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Preface

This volume contains the papers presented at the 20th Symposium on Practical Aspects
of Declarative Languages (PADL 2018), held during January 8–9, 2018, in Los
Angeles, USA. The symposium was co-located with the 45th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL 2018).

PADL is a forum for scientists and practitioners that gathers original works focusing
on declarative languages relying on sound theoretical bases; in particular, it fosters
novel applications and implementation techniques for all forms of declarative for-
malisms, including, but not limited to, logic, constraint, and functional languages.

Thanks to the work of several neighbor communities, solid theoretical results
coupled with robust and efficient implementations made the application of declarative
languages successful in many different real-world situations, such as artificial intelli-
gence, the Semantic Web, database management, active networks, software engi-
neering, decision support systems, and more.

Further developments in theory and implementation have recently opened up new
application areas; at the same time, applications of declarative languages to novel
problems raise numerous interesting research questions and issues. Examples include
scalability, language extensions, and proper means for application deployment, and
tools for development and interoperability with different formalisms and technologies.
We observe that applications and attention to practical challenges drive the progress in
the theory and implementation of efficient and reliable systems supporting declarative
languages, and, at the same time, steer attention to timely challenges while benefiting
from this progress as well.

Originally established as a workshop (PADL 1999 in San Antonio, Texas), the
PADL series developed into a regular annual symposium; previous editions took place
in San Antonio, Texas (1999), Boston, Massachusetts (2000), Las Vegas, Nevada
(2001), Portland, Oregon (2002), New Orleans, Louisiana (2003), Dallas, Texas
(2004), Long Beach, California (2005), Charleston, South Carolina (2006), Nice,
France (2007), San Francisco, California (2008), Savannah, Georgia (2009), Madrid,
Spain (2010), Austin, Texas (2012), Rome, Italy (2013), and San Diego, California
(2014), Portland, Oregon (2015), St. Petersburg, Florida (2016), and Paris, France
(2017).

This year, the Program Committee received 23 submissions. Each submission was
reviewed by three Program Committee members, and 13 papers were accepted, based
only on the merit of each submission and regardless of scheduling or space constraints.

The program also included two invited talks:

– Carlo Zaniolo, “Declarative Algorithms on Big Data: A Logic-Based Solution”
– Todd Millstein, “‘Safe’ Languages Require Sequential Consistency”

Two out of the 13 accepted papers were nominated for the Best Paper Award, via a
secret ballot among the Program Committee members:



– Francesco Calimeri, Davide Fuscà, Simona Perri, Jessica Zangari, “Optimizing
Answer Set Computation via Heuristic-Based Decomposition” (Most Practical
Paper Award)

– Sandra Dylus, Jan Christiansen, Finn Teegen, “Probabilistic Functional Logic
Programming” (Best Student Paper Award)

Springer sponsored 250 Euro for each of these awards. The authors were encour-
aged to submit the long versions of their work for the rapid publication track to the
journal of Theory and Practice of Logic Programming.

We would like to express thanks to the Association of Logic Programming
(ALP) and the Association for Computing Machinery (ACM) for their continuous
support of the symposium, and Springer for the longstanding, successful cooperation
with the PADL series. We are very grateful to the 31 members of the PADL 2018
Program Committee and external reviewers for their invaluable work and for the
precious help in selecting the two best papers. The chairs of POPL 2018 were also of
great help in steering the organizational details of the event.

We are happy to note that the conference was successfully managed with the help of
EasyChair.

November 2017 Francesco Calimeri
Nicola Leone
Kevin Hamlen
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Declarative Algorithms on Big Data:
A Logic-Based Solution

Carlo Zaniolo

Computer Science Department, University of California at Los Angeles

Abstract. The ability of combining declarative specifications with efficient
implementations is critical to achieve portability and scalability via paral-
lelization of Big Data applications. We will describe the recent progress made
toward these objectives at UCLA, progress which is confirming the great
potential that logic-based languages can have in this role over a wide range of
applications. Indeed our Bigdatalog system on Apache Spark outperforms
GraphX on graph applications1 and has achieved portability2 over multiple
platforms3. These high levels of performance, portability and scalability have
been obtained while preserving a totally declarative stable-model semantics for
recursive Datalog programs that use aggregates in recursion4 when these pro-
grams satisfy a condition called pre-mappability5. We show that textbook
polynomial-time algorithms can be tersely expressed using such programs, and
provide simple conditions that allow users to verify that pre-mappability holds
for their programs—thus allowing them to assure that efficiently-computable
unique stable models exist for their declarative algorithms. Finally, we will
discuss applications of these advances to other systems, and overview the design
and implementation of an SQL DBMS prototype that supports similar
advances6.

1 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, Carlo Zaniolo:
Big Data Analytics with Datalog Queries on Spark. SIGMOD Conference 2016: 1135–1149.

2 Mohan Yang, Alexander Shkapsky, Carlo Zaniolo: Scaling up the performance of more powerful
Datalog systems on multicore machines, The VLDB Journal 1–20, December 2016.

3 Alexander Shkapsky, Mohan Yang, Carlo Zaniolo: Optimizing recursive queries with monotonic
aggregates in DeALS. ICDE 2015: 867–878.

4 Mirjana Mazuran, Edoardo Serra, Carlo Zaniolo: A declarative extension of Horn clauses, and its
significance for Datalog and its applications. TPLP 13(4–5): 609–623 (2013).

5 Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, Tyson Condie:
Fixpoint Semantics and Optimization of Recursive Datalog Programs with Aggregates, ICLP 2017.

6 Jiaqi Gu, Ling Ding, Ariyam Das, Tyson Condie, Carlo Zaniolo: RamSQL: SQL with Recursion
and Aggregate Mapping, UCLA Technical Report, November 2017.



“Safe” Languages Require Sequential
Consistency

Todd Millstein

Computer Science Department, University of California at Los Angeles

Abstract. Almost all languages today are memory safe, thereby providing
simple and strong guarantees to all programs. Yet the concurrency semantics
of these “safe” languages causes similar problems as arise in memory-unsafe
languages: small program errors can expose implementation details, violate
fundamental language abstractions, and compromise program safety. Perhaps
surprisingly, this is the case not only for imperative languages like Java and C++
but also for functional languages that support shared-memory concurrency. In
this talk Ill overview the state of concurrency semantics as it exists today and
argue that “safe” languages (and particularly declarative ones) must support the
simple interleaving semantics of threads known as sequential consistency (SC).
Along the way Ill debunk a few persistent myths about SC and argue that it is a
practical choice for many languages today.
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Probabilistic Functional Logic Programming

Sandra Dylus1(B) , Jan Christiansen2 , and Finn Teegen1

1 University of Kiel, Kiel, Germany
{sad,fte}@informatik.uni-kiel.de

2 Flensburg University of Applied Sciences, Flensburg, Germany
jan.christiansen@hs-flensburg.de

Abstract. This paper presents PFLP, a library for probabilistic pro-
gramming in the functional logic programming language Curry. It demon-
strates how the concepts of a functional logic programming language
support the implementation of a library for probabilistic programming.
In fact, the paradigms of functional logic and probabilistic programming
are closely connected. That is, we can apply techniques from one area to
the other and vice versa. We will see that an implementation based on the
concepts of functional logic programming can have benefits with respect
to performance compared to a standard list-based implementation.

1 Introduction

The probabilistic programming paradigm allows the succinct definition of prob-
abilistic processes and other applications based on probability distributions, for
example, Bayesian inference as used in machine learning. The idea of probabilis-
tic programming has been quite successful. There are a variety of probabilistic
programming languages supporting all kinds of programming paradigms. For
example, the programming languages Church [12] and Anglican [21] are based
on the functional programming language Scheme, ProbLog [9] is an extension
of the logic programming language Prolog, and Probabilistic C [17] is based on
the imperative language C. Besides full-blown languages there are also embed-
ded domain specific languages that implement probabilistic programming as
a library. For example, FACTORIE [16] is a library for the hybrid program-
ming language Scala and Erwig and Kollmansberger [10] present a library for
the functional programming language Haskell. We recommend the survey by
Gordon et al. [13] about the current state of probabilistic programming for fur-
ther information.

This paper presents PFLP, a library providing a domain specific language
for probabilistic programming in the functional logic programming language
Curry [2]. PFLP makes heavy use of functional logic programming concepts
and shows that this paradigm is well-suited for implementing a library for prob-
abilistic programming. In fact, there is a close connection between probabilistic
programming and functional logic programming. For example, non-deterministic
choice and probabilistic choice are similar concepts. Furthermore, the concept
of call-time choice as known from functional logic programming coincides with
c© Springer International Publishing AG 2018
F. Calimeri et al. (Eds.): PADL 2018, LNCS 10702, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-73305-0_1

http://orcid.org/0000-0003-3606-4543
http://orcid.org/0000-0003-4911-8459
http://orcid.org/0000-0002-7905-3804


4 S. Dylus et al.

(stochastic) memoization [8] in the area of probabilistic programming. We are
not the first to observe this close connection between functional logic program-
ming and probabilistic programming. For example, Fischer et al. [11] present a
library for modeling functional logic programs in the functional language Haskell.
As they state, by extending their approach to weighted non-determinism we can
model a probabilistic programming language.

Besides a lightweight implementation of a library for probabilistic program-
ming in a functional logic programming language, this paper makes the following
contributions.

– We investigate the interplay of probabilistic programming with the features of
a functional logic programming language. For example, we show how call-time
choice and non-determinism interplay with probabilistic choice.

– We discuss how we utilize functional logic features to improve the implemen-
tation of probabilistic combinators.

– On one hand, we will see that an implementation of probability distributions
using non-determinism in combination with non-strict probabilistic combina-
tors can be more efficient than an implementation using lists.

– On the other hand, we illustrate that the combination of non-determinism
and non-strictness with respect to distributions has to be handled with care.
More precisely, it is important to enforce a certain degree of strictness in
order to guarantee correct results.

– Finally, this paper is supposed to foster the exchange between the community
of probabilistic programming and of functional logic programming. That is,
while the connection exists for a long time, there has not been much exchange
between the communities. We would like to take this paper as a starting
point to bring these paradigms closer together. Thus, this paper introduces
the concepts of both, the functional logic and probabilistic programming,
paradigms.

Last but not least, we also want to state a non-contribution. We do not
plan to compete against full-blown probabilistic languages or mature libraries
for probabilistic programming. Nevertheless, we think that this library is a great
showcase for languages with built-in non-determinism, because the functional
logic approach can be superior to the functional approach using lists.

2 The Basics

In this section we discuss the core of the PFLP library1. The implementation
is based on a Haskell library for probabilistic programming presented by Erwig
and Kollmansberger [10]. We will not present the whole PFLP library, but only
core functions. The paper at hand is a literate Curry file. We use the Curry
compiler KiCS22 by Braßel et al. [5] for all code examples.
1 We provide the code for the library at https://github.com/finnteegen/pflp.
2 We use version 0.6.0 of KiCS2 and the source is found at https://www-ps.

informatik.uni-kiel.de/kics2/.

https://github.com/finnteegen/pflp
https://www-ps.informatik.uni-kiel.de/kics2/
https://www-ps.informatik.uni-kiel.de/kics2/
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2.1 Modeling Distributions

One key ingredient of probabilistic programming is the definition of distributions.
A distribution consists of pairs of elementary events and their probability. We
model probabilities as Float and distributions as a combination of an elementary
event and the corresponding probability.

type Probability = Float
data Dist a = Dist a Probability

In a functional language like Haskell, the canonical way to define distributions
uses lists. Here, we use Curry’s built-in non-determinism as an alternative for
lists to model distributions with more than one event-probability pair. As an
example, we define a fair coin, where True represents heads and False represents
tails, as follows.3

coin :: Dist Bool
coin = Dist True 1

2 ? Dist False 1
2

In Curry the (?)-operator non-deterministically chooses between two given
arguments. Non-determinism is not reflected in the type system, that is, a non-
deterministic choice has type a → a → a. Such non-deterministic computations
introduced by (?) describe two individual computation branches; one for the left
argument und one for the right argument of (?). Printing an expression in the
REPL4 evaluates the non-deterministic computations, thus, yields one result for
each branch as shown in the following examples.

λ> coin
Dist True 0.5
Dist False 0.5

λ> 1 ? 2
1
2

It is cumbersome to define distributions explicitly as in the case of coin.
Hence, we define helper functions for constructing distributions. Given a list
of events and probabilities, enum creates a distribution by folding these pairs
non-deterministically with a helper function member .5

member :: [a ] → a
member = foldr (?) failed
enum :: [a ] → [Probability ] → Dist a
enum vs ps = member (zipWith Dist vs ps)

In Curry the constant failed is a silent failure that behaves as neutral element
with respect to (?). That is, the expression True ? failed has the same semantics
as True. Hence, the function member takes a list and yields a non-deterministic
choice of all elements of the list.
3 Here and in the following we write probabilities as fractions for readability.
4 We visualize the interactions with the REPL using λ> as prompt.
5 We shorten the implementation of enum for presentation purposes; actually, enum

only allows valid distributions, e.g., that the given probabilities add up to 1.0.
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As a short-cut, we define a function that yields a uniform distribution given
a list of events as well as a function certainly , which yields a distribution with a
single event of probability one.

uniform :: [a ] → Dist a
uniform xs = let len = length xs in enum xs (repeat 1

len )
certainly :: a → Dist a
certainly x = Dist x 1.0

The function repeat yields a list that contains the given value infinitely often.
Because of Curry’s laziness, it is sufficient if one of the arguments of enum is a
finite list because zipWith stops when one of its arguments is empty.

We can refactor the definition of coin using uniform as follows.

coin :: Dist Bool
coin = uniform [True,False ]

In general, the library hides the constructor Dist , that is, the user has to
define distributions by using the combinators provided by the library.

The library provides additional functions to combine and manipulate dis-
tributions. In order to work with dependent distributions, the operator (>>>=)
applies a function that yields a distribution to each event of a given distribution
and multiplies the corresponding probabilities.6

(>>>=) :: Dist a → (a → Dist b) → Dist b
d >>>= f = let Dist x p = d

Dist y q = f x
in Dist y (p ∗. q)

The implementation via let-bindings seems a bit tedious, however, it is
important that we define (>>>=) as it is. The canonical implementation performs
pattern matching on the first argument but uses a let-binding for the result of f .
That is, it is strict in the first argument but non-strict in the application of f ,
the second argument. We discuss the implementation in more detail later. For
now, it is sufficient to note that (>>>=) yields a partial Dist-constructor without
evaluating any of its arguments. In contrast, a definition using pattern matching
or a case expression needs to evaluate its argument first, thus, is more strict.

Intuitively, we have to apply the function f to each event of the distribu-
tion d and combine the resulting distributions into a single distribution. In a
Haskell implementation, we would use a list comprehension to define this func-
tion. In the Curry implementation, we model distributions as non-deterministic
computations, thus, the above rule describes the behavior of the function for
an arbitrary pair of the first distribution and an arbitrary pair of the second
distribution, that is, the result of f .
6 Due to the lack of overloading in Curry, operations on Float have a (floating) point

suffix, e.g. (∗.), whereas operations on Int use the common operation names.
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For independent distributions we provide the function joinWith that com-
bines two distributions with respect to a given function. We implement joinWith
by means of (>>>=).

joinWith :: (a → b → c) → Dist a → Dist b → Dist c
joinWith f d1 d2 = d1 >>>= λx → d2 >>>= λy → certainly (f x y)

In a monadic setting this function is sometimes called liftM2 . Here, we use
the same nomenclature as Erwig and Kollmansberger [10].

As an example of combining multiple distinct distributions, we define a func-
tion that flips a coin n times.

flipCoin :: Int → Dist [Bool ]
flipCoin n | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) coin (flipCoin (n − 1))

When we run the example of flipping two coins in the REPL of KiCS2, we
get four events.

λ> flipCoin 2
Dist [True,True ] 0.25
Dist [True,False ] 0.25
Dist [False,True ] 0.25
Dist [False,False ] 0.25

In the example above, coin is a non-deterministic operation, namely, coin =
Dist True 1

2 ? Dist False 1
2 . Applying joinWith to coin and coin combines all

possible results of two coin tosses.

2.2 Querying Distributions

With a handful of building blocks to define distributions available, we now want
to calculate total probabilities, thus, perform queries on our distributions. We
provide an operator (??) :: (a → Bool) → Dist a → Probability to extract the
probability of a distribution with respect to a given predicate. The operator
filters events that satisfy the given predicate and computes the total probability
of the remaining elementary events. It is straightforward to implement this kind
of filter function on distributions in Curry.

filterDist :: (a → Bool) → Dist a → Dist a
filterDist p d@(Dist x ) | p x = d

The implementation of filterDist is a partial identity on the event-probability
pairs. Every event that satisfies the predicate is part of the resulting distribution.
The function fails for event-predicate pairs that do not satisfy the predicate. The
definition is equivalent to the following version using an if -then-else-expression.

filterDist ′ p d@(Dist x ) = if p x then d else failed
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Computing the total probability, i.e., summing up all remaining probabili-
ties, is a more advanced task in the functional logic approach. Remember that
we represent a distribution by chaining all event-probability pairs with (?), thus,
constructing non-deterministic computations. These non-deterministic compu-
tations introduce individual branches of computations that cannot interact with
each other. In order to compute the total probability of a distribution, we have
to merge these distinct branches. Such a merge is possible by the encapsula-
tion of non-deterministic computations. Similar to the findall construct of the
logic language Prolog, in Curry we encapsulate a non-deterministic computa-
tion by using a primitive called allValues7. The function allValues operates on
a polymorphic—and potentially non-deterministic—value and yields a multi-set
of all non-deterministic values.

allValues :: a → {a}

In order to work with encapsulated values, Curry provides the following two
functions to fold and map the resulting multi-set.

foldValues :: (a → a → a) → a → {a} → a
mapValues :: (a → b) → {a} → {b}
We do not discuss the implementation details behind allValues here. It is suf-

ficient to know that, as a library developer, we can employ this powerful function
to encapsulate non-deterministic values and use these values in further compu-
tations. However, due to intransparent behavior in combination with sharing as
discussed by Braßel et al. [4], a user of the library should not use allValues at
all. In a nutshell, inner-most and outer-most evaluation strategies may cause
different results when combining sharing and encapsulation.

With this encapsulation mechanism at hand, we can define the extraction
operator (??) as follows.

prob :: Dist a → Probability
prob (Dist p) = p
(??) :: (a → Bool) → Dist a → Probability
(??) p = foldValues (+.) 0.0 ◦ allValues ◦ prob ◦ filterDist p

First we filter the elementary events by some predicate and project to the
probabilities only. Afterwards we encapsulate the remaining probabilities and
sum them up. As an example for the use of (??), we may flip four coins and
calculate the probability of at least two heads—that is, True.

λ> ((� 2) ◦ length ◦ filter id) ?? flipCoin 4
0.6875

7 We use an abstract view of the result of an encapsulation to emphasize that the
order of encapsulated results does not matter. In practice, we can, for example, use
the function allValues :: a → [a ] defined in the library Findall .
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3 The Details

Up to now, we have discussed a simple library for probabilistic programming
that uses non-determinism to represent distributions. In this chapter we will
see that we can highly benefit from Curry-like non-determinism with respect to
performance when we compare PFLP’s implementation with a list-based imple-
mentation. More precisely, when we query a distribution with a predicate that
does not evaluate its argument completely, we can possibly prune large parts
of the search space. Before we discuss the details of the combination of non-
strictness and non-determinism, we discuss aspects of sharing non-deterministic
choices. At last, we discuss details about the implementation of (>>>=) and why
PFLP does not allow non-deterministic events within distributions.

3.1 Call-Time Choice vs. Run-Time Choice

By default Curry uses call-time choice, that is, variables denote single determin-
istic choices. When we bind a variable to a non-deterministic computation, one
value is chosen and all occurrences of the variable denote the same determinis-
tic choice. Often call-time choice is what you are looking for. For example, the
definition of filterDist makes use of call-time choice.

filterDist :: (a → Bool) → Dist a → Dist a
filterDist p d@(Dist x ) | p x = d

The variable d on the right-hand side denotes a single deterministic choice,
namely, the one that satisfies the predicate and not the non-deterministic com-
putation that was initially passed to filterDist .

Almost as often run-time choice is what you are looking for and call-time
choice gets in your way; probabilistic programming is no exception. For example,
let us reconsider flipping a coin n times. We parametrize the function flipCoin
over the given distribution and define the following generalized function.

replicateDist :: Int → Dist a → Dist [a ]
replicateDist n d | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) d (replicateDist (n − 1) d)

When we use this function to flip a coin twice, the result is not what we intended.

λ> replicateDist 2 coin
Dist [True,True ] 0.25
Dist [False,False ] 0.25

Because replicateDist shares the variable d , we only perform a choice once
and replicate deterministic choices. In contrast, top-level nullary functions like
coin are evaluated every time, thus, exhibit run-time choice, which is the reason
why the previously shown flipCoin behaves properly.
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In order to implement replicateDist correctly, we have to enforce run-time
choice. We introduce the following type synonym and function to model and
work with values with run-time choice behavior.

type RT a = () → a
pick :: RT a → a
pick rt = rt ()

We can now use the type RT to hide the non-determinism on the right-hand
side of a function arrow. This way, pick explicitly triggers the evaluation of rt ,
performing a new choice for every element of the result list.

replicateDist :: Int → RT (Dist a) → Dist [a ]
replicateDist n rt | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) (pick rt) (replicateDist (n − 1) rt)

In order to use replicateDist with coin, we have to construct a value of type
RT (Dist Bool). However, we cannot provide a function to construct a value of
type RT that behaves as intended. Such a function would share a deterministic
choice and non-deterministically yield two functions, instead of one function that
yields a non-deterministic computation. The only way to construct a value of
type RT is to explicitly use a lambda abstraction.

λ> replicateDist 2 (λ() → coin)
Dist [True,True ] 0.25
Dist [True,False ] 0.25
Dist [False,True ] 0.25
Dist [False,False ] 0.25

Instead of relying on call-time choice as default behavior, we could model
Dist as a function and make run-time choice the default in PFLP. In this case,
to get call-time choice we would have to use a special construct provided by
the library—as it is the case in many probabilistic programming libraries, e.g.,
mem in Church. We have decided to go with the current modeling based on call-
time-choice, because the alternative would work against the spirit of the Curry
programming language.

There is a long history of discussions about the pros and cons of call-time
choice and run-time choice. It is common knowledge in probabilistic program-
ming [8] that, in order to model stochastic automata or probabilistic grammars,
memoization—that is, call-time choice—has to be avoided. Similarly, Antoy [1]
observes that you need run-time choice to elegantly model regular expressions
in the context of functional logic programming languages. Then again, proba-
bilistic languages need a concept like memoization in order to use a single value
drawn from a distribution multiple times. If we flip a coin and have more than
one dependency on its result in the remaining program, the result of that flip is
not supposed to change between one occurrence and the other.
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3.2 Combination of Non-strictness and Non-determinism

This section illustrates the benefits from the combination of non-strictness and
non-determinism with respect to performance. More precisely, in a setting that
uses Curry-like non-determinism, non-strictness can prevent non-determinism
from being “spawned”. Let us consider calculating the probability for throwing
only sixes when throwing n dice. First we define a uniform die as follows.

data Side = One | Two | Three | Four | Five | Six
die :: Dist Side
die = uniform [One,Two,Three,Four ,Five,Six ]

We define the following query by means of the combinators introduced so
far. The function all simply checks that all elements of a list satisfy a given
predicate; it is defined by means of the boolean conjunction (∧).

allSix :: Int → Probability
allSix n = all (≡ Six ) ?? replicateDist n (λ() → die)

The following table compares running times8 of this query for different num-
bers of dice. The row labeled “Curry ND” lists the running times for an imple-
mentation that uses the operator (>>>=). The row “Curry List” shows the num-
bers for a list-based implementation in Curry, which is a literal translation of the
library by Erwig and Kollmansberger [10]. The row labeled “Curry ND!” uses an
operator (>>>=!) instead, which we will discuss shortly. Finally, we compare our
implementation to the original list-based implementation, which the row labeled
“Haskell List” refers to. The table states the running times in milliseconds of a
compiled executable for each benchmark as a mean of three runs. Cells marked
with “–” take more than a minute.

# of dice 5 6 7 8 9 10 100 200 300

Curry ND <1 <1 <1 <1 <1 <1 48 231 547

Curry List 2 13 72 419 2554 15 394 – – –

Curry ND! 52 409 2568 16 382 – – – – –

Haskell List 1 5 30 210 1415 6538 – – –

Obviously, the example above is a little contrived. While the query is expo-
nential in both list versions, it is linear in the non-deterministic setting9.

8 All benchmarks were executed on a Linux machine with an Intel Core i7-6500U (2.50
GHz) and 8 GiB RAM running Fedora 25. We used the Glasgow Haskell Compiler
(version 8.0.2, option -O2) and set the search strategy in KiCS2 to depth-first.

9 Non-determinism causes significant overhead for KiCS2, thus, “Curry ND” does not
show linear development, but we measured a linear running time using PAKCS [14].
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In order to illustrate the behavior of the example above, we consider the fol-
lowing application for an arbitrary distribution dist of type Dist [Side ].

filterDist (all (≡ Six )) (joinWith (:) (Dist One 1
6 ) dist)

This application yields an empty distribution without evaluating the distribu-
tion dist . The clou here is that joinWith yields aDist constructor without inspect-
ing its arguments. When we demand the event of the resulting Dist , joinWith has
to evaluate only its first argument to see that the predicate all (≡ Six ) yields
False. The evaluation of the expression fails without inspecting the second argu-
ment of joinWith. Figure 1 illustrates the evaluation in more detail.

In case of the example allSix , all non-deterministic branches that contain a
value different from Six fail fast due to the non-strictness. Thus, the number
of evaluation steps is linear in the number of rolled dice. Note that a similar
behavior is not possible in a list-based implementation that implements (>>>=)
with concatMap. In such an implementation, we have to traverse the entire
distribution before we can evaluate the predicate all (≡ Six ). The consequence
is that the running times of “Haskell List” cannot compete with “Curry ND”
when the number of dice increases.

We can only benefit from the combination of non-strictness and non-
determinism if we define (>>>=) with care. Let us take a look at a strict variant
of (>>>=) and discuss its consequences.

filterDist (all (≡ Six )) (joinWith (:) (Dist One 1
6
) dist)

≡ { Def. of joinWith }
filterDist (all (≡ Six ))

(Dist One 1
6

>>>= λx → dist >>>= λxs → certainly (x : xs))
≡ { Def. of (>>>=) (twice) }
filterDist (all (≡ Six ))

(let Dist x p = Dist One 1
6
;Dist xs q = dist ;Dist ys r = certainly (x : xs)

in Dist ys (p ∗. (q ∗. r))
≡ { Def. of filterDist }
let Dist x p = Dist One 1

6
;Dist xs q = dist ;Dist ys r = certainly (x : xs)

in if all (≡ Six ) ys then Dist ys (p ∗. (q ∗. r)) else failed
≡ { Def. of certainly }
let Dist x p = Dist One 1

6
;Dist xs q = dist

in if all (≡ Six ) (x : xs) then Dist (x : xs) (p ∗. (q ∗. 1.0)) else failed
≡ { Def. of all }
let Dist x p = Dist One 1

6
;Dist xs q = dist

in if x ≡ Six ∧ all (≡ Six ) xs then Dist (x : xs) (p ∗. (q ∗. 1.0)) else failed
≡ { Def. of (≡) and (∧) }
let Dist x p = Dist One 1

6
;Dist xs q = d

in if False then Dist (x : xs) (p ∗. (q ∗. 1.0)) else failed
≡ { Def. of if − then − else }
failed

Fig. 1. Simplified evaluation illustrating non-strict non-determinism
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(>>>=!) :: Dist a → (a → Dist b) → Dist b
Dist x p >>>=! f = case f x of Dist y q → Dist y (p ∗. q)

This implementation is strict in its first argument as well as in the result of
the function application. When we use (>>>=!) to implement the allSix example,
we lose the benefit of Curry-like non-determinism. The row labeled “Curry ND!”
shows the running times when using (>>>=!) instead of (>>>=). As (>>>=!) is strict,
the function joinWith has to evaluate both its arguments to yield a result.

Intuitively, we expect similar running times for “Curry ND!” and “Curry List”.
However, this is not the case. “Curry ND!” heavily relies on non-deterministic
computations, which causes significant overhead for KiCS2. We do not investigate
these differences here but propose it as a direction for future research.

Obviously, turning an exponential problem into a linear one is like getting
only sixes when throwing dice. In most cases we are not that lucky. For example,
consider the following query for throwing n dice that are either five or six.

allFiveOrSix :: Int → Probability
allFiveOrSix n = all (λs → s ≡ Five ∨ s ≡ Six ) ?? replicateDist n (λ() → die)

We again list running times for different numbers of dice for this query.

# of dice 5 6 7 8 9 10

Curry ND 4 7 15 34 76 163

Curry List 2 13 84 489 2869 16 989

Curry ND! 49 382 2483 15 562 – –

Haskell List 2 5 31 219 1423 6670

As we can see from the running times, this query is exponential in all imple-
mentations. Nevertheless, the running time of the non-strict, non-deterministic
implementation is much better because we only have to consider two sides—six
and five—while we have to consider all sides in the list implementations and the
non-deterministic, strict implementation. That is, while the basis of the com-
plexity is two in the case of the non-deterministic, non-strict implementation, it
is six in all the other cases. Again, we get an overhead of a factor around 25 in
the case of the strict non-determinism compared to the list implementation.

3.3 Definition of the Bind Operator

In this section we discuss our design choices concerning the implementation of
the bind operator. We illustrate that we have to be careful about non-strictness,
because we do not want to lose non-deterministic results. Most importantly, the
final implementation ensures that users cannot misuse the library if they stick
to one simple rule.
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First, we revisit the definition of (>>>=) introduced in Sect. 2.

(>>>=) :: Dist a → (a → Dist b) → Dist b
d >>>= f = let Dist x p = d

Dist y q = f x
in Dist y (p ∗. q)

We can observe two facts about this definition. First, the definition yields a
Dist-constructor without matching any argument. Second, if neither the event
nor the probability of the final distribution is evaluated, the application of the
function f is not evaluated as well.

We can observe these properties with some exemplary usages of (>>>=). As a
reference, we see that pattern matching the Dist-constructor of a coin triggers
the non-determinism and yields two results.

λ> (λ(Dist ) → True) coin
True
True

In contrast, distributions resulting from an application of (>>>=) behave dif-
ferently. This time, pattern matching on the Dist-constructor does not trigger
any non-determinism.

λ> (λ(Dist ) → True) (certainly () >>>= λ → coin)
True
λ> (λ(Dist ) → True) (coin >>>= certainly)
True

We observe that the last two examples yield a single result, because the
(>>>=)-operator changes the position of the non-determinism. That is, the
non-determinism does not reside at the same level as the Dist-constructor, but
in the arguments of Dist . Therefore, we have to be sure to trigger all non-
determinism when we compute probabilities. Not evaluating non-determinism
might lead to false results when we sum up probabilities. Hence, non-strictness
is a crucial property for positive pruning effects, but has to be used carefully.

Consider the following example usage of (>>>=), which is simply an inlined
version of joinWith applied to the boolean conjunction (∧).

λ> (λ(Dist x ) → x ) (coin >>>= λx → coin >>>= λy → certainly (x ∧ y))
False
True
False

We lose one expected result from the distribution, because (∧) is non-strict
in its second argument in case the first argument is False. When the first coin
evaluates to False, (>>>=) ignores the second coin and yields False straightaway.
In this case, the non-determinism of the second coin is not triggered and we get
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only three instead of four results. The non-strictness of (∧) has no consequences
when using (>>>=!), because the operator evaluates both arguments and, thus,
triggers the non-determinism.

As we have seen above, when using the non-strict operator (∧), one of the
results gets lost. However, when we sum up probabilities, we do not want events
to get lost. For example, when we compute the total probability of a distribution,
the result should always be 1.0. However, the query above has only three results
and every event has a probability of 0.25, resulting in a total probability of 0.75.

Here is the good news. While events can get lost when passing non-strict func-
tions to (>>>=), probabilities never get lost. For example, consider the following
application.

λ> (λ(Dist p) → p) (coin >>>= λx → coin >>>= λy → certainly (x ∧ y))
0.25
0.25
0.25
0.25

Since multiplication is strict, if we demand the resulting probability, the
operator (>>>=) has to evaluate the Dist-constructor and its probability. That is,
no values get lost if we evaluate the resulting probability. Fortunately, the query
operation (??) calculates the total probability of the filtered distributions, thus,
evaluates the probability as the following example shows.

λ> not ?? (coin >>>= λx → coin >>>= λy → certainly (x ∧ y))
0.75

We calculate the probability of the event False and while there where only two
False events, the total probability is still 0.75, i.e., three times 0.25.

All in all, in order to benefit from non-strictness, all operations have to use
the right amount of strictness, not too much and not too little. For this reason
PFLP does not provide the Dist-constructor nor the corresponding projection
functions to the user. With this restriction, the library guarantees that no rele-
vant probabilities get lost.

3.4 Non-deterministic Events

We assume that all events passed to library functions are deterministic, thus, do
not support non-deterministic events within distributions. In order to illustrate
why, we consider an example that breaks this rule here.

Curry provides free variables, that is, expressions that non-deterministically
evaluate to every possible value of its type. When we revisit the definition of a
die, we might be tempted to use a free variable instead of explicitly enumerating
all values of type Side. For example, consider the following definition of a die.

die2 :: Dist Side
die2 = Dist unknown 1

6
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We just use a free variable—the constant unknown—and calculate the prob-
ability of each event ourselves. The free variable non-deterministically yields all
constructors of type Side. Now, let us consider the following query.

λ> const True ?? die2
0.16666667

The result of this query is 1
6 and not 1.0 as expected. This example illustrates

that probabilities can get lost if we do not use the right amount of strictness.
The definition of (??) first projects to the probability of die2 and throws away
all non-determinism. Therefore, we lose probabilities we would like to sum up.

As a consequence for PFLP, non-deterministic events within a distribution
are not allowed. If users of the library stick to this rule, it is not possible to
misuse the operations and lose non-deterministic results due to non-strictness.

4 Related and Future Work

The approach of this paper is based on the work by Erwig and Kollmansberger
[10], who introduce a Haskell library that represents distributions as lists of
event-probability pairs. Their library also provides a simple sampling mecha-
nism to perform inference on distributions. Inference algorithms come into play
because common examples in probabilistic programming have an exponential
growth and it is not feasible to compute the whole distribution. Similarly, Ścibior
et al. [19] present a more efficient implementation using a DSL in Haskell. They
represent distributions as a free monad and inference algorithms as an inter-
pretation of the monadic structure. Thanks to this interpretation, the approach
is competitive to full-blown probabilistic programming languages with respect
to performance. PFLP provides functions to sample from distributions as well.
However, in this work we focus on modeling distributions and do not discuss
any sampling mechanism. In particular, as future work we plan to investigate
whether we can benefit from the improved performance as presented here in the
case of sampling. Furthermore, a more detailed investigation of the performance
of non-determinism in comparison to a list model is a topic for another paper.

The benefit with respect to the combination of non-strictness and non-de-
terminism is similar to the benefit of property-based testing using Curry-like non-
determinism in Haskell [18] and Curry [6]. In property-based testing, sometimes
we want to generate test cases that satisfy a precondition. With Curry-like non-
determinism the precondition can prune the search space early, while a list-based
implementation has to generate all test cases and filter them afterwards. Both
applications, probabilistic programming and property-based testing, are exam-
ples, where built-in non-determinism outperforms list-based approaches as intro-
duced by Wadler [20]. In comparison to property-based testing, here, we observe
that we can even add a kind of monadic layer on top of the non-determinism that
computes additional information and still preserve the demand driven behavior.
However, the additional information has to be evaluated strictly—as it is the case
for probabilities, otherwise we might lose non-deterministic results.
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There are other more elaborated approaches to implement a library for prob-
abilistic programming. For example, Kiselyov and Shan [15] extend their library
for probabilistic programming in OCAML with a construct for lazy evaluation
to achieve similar positive effects. However, they use lazy evaluation for a con-
crete application based on importance sampling. Due to the combination of non-
strictness and non-determinism, we can efficiently calculate the total probability
of the resulting distribution without utilizing sampling.

As future work, we see a high potential for performance improvements for
the Curry compiler KiCS2. PFLP serves as a starting point for further studies of
functional logic features in practical applications. For example, we would expect
the running times of the strict implementation based on non-determinism to
be approximately as efficient as a list-based implementation. However, as the
numbers in Sect. 3 show, the list approach is considerably faster.

The library’s design does not support the use of non-determinism in events
or probabilities of a distribution. In case of deeper non-determinism, we have
to be careful to trigger all non-determinism when querying a distribution as
shown in Sect. 3. Hence, the extension of the library with an interface using
non-determinism on the user’s side is an idea worth studying.

Last but not least, we see an opportunity to apply ideas and solutions
of the functional logic paradigm in probabilistic programming. For instance,
Christiansen et al. [7] investigate free theorems for functional logic programs. As
their work considers non-determinism and sharing, adapting it to probabilistic
programming should be easy. As another example, Braßel [3] presents a debug-
ger for Curry that works well with non-determinism. Hence, it should be easy
to reuse these ideas in the setting of probabilistic programming as well.

5 Conclusion

We have implemented a simple library for probabilistic programming in a func-
tional logic programming language, namely Curry. Such a library proves to be a
good fit for a functional logic language, because both paradigms share similar fea-
tures. While other libraries need to reimplement features specific to probabilistic
programming, we solely rely on core features of functional logic languages.

The key idea of the library is to use non-determinism to model distribu-
tions. We discussed design choices as well as corresponding disadvantages and
advantages of this approach. In the end, the library uses non-strict probabilistic
combinators in order to avoid spawning unnecessary non-deterministic computa-
tions and, thus, benefit in terms of performance due to early pruning. However,
we have observed that the combination of non-strictness and non-deterministic
needs to be taken with a pinch of salt. Using combinators that are too strict
leads to a loss of the aforementioned performance benefit.

Acknowledgements. We are thankful for fruitful discussions with Michael Hanus
as well as suggestions of Jan Bracker and the anonymous reviewers to improve the
readability of this paper.
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Abstract. Spreadsheets are used heavily in industry and academia.
Often, spreadsheet models are developed for years and their complex-
ity grows vastly beyond what the paradigm was originally conceived for.
Such complexity often comes at the cost of recalculation performance.
However, spreadsheet models usually have some high-level structure that
can be used to improve performance by performing independent compu-
tation in parallel. In this paper, we devise rules for rewriting high-level
spreadsheet structure in the form of so-called cell arrays into higher-order
functional programs that can be easily parallelized on multicore proces-
sors. We implement our rule set for the experimental Funcalc spread-
sheet engine which already implements parallelizable higher-order array
functions as well as user-defined higher-order functions. Benchmarks
show that our rewriting approach improves recalculation performance
for spreadsheets that are dominated by cell arrays.

1 Introduction

Spreadsheets are abundant in research and industry and used heavily by pro-
fessionals who are not educated as programmers. Spreadsheets often become
highly complex over time. Not only is it hard to maintain an understanding of
the underlying model, but this complexity can also lead to slow recalculation of
the entire spreadsheet. For large and complex spreadsheet models, recalculation
performance may be critical.

Dou et al. [6] report that 69% of all spreadsheets with formulas in the
Enron [10] and EUSES [8] spreadsheet corpora contain cell arrays. A cell array
is a rectangular block of copy equivalent formulas [15], like the cell areas B2:F6
and B8:F12 in Fig. 2. Such a cell array is created when the spreadsheet user
writes a formula, typically with a carefully crafted mix of absolute and relative
references, and copies it to a rectangular cell range.
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Spreadsheets are first-order purely functional programs [2]. In purely func-
tional programs, all values are immutable. Immutability guarantees data-race
freedom and therefore allows for easy parallelization and hence a speedup of
disjoint computations. If we can detect formula cells on a spreadsheet that do
not depend on each other, we can safely compute these in parallel.

In functional languages, disjoint computations on values of an array can be
expressed explicitly by means of higher-order functions. For instance, the higher-
order function map explicitly applies a pure function to each element of an array
individually. Hence, map can easily be parallelized.

In this paper, we design a source-to-source rewriting semantics for converting
cell array computations into parallel higher-order functional programs to improve
recalculation performance. We do this by correlating cell array structure with
higher-order array functions.

Our rewriting semantics uses a common feature of spreadsheet software,
called array formulas. An array formula must evaluate to an array of the same
size and shape as the spreadsheet cell range that contains the formula. The array
is then unpacked and its scalar values are placed directly in the cells according
to their position in the array, such that the containing array disappears.

We target the experimental spreadsheet engine Funcalc [17]. Funcalc provides
higher-order functions on immutable two-dimensional arrays, which correspond
to cell ranges, as well as efficient sheet-defined higher-order functions. For our
purpose, we extend Funcalc with additional functions on arrays.

To our knowledge, there is no literature on exploiting parallelism in cell
arrays to improve recalculation performance. Some researchers have investigated
whole-sheet graph parallelism on spreadsheets [19–21]. Prior work on high-level
spreadsheet array structure has either focused on making the user aware of
high-level models [11,15,16]; on correcting errors in cell formulas by analyzing
the structure around given cells [3,4,6,12]; or on synthesizing templates from
spreadsheets to allow for reuse of the high-level structure [1,13].

With our rewriting semantics, Funcalc can exploit implicit parallelism in
spreadsheets dominated by large or computation-heavy cell arrays. We compare
the performance of our approach on two idealized and six synthetic spreadsheets
as well as twelve real-world spreadsheets from the EUSES [8] corpus. Our results
show that we can indeed improve spreadsheet recalculation by parallelizing cell
array computations. However, our results also show that the achievable speedup
is limited by the sequential dependencies of the spreadsheet models.

2 From Cell Arrays to Higher-Order Functions

Our idea is based on the observation that the references in cell arrays often
form a pattern that corresponds to one of two higher-order functions on 2D
arrays [20,21]. We define our variants of these two functions with variadic arity
k to make them as general as possible.

The first function is commonly known as map. It takes as arguments a k-ary
function f and k arrays x1 through xk of n rows and m columns each. We say
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they are of shape n×m. We require at least one argument array, i.e. k ≥ 1. The
result of the function is a new n × m array containing the results of applying f
to the k elements of the input arrays at the same index:

MAP(f, x1, . . . , xk) = X, where X[i, j] = f(x1[i, j], . . . , xk[i, j])

The other function is commonly known as scan or generalized prefix sum. We
use a variant on 2D arrays that computes a wavefront prefix sum for arbitrary
functions. It takes a (k+3)-ary function f , a n×1 single-column array γ, a scalar
value δ and a 1 × m single-row array ρ as well as, again, k arrays x1, . . . , xk of
shape n × m. Its result is a new n × m array PREFIX(f, γ, δ, ρ, x1, . . . , xk) = X,
where:

X[1, 1] = f(γ[1], δ, ρ[1], x1[1, 1], . . . , xk[1, 1]) (1)
X[1, j] = f(X[1, j − 1], ρ[j − 1], ρ[j], x1[1, j], . . . , xk[1, j]) (2)
X[i, 1] = f(γ[i], γ[i − 1], X[j − 1, 1], x1[i, 1], . . . , xk[i, 1]) (3)
X[i, j] = f(X[i − 1, j],X[i − 1, j − 1],X[i, j − 1], x1[i, j], . . . , xk[i, j]) (4)

Here we allow k = 0, meaning only the input arrays γ and ρ as well as the scalar
δ are required. We use the values from γ, ρ and δ as if they were positioned
around the upper and left fringes of the original arrays x1 . . . xk, see also Fig. 6.
Equation (1) defines the first element of X at (i, j) = (1, 1), on which all other
values of X depend. Since no values precede it, we must refer to values from γ,
δ and ρ instead. Equation (2) defines the first row and hence refers to ρ; Eq. (3)
defines the first column and therefore refers to γ. Finally, Eq. (4) is the general
case for all remaining index pairs (i, j).

2.1 A Formal Spreadsheet Language

For presentation purposes, we use a simplified formal spreadsheet language, λ-
calc, as shown in Fig. 1. The e form includes lambda expressions of arbitrary
arity and with named parameters. All expressions must be closed. Users are
only allowed to enter expressions in u, which is a subset of e without anonymous
functions and variables. References r to cells and to cell ranges are shown in
the R1C1 format, but translated to the “usual” A1 format in examples. For
instance, the absolute reference R6C2 in R1C1 format would in A1 format be
$B$6, referring to column 2, row 6. Row-absolute column-relative reference R6C[2]
in R1C1 format would in A1 format be G$6 if the reference appeared anywhere
in column E — that being column 5 and so the reference would be to column
5 + 2 = 7, which is column G. See also function lookup[[ ]] in Sect. 3.1.

Function φ ∈ r → e maps a cell address r to the formula e = φ(r) in that
cell. When r1 : r2 is a cell array of copy equivalent formulas, we write φ(r1 : r2)
for the common formula (see Sect. 3.1).

2.2 Example: DNA Sequence Alignment

We illustrate the rewriting of cell arrays with the spreadsheet shown in Fig. 2. It
computes the optimal local alignment of two DNA sequences using the standard



Rewriting High-Level Spreadsheet Structures 23

n ::= Number
t ::= String
i ::= Integer
f ::= λ(x, . . .).e Anonymous function.

| F Built-in function.

v ::= n | t
| err(t) Error value.
| [[v; . . .] . . .] Row-major 2D-array.

r ::= R[i]C[i] Relative cell address.
| R[i]C i Row-relative.
| R i C[i] Column-relative.
| R i C i Absolute.

e ::= v | r | f
| x Variable name.
| r :r Cell range.
| IF(e, e, e) Conditional.
| f(e, . . .) Function application.
| e ⊕ e Short-hand for ⊕ (e, e).

u ::= v | r | r :r | IF(u, u, u) | F (u, . . .) | u ⊕ u

Fig. 1. The λ-calc syntax with variables and lambda expressions. Form u is a subset
of e and contains “user expressions”, i.e. expressions that a user is allowed to write.

A B C D E F

1 A G C T A

2 T = IF($A2 = B$1, 3, −3) . . . . . . . . . = IF($A2 = F$1, 3, −3)

3 G . . . . . . . . . . . . . . .

4 T . . . . . . . . . . . . . . .

5 T . . . . . . . . . . . . . . .

6 T = IF($A6 = B$1, 3, −3) . . . . . . . . . = IF($A6 = F$1, 3, −3)

7 0 0 0 0 0 0

8 0 = MAX(A7+ B2, A8 − 2, B7 − 2, 0) . . . . . . . . . = MAX(E7+ F2, E8 − 2, F7 − 2, 0)

9 0 . . . . . . . . . . . . . . .

10 0 . . . . . . . . . . . . . . .

11 0 . . . . . . . . . . . . . . .

12 0 = MAX(A12+ B6, A11 − 2, B11 − 2, 0) . . . . . . . . . = MAX(E12+ F6, E11 − 2, F11 − 2, 0)

Fig. 2. A spreadsheet to compute a best local DNA sequence alignment. One DNA
sequence is in cells B1:F1, the other in cells A2:A6. Cells B2:F6 defines a substitution
matrix. Cells B8:F12 compute the scoring matrix. Ellipses denote repeated formulas.
Cell areas with light gray background have the same formula.

algorithm, based on dynamic programming (Smith-Waterman [18]). A substi-
tution matrix s is defined in cell range B2:F6 (upper gray cell area), and the
scoring matrix H in cell range B8:F12 (lower gray cell area). The substitution
matrix assigns score +3 to identical nucleotides (DNA “letters”) and score −3
to distinct nucleotides.

The scoring matrix (B8:F12) computes the best score H(i, j) for any align-
ment between the i-length prefix of one sequence with the j-length prefix of the
other. This can be defined recursively as:

H(i, j) = max(H(i − 1, j − 1) + s(i, j),H(i − 1, j) − 2,H(i, j − 1) − 2, 0)
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By backtracking through the scoring matrix H from its maximal entry, one
obtains the optimal local alignment of the two sequences.

