifecycle though managing the instance pool and
the jobs scheduling. It also manages every job lifecycle considering timeouts
and objects expirations.

4 Data Manipulation

Images from HST instruments were obtained from STScI through a specific
data access request with research purpose. In general, all images are available
to download from the STScI web platform, but the size of the complete dataset
(15 TB) demanded applying a different approach. As a result, we obtained three
HDD containing the images, which were connected to Cluster FING, the High
Performance Computing platform from Universidad de la República [6], in order
to start the evaluation of the proposed solution. First tests were run over small
datasets until the code was verified. Then, the content of the three HDD was
uploaded to the Azure cloud platform. In particular, we choose the Azure Blob
storage because it allowed storing all the images with guarantee of replication

Distributed Cosmic Ray Detection Using Cloud Computing 423

Fig. 4. Accessing the Blob storage content

and high availability. Therefore, all the processing nodes would be able to access
the images avoiding any kind of bottleneck or hardware failures. Each processing
node has to request access for the image that will be processed to the security
authority, so it gets a time based token. After getting the token the node can
download the image and run the code. This interaction between the processing
nodes and storage blobs is shown in Fig. 4.

We also needed to consider how to store the analysis results taking into account
two aspects: partitioning and availability. In the original proposal, and in the first
steps of this work, an output file was used for presenting the results. This file strat-
egy is not suitable for outputting the complete dataset results because the amount
of files becomes hard to track and we would need to reprocess them for every query.
Thus, we choose to use database tables to persist the output from the process-
ing and take advantage of database managers optimization’s (such us indexing).
Future researchers may need to query by specific instruments or specific dates and
therefore the data partitioning strategy became key on the data architecture side.
An example of how the files are processed is shown in Fig. 5.

Fig. 5. Example architecture for batch processing the output files

424 G. Schnyder et al.

We decided to use a database approach because the main goal of the research
is obtaining the data for providing astronomers and researchers with quality infor-
mation. Each processed image is analyzed and its details are stored as a new row in
the table images. As a result, this table contains the positional information as well
as basic cosmic rays statistics (as cosmic ray count). On a second table named cos-
micrays, the specific details of each cosmic ray impact are preserved. These tables
were designed following a non-relational approach, where no primary keys are
defined. The rationale behind this decision is that no joins are intended and only
partitioning and range keys are needed. Partition key (PK) enables the possibil-
ity of optimizing the queries based on instrument name (since this attribute was
chosen as PK). Row keys (RK) determine how to order the rows inside the server
who stores that particular partition of the table. As a consequence, it optimizes
the date filter (since date of the image was chosen as the RK).

Figure 6 shows the basic structure of both tables used to store the data.
As it was mentioned, the PK determines in which server of Azure Table that
row will be stored. This condition enforces the data locality principle, where its
reasonable to suppose that similar rows will be queried together. Also, the RK
is the one that determines the row ordering inside the same Azure Table server.
The combination of PK and RK optimizes the searches intended for the future
research over this work results. Additionally, Azure Table includes a secondary
RK known as timestamp that let us know when that row was created (especially
interesting for obtaining the image processing metrics) [4].

Fig. 6. Tables used to store the images processing results

Figure 7 shows how different rows are distributed among servers. Rows with
the same PK are stored in the same server. This allow the researchers to query
by instrument name and specific time range. This data architecture strategy

Distributed Cosmic Ray Detection Using Cloud Computing 425

and the related application design based on cloud computing establishes the
foundations for similar processing pipelines (e.g. regular observations instead of
darks).

Fig. 7. Azure Table partitioning schema (public domain image, taken from [4])

The proposed architecture that enables the complete image dataset process-
ing is shown on Fig. 8.

Fig. 8. Proposed architecture

426 G. Schnyder et al.

5 Experimental Evaluation

For executing the application on Microsoft Azure platform, the whole available
computing capacity was used. According to the sponsorship subscription terms
the maximum amount of cores running at the same time was 20 [8]. For other
resources (e.g. disk usage, network traffic, etc.) the cap was established in terms
of costs. Since the cheapest suitable machines were double core, the total virtual
servers to run the application was 10. Each server had Ubuntu 14.04 already
installed, with an Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40 GHz processor and
3 GB of RAM. As part of the application bootstrapping several packages were
installed (such as Python v3, Astropy, etc.). The execution times were obtained
directly from the Microsoft Azure portal statistics.

