
Chapter 8
An Exploratory Analysis of the Effects
of Spatial and Temporal Scale
and Transportation Mode on Anonymity
in Human Mobility Trajectories

Jennifer A. Miller and Brendan Hoover

8.1 Background

Advancements in location-acquisition technologies such as global positioning
systems (GPS), radio frequency identification (RFID), cellular phone networks, and
WiFi hotspots have resulted in significant increases in the availability of highly
accurate data on moving objects, with unprecedented high spatial and temporal
resolution. These location data are often studied as ‘trajectories’, comprised of a
series of time-stamped sequential locations. Moving objects of interest have
extended beyond the traditional scale associated with people, animals, and vehicles
to include weather events such as hurricanes (Dodge et al. 2012) and eye tracking,
where gaze trajectories are compared with computer mouse movement to study
human-computer interaction (Demšar et al. 2015).

As a result of the increasingly wide range of types of moving objects studied,
several different interdisciplinary communities are now focusing on issues associ-
ated with collecting, managing, visualizing, and analyzing spatio-temporal data
associated with moving objects. Originating from the relatively long history of
animal tracking and telemetry studies, ‘movement ecology’ has become a rapidly
growing subfield in ecology focused on understanding the “causes, mechanisms,
and spatiotemporal patterns of (organismal) movement and their role in various
ecological and evolutionary processes” (Nathan et al. 2008: 19,052). Within geo-
graphic information science (GIScience), ‘computational movement analysis’ has
recently emerged as a subfield that focuses on the development and application of
computational techniques for collecting, managing, and analyzing movement data
in order to better understand the processes that are associated with them
(Gudmundssen et al. 2012). ‘Trajectory data mining’ harnesses new computing
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technologies to discover knowledge from trajectory data (Zheng 2015) with
applications mainly in location-based social networks, transportation systems, and
urban computing.

Depending upon the technology used to collect the data, the location information
can be represented by precise latitude and longitude coordinates (e.g., GPS data
from a smartphone or other device) or the catchment area of a single cellular tower
(e.g. call detail records (CDR) from cellular phones). These relatively low cost
location data have been used to explore human mobility patterns related to, for
example, urban planning (Steenbruggen et al. 2015), transportation infrastructure
(Wu et al. 2013), disaster planning/evacuation strategies (Ghurye et al. 2016),
potential disease spread (Oliver et al. 2015), and many other applications (see
review by Becker et al. 2013). Deville et al. (2014) introduced a framework for
using mobile phone data to calculate temporally explicit population data at the
spatial resolution of cellular tower service areas in order to supplement census data
and better understand human dynamics. Mobile phone data have also been used to
represent spatiotemporal human mobility dynamics in the context of the spread of
diseases such as malaria in Kenya (Wesolowski et al. 2012) and cholera in Senegal
(Finger et al. 2016). The spatial resolution of CDR data varies as a function of
population density. In their seminal study in an unnamed Western European
country, de Montjoye et al. (2013) reported CDR catchment areas ranging from
0.15 km2 in cities to 15 km2 in rural areas.

Higher precision GPS data, typically collected with user- or vehicle-carried
smartphones, have been used to study route choice behavior (Huang and Levinson
2015), the effects of built environment on physical activity and health (Collins et al.
2012; Carlson et al. 2015), to determine the risk of cycling injury (Strauss et al.
2015), to detect travel model (Xiao et al. 2015), and to provide social itinerary
recommendations (Yoon et al. 2011). Sila-Nowicka et al. (2016) explored
contextual information linked to GPS locations in order to identify “third places”
beyond home and work.

8.1.1 Location Privacy

While studies using mobile phone and GPS data have made important contributions
to a better understanding of human mobility and spatiotemporal dynamics in
general, there are significant issues associated with the distribution or availability of
these data. As often happens with technological advancements, the collection of
these data has preceded extensive study on how and what they can (or should) be
used for, as well as the privacy implications associated with them.