2.3 Intuitive Rewriting of Cell Arrays

First consider the range B2:F6, whose formulas are copy equivalent [15]: it could
be filled by copying the formula in B2 to B2:F6 with automatic adjustment of
relative row and column references. (The B8:F12 formulas are copy equivalent
also). In R1C1 reference format, the range B2:F6 (upper gray cell area) can be
written as:

φ(R2C2 :R6C6) := IF(R[0]C1 = R1C[0], 3, −3)

The row- and column-relative structure of the two references builds a cross-
product of the column and the row containing the input sequences. While it is
straightforward to build such an ad-hoc cell structure, this has two disadvan-
tages. First, this implementation does not generalize to sequences with more
than five elements. Second, and more important to us, the formula itself does
not capture the structure of the computation. This structure is implicit in the
cell references and only emerges from the context — the entire spreadsheet and
the formula’s location in it — in which it is computed.

Ideally, we would like to retain high-level information about the computation
that we want to perform inside the expression, and also find the most general
way to express it. Our intuition as functional programmers is to rewrite the
formulas as a 2D MAP over repeated row and column values:

φ(R2C2 :R6C6) := {MAP (λ(x, y).IF(x = y, 3, −3)),
HREP(COLS(R1C2 :R1C6), R2C1 :R6C1),
VREP(ROWS(R2C1 :R6C1), R1C2 :R1C6))}

The curly braces around the expression denote an array formula: a formula that
evaluates to an array and whose values are unpacked into the individual cells of
the cell array R2C2:R6C6 (B2:F6), as described in Sect. 1.

Now, this expression may look convoluted at first sight, especially to someone
without a functional programming background. But indeed, it does exactly what
the entire cell array B2:F6 did by replicating the formula:

– HREP(n, x) creates a new two-dimensional array of size n×COLS(x) by repeat-
ing x exactly n times.

– VREP(m,x) creates a new two-dimensional array of size ROWS(x)×m; it works
exactly like HREP but in the vertical direction.

– MAP(f, x1, x2) combines x1 and x2 pointwise by applying f .

Concretely, the new expression extends the one-dimensional ranges B1:F1 and
A2:A6 into two matrices of size 5 × 5 and combines them pointwise using the
function originally written in each cell.
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What have we gained from this transformation? First, we have found a gener-
alized expression of the algorithm that was originally distributed over a number
of cells, and we can use it to write a more general version of the algorithm.

Second, and more importantly, we now have an expression which describes
the structure of the computation independently from its context. This is use-
ful, as we have recovered some high-level information that we can exploit to
improve performance: there is no dependency between the individual points in
this combination of two matrices, or two-dimensional arrays. Hence, it is now
straightforward to parallelize the computation of the result matrix.

2.4 Different Kinds of Cell Arrays

Now consider the cell array B8:F12 (lower gray cell area), which contains the
following formula in R1C1 format:

φ(R8C2 :R12C6) := MAX(R[−1]C[−1] + R[1]C[−6], R[0]C[−1] − 2, R[−1]C[0] − 2, 0)

We cannot use MAP to rewrite this cell array. There is a sequential dependency
between the cells of the cell array because the cell E10 (R10C5) depends on E9
(R9C5), D10 (R10C4) and D9 (R9C4). These cells are inside the cell array itself.
We therefore call this kind of cell array transitive, as opposed to intransitive cell
arrays, which can be rewritten by using MAP, as in Sect. 2.3. Hence, we need to
target the second higher-order function on arrays, namely PREFIX:

φ(R8C2 :R12C6) := {PREFIX (λ(x, y, z, w).MAX(y + w, x − 2, z − 2, 0),
R8C1 :R12C1,
R7C1,
R8C1 :R8C6,
R2C2 :R6C6)}

Rewriting transitive cell arrays requires a bit more work: a transitive cell array
could be written in either orientation (e.g. starting at the bottom right instead
at the top left); and cell references in the expression might not occur in the same
order as required by the semantics of PREFIX for the argument function, as we
can see in our rewritten expression above. Hence, we must order the variable
names correctly.

In the remainder of this paper, we formally define these properties of cell arrays
and show how to rewrite them using a straightforward rewriting semantics.

3 Rewriting Cell Arrays

The overall idea of rewriting cell arrays, is to (1) rewrite the cell array’s expres-
sion by systematically replacing non-absolute cell references with fresh variable
names, consistently using the same variable name for multiple occurrences of the
same cell reference; (2) use the fresh variable names as arguments to an anony-
mous function whose body is the rewritten expression; (3) infer an input range
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for each replaced cell reference by looking it up at the upper left and lower right
cell addresses of the array that we are rewriting; and (4) create a new expression
in which we pass the anonymous function as an argument to a higher-order array
function, together with the inferred input cell ranges.

For brevity, we gloss over rotated and mirrored cases of transitive cell refer-
ences. Hence, we assume that all transitive references are of the form R[−1]C[0],
R[−1]C[−1] or R[0]C[−1], referring to the previous row, same column; previous
row, previous column; or same row, previous column. It is straightforward to
implement rules for rotated and mirrored cases via array reversal in either dimen-
sion, or both.

3.1 Cell Arrays and Transitive and Intransitive Cell References

The formal definition of intransitive and transitive cell references extends set-
notation to operate on cells and cell ranges. To state that a cell reference r is
inside a cell array r1 :r2, we simply write r ∈ r1 :r2. A cell array is a cell range
r1 : r2 satisfying ∀ri, rj ∈ r1 : r2. φ(ri) = φ(rj), i.e. all cells of the cell range are
copy equivalent [15].

Relative cell references (first argument) are converted into absolute cell ref-
erences by adding the row- and column-offset to their own location in the sheet
(second argument), as defined by the function lookup:

lookup[[R[ir1]C[ic1], R ir2 C ic2 ]] = R (ir1 + ir2) C (ic1 + ic2)
lookup[[R ir1 C[ic1], R ir2 C ic2 ]] = R ir1 C (ic1 + ic2)
lookup[[R[ir1]C ic1 , R ir2 C ic2 ]] = R (ir1 + ir2) C ic1
lookup[[R ir1 C ic1 , ]] = R ir1 C ic1

A cell reference is intransitive if it never refers back into the cell array, no matter
the location of the containing cell. We formulate this as follows:

{lookup[[r, r0]] | r0 ∈ r1 :r2} ∩ r1 :r2 = ∅ ⇒ r is intransitive in r1 :r2.

Conversely, we can define transitive cell references by inverting the equation:

{lookup[[r, r0]] | r0 ∈ r1 :r2} ∩ r1 :r2 	= ∅ ⇒ r is transitive in r1 :r2.

Absolute references RiCi are neither transitive nor intransitive and we treat them
like constants during rewriting.

3.2 Rewriting Semantics

We use reducible expressions and a reduction relation to formalize the rewriting
process. The � relation in Fig. 4 defines rewriting cell arrays from plain spread-
sheet formulas to higher-order functional programs in λ-calc. More precisely, the
relation � rewrites an expression u to an expression l without relative references;
see Fig. 3.
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Fig. 3. Rewriting context and transformation language for λ-calc. The form l is a
subset of e, with only absolute cell references.

The form Γ describes a rewriting in progress. It is either more with transitive
cell references and their substitutions, intransitive cell references and their sub-
stitutions, a cell range, and the expression that it contains; or it is done with a
cell range and its rewritten expression. We use (rT , xT ) to denote a substitution
pair of a transitive cell reference and (rI , xI) to denote a substitution pair of an
intransitive cell reference.

In plain English, the rules in Fig. 4 perform the following operations:

– Rule exist-i replaces a cell reference r with an already existing variable x
from the list of intransitive substitutions.

– Rule exist-t replaces a cell reference r with an already existing variable x
from the list of transitive substitutions.

– Rule subst-i replaces an intransitive cell reference r with a fresh variable x
and stores the substitution (r, x) in the list of intransitive substitutions.

– Rule subst-t replaces a transitive cell reference r with a fresh variable x and
stores the substitution (r, x) in the list of transitive substitutions.

– Rule synth-map takes a rewritten expression l and wraps it in a λ-expression
whose variables are the variable names from the intransitive substitutions. It
places the resulting function as first argument to a call to MAP; the remaining
arguments are the substituted cell references, converted to cell ranges by
performing a lookup from rul and rlr for each of them and extended to match
the cell array’s size. The result is an expression that can be plugged into an
array formula.

– Rule synth-pfx takes a rewritten expression l and wraps it in a λ-expression
whose first three parameters are the variable names from the list of “sorted”
transitive substitutions. The remaining parameters are taken from the intran-
sitive substitutions, as in rule synth-map. The rule constructs the initial row-
and column-array by combining the result of the lookup of the first and last
transitive reference on rul and the row, or column, of rlr. The transitive cell
references are converted as in rule synth-map. The result is an expression
that can be plugged into an array formula.

Both rule synth-map and synth-pfx make use of the meta-function extd, short
for “extend”. It returns an expression that, if necessary, replicates the intransitive
input arrays to match the cell array r1 :r2 being rewritten:
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extd [[rI1 :rI2 , r1 :r2]] = VREP(n, rI1 :rI2) where n = rows[[r1 :r2]],
rows[[rI1 :rI2 ]] = 1

extd [[rI1 :rI2 , r1 :r2]] = HREP(m, rI1 :rI2) where m = columns[[r1 :r2]],
columns[[rI1 :rI2 ]] = 1

extd [[rI1 :rI2 , r1 :r2]] = rI1 :rI2 otherwise.

Finally, rule synth-pfx uses the meta-functions fill and sort. We require
that there are three transitive substitutions in the order R[0]C[−1], R[−1]C[−1]
and R[−1]C[0]. Therefore, fill generates placeholder substitutions for each not

more([(rT , xT ) . . .]; [(rI1 , xI
1) . . . (r, x)(rI2 , xI

2) . . .];φ(rul :rlr) := L[r]) � [exist-i]
more([(rT , xT ) . . .]; [(rI1 , xI

1) . . . (r, x)(rI2 , xI
2) . . .];φ(rul :rlr) := L[x])

more([(rT1 , xT
1 ) . . . (r, x)(rT2 , xT

2 ) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[r]) � [exist-t]
more([(rT1 , xT

1 ) . . . (r, x)(rT2 , xT
2 ) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[x])

more([(rT , xT ) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[r]) � [subst-i]
more([(rT , xT ) . . .]; [(rI , xI) . . . (r, x)];φ(rul :rlr) := L[x])

where r is intransitive in rul :rlr
x fresh

more([(rT , xT ) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[r]) � [subst-t]
more([(rT , xT ) . . . (r, x)]; [(rI , xI) . . .];φ(rul :rlr) := L[x])

where r is transitive in rul :rlr
x fresh

more([ ]; [(rI , xI) . . .];φ(rul :rlr) := l) � [synth-map]

done(φ(rul :rlr) := {MAP(λ(xI , . . .).l, rI+ul :rI+lr , . . .)})
where [(rI , xI) . . .] is non-empty

rIul . . . = lookup[[rI , rul]] . . .
rIlr . . . = lookup[[rI , rrl]] . . .

rI+ul :rI+lr . . . = extd [[rIul :r
I
lr, rul :rlr]] . . .

more([(rT , xT ) . . .]; [(rI , xI) . . .];φ(rul :rlr) := l) � [synth-pfx]
done(φ(rul :rlr) := {PREFIX(λ(xT

1 , xT
2 , xT

3 , xI , . . .).l,

rc0 :rc1, rd, rr0 :rr1, rI+ul :rI+lr , . . .)})
where [(rT , xT ) . . .] is non-empty

rIul . . . = lookup[[rI , rul]] . . .
rIlr . . . = lookup[[rI , rrl]] . . .

rI+ul :rI+lr . . . = extd [[rIul :r
I
lr, rul :rlr]] . . .

(rT1 , xT
1 ), (r

T
2 , xT

2 ), (r
T
3 , xT

3 ) = sort [[fill [[[(rT , xT ) . . .]]]]]
rd = lookup[[rT2 , rul]]
rc0 = lookup[[rT1 , rul]]
rr0 = lookup[[rT3 , rul]]
rc1 = R(row [[rlr]])C(column[[rc0]])
rr1 = R(row [[rr0]])C(column[[rlr]])

Fig. 4. The � relation for rewriting cell array formulas into λ-calc. The rules are
explained in detail in Sect. 3.2.
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encountered transitive reference; sort sorts the three substitutions after their
respective references, as described above.

3.3 Preemptive Cycle Detection

Rewriting cell arrays to array formulas changes the dependency structure of the
spreadsheet: where before a cell of the cell array may only have depended on a
single cell the of input range, it now depends on the entire range. The rewritten
cell has become part of an unpacked array, whose formula explicitly references
the aforementioned range. It is easy to come up with an example that would
lead to the creation of cyclic dependencies if rewritten. We require two or more
cell arrays that refer to cells of each other. Rewriting the contrived spreadsheet
shown in Fig. 5 leads to the creation of cyclic dependencies.

A B

1 =B1 1

2 =B2 =A1+B1

3 =B3 =A2+B2

�

A B

1 ={MAP(λ(x).x,B1 :B3)} 1

2 ={MAP(λ(x).x,B1 :B3)} ={PREFIX(λ(x,y,z).x+y,A2 :A3,A1,B1 :B1)}
3 ={MAP(λ(x).x,B1 :B3)} ={PREFIX(λ(x,y,z).x+y,A2 :A3,A1,B1 :B1)}

Fig. 5. A spreadsheet (top) whose rewritten variant (bottom) contains cyclic depen-
dencies. The cell arrays A1 :A3 and B1 :B3 are not copy equivalent. Rewriting both
results in an explicit cyclic dependency between the array formulas: φ(A1 :A3) refers to
B1 :B3 and φ(B2 :B3) refers to A2 :A3.

To avoid this, we perform a preemptive detection of cyclic references. We
walk the reference graph from each intransitive cell reference and each cell from
the initial row and column, and check that we never arrive at a cell that is part
of the cell array. We use a depth-first search without repetition to detect possible
cyclic references. If we detect one, we do not rewrite the cell array.

3.4 Correctness

We do not currently have a formal proof of correctness for our rewriting seman-
tics. However, the slightly informal semantics in Sect. 2 for MAP and PREFIX are
carefully chosen to capture the semantics of the original cell array structure, so
we believe that our rewriting semantics are correct. The proof would require a
formal semantics for spreadsheet recalculation and functions on arrays, which is
beyond the scope of this paper.
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With a formal semantics, we believe that one can show that rewritten cell
arrays are observationally equivalent to the original formulas for cell arrays with
and without transitive cell references and hence prove that the rewriting seman-
tics is correct. More formally, if

more([]; []; φ(r1 :r2) := u) � done(φ(r1 :r2) := {e})

and φ(r1 : r2) := u evaluates to v, then we want to prove that φ(r1 : r2) := {e}
also evaluates to v.

4 Implementation

We have implemented the rewriting semantics from Sect. 3 in Funcalc [17], a
prototype spreadsheet engine with efficient sheet-defined functions. The formula
language in Funcalc is higher-order. We use a modified variant of Funcalc, where
bulk operations on arrays are executed in parallel.

Instead of writing our own detection of cell arrays, we piggyback on Funcalc’s
algorithm for rebuilding the support graph [17, Sect. 4.2.9], which runs in linear
time in the number of cells in the cell array.

4.1 Parallelization Strategies

Since Funcalc runs on the .Net platform, we use the parallelization mechanisms
from the Task Parallel Library [14]. We can parallelize MAP by iterating over
either rows or columns in a parallel for-loop. Parallelizing the PREFIX function
is slightly more complicated.

Recall from Sect. 2 that, in order to compute the value at X[i, j] we must
already have computed X[i, j − 1], X[i − 1, j] and X[i − 1, j − 1]. Hence, there
exists a sequential dependency between the computations.

Figure 6 illustrates the order in which PREFIX processes parts of the argu-
ment array. Even though both q2 and q3 depend on q1, there is no sequential
dependency between q2 and q3. We can therefore compute the prefix of q2 and
q3 in parallel. When both are computed, we can proceed to compute q4. We use
this parallelization scheme recursively on each sub-array and stop recursing as
soon as either a minimum size is reached or if we have spawned as many parallel
tasks as there are processors.

4.2 Handling Over-Generalization

We can describe relative references in terms of their stride:

stride[[R[i1]C[i2]]] = max(|i1|, |i2|)

In real-world spreadsheets, it may happen that a transitive reference has a stride
larger than one, but the PREFIX function and its variants do not generalize to
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q1

q2

q3

q4

· · · ρ · · ·
δ

...

γ

...

Fig. 6. Wave front scheme of the PREFIX function. We process from the top left to the
bottom right of the 2D array, as indicated by the red arrows. The quadrants q2 and q3
depend on q1, while q4 depends on all of these, as indicated by the blue arrows. Values
γ, δ and ρ are initial values at the fringes, as described in Sect. 2

such references. Hence, we cannot directly rewrite cell arrays with transitive cell
references of a stride larger than one.

Strides larger than one seem to be artifacts of the generality of the support
graph rebuilding algorithm (see Sect. 4). Our key observation here is that one
can turn transitive cell references into intransitive cell references by splitting
up the cell array into two sub-arrays. Consider the cell array R5C1:R15C5 whose
expression contains the transitive cell reference R[−5]C[0]. We can split it up into
the two sub-arrays R5C1:R10C5 and R11C1:R15C5, in both of which the reference
R[−5]C[0] is intransitive.

We call the rewriting algorithm recursively on each of the sub-arrays until
we either end up with a cell array that has transitive cell references with stride
at most one, or until there is only a single cell left, in which case we abort.

5 Performance Evaluation

To demonstrate the feasibility of our technique, we have conducted performance
benchmarks on synthetic and real-world spreadsheets. To avoid the overhead
of excess parallelism, we impose a minimum of 64 cells per cell array on the
rewriting algorithm, such that smaller cell arrays will not be rewritten. Times
for rewriting are not included in the measurements, since we consider this a
one-time operation. For comparison, we also benchmark performance for naively
launching a parallel task per cell.

Our benchmarks are the average of 100 full recalculations of the entire spread-
sheet. Full recalculation is easier to control during automatic benchmarks, but
does not reflect how rewriting cell arrays may affect the dependency structure
of spreadsheets negatively for efficient minimal recalculation.

Funcalc runs on the .Net platform. To trigger JIT compilation, we run three
warm-up iterations which we do not count prior to benchmarking. Our test
machines are an Intel i7-6500U with four cores at 2.5 GHz and 32 GB of RAM,
64 bit Windows 7 and .Net Framework 4.7, as well as an Intel Xeon E5-2680
v3 with 48 cores at 2.5 GHz and 32 GB of RAM, 64 bit Windows 10 and .Net
Framework 4.6.2. We only use 32 cores on the Xeon.
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5.1 Spreadsheet Selection

We use two contrived, idealized spreadsheets to measure the isolated effect of
rewriting transitive and intransitive cell arrays. Both contain one cell array of
size 100 × 100. The first one contains an intransitive cell array that applies the
sinus function on each input cell. The second one computes a cell array’s prefix
sum using transitive cell references and then calls the sinus function on the result
of each cell.

Furthermore, we have chosen three spreadsheets from Filby’s [7] book from
the EUSES corpus [8], as well as three Funcalc-related spreadsheets for synthetic
benchmarks. All of these sheets contain large cell arrays.

Finally, we use real-world spreadsheets from the EUSES spreadsheet
corpus [8]. We have selected twelve spreadsheets with relatively large and rel-
atively many cell arrays. Selection criteria were (1) applicability of our rewrit-
ing technique and (2) effort required to make the spreadsheets compatible with
Funcalc. Funcalc syntax differs from Excel in a number of ways, which requires
modifications to the sheets. Additionally, we have implemented some Excel and
VBA functions as sheet-defined functions1.

5.2 Results

Table 1 shows speedup after rewriting idealized spreadsheets with only intransi-
tive or only transitive cell references. On the i7, we achieve good parallel speedup
for intransitive cell arrays; on the Xeon, parallelism doesn’t scale. The very large
speedup for transitive cell arrays is likely due to (1) using a more specialized
machinery to refer to values in other cells; and (2) that Funcalc compiles the
functions we synthesize to byte-code, which alleviates the overhead of interpret-
ing the expression in each cell, as during Funcalc’s “standard” recalculation.

Table 1. Average speedup and standard deviation for 100 recalculations of idealized
spreadsheets that only consist of either an intransitive or transitive cell array of size
100 × 100. Speedup is relative to sequential recalculation on the same machine; higher
is better.

Intel i7 Intel Xeon

Intransitive 2.77 ± 0.317 3.14 ± 0.059

Transitive 11.26 ± 0.881 10.3 ± 0.655

Figure 7 shows the speedup after rewriting the more realistic spreadsheets. On
the i7, we achieve good speedups for synthetic spreadsheets. Running on the Xeon
with eight times as many cores does not improve performance. On both machines,

1 The Funcalc compatible spreadsheets from the EUSES corpus are available at
https://github.com/popular-parallel-programming/funcalc-euses/.

https://github.com/popular-parallel-programming/funcalc-euses/
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the average speedup for real-world spreadsheets is lower than we would expect,
given the numbers from Table 1. We have two explanations for this.

First, the achievable speedup is bound by Amdahl’s law [9, Sect. 1.5]. If a
spreadsheet contains 4500 cells with formulas and a single intransitive cell array
of size 500, then the maximum speedup factor we can expect to see on 32 cores is
roughly 1.26. This holds for both synthetic and real-world spreadsheets. Unless
rewriteable cell arrays either dominate the spreadsheet, as in financial.xml
and PLANCK.xml, or contain very costly computations, as in testsdf.xml, the
overall performance will still be determined by the sequential computations.

Secondly, real-world spreadsheets have undergone continuous development
and are often cluttered with small experiments. Their design is often less stream-
lined towards a single large computation than that of synthetic spreadsheets.
Even if there are lots of disjoint computations, our technique is unable to exploit
these unless they are structured in an array-like fashion.
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Fig. 7. Average benchmark results over 100 runs for synthetic (left part) and real-
world (right part on gray background) spreadsheets. Values are speedup factors over
sequential performance on the same machine; higher is better. Error bars indicate the
standard deviation.

6 Alternative Usages and Related Work

Neither parallel recalculation of spreadsheets nor high-level structure analysis
are new ideas. To our knowledge, however, no prior work has combined both in
a practical application of functional programming.

Wack [19] focused on a dataflow approach to whole-spreadsheet paralleliza-
tion, in contrast to our idea that harnesses local array parallelism. Yoder and
Cohn [20,21] investigate spreadsheets from a theoretical point of view, also with
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data flow parallelism in mind. They observe that high-level array programming
intuitively maps to spreadsheets [21]; this is the core of our technique.

Much research on high-level spreadsheet structures focuses on user under-
standing; either by highlighting areas with equal or similar formulas [15], whose
definition is highly related to cell arrays, or by drawing dataflow diagrams [11] to
illustrate relations between sheets and cell arrays. Our rewriting technique could
be adapted to give such a high-level overview over operations on cell arrays by
displaying the synthesized function.

Rewriting of cell arrays is related to template synthesis from spreadsheets.
Isakowitz et al. [13] describe a method to synthesize either a model from a
spreadsheet or instantiate a spreadsheet from a model. The notable difference to
our work is that they generate a whole-sheet model. Furthermore, they use an
external language to describe the model, whereas we perform source-to-source
rewriting. Generating local high-level abstractions, as opposed to whole-sheet
models, could be useful for expert spreadsheet developers when devising algo-
rithms, similar to spreadsheet generation.

Abraham and Erwig [1] infer templates by analyzing references across cell
arrays to prevent errors during modification, also using copy equivalence. Our
technique is only concerned with single cell arrays.

Others [3,5,12] focus on detecting clones of cell arrays or tables on the same
spreadsheet, which is again a whole-sheet analysis.

7 Conclusion

In this paper, we presented a rewriting semantics to rewrite cell arrays that
consist of copy equivalent cells to higher-order functional expressions on arrays.
We can easily exploit the implicit parallelism of these rewritten cell arrays and
therefore improve recalculation speed of spreadsheets where cell arrays dominate
on typical consumer hardware.

There are limitations to our approach. Our rewriting semantics currently
does not support cell arrays that reference cell ranges. We believe that this will
be easy to add. We have furthermore not yet presented a formal proof that our
rewriting semantics preserves the semantics of the cell array’s expression.

Naively rewriting all detectable cell arrays can introduce cyclic references and
hence change the semantics of the original spreadsheet. Detecting these before
rewriting comes at the cost of an additional walk of the dependency graph. More-
over, the parallel speedup we can achieve is limited by the ratio of parallelizable
cell arrays to inherently sequential dependencies in the spreadsheet.

Our experimental results show that only spreadsheets consisting of large
cell arrays achieve good speedups on consumer hardware. This suggests that
our rewriting approach should not be automatic but instead a manual tool for
expert spreadsheet developers, and also that it makes sense to investigate how
our technique can be combined with other parallelization techniques, for instance
data flow parallelism.
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Abstract. Verifiable computing (VC) uses cryptography to delegate
computation to untrusted workers. But in most VC schemes, the del-
egated program must first be arithmetized – expressed as a circuit
with multiplication and addition over a finite field. Previous work
has compiled subsets of languages like C, LLVM, and bespoke assem-
bly to arithmetic circuits. In this paper, we report on a new DSL
for VC, called Sn̊arkl (“Snorkel”), that supports encodings of lan-
guage features familiar from functional programming such as products,
case analysis, and inductive datatypes. We demonstrate that simple
constraint-minimization techniques are an effective means of optimizing
the resulting encodings, and therefore of generating small circuits.

1 Introduction

It is now possible, using today’s cryptographic techniques and systems, to exe-
cute a computation remotely – on an untrusted computer such as an AWS virtual
machine – while verifying locally without re-execution that the computation was
done correctly. Due to recent advances in the systems and theory behind this
kind of verifiable computing (VC), it is occasionally even practical to delegate a
computation in this way: depending on the system and computation, the total
latency to arithmetize a program (as an arithmetic circuit or set of arithmetic
constraints), set up shared parameters like cryptographic keys, remotely execute
the computation, and locally verify the result is now just a few orders of mag-
nitude higher than the time it would have taken to execute the computation
locally (cf. [16, Sect. 5]).

These performance results have not been easily won, however. Since about
2007,1 cryptographers have worked to refine the underlying cryptographic and
complexity-theoretic techniques – probabilistically checkable proofs [1,2], inter-
active proofs [13], efficient arguments systems [6]. Most systems now use variants
of the protocol and representation published by Gennaro, Gentry, Parno, and
Raykova (GGPR) in 2013 [11]. At the same time, researchers in practical cryp-
tography have applied tools from the systems and compilers literatures to build
verifiable computing platforms that are approaching practicality [4,8,21].

1 See Walfish and Blumberg ACM survey [22] for a summary of the recent history.
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programs P (in C [16,21], LLVM [8])

arithmetic circuits A(P )

(pk, vk) ← K(λ) //key setup (trusted third party)
π ← P(A(P ), pk, input, witness) //prover

{0, 1} ← V(A(P ), vk, input, π) //verifier

front-end arithmetization

cryptographic back-end

Fig. 1. Architecture of verifiable computing (VC) systems

b

×

x (1−b)

×

y

+

out

x1 x2

1

−

b

(1− b)

Fig. 2. An arithmetic circuit implementing
(out = if b then x else y). The variable b
ranges over {0, 1}, a constraint that must
be encoded separately.

The architectures of the most
recent systems follow a common pat-
tern (Fig. 1). At the top of the VC
pipeline, a compiler translates the
high-level representation of a pro-
gram – in a language like C or
LLVM – to an equivalent representa-
tion either as an arithmetic circuit or
as a set of constraints that encodes
the behavior of an arithmetic circuit.
Only terminating programs can be
arithmetized in this way.2 For exam-
ple, Fig. 2 gives an arithmetic cir-
cuit respresentation of the expression
out = if b then x else y. The variables
b, x, and y are input “wires” to the circuit. The italicized variables x1 and x2 are
internal wires that must be instantiated by the proving party. The gates perform
field operations such as multiplication and addition.

In the second phase, a cryptographic backend computes from the circuit
representation three subroutines:

– a key generator K which establishes proving and verification keys to be used
by the prover (remote) and verifier (local);

– a prover P which solves for witness values and constructs a succinct crypto-
graphic proof π that the computation was executed correctly; and

– a verifier V which checks that the proof is valid.

The system is complete when V never rejects proofs generated by P. The system
is secure when, for adversarial but computationally bounded provers P′, the
2 BCGTV [3] approximates potentially nonterminating programs by first translating

to assembly (for the bespoke TinyRAM architecture), then “executing” a bounded
number of steps of the program by arithmetizing the transition relation of the under-
lying instruction set architecture (ISA).
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probability that P′ convinces V to accept a false proof π′ is bounded by negl(λ),
for some negligible function negl and security parameter λ.

In Fig. 1, the input to P and V is the assignment of values to the computation’s
input variables provided by the verifying party. The witness is generated by the
prover, and can be understood as a satisfying assignment – given the inputs – of
the internal wires (e.g., x1, x2) of the circuit that results from arithmetizing P .
Some VC systems, such as libsnark [5], support zero-knowledge computation
in the sense that the verifier learns nothing about witness when verifying π.
Verification time after the initial setup phase is usually small – on the order
of milliseconds to seconds, depending on the size of the program input. Key-
generation and proving can be more expensive, depending on the number of
circuit variables and constraints; libsnark reports times in the tens of minutes
for large circuits.

Contributions. Existing VC systems support imperative source languages like
C [16,21] and LLVM IR [8] but not features found in functional languages like
sums, products, user-defined inductive datatypes and case analysis. This paper
reports on the first DSL supporting such features that compiles to a verifiable
computing back-end, libsnark, using tools that apply systematic and general
constraint-minimization techniques to the arithmetic encodings of such programs
in order to generate small circuits. Our primary contributions are threefold:

– We show encodings into arithmetic constraints of language features familiar
from type theory and functional programming: sums and products, inductive
datatypes, and case-analysis (Sect. 3). As far as the authors are aware, no
other VC tool has direct encodings for these features.

– We demonstrate that straightforward constraint minimization, when applied
systematically to the arithmetic encodings of such programs, is a viable
method of generating and of solving small circuits. Small circuits lead to
concomitant low key-generation and proving times (Sect. 5).

– We implement everything described in the paper as a prototype Haskell DSL,
called Sn̊arkl (“Snorkel”), that is open source and freely available.3

Organization. In Sect. 2 we introduce the fundamentals of Sn̊arkl by exam-
ple. Section 3 presents the compilation toolchain, and gives arithmetic encod-
ings of language features like sums, products, inductive datatypes, and case-
analysis. Section 4 is devoted to Sn̊arkl’s constraint-minimization algorithm.
We report in Sect. 5 on preliminary measurements of SHA3 Keccak-f and other
microbenchmarks and, in Sect. 6, put Sn̊arkl in its broader research context.

Zero-Knowledge Proof. Sn̊arkl’s verifiable computing backend, libsnark, sup-
ports the construction of zero-knowledge proofs (the π’s of Fig. 1), in which the
verifier V learns only the validity of the witness, not the witness itself. While we
do not stress zero-knowledge proof in the remainder of the paper, we point out
here that Sn̊arkl is entirely compatible with zero knowledge as implemented in

3 https://github.com/gstew5/snarkl.

https://github.com/gstew5/snarkl
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Listing 2.1. Syntax of Sn̊arkl’s typed expression language TExp

1 data TExp :: Ty → ∗ → ∗ where
2 TEVar :: TVar ty → TExp ty a
3 TEVal :: Val ty a → TExp ty a
4 TEUnop :: Typeable ty1 ⇒ TUnop ty1 ty → TExp ty1 a → TExp ty a
5 TEBinop :: (Typeable ty1, Typeable ty2) ⇒
6 TOp ty1 ty2 ty → TExp ty1 a → TExp ty2 a → TExp ty a
7 TEIf :: TExp ’TBool a → TExp ty a → TExp ty a → TExp ty a
8 TEAssert :: Typeable ty ⇒ TExp ty a → TExp ty a → TExp ’TUnit a
9 TESeq :: TExp ’TUnit a → TExp ty2 a → TExp ty2 a

10 TEBot :: Typeable ty ⇒ TExp ty a
11 data Ty where
12 TField :: Ty
13 TBool :: Ty
14 TArr :: Ty → Ty
15 TProd :: Ty → Ty → Ty
16 TSum :: Ty → Ty → Ty
17 TMu :: TFunct → Ty
18 TUnit :: Ty deriving Typeable
19 data TFunct where
20 TFConst :: Ty → TFunct
21 TFId :: TFunct
22 TFProd :: TFunct → TFunct → TFunct
23 TFSum :: TFunct → TFunct → TFunct
24 TFComp :: TFunct → TFunct → TFunct deriving Typeable

libsnark: whether π can be made zero knowledge depends on the cryptographic
backend (libsnark), not the compiler that arithmetizes programs (Sn̊arkl).

2 SNÅRKL by Example

Sn̊arkl programs are embedded in Haskell through the use of GHC’s [12]
RebindableSyntax and DataKinds language extensions. RebindableSyntax co-
opts Haskell’s do-notation for sequencing Sn̊arkl commands. DataKinds is used
to embed Sn̊arkl’s type system into Haskell. As an example, consider the fol-
lowing snippet of Sn̊arkl code.

1 arr ex :: TExp ’TField Rational → Comp ’TField
2 arr ex x = do
3 a ← arr 2
4 forall [0..1] (λ i → set (a,i) x)
5 y ← get (a,0)
6 z ← get (a,1)
7 return $ y + z
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Line 3 uses the arr keyword to allocate an array of size 2, bound in the remain-
der of the function body to variable a. In line 4, Sn̊arkl’s forall combinator, of
type

[b] → (b → Comp ’TUnit) → Comp ’TUnit

initializes a. The function set in the body of the lambda is the standard array
update, with complement get satisfying the usual McCarthy laws. Lines 5 and 6
read twice from a, at indices 0 and 1.

In the type of arr ex, TExp t r is the type of expressions in Sn̊arkl’s typed
intermediate language, with t ranging over Sn̊arkl types and the metavariable
r a Haskell type. Comp is Sn̊arkl’s compilation monad (about which we say
more in Sect. 3). Higher-level Sn̊arkl code is built using combinators that oper-
ate over and return TExps, in the style of an embedded DSL. The full syntax of
the TExp expression language is given in Listing 2.1. In what follows, we discuss
the relevant points.

Sn̊arkl’s type system is embedded into Haskell using the GADT [23] TExp.
TExp is parameterized by a Sn̊arkl type t, of (data-)kind Ty, and a Haskell
type r (of kind ∗). The type system is mostly standard. TField is the type of
field elements in the underlying field, typically Rational. In expression types
TExp t r, we often omit the r to save space in listings. In each such case, r is
specialized to Rational. The constructor TEBot provides an escape hatch (used
to compile sums and bounded recursion, Sect. 3). There are no constructors for
the complex types in Ty (TProd, TSum, etc.). Values of these types are built
using higher-level Haskell combinators.

To support user-defined inductive types, the recursive-type constructor TMu
quantifies over a user-defined type functor TFunct. In the signatures of Sn̊arkl’s
(iso-recursive) roll and unroll combinators, we use a Haskell type family Rep

type family Rep (f :: TFunct) (x :: Ty) :: Ty
type instance Rep (’TFConst ty) x = ty
type instance Rep ’TFId x = x
type instance Rep (’TFProd f g) x = ’TProd (Rep f x) (Rep g x) ...

to encode the semantics of these functors. The signatures of roll and unroll are:

unroll :: ... ⇒ TExp (’TMu f) → Comp (Rep f (’TMu f))
roll :: ... ⇒ TExp (Rep f (’TMu f)) → Comp (’TMu f)

Elided in ... are Typeable-instance constraints for type Rep f (’TMu f) and the
promoted4 type f. These constraints, which appear elsewhere in Listing 2.1,

4 The effect of GHC’s DataKinds extension is to implicitly promote datatypes like
TFunct to kinds, and constructors of user-defined datatypes (TFConst, TFId, etc.)
to type constructors. Type constructors that have been promoted in this way are
marked by an initial apostrophe, as in ’TFId.
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facilitate reflective programming on TExps. For example, it is possible to write
a function var is bool with type Typeable ty ⇒ TVar ty → Bool that determines
statically whether a given program variable x is boolean.

More interesting programs are also encodable. Consider the following code,
which implements the type of untyped lambda-calculus terms.

type TTerm = ’TMu TF
type TF = ’TFSum (’TFConst ’TField) (’TFSum ’TFId (’TFProd ’TFId ’TFId))

In math, the functor TF is F (τ) = TField + τ + τ ×τ . A lambda term (in
DeBruijn-style) is either a field element (type TField) encoding a DeBruijn index,
an abstraction with body of type μF , or an application (a pair of lambda terms
μF ×μF ). The constructor for application is:

1 app :: TExp TTerm → TExp TTerm → Comp TTerm
2 app t1 t2 = do
3 t ← pair t1 t2
4 t’ ← inr t
5 v ← inr t’
6 roll v

Assuming t1 and t2 are lambda terms (Sn̊arkl expressions of type TTerm),
pair t1 t2 constructs an expression t of type ’TProd TTerm TTerm (line 3).
Lines 4 and 5 inject t to an expression v of type ’TField + (TTerm + (TTerm ×
TTerm)). In line 6, we roll v as an expression of type ’TMuTF = TTerm.

3 Compiling to R1CS

Encoding a small functional language into Haskell is all well and good. But how
do we go about compiling to arithmetic circuits? Fig. 3 provides an overview of
the general strategy. The target language, Rank-1 Constraint Systems (R1CS),

source Sn̊arkl
programs P
(embedded
in Haskell)

deeply em-
bedded TExps

type-erased Exps

Constraints

Rank-1 Constraint
Systems (R1CS)

elaboration

type erasure

constraint solving (
constraint minimization (

dataflow analysis
variable renumbering

Sect.4)
Sect.4)

Fig. 3. The Sn̊arkl compiler



42 G. Stewart et al.

Sn̊arkl Code (from

1 arr ex2 :: Comp ’TField
2 arr ex2 = do
3 x ← fresh input
4 a ← arr 2
5

6 set (a,0) x
7 set (a,1) x
8 y ← get (a,0)
9 z ← get (a,1)

10 return $ y + z

Step-by-Step Elaboration to TExp

// let elaboration environment ρ0 = ∅ in

// freshvar x0; mark x0 as input; let x = TEVar x0 in
// freshloc l0; freshvars a0, a1; let a = l0 in
// let ρ1 = ρ0[(a, 0) �→ a0][(a, 1) �→ a1] in
// let ρ2 = ρ1[(a, 0) �→ x] in
// let ρ3 = ρ2[(a, 1) �→ x] in
// let y = ρ3[(a, 0)] in
// let z = ρ3[(a, 1)] in
// TEBinop (TOp Add) y z

Sect.2)

Fig. 4. Sn̊arkl to TExp

is libsnark’s input specification. At the top of the compiler stack, we elaborate
Sn̊arkl programs P to the deeply embedded TExp language of Sect. 2. Then
we erase types, which facilitates later phases, by compiling TExps to a similar
but untyped language Exp. Exps are compiled to a language of Constraints
designed for easy optimization. It is at this Constraints level that we run
most optimizations, including constraint minimization (Sect. 4) and dataflow
analysis. The minimizer doubles as a constraint solver for generating witness
values (given inputs) to assign to the internal “wires” in the circuit representation
of a computation (the witness of Fig. 1).

3.1 Elaboration

Elaboration uses a code-generation state monad Comp that incorporates gensym
for fresh names and a compile-time symbol table that maps “objects” in the
source language (values of nonscalar types such as arrays, products, sums) to
associated constraint variables. As an example, consider the array code we pre-
sented in Sect. 2, re-listed and slightly modified in the first column of Fig. 4.

The main difference is at line 3 where the variable x is now a program input
(an “input wire” in the resulting arithmetic circuit) as opposed to a parameter
of the Haskell function arr ex. Also, the forall that was previously at line 4 has
been unrolled. This function arr ex2 is elaborated by Sn̊arkl to a TExp pack-
age (TExpPkg), which records the total number of variables allocated during
elaboration, the input variables, and the TExp itself:

TExpPkg { allocated vars = 3, input vars = {x0},
texp = TEBinop (TOp Add) (TEVar x0) (TEVar x0) }

The resulting TExp ranges over the single input variable x0 (the two other vari-
ables allocated during elaboration do not appear). The expression returns the
result of doubling the input variable x0, the same behavior as arr ex2.

The elaboration process is explained in Fig. 4. The environment ρ : loc ×
int → var + loc maps symbolic locations (introduced during elaboration) and
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integer offsets to Sn̊arkl program variables and other symbolic locations. The
declaration x ← fresh input on line 3 allocates a new variable TEVar x0 bound
to x in the remainder of the function. In line 4, we “allocate” an array (of field
elements) of size 2. At elaboration, the effect of this command is to:

– generate a fresh symbolic location l0, the base of the array a;
– generate two fresh variables a0 and a1, the array’s initial contents;
– update the elaboration environment ρ to map (a, 0) to a0 and (a, 1) to a1.

The array updates of lines 6 and 7 overwrite ρ to map both (a, 0) and (a, 1) to the
input variable x. The array gets of lines 8 and 9 look up the bindings associated
with a at offsets 0 and 1. The Haskell metavariables a, x, y, and z are used only
during elaboration, and are distinct from the object-language variables x0, a0,
and a1, which may appear in the generated TExp. The location l0 is drawn from
a distinct namespace and does not appear in the elaborated expression.

3.2 Products, Sums, Recursion

Products can be elaborated as if they were heterogeneous two-dimensional
arrays. For example, the code fragment do { p ← pair 1.0 2.0; fst pair p } that
builds a pair and projects its first element elaborates to

TESeq (TEAssert (TEVar p0) (TEVal 1.0))
(TESeq (TEAssert (TEVar p1 (TEVal 2.0))) (TEVar p0)).

Here p0 and p1 are variables that stand for the first and second projections of the
pair. Behind the scenes, a location p = l0 was allocated such that ρ[(p, 0)] maps
to p0 and ρ[(p, 1)] maps to p1. TEAssert (TEVarp0) (TEVal 1.0) – asserting that
the variable p0 equals 1.0 – ensures that p0 is resolved, in the eventual rank-1
constraint system, to the value 1.0.

Compiling sums is trickier. Since the target execution model is arithmetic
circuits (specifically, their generalization as the arithmetic constraint language
R1CS), we cannot – when implementing case-analysis – just “jump” to the code
for the left or right of a match on an expression like

e : TExp (’TSum ’TBool TField) Rational.

Whether e was built with inl or inr may depend on an input variable of the
compiled circuit, as in:

do { b ← fresh input; x ← inl false; y ← inr 0.0; z ← if b then x else y;
case sum z (λ b0 → ...) (λ n0 → ...) }

Sn̊arkl’s solution is to elaborate both branches of the case sum and combine
the results, dependent on the value of the input b (not known at compile-time).
To avoid large blowups in the size of the generated code, the compiler performs
constant propagation to eliminate spurious branches whenever possible. When
a conditional cannot be determined statically, the compiler zips (Fig. 5) the
branches to the leaves of the syntax tree to ensure that expressions of compound
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type (TSum, TProd, etc.) are represented by location expressions at elaboration
time – an invariant that facilitates the compilation of eliminators such as fst pair.

Internally, sums are represented as pairs (b, (e1, e2)) where b is a boolean
expression indicating left or right, e1 is the left-hand expression of the sum (if one
exists) and e2 the right-hand (if one exists). In the constructors inl and inr, the
uninstantiated branch (right for inl, left for inr) is populated by the expression
TEBot, which may assume any type. The elaborator implements a simple static
analysis to track both TEBots and boolean expressions with known values.

Modulo such optimizations, case sum is implemented:

�b
τ e1 �� e2 = e12

�b
TUnit e1 �� e2 = TEVal VUnit

zipUnit
τ ∈ {TField,TBool}

�b
τ e1 �� e2 = TEIf b e1 e2

zipBase

�b
τ1 (fst pair e1) �� (fst pair e2) = p1 �b

τ2 (snd pair e1) �� (snd pair e2) = p2

�b
TProd τ1 τ2 e1 �� e2 = pair p1 p2

zipProd

�b
TProd TBool (TProd τ1 τ2)

(rep sum e1) �� (rep sum e2) = p

�b
TSum τ1 τ2 e1 �� e2 = unrep sum p

zipSum

�b
Rep f (TMu f) (unroll e1) �� (unroll e2) = r

�b
TMu f e1 �� e2 = roll r

zipRec

Fig. 5. Type-directed zipping

case sum :: forall τ1 τ2 τ . ... ⇒
(TExp τ1→ Comp τ)→ (TExp τ2→ Comp τ)→ TExp (’TSum τ1 τ2)→ Comp τ

case sum f1 f2 e =
do { let p = rep sum e;

b ← fst pair p; p rest ← snd pair p;
e1 ← fst pair p rest; e2 ← snd pair p rest;
le ← f1 e1; re ← f2 e2;
zip vals τ (not b) le re }

When e = (b, (e1, e2)), neither e1 nor e2 is known to evaluate to TEBot, and the
value of b is not known statically, case sum generates code for the left branch
(f1 e1) and the right branch (f2 e2) and applies the transformation zip vals –
the �� relation of Fig. 5 – to the resulting expressions. Indexing the relation
are the type τ of e1 and e2 and the boolean conditional not b (inl is defined
to let b = false, hence the negation). The �� relation maps two TExps e1 and
e2 to a result e12 in which the b branch – deciding between e1 and e2 – has
been pushed to the leaves of the syntax tree, enforcing the invariant that TExps
of nonbase-type such as TSum or TProd are represented as symbolic locations
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during elaboration. The relation itself is defined by case analysis on the structure
of τ . In the definitions of case sum and ��, the coercions

rep sum :: TExp (’TSum τ1 τ2) → TExp (’TProd ’TBool (’TProd τ1 τ2))
unrep sum :: TExp (’TProd ’TBool (’TProd τ1 τ2)) → TExp (’TSum τ1 τ2)

cast between sums as products (rep sum), and back again (unrep sum).
Sn̊arkl supports recursive functions through the use of a (bounded) fixpoint

combinator fix whose type is:

fix :: ((TExp τ1 → Comp τ2) → (TExp τ1 → Comp τ2)) → TExp τ1 → Comp τ2

At a user-configurable depth5 d the expression fix f e returns TEBot, indicating
delayed error; if the output of the resulting circuit, given user inputs, depends on
the TEBot expression (it exceeds the recursion bound – perhaps the user input
is the serialization of a list of size d + 1), the circuit evaluation will go wrong.

3.3 From TExps to R1CS

Compiling TExps to Rank-1 Constraint Systems is more straightforward, and in
general follows previous work on arithmetizing general-purpose programs. The
main difference is that between TExp and R1CS we employ an intermediate
constraint representation Constraints that is more suitable than R1CS for
optimization. We present R1CS first, then Constraints and the encoding of
select TExps into Constraints. Section 4 shows how to optimize Constraints.

The input specification language of libsnark, Rank-1 Constraint Systems
(R1CS), builds on the QAP arithmetic constraint representation of GGPR [11].
A rank-1 constraint system is a system of constraints on degree-1 polynomials
over a finite field, e.g.:

A ∗ B = C
(2x0 + 3x1) ∗ (−3x1) = 2x0 + 4x1

The variables x0, x1 range over a finite field Fp of prime characteristic p.
A system of such constraints encodes the behavior of an arithmetic circuit
(cf. GGPR [11] for additional details).

Listing 3.1. Sn̊arkl’s representation of Rank-1 Constraint Systems (R1CS)

1 type Assgn a = Map.IntMap a
2 data Poly a where Poly :: Field a ⇒ Assgn a → Poly a
3 data R1C a where R1C :: Field a ⇒ (Poly a, Poly a, Poly a) → R1C a
4 data R1CS a = R1CS {
5 r1cs clauses :: [R1C a], r1cs num vars :: Int,
6 r1cs in vars :: [Var], r1cs out vars :: [Var],
7 r1cs gen witness :: Assgn a → Assgn a }

5 The recursion bound is necessary to ensure that elaboration terminates.
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Sn̊arkl’s representation of R1CS is given in Listing 3.1. An assignment
(line 1, Assgn a) maps variables (type Var = Int) to values of type a. A rank-1
polynomial (line 2) is just an assignment in which a has the operators of a field
and variable −1 is by convention the constant term. A rank-1 constraint (line 3)
is a polynomial constraint A ∗ B = C in which A, B, and C are all polynomials.
The R1CS type collects a list of rank-1 constraints, the number of variables
appearing in the constraints, which variables are inputs and outputs, and a
function, r1cs gen witness, that maps input assignments to satisfying witnesses.