Table 3 presents the execution results by different time periods. Some obser-
vations can be made from the results. For example, performance varies depending
on the time period being considered. These variations may respond to resources
availability in the cloud platform. This is a common issue since the same hard-
ware is being requested and used by different users on this kind of shared plat-
form. Anyway, an overall throughput improvement is observed as the times
period being considered increases. This improvement has direct effect on the
overall time improvement for the processing. On a 5 days period the average of
tasks executed by minute is 15.12.

Table 3. Tasks execution metrics in Azure Batch

Time period (min) Completed tasks Tasks/min Tasks mean time (min)

60 772 12.66 0.078

1440 18540 12.87 0.078

7200 82960 11.52 0.087

14400 217690 15.12 0.066

Table 4 compares the execution times of the Azure implementation with those
from the implementation previously developed over the Mesos architecture [9].
Since the statistics querying on Azure Portal is based on time periods, we needed
to extrapolate the results to get some comparable results. The comparison is
made between the combined cosmic ray detection scheduling algorithm (CCRD)
variant (since it was the algorithm that performed the best over the Mesos
architecture) and the mean flow time for the 14400 min period (corresponding
to the Azure best execution scenario).

From the results reported in Table 4, we conclude that the Azure execution
improved substantially the numbers obtained on Mesos platform. Speaking in
numbers, a speedup of 6.57 was achieved on the 1000 images dataset. Since the
number of nodes used is 10 this means an efficiency of 0.66. For the datasets of
100 and 500 images the speedups obtained are 0.86 and 0.84, respectively. This
means an efficiency of ∼0.85 in both cases. Despite the architectures comparison

Distributed Cosmic Ray Detection Using Cloud Computing 427

Table 4. Flow time and efficiency for execution in Azure platform compared to CCRD
on different images datasets

images Execution time (s) Acceleration Speedup Efficiency

CCRD Azure

100 533 396.89 1.343 5.57 0.56

500 1710 1984.47 0.86 5.51 0.55

1000 3326 3968.95 0.84 6.57 0.66

is not fair based on the different hardware being used, it can be outlined that
the results on Azure platform are remarkable in terms of performance. On Azure
platform it is possible to assign the needed resources for processing the whole
dataset in times considerably smaller than the ones estimated on the Mesos
platform.

Table 5 reports the mean processing time for each instrument as well as the
mean number of cosmic rays found. A direct relationship is perceived between the
image size and the time needed to process it. Also, there is a direct relationship
between the image size and the amount of cosmic rays detected on it. But,
ACS images show more cosmic rays impacts than the WFC3, despite the images
sizes are similar. The reasons for this difference may be studied on future works
analyzing these results.

Table 5. Mean processing time and mean cosmic rays detected by instrument

Instrument Image size (pixels) Mean processing time (s) Mean cr count found

ACS 2048 × 4096 252.19 375283.00

NICMOS 256 × 256 16.91 2368.515

STIS 1024 × 1024 23.27 20638.76

WFC3 2051 × 4096 108.24 54422.68

The first attempts to run the complete pipeline over Azure platform resulted
on unexpected high processing times. After some basic debugging and analysis
we realized that the main reason of the slow processing was related to the step
where the cosmic rays are individually inserted into the corresponding table. On
most of the images the impact of cosmic rays determines several thousand of
strikes. Therefore, several thousand of inserts are needed for each image. Due to
an Azure platform restriction, only 100 entries can be inserted at a time. As a
result, processing an image took around 10 min per file in average, with some
cases where the processing of a single image took over 30 min. For this reason,
all reported results do not include the individual cosmic ray insertion time but
aggregated statistics for the cosmic rays list (e.g. mean flux, mean length, flux
percentiles, etc.). This decision does not affect the execution times comparison
reported, since the individual cosmic rays information storage was not developed
nor executed on the Apache Mesos architecture.

428 G. Schnyder et al.

6 Conclusions and Future Work

In this work, we extend and improve an existent distributing computing architec-
ture using Microsoft Azure for processing images within the project “Geophysics
using Hubble Space Telescope”. We proposed a pipeline where the images to be
processed are stored as blobs on the cloud platform for providing data replica-
tion and high availability. The computation was performed using Azure virtual
machines running the developed application code using Python. The main results
indicate that the complete image dataset was processed on a time period around
10 days and the speedup was improved in a factor of 6.57× in comparison with
the previously developed Mesos architecture for the 1000 images testing dataset
using 10 processing nodes.

