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Chapter 1
Introduction: Human Dynamics
in Perspective

Shih-Lung Shaw and Daniel Sui

1.1 Introduction

Human dynamics have been in existence as long as the human history. The topic
has been studied by researchers in many different disciplines over time. One
characteristic of human dynamics is that they evolve with the changing environ-
ments, technologies, and human societies. Human dynamics in today’s world are
very different in many aspects from how we carried out our activities and inter-
actions even a few decades ago. There are many factors contributing to the
changing human dynamics. During the last three decades, advances in modern
technologies such as information and communication (ICT) technology,
location-aware technology, sensor technology, and mobile technology have played
an important role in changing human activity and interaction patterns. For example,
smartphones have enabled us to stay connected and interact with other people
through a wide range of services and information available on the Internet to carry
out various activities. Although the basic human needs have stayed the same as they
were before, the ways we fulfill these activities have changed significantly due to
modern technologies. It is now feasible to complete many office tasks from any-
where with an Internet connection and an appropriate device. When we are looking
for a dinner place, we can quickly find a restaurant recommended by people we do
not know via an app on our smartphone. We can walk to a bus stop just in time to
catch a ride since the real-time bus locations are available at our fingertip. There is
no doubt these changing human behaviors are leading to different kinds of
dynamics in the urban, economic, transportation, social, and cultural systems.

S.-L. Shaw (&)
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However, our knowledge about the implications of these changing human dynamics
to our communities and societies is still limited.

Modern technologies not only have introduced changes to human dynamics but
also have enabled our capability of collecting detailed data about human dynamics.
Facebook knows who our friends are, how we interact with our friends, along with
the timeline of our activities. Amazon keeps track of what we buy, how frequently
we buy different items, and even the items we browsed. Google can use the key-
words in our Gmail messages to help with targeted advertising. We also use Twitter,
YouTube, Instagram, Foursquare, OpenStreetMap and many other apps to con-
tribute information voluntarily. They are generally known as Volunteered
Geographic Information (VGI) or crowdsourced data (Sui et al. 2013). Mobile phone
service providers know where we have been, when we were there, whom we have
contacted, and how frequently we contact various people through our communica-
tion records. Our bank knows what we buy, where and when we buy them, and how
much we pay for each item through our credit card transactions. Although we
normally do not intend to publicize our activities, data are nonetheless collected,
analyzed, and even shared publically. Even we do not use a smartphone or any of the
modern ICT devices, our data still can be collected via modern technologies. For
example, an increasing number of security cameras mounted in public spaces can
take pictures of passing people and vehicles. Through image processing plus facial
recognition and license plate number matching software, people and vehicles can be
identified and tracked. With cameras mounted on drones, privacy in our own fenced
backyard also is in danger. Furthermore, our friends can post pictures of us on
Facebook or Instagram even we do not use those apps. It therefore would be naïve to
assume that we still have the same level of control of our privacy in today’s world as
we were a few decades ago. The reality we face today is a matter of who have our
data and how they are using our data! In other words, it is out of our control to a great
extent. This is part of the life we have to deal with in the Big Data era (Manyika et al.
2011). One challenge to human dynamics research community is how we can use the
unprecedented data collection via various sources to help us gain insights on human
dynamics in order to answer important questions to our communities and societies
and make smart decisions for a better future of our communities and societies.

Human dynamics research faces many challenges of addressing complex
human-technology relationships and interactions, deluge of data related to different
aspects of human dynamics, and transdisciplinary challenges that involve natural
sciences, social sciences, humanities, and engineering. It is not feasible for one
edited volume to cover all of these issues. This edited volume instead is intended to
contribute to human dynamics research through a collection of papers which focus
on selected innovative approaches, data issues, method development, and empirical
studies mainly from geographic and spatiotemporal perspectives. A Symposium on
Human Dynamics Research consisting of twenty-five paper and panel sessions was
organized at 2016 American Association of Geographers (AAG) annual meeting in
San Francisco, California. An open call for papers was announced to a wider
research community. The chapters in this edited volume are selected contributions
from the Symposium and the open call.

2 S.-L. Shaw and D. Sui



1.2 Human Dynamics in Perspective

A legitimate question to ask at the beginning of this edited volume is: what is the
precise meaning of human dynamics? Human dynamics have been studied in many
different disciplines such as business, geography, physics, planning, psychology,
sociology, among others. Each discipline tends to have its own perspective that
leads to somewhat different research focuses. Jay Forrester, who was recognized as
the founder of system dynamics, published three well-known books—Industrial
Dynamics (Forrester 1961), Urban Dynamics (Forrester 1969), and World
Dynamics (Forrester 1971). Forrester discussed computer simulation models in
these books to shed light on the interactions among various elements for industrial
management, urban issues, and the world system, respectively. Although the
computer models proposed by Forrester offered useful tools for evaluating different
strategies and policies, they were criticized for using a “systems analysis” approach
to simulating social problems. For example, the computer simulation in the Urban
Dynamics book was criticized by not considering that short-term gains might be
desirable even at the price of long-term loss (Hester 1970). This suggests some
shortcomings of using system dynamics approach to addressing social policy
issues. The System Dynamics Society describes system dynamics as “a
computer-aided approach to policy analysis and design. It applies to dynamic
problems arising in complex social, managerial, economic, or ecological systems—
literally any dynamic systems characterized by interdependence, mutual interaction,
information feedback, and circular causality.” (http://www.systemdynamics.org/
what-is-s/) Human dynamics appear to be covered under this definition despite the
weaknesses of tackling social issues using a system dynamics approach.

Wikipedia suggests that “Human Dynamics as a branch of statistical physics: Its
main goal is to understand human behavior using methods originally developed in
statistical physics.” (https://en.wikipedia.org/wiki/Human_dynamics) This defini-
tion reflects a particular research direction of human dynamics that was inspired by
Barabasi’s (2005) publication of “The origin of bursts and heavy tails in human
dynamics” in Nature. This article points out that most human dynamics models in
various disciplines assume that human actions are randomly distributed in time.
However, Barabasi’s (2005) study indicates that individuals often execute tasks
based on some perceived priority with bursts of rapidly executed tasks separated by
long periods of inactivity, which results in heavy-tailed distributions. This line of
research has influenced some human dynamics studies by geographers and geo-
graphic information scientists.

Seagal and Horne (2003), on the other hand, suggest that “Human Dynamics is a
body of work that identifies and illuminates innate distinctions in the way people
function as whole systems that include mental, emotional, and physical dimen-
sions.” The mental principle is related to mind and expressed in thinking (i.e.,
rational). The emotional principle is about forming relationships and expressed by
making connections (i.e., relational). The physical principle is the practical part and
expressed by doing and making things (i.e., pragmatic). All three principles are
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active in all people with various combinations and to varying degrees. This per-
spective of human dynamics places an emphasis on individual personality.

Human dynamics is a less frequently used term than other closely-related terms
such as human interaction, human mobility, or human movement in geographic
literature. One early use of “human dynamics” is found in Finch’s article of
“Geographic science and social philosophy” in the Annals of the Association of
American Geographers, which states that “It is obvious that many of the elements
of regions are observable things. This is important, because observation, as Krebs
puts it, ‘is and remains the basis of geography.’ To be sure, the activities and forces
of human dynamics, in which some would see the essentials of regional unity, are
not all amenable to direct observation, but we gain awareness of them by only
slightly different means. They are recognized by all regional geographers.” Finch
(1939, pp. 14–15) This article mentions “forces of human dynamics” that are not
amenable to direct observation. It was very challenging in the 1930s to observe not
only the forces of human dynamics but also human dynamics themselves due to the
lack of tools enabled by technologies to collect such data, especially at a large scale.
Traditional interview and survey methods are costly and time-consuming to collect
and record human activities and interactions, which in turn present an impediment
to applying theoretical frameworks to examining human dynamics at a community
or society level. One example is Hägerstrand‘s time geography, which offers a
useful framework for studying human dynamics under various types of constraints
in a space-time context (Hägerstrand 1970, 1982). However, the basic concept of
space-time path in time geography, which requires data collection of spatial
movements over time (i.e., trajectory) for each individual, presents a major chal-
lenge to researchers in the era before the Global Positioning System
(GPS) technology. Furthermore, even if researchers in the 1970s were able to
collect trajectory data of 5000 individuals, it would be a daunting task to show all
5000 space-time paths with pen and paper. Time geography, which has become one
of the most widely used conceptual framework in human dynamics research, is very
much promoted by the advances of location-aware, mobile, and information and
communication technologies during the last few decades that have removed major
obstacles of data collection and analysis (Shaw 2012; Shaw et al. 2016). In the
meantime, human dynamics research is gaining momentum in geography while
geography as a discipline is increasingly recognized by researchers in other disci-
plines for providing an important perspective to human dynamics research.

Apparently a cogent definition of human dynamics that everybody can sign up
for is still elusive due to the diverse disciplines and approaches in the rapidly
evolving field of human dynamics research. Instead of defining the boundary of this
evolving field, we believe that it is more productive to outline the core elements.
The concepts, methods, and applications of human dynamics research are likely to
evolve with the changing environments, technologies, and human societies.
Research paradigms and dominant research methods employed today will be dif-
ferent down the road. For example, what geographers did 100 years ago are very
different from what geographers do today in many aspects. There have been many
debates of “what is geography?”, yet the field of geography continues to evolve and
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move forward without a universal definition of the field. Nevertheless, we should
not pursue human dynamics research without some directions and guidelines.
Below are some of the core elements that should be considered in human dynamics
research in our opinion.

– From “physical space” to “virtual space”: With the modern technologies, human
activities and interactions have been increasingly taking place in cyberspace,
communication space and online social space (e.g., e-shopping, e-commerce,
e-education, e-government, email, text messages, online social networks, online
games). These activities and interactions in virtual space are not independent
from human activities and interactions in physical space. In fact, they interact
and influence each other in most cases. It therefore is critical to examine human
dynamics in both physical and virtual spaces and their mutual interactions if we
want to better understand how human dynamics are evolving and what smart
and connected communities should be to better serve future human dynamics
needs. Indeed, the on-line and off-line human activities are more closely coupled
than ever.

– From “historical” to “real-time”: Understanding changes of human dynamics
over time (i.e., historical and long term) is as important as understanding human
dynamics at this moment (i.e., real-time and short term). They are for answering
different research questions and supporting different policy decisions.
Observations of human dynamics at different temporal scales could lead to dif-
ferent findings about human dynamics. We need to examine human dynamics not
only at various temporal scales but also the interactions among human dynamics
at different temporal scales. The improved granularity of human activities will
lead to a better understanding of human dynamics in space and time.

– From “human” to “context”: Human activities take place within a context.
Human dynamics research is not just about human. The environments and
situations are important factors that influence human behaviors and dynamics.
Recent research interests in place and semantics are good examples of deriving
meanings behind human dynamics based on the context. There are at least three
types of context that need to be considered in studying human dynamics. The
first type of context is “what are around us?” which are usually recognized by an
individual using relative locations in space (i.e., relative space). The second type
of context is “what are related to us?” which are usually comprehended by
people as relations among different entities (i.e., relational space). The third
type of context is “what people have in mind” such as motivation, goal, per-
ception, etc. (i.e., mental space). All three contexts can involve human and
non-human elements. Non-human elements can be entities in the physical space
(e.g., a road or a restaurant) or something in the virtual space such as the Google
search website. On the other hand, traditional maps and geographic information
systems (GIS) are based on absolute locations in space (i.e., absolute space). It
is important to develop a theoretical framework that can integrate all elements
relevant to human dynamics in absolute space, relative space, relational space,

1 Introduction: Human Dynamics in Perspective 5



and mental space in order to gain more comprehensive insights on the processes
behind human dynamics beyond the observed spatiotemporal patterns.

Obviously, human dynamics is a slippery term that is hard to define its scope with
one single definition. This section reviews several different perspectives of human
dynamics research and suggests an approach of pursuing human dynamics research
by focusing on some important concepts such as space, time, context, process,
relationship, and interaction related to human dynamics. Development of a
framework that integrates human dynamics in absolute space, relative space, rela-
tional space, and mental space can be very helpful to the human dynamics research
community with different perspectives across various disciplines.

1.3 Overview of the Chapters in This Volume

This book is organized into 13 chapters. This chapter is written by the editors to
provide the context and present an overview of all the chapters in this volume—
human dynamics research in smart and connected communities. The subsequent
substantive chapters cover various topics related to human dynamics research. This
book ends with another chapter by the editors to discuss the limitation of this book
as well as outlook and next steps of human dynamics research in the context of
smart and connected communities.

Chapter 2 (Thakur et al. 2018) argues that the increasingly available geo-located
data sources make it possible to understand human dynamics that previously was
not possible. It presents four case studies of using geo-located cellphone data or
social media data to improve land use classification, examine population dynamics
of a major sport event, investigate transient population dynamics, and assess facility
popularity to support its argument. The authors present results of using various
methods on different types of data for classifying human population distribution,
land use and facility popularity. Despite the data limitations in veracity and com-
pleteness, this chapter demonstrates a strong case of using geo-located data to gain
insight into human dynamics at a fine resolution.

The research community has used many different types of tracking data to
investigate various kinds of human dynamics. One of the common questions is
potential biases embedded in each dataset for studying human dynamics. Chapter 3
(Xu et al. 2018) explores this issue based on call detail records (CDR) data and a
more complete dataset that includes both CDR data and additional cellphone
activities tracked by a cellphone service provider. One key finding of this study is
that the number of active cellphone users is a better indicator of the spatiotemporal
distribution of cellphone users than the volume of phone calls/text messages. This is
consistent with a “burst” human activity pattern identified by Barabási (Barabási
2005); i.e., many human activities exhibit bursts of rapidly occurring activities
separated by long periods of inactivity. Use of CDR data to study certain
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spatiotemporal human activity patterns therefore could be questionable since CDR
data reflect where people initiate and/or receive phone calls and text messages
rather than where people are distributed. In other words, CDR data could be biased
from both spatial and temporal perspectives, especially for those people who use
their mobile phones infrequently.

With the increasing human activities and interactions taking place in virtual
space, it is critical to be able to represent, analyze and visualize human dynamics in
both physical space and virtual space. Chapter 4 (Gao et al. 2018) proposes a
spatiotemporal network framework to deliver such functions. It introduces physical
edges for movements in physical space, social edges for social relationships and
interactions, and physical-social edges to connect physical locations with their
associated social activities. This study shows a case study for visualizing such a
spatiotemporal network of geo-social interactions with Twitter data, followed by a
discussion of four potential quantitative measures of complex interactions in the
proposed spatiotemporal network. It is an example of integrating absolute space and
relational space discussed in Sect. 1.2 above.

Trajectory data show the locations of moving objects over time that can be
useful for studying spatiotemporal movement patterns. However, one major
shortcoming of most trajectory data is the lack of semantic data associated with
various locations. One popular research topic in recent years therefore is on
deriving and managing semantic trajectory data. Chapter 5 (Fan and Stewart 2018)
proposes a semantic data modeling framework that employs semantic web tech-
nologies to represent, query, reason, and visualize human movements. It builds an
ontology-driven knowledgebase to integrate spatial, temporal and semantic data and
also presents a use case of student movements on a university campus based on
class schedules. This chapter demonstrates some innovative ways of working with
semantic data beyond what traditional GIS data models can deliver.

Chapter 6 (Xu 2018) uses cybernetics as a framework to examine synergy
between people and technology that transforms each individual and creates cyborgs.
Due to increasing mix of activities and interactions in both physical and virtual
spaces, this paper chooses Twitter data as an example to illustrate the complexity of
cyborg identities. Cyborg, which is a hybrid of part organism and part machine, is
used as an overarching identity concept in the Twitter world to help us address the
challenge. Cybernetics in this paper helps formalize the relations between cities and
their dwellers as communication and feedback loops. Cybernetics therefore can
serve as a theoretical foundation to critically examine the technological means for
achieving smart cities.

Human dynamics play an important role in many application areas, including
many of our public health challenges. Chapter 7 (Wen et al. 2018) proposes a
location-based client-server framework, which consists of a client-side
smartphone-based risk assessment module and a server-side epidemic simulation
model, for assessing personalized exposure to the risk of respiratory disease
transmission. This paper represents an application of linking the dynamic move-
ments of an individual to the potential of being exposed to the risks in surrounding
environments. By keeping individuals informed about potential risk levels, such an
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application could influence individual behavioral patterns that reflect important
interactions between information flows in virtual space and human movements in
physical space.

As individual tracking data at high spatial and temporal resolution levels become
increasingly available, privacy protection has been a challenging issue to deal with.
With the modern technologies and big-data orientation, individual data are con-
stantly collected by both private firms and government agencies. It is no longer
realistic to assume that we have control over our data. It is a matter of who owns
what data and how the data are being used. On one hand, the research community is
hungry for detailed individual-level data to gain insights on human dynamics. On
the other hand, research ethics mandate privacy protection. Chapter 8 (Miller and
Hoover 2018) tackles this issue by measuring the uniqueness of locations associated
with individual trajectories (i.e., unicity) based on a subset of GPS trajectories from
the Microsoft GeoLife dataset. By exploring how unicity varies with the number of
randomly selected points, temporal and directional information, and transportation
modes, the findings suggest significant privacy concerns due to a high unique level
of individual trajectories.

There are an increasing number of studies on the interplay between online social
networks and geography to gain insight on the relationships between information
flows in virtual space and locations in the real world. Chapter 9 (Koylu 2018)
analyzes reciprocal conversations among individuals based on geo-tagged tweets in
the U.S. to find out how the semantics of information vary based on the geographic
locations and communication ties among the users. This study proposes an
approach of using spatial network smoothing and probabilistic topic modeling to
extract geo-social semantics that reflect geo-social dynamics of the society.

As the research community is gaining momentum on paying attention to place
besides space, Chapter 10 (Cheng and Shen 2018) extends the authors’ previous
work on “where, when and how long you stay is who you are” to “what place, when
and how long you stay is who you are” by shifting from a focus on space-time
activity patterns to a focus on place-time activity patterns. This study uses London’s
police foot patrol tracking data to demonstrate the proposed approach and methods.
The results indicate that police who patrolled different locations in London could
share a similar place-time activity pattern because different locations are associated
with the same semantic meaning. This introduces a new way of measuring similar
space-time behavioral patterns.

With an increasing interest in the interactions between virtual space and physical
space and a lack of tools for exploring such interactions, Chapter 11 (Ye et al. 2018)
presents a Social Network Simulator with functions supporting network generator,
network analysis, community detection, and information diffusion modules in an
open source package for exploring information diffusion patterns in a social net-
work over time, especially for spatial meme diffusion. This chapter suggests a need
of further developing open-source tools to support researchers who study human
dynamics that require data management, analysis, and visualization functions
beyond what traditional toolkits can offer.
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Chapter 12 (Nara et al. 2018) discusses some challenges and opportunities of
using social media and big data for human dynamics research. This chapter uses the
papers presented in nine paper sessions organized at 2016 and 2017 annual
meetings of the American Association of Geographers (AAG) to summarize the
data, methods, and applications reported in those papers. The results indicate that a
wide range of data, methods and applications have been investigated under the
broad human dynamics theme. In addition to seven research challenges that were
reported in the literature before, this chapter suggests that frequent changes of the
ways that online social media data can be accessed by researchers and data/
algorithm uncertainty as two new challenges to human dynamics research.

In the final and concluding chapter (Sui and Shaw 2018), the editors recap the
major findings, identify the gaps of the literature, and outline future research
directions related to human dynamics in the broader context of smart & connected
communities. In particular, the editors emphasize the importance of integrating
organic and designed data, crossing the chasm of quantitative and qualitative
approaches, and balancing the positive and normative dimensions. Future research
on human dynamics in the context of smart & connected community should focus
not only on efficiency, but also on equity and sustainability. Last but not the least,
the editors challenge the human dynamics research community to embrace the open
science paradigm to make all our future research reproducible, replicable, and
generalizable. This is the only way to maintain the momentum to make human
dynamics research more robust and reliable.

The collection of papers in this volume covers selected topics in human
dynamics research, especially from data-driven and analytical perspectives. This
orientation reflects the background of the contributing authors whose research
interests mainly focus on the analytic aspects of geographic information science and
geography. As the first volume in the Human Dynamics in Smart Cities book series
by Springer, this edited volume serves as a useful reference for the data-driven and
analytics side of human dynamics research community. We anticipate additional
volumes down the road to cover other perspectives of Human Dynamics in Smart
Cities.
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Chapter 2
Utilizing Geo-located Sensors and Social
Media for Studying Population Dynamics
and Land Classification

Gautam Thakur, Kelly Sims, Huina Mao, Jesse Piburn, Kevin Sparks,
Marie Urban, Robert Stewart, Eric Weber and Budhendra Bhaduri

2.1 Introduction

Since the Sumerians started using clay beads to record trade some 7000 years ago
to the invention of the tabulating machine in the late 19th Century, our ability to
generate data has always, and will continue to, outpace our ability to record and
analyze it. This perpetual race sees a continual pattern of breakthroughs in the
ability to collect data followed by a period of time when new methods are devel-
oped to help make sense of this new source of information. Over the past decade
data collection has pulled ahead once again, particularly data on human activity and
locations. Thanks in large part from the maturation of mobile sensors and the
proliferation of user-generated content like social media, it’s estimated that 90% of
the data generated since the dawn of civilization has been created in the last two
years alone.

With increasing sources of data on human dynamics comes a new ability to
understand human dynamics that previously was not possible. Geo-located user
generated content from mobile devices allow a level of spatial and temporal
granularity that would be prohibitively expensive and time consuming for more
traditional methods such as surveys and censuses. The ability to understand where,
when, and why humans move across space and time has always been essential to
research areas such as urban planning, transportation, population dynamics, and
emergency preparedness and response. Geo-located user generated content is
allowing new insights into these and many other fields.

Geo-located user generated content can come in several forms. The spatiotem-
poral GPS locations of cell phones is one form that has demonstrated the ability to
shine light on how populations move across and shape the built environment and
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more recently the use of social media on mobile devices has shown tremendous
potential to allow us to better understand the distribution of populations at a specific
point in space-time. Beyond that, social media data has enabled researchers to
understand population activities, events, and underlying cause that generates the
dynamics of population movements.

Still challenges remain in our ability to effectively put this data to use. Before
one can ask questions of the data we must first collect it and the sheer volume and
variety of geo-located user generated content presents a challenge in the gathering,
storing, and querying of the data. This majorly occurs because of velocity with data
gets generated, validating the data, and the sheer volume of the data. Only once the
data is collected, cleaned, and formatted can we begin the next challenge of
developing insightful methods that allow us to ask questions we previously were
not able to answer.