Sn̊arkl’s constraint language presents an abstraction layer on top of R1CS,
making it easier to optimize R1CS-style encodings. The main datatype is:

data Constraint a =
CAdd a [(Var,a)]

| CMult (a,Var) (a,Var) (a,Maybe Var)
| CMagic Var [Var] ([Var] → State (SEnv a) Bool).

Fig. 6. TExps to Constraints (excerpts)

The type a is usually specialized to field elements. The additive constraint
CAdd a [(Var, a)] asserts that the linear combination of a constant (of type a)
with the variable–coefficient terms ([(Var, a)]) equals 0. For example, the con-
straint CAdd 2 [(x,1), (y,−3)] is 2 + 1x − 3y = 0. Multiplicative constraints
CMult ... encode facts like 2x∗3y = −7z. In general, CMult (c,x) (d,y) (e,Just z)
means cx ∗ dy = ez. When the second element of the third pair is Nothing, the
interpretation is cx ∗ dy = e.

Compiling both additive and multiplicative constraints to R1CS is straight-
forward. For example, the additive constraint CAdd 3 [(y,−5), (z,23)] yields:

R1C (const poly one) (Poly (fromList [(xc,3), (y,−5), (z,23)])) (const poly zero).

The variable xc = −1 is reserved for the polynomial’s constant term. The func-
tion const poly c constructs the constant polynomial equal c. Multiplicative con-
straints are equally straightforward. For example, CMult (3,x) (4,y) (5,Just z)
results in the rank-1 constraint 3x ∗ 4y = 5z.

So-called CMagic constraints are hints to Sn̊arkl’s constraint solver that
encode nondeterministic “advice” – used to resolve the values of variables intro-
duced by the nondeterministic encodings of expressions such as disequality tests
(about which we say more below).
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Listing 4.1. Constraint minimization

1 simplify rec :: Field a ⇒ ConstraintSet a → State (SEnv a) (ConstraintSet a)
2 simplify rec S = do
3 S′ ← simplify once S
4 if size S′ < size S then simplify rec S′

5 else if S − S′ ⊆ ∅ then return S′ else simplify rec S′

6 where simplify once S =
7 do {S′ ← go ∅ S; remove tauts S′}
8 go W U | size U == 0 = return W
9 go W U | otherwise =

10 let (given, U ′) = deleteFindMin U in do
11 in do given′ ← subst constr given
12 given taut ← is taut given’
13 if given taut then go W U ′

14 else do {learn given′;
15 go (W ∪ {given′}) U ′}

Compiling TExps to constraints follows previous work (e.g., [16,18]), yet some
of the encodings are nonobvious. Consider boolean disjunction in TExps of the
form TEBinop (TOp Or) e1 e2. The encoding – after types have been erased – is
given in Fig. 6, along with that of variables, values, and assertions. The compila-
tion relation � · �out is indexed by an output variable out that corresponds one-to-
one with the output “wire” of the resulting arithmetic circuit, itself encoded as a
list of constraints of type Constraint a. For example, compilation of EVar x, with
output variable out, constructs the polynomial constraint 0 + 1∗out + −1x = 0
asserting that out = x. The encoding EVal c is similar.

To compile boolean disjunction EBinop Or e1 e2, we first recursively compile
e1 and e2 – sending their values through fresh output variables e1 out and e2 out.
Then we compile the TExp that encodes the constraint

e1 out+e2 out − out = e1 out∗e2 out.

As long as e1 out, e2 out, and out range over boolean values 0, 1 – a constraint
we encode separately as the additional fact x∗x = x for each boolean variable x –
the equality above is satisfiable iff out = e1 out ∨ e2 out.

Many of the remaining compilation rules are straightforward (we do not
show them in Fig. 6). One exception is disequality testing. Here Sn̊arkl uses a
nondeterministic encoding borrowed from Pinocchio [16] and Setty et al. [18]
that relies on CMagic constraints to resolve the values of a nondeterministic
witness variable. Assume the expression is y = x!=0 ? 1 : 0, which we represent
in C-style syntax. Both x and y are variables. The encoding is, there exists an m
such that both x∗m = y and (1−y)∗x = 0. Since m is not uniquely determined by
the above two facts, we use a CMagic constraint to resolve its value when solving
for the witnesses of Fig. 1: if x = 0 then let m = 0. Otherwise, let m equal the
modular multiplicative inverse x−1 of x in the underlying field Fp.
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4 Constraint Minimization

Key generation and proving times in VC systems typically depend on the size,
e.g., in number of constraints, of the arithmetization of the source program.
Previous work (e.g., [3,8,16]) uses clever encodings of individual program con-
structs to optimize encoding size but no system we know of applies systematic
constraint minimization.

Why is systematic optimization problematic? If the original source program
is interpreted in order to find satisfying assignments, as in systems such as Gep-
petto [8], then optimizing the constraint system makes it more difficult to map
particular variables and constraints back to program points in the source pro-
gram; minimization may remove variables and constraints entirely. We solve this
problem by having the constraint minimizer perform double duty; for a par-
ticular problem instance with concrete inputs provided by the verifying party,
simply rerun the constraint minimizer with those concrete initial values. The
result, using the constraint minimization algorithm we describe in this section,
is a satisfying assignment for the entire constraint system.

Both constraint minimization and solving happen at the level of Sn̊arkl’s
Constraints intermediate language. The main data structure is an environ-
ment SEnv a = SEnv { eqs :: UnionFind a, solve mode :: SolveMode } that stores
a union-find instance, for mapping variables to their equivalence classes (or to
constants) as new variable equalities are learned during optimization, and a flag
solve mode = UseMagic | JustSimplify that tells the simplifier whether to ignore
CMagic constraints. If solve mode = UseMagic (the simplifier is in solve mode),
magic constraints are used to resolve the values of nondeterministic witness vari-
ables. Otherwise (simplifier mode), the simplifier ignores CMagic constraints.6

The main minimization routines, operating over a set of constraints S, are
given in Listing 4.1. The idea (simplify rec, line 2) is to repeatedly apply the
simplification procedure simplify once (line 7) as long as each application (line 4)
successfully removes at least one constraint from the set S, because it was able
to determine that the constraint was tautological. It is also possible (line 5) that
some constraint has been simplified, yet the total number of constraints remains
the same. In this case, we continue simplifying. If no new constraints are removed
or simplified, we halt with S′.

The function go (beginning at line 8) operates over two sets, a working set
of constraints W and an unselected set U . Originally, all constraints are in U .
At each iteration, the function deletes the smallest constraint from U (under
a particular total order, line 10), simplifies the constraint (line 11) under the
equalities currently recorded in the simplification environment, SEnv, then checks
whether the resulting constraint is tautological (line 13). If it is, the tautological
constraint is removed and go continues to the next iteration, throwing the clause
away (line 13). Otherwise (line 14), we attempt to learn new equalities from the
constraint (between variables and variables, and variables and constants) and
continue (line 15) with the new clause in W .

6 It would be unsound to rely on these constraints to learn new facts.
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The function learn (called in line 14) implements just a few simplification
rules. For example, from constraints CAdd − 1[(x,c)] (expressing −1 + cx = 0)
we learn x = c−1 as long as c is invertible. Likewise, from CAdd 0 [(xc), (y,d)]
(expressing 0 + cx + dy = 0) we learn x = y as long as c = −d and c is nonzero.
The function subst constr, which substitutes the equalities currently in context
into a constraint, is also straightforward. When applied to, e.g., CAdd constraints
it replaces all variables by their union-find roots, replaces certain variables by
constants, folds constants, and filters out terms with coefficient 0.

5 Measurements

Since Sn̊arkl uses a standard VC backend, our analysis in this section forgoes
a direct evaluation of the practicality of the underlying cryptography7 in favor
of answering the following questions:

1. Does Sn̊arkl’s general-purpose constraint minimizer (Sect. 4) produce cir-
cuits of comparable size to those encoded by hand in systems like Pinoc-
chio?

2. How much overhead is imposed, over proof generation in libsnark, by using
the constraint minimizer of Sect. 4 to generate circuit witnesses?

#Constraints Sn̊arkl Pinocchio
Fixed Matrix 601 600
Input Matrices 347,901 347,900

(a) Constraints per benchmark

(b) Witness generation vs. cryptographic
proof generation and verification latency

Fig. 7. Results

We consider the four benchmarks
described in Fig. 8. For benchmarks
that have been implemented in Pinoc-
chio (Fixed Matrix and Input
Matrices) we report (Fig. 7a) the
number of constraints generated by
Sn̊arkl vs. those in Pinocchio’s
manual encoding, as reported in [16].
In each case, we generate just one
additional constraint, resulting from
the fact that we return the sum
of the resulting matrix in addi-
tion to performing the multiplication
(thus preventing over-optimization of
the resulting circuit by the Sn̊arkl
compiler).

For each benchmark, we also mea-
sured (using Citerion [15]; confidence
intervals were small) the relative latency of witness generation as performed by
the constraint minimizer of Sect. 4 versus cryptographic proof generation and
verification in libsnark (Fig. 7b). Both of these procedures must be performed
online once per problem instance. The results here are more mixed. Only one
benchmark (Input Matrices) falls below the line, and therefore has lower wit-
ness generation than proof generation and verification latency. In the remaining
7 libsnark was evaluated in [3].
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Fixed Matrix Multiply a fixed n × n matrix M (known at compile time) by an n-
length input vector A, resulting in the n-length output vector M · A. Output the
sum of the elements in M ·A. This microbenchmark reproduces the “Fixed Matrix,
Medium” benchmark of Pinocchio [16, Sect.4.3], with parameter n = 600.

Input Matrices Multiply an n × n input matrix M1 by a second n × n input matrix
M2. Output the sum of the elements in M1 ·M2. This microbenchmark reproduces
Pinocchio’s “Two Matrices, Medium” benchmark [16, Sect.4.3] with n = 70.

Keccak-f(800) The main function of SHA3’s “sponge” construction. The lane width
(= 32) is a parameter known at compile time. As input, Keccak-f(800) takes a
3-dimensional array of size 5×5×32 bits. It outputs the exclusive or of the 800-bit
array that results after applying 22 rounds of Keccak-f.

Map List Map the function (λx.x + 1) over a list of field elements of size 50 and
return the list’s last element. The size and contents of the list are circuit inputs.
The generated circuit supports input lists up to size 100 elements.

Fig. 8. Description of the benchmarks

benchmarks, the cost of witness generation exceeds that of proof generation
but the difference is usually small. This is despite the fact that our constraint
minimizer has not yet been highly optimized.

6 Related Work

There has been a great deal of work in verifiable computing over the past few
years [3,4,7–10,16,18,21]. With Pinocchio [16] and its most recent incarnation
Geppetto [8], researchers at MSR and elsewhere have built VC systems that
incorporate novel techniques like MultiQAPs for sharing state between reusable
circuit components, and energy-saving circuits for reducing cryptographic costs
in programs with conditional branches. These new techniques are complementary
to the work we present in this paper. Because Sn̊arkl compiles to the clearly
defined R1CS interface (Fig. 3), future improvements to libsnark resulting from
cross-fertilization by tools such as Pinocchio and Geppetto will bring imme-
diate benefit, even without change to the compiler.

In parallel to systems like Pinocchio, Pantry [7] and its successor
Buffet [21] (both refinements of previous systems Ginger [18] and
Pepper [19]) showed new techniques for efficiently compiling RAM programs.
Buffet, for example, adapts the RAM abstraction of TinyRAM to the com-
pilation model of Pantry, resulting in large cryptographic speedups over previ-
ous systems. That said, Buffet’s imperative input language is still a subset of
C; while other tools support other (generally, subsets of) imperative languages
like LLVM [8], no tool we know of directly supports functional programs as in
Sn̊arkl.

The work on TinyRAM [3,4], which is implemented as an extension of core
libsnark, represents an interesting third point in the design spectrum: instead
of directly compiling C programs to constraints, TinyRAM modifies gcc to out-
put assembly programs in a small bespoke assembly language, then “executes”
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the programs by encoding the semantics of the TinyRAM ISA as arithmetic
constraints. This execution strategy is implementable in Sn̊arkl. In fact, one
immediate goal of future work is the implementation of other kinds of abstract
machines beyond just ISAs – such as interpreters and type-checkers for lambda
calculi. With such tools, it may be possible to recast, e.g., dependent type sys-
tems in a VC mold: the proof that term e has type τ is a VC proof π that the
arithmetization of a type-checking function f applied to e evaluates to Some τ .
Finally, the design of Sn̊arkl’s frontend has benefited from long lines of work on
embedded DSLs (e.g., [14]) and on multi-stage programming (e.g., [20]). Recent
work on specialized type rules for DSLs (e.g., [17]) may provide a method for
improving the reporting of type errors in Sn̊arkl’s embedded type system.

7 Conclusion

Verifiable computing is approaching practicality. But there is still work to do.
In this paper, we report on Sn̊arkl (“Snorkel”), a DSL embedded in Haskell
for functional programming against a verifiable computing backend. We demon-
strate that simple constraint minimization techniques – when applied systemati-
cally to a carefully designed intermediate representation – are an effective means
of generating small circuits. Our DSL and implementation support familiar fea-
tures from functional programming such as sums, products, inductive datatypes,
and case analysis.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. JACM 45(3), 501–555 (1998)

2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
JACM 45(1), 70–122 (1998)

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security (2014)

5. Ben-Sasson, E., et al.: The libsnark library. https://github.com/scipr-lab/libsnark.
Accessed 23 Sep 2015
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Abstract. Existing source-code-generating tools such as Lex and Yacc
suffer from practical inconveniences because they use disembodied code
to implement actions. To prevent this problem, such tools could gener-
ate closed functors that are then instantiated by the programmer with
appropriate action code. This results in all code being type checked in its
appropriate context, and it assists the type checker in localizing errors
correctly. We have implemented a lexer generator and parser generator
based on this technique for both Standard ML and Haskell.

1 Introduction

Compiler implementers have a love-hate relationship with source-code-
generating tools such as Lex [6] (which generates lexers from regular expressions)
and Yacc [4] (which generates shift-reduce parsers from context-free grammars).
These tools automate the some of the most tedious parts of implementing a
parser, but they can be awkward to use.

One of the main awkward aspects of such tools is the disembodied code prob-
lem. To build a lexer or a parser, these tools cobble together snippets of code
(each implementing an action of the lexer/parser) supplied by the programmer
in a lexer/parser specification file. Unfortunately, the code snippets, as they
appear in the specification file, are divorced from their ultimate context. The
tools manipulate them as simple strings.1

This makes programming awkward in several ways. Functions and other val-
ues are passed into the snippets using identifiers that are bound nowhere in
the programmer’s code, nor even introduced by a pseudo-binding such as open.
Rather, the snippet is copied into a context in which such identifiers are in scope.
This can make code difficult to read.

More importantly, disembodied code makes debugging challenging, because
the code seen by the compiler bears little resemblance to the code written by

1 Such strings may even include syntax errors, which are duly copied into the output
code. Typically the tool does not even ensure that delimiters are matched.
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the programmer. For example, consider the following line from an ML-Lex [1]
specification:

{whitespace}+ => ( lex () );

This line tells the lexer to skip any whitespace it encounters by matching it and
then calling itself recursively to continue. (Note that lex is an example of an
identifier introduced implicitly when the snippet is copied.) ML-Lex converts the
line into the Standard ML code:

fun yyAction0 (strm, lastMatch : yymatch) =
(yystrm := strm; ( lex () ))

This output code already is not very easy to read. However, the problem is
greatly exacerbated by the familiar phenomenon in typed functional languages
that type checkers are often bad at identifying the true source of a type error.
Suppose we introduce an error into the specification by omitting the argument
to lex:

{whitespace}+ => ( lex );

We now obtain2 several pages of error messages looking like:

foo.lex.sml:1526.25-1526.70 Error: operator and
operand don’t agree [tycon mismatch]

operator domain: yyInput.stream * action * yymatch
operand: yyInput.stream *

(yyInput.stream * yymatch -> unit
-> (?.svalue,int) ?.token)
* yymatch

in expression:
yyMATCH (strm,yyAction0,yyNO_MATCH)

and none of the errors is anywhere near the copied snippet containing the error.

The problem is related to the issue of variable hygiene in macro expansion [5].
In both cases, the programmer writes code (a lexer/parser action, or macro
argument) divorced from its ultimate context and then—after processing—that
code is dropped verbatim into its ultimate context. In the setting of macros, this
sets the scene for variable capture to occur, which is nearly always erroneous.
In lexer generators, variable capture often is actually desired (consider the lex
identifier), but, as observed above, it is nevertheless difficult to reason about and
to debug.

Accordingly, we are interested in source-code generation in which all code is
type-checked in the same context in which it is written. We call this hygienic
source-code generation by analogy to hygienic macro expansion, which ensures
the same thing for macros.
2 Using Standard ML of New Jersey v100.68.
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An obvious way to accomplish hygienic source-code generation is to have the
tool type-check every snippet before it assembles them into output code. But,
this approach is unattractive in practice, because it necessitates including all the
apparatus of parsing, elaboration, and type-checking as part of a tool that does
not otherwise need all that apparatus.

We propose a simpler and cleaner alternative: Rather than type-check dis-
embodied code in context, we dispense with disembodied code altogether. To
accomplish this, the tool—rather than assembling snippets of source code into
a program—generates a functor that abstracts over the code that used to reside
in snippets. The programmer then applies the functor in order to instantiate the
lexer or parser with specific action implementations.

A third alternative, arguably more principled than ours, is to implement
the lexer/parser generator in a type-safe metaprogramming language such as
MetaML [8] or its cousins. With such an approach, as in ours, the action imple-
mentations would be type-checked in context, without any need to duplicate com-
piler apparatus. Furthermore, it would remove the need to write the lexer/parser
specification and action implementations in two separate places, as our proposal
requires. On the other hand, this alternative requires one to use a special program-
ming language. We want an approach compatible with pre-existing, conventional
functional programming languages, specifically Standard ML and Haskell.

Finally, in some problem domains one may consider avoiding generated source
code entirely. For example, in parsing, some programmers find parser combina-
tors [2,3] to be a suitable or even preferable alternative to Yacc-like tools. Nev-
ertheless, many programmers prefer traditional LR parser generators for various
reasons including error reporting and recovery, and ambiguity diagnostics. In this
work we take it as given that source-code generation is preferred, for whatever
reason.

At first blush, our proposal might seem to replace one sort of disembodied code
with another. This is true in a sense, but there is a key difference. The code in which
the functor is applied is ordinary code, submitted to an ordinary compiler. That
compiler then type checks the action code (that formerly resided in snippets) in
the context in which it now appears, which is the functor’s argument.

As a practical matter, each action becomes a distinct field of the functor argu-
ment, and consequently each action is type-checked independently, as desired.
The type of the functor is already known, so an error in one action will not be
misinterpreted as an error in all the other actions.

Employing this design, we have implemented a lexer generator, called CM-
Lex, and a parser generator, called CM-Yacc. Each tool supports Standard ML
and Haskell.3 Both tools are available on-line at:

www.cs.cmu.edu/∼crary/cmtool/

In the remainder of this abstract we illustrate the concept using the lexer
generator for Standard ML. The full paper discusses the problem of actions that

3 The Haskell version generates Haskell code, but is implemented in Standard ML and
shares most of its implementation with the Standard ML version.

www.cs.cmu.edu/~crary/cmtool/
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call the lexer recursively, and it discusses the parser generator and how the tools
are adapted to Haskell. It can be found on-line at:

www.cs.cmu.edu/∼crary/papers/2018/cmtool.pdf

2 Lexing Functor Generation

The following is a very simple CM-Lex specification:

name LexerFun
alphabet 128

function f : t =
(seq ’a ’a) => aa
(seq ’a (* ’b) ’c) => abc

The specification’s first two lines indicate that CM-Lex should produce a functor
named LexerFun, and that it should generate a 7-bit parser (any symbols outside
the range 0 . . . 127 will be rejected automatically).

The remainder gives the specification of a lexing function named f. The
function will return a value of type t, and it is defined by two regular expressions.
Regular expressions are given as S-expressions using the Scheme Shell’s SRE
notation4 [7].

Thus, the first arm activates an action named aa when the regular expression
aa is recognized. The second activates an action named abc when the regular
expression ab∗c is recognized.

Observe that the specification contains no disembodied code. The actions are
simply given names, which are instantiated when the resulting functor is applied.

From this specification, CM-Lex generates the following Standard ML code:5

functor LexerFun
(structure Arg :

sig
type t

type info = { match : char list,
follow : char stream }

val aa : info -> t
val abc : info -> t

end)
:>
sig

val f : char stream -> Arg.t
end

= . . . implementation . . .
4 Although SREs are less compact than some other notations, we find their syntax is

much easier to remember.
5 We simplify here and in the following examples for the sake of exposition.

www.cs.cmu.edu/~crary/papers/2018/cmtool.pdf
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When the programmer calls the functor, he provides the type t and the actions
aa and abc, both of which produce a t from a record of matching information.
The functor then returns a lexing function f, which produces a t from a stream
of characters.

Although the programmer-supplied actions can have side effects, the lexer
itself is purely functional. The input is processed using lazy streams (the signa-
ture for which appears in Fig. 1). Each action is given the portion of the stream
that follows the matched string as part of the matching information.

signature STREAM =

sig

type ’a stream

datatype ’a front =

Nil

| Cons of ’a * ’a stream

val front : ’a stream -> ’a front

val lazy : (unit -> ’a front) -> ’a stream

end

Fig. 1. Lazy streams

As an illustration of how the functor might be applied, the following program
processes an input stream, printing a message each time it recognizes a string:

structure Lexer =
LexerFun
(structure Arg =

struct
type t = char stream

type info = { match : char list,
follow : char stream }

fun aa ({follow, ...}:info) =
( print"matched aa\n"; follow )

fun abc ({follow, ...}:info) =
( print "matched ab*c\n"; follow )

end)

fun loop (strm : char stream) =
(case front strm of

Nil => ()
| Cons _ => loop (Lexer.f strm))
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The function Lexer.f matches its argument against the two regular expressions
and calls the indicated action, each of which prints a message and returns the
remainder of the stream.

Observe that the implementations of the actions (the fields aa and abc of the
argument structure) are ordinary Standard ML code. As one consequence, the
action code faces the standard type checker. Moreover, each action’s required
type is unambiguously given by LexerFun’s signature and the type argument t,
so error identification is much more accurate.

For example, suppose we replace the aa action with an erroneous implemen-
tation that fails to return the remainder of the stream:

fun aa ({follow, ...}:info) =
( print "matched aa\n" )

The type checker is able to identify the source of the error precisely, finding that
aa has the type unit instead of t:

example.sml:8.4-29.12 Error: value type in
structure doesn’t match signature spec

name: aa
spec: ?.Arg.info -> ?.Arg.t
actual: ?.Arg.info -> unit

2.1 An Expanded Specification

We may add a second function to the lexer by simply adding another function
specification:

function g : u =
(or (seq ’b ’c) (seq ’b ’d)) => bcbd
epsilon => error

In the parlance of existing lexer generators, multiple functions are typically
referred to as multiple start conditions or start states, but we find it easier
to think about them as distinct functions that might or might not share some
actions. In this case, the function g is specified to return a value of type u. Since
u might not be the same type as t, g cannot share any actions with f.

The first arm activates an action named bcbd when the regular expression
bc + bd is recognized. The second arm activates an action named error when
the empty string is recognized. Like other lexer generators, CM-Lex prefers the
longest possible match, so an epsilon arm will only be used when the input string
fails to match any other arm. Thus, the latter arm serves as an error handler.6

6 In contrast, the specification for f was inexhaustive, so CM-Lex added a default
error handler that raises an exception.
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From the expanded specification, CM-Lex generates the functor:

functor LexerFun
(structure Arg :

sig
type t
type u

type info = { match : char list,
follow : char stream }

val aa : info -> t
val abc : info -> t
val bcbd : info -> u
val error : info -> u

end)
:>
sig

val f : char stream -> Arg.t
val g : char stream -> Arg.u

end
= . . . implementation . . .

3 Conclusion

We argue that functor generation is a cleaner mechanism for source-code-
generating tools than assembling snippets of disembodied code. The resulting
functor makes no demands on the surrounding code (other than a few standard
libraries), and so it is guaranteed to type check.7 The programmer never need
look at the generated code.

In contrast, with a snippet-assembling tool, an error in any snippet will —
even in the best case — require the programmer to look at generated code
containing the snippet. More commonly, the programmer will need to look at
lots of generated code having nothing to do with the erroneous snippet.

We have demonstrated the technique for lexer and parser generation, but
there do not seem to be any limitations that would preclude its use for any
other application of source-code generation.

7 More precisely, it is guaranteed to type check in an initial context containing standard
libraries and other module definitions. Unfortunately, Standard ML does not quite
enjoy the weakening property, so the resulting functor is not guaranteed to type check
in any context. Pollution of the namespace with datatype constructors and/or infix
declarations for identifiers that are used within the generated functor will prevent it
from parsing correctly. This is one reason why it is considered good practice in SML
for all code to reside within modules.
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Abstract. Constraint solving technology for declarative formal models
has made considerable progress in recent years, and has many applica-
tions such as animation of high-level specifications, test case generation,
or symbolic model checking. In this article we evaluate the idea of using
very high-level declarative models themselves to express constraint sat-
isfaction problems. In particular, we study an old mathematical puzzle
from 100 years ago, called the crowded chessboard. We study various
high-level and low-level encodings and solutions, covering SAT, SMT
and CLP-based solutions of the puzzle. Additionally, we present a new
technique combining SAT-solving with CLP which is able to solve the
puzzle efficiently.

1 Motivation: Model-Based Constraint Solving

Logic programming and constraint programming are key members of the declar-
ative language paradigm. Logic programs and constraint (logic) programs tend
to be much more declarative than traditional imperative programs, but devel-
opers still have to consider considerable operational aspects. High-level formal
methods languages like B, tla+, or Z, are more declarative still: they were devel-
oped to be specification languages, with little concern for execution.1 In between
logic programs and formal methods are logic-based encodings like SMT-LIB.

In this paper, we study a non-trivial constraint satisfaction problem, inves-
tigating both the ease of expressing the problem and the solving performance
for a range of declarative languages, from Prolog, onto SAT, SMT and high-
level formal specification languages. One popular specification language is B [1],
which has its roots in first-order predicate logic, with (higher-order) set theory
and arithmetic. In that respect, it is quite similar to other formal methods such
as tla+, Z or even VDM. Constraint solvers have made a big impact for formal
methods in general and B or tla+ in particular, by providing validation tech-
nology for proof [8,18], animation [15], bounded or symbolic model checking [13],
and test case generation [21].
1 Some even argue that formal specifications should be non-executable [11].
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We want to turn our focus from constraint solving technology for validating
models towards using formal models to express constraint satisfaction problems.
The idea is to use the expressivity of the B language and logic to express practical
problems, and to use constraint solving technology on these high level models.
In [16], we already argued that B is well suited for expressing constraint satisfac-
tion problems in other domains as well. This was illustrated on the Jobs puzzle
challenge [24] and we are now solving various time tabling problems [23].

In this paper, we want to present one particular benchmark puzzle, and
various ways to solve it. One motivation was that the puzzle was formulated
exactly 100 years ago. A more academic motivation is that the puzzle is relatively
easy to explain and hence should be relatively easy for other researchers to
provide their own solutions in their favorite declarative formalism and compare
it with ours.

Indeed, a real-life problem such as the time-tabling problem in [23] is very
arduous to describe in an article, and would require considerable investment to
write a solution in another formalism, requiring many weeks or months of effort.
A puzzle such as the N-queens puzzle, on the other hand, is too simple and allows
many very special encodings, which cannot be easily used in real-life, practical
problems. The encoding is not really a challenge, and a solution to the N-queens
puzzle only provides limited insights into practicality of a formalism.

We feel that the crowded chessboard problem provides the almost perfect
middle ground, even though it is a combinatorical problem: the problem can
still be explained in a paper, and has some entertaining aspects as well. Fur-
thermore, solutions can be easily checked by a human, provided the solution is
rendered graphically. In the following, we investigate different declarative encod-
ings of the problem, considering ease of understanding, correspondance to the
problem statement and solving performance. Constraint solving technology can
be classified into the following broad categories, which we all experiment with:

– Constraint programming, used in Sects. 3 and 4 and used by ProB’s default
solver in Sect. 2.1,

– Translation to boolean satisfiability and using SAT solvers in Sect. 5,
– Translation to SMT-LIB and using SMT solvers in Sect. 6.

All models used in this paper are available at: https://github.com/leuschel/
crowded-chessboard.

2 The Crowded Chessboard Problem and Its B Solution

The Crowded Chessboard Problem. The crowded chessboard is a 100 year
old problem appearing as problem 306 in Dudeney’s book [9]. The book provides
the following description of the problem:

“The puzzle is to rearrange the fifty-one pieces on the chessboard so that
no queen shall attack another queen, no rook attack another rook, no
bishop attack another bishop, and no knight attack another knight. No

https://github.com/leuschel/crowded-chessboard
https://github.com/leuschel/crowded-chessboard
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notice is to be taken of the intervention of pieces of another type from
that under consideration - that is, two queens will be considered to attack
one another although there may be, say, a rook, a bishop, and a knight
between them. And so with the rooks and bishops. It is not difficult to
dispose of each type of piece separately; the difficulty comes in when you
have to find room for all the arrangements on the board simultaneously.”

Table 1. ConfigurationsTable 1 shows the maximum number of pieces for
which the puzzle can still be solved. To gain unsat-
isfiable benchmarks, we will increment the number
of knights.

2.1 B Solution

We now try to formalise this problem in the B lan-
guage, as clearly as possible. Our goal here is to
make a human readable formalisation of the model,
where a human can be convinced that the problem
has been modelled correctly. Indeed, in constraint
programming it is quite often the case that sub-
tle errors creep into a formalisation, which can go
unnoticed for quite some time. Thus, below we also
intersperse the formal model with a few visualisa-
tions and other sanity checks, to ensure that the model is correct. The LATEX of
this section has been derived by executing the model, see [14].

For the visualisations, we first set the dimension n of the board to 5 and thus
have the following set of possible indexes on the chessboard: Idx = {1, 2, 3, 4, 5}.
Furthermore, we define the set of chess pieces, including a special piece Empty
for empty squares: PIECES = {Queen,Bishop,Rook,Knight, Empty}.

2.2 Specifying Movements

First, we compute for every position on the board which squares can be reached
by a horizontal or vertical move, i.e., a function which returns a set of coordinates
that can be attacked from a given position. For example, we have moveHV (2 �→
3) = {(1 �→ 3), (2 �→ 1), (2 �→ 2), (2 �→ 4), (2 �→ 5), (3 �→ 3), (4 �→ 3), (5 �→ 3)},
visualized in Fig. 1. This can be expressed in B using a lambda function:

moveHV = λ(i, j).({i, j} ⊆ Idx | {k, l | {k, l} ⊆ Idx ∧ (i, j) �= (k, l)∧
(i = k ∨ j = l)})

Now, we compute the diagonal moves, e.g., we have moveDiag(2 �→ 3) = {(1 �→
2), (1 �→ 4), (3 �→ 2), (3 �→ 4), (4 �→ 1), (4 �→ 5)}, visualized in Fig. 2.
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Fig. 1. Rook attack Fig. 2. Bishop attack Fig. 3. Knight attack

moveDiag = λ(i, j).({i, j} ⊆ Idx | {k, l | {k, l} ⊆ Idx ∧ (i, j) �= (k, l)∧
(k − i = l − j ∨ i − k = l − j)})

To describe the moves of the knight, we introduce the following auxiliary function
to compute the absolute distance between indices:

dist = λ(i, j).(i ∈ Z ∧ j ∈ Z | IF i ≥ j THEN i − j ELSE j − i END).

Using it, the knight’s moves can now be described as follows:

moveK = λ(i, j).({i, j} ⊆ Idx | {k, l | {k, l} ⊆ Idx ∧ i �= k ∧
j �= l ∧ dist(i, k) + dist(j, l) = 3})

For example, we have moveK (2 �→ 3) = {(1 �→ 1), (1 �→ 5), (3 �→ 1), (3 �→
5), (4 �→ 2), (4 �→ 4)}, visualized in Fig. 3.

We can now assemble all of these into a single higher-order function, which
for each piece returns the attacking function (which in turn for each position on
the board returns the set of attacked positions):

attack = {(Rook �→ moveHV ), (Bishop �→ moveDiag), (Knight �→ moveK),
(
Queen �→ λ(p).(p ∈ (Idx × Idx) | moveHV (p) ∪ moveDiag(p))

)
,

(Empty �→ ((Idx) × (Idx)) × {∅})}

2.3 Specifying the Number of Pieces

After having modelled how the pieces move, we now describe how many pieces
of each type we want to place on the board as follows. Note that the second
conjunct asserts the number of all placed figures, including the empty field, to
be n2. That is, it computes the number of empty squares from the given figures.
The only hard-coded part is the number of knights (5 in this case):

nrPcs ∈ PIECES → 0 . . . n2 ∧ Σ(p).(p ∈ PIECES|nrPcs(p)) = n2∧
(
(Queen �→ n) ∈ nrPcs ∧ (Rook �→ n) ∈ nrPcs∧
(Bishop �→ 2 ∗ n − 2) ∈ nrPcs ∧ (Knight �→ 5) ∈ nrPcs

)
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This gives rise to the following solution for n = 5:

nrPcs = {(Queen �→ 5), (Rook �→ 5), (Bishop �→ 8),
(Knight �→ 5), (Empty �→ 2)}

2.4 Solving the Crowded Chessboard Puzzle

Solving the crowded chessboard puzzle now amounts to solving the predicates:

board ∈ Idx × Idx → PIECES
∀P .(P ∈ PIECES ⇒ card({p|p ∈ dom(board) ∧ board(p) = P}) = nrPcs(P))
∀(pos, piece).((pos �→ piece) ∈ board

⇒ ∀pos2 .(pos2 ∈ attack(piece)(pos) ⇒ board(pos2 ) �= piece))

Fig. 4. Solution

Observe how compact the core B representation of the
problem is. The first predicate sets up the board and spec-
ifies the possible pieces that can be put on the board. The
second predicate specifies how many pieces of each kind
should be placed on the board. The third predicate posits
that no piece can attack another piece of the same kind. In
case we want to add a new kind of piece or change the rules
for an existing piece, these three predicates would remain
unchanged; one would only have to adapt the definition of
the attack function. The first solution found by ProB for
n = 5 is visualized in Fig. 4.

Of course, the model could be improved by adding further (implied) con-
straints, e.g., by asserting that bishops have to be placed on border cells. How-
ever, by doing so, we would decrease correspondence to the original problem
formulation, sacrificing comprehensibility for solving speed.

2.5 New CLP and SAT Integration

We believe that the above encoding is compact, elegant, easy to understand,
validate and adapt by a human. Unfortunately, as it stands, this encoding can
be solved by ProB only for small values of n. Given the success of the SAT
approach later in Sect. 5, one may wonder why ProB’s SAT backend [20] cannot
be applied to the B model instead of the default CLP solver.

The reason is the higher order nature of the model: the SAT backend relies
on Kodkod [26], a relational model finder translating its input language to SAT.
However, Kodkod can only translate certain first-order constructs and data
structures. For this reason, the technique in [20] statically splits a predicate P to
be solved into a part PSAT that can be translated by Kodkod and another one
PCLP that will be solved by ProB’s default solver. The solving now proceeds by
first performing deterministic propagation in PCLP , possibly instantiating values
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in PSAT . Then, PSAT is solved, the solution of which is fed into ProB for solving
PCLP . The core problem is that, when solving PCLP we cannot generate new
constraints to be shipped to the SAT solver. This is exactly what we would need
in our case: let ProB evaluate the higher-order attack function from Sect. 2.2,
unroll the involved quantifiers and then ship simple first-order constraints to a
SAT solver.

We have implemented exactly this style of integration in reaction to the chal-
lenge posed by the crowded chessboard. The idea is to allow the user to annotate
parts of the constraint as to be treated by a SAT solver. Note that these parts
can be inside quantifiers, in which case ProB would expand these quantifiers
and (possibly) compute relevant values using higher-order datastructures.

We annotate implications, equalities, inequalities and cardinality constraints
for SAT and let ProB deal with the rest, e.g., determining and applying the
higher-order attack function. Doing so, the first two predicates given in Sect. 2.4
can completely be given to a SAT solver via Kodkod. The third one however is
unrolled by ProB, only the inner predicate gets solved by Kodkod:

ProB(CLP )
︷ ︸︸ ︷
∀(piece, i, j, i2, j2).(i �→ j ∈ (1 . . . n)×(1 . . . n) ∧ i2 �→ j2 ∈ attack(piece)(i �→ j)
⇒ board1((i − 1) ∗ n + j) = piece ⇒ board1((i2 − 1) ∗ n + j2) �= piece

︸ ︷︷ ︸
Kodkod(SAT )

)

Observe that we have rewritten the quantification over (piece, i, j, i2, j2)
slightly, to enable ProB to completely expand the quantifier and apply the
higher-order function attack.

3 A Prolog CLP(FD) Solution

Given that ProB’s default CLP solver does not scale for the high-level B model,
we have written a direct encoding of the crowded chessboard problem in SICStus
Prolog using the finite domain library CLP(FD) [5]. As the following code snip-
pet shows, the chessboard is encoded as a list of length n of lists of n finite
domain variables each, in the range 0 to 4. The value 0 denotes an empty
square, 1 a queen, 2 a rook, 3 a bishop, and 4 a knight. The entry predicate
is solve(N,K,Sol), where N specifies the size of the board and K the number
of knights to be placed. The solution is returned in Sol; by backtracking all
solutions can be found.

solve(N,Knights,Sol) :-
length(Sol,N),
maplist(pieces(N),Sol),
append(Sol,AllPieces),
... constraint setup ...
labeling([ffc],AllPieces).

pieces(N,L) :- length(L,N), clpfd:domain(L,0,4).
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Above, AllP ieces is a flattened list of the domain variables. Below, we
explain the most important part of the constraint setup. To ensure that we
place the correct number of pieces of each type onto the board we use the
global cardinality constraint of CLP(FD):

Bishops is 2*N-2,

Empty is N*N - 2*N - Bishops - Knights,

global_cardinality(AllPieces,[0-Empty,1-N,2-N,3-Bishops,4-Knights])

We use the following auxiliary predicates for rows, columns and diagonals to
ensure that queens, rooks and bishops do not attack each other:

exactly_one(Piece,List) :- count(Piece,List,’#=’,1).
at_most_one(Piece,List) :- count(Piece,List,’#<’,2).

For example, maplist(exactly one(1),Sol) ensures that no queens attack
each other on rows. We can see that this is a lower-level encoding than the B-
solution: There is special code for knights, which are treated quite differently
from the other pieces. Furthermore, the model checks explicitly that there is
exactly one queen on every row and column.

4 OscaR/Scala Solution

As an additional solution, we have written an encoding in Scala using the OscaR
Constraint Programming library [19]. This library supports a CLP(FD) mod-
elling approach combined with various search heuristics. Compared to ProB,
OscaR usually sacrifices completeness for efficiency, while also providing sup-
port for built-in constraint functions. Such functions have dedicated and opti-
mised domain restriction and search algorithms. Variables in OscaR are explic-
itly declared with their domains, e.g., val Pieces = Set(0 to k). The rep-
resentation of the problem in the OscaR model follows closely that of the B
model. However, implementation concerns need to be considered in OscaR. For
instance, when dereferencing a 2-dimensional array, the first index must be of
type int (but not of type CPIntVar). Hence, to refer to rows and columns usu-
ally the 2-dimensional array and its transpose are required. E.g., in OscaR the
board is modelled by

val board = Array.fill(n, n)(CPIntVar(Pieces))
val board_t = board.transpose

Constraints are added to the constraint store by means of a function add(c),
where c is a constraint. Constraints may not contain quantifiers. As a conse-
quence, OscaR models are less abstract than B models as well as not as easy
to read and understand, e.g., concerning knight attacks:
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for(i<-0 until n; j<-0 until n)
(for(u<-Seq(-2, -1); v<-Seq(-2, -1, 1, 2);

if(u.abs!=v.abs && i+u>=0 && i+u<n && j+v>=0 && j+v<n))
yield board(i+u)(j+v)).foreach

{t=>add(board(i)(j).isEq(k)==>t.isDiff(k))}

We have analyzed two differently structured versions of the model.

1. A monolithic version where constraints are propagated between the four sub-
problems, similarly to the B and Prolog models.

2. A layered version where the sub-problems are solved in a predetermined order
(first bishops, then rooks, then queens, finally knights) where constraints are
propagated within the sub-problems and allocated positions are passed as
constants from one to the next sub-problem. The only way the sub-problems
communicate is by backtracking.

Three similar sets Bset, Rset and Qset are used in the layered model to
pass the already allocated board positions to the next sub-problem dealing with
bishops, rooks and queens, respectively. E.g., Bset is declared as

val Bset = scala.collection.mutable.Set[(Int, Int)]()

When the solver for the bishops problem has found a solution, the positions of
the bishops are copied into Bset,

for(i<-0 until n; j <- 0 until n)
if(board(i)(j).value.toInt!=0) Bset += (i, j)

The sub-model for the rooks contains constraints to block these positions,

for(i<-Bset) add(board(i._1)(i._2)!==r)

and adds the constraints for the placement of the rooks using global cardinality
constraints gcc

for(i <- 0 until n){
add(gcc(board(i), Array((r,CPIntVar(0 to 1)))))
add(gcc(board_t(i), Array((r,CPIntVar(0 to 1)))))

}
add(gcc(board.flatten.toArray, Array((r,CPIntVar(nR)))))

The same scheme is followed for the queens and knights subproblems.
We have varied the order of the sub-problems discussed above and the alter-

natives have a worse performance than the one presented here. This is likely
due to the degrees of liberty when placing the figures, influenced by the possible
moves and the number of figures. As an example, for models starting with the
bishops sub-problem, the search performed better than for those starting with
the queens sub-problem. This could be a consequence of having to place almost
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twice as many bishops as queens, i.e., we reduce the search space more when
passing the positions occupied by bishops while still having enough liberty in
placing the queens on the board.

The layered approach is not suitable for testing of unsatisfiability even for
small board sizes: backtracking is more costly than direct constraint propagation.
In addition, the search uses limits on the permitted number of iterations. In the
benchmarks this is not an issue, because the runtime is dominated by the sub-
problems. The ability to experiment easily with model representations and search
heuristics is an advantage of OscaR. The price to pay for this is the lower level
of abstraction which makes it more difficult to validate the model against the
problem statement.

We have also experimented with modelling variants using a piece-centric
model instead of a board-centric model. The models were generally less per-
formant than the two discussed above. We see two reasons for this: (1) when
the models are to be considered jointly, some optimisations usually applied to
piece-centric models were not possible because they depend on specific data-
models, (2) it requires replacing a few arithmetic calculations and comparisons
with many boolean comparisons. Due to the small board sizes used there are no
performance issues due to memory management. We also observed that when
trying to break symmetries in these models, the low level of the programming
and the restrictions on referencing arrays obscured the added constraints. This
reduces the legibility of the models further and makes validation more difficult.

5 SAT Encoding

A different approach towards solving the crowded chessboard puzzle is to encode
it using pure propositional calculus and employ SAT solvers such as Minisat
[10]. The general idea is as follows: For each kind of chess figure to be placed
we introduce n × n boolean variables to encode the chessboard, e.g., queen2,5.
We set a variable to true to represent a figure on a certain square, while false
represents an empty square.

Most placement rules can be encoded easily. First, we encode that no two
figures can be placed on the same square. This is done by enforcing, that for each
combination of indices i, j the fields encoded as queensi,j , rooksi,j , bishopsi,j
and knightsi,j should not be true simultaneously. For example, for queens and
rooks we assert ∀i ∈ 1 . . . n, j ∈ 1 . . . n·queensi,j = � ⇒ rooksi,j = ⊥. Of course,
using universal quantification is not allowed in the input of a common SAT solver.
Thus, we have to unroll the formula and set the constraint up explicitly for all
combinations of chess pieces, i and j.

Next, we have to encode the movement of figures. For a solution to be correct,
we require that no two figures of the same kind can capture each other. Again,
this can be encoded using implications, e.g., for the case of linear movement we
assert ∀i ∈ 1 . . . n, j ∈ 1 . . . n, x ∈ 1 . . . n, x �= j · queensi,j = � ⇒ queensi,x = ⊥.
Obviously, diagonal movement can be encoded similarly. Again, we have to unroll
the resulting constraints to remove the universal quantification.
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Encoding the knights movement is more complicated and can not be
expressed as easily using quantification. They key idea however remains the
same: we iterate over all possible fields a knight can reach and set up implica-
tions preventing other knights from being placed there. To do so, we compute
the set of fields a knight can reach from a current field i, j:

reachablei,j = {(i + 1, j + 2), (i − 1, j + 2), (i + 1, j − 2), (i − 1, j − 2),
(i + 2, j + 1), (i + 2, j − 1), (i − 2, j + 1), (i − 2, j − 1)}.

Of course, we have to keep in mind not to violate the borders of the chess board:

reachable2i,j,n = {(x, y)|(x, y) ∈ reachablei,j ∧ x ∈ 1 . . . n ∧ y ∈ 1 . . . n}.

Following, we can prevent knights from attacking each other:

∀i ∈ 1 . . . n, j ∈ 1 . . . n, (x, y) ∈ reachable2i,j,nknightsi,j = � ⇒ knightsx,y = ⊥

6 8 10 12 14 16
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4
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Variables
Clauses

n variables clauses

5 276 2152
6 416 3434
7 564 5042
8 760 7096
9 948 9424

10 1176 12406
11 1412 15762
12 1712 19764
13 1996 24224
14 2328 29374
15 2668 35110
16 3064 41608

Fig. 5. Board size vs. variables/clauses (Maximum number of knights)

In contrast to movement, encoding the number of figures to be placed is quite
involved. This is due to the fact the very low-level SAT encoding does not feature
constructs like cardinality computation. There are extensions to SAT introducing
quantified Boolean satisfiability, or QSAT for short. When the quantification of
variables is not existential, SAT becomes PSPACE-complete.

To summarize, we have two possible ways to proceed: use a solver for quan-
tified boolean formulas or encode the cardinality constraints ourselves. As we
intended to present a low-level alternative to the high-level encoding in B and
ProB, we went with the second alternative. Essentially, there are three ways to
encode the sum of boolean variables by means of pure propositional calculus:
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– Encode a bit-wise adder and treat every boolean variable as an input bit. The
result can be compared to the required cardinality using bit-level arithmetic.
This is the approach we will use in our benchmarks.

– An improved encoding of bitwise addition called the totalizer [3]. In contrast
to the naive encoding it provides improved unit propagation. However, for
the problem at hand we did not observe any speedup.

– Use a sorting network as outlined in [2].

As can be seen in Fig. 5, encoding the crowded chessboard puzzle using pure
propositional calculus involves introducing numerous variables and connecting
them by a high number of relatively simple constraints. In particular, the number
of clauses rises quadratically, as expected due to the pairwise constraints.

6 SMT Encoding

In contrast to the very low-level encoding needed for SAT solvers, SMT solvers
support a much richer logic. In particular, cardinality constraints can be
expressed by means of addition. Furthermore, we can again use quantifiers to
express the relations between chess pieces. We investigated three possible encod-
ings of the crowded chessboard puzzle into SMT:

1. The board-centric approach, where we try to find a function mapping posi-
tions to chess pieces occupying them.

2. The piece-centric approach, where we try to find a function mapping pieces
to their position on the chess board.

3. A low-level approach using a boolean encoding similar to Sect. 5. This time
however, cardinality is expressed using integer arithmetic.