In particular, there are important privacy issues associated with location or
mobility data that can be traced to a single or very few individuals that are often
overlooked. Wernke et al. (2012) classify potential location privacy attacks based
on the information possessed by the adversary: single or multiple locations, con-
textual information, and historical information. Ma et al. (2013) provide defensive
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approaches for scenarios in which an adversary is passive and is given individual
mobility data as well as scenarios in which an adversary is active and physically
collects contextual and/or ancillary data along with the mobility data. In addition to
what might be considered superficially harmless privacy violations, an adversary
could use location data for malicious purposes such as stalking or opportunistic
criminal activities. Locations or movement patterns could also be used to make
inferences that have potentially negative implications, for example, repeated visits
to a medical clinic may be a concern for a prospective employer.

Measures that have been implemented to preserve privacy have been shown to
be superficial or ineffective. Location data are often released after they have been
‘anonymized’—which means that the trajectory has been stripped of any identi-
fying information such as name, address, and phone number. However, as Golle
and Partridge (2009) note, anonymity is “a useful but imperfect tool for preserving
location privacy” (p. 390). Personal points of interest (home, work) can still be
identified by mining trajectory data for movement patterns, and these points of
interest are often associated with unique individuals.

Using an extensive dataset of home and work locations in the U.S., Golle and
Partridge (2009) showed that at the spatial scale of a census block, the pair of home/
work locations is unique for a majority of the working population. At the scale of
census tracts, the pair of locations was uniquely identifying for only 5% of the
working population but at the much coarser county scale, the 44% of workers who
live and work in different counties are considerably more vulnerable to
de-anonymization. Zang and Bolot (2011) used anonymized CDR from 25 million
individuals across the U.S. to determine the “top N” locations at which calls were
recorded for each of three months. They found that when N = 2 (typically corre-
sponding to work and home locations), up to 35% of the individuals could be
uniquely identified. When N = 3 (they suggested the 3rd location typically repre-
sented a school or shopping related location), 50% could be uniquely identified.

It should be emphasized here that the concept of unicity or the ability to uniquely
identify a movement trajectory based on a small subset of locations of which it is
comprised is not equivalent to de-anonymization, but it is a requisite first
step. Quantifying the uniqueness of locations through which an individual moves is
necessary to better understand privacy implications associated with increasingly
available human mobility datasets.

In one of the first studies to address quantification of unicity of individual
trajectories, de Montjoye et al. (2013) used fifteen months of anonymized mobile
phone data (CDR) for 1.5 million individuals in a western European country and
found that four randomly selected spatiotemporal points were sufficient to uniquely
identify 95% of the individuals. Perhaps more troubling, they found that over 50%
of individuals were uniquely identifiable from just two randomly selected locations
(typically also corresponding to home and work). Song et al. (2014) found similar
results with a dataset of one week of mobility data for 1.14 million people (total 56
million records): 60% of the trajectories were unique using just two random points.

Due to data availability, most of the previous work on measuring ‘unicity’ or the
uniqueness of movement traces or trajectories has been with much coarser scaled
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cell phone data. However, even relatively coarse spatial resolution location data
such as that associated with call detail records (CDR), where ‘location’ is an area
defined by its proximity to a specific cell phone tower, can be used to uniquely
identify an individual. Locations of cell phone towers or antennae are based on
population density and the area associated with each one varies considerably. In
their study in a small (unnamed) European country, de Montjoye et al. (2013) found
that the reception or catchment area for an antenna ranged from 0.15 km2 in urban
areas to 15 km2 in rural areas.

It is important to note that uniqueness does not equate to re-identifiability and the
objectives of these studies were to examine how unique individual trajectories were,
not to actually de-anonymize them or re-attach an individual’s information to a
unique trajectory. However, the ability to measure uniqueness of locations on a
trajectory is an important prerequisite for re-identification (which would involve
correlation with an ancillary dataset) and therefore, represents a potential threat to
individual privacy.

8.1.2 Measuring Unicity

While a single widely used or standard measure of unicity has not yet emerged,
unicity has been measured in different ways, depending on characteristics of the
mobility dataset and research objectives. In studies similar to the research presented
here, unicity has typically been quantified by comparing a randomly selected subset
of points (either location or location + time) to points in the mobility trajectories;
unicity would be high if the subset of points matches very few other trajectories.
Unicity would be low (and location privacy less problematic) if the subset of points
matched many other trajectories. de Montjoye et al. (2013) measured ‘unicity’ as
the percentage of 2500 random traces that were unique given p random points
(p ranged from 2 to 5). Song et al. (2014) defined uniqueness of trajectories as the
percentage of all available trajectories that were uniquely associated with p random
points, which they varied from 2 to 6. While anonymity (or lack thereof) has been
studied with CDR data, as the previous examples show, it has not yet been more
extensively addressed with finer spatiotemporal resolution available as GPS loca-
tions from, e.g., smartphones (but see Rossi et al. 2015). These datasets could
potentially be far more unique and therefore more difficult to anonymize.