Four case-studies of using geo-located user generated for human dynamics
research are provided. These studies are inspired from the work of Stewart et al.
(2017) while initiating a research agenda in human dynamics and land use domain
by proposing an explicit model that assists in delineating and articulating the
opportunities, challenges, and limitations of using social media. In the first study,
mobile phone call volume and GPS locations are used to characterize human
activity patterns and provide inference on land use in Dakar, Senegal. Next, we
demonstrate the ability of geo-located social media posts to provide insight on
population density estimates for special events, such as sporting events or emer-
gency situations. An example of this is presented with college football games on a
university campus. Finally, we provide an initial investigation on the potential to
identify a specific building’s facility use type based solely on geo-located social
media content. These studies demonstrate innovative findings that are only made
possible because of new forms of data about human activity and their mobility
patterns. The chapter underpins the need to utilize new forms of data collection
mechanism as well as their use to augment our understanding of human dynamics
research and future application of geographical information systems.

2.2 Geo-located Human Activity Data Collection
and Management

User generated content with locational metadata is a captivating attribute for
modeling population, fine-resolution land use and land cover classification. The
spatio-temporal feature, included with potentially descriptive user activity, can
provide improved ways of modeling population dynamics at high-resolutions.
Additionally, researchers can begin to understand better ways to approach chal-
lenges involved in the medical, political, historical, environmental, social, and
technological fields (Kuhn 2012). The instantaneous spatial information, much of
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which is provided by everyday citizens, provides a deeper understanding in how
land use topology changes and maintain at different scale and sizes of settlements.
This section provides background in the development and current status of geo-
graphically focused user-driven content harvested through crowd-sourcing, sensors,
and social media.

2.2.1 Neogeography

The evolution from a one-way web browsing experience (e.g. Web 1.0) to now, a
two-way interaction and sharing medium is referred to as Web 2.0. Some believe
this transformation was so revolutionary in its earliest stages that the term
‘Neogeography’ was born to encapsulate a new era of geographic practices through
web-based operations (Hudson-Smith et al. 2009). One of the most influential
instruments to Neogeography was the public release of a free, web-based mapping
interface, known as Google Earth. In lieu of expensive cartographic and GIS
applications, anyone with access to the Internet could easily upload and share
geographic data to make their own maps. This in turn ignited an interest of dynamic
mapping to the everyday masses (Turner 2006). Since then, computer scientists
have begun constructing other mapping applications and interfaces to produce maps
that are less labor intensive and more automated.

2.2.2 Volunteered Geographic Information

Innovations in mobile Internet access (i.e. smartphones) and authority (i.e.
non-experts) are redefining how the sciences are adopting non-traditional data. This
is a result of the Internet morphing into a modernized power structure of bottom up
practices, and what Michael Goodchild termed volunteered geographic information,
or VGI (Goodchild 2007). For example, it has become common practice to rely on
smartphones to browse the Internet for quick information about a place. And, it is
also not uncommon for that data we are searching for to be provided by our peers,
rather than established experts. Instead of the traditional construction of knowledge,
produced and edited strictly by trained professionals, most anyone with an Internet
connection now has the ability to share their local knowledge, and in the case of
VGI, with locational attributes. Geographic information disseminated by citizens
ultimately becomes a new avenue of information delivery and consumption.
Additionally, diverse human contributors can facilitate unique and/or specific
geographic knowledge with the simplest post of a tweet (Twitter), status update
(Facebook), or picture (both).
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2.2.3 Social Media

The enormous popularity of social media suggests that user generated content is
here to stay, and potentially, is an acceptable lifestyle of continuous information
exchange. With boundless content, users share excerpts of their whereabouts,
opinions, beliefs, activities, etc., for the sole purpose of broadcasting one’s life to
interested parties (Grace et al. 2010; Java et al. 2007). While they may not be
intentionally sharing their experiences in hopes of providing data for science, they
are nevertheless publicly sharing their activities to socially connect (Croitoru et al.
2012, 2013). Goodchild (2007) has referred to this population as “Citizen Sensors.”
Their chaotic and unsystematic availability of information proves worthwhile for
application program interfaces (APIs) which can pragmatically mine user generated
content (e.g. Tweets, Check-ins) to give a quantitative look into the world around
us. This chaotic and unsystematic availability of user information is what has
provoked a relationship between scientists and Big Data.

2.2.3.1 Twitter

As of October 2016, at least 550 million tweets were sent per day from the 100
million daily active users (Twitter IPO filing). With this plethora of streaming
information from certainly one of the industry’s leaders, Twitter is an ideal platform
source to harvest media feeds from through its API. On the company’s website,
their policy states that in exchange for using their services, the user agrees to have
their information made public and searchable by third parties, as long as the user’s
account privacy settings are set accordingly (Twitter Privacy Policy). This agree-
ment is what allows this research to explore Twitter’s 140-character messages to
better understand actual, first-hand experiences during a live event. Additionally,
the fact that more than three-quarters of active users socially connect through a
mobile device only further supports the possibilities of gaining up-to-date access
with location accuracy (Twitter IPO filing). However, social media users are a
sample of the general public since not everyone participates. Nevertheless, any
amount of publicly shared experiences or actions, recorded in the moment through
smartphones, especially those with locational tracking services activated, can ide-
ally illustrate a more accurate depiction of population dynamics.

2.2.3.2 Facebook

In its origin in 2004, Facebook was only accessible to college students from a few
selected universities. Today, Facebook connects individuals (13 years of age or
older), all across the world with 1.13 billion daily active users.1 While Facebook

1http://newsroom.fb.com/company-info/. Retrieved: September 14, 2016.
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may not be the microblogging platform that Twitter is, user can tag to their post
unique venues thereby creating a map-blog of where users have been and when.
This geolocation attribute available from Facebook has made check-ins an attractive
source of data for researchers. Unfortunately, such detailed recordings of a user’s
activities and location often times prompt stricter privacy concerns, which leads to
more challenging harvesting techniques. The first step Facebook has taken to limit
these infractions is for Facebook’s Public Feed API to be unlike Twitter’s in that
only a few selected media agencies can stream status updates (Public Feed API).
There is no free API service available to the public. These digital barricades are
difficult to overstep, which is why the next best spatial and temporal clues to
attendee activities are to monitor Facebook Place check-ins. By tracking check-ins
to location-specific Facebook Places, a spatial flow of these populations could be
interpreted defining movement patterns or local hotspots. Unfortunately, check-outs
are not usually provided from users, therefore these patterns only suggest when and
where areas experience increased activity.

2.2.3.3 Limitations of Social Media

Data may not always be coherent or spatially accurate due to the very nature of user
generate content. As non-professionals, these users are providing large amounts of
data that are “inherently noisy” (Becker et al. 2010) which requires supplementary
efforts to interpret. According to Elwood et al. (2012), because a large amount of
unstructured data is generated, it also “presents a number of challenges for
developing methodologies.” Without an authoritative structure to restrict erroneous
observations, information can produce false-positive results skewing representa-
tions of population dynamics. Tweets are notorious for this in their very nature due
to such limited posts that can be incorrectly interpreted or, more importantly,
untruthful. It was assumed in this research that the intentions of users were to
honestly share information about their current activities, at the appropriate moment
in time.

2.2.3.4 Application to Human Dynamics Research

Several of these datasets have proved to be very useful in understanding the
dynamics of human mobility. In this chapter, we will focus the use of cell phone
call pattern, Twitter activity as well as Facebook graph data to augment our
understanding of population dynamics and demonstrate their efficacy and use in the
changing world of geographic information sciences.
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2.3 Improving Land Use Inference by Factorizing Mobile
Phone Call Activity Matrix

Land use is “the human employment of the land” (Meyer and Turner 1996) and
characterized by “the arrangements, activities and inputs people undertake” (Di
Gregorio and Jansen 1998). Depending on the socioeconomic functions, land uses
can be categorized into industrial, commercial, residential, administrative, agri-
cultural, etc. Understanding land use is crucial for practitioners and researchers to
perform urban analysis and planning, such as population estimation, infrastructure
planning, neighborhood zoning, and hazard and pollution analysis (Donnay and
Unwin 2001). Traditionally, land use is identified through surveys, which usually
tend to be expensive and difficult to obtain frequently. In resource-constrained
environments, where surveys are usually rare, detailed land use data is scarce, if not
missing. In order to attack this problem, we propose to detect land use based on
human activity patterns. The idea of our work lies on the fact that land use is shaped
by human activities. Novel data sources that record the detailed footprint of human
activities are enabling new methods for land use inference. Social media data and
Internet access activity data, for instance, have been used to measure land use in
cities (Hudson-Smith et al. 2009) and building use (e.g. residential buildings,
research labs, auditorium) on campus (Kuhn 2012). Although the Internet pene-
tration rate is low in poorest countries, the adoption of mobile phones is becoming
nearly ubiquitous: there are 4.7 billion unique mobile phone users worldwide
(http://www.gsma.com/mobileeconomy/). Several studies investigated the potential
of mobile phone data for spatio-temporal population distribution modeling, and
applied clustering, classification, and Eigen-decomposition methods to identify call
patterns for land use detection (Frias-Martinez et al. 2012; Reades et al. 2009). Yet,
most existing studies focus on developed countries, probably due to the extensively
deployed sensors and rich ground-truth data available. In resource-constrained
countries, there is far less geotagged human activity data, and detailed land use data
is also scarce, if not missing. Moreover, different types of land uses are usually
mixed and co-located in low-income countries, unlike land use zoning in developed
countries. So, due to the limited data sources and mixed land use, it is unclear
whether similar findings can be generalized to low-income countries. In this work,
we examine the extent to which anonymized Call Details Record (CDR) data can be
used to infer land use in Africa.

Our CDR data is provided by the Orange Telecommunications Company for the
Data for Development Challenge-Senegal. This dataset contains the number and
duration of calls between each pair of antennae (1666 antennae in total) on an
hourly basis from 01/01/2013 to 12/31/2013. Since our study is based on an
aggregated spatial analysis, users’ anonymity is maintained. According to
Telecommunication/ICT Development Report (2015), the mobile cellular sub-
scriptions per 100 people in Senegal reached 99 in 2014. Given the high penetration
rate, we consider mobile phone usage data as a good proxy for human activities. We
process the CDR data in three steps in order to capture the spatiotemporal patterns
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of human activities. First, for each antenna, we aggregate its total call volume
(including the number of incoming and outgoing calls) on an hourly basis, and
normalize the original hourly call volume time series into z-score over the study
period. Second, in order to capture the relative activity of a certain area at a given
hour, we subtract the average activity (or baseline activity) of all areas during the
hour from its normalized call volume. Third, we calculate the average of relative
activity for the hour of day and day of the week, and obtain a 168-dimension (i.e.
7 days’ times 24 h) call pattern vector for each cell tower. Combining the call
pattern vectors of all cell towers, we have a call pattern matrix Vm�n, where m is the
number of cell towers (m = 477) and n is the length of a call pattern vector
(n = 168). To decompose V, we apply the non-negative matrix factorization
(NMF) techniques, which results in two matrices: weight matrix (W) and basis
vectors (H). The mathematic formulation is Vm�n � Wm�kHk�n where k is the
number of basis vectors representing different land use patterns; and here we let
k = 2. For the details of NMF, interested readers may refer to (Seung and Lee 1999;
Berry et al. 2007). The implementation is based on the scikit-learn Python library.

2.3.1 Result and Analysis

Figure 2.1 shows two resulting basis vectors, denoted by Component 1 and
Component 2. It can be seen that these two components show opposite patterns:
peaks of Component 1 are in the day time (at 1 PM) and weekdays, while peaks of
Component 2 are in the night (at 10 PM) and weekends, capturing commercial/
business/industrial (C/B/I) and residential characteristics, respectively. Then, the
original call pattern time series of each cell tower can be approximated by a linear
combination of these two basis vectors based on weights contained in each row of
W. Here, we classify an area as C/B/I if w1 [w2, and residential, otherwise.
Voronoi polygons are used to approximate the reception area of cell towers
(González et al. 2008). Based on the estimated call patterns for each tower, we infer
the land use map, which is shown in Fig. 2.2a. The color value in the map is
determined by the weights for two basis vectors, i.e. w1=w1 þw2. Blue hue rep-
resents C/B/I, while red hue indicates ‘residential’ (or out-of-work) land use.

Voronoi polygons, however, are not actual neighborhood boundaries. In order to
obtain a land use map in a physically meaningful context, we convert it to
neighborhood level, based on the proportion of area intersections between cell
tower’s Voronoi polygons and neighborhood regions (see Fig. 2.2b and c).

2.3.2 Validation

In order to validate our results, we compare with ground-truth data. However, the
official land use data in Dakar is missing. So, we introduce the OpenStreetMap
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Fig. 2.1 Two basis vectors obtained from decomposing the 24-h/7-day call pattern matrix using
non-negative matrix factorization

Fig. 2.2 Estimated land use map based on call activities: a at the voronoi polygon level,
b intersection between voronoi polygon (grey dashed line) and neighborhood (red solid line)
boundaries, and c at the neighborhood level
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Points-of-Interest (POI) data as the ground-truth. POI data is voluntarily added by
users to tag the function of a place, e.g. office, shop, leisure. Table 2.1 shows the
comparison of two-class predictions with POI features, ‘commercial/office/
industrial/residential’. We find that a majority of ‘commercial/office/industrial’
areas are under the predicted C/B/I class, while over 60% of ‘residential’ places are
within the predicted residential class. In addition, Fig. 2.3 shows the distributions of
more POI features under these two classes. When w1 [w2, dominating features
include ‘embassy, garage, hotel, university, public building, restaurant’, and ‘mil-
itary’, whereas POIs, such as ‘religious, cemetery, clinic, kiosk, farmland’, and
‘greenfield’, take the larger proportions when w1 �w2. These findings are well
aligned with the actual land use characteristics: for instance, embassies, public
buildings, and offices are usually located in the commercial and business areas;

Table 2.1 Comparing POI landuse estimation (‘commercial/office/industrial/residential/’) from
OSM

Predict POI

‘Commercial’ (%) ‘Office’ (%) ‘Industrial’ (%) ‘Residental’ (%)

C/B/I 90.4 76.6 63.6 39.3

Residental 9.6 23.4 36.4 60.7

Fig. 2.3 Comparing land use estimation with multiple types of poi from OSM
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religious places, clinics, and kiosks (i.e. very small shops) are usually located at
residential neighborhoods. Also, cemeteries, farmland, and greenfield, which are
often close to residential instead of work areas, are found to be more present when
w1 �w2.

Overall, our results demonstrate the effectiveness of proposed method for land
use detection, especially, when there is a 90.4% detection rate for ‘commercial’ area
and 76.6% for ‘office’ area, but the detection rates for ‘residential’ (60.7%) and
‘industrial’ (63.6%) areas are relatively low. This is perhaps due to the fact that
residential and industrial areas often co-locate with other land use types in Dakar.
We acknowledge the limitation of this study is the lack of multiple types of land use
classification. Future work needs finer-scaled human activity data and contextual
information to further classify C/B/I into separate classes and improve mixed land
use inference.

2.4 Understanding Special Events Population

Modeling population distributions at a high spatial and temporal resolution requires
accounting for the dynamic nature of human populations. Models and representa-
tions of population that rely on census counts necessarily miss these dynamics.
However, some recent efforts incorporate daytime or diurnal distributions
(Kobayashi et al. 2011; Bhaduri et al. 2007), and episodic or tourist populations
(Jochem et al. 2013; Charles-Edwards and Bell 2013) in order to better capture
population dynamics. All of the efforts to extend population modeling beyond static
representations of nighttime populations contribute to the overall goal of achieving
what Martin et al. (2015) call “a full representation of population time,” which is
important for emergency preparedness and response, risk modeling, and many other
applications. To continue these efforts, publicly available data feeds from social
media offer an additional opportunity to improve population models at high reso-
lutions (Bukhari et al. 2012; Birkin 2013).

As of late 2015, the world’s two leading social media platforms are Twitter, with
320 million monthly active users, and Facebook, with 1.5 billion monthly active
users. Only a portion of social media data has associated location information,
however. For example, although an estimated 550 million tweets were sent per day
as of October 2015, estimates of the portion of tweets that are geo-located have
ranged from 0.47% (Cheng et al. 2010; Morstatter et al. 2013).

A natural application of the geo-located subset of social media data is the
modeling of episodic populations associated with special events having high
attendance and a significant presence on social media; in particular, this study
focuses on game-day college football fans at The University of Tennessee (UT),
Knoxville. Using tweets (from Twitter) and check-ins (from Facebook), this
research integrates this new form of data in a high-resolution dasymetric population
distribution model.
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2.4.1 Methods and Results

The area within a 1.5-mile radius around The University of Tennessee football
stadium was chosen for this study, and the population associated with football
game-days was modeled. Geo-located tweets and check-ins were collected for the
24-hour period surrounding the scheduled kickoff for each home game in 2013.
Seven terms associated with the university were used to filter tweets from Twitter’s
streaming API (Table 2.1). A cumulative count of Facebook check-ins was cap-
tured every 30 min for 95 establishments associated with game-day activities (e.g.,
restaurants and tailgating locations) (Table 2.2).

Two scenarios were modeled: (1) a “non-game-hours” scenario, and (2) a
“game-hours” scenario. Each model outputs a population estimate for each cell in a
raster grid with 3-arc-second resolution (*90 m). The 2012 version of the
LandScan USA (Bhaduri et al. 2007) gridded nighttime dataset was used as a
baseline population distribution to which the new modeled distributions could be
added to create the final output grids. The LandScan USA nighttime distribution
better represents the study area on a Saturday (all game-days were Saturdays) than
the daytime dataset, because the daytime dataset assumes a weekday distribution of
workers and students, which is very different from what would be expected in the
area on a weekend.

A consistent measure of social media activity was required for each raster cell.
First, the tweets and check-ins (collectively referred to as “posts” hereafter) were
divided into two sets based on their timestamps. Posts were considered for the
game-hours scenario if they occurred less than two hours prior to kickoff, or less
than three hours after kickoff. All posts outside of those hours were considered for
the non-game-hours scenario. A count of tweets and a count of check-ins were
computed for each raster cell for each of the two scenarios, resulting in four raw
count rasters.

Because of the limited amount of geo-located posts and the spatial errors in the
associated location information, some locations that attract event populations may
have no representation in the social media data. To overcome this limitation, kernel
density estimation with a radius of two grid cells was performed on each of the

Table 2.2 The total seasonal count of game-day geocoded tweets associated with The University
of Tennessee, 2013

UT term/phrase Number of geocoded tweets

“Tennessee” 11,582

“Vols” (abbr. of “Volunteers”, the team nickname) 7582

“GBO” (abbr. of “Go Big Orange”, a common chant) 2495

“VFL” (abbr. of “Vol for life”, a common slogan) 1612

“Neyland” (name of football stadium) 1144

“Football Time In Tennessee” (common slogan) 1135

“Big Orange” (a common alias for the team) 418
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four-raw count rasters to estimate tweet densities and check-in densities across the
grid. Then the densities were scaled so that each value represents posts per cell, and
can be interpreted as an interpolated count.

For each scenario, a linear relationship between social media activity and event
population is assumed. For each raster cell i, the special event population (y) is
described by:

yi ¼ bTwi; ð2:1Þ

where bT is a linear coefficient specific to the scenario T, and wi is the number of
posts at cell i. The b coefficient is the number of fans represented by each
geo-located post. If available, an observed value or estimate of the total population
in the study area associated with a scenario can be used to estimate bT :

bT ¼ ETPn
i¼1 wi

; ð2:2Þ

where ET is the estimated total special event population for scenario T. The study
area total for the game-hours and non-game-hours scenarios can be estimated by
summing two separate components of the special event population: A, the ticketed
fans, which is estimated by averaging the recorded attendance for each game, and a,
all the other (non-ticketed) people in the area specifically for the event:

ET ¼ kT Aþ að Þ ð2:3Þ

where k is a parameter representing the estimated portion of the peak game-day
population. Ultimately, the final population estimate for each cell i is the sum of the
baseline LandScan USA population (Li) and the special event population (yi):

Pi ¼ Li þ yi ð2:4Þ

In many special event situations, data often will not be available to support
precise estimates of the parameters, a and k, in Eq. 2.3. But event officials often
have expert knowledge and are privy to information that allows reasonable esti-
mates of these parameters. Ultimately, a software solution aimed at event officials
allows such knowledge to be incorporated in the parameterization.

Figures 2.4 and 2.5 show example representations of the non-game-hours and
game-hours scenarios, respectively, using rough estimates of these parameters. The
estimate for a is 30,000, which is meant to include non-ticketed fans, city security,
local business workers, and stadium staff, security, and teams. For the game-hours
scenario, k was set at 1, assuming the population peaks during the game. The
non-game-hours scenario is meant to represent a moment approximately three hours
before kickoff, for which k equals two-thirds.

Large populations can be seen in and near the stadium in both Figs. 2.4 and 2.5,
but with much greater concentration in Fig. 2.5. Figure 2.4 shows greater
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Fig. 2.4 An example game-day population distribution around The University of Tennessee,
Knoxville, during non-game hours: a Modeled event population, b Combined population
(baseline + event population)
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Fig. 2.5 An example game-day population distribution around The University of Tennessee,
Knoxville, during game hours: a Modeled event population, b Combined population (base-
line + event population)
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concentrations in areas on and near campus that are popular for pre-game tailgate
parties, as well as along Cumberland Avenue and in the downtown area, where
restaurants, bars, and shops are concentrated. Different parameterizations (for a and
k) lead to different absolute population values; but the overall pattern and the ratios
among the values remain the same (because the spatial distribution is based on only
the social media data).

2.4.2 Discussion

The population distributions in Figs. 2.4 and 2.5 generally correspond with the
spatial patterns familiar to the authors, and therefore suggest social media having a
positive relationship with this particular special event population. However, greater
quantities and greater spatial precision of observations of the population would be
needed to test the assumed linear fit (or to fit alternative models). Greater quantities
of data also would allow more refined temporal resolution, rather than having to
aggregate data from across several football games into two general scenarios, as
was done here.

How to estimate the total population present for an event also deserves future
research. In the college football scenario, attendance data are helpful for estimating a
portion of the total population, but the a parameter (non-ticketed event population)
from Eq. 2.3 is more difficult to estimate. A scenario including ancillary data about
the counts of subpopulations such as security personnel and event staff would have
greater certainty. The data available to an analyst, and the analyst’s familiarity with
an event, play an important role in establishing reliable estimates of this parameter.