For the first two approaches, fields are encoded as pairs of two integers rang-
ing from 1 to n. The two functions first and second are used to access the first
and second entry. A set of common predicates is used to set up the constraints:

on board(x) ⇔ 1 ≤ first(x) ≤ n ∧ 1 ≤ second(x) ≤ n

not same row(x, y) ⇔ first(x) �= first(y)
not same col(x, y) ⇔ second(x) �= second(y)

not same diag(x, y) ⇔ |first(x) − first(y)| �= |second(x) − second(y)|
All of them can directly be encoded using SMT-LIB, the common input

language of SMT solvers. For the first approach, we try to find board, a mapping
of pairs to integers ranging from −1 to 3, where −1 represents an empty square,
0 a queen, 1 a rook, 2 a bishop and 3 a knight. We assert that the board may
not hold other values and that a figure may not be placed outside of the field:
∀x · −1 ≤ board(x) ≤ 3 ∧ ¬on board(x) ⇒ board(x) = −1.

Movement and attacking is also modeled using universal quantification. For
instance, the fact that two rooks may not attack each other is encoded as follows:

∀x, y·board(x) = 1 ∧ board(y) = 1 ∧ x �= y

⇒ not same row(x, y) ∧ not same col(x, y)
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Cardinality is encoded by enforcing the existence of n pairs where a queen is
placed. The first universal quantification can be expressed efficiently in SMT-LIB
by a distinct constraint:

∃q1, . . . , qn · (
(∀i, j ∈ [1, n], i �= j · qi �= qj) ∧ (∀i ∈ [1, n] · board(qi) = 0)

)

This first approach was not successful, as it could not compete with the SAT
approach even for small board sizes. While the usage of SMT instead of SAT
greatly increases expressiveness and therefore understandability of the encoded
problem, it also causes a performance decline if used as above.

The second approach, the piece-centric view of the puzzle can be extracted
out of the first one by unrolling board. Essentially, we set up a variable for each
queen, rook, bishop and knight. In consequence, we do not have to consider
empty squares anymore. Furthermore, by using the correct number of variables,
checking cardinality boils down to checking inequality.

Now that we have immediate access to the different figures, we can hardcode
some simple symmetry reductions directly into the constraints. For instance, we
know that the queens cannot share a row at all. Hence, we can sort them by
asserting ∀i ∈ [1, n] · first(qi) = i.

We could again use quantifiers for the attack relation. For instance, in case
of the queens we could reuse the not same diag predicate defined above:

∀x, y ·
(

n∨

i=1

x = qi

)

∧
(

n∨

i=1

y = qi

)

∧ x �= y ⇒ not same diag(x, y).

However, SMT solvers such as Z3 [7] and CVC4 [4] currently do not detect
saturation of the left hand side, i.e., they do not realize that the quantifier in
fact handles all combinations of two queens. In consequence, we decided to unroll
the universal quantifier and assert all not same diag combinations individually.

7 Related Work and Other Encodings

There are well-known approaches (e.g., [12]) to encoding constraint problems
using integer programming (IP). Instead of asking for logical satisfaction one asks
for the solution to a minimisation problem. An IP formulation for the crowded
chessboard problem has been proposed in [6] where two approaches are dis-
cussed: (i) counting the number of attacks or (ii) a direct binary model for the
logical constraints. The objective function for model (i) is binary discarding the
extra information provided by counting the number of attacks. The XPRESS-
MP models that are mentioned are not accessible. However, a MiniZinc model
and a Picat encoding based on the direct binary model of [6] is available. For the
MiniZinc version, a comment in the model states that for n = 8 the computa-
tion of a solution takes 108 seconds using ECLiPSe/eplex [22,25], however, in our
benchmarks solutions were found much faster. A more low-level implementation
of the direct binary model has been implemented directly in ECLiPSe/eplex. As
one would expect, this implementation obscures the clear abstract description
of [6] when using a Prolog-like notation.
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8 Empirical Evaluation

In this section, we evaluate the performance of the different approaches. Each
encoding is executed once for several board sizes. The amount of knights is
varied in order to check both a satisfiable and unsatisfiable instance. All bench-
marks were run on an AMD Opteron with 2 GHz and 4 physical cores. Up to
3 benchmarks were run in parallel. After 30 min without a result, the execution
was aborted. Results are given in Table 2 and Fig. 6, showing the runtimes in
seconds.

We benchmarked the CLP(FD) encoding introduced in Sect. 3 using SICStus
Prolog. For n = 5 and 5 knights, solving takes 2.6 s. For n = 6 and 9 knights it
takes only 2 s, but to determine that there is no solution for 10 knights it takes
>30 min. For n = 7 and 12 knights however, unsatisfiability is detected in 11 s.
We did not manage to solve the full puzzle for n = 8 and 21 knights.

In summary, this encoding is more efficient than the higher level one written
in B in Sect. 2, as the high level one can only solve the puzzle for n = 5. This
shows that there is still scope to reduce the overhead of ProB’s default CLP
backend, given that it is based on CLP(FD) and SICStus as well. However, it is
disappointing not to be able to solve the original puzzle for n = 8. In the future,
we will investigate whether we can replace the global cardinality constraint
by a more effective encoding.

Table 2. Solving times (in seconds), * means unsat, empty means timeout

n k B CLP(FD) OscaR SAT SMT ECLiPSe Picat
plain +Kodkod plain split board figure SAT plain MiniZinc

5 5 6.1 8.3 2.6 2.8 1.5 0.7 117.6 1.9 0.4 0.6 0.3 1.3
*5 6 28.4 8.3 2.2 0.8 0.7 0.6 0.3 3.0
6 9 10.8 2.0 85.9 3.0 0.8 636.4 1.7 0.6 0.5 3.5

*6 10 11.9 485.6 0.7 3.8 3.9 1.2 12.8
7 11 16.7 42.8 7.4 0.9 41.4 1.1 0.6 4.0

*7 12 16.1 10.9 0.2 48.6 0.7 0.5 3.3
8 21 75.5 41.5 13.2 402.1 1.0 4.8 8.5

*8 22 374.1 160.1 1535.0 54.9 93.7 516.0
9 29 709.5 184.7 16.9 13.5 11.7

*9 30 1385.1 1257.4 59.8 1633.1 245.0
10 37 1408.9 189.6 1.2 153.6 23.6

*10 38 1413.5 300.6 726.2
11 47 1449.5 38.2 56.1

*11 48 1455.3 275.2
12 57 1509.1 46.0 81.2

*12 58 1516.6 1106.4
13 69 1599.5 201.2

*13 70 1615.0 430.2
14 81 1768.4 59.5

*14 82 1755.4
15 94 2.5

*15 95
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Fig. 6. Runtimes for satisfiable and unsatisfiable instances

Furthermore, integrating ProB’s default backend with other solvers is ben-
eficial. Thanks to the improved integration with Kodkod presented in Sect. 2.5,
ProB can solve all satisfiable and unsatisfiable instances with n ≤ 14. Combin-
ing SAT and CLP proves to be stronger than both working independently.

In Sect. 4, we presented another attempt at a constraint programming solu-
tion to this problem; this time using the OscaR library in Scala. Unfortunately,
the monolithic solution also does not scale to n = 8, but an optimized layered
version, splitting the constraints and sacrificing completeness for efficiency, does
scale (but is in principle not guaranteed to find a solution if there is one).

With respect to the search, the layered approach showed a superior perfor-
mance. For n = 5, the execution time was roughly split in half, while for n = 6
the layered version was nearly 30 times faster. Until n = 8 the performance is
very high in comparison, which is likely down to the small amount of backtrack-
ing that occurs during the search up to this point.

For the low-level encoding into SAT, we benchmarked using the winner of the
SAT competition 2017, Maple [17]. Despite the blowup in complexity the result-
ing performance of a translation to SAT is often better than the one exhibited by
our other encoding for large n. Both for satisfiable and unsatisfiable benchmarks
Maple outperforms CLP(FD), ProB and OscaR. In particular, for n = 8 and
22 knights, the low-level SAT encoding using Maple reports unsatisfiability after
160.1 s. Furthermore, it can compute solutions for n = 10.

Our last approach, replacing the cardinality constraint by integer arithmetic,
proves not to be an advantage over the plain SAT encoding. In fact, the context
switch between SAT and Z3’s arithmetic solver causes overhead and, in conse-
quence, reduces performance. For n = 8, Z3 takes 402 s to find a model. If the
number of knights is increased to 22, Z3 detects unsatisfiability in 1535 s.

The related encodings discussed in Sect. 7 perform surprisingly well: Using
the MiniZinc encoding we find a solution for n = 8 and 21 knights in 8.5 s.
We are not sure what caused the speedup since the model was introduced in [6],
but suspect a combination of improvements in ECLiPSe/eplex and faster CPUs.
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The performance of the Picat and the MiniZinc model differs, although they
are based on the same encoding. While Picat is slower for n ≤ 8, it is faster for
larger instances. The direct encodings in ECLiPSe and Picat show that tailoring
towards the particular strengths of solvers is beneficial regarding performance.
ECLiPSe outperforms the more general solution written in MiniZinc on the
larger benchmarks. In particular, it is the only combination of encoding and
solver able to solve the puzzle for n ≥ 14. However, as argued above, the price
is readability.

9 Conclusion, Outlook and Discussion

In conclusion, the crowded chessboard problem turned out to be surprisingly
difficult to solve. The problem also allowed us to compare a variety of approaches.

– The high-level B model from Sect. 2.1 is a very readable, mathematical for-
mulation of the problem. It cannot be solved for n = 8 using the current
CLP(FD)-based backend of ProB, but it can be used to validate solutions
found by other approaches. Other backends of ProB based on SAT [20] or
SMT cannot be applied, due to the higher-order nature of the model.

– The lower-level, direct CLP(FD) encoding in Sect. 3 is faster, but also cannot
scale to n = 8.

– The monolithic encoding using the OscaR constraint library in Sect. 4 also
does not scale, but an optimized, layered version, sacrificing completeness for
efficiency, does.

– Various attempts at a lower-level direct SMT-LIB encoding in Sect. 6, also
cannot be solved for n = 8 using Z3.

– The high-level B model from Sect. 2.5 is slightly less declarative than the B
model from Sect. 2.1, but scales surprisingly well.

– Among the fastest of our solutions is a direct SAT encoding, generated by
a Python program in Sect. 5. However, this solution is hardest to read by
a human: neither the SAT encoding nor the Python program are ideal for
human validation and reviewing.

The ultimate goal is to be able to solve the high-level, readable model from
Sect. 2.1, fully automatically. We hope that further refinements of the approaches
in Sects. 2.5 and 4 will enable this, and pave the road for very declarative but
tractable modelling of complex constraint problems.
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Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

5. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

6. Chlond, M.J.: IP modeling of chessboard placements and related puzzles.
INFORMS Trans. Educ. 2(2), 56–57 (2002)

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24
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Abstract. Business rules control and constrain the behavior and struc-
ture of the business system in terms of its policies and principles. Business
rules are restructured frequently as per the internal or external circum-
stances based on market opportunities, statutory regulations, and busi-
ness focus. The current practice in industry, of detecting inconsistencies
manually, is error prone, due to the size, complexity and ambiguity in
representation using natural language.

Our work detects inconsistencies in business rules based on model
checking that exploits the FOL basis of SBVR specification. We aim to
reduce the burden on solvers and obtain effective system level test data,
leading to the development of a novel inconsistency rule checker based on
extracting the unsatisfiable cores using solvers like Z3, CVC4, etc. We
introduce the concept of graphical clusters, to partition SBVR vocab-
ularies and represent the former exploiting the many-sorted logic and
graph reachability algorithm, thus reducing the domain of quantification
and the number of uninterpreted functions. The translation of SBVR to
SMT-LIBv2 is implemented as part of our tool BuRRiTo. Experimental
results are shown on industrial level rule sets.

Keywords: Business rules · First order logic · SBVR · SMT solvers

1 Introduction

Enterprise business organizations regulate their business activities by impos-
ing certain logical constraints, often termed as business rules, that apply across
the process and procedures. Business rules are embedded in the source code of
legacy systems, governing policies, work flow descriptions, process flows, deci-
sion tables or databases. Business strategies are subject to redesign depending
upon the external market conditions, government policies or with the attempt of
maximizing revenue. Laws and business policies are changed regularly by the gov-
ernment, as a result of which businesses continually have to respond to changes
in the legal framework e.g. the “Sarbanes-Oxley Act of 2002” is a United States
federal law that was passed in response to a number of corporate accounting
scandals that occurred between 2000 and 2002 [1]. Both legislation amendments
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and business transformation force the enterprises to revisit their business rules,
highlighting the need for automatic testing of business rules. Consistency check-
ing also aids in the study of effect of addition of a new rule or policy on the
already existing set of rules. Also, the compliance checking within the rules is
a prerequisite for verifying the business process models against the regulations.
Thus, checking for ambiguities within individual rules, and between different
rules, both syntactically and semantically is of paramount importance.

The procedural process languages like BPMN, EPC and BPEL are concerned
with the control-flow perspective of business processes. On the other hand, busi-
ness rules capture the declarative aspects of business processes like constraints,
complex decisions and relationships between variables [2]. Our current approach
focuses on checking the consistency of the business rules which are expressed in
Semantics of Business Vocabulary and Rules (SBVR) [3], an OMG standard for
representing business rules. SBVR is a Controlled Natural Language (CNL), that
works as a bridge between business and IT, aiming to provide a way to express
business knowledge (requirements, operational procedures etc.) to the IT com-
munity. The main reason for choosing SBVR for the rule modelling is due to
its declarative nature, natural language representation and support for the first
order logic. The SBVR meta-model is used to represent business knowledge as
(1) Specifying business vocabularies, (2) Specifying business rules. The business
vocabulary is a cohesive set of interconnected concepts using which the organiza-
tions or communities specify the conduct of business. These concepts are entities
represented through name, term, and verb. The SBVR business rule is created
by combining name, term,, and verb with the built-in keywords (quantification,
modality or logical operators).

In this paper, we exploit the First Order Logic (FOL) basis of SBVR repre-
sentation and develop a framework that automatically converts the SBVR rules
to the SMT-LIBv2 [4,5] formulas and check the latter for inconsistencies using
solvers like Z3 [6], CVC4 [7], etc. In our earlier work [8], we have proposed a
method to detect inconsistencies amongst the rules using the above mentioned
solvers. In this paper, we introduce a new technique based on many-sorted logic
of FOL and the graph reachability algorithm to alleviate the shortcomings of
the paper [8] and to deal with the complex rules which are unhandled by the
previous works [8–13] on consistency checking. In the work [14], the authors
used many-sorted logic for the verification of web application data models via
translation to FOL.

The rest of the paper is organized as follows. Section 2 presents the back-
ground and the list of challenges that motivated the need of the work. Section 2.1
provides an introduction to many-sorted logic of FOL followed by Sect. 3 which
describes the proposed approach in detail through examples. Section 4 illustrates
implementation of the technique and the type of inconsistencies that can be
detected by our approach. Finally, experimental studies and discussions are pro-
vided in Sect. 5.
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2 Motivation

Figure 1 represents a set of business rules that motivated the need of our work.
The real world business rules provides the facility to take one or more actions
(consequent) based on the specification of one or more conditions (antecedant).
The multiple conditions can be enumerated using the AND or OR operators
and business rule is processed according to fulfillment of all conditions (AND)
or any one of the condition (OR). The major percentage of business rules in real
life data is of the form:
“if cond1 and cond2 and.....condn then action1 and action2 and....actionm” or
“if cond1 or cond2 or.....condn then action1 and action2 and....actionm”
The previous works on consistency checking of business rules [8–13] are not
able to find inconsistencies in all the rules of such form involved in the business
process which are successfully addressed in our approach. Secondly, our approach
handles the inconsistencies present in complex rules which are not addressed in
any of the previous works.

By complex rules, we mean the fact types associated with the rule falls under
one of the following categories.

(i) Rule having the keyword ‘that’ which is used after a designation for a noun
concept and before a designation for a verb concept. Rule r3 is one such
instance.

(ii) Rule involving the keyword ‘of ’ that associates a property with a noun
concept like rule r4 in Fig. 1.

(iii) Rule that is combination of (i) and (ii).

Complex rules can also contain logical operators like negation, conjunction,
disjunction or implication. Rule r5 in Fig. 1 is a complex rule of the form “f1 if
f2” where f1, f2 are fact types where f2 is of the category (iii).

We also handle SBVR rules and definitions (e.g., r6 in Fig. 1) that consists of
aspects in which a thing or property associated with a noun concept is measur-
able in terms of ‘greater than’ or ‘less than’ or ‘equal to’, that are not addressed
in previous works on consistency checking of business rules.

In paper [8], the SBVR terms that do not belong to the predefined sort
like Integer, Real, Boolean, etc. are mapped as constants of ‘Thing’ sort. Every
function or predicate in FOL takes the argument or returns the value of type
‘Thing’ or predefined sort resulting in following limitations.

r1: It is obligatory that each rental has at most 3 additional drivers.
r2: It is obligatory that each EURent has at least 4 additional drivers.
r3: It is obligatory that driver that is authorized in country, has driving license that is valid.
r4: It is obligatory that rented car of the rental is stored at the pick-up branch of the rental.
r5: It is permitted that a rental is open if an estimated rental charge is provisionally charged to a credit card of renter that

is responsible for the rental.
r6: It is obligatory that the rental duration of each rental is less than 90 rental days.

Fig. 1. SBVR rules from EURent [15] that motivated the need of the work.
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1. The existential and universal quantification is applied on the whole universe
of sort ‘Thing’, causing an increase in the count of quantifier instantiations,
along with excessive deduction on predicate, thereby increasing the complex-
ity of the solver while finding the unsatisfiable cores. In many cases, SMT
solvers returned ‘UNKNOWN’ when they failed to prove a set of SMT-LIBv2
formulas involving quantified variables as unsatisfiable.

2. The analysis of the model, generated from the SBVR using the ‘get-value’ or
‘get-model’ results in a lot of uninterpreted functions, which takes arbitrary
values to make the model satisfiable, thereby generating an incorrect model.

3. The cardinality constraints in SBVR rule is represented using ‘at least’, ‘at
most’, or ‘exactly’ quantification. The translation of rules (e.g., r1 and r2) as
depicted in Fig. 1 into SMT-LIBv2 formulas is incorrect semantically, result-
ing in generation of erroneous test data.

The work [9–12] mapped many SBVR concepts to the consistent ontologies
which the authors claim can be used for consistency checking, due to the presence
of supported reasoners like Hermit, Pellet [16,17], but no work was able to give
any concrete case study for detecting the inconsistent rules with the help of the
transformed formal knowledge base.

2.1 Introduction to Many-sorted Logic

Many-sorted logic is the generalization of FOL in which the domain of universe
is classified into disjunct sorts (or types). The sorts in many-sorted logic are
similar to the types in the conventional programming languages. The structure
(signature) of many-sorted logic is defined as:

σ = (S,C, F, P )

where

• S is the enumerable set of sorts {S1, S1, . . ., Sn} and Si is non-empty,
∑

is
n-sorted.

• C is countable set of constant symbols {c1, c2, . . ., ck} of sort Si.
• F is the countable set of function symbols {f1, f2, . . ., fm} taking sorts as

the arguments.
• P is the countable set of predicate symbols {p1, p2, . . ., pj} taking sorts as

the arguments.

Many-sorted logic is defined by means of the following information.

1. Many-sorted logic allows the arguments of functions and predicates to have
different sorts. Every constant symbol or function return types is associated
with a defined sort before its usage.

2. Many-sorted logic facilitates to perform quantification over a given sorts
instead of entire domain of universe.
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3. Sorts in many-sorted logic are mutually exclusive, i.e., a constant in FOL
shall always be associated with a single sort and the constants that belong to
different sorts can never be equal [14].

4. In contrast to the set theory, the sorts in many-sorted logic do not support
the subset relation.

SBVR XMI

Segregation of SBVR vocab-
ulary to Graphical Clusters

Representation of graphical
clusters via Venn Diagram

Pre-transformation Step

Formulation of axioms using the
concept of many sorted logic

Mapping of SBVR
rules to SMTLibv2

Transformation Step

Finding all MUSes using MARCO
algorithm and Z3 as SMT solver

Verification Step

Set of all inconsistent rules

Fig. 2. Block diagram to detect incon-
sistencies in SBVR based business rules.

The introduction of many-sorted logic
in translation to SMTLIBv2 formulas
from SBVR aims to reduce the num-
ber of generated uninterpreted functions,
thereby reducing the amount of deduc-
tions performed by SMT solvers on the
quantified variables and objects. The use
of many-sorted logic increases the compu-
tational efficiency and reduces the search
space as compared with the unsorted logic
[18]. Many-sorted logic finds the model
in an efficient way by applying symme-
try reduction techniques for each sort sep-
arately. Also, we apply the graph based
algorithms in the mappings with the aim
to generate correct test data and model.

3 Proposed Approach

Figure 2 shows the high-level block dia-
gram of the proposed solution approach
(called as Inconsistency Rule Checker).
The proposed approach is a multi-step
process primarily consists of 3 phases:
Pre-transformation, Transformation and
Verification. The source or the input to
tool is the SBVR which is processed into
machine readable format i.e. SBVR XMI
and the output is the set of all inconsis-
tent rules in the SBVR format.

1. Phase I: In Pre-transformation phase, we segregate the term, verb, noun,
and fact type concepts, which form the core of SBVR vocabulary to graphical
clusters and latter represent the graphical clusters to Venn Diagram.

2. Phase II: The transformation phase describes our approach of translation
from SBVR vocabularies and rules to SMT-LIBv2 formulas using the logical
structure and semantics of many-sorted logic.

3. Phase III: The generated SMT-LIBv2 formulas are fed as an input to the
verification phase which aims at detecting all set of inconsistencies in business
rules using SMT solvers like Z3, CVC4. Internally, the problem of finding all
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set of inconsistent rules is reduced to that of finding all minimally unsatisfiable
subformulas (MUS) which is explained in detail in Sect. 3.3. To illustrate the
approach, we consider the SBVR vocabulary shown in Fig. 3.

3.1 Pre-transformation Step

In this phase, we construct the forest of directed trees from the SBVR vocabulary
as shown in Fig. 4. The individual noun concept ‘Sweden airport branch’ and
noun concepts ‘airport branch’ and ‘branch’ are related through inheritance. A
possible approach is to use distinct sorts for every SBVR concept.

Many-sorted logic does not support the subsort relation and an element can
only belong to one sort at a time. It is evident that ‘Sweden airport branch’ is an
instance of ‘airport branch’ and also of ‘branch’ transitively. To overcome this
hurdle, we propose the idea of graphical clusters. We form a graphical cluster
for each directed tree of the forest. To schematically represent the logic formula
and relations in the graphical cluster, Venn diagram is used. We create the
sets (or classes) for every SBVR noun concept and sub-set relationship between
the sets is predicted from parent-child relationship (inheritance) present in the
SBVR vocabulary.

country
car movement
branch
airport branch

General Concept: branch
agency

General Concept: branch
city branch

General Concept: branch
Sweden airport branch

General Concept: airport branch
one way car movement

General Concept: car movement
round trip car movement

General Concept: car movement
Sweden

General Concept: country

Fig. 3. Sample SBVR vocabulary.

car movement

one way car movement

round trip car movement

country

Sweden

branch

airport branch

agency city branch

Sweden airport branch

Fig. 4. Forest of directed trees for
SBVR vocabulary shown in Fig. 3.

We define graphical cluster with the following properties:

1. A sub-set relation in Venn diagram associated with graphical cluster is a
logical way to represent directed edge in directed tree or inheritance in SBVR
vocabulary.

2. The number of classes in a graphical cluster is equal to the number of general
noun concept terms present in the directed tree corresponding to that cluster.

3. All the nodes of a directed tree of the forest are declared as constants or the
members of the corresponding graphical cluster.
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4. Each set of Venn diagram associated with graphical cluster is non-empty
(every SBVR noun concept is a member of its set).

5. The parent(B)-child(A) relation is depicted with the notion of proper-subset
in Venn diagram (A ⊂ B).

6. The SBVR noun concepts having the concept type as synonym are represented
using the equality of sets.

A distinct sort is introduced for each graphical cluster. We obtain
three graphical clusters, labelled with the sorts ‘Cluster Country ’, ‘Clus-
ter Car Movement ’ and ‘Cluster Branch’ for the above SBVR example whose
SMT-LIBv2 translation is depicted by formulas as:

(declare-sort Cluster Country 0 )
(declare-sort Cluster Branch 0 )
(declare-sort Cluster Car Movement 0 )

Figure 5 represents the Venn diagram of the graphical cluster associated with
the sort ‘Cluster Branch’. It constitutes the set ‘branch domain’ having the sub-
sets ‘agency domain’, ‘city branch domain’, and ‘airport branch domain’. It is
important to note that a general noun concept that is not hierarchically related
to another general noun concept in the SBVR vocabulary will have only one set in
the graphical cluster but the directed tree corresponding to the cluster may not
be a singleton graph (graph consisting of a single isolated node with no edges).

�

city branch domain
city branch

branch domain

� branch

airport branch domain

agency domain
�

agency

�

airport branch

�

Sweden airport branch

cluster branch

Fig. 5. Graphical Cluster associated with sort ‘Cluster Branch’.

The command declare-const declares a constant of a given type or sort
e.g., SMT-LIBv2 formula to assign airportBranch to the sort Cluster Branch is
represented as:

(declare-const airportBranch Cluster Branch)

To represent in SMT-LIBv2, for each set, we declare a predicate which takes
as an argument the sort of its graphical cluster and returns a Boolean value.
The formula to represent the predicate axiom for the set ‘airport branch’ is:

(declare-fun airport branch domain (Cluster Branch) Bool)
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To represent the knowledge present in Venn diagram, we formulate axioms.
Axioms constrain the interpretation of classes, their relationships and contents.
We define the following axioms to represent the graphical clusters into FOL:

1. Inclusion Axiom: It allows ‘subclass of’ relationships to be established
between class (set) expressions. C ⊆ D implies that each instance of one
C is also an instance of D, thus constructing a hierarchy of classes. Let ‘n2’
be a noun concept derived from another noun concept ‘n1’ in SBVR and the
sort of the graphical cluster corresponding to ‘n1’ and ‘n2’ be Cluster A,
then inclusion axiom is defined as:

∀x ∈ Cluster A, n2 domain(x) → n1 domain(x)

where n1 domain and n2 domain are the predicates that corresponds to the
sets in Venn diagram for n1 and n2 respectively.

2. Class Assertion Axiom: It allows to state whether SBVR term is an element
of the set e.g., the SMT-LIBv2 formula to assert ‘airport branch’ and ‘Swe-
den airport branch’ to the set ‘airport branch domain’ is:

(assert (airport branch domain airport branch))
(assert (airport branch domain Sweden airport branch))

3. Disjoint Class Axiom: It states that the sets in the graphical cluster which
are not related through inclusion axiom are disjoint, i.e., no SBVR term is an
element of two or more sets at a time.
Given a graphical cluster of sort Cluster n, the immediate children of noun
concept nl = {n1, n2, . . ., nk}. Then, the disjoint class axiom is defined as:

∀x ∈ Cluster n, ni domain(x) → ¬(n1 domain(x)) ∧ . . .¬(n(i−1) domain(x))

∧¬(n(i+1) domain(x)) ∧ . . .¬(n(k) domain(x))

∧¬(nl = x)

We use graph reachability algorithm [19] to identify the sets in the Venn
diagram which are to be logically negated. For example, consider the graph
shown in Fig. 4, agency and city branch are not reachable from airport branch
while the term concepts in Fig. 4 which are reachable, e.g., branch, are added
as negation, that conveys the idea that branch does not belong to the set
airport branch domain.
For the cluster ‘Cluster branch’, the Disjoint class axiom is represented as:

∀x ∈ Cluster n, airport branch domain(x) → ¬(city branch domain(x))∧
¬(agency domain(x)) ∧ ¬(x = branch)

By default, this holds true. But if the sets in the graphical structure are
overlapping, this axiom is not satisfied. This can occur when the definition or
rule in SBVR explicitly reveals that an SBVR element is child of two or more
concepts.
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4. Equivalent Class Axiom: Consider a noun concept ‘n1’ as a synonym to noun
concept ‘n2’. Equivalent Class Axiom allows the two sets of Venn diagram to
be equal.

∀x ∈ Cluster A, n2 domain(x) = n1 domain(x)

5. Disjoint Union Axiom: SBVR provides a way to categorize the individuals
belonging to certain entity according to a set of different criteria using ‘cat-
egorization’ and ‘segmentation’ capabilities. Segmentation is the categoriza-
tion scheme whose contained categories are complete (total) and disjoint with
respect to the general concept containing the categorization scheme. Consider
the following SBVR vocabulary which is an extension of vocabulary shown in
Fig. 3:
Branches by Type

Definition: segmentation that is for concept branch and subdivides branch based on branch type
Necessity: Branches by Type includes the categories airport branch and city branch and agency

Here ‘branch type’ is the ‘categorization’ type, on the basis of which the
‘branch’ is partitioned into mutually exclusive classes. The corresponding FOL
generated for the above example is shown below:

∀x ∈ Cluster branch,

branch domain(x) → (x = branch)

∨ ((airport branch domain(x)) ∧ ¬(agency domain(x)) ∧ ¬(city branch domain(x)))

∨ ((agency domain(x)) ∧ ¬(airport branch domain(x)) ∧ ¬(city branch domain(x)))

∨ ((city branch domain(x)) ∧ ¬(airport branch domain(x)) ∧ ¬(agency domain(x)))

3.2 Transformation Step

Semantic formulations of the SBVR rule include:

(a) modal formulations (necessary, obligatory, impossible, prohibited, etc.)
(b) quantifications (universal, existential, at-most-n, at-least-n and exactly-n)
(c) logical operators (logical negation, conjunction, disjunction and implication)

r1: It is obligatory that each car rental is owned by atleast 2 branches.
r2: It is obligatory that driver that is authorized in Sweden, has a driving license that is valid.

Fig. 6. Sample SBVR rules.
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n1: driver
n2: country
IN1: Sweden

General Concept: country
IN2: Germany

General Concept: country
n3: branch
n4: car rental
n5:driving license

General Concept: license
n6: Rental A

General Concept: car rental
n7: pick up location
f1:driver is authorized in country
f2:driving license is valid
f3: driver has license
f4:car rental is owned by branch.

Fig. 7. SBVR vocabulary for the
rules depicted in Fig. 6.

To illustrate the class of rules r1 and
r2 (Fig. 6), we consider the SBVR vocabu-
lary shown in Fig. 7. To capture the informa-
tion present in the SBVR rule, we formulate
the mappings based on axioms explained in
Sect. 3.1.

It can be seen that rule r2 is based on
facts f1, f2, and f3 (Fig. 7). To represent fact
types in SBVR, we create a new sort BoolVal
which can take three values t (similar to true),
f (similar to false) or NA (not assigned).
Let bf be the binary fact defined as bf →
n1v1n2, where n1 (subject) and n2 (object) are
noun concept related through verb concept v1.
The corresponding mapping to SMT-LIBv2 is
specified as:

(declare-const v1 (Array Sort A Sort B BoolVal))

where Sort A and Sort B are the clusters associated with n1 and n2 respectively.
We assign default value NA to the predicate for the elements (of sorts) that are
not explicitly related in the rules. The SMT-LIBv2 for f1 is generated as:
(declare-datatypes () ((BoolVal NA t f))

(declare-const

isAuthorizedIn(Array Cluster Driver Cluster Country BoolVal))

(assert (=(default isAuthorizedIn)NA))

The rule r1 in Fig. 6 encompasses the obligation formulation which ranges over
an universal quantification. This universal quantification introduces a variable
‘car rental ’ that scopes over an atleast-n quantification of cardinality 2. At-
least-n quantification (at-most-n quantification) is the quantification that has a
minimum (maximum) cardinality n and the number of referents of the variable
introduced by this quantification is more (less) than or equal to n. This atleast-
n quantification in turn ranges over the concept ‘branch’. A sample at-least-n
quantification can be generalized as ‘It is obligatory that n1 v1 at-least n n2’.
Rule r1 can be seen as an instance of such quantification which is mapped in
SMT-LIBv2 representation with the following formula:

(assert (forall ((x Cluster Rental))
(exists ((a Cluster Branch)(b Cluster Branch))

(and (branch domain a) (branch domain b)
(implies (car rental domain x )

(and (= (select isOwnedBy x a ) t)
(= (select isOwnedBy x b ) t))
(distinct a b )))))))

In a SBVR rule, sometimes the keyword ‘that ’ is used after the designation
for a noun concept and before a designation for a verb concept. It introduces
a restriction on the noun concept which is based on the facts defined in the
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vocabulary. Consider rule r2 in Fig. 6, the concept driver is restricted by the
fact “driver is authorized in country”.

Rule r2 is semantically interpreted as “If driver is authorized in Sweden,
then that driver has a driving license that is valid.”, thereby the corresponding
SMT-LIBv2 representation is generated as:

(assert(forall ((x Cluster Driver)(z Cluster Country))
(exists ((y Cluster License))

(and (driving license domain y)
(implies

(and (driver domain x)
(driving license domain y)

(= Sweden z) (=(select isAuthorizedIn x z) t))
(and (= (select has x y ) t)

(= (select isValidIn y ) t)))))))

BuRRiTo tool provides the provision to automatically transform SBVR vocab-
ulary and rules into SMT-LIBv2 format. SBVR rules or definitions can contain
the aspects in which a thing is measurable in terms of ‘greater than’, ‘less than’
or ‘equal to’. It is also used to categorize the concepts belonging to certain entity
according to a set of different criteria using ‘categorization’ capabilities. It can
be interpreted from the SBVR vocabulary in Fig. 8 that ‘duration’ is the prop-
erty associated with the ‘rental’ which can accept the values of type Integer. To
map such scenarios in SMT, we declare a constant of a 2-D array which takes
sort associated with the concept ‘rental’ and the Integer sort as the parameters.
Due to space limitation, we only show SMT-LIBv2 generated for the concept
‘medium duration rental’.

n1: rental
n2: duration
n3: low duration rental

Definition: rental that has duration less than or equal to 4 days
n4: medium duration rental

Definition: rental that has duration greater than 4 days and less than 6 days
n5: high duration rental

Definition: rental that has duration greater than or equal to 6 days

Fig. 8. A sample SBVR vocabulary.

(declare-const durationInt (Array Cluster Rental Int))
(assert
(forall ((x Cluster Rental)(a Cluster Duration))

(implies
(and (medium duration rental domain x) (duration domain a))
(and (= (select has x a ) t)

(> (select durationInt x ) 4)
(< (select durationInt x ) 6) ))))

3.3 Verification Step

SMT solvers will find the conflicting set of rules in the form of unsatisfiable
cores. The unsatisfiable core will return a subset of the named formulas. We add
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labels to the assertions so that the command ‘get-unsat-core’ can use these
labels in UNSAT core output. Let fi be a function for rule ri that exists in the
system and Xi be the name to it. The conflict can be found by putting assert
statement and check-sat for each such function.

To the best of our knowledge, unsat core generation is supported by MATH-
SAT [20], Yices [21], CVC3, and Z3 solvers. In our work, we conduct experiments
with Z3 as SMT solver. But the ‘get-unsat-core’ finds only one set of unsat-
isfiable constraints. After removing or correcting the conflicting rule, we again
run the solver to find next set of unsatisfiable constraints. But we are interested
in finding all sets of conflicting rules at a time. The problem of finding all set of
inconsistent rules can be reduced to that of finding all minimally unsatisfiable
subformulas. To illustrate such scenario, consider the following set of rules.

R = {R1, R2, R3, ........, Rn}
If there exists some assignment to the values of the function and predicate sym-
bols that satisfies every rule, then R is said to be satisfiable or SAT, otherwise
it is unsatisfiable. We are interested in finding all the minimal sets of rules from
R that are inconsistent with respect to each other. We consider the model M
represented by the formula:

F = {f(R1), f(R2), f(R3) . . . ......, f(Rn)}
where f(Ri) is the boolean FOL formula corresponding to the rule Ri.

For the model M , MUSes(Minimal unsatisfiable subformulas) can be defined
as

MUSes(M) = mu =

{
mu ⊆ F and mu is UNSAT

∀x ∈ mu,mu\x is SAT

To find all the sets of inconsistent rules, we use Z3’s Python-based API [22]
features which extracts all minimal unsatisfiable cores together with all maximal
satisfying subsets. It is based on Marco Algorithm which aims at enumerating all
MUSes of an unsatisfiable constraint [23]. The technique to find all unsatisfiable
cores uses the concept of a Map Solver. The basic ‘grow’ and ‘shrink’ algorithms
are used for finding an Maximal Satisfying Subset (MSS) or an MUS respectively
of constraint set.

4 Implementation

We built an Inconsistency Rule Checker on top of SBVR rule editor in our BuR-
RiTo tool. The SBVR rule editor facilitates an easy way to business analysts
for specifying the SBVR vocabularies and rules. The tool is allowed to generate
the SBVR XMI based on the SBVR 1.2 meta-model, that can be provided as
an input to the Rule Checker. The user interface for SBVR editor is shown in
Fig. 9. The tool presents all sets of inconsistent rules encountered at the end of
the process, as illustrated in Fig. 10.
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Fig. 9. Snapshot of the business rule editor of the BuRRiTo tool

Fig. 10. Snapshot of the conflicting rules detected by Inconsistency Rule Checker
of the BuRRiTo tool

It can be seen that from the set of 6 business rules given as input in SBVR
rule editor in Fig. 9, the inconsistency checker detects two classes of ambiguous
rules as shown in Fig. 10.

Figure 11 depicts a sample set of inconsistencies that can be detected with our
approach. The rule r8, r9 and r10 are inconsistent as in the SBVR vocabulary,
the concept ‘one way car movement’ is segmented into three disjoint concepts:
‘local car movement’, ‘in country car movement’ and ‘international car move-
ment’. Consider the rule r11 and r12, the verb concept ‘specifies’ and ‘is specified
by’ are inverse verb concepts of one another, leading to ambiguities between r11
and r12.

Case 1

⎫⎬
⎭

r1 : it is necessary that each car rental is insured by exactly 1 credit card.
r2 : it is necessary that each luxury car rental is car rental.
r3 : it is necessary that each luxury car rental is insured by atleast 2 credit cards.

Case 2

}
r4 : it is obligatory that if car is physically present in EU-Rent branch then car is assigned to rental.
r5 : it is impossible that if car is physically present in EU-Rent branch or car is assigned to rental.

Case 3

}
r6 : it is necessary that lowest cost group of car rental is GROUP A.
r7 : it is necessary that lowest cost group of car rental is GROUP B.

Case 4

⎫⎪⎬
⎪⎭

r8 : it is obligatory that India-Burma car movement is one-way car movement.

r9 : it is obligatory that India-Burma car movement is local car movement.

r10 : it is obligatory that India-Burma car movement is international car movement.

Case 5

}
r11 : it is obligatory that car movement specifies car group.

r12 : it is impossible that car group is specified by car movement.

Case 6

}
r13 : it is obligatory that duration of each rental is less than 90 days.

r14 : it is obligatory that duration of Rental A is equal to 100 days.

Fig. 11. Set of inconsistent rules detected by Inconsistency Rule Checker using
BuRRiTo tool.
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5 Experimental Studies and Discussions

We manually validated the generated SMT-LIBv2 for each mapping to verify
the correctness of translation. In addition, we conducted experiments on 2 case
studies.

1. EU Rent Car Rental [15]:
It contains the set of concepts of general and specific things of importance
to the EURent car rental business. It consists of 64 rules ranging over 14
different modules. We created the SBVR rules and manually embedded the
inconsistencies in each module. We then provided the rules as an input to
Inconsistency Rule Checker implemented in BuRRiTo tool. In this study,
the tool successfully identified all 14 injected conflicts.

Table 1. Comparison of work for knowledge representation and consistency checking
of SBVR.

SBVR concepts Our

work

Chittimalli

and

Anand [8]

Karpovič [12] Kendal and

Linehan [9]

Reynares

[10]

General noun concept ✓ ✓ ✓ Incorrect ✓

Individual noun concept ✓ ✓ ✓ ✓ ✓

Facts ✓ ✓ ✓ ✗ ✗

Property association ✓ ✓ ✓ ✓ ✗

Concept1 specialiczes concept2 ✓ ✓ ✓ ✓ ✓

Segmentation ✓ ✓ ✓ ✓ ✓

Categorization ✓ ✓ ✓ ✓ ✓

Inverse verb concept ✓ ✓ ✓ ✓ ✓

Universal quantification and

existential quantification

✓ ✓ ✓ ✗ ✓

Quantification involving

‘at-least-n’, ‘at-most-n’ and

‘exactly-n’

✓ Incorrectly

mapped

✓ ✗ ✓

Simple rules ✓ ✓ ✓ ✓ ✓

Rules involving conjunction ✓ ✓ ✓ ✗ ✓

Rules involving disjunction ✓ ✓ ✓ ✗ ✓

Rules involving implication ✓ Only in some

cases

Only in some

cases

✗ ✗

Logical negation of logical

formulation

✓ ✓ ✓ ✗ ✗

Quantity1 ‘is less than’ or ‘greater

than’ or ‘equal to’ quantity2

✓ ✗ ✓ ✗ ✗

Complex rules involving

restriction on noun concept

✓ ✗ ✗ ✗ ✗

Complex rules involving keyword

‘of’ associating property to noun

concept

✓ ✗ ✗ ✗ ✗

Concept1 is coextensive with

concept2 (Synonym)

✓ ✓ ✓ ✗ ✗

Alethic and Deontic modalities ✗ ✗ ✗ ✗ ✗
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2. Rules from Industrial Insurance Application:
We obtained a set of 110 rules from the Industrial case-study belonging to
insurance domain. The rules were complex containing the data related to
liability and package policy. The business experts added 15 inconsistencies in
a sample set of such rules that were converted to SBVR. Our tool successfully
identified 12 inconsistent rules. The rules involving arithmetic calculations
and mathematical operations (sum of, product of, percentage calculation,
etc.) were not mapped to the SMT-LIBv2 in our current approach, thereby
unable to detect 3 inconsistencies.

In the study, we investigate following research questions:

RQ1: How many concepts of SBVR are covered in our mappings?
RQ2: Is our approach of knowledge representation of SBVR and detecting
inconsistent rules better compared with the previous works?
RQ3: What are the existing gaps in present solutions and possible opportu-
nities for future research?

The first research question deals with the completeness of our mappings
with respect to SBVR. The results of RQ1 are presented in Table 1, where the
important SBVR concepts are listed depicting the capability of the tool to capture
them in the mappings and consistency check. This table is an extension of the
results presented by Karpovic in his paper [12]. Mitra and Chittimalli conducted
a systematic literature review on the existing consistency checking of business
rules presented in the SBVR format [24].

Apart from generation of correct model and effective system level test data,
our work reduced the deductions performed by the solver by minimizing the num-
ber of un-interpreted functions. Let there be m terms present in SBVR vocabulary
where m is the sum of general noun concept terms and individual noun concept
terms and sorts can have the elements from the defined vocabulary, then the
number of uninterpreted functions produced using paper [8] for unary fact types
is O(m), for binary fact types is O(m × m) and for n-ary is O(mn). The work
presented in the paper reduced the uninterpreted functions to O(p) for unary
where p is the terms present in the graphical cluster corresponding to the sort
associated with the argument of predicate. And for n-ary, the number of unin-
terpreted functions produced is O(p1 × p2 × . . . × pn) where pi is the number of
terms present in the graphical cluster corresponding to the sort associated with
the ith argument of function. Thereby, the current approach has reduced burden
on the 3 core components of Z3 [6]: (1) DPLL-based SAT solver, (2) Satellite
solvers (arithmetic, arrays, etc.), (3) E-matching abstract machine (quantifiers).

The work presented in the paper makes the following novel contributions:

1. While there has been work done in detecting inconsistencies in business rules,
we are the first to introduce the concept of many sorted logic and graph reach-
ability in translation of SBVR to SMT-LIBv2, thereby efficiently exploiting
the FOL basis of SBVR specification.
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2. The technique presented in [8] finds only one set of unsatisfiable constraints
at one time. We reduced the problem finding all set of inconsistent rules to
that of finding all minimally unsatisfiable subformulas to finding all sets of
conflicting rules at a time. We built an Inconsistency Rule Checker on top
of SBVR rule editor in our BuRRiTo tool which successfully finds all set of
inconsistent rules.

3. We proposed 60 different mappings for automatic translation of SBVR based
rules, vocabulary, definitions and other concepts (e.g. synonym, synonymous
form, inverse verb concept, etc.) overcoming the limitations of the previous
works mentioned in Sect. 2. Although BuRRiTo performs well in the exper-
iments, but the future research in the field of inconsistency rule checking
should take into consideration the alethic and deontic modalities captured in
the rules.
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Abstract. One of the most attractive features of untyped languages is
the flexibility in term creation and manipulation. However, with such
power comes the responsibility of ensuring the correctness of these oper-
ations. A solution is adding run-time checks to the program via asser-
tions, but this can introduce overheads that are in many cases imprac-
tical. While static analysis can greatly reduce such overheads, the gains
depend strongly on the quality of the information inferred. Reusable
libraries, i.e., library modules that are pre-compiled independently of the
client, pose special challenges in this context. We propose a technique
which takes advantage of module systems which can hide a selected set
of functor symbols to significantly enrich the shape information that
can be inferred for reusable libraries, as well as an improved run-time
checking approach that leverages the proposed mechanisms to achieve
large reductions in overhead, closer to those of static languages, even in
the reusable-library context. While the approach is general and system-
independent, we present it for concreteness in the context of the Ciao
assertion language and combined static/dynamic checking framework.
Our method maintains the full expressiveness of the assertion language
in this context. In contrast to other approaches it does not introduce the
need to switch the language to a (static) type system, which is known to
change the semantics in languages like Prolog. We also study the app-
roach experimentally and evaluate the overhead reduction achieved in
the run-time checks.
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Assertion-based debugging and validation · Static analysis

1 Introduction

Modular programming has become widely adopted due to the benefits it pro-
vides in code reuse and structuring data flow between program components.
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A tightly related concept is the principle of information hiding that allows con-
cealing the concrete implementation details behind a well-defined interface and
thus allows for cleaner abstractions. Different programming languages implement
these concepts in different ways, some examples being the encapsulation mech-
anism of classes in object-oriented programming and opaque data types. In the
(constraint) logic programming context, most mature language implementations
incorporate module systems, some of which allow programmers to restrict the
visibility of some functor symbols to the module where they are defined, thus
both hiding the concrete implementation details of terms from other modules
and providing guarantees that only the predicates of that particular module can
use those functor symbols as term constructors or matchers.

One of the most attractive features of untyped languages for programmers is
the flexibility they offer in term creation and manipulation. However, with such
power comes the responsibility of ensuring correctness in the manipulation of
data, and this is specially relevant when data can come from unknown clients.
A popular solution for ensuring safety is to enhance the language with optional
assertions that allow specifying correctness conditions both at the module bound-
aries and internally to modules. These assertions can be checked dynamically by
adding run-time checks to the program, but this can introduce overheads that
are in many cases impractical. Such overheads can be greatly reduced with static
analysis, but the gains then depend strongly on the quality of the analysis informa-
tion inferred. Unfortunately, there are some common scenarios where shape/type
analyses are necessarily imprecise. A motivational example is the case of reusable
libraries, i.e., the case of analyzing, verifying, and compiling a library for general
use, without access to the client code or analysis information on it. This includes
for example the important case of servers accessed via remote procedure calls.
Static analysis faces challenges in this context, since the unknown clients can fake
data that is really intended to be internal to the library. Ensuring safety then
requires sanitizing input data with potentially expensive run-time checks.