In addition to location and location + time, Rossi et al. (2015) also tested how
additional movement information derived from three different published mobility
datasets could be uniquely associated with individual trajectories. They calculated
distance traveled, average speed, and average angle of travel for a specific time
window and measured unicity as the average uniqueness over the whole dataset
using 1000 subsets of points (number of points ranged from 1 to 5) per individual.
They found that direction was the most unique movement parameter for all three
datasets, with five points able to uniquely identify 95% of the users.
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The degree of uniqueness of trajectories can vary as a function of factors such as
typical commuting patterns, transportation modes, and geographical region (which
also affects commuting patterns and transportation modes). While measurement
precision and geographic scale have been varied in order to assess their effects on
unicity of a mobility dataset, the influence of these other factors has rarely been
examined. Information on transportation modes associated with trajectory segments
has only recently been provided as a component of some mobility datasets,
although previous research has focused on inferring likely transportation modes
based on movement characteristics analyzed from the locations (Lin and Hsu 2014;
Zheng et al. 2010). Sila-Nowicka and Thakuriah (2016) used travel diaries and
mobility data for 358 users in Glasgow, Scotland to compare spatial patterns
between the original mobility data and generalized data that resulted from kernel
density estimation for four different travel modes (driving, walking, train, bus).
They calculated Pearson’s correlation coefficient for the original and generalized
data and the values ranged from 1.0 for train to 0.852 for walking. No previous
studies explicitly examined how different transportation modes affected unicity.

The importance of quantifying the ‘anonymity’ of a database has been a research
focus in information sciences far longer than the relatively new issue of unicity and
there are several widely accepted methods. The most commonly used method of
k-anonymity was introduced by Sweeney (2002) as a measure to increase anon-
ymity for non-spatial databases. When applied to spatial databases, it ensures that
any set of records (locations) for an individual is at least the same as k − 1 indi-
viduals. Generally, k = 2, ensuring that at least two trajectories are equivalent, but
as k increases, so too does the anonymity. Extensions of k-anonymity include
l-diversity and t-closeness (Li et al. 2007).

These measures are generally used to manage trajectory datasets (e.g., data would
be manipulated so that the level of anonymity reached the reported k level), but in
order to quantify the actual level of anonymity of trajectory datasets, a rigorous
analysis comparing random points from each trajectory to all other trajectories still
needs to be conducted. With trajectory datasets now available at one second temporal
resolution, the volume of these data can result in computationally intensive analysis.

In addition to removing any identifying information, ‘cloaking’ or other
obfuscation techniques have been used to add noise to or reduce the precision of
location data associated with mobility traces (Gambs et al. 2010; Ma et al. 2013).
While there has been extensive research on approaches to preserve location privacy
(see Kar et al. 2013; Seidl et al. 2016) most of the methods result in significant loss
of information and none has been considered to be broadly successful (Narayanan
and Felten 2014).

The research presented here explores issues related to privacy and identity
associated with more recently available high resolution GPS location data. We
quantified the unicity of GPS movement trajectories testing the effect of spatial
resolution and temporal resolution. In addition to location, we explored how
effective derived movement parameters such as direction could be for uniquely
identifying a trajectory. We also calculated unicity for different user-labelled
transportation modes and explored how it is affected by spatial resolution.
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8.2 Data

We explored these issues using GeoLife Trajectories (Zheng et al. 2008a, b, 2010),
a well-known mobility data of individuals in Beijing, China collected by Microsoft
Asia. This is an extremely dense dataset, with temporal resolution of *1–5 s and
spatial resolution of *5–10 m. For the first part of our analysis, we used only one
year of data (January 2009–December 2009) and the spatial extent of Beijing
(39.6°–40.2°N latitude and 116°–116.8°E longitudes) to remove users who traveled
outside of the city during this time period. This resulted in 71 users who had a total
of 7243 daily trajectories (number of locations visited within trajectories varied but
the mean was 1600). Here we use an individual’s daily trajectory (where a day is
considered to begin and end at midnight) as the basic trajectory unit; each begins
and ends at a time that is dependent on the individual’s daily activity.

