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Abstract. Decision-making ability plays a key role in the cognitive
radio system. The decision-making engine is expected to decide a suit-
able radio configuration (modulation mode, coding mode, coding rate,
etc.) according to the complex and varying radio environment. In this
paper, we propose a decision-making method for the Orthogonal Fre-
quency Division Multiplexing (OFDM) communication system. Through
this method, we can select waveform parameters for any channel condi-
tion to achieve optimal communication performance via the Back Prop-
agation (BP) Neural Network (NN) regression. The simulation results
illustrate the proposed method can provide a reasonable decision surface
with various wireless channel condition.
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1 Introduction

Since Mitola proposed the concept “Cognitive Radio (CR)” in 1999 [1], most of
the current CR researches were mainly focusing on spectrum sensing, dynamic
spectrum access, etc., to solve the ever-increasing spectrum shortage problem
[2,3]. However, when the CR was proposed by Mitola, he has emphasized the
importance of the intelligent learning and decision-making characteristics for the
cognitive radio [1]. Intelligence should be a core characteristic of cognitive radio.
So the next generation of intelligent radio should have the capacity to sense,
learn and adapt to the complex electromagnetic environment.

The main function of “learning” in CR is making decision. Optimization
based decision-making algorithm has been widely exploited in current researches
of intelligent decision-making, and the typical one is Genetic Algorithm (GA).
GA is used to search the best system parameters within the given feasible domain
according to the designed performance objective function [4]. Christian James
Rieser pioneered a biometric-based cognitive radio model (Bio-CR) first [5], and
in his doctoral thesis he elaborated on the use of GA to achieve the optimiza-
tion of cognitive radio configuration parameters. Since then many scholars have
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made improvements on this basis, but mainly focused on the improvement of the
algorithm performance, such as using the binary quantum particle swarm opti-
mization [6], hybrid binary particle swarm optimization [7], differential evolution
[8], bacterial foraging optimization [8] and so on. Note that, when using these
optimization algorithms, it requires a multi-objective function of communication
performance calculated by the accurate theoretical formula. So these methods
only work under the assumption of Additive White Gaussian Noise (AWGN)
channel. But when the channel environment is not clear or more complex, we
can not get accurate calculation formula. And every time we use an optimized
way to make decision, we must spend a lot of time and computing resources.

Another kind of typical intelligent decision-making methods is based on learn-
ing (knowledge) [4]. CR system need to analyze and learn from the historical
cases through the method of machine learning, dig out potential rules and knowl-
edge, summarize the rules of knowledge, and then make decision based on the
rules and knowledge obtained. Related learning algorithms include Neural Net-
works [9,10], Support Vector Machines (SVM) [11], Bayesian networks [12], etc.
[13,14]. At present, this kind of research is still in the infancy.

In this paper, we propose a novel decision-making method to estimate the
best modulation type and coding rate OFDM wireless system. In the proposed
method, we collect the training sample by sending several training sequence from
the transmitter, and utilize these samples to train a Back Propagation (BP)
Neural Network (NN) regression model. Last, the fine-trained BP-NN model
provide the decision surface which corresponds to the given wireless channel.

2 BP Neural Network

BP-NN is a multi-layer feed-forward NN ordinarily which is trained by the BP
algorithm [15,16]. It can achieve the minimum error sum of square by regulating
the weight value and threshold value [16]. A basic BP-NN model is shown in
Fig. 1.

Fig. 1. A basic BP-NN structure including input layer, hidden layer and output layer.
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The BP training process can be described as follows [15,16]:
Forward propagation stage: The input signal from the input layer prop-

agates through the hidden layer to the output layer, and the weight value and
threshold value are fixed. At this stage, the state of each neuron will only affect
the next layer of neurons.

Back propagation stage: The error signal is generated by comparing the
real output with the desired output. Then the error signal propagates layer-
by-layer in the opposite direction. At this stage, the network parameters are
continuously regulated by the feedback error. It makes the real network output
value closer to the expected one.

The main advantage of BP-NN is that it has strong nonlinear mapping ability
[16]. Theoretically, as long as the number of hidden neurons is sufficient, a three-
layer BP-NN can approximate a nonlinear function with arbitrary precision.

3 Design of Decision-Making Model

In our method, the objective function is constructed based on the Shannon-
Hartley law [17]. It’s an evolution of the channel capacity function. And our
goal is to find the modulation and coding mode which maximizes the objective
function with BP-NN regression. The maximum means the system communica-
tion performance is optimal to some extent [17]. The system process is shown in
Fig. 2.

Fig. 2. Decision-making system flow chart.

First, we set up a complete OFDM communication system, modulation modes
include binary phase shift keying (BPSK), 4-quadrature amplitude modulation
(QAM), . . . , 128-QAM, coding mode uses the BCH block code (coding rate from
0 to 1). The main parameters of our OFDM system are shown in Table 1.

Table 1. Main parameters of OFDM system.