The filtering of the social media data is also a crucial step that relies on
knowledge about an event and its location. The authors were able to eliminate a
large subset of irrelevant social media data through search-term filtering of Twitter
data and identification of relevant event-related establishments from the Facebook
data. Of course, other events could prove more challenging because relevant search
terms or relevant establishments could be unknown. Again, the development of a
software solution that allows analysts with detailed knowledge about an event and
location of interest to easily implement a model like the one demonstrated here
would be a reasonable next step in expanding this methodology to other events.

2.5 Facility Popularity Assessment from Fine Grained
Twitter Analysis

This section expands on facility detection discussed in the previous section, and
explores ways to assess facility popularity with Twitter data using natural language
processing and text classification methods. Land use data is often a crucial variable
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in geographic research. Population distribution, biodiversity monitoring, urban
dynamics, and energy consumption are a few areas that have recently increased in
importance, all which land use data is central to. At the moment land use data are
often aggregate classes where mixed land uses are aggregated into single high-level
category. By disaggregating land use data, we can become more precise and assess
unique facility types going from a commercial land use class to restaurant, retail,
and café facilities. In combination with the detection of these facility types,
assessing their popularity over space and time could provide an enormous amount
of insight into population dynamics. Understanding how a facility’s popularity
changes from the daytime into nighttime, over the course of a week, and during
special events could be very beneficial for urban planners and general geographic
research. Yet geospatial data has historically been large, static datasets that get
updated over the timescale of years. This multi-year timescale has limited the kind
of research questions that can be asked and the level of certainty in which pre-
dictions can be made. There is a need for the integration of near real-time, dynamic
geospatial datasets in geographic research to allow for predictions at a finer tem-
poral scale. With these types of data, we can advance from datasets like Census
derived population information which generally tells us where people live, to
dynamic near real-time information which can tell us where people are likely to be
at various times throughout the day.

With the continued growth of social media, there are more opportunities to use
this data for facility detection and popularity assessment. Services like Twitter and
Facebook allow users to connect with friends and broadcast thoughts, and have the
ability to record temporal and spatial information associated with the users’ posts.
Some advantages of using social media data is the near real-time nature of it and its
ability to provide data on not only where something or someone is, but context for
why they are there. Past research has shown the effectiveness of using large scale
social media check-in data to classify land use (Zhan et al. 2014; Lansley and
Longley 2016). When a user checks-in to a specific place on social media, they
explicitly state that they are at a specific location, at a specific point in time. If
monitored over time, the difference in the number of check-ins at a location can
provide insight into when a specific type of land use in a geographic location
becomes popular, and how that popularity changes over time. This record of
checking-in provides a high degree of confidence in the locational and temporal
accuracy of the data but accounts for a relatively small percentage of geotagged
social media data. There are still a lot of geotagged non-check-in social media data
that is ignored that holds valuable information regarding land use and facility type
popularity.

We aim to add to this research by exploring the possibility of removing the need
for explicit check-in social media data, specifically using Twitter, using only the
text associated with the social media post for facility detection and popularity. By
incorporating non-explicit check-in social media data into the classification process
there is an opportunity to significantly increase the amount of data we have access
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to (thereby increasing the geographic range of locations we could classify) and
increase the level of certainty when classifying land use and facility type popularity.

When using non-check-in social media data, the only relevant information left,
other than the geotagged latitude longitude coordinates, is the text associated with
the social media post. A user might share relevant information about being at a
location of interest (e.g. a restaurant or airport) in the text of the post, and not
explicitly check-in to that place. Yet, the geotagged social media post might still be
as useful as the corresponding check-in data if we can learn to interpret and
understand what is being said in the text of the post. For this we use natural
language processing tools and machine learning algorithms to classify unstructured
text into whether or not a user is seemingly at a location of interest when the social
media post was made. The first tweet in Fig. 2.6 shows an example of when a user
is talking about airports but is seemingly not at an airport when the tweet was sent,
whereas the second tweet suggests the user is seemingly at an airport when the
tweet was sent. We use natural language processing tools to convert Twitter text
into a statistical numeric representation of the tweet in the form of Term
Frequency–Inverse Document Frequency (TF–IDF) vectors. TF–IDF vectors are
then used as an input for machine learning algorithms to predict whether or not the
user is seemingly at the location of interest. We compare the performance of Naïve
Bayes and Support Vector Machine algorithms in the process of classifying Twitter
text. Once we determine if a tweet is relevant, we can access the locational and
temporal metadata associated with each tweet in our dataset. Our machines learning
classifiers achieve an average accuracy of approximately 85% varying across
multiple facility types in correctly identifying tweets where users are seemingly at
the location they are talking about in the tweet.

Fig. 2.6 Examples of tweets with a focus on airports. The first tweet is an example of data that
might not be useful for facility popularity, whereas the second tweet might be useful and suggests
the user is seemingly at an airport when the tweet was sent
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2.5.1 Basic Description

For this study, we have focused on collecting Twitter data extracted from the
Twitter Streaming API for the whole world. We have deployed a Linux cluster of
seven machines, and each machine is responsible for collecting data from one of the
seven continents of the world. This is made possible by using Twitter Streaming
API’s bounding box parameter, which requires south-west and north-east geo-
graphic coordinates for the region under consideration. One year of Twitter data
(06/15/2015–06/15/2016) and only English language tweets are used in this study
for training and classification purposes. We have used PlanetSense architecture to
harvest twitter data and the streaming tweets are stored on an ElasticSearch cluster
in real-time (Thakur et al. 2015). On an average, we have collected more than 8.5
million tweets per day. Later, Spring.io ES connector is used to pull the tweeted text
from ElasticSearch cluster. We have written custom Java code to filter-out emoti-
cons and non-ASCII characters before we perform training and classification. The
three facility types that we analyzed in this paper are Restaurants, Airports, and
Stadiums. Each tweet in the Restaurant dataset has the word restaurant in the tweet.
This includes variations of the word restaurant including upper and lower case (i.e.
Restaurant, restaurant, RESTAURANT, etc.), plural (i.e. restaurants) and hash-tags
(i.e. #restaurant). The Airports and Stadiums dataset is the same except with the
words airport and stadium. The Restaurants and Stadiums dataset has a total of
2000 unique, English language, geotagged tweets. The Airports dataset has a total
of 1600 unique, English language, geotagged tweets.

2.5.2 Twitter Training Data

The 5600 tweets total dataset were hand labeled by the authors as either one of two
classes: either [A] a tweet where the user seemingly indicates that they are at a
specific facility type (i.e. restaurant, airport, or stadium) at the time the tweet was
sent, or [B] talking about the specific facility type abstractly or in the past or future
tense, suggesting that the user is not at the facility location when the tweet is sent.
For example, the following tweets represent each class described above:

[A] Just waiting on my food (at Tracks End Restaurant in Chicago, IL)
[B] H3796 [NEW] Authorizing the city of Northampton to issue five above quota

annual all-alcohol restaurant licenses.

The Restaurants and Stadiums dataset has an even 1000 class A tweets and 1000
class B tweets split. The Airports dataset has 800 class A tweets and 800 class B
tweets. The original 5600 tweets did not immediately provide equal splits of class A
and class B tweets for each facility dataset. More tweets were randomly sampled
when needed to ensure equal splits of classes. For example, the original 2000 tweets
randomly sampled for the Restaurants dataset, did not exactly provide an even split
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1000 class A tweets and 1000 class B tweets. Once 1000 tweets for either class was
reached, no more tweets were included, and extra random samples occurred until
we reached 1000 for both classes.

To provide ground truth validation, we looked up the latitude/longitude coor-
dinates for random tweets in class A for Restaurants, Airports, and Stadiums to see
what exists at those locations (Fig. 2.7).

For the Restaurants dataset, 46 tweets were located at the location described in
the tweet, with 4 being considered incorrect. From this, we can suggest that our
hand labeling is approximately 92% accurate for Restaurants in classifying whether
the user was at the talked about location in the tweet, when the tweet was sent. For
the Airports dataset, 49 tweets were located at the location described in the tweet,
with 1 being considered incorrect. This suggests our labeling is approximately 98%
accurate for Airports. We checked approximately 10 tweets for Stadiums and all
were located at the location described in the tweet. While we did not check 50 class
A tweets for Stadiums, we expect similar results seen in Restaurants and Airports.

The final Restaurants and Stadiums dataset includes 2000 geotagged class A or
class B tweets, and the Airports dataset includes 1600 geotagged class A or class B
tweets with an estimated accuracy for all 3 datasets approximately ranging from 90
to 98%. This is important to note as when we discuss model accuracy results in
Sect. 6, the model accuracy should be taken in consideration with the hand labeling
accuracy stated here. For example, if the hand labeling accuracy is 90% and the
model accuracy is 90%, then overall classification accuracy would be approxi-
mately 80%.

Fig. 2.7 An example of how we check our hand labeling of tweets. We look up the coordinates of
the tweet, search for the coordinates, and see if the corresponding location is the place talked about
in the tweet
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2.5.3 Text Classification Algorithm and Approach

In this section, we describe the adopted classification algorithm for transforming the
unstructured tweeter text into a numerical input for text classification and explain
the overall methodology. First, we will discuss how and why we use Term
Frequency–Inverse Document Frequency (TF–IDF) vectors. Second, we’ll discuss
how we use natural language processing (NLP) tools to turn tweets into data that
can be used to generate TF–IDF vectors. Finally, we’ll discuss how we perform text
classification using Naïve Bayes, and Support Vector Machine (SVM) classifiers.

2.5.3.1 Data Sanitation and Cleaning

Before the unstructured text of the Twitter data is used to create TF–IDF vectors,
the data goes through a series of filtering and cleaning steps.

After sampling, hash-tags were removed, and the “@” character was replaced
with the word at in each of the tweets across both datasets. For example, the
following sentence [A] is changed to the following sentence [B]:

[A] Now that’s what I call a #beer. #FamilyDayOut2 @ Cargo Restaurant Bar
[B] Now that’s what I call a beer. FamilyDayOut2 at Cargo Restaurant Bar.

The “@” character replacement and the hashtag removal are done for natural lan-
guage processing reasons that will be described in Sect. 7.3. Later on we perform,
TFID calculation that represents the frequency of a given word within a document,
weighted by how often that word appears in other documents across the rest of the
corpus. This provides a statistical representation for how important a given word is
to a given tweet. To compute TF–IDF vectors for each tweet, we go through a series
of NLP steps using Stanford’s CoreNLP package (Manning et al. 2014). CoreNLP
was initially released in 2010 and provides a range of features, including giving the
base form of words, identifying parts of speech, indicating sentiment, and more.

2.5.4 Machine Learning Classification

At this point, each Tweet in our corpus has a multi-dimensional TF–IDF vector
representing it, and an associating label indicating whether or not the user is
seemingly at a Restaurant, Airport, or Stadium when the tweet was sent. Once the
data is in this format, this problem becomes a standard machine learning classifi-
cation problem. We have used Naïve Bayes and Support Vector Machine classifiers
for our analysis.
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2.5.5 Results and Analysis

In this section, we outline the process of training Naïve Bayes and SVM classifiers
to classify TF–IDF vectors for Restaurants, Airports, and Stadiums, present the
performance of those models, and evaluate the viability of this approach for land
use and facility type popularity classification.

2.5.5.1 Training Classifiers

For each facility type TF–IDF dataset, we randomly split the data with 90% of the
data for training and 10% for testing. We did these 100 times for each model, and
for each facility type dataset. For example, for a Naïve Bayes classifier for the
Restaurants dataset we randomly split the Restaurant dataset 90/10, train a Naïve
Bayes classifier, and produce accuracy and precision measures for that classifier,
and repeat this process 99 more times finding average accuracy and precision
values. Then we do this again for SVM, and then repeat this process for the rest of
the facility type datasets.

2.5.5.2 Evaluation Metrics

The metrics we use for the evaluation of the classifiers are accuracy and precision.
Accuracy of the classifier is defined by the number of True Positive plus True
Negative, divided by total number of samples (or Positives plus Negatives).

Accuracy ¼ TPþ TN
PþN

Precision is defined by True Positive, divided by True Positive plus False
Positive.

Precision ¼ TP
TPþFP

True Positives refer to the positive samples that were correctly labeled by the
classifier (i.e. the hand label of the tweet was class A and the classifier predicted
class A). True negatives refer to the negative samples that were correctly labeled by
the classifier (i.e. the hand label of the tweet was class B and the classifier predicted
class B). False Positive refers to the negative samples that were incorrectly labeled
as positive (i.e. the hand label of the tweet was class B and the classifier predicted
class A).
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We are most interested in precision as a metric. For the purposes of using tweets
to classify land use and facility popularity, we want to minimize the amount of
times the classifier incorrectly predicts a tweet that is of class B (the user is not
seemingly at the location of interest) as class A (the user is seemingly at the location
of interest). In this case, the classifier predicts false data as true. Whereas it is more
acceptable for the classifier to predict true data (class A) as false (class B) as this
means we simply miss out on potentially good data.

2.5.5.3 Results

After 100 iterations of training and testing classifiers for each dataset, the average
accuracy and precision metrics can be seen in Table 2.3. The Airports dataset
uniquely is classified better in both accuracy and precision when using Naïve
Bayes, whereas both the Restaurants and Stadiums datasets favor SVM for accuracy
and precision.

2.5.5.4 Accuracy

SVM accuracy for Restaurants provides approximately a 7% increase, whereas the
change in accuracy from Naïve Bayes to SVM for Airports and Stadiums are less
significant. Restaurants achieve the highest classification accuracy at 93% with
Airports and Stadiums achieving peak accuracies of 85 and 82% respectively
(Fig. 2.8). We speculate that Restaurants achieve a higher accuracy due to the
expected time spent at restaurants by customers, and by the nature of activity that
occurs at restaurants. People tend to go to restaurants for a singular reason and
spend anywhere from 1 to 2 h there. For airports and stadiums, people tend to stay
at those facilities for extended periods of time, sometimes for long layovers at
airports. This allows for a wider variety of things to occur and to be witnessed and
tweeted about at airports and stadiums.

The average accuracy distributions for the three facility types show relatively
normal distributions with standard deviations ranging from 0.024 to 0.028 with the
Restaurant SVM classifier as an exception with a standard deviation of 0.016
(Fig. 2.9).

Table 2.3 Average accuracy and precision values for Naïve Bayes and SVM after 100 iterations

NB accuracy SVM accuracy NB precision SVM precision

Restaurants 0.850 0.932 0.892 0.987

Airports 0.851 0.824 0.896 0.811

Stadiums 0.804 0.823 0.797 0.829
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2.5.5.5 Precision

SVM provides the highest precision values for Restaurants and Stadiums with
Naïve Bayes providing the highest precision values for Airports (Fig. 2.11).
Restaurants achieve the highest average precision of 0.98 with Airports and
Stadiums achieving peak average precision of 0.89 and 0.82 respectively.

Fig. 2.8 Average accuracies
for Naïve Bayes and SVM

Fig. 2.9 Average accuracy
distributions for Naïve Bayes
and SVM. The y-axis shows
how many times out of the
100 iterations that classifier
achieved a given accuracy
(x-axis)
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The average precision distribution for the 3 facility types show slightly wider
distributions compared to the average accuracy distributions, with the anomaly of
Restaurants (Fig. 2.10). The SVM classifier for Restaurants consistently achieves
high precision with a standard deviation of 0.011. The rest of the standard deviation
values range from 0.031 to 0.042 (Fig 2.11).

Fig. 2.10 Average precision
for Naïve Bayes and SVM

Fig. 2.11 Average precision
distributions for Naïve Bayes
and SVM. The y-axis shows
how many times out of the
100 iterations that classifier
achieved a given precision
(x-axis)
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As previously mentioned, precision is the most important evaluation metric for
the purposes of our study. It is more important to ensure that the classifier does not
predict false data as true. A peak precision value of 0.98 for Restaurants indicates
that while the overall accuracy is closer to 93%, the classifier will hardly ever
predict false data as true.

Recalling Sect. 7.6.3 describing the hand labeling of tweets to make training
data, we evaluated that we were approximately 90–98% accurate when deciding
whether a user was seemingly at the location they suggest they are when the tweet
was sent. This accuracy needs to be taken in consideration with the classifiers
accuracy/precision. If Restaurant precision is 0.98, and we conservatively estimate
that our hand labeling accuracy of that data is 90%, then we can assume that
approximately 88% of the time our Restaurant classifier predictions are accurate.

2.6 Summary

In this chapter, we presented a need to augment our understanding of human
dynamics by using novel data measurements and analytics. We focused our studies
to use geo-located human data generated through mobile phones and social media
activity patterns. To harvest this data at scale, we proposed a scalable big data
architecture that allows us to harvest and analyze real-time geotagged social media
data. We presented several case studies that demonstrated the efficacy of using such
data for studying human dynamics in changing world. We also presented, how
human activity patterns can aid in discovering new facility types and population
locations. We present results of using machine learning and natural language
processing for text classification on Twitter data for the purposes of classifying
human population distribution, land use and facility popularity. While there are
some limitations to use this data, for example veracity and completeness, overall the
studies presented here make a strong case of using geo-located data to gain insight
into human dynamics at a fine resolution, otherwise never been achieved before.
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Chapter 3
Uncovering the Relationships Between
Phone Communication Activities
and Spatiotemporal Distribution
of Mobile Phone Users

Yang Xu, Shih-Lung Shaw, Feng Lu, Jie Chen and Qingquan Li

3.1 Introduction

The pulses of our cities are largely driven by human activities and their movements.
An improved understanding of where people are in space and time would benefit
urban and transport planning, and facilitate academic research in a wide range of
disciplines (e.g., geography, epidemiology, and economics). Traditionally, our
abilities to capture spatial and temporal patterns of population distributions largely
rely on census data. Despite of their usefulness in population studies, the collection
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of census data is costly and time consuming. Moreover, such data provide a static
view of population estimates, with update cycles that are relatively long (e.g.,
10 years). These issues limit the usability of census data in many application
domains, especially the ones (e.g., traffic management, disaster response, and epi-
demic control) that require timely and spatially detailed population information.
Although the ways of estimating population distributions have been enhanced in the
past few decades (Dobson et al. 2000; Harvey 2002a, b; Balk 2004; Bhaduri et al.
2007; Stevens et al. 2015), we are still in need of cost-effective ways to capture the
whereabouts of people in space and time, which are highly dynamic in its nature.

In recent years, mobile phone data have received much attention in geography
and other fields. Several advantages make mobile phone data a valuable resource
for studying population dynamics: (1) a high and growing penetration rate of
mobile phones around the world1, (2) various location-aware technologies used in
mobile phone positioning (Birenboim and Shoval 2015), and (3) ease of data
collection (e.g., little burden on individual participants). Two types of mobile phone
data, Erlang and call detail records (CDRs), have been widely used in existing
literature to study population distributions (Ahas et al. 2007; Girardin et al. 2009;
Reades et al. 2009; Sevtsuk and Ratti 2010). These studies regard phone com-
munication activities as an indicator of the presence of urban population. However,
these mobile phone data reveal partial aspects of population dynamics, given the
fact that Erlang measures aggregate call volume at cellphone towers, and CDRs are
generated during particular types of cellphone activities (i.e., initiating or receiving
a phone call/text message). It means many previous studies implicitly assume that
phone communication activities could properly reflect the distribution of urban
population. Nevertheless, whether this assumption holds has not been investigated.
Moreover, few studies have even examined whether phone communication activ-
ities could reflect the spatiotemporal distribution of mobile phone users.

To fill the research gap, this study uses a mobile phone data set collected in
Shanghai, China to answer an important research question: to what extent could
phone communication activities reflect the spatiotemporal distribution of mobile
phone users? The mobile phone data set used in this study consists of CDRs plus
other cellphone-related logs such as cellular handover and periodic location update.
To answer the research question, we extract all CDRs into a separate data set to
capture the intensity of mobile phone communications at different places in the city
over time. Meanwhile, the complete data set is used to derive the spatiotemporal
distribution of mobile phone users. Then, correlation and regression analyses are
performed to evaluate the relationships between the two types of distributions. The
research findings could reveal the potential bias of using phone communication
intensity to reflect the underlying population distribution, and provide useful

1According to the International Telecommunication Union (ITU 2015), there are more than
7 billion mobile phone subscriptions by the end of 2015, corresponding to a penetration rate of
97%. The penetration rate in developed countries reaches 121% by the end of 2014 (World
Telecommunication Development Conference 2014).
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information and guidelines of using large-scale mobile phone data in urban
dynamics research.

3.2 Related Work

The advent of mobile phones has changed how people interact with the outside
world (Schwanen and Kwan 2008). It also transforms the ways human activities are
sensed and understood. Mobile phone location data, which suggest locations visited
by people, have been used to better understand different aspects of human
dynamics. For example, there have been many studies which use Erlang data to
examine the rhythms of urban mobility patterns (Ratti et al. 2006; Reades et al.
2009; Sevtsuk and Ratti 2010). In these studies, the intensity of people’s phone
communication activities is used as an indicator of the presence of urban popula-
tion. Similarly, call detail records (CDRs) have been used to uncover collective
human activity patterns (Candia et al. 2008) and aggregate population movements
(Ahas et al. 2007, 2010a). Although it is reasonable to assume a certain degree of
correlation between the cellphone usage and the underlying population, the extent
to which they are correlated and how their relationships change over space and time
need to be further examined and validated. Some studies based on CDRs have used
spatiotemporal patterns of cellphone usage (e.g., call volume) to predict land use
types (Soto and Frías-Martínez 2011; Pei et al. 2014) and dense urban areas (Vieira
et al. 2010). The reliability of these predictions also depends on the assumption of
the relationship between cellphone usage and population distribution.

People organize their daily tasks (e.g., sending emails and browsing websites)
“on a timescale that is appropriate to its urgency” (Ball 2010, p. 692). Researchers
find that individual cellphone usage possesses a “bursty” nature (Candia 2008;
Barabási 2010). People could make several phone calls in a short period of time and
then none for hours. That means mobile phone data (e.g., Erlang and CDRs) could
lead to a biased view of human activities. In recent years, several studies have
investigated the bias of mobile phone data in geographical research (Ranjan et al.
2012; Zhao et al. 2016). However, these studies mainly focus on particular aspects
of human mobility patterns (e.g., radius of gyration and movement entropy). The
relationships between aggregate cellphone usage and population distribution are not
examined.