The main contribution of this article is that a distributed architecture run-
ning on a cloud platform can perform better regarding makespan and flowspan
metrics. This performance improvement contributes to reduce times in astro-
nomical images processing tasks. As a result, we obtained a result set containing
information about cosmic rays impact on HST instruments in the last decades.

The main lines of current and future work are related to analyzing the results
in terms of statistical measurements regarding cosmic rays impact on Earth’s
atmosphere. These future lines of work are intended to be pursued by astronom-
ical and geological researchers.

Acknowledgments. This work has been partly supported by CSIC, ANII, and
PEDECIBA (Uruguay).

The developed architecture contributes to project “Geophysics using Hubble Space
Telescope” [11], to exploit the HST capabilities as a cosmic ray detector for analyzing
the magnetosphere current strength. Using our results the researches will combine
HST results with measurements of solar activity, cosmic ray flux on Earth’s surface,
and geomagnetic data to understand external field variations.

Computing and storage resources were provided by Cluster FING and the
“Microsoft Azure Sponsorship” program intended for researchers. This sponsorship
included a cost-based usage of all the services provided by Microsoft Azure.

References

1. Astroplan: What are the IERS tables and how do I update them? http://astroplan.
readthedocs.io/en/latest/faq/iers.html. Accessed July 2017

2. Christian, E.: Cosmic rays. https://helios.gsfc.nasa.gov/cosmic.html. Accessed
July 2017

3. Mewaldt, R., Cummings, A., Stone, E.: Anomalous cosmic rays: interstellar inter-
lopers in the heliosphere and magnetosphere. Eos Trans. Am. Geophys. Union
75(16), 185–193 (1994)

4. Myers, T.: Designing a scalable partitioning strategy for Azure table storage.
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/designing-
a-scalable-partitioning-strategy-for-azure-table-storage. Accessed July 2017

5. Myers, T., Macy, M., Squillace, R.: Get started with the Azure Batch Python
client. https://docs.microsoft.com/en-us/azure/batch/batch-python-tutorial.
Accessed July 2017

http://astroplan.readthedocs.io/en/latest/faq/iers.html
http://astroplan.readthedocs.io/en/latest/faq/iers.html
https://helios.gsfc.nasa.gov/cosmic.html
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/designing-a-scalable-partitioning-strategy-for-azure-table-storage
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/designing-a-scalable-partitioning-strategy-for-azure-table-storage
https://docs.microsoft.com/en-us/azure/batch/batch-python-tutorial

Distributed Cosmic Ray Detection Using Cloud Computing 429

6. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010)

7. Pence, W., Chiappetti, L., Page, C., Shaw, R., Stobie, E.: Definition of the Flexible
Image Transport System (FITS), version 3.0. Astron. Astrophys. 524, A42 (2010)

8. Roth, J., FitzMacken, T., Lian, J., Kemnetz, J., Squillace, R.: Azure subscrip-
tion and service limits, quotas, and constraints. https://docs.microsoft.com/en-
us/azure/azure-subscription-service-limits. Accessed July 2017

9. Schnyder, G., Nesmachnow, S.: Improving the performance of cosmic ray detection
using Apache Mesos. In: International Supercomputing Conference in México, pp.
1–15 (2016)

10. Smith, A., McDonald, R., Hurley, D., Holland, S., Groom, D., Berkeley, L., Brown,
W., Gilmore, D., Stover, R., Wei, M.: Radiation events in astronomical CCD
images, vol. 183, pp. 172–183 (2002)

11. Tancredi, G., Cromwell, G., Deustua, S., Gonzalez, G., Nesmachnow, S., Schnyder,
G.: Geophysics using Hubble Space Telescope, Hubble Space Telescope Cycle 24
approved proposal (2016)

12. The Astropy Collaboration, Robitaille, T., Tollerud, E., Greenfield, P., Droett-
boom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price, A., Kerzendorf,
W., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F.,
Parikh, M., Nair, P., Gnther, H., Deil, C., Woillez, J., Conseil, S., Kramer, R.,
Turner, J., Singer, L., Fox, R., Weaver, B., Zabalza, V., Edwards, Z., Azalee, K.,
Burke, D., Casey, A., Crawford, S., Dencheva, N., Ely, J., Jenness, T., Labrie, K.,
Lim, P., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., Streicher,
O.: Astropy: a community python package for astronomy. Astron. Astrophys. 558,
A33 (2013)