In order to alleviate this problem, we present techniques that, by exploit-
ing term hiding and the strict visibility rules of the module system, can greatly
improve the quality of the shape information inferred by static analysis and reduce
the run-time overhead for the calls across module boundaries by several orders of
magnitude. These techniques can result in improvements in the number and size
of checks that allow bringing guarantees and overheads to levels close to those of
statically-typed approaches, but without imposing on programs the restriction of
being well-typed. For concreteness, we use in this work the relevant parts of the
Ciao system [2], which pioneered the assertion-based, combined static+dynamic
checking approach: the module system, the assertion language –which allows pro-
viding optional program specifications with various kinds of information, such as
modes, shapes/types, non-determinism, etc.–, and the overall framework. How-
ever, our results are general and we believe they can be applied to many dynamic
languages. In particular, we present a semantics for modular logic programs where
the mapping of module symbols is abstract and implementation-agnostic, i.e.,
independent of the visibility rules of particular module systems.
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2 Preliminaries

We first recall some basic notation and the standard program semantics, follow-
ing the formalization of [3]. An atom A is a syntactic construction of the form
f(t1, . . . , tn) where f is a symbol of arity n and the ti are terms. Terms are
inductively defined as variable symbols or constructions of the form f(t1, . . . , tn)
where f is a symbol of arity n (n ≥ 0) and the ti are terms. Note that we
do not (yet) distinguish between predicate symbols and functors (uninterpreted
function symbols), denoting the global set of symbols as FS. A constraint is a con-
junction of expressions built from predefined predicates (such as term equations
or inequalities over the reals) whose arguments are constructed using predefined
functions (such as real addition). A literal is either an atom or a constraint.
Constants are introduced as 0-ary symbols. A goal is a conjunction of literals.
A clause is defined as H ← B, where H is an atom (the head) and B is a goal
(the body). A definite program is a finite set of clauses. The definition of an
atom A in a program, cls(A), is the set of program clauses whose head has the
same predicate symbol and arity as A, renamed-apart. We assume that all clause
heads are normalized, i.e., H is of the form f(X1, . . . , Xn) where the X1, . . . , Xn

are distinct free variables.
We recall the classic operational semantics of (non-modular) definite pro-

grams, given in terms of program derivations, which are sequences of reductions
between states. We use :: to denote concatenation of sequences. A state 〈G | θ〉
consists of a goal sequence G and a constraint store (or store for short) θ. A query
is a pair (L, θ), where L is a literal and θ a store, for which the (constraint) logic
programming system starts a computation from state 〈L | θ〉. The set of all
derivations from the query Q is denoted derivs(Q). A finite derivation from a
query (L, θ) is finished if the last state in the derivation cannot be reduced, and
it is successful if the last state is of the form 〈� | θ′〉, where � denotes the
empty goal sequence. In that case, the constraint ∃̄Lθ′ (denoting the projection
of θ onto the variables of L) is an answer to (L, θ). Else, the derivation is failed.
We denote by answers(Q) the set of answers to a query Q.

3 An Abstract Approach to Modular Logic Programs

There have been several proposals to date for supporting modularity in logic
programs, all of which are based on performing a partition of the set of pro-
gram symbols into modules. As mentioned before, the two most widely adopted
approaches are referred to as predicate-based and atom-based module systems.
In predicate-based module systems all symbols involved in terms are global,
i.e., they belong to a single global user module –a special module from which
all modules import the symbols and to which all modules can add symbols. In
atom-based module systems [4] only constants and explicitly exported symbols
are global, while the rest of the symbols are local to their modules. Ciao [5]
adopts a hybrid approach which is as in predicate-based systems but with the
possibility of marking a selected set of symbols as local (we will use this model in
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the examples in Sect. 5). Despite the differences among these module systems, by
performing module resolution applying the appropriate visibility rules, programs
are reducible in all systems to a form that can be interpreted using the same
Prolog-style semantics. We will use this property in order to abstract our results
away from particular module systems and their symbol visibility rules. To this
end we present a formalization of the “flattened” version of a modular program,
where visibility is explicit and is thus independent of the visibility conventions
of specific module systems. Let MS denote the set of all module symbols. The
flattened form of a modular definite program is defined as follows:

Definition 1 (Modular Program). A modular program is a pair (P,mod(·)),
where P is a definite program and mod(·) is a mapping that assigns for each
symbol f ∈ FS a unique module symbol m ∈ MS. Let C be a clause H ← B in
P , mod(C) � mod(H). Let A be an atom1 or a term of the form f(. . .). Then
mod(A) � mod(f).

The mod(·) mapping creates a partition of the clauses in the definite pro-
gram P . We refer to each resulting equivalence class as a module, and represent
it with the module symbol shared by all clauses in that class. The set of all
symbols defined by a module m is def(m) = {f |f ∈ FS,mod(f) = m,m ∈ MS}.

Definition 2 (Interface of a Module). The interface of a module m is given
by the disjoint sets exp(m) and imp(m), s.t. exp(m) ⊆ def(m) is the subset of the
symbols defined in m that can appear in other modules, referred to as the export
list of m, and imp(m) = {f |f ∈FS, f is in symbols of cls(p), p∈def(m)}\def(m)
is a superset of symbols in the bodies of the predicates of m, that are not defined
in m, referred to as the import list of m.

To track calls across module boundaries we introduce the notion of clause
end literal, a marker of the form ret(H), where H stands for the head of the
parent clause, as given in the following definition:

Definition 3 (Operational Semantics of Modular Programs). We rede-
fine the derivation semantics such that goal sequences are of the form (L,m) :: G
where L is a literal, and m is the module from which L was introduced, as shown
below. Then, a state S = 〈(L,m) :: G | θ〉 can be reduced to a state S′ as follows:

1. 〈(L,m) :: G | θ〉 � 〈G | θ ∧ L〉 if L is a constraint and θ ∧ L is satisfiable.
2. 〈(L,m) :: G | θ〉 � 〈(B1, n) :: . . . :: (Bk, n) :: (ret(L), n) :: G | θ〉 if L is an

atom and ∃(L ← B1, . . . , Bk) ∈ cls(L) where mod(L) = n and it holds that
(L∈def(n) ∧ n=m)

∨
(L∈exp(n) ∧ L∈ imp(m) ∧ n 
=m).

3. 〈(L,m) :: G | θ〉 � 〈G | θ〉 if L is a clause return literal ret( ).

Basically, for reduction step 2 to succeed, the L literal should either be defined
in module m (and then n = m) or it should belong to the export list of module
n and be in the import list of module m.
1 In practice constraints are also located in modules. It is trivial to extend the formal-

ization to include this, we do not write it explicitly for simplicity.
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4 Run-Time Checking of Modular Programs

Assertion Language. We assume that program specifications are provided by
means of assertions: linguistic constructions that allow expressing properties of
programs. For concreteness we will use the pred assertions of the Ciao assertion
language [2,6,7], following the formalization of [3,8]. Such pred assertions define
the set of all admissible preconditions for a given predicate, and for each such
pre-condition, a corresponding post-condition. These pre- and post-conditions
are formulas containing literals defined by predicates that are specially labeled
as properties. Properties and the other predicates composing the program are
written in the same language. This approach is motivated by the direct corre-
spondence between the declarative and operational semantics of constraint logic
programs. In what follows we refer to these literals corresponding to properties
as prop literals. The predicate symbols of prop literals are module-qualified in
the same way as those of the other program literals.

Example 1 (Property). The following property describes a sorted list:

sorted([]). sorted([_]). sorted([X,Y|L]) :- X =< Y, sorted([Y|L]).

i.e., [[sorted(A)]] = {A = [], A = [B], A = [B, C|D]∧B ≤ C ∧E = [C|D]∧ sorted(E)}.

The left part of Fig. 1 shows a set of assertions for a predicate (identified by
a normalized atom Head). The Prei and Posti fields are conjunctions2 of prop
literals that refer to the variables of Head. Informally, such a set of assertions
states that in any execution state 〈(Head,m) :: G | θ〉 at least one of the Prei
conditions should hold, and that, given the (Prei, Posti) pair(s) Prei holds,
then, if the predicate succeeds, the corresponding Posti should hold upon suc-
cess. We denote the set of assertions for a predicate represented by Head by
A(Head), and the set of all assertions in a program by A.

Head Pre1 Post1

Head Pren Postn

Ci =
{
ci (Head,

∨n
j=1 Prej) i = 0

ci (Head, Prei, Posti) i = 1..n

Fig. 1. Correspondence between assertions and assertion conditions.

In our formalization, rather than using the assertions for a predicate directly,
we use instead a normalized form which we refer to as the set of assertion con-
ditions for that predicate, denoted as AC(Head) = {C0, C1, . . . , Cn}, as shown
in Fig. 1, right. The ci are identifiers which are unique for each assertion condi-
tion. The calls(Head, . . .) conditions encode the check that ensures that the calls
to the predicate represented by the Head literal are within those admissible by
the set of assertions, and we thus call them the calls assertion conditions. The
success(Head, Prei, Posti) conditions encode the checks for compliance of the

2 In the general case Pre and Post can be DNF formulas of prop literals but we limit
them to conjunctions herein for simplicity of presentation.
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successes for particular sets of calls, and we thus call them the success assertion
conditions. If there are no assertions associated with Head then the corresponding
set of assertion conditions is empty. The set of assertion conditions for a program,
denoted AC is the union of the assertion conditions for each of the predicates in
the program, and is derived from the set A of all assertions in the program.

Semantics with Run-time Checking of Assertions and Modules. We now present
the operational semantics with assertions for modular programs, which checks
whether assertion conditions hold or not while computing the derivations from
a query in a modular program. The identifiers of the assertion conditions (the
ci) are used to keep track of any violated assertion conditions. The err(c) literal
denotes a special goal that marks a derivation finished because of the violation of
the assertion condition with identifier c. A finished derivation from a query (L, θ)
is now successful if the last state is of the form 〈� | θ′〉, erroneous if the last
state is of the form 〈err(c) | θ′〉, or failed otherwise. The set of derivations for a
program from its set of queries Q using the semantics with run-time checking of
assertions is denoted by rtc-derivs(Q). We also extend the clause return literal to
the form ret(H, C), where C is the set of identifiers ci of the assertion conditions
that should be checked at that derivation point. A literal L succeeds trivially for
θ in program P , denoted θ ⇒P L, iff ∃θ′ ∈ answers((L, θ)) such that θ |= θ′.
Intuitively, a literal L succeeds trivially if L succeeds for θ without adding new
constraints to θ. This notion captures the checking of properties and we will thus
often refer to this operation as “checking L in the context of θ.”3

Definition 4 (Operational Semantics for Modular Programs with
Run-Time Checking). A state S = 〈(L,m) :: G | θ〉 can be reduced to a
state S′, denoted S �rtc S′, as follows:

1. If L is a constraint then S′ =〈G | θ ∧ L〉 if θ ∧ L is satisfiable.
2. If L is an atom and ∃(L ← B1, . . . , Bk) ∈ cls(L), then the new state is

S′ =
{ 〈err(c) | θ〉 if ∃ c.calls(L,Pre) ∈ AC(L) ∧ θ 
⇒P Pre

〈(B1, n) :: . . . :: (Bk, n) :: (ret(L, C), n) :: G | θ〉 otherwise

s.t. C = {ci | ci.success(L,Prei, Posti) ∈ AC(L) ∧ θ ⇒P Prei} where
mod(L) = n and it holds that (L ∈ def(n) ∧ n = m)

∨
(L ∈ exp(n) ∧ L ∈

imp(m) ∧ n 
=m)
3. If L is a clause return literal ret( , C), then

S′ =

{ 〈err(c) | θ〉 if ∃ c ∈ C s.t. c.success(L′, , Post) ∈ AC(L′) ∧ θ �⇒P Post
〈G | θ〉 otherwise

3 Note that even if several assertion conditions may be violated at the same time, we
consider only the first one of them. The ordering is only imposed by the implemen-
tation and does not affect the semantics.
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Theorem 1 below on the correctness of the operational semantics with run-
time checking can be straightforwardly adapted from [8].4 The completeness of
this operational semantics as presented in Theorem 2 below can only be proved
for partial program derivations, as the new semantics introduces the err() literal
that directly replaces the goal sequence of a state in which a violation of an
assertion condition occurs.

Theorem 1 (Correctness Under Assertion Checking). For any tuple
(P,Q,A) it holds that ∀D′ ∈ rtc-derivs(Q)∃D ∈ derivs(Q) s.t.D′is equivalent
toD(including partial derivations).

Theorem 2 (Partial Completeness Under Assertion Checking). For any
tuple (P,Q,A) it holds that ∀D = (S1, . . . , Sk, Sk+1, . . . , Sn) ∈ derivs(Q) ∃D′ ∈
rtc-derivs(Q) s.t. D′ is equivalent to D or (S1, . . . , Sk, 〈err(c) | 〉).

5 Shallow Run-Time Checking

As mentioned before, the main advantage of modular programming is that it
allows safe local reasoning on modules, since two different modules are not
allowed to contribute clauses to the same predicate.5 Our purpose herein is to
study how in systems where the visibility of function symbols can be controlled,
similar reasoning can be performed at the level of terms, and in particular how
such reasoning can be applied to reducing the overhead of run-time checks. We
will refer to these reduced checks as shallow run-time checks, which we will for-
mally define later in this section. We start by recalling how in cases where the
visibility of terms function symbols can be controlled, this reasoning is impossible
without global (inter-modular) program analysis, using the following example:

Example 1. Consider a module m1 that exports a single predicate p/1 that
constructs point/1 terms:

:- module(m1, [p/1, r/0]). % m1 declared, p/1 and r/0 are exported

p(A) :- A = point(B), B = 1. % A = user:point(1)

:- use_module(m2,[q/1]). % import q/1 from a module m2

r :- X = point(2), q(X). % X = user:point(2)

Here, we want to reason about the terms that can appear during program
execution at several specific program points: (a) before we call p/1 (point at
which execution enters module m1); (b) when the call to p/1 succeeds (point at
which execution leaves the module); and (c) before we call q/1 (point at which
execution enters another module). When we exit the module at points (b) and
4 The formal definition of the equivalence relation on derivations, as well as proofs for

the theorems and lemmas can be found in Appendix A of the extended version of
this paper available from CoRR at https://arxiv.org/abs/1705.06662 (v3).

5 In practice, an exception is multifile predicates. However, since they need to be
declared explicitly, local reasoning is still valid assuming conservative semantics (e.g.,
topmost abstract values) for them.

https://arxiv.org/abs/1705.06662
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(c) we know that in any point(X) constructed in m1 either X = 1 or X = 2.
However, when we enter module m1 at point (a) A could have been bound by the
calling module to any term including, e.g., point([4,2]), point(2), point(a),
point(1), etc., since the use of the point/1 functor is not restricted.

Now we will consider the case where the visibility of terms can be controlled.
We start by defining the following notion:

Definition 5 (Hidden Functors of a Module). The set of hidden functors
of a module is the set of functors that appear in the module that are local and
non-exported.

Example 2. In this example we mark instead the point/1 symbol as hidden. We
use Ciao module system notation [5], where all function symbols belong to user,
unless marked with a :- hide f/N declaration. Such symbols are hidden, i.e.,
local and not exported.6

:- module(m1, [p/1, r/0]).

:- hide point/1. % point/0 is restricted to m1

p(A) :- A = point(B), B = 1. % m1:point(1), not user:point(1)

:- use_module(m2,[q/1]).

r :- X = point(2), q(X). % m1:point(2) escapes through call to q/1

Let us consider the same program points as in Example 1. When we exit
the module, we can infer the same results, but with m1:point/1 instead of
user:point/1. Now, if we see the m1:point(X) term at point (a) we know that
it has been constructed in m1, and the X has to be bound to either 1 or 2,
because the code that can create bindings for X is only located in m1 (and the
point/1 terms are passed outside the module at points (b) and (c)).

As mentioned before, these considerations will allow us to use an optimized
form of checking that we refer to as shallow checking. In order to formalize this
notion, we start by defining all possible terms that may exist outside a module m
as its escaping terms. We will also introduce the notion of shallow properties as
the specialization of the definition of these properties w.r.t. these escaping terms,
and we will present algorithms to compute such shallow versions of properties.

Definition 6 (Visible Terms at a State). A property that represents all
terms that are visible in a state S = 〈(L, ) :: G | θ〉 of some derivation
D ∈ rtc-derivs(Q) for a tuple (P,Q,A) is visS(X) ≡ ∨

V ∈VarsL
(X =V ∧ θ) where

VarsL denotes the set of variables of literal L.

Definition 7 (Escaping terms). Consider all states S in all derivations
D ∈ rtc-derivs(Q) of any tuple (P,Q,A) where P imports a given module m.
A property that represents escaping terms w.r.t. m is escm(X) ≡ ∨

visS(X) for
each S = 〈( , n) :: | 〉 with n 
= m.

6 Note that this can be achieved in other systems: e.g., in XSB [4] it can be done with
a :- local/1 declaration, combined with not exporting the symbol.
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Algorithm 1. Escaping Terms

1: function Escaping Terms(M)
2: Def := usr(X)
3: for all L exported from M do
4: for all c.success(L, , Post) ∈ AC(L) do
5: for all P ∈ LitNames(Post, vars(L)) do
6: Def := Def 
 P (X)

7: for all L imported from M do
8: for all c.calls(L, Pre) ∈ AC(L) do
9: for all P ∈ LitNames(Pre, vars(L)) do

10: Def := Def 
 P (X)

11: return (escm(X) ← Def)

12: function LitNames(G, Args)
13: return set of P such that A ∈ Args and G = (. . . ∧ P (A) ∧ . . .)

The set of all public symbols to which a variable X can be bound is denoted
as usr(X) = {X|mod(X) = user}. The following lemma states that it is enough
to consider the states at the module boundaries to compute escm(X):

Lemma 1 (Escaping at the Boundaries). Consider all derivation steps
S1 �rtc S2 where S1 = 〈(L1,m) :: | 〉 and S2 = 〈(L2, n) :: | θ〉 with n 
= m.
That is, the derivation steps when calling a predicate at n from m (if L1 is a
literal) or when returning from m to module n (if L1 is ret( )). Let escm′(X)
be the smallest property (i.e., the property with the smallest model) such that
θ ⇒P escm′(X) for each variable X in the literal L2, and usr(X) ⇒P escm′(X).
Then escm′(X) ∨ usr(X) is equivalent to escm(X).

Algorithm 1 computes an over-approximation of the escm(X) property. The
algorithm has two parts. First, it loops over the exported predicates in module
m. For each exported predicate we use Post from the success assertion conditions
as a safe over-approximation of the constraints that can be introduced during
the execution of the predicate. We compute the union (�, which is equivalent to
∨ but it can sometimes simplify the representation) of all properties that restrict
any variable argument in Post. The second part of the algorithm performs the
same operation on all the properties specified in the Pre of the calls assertions
conditions. This is a safe approximation of the constraints that can be leaked to
other modules called from m.

Note that the algorithm can use analysis information to detect more precise
calls to the imported predicates, as well as more precise successes of the exported
predicates, than those specified in the assertion conditions present in the program.

Lemma 2 (Correctness of ESCAPING TERMS). The Escaping Terms
algorithm computes a safe (over)approximation to escm(X) (when using the
operational semantics with assertions).
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Algorithm 2. Shallow Interface

1: function Shallow Interface(M)
2: Let M ′ be M with wrappers for exported predicates
3: (to differentiate internal from external calls)
4: Let Q(X) := Escaping Terms(M ′)
5: for all L exported from M do
6: for all c.calls(L, Pre) ∈ AC(L) do
7: Update AC(L) with c.calls(L, Pre#)

8: for all c.success(L, Pre, Post) ∈ AC(L) do
9: Update AC(L) with c.success(L, Pre#, Post)

10: return M ′

Shallow Properties. Shallow run-time checking consists in using shallow versions
of properties in the run-time checks for the calls across module boundaries. While
this notion could be added directly to the operational semantics, we will present
it as a program transformation based on the generation of shallow versions of
the properties, since this also provides a direct implementation path.

Example 3. Assume that the set of escaping terms of m contains point(1)
and it does not contain the more general point( ). Consider the property:
intpoint(point(X)) :- int(X). Checking intpoint(A) at any program point
outside m must check first that A is instantiated to point(X) and that X is
instantiated to an integer (int(X)). However, the escaping terms show that
it is not possible for a variable to be bound to point(X) without X=1. Thus,
the latter check is redundant. We can compute the optimized – or shallow –
version of intpoint/1 in the context of all execution points external to m as
intpoint(point( )).

Let Spec(L,Pre) generate a specialized version L′ of predicate L w.r.t. the
calls given by Pre (see [9]). It holds that for all θ, θ ⇒P L iff θ ∧ Pre ⇒P L′.

Definition 8 (Shallow property). The shallow version of a property L(X)
w.r.t. module m is denoted as L(X)#, and computed as Spec(L(X), Q(X)),
where Q(X) is a (safe) approximation of the escaping terms of m
(Escaping Terms(m)).

Algorithm 2 computes the optimized version of a module interface using shal-
low checks. It first introduces wrappers for the exported predicates, i.e., predi-
cates p(X) :- p’(X), renaming all internal occurrences of p by p’. Then it com-
putes an approximation Q(X) of the escaping terms of M . Finally, it updates all
Pre in calls and success assertion conditions, for all exported predicates, with
their shallow version Pre#. We compute the shallow version of a conjunction of
literals Pre =

∧
i Li as Pre# =

∧
i L

#
i .

Theorem 3 (Correctness of SHALLOW INTERFACE). Replacing a module
m in a larger program by its shallow version does not alter the (run-time check-
ing) operational semantics.
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Discussion about precision. The presence of any top properties in the calls or
success assertion conditions will propagate to the end in the Escaping Terms
algorithm (see Algorithm 1). For a significant class of programs, this is not a
problem as long as we can provide or infer precise assertions which do not use
this top element. Note that usr(X), since it has a void intersection with any
hidden term, does not represent a problem. For example, many generic Prolog
term manipulation predicates (e.g., functor/3) typically accept a top element
in their calls conditions. We restrict these predicates to work only on user (i.e.,
not hidden) symbols.7 More sophisticated solutions, that are outside the scope
of this paper, include: producing monolithic libraries (creating versions of the
imported modules and using abstract interpretation to obtain more precise asser-
tion conditions); or disabling shallow checking (e.g., with a dynamic flag) until
the execution exits the context of m (which is correct except for the case when
terms are dynamically asserted).

Multi-library scenarios. Recall that properties can be exported and used in asser-
tions from other modules. The shallow version of properties in m are safe to be
used not only at the module boundaries but also in any other assertion check
outside m. Computing the shallow optimization can be performed per-library,
without strictly requiring intermodular analysis. However, in some cases inter-
modular analysis may improve the precision of escaping terms and allow more
aggressive optimizations.

6 Experimental Results

We explore the effectiveness of the combination of term hiding and shallow check-
ing in the reusable library context, i.e., in libraries that use (some) hidden terms
in their data structures and offer an interface for clients to access/manipulate
such terms. We study the four assertion checking modes of [3]: Unsafe (no library
assertions are checked), Client-Safe (checks are generated only for the assertions
of the predicates exported by the library, assertions for the internal library pred-
icates are not checked), Safe-RT (checks are generated from assertions both for
internal and exported library predicates), and Safe-CT+RT (like RT, but anal-
ysis information is used to clear as many checks as possible at compile-time).
We use the lightweight instrumentation scheme from [10] for generating the run-
time checks from the program assertions. For eliminating the run-time checks via
static analysis we reuse the Ciao verification framework, including the extensions
from [3]. We concentrate in these experiments on shape analysis (regular types).

In our experiments each benchmark is composed of a library and a
client/driver. We have selected a set of Prolog libraries that implement tree-
based data structures. Libraries B-tree and binary tree were taken from the
Ciao sources; libraries AVL-tree, RB-tree, and heap were adapted from YAP,

7 This can be implemented very efficiently with a simple bit check on the atom prop-
erties and does not impact the execution.
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adding similar assertions to those of the Ciao libraries. Table 1 shows some statis-
tics for these libraries: number of lines of code (LOC), size of the object file
(Size KB), the number of assertions in the library specification considered (Pred
Assertions), and the number of hidden functors per library (# Hidden Symbols).

Table 1. Benchmark metrics.

Name LOC Size (KB) Pred Assertions # Hidden Symbols

AVL-tree 147 16.7 20 2

B-tree 240 22.1 18 3

Binary tree 58 8.3 6 2

Heap 139 15.1 12 3

RB-tree 678 121.8 20 4

In order to focus on the assertions of the library operations used in the bench-
marks (where by an operation we mean the set of predicates implementing it)
we do not count in the tables the assertions for library predicates not directly
involved in those operations. Library assertions contain instantiation (moded)
regular types.8 For each library we have created two drivers (clients) resulting in
two experiments per library. In the first one the library operation has constant
(O(1)) time complexity and the respective run-time check has O(N) time com-
plexity (e.g., looking up the value stored at the root of a binary tree and check-
ing on each lookup that the input term is a binary tree). Here a major speedup
is expected when using shallow run-time checks, since the checking time domi-
nates operation execution time and the reduction due to shallow checking should
be more noticeable. In the second one the library operation has non-constant
(O(log(N))) complexity and the respective run-time check O(N) complexity (e.g.,
inserting an element in a binary tree and checking on each insertion that the input
term is a tree). Here obviously a smaller speedup is to be expected with shallow
checking. All experiments were run on a MacBook Pro, 2.6 GHz Intel Core i5 pro-
cessor, 8 GB RAM, and under the Mac OS X 10.12.3 operating system.

Static Analysis. Table 2 presents the detailed compile-time analysis and checking
times for the Safe-CT+RT mode. Numbers in parentheses indicate the percent-
age of the total compilation time spent on analysis, which stays reasonably low
even in the most complicated case (13% for the RB-tree library). Nevertheless,
the analysis was able to discharge most of the assertions in our benchmarks, leav-
ing always only 2–3 assertions unchecked (i.e., that will need run-time checks),
for the predicates of the library operations being benchmarked.

Run-time Checking. After the static preprocessing phase we have divided our
libraries into two groups: (a) libraries where the only unchecked assertions left

8 A simple example of assertions, escaping terms, and shallow checks, as well as full
plots for all benchmarks can be found in Appendices B-C of the extended version of
this paper available from CoRR at https://arxiv.org/abs/1705.06662 (v3).

https://arxiv.org/abs/1705.06662
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Table 2. Static analysis and checking time for benchmarks for the Safe-CT+RT mode.

Benchmark Analysis time, ms Assertions

prep shfr prep eterms Total Checking, ms Unchecked

AVL-tree 2 10 2 31 45 (2%) 59 (2%) 2/20

B-tree 3 9 3 38 53 (2%) 90 (3%) 3/18

Binary tree 1 9 1 14 25 (2%) 33 (2%) 2/6

Heap 2 7 2 24 35 (2%) 71 (4%) 2/12

RB-tree 13 11 14 35 73 (3%) 298 (10%) 3/20

are the ones for the boundary calls (AVL-tree, heap, and binary tree),9 and
(b) libraries with also some unchecked assertions for internal calls (B-tree and
RB-tree). We present run time plots10 for one library of each group. Since the
unchecked assertions in the second group correspond to internal calls of the
O(log(N)) operation experiment, we only show here a set of plots of the O(1)
operation experiment for one library, as these plots are very similar across all
benchmarks.

Fig. 2. Run times in different checking modes, AVL-tree library, O(log(N)) operation.

Figure 2 illustrates the overhead reductions from using the shallow run-time
checks in the AVL-tree benchmark for the O(N) insert operation experiment.
This is also the best case that can be achieved for this kind of operations, since
in the Safe-CT+RT mode all inner assertions are discharged statically. Figure 3
shows the overhead reductions from using the shallow checks in the B-tree
benchmark for the O(log(N)) insert operation experiment. In contrast with
the previous case, here the overhead reductions achieved by employing shallow
checks are dominated by the total check cost, and while the overhead reduction

9 Due to our reusable library scenario the analysis of the libraries is performed without
any knowledge of the client and thus the library interface checks must always remain.

10 The current measurements depend on the C getrusage() function, that on Mac OS
has microsecond resolution.
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Fig. 3. Run times in different checking modes, B-tree library, O(log(N)) operation.

Fig. 4. Run times in different checking modes, AVL-tree library, O(1) operation.

is obvious in the Client-Safe mode, it is not significant in the Safe-CT+RT mode
where some internal assertion was being checked.

Figure 4 presents the overhead reductions in run-time checking resulting from
the use of the shallow checks in the AVL-tree benchmark for the O(1) peek
operation experiment on the root. As we can see, using shallow checks allows us
to obtain constant overhead on the boundary checks for such cheap operations
in all execution modes but Safe-RT. In summary, the shallow checking technique
seems quite effective in reducing the shape-related run-time checking overheads
for the reusable-library scenario.

7 Related Work

Modularity. The topic of modules and logic programming has received consider-
able attention, dating back to [11–13] and resulting in standardization attempts
for ISO-Prolog [14]. Currently, most mature Prolog implementations adopt some
flavor of a module system, predicate-based in SWI [15], SICStus [16], YAP [17],
and ECLiPSe [18], and atom-based in XSB [4]. As mentioned before, Ciao [2,5]
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uses a hybrid approach, which behaves by default as in predicate-based systems
but with the possibility of marking a selected set of symbols as hidden, mak-
ing it essentially compatible with that of XSB. Some previous research in the
comparative advantages of atom-based module systems can be found in [19].

Parallels with Static Typing and Contracts. While traditionally Prolog is
untyped, there have been some proposals for integrating it with type systems,
starting with [20]. Several strongly-typed Prolog-based systems have been pro-
posed, notable examples being Mercury [21], Gödel [22], and Visual Prolog [23].
An approach for combining typed and untyped Prolog modules has been pro-
posed in [24]. A conceptually similar approach in the world of functional pro-
gramming is gradual typing [25,26]. The Ciao model offers an (earlier) alterna-
tive, closer to soft typing [27], but based on safe approximations and abstract
interpretation, thus providing a more general and flexible approach than the
previous work, since assertions can contain any abstract property – see [28] for
a discussion of this topic. This approach has recently also been applied in a
number of contract-based systems [29–31], for which we believe our techniques
can be relevant.

Run-time Checking Optimization. High run-time overhead is a common prob-
lem in systems that include dynamic checking [26]. The impact of global static
analysis in reducing run-time checking overhead has been studied in [3]. A com-
plementary approach is improving the instrumentation of the checks and com-
bining it with run-time data caching [10,32] or limiting the points at which tests
are performed [33]. While these optimizations can bring significant reductions in
overhead, it still remains dependent on the size of the terms being checked. We
have shown herein that even in the challenging context of calls across open mod-
ule boundaries it is sometimes possible to achieve constant run-time overhead.

8 Conclusions

We have described a lightweight modification of a predicate-based module system
to support term hiding and explored the optimizations that can be achieved with
this technique in the context of combined compile-time/run-time verification. We
have studied the challenging case of reusable libraries, i.e., library modules that
are pre-compiled independently of the client. We have shown that with our app-
roach the shape information that can be inferred can be enriched significantly
and large reductions in overhead can be achieved. The overheads achieved are
closer to those of static languages, even in the reusable-library context, with-
out requiring switching to strong typing, which is less natural in Prolog-style
languages, where there is a difference between error and failure/backtracking.
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Abstract. The paper describes an application of logic programming to
the modeling of difficult combinatorial properties of lambda terms, with
focus on the class of simply typed terms.

Lambda terms in de Bruijn notation are Motzkin trees (also called
binary-unary trees) with indices at their leaves counting up on the path
to the root the steps to their lambda binder.

As a generalization of affine lambda terms, we introduce k-colored
lambda terms obtained by labeling their lambda nodes with counts of the
variables they bind. We define the skeleton of a k-colored lambda term
as the Motzkin tree obtained by erasing the de Bruijn indices labeling
its leaves. A new bijection between 2-colored skeletons and binary trees
reveals their connection to the Catalan family of combinatorial objects.

After a statistical study of properties of k-colored lambda terms and
their skeletons, we focus on the case of simply-typed closed k-colored
lambda terms for which a new combinatorial generation algorithm is
given and some interesting relations between maximal coloring, size of
type expressions and typability are explored.

The paper is structured as a literate Prolog program to facilitate an
easily replicable, concise and declarative expression of our concepts and
algorithms.

Keywords: Declarative modeling of combinatorial classes
Families of lambda terms · Simply-typed closed lambda terms
Motzkin trees · Bijections between data types

1 Introduction

Lambda terms, in de Bruijn notation [1], can be seen as Motzkin-trees built
of unary lambda nodes, binary application nodes and variables at their leaves,
labeled with de Bruijn indices pointing toward their lambda binder. We call the
skeleton of a lambda term the Motzkin tree obtained by erasing its de Bruijn
indices.

A useful distinction can be made between lambda constructors that bind
variables and those that do not. Among other benefits, distinguishing them
makes the analysis of linear and affine terms simpler and puts their skeletons,
the 2-colored Motzkin trees, in bijection with the well-known Catalan family of
combinatorial objects.
c© Springer International Publishing AG 2018
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More generally, can we classify lambda nodes by inverting the function from
indices at the leaves to their binders?

This leads to the concept of k-colored lambda terms where colors classify
binders depending on the number of variables they bind. It also brings us to the
main focus of this paper, the interaction of k-coloring, skeletons and the class
of simply-typed terms, starting with the easy case of always typable affine and
linear terms and then empirically approaching some interesting observables for
the notoriously difficult general case.

Despite the asymptotically vanishing density of simply-typed lambda terms
[2], their all-term and random-term generation has been speeded-up signifi-
cantly by the use of Prolog-based algorithms that interleave generation and
type-inference steps [3,4]. However, the structure of simply-typed lambda terms
has so far escaped handling by analytical methods. Basic combinatorial prop-
erties like counts for terms of a given size have been obtained so far only by
generating all terms, or, as in [4], by mimicking their exhaustive generation with
a recursive structure that, while omitting the actual lambda terms, keeps the
type-inference mechanism intact.

These difficulties are the main motivation of this paper, which suggests a
fresh look at the structure of simply typed terms and their type expressions, via
their relations to their k-colored skeletons, revealing insights on the structure of
simply-typed closed lambda terms.

The paper is organized as follows. Section 2 describes a new bijection between
binary trees and 2-colored Motzkin trees. Section 3 discusses the case of closed,
linear and affine lambda terms. Section 4 focuses on the case of k-colored simply
typed closed lambda terms and their statistical properties. Section 5 overviews
related work and Sect. 6 concludes the paper.

The paper is structured as a literate Prolog program to facilitate an easily
replicable, concise and declarative expression of our concepts and algorithms.
The code extracted from the paper, together with some related code and utilities
for visualization is available at: http://www.cse.unt.edu/∼tarau/research/2017/
padl18.pro, tested with SWI-Prolog [5] version 7.4.2.

2 A Bijection Between 2-colored Motzkin Trees
and Binary Trees

A Motzkin tree (also called binary-unary tree) is a rooted ordered tree built from
binary nodes, unary nodes and leaf nodes. A k-colored Motzkin tree is obtained
by labeling its unary nodes with colors from a set of k elements.

As usual in Prolog, we denote, F/N a function symbol F of arity N. Given a
set of such function symbols (that we will also call “constructors”) one can see
the set of terms generated from them as a free algebra using the set of functors
as its signature.

We define 2-colored Motzkin trees (shortly 2-Motzkin trees) as the free algebra
generated by the constructors v/0, l/1, r/1 and a/2. An example of a Prolog
term representing a 2-colored Motzkin tree is l(a(l(v),r(v))).

http://www.cse.unt.edu/~tarau/research/2017/padl18.pro
http://www.cse.unt.edu/~tarau/research/2017/padl18.pro
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We define lambda terms in de Bruijn form as the free algebra generated by
the constructors l/1, r/1 and a/2 with leaves labeled with natural numbers (and
seen as wrapped with the constructor v/1 when convenient). When talking about
lambda terms, we interpret l/1 constructors as lambda binders a/2 constructors
as applications and v/1 constructors as de Bruijn index nodes.

Thus, we can see lambda terms in de Bruijn form as Motzkin trees with
leaves labeled with natural numbers. We interpret the labels as pointing to their
lambda binder on a path to the root of the tree. If each leaf reaches via its de
Bruijn index at least one unary constructor, we call the term closed, otherwise
we call it plain.

We observe that the constructors marking lambdas may have at least one
de Bruijn index pointing to them or have none. We can think about these as
2-colored lambda terms. Thus, we classify our unary constructors into:

– binding lambdas, that are reached by at least one de Bruijn index (denoted l/1)
– free lambdas, that cannot be reached by any de Bruijn index (denoted r/1).

We define the 2-colored Motzkin skeleton of a lambda term (shortly skeleton)
as the 2-Motzkin tree obtained by erasing the de Bruijn indices labeling their
leaves.

It is well-known that 2-Motzkin trees are counted by the Catalan numbers
and several bijections between them to members of the Catalan family of com-
binatorial objects have been identified in the past [6]. We will introduce here a
new one that is defined inductively in a “compositional way”, based on a map-
ping between small tree components on the two sides. As an application, this
allows one to use a uniform random binary tree generation algorithm like [7] to
generate random 2-Motzkin trees.

We describe binary trees as the free algebra generated by the constructors
e/0 and c/2. Binary trees are a well known member of the Catalan family of
combinatorial objects. Our bijection can be seen as connecting any other member
of this family to 2-colored Motzkin trees.

We define the bijection between non-empty binary trees and 2-Motzkin trees
simply by encoding each of the nodes v/0, l/1, r/1 and a/2 by a unique small
binary tree as shown by the reversible bidirectional predicate cat mot/2, with
the binary tree as its first argument and the 2-Motzkin tree as its second.

cat_mot(c(e,e),v).

cat_mot(c(X,e),l(A)):-X=c(_,_),cat_mot(X,A).

cat_mot(c(e,Y),r(B)):-Y=c(_,_),cat_mot(Y,B).

cat_mot(c(X,Y),a(A,B)):-X=c(_,_),Y=c(_,_),

cat_mot(X,A),

cat_mot(Y,B).

Proposition 1. The predicate cat mot/2 defines a bijection between non-empty
binary trees and 2-colored Motzkin trees.

Proof. It follows by structural induction by observing that the 4 clauses cover
via disjoint unification patterns all the 4 possible tree shapes matched one-to-one
on the two sides.
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Fig. 1. The 2-colored Motzkin trees to non-empty binary trees bijection

Example 1. We illustrate the bidirectional Prolog predicate cat mot/2 with the
two trees also shown in Fig. 1, together with two larger trees on the right side,
“twinned” in a similar way, Motzkin-tree on the left, binary tree on the right.

?- cat_mot(BinTree,a(l(v),r(v))),cat_mot(BinTree,MotTree).

BinTree = c(c(c(e, e), e), c(e, c(e, e))),

MotTree = a(l(v), r(v)) .

As a first application, a linear-time random generator for binary trees (based
on instance Rémy’s algorithm, [7]) can be “borrowed” in linear time in the size of
the terms, to generate 2-colored Motzkin random motzkin trees via the bijection
defined by the predicate cat mot/2.

One can also “borrow” the simple binary tree generator cat(N,T) which,
given a natural number N returns a tree X of size N, assuming a size definition
that counts each internal node as 1.

cat(N,X):-cat(X,N,0).

cat(e,N,N).

cat(c(A,B),SN,N3):-succ(N1,SN),cat(A,N1,N2),cat(B,N2,N3).

Note the use of the bidirectional succ/2 built-in, which also tests for being larger
than 0, when working as predecessor.

By using the generator cat/2 for binary trees, we derive a generator for 2-
colored Motzkin trees via their bijection to non-empty binary trees as follows.

mot2(N,M):-cat(N,C),cat_mot(C,M).
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Given an enumeration of binary trees given by successor s/1 and predeces-
sor p/1 (for instance the one in [8] that also provides more general arithmetic
operations on them) one can define ranking and unranking operations on binary
trees (bijections to/from the set of natural numbers).

Shifting the bijection from binary trees to Motzkin trees to include the empty
binary tree is achieved with the predicates cat2mot/2 and mot2cat/2. Note the
use of the s/1 and p/1 operations from [8], that are also given in the literate
Prolog program associated in this paper.

cat2mot(C,M):-s(C,SuccC),cat_mot(SuccC,M).

mot2cat(M,C):-cat_mot(SuccC,M),p(SuccC,C).

This leads to ranking and unranking of 2-colored Motzkin trees via their
bijection to binary trees, defined as

rank(M,N):-mot2cat(M,C),n(C,N).

Unranking can then be defined as:

unrank(N,M):-t(N,C),cat2mot(C,M).

Note also the t/2 predicate mapping a natural number to a binary tree and
the n/2 predicate mapping a tree its natural number correspondent. We refer to
[8] for their definition and implementation, converting efficiently between binary
representations of numbers to/from trees, also replicated in the literate code of
this paper.

3 Closed, Affine and Linear Terms

We can see a lambda term in de Bruijn form as a Motzkin tree decorated with
natural numbers at its leaves. With a size definition (assumed here) that gives
2 units to binary constructors, 1 unit to unary constructors and 0 units to the
leaves of the tree, a lambda term and its skeleton can be, conveniently, seen as
having the same size, in fact corresponding (up to a constant factor) to its heap
representation in the runtime system of all programming languages we know of.

Semantically, the labels are understood as pointing to a unary node seen as
a lambda binder on the path to the root, starting with 0 for the closest one.

Thus a lambda term is built with the constructors a/2 representing appli-
cations, l/1 and r/1 representing lambda nodes and natural numbers marking
leaves (possibly wrapped as v/1 nodes, when convenient).

A 2-Motzkin tree is built with a/2 representing binary nodes, l/1 and r/1
representing unary nodes and v/0 standing for leaf nodes. Thus we compute a
skeleton by replacing the de Bruijn indices at the leaves of a lambda term with
the constant v/0.

When generating trees of a given size, with several node constructors, it
makes sense to have separate counters for each. The predicate sum to/3 main-
tains such counters for nodes of types l/1, r/1 and a/2.
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sum_to(N,c(L,R,A),c(0,0,0)):-N>=0,

between(0,N,A2),0=:=A2/\1,A is A2>>1,

LR is N-A2,

between(0,LR,L),

R is LR-L.

The predicates (suggestively named) lDec/2, rDec/2 and aDec/2 define single
steps consuming one available unit of size for each of the corresponding construc-
tors. Note the use of the bidirectional built-in predicate succ/2 that computes in
this case the predecessor of a natural number and fails after reaching 0.

lDec(c(SL,R,A),c(L,R,A)):-succ(L,SL).

rDec(c(L,SR,A),c(L,R,A)):-succ(R,SR).

aDec(c(L,R,SA),c(L,R,A)):-succ(A,SA).

We will start with generators for closed, affine and linear terms.
As analytic methods are known for computing counts for closed terms as well

as closed affine and linear terms [9], we will focus here on some simple properties
of their skeletons and on their efficient generators.

3.1 Closed Lambda Terms

A lambda term in de Bruijn form is closed, if for each of its de Bruijn indices,
there is a lambda binder to which it points, on the path to the root of the tree
representing the term. We call a Motzkin tree closable if it is the skeleton of at
least one closed lambda term.

It immediately follows that:

Proposition 2. If a Motzkin tree is a skeleton of a closed lambda term, then it
exists at least one lambda binder on each path from the leaf to the root.

There are slightly more unclosable Motzkin trees than closable ones as size
grows:
number of closable skeletons of sizes 0,1,2,... :

0,1,1,2,5,11,26,65,163,417,1086,2858,7599,20391,55127,150028,410719, ...

number of unclosable skeletons of sizes 0,1,2,... :

1,0,1,2,4,10,25,62,160,418,1102,2940,7912,21444,58507,160544,442748, ...

We refer to [10] for an analytic solution proving that asymptotically
1√
5

of

the skeletons are closable.

3.2 Closed Affine Lambda Terms

An affine lambda term has one or zero variables bound by each lambda
constructor.

Proposition 3. If a 2-Motzkin tree with n binary nodes is a skeleton of an
affine lambda term, then it has exactly n+1 unary l nodes, with at least one on
each path from the root to its n + 1 leaves.
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This suggests generators that separate unary and binary node counts for the
skeletons and enforce this constraint on their respective sizes.

The predicate afLam/2, follows closely the one described in detail in [11],
except that it handles l/1 and r/1 as separate cases.

afLam(N,T):-sum_to(N,Hi,Lo),

has_enough_lambdas(Hi),

afLinLam(T,[],Hi,Lo).

has_enough_lambdas(c(L,_,A)):-succ(A,L).

The predicate has enough lambdas/1 is used to express the constraint that the
number of application nodes a/2 should be one less than the number of l/1 con-
structors (in bijection with the leaves they bind). The predicate afLinLam/4 is
defined via Definite Clause Grammars (DCGs) that encapsulate the consump-
tion of the size units1. It uses the predicate subset and complement of/3 to
direct each lambda binder on either a left or a right path at an application node.
Note also the use of the constructor l/2 holding as its first argument the actual
variable that it binds.

afLinLam(v(X),[X])-->[].

afLinLam(l(X,A),Vs)-->lDec,afLinLam(A,[X|Vs]).

afLinLam(r(A),Vs)-->rDec,afLinLam(A,Vs).

afLinLam(a(A,B),Vs)-->aDec,

{subset_and_complement_of(Vs,As,Bs)},

afLinLam(A,As),

afLinLam(B,Bs).

subset_and_complement_of([],[],[]).

subset_and_complement_of([X|Xs],NewYs,NewZs):-

subset_and_complement_of(Xs,Ys,Zs),

place_element(X,Ys,Zs,NewYs,NewZs).

place_element(X,Ys,Zs,[X|Ys],Zs).

place_element(X,Ys,Zs,Ys,[X|Zs]).

Erasure of de Bruijn indices turns a 2-colored lambda term into a 2-colored
Motzkin tree.

toMotSkel(v(_),v).

toMotSkel(l(X),l(Y)):-toMotSkel(X,Y).

toMotSkel(l(_,X),l(Y)):-toMotSkel(X,Y).

toMotSkel(r(X),l(Y)):-toMotSkel(X,Y).

toMotSkel(a(X,Y),a(A,B)):-toMotSkel(X,A),toMotSkel(Y,B).

The predicates afSkelGen/2 and linSkelGen/2 transform the generator for
lambda terms into generators for their skeletons.

1 Functional programmers might notice here the analogy with the use of monads
encapsulating state changes with constructs like Haskell’s do notation.
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afSkelGen(N,S):-afLam(N,T),toMotSkel(T,S).

linSkelGen(N,S):-linLam(N,T),toMotSkel(T,S).

The multiset of skeletons is trimmed to a set of unique skeletons using SWI-
Prolog’s distinct/2 built-in.

afSkel(N,T):-distinct(T,afSkelGen(N,T)).

linSkel(N,T):-distinct(T,linSkelGen(N,T)).

3.3 Closed Linear Lambda Terms

As lambda binders in linear terms are in bijection with the (uniques) leaves they
bind, the following holds.

Proposition 4. If a Motzkin tree with n binary nodes is a skeleton of a linear
lambda term, then it has exactly n+ 1 unary nodes, with one on each path from
the root to its n + 1 leaves.

linLam(N,T):-N mod 3=:=1,

sum_to(N,Hi,Lo),has_no_unused(Hi),

afLinLam(T,[],Hi,Lo).

has_no_unused(c(L,0,A)):-succ(A,L).

Note the use of the predicate has no unused/1 that expresses, quite con-
cisely, the constraints that r/1 nodes should not occur in the term and that the
set of l/1 nodes should be in a bijection with the set of leaves.

As (at most) one variable is associated to each binder, no type conflict can
arise between occurrences. Thus, all closed affine and linear terms are well-typed.
The unary nodes of the skeletons of affine term can be seen as having 2 colors,
l/1 and r/1. This suggests to investigate next the general case of k-colored
terms.

4 k-colored Simply-Typed Closed Lambda Terms

As a natural generalization derived from k-colored Motzkin trees, we define a
k-colored lambda term having as its lambda constructor l/1 labeled with the
number of variables that it binds. Thus an affine term is a 2-colored lambda
term.

The predicate kColoredClosed/2 generates terms while partitioning lambda
binders in k-colored classes. It works by incrementing the count of leaf variables
a lambda binds, in a “backtrackable way”, by using successor arithmetic with
the deepest node kept as a free logical variable at each step.
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kColoredClosed(N,X):-kColoredClosed(X,[],N,0).

kColoredClosed(v(I),Vs)-->{nth0(I,Vs,V),inc_var(V)}.

kColoredClosed(l(K,A),Vs)-->l,

kColoredClosed(A,[V|Vs]),

{close_var(V,K)}.

kColoredClosed(a(A,B),Vs)-->a,

kColoredClosed(A,Vs),

kColoredClosed(B,Vs).

l(SX,X):-succ(X,SX).

a-->l,l.

inc_var(X):-var(X),!,X=s(_).

inc_var(s(X)):-inc_var(X).

close_var(X,K):-var(X),!,K=0.

close_var(s(X),SK):-close_var(X,K),l(SK,K).