People often spend a large amount of time at specific locations such as home and
workplace. Studies have found that mobile phone data can be used to estimate
people’s activity “anchor” points (Gonzalez et al. 2008; Cho et al. 2011; Xu et al.
2015, 2016). These activity “anchor” points, especially home locations, are used to
estimate urban population distributions (Ahas et al. 2010b; Silm and Ahas 2010).
However, the anchor-point based approach associates individuals to one or few
fixed locations. It thus provides population estimates that are static or at a coarse
temporal resolution. Instead, Kang et al. (2012) compares people’s cellphone usage
and population distributions derived from LandScan data for Harbin, China at a
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finer temporal resolution (1 h). The authors conclude that the proportion between
active mobile subscribers and the actual total population varies in different areas,
thus cannot reflect the underlying population properly. However, by using two
CDR data sets collected in Portugal and France, Deville et al. (2014) find that the
density of active mobile phone users can be used to produce spatially and tem-
porally explicit estimations of population densities at national scales. It appears that
researchers have not reached a consensus. It is thus important to look deeper into
this issue, which has broad implications for human geography and other related
fields.

3.3 Study Area and Mobile Phone Data Set

Shanghai is a century old metropolis. The city has a resident population of 24
million as of 2014 and covers an area of 6340 km2 (Shanghai Bureau of Statistics
2014). It is the largest city in China by population. As a global financial center, its
annual gross domestic product (GDP) was ranked the first among all cities in China
in the past five years. The city consists of sixteen administrative districts and the
Chongming county (Fig. 3.1a). Eight of them on the west bank of Huangpu River
(i.e., Putuo, Zhabei, Hongkou, Yangpu, Jingan, Changning, Xuhui and Huangpu),
also known as Puxi, are considered as the historic and commercial center of
Shanghai (Fig. 3.1b).

Fig. 3.1 Study area: a administrative districts of Shanghai, b inset map of the central part (i.e.
Puxi) of Shanghai
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The mobile phone data set used in this study was collected on a workday in 2012
by a phone service provider in China. As shown in Table 3.1, this data set contains
CDRs plus other cellphone-related logs (e.g., regular update, periodic update,
cellular handover, power on, and power off). These cellphone-related logs enable us
to capture distributions of mobile phone users over space and time better than CDR
data. In this data set, each mobile phone record contains information such as the
type of event, time (i.e., when the event occurred), and geographic coordinates of
the serving cellphone tower. The average nearest distance among cellphone towers
operated by this phone service provider in Shanghai is 0.21 km.

Note that we removed mobile subscribers who had power on or power off event
during the study period, since it is difficult to infer their locations when mobile
phones are disconnected from the cellular network. The remaining data set after
filtering these individuals consists of 698,661 mobile subscribers. As illustrated in
Fig. 3.2, we first derive the spatiotemporal distribution of mobile phone users from
the complete data set. Meanwhile, we extract all CDRs into a separate data set to
capture the intensity of mobile phone communication at different places over time.
The relationships between the two types of distributions are then evaluated through
correlation and regression analyses.

Table 3.1 Summary of events captured in the mobile phone data set

Type Event Description

OT Phone
communication
(outbound)

A subscriber makes a phone call or sends a text message

IN Phone
communication
(inbound)

A subscriber receives a phone call or text message

RU Regular update Triggered by moving from the service area of a cellphone
tower to that of another

PU Periodic update Triggered by tower pinging if a subscriber has been silent
(i.e., no other events detected) for a certain period of time.
However, the duration of silence that triggers periodic
update is irregular. In addition, mobile phones which are
turned off or disconnected from the cellular network do not
receive pinging signals from the cellular network

CH Cellular handover Transfer of an ongoing phone call from one cellphone tower
to another due to a subscriber’s movements

ON Power on Mobile phone is turned on and connected to the cellular
network

OFF Power off Mobile phone is turned off and disconnected from the
cellular network
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3.4 Research Design

3.4.1 Defining Indicators of Aggregate Cellphone Usage

Mobile phones have become an essential part of people’s everyday lives. In recent
years, how people use their mobile phones and its societal implications have
attracted increasing research interests. When analyzing mobile phone data, previous
studies (e.g., Candia et al. 2008; Kang et al. 2012; Yuan et al. 2012) often processed
cellphone usage data to reflect either individual phone communication character-
istics (e.g., phone call frequency, inter-event time) or collective phone communi-
cation activity patterns (e.g., Erlang, call volume). In this study, two indicators of
aggregate cellphone usage are selected for the correlation analysis:

– V: volume of calls/text messages
– N: number of active mobile phone users.

Note that an individual’s cellphone trajectory S can be represented as:

S ¼ P1 x1; y1; t1; e1ð Þ;P2 x2; y2; t2; e2ð Þ; . . .;Pi xi; yi; ti; eið Þf g ð3:1Þ

where Pi denotes the ith cellphone record; xi and yi denote the longitude and
latitude of the serving cellphone tower; ti and ei represents the time and type of the
corresponding mobile phone event (see Table 3.1), respectively.

Given a geographic area A and a time interval T, we define: (1) VT
A as the total

number of phone calls/text messages that occurred within the area A during a time
interval T , and (2) NT

A as the total number of mobile phone users who have made or
received at least one phone call/text message within the area A during a time
interval T . The two indicators reflect important characteristics of aggregate cell-
phone usage, and are generated only using the CDRs extracted from the full data set
(i.e., records with event type e being IN or OT in Table 3.1).

Fig. 3.2 The mobile phone data set consists of call detail records (CDRs) and other
cellphone-related logs (e.g., regular update, periodic update, and cellular handover), which make
it possible to examine the spatiotemporal relationships between aggregate cellphone usage and
phone user distributions
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This study uses Thiessen polygons as the spatial units to derive the cellphone
usage indicators. Specifically, Thiessen polygons, which are generated based on the
spatial distribution of the cellphone towers, are used to approximate their service
areas (Fig. 3.3a). The two indicators can be calculated for each Thiessen polygon
using mobile phone records that occurred at the corresponding cellphone tower.
Figure 3.3b illustrates the global temporal patterns of the two cellphone usage
indicators (as well as the inbound and outbound phone communication activities) at
a 30-min time interval. The total volume of phone calls/text messages (V) stays
relatively low between midnight and 6:00. It starts to increase in the morning,
followed by a fluctuation stage (i.e., 10:00–17:00), and then decreases in the eve-
ning. The number of activemobile phone users (N) follows a similar pattern of V but
has lower intensities. The temporal variations of V and N indicate that the rela-
tionship between aggregate cellphone usage and the total number of mobile phone
users in the city varies greatly throughout the day. However, how their relationships
change over space and time remains unclear and is worth an investigation.

Fig. 3.3 a Thiessen polygons are generated based on the spatial distribution of cellphone towers
to approximate their service areas. The two indicators (V and N) are calculated at each Thiessen
polygon using the mobile phone records that occurred at the corresponding cellphone tower;
b Global temporal patterns of aggregate cellphone usage at a 30-min time interval (V total volume
of phone calls/text messages; N total number of active mobile phone users; IN total inbound phone
communication activities; OT total outbound phone communication activities)
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3.4.2 Deriving the Spatiotemporal Distribution of Mobile
Phone Users

People don’t use their mobile phones regularly over time. As CDRs only record the
locations visited by people during their phone communication activities, it is
questionable to use such data to infer human dynamics when no phone calls or text
messages take place. The mobile phone data set used in this study includes location
records generated by other events such as regular update (RU), periodic update
(PU), and cellular handover (CH). These mobile phone events enable us to infer
individual locations at a finer time interval. For example, the RU and CH events
allow an individual’s location to be continuously updated when he or she is moving
from the service area of one cellphone tower to another. When an individual stays at
one particular location or has no phone communication activities, his or her location
is still reported by the PU event. Thus, the complete data set (i.e., cellphone-related
logs along with the CDRs) enables us to estimate a phone user’s location at any
given time point no matter he or she is moving.

Hence, given an individual cellphone trajectory S, the phone user’s location at a
particular time point t can be reasonably estimated using the following criteria:
(1) if trajectory S contains at least one mobile phone record after time point t, then
the phone user’s location is estimated as xi; yið Þ using the mobile phone record
Pi xi; yi; ti; eið Þ. Here Pi denotes the first mobile phone record which occurred after
time point t; (2) if trajectory S has no mobile phone records after t, the mobile
phone’s location is estimated using the last mobile phone record which occurred
before time point t. By doing so, we can estimate each phone user’s location at any
given time point t, and aggregate all users at the level of cellphone tower service
area. These estimates of the spatiotemporal distributions of phone users can be
combined with the two cellphone usage indicators for correlation and regression
analysis.

It is necessary to note that these estimates are not without uncertainties. On one
hand, it is very difficult to pinpoint a mobile phone user’s location when it is
travelling among different cellphone tower service areas. On the other hand, given
the issues of cellphone load balancing or “ping-pong effect” (Isaacman et al. 2012;
Csáji et al. 2013), the x; y coordinates of a cellphone tower associated with a
particular mobile phone record might not reflect where a user actually stayed.
Hence, it is more appropriate to conduct the correlation analysis at a coarser spatial
granularity—for example, using a regular grid with a coarser spatial resolution than
the cellphone tower service areas—to mitigate the impact of spatial uncertainty.

3.4.3 Correlation and Regression Analysis

Many existing studies, which use mobile phone data for urban mobility research,
have an implicit assumption that phone communication activities are highly
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correlated to the population size, or at least the number of mobile phone users.
While this assumption might hold true, it is important to examine the role of time in
such relationships. For example, given a geographic area A, although the number of
phone calls/text messages may be roughly the same in early morning (e.g., 07:00–
07:30), in late afternoon (e.g., 17:00–17:30), and around midnight (e.g., 23:00–
23:30), the total number of mobile phone users observed in each time interval could
be quite different from each other. This study conducts a correlation analysis using
time as a control factor. As illustrated in Fig. 3.4, we first divide the study area into
1km � 1km regular grid cells. By partitioning a day into forty-eight 30-min time
windows, we capture the snapshots of aggregate cellphone usage and the number of
mobile phone users in each grid cell for each 30-min time window. These snapshots
are used to examine their correlations at different times in a day. We choose the
1km � 1km regular grid in order to obtain the estimates of phone user distribution
at a relatively fine spatial resolution while minimizing the spatial uncertainty of
mobile phone records.

To perform analysis at the selected spatiotemporal resolution, we first calculate
the two indicators of aggregate cellphone usage and the total number of mobile
phone users at the level of cellphone tower service areas (i.e., Thiessen polygons).
If a mobile phone user has more than one mobile phone record during a particular
time window, we use the Thiessen polygon that contains the first mobile phone
record as his or her representative location. If there is no mobile phone record
during a particular time window, it means this user did not move. Thus, the phone
user’s location can be estimated using the approach described in the previous
section. Once this step is completed, we transform the results onto the grid cells.
Considering that a Thiessen polygon could overlap with multiple adjacent grid
cells, we clip each Thiessen polygon into sub units. For each sub unit, the indicators

Fig. 3.4 Correlation analysis in a space-time context
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of aggregate cellphone usage (V and N) and the total number of mobile phone users
(Pop) are prorated based on the proportion of its area to the total area of the
corresponding Thiessen polygon. We then calculate V , N and Pop of each grid cell
by adding the values of all sub units that fall within the particular grid cell.

For each time interval T , we first analyze the correlation between the number of
mobile phone users (Pop) and each of the two cellphone usage indicators using
Pearson’s correlation coefficients:

qTPop;V ¼ cov PopT ;VTð Þ
rPopT � rVT

ð3:2Þ

qTPop;N ¼ cov PopT ;NTð Þ
rPopT � rNT

ð3:3Þ

where: (1) cov() stands for the covariance and rX denotes the standard deviation of
X; (2) PopT ¼ PopT1 ;Pop

T
2 ; . . .;Pop

T
m

� �
, VT ¼ VT

1 ;V
T
2 ; . . .;V

T
m

� �
, and

NT ¼ NT
1 ;N

T
2 ; . . .;N

T
m

� �
; (3) m denotes the total number of grid cells in the study

area. The values of qTPop;V and qTPop;N enable us to better assess their correlations
during different time periods of a day.

In this study, we introduce two types of regression models that have been
suggested in previous studies (Kang et al. 2012; Deville et al. 2014) to further
investigate the relationships between the number of mobile phone users and the
aggregate cellphone usage:

Model 1 : PopT ¼ a � VT þ b ð3:4Þ

Model 2 : PopT ¼ a � NT þ b ð3:5Þ

Model 3 : log10 PopTð Þ ¼ a � log10ðVTÞþ b ð3:6Þ

Model 4 : log10 PopTð Þ ¼ a � log10ðNTÞþ b ð3:7Þ

In these regression models, the dependent variable is the total number of mobile
phone users in each grid cell during a particular time window (PopT ), and the
independent variable is the cellphone usage indicator (VT or NT ). Model 1 and
Model 2 assume a linear relationship between PopT and VT (or NT ), while Model 3
and Model 4 (i.e., log-transformation models) quantify the power-law relationships
between Pop and each of the two cellphone usage indicators. The ordinary least
squares (OLS) method is used to derive the parameters of these regression models.
As the study day is partitioned into forty-eight 30-min time windows, each model
produces 48 sets of parameters. We then use three measures, which are the adjusted
R2, the root mean square error (RMSE), and the mean absolute percentage error
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(MAPE), to compare the performance of these regression models at different times
in a day2.

3.5 Results and Discussion

3.5.1 Correlation Between the Number of Phone Users
and the Two Cellphone Usage Indicators

Figure 3.5a shows the values of qTPop;V and qTPop;N and how they change over time.
In general, there is a high correlation between the total number of mobile phone
users (Pop) and each of the two cellphone usage indicators during the day time and
in the evening. Also, the correlation of Pop and the number of active mobile phone
users (N) is always higher than that of Pop and the volume of calls/messages (V) in
the same time window.

According to the temporal variations of qTPop;V and qTPop;N , the study day can be

categorized into several stages. From 07:00 to 21:30, the values of qTPop;V and

qTPop;N stay above 0.9 and remain relatively stable. A decrease of qTPop;V and qTPop;N
is observed during 00:00–04:00 and 21:30–24:00, which refer to the time when
people have fewer phone communication activities (see Fig. 3.3b). To our surprise,
there are some fluctuations of qTPop;V and qTPop;N during 03:30–05:00, which is
followed by a rising stage (05:00–07:00). These fluctuations, which are somewhat
counter-intuitive, encourage us to explore potential explanations. Specifically, we
derive several cellphone usage indicators to distinguish inbound and outbound
phone communication activities, and further examine their correlations with the
number of mobile phones:

– N Inbound Number of active mobile phone users derived from inbound phone
communications (IN) only

– N Outbound Number of active mobile phone users derived from outbound
phone communications (OT) only

– V Inbound Volume of inbound calls/messages
– V Outbound Volume of outbound calls/messages.

We find that the correlation coefficients of Pop versus N Outbound (i.e.,
qTPop;N Outbound shown in Fig. 3.5b) and Pop versus V Outbound (i.e.,

qTPop;V Outbound shown in Fig. 3.5c) exhibit smooth temporal variations before

07:00. However, the temporal patterns of qTPop;V Inbound and qTPop;N Inbound are very

2For Model 3 and Model 4, the three measures (adjusted R2, RMSE and MAPE) are calculated
after converting log10 PopTð Þ, log10 VTð Þ and log10 NTð Þ to the original scale (i.e., PopT , VT , and
NT , respectively).
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similar to that of qTPop;V and qTPop;N , respectively. This is probably because outbound
phone communications are initiated by mobile phone users, while inbound phone
communications could include push notifications such as advertisements, weather
forecast, news, etc. It is very likely that the fluctuations between 03:30–05:00 are
caused by these inbound messages. It also reminds us that the two primary indi-
cators, N and V , are the combined effects of outbound and inbound phone com-
munications, which not only are related to how people use their mobile phones, but
also are related to mobile phones’ passive interactions with the outside world.

3.5.2 Comparison of Regression Models

We include four regression models to further examine the relationships between the
total number of mobile phone users and each of the two cellphone usage indicators.

Fig. 3.5 a Pearson’s correlation coefficients of the total number of mobile phone users (Pop) and
each of the two cellphone usage indicators b Pearson’s correlation coefficients of Pop versus
N Inbound (i.e., qTPop;N Inbound) and Pop versus N Outbound (i.e., qTPop;N Outbound). N Inbound
denotes the number of active mobile phone users derived from the inbound phone communications
only. N Outbound denotes the number of active mobile phone users derived from the outbound
phone communications only; c Pearson’s correlation coefficients of Pop versus V Inbound (i.e.,
qTPop;V Inbound) and Pop versus V Outbound (i.e., qTPop;V Outbound). V Inbound denotes the volume
of inbound calls/text messages, and V Outbound denotes the volume of outbound calls/text
messages
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The adjusted R2, root mean square error (RMSE), and mean absolute percentage
error (MAPE) are used to assess the model performance (Fig. 3.6). As illustrated in
Fig. 3.6a, the two models with NT as the independent variable (i.e., Model 2 and
Model 4) have a higher adjusted R2 than the other two models in each time window.
However, when comparing the RMSE of the four models, we find that Model 3 and
Model 4 perform better than the other two models during the daytime (07:00–
18:00). Notice that the total number of mobile phone users (Pop) in the grid cells
could vary greatly from each other, it is important to use a normalized measure,
which is MAPE in our analysis, to further evaluate the model performance. As
illustrated in Fig. 3.6c, Model 3 and Model 4 have a much lower MAPE than the
other two models during the daytime. All the three measures suggest that Model 4
performs better than the other three models. The average MAPE of Model 4
between 00:00–07:00 is 58.5%, as compared to 35.1% between 07:00–24:00.

Comparisons of the four regression models indicate that the heterogeneity (or
variation) of Pop is better explained by the number of active mobile phone users
(NT ) than by the volume of calls/messages (VT ). As suggested by Barabási (2010),
human activities are not random but “bursty”3. At a given place during a given time
period, VT is more affected by the individual “burst” of phone communications than

Fig. 3.6 Comparison of the four regression models: a Adjusted R2; b Root mean square error
(RMSE); c Mean absolute percentage error (MAPE)

3In the context of this book, the author refers the word “burst” to brief periods of intensive human
activities (e.g., sending text messages) followed by long periods of no activities.
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NT is, which serves as one potential explanation to our findings. The model
comparisons also suggest that the relationships between the total number of mobile
phone users and the cellphone usage level are better explained by the
log-transformation models (i.e., Model 3 and Model 4) than by the simple linear
regression models (i.e., Model 1 and Model 2) when the independent variable (NT

or VT ) is fixed.
Although our findings suggest that the log-transformation models (i.e., Model 4)

better describes the relationship between Pop and N than the simple linear
regression models (i.e. Model 2), it is useful to compare the relationships of Pop
and N between these two models and examine how the relationships change over
time. The scatter plots of Pop versus N (Fig. 3.7a) suggest that it is inherently
biased to use aggregate cellphone usage to represent the number of mobile phone
users. More importantly, the slope of the regression lines indicates that the rela-
tionship between Pop and N varies greatly throughout a day. That means, even if a
place has (or two different places have) the same number of active mobile phone
users (N) during two different time periods, their values of Pop could be quite
different from each other.

Fig. 3.7 Scatter plots of: a Pop versus N; b log10 Popð Þ versus log10 Nð Þ during different time
windows. The black line in each plot denotes the regression line (the numbers in each plot of
Fig. 3.7a denotes the coefficient of the regression line)
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3.5.3 Cross Validation

We perform a k-fold cross validation to further assess the robustness of Model 4. In
particular, the mobile phone data set is partitioned into k subsets with roughly the
same size. During the data partition, each individual mobile phone user has an equal
probability (i.e., 1=k) of being assigned to any given subset. Thus, all the subsets
after data partition will have approximately the same distribution patterns. During
the cross validation process, each time k � 1 subsets are used as a training data set,
and the remaining subset is used as a validation data set. The training data set is
used to produce the parameters of Model 4, which are then used to predict the total
number of mobile phone users (Pop) of the validation data set. To ensure that each
subset covers an adequate number of samples, we choose k ¼ 3 for this particular
analysis. Specifically, we perform the 3-fold cross validation 10 times—with each
time using a new partition of the mobile phone data set—in order to control the
impact of data partition on the analysis results. By doing so, we obtain 30 (C2

3 � 10Þ
pairs of training and validation data sets, and several measures (e.g., average MAPE
and average RMSE) of the 30 iterations are used to evaluate the model
performance.

Note that we also compare the performance of Model 4 based on: (1) the
ordinary least squares (OLS) and (2) the population-weighted least squares
(PWLS). The model based on PWLS minimizes the sum of squared residuals
weighted by the total number of mobile phone users (Pop). Thus, the samples (i.e.,
grid cells) with smaller Pop will have less impact on the regression result. This
comparison is expected to generate additional insights into the prediction capability
of Model 4.

Figure 3.8 illustrates the model performance of OLS and PWLS. We find that
the OLS model generates similar MAPE from the 3-fold cross validation (i.e. green
line in Fig. 3.8a) and the full data set (i.e., green line in Fig. 3.6c), which indicates
the robustness of Model 4. On the other hand, the OLS model generates lower
MAPE (Fig. 3.8a) but higher RMSE (Fig. 3.8b) than the PWLS model. The tem-
poral variations of MAPE/RMSE produced by the two models can be better
understood by dividing the study day into two stages:

– Stage A refers to the time periods from 00:00 to 07:00 and from 21:30 to 24:00,
when the majority of people rest at home. During this stage, people have fewer
phone communication activities (Fig. 3.3b). The correlation between Pop and
the aggregate cellphone usage varies greatly during this stage (Fig. 3.5), which
causes notable fluctuations of prediction accuracy (as shown in Fig. 3.8a, b).

– Stage B refers to the time period from 07:00 to 21:30, when cellphone com-
munications and other human activities are active. During this stage, the pre-
diction accuracy is much better than that of stage A and remains relatively
stable.

We further examine the relationship between the prediction error (i.e. absolute
percentage error) and the value of dependent variable (Pop) during these two stages
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produced by OLS and PWLS, respectively. For each model, we aggregate the
samples (from validation data sets) during the stage A and the stage B, respectively.
For each stage, we organize the samples in an ascending order of Pop. We then
divide these samples into deciles (Q1, Q2, … Q10) and calculate the average
MAPE of each decile. Figure 3.8c illustrates the average MAPE of the samples
organized by deciles (generated by the two models) during the stage A. In general,
both models yield a better estimation as Pop gets larger. Also, PWLS generates
better results than the OLS model when the samples have a large value of Pop (i.e.,
Q6–Q10). An implication is that it is more appropriate to use PWLS than OLS

Fig. 3.8 The 3-fold cross validation: a Average MAPE of Model 4 based on the ordinary least
squares (OLS) method, and the population-weighted least squares (PWLS) method; b Average
RMSE of OLS and PWLS; c Average MAPE of samples by deciles of Pop for the stage A (i.e.,
00:00–07:00 and 21:30–24:00); d Average MAPE of samples by deciles of Pop for the stage B
(i.e., 07:00–21:30)
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under certain scenarios (e.g., evacuation) when we want to produce better estimates
in populated areas.