13. Tody, D.: The IRAF Data Reduction and Analysis System, pp. 1–20 (1986)

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

Author Index

Aliaga, José I. 111
Arkose, Tugberk 3
Armenta-Cano, Fermín 384

Babenko, Mikhail 370
Barros, Felipe Sodré M. 218
Bentes, Cristiana 71
Blanco, Aníbal M. 255
Boisson, Jean-Charles 87

Cáliz-Ospino, Rodolfo 399
Cappagli, Pablo 307
Carrasco, Diego 307
Carreño, Emmanuell Diaz 203
Carvalho, Otávio 203
Carvalho, Pablo 71
Castro, Harold 399
Cataldo, Edson 71
Chavarriaga, Jaime 399
Clua, Esteban 71
Colavecchia, Flavio D. 307
Corbellini, Alejandro 235
Cortés-Mendoza, Jorge M. 370
Cristal, Adrian 3

da Silva, Luís Alexandre E. 218
Damiani, Lucia 255
Daneshpajouh, Habib 87
de Jesus, Leonardo Araújo 321
de Oliveira, Daniel 321
de Siqueira, Marinez Ferreira 218
Delisle, Pierre 87
Diaz, Ariel Ivan 255
Dorronsoro, Bernabé 277
Drozdov, Alexander Yu. 384
Drummond, Lúcia M. A. 71, 321
Du, Zhihui 370
Dufrechou, Ernesto 111
Dupros, Fabrice 101

Etancelin, Jean-Matthieu 55
Ezzatti, Pablo 111

Forero-González, César 399
Frascarelli, Daniel 291

Gadelha Jr., Luiz M. R. 218
Galaviz-Alejos, Luis-Angel 384
Gall, Guilherme M. 218
Galleguillos, Cristian 169
García Garino, Carlos 353
Garcia, Manuel 203
Garí, Yisel 353
Geier, Maximiliano 185
Godoy, Daniela 235

Iparraguirre, Javier 255
Iturriaga, Santiago 21, 337

Kiziltan, Zeynep 169
Krajecki, Michael 55, 87

Lima, Rafael Oliveira 218

Markovic, Nikola 3
Martínez, Víctor 101
Marzulo, Leandro A. J. 71
Massobrio, Renzo 277
Mateos, Cristian 154, 235, 353
Mayo-García, Rafael 125
Meneses, Esteban 250
Miranda-López, Vanessa 370
Mocskos, Esteban 38, 185
Monge, David A. 154, 353
Moríñigo, José Antonio 125
Muñoz, Andrés 399
Muraña, Jonathan 21

Navaux, Philippe O. A. 101, 203
Nemirovsky, Daniel 3
Nemirovsky, Mario 3
Nesmachnow, Sergio 21, 262, 277, 291,

337, 370, 414
Netti, Alessio 169

Osthoff, Carla 218
Otero, Alejandro 38

Padilla-Agudelo, Jesse 399
Padoin, Edson L. 101
Piñeyro, Leonardo 262

Quintana-Ortí, Enrique S. 111

Radchenko, Gleb 370, 384
Renard, Arnaud 55
Rocchetti, Nestor 291
Rodríguez-Pascual, Manuel 125
Roloff, Eduardo 203

Sánchez-Tapia, Andrea 218
Schiaffino, Silvia 235
Schnyder, Germán 414

Sergiyenko, Oleg 384
Serpa, Matheus 101
Soba, Alejandro 38, 139
Spillner, Josef 154

Tancredi, Gonzalo 291, 414
Tchernykh, Andrei 21, 370, 384

Unsal, Osman 3

Valero, Mateo 3
Vinazza, David 38

Yahyapour, Ramin 384

Zakaria, Nordin 87
Zunino, Alejandro 235

432 Author Index

	Preface
	Organization
	Contents
	HPC Infrastructures and Datacenters
	A Deep Learning Mapper (DLM) for Scheduling on Heterogeneous Systems
	1 Introduction
	2 Motivation
	2.1 Mapping
	2.2 Machine/Deep Learning
	2.3 Program Behaviors and CPU Scheduling