The second part of our analysis focused on how unicity varied as a function of
transportation mode. Individual-labelled transportation modes (bus, subway, train,
taxi, car, walk) were only available for 69 individuals in the GeoLife dataset, so we
did not confine these trajectories to a certain year and therefore did not include
temporal information in the unicity analysis. Transportation mode was attached to
the appropriate section of an individual’s trajectory and we considered trajectories
to be separate if they were at least fifteen minutes apart even if they involved the
same transportation mode.

8.3 Methods

The basis of our unicity test involved extracting 500 sets of points of size n (n = 2, 3,
4, and 5 points) from each user and counting how many other trajectories contain
those points. The percentage of 500 sets of points that matched only one trajectory
was calculated and this was done for each of the 71 users for the four different point
sizes (n = 2, 3, 4, and 5). Our measure of unicity, u, was the percentage of 500
random points of size n that are contained in only one trajectory averaged across all
71 users. A unicity value close to 100 indicates a highly unique trajectory that could
theoretically be de-anonymized, or re-connected with identifying user information
more easily; a low unicity value suggests that the random set of points are contained
in several different trajectories and therefore would make de-anonymizing trajecto-
ries far more challenging. The amount of information from each point was varied—
we used just location (x and y), location + time (x, y, and t), and the direction (the
absolute angle for point i is measured between the x direction and the step built by
relocations i and i + 1).

The original latitude and longitude coordinates for these locations had a spatial
precision of six decimal places (*0.1 m). In order to test how spatial and temporal
resolution affected measurement of unicity, the geographic coordinates were
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coarsened first to four decimal places (*10 m) and the temporal resolution was
coarsened to 30 s, then further coarsened to three decimal places (100 m) and 60 s.
Additionally, the precision of the absolute angle measure was decreased from the
original (five decimal places) to three decimal places.

For the transportation mode analysis, unicity was calculated the same way,
except the n points were compared only to points labelled with the same trans-
portation mode. The same two levels of coarsening were applied to the geographic
coordinates, but temporal information was not used here in order to provide a more
general location comparison. The use of different transportation modes varied
widely. The 69 individuals collectively used a total of 12,291 transportation-
labelled trajectory segments, but the number of labelled trajectories per individual
ranged from 1 to *2800 (i.e., some individuals had only one transportation-
labelled daily trajectory, while others had several thousand). The mean use of each
transportation mode per individual, along with minimum and maximum, is given in
Fig. 8.1 (bars) along with the mean percentage of total trajectory sections per
transportation mode (line). Walking was the most frequently reported transportation
mode (52% of all trajectory segments) while train was the least frequently used
(2%). Cars represented only about 8% of all trajectory segments, but the mean
percentage of use across each individual’s trajectory segments was 15%, with a
minimum of 0% and maximum of 100% (i.e., at the extremes, some individuals
never used cars for transportation, while cars were the exclusive transportation
model for other individuals).

Fig. 8.1 The mean, minimum, and maximum of the percentage of each individual’s labelled
trajectory segments that was associated with each transportation mode (bars, left axis); and the
percentage of total labelled trajectory segments associated with each transportation mode (line,
right axis)
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8.4 Results

The mean unicity values associated with the size of each random point set and level
of coarsening for location, location + time, and direction (absolute angle) are
plotted in Fig. 8.2. In general, the locations on a trajectory were highly unique. 90%
of the random sets of just two points composed of only location (no timestamp)
were associated with only one trajectory. Adding the timestamp increased the
unicity of two points to 97%. When five points with location and timestamp were
used, the unicity increased to almost 99%. The implications for location privacy are
alarming, as these were randomly selected locations and not the ‘most visited’ that
might be associated with potentially more unique work-home pairs of locations.
Somewhat surprisingly, the angle of movement alone also had high unicity—when
the angles of four points were tested, the unicity (u = 66%) was similar or greater
than the unicity of location for CDR using two points as found in de Montjoye et al.
(2013) and Song et al. (2014). Five angle values could uniquely identify a trajectory
73% of the time, although coarsening the precision of the angle measurements had a
much more negative effect on unicity. More research is needed to address the
unicity of derived movement parameters separated from actual locations as a
potential privacy issue.