Similar patterns are observed for the two models during the stage B (Fig. 3.8d).
Both models of this stage, which refers to daytime and early evening, perform
relatively well except for Q1 and Q2. The two models, especially PWLS, do not
perform well on Q1 and Q2 because these two deciles have a small value of Pop.
As shown in Table 3.2, the maximum value of Pop for Q1 and Q2 during the stage
B is 8.0 and 13.0, respectively. The model performance over Q1 and Q2 are
affected more by the unique characteristics of individual phone communication
activities due to a smaller number of mobile phone users.

The 3-fold cross validation suggests that it is more reasonable to use Model 4 to
approximate the relationship of Pop and N, especially during the daytime and in
early evening (i.e. Stage B). After removing the samples with very small values of
Pop (i.e., Q1 and Q2), we find that the average MAPE of OLS and PWLS models
during the stage A changes to 42.6 and 42.7%, respectively. The two models
perform better during the stage B, with an average MAPE of 33.0 and 32.8%,
respectively. Overall, the PWLS model performs better than the OLS model due to
its lower RMSE (Fig. 3.8b).

3.5.4 Spatiotemporal Patterns of Residuals

By performing the 3-fold cross validation, we are able to derive the residuals—
measured as the average percentage errors (i.e., Ypredicted�Yobserved

Yobserved
� 100%) of 30 itera-

tions using PWLS—at each grid cell for all time windows. A grid cell with a
positive or a negative percentage error (during a time window T) suggests that

Table 3.2 The range of value by Pop (i.e., the number of mobile phones) decile for stage A (from
00:00 to 07:00 and from 21:30 to 24:00) and stage B (from 07:00–21:30)

Stage A Stage B

Pop
decile

Minimum
value

Maximum
value

Pop
decile

Minimum
value

Maximum
value

Q1 1.0 20.0 Q1 1.0 8.0

Q2 21.0 32.0 Q2 9.0 13.0

Q3 33.0 45.0 Q3 14.0 18.0

Q4 46.0 61.0 Q4 18.0 25.0

Q5 62.0 80.0 Q5 26.0 34.0

Q6 81.0 109.0 Q6 35.0 46.0

Q7 110.0 150.0 Q7 47.0 63.0

Q8 151.0 214.0 Q8 64.0 92.0

Q9 215.0 304.0 Q9 93.0 168.0

Q10 305.0 984.0 Q10 169.0 1046.0
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Model 4 overestimates or underestimates the total number of mobile phone users
(Pop), respectively. The spatial and temporal patterns of these residuals can help us
better understand the relationship between Pop and N. As Model 4 produces better
estimations during the daytime and in early evening (Fig. 3.8), this section only
discusses the findings during the stage B, which covers twenty-nine 30-min time
windows from 07:00 to 21:30.

The residuals of a grid cell G during the stage B can be represented as follows:

G ¼ erorrTB1 ; erorrTB2 ; . . .; erorrTBi . . .; erorrTB29
� � ð3:8Þ

where TBi denotes the time windows (for example, TB1 refers to [07:00–07:30], and
TB29 refers to [21:00–21:30]). Figure 3.9a shows the residuals of a grid cell that
covers part of the Nanjing Road pedestrian-only shopping street (Fig. 3.9b), which
is one of the world’s busiest shopping streets located in Huangpu district in
Shanghai. The percentage error of this grid cell remains positive during most of the
time windows, which means that the model has mostly overestimated the total
number of mobile phone users. The constant overestimation reveals an important
fact that a larger percentage of people tend to use their mobile phones in this grid cell
(during the daytime and in early evening) as compared to the overall population.

Note that some grid cells may not have mobile phone users (i.e., Pop ¼ 0)
during particular time windows, which lead to missing values (i.e., errorTBi ¼ NA)
in the residual G. As the purpose of this analysis is to find grid cells with similar
temporal patterns of residuals, these missing values must be handled appropriately.
Figure 3.9c shows the distribution of grid cells with varying number of missing
values. It is likely that the grid cells with a large number of missing values reflect
less populated areas in Shanghai or areas where mobile phone records are sparse. In
this section, we focus on grid cells with no more than 10 missing values (4070 cells
in total). As shown in Fig. 3.9d, these grid cells mainly cover the core areas of
Shanghai (Fig. 3.1b) and some other administrative districts (e.g., Pudongxinqu,
Minhang, Songjiang, Qingpu, Jiading, and Baoshan). As these grid cells have
observations during the majority of the time windows, we replace the missing
values for each grid cell using a linear interpolation method. For instance, if the
percentage error of a grid cell is 10% during time window TB1, and 20% during time
window TB3, then the value during TB2 (if missing) is estimated as 15%.

We further divide the stage B into three time periods: (1) 07:00–12:00;
(2) 12:00–17:00, and (3) 17:00–21:30. For each grid cell, we calculate the per-
centage of time windows with positive and negative residuals (in each of these three
time periods). The temporal patterns of residuals during a particular time period can
be characterized as follows:

– If the percentage of time windows with positive residuals is equal to or larger
than 75, this time period is labeled as “dominated by overestimations”.

– If the percentage of time windows with negative residuals is equal to or larger
than 75, this time period is labeled as “dominated by underestimations”.

– Otherwise, this time period is labeled as “mixed patterns”.
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Figure 3.10 illustrates the major types of grid cells (C1–C14) with distinct temporal
patterns. It is interesting to find that none of these grid cells are mixed with time
periods dominated by overestimations (i.e., red segments) and underestimations
(i.e., green segments). It is likely that there are some inherent characteristics of the
built environment which govern the relationships between the aggregate cellphone
usage and the total number of mobile phone users. To better understand the geo-
graphic context of these grid cells, we map them onto Google Earth and visually
examine some of these places through photos, landmarks, and semantic descrip-
tions. As shown in Fig. 3.11, the grid cells with time period(s) dominated by
overestimations (i.e., C1–C7) cover some important commercial and business areas
in Shanghai (i.e., grid cells A to F). At these places, more (i.e., a larger percentage
of) people tend to use their mobile phones than the average (percentage) of overall

Fig. 3.9 a Temporal variations of residuals (i.e., percentage errors) of a grid cell that covers part
of the Nanjing Road pedestrian-only shopping street; b A street view of Nanjing Road (picture
from Google Image); c Distribution of grid cells with varying number of missing values;
d Geographic distributions of grid cells with no more than 10 missing values
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Fig. 3.10 Grid cells with different temporal characteristics (of residuals)

Fig. 3.11 The spatial distribution of grid cells with distinct temporal patterns of residuals. Grid
cells A to F, with certain time period(s) dominated by overestimations, refer to some important
commercial and business areas in Shanghai. Grid cells G to L, with certain time period(s)
dominated by underestimations, represent certain parks (e.g., G, J and L) and places traversed by
urban express ways (e.g., H, I, and K), 1Pictures are captured from Google Image and Panoramio
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population. We also find that the grid cells with time period(s) dominated by
underestimations (i.e., C9–C14) include some parks (i.e., grid cells G, J and L) and
places traversed by urban express ways (i.e., grid cells H, I and K). At these places,
people’s cellphone usage is less intense. The temporal patterns of residuals at these
selected places suggest that certain characteristics of the built environment—such
as land use type, points of interest (POI) and transportation infrastructures—could
be considered in the analysis to further understand the behavior of mobile phone
usage.

3.6 Conclusion

By using a mobile phone data set that consists of call detail records (CDRs) and
other cellphone-related logs (e.g., cellular handover and periodic location update)
collected in Shanghai, China, this study evaluates to what extent phone commu-
nication activities could reflect the spatiotemporal distribution of mobile phone
users. Specifically, we derive two cellphone usage indicators (volume of calls/
messages [V] and number of active mobile phone users [N]) as well as the total
number of mobile phone users observed at different places in the city over time, and
examine their relationships through correlation and regression analysis. We find
that correlations between the number of mobile phone users and each of the two
cellphone usage indicators remain high and stable (with Pearson’s correlation
coefficient above 0.9) during the daytime and in early evening (i.e., 07:00–21:30).
Their correlations are generally lower in other time periods, and exhibit notable
fluctuations between 00:00–07:00.

We then introduce four regression models (i.e., two simple linear regression
models and two log-transformation models) to further examine relationships
between the total number of mobile phone users (Pop) and the two cellphone usage
indicators. Several important findings are discovered. First, comparisons of model
performance indicate that the number of active mobile phone users (N) serves as a
better independent variable than the volume of calls/messages (V) when explaining
spatiotemporal distribution of mobile phone users. The volume of calls/messages—
at a given place during a particular time period—is likely affected by individual
“burst” of phone communication activities (Barabási 2010), which makes the
number of active mobile phone users (N) a better indicator of the mobile phone user
distribution. Second, the log-transformation model performs better than the simple
linear regression model (in predicting phone user distribution) when the indepen-
dent variable is fixed. Although the simple linear regression models do not have the
best prediction accuracy, our results illustrate that the relationship between the total
number of mobile phone users and the cellphone usage level varies greatly
throughout a day. It is likely to generate biased results if we use the intensity of
aggregate cellphone usage to directly reflect the mobile phone user distribution or
the underlying population distribution, and the degree of bias varies with time.
Researchers must be cautious when using phone communication activities to
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quantify certain aspects of urban dynamics. Third, the 3-fold cross validation
indicates that the log-transformation model (using V as the independent variable)
has a prediction error (i.e., mean absolute percentage error) of 32.8% during the
daytime and in early evening (i.e., 07:00–21:30), and 42.7% during other time
periods (i.e., 00:00–07:00 and 21:30–24:00). The spatiotemporal patterns of
residuals suggest that there exist some inherent characteristics of the built envi-
ronment which govern the relationships between the cellphone usage and the
number of mobile phone users. It suggests that CDR data can be used along with
other data sources (e.g., land use type, POI, and transportation infrastructures) to
deliver robust estimations of phone user distributions.

Mobile phone data can be leveraged to gain better insights into the whereabouts
of people in space and time, which suggests that it serves as a promising data source
to supplement traditional approaches (e.g., travel surveys) for studying dynamic
population distributions. However, challenges still remain. For example, the mobile
phone data used in this study are collected from a single phone company. As a city
usually includes multiple phone companies, it is necessary to compare whether the
relationships between the cellphone usage level and the distribution of mobile
phone subscribers are similar across different cellular networks. How to integrate
population estimates from multiple cellular networks in order to gain a more
compressive view of urban population distribution is of great importance to
applications in emergency response, public health, transport planning, among
others.

This research examines only the spatiotemporal relationships between the
aggregate cellphone usage and the phone user distributions on a weekday. How
their relationships vary between weekdays and weekends, and how such relation-
ships are influenced by special events are not examined in this study. Also, how the
spatiotemporal resolutions (e.g., size of grid cell, length of time window) would
influence the prediction accuracy is worth a further investigation. Future work can
focus on these issues and combine other data sources (e.g., land use type and POI)
with CDRs to deliver more robust estimations of mobile phone users and dynamic
urban population distributions. Findings of this study provide some useful infor-
mation and guidelines of using large-scale mobile phone data for geographical
studies and urban dynamics research.
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Chapter 4
Spatio-Temporal-Network Visualization
for Exploring Human Movements
and Interactions in Physical and Virtual
Spaces

Song Gao, Hanzhou Chen, Wei Luo, Yingjie Hu and Xinyue Ye

4.1 Introduction

With the rapid development of computers, information, and communication tech-
nologies, and the increasing availability of mobile phones and social media sources,
our living space has been transformed from physical space into a form shared by
both physical and virtual spaces (Yu and Shaw 2008; Shaw and Yu 2009). The
convergence of geographic information systems (GIS) and social media facilitates
the understanding of spatial dynamics of human behavior and societal transfor-
mation (Sui and Goodchild 2011). There have been extensive studies on how
information (e.g., media contents) diffuses and spread in a social communication
network (e.g., Twitter and Facebook). Researchers have developed new theories,
methods, and tools for exploring patterns and knowledge hidden in complex human
dynamics and social interactions within the context of today’s mobile and big data

S. Gao (&)
Department of Geography, University of Wisconsin, Madison, WI, USA
e-mail: song.gao@wisc.edu

H. Chen
Department of Geography, Pennsylvania State University, State College, PA, USA
e-mail: hzc176@psu.edu

W. Luo
School of Geographical Sciences and Urban Planning, Arizona State University,
Tempe, AZ, USA
e-mail: wluo23@asu.edu

Y. Hu
Department of Geography, University of Tennessee, Knoxville, TN, USA
e-mail: yhu21@utk.edu

X. Ye
Department of Geography, Kent State University, Kent, OH, USA
e-mail: xye5@kent.edu

© Springer International Publishing AG, part of Springer Nature 2018
S.-L. Shaw and D. Sui (eds.), Human Dynamics Research in Smart
and Connected Communities, Human Dynamics in Smart Cities,
https://doi.org/10.1007/978-3-319-73247-3_4

67



era (Gao et al. 2013a; Liu et al. 2015; Hu et al. 2015; Shaw et al. 2016, Ye et al.
2016a). Such spatial, temporal and social dynamics can also help discover and
understand the rise and fall of emerging topics and events of the society (Shahaf
et al. 2012; Peuquet et al. 2015), as well as reveal the digital divide, the physical
divide, and the social segregation in developing countries (Amini et al. 2014; Gao
et al. 2017). Spatiotemporal visualization techniques are effective in detecting
human activity patterns over space and time, while social network analysis is good
for exploring graph structures and interactions among individual nodes and groups.
Integrating these two types of methods can facilitate the exploration of complex
social networks in space and time, and can help discover hidden spatiotemporal and
social connections. Luo and MacEachren (2014) proposed a theoretical framework
to integrate geographical context, network context, and societal context to under-
stand the geo-social interactions in both physical and virtual spaces. However, few
studies so far have made efforts on developing integrated visualization approach
and quantitative metrics to measure such interactions in a spatio-temporal-network
synthesis framework.

Geo-social network visualization can be classified into two major groups: the
first group focuses on spatializing network representation; the second group focuses
on exploring geo-social relationships and interactions. The first group tends to
integrate network representation into geographical space that has been widely
applied to research related to spatial trajectory and interactions, including migration
flows (Tobler 1970; Guo 2009), human travel behaviors (Kwan 2004; Gao 2015),
transportation flows (Huang et al. 2012), and so on. These studies consider spatial
trajectory and interaction from an exclusively spatial perspective without taking
their social relationships into account (Shi et al. 2015). Increasingly interconnected
societies through technical-social systems (e.g., social media) have called on the
necessity of combining social network analysis with spatial analysis (Luo et al.
2011; Luo and MacEachren 2014; Andris 2016; Steiger et al. 2016). Lee and Kwan
(2011) integrated 3D space-time paths and ring-based visualization of social net-
works for analyzing socio-spatial isolation information. Luo et al. (2014) developed
a visual analytics tool, the GeoSocialApp which supports the exploration of geo-
graphical, social network, and multivariable attribute space. Yin and Shaw (2015)
proposed a spatio-temporal analysis framework for exploring physical separation
and social interactions at the individual level. Luo (2016) developed a visual
analytics tool, the GS-EpiViz, which allows the exploration of human geo-social
interaction patterns to design effective disease control scenarios. These studies
proposed several useful visualization framework or analytical approaches for
simultaneous discovery of geo-social patterns in physical space or in both physical
and virtual spaces. Challenges still remain, however, in quantitatively exploring and
measuring relationships between physical movement and social closeness in virtual
space.

Researchers have also been actively investigating the spatiotemporal effect in the
information diffusion process across a wide range of disciplines (Tsou and Leitner
2013; Ye and Lee 2016). The processes of information diffusion over various
network configurations can be analyzed following the approaches in the spatial
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diffusion studies initiated by the pioneering work of Hägerstrand (1967). Gregory
and Urry (1985) argued that Hägerstrand’s models cannot deal with spatial diffu-
sion via social networks as well as the associated conflicts and resistance. Morrill
et al. (1988) subsequently categorized quantitative models of spatial diffusion
processes into stochastic models and deterministic models. Cao et al. (2012) traced
the pathways of retweets on a spatial hierarchical layout. Garcia and Wimpy (2016)
explored the proliferation of communication technology on information diffusion
and violence spread across neighboring states. Spatiotemporal visualization can be
applied to intuitively reflect how people share ideas, disseminate information, and
communicate with each other, a dynamic process whereby ideas spread through
communication networks over time (Tsou et al. 2013). He and Chen (2016)
investigated the spatiotemporal text data with visual filters. Novel visualization
techniques facilitate the iterative and interactive exploration of the dataset in order
to gain deeper understanding of the origination, propagation, and clustering of
information (Ye et al. 2016b).

In this research, we propose a conceptual framework for spatiotemporal and
social network visualization in a three-dimensional context and present several new
quantitative metrics for measuring underlying dynamic interactions among entities.
The proposed framework aims to help better understand spatiotemporal patterns of
human dynamics and social interactions over both physical and virtual spaces
simultaneously, as well as explore how emerging events trigger spatial-temporal-
social interactions and information diffusion from a process perspective. As a proof
of concept, we demonstrate the proposed framework with a collection of geotagged
tweets in the ArcScene software. This research provides new insights on integrating
multidisciplinary knowledge to explore human dynamics in a broader way.

4.2 An Integrated Spatio-temporal-Network Framework

Here, we introduce a new spatio-temporal-network conceptual framework (STN).
As shown in Fig. 4.1, it is an integrated framework which consists of the spatial,
temporal, and social context of a subject or an event (labeled as Nodes). The
spatiotemporal coordinates locate where and when a subject or an event is, while
the network linkages (labeled as Edges) help know with whom a subject is or where
the geo-social impacts of an event are and how the information spread across
different people and places via physical movements or the social network
connections.

There are three types of edges in the STN. First, the physical edges connect
individuals’ movements in the physical space (i.e., the space-time path, STP).
Second, the social edges represent the individuals’ social relationships (e.g., friends
and colleagues) or social interactions (e.g., emails, phone calls, retweeting behav-
iors, and other social media communications) in the virtual space. The subtypes of
social edges could vary in different contexts in which at least one or multiple
subtypes of social edges could be added in a STN framework instance. Third, the
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physical-social edges connect the individuals’ physical locations to their social
activities. The third type of edges may or may not be visible in a STN depending on
whether the nodes belong to the same type. For example, if the nodes are all
individual persons in a STN, we may hide the physical-social edge between an
individual and his/her tweet message but only visualize how individuals get con-
nected through retweeting behaviors in the virtual space.

The geographic trajectory nodes which follow a spatiotemporal sequence form
the classic STP may form a STN, in which subjects in spatial trajectories are related
because of social interactions for a given period triggered by a specific event. The
topology or attributes of nodes in such spatial networks can change with time.
Information can diffuse through connected nodes in the social network no matter
whether nodes are adjacent or not in the physical space. However, the paths (se-
quential connections) among those spatiotemporal nodes need to obey the time
order of the appearance of network edges, which share similar characteristics and
inference issues of temporal graphs (Kempe et al. 2000; Holme and Saramäki
2012). The first-degree nodes which are directly connected to the target subject
receive the first-hand information, while the second-degree nodes directly connect
to and get information from the first-degree nodes, and so forth; the STN has the
capability to visualize the physical space-time trajectories and their corresponding
Nth-degree virtually connected nodes simultaneously. One potential challenge
would be to deal with a large number of individuals and their activities in both
physical and virtual spaces. Several visualization techniques can be considered for
better visualizing large-scale edges and flows, such as the spatial generalization and
aggregation method (Andrienko and Andrienko 2011), the geometry-based
edge-clustering framework that can group edges into bundles to reduce the over-
all edge crossings (Cui et al. 2008), and the hierarchal clustering flow visualization
approach (Zhu and Guo 2014).

Fig. 4.1 An integrated spatio-temporal-network conceptual framework
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Human behaviors and information spread by social media has greatly changed
the traditional sense of decision-makings. Such a STN can help us visualize and
analyze complex spatio-temporal-social interactions. In social networks, the per-
sons who have active interactions in the virtual space may have also had certain
connections in the physical space previously. However, how long will the previous
physical connections continuously bring virtual interactions? This may depend on
the semantics of a person’s activities in physical place. For example, attending a
conference at a city may have different time decay effect compared with attending
college at the same city. The STN may help us visualize and quantify such time
decay effect. In addition, this framework can also help with the responses of disaster
alerts and evacuation orders. For example, if a wildfire starts, the emergency
response staff needs to take action in both physical space and virtual space to
announce the evacuation order and the locations of new evacuation shelters, and to
reach more people before any further disaster happens and grows.

More specifically, the proposed STN framework may help answer the research
questions such as

• How does information diffusion over physical space and virtual space behave
differently in normal and crisis situations?

• How do individuals’ movements and activities in physical space interact with
their social ties in virtual space?

• Which nodes are more influential on specific region and time period?
• What strategies can organizations or governments use to leverage social media

and real work channels for decision-makings?
• Can this framework help social scientists trace, monitor, and analyze human

dynamics in different domains?
• Which context (spatial, temporal, or social context) is more important to

influence information diffusion in different application scenarios?
• How to predict the spread (speed, scale, and range) of social media messages in

different spatial-temporal-social networks?

Here, we just list a few potential research questions which could benefit from the
proposed STN conceptual framework. Our aim is to stimulate interdisciplinary
thinking on research challenges and applications which involve the spatial, tem-
poral, and social aspects.

4.3 Case Study

As a pilot study, we analyzed the recently finished Olympic Games in Rio 2016.
This event had drawn attention from people all over the world and generated a large
number of topics on social networks, such as Twitter, which can help study the
interactions in both physical and virtual space. Often, athletes and reporters in Rio
de Janeiro tweeted during the event and interacted with Twitter users from else-
where in the world by retweeting, commenting, and liking their posts. In particular,
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we chose to study one of the most influential athletes during this event, Michael
Phelps, because his tweets have created a network of connections with people from
not only the U.S. but also other countries in the world.

According to Michael Phelps’s Twitter account, there were 12 tweets during the
time he was in Rio between August 2nd and August 17th. In order to illustrate our
STN framework for supporting physical-virtual interactions, we analyzed 3 of his
posts: one posted on August 14th was after winning the gold medal of the
4 � 100 m medley relay, which had the most likes among those 12 tweets; another
tweet on August 13th was after he was defeated by a young Singapore athlete
Joseph Schooling; and one more post was after he returned back to the U.S.
Moreover, we also took Schooling’s post on August 15th into account, which was a
retweet from Phelps’s first tweet on August 13th. The detailed descriptions of these
tweets can be found in Table 4.1.