	3 Scheduling Model
	3.1 Deep Learning Mapper (DLM)
	3.2 Overheads

	4 Evaluation
	4.1 Methodology

	5 Related Work
	6 Future Work and Conclusion
	References

	Power Consumption Characterization of Synthetic Benchmarks in Multicores
	1 Introduction
	2 Related Work
	3 Methodology for Power Consumption Evaluation
	3.1 Overview of the Proposed Methodology
	3.2 Benchmarks
	3.3 Multicore Hosts and Power Monitoring Setup
	3.4 Design of Experiments

	4 Experimental Results
	4.1 Single Benchmark Executions
	4.2 Combined Benchmark Executions
	4.3 Performance Evaluation
	4.4 Energy Efficiency Analysis

	5 Conclusions and Future Work
	References

	Initial Experiences from TUPAC Supercomputer
	1 Introduction
	2 Projects and Users
	2.1 Scientific Projects
	2.2 Industrial Projects

	3 Cluster Operations
	3.1 Resource Management
	3.2 Infrastructure Monitoring
	3.3 User Support

	4 Usage of TUPAC
	5 Conclusions
	References

	HPC Industry and Education
	romeoLAB: A High Performance Training Platform for HPC, GPU and DeepLearning
	1 Introduction
	2 Related Work and Motivations
	2.1 Online Tools for Specific Code Development
	2.2 Online Tools for Educational Purposes
	2.3 romeoLAB Motivations

	3 A Web-Based Solution in a HPC Cluster
	3.1 User View of the Lab Starting Process
	3.2 Server Part
	3.3 Jupyter Resources
	3.4 Additional Tools
	3.5 Security

	4 Features and Usages
	4.1 The Web-Portal Use Cases

	5 Practical Usages
	6 Discussions and Future Work
	7 Conclusion
	References

	GPU, Multicores, Accelerators
	Analysis and Characterization of GPU Benchmarks for Kernel Concurrency Efficiency
	1 Introduction
	2 Related Work
	3 Benchmark Suites
	4 Methodology
	5 Experimental Results
	5.1 Experimental Environment
	5.2 Individual Analysis
	5.3 Global Analysis
	5.4 Discussion

	6 Concluding Remarks
	References

	Parallel Batch Self-Organizing Map on Graphics Processing Unit Using CUDA
	Abstract
	1 Introduction
	2 SOM Algorithm
	3 Related Work
	4 Parallel Batch-SOM on CUDA
	5 Comparison and Results
	6 Conclusion and Future Work
	Acknowledgments
	References

	Performance Prediction of Acoustic Wave Numerical Kernel on Intel Xeon Phi Processor
	1 Introduction
	2 Acoustic Wave Equation
	3 Testbed and Machine Learning Methodology
	3.1 Feature Vectors
	3.2 Machine Learning Model

	4 Experiments
	4.1 Preliminary Results
	4.2 Performance Prediction

	5 Related Works
	6 Conclusion
	References

	Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative for Sparse GPU Computations
	1 Introduction
	2 Accelerated Solution of Sparse Linear Systems with ILUPACK
	2.1 Computation of the Preconditioner
	2.2 Application of the Preconditioner During the Iterative Solve

	3 Proposal
	3.1 Exploiting the Data Parallelism in ILUPACK
	3.2 Threshold Based Version

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Final Remarks and Future Work
	References

	HPC Applications and Tools
	Benchmarking Performance: Influence of Task Location on Cluster Throughput
	1 Introduction
	2 Related Work
	3 Characterization of HPC Facilities
	3.1 Benchmarking
	3.2 Infrastructure Characterization
	3.3 Influence of Node Sharing on Memory Access Time

	4 Results
	4.1 Cluster Performance
	4.2 NAS Benchmarking
	4.3 Dedicated Nodes Cluster Setup
	4.4 Sensitivity to the Clusters Setup

	5 Conclusions
	References

	PRIMULA: A Framework Based on Finite Elements to Address Multi Scale and Multi Physics Problems
	Abstract
	1 Introduction
	2 PRIMULA General Features
	3 Scalability Results
	4 An Example of Field: PLATE Fuel
	5 Conclusions
	Acknowledgment
	References

	FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing and HPC
	1 Research Direction
	2 Background on Function-as-a-Service
	2.1 Programming Models and Runtimes
	2.2 Providers and Performance

	3 Scientific Computing Experiments with Functions
	3.1 Mathematics: Calculation of
	3.2 Computer Graphics: Face Detection
	3.3 Cryptology: Password Cracking
	3.4 Meteorology: Precipitation Forecast