Parameter Value

Available subcarriers 128

Used subcarriers 64

Cyclic prefix 32

Baseband frequency 10 MHz
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Select as many channel models as possible to simulate(eg.: AWGN, Rayleigh
fading, Rician fading, Plus interference). The objective function related to the
modulation-coding modes is defined as follows:

c = f(rate)×f(ber) (1)
Here:

f(rate) = log2(M)×rc (2)
f(ber) = − log10(ber) (3)

where M denotes the modulation order, rc means the coding rate, ber represents
the bit-error rate, rate means the data-transmitted rate.

After that, we choose different values of various channel environment param-
eters, such as Signal-to-Noise Ratio (SNR), Doppler shift, etc., to collect a large
number of sample data in each channel model.

Use BP-NN to regress the objective function c = f([M, rc],w) (where w is
the channel environment to be regressed). The fitted surface reflects the relation-
ship between transmission performance and different modulation-coding modes
in current channel environment. The vertex of the surface means the value of
modulation-coding mode which maximizes the objective function.

And we make two constraints to ber as follows:
When ber < 10−6, consider that the bit error rate reaches the ideal state,

record it as 10−6.
When ber > 0.1, consider that the bit error rate is beyond the scope of

tolerance, record it as 1.

4 Simulation Results and Analysis

We only select partial modulation-coding modes to regress and compare the
fitted surface with the one obtained by mapping all modulation modes (including
BPSK, 4-QAM, 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM) and coding-
rate modes (including (8, 15, 22, 29, 36, 43, 50, 64, 71, 78, 92, 127)/127) directly.
If the trend is consistent, it verify the correctness of fitting.

The fitted surfaces are shown in Fig. 3. For the convenience of observation, we
will use contour lines instead of three-dimensional figure in the following space.

4.1 Simulation in AWGN Channel

As we can see from Fig. 4, when the channel is AWGN (SNR = 20 dB), capacity
function approximately reaches the vertex at “128-QAM, Rc=1”.

As we can see from Fig. 5, when the channel is AWGN (SNR = 10 dB), capac-
ity function approximately reaches the vertex at “32-QAM, rc=7/10”.

As we can see from Fig. 6, when the channel is AWGN(SNR = 0 dB), capacity
function approximately reaches the vertex at “BPSK, rc=1/5”.

In AWGN channels, when the SNR from 20 dB to 0 dB, the modulation-
coding options from the high modulation level, large coding rate, to low modu-
lation level, small coding rate. This is basically consistent with the theoretical
speculation.
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(a) Fitted surface for AWGN
(SNR = 12 dB) channel.

(b) Fitted surface for Rayleigh
(SNR = 12 dB, Fd = 500 kHz) channel.

Fig. 3. Fitting surface examples.

(a) Mapping all modulation-coding
modes in AWGN (SNR = 20 dB) channel.

(b) Fitted figure in AWGN (SNR = 20 dB)
channel.

Fig. 4. Relationship between objective function values and modulation-coding modes
in AWGN (SNR = 20 dB) channel.

(a) Mapping all modulation-coding
modes in AWGN (SNR = 10 dB) channel.

(b) Fitted figure in AWGN (SNR = 10 dB)
channel.

Fig. 5. Relationship between objective function values and modulation-coding modes
in AWGN (SNR = 10 dB) channel.
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(a) Mapping all modulation-coding
modes in AWGN (SNR = 0 dB) channel.

(b) Fitted figure in AWGN (SNR = 0 dB)
channel.

Fig. 6. Relationship between objective function values and modulation-coding modes
in AWGN (SNR = 0 dB) channel.

4.2 Simulation in Other Channels

Because of the limited space, we use Fig. 7 as an example to show the fitted
results for other channels.

(a) Mapping all modulation-coding
modes in Rayleigh (SNR = 20 dB,
Fd = 500 kHz) channel.

(b) Fitted figure in Rayleigh
(SNR = 20 dB, Fd = 500 kHz) channel.

Fig. 7. Relationship between objective function values and modulation-coding modes
in Rayleigh (SNR = 20 dB, Fd = 500 kHz) channel.

As we can see from Fig. 7, when the channel is Rayleigh-fading (SNR = 20 dB,
Fd = 500 kHz), capacity function approximately reaches the vertex at “32-QAM,
rc=5/8 ”.

From the simulation results we can see that the trend of the fitted surface is
basically the same as that of the figure mapping all modulation-coding modes, so
the effect of regression is in line with expectations. The fitted surface can reflect
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the channel environment. However, in the process of fitting, we find that the
training of BP-NN is not consistent and it is easy to fall into the local optimum.
The fit of the decision surface has uncertainties. Although we select the least
mean square error one by fitting ten times, sometimes the fitted error is also
large. Therefore, we suggest to use other regression algorithms, such as support
vector regression (SVR) (because of the small number of input samples) in the
future research.

5 Conclusion

In this paper, we have proposed a decision-making method based on the BP-NN
regression model. We made decisions to select the most suitable communica-
tion waveform parameters in some channel environment examples. Through our
model, we can make a decision and analysis for the complex, undiscovered chan-
nel. The simulation results demonstrates the correctness and applicability of the
introduced model. In the future research, we will use more other machine learn-
ing algorithms to regress, analyze and contrast their regression performance to
improve our method.
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