When just two points (no timestamp) were used at the first level of coarsening
(spatial precision reduced tenfold to *10 m), unicity was still almost 69%; when
the coarsened time (*30 s) information was added to location, the unicity was
similar to the original resolution (88%).

Fig. 8.2 Mean unicity for different types of information (location in blue, location + time in red,
and absolute angle (direction) in green) and different measurement precision (solid line is original
precision, dashed line is first level of coarsening, and dotted line is second level of coarsening).
The number of sample points compared is on the x-axis
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The final level of coarsening decreased the spatial resolution of an x/y pair
to *100 m and the temporal resolution was coarsened to one minute. The spatial
resolution here was closer to the resolution of the antenna reception areas used in
the de Montjoye et al. (2013) paper (where spatial resolution ranged from 115 m to
15 km), but the coarsened temporal resolution was still much more precise than the
one used in the CDR studies. As a result, using location + time for just two points
resulted in a high unicity (mean 80.3%), while five points increased the mean
unicity to almost 88%. Using just location (no timestamp), the unicity degraded to
32% for two points and 66% for five points.

Using four or five points, the first level of coarsened time + location had similar
unicity to the original precision location coordinates (93–94%), while coarsest
time + location was similar to the first level of coarsened location coordinates (86–
87%). Only one level of coarsening was used for direction, as unicity of the
absolute angle degraded substantially—unicity was only 5% when a set of five
points was used.

Unicity of trajectories (location only) associated with different transportation
modes is plotted in Fig. 8.3. We don’t include the results from trajectories labelled
with train, as it was only used by 20 individuals and represented only 2% of all
labelled trajectory segments. Walking had the highest unicity for all four point
sample sizes (u ranged from 86% for two points to 93% for five points). Subway

Fig. 8.3 Mean unicity for five transportation modes (subway is yellow, taxi is purple, bus is
green, walk is red, and car is blue) and three measurement levels (solid line is original precision,
dashed line is first level of coarsening, and dotted line is second level of coarsening). The number
of sample points compared is on the x-axis
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mode was the next most unique transportation mode, but had slightly higher unicity
with two sample points (85%) than for three points (83%) and five points only
increased unicity to 85%. Trajectory sections that involved taxis and cars had the
most constant unicity across all four sample sizes, ranging from u = 80% (taxis)
and 77% (cars) for two points to u = 82% (taxis) and 78% (cars) for five points.
These transportation modes were also relatively less frequently used (10% of all
trajectory segments involved taxis while 8% involved cars). Unicity associated with
buses increased from 77% with two points to 87% with five points.

The spatial resolution of the location coordinates was coarsened to the same two
levels as described above (10 and 100 m) in order to assess how unicity associated
with transportation modes was affected. Unicity for taxis and cars was only slightly
decreased at the first level of coarsening and unicity for both modes was fairly
constant across all sample sizes. Unicity did decrease substantially for taxis and cars
at the second level of coarsening, although unicity for cars remained higher than for
taxis (28–30% and 27–20%, for cars and taxis respectively). Unicity also decreased
marginally as the number of sample points increased for taxis and cars, although
this could result from their relative scarcity in the dataset.

Unicity for subways, buses, and walking decreased markedly (u was less than
60%) with the first level of coarsening. While buses and walking had similar unicity
across all sample sizes, subways had the highest unicity with just two sample points
(57%). At the coarsest level, unicity dropped considerably for all five transportation
modes, ranging from 31% for cars with two sample points to 12% with five points
for buses and subways.

