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Abstract. Efficient task scheduling algorithm is critical for achieving high
performance in heterogeneous multi-core processors. Because the existing
genetic algorithm converges to local optimal solution, so an improved genetic
algorithm is proposed to solve the above problems in this thesis. Firstly, the
initial population is generated randomly according to the task height value, and
then adopting the selection strategy based on competition scale. Finally, the
crossover and mutation probability is improved to avoid premature phe-
nomenon. The experiment based on randomly generated graphs shows that the
proposed algorithm can improve the efficiency of convergence.

Keywords: Task scheduling � Heterogeneous multi-core processor
Genetic algorithm � Optimal solution

1 Introduction

With the development of computer architecture, chip multi-processor (CMP) [1]
becomes the mainstream architecture and provides a platform for high-performance
computing. In order to play the parallelism of CMP fully, a good task scheduling
algorithm is very important.

Many scholars at home and abroad have carried out many studies on task
scheduling, which has been proved to be NP complete [2]. Based on the above
research, a new improved genetic algorithm (NIGA) for heterogeneous CMP is pro-
posed, which improves the initial population mode, selection strategy, crossover and
mutation probability. The experimental results show that the performance of NIGA is
better than genetic algorithm (GA).

2 New Improved Genetic Algorithm

The GA can search the solution in parallel, but it also has the problems of premature
and poor stability [3]. In response to the above shortcomings, NIGA is proposed to
optimize GA.
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2.1 Encoding and Decoding of Chromosomes

Chromosome encoding [4] mode is substring, a substring represents a processor core
and each substring contains the number of task which is assigned to the same processor
in sequence. Figure 1 is an example of chromosome encoding.

Chromosome decoding and encoding corresponds to each other, decoding is
assigning tasks in sequence on the substring of chromosome to the corresponding
processor core, then the structure of corresponding task scheduling is constructed.

2.2 Population Initialization and Fitness Function

The individual generation strategy in population is to randomly assign tasks to different
processor cores. The tasks on the same core are sorted by the task height. The sequence
of tasks with same height is generated randomly. The task height is defined as Eq. (1).

hðNiÞ ¼
0; if preðNiÞ ¼ /
max

Nj2preðNiÞ
fhðNjÞgþ 1 else

(
ð1Þ

In NIGA, the quality of individuals is measured with fitness value, the individual with
larger value has greater probability to be selected into next generation, and with smaller
will be eliminated after some operations. The calculation of fitness is shown in Eq. (2).

f ðXiÞ ¼ 1
SLðXiÞ ð2Þ

In Eq. (2), SLðXiÞ represents the scheduling length of individual Xi.

2.3 Selection

After the population initialization, the selection strategy is used to select several
individuals randomly, then choosing individual with the highest fitness value to the
next step. The difference between initial individuals is large, only the smaller com-
petition scale can guarantee the population diversity. With the individual quality
becomes better, the scale becomes larger in order to search the optimal solution
globally. The strategy sets the scale double by 20 times, as shown in Eq. (3).

K ¼ 2� t
20

; t 2 T ð3Þ
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Fig. 1. An example of chromosome encoding
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2.4 Crossover and Mutation

The main function of crossover is to generate new individual, the mutation operation is
mainly to maintain species diversity [5]. If crossover and mutation probability is too
large, some individuals with better fitness may be destroyed, it is not conducive to the
solution convergence; if the probability is too small, it may not produce new indi-
viduals. Therefore, the probability should be adaptive, which can be changed with the
fitness value, so as to ensure that individuals with low fitness value have a large
probability, and the individuals with high fitness value has a small probability to save
excellent individuals. The probability is shown in Eq. (4).

PðiÞ ¼ Pmax fi � favg
Pmin þðPmax � PminÞ cot½p4 ð fi�favg

fmax�favg
þ 1Þ� fi [ favg

(
ð4Þ

In Eq. (4), Pmin and Pmax is the minimum and maximum of crossover and mutation
probability, fmax, favg, fi is the maximum, average and i-th individual of fitness value
respectively.

2.5 Termination Conditions

Set the maximum evolution number Tmax, NIGA is stopped after the certain iterations,
then the individual with maximum fitness value is the optimal task scheduling.

3 Experiments

Randomly generated DAG is used as input data, by comparing the scheduling length
and algorithm convergence to measure NIGA and GA.

The communication calculation rate (CCR) of DAG is 0.5 and the processor
number is 3. The initial calculation parameters of GA and NIGA are: population size
M = 100, maximum iterations Tmax = 200. Moreover, Pc of GA is 0.7, Pm is 0.02, the
crossover Pmin and Pmax of NIGA are 0.8 and 0.2 respectively, the mutation Pmin and
Pmax are 0.03 and 0.002 respectively. In order to avoid the randomness, the average of
15 experimental results is used as the test result of scheduling length.

The experiment mainly tests the scheduling length of GA and NIGA with different
nodes, the result as shown in Table 1.

The experiment mainly tests the iterative evolution on same task number (Task
Nodes = 20) of GA and NIGA algorithm, the experimental results are shown in Fig. 2.

Table 1. The scheduling length of GA and NIGA with different nodes

Algorithm Nodes = 10 Nodes = 20 Nodes = 30

GA 76 104 137
ICLGA 65 89 116
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From Table 1 and Fig. 2, it can be concluded that the scheduling length of NIGA is
shorter than that of GA with the same task nodes, that is, the optimal solution of NIGA
is the best, the time of optimal solution is shorter and the convergence speed is faster.

4 Conclusion

The NIGA algorithm is a better task scheduling algorithm based on heterogeneous
CMP. It overcomes the shortcomings of GA and improves the scheduling efficiency.
NIGA improves the initial population, uses the fitness selection strategy, adopts
adaptive crossover and mutation probability to promote the global optimal solution.
The experimental results show that the NIGA algorithm has the highest quality of the
optimal solution and is faster than GA algorithm.
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Fig. 2. The iterative evolution of GA and NIGA
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