	4 Findings
	5 Summary and Repeatability
	References

	AccaSim: An HPC Simulator for Workload Management
	1 Introduction
	2 Workload Management System in HPC
	3 AccaSim
	3.1 Architecture and Main Features
	3.2 Implementation, Instantiation and Customization

	4 Case Study
	5 Related Work
	6 Conclusions
	References

	SherlockFog: Finding Opportunities for MPI Applications in Fog and Edge Computing
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 SherlockFog: A Distributed Experimental Framework to Enable Fog and Edge Computing
	3.2 Features of SherlockFog
	3.3 Considerations When Using SherlockFog
	3.4 Underlying Topology

	4 Validation
	4.1 Latency Emulation
	4.2 Token Ring
	4.3 MPI Token Ring

	5 Results
	6 Conclusions
	References

	Big Data and Data Management
	IoT Workload Distribution Impact Between Edge and Cloud Computing in a Smart Grid Application
	1 Introduction
	2 Related Work and Discussion
	3 Architecture and Implementation
	3.1 Cloud Layer
	3.2 Edge Layer
	3.3 Sensor Layer
	3.4 Communication Protocol
	3.5 Measurement Algorithm

	4 Evaluation
	4.1 Communication Evaluation
	4.2 Application Evaluation

	5 Conclusion and Future Works
	References

	Model-R: A Framework for Scalable and Reproducible Ecological Niche Modeling
	1 Introduction
	2 Model-R Framework
	2.1 Frontend

	3 Modeling Process and Backend
	4 Reproducibility
	5 Case Study and Evaluation
	6 Related Work
	7 Conclusion
	References

	Parallel and Distributed Algorithms
	Task Scheduling for Processing Big Graphs in Heterogeneous Commodity Clusters
	1 Introduction
	2 Related Work
	3 Graph Processing Frameworks
	3.1 Fork-Join for Graphs
	3.2 Pregel
	3.3 DPM

	4 Scheduling Strategies
	5 Experiments
	5.1 Twitter Followee Recommender
	5.2 Dataset
	5.3 Scenarios
	5.4 Results

	6 Conclusions
	References

	Exploring Application-Level Message-Logging in Scalable HPC Programs
	1 Resilience in HPC Applications
	2 Application-Level Message-Logging
	References

	Accelerated Numerical Optimization with Explicit Consideration of Model Constraints
	Abstract
	1 Introduction
	2 Particle Swarm Optimization
	3 PSO Implementation
	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References

	Parallel Processing of Intra-cranial Electroencephalogram Readings on Distributed Memory Systems
	1 Introduction
	2 Related Work
	2.1 Historic Review
	2.2 Distributed Approaches to Process iEEG Readings

	3 Distributed Approaches for Processing iEEG Readings
	3.1 Working with iEEG Data in a Distributed Environment
	3.2 Data and Functional Distribution Approaches

	4 Two Implementations for Processing iEEG Readings on Distributed Computing Systems
	4.1 The Proposed Processing Algorithm
	4.2 Proposed Implementation Using a Message Passing Approach
	4.3 Map-Reduce Implementation Using Apache Hadoop

	5 Experimental Evaluation
	5.1 Execution Environments
	5.2 Evaluation Metrics
	5.3 Computational Efficiency Analysis

	6 Conclusions and Future Work
	References

	Support Vector Machine Acceleration for Intel Xeon Phi Manycore Processors
	1 Introduction
	2 Hardware and Software Platform
	2.1 Manycore Processors and Intel®Xeon PhiTM
	2.2 Intel®C++ Compiler
	2.3 Intel®Math Kernel Library

	3 Related Work
	4 LIBSVM Implementation for Intel®Xeon PhiTM
	4.1 Coarse-Grain Parallelism Using OpenMP
	4.2 Compiling with Intel®C++ Compiler
	4.3 Integration with Intel®MKL

	5 Experimental Analysis
	5.1 Execution Platform
	5.2 Problem Instances
	5.3 Coarse-Grain Parallelization
	5.4 Vectorized Dot Product Computation
	5.5 Two-Level Parallelization Approach

	6 Conclusions and Future Work
	References

	Performance Improvements of a Parallel Multithreading Self-gravity Algorithm
	1 Introduction
	2 Spatial Domain Decomposition Techniques and the Parallel Self-gravity Implementation on ESyS-Particle
	2.1 Spatial Domain Decomposition Techniques
	2.2 A Parallel Algorithm for Self-gravity Calculation
	2.3 Self-gravity Implementation on ESyS-Particle