We are interested in analyzing whether there is any geographic discrepancy
between the interactions in physical space and those in virtual space over a period
of time. Therefore, as picking sample points, we randomly selected 1% of the total
tweets. For example, for the tweets on August 14th, we chose 30 posts responding
to Phelps’s tweets which contain geographic locations and timestamps. From about
2000 retweets of Phelps’s tweet on August 13th, we also randomly picked 20 posts
related with defined geographic locations and timestamps as well. The collected
data were imported into the ArcScene to generate 3D model for visualization.

Table 4.1 Detailed information of four analyzed tweets

User Description of tweets Retweet Time Location

@MichaelPhelps What a race!! Congrats to @joschooling
!!! We’ve got an updated pic!! Best of luck
bro !! I’ll be… https://www.instagram.
com/p/BJD6pC2ASbU/

2000 12:48
PM
13
Aug
2016

Rio de
Janeiro,
Brazil

@MichaelPhelps Wow! The best way to finish! It has been
an honor to represent the USA! A true
dream come… https://www.instagram.
com/p/BJG362FA58M/

3000 4:22
PM
14
Aug
2016

Rio de
Janeiro,
Brazil

@joschooling Thankfully it’s a less awkward picture
haha! @MichaelPhelps
Joseph Schooling added, Michael Phelps
@MichaelPhelps What a race!! Congrats
to @joschooling !!! We’ve got an updated
pic!! Best of luck bro!! I’ll be… https://
www.instagram.com/p/BJD6pC2ASbU/

171 10:37
AM
15
Aug
2016

Rio de
Janeiro,
Brazil

@MichaelPhelps No place like being back home!! Great
way to spend my first day in retirement!!
boomerrphelps… https://www.instagram.
com/p/BJOIk4WgIa0/

1100 12:03
PM
17
Aug
2016

Baltimore,
MD
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As shown in Fig. 4.2, this 3D space-time-network model created by ArcScene
uses x and y coordinates for representing the space, z values for representing time.
Points (nodes) represent tweets and polylines for representing either physical
movements or social network connections. We acquired x and y coordinates by
geolocating tweets to the city-scale. To better illustrate the time in the model, we
converted time into minutes. From the visuals, we can see that people do not only
interact with people on social network nearby in the physical space, but also interact
with those who are far away from them in the physical space. Therefore, when
exploring those connections after August 14th, we find out that interactions mostly
happened in the United States and few connections with people in Rio or other cities
in the world. Moreover, another event relating to Joseph Schooling showed a similar
pattern. However, since Schooling is from Singapore, after he interacted with
Michael Phelps on Twitter, there were some additional connections to Singapore.
Also, as a college student in the University of Texas at Austin, Schooling connected
with users near that region as well. In other words, a person’s connection with people
at a physical place in an earlier time period often brings interactions with the same
group of people through virtual space in a later time period.

Moreover, Michael Phelps’s tweets have shown a movement trajectory through a
scale of time. He moved from Rio back to the U.S., which is indicated by the white
arrowed line on the map. As an influential user in virtual space based on the order
of time, Phelps’s tweets showed a sequence of path with first degree connections

Fig. 4.2 Spatio-temporal-network visualization of geo-social interactions on Twitter
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that consequently lead to second degree nodes. On top of that, there were more
connections generated from users outside of the U.S. during the Olympic, com-
paring with those after he went back to the U.S.

As for the temporal distribution, we can see that there were more immediate
interactions with users living in the U.S. Those lines seemed to create a flatter
surface. One possible reason was that there were more users in the U.S. who were
more active and paid more attention to Phelps’s events. However, as for the con-
nections between users in Asia with Schooling’s tweets, they went through a longer
time to respond to his post because of time-zone differences, while links to the U.S.
showed a similar pattern as that of Michael Phelps’s interactions. In short, this case
study demonstrated that the STN framework could help understand how events
trigger spatio-temporal-social interactions.

4.4 Vision for Quantitative Analytical Metrics

The value of this new conceptual STN framework is in not only considering the art
of visualization for designing but also supporting potential development of quan-
titative analytical indicators for measuring complex interactions among subjects in
physical and virtual spaces. Here, we present some of those possible metrics with
the STN framework.

• Spatio-Temporal-Network Impact Extent (STNIE)

In order to know the spatial impact extent {(Xmin, Ymin), (Xmax, Ymax)} of a
message or an event within a given time period (Tmin, Tmax) in a social network, an
indicator of the spatio-temporal-network impact extent (STNIE) is defined as:

STNIE ¼ fðXmin; YminÞti; ðXmax; YmaxÞtjjTmin � ti, tj�TmaxÞg ð4:1Þ

The STNIE will be a space-time box in the integrated STN visualization
framework. It can help quantify and compare the social impact of an individual
node in space and time.

• Spatio-Temporal-Network Impact Center (STNIC)

In order to identify the central impact location at a given time period for a given
message or an event in the social network, we present an indicator so-called
spatio-temporal-network impact center (STNIC). It can have different implemen-
tations, such as the weighted mean or the weighted median. The coordinate for
weighted mean STNIC is defined as:

�X ¼
P

i¼1 Wi � XiP
i¼1 Wi

; �Y ¼
P

i¼1 Wi � YiP
i¼1 Wi

; �Z ¼
P

i¼1 Wi � TiP
i¼1 Wi

ð4:2Þ
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where Wi is the weight for each impacted node (Xi, Yi, Ti) in the space-time
coordinate system. The value of Wi could be the importance of a subject if a node
represents a person or could be the number of impacted entities attached to a
location if a node in the network represents a place. The weighted mean STNIC
might be an arbitrary location which does not exist in the original nodes.
Alternatively, by applying the weighted median, a node in the network will be
selected as the STNIC. It can be further used for tracking dynamic changes in the
spatial distribution of information spread in the virtual space by analogy to human
migration center in the physical space (Plane and Rogerson 2015). In our case
study, the STNIC for Phelps’s tweets locate in the U.S. while that for Schooling is
in Asia.

• Spatio-temporal-Network Distance (STND) and Efficiency (STNE)

In classic social network analysis, a “path” is a finite sequence of graph edges
which connect a sequence of nodes and the network “distance” between two nodes
is defined as “the shortest path length” (Wasserman and Faust 1994). Studies on
average path length of a network reveal the efficiency of mass transport, informa-
tion dissemination, or transitive communication on a network. A famous theory of
“six-degree separation” describes a chain of a-friend-of-a-friend relations in real
world and any two people can be connected within a maximum of six steps (Guare
1990; Watts and Strogatz 1998). A shorter degree of separation has been found in
Twitter in which the average path length is 4.12 (Kwak et al. 2010).

In the STN framework, there exist three types of “distance”: (1) time delay
(DISTtime); (2) physical movement distance (DISTspace); (3) path length based on
connections on a virtual network (DISTnetwork). By analogy to the “graph-based
shortest path length”, we introduce a spatio-temporal-network distance (STND)
which is defined as the “shortest spatio-temporal-network path length” between two
nodes with space-time constraints on a STN. Mathematically, it could be expressed
as a generic equation below. Furthermore, we can calculate the average
spatio-temporal network efficiency (STNE) derived from the STND of all node
pairs as a global measure for quantifying the overall efficiency of information
spreading on a time-varying network. The formulation for STND and STNE metrics
is as follows.

STND ¼ a � DISTtime þ b � DISTspace þ c � DISTnetwork ð4:3Þ

STNE ¼ 1
n n� 1ð Þ �

Xn

i;j

1
STNDði; jÞ ð4:4Þ

where a, b, c are scale factors for unifying different scales of distance measure-
ments; in application scenarios, one may adjust three scale factors to represent the
complicated interactions among three different distances. And n represents the total
number of nodes in a STN and STND (i, j) is the spatio-temporal-network distance
between two nodes i and j.
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• Spatio-temporal-Network Centrality Measures (STNC)

Traditionally, centrality measures have been employed in determining the relative
importance of a central node within a network (Freeman 1977). These measures
originate from structural sociology and have been widely applied in studying
complex networks, urban structures, and traffic flow (Borgatti 2005; Crucitti et al.
2006; Gao et al. 2013b). Betweenness is a popular type of centrality measures
(Freeman et al 1991; Newman 2005) to explore how node importance results from
an interaction between the position and the characteristics of the network flow
process. However, the classic betweenness measures don’t consider the dynamic
changes of connections within time-varying networks. In the STN framework, we
propose a spatio-temporal-network betweenness centrality (STNBC) measure
which can be defined as:

STNBCi;t ¼
Xn

j¼1; k¼1; i6¼j6¼k

Nj;k i; tð Þ
Nj;k tð Þ ð4:5Þ

where STNBC(i, t) represents the spatio-temporal-network betweenness centrality
for a node i at a temporal snapshot t (Tmin � t � Tmax). Nj,k(i, t) denotes the
number of shortest spatiotemporal paths between nodes j and k through node i for a
time period [Tmin, Tmax], and Nj,k(t) is the total number of shortest paths between
nodes j and k for the same time period [Tmin, Tmax]. As mentioned above, those
shortest paths which rely on the STND measure may be different because of human
movements in physical space or changes of network connections in virtual space
over time. It implies that the influence which a node has over the spread of
information through the spatiotemporal network may be varying.

4.5 Conclusions

There is a growing recognition of the importance of spatial and temporal dynamic
relationships in explaining processes relevant to human behaviors, public health,
and social activities (Tsou and Leitner 2013; Ye and He 2016; Ye and Lee 2016).
The proposed STN framework can facilitate the understanding of patterns, rela-
tionships, and changes in human movements, activities, and communication in the
physical-virtual space. This research aims to enable the convergence of new
developments in GIS, the art of visualization, social network analytics, and social
behavioral research, and facilitate the transformation of social and behavioral sci-
ence research to computational modeling and analytical applications. It warrants
notice that network structures, spatiotemporal and thematic properties, are essential
for information spreading. One key contribution of this paper is a novel conceptual
framework for integrating space-time visualization and social network analysis for
the interaction between physical space and virtual space. To be better prepared for
both natural and human-made crises, this framework may be used to facilitate quick
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spreading of official alerts and warning notifications via multiple virtual-space
platforms and real-world channels. We hope that the vision introduced in this article
could stimulate interdisciplinary thinking on research challenges and applications
which involve the spatial, temporal, and social aspects simultaneously. Those
identified research questions and challenges may draw researchers’ attention in
future work.
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Chapter 5
Modeling Mobility and Dynamics
of Scheduled Space-Time Activities—An
RDF Approach

Junchuan Fan and Kathleen Stewart

5.1 Introduction

The rapid advancements of information and communication technologies
(ICT) have dramatically changed the way people schedule and conduct daily
space-time activities. The ubiquity of location-enabled devices has enabled people
to publish and receive information about their surrounding environment, in which
they are also acting as sensors themselves (Goodchild 2007). The increasing
availability of data about individual activities has contributed to our understanding
of human mobility and urban dynamics based on activity data. Although
activity-based analysis can provide a disaggregated perspective that may capture
more nuanced impact factors (e.g., scheduling constraints, links among activities)
that better determine human mobility than aggregated trip-based approaches, tra-
ditional geographic information systems (GIS) data models and analytic frame-
works do not work well for activity-based analyses (Miller 2014). Conventional
geographic data models and information systems fall short when dealing with the
unique characteristics of individual activity data, namely, the large volume, the high
variety of data sources, and the velocity of the generated activity data (Miller and
Goodchild 2014). The relational data model, the most common logical data model
used by many GIS, is not flexible enough, especially when additional dimensions
(e.g., social network connections between people) are considered. On the other
hand, the idea of how to make our daily environment smart with the help of ICT is
an important research topic, e.g., building smart cities using sensor networks
(Galache et al. 2013), deploying cameras for intelligent transportation networks
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(Calderoni et al. 2014) and modeling contextual information of indoor environ-
ments to facilitate navigation (Afyouni et al. 2013) and smart campuses (Sengupta
et al. 2010; Wang and Ng 2012). The latter could involve for example, the inte-
gration of mobile ICT into the implementation of smart campuses; better under-
standing of diurnal and seasonal demographics of campus buildings and spaces
using geospatial-enabled ICT; and additional studying, teaching, and research
opportunities fostered by smart campus information system and infrastructure. The
field of geodesign has similar interests through efforts to disseminate spatial
thinking into the planning and designing profession, facilitating the creation of
context-sensitive smart environments (Abukhater and Walker 2010).

In this chapter, we build on these perspectives to propose a semantic data
modeling framework based on semantic web technologies for representing,
querying, reasoning, and visualizing human movements that are linked to scheduled
space-time activities, specifically the movements of students as they follow weekly
course schedules and move about a campus. The foundation of semantic web
technologies is the Resource Description Framework (RDF1), a W3C standard data
modeling framework for semantically describing resources on the web. RDF rep-
resents information about resources in graph form. Information about resources are
represented by triples, <subject, predicate, object>, linked together through a chain
of predicates. A set of RDF triples forms a triple store, or a knowledgebase. Web
ontology language (OWL2), a widely used knowledge representation language
based on description logic, extends the semantic modeling expressiveness of RDF
by incorporating more nuanced semantic constructs (e.g., functional and inverse
relationships). Under this framework, space-time activities specifically, scheduled
course activities on campus, are represented as ontological classes that have both
the characteristics of spatial objects and temporal entities, enabling the semantic
reasoner to infer the spatiotemporal relationships among different space-time
activities. Domain entities (for example, scheduled course, student and campus
facility) are modeled as a set of ontological classes formally expressed using OWL.
The semantic relationships among domain entities (for example, hasParticipant,
hasTrajectory) are captured through semantic predicates.

The main contributions of this chapter are: (1) a semantic data model for
space-time activities based on semantic web technologies that integrates spatial,
temporal and semantic aspects of space-time activities and movements; (2) a
ontological framework that links space-time activities with their participants
through a hierarchy of thematic roles, and thus facilitating the reasoning of
movement dynamics at different granularities; (3) a unified approach for reasoning
about and retrieving movement dynamics from both aggregated and individual
perspectives.

Course scheduling information for The University of Iowa, in Iowa City, IA
during fall 2014 is adopted and transformed into a spatiotemporal RDF

1https://www.w3.org/RDF/.
2https://www.w3.org/OWL/.
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knowledgebase. Using this prototype system, we discuss an approach for querying,
analyzing and visualizing students’ mobility patterns as they follow their daily/
weekly course schedules, and the aggregated spatial and temporal dynamics for a
campus (e.g., space usage, busy hours). The rest of this chapter is organized as
follows: Sect. 5.2 discusses related work on human mobility research, and
geospatial semantic research; Sect. 5.3 presents a semantic modeling framework for
modeling space-time activities that integrates the spatial, temporal and semantic
dimensions; Sect. 5.4 discuss a system framework for developing a prototype
system based on a university course scheduling information; Sect. 5.5 presents a
use case using course schedules from the University of Iowa, querying and visu-
alizing the activity spaces of students as well as the inflow of students to buildings;
the final section presents conclusions and a discussion about future work.

5.2 Related Work

In this chapter, the domain application is the movement of students participating in
scheduled activities (e.g., courses and seminars) on a campus. Related work on
space-time mobility, spatiotemporal scheduling, and geospatial semantic research,
will be discussed.

5.2.1 Geospatial Technologies and Human Mobility

A large body of work on human movement in response to daily activities, including
theories, methods and tools, have been developed by the time geography com-
munity (Miller 1991; Kwan et al. 2003; Miller 2005; Yu 2006; Shaw and Yu 2009;
Andrienko et al. 2013a). The theoretic framework for measuring human space-time
accessibility proposed by Hägerstrand (1970) has been extended in many aspects as
GIS technologies have advanced. In contrast to early assumptions that individuals
move in space without constraint, street networks are frequently incorporated into
the measurement of space-time accessibility (Miller 1999). The human movement
space can also be expanded from physical space considerations only to include
virtual spaces to accommodate changes brought about by rapid progress in infor-
mation and communication technologies. Spatiotemporal GIS, for example, has
been designed in order to explore the individual activities and interactions in a
hybrid physical-virtual space (Yu 2006; Shaw and Yu 2009; Yin and Shaw 2015).
Equipped with location-aware handheld devices, individuals are now acting as
sensors (Goodchild 2007) being aware of the physical as well as social context in
which they are situated. With the rapid progress of cloud and mobile computing
technologies, individuals now have the capability to understand what’s going on
around them in real time (Crooks et al. 2013; Majid et al. 2013) and alter their daily
scheduled activities accordingly (Stewart et al. 2013). Research on mining complex
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human mobility patterns from massive trajectory data further enhance our under-
standing of human movement and the interactions of people with their surrounding
environments (Andrienko et al. 2013a, b; Giannotti et al. 2011). A formal model
about individual activities scheduling is presented in (Stewart et al. 2013). This
model goes beyond the conventional organization of scheduled activities that
provides only a temporal view of a schedule, and represents both the spatial and
temporal aspects of an individual’s scheduled activities. A set of schedule opera-
tions including reschedule, postpone, change location, and delete are modeled in a
task ontology, affording a scheduler system that can perform semantic reasoning
with reference to an underlying ontology.

In this chapter, semantic web technologies are used for analyzing space-time
movements associated with scheduled activities on a campus. This extends the time
geographic theoretic framework to include domain ontologies of scheduled activ-
ities. Semantics associated with space-time movement of individuals on a campus
can be exploited to improve campus planning as well as the interactions of indi-
viduals as they go about their daily pursuits and undertake their planned activities.

5.2.2 Semantic Data Models and Geospatial Research

The availability of geospatial data and services has increased due to the rapid
development of information and communication technologies, especially pervasive
handheld devices, such as cellphones equipped with positioning capabilities. As a
response to the need for intelligent sharing and processing of geospatial information
and services, geospatial semantics have emerged as an important research area.
Geospatial semantic research is a sub field of semantic web research that deals with
location-based information and semantics, namely the meaning of geographic
concepts and their underlying interrelationships. These semantics capture that dif-
ferent conceptualizations that can hold for geographic phenomenon that are often
apparent from the natural language that people use to describe geographic features;
for example, ‘bank’ can have different meanings under different contexts (Kuhn
2012). In addition to supporting different meanings, semantic interoperability may
be desirable, for example, geospatial information may be needed at multiple spa-
tiotemporal granularities. Kuhn (2005) discussed the need to formally define
semantics of geospatial concepts and construct semantic reference systems in order
to support semantic interoperability. Inspired by spatial reference systems, a
framework was presented for referencing, grounding and mapping geospatial
information in the form of a semantic reference system. Using geospatial ontologies
to capture the particular semantics of geospatial features and relations can help
users retrieve geospatial information and services more effectively, especially as the
traditional web of documents is turning into a web of data (Egenhofer 2002;
Janowicz et al. 2012).
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Besides semantic interoperability, the ability to perform semantic reasoning
using semantic data models is another important incentive for research in this area.
Thematic relationships among geospatial features, aside from spatiotemporal rela-
tionships, are increasingly exploited in different kinds of analytic applications, for
example, in a national security application where detecting conflicts of interest were
studied (Perry et al. 2007). In this work, a military ontology is combined with an
upper-level ontology to model interactions relating to military combat. Thematic
entities and relationships are modeled as first class objects, linked to spatial entities
through located_at and occurred_at relationships from the upper-level ontology.
For example, a soldier is associated with a training facility using a set of rela-
tionships (Soldier—member_of—Military_Unit—trains_at—Base—located_at—
Spatial_Entities) (Perry 2008). Enriching spatiotemporal data with semantic
information abstracts the data from geographic space to semantic space (Andrienko
et al. 2013a), providing the means to investigate and discover more general patterns
of geographic dynamic phenomena. This is especially important in human move-
ment data analysis where spatiotemporal behavior patterns are of particular interest
to researchers.

5.3 A Semantic Data Model for Space-Time Activity

5.3.1 Integrate Spatial and Temporal Dimension
of Space-Time Activity

Time geography research investigates human mobility in a 3D space-time con-
ceptual model (Neutens et al. 2008; Shaw and Yu 2009; Chen et al. 2011; Crease
and Reichenbacher 2013), where the x and y dimensions represent the spatial aspect
and z dimension represents time. Individuals move about in both space and time to
undertake daily activities, referred to as space-time activities in this research. These
are the main driving force for human movement, and provide a unique perspective
for studying human mobility. From a formal model perspective, a space-time
activity can be represented as an entity that has attributes of both a spatial object
and a temporal entity (Fig. 5.1), and in the domain ontology developed for this
research, space-time activity (ST_Activity) is modeled as a class that inherits
properties from both the SpatialObject class defined in GeoSPARQL and the
TemporalEntity class defined in the W3C time ontology. GeoSPARQL is an OGC

Fig. 5.1 Space-time activity
modeled as both
SpatialObject and
TemporalEntity
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standard designed to support representation and queries about geospatial objects,
including qualitative reasoning about topological (i.e., spatial) relationships
between spatial objects (e.g., nine-intersection topological relations). The W3C
time ontology on the other hand, defines properties of temporal entities and rela-
tions between them [i.e., Allen’s temporal interval relation algebra (Allen 1984)].

Formally, we can define a space-time activity entity using OWL and formalized
in turtle format as:

@prefix time: <http://www.w3.org/2006/time#> .

@prefix geo: < http://www.opengis.net/ont/geosparql#> .

@prefix rdfs: <http://www.w3.org/TR/rdf-schema/#> .

@prefix : <http://st-activity.org/#> .

:st_activity rdfs:subClassOf geo:SpatialObject .

:st_activity rdfs:subClassOf time:TemporalEntity.

A temporal entity can be modeled as either a time:Instant or time:Interval, and in
this way, space-time activities can be handled at different temporal granularities,
which is important for representing different types of activities (Crease and
Reichenbacher 2013). By integrating attributes of both geo:SpatialObject and time:
TemporalEntity, a semantic web reasoning engine can be applied to reason about
the spatiotemporal relationships between space-time activities and movements.

5.3.2 Thematic Role of Participants of Space-Time Activities

The minimally structured and linked nature of RDF data model of space-time
activities provides researchers with great flexibility in terms of analyzing human
movement dynamics from different perspectives (e.g., individual movement path,
spatial pattern, temporal fluctuation) (Andrienko et al. 2011). In this section, we
discuss the thematic roles of participants in space-time activities based on research
from knowledge representation community. The link between space-time activities
and their participants through different thematic roles is important for retrieving
human movement dynamics at different granularities based on activity data.