Note also the DCG-mechanism that controls the intended size of the terms via
the (conveniently named) predicates l/2 and a/2 that decrement available size
by 1 and respectively 2 units.

Example 2. 3-colored lambda terms of size 3, exhibiting colors 0,1,2.

?- kColoredClosed(3,X).

X = l(0, l(0, l(1, v(0)))) ;

X = l(0, l(1, l(0, v(1)))) ;

X = l(1, l(0, l(0, v(2)))) ;

X = l(2, a(v(0), v(0))) .

Given a tree with n application nodes, the counts for all k-colored lambdas in
it must sum up to n+ 1. Thus we can generate a binary tree and then decorate
it with lambdas satisfying this constraint. Note that the constraint holds for
subtrees, recursively. We leave it as future work to find out if this mechanism
can reduce the amount of backtracking and accelerate term generation.

4.1 Type Inference for k-colored Terms

The study of the combinatorial properties of simply-typed lambda terms is noto-
riously hard. The two most striking facts that one might notice when inferring
types are:

– non-monotonicity, as crossing a lambda increases the size of the type, while
crossing an application node trims it down

– agreement via unification (with occurs check) between the types of each vari-
able under a lambda

Interestingly, to our best knowledge, no SAT or ASP algorithms exist in the
literature that attack the combined type inference and combinatorial generation
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problem for lambda terms, most likely because of the complexity of emulating
unification-with-occurs-check steps in propositional logic. Thus we will follow the
interleaving of term generation, checking for closedness and type inference steps
shown in [8], but enhance it to also identify variables covered by each lambda
binder. In fact, given the surjective function f : V → L that associates to each
leaf variable in a closed lambda term its lambda binder, one can compute the
set f−1(l) for each l ∈ L, expressing which variables are mapped to each binder.

Example 3. We illustrate two 2-colored simply typed terms with lambda nodes
shown as l/1 constructors marked with the labels of the variables they bind (if
any). We place the inferred type as the right child of a “root” labeled with “:”.

As in [8], our type inference algorithm ensures that variables under the same
binder agree on their type via unification with occurs check, to avoid formation
of cycles in the types, represented as binary trees with internal nodes “->/2”
and logic variables as leaves.

simplyTypedColored(N,X,T):-simplyTypedColored(X,T,[],N,0).

simplyTypedColored(v(X),T,Vss)-->{

member(Vs:T0,Vss),

unify_with_occurs_check(T,T0),

addToBinder(Vs,X)

}.

simplyTypedColored(l(Vs,A),S->T,Vss)-->l,

simplyTypedColored(A,T,[Vs:S|Vss]),

{closeBinder(Vs)}.

simplyTypedColored(a(A,B),T,Vss)-->a,

simplyTypedColored(A,(S->T),Vss),

simplyTypedColored(B,S,Vss).
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Note that addToBinder/2 adds each leaf under a binder to the open end of
the list of variable/type pairs list, closed by closeBinder/1.

addToBinder(Ps,P):-var(Ps),!,Ps=[P|_].

addToBinder([_|Ps],P):-addToBinder(Ps,P).

closeBinder(Xs):-append(Xs,[],_),!.

Example 4. Some terms of size 5 generated by the predicate simplyTyped
Colored/3 and their types.

?- simplyTypedColored(5,Term,Type).

Term = l([], l([], l([], l([], l([A], v(A)))))),

Type = (B->C->D->E->F->F) ;

...

Term = l([A, B], a(l([], v(A)), l([], v(B)))),

Type = (C->C) ;

...

Term = l([A, B], a(l([], l([], v(A))), v(B))),

Type = (C->D->C) ;

...

We are now ready to make some empirical observations on terms, colors and
type sizes. We have noticed that both average and maximum number of colors
of lambda terms grow very slowly with size. Figure 2 compares on a log-scale the
growths of simply typed closed terms and their closed affine terms subset. As for
de Bruijn terms, we can define the Motzkin skeletons of k-colored lambda terms
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by erasing the first argument of the l/2 and v/1 constructors. We can also define
the k-colored Motzkin skeletons of these terms by replacing the variable lists in
argument 1 of l/2 constructors by their length and by erasing the arguments of
the v/1 constructors.

The predicate toSkels/3 computes the (k-colored) Motzkin skeletons by
measuring the length of the list of variables for each binder.

toSkels(v(_),v,v).

toSkels(l(Vs,A),l(K,CS),l(S)):-length(Vs,K),toSkels(A,CS,S).

toSkels(a(A,B),a(CA,CB),a(SA,SB)):-

toSkels(A,CA,SA),

toSkels(B,CB,SB).

We obtain generators for skeletons and k-colored skeletons by combining the
generator simplyTypedColored with toSkeleton.

genTypedSkels(N,CS,S):-genTypedSkels(N,_,_,CS,S).

genTypedSkels(N,X,T,CS,S):-

simplyTypedColored(N,X,T),

toSkels(X,CS,S).

typableColSkels(N,CS):-genTypedSkels(N,CS,_).

typableSkels(N,S):-genTypedSkels(N,_,S).

We can generate the set of typable skeletons from the multiset of skeletons
by using the built-in distinct/2 that trims duplicate solutions.

simpleTypableColSkel(N,CS):-

distinct(CS,typableColSkels(N,CS)).

simpleTypableColSkel(N,S):-

distinct(S,typableSkels(N,S)).

We define the type size of a simply typed term as the number of arrow nodes
“->” its type contains, as computed by the predicate tsize/2.

tsize(X,S):-var(X),!,S=0.

tsize((A->B),S):-tsize(A,SA),tsize(B,SB),S is 1+SA+SB.

Now that we can count, for a given term size, how many k-colored terms
exists, one might ask if we can say something about the sizes of their types.
This suggests an investigation of the relations between the complexity of type
expressions and the number of colors.

Figure 3 shows the significantly slower growths of the average number of
colors of colored terms vs. the average size of their types, with a possible log-
scale correlation between them.

We call a most colorful term of a given size a term that reaches the maximum
number of colors.

Figure 4 shows the relation between the number of colors of a most colorful
term and a maximum size reached by the type of such a term.
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Figure 5 shows the relation between the largest type sizes the most colorful
terms of a given size can attain and the maximum possible type size of those terms.

We can observe that the largest most colorful terms reach the largest possible
type size for a given term size, most of the time, but as Fig. 5 shows, there are
exceptions.

We leave as an open problem to prove or disprove that there’s a term size
such that for larger terms, the most colorful such terms reach the largest type
size possible.
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5 Related Work

Several papers exist that define bijections between 2-Motzkin trees and members
of the Catalan family of combinatorial objects (e.g., in [6]), typically via depth-
first walks in trees connected to Motzkin, Dyck or Schröder paths. However, we
have not found any simple and intuitive bijection that connects components of
the two families, or one that connects directly binary trees and 2-Motzkin trees,
like the one shown in this paper.

The classic reference for lambda calculus is [12]. Various instances of typed
lambda calculi are overviewed in [13]. The use of de Bruijn indices for the study
of combinatorial properties of lambda terms is introduced in [14].

The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [15]. Distribution and density properties of ran-
dom lambda terms are described in [16].
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The generation and counting of affine and linear lambda terms is extensively
covered in [9], with limits for counting larger than in this paper reachable using
efficient recurrence formulas. Their asymptotic behavior, in relation with the
BCK and BCI combinator systems, as well as bijections to combinatorial maps
are studied in [17]. In [10] analytic models are used to solve the problem of the
asymptotic density of closable skeletons and their subclass of uniquely closable
skeletons.

Asymptotic density properties of simple types (corresponding to tautologies
in minimal logic) have been studied in [18] with the surprising result that “almost
all” classical tautologies are also intuitionistic ones.

6 Conclusions

The new, intuitive bijection between binary terms and 2-colored Motzkin terms,
in combination with Rémy’s algorithm [7] for the generation of random binary
trees, can also be used to produce large random simply-typed terms, with appli-
cations to testing functional programming languages and proof assistants using
lambda calculus as their internal language.

The distinction between free and binding lambda constructors in 2-colored
terms has helped design a simple and efficient algorithm for generating affine
and linear terms.

Contrary to closed, linear and affine lambda terms (as well as several other
classes of terms subject to similar constraints) the structure of simply-typed
terms has so far escaped a precise characterization. While the focus of the paper
is mostly empirical, it has unwrapped some new “observables” that highlight
interesting statistical properties. The relations identified between colors and type
sizes of lambda terms have led to some interesting (but possibly very hard) open
problems.

In a way, our concepts involve abstraction mechanisms that “forget” prop-
erties of the difficult class of simply-typed closed lambda terms to reveal equiv-
alence classes that are likely to be easier to grasp with analytic tools. Among
them, k-colored terms subsume linear and affine terms and are likely to be usable
to fine-tune random generators to more closely match “color-distributions” of
lambda terms representing real programs.

Last but not least, we have shown that a language as simple as side-effect-
free Prolog, with limited use of impure features and meta-programming, can
handle elegantly complex combinatorial generation problems, when the synergy
between sound unification, backtracking and DCGs is put at work.
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grams whose answer sets, corresponding to solutions, are computed by an
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while evaluating them might significantly vary. We propose an approach
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1 Introduction

Answer Set Programming (ASP) [7,20] is a declarative programming paradigm
proposed in the area of non-monotonic reasoning and logic programming.
With ASP, computational problems are encoded by logic programs whose answer
sets, corresponding to solutions, are computed by an ASP system [27].

The evaluation of ASP programs is “traditionally” split into two phases:
grounding, that generates a propositional theory semantically equivalent to the
input program, and solving, that applies propositional techniques for comput-
ing the intended semantics [2,16,23,26]; nevertheless, in the latest years several
approaches that deviate from this schema have been proposed [13–15,24].

Typically, the same computational problem can be encoded by means of
many different ASP programs which are semantically equivalent; however, real
ASP systems may perform very differently when evaluating each one of them.
This behavior is due, in part, to specific aspects, that strictly depend on the ASP
system employed, and, in part, to general “intrinsic” aspects, depending on the
program at hand which could feature some characteristics that can make com-
putation easier or harder. Thus, often, to have satisfying performance, expert
knowledge is required in order to select the best encoding. This issue, in a cer-
tain sense, conflicts with the declarative nature of ASP that, ideally, should free
the users from the burden of the computational aspects. For this reason, ASP
systems tend to be endowed with proper pre-processing means aiming at mak-
ing performance less encoding-dependent; intuitively, such means are of great
importance for fostering and easing the usage of ASP in practice.

A proposal in this direction is lpopt [5], a pre-processing tool for ASP systems
that rewrites rules in input programs by means of tree-decomposition algorithms.
The rationale comes from the fact that, when programs contain rules featuring
long bodies, ASP systems performance might benefit from a careful split of such
rules into multiple, smaller ones. However, it is worth noting that, while in some
cases such decomposition is convenient, in other cases keeping the original rule
is preferable; hence, a black-box decomposition, like the one of lpopt , makes it
difficult to predict whether it will lead to benefits or disadvantages.

In this work, we start from the lpopt idea and propose a method that aims at
taking full advantage from decompositions, still avoiding performance drawbacks
by trying to predict the effects of rewritings. Such method is rather general, as it
is intended to be embedded into different ASP systems, and customized accord-
ingly. It analyzes each input rule before the evaluation, and decides whether it
could be convenient to decompose it into an equivalent set of smaller rules, or
not. Furthermore, as many decompositions may be possible for each rule, fur-
ther criteria can be defined in order to select a preferred one. We also propose
an implementation explicitly tailored at optimizing the grounding process, and
integrate it into I-DLV [10], the grounding subsystem of DLV [2]. To this end,
we define new heuristic criteria relying on data and statistics on the grounding
process; eventually, we perform an experimental activity in order to asses the
effects of our technique on encoding optimization.
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2 Answer Set Programming

In this section, we briefly recall ASP basic syntax and semantics. A significant
amount of work has been carried out on extending the basic language of ASP,
and the community recently agreed on a standard input language for ASP sys-
tems: ASP-Core-2 [8], the official language of the ASP Competition series [12,18].
For the sake of simplicity, we focus next on the basic aspects of the language;
for a complete reference to the ASP-Core-2 standard, and further details about
advanced ASP features, we refer the reader to [8] and the vast literature.

A term is either a simple term or a functional term. A simple term is either a
constant or a variable. If t1 . . . tn are terms and f is a function symbol of arity n,
then f(t1, . . . , tn) is a functional term. If t1, . . . , tk are terms and p is a predicate
symbol of arity k, then p(t1, . . . , tk) is an atom. A literal l is of the form a or
not a, where a is an atom; in the former case l is positive, otherwise negative.
A rule r is of the form α1 | · · · | αk : - β1, . . . , βn, not βn+1, . . . , not βm.
where m ≥ 0, k ≥ 0; α1, . . . , αk and β1, . . . , βm are atoms. We define H(r) =
{α1, . . . , αk} (the head of r) and B(r) = B+(r) ∪ B−(r) (the body of r), where
B+(r) = {β1, . . . , βn} (the positive body) and B−(r) = {not βn+1, . . . , not βm}
(the negative body). If H(r) = ∅ then r is a (strong) constraint; if B(r) = ∅ and
|H(r)| = 1 then r is a fact. A rule r is safe if each variable of r has an occurrence
in B+(r)1. For a rule r, we denote as var(r) the set of variables occurring in r.
An ASP program is a finite set P of safe rules. A program (a rule, a literal) is
ground if it contains no variables. A predicate is defined by a rule r if it occurs
in H(r). A predicate defined only by facts is an EDB predicate, the remaining
are IDB predicates. The set of all facts in P is denoted by Facts(P ); the set of
instances of all EDB predicates in P is denoted by EDB(P ).

Given a program P , the Herbrand universe of P , denoted by UP , consists of
all ground terms that can be built combining constants and function symbols
appearing in P . The Herbrand base of P , denoted by BP , is the set of all ground
atoms obtainable from the atoms of P by replacing variables with elements from
UP . A substitution for a rule r ∈ P is a mapping from the set of variables of r to
the set UP of ground terms. A ground instance of a rule r is obtained applying
a substitution to r. The full instantiation Ground(P) of P is defined as the set
of all ground instances of its rules over UP . An interpretation I for P is a subset
of BP . A positive literal a (resp., a negative literal not a) is true w.r.t. I if
a ∈ I (resp., a /∈ I); it is false otherwise. Given a ground rule r, we say that r is
satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or some literal
appearing in B(r) is false w.r.t. I. Given a program P , we say that I is a model
of P , iff all rules in Ground(P) are satisfied w.r.t. I. A model M is minimal if
there is no model N for P such that N ⊂ M . The Gelfond-Lifschitz reduct [20] of
P , w.r.t. an interpretation I, is the positive ground program P I obtained from
Ground(P) by: (i) deleting all rules having a negative literal false w.r.t. I; (ii)
deleting all negative literals from the remaining rules. I ⊆ BP is an answer set

1 We remark that this definition of safety is specific for the syntax considered herein.
For a complete definition we refer the reader to [8].
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P

S

X Y

Z

D

(a) HG(r1)

{P,Y,Z,S,X}

{D,P,Y,Z}

(b) TD1(r1)

{D,Y,Z,S,X}

{D,P,S,X}

(c) TD2(r1)

Fig. 1. Decomposing a rule

for a program P iff I is a minimal model for P I . The set of all answer sets for
P is denoted by AS(P ).

3 A Heuristic-Guided Decomposition Algorithm

In this section we introduce a smart decomposition algorithm for the rules in
an ASP program that makes use of hypergraphs, which are known to be use-
ful for describing the structure of many computational problems. In general,
decompositions are used to divide these structures into different parts so that
the solution(s) of problems can be obtained by a polynomial divide-and-conquer
algorithm that properly exploits this division [21,22]. Such ideas can guide the
decomposition of a logic rule into multiple ones; indeed, an ASP rule can be rep-
resented as a hypergraph [28]. For instance, lpopt [5] uses tree decompositions for
rewriting a program before it is fed to an ASP system. In particular, each rule r
in the input program is analyzed and converted into a hypergraph HG(r). Then
a tree decomposition TD(r) is computed and the original rule is transformed
into a set of multiple ones RD(r), according to the rewriting induced by TD(r);
in general, more than one decomposition is possible for each rule. The following
running example, which we will refer to throughout the paper, illustrates this
mechanism.

Example 1. Let us consider the rule:

r1 : p(X,Y, Z, S) :- s(S), a(X,Y, S − 1), c(D,Y, Z), f(X,P, S − 1), P >= D.

from the encoding of the problem Nomystery from the 6th ASP Competition,
where, for the sake of readability, predicates and variables have been renamed.
Figure 1 depicts the conversion of r1 into the hypergraph HG(r1), along with two
possible decompositions: TD1(r1) and TD2(r1), that induce two different rewrit-
ings. According to TD1(r1), r1 can be rewritten into the set of rules RD1(r1):
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r2 : p(X,Y, Z, S) :- s(S), a(X,Y, S − 1), f(X,P, S − 1), fresh pred 1(P, Y, Z).
r3 : fresh pred 1(P, Y, Z) :- c(D,Y, Z), P >= D, fresh pred 2(P ).
r4 : fresh pred 2(P ) :- s(S), f(−, P, S − 1).

On the other hand, according to TD2(r1), r1 can be rewritten into RD2(r1):

r5 : p(X,Y, Z, S) :- a(X,Y, S − 1), c(D,Y, Z), fresh pred 1(D,S,X).
r6 : fresh pred 1(D,S,X) :- s(S), f(X,P, S − 1), P >= D, fresh pred 2(D).
r7 : fresh pred 2(D) :- c(D,−,−).

Discussing tree decompositions and induced rewritings is out of the scope
of this paper; we refer the reader to [5] and the existing literature. It is worth
noting that different yet equivalent rewritings require, in general, significantly
different evaluation times, when fed to real ASP systems. Thus, since one can
choose among many different decompositions for each rule, proper means for
making reasonable and effective choices are crucial. Furthermore, it might be
the case that, whatever the choice, sticking to the original, unrewritten rule, is
still preferable. A black-box approach, such as the one of lpopt , makes it difficult
to effectively take advantage from the decomposition rewritings; this is clearly
noticeable by looking at experiments, as discussed in Sect. 5.

The method herein introduced aims at addressing the above issues; it is
designed to be integrated into an ASP system, and uses information available
during the computation to predict, according to proper criteria, whether decom-
posing will pay or not; moreover, it chooses the most promising decomposition,
among the several possible ones. In the following, we first describe the method in
its general form, that can be easily adapted to different real systems; a complete
actual implementation, specialized for the DLV system, is presented next.

The abstract algorithm SmartDecomposition is shown in Fig. 2; we indi-
cate as tree decomposition an actual tree decomposition of a hypergraph, while
with rule decomposition we denote the conversion of a tree decomposition into a
set of ASP rules. Given a (non-ground) input rule r, the algorithm first heuris-
tically computes, by means of the Estimate function, a value er that estimates
how much the presence of r in the program impacts on the whole computation;
then, the function GenerateRuleDecompositons computes a set of possible
rule decompositions RDS, from which ChooseBestDecomposition selects
the best RD ∈ RDS; hence, function EstimateDecomposition computes the
value eRD that estimates the impact of having RD in place of r in the input
program. Eventually, function DecompositionIsPreferable is in charge of
comparing er and eRD and deciding if decomposing is convenient. We remark
that functions Estimate, ChooseBestDecomposition, EstimateDecom-
position and DecompositionIsPreferable are left unimplemented, as they
are completely customizable; they must be implemented by defining proper crite-
ria that take into account features and information within the specific evaluation
procedure, and the actual ASP system the algorithm is being integrated into.

Figure 2 reports also the implementation of function GenerateRuleDe-
compositons. Here, ToHypergraph converts a input rule r into a hypergraph
HG, which is iteratively analysed in order to produce possible tree decomposi-
tions, by means of the function GenerateTreeDecompositions. Also these
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function SmartDecomposition(r : Rule) : RuleDecomposition
var er : number, RDS : SetOfRuleDecompositions, eRD : Number,
RD: RuleDecomposition
er ← Estimate(r)
RDS ← GenerateRuleDecompositions(r)
if RDS �= ∅ then /* r is decomposable */

RD ← ChooseBestDecomposition(RDS,er)
eRD ← EstimateDecomposition(RD)
if DecompositionIsPreferable(er,eRD) then

return RD
end if

end if
return ∅

end function

function GenerateRuleDecompositons(r : Rule) : SetOfRuleDecompo-
sitions

var HG : Hypergraph, RDS : SetOfRuleDecompositions,
RD : RuleDecomposition, TD : TreeDecomposition
TDS : SetOfTreeDecompositions
HG ← ToHypergraph(r)
TDS ← GenerateTreeDecompositions(HG)
for each TD ∈ TDS do

RD ← ToRules(TD,r)
RDS = RDS ∪ RD

end for
return RDS

end function

Fig. 2. The algorithm SmartDecomposition and the GenerateRuleDecomposi-
tions function.

stages can be customized in an actual implementation, according to different
criteria and the features of the system at hand; for space reasons, we refrain
from going into details that are not relevant for the description of the approach.
The function ToRules, given a tree decomposition TD and a rule r, converts
TD into a rule decomposition RD for r. In particular, for each node in TD, it
adds a new logic rule to RD, possibly along with some additional auxiliary rules
needed for ensuring safety. The process is, again, customizable, and should be
defined according to the function ToHypergraph.

The general definition of the algorithm provided so far is independent from
any actual implementation, and its behaviour can significantly change depending
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on the customization choices, as discussed above. However, in order to give an
intuition on how it works, we make use of our running example for illustrating
a plausible execution.

Example 2. Given rule r1 of Example 1, let us imagine that function Gener-
ateRuleDecompositions computes the two tree decompositions TD1(r1) and
TD2(r1) and then, by means of ToRules, the set of rule decompositions con-
sisting of RD1(r1) and RD2(r1) is generated. Note that r4 and r7 are added for
ensuring safety of rules r3 and r6, respectively. Next step consists of the choice
between RD1(r1) and RD2(r1) for the best promising decomposition, according
to the actual criteria of choice. Supposing that it is RD1(r1), Decomposition-
IsPreferable compares the estimated impacts er1 and eRD1(r1), in order to
decide if keeping r or substituting it with RD1(r1).

4 Integrating the SmartDecomposition Algorithm
into a Real System: The DLV Case

We illustrate next the adaptation of the algorithm to DLV , and in particular
to its grounding subsystem I-DLV with the aim of optimizing the instantiation
process. Even if a description of the I-DLV computation is out of the scope of
this work (the interested reader is referred to [10]), we briefly recall the process
of instantiating a rule, one of the crucial tasks in grounding, since SmartDe-
composition directly interacts with it.

Grounding a rule essentially amounts to evaluate relational joins of the posi-
tive body literals, where predicate extensions can be seen as tables whose tuples
consist of the ground instances. Many strategies are adopted to optimize the pro-
cess: some operate in a pre-processing phase adjusting rules for a more efficient
evaluation, such as join ordering strategies; others explicitly take place during
the actual instantiation process, such as non-chronological backtracking; others
operate across the two phases, such as indexing techniques for quick instances
retrieval.

In the herein presented implementation, the SmartDecomposition algo-
rithm works in the pre-processing phase; we provide next some details on how we
defined the functions that have been left unimplemented in the general descrip-
tion of Sect. 3 (Estimate, ChooseBestDecomposition, EstimateDecom-
position and DecompositionIsPreferable), along with the proposed heuris-
tics, and discuss further implementation issues.

4.1 The Estimate Function

The function Estimate (Fig. 3) heuristically measures the cost of instantiating
a rule r before it is actually grounded. To this aim, we propose a heuristics
inspired by the ones introduced in the database field [29] and adopted in [25] to
estimate the size of a join operation. In particular, it relies on statistics over body
predicates, such as size of extensions and argument selectivities; we readapted it
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in order to estimate the cost of grounding a rule as the total number of operations
needed in order to perform the task, rather than estimate the size of the join of
its body literals. Let a = p(t1, . . . , tn) be an atom; we denote with var(a) the set
of variables occurring in a, while T (a) represents the number of different tuples
for a in the ground extension of p. Moreover, for each variable X ∈ var(a), we
denote by V (X, a) the selectivity of X in a, i.e., the number of distinct values in
the field corresponding to X over the ground extension of p. Given a rule r, let
〈a1, . . . , am〉 be the ordered list of atoms appearing in B(r), for m > 1. Initially,
the cost of grounding r, denoted by er, is set to T (a1), then the following formula
is iteratively applied up to the last atom in the body in order to obtain the total
estimation cost for r. More in detail, let us suppose that we estimated the cost of
joining the atoms 〈a1, . . . , aj〉 for j ∈ {1, . . . , m}, and consequently we want to
estimate the cost of joining the next atom aj+1; if we denote by Aj the relation
obtained by joining all j atoms in 〈a1, . . . , aj〉, then:

eAj��aj+1 =
T (aj+1)∏

X∈idx(var(Aj)∩var(aj+1))

V (X, aj+1)
·

∏

X∈(var(Aj)∩var(aj+1))

V (X,Aj)

dom(X)
(1)

where dom(X) is the maximum selectivity of X computed among the atoms in
B(r) containing X as variable, and idx(var(Aj) ∩ var(aj+1)) is the set of the
indexing arguments of aj+1. We note that, at each step, once the atom aj+1

has been considered, V (X,Aj+1), representing the selectivity of X in the virtual
relation obtained at step j + 1, has to be estimated in order to be used at next
steps: if X ∈ var(Aj), then V (X,Aj+1) = V (X,Aj) · (V (X, aj+1)/dom(X)),
otherwise V (X,Aj+1) = V (X, aj+1). Intuitively, the formula tries to determine
the cost of grounding r, by estimating the total number of operations to be per-
formed. In particular, the first factor is intended to estimate how many instances
for aj+1 have to be considered, while the second factor represents the reduction
in the search space implied by aj+1. To obtain a realistic estimate, the presence
of indexing techniques, used in I-DLV to reduce the number of such operations
[10], has been taken into account.

4.2 The EstimateDecomposition Function

The EstimateDecomposition function is illustrated in Fig. 3: after some pre-
processing steps, computes the cost of a given decomposition as the sum of the
cost of each rule in it. Let r be a rule and RD = {r1, . . . , rn} be a rule decomposi-
tion for r. In order to estimate the cost of grounding RD, one must estimate the
cost of grounding all rules in RD. For each ri ∈ RD the estimate is performed
by means of Formula 1. Nevertheless, it is worth noting that each ri, in addition
to predicates originally appearing in r, denoted as known predicates, may con-
tain some fresh predicates, generated during the decomposition. As for known
predicates, thanks to the rule instantiation ordering followed by I-DLV , actual
data needed for computing the formula come directly from the instantiation of
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function Estimate(r : Rule) : Number
/* Estimate the cost of grounding a rule according to Formula 1 */

end function
function EstimateDecomposition(RD : SetOfRules) : Number

var eRD : number
PreProcess(RD)
eRD ← 0
for each r′ ∈ RD do

eRD = eRD+ Estimate(r′)
end for
return eRD

end function

Fig. 3. Estimate and EstimateDecomposition as implemented in I-DLV

the previous rules. As for the fresh predicates, since they have been “locally”
introduced and do not appear in any of the rules originally in the input program,
such data are not available, and must be estimated. To this aim, the dependen-
cies among the rules in RD are analyzed, and an ordering that guarantees a
correct instantiation is determined. Intuitively, rules depending only on known
predicates can be grounded first, while rules depending also on new predicates
can be grounded only once the rules that define them have been instantiated.
Assuming that for the set RD a correct instantiation order is represented by
〈r1, . . . , rn〉, for each r′ in this ordered list, if H(r′) = p′(t1, . . . , tk) for k ≥ 1,
and if p′ is a fresh predicate, we estimate the size of the ground extension of
p′, denoted T (p′), by means of a formula conceived for estimating the size of
a join relation, based on criteria that are well-established in the database field
and reported in [25]. The selectivity of each argument is estimated, accordingly,
as k

√
T (p′). Therefore, the procedure PreProcess invoked in EstimateDe-

composition (see Fig. 3) amounts to preprocess the rules in RD according to
a valid grounding order 〈r1, . . . , rn〉 to obtain the extension sizes and the argu-
ment selectivities for involved fresh predicates, based on the above mentioned
formula. Once estimates for fresh predicates are available, the actual estimate of
grounding RD can be performed.

4.3 The ChooseBestDecomposition and Decomposition
IsPreferable Functions

The function ChooseBestDecomposition estimates the costs of all decom-
positions by means of EstimateDecomposition, and returns the one with
the smallest estimated cost; let us denote it by RD. The function Decompo-
sitionIsPreferable is in charge of deciding whether RD can be supposed
to be preferable with respect to the original rule r by relying on er and eRD,
that are the estimated costs associated to r and RD, respectively. Furthermore,
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it computes the ratio er/eRD: if er/eRD ≥ 1, the decomposition is applied.
Intuitively, when the ratio is less than 1 one might think that grounding r is
preferable; nevertheless, it is worth remembering that the costs are estimated,
and, in particular, as it will be better discussed in Sect. 4.2, the estimate of the
cost of a decomposition requires to estimate also the extension of some additional
predicates introduced by the rewriting, thus possibly making the estimate less
accurate. This leads sometimes to cases in which the decomposition is preferable
even when er/eRD < 1. One can try to improve the estimations, in the first
place; however, an error margin will always be present. For this reason, in order
to reduce the impact of such issue, we decided to experimentally test the effects
of the choices under several values of the ratio, and found that decomposition is
preferable when er/eRD ≥ 0.5, that has also been set as a default threshold in
our implementation; of course, the user can play with this at will. We plan to
further improve the choice of the threshold by taking advantage from automatic
and more advanced methods, such as machine learning guided machineries.

Example 3. Let us consider again the rule of our running Example 1 and the
two corresponding rule decompositions RD1(r1) and RD2(r1). The cost of the
three possible alternatives is estimated: (i) leave the rule as it is, (ii) choose
RD1(r1) or (iii) choose RD2(r1). Because of the nature of the heuristics we
implemented into our method as integrated in I-DLV , such estimates tightly
depends on the instance at hand, and hence the choices will possibly vary from
instance to instance. Let us assume that the current instance contains the facts2:

s(1..5). a(1..5, 1..5, 1..5). c(1..5, 1..5, 1..5). f(1..5, 1..5, 1..5).

the cost of grounding r1 is estimated according to Formula (1); without report-
ing all intermediate calculations, er1 amounts to 390, 625. In order to compute
eRD1(r1), according to what discussed in Sect. 4.2, we first need to determine a
correct evaluation order of the rules in RD1(r1); the only valid one is 〈r4, r3, r2〉
(intuitively, r4 has only known predicates in its body, thus can be evaluated first;
the body of r3 contains, besides to known predicates, fresh pred 2, whose esti-
mates will be available just after the evaluation of r4; eventually, r2 depends also
on fresh pred 1, whose estimates will be available right after the evaluation of
r3). Once the estimates for the fresh predicates fresh pred 1 and fresh pred 2
are obtained, they are used for computing er2 , er3 and er4 with Formula (1),
and then for obtaining eRD1(r1) = er2 + er3 + er4 . Again, without reporting all
intermediate calculations, eRD1(r1) amounts to 122, 945. Analogously, eRD2(r1) is
computed as 53, 075. In this case, it is easy to see that the chosen decomposition
is RD2(r1). The ratio er1/eRD2(r1) is computed as 7.36; as it is greater than 1,
the decomposition is preferred over the original rule. Interestingly, with a differ-
ent input instance, things might change. For instance, if the set of input facts
for f is changed to f(1..20, 1..20, 1..5)., the decomposition RD1(r1) is preferred.

2 According to ASP-Core-2 syntax, the term (1..k) stands for all values from 1 to k.
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4.4 Fine-Tuning and Further Implementation Issues

In order to implement the SmartDecomposition algorithm, one might rely on
lpopt in order to obtain a rule decomposition for each rule in the program; in
particular, this would lead to a straightforward implementation of ToHyper-
graph and ToRules, the functions that convert a rule into a hypergraph and
a tree decomposition into a rule decomposition, respectively. Nevertheless, in
order to better take advantage from the features of I-DLV and do not interfere
with its existing optimizations, we designed ad-hoc versions for such functions.

For instance, I-DLV supports the whole ASP-Core-2 language, which con-
tains advanced constructs like aggregates, choice rules and queries; our imple-
mentation, even if resembling the one of lpopt , introduces custom extensions
explicitly tailored to I-DLV optimizations, and some updates in the way the
aforementioned linguistic extensions are handled. In particular, before the invo-
cation of SmartDecomposition, a preliminary rewriting is applied to rules
containing aggregates or choice constructs [8], in order to make them more trans-
parent to the decomposition process, thus easing it. Furthermore, I-DLV , differ-
ently from lpopt , explicitly handle queries, and employs the magic sets rewriting
technique [4] to boost query answering; in our approach, SmartDecomposi-
tion is applied after the magic rewriting has occurred, so that decompositions
is applied also to resulting magic rules. In addition, given that I-DLV per-
forms other rewritings on the input rules for optimization purposes, the function
ToRules is in charge of performing such already existing rewriting tasks also
on the rules resulting from the decompositions.

Another relevant issue is related to the safety of the rules generated in a
decomposition. Indeed, due to the abstract nature of SmartDecomposition,
we cannot assume that they are safe, since this depends on the schemas selected
for converting a rule into a hypergraph, and a tree decomposition into a set of
rules. Hence, the ToRules function must properly take this into account, as
briefly noted in Sect. 3. In particular, our implementation, given a rule r and an
associated tree decomposition TD, after a rule r′ corresponding to a node in TD
has been generated, checks its safety. If r′ is unsafe, and UV is the set of unsafe
variables in r′, an atom a over a fresh predicate p, that contains the variables
in UV as terms, is added to B(r′) and a new rule r′′ is generated, having a as
head; a set of literals L binding the variables in UV is extracted from B(r) and
added to B(r′′). Interestingly, the choice of the literals to be inserted in L is
in general not unique, as different combinations of literals might bind the same
set of variables; for instance, one might even directly add L to B(r′) without
generating r′′; however, this might introduce further variables in B(r′), and
alter the original join operations in it. For this reason, in our implementation we
decided to still add r′′, and while choosing a possible binding, we try to keep the
number of literals taken from B(r) small, also preferring to pick positive literals
with small ground extensions. Interestingly, this allows to do better than what
it would be obtained by using lpopt as a black box: in such a case, the choice of
saviour literals could not rely on information that are available only from within
the instantiation process.
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The current implementation of function GenerateTreeDecompositions
that, given a hypergraph HG returns a set of tree decompositions TDS, relies
on the open-source C++ library htd [1]3, an efficient and flexible library for com-
puting customized tree and hypertree decompositions; importantly, it allows to
customize them via user-provided fitness functions, that we used in order to asso-
ciate each computed decomposition with its cost estimation, and hence select the
best one, accordingly. By default, I-DLV stops the generation of tree decomposi-
tions after 3 consecutive generations without improvements in the fitness values,
and after 5 generations in total. These limits have been set by experimentally
observing that no performance improvements arise with higher values; however,
they can be customized by proper command-line options.

5 Experimental Evaluation

We report next the results of an experimental activity aimed at assessing the
impact of SmartDecomposition on the grounding performance of I-DLV . As
for benchmarks, we considered the whole 6th ASP Competition suite [17], the
latest available at the time of writing4. Three versions of I-DLV have been com-
pared: (i) I-DLV without any decomposition, (ii) lpopt (version 2.2) combined
in pipeline with I-DLV (i.e., a black-box usage of lpopt), (iii) I-DLV sd, i.e. I-
DLV empowered with the herein introduced version of SmartDecomposition.
For each problem, the average time over the 20 selected instances of the official
competition runs is reported; in order to produce replicable results, the random
seed used by lpopt for heuristics has been set to 0 for system (ii).

Results are reported in Table 1, where US indicates that corresponding con-
figurations do not support syntax; in particular, we report number of grounded
instances within the allotted time along with the average time spent. Some
benchmarks names are reported in bold, indicating cases where there is a notice-
able difference (either positive or negative) w.r.t. (i) for one of the two systems
making use of decomposition (i.e., (ii) and (iii)). Results of the “blind usage” of
lpopt ((ii)) are conflicting: for instance, it enjoys a great gain w.r.t. the version
of I-DLV without decomposition, in particular while dealing with the Permu-
tation Pattern Matching problem, yet showing great losses in other cases. On
the other hand, the “smart usage” of decomposition in I-DLV sd allows to avoid
negative effects of the black-box decomposition mechanism, still preserving the
positive ones. It is worth noting that in a few isolated cases, namely Labyrinth
and Nomistery, the black-box usage seems to be convenient over the heuristic-
guided one; we investigated, and found that the reason is not related to the
choices made according to the heuristics, but rather to a tight interaction with

3 https://github.com/mabseher/htd.
4 Experiments have been performed on a NUMA machine equipped with two 2,8GHz

AMD Opteron 6320 and 128 GiB of main memory, running Linux Ubuntu 14.04.4

(kernel ver. 3.19.0-25). Binaries have been generated by the GNU C++ compiler

5.4.0. We allotted 15 GiB and 600 s to each system per each single run, as memory
and time limits.

https://github.com/mabseher/htd
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Table 1. Grounding benchmarks: number of solved instances and average running
times (in seconds), where US indicates that corresponding configurations do not support
syntax.

Problem I-DLV LPOPT | I-DLV I-DLVSD

Solved Time Solved Time Solved Time

Abstract dialectical frameworks 20 0.11 20 0.11 20 0.13

Combined configuration 20 13.53 20 13.52 20 13.33

Complex optimization 20 69.83 20 73.41 20 66.82

Connected still life 20 0.10 20 0.10 20 0.10

Consistent query answering 20 76.31 US 20 75.35

Crossing minimization 20 0.10 20 0.10 20 0.10

Graceful graphs 20 0.31 20 0.32 20 0.32

Graph coloring 20 0.10 20 0.10 20 0.10

Incremental scheduling 20 17.05 20 16.77 20 16.55

Knight tour with holes 20 2.36 20 6.53 20 2.34

Labyrinth 20 2.01 20 1.83 20 2.02

Maximal clique 20 4.39 20 20.70 20 4.31

MaxSAT 20 3.96 20 8.92 20 3.90

Minimal diagnosis 20 5.19 20 4.36 20 4.79

Nomistery 20 4.16 20 2.50 20 3.46

Partner units 20 0.43 20 0.44 20 0.44

Permutation pattern matching 20 135.04 20 4.35 20 4.31

Qualitative spatial reasoning 20 5.49 20 5.47 20 5.48

Reachability 20 142.64 US 20 134.91

Ricochet robots 20 0.37 20 0.40 20 0.39

Sokoban 20 1.23 20 1.25 20 1.25

Stable marriage 20 123.55 20 132.33 20 125.27

Steiner tree 20 29.83 20 29.90 20 29.73

Strategic companies 20 0.25 US 20 0.30

System synthesis 20 1.12 20 1.13 20 1.11

Valves location problem 20 2.58 20 2.61 20 2.66

Video streaming 20 0.10 20 0.10 20 0.10

Visit-all 20 1.22 20 0.45 20 0.44

Total solved instances 560/560 500/560 560/560

some other internal rewriting-based optimizations that I-DLV performs after
the decomposition stage (for more details, we refer the reader to [10]). This also
suggests that the heuristics could be further refined by even better tailoring
them to the specific features of the grounding process they are integrated into.
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5.1 Impact of I-DLV SD on ASP Solvers

We proved above how a smart decomposition strategy might significantly
increase performance of a grounder like I-DLV ; unfortunately, simply improving
the grounding times does not necessary imply improvements on the solving side,
since these heavily depend on the form of the produced instantiation. While tai-
loring SmartDecomposition also to the solving phase will definitely be subject
of future works, we experimented with the proposed solution in order to evaluate
the impact of I-DLV sd on wasp [3], which is the solver module of DLV . In order
to get a more clear picture, we took into account also the solver clasp [16]; in
particular, we combined the same three versions of I-DLV tested above with
both clasp and wasp, and launched the resulting configurations over the same
set of benchmarks.

Average times and number of solved instances within the allotted time are
reported in Table 2, where time outs and unsupported syntax are denoted by
TO and US, respectively. First of all, we observe that there is no evident cor-
relation between gain in grounding times and gain in solving times; in some
cases, indeed, the improvements in grounding performance correspond to clear
improvements for both clasp and wasp, while in other cases, both benefit from
the decomposition rewriting even if there is no evidence of improvements on
the grounding times. One can also note that the “blind usage” of lpopt leads,
in general, to a loss of performance for both solvers: in spite the gain in some
cases, the total number or solved instances within the suite is significantly lower.
On the other hand, although the version of SmartDecomposition has been
explicitly tailored to the optimization of grounding times, both solvers show,
in general, improved performance when coupled with I-DLV sd: they both solve
a larger number of instances w.r.t. the configurations featuring I-DLV . It can
be observed that there are some corner cases in which the black-box approach
eventually allows a solver to solve some instance more than both the version
without decomposition and the one relying on I-DLV sd; however, the same does
not hold for the other solver. This suggests that a deeper analysis is needed, and
that one should explicitly tailor the heuristics guiding the smart decomposition
to the given solver at hand; for instance, one can start from the results in [6],
where emerged that the performance of modern solvers are influenced by the
tree-width of the input program.

6 Conclusion

We introduced SmartDecomposition, a novel technique for automatically
optimizing rules of an ASP program by means of decompositions. The algorithm
is designed to be adapted to different ASP implementations; furthermore it can
be customized with heuristics of choice for discerning among possible decom-
positions for each input rule, and determining whether applying the selected
decomposition appears to be actually a “smart” choice.

In addition, we embedded a version of SmartDecomposition in the ASP
system DLV , and in particular in its grounding module I-DLV . We introduced
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heuristics criteria for selecting decompositions that consider not only the non-
ground structure of the program at hand, but also the instance it is coupled
to. We experimentally tested our approach, and results are very promising: the
proposed technique improves grounding performance, and highlights a positive
impact, in general, also on the solving side. This is confirmed also by the results of
the 7th ASP Competition [19]: here the winner was a system combining the ver-
sion of I-DLV implementing the preliminary decomposition rewriting described
in [9] with an automatic solver selector [11], that inductively chooses the best
solver depending on some inherent features of the instantiation produced.

As future work, we plan to take advantage from automatic and more advanced
methods, such as machine learning mechanisms, in order to better tailor decom-
position criteria and threshold values to the scenario at hand. Furthermore, we
plan to design a version of SmartDecomposition specifically geared towards
solvers, in order to further automatically optimize the whole computational
process.
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Abstract. Logic-based paradigms are nowadays widely used in many
different fields, also thanks to the availability of robust tools and systems
that allow the development of real-world and industrial applications. In
this work, we present LoIDE, an advanced and modular web-editor for
logic-based languages that also integrates with state-of-the-art solvers.

Keywords: Logic programming · Development
Web-based applications

1 Introduction

In the latest years, declarative paradigms and approaches to solving problems
have been crossing the border of academia and are now increasingly applied
to real-world scenarios. This is especially the case for logic-based formalisms;
indeed, after years of theoretical results, the availability of solid and reliable sys-
tems made viable the implementation of effective logic-based solutions, even in
the industrial context. Along with the need for reliable solver technologies, the
lack of suitable engineering tools for developing programs started to be prop-
erly addressed; as an example, we mention the work carried out by the Answer
Set Programming (ASP, or AnsProlog) community [1,2], that explicitly tack-
led issues like writing, debugging and testing Answer Set programs as well as
embedding them into external, traditionally-developed systems [5,10].

At the same time, scenarios of computing significantly changed as well,
now heavily relying on network connections and tools, and the web-application
paradigm become very popular, thus fostering cross-device and mobile comput-
ing: many existing desktop applications have been “ported” to the web, and
many others have been created specifically according to this paradigm. More-
over, JavaScript, available on all types of devices ranging from servers to Internet
of Things (IoT), became a real cross-platform language: on the one hand, it has
been improved with many interesting features that made it an ideal language for
developing full-fledged applications; on the other hand, cloud-computing tech-
nologies significantly eased development, deploying and use of such applications.

c© Springer International Publishing AG 2018
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In this scenario, software development tools have been released as web-
applications. As a result, code editors for many different programming lan-
guages are available to be used via web browsers, such as Codeanywhere,
JSFiddle, Cloud9, repl.it, and more. Even developers of long-lasting and
widespread environments, like Eclipse Foundation and Microsoft, released cloud-
based environments (e.g., Eclipse Che and Visual Studio Team Services) that
include also powerful IDEs. Editors for logic-based formalisms are no excep-
tion, from very simple playgrounds like the LogiQL REQPL to more complete
editors like IDP Web-IDE [4], SWISH [15] and the PDDL Editor [12]. As for
Logic Programming and ASP, Clingo in the Browser, dlvhex Online Demo and
ASP for the Semantic Web - Tutorial have been proposed; however, these are
quite “simplistic”, and at an early stage of development; furthermore, each logic
programming web-editor introduced so far is intended for a specific language,
or even for a specific solver. This raises some issues about interoperability and
limits the usage of these tools.

In this paper we present LoIDE, a web-based IDE for Logic Programming
that explicitly addresses interoperability and flexibility, supporting multiple for-
malisms and solvers. The remainder of the paper is structured as described next.

In Sect. 2 we describe the LoIDE project and its main features, then we pro-
vide some implementation details on different components in Sect. 3. Eventually,
we present a brief comparison with similar projects in Sect. 4 and discuss about
the future developments of the LoIDE project.

2 The LoIDE Project

The main goal of the LoIDE project is a modular and extensible web-IDE for
Logic Programming based on modern technologies. The LoIDE IDE will pro-
vide advanced features, specifically tailored for Logic Programming; it has been
conceived in order to be extended over time, and support as many logic-based
languages and solvers as possible. A further goal is a web-service with a common
set of APIs for different logic-based languages; at the time of writing, this is still
at an early stage of development.

LoIDE is released as open-source software (OSS) and it’s publicly available
at https://goo.gl/sDGMhA. Moreover, it has been released as Free Software1,
with the explicit aim of providing the scientific community with a free tool to
be studied, used, distributed and even improved. A prototypical running demo
is available at https://goo.gl/s4g6zA.

The LoIDE IDE provides all basic editing features that can be of use for Logic
Programming. We started from basic features available in Ace, a JavaScript
embeddable code editor that constituted the base for LoIDE (see Sect. 3.3).
Among the most relevant, we mention here:

1 Under MIT License. https://goo.gl/nrXtN4.

https://codeanywhere.com
https://jsfiddle.net
https://c9.io
https://repl.it
https://eclipse.org/che
https://azure.microsoft.com/services/visual-studio-team-services
https://repl.logicblox.com
http://adams.cs.kuleuven.be/idp
http://swish.swi-prolog.org
http://editor.planning.domains
http://potassco.sourceforge.net/clingo.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://asptut.gibbi.com
https://goo.gl/sDGMhA
https://goo.gl/s4g6zA
https://ace.c9.io
https://goo.gl/nrXtN4
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Fig. 1. An ASP program addressing a toy instance of the 3-colorability problem, and
the corresponding run performed by the DLV system via LoIDE.

indentation: automatically indent and outdent the code;
document size: handles huge documents;
key bindings: customizable key bindings (including vim and Emacs modes);
search and replace: search and replace text via regular expressions;
brace matching : highlight matching parentheses;
mouse gestures: drag and drop text;
advanced cursors management : multiple cursors and selections;
clipboard management : cut, copy, and paste functionalities;
themes: over 20 themes available (standard .tmtheme files can be imported).

We extended such basic functionalities in order to properly meet the specific
requirements of Logic Programs development.

Syntax highlighting. Ace supports syntax highlighting, already covering 110
languages; unfortunately, the logic-based languages we were interested in are not
included. Relying on the specifications for cross-browser syntax highlighting,
we introduced a basic support for ASP programs, and plan to include other
languages as soon as the support for their specific solvers will be added to LoIDE.