	3 Improvements of the Baseline Implementation
	3.1 Reducing the Execution Time of the Self-gravity Computation
	3.2 Profiling the Self-gravity Calculation

	4 Experimental Evaluation
	4.1 Description of the Test Scenario and Instances
	4.2 Profiling of the Optimized Version
	4.3 Performance Evaluation Results

	5 Conclusions
	References

	A Fast GPU Convolution/Superposition Method for Radiotherapy Dose Calculation
	1 Introduction
	2 Theory
	2.1 Radiological Path
	2.2 Convolution/Superposition
	2.3 Collapsed Cone Approximation

	3 The Parallel Collapsed Cone Kernel Algorithm
	3.1 Ray Tracing
	3.2 Discrete CCK Algorithm
	3.3 GPU Implementation

	4 Results and Discussion
	4.1 Dose Accuracy
	4.2 Calculation Performance

	5 Conclusions
	References

	Grid, Cloud and Federations
	Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique for my Cloud Workflow
	1 Introduction
	2 Related Work
	3 Background Knowledge
	3.1 Failure Detection
	3.2 Failure Handling

	4 Experimental Results
	4.1 Preliminary Analysis of FTT in Montage and SciPhy Workflows
	4.2 Developing a Predictive Model for FTT in Scientific Workflows

	5 Conclusions and Final Remarks
	References

	Energy Aware Multiobjective Scheduling in a Federation of Heterogeneous Datacenters
	1 Introduction
	2 Energy-Aware Scheduling in a Federation of Datacenters
	2.1 Problem Model
	2.2 Related Work

	3 The Proposed Two-Level Multiobjective Evolutionary Scheduler
	3.1 Two-Level Scheduling Approach
	3.2 Low-Level Scheduling Heuristic
	3.3 High-Level MOEA Scheduler

	4 Experimental Evaluation
	4.1 Problem Instances
	4.2 High-Level Scheduling Heuristics
	4.3 Development and Execution Platform
	4.4 Numerical Results

	5 Conclusions
	References

	Markov Decision Process to Dynamically Adapt Spots Instances Ratio on the Autoscaling of Scientific Workflows in the Cloud
	1 Introduction
	2 Workflow Autoscaling
	2.1 Problem Definition

	3 Budget Assignment as an MDP
	3.1 Theoretical Foundations
	3.2 Deriving Adaptive Budget Assignment Policies

	4 SIAA Strategy Overview
	5 Experimental Settings and Results
	5.1 Experimental Settings
	5.2 Results and Discussion

	6 Related Work
	7 Concluding Remarks
	References

	Experimental Analysis of Secret Sharing Schemes for Cloud Storage Based on RNS
	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Analysis for Reliable and Secure Storage Schemes
	3.1 Storage Model
	3.2 Experimental Setup
	3.3 Results and Analysis

	4 Conclusions
	References

	Bi-objective Heterogeneous Consolidation in Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 MOCell Algorithm (MO)
	4.1 GA Operators

	5 Experimental Setup
	6 Methodology Used for the Analysis
	6.1 Set Cover
	6.2 Hyper Volume

	7 Experimental Results
	8 Conclusion
	References

	Scaling the Deployment of Virtual Machines in UnaCloud
	1 Introduction
	2 Image Provisioning in UnaCloud
	2.1 UnaCloud Architecture
	2.2 Deployment of Virtual Machines
	2.3 Errors in the Deployment Process

	3 Alternative Protocols that May Improve Image Transferring
	3.1 Transfer Protocol in the Current Implementation
	3.2 Alternative Transfer Protocols

	4 Evaluating the Protocols for Transferring Files
	4.1 Test Suite
	4.2 Evaluation

	5 Evaluating the Deployment of Virtual Machines Using BitTorrent
	5.1 Test Suite
	5.2 Evaluation

	6 Comparison to Other Cloud Platforms
	6.1 Test Suite
	6.2 Comparison

	7 Discussion
	8 Conclusions
	References

	Distributed Cosmic Ray Detection Using Cloud Computing
	1 Introduction
	2 Cosmic Ray Detection
	2.1 Cosmic Rays
	2.2 HST Instruments
	2.3 The FITS Format and the IRAF and Astropy Processing Software

	3 Distributed Cosmic Rays Detection in Microsoft Azure
	4 Data Manipulation
	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	Author Index