In knowledge representation research, thematic roles are used to represent the
links between an occurrent and its participants. From an ontological perspective,
space-time activities are occurrents (Grenon and Smith 2004) that are ephemeral,
i.e., they happen and then no longer exist. Space-time activities involve different
types of participants (e.g., individual students, faculty, and classroom) and every
participant is an entity that plays some role during an activity. The relation of
participation holds between a substance and a process. Smith and Grenon (2004)
discussed different modes of participation between a SNAP entity (a continuant)
and a SPAN entity (an occurrent) (for example, initiation, perpetuation, termina-
tion, facilitation, hindrance, mediation). In knowledge representation and artificial
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intelligence community, there are also abundant researches on thematic roles of
entities during a process. Sowa (1999) classified thematic roles for participants in a
process into four categories in accordance with Aristotle’s four causes, namely,
initiator, resource, goal, and essence (Fig. 5.2). These thematic roles capture
fundamental relationship semantics between occurrents and their participants,
complementing Smith and Grenon’s classification, and can be used as building
blocks for definition of higher level semantics like Smith and Grenon’s. We build
on Sowa’s classification of thematic roles for the different types of participants in
space-time activities.

In the semantic model of space-time activities, initiator is the agent that starts an
activity with voluntary intention (for example, faculty who offer courses), and
resource must be present throughout the activity, but does not actively control the
event (e.g., the venue being used for a course activity). Goal is a participant in an
activity that represents the purpose of the activity and controls the activity from the
reverse direction (e.g., students who take courses). Essence refers to an essential
participant of an activity that represents the theme or byproduct of an activity (e.g.,
the discussion topic of a course activity). Different types of participants will par-
ticipate in different kinds of space-time activities. It is not necessary that all four
types of participants are present in each space-time activity. Out of the four main
types of participants for a space-time activity, Initiator and Resource are the active
determinants of the activity, whereas Goal and Essence are the product or expe-
rience of the activity. In other words, Initiator and Resource participants model the
semantic constraints that need to be satisfied in order for a space-time activity to
successfully take place, while Goal participant represents the end results or recip-
ients of a space-time activity.

For example, the fact that a student named Mary is attending a scheduled course,
Foundation of GIS in :JH243(Jessup Hall 243) on campus is formalized in the RDF
knowledgebase as:

Fig. 5.2 Participants of space-time activity
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:Foundation_of_GIS_A3 a :st_activity.

:Foundation_of_GIS_A3 time:hasBeginning :f_begin .

:f_begin a time:Instant;

:inXSDDateTime “2014-09-19T11:30:00”^^xsd:dateTime .

:Foundation_of_GIS_A3 time:hasEnd :f_end .

:f_end a time:Instant;

:inXSDDateTime “2014-09-19T12:20:00”^^xsd:dateTime .

:Foundation_of_GIS_A3 geo:hasExactGeometry [

geo:asWKT “Polygon((-91.53639 41.6622, -91. 53663 41.6622,

-91.53663 41.6616, -91.53639 41.6616)”^^geo:wktLiteral ].

:Foundation_of_GIS_A3 :hasRecipient :Mary.

:Foundation_of_GIS_A3 :hasInitiator :YJ.

:Foundation_of_GIS_A3 :hasPhysicalSpace :JH243.

In the RDF triples listed above, both :Mary and :YJ are instances of foaf:Person
class from FOAF3 ontology. The :Foundation_of_GIS_A3 course is an instance of :
st_activity, and has several different types of participants that play different thematic
roles. If there is no participant, then an :st_activity has no impact in space-time and
does not need to be included in the knowledgebase. The most granular spatial
information for this course (i.e., the boundary of the building in which this course is
scheduled) is its geometry, serialized as well-known text (WKT) format. :JH243.
This spatial footprint is an instance of geo:SpatialOBject class, and it is linked with
:Foundation_of_GIS_A3 via :hasPhysicalSpace predicate, which is a sub-property
of :hasResource. :YJ is the instructor for this course and therefore the initiator. :
Mary is one of the students that attend this course, and thus the recipient of the
course. Note that each type of participants can be further classified into more
specific roles, and they follow a hierarchical structure (e.g., PhysicalSpace
rdfs:subClassOf Resource). As a result, the semantic predicates linking space-time
activities and their participants are also hierarchical (hasPhysicalSpace
rdfs:subPropertyOf hasResource), giving us the flexibility to query and analyze
movement dynamics at different granularities.

5.3.3 Individual Trajectory and Space-Time Activity

In our semantic modeling framework, the set of space-time activities that a moving
agent undertakes forms a trajectory. Trajectory is a subclass of geo:SpatialObject
(Fig. 5.3), and therefore it is associated with a spatial footprint. Space-time activity
is part of a trajectory, and participants that belong to foaf:Person class are linked
with the trajectory class through :hasTrajectory property.

3http://xmlns.com/foaf/spec/.
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5.3.4 Scheduled Space-Time Activities

The movements of individuals on a campus are driven by locations and times of
courses that are being offered. These scheduled space-time activities are a subclass
of space-time activity that satisfies certain spatial and/or temporal constraints. For
this research, we characterize scheduled space-time activities, as being spatially
fixed temporally fixed (SXTX). A spatially fixed temporally fixed (SXTX) activity
have set start and end times as well as set locations. People who participate in
SXTX activities have to satisfy the constraints that they need to travel to the preset
location and be present during the activity. Most courses fall into this category, for
example, students who are enrolled in the Foundations of GIS course are assumed
to be in the classroom during the lecture. Regular Courses on campus are SXTX
activities and inherit all the properties of SXTX activity class. In the next section we
discuss our prototype system that is used to capture movement dynamics reflected
by students undertaking SXTX activities.

5.4 Prototype Implementation and a Use Case
for Scheduled Movements

Traditionally, a university campus has at least one information system that manages
information about students and the courses they undertake for a degree. Although
spatial and temporal information about scheduled activities (e.g., courses, seminars
etc.) are available, users of the information system typically only view the infor-
mation in a text format. In this section, the semantic modeling framework is
demonstrated through a prototype system using the University of Iowa campus as
the study domain. There are four components for the prototype system (Fig. 5.4).

Building a smart campus will benefit from a spatial enablement of the envi-
ronment (Roche 2014), and this is the first component of the framework. This
process takes as input scheduled course information encoded as plain text and adds
a spatial dimension. The location information associated with scheduled activities is
geocoded and transformed into geographic coordinates. The second component of
the framework involves a semantic enrichment process where a semantic dimension
is added to the spatially-enabled scheduled activities, generating an RDF

Fig. 5.3 Space-time activity
part of a trajectory
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knowledgebase for scheduled course activities. This component includes a domain
ontology and a reasoner that can perform spatial, temporal, and semantic reasoning
on scheduled activities. The reasoner is built in the RDF knowledgebase, inferring
implicit relationships among domain entities based on the developed ontology. The
third component of the framework is a GeoSPARQL query engine that can parse
movement-related queries and send them to the RDF knowledgebase. The final
component of this framework is a web-based visualization interface for the query
results, reflecting the movement dynamics on campus.

The course information for fall semester 2014 listed on The University of Iowa
online information system (https://myui.uiowa.edu/my-ui/courses/dashboard.page)
is employed as a data source for this study. A Python program has been developed
that scrapes all course information off the HTML webpage. The scraped data are
organized and transformed into RDF triples using RDF4J library. The temporal
reasoning module is realized by integrating SWRLAPI,4 an open source java
package that uses the semantic web rule language. The spatial reasoning module is
developed based on open source java packages spatial4j5 and JTS.6 There are on
average 2000 courses held each weekday during the fall term. An ArcMap shapefile
containing campus buildings provides spatial reference for the scheduled campus
activities. To test what movements arise relating to different course schedules,

Fig. 5.4 Architecture of prototype system for campus course activities

4https://github.com/protegeproject/swrlapi.
5https://github.com/locationtech/spatial4j.
6https://github.com/metteo/jts.
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the course schedules of 13 students registered in fall 2014 from four different
majors, including computer science, geography, environmental science, and geol-
ogy were collected. For example, student A is an Environmental Science major
registered for five courses. Another student B, is a Geography major registered for
six courses including Creative writing studio workshop, Foundation of GIS,
Foundation of GIS A03 (lab section), The Global Economy, Environment Justice,
Civilization of Asia: South Asia, and Relaxation Techniques.

5.5 Retrieving Campus Movement Dynamics
from RDF Knowledgebase

5.5.1 Representing and Visualizing Trajectories
for Individual Students

In general, students move around campus while they attend the courses for which
they are registered. The sequence of activities as they move from one classroom to
another forms a Trajectory for the student. Since scheduled course activities have
both spatial and temporal characteristics, visualization of the movement trajectory
associated with attending these scheduled course activities can be generated. In
order to generate realistic trajectories representing students’ movements, road
network information is incorporated into the RDF knowledgebase. The movement
trajectories of students A and B are calculated using a shortest path routing algo-
rithm on the campus road network. In both cases, the generated trajectories respect
barriers such as a river. The movement trajectory for Student A is based on an
aggregate of 10 scheduled class sessions (each course has two or three sessions per
week, thus 10 sessions for 5 courses) (Fig. 5.5a) while Student B’s schedule is
based on an aggregation of 15 class sessions (Fig. 5.5b). The travelling distance of
A is longer than that of B, as A is an environmental science student who is also
interested in Art. This student regularly travels across campus and take classes in
the Studio Arts building that is more than a mile from the main campus. The
different movement patterns, when combined with geographic contextual infor-
mation (e.g., the functions of different parts of the campus, (e.g., the Main Library
and Liberal Arts and Science buildings), reveal the academic as well as extracur-
ricular interests of students. Locations of courses are shown with purple symbols.
The spatial visualization of movement trajectories provide an understanding about
student activity spaces. The areas that students move around in most frequently are
identified based on a temporal aggregation of the weekly or monthly trajectories.
Using such an approach makes it possible for students to potentially optimize
decisions about locations for studying, getting coffee or lunch, and hanging out with
friends in relation to the location of courses they are taking.
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It should be noted that although we generate a continuous path from the
scheduled information, there may actually be time periods or gaps between courses
such that the start of the next segment of movement in the trajectory may not begin

Fig. 5.5 Weekly movement trajectories for a student A, and b student B
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until some time has passed and it is time for the student to move on towards their
next class. Another caveat of adopting road networks into the analysis is that the
road network space overrules other possible movement paths, and provides one
possible trajectory out of a set of possible trajectories. For example, the movement
trajectory for student B (Fig. 5.5b) based on the 5 scheduled courses on the east side
of the campus may not always hold as it is likely that students don’t always use the
road network and may cut across green spaces or pedestrian areas or take advantage
of any available shortcuts. We show the spatiotemporal patterns of movement on
campus using Euclidean space in Fig. 5.6. This choice yields a different yet still
valid pattern of students’ movement. The collective trajectories of the students for
their Monday classes (Fig. 5.6a) are similar to that on Wednesday (Fig. 5.6b); and
Tuesday and Thursday movements also share similarities. Students can have
very different trajectories around campus and spend time in different locations,

Fig. 5.5 (continued)
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the shortest weekly travelling distance out of this group of students is approxi-
mately. 5 miles indicating a schedule where classes are spatially very close, while
the longest distance travelled is approximately 8.5 miles.

Fig. 5.6 Collective weekly trajectories of 13 students: a trajectory for monday, b trajectory for
wednesday, c trajectory for Friday, and d trajectories for a whole week
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5.5.2 Spatiotemporal Patterns of Student Movment Paths

Representing collective trajectories at different temporal scales provides interesting
insights regarding human movement dynamics. For example, the collective

Fig. 5.6 (continued)
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movement paths of all the students for the whole week (Fig. 5.6d), revealing that
most of the travel for this group of students is in the area involving four buildings
on the center of UIowa campus. Such a tool is helpful for security officers who can
identify the busiest area on campus, i.e., areas that have the largest numbers of
students moving around. The ability to identify such areas can help manage campus
security and safety more effectively. From an academic standpoint, universities can
utilize students movement information to help them arrange the space and time of
courses more intelligently and direct resources, e.g., snow and ice removal in winter
on highly accessed areas.

Fig. 5.6 (continued)
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5.5.3 Tracking the Flow of Students Among Buildings

The linked nature of geospatial RDF knowledgebase offers us the ability to query
and visualize the chain of movements of students on campus. Information about the

Fig. 5.6 (continued)
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inflow and outflow of students for a building at a specific time and modeling
movement trajectories can offer important opportunities for management and
planning of the entire campus environment. In addition, a set of movement queries
become possible. For example, a GeoSPARQL query can be constructed to answer
questions such as: From which buildings do students who are taking classes in
Schaeffer Hall on Wednesday at 11:30 am come from?

SELECT ?pcourse

WHERE {

?course rdf:type : st_activity.

?course :hasPhysicalSpace ?building.

?building :hasName “Shaeffer Hall”.

?course :hasDayofWeek time:Wednesday.

?course :hasParticipant ?student.

?student rdf:type foaf:agent.

?student :hasTrajectory ?traj.

?course :partOf ?traj.

?course :previousActivity ?pcourse.

?pcourse rdf:type :st_activity.

?course time:hasBeginning ?bgt.

?course time:hasEnd ?edt.

FILTER (xsd:datetime(?bgt) < “11:30am”^^xsd:time

&&xsd:datetime(?edt) > “11:30am”^^xsd:time) .

}

By utilizing the chain of semantic relations among courses, building and stu-
dents, this query retrieves the list of courses that are ongoing in Schaeffer Hall on
Wednesday at 11:30 am first (hasPhysicalSpace), and then the students and their
course schedules are retrieved using hasTrajectory relationships between Student
and Trajectory. Since all the course activities within the same individual trajectory
are linked via previousActivity and nextActivity relationships, the classes that these
students were in before arriving at Schaefer Hall can be retrieved. Note that a
temporal interval is applied such that only classes that are scheduled on the same
day (i.e., Wednesday) will be retrieved during the reasoning process. The visual-
ization is generated based on the 13 schedules we collected, and for this reason,
reflects a partial picture of the inflow movement to that building (Fig. 5.7). The
complete pattern of inflow movements for Shaeffer Hall can be visualized provided
schedules for all students are available.
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5.5.4 Spatiotemporal Aggregated Dynamics on Campus

Knowing about the ongoing courses at any time and the number of students in a
building will be very useful for space and scheduling administrators, for example,
as part of a smart campus effort, e.g., creating a smarter plan for energy con-
sumption of the building or for supplying location-based services. This
GeoSPARQL query can be extended to query all the buildings on campus at
different times. The results of the extended queries yield an aggregated view of
campus dynamics (Fig. 5.8). In Fig. 5.8, two snapshots show buildings on the east
side of the campus on a Wednesday at 11:15 am and 7:15 pm. Each blue dot inside
the building represents five students. The number of students at each time is

Fig. 5.7 Inflow of students to Schaeffer Hall on wednesday at 11:30 am
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calculated based on the enrollment number of each course. From the visualizations
of these two different times, the diffusion of students across campus are revealed.
Figure 5.8a is the snapshot at 11:15 am, where the number of students is beginning
to reach a high level (262 courses with approximately 8000 students). After
5:30 pm, the number of students is starting to decrease such that by 7:15 pm there
are about 130 courses going on with approximately 3300 students attending
(Fig. 5.8b).

Fig. 5.8 Campus dynamics for a wednesday during fall 2014: a at 11:15 am, and b at 07:15 pm
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5.6 Conclusions and Future Work

This chapter presents an approach that uses semantic web technologies for repre-
senting, querying, reasoning, and visualizing about movements associated with
scheduled events–in this case, courses and seminars–on a university campus. This
framework provides a method for integrating data from spatial, temporal and
semantic dimensions, where semi-structured text information about scheduled

Fig. 5.8 (continued)
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courses can be transformed into a structured RDF data model that is further enri-
ched with spatial and temporal data. This work demonstrates the insights to be
gained from incorporating spatial thinking into facilities management and planning,
creating physical environments that are context-sensitive and smart. Representing
spatial information associated with scheduled activities provides a basis for mod-
eling the movements of students in response to scheduled course activities at dif-
ferent temporal granularities. Individual schedules can be visualized at the
granularity of daily or weekly personal trajectories. Alternatively, aggregate views
showing where students are clustered at different locations and times capture
movements at a different granularity. Visualizations of scheduled activity spaces
show how students and faculty use campus space and the move about on campus.
For campus management, management staff gain visualizations of the spatiotem-
poral dynamics for the entire campus, providing better insights into facilities usage
as well resource (e.g., energy) consumption. Furthermore, semantically enriched
events (e.g., spatially fixed temporally flexible) can give users the ability to reason
using the ontology and provide cues for intelligently adjusting daily schedules
depending on the location information. This ontology-based framework can be
adapted to other application domains where individuals undertake scheduled
activities, for example, transportation and logistics planning where aggregated
dynamics about individual movements (e.g., pedestrian and vehicular traffic) are
also important. A future extension for this framework is to further distinguish
between fixed and flexible activities. The reasoning engine can be extended to
reason about the spatiotemporal interactions between different types of space-time
activities, and derive spatial prisms for individuals based on his/her scheduled
activities.

Appropriately representing, organizing, and processing spatiotemporal data is a
fundamental research theme in GIScience community, especially as place-based
research is evolving into people-based research (Miller 2007). Modeling
activity-related information is critical for a better understanding human behavior
and movement pattern. Using semantic web technologies to model space-time
activities allows researchers to link together diverse data sources related with
human mobility based on ontology matching. This is more flexible than relational
database model both in terms of data integration and data analysis as the triple
pattern based query allows users to express semantics in a more intuitive manner.
Geospatial RDF data are becoming more and more prevalent, including
OpenStreetMap and GeoNames etc., providing opportunities for modeling the
context of human mobility behavior more realistically. Future work could consider
more realistic representation of context including environmental data, social data,
additional real-time events, and even social network information of individuals.
Incorporating these contextual variables that influence human behaviors and
mobility will improve movement and activity space modeling in the information
age.

102 J. Fan and K. Stewart



References

Abukhater, A., & Walker, D. (2010, July). Making smart growth smarter with GeoDesign.
Directions Magazine.

Afyouni, I., Ilarri, S., Ray, C., & Claramunt, C. (2013). Context-aware modelling of continuous
location-dependent queries in indoor environments. Journal of Ambient Intelligence and Smart
Environments, 5(1), 65–88.

Allen, J. F. (1984). Towards a general theory of action and time.Artificial Intelligence, 23(2), 123–154.
Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., & Wrobel, S. (2011).

A conceptual framework and taxonomy of techniques for analyzing movement. Journal of
Visual Languages & Computing, 22(3), 213–232.

Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., & Wrobel, S. (2013a). Scalable analysis
of movement data for extracting and exploring significant places. IEEE Transactions on
Visualization and Computer Graphics, 19(7), 1078–1094.

Andrienko, N., Andrienko, G., & Fuchs, G. (2013b). Towards privacy-preserving semantic
mobility analysis. In In EuroVis workshop on visual analytics. The Eurographics Association
(pp. 19–23).

Calderoni, L., Maio, D., & Rovis, S. (2014). Deploying a network of smart cameras for traffic
monitoring on a ‘city kernel’. Expert Systems with Applications, 41(2), 502–507.

Chen, J., Shaw, S.-L., Yu, H., Lu, F., Chai, Y., & Jia, Q. (2011). Exploratory data analysis of activity
diary data: A space-time GIS approach. Journal of Transport Geography, 19(3), 394–404.

Crease, P., & Reichenbacher, T. (2013). Linking time geography and activity theory to support the
activities of mobile information seekers. Transactions in GIS, 17(4), 507–525.

Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a
distributed sensor system. Transactions in GIS, 17(1), 124–147.

Egenhofer, M. J. M. (2002). Toward the semantic geospatial web. In Proceedings of the tenth
ACM international symposium on Advances in geographic information systems—GIS’02
(pp. 1–4). New York, New York, USA: ACM Press.

Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., Sanchez, L., & Munoz, L. (2013). A living
smart city: Dynamically changing nodes behavior through over the air programming. In
Proceedings—27th International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2013 (pp. 1271–1276).

Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., et al. (2011).
Unveiling the complexity of human mobility by querying and mining massive trajectory data.
The VLDB Journal, 20(5), 695–719.

Goodchild, M. F. (2007, November). Citizens as sensors: The world of volunteered geography.
GeoJournal, 69, 211–221.

Grenon, P., & Smith, B. (2004). SNAP and SPAN: Towards dynamic spatial ontology. Spatial
cognition and computation, 1 (March), 69–103.

Hägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science
Association, 24(1), 6–21.

Janowicz, K., Scheider, S., Pehle, T., & Hart, G. (2012). Geospatial semantics and linked
spatiotemporal data—Past, present, and future. Semantic Web, 3(4), 321–332.

Kuhn, W. (2005). Geospatial semantics: Why, of what, and how? In S. Spaccapietra & E. Zimányi
(Eds) Journal on Data Semantics III. Lecture Notes in Computer Science (Vol. 3534). Berlin,
Heidelberg: Springer.

Kuhn, W. (2012). Core concepts of spatial information for transdisciplinary research. International
Journal of Geographical Information Science, 26(12), 2267–2276.

Kwan, M.-P., Janelle, D. G., & Goodchild, M. F. (2003). Accessibility in space and time: A theme
in spatially integrated social science. Journal of Geographical Systems, 5(1), 1–3.

Majid, A., Chen, L., Chen, G., Mirza, H. T., Hussain, I., & Woodward, J. (2013). A context-aware
personalized travel recommendation system based on geotagged social media data mining.
International Journal of Geographical Information Science, 27(4), 662–684.

5 Modeling Mobility and Dynamics of Scheduled Space-Time … 103



Miller, H. J. (1991). Modelling accessibility using space-time prism concepts within geographical
information systems. International Journal of Geographical Information Systems, 5(3), 287–301.

Miller, H. J. (1999). Measuring space-time accessibility benefits within transportation networks:
Basic theory and computational procedures. Geographical Analysis, 31(2), 187–212.