Editor layout and appearance. The user can customize layout and appearance
of the “Input” and the “Output” fields of the IDE. The user can change theme
and fonts of each part of the interface, independently. Moreover, size and position
of the two fields are customizable as well. It’s worth noting that all options
are automatically saved in the Web Storage, in order to make the experience
persistent across different browser sessions.

Output highlighting. One of the most annoying aspects of developing and
testing logic programs in practice is the need for checking output in test cases:
given that output is often constituted of a (possibly very long) list of instances
of many predicates, it can be quite tricky. Most solvers allow to filter predicates,
but this does not solve the problem and it is not a very flexible solution. LoIDE

http://www.w3.org/TR/webstorage
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features an ad-hoc output highlighting: when the user selects an element of
the output (for instance, a predicate name), all the elements with the same
“name” will be automatically highlighted. The user can dynamically play with
such highlighting and, as a consequence, the analysis of the results might be
dramatically simplified2.

Keyboard shortcuts. LoIDE supports many keyboard shortcuts. We prop-
erly extended the typical code-editors shortcuts provided by Ace3 for (a) Line
operations, (b) Selection, (c) Multi-cursors, (d) Go-to, (e) Find/Replace, (f)
Undo/Redo, (g) Indentation, (h) Comments and (i) Word/Character variations;
and added specific shortcuts to Save/Load programs and Run them.
Moreover, we implemented other custom features around the Ace-based stem.

Multiple file support. When dealing with real-world problems in practice,
logic programs are often split into several files (for instance, separating problem
specification from problem instances). LoIDE explicitly supports multiple files
management: the user can create and manage many different tabs, and also
selectively decide which one has to be composed into the actual program to run.

Options. LoIDE settings can be customized, along with the behaviour of the
underlying systems of use. The user can select the logic language of choice, and
also the solver to be used to run the programs. Moreover, specific options can be
selected for each solver, with predefined typical settings available for the most
common. There are also more general options; for instance, the user can ask
to automatically run the program at the end of each statement, so that the
output dynamically changes as the user is crafting the program: this increases
the interaction with the system, and it might significantly ease the development
of non-trivial programs, being of great help in educational settings (sucn as in
the context of a Logic Programming class).

Import and Export files. Contents of the editor, all options and outputs can
be downloaded to the device of use as JSON files; they can be later restored, pos-
sibly over a different device (Drag-and-Drop can be used, if the device supports
it). This is crucial for practically provide the user with a working environment
which is virtually immaterial and free from specific physical workstations.

3 Implementation

We provide next some insights on the design and implementation of LoIDE.

3.1 General Architecture

Figure 2 drafts the system architecture, that relies on a typical client-server
framework. The back-end (or server-side component) consists of the main LoIDE
Web-Server, developed using Node.js R©, which exposes API s used by the client.

2 More features for improving comprehension of the results will be added, such as
different forms of visualization.

3 https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts.

https://nodejs.org
https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts
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Fig. 2. Architecture of the LoIDE project

The front-end (or client-side component) consists of the Graphical User Inter-
face (GUI), developed using modern web technologies such as HTML5, CSS3
and JavaScript. The execution of the logic solvers is not performed directly from
within the main LoIDE web-server; rather, external components are in charge of
this: for instance, it might be the embASP Server Executor . However, as shown
in Fig. 2, other executors can be easily attached to the main LoIDE web-server in
order to provide support to different logic-based formalisms. This choice is due to
the aim of keeping the system modular and extensible; indeed, such modularity
ease the management of additions, upgrades, and security issues.

LoIDE APIs. As already mentioned, one of the goals of the LoIDE project is
a set of (Web) APIs for easily and efficiently controlling different solvers over
different logic programming languages. All components communicate using the
WebSocket communication protocol and the JSON data-interchange format; the
choice was straightforward, as these have well-defined “standards” and are widely
used in almost all the modern web-applications. Specifications and implementa-
tion of APIs are at an early stage; currently, a call type is available, that given the
description of the language, the solver, the list of options and the program,
executes the solver over the program, and returns either the output of the solver
or any error messages. We think of this as a very important topic: it will be part
of a specific future work. See LoIDE API documentation4 for further details.

We remark, again, that the proposed architecture and the use of standard
technologies over all components, new modules can be easily added or modified
while maintaining the scalability of the whole architecture, as shown in the lower
part of Fig. 2.

4 LoIDE APIs. https://goo.gl/6XJeDN.

https://tools.ietf.org/html/rfc6455
http://www.json.org
https://goo.gl/6XJeDN
https://goo.gl/6XJeDN
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3.2 Back-End – The LoIDE Web-Server

The LoIDE Web-Server has been developed using Node.js R©. In order to effec-
tively use WebSockets, we relied on the socket.io package to enable real-time,
bidirectional event-based communications between client and server; the package
provided us with means for enabling several useful features, such as Reliability,
Auto-reconnection and Disconnection detection.

3.3 Front-End – The LoIDE GUI

As the front-end relies on modern standard web technologies (HTML5, CSS3,
JavaScript), LoIDE is compatible with virtually any device currently available.
Popular frameworks and libraries have been employed with the aim of improving
user experience and making the IDE robust and powerful.

ace. Ace is a JavaScript embeddable code editor. It matches features and perfor-
mance of native editors such as Sublime, Vim and TextMate, and can be easily
embedded in any web page or JavaScript application.

Bootstrap. Bootstrap is the most popular front-end component library frame-
work for developing responsive, mobile-first projects on the web.

jQuery and its UI Layout plugin. jQuery is a small and fast JavaScript
library rich of features. The jQuery UI Layout plugin allows the creation of
advanced UI layouts with sizable, collapsible, nested panels and tons of options.

bimap. BiMap is a powerful, flexible and efficient JavaScript bidirectional map
implementation.

keymaster.js. Keymaster is a simple micro-library for defining and dispatching
keyboard shortcuts in web applications.

The web-based GUI is divided into 4 different parts (Fig. 1). The navigation
bar, at the top, contains dedicated Run, Upload and Download buttons. The
code editor, in the middle, contains the editing tabs holding the program(s) to
execute. The output panel, on the right side, dynamically shows the output of
the computations and the link to the editor’s layout options. The IDE options
panel, on the left side, contains all the options described in Sect. 2; this panel
can be automatically toggled in order to save space for the main editor.

The layout is built using the Responsive Web Design (RWD) approach, i.e.,
it automatically adapts to the viewing environment and offers the possibility to
be viewed on different devices with virtually the same User Experience.

3.4 The EMBASP Server Executor

In order to decouple the web-requests management from logic-programming
solvers execution, we developed embASP Server Executor as a completely dif-
ferent component; it is even implemented in a different programming language.
embASP Server Executor is a Java server application that is able to execute

https://socket.io
https://ace.c9.io
https://getbootstrap.com
https://jquery.com
http://plugins.jquery.com/layout
https://github.com/alethes/bimap
https://github.com/madrobby/keymaster
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ASP programs with different solvers; we remark that the focus on ASP is just
for the prototype, and other formalisms will be supported soon. It has the usual
structure of a Java web-app with the following modules: (i) Control, (ii) Model,
(iii) Service, and (iv) Resources. For space reasons, we do not discuss them in
details, as the names are self-explanatory. embASP Server Executor runs on
top of Apache Tomcat R© and exposes a set of APIs for invoking the solvers.
In order to execute the desired solver, it makes use of embASP5 [7], a frame-
work for the integration (embedding) of Logic Programming in external systems
for generic applications; it helps developers with designing and implementing
complex reasoning tasks by means of different solvers on different platforms.

Similarly to LoIDE, embASP Server Executor is provided as open-source
software (OSS), is publicly available at https://goo.gl/2WUeb4, and is released
as Free Software6.

4 Related Works

The work herein presented is naturally comparable to other Logic Programming
IDEs and other web-based editors. Several stand-alone, “native” editors and
IDEs have been proposed for Logic Programming over different platforms; we
refer the reader to the ample literature on the topic [3,6,9,13,14,16]; moreover,
many web-based editors, that are the closely related with the project presented
in this paper, have been recently introduced [4,11,12,15].

All tools and environments share the same core of basic features, many of
them are quite stable, some are already well-known. LoIDE, similarly to most
web-based editors, has currently fewer features w.r.t. the “native” ones; how-
ever, even if quite young, it is already stable and effectively provides access to
logic programming without the need for installing and configuring local appli-
cations, and from almost any platform connected to the Internet. Furthermore,
it could even run locally on any device featuring the Node.js runtime, with a
few additional configuration steps. Some tools (as SWISH, for instance) rely on
platforms that provide functionalities via specific APIs over HTTP; it is worth
noting that this is not the case of LoIDE. Indeed, it started from Answer Set
Programming, for which no such platforms were available, and makes use of the
embASP Server Executor , implemented on purpose, that makes the project also
more general and extensible.

All mentioned editors have peculiar, sometimes very interesting features;
however, each one is tailored to a specific language and tightly coupled with
some specific solver(s) in the back-end. On the other hand, the aim of LoIDE
is to have a robust platform that seamlessly integrates different languages and
different solvers. We do believe that this approach is more general, and could
foster the use of logic programming in many contexts, especially in practical
context and in education, also fruitfully promoting exchanges among the various
communities in the logic programming area.
5 embASP. https://goo.gl/mE5kAo.
6 Under MIT License. https://goo.gl/VfPknG.

https://goo.gl/2WUeb4
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5 Conclusion and Future Work

In this paper, we presented the LoIDE project, an advanced and modular web-
editor for logic-based languages that is also capable of integrating with state-of-
the-art solvers. Even if equipped with relevant features that make it effectively
usable in practice, the project is still at an early stage of development; hence, we
have already identified many future works and improvements. For space reason,
we can not mention them here: more details can be found in [8]. We mention
here that we are working to take advantage from the modular and extensible
nature of LoIDE in order to support more executors (web-services), logic-based
languages and solvers (engines); this will help to increase the audience, and with
this respect we plan to add interactive tutorials for allowing users to became
more familiar with declarative programming. We expect that a larger user base
will foster a discussion in the communities about the features a cloud-based IDE
for Logic Programming languages should have, and what the specifications of
standard APIs should be to allow data interchange among different applications.
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Abstract. Answer Set Programming (ASP) is a declarative program-
ming paradigm that has been successfully used in a number of industry-
level applications also thanks to the availability of development tools.
REpresentation State Transfer (REST) Web Services recently became
a common and widely-used tool for enterprise applications. A service-
oriented infrastructure for ASP would further catalyze the adoption
of ASP-based solutions in real-world contexts. This paper introduces
a REST-based framework for ASP, and reports on an application of the
framework in the field of surveillance for photovoltaic plants.
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1 Introduction

Answer Set Programming (ASP) [3] is a declarative paradigm for knowledge
representation and reasoning. Nowadays, ASP is successfully used to solve many
real-world problems from several areas ranging from Artificial Intelligence, to
Knowledge Management and Database (for a survey see [5]). Since ASP is not
a full general-purpose language, ASP programs are always encapsulated in sys-
tems components developed via imperative and object-oriented programming
languages. This has brought into light the need of reliable APIs and tools for
integrating ASP technologies in well-assessed software-development processes
and platforms [13]. Recently, the well-known ASP system DLV [11] has been
profitably employed in a number of industry-level applications [12], and a key
advantage of DLV for applications development is its endowment with powerful
development APIs and tools [6,7].
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Today more than ever applications are becoming more and more intelli-
gent and pervasive. In general, intelligent services are expensive from a com-
putational point of view, whereas mid-range devices are equipped with limited
computational resources. Hence, there is a strong need of “remote intelligence
providers” which take in charge of executing heavy reasoning tasks, allowing to
devise lightweight apps that are runnable by common devices. In this context
web services1 became a common and widely-used technology. Indeed, intelligent
web services are provided by a number of enterprise platforms like for example
IBM Watson2 and Microsoft Azure3. Also in the field of logic programming,
preliminary efforts in this direction [4,14] lead to a client-server infrastructure
for tuProlog and SWI-Prolog, respectively. However, we are not aware of similar
efforts for delivering ASP-based reasoning services, despite such an infrastruc-
ture would promote the development of ASP-based solutions.

In this paper, we report on the implementation of a service-oriented interface
devised with the aim of simplifying the creation of intelligent web services using
ASP. Our interface allows the exposition of services that can be invoked via
HTTP using a REpresentational State Transfer (REST) interface [8]. In partic-
ular, ASP programs can be managed and executed by making REST invocations
to a server and by passing as parameter the program P to be executed in the
JSON4 format; the server runs DLV over P and returns the obtained results
back to the client. The interface has been integrated in ASPIDE [7], one of the
most comprehensive Integrated Development Environments for ASP, to further
reduce the work that has to be done by developers in devising intelligent web ser-
vices with ASP. In order to show practical implications of this work, we present
here a case of study in the area of intelligent energy management. In particular,
we implemented a tool of surveillance, that relies on DLV, for monitoring and
diagnosing anomalies in photovoltaic plants. Our REST interface was the key
ingredient for deploying an intelligent service in an existing service-oriented sys-
tem, and ASPIDE helped reducing the implementation efforts. Thus, ASP-based
services enhanced the system’s ability to reason over and act upon it inputs by
allowing the development of an intelligent service relying on an expressive declar-
ative language and a powerful reasoning engine.

2 The DLVService REST Application

In this section we present DLVService, a RESTful Web Service implemented in
Java which provides service-oriented features for managing and executing ASP
programs. RESTful Web Services are implemented using a REpresentational
State Transfer (REST) interface in which every request made from a service
requester (GET, POST, PUT, DELETE, etc.), to a resource’s URI, will cause
the service provider to react generating a response, containing data, that may be
1 https://www.w3.org/TR/ws-arch/#id2260892.
2 https://www.ibm.com/watson/.
3 https://azure.microsoft.com/.
4 http://www.json.org.
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in XML, HTML, JSON or some other defined format. Intuitively, a client which
wants to use DLVService has to make REST invocations passing, as parameter
encoded in the JSON format, the program to be executed; the server will call
the DLV system in order to obtain execution results in the JSON format.

Fig. 1. The DLVService architecture

Figure 1 shows the architecture of DLVService: “Entry point” is the server
listener which handles REST invocations made by clients, and “Services” makes
available all the services exposed by DLVService. When a client makes an exe-
cution request to DLVService, an instance of DLV is launched by the server to
compute results; note that a client can request several solver executions at the
same time and, in this case, different instances of DLV will be launched in par-
allel. Moreover, DLVService, using the “Workspace manager” module (Fig. 1)
allows one to have a remote workspace management ; in this case, a user that
is registered on the server will have a remote workspace where she can create
program files and organize them in folders and subfolders. New users can be
registered by the server administrator using a procedure which is similar to the
one used to add users to Concurrent Versions Systems (CVS). In order to invoke
DLVService, a registered user needs to make REST invocations using OAuth
2.0, a secure protocol ensuring a secure authentication. The workspace main-
tains all the defined execution configurations (e.g. which files were executed,
which execution options were used, etc.), and all the results obtained from dif-
ferent execution tasks; note that an execution result stores a reference to the
execution configuration used to obtain it.

Exposed Services and Complex Input/Output Objects. In order to use
the features of the DLVService, several remote calls has to be done such as
uploading new programs to the server, making several remote solver executions
and retrieving results. A single remote service call is performed (assuming the
server runs locally) by making an HTTP POST invocation with the URL:

http://localhost:8080/ASPWebService/DLVService?action=SERVICE NAME

where SERVICE NAME has to be replaced by the name of one of the services
provided by DLVService; e.g. if a client wants to call service executeProgram, the
last part of the URL will be action=executeProgram.
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The most important services exposed by DLVService are described below in
separated paragraphs.

registerProgram . It uploads an ASP program into a specific remote file.

getProgram . Given an array of remote file paths, it checks whether the files
exist remotely and retrieves a Program object which contains the list of remote
files.

executeProgram . It executes a given program. The program content will be
saved into a specific file of the remote workspace. Execution results are both
returned to the user and saved into a results file which can be accessed by the
user even in a different moment; this feature is useful, e.g., for long reasoning
tasks because the user can access in each moment the results file in order to see
partials results.

createExecutionSettingsWithSolver . It creates a new ExecutionSettings
object by specifying following parameters: an object name, the Program to be
executed, the Solver to be run and the Options to be used.

executeConfiguration . For a given ExecutionSettings object, this service exe-
cutes the relative configuration and retrieves the results.

Input parameters and output results of a service are complex objects encoded
in the JSON format and the most important ones are described below:

Program . The program to execute containing a remote file paths list referring
to program files.

ExecutionSettings. Execution settings composed by the program to be exe-
cuted, the remote solver containing solver name/path/options, and a datetime
field that can be used to retrieve the last created ExecutionSettings.

Results. Object containing the results of DLV after an execution invocation.

Run . Object built after a DLV execution task; it contains the run state (finished,
error, etc.), two datetime objects identifying when the execution started and
ended, the results of the execution and the ExecutionSettings which was used to
perform the execution.

Solver . This object specifies a solver to use for execution. Default solvers are:
DLV, DLV+ODBC, DLVDB and DLV∃ [10].

Options. Object containing options to use on executing DLV.
A complete user manual for invoking all the exposed services, is available at

https://www.mat.unical.it/ricca/aspide/dlvservice.html.

3 An Industry-Level Case of Study: Surveillance
for Photovoltaic Systems

In this section, we present a case of study developed within the project “Project
PON03PE 00001 1 Business Analytics to Know (BA2KNOW)” in collaboration

https://www.mat.unical.it/ricca/aspide/dlvservice.html
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with the energy company Omnia Energia5. We realised an ASP-based service
solving a problem arising in the area of intelligent energy management. In par-
ticular, we developed a module for surveilling and monitoring a photovoltaic grid.
Our module engages in a system where each module was developed according
to the REST approach. Using the REST service was therefore of fundamen-
tal importance to develop the application described later. In the following we
assume that the reader is familiar with ASP, we refer the reader to [2] for a nice
tutorial on the language of DLV and to [1,9] for a comprehensive descriptions of
ASP as a modeling language.

The goal of this application is monitoring and diagnosing anomalies in the
photovoltaic grid: in case of incidents both customers and the company itself
are notified with programmed warnings. Anomalies are detected by comparing
actual data measured on the grid with the expected values for these data as
provided by other modules of the system (the description of these is out of the
scope of this paper). The expected values can be obtained in the system either
by running a mathematical model of the grid or by getting the results out of a
previously-trained neural network, which also takes as input weather data and
other measurements. Data which is coming from one or more predictive models
are fed as input to our module, together with actual device measurements (such
as instant and peak power). Our module is then able to compare the actual
values with the expected ones, and to issue programmable alerts to users (where
users are intended as both company customers and the company itself).

By using logical rules, it is possible to reason on input data, allowing, for
instance, to identify devices whose behavior differs from estimated values. Com-
parisons can be tuned over different time windows, such as days, weeks, months
or years. One can also reason in terms of how many time slots came outside of
thresholds with respect to predictive models, and also about consecutive time
slots in which anomalies were detected; also one can combine the different pre-
dictive models at will (i.e. whether one particular predictive model must be con-
sidered, or whether triggering alerts when thresholds are exceeded with respect
to at least one predictive model). The module allows to quickly intervene in case
of anomalies, thus keeping a steady power production to the best extent.

Input data is modeled in ASP with predicates production and prediction.
The first predicate encodes current device readings: fact production(Id device,

Peak power,Day,Month,Year,Hour,Instant power) tells the ASP solver about
readings of the Id device which gave Peak power and Instant power at the
given time and date. The fact prediction(Model,Id device,Peak power,Day,

Month,Year,Hour,Instant power) expresses that a given predictive model was
expecting a value of Peak power and a value of Instant power for device Id device
at the given time and date, where the attribute model can be, e.g., one of
{physics, neural net 1, neural net 2, ..., neural net n}. The system also waits
for input thresholds that must cause alert messages when they are exceeded
(above or under). For instance, the fact percentage threshold(30) fixes a limit
value of 30%.

5 http://www.omniaenergia.it/.

http://www.omniaenergia.it/


166 G. Catalano et al.

In the following, just for example, we report a rule which generates an alert
when the percentage threshold of the daily production deviation per device is
exceeded:

alert daily production(over,Id device,Model,Week,Day,Month,Year,Value):-

inweek(Week,Day,Month,Year),

daily production deviation(over,Id device,Model,Day,Month,Year,Value),

percentage threshold(S),Value > S.

This alert reports the device where the deviation occurred, specifying that
it was an over-production, also reporting the value of the percentage devia-
tion (Value attribute) and time data (Week,Day,Month,Year). The predicate
daily production deviation stores information about the deviation.

Similar rules allow to control other aggregate productions (weekly, monthly,
yearly) and to produce any corresponding alerts. Likewise, similar rules are intro-
duced in order to catch total production deviations.

In order to point out possible anomalies, our module calculates how many
days in a week the production differs from estimated values above or under the
given threshold, with respect to at least one predictive model; or how many
days in a month, how many days in a year, how many weeks in a month, how
many weeks in a year, how many months in a year. If these values exceed the
set thresholds, alarms are generated to warn about any equipment that has an
abnormal output trend over a certain period of time.

The system also performs the same calculations on the data above but refers
to consecutive time slots. This is interesting because, for example, if a device
exceeds the thresholds in production for more than a given number of days (or
months, weeks or years) consecutively, it suggests a different interpretation of the
anomaly with respect to the case when the deviation occurs in non-consecutive
days. In this case, the count is not immediate, but requires intermediate cal-
culations. In particular, via a transitive closure, a set of rules first determines
which consecutive days, consecutive weeks, and consecutive months of produc-
tion, trigger an alert. Then, groups of days, weeks or consecutive months are
identified, and finally another rule calculates the maximum length of consecu-
tive slot groups.

4 Setting up Services with ASPIDE

The ASPIDE [7] development environment for ASP was extended with a plug-
in that allows the user to configure and run the DLVService. The user can use
ASPIDE as usual by creating and editing program files, setting up run configura-
tions and viewing results in a tabular way; the difference consists of the fact that
(i) the program files will be immediately updated remotely, (ii) the execution
is done by invoking the DLVService via JSON parameters, and (iii) the results,
returned in JSON by the server, will be handled by ASPIDE and shown in a tab-
ular way. Basically, the remote service is handled transparently by ASPIDE, pre-
cisely like the program and the execution were carried out locally. This interface
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Fig. 2. Diagnostics use case in ASPIDE

makes the process of implementing a new service more user friendly. For exploit-
ing DLVService in ASPIDE, a connection string format has been introduced for
specifying the URL of DLVService, a username and a password. A new exe-
cutable of type SERVER (Fig. 2a) has to be added to the preferences window of
ASPIDE; the connection string has to be structured as follow:

dlvservice:username:pass@http://localhost:8080/ASPWebService/DLVService

In the following, we describe how we can exploit the DLVService in ASPIDE
to implement the tool of surveillance for photovoltaic systems. We know that
there is a remote folder on the server side associated to the user userD which
contains folder Diagnostics referring to our use case ASP program which was
previously uploaded to the server. To exploit that program we have to import,
in ASPIDE, that remote folder as a Remote Project: we make a right-click to
the Workspace Explorer and click on Import Project (Fig. 2b); in such a way,
the import project window is open (Fig. 2c). We then select Remote Project
checkbox and indicate the remote project connection defined to the preference
window. By clicking on View Remote Folders button, a window will show all the
folders located on the remote workspace, which are associated to the user userD.
By clicking on Diagnostics and confirming (Fig. 2c), a virtual representation of



168 G. Catalano et al.

the remote folder is imported and all the remote files are shown in the Workspace
Explorer (Fig. 2d). Users can open those files in ASPIDE; actions like editing,
renaming and deleting of those files will immediately cause an update to the
remote files through REST invocations. We want now to introduce thresholds
input as facts to the ASP program for launching the diagnostic reasoning: we
create a new DLV File (Fig. 2d) where we write those facts; these actions cause
the file to be immediately uploaded to the server. To launch all the files of
the Remote Project, we select them, right-click and select Run->Create Run
Configuration (Fig. 2e): the Run Configuration window is opened, so that we
can set our defined DLVService as solver and we can write filters in order to
detect alerts (Fig. 2f). By running the Run Configuration, since DLVService is
set as solver, a remote execution of the program is made via REST invocation;
results, encoded in JSON, is shown in a tabular way (Fig. 2g).

5 Conclusion

In this paper, we reported on the development of a REST-based interface devised
with the aim of embedding the ASP system DLV in existing service-oriented
applications. The implemented interface has been integrated in ASPIDE in order
to support and promote the development of ASP-based enterprise solutions. In
order to show the framework at work, we presented here a real case of study
where we developed a REST service-oriented application for photovoltaic plants
surveillance based on ASP technologies.
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Abstract. Semantic resources (WordNet, Wikidata, BabelNet, ...) offer
invaluable knowledge that can be exploited by humans and machines to
solve a variety of tasks. Among these, we address here the one called
entity set expansion: extend a given a set of words –called seeds– with
new ones being of the same “sort”. Differently from classical approaches,
we determine “optimal” common categories of the given seeds by analyz-
ing the semantic relations among the objects these seeds refer to. In par-
ticular, we define the notion of an entity network to integrate information
from different semantic resources, and show how to use such networks to
disambiguate word senses. Finally, we propose a proof-of-concept imple-
mentation in answer set programming with external predicates to query
online semantic resources and perform optimization tasks.

Keywords: Answer set programming · External predicates
Entity set expansion · Information extraction
Natural language processing · Information integration
Word sense disambiguation

1 Introduction

Nowadays, a lot of information on the Web is stored in various semantic
resources —databases, created manually, automatically or semi-automatically—
that codify different aspects of human knowledge with some degree of formaliza-
tion. Some of them, often called “encyclopedic”, provide information about the
real world objects; others, referred to as “terminological”, deal with abstract con-
cepts and relations. Integrating information from several resources allows to com-
bine different points of view on the problem at hand and helps to solve complex
tasks, such as understanding, comparing or classifying entities.
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The problem we study in this paper goes under the name of entity set expan-
sion (ESE). Informally, given a set of words called seeds, the goal is to extend the
original set with new words of the same “sort”. For example, starting from Rome
and Budapest, one could expand these seeds with Amsterdam, Athens, Berlin, ...,
Warsaw, and Zagreb, which are also capital cities of European Union member
states. But is this the most appropriate way? In fact, an alternative expansion
could be made by Amsterdam, Berlin, Dublin, ..., Paris, and Prague, which are
also Europe’s capitals situated on rivers. Moreover, Rome is not only a ‘capital’,
but also a ‘drama television series’, a ‘female deity’, and many other things, while
Budapest is also a ‘film series’ and a ‘rock band’, apart from being a ‘capital’ too.
Hence, which is the “best” common sort putting together the original words?
Are they ‘capitals’ or ‘films’? As complicated as it is, this problem has practical
applications in both “personal” information management (think, for example,
about the Google Sets, now discontinued and with the techniques protected
with a patent [28]) and “enterprise” solutions (automatic lexicon generation
[15,22,23,27] in Information Extraction systems used in recruitment etc.).

Several methods for ESE have been proposed in the literature. A classical
approach is to employ bootstrapping algorithms [6,15,22,27] that iteratively
expand the initial set by repeating in turns two steps: “pattern generation” and
“instance extraction”. The former consists in learning the “context” in which
seed words appear in a corpus, and the latter aims to find more words that appear
in such context. The intuition is to identify entities “similar” to the ones given
as seeds. But the notion of “similarity” motivates another approach in which the
seeds are used to train a classifier, the so-called class tagger [5,10,12] that would
recognize more entities “like them” [24]. Recently, to calculate the similarities of
words, a method of word embeddings [4,9,11] has been proposed. Finally, a simple
yet effective in some settings approach is to identify enumerations in text and
collect the entities from them [29]. As one can see, ESE poses several challenges
that give rise to specific subproblems: to understand the seeds, to characterize
them in a way that will define their category, and to propose a systematic way
to extend this category with new instances.

However, there are some problems with existing approaches. First, most of
them do not disambiguate word senses when analyzing the seeds. Consequently,
if the same word appears in different “contexts” depending on the meaning, the
lack of discrimination of them may lead to a wrong classification (e.g., there will
be a different set of related words or usage patterns for the word Prater depending
on if we refer to a park or a person1). Moreover, not taking into consideration
the actual meaning of a word may work well for generating general lexicons, but
fail with domain-specific dictionaries, when the context of words do not agree
with statistics [10]. Secondly, the intended categories are usually as simple as a
‘person’, an ‘animal’, or a ‘city’, which is often insufficient to fully characterize
the seeds. Finally, the methods are usually not “transparent” i.e., one cannot
get the explanation of why certain instances are added to the set.

1 See http://babelnet.org/search?word=prater&lang=EN.

http://babelnet.org/search?word=prater&lang=EN
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To overcome the above limitations, we propose to use knowledge available
on the Web, specifically, stored in selected semantic resources that represent
semantics of objects, their categorization and relations with other objects. We
use these resources to understand and disambiguate word senses and to discover
commonalities among objects represented with them – that would serve to for-
mulate their common category. Once the common category is defined, we utilize
the Web-harvested knowledge to extend the set, and verify the new instances. To
this end, we design a novel framework that exploits existing semantic resources
and implement our strategy using Answer Set Programming (ASP) [2] enriched
with external predicates [3]. Application of Datalog/ASP proved to be successful
in related domains and problems such as data extraction and integration [14].

The contribution of the paper can be summarized as follows:

1. Knowledge representation. We introduce the notion of entity network, a gen-
eral knowledge representation model able to integrate information from sev-
eral semantic resources (see Sect. 2).

2. Word-sense disambiguation. Given a set of seeds and an entity network, we
define the notion of optimal common ancestors for them, which are the “best”
common classes from the entity network (see Sect. 3).

3. ASP-based Design and Implementation. We propose logic-based implementa-
tion that uses Answer Set Programming to (i) construct an entity network
from a set of seeds and to (ii) compute the optimal common ancestors for a
set of seeds and their associated entity network (see Sects. 2 and 3).

4. Entity set expansion. We proposed a new algorithm for ESE that uses both
structured and unstructured knowledge from the Web (see Sects. 4 and 5).

2 Integrating Semantic Resources

In order to understand the meaning of words and a common category of objects,
we will use the online semantic resources. We aim to integrate information avail-
able in them to combine the strengths and minimize weaknesses of the resources.
To reason over the integrated knowledge, we will represent it with a single model
of an entity network. In this section, we introduce selected semantic resources,
define the entity networks, and propose an ASP-based encoding that dynamically
creates such networks given a set of seeds.

2.1 Semantic Resources

Currently, more and more machine-readable knowledge is available on the Web
in a form of semantic resources. These knowledge bases formalize and organize
human knowledge about the world in different scope and manners, focus on
various dimensions and areas of knowledge. For the problem we address, we
decided to use a combination of selected resources presented next.

WordNet [16] is a computational lexicon of English2 that organizes concepts
into sets of synonyms, called synsets. The synsets are interlinked via lexical
2 There exist satellite projects for other languages, not integrated with the core system.
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and semantic relations (a different set of relations is defined for different parts
of speech). As WordNet is manually curated, the resulting network is reliable
and thus this knowledge base became a widely acknowledged reference source in
Natural Language Processing community and beyond.

Wikidata (http://wikidata.org) is a free, open and collaboratively edited
knowledge base, that can be read and edited by humans and machines. Wiki-
data is a document-oriented database, focused on items. Each item represents
a topic and is identified by a unique number. The items are described with a
set of statements: key-value pairs, consisting of a property and an object, both
equipped with identifiers.

BabelNet [18] is a multilingual terminological resource that integrates infor-
mation from Wikipedia, Wordnet and other Web resources. It provides both
encyclopedic knowledge about multiple instances and dense network of rela-
tions among the entries. What is important, BabelNet provides links to other
resources, by means of which it indicates which entries in other knowledge bases
correspond to the given entry (synset) in BabelNet.

WebIsADatabase [25] is a publicly available database containing more than
400 million hypernymy relations extracted from the CommonCrawl web corpus.
The tuples of the database are created by harvesting the corpus and applying
lexico-syntactic patterns, such as: NPt is a NPh, NPh such as NPt etc., where
NPt indicates the hyponym and NPh the hypernym. The dataset can be queried
both for classes of a given instance, and for instances of a given class.3

2.2 Entity Networks

In order to integrate knowledge from several semantic resources, we propose a
model that can uniformly represent information acquired from them. The basic
notions we will use are (semantic) entities and an (entity) network. An entity is
a pair ε = 〈id(ε),names(ε)〉, where id(ε) is the identifier of ε, and names(ε) is
a set of (human readable) terms describing ε.

From a syntactic viewpoint, id(ε) is a set of strings of the form src : code
where src identifies the semantic resource where ε is classified, and code is the
local identifier within source src and names(ε) is a set of strings that is a sum of
sets of names associated to the entity in the considered resources. For example,

ε = 〈{wn:08864547, wd:Q40, bn:00007266n}, {Austria, Republic of Austria, . . .}〉

is an entity representing the object in real world, the Republic of Austria, referred
to in WordNet (abbreviation wn with identifier 08864547), Wikidata (abbreviated
wd with item identifier Q40), and BabelNet (synset identifier bn:00007266n).

From a semantic point of view, entities may refer to three different kinds
of objects. Namely, they can either point to (i) individuals, called hereafter
instances, such as in the previous example, where the entity denotes a particular
country, or (ii) concepts that generalize a class of objects e.g., ε = 〈{ wn:08562388,

3 See online demo at: http://webisadb.webdatacommons.org/webisadb/.

http://wikidata.org
http://webisadb.webdatacommons.org/webisadb/
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wd:Q6256, bn:00023235n }, {country} 〉 or to (iii) (semantic) relations that hold
between two objects e.g., ε = 〈{wd:P31}, {instance of, is a, ...}〉 or ε =
〈{ wd:P131}, {is located in, ...}〉 etc. For convenience, we group the entities
representing instances and classes into one group, so-called (knowledge) units,
and the relations form a separate group.

An (entity) network is a four-tuple N = 〈Uni ,Rel ,Con, type〉 where: (i)
Uni is a set of knowledge units, both classes and instances; (ii) Rel is a set of
semantic relations; (iii) Con ⊆ Uni × Uni is a set of ordered pairs denoting
that two units are connected via some (one or more) semantic relations; and
(iv) type : Con → (2Rel \∅) is a function that assigns to each connection a set of
semantic relations. A network N is consistent if for each pair ε1, ε2 of different
entities of N , id(ε1) ∩ id(ε2) = ∅.

Example 1. Consider a network N = 〈Uni ,Rel ,Con, type〉 shown in Fig. 1. For
clarity, identifiers are left implicit, and each entity is described by one name. In
particular, Uni = {ε1, . . . , ε5}, where only ε5 is a class, Rel = {ε6, . . . , ε10},Con
are the arcs connecting units and, for each pair (u, v) of connected units,
type(u, v) contains the relations graphically associated to arc (u, v).

ε1 = 〈id(ε1), {Prater}〉

ε7 = 〈id(ε7), {has part}〉
ε2 = 〈id(ε2), {Wurstelprater}〉

ε6 = 〈id(ε6), {is a}〉
ε5 = 〈id(ε5), {amusement park}〉

ε8
= 〈id(ε

8),
{par

t of}〉 ε9 = 〈id(ε9), {located in}〉

ε3 = 〈id(ε3), {Vienna}〉
ε10 = 〈id(ε10), {capital of}〉
ε9 = 〈id(ε9), {located in}〉

ε4 = 〈id(ε4), {Austria}〉

Fig. 1. An entity network example

From a knowledge representation viewpoint, two semantic relations are com-
monly referred to as “is-a”: the membership relation “instance-of” and the sub-
type relation “subclass-of”. In particular, BabelNet follows this standard by
displaying only “is-a” when referring both to membership and to subtype rela-
tions. On the contrary, Wikidata keeps separate pages (and identifiers) for them.
Finally, WordNet does not give any explicit identifier to these relations, but it
considers the “instance” relation as a specific form of hyponym.4 In our approach,
both relations are treated uniformly as in BabelNet. To this end, we define the
set Isa containing the following relations: 〈{wd : P279}, {subclass of, is a, ...}〉
and 〈{wd : P31}, {instance of, is a, ...}〉, grouping together the discussed enti-
ties and using identifiers from Wikidata. Given a network N as defined above, it
is convenient to refer to the set Con|Isa = {(u, v) ∈ Con | Isa ∩ type(u, v) 	= ∅}
to select the “is-a” connections only.
4 See http://wordnet.princeton.edu/wordnet/man/wngloss.7WN.html.

http://wordnet.princeton.edu/wordnet/man/wngloss.7WN.html
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2.3 Entity Network Construction via ASP with External Predicates

An entity network can be constructed from a set of words or a set of (knowl-
edge) units. When starting from words, the first step is to create a set of units
that represent possible meanings of the words (this step is omitted in the second
variant). This “first level” of nodes in a network is then expanded such that for
each object (a node in the network) appropriate queries to selected resources are
posed, and the results are added to the network. We say that a network expands
in two “directions”: (i) vertically – along the hypernymy relations i.e., by query-
ing for classes and superclasses of the object of interest, and (ii) horizontally –
along the rest of relations with other objects.

To realize the construction and expansion of a network, we propose an
implementation in Answer Set Programming enriched with external predicates,
by means of which semantic resources can be queried. Hereafter, we assume
the reader is familiar with ASP. The external predicates refer to functions,
implemented separately, that encapsulate requests to semantic resources and
interpret their responses. The use of external predicates makes the solution
modular and extensible: addition of a new resource requires only an addition
of a new rule and a new (typically very simple) function, compatible with the
resource’s API. Technically, the “network builder” program consists of logical
rules of the form h ← l1, . . . , ln, where h is an atom in the head of rule, and
l1, . . . , ln are positive literals in the body of rule. The literals may be either
atoms of the form: p(t0, ..., tn) where p is a predicate name and t0, ..., tn are
terms, or external predicates encoded as &p (t0, ..., tn ; u0, ..., um) where: &p
is an external predicate (the name must start with a & symbol), t0, ..., tn are
input terms, u0, ..., um are output terms,and a semicolon symbol (”;”) separates
input from output terms. In fact, all the rules that call external predicates are
of the general form: newConnection(InputU ,OutputU [, optionArguments ]∗) :-
unitID(InputU ), &externalPredicate(InputU ;OutputU ) [, optionRestrictions ]∗.

This general idea can be used to integrate information from any set of suit-
able resources. However, an analysis of available resources revealed some pecu-
liarities that we have used in our expansion strategy specifically tailored for
the ESE problem. In particular, we selected BabelNet, WordNet and Wikidata
and we “parametrized” the implementation to allow for the resources’ strengths
and limitations. For instance, because BabelNet integrates information from
Wikipedia and WordNet, it has the biggest coverage of objects and most informa-
tive descriptions of them, including more informative names of the classes they
belong to. On the other hand, when going up into the class hierarchy, BabelNet
can sometimes get into a cycle, while WordNet ensures a carefully built tax-
onomy that forms a directed acyclic graph (considering nouns and hypernymy
relations among them). Thus, we query both BabelNet and WordNet for hyper-
nyms of concepts, but we restrict BabelNet queries only to some level (using
a bNetDepth predicate, e.g. bNetDepth(3).). Finally, for the (semantic) rela-
tions between objects, Wikidata proved to be the most comprehensive source:
relations in Wikidata have their own identifiers and sets of properties such as
transitivity etc. To sum up:
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1. We use BabelNet as a primary resource for word senses due to its wide cov-
erage of instances and integration of knowledge from multiple sources.

2. We utilize BabelNet’s links to other resources to keep the network consistent.
3. For vertical expansion, we query BabelNet only up to some limit, fixed with a

parameter and WordNet without limits, up to the most general class ‘entity’.
4. Horizontal expansion bases on Wikidata statements and relations identifiers.

Let us now consider a set W of seed words. The construction of a network
starts with a mapping μ which associates a fact to each word w ∈ W as follows:
μ(W ) = {seed(w) | w ∈ W}. The following rule starts from the seed words
and queries BabelNet for possible meanings of them using an external predicate
&extBNetSense to infer a relation senseOf:

senseOf(Word, SenseID) :- seed(Word), &extBNetSense(Word; SenseID).

The external predicates call functions of the same names that are implemented in
accordance with semantic resources’ programming interface (API) or dedicated
libraries. For instance, the function extBNetSense is implemented in Python
according to the BabelNet API guide5. It takes as an input a string represent-
ing a word (Word) and returns strings that denote the BabelNet identifiers of
synsets representing this word’s possible senses (each string is an instantiation
of the variable SenseID present in the head of rule). The implementation is a set
of instructions that prepare and pose an appropriate request to BabelNet and
interpret the response.

The identifiers of seeds’ senses serve to create the first nodes in the network.
With the following rules, we create them and expand their BabelNet taxonomy:

bNetID(SenseID,1) :- senseOf(Word, SenseID).

bNetID(PID,Level) :- bNetISA(ID, PID, Level).

bNetISA(ID, PID, PLevel) :- bNetID(ID,Level), &extBNetISA(ID; PID),

bNetDepth(BNetMax), Level < BNetMax, PLevel = Level + 1.

The second and third rules form a loop. In particular, bNetID/1 depends
on bNetISA/2 and vice versa. To limit the application of these rules and query
BabelNet only for a desired number of times, we assign “levels” to nodes in the
network and put them as the second argument of the predicate bNetID. In the
third rule, the level of the starting unit is checked (parameter Level is compared
to the value BNetMax), and the level of its hypernym is set to the level one step
higher. This limits the number of applications of the rule.

Having BabelNet identifiers not only allows to navigate within this resource,
but also to reach equivalent entities in other resources. With the following rules,
we obtain corresponding concepts in WordNet and expand their taxonomy within
it (without limits i.e., until reaching the most general concept ‘entity’):

bNetWNetEq(BID, WNID) :- bNetID(BID,Lv), &extBNetWNetEq(BID; WNID), Lv>1.

wNetID(ID) :- bNetWNetEq(_, ID).

wNetID(PID) :- wNetISA(ID, PID).

wNetISA(ID, PID) :- wNetID(ID), &extWNetISA(ID;PID).

5 See http://babelnet.org/guide.

http://babelnet.org/guide
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As for the other semantic relations, we use Wikidata as a primary source. For
each property, we get information about the name and identifier of the relation
(ID and Name) and the target item Y. We reach Wikidata objects and establish
new connections representing the statements with the following rules:

bNetWDataEq(BID, WDID) :- bNetID(BID,Lv), &extBNetWDataEq(BID; WDID).

wDataID(ID) :- bNetWDataEq(_, ID).

wDataRel(X, Y, ID, Name) :- wDataID(X), &extWDataRel(X; Y, ID, Name).

3 Word Sense Disambiguation

Due to the words’ polysemy, an entity network constructed for a set of words W
may contain multiple units for each single word w ∈ W that represent the word’s
different meanings. To determine the “correct” meaning of words in the given
context, we need to establish a mapping from this set of words to the knowledge
units of the network. In this section, we introduce a notion of an optimal common
ancestor (OCA) in a directed acyclic graph. This notion captures an intuition
that if we analyze the taxonomy of the objects that represent different word
senses, then finding the “closest” common supertype of all the words will point
the correct senses of words. We also describe a declarative encoding in answer
set programming that uses the guess-check-optimize paradigm to determine the
set of optimal common ancestors given a set of words and their entity network.

3.1 Classical Approaches

Following the definition stated in [17], given a text T that can be viewed as a
sequence of words (w1, w2, . . . , wn), word sense disambiguation (WSD) is a task
of assigning the appropriate sense(s) to all or some of the words in T , that is
to identify a mapping A from words to senses, such that A(i) ⊆ SensesD(wi),
where SensesD(wi) is the set of senses encoded in a dictionary D for word wi

and A(i) is that subset of the senses of wi which are appropriate in the context
T . Note that our setting is a little bit different: we do not consider words in a
sequence, but in a set (of seed words), and instead of one dictionary, we assume
a combination of semantic resources. However, the goal remains the same: out
of possible meanings, select the one that is “the best” in the given context.

Out of multiple approaches to WSD: supervised and unsupervised,
knowledge-rich (dictionary-based) or knowledge-poor (corpus-based), our
method is closest to the so-called structural approaches based on existing ter-
minological resources. Given a measure of semantic similarity defined as score :
SenseD × SenseD → [0, 1] where SensesD is the full set of senses listed in a
reference lexicon, a general disambiguation framework based on the similarity
measure has been defined. Namely, a target word wi in a text T = (w1, . . . , wn)
is disambiguated by choosing the sense S of wi which maximizes the following
sum:

Ŝ = argmax
S∈SensesD(wi)

∑

wj∈T :wj �=wi

max
S′∈SensesD(wj)

score(S, S′)
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Given a sense S of our target word wi, the formula sums the contribution of the
most appropriate sense of each context word wj 	= wi and the sense with the high-
est sum is chosen. Some well-known similarity measures include: the one of Rada
et al. [20] which basically counts the shortest distance in WordNet between pairs
of word senses, Sussna [26], based on the observation that concepts deep in a tax-
onomy appear to be more closely related to each another than those in the upper
part of the taxonomy, Leacock and Chodorow [13] that scales the distance by the
overall depth of the taxonomy, or Resnik [21], that uses the notion of information
content shared by words in context (the more specific the concept that subsumes
words, the more semantically related they are assumed to be).

The existing metrics are tailored mainly towards assessing similarity between
classes, and use pairwise comparison within a unified network of WordNet. In our
approach, we use the intuition of “counting edges” to assess the appropriateness
of particular classes, but we have had to redefine the method to suit our setting
and goals (determining the best senses represented by instances in a network).

3.2 Optimal Common Ancestors

Our approach follows the intuition that the “correct” meaning of the word may
be selected out of its possible senses with the help of other seed words. More
precisely, if we pick a sense per word, find a common supertype for all the picked
senses, assign a score to this ancestor, that will reflect its “closeness” to the
words, then we will be able to determine the best combination of senses, and
thus – the best sense for each word in W .

Let us now formalize the notions. Consider a directed acyclic graph G =
(N,A), and a nonempty set S ⊆ N of nodes called seeds. A node a ∈ N is a com-
mon ancestor of S with respect to G if, for each seed s ∈ S, either s = a, or there
is a path in G from s to a. If so, a is often called a common ancestor of (S,G), for
short. Moreover, we say that a common ancestor a is a candidate to be an OCA if
∀s ∈ S there is no other common ancestor on the path from s to a. As an example,
consider the directed graph G = ({1, 2, 3, 4}, {(1, 2), (1, 3), (2, 4), (3, 4)}), which
is clearly acyclic. One can verify that nodes 2 and 4 are common ancestors of
({1, 2}, G) since there is a path from nodes 1 and 2 to node 4, and there is
also a path from nodes 1 and 2 to node 4. Moreover, 2 is a candidate OCA of
({1, 2}, G). Conversely, 3 is not a common ancestor of ({1, 2}, G) since node 3 is
not reachable from node 2. But 3 is a common ancestor of ({1, 3}, G) since 3 is
also a seed and there is an edge from node 1 to node 3.

Consider now a common ancestor a of some pair (S,G), with G = (N,A).
The distance of a from S in G, denoted by dist(a, S,G), is the nonnegative inte-
ger k s.t. the following conditions are satisfied: (i) there is V ⊆ A s.t. both
|V | = k and a is a common ancestor of (S, (N,V )); and (ii) there is no V ′ ⊆ A
such that both |V ′| < |V | and a is a common ancestor of (S, (N,V ′)). Note that
dist(a, {a}, G) = 0 trivially holds. Basically, the distance counts the minimum
number of arcs sufficient for connecting each seed to the given ancestor. Accord-
ing to the previous example, dist(4, {1, 2}, G) = 2 since V = {(1, 2), (2, 4)} is the
smallest set of arcs sufficient to connect both seeds to node 4.
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Definition 1. A candidate common ancestor a of a pair (S,G) is optimal if, for
each common ancestor a′ of (S,G), it holds that dist(a, S,G) � dist(a′, S,G).
Hereinafter, optca(S,G) denotes the set of all OCAs of (S,G).

Given an OCA a, we call witness(a) the set {V ⊆ A | dist(a, S,G) = |V |}.
Since G is acyclic, each V ∈ witness(a) represents a tree connecting each node of
S to a. In the previous example, optca({1, 2}, G) = {2} since dist(2, {1, 2}, G) =
1 due to the unique witness V = {(1, 2)}.