8.5 Conclusion

With the much higher precision and spatial resolution of GPS data currently
available, two x/y locations are sufficient to be uniquely associated with a single
trajectory 90% of the time, adding the timestamp matches a single trajectory 97% of
the time. The three pieces of information—location + time—are so specific that
increasing the number of points to match to five increases the unicity very little
because it is already so high using just two points. The first level of coarsening for
location + time (*10 m spatial, 30 s temporal) has similar unicity to the original
resolution for just location coordinates, and when four or five points are used, the
coarsened location + time has slightly higher mean unicity. The location coordi-
nates (no timestamp) show the greatest increase in unicity when additional points
are used for matching. This suggests that there is a trade-off between location
resolution and amount of information (location points) available.

The relatively unique signature of derived movement information alone high-
lights potential location privacy issues even when location information (x/y) have
been removed from the dataset. Movement parameters such as speed, angle, and
step length have rarely been tested as potential identifiers of trajectories, but the
case study here focusing on absolute angle highlights their potential importance.
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Five absolute angle data points were uniquely associated with a single trajectory
72% of the time. This suggests that individual movement, irrespective of absolute
geographic location, can be identifiable with a sufficient level of precision of angle
measurements and data points. Future work should focus specifically on how
movement parameters could be used singly or together to identify a trajectory.

It was not surprising that unicity varies with transportation mode. Among the
five transportation modes used here, walking is the least constricted while subway
is likely the most constricted. Consequently, walking was the most unique travel
mode at the original precision, although unicity was greatly decreased as precision
decreased. This is particularly disconcerting given that walking individuals are
perhaps the most vulnerable in the broadest sense of potential privacy attacks. All
five transportation modes had unicity values of 78% or higher at original precision
for as few as two points. The effect of transportation mode and unicity would also
likely vary based on spatial characteristics of a city (ex., extent of sprawl), popu-
lation characteristics of a city, transportation infrastructure, climate and other fac-
tors. Unicity would also be expected to be dependent on the amount of time an
individual spends on a public transportation mode—shorter routes would presum-
ably have lower unicity while longer routes might have higher unicity (with
exceptions related to well-traveled but more distant destinations such as an airport).
The unicity associated with taxi, car, bus, and subway transportation modes was
similar at the original resolution, although there were far more occurrences of bus
travel in the data. However, at the first level of coarsening, taxi and car mode
continued to have high unicity, even higher than walking. This suggests that the
spatial scale at which roads are resolved contributes to higher unicity. More
research is needed to better understand how unicity varies with transportation mode
based on user-provided travel information.

This unicity study has particularly important implications for privacy and the
increasing availability of ‘anonymized’ trajectory datasets. This is one of the few
studies to explore unicity with higher resolution GPS data and it should be troubling
how unique a set of two location points can be. Coarsening the spatial and temporal
resolution reduces the unicity, but five points with x, y coordinates at the coarsest
resolution tested here were still uniquely associated with a single trajectory more
than 60% of the time. Our results also show an increase in unicity when more than
two points are used, presumably the “third place” (see Sila-Nowicka et al. 2016)
after points representing e.g., home and work can be an important determinant of
unicity. This effect persists with scale coarsening and when just angle of movement
is used. We detected a few instances where trajectories were duplicated in this
dataset, which could result in conservative estimates of unicity. Conversely, the
calculation of unicity will be dependent upon how many individual trajectories are
used in the comparison—as we use trajectories for *70 individuals, unicity could
potentially be overstated here. More research is needed on how calculation of
unicity is affected by dataset characteristics like number of individuals and trajec-
tories, geographic region, infrastructure, and social factors that affect movement
patterns.
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It is important to note here that the focus of this study was not to re-attach user
information to trajectories, it was just to examine how unique trajectories were
based on different types and levels of information stored with or derived from them.
Problems with anonymizing published mobility datasets have already been high-
lighted using the relatively coarse spatial resolution of call detail records. These
privacy issues will only be exacerbated as higher quality GPS location datasets
become increasingly available. The dataset used here represents trajectories for 71
and 69 individuals (transportation mode data), which may be too small to make
inferences about unicity. GeoLife was not originally collected for studies focused
on location privacy, although it has been used in similar studies (Rossi et al. 2015).

In addition to measuring unicity of location and location + time, further study is
needed on how different factors such as transportation mode and movement
parameters affect unicity as well as potential implications involving linked datasets
from social surveys. While each of the issues addressed here focuses on a single
dataset for the case study, we would expect the results to be broadly applicable to
other similar mobility datasets.
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