3.3 Problem Definition and ASP-Based Sense Detector

We now define the main problem to detect appropriate senses for a set
of words. Hereinafter, fix a set W of words and an entity network N =
〈Uni ,Rel ,Con, type〉. The directed acyclic graph of W and N is defined as
G(W,N ) = (N,A), where N = W ∪ Uni and A = Con|Isa ∪ {(w, u) | w ∈
W ∧ u ∈ Uni ∧ w ∈ names(u)}. For notational convenience, let G denote
G(W,N ). Roughly, this graph represents the taxonomy of all the meaning of W ’s
words. The word sense disambiguation problem via optimal common ancestor
(WSD-OCA) is defined next:

Definition 2. From any pair (W,N ) as above, problem WSD-OCA asks for
the maximal set of total functions σ : W → Uni for which there exists some
a ∈ optca(W,G) such that, for each w ∈ W , the pair (w, σ(w)) ∈ witness(a).

To solve the problem with ASP, we define a mapping μ that encodes the
input pair (W,G) as set of facts, and design a program P and a weak constraint
ω such that, aopt is an optimal common ancestor of (W,G) if, and only if, aopt

is encoded as appropriate atom in some answer set of μ(W,G) ∪ P ∪ ω.
For the input, we have μ(W,G) = {edge(u,v) | (u, v) ∈ A}∪{seed(w) | w ∈

W}. Regarding P , we gradually introduce and explain its rules. To reduce the
search space, we identify a suitable set C ⊆ Uni of candidate common ancestors:

unit(U) :- edge(_,U).

hasAncestor(W,U) :- seed(W), edge(W,U).

hasAncestor(W,V) :- hasAncestor(W,U), edge(U,V).

partialAncestor(U) :- seed(W), unit(U), not hasAncestor(W,U).

ancestor(U) :- unit(U), not partialAncestor(U).

superAncestor(V) :- ancestor(U), edge(U,V).

candidateOptimalAncestor(U) :- ancestor(U), not superAncestor(U).

The first rule determines the set {unit(u) | u ∈ Uni}. The subsequent two
rules determine, for each w ∈ W , which are the ancestors of w. The forth rule
defines units that are not common ancestors. Rule five identifies the common
ancestors. Rule six detects parents of common ancestors, which of course cannot
be optimal. Rule seven defines the candidate optimal common ancestors.

All the atoms derived so far are obtained deterministically, and they are
part of every answer set of μ(W,G) ∪ P ∪ ω. Conversely, to identify the optimal
common ancestors of (W,G), we need to consider separately each candidate
optimal common ancestor:
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keepAncestor(X) | discardAncestor(X) :- candidateOptimalAncestor(X).

:- not #count{X:keepAncestor(X)} = 1.

The first rule guesses some candidate ancestors. The second rule (a strong con-
straint) imposes that each answer set may contain only one candidate ancestor.

Once a candidate ancestor is kept, we need to guess a suitable witness. To
this end, to reduce again the search space, we consider only arcs forming paths
to the guessed ancestor:

activeEdge(U,V) :- edge(U,V), keepAncestor(V).

activeEdge(U,V) :- edge(U,V), activeEdge(V,T).

keep(U,V) | discard(U,V) :- activeEdge(U,V).

senseOf(W,U) :- seed(W), keep(W,U).

reach(W,U) :- senseOf(W,U).

reach(W,V) :- reach(W,U), keep(U,V).

:- seed(W), keepAncestor(U), not reach(W,U).

The first two rules mark as active the arcs reaching the kept ancestor. Disjunctive
rule three guesses a witness. Rule four determines the sense associated to each
word. Rules five and six determine which units are reachable from the seeds,
according to the guessed witness. Rule seven (a strong constraint) guarantees
that the guessed ancestor is reachable from each seed.

For each guessed ancestor a, we compute the distance dist(a,W,G). For
safety, we add to P auxiliary set of atoms distanceRange(1..κ), where κ = |A|:

distance(N) :- distanceRange(N), N = #count{X,Y:keep(X,Y)}.

:∼ distance(N). [1:N]

Finally, the last rule defines the weak constraint ω, which guarantees that the
witness (and thus the ancestor a) is not ignored, only if it has minimal size.

The answer sets of the program μ(G)∪P enhanced with ω are representative
of all the optimal common ancestors for (W,G). Moreover, the correct word
senses are encoded in the answer set of the program and can be easily retrieved.

4 Least Common Subsumers

This is a short section complementing the previous one. After disambiguating
word senses, we obtain a mapping from W to a set of kowledge units that rep-
resent the actual objects of interest.6 Once the optimal combination of senses
is fixed, we proceed to the phase of characterizing the objects. Inspired by the
notion of least common subsumers [1], introduced in the context of Description
Logics (DLs), we describe how to provide a “concept description” for a set of
instances of some entity network. (The detailed translation from the network to
DL is beyond the scope of this paper. In what follows, we present the main intu-
ition of this rather straightforward interpretation.) In general, to characterize
6 If there are more possible combinations of senses, a user can add more seeds and

repeat the process, or just select the intended meaning.
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the seeds, we create a new network N1 from σ(W ), expand it, and analyze: ver-
tical expansion to determine the (set of) common ancestor(s) and horizontal –
the common relations.

To determine the common supertype(s) of objects in σ(W ), we analyze the
vertical expansion of the network created for them and determine the set of
optimal common ancestors. Interestingly, while for sense disambiguation, we
tend to go to WordNet hierarchy as soon as possible, due to the reliability and
structure of WordNet taxonomy, when we look for actual common ancestors for
already known senses, we explore BabelNet deeper — the reason for it is that
the classes of BabelNet are more descriptive and human-readable (we realize this
distinction by adjusting the babelnetDepth parameter in the network expansion,
see Sect. 2.3). The set of optimal common ancestors serves to create the first
part of the category description. Namely, for the optca(σ(W ), G(μ(W ),N1)) =
c1, . . . , ck, the corresponding partial description would be C1�. . .�Ck (for clarity,
we select one of the entity names for a corresponding concept name).

Once we get the common ancestors, we analyze the other relations. For each
relation, say r, that is shared by all the starting nodes, we obtain a set Ur of
units that are the image of the relation w.r.t. the seed units. If the set Ur is
a singleton, say Ur = {u∗}, it means that the seed units are connected via the
relation r to the same unit u∗. We stop exploring the relation and obtain a partial
description of the common relation, namely ∃r.{u∗}. If, however, the image of
the relation is a set of distinct objects, say {ur1 , . . . , urk}, we obtain a concept
description ∃r.Ur, where Ur = {ur1 , . . . , urk}. We can now discard this relation
or analyze it further by determining the common category of units in Ur. In
this case, we treat the set of units Ur as the new seed set, for which we repeat
the process of finding a common ancestor and analyzing common relations. To
ensure termination, we fix the parameter denoting the depth of the analysis.

The output of this step is a concept description (in DL notation) of the form
(C1 � . . . � Ck) � ∃r1.Ur1 � . . . � ∃rl.Url , where C1, . . . , Ck are optimal common
ancestors, r1, . . . , rl are common (shared) relations of seeds, and U1, . . . , Ul are
the images of the relations (either concept descriptions or sets of instances).
A DL sufficient for our method is ALO.7

5 Entity Set Expansion

In this section, we explain how we use the notions introduced in Sects. 2, 3 and 4
to realize the ESE task. In particular, we address problems of: disambiguating
word senses, characterizing seeds to formulate the target category, expanding
the set by discovering new candidate instances, and evaluate new instances.

5.1 Existing Approaches to ESE

Several approaches to tackle the problem of entity set expansion have been
proposed. In particular, the idea of bootstrapping algorithms [22] consists in
7 See DL navigator at: http://www.cs.man.ac.uk/∼ezolin/dl/.

http://www.cs.man.ac.uk/~ezolin/dl/
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starting from a set of seeds, discovering patterns in which they appear in a
given corpus, then using those patterns find more examples and repeating the
process until an end condition is met. The patterns are usually lexico-syntactics.
However, more complex ways of characterizing the words within a category have
also been proposed. In particular, in recent years the word embeddings are the
most studied approach [4]. As far as the corpus is concerned, the great potential
of the Web has been recognized and used to extend the set of seeds [7,19,24]. As
for the process itself, improvements have been proposed for each step: represent-
ing words [9], discovering patterns [5,12], evaluating them [8] and minimizing
so-called semantic drift [6].

5.2 ESE Using Entity Networks

In the proposed approach, we use the notions and sub-problems introduced in
the previous sections, and combine them in the following framework: First, we
construct an entity network N0 from a set of seed words W : In this step, for the
set of seed words given as input, we create a knowledge representation that inte-
grates information from different semantic resources. Then, we construct a graph
G(W,N0) from W and N0: This step prepares the structure for the operation of
resolving the polysemy of words (if it appears). Having the graph representing
the taxonomies of possible meanings of seeds, we disambiguate word senses to
obtain a set of mappings σ1, . . . , σk from words to “knowledge units”: In this step,
we determine the “correct” (intended) meaning of words (see Sect. 3). If there
are several optimal mappings (k ≥ 1), we ask the user to add more seeds (and
go to step 1) or to select one option: A user can clarify the intentions by adding
more seeds or by selecting one meaning. Once the intended meaning is clarified,
we construct a network N1 from σ(W ). This step is similar to step 1. From the
network N1, we create a semantic description of σ(W ) (the common category to
expand): The output is a formula that semantically describes all the seed objects.
Then we look for more instances that belong to the intended category. To discover
new object of the target category, we query WebIsADatabase for instances of
the common ancestors of the seeds. We set a threshold to filter out noisy results
(those having too few witness pages). We verify the new instances by checking
their compliance with the semantic description from step 6. The retrieved set
of instances is evaluated against the concept description constructed earlier. In
particular, we check if the new instances are hyponyms of one of the desired
common ancestors, and if they share the relations discovered for the seeds.

The results of the evaluation may be three-fold: (i) the instance can be found
in reference semantic resources, in particular BabelNet, and in the entity network
constructed for it all the properties agree (so it belongs to the target category),
(ii) the network can be created, but not all the properties agree (it does not
belong to the category), (iii) the network cannot be created for the candidate
instance. Recall that WebIsADatabase contains more of less popular instances
than major semantic resources. So, these candidates are presented to the user
as not validated, but proposed.
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5.3 Real-World Use Cases

Let us now consider two examples that will illustrate different challenges.

Amusement parks in Europe. Let us say that we want to organize a family trip,
and we are looking for something like Efteling or Gardaland – two places we vis-
ited and liked. Let us put these two words as seeds. A network created for them,
limited to the hypernymy relations, consists of 14 nodes and 13 edges. Moreover,
for each words, exactly one sense has been found. Efteling has been recognized
as a ‘theme park’, and Gardaland – an “amusement park’. An optimal common
ancestor for these two classes is the ‘amusement park’ (represented by an entity
〈{wn:8494231n, bn:00003695n, wd:Q194195}, {amusement park, funfair, , ...}〉) that
is a superclass of the ‘theme park’. A shared relation, 〈{wd:P17 }, {country}〉 has
the image set that contains two units: Italy for Gardaland, and Netherlands for
Efteling. We further expand a network for Italy and Netherlands, and we obtain
that both are classified as a ‘European country’. As Italy and Netherlands are
popular entities with numerous relations, we can discover a lot of common rela-
tions such as: ‘continent’ –Europe, ‘located in time zone’ –Central European Time
etc. The modularity of our approach lets us stop whenever we are satisfied with
the seed description, e.g., taking into account only the common superclass, we
obtain the target category: AmusementPark �∃country .EuropeanCountry After
querying WebIsADatabase and evaluating new instances, we obtain the following
list of entities: Portaventura, Euro disney, Tivoli gardens, Europa park, Legoland,
Terra mitica, Parc Asterix, Disneyland Paris and Puy du fou.

Cities or movies? Let us recall the example of Rome and Budapest – words that
have a lot of meanings. With 27 possible senses for Rome and 6 for Budapest,
we obtain a representative entity network whose underlying graph (limited to
hypernymy relations) consists of 248 nodes and 430 edges(!). For this quite a
big structure, the sense detector computes the optimal sense combinations very
efficiently. In fact, we obtain 8 “best” combinations of senses, associated with
their 11 optimal common ancestors. The disambiguated meanings include: capi-
tal cities, bands, films and more. We can select the intended sense, or add a new
seed to clarify our intentions. Let us add the word Vienna (19 senses) to the
seed set. The resulting graph has 294 nodes and 558 edges. Here, the situation
is even more complicated, because for each seed, there are two examples of a
musical album or single. So, even though some senses are discarded, we obtain
9 best combinations grouped under 7 optimal common ancestors. If we now add
another seed, say Zagreb (2 senses), we get a slightly bigger graph, but we obtain
a single best combination of senses denoting the capital cities with optimal com-
mon ancestors: {‘national capital’,‘provincial capital’}. Further analysis reveals
that the seeds share the relation: ‘country’ and again, as in the first example, we
expand the network for the countries related to the our seeds and obtain that
all of them are in Europe. Moreover, they are all connected with the relation
〈{wd:P421 }, {located in time zone}〉 to the same instance, namely UTC+01:00.
The expanded list yields among others the following new instances: Amsterdam,
Berlin, Bratislava, Paris, Prague, Vienna and Warsaw.
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6 Conclusion

The problem of entity set expansion is not a new topic. Over the last two
decades, there has been work on gradually improving the classification meth-
ods and expansion algorithms. More recently, the improvements concentrate on
details such as: the quality of the seeds and their influence on the process, met-
rics for patterns and seeds evaluation, etc. The approaches described in literature
come with some small examples, but a systematic comparison with the real tools
is difficult, because they are not available on-line. To the best of our knowledge,
there is no complete system for entity set expansion available for comparison.

With our approach, we address the old problem in a modern semantic way.
Instead of relying strictly on lexical level, we utilize the online semantic resources,
that were not available before, to build a better representation, based on semantic
relations. Our approach allows to leverage existing resources, and we believe
that with the theoretical foundations and efficient ASP-based implementation
of prototypes, that we already have, we can build, with further engineering effort,
an integrated, configurable system.

There are several directions for future work. First, the semantic relations can
be analyzed in more details, using DBPedia or Wikidata. Using their properties
such as transitivity, symmetry etc. would allow for better network expansion and
reaching more accurate concept descriptions. Moreover, new instances discovered
in the expansion step, instead of being simply accepted or rejected, could be
scored based on the degree to which they agree with the intended category.
Finally, the proof-of-concept implementation, tested with idlv grounder8 and
wasp solver9 could be evaluated also with other tools, and eventually optimized.
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Abstract. This paper describes an automatic web service composition
framework for Phylotastic, a platform for extracting and reusing phyloge-
netic trees. The paper begins with a short review of Phylotastic, followed
by a description of the overall architecture of the framework and its core
components, such as the ontology API, the planning module, the work-
flow configuration module, and the execution & monitoring module. The
paper provides examples of execution of Phylotastic using a scientific use
case and discuss the future features of the final system.

1 Introduction

Web service composition has been long considered as a fundamental contribution
of the Semantic Web. Over the last decades, several frameworks for automatic
web service composition have been proposed (e.g., [1,11,16,17,19,20]). Never-
theless, none of such approaches seems to be able to fully realize the potential
of web service composition [11]. In fact, none of the frameworks for web ser-
vice composition mentioned in the surveys [1,11,16,17,19,20] seems to function
nowadays or be publicly available. As another example, the EU-funded Interop-
erability Solutions (ISA2) Programme developed the platform joinup,1 which
offers several services for sharing knowledge between e-Government profession-
als. To the best of our knowledge, this platform does not yet offer a way to
combine available services to create and execute new ones.

A main difficulty in developing and maintaining an automatic web service
composition framework is the lack of web services with enabling semantics. In
other words, most available web services are provided without a semantic descrip-
tion. This prevents a system from automatically searching and discovering web
services (e.g., based on the needs of a specific application), as well as it challenges
automated composition, due to the lack of semantic information necessary to rea-
son about web services (e.g., properly match inputs and outputs). One of the key
issues that contributes to this problem is the lack of a domain-specific ontology
that can be used in describing web services. Let us consider, as an example, the
collection of web services from Google. It contains hundreds of services. To use
a service (e.g., adding an appointment in the Google calendar), a user needs

1 https://joinup.ec.europa.eu/homepage.
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to identify the necessary parameters (e.g., date, time, etc.) and then invoke the
service with such parameters. The main problem with this approach is that the
description of how to use a service is (at best) in a text file or implicitly given
in the service call.

In this paper, we revisit the idea of automatic web service composition, within
the more manageable confinement of a specific application domain drawn from
evolutionary biology. We focus on the development of an automatic web service
composition platform for a specific application, called Phylotastic. In this appli-
cation, several web services with some form of semantic annotation are available.
The semantic descriptions are built using a formal ontology, describing the enti-
ties and artifacts of interest within the domain of evolutionary biology. Logic
programming technology is used to provide a declarative and elaboration toler-
ant platform for reasoning about semantic web services. The proposed frame-
work demonstrates that effective automated web service composition can be
achieved within a specific applications domain, meeting the needs of scientists.
It also differentiates from a system aimed at generating controllers, such as those
developed by the AI community (e.g., [5]), as such controllers are not executed
automatically—the integration of such type approaches to handle the planning
aspects of Phylotastic is interesting and will be the focus of future work.

2 Background

2.1 Phylotastic

A phylogeny (phylogenetic tree) is a depiction of the evolutionary history of a
set of organisms. Typically, this is a branching diagram showing relationships
between species, but phylogenies can be drawn for individual genes, for popu-
lations, or for other entities. Phylogenetic trees are built using morphological
traits (such as body shape, placement of bristles or shapes of cell walls), bio-
chemical, behavioral, or molecular features of species or other groups. In building
a tree, species are organized into nested groups based on shared derived traits
(traits different from those of the group’s ancestor) and the sequences of genes
or proteins can be compared among species and used to build phylogenetic trees.
Closely related species typically have few sequence differences, while less related
species tend to have more. Currently, phylogenetic trees can be either explicitly
constructed (e.g., from a collection of descriptions of species), or extracted from
repositories of phylogenies, such as OpenTree and TreeBASE.2 In a phylogeny,
the topology is the branching structure of the tree. It is of biological significance,
because it indicates patterns of relatedness among taxa, meaning that trees with
the same topology provide the same biological interpretation. Branches show the
path of transmission from one generation to the next. Branch lengths indicate
genetic change, i.e., the longer the branch, the more genetic change (or diver-
gence) has occurred. A variety of methods have been devised to estimate a
phylogeny from the traits of the taxa (e.g., [7]).

2 http://tree.opentreeoflife.org https://treebase.org .

http://tree.opentreeoflife.org
https://treebase.org
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Phylogenetic trees are useful in all areas of biology, both to organize knowl-
edge by guiding classification (taxonomy), and for process-based models that
allow scientists to make robust inferences from comparisons of evolved entities
(genes, species, etc.). The transformative potential of assembling a Tree of Life
(ToL), a phylogeny covering 107 or more species [15], was articulated in an NSF
workshop report [4]. The first draft of a grand phylogenetic synthesis, a single
synthetic tree with 2.5 × 106 species (tree.opentreeoflife.org)—recently emerged
from the Open Tree of Life (OpenTree) project.

Though useful, neither this tree, nor any other single tree, will be the sole
authority on phylogenetic knowledge. When we refer to “the ToL” or “ToL
knowledge” here, we do not mean any single tree, but the dispersed set of avail-
able trees that represent the current state of ToL knowledge. While experts
continue expanding the ToL, addressing gaps and conflicts, the focus of the Phy-
lotastic project [23] is on dissemination—putting ToL knowledge in the hands
of researchers, educators, and the public. To achieve the goals of the Phylotas-
tic project, the investigators proposed to build an open web-based system, that
enables flexible on-the-fly delivery of phylogenetic knowledge. The premise of
disseminating knowledge is that it will be re-used. How do trees get re-used? On
a per-tree basis, re-use is rare; most trees are inferred de novo for a specific study,
stored on someone’s hard drive, and not used again [24]. Yet, large species trees
are re-used in ways that other trees are not. In a sample of 40 phylogeny articles,
we found only 6 cases in which scientists obtained a desired tree by extraction
from a larger species tree [24]. This mode of re-use currently presents technical
barriers requiring considerable expertise and effort to overcome. The vast major-
ity of users simply cannot handle a tree with more than a thousand species, even
if they knew how to find and obtain the right tree—a challenge, as only 4% of
trees are archived [15]. Tree files generally lack machine-processable metadata
on sources and methods, crucial for quality evaluation; common tree formats do
not support such metadata. The largest and most valuable species trees often
provide a topology without branch lengths, yet users often need branch lengths
in downstream analysis steps: to close this gap, proficient users may create crude
branch lengths with specialized software. Even matching a list of species names
with a source tree is problematic, given the proliferation of aberrant names.

Thus, whereas subtree extraction is conceptually simple, real-world uses are
surrounded by complications, currently requiring a combination of expert skills,
hands-on attention, and specialized software. The typical workflow begins with
upstream steps that establish the user’s focus on a particular set of species, and
proceeds with: (1) discovery and acquisition of an appropriate ToL source tree;
(2) negotiating an optimal alignment with the set of query names; (3) subtree
extraction and optional grafting; and (4) scaling the extracted subtree. The Phy-
lotastic project proposed a flexible system for on-the-fly delivery of custom trees
that would support many kinds of tree re-use, and be open for both users and
data providers. Phylotastic proposes to develop an open architecture, composed
of a collection of web services relevant to reuse of phylogenetic knowledge, that
can be assembled in user-defined workflows through a portal (Fig. 1).

http://tree.opentreeoflife.org
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Fig. 1. Overall Phylotastic structure

2.2 The Web Service Composition Problem

The literature on automated composition of web services is extensive and beyond
the scope of this paper. Intuitively, the need for composition of web services orig-
inates from the necessity to achieve a predetermined complex goal that cannot
be realized by a standalone service. A composition of web services allows the
execution of several web services, according to a determined pattern, to achieve
the desired goals; individual services belonging to the composition communicate
by exchanging results of their executions.

The open challenge of the web service composition problem is, given a col-
lection of services and given a desired objective, to determine which services
and which workflows based on such services will achieve the desired objective. A
variety of techniques to respond to this challenge have been proposed in the lit-
erature (e.g., see [1,11,16,17,19,20] for some surveys). In Phylotastic, we adopt
the view, advocated by several researchers, of mapping the web service compo-
sition problem to a planning problem [3,13,14,16]. In this perspective, available
web services are viewed as actions (or operations) that can be performed by an
agent, and the problem of determining the overall workflow can be reduced to
a planning problem. In general, a planning problem can be described as a five-
tuple (S, S0, G,A, I ′), where S is set of all possible states of the world, S0 ⊆ S
denotes the initial state(s) of the world, G ⊆ S denotes the goal states of the
world the planning system attempts to reach, A is the set of actions the planner
can perform to change one state of the world to another state, and the transition
relation I ′ ⊆ S × A × S defines the precondition and effects for the execution of
each action. In term of web services, S0 and G are the initial state and the goal
state specified in the requirement of web service requesters (i.e., the available
input and the desired output of the workflow). The set of actions A is a set of
available services; I ′ describes the effect of the execution of each service.

3 Web Service Composition Framework for Phylotastic

Figure 2 shows an overview of our web service composition framework for Phy-
lotastic. It consists of a web service registry, an ontology, a planning engine, a
web service execution monitoring system, and a workflow description tool. The
flow of execution of the architecture starts with the workflow description tool—a
graphical user interface that allows the user to provide information about the
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Fig. 2. The Phylotastic architecture

desired requirements of the phylogenetic trees extraction process. The infor-
mation collected from the user interface are mapped into components of the
planning problem instance that will drive the web service composition process.
The planning problem instance representing the web service composition prob-
lem is obtained by integrating the user goals with the description of web ser-
vices obtained from the service registry and the ontology. The planning engine
is responsible for deriving an executable workflow, which will be enacted and
monitored by a web service execution system. The final outcome of the service
composition and execution is presented to the user using the same workflow
description tool.

3.1 Ontology and Ontology API

The services registered with the Phylotastic registry are semantically described
through a dedicated Phylotastic ontology. The ontology is composed of two parts:
an ontology that describes the artifacts manipulated by the services (e.g., align-
ment matrices, phylogenetic trees, species names) and an ontology that describes
the actual operations performed by the services. A dedicated API provides pro-
grammatic access to the ontology, necessary to provide the planner with infor-
mation about the type of services that can be composed.

The description of the artifacts is based on an existing phylogenetic ontol-
ogy, called Character Data Analysis Ontology (CDAO) [18]. CDAO provides a
formal ontology for describing phylogenies and their associated character state
matrices. CDAO is implemented in OWL. It provides a general framework for
talking about the relationships between taxa, characters, states, their matrices,
and associated phylogenies. The ontology is organized around four central con-
cepts: OTUs, characters, character states, phylogenetic trees, and transitions.
A phylogenetic analysis starts with the identification of a collection of Opera-
tional Taxonomic Units (OTUs), representing the entities being described (e.g.,
species, genes). Each OTU is described, in the analysis, by a collection of prop-
erties, typically referred to as characters. The values that characters can assume
are called character states. In phylogenetic analysis, it is common to collect the
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characters and associated states in a matrix, the character state matrix, where
the rows correspond to the OTUs and the columns correspond to the characters.
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Fig. 3. Fragment of the Phylotastic ontology

Phylogenetic trees and net-
works are used to repre-
sent paths of descent-with-
modification, capturing the
evolutionary process under-
lying the considered OTUs.
Since evolution moves forward
in time, the branches of a tree
are typically directed. The
terminal nodes are anchored
in the present, as they rep-
resent observations or mea-
surements made on existing
organisms. The internal nodes
represent common ancestors,
with the deepest node as the
root node of the tree. Differ-
ent types of representations
of evolutionary knowledge are
available—differentiated based on structure of the representation (e.g., resolved
trees, unresolved trees, rooted trees), the nature of the encoded knowledge (e.g.,
phylogenies vs. taxonomies) and the methods used to derive them.

The second component of the ontology provides a description of the oper-
ations and transformations that are implemented by the services registered
with the Phylotastic architecture. The description of the services follows a log-
ical structure that is partly inherited from established bioinformatics service
ontologies (e.g., myGrid [10]). The particular emphasis is on the classifica-
tion of services that deal with the manipulation of species (e.g., names, pic-
tures, phyloreferences)—e.g., deriving and resolving scientific names, retrieving
relevant images, retrieving popular species—and representations of evolution-
ary knowledge (e.g., taxonomies, phylogenies)—e.g., extracting phylogenies for
selected species from authoritative evolutionary knowledge. The classes of ser-
vices include also auxiliary services, such as manipulations of lists and shim
services (data format transformations). The connection between the two compo-
nents of the ontology (services and artifacts) is realized through object proper-
ties, such has has input, has output, has parameter and has data format.
Figure 3 shows a small fragment of the Phylotastic ontology.

The Phylotastic architecture provides a web service to access and manipu-
late the ontology, referred to as the Ontology API Service. This service allows
searching and retrieving concepts and resources from the Phylotastic ontology.
The use of a programmatic approach to using the ontology has several advan-
tages, in terms of convenience and standardization of use. In particular, the
Ontology API Service ensures that the ontology data is synchronized between
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clients components which are dependent on the ontology—updates and exten-
sions of the ontology are immediately visible to all clients components, ensuring
consistency of use. The Ontology API Service is a REST service implemented in
Python; it uses the cherrypy framework to serve requests, and it uses JSON to
encode inputs and outputs.

3.2 Web Service Registry

A web service registry plays a critical role at the design time of a web service
composed system [6]. Ideally, a web service registry contains information about
web services—specified in some language—and allows for the services to be dis-
covered and executed. The majority of available web service registries use the
Web Service Description Language (WSDL) 1.0 as the description language and
support the SOAP protocol for service execution. To invoke a service, a user
only needs to follow the instructions (a text document), provide the service with
a necessary inputs and obtain the outputs. While convenient for users to invoke
individual services, this practice does not provide a means for automatic service
composition, as the instruction for service execution is often not understandable
by machines. In addition, the trend has been to replace SOAP with the HTTP
RESTful Protocol, which requires WSDL 2.0. All of these necessitate a web ser-
vice registry for the present application. We implemented a Web Service Registry
(WSR) as a web-based application for services registering, storing, discovering,
and executing. WSR includes a database that stores the services meta-data,
descriptions of available web services and their end point URLs, using WSDL
2.0. Each service is defined in four parts:

1. The first part defines the elements of a WSDL description. Each ele-
ment is defined by its name, type, and constraints on it. For example,
the status code element whose type is integer and cannot be null
is specified by: <xs:element name="status code" nillable="false"
type="xs:integer"/>.

2. The second part defines an operation’s structure of a web service by specifying
its name, inputs, and outputs.

3. The third part defines the functionality of the operation, i.e., its method,
location, and encoding format of its inputs and outputs.

4. The last part defines the Web service’s functionality which is its Web service
end point, HTTP address, and the binding data.

3.3 Workflow Configuration Module

The result of the web service composition process (next subsection) is a plan that
can be executed by the execution monitoring module. In the current implemen-
tation, we use a data structure, called workflow, to represent plans. Intuitively,
a workflow is a directed graph whose nodes represent the services at different
levels of granularity and whose links represent the data flow between the services
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as well as the constraints on the execution of the workflow. The Workflow Con-
figuration Module, a web-based application built using HTML5 and Javascript
technology, is a graphical user interface that allows users to configure and refine
workflows. It interacts with the users and other modules of the system to allow
users to specify different types of requirements about their workflows:

• Input: the input of the workflow can be anything that could be used as inputs
to the registered web services. Often, the input of a workflow is a collection of
data component classes and their data formats described in Subsect. 3.2. For
this reason, the module allows users to specify the input via pop-up menus
and dialogs.

• Output: the output of the workflow can be anything that could be produced
via outputs of the registered web services (Subsect. 3.2). Again, users can
specify outputs via pop-up menus and dialogs.

• Preferred service: the module allows users to attach known web-services (or
classes of web services) to nodes of the workflow. For example, associating
the class Get Phylogenetic Tree Open Tree to a node indicates that the
user wants to use a service of such type (i.e., extract a phylogenetic tree
from the OpenTree repository) to produce a phylo species tree, instead of
using a service of type Get Phylogenetic Tree TreeBase, which could also
produce phylo species tree given a bio taxa (by extracting it from the
TreeBase repository instead).

In addition to allow users to specify the workflow requirements, the module also
provides users with the following capabilities:

• Workflow configuration: A workflow can be saved, updated and reused.
• Feasibility checking: A workflow is an “underspecified” plan that, ideally, can

be expanded to a plan whose execution yields the desired results. To provide
this capability, the workflow module sends the workflow to the planning engine
and requests a possible completion. When no possible completion exists, the
workflow configuration module informs the user that the current workflow is
not executable.

• Workflow execution: The module provides a button for activating the execu-
tion of the workflow (See Subsect. 3.5).

3.4 Planning Engine

The planning engine is responsible for creating an executable workflow from the
(often incomplete) workflow from the user, received from the workflow configu-
ration module. It does so by employing Answer Set Planning (ASP) [12]. The
reason for the use of ASP is twofold. First, ASP is well-known for its ability for
reasoning about specificity, a task important in identifying the inputs/outputs
of services within an ontology where information associated with more specific
classes override those in less specific ones. Second, planning with preferences
and different types of constrains will be an important issue in this framework.
These features can be integrated in ASP [21,22]. We start with a brief review
the notion of answer sets of logic programs [9] for completeness of the paper.
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3.4.1 Answer Set Programs and Answer Sets
An ASP program is built on a signature consisting of a set of constants C, a set
of variables X and a set of predicate symbols P. The definitions of terms and
atomic formulae (atoms) are the traditional ones. An answer set program is a
set of rules of the form: a0: −a1, ..., am, not am+1, ..., not an, where 0 ≤ m ≤
n, each ai is an atom, and not represents negation-as-failure (naf). A naf-literal
has the form not a, where a is an atom. Given a rule of this form, the left and
right hand sides are called the head and body, respectively. A rule may have
either an empty head or empty body, but not both. Rules with an empty head
are called constraints—the empty head is implicitly assumed to represent False;
rules with an empty body are known as facts. The language allows the use of
variables, and they are simply viewed as placeholders for any element of C; thus
a rule with variables (non-ground) is simply a syntactic sugar for the set of rules
obtained by consistently replacing each variable with any element of C (ground
rules).

A set of ground atoms X satisfies the body of a ground rule if {am+1, ..., an}
∩ X = ∅ and {a1, ..., am} ⊆ X. A constraint is satisfied by X if its body is not
satisfied by X. X is a model of a rule if either it does not satisfy the body or
a0 ∈ X. X is a model of a program if it satisfies all of its rules.

If a ground program Π does not contain any naf-literals, then the semantics
of Π is given by its unique subset-minimal model. Given a ground program Π
and a set of ground atoms X, the reduct of Π w.r.t X (denoted by ΠX) is the
program obtained from Π by: (i) deleting all the rules that have a naf-literal
not a in the body and a ∈ X, and (ii) removing all remaining naf-literals.

A set of ground atoms X is an answer set of a program Π if X is the subset-
minimal model of ΠX . Several syntactic extensions have been introduced to
facilitate the development of program. For example, choice atoms have the form
l{b1, ..., bk}u, where each bj is an atom, and l and u are integers such that l ≤ u.
A set of atoms X satisfies a choice atom l{b1, ..., bk}u if l ≤ |X ∩ {b1, ..., bk}| ≤ u.
Non-ground versions of choice atoms allow the use of syntax analogous to that
of intensional sets, e.g., l {p(X) : q(X)} u.

3.4.2 Computing Executable Workflows via Answer Set Planning:
The Planning Engine

The computation of an executable workflow using answer set planning begins
with the encoding of the Phylotastic Ontology, the web service descriptions,
and the information about incomplete workflow as ASP programs. The planning
engine will compute answer sets of these programs using an answer set solver. In
this work, we use the solver Clingo [8]. The detailed encoding of each component
is described next.

Representing Ontologies in ASP. The entities of the Phylotastic Ontol-
ogy and the Web Services Ontology (classes, instances and properties) are
represented in ASP using the unary predicate class and the binary predi-
cate subClass. Equality is encoded by the binary predicate equalClasses.
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The predicates cl(X), subcl(X,Y), and equalClasses(X,Y) say that X is a
class, X is a subclass of Y, and X equals Y, respectively. For instance, the set of
facts

{cl(gene_tree). cl(species_tree).cl(resource_tree).

subcl(gene_tree, resource_tree). subcl(species_tree, resource_tree).}

encode three classes gene tree, species tree, and resource tree, and
gene tree and species tree are sub-classes of resource tree. To reason
about subclass relationship, the encoding contains the rule subcl(X,Y) :-
subcl(Z,Y), subcl(X,Z).

Individuals (instances) of classes are represented by the predicate t of.
For instance, the information http Url is of type resource HttpUrl; this is
encoded by the fact: t of(http Url,resource HttpUrl). The encoding also
contains a rule for reasoning about membership of an individual t of(X,C):-
t of(X,D),subcl(D,C).

With this information, additional memberships of individuals can be derived,
e.g., for http Utl we have that t of(http Url,resource WebUrl). In the cur-
rent system, the ontologies are translated into ASP programs via a module that
interacts with the Ontology API, creates the OWL-representation, and exports
it to an ASP program. For later reference, we call the ASP program encoding
the ontologies as the ASP Representation.

Representing Web Services in ASP. Each web service is represented in ASP
using the following predicates:

• op(O): O is an operation.
• op cl(S): S is a class of service.
• has input(S, N, I): service class S has an input I with name N.
• has output(S, N, O): service class S has an output O with name N.
• has parameter(S, P): service class S has a parameter P.
• has inp df(S, O, C, DF): concrete operation O of service class S has a input

component C with data format DF.
• has out df(S, O, C, DF): concrete operation O of service class S has a out-

put component C with data format DF.

The membership of an operation, input, output, and parameter to a class of the
ontology is encoded by a t of statement. For example, class taxon based ext
has input parameter that contains a component bio taxa (a list of biological
taxa) and its output contains component species tree in Newick format and a
HTTP status code. The ASP encoding of this information is as follows:

op_cl(tree_extraction_operation). op_cl(taxon_based_ext).
cl(bio_taxa). cl(species_tree). cl(http_code).
subcl(taxon_based_ext,tree_extraction_operation).
has_input(taxon_based_ext,set_of_names_1,bio_taxa).
has_output(taxon_based_ext,phylo_tree_1,species_tree).
has_output(taxon_based_ext,http_code_1,http_code).
has_output(taxon_based_ext,phylo_tree_1,resource_tree).
subcl(species_tree,resource_tree).
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In addition, concrete service operation getPhyloTree V1 is an instance
of class taxon based ext and the data formats of components bio taxa,
species tree and http code in this concrete operation are list of strings,
newickTree and integer respectively. The ASP encoding of this information is
as follows:

op(getPhyloTree_V1).

t_of(getPhyloTree_V1,taxon_based_ext).

has_inp_df(taxon_based_ext,getPhyloTree_V1,bio_taxa,list_of_strings).

has_out_df(taxon_based_ext,getPhyloTree_V1,species_tree,newickTree).

has_out_df(taxon_based_ext,getPhyloTree_V1,http_code,integer).

Given an input from the workflow configuration module, the system iden-
tifies the set of web services related to the input, translates it to ASP for use
in computing the executable workflows. This process is invoked whenever the
workflow design module calls the planning engine with an incomplete workflow
and requests an executable workflow. A web service is related to another web
service if some of the former service’s outputs are related to an input of the
latter. Two classes are related to each other if one is a subclass of the other.

ASP Planner—Overview. The most important part of platform is the ASP
Planner; this is responsible to generate the workflow of web services, i.e., per-
form web services composition. Due to the fact that (i) a class of web services
describes several concrete web services whose inputs/outputs may have different
input/output formats; for example, the class of name extraction services con-
tains services that take as input a URL, a text file, or a PDF file, and produce
a list of names; (ii) the specification provided by a user in the workflow module
can be used at two possible levels: abstract level and concrete level. At the
abstract level, the planner deals with classes of services; at the concrete level,
the planner deals with actual executable services. This leads to two levels in
the composition process—first composing classes of services, and successively
concretizing each class by selecting specific web services from each class. The
separation is important to facilitate presentation of the workflow to the user and
possible incremental refinements.

Planning at the Abstract Level—Basic Part. The ASP encoding of the
ontologies and web services are used as facts for the web service composition
process. They will be used in conjunction with a set of ASP rules that computes
a workflow from the given inputs. This module assumes the user has specified:

• Input: specifying what is available at the start; this information will be
encoded by facts of the form initially(x,y) which denotes that x is a
resource class with data format y.

• Output: the desirable outcome; this information will be encoded by facts of
the form final(x,y) (x: class, y: data format); and

• The web service, possible inputs/outputs associated with each node in the
workflow.
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In keeping with the answer set planning terminologies, we assume a constant n
indicating the maximal length of the executable workflow and a set of constants
time(0),...,time(n) denoting time steps. In all the rules, T or T1 denotes a
time step. Furthermore, we use available(x,t) to indicate that x is available
at the time moment t. The rule

ext(a, 0) :- initially(a,df).
states that the resource a exists at the time moment 0.

To encode that an operation A can be executed at the time T, we use the
following rules:

{executable(A,T)} :- op cl(A).
:- executable(A,T), has input(A,N,I), not match(A, I, T).
p m(A,I,T,O,T1) :- op cl(A), has input(A,N,I), T1≤T,

ext(O,T1),subcl(O,I).
1 {map(A,I,T,O,T1) : p m(A,I,T,O,T1)}1.
match(A,I,T ) :- map(A,I,T, , ).

The first rule uses the choice rule to state that an operation can either be exe-
cuted or not at the time T. The second rule, a constraint, prevents an operation
to be executed if some of its inputs are not matched with some available outputs.
The third rule defines when an input could be available. The fourth and fifth
rule select a unique available output for use as input of another service, which
is reflected by the atom map/5, and define the predicate match for use with the
second rule. To generate a possible sequence of operations and record the effects
of the operations, the following rules are used:

1 { occ(A,T): op cl(A) } 1.
:- occ(A,T), not executable(A,T).
ext(O,T+1) :- occ(A,T), has output(A,N,O).

The first rule generates an occurrence of an operation. The second one makes
sure that an operation can only be executed if its inputs are available. The third
rule allows for the computation of the availability of resources in the next time
moment, by direct effects of an operation. Since artifacts produced by a service
are available in all subsequent steps, we do not need an inertial rule.

Planning at Abstract Level—Extended Part. We next describe the
extended part of the ASP Planner that is used for dealing with other aspects of
web services. Specifically, to consider the desires of the users from the workflow
design. We describe how this type of information is encoded.

• There will be some input of type c, e.g., initially(i,df). t of(i,c).
• There will be some output o of type c at the end: final(o,df). t of(o,c).
• A certain class of services c will have to be used in the workflow used(c).
• A certain service of class c and the other one of class d will have to be involved

in the workflow. In which service of class d has to be executed after service
of class c is executed: used(c). used(d). before(c,d). (see also Fig. 4).
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To take into consideration the above information, we add to the ASP planner
the following rules:

ext(I, 0) :- initially(I).

goal(O, C) :- ext(O, n),final(O), t of(O,C).

:- final(O), t of(O,C), not goal(O,C).

is used(C):- op(A), t of(A, C), occ(A, T).

:- used(C), not is used(C).

satisfy(C,D):-op(A),t of(A,C),occ(A,T),op(B),t of(B,D),occ(B,T1),T<T1.

:- before(C,D), not satisfy(C,D).

The first rule specifies the resources available at the time step 0. The second
rule defines that a goal O of type C exists. The third rule, a constraint, enforces
the constraint that the user wishes to have an individual O of type C as the
output. Similarly, the fourth and fifth rule make sure that a certain service of
type c is used during the workflow execution if used(C) is specified; and the
last two rules guarantee that a service of type C must be used before a service
of type D if before(C,D) is specified.

Fig. 4. Workflow with constraints

Planning at Concrete Level—Data Format Conversion. As we have men-
tioned earlier, a class of services might be associated with specific classes of
inputs/outputs at the abstract level, but specific web services can require the
inputs in specific data format. For example, the class of name extraction ser-
vices contains distinct services that may take as input a URL, a text file, or
a PDF, and produce a list of names. For this reason, data conversion between
abstract levels is necessary when abstract services are instantiated with concrete
ones. For example, different services of the gene based extraction class output
GeneTree in different formats; GeneTree is an input for the services in the class
name extraction tree. Each service in this class accepts GeneTree in differ-
ent formats. Data conversion operations are also available as web services. This
means that we can employ the same methodology used in planning at abstract
level to complete the data format conversion process. Due to space limitation,
we will only briefly describe the components of this module.

• Output of the planning engine at abstract level. This will contain atoms of
the following forms: (i) occ(a,t) (a service of class a occurs at step t);
(ii) map(a,i,t,o,t1) (the input named i of the service named a takes the
output o at step t1 as input).
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• Encoding of the data conversion format services: this part is similar to the
encoding of abstract web services.

• ASP code for selecting conversion services when needed: this part is similar
to the planning code showed above.

3.5 Execution Monitoring

As discussed earlier, the outcome of the planning module is a complete workflow,
composed of a sequence of web services, whose execution is expected to lead to
the result requested by the user. Each web service in the workflow is described by
its WSDL profile. In order to execute the workflow, the Phylotastic architecture
provides a workflow execution module; such module makes use of the informa-
tion in the WSDL profiles and the structure of the workflow (e.g., connections
between inputs and outputs of the services) to execute the services. The goal
of this module is not only to enact the workflow producing an execution, but
also to monitor the execution to identify possible failures and take appropriate
recovery actions. In the current implementation, the recovery process is based
on repeating the configuration phase with an added constraint that excludes the
failed service. The execution module has multiple components. The first com-
ponent is a a WSDL 2.0 parser—its goal is to parse the WSDL information
into data structure models such as web services object model, operations object
model, parameters components and elements. This parser uses the libraries from
the Apache Wooden (https://ws.apache.org/woden).

The second component is the execution program that can execute a concrete
web service operation based on their description in the WSDL profiles. This
software consumes several parameters: the WSDL URI ; the name of the opera-
tion, and the list of input components data. More precisely, the execution module
performs the following steps:

◦ Given the URI pointing to the service WSDL profile, the execution modules
calls the WSDL parser to interpret the profile;

◦ The detailed profile of selected service operation (the second parameter men-
tioned earlier, name of the operation) is extracted from WSDL data. This pro-
file includes service endpoint, input and output parameters, content encoding,
protocol, etc.

◦ The execution module issues HTTP/SOAP requests based on the service end-
points and the operation information derived during the previous step (getting
from step 2). The body of the HTTP/SOAP request includes the inputs to
the service (the third parameter mentioned earlier, list of input components
data), arranged according to the description of the structure of input param-
eters obtained in the previous step.

◦ After receiving the response from the service host, the execution module parses
the response based on the structure of output parameters of this operation,
and analyzes the response to determine how to continue.

The third component is a combination program that automatically performs
repeated calls to the execution program, in order to execute the entire workflow.

https://ws.apache.org/woden
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The calls follow the structure of the workflow, properly matching inputs and
outputs of the different services executed.

The last component is a recovery process that will be activated when there
exists a failure or error in the processing of a single execution program that
is corresponding with the status of web service (unavailable, failure, timeout
exception, etc.). As mentioned earlier, in current implementation, recovery pro-
cess performs the following steps:

◦ Detect the web service that is fails or unavailable.
◦ Back to configuration phase, add an rule constraint into ASP planning engine

to ignore involving failed service in plan. For example,

:- executable(failed_service,T).

◦ Re-run planning engine with new above constraint to generate new workflow
without failded serivce,

◦ Re-run workflow execution module again with the new workflow.

4 Use Case

We illustrate the working of our system using an use case of the Phylotastic
project. In this use case, the user want to generate a phylogenetic reconciliation
tree from a set of gene names. Let us assume that this is the only information
that the user provided via the Workflow Configuration Module. This information
is passed to the planning engine. The planning at abstract level produces a
plan whose output is displayed in Fig. 5 (top part), where the triangles identify
the input and output states and the name of the service class that should be
executed at each step. For example, a gene based extraction service should
be executed, at step 1, a names extraction tree service needs to be executed

Fig. 5. Abstract and concrete workflow levels (Color figure online)
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at step 2, etc. Observe that the input for step 2 is a GeneTree, step 6 is a
GeneTree and a SpeciesTree, etc. The bottom part of Fig. 5 shows how the
concrete level instantiation looks like. Each black circle represents a concrete
web service. Each service is associated with their input/output format (e.g.,
for Ex Tree 1 is (newickTree, list of strings) and Ex Tree 3 is (phyloXML,
list of strings), etc. The red line (resp. the blue line), together with the line
through the node using a Scaling Tree service, represents a possible execution
of the abstract plan.

5 Discussion and Future Work

In this paper, we presented a framework for automatic web service composition
developed for the Phylotastic project. We described the overall architecture of
the system and its components, with special emphasis on the Planning Engine
and the Execution Monitoring Module. In the process, we show how answer
set planning can be employed in web service composition. We also describe a
detailed execution of the system using a use-case.

The proposed system is currently begin evaluated by biology researchers par-
ticipating to the Phylotastic project. Presently, we are focusing on two activities.

First, we need to complete a new version of the Workflow Configuration Mod-
ule, which allows the user not only to view the concrete workflow generated by
the planning engine, but also to manually modify it—e.g., by replacing one oper-
ation node with a different one. This will lead to a replanning process, where
the workflow is regenerated to accommodate the new requirement introduced by
the user, while preserving as much as possible of the previously generated work-
flow. The replanning process will raise interesting challenges, such as defining
what does it entail to “preserve as much as possible the existing workflow.” We
are exploring how this problem can be resolved using techniques borrowed from
research in planning with preferences [2,22].

In addition, we need to evaluate the scalability and efficiency of the planning
engine; among other things, we would like to develop algorithms that exploit the
fact that most web service composition does not really need to use the complete
ontology.
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