Miller, H. J. (2005). A measurement theory for time geography.Geographical Analysis, 37(1), 17–45.
Miller, H. J. (2007). Place-based versus people-based geographic information science. Geography

Compass, 1, 503–535.
Miller, H. J. (2014). Activity-based analysis. In M. M. Fischer, & P. Nijkamp (Eds.), Handbook of

Regional Science (pp. 741–758). Berlin, Heidelberg: Springer Berlin Heidelberg.
Miller, H. J., & Goodchild, M. F. (2014). Data-driven geography. GeoJournal.
Neutens, T., Van de Weghe, N., Witlox, F., & De Maeyer, P. (2008). A three-dimensional

network-based space-time prism. Journal of Geographical Systems, 10(1), 89–107.
Perry, M., Sheth, A. A. P., Hakimpour, F., & Jain, P. (2007). Supporting complex thematic, spatial

and temporal queries over semantic web data. GeoSpatial Semantics, 228–246.
Perry M. S. (2008). A framework to support spatial, temporal and thematic analytics over

semantic web data. Wright State University.
Roche, S. (2014). Geographic information science I: Why does a smart city need to be spatially

enabled? Progress in Human Geography, 38(5), 703–711.
Sengupta, S., Ganeshan, K. V. V., & Sarda, N. L. (2010). Developing IITB smart campusGIS grid.

In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India—
A2CWiC’10 (pp. 1–8). New York, New York, USA: ACM Press.

Shaw, S.-L., & Yu, H. (2009). A GIS-based time-geographic approach of studying individual
activities and interactions in a hybrid physical–virtual space. Journal of Transport Geography,
17(2), 141–149.

Smith, B., & Grenon, P. (2004). The cornucopia of formal-ontological relations. Dialectica, 58(4),
279–296.

Sowa, J. F. (1999). Knowledge representation: Logical, philosophical and computational
foundations. Brooks/Cole Publishing Co.

Stewart, K., Fan, J., & White, E. (2013). Thinking about space-time connections: Spatiotemporal
scheduling of individual activities. Transactions in GIS, 791–807.

Wang, M., & Ng, J. W. P. (2012). Intelligent mobile cloud education: Smart anytime-anywhere
learning for the next generation campus environment. In 2012 Eighth International Conference
on Intelligent Environments (pp. 149–156). IEEE.

Yin, L., & Shaw, S.-L. (2015, September). Exploring space-time paths in physical and social
closeness spaces: a space-time GIS approach. International Journal of Geographical
Information Science, 1–20.

Yu, H. (2006). Spatio-temporal GIS design for exploring interactions of human activities.
Cartography and Geographic Information Science, 33(1), 3–19.

Author Biographies

Junchuan Fan (M.C.S., Ph.D., University of Iowa), Postdoctoral fellow at Center for Geospatial
Information Science, University of Maryland. His primary research interests are spatiotemporal
data modeling, geosocial computing and geospatial semantics. His research regarding human
dynamics focus on the interactions between place semantics and human activity and mobility
pattern. Specifically, he integrates semantic modeling framework with big geospatial data mining
technologies to learn geographic knowledge about places and uncover the link between human
activity spaces, movement patterns and place semantics.

104 J. Fan and K. Stewart



Kathleen Stewart (Ph.D., University of Maine), is director of the Center for Geospatial
Information Science and associate professor in the Department of Geographical Sciences at the
University of Maryland. Her research focuses on the intersection between geographic information
science and geographic dynamics. She is interested in mobility and big geospatial data and how
these apply to different application domains, e.g., public health and transportation. She is also
interested in geospatial ontologies and their role for GIS. She is currently a member of the
Mapping Science Committee of the National Academies of Sciences, Engineering and Medicine,
and the Board of Directors for the University Consortium of Geographic Information Science.

5 Modeling Mobility and Dynamics of Scheduled Space-Time … 105



Chapter 6
Smart Sensors, Cyborgs, and Cybernetics:
A Critical Reading of Smart City
Technologies

Chen Xu

6.1 A World Replete with Digital Traces

A significant happening about modern society is the ever-increasing mobility that
people are able to move both material objects and immaterial information across
space. The accelerating pace of evolution of digital technologies to facilitate rear-
rangement of time and space has transformed human behaviors to an extent that
Mitchell (2002) argued that there are two fundamental building blocks of this
reality, namely bits and atoms. Modern information computation based technolo-
gies consume and produce immaterial substance consisting of 0’s and 1’s, the bit.
Human bodies and natural or man-made environment are materials made up of
atoms. Space-time is increasingly compressed as the socioeconomic consequence.
Harvey (1990: 284) asserts that this dramatic process “had a disorienting and
disruptive impact upon political-economic practices, the balance of class power, as
well as upon cultural and social life.” More empirical studies are thence needed as
to scientifically understand the phenomenon. The demand for more empirical
studies has been supported by the increasing availability of data generated by
people using digital technologies. Recently, many studies have been conducted by
examining digital traces left by social media users, which bring new discoveries
about nature and society (Shaw et al. 2016). Techno-optimists generally believe that
the availability of big amount of digital traces and many other automatic tech-
nologies would help create better cities, in other words, smart cities (Schaffers et al.
2011). But as technology in general lacks the ability to be self-initiative and is
malleable to imposed intensions, a critical framework is equally important to
examining the implications of technology.
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Goodchild (2007) first delineates the phenomenon from a geographical per-
spective through the juxtaposition of spatial sensors and the general data creators—
i.e., citizens-as-sensors, and theorizes the products as well as their features as
volunteered geographic information (VGI). VGI denotes an ontological significance
of user generated geographic data, which provides an alternative perspective about
the Earth’s surface beside the dominant authoritative view. Subjectivity is a crucial
and valuable part of VGI, and the subject can assume many forms from human to
things that only virtually exist. VGI can be by-products of digital technology
involved activities, and these by-products act like digital traces revealing their
producers’ behaviors. Thence, the assembly of digital traces opens a window for
speculating the corresponding producer’s behaviors. Meanwhile, more people are
using mobile devices to access the Internet and there are multiple means via mature
technologies to locate a device (Cheng et al. 2010). Movement information of a
subject becomes attainable through a proxy relationship between the subject and
digital devices. The question then becomes whose movement is captured.
Meanwhile, embedded in the subjective digital traces are people’s proactive
behaviors of receiving, filtering, and distributing information. People users’ intel-
ligence is augmented by technology and citizens-as-sensors are smart sensors. In
this study, I focus on one specific type of digital traces, which are left by social
media users. While there is a variety of social medias, Twitter has emerged because
of its popularity worldwide and its relative openness for data collection.

Twitter is a micro-blogging service that claims to have 284 million monthly
active users globally who post 500 million tweets daily and about 80% of them are
using mobile devices to access the service.1 Among the total amount of stored
tweets, 1% of them are selected by Twitter’s proprietary algorithm and published
through several public application programming interfaces (APIs) in real-time, a
mechanism called streaming. The streaming mechanism makes Twitter data
attractive for researchers outside the company in academic fields from communi-
cation, psychology, to geography and etc., for the data provides a glimpse into
social interactions of millions of people. Such an opportunity did not ever exist
before the worldwide web evolved into 2.0 (Han 2011). Studies on tweets first
center on Twitter as a social media platform, and topics range from examining
information propagation pattern to networking connections between different users
(Chechev and Georgiev 2012; Ye and Wu 2010). Recently, the subjective nature of
tweets sees emergence of initial researches interested in exploring the intimate
relationships between couples or the geographical awareness of individuals that are
reflected in tweet contents (Garimella et al. 2014; Xu et al. 2013). With the rising of
mobile computing, we see more tweets are posted from mobile devices that if
location services are activated will create a trajectory record of the creator’s situ-
ations. Thus, the agglomeration of continuous georeferenced tweets provides a
window or a lens for observing people’s spatiotemporal behavior. The construction

1According to Twitter company about information at https://about.twitter.com/company.
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of behavioral patterns was leveraged in, e.g., urban studies (Huang and Wong 2016).
The methodology is unobtrusive in terms of scientific data collection scheme,
which means people would not know that their posts are collected. It provides
global coverage as long as there are Twitter users in a geographical area. And
compared to conventional survey methods, data collection via social media plat-
forms is much more cost-effective; for once the essential computing infrastructure
has been built, data can be archived without incurring much extra cost. However,
the strong subjective nature of the data creates differences that need to be examined
carefully. This chapter compares traditional methods for collecting daily life traces
to alternative data-based approaches in human dynamic studies; then proposes a
new identity as cyborg to synopsize the differences; the relations between cyborgs
and their environments especially cities are examined by using a theoretical
framework of cybernetics to argue some implications of technology-backed version
of smart cities.

6.2 Daily Life Traces Collecting in Conventional
Geographic Studies

The interweavement of individual humans’ everyday life trajectories at the
macro-level sketches the societal dynamics out in a dazzling yet reflective means
(Ellegard 1999; Hägerstrand 1991). In a study about the dynamics of overlapping
work and personal life, the researcher made in depth observations about the study
subjects who suffered stress due to the unavoidable mixture of public and private
lives (Renshaw 1976). Individual adults play multiple roles in contemporary
society, and tensions if unattended can ramify from one organizational system to
another through individuals as the medium. In another study, researchers spent
eight months in an agricultural cooperative to observe community members acting
in their daily personal lives and works, whose micro-level activities eventually led
to decision-makings that influence the stability and the sustainability of commu-
nities at the local as well as the whole society in the macro level (Kroeker 1995).
Meanwhile, individual expectations collectively influence the formation of societal
organizations, which profoundly impact the economic performance and growth of a
society (Greif 1994). Thus, the depictions of individuals and their daily lives are
crucial for understanding societies, as societies consist of various social systems
that are artifacts resulting out of human designs (Buckley 1998).

The pivotal position of individuals performing daily activities in producing
societal dynamics also signifies the importance of space and time in this process, for
space and time are fundamental dimensions of human life (Kellerman 1989).
Geographers have a long tradition in deciphering human societies using the fabric of
space and time as the framework to untangle the perplexed thread of human
behaviors, for example, as their intensions to carve out meaningful places in the
space-time continuum for anchoring personal identities and experiences (Tuan 1977;
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Buttimer 1976). After Hägerstrand’s abstraction of a space-time prism construct and
upon which the formation of a time-geographic framework, geographers are more
capable of quantifying the effects of both the interactions between and the constraints
of the geographic space and time that would eventually lead to the presence or
absence of opportunities for individuals (Miller 1991, 1999). In Kwan’s (1999)
study, a two-day travel diary dataset of 56 full-time employed European Americans
was collected to assess gender related differences in accessing to opportunities. In a
study to estimate the effect of distance on individual’s accessibility to job oppor-
tunities, Weber (2003) used a subset consisting of 775 adults’ travel-activity diaries,
which were extracted from a larger dataset of a survey conducted by the Portland
Metropolitan Service District that surveyed 10,084 individuals. Wong and Shaw
(2011) proposed an activity space approach to measure segregation and used a
dataset comprising travel diaries contributed by about 5000 households to illustrate
their approach. Despite differences in methodologies and variations in research foci,
the aforementioned studies shared some somewhat close conclusions which point
out the relationships between individuals and opportunities by various social sys-
tems are complex and cannot be easily decoded by merely measuring geographic
distance or by solely examining the residential space; meanwhile, findings are hard
to be generalized due to the intricate nature of human subjects. Personal experiences,
backgrounds and habits play significant roles in formulating personal opportunities
to a great extent that in some cases even reversing our conventional understandings.
Thus, the necessity of continuing explorations is warranted.

Travel diary methods or time diary methods are commonly implemented in
studies concerning individual activity patterns by recording the geographic
space-time footprints of human subjects (Axhausen et al. 2002; Janelle et al. 1988).
Travel diaries capture activities that would be categorized into different activity
classes, and normally such data are companied by surveys on the socioeconomic
statuses of the subjects to provide the necessary personal contexts. Although they
are commonly implemented in a wide spectrum of applications from transportation
planning to tourism research, the diary based methods put heavy burdens on the
study subjects; the effectiveness of the methods as well as the validity of results rely
largely on the human agents making commitment to faithfully and accurately record
location and time information (Wolf et al. 2001). Especially when the duration of a
survey is to cover a longer period of time other than just a few days, the complexity
of management becomes even more prominent (Axhausen et al. 2002). The com-
mercialization of global positioning systems and their implementations in travel
data collection automate the data collection procedure and relief the participants
from meticulous input operations; consequently, data quality has been greatly
improved through eliminating man-made errors and new types of data can be
collected such as instantaneous velocity and travel route (Wolf et al. 2001).
Meanwhile, data collection becomes more cost-effective (Stopher et al. 2002). Since
then, with the emerging of ICTs, means for human activity data generation has
become even more versatile (Soora 2014; Oliver et al. 2010; Kwan 2007).
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In general, the availability of new technologies empowers researchers toward the
augmented capabilities to examine human behaviors from increased numbers of
aspects (Draijer et al. 2000). New challenges emerge as well, for example, due to
limitations of machines to pickup contextual cues of human activities, comparably
there is less amount of information in automated diaries; also, data quality is greatly
influenced by the availability and adequacy of positioning technologies, e.g., the
number of satellites or the coverage of information communication networks; and
while survey participants are relieved from constant data logging, they are now
charged with responsibilities to maintain the operability of their electronic tracking
devices which generally have a battery component (Oliver et al. 2010; Wolf et al.
2001). Meanwhile, the discussion of using new positioning technologies to auto-
mate data collection has an indispensable prerequisite, the availability of funda-
mental infrastructure such as information communication networks or the GPS
networks. Thus, the methods would be far less useful in developing countries,
which have less than adequate availability of ICT infrastructure or positioning
systems (Kwan 2007).

Nonetheless, the advancements in technologies as well as in research method-
ologies still vastly push forward our understandings about human behaviors in their
daily lives (Wiehe et al. 2008). Among all the technologies, geographic information
system (GIS) has made unique contributions by offering the functionalities for
plotting behavioral datasets against the spatiotemporal dimensions. Hence it creates
a proxy of human daily life out of the abstract spatiotemporal data and gives the
data a comprehensible geographic context, and more crucially it provides a
framework for quantification (Shaw and Wang 2000). From the visualization per-
spective, Hägerstrand’s space-time prism is still by far the most prominent
framework, which consists of a geographic plane (x- and y-axis) and a temporal
dimension (z-axis), for space-time paths or trajectories (Kraak 2003). The com-
plexity of human behaviors renders it difficult to rely exclusively on machines to
filter out patterns beyond mechanic interpretation. A synergistic collaboration
between machines and human visual system is far more capable and effective to
identify anomaly out of norm, such an approach has been termed visual analytics
(Andrienko et al. 2010). Thus, the implementation of automated technologies starts
to peel away context from the geographic data. Extra efforts are required for the
contextual information acquisition; at this moment it is still achievable for people to
synthesize these two parts through creative analysis.

A lack of progress in time geography research after Hägerstrand can somehow
attribute to the scarcity of spatiotemporal data that reflect human lives as well
(Kwan 2004). Rapid advancements in computational technologies have quickly
changed the field of geography from, like the ongoing transformation in many other
fields, a situation in constant need of data and computation resource to a situation of
data abundance and computation resource affluence (Miller and Han 2009).
Progresses in ICTs, positioning technologies and social media contribute to the vast
expansion in data collections—a phenomenon called Big Data in general and data
avalanche in geography (Sui and Goodchild 2011; Miller 2010). In the fields of
geography, especially in the field of human geography, the sudden availability of
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big amount of spatiotemporal data, which are digital traces left by human activities
in the hybrid space, offers opportunities to push forward geographical under-
standing (Kitchin 2013). Outside geography, researchers in other fields already
started to grasp the opportunities to use big data to study human society at scales
that were difficult to look at before (Cranshaw et al. 2012; Noulas et al. 2011).
Geographers also have been eager to leverage the data contributed by volunteers as
well as left by social media users to experiment alternative solutions for challenges
facing geography (Zook et al. 2010; Elwood 2009).

6.3 The Emerging Alternative Ways for Activity
Traces Collection

Understanding dynamics of human mobility via massive amount of mobile data is
potentially beneficial for effective management of societies for tasks from urban
planning, transportation management to prediction of infectious disease outbreak
(Shaw et al. 2016; Laurila et al. 2012; Phithakkitnukoon et al. 2010; González et al.
2008). However, such datasets have serious privacy issues that their usages are
highly regulated by laws (Minch 2004). Also, historically only mobile phone
companies, like more recently web service companies, have access to the entire
datasets, which were rarely opened to outside researchers. In order to get hold of a
part of such valuable mobile data, several strategies were implemented. Laurila
et al. (2012) allocated cellphones with data collection software installed to a group
of about 200 volunteers in Switzerland. They were able to collect locational,
temporal, velocity, as well as communication content information about the vol-
unteers. Phithakkitnukoon et al. (2010) received mobile phone data from a third
party, the dataset include about one million records of users in Boston metropolitan
area. González et al. (2008) used anonymized billing dataset by a mobile phone
service provider of about 100,000 users. The dataset provided positions of the users
for a period of six months. The broad user base together with abundant mobile
applications has made mobile phones a popular sensing platform. These pioneer
studies have made significant discoveries about human mobility pattern in both
space and time dimensions. One of the many typical discoveries by using mobile
phone data is that the better revealing of daily rhythmic patterns of human society
across different geographical areas (Noulas et al. 2011).

The emergence of mobile social media applications immediately provides
researchers an alternative means for study human dynamics. Many such studies are
based on data harvested from Twitter, because of the relatively open data policy of
the platform. Although many social media data are generated by applications on
mobile phones, dataset from the same physical platform shows quite different traits.
Mobile phone data are created passively whenever the phone makes a connection
with a station; thus, although there is close bond between the phones and their
users, human factors have little influence in the data life cycle (Ahas et al. 2007).
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Social media data, on the other hand, is human’s active creation. And even for data
from a simple social media service like Foursquare which provides service for
friends to connect visited places, Noulas et al. (2011) points out the human factors
in the data analysis, because whether or not to post a place-based entry is entirely
depends on the control of the person. In general, social media data is strongly
subjective in nature (Hogan 2010). Thus, social media contents, in the case of this
study tweets, exhibit personal characteristics, such as political bias or place pref-
erence (Xu et al. 2013; An et al. 2012). Adding to this difficulty is that the process
leading to the selection of tweets to be in the public data stream is uncontrolled by
and worse opaque to the data users or the researchers (Urquhart and Vaast 2012).

As long as social media companies put restrictions on their data access and keep
that algorithm-based data sampling policy hidden, there would not be a thorough
understanding about the nature of any arbitrarily collected dataset. However, even
we only have accessed to the 1% of public real-time tweets, the agglomeration of
data through time can be enormous in size, which gives the impression of the
phenomenon called Big Data for many people. However, in Big Data a larger data
size cannot be equal to a deeper insight or richer information about the population
(McNeely and Hahm 2014). Thence, the using of social media data for studying
human mobility is not only methodologically but also epistemologically challenged
(Boyd and Crawford 2012). Consequently, meaningful social media data facilitated
studies would start with the construction of identities of data producers. Special
attention needs to be paid for the interpretation of identity. Identity in cyberspace
has higher complexity than it in physical space because of the online ambiguity
(Kendall 1998). For online and offline lives increasingly become two sides of the
same coin, the subject behind the embodied identity in digital traces can be the
atom, the bit, or the synthesis of both, because people with the augmentation of
mobile devices now are able to act in both cyberspace and physical space simul-
taneously (Jurgenson 2012). In other words, there is a mixture of corporeal mobility
and information mobility in the integral spatial mobility that can be discovered from
the collected Twitter data. Xu et al. (2015) presents examples that show the two
types of spatial mobility from the same data source. The authors used a space-time
cube approach to illustrate four different activity trajectories of Twitter users.
Apparently as information takes no time to cross physical distance, information’s
mobility shows much higher mobility than corporeal’s. However, this difference in
subject identity is not immediately clear by merely reading the trajectories.

Using digital traces left by mobile device users to study human behaviors has
been carried out since anonymized cellphone data was occasionally available for
researchers to grab (Isaacman et al. 2011). Cellphones have to contact cellular
towers for services and such activities left records at the servers. Because the data is
sensitive to users’ privacy, therefore the records have to be anonymized before
publishing. Comparing to cellphone data, social media records share several sim-
ilarities. First, their production is triggered by individuals’ communication activi-
ties. Second, they record both location and time information about such activities.
And third, they are mobile, which means they can be treated as proxy for places
people have been to. But, indeed, social media records are far more different from
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cellphone data. First, in cellphone data, the location is accurate to the grid of base
stations, since the cellphone only reports the location of the cellular tower that it is
contacted. Compare to cellphone based approach location accuracy of social media
records has a wide variation depending on the means implemented for location
information. Second, while the identity of individuals when decoding cellphone
data is homogeneously human subjects, the identities reflected in social media data
have to be examined more closely and carefully. Third, regarding the content
richness, social media records offer much richer information about their users. For
example, in the case of Twitter, every published entry may include profile contents
about the account, information about the receiver(s), and more importantly the
textual content.

6.4 Cyborg—Is It the New Identity?

As the fast advancement of wearable technologies and the increasingly matured
implant technologies, communicative machines will play unprecedentedly critical
roles in human’s daily lives (McGee and Maguire 2007). Then there is the rising of
manmade things that can be connected to each other, the so-called Internet of
Things (IoTs). Communication in terms of transmitting and exchanging information
is built into these things, which gives a various things the capacities to commu-
nicate with humans or each other. During Hurricane Julio 2014, a robotic floating
drone was deployed around Hawaii. People could request oceanic climate status by
sending demands through Twitter. For example, sending “@Holohoho_wg where
are you?” could in return have the geographic location of the drone.2 Meanwhile,
the drifting on ocean robot sent tweets of photos or texts automatically, which could
be collected through one of the Twitter’s application program interfaces (APIs). For
example, Fig. 6.1 shows a communication activity happened between the robot and
a human Twitter user.

Data of this event was published via the API in the format of JavaScript Object
Notation (JSON). The content, time and geographic location about the event then
can be compiled by extracting correspondent information from the key-value pair.
For the above example, the data provides the following attributes.

‘text’: ““#robotics #drone @ here’s the picture you requested! https://t.co/1kDODWcmRU””,

‘coordinates’: {‘type’: ‘Point’, ‘coordinates’: [−155.89324583, 20.01580317]},

‘created_at’: ‘Tue Aug 30 00:37:21 +0000 2016’

The assembly of these data thus provides a spatial trajectory of the subject about its
movement in the physical world. By far the most popular Twitter users are human
subjects and the tweets they left behind containing the aforementioned types of

2https://twitter.com/Holoholo_WG.
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spatiotemporal information thence reflect Twitter user activities. Figure 6.2 presents
two different trajectories by plotting geographic locations along the temporal
dimension as when a human Twitter user posted a tweet at that location.

The authors indicated that the data was collected between February 7th and 20th,
2015. A node on the map represents the location of a tweet, where a Twitter user
made a post. An edge links two event locations which when displayed in a
space-time cube give the temporal sequence. Within the same period of time,
apparently the activity intensities of the two users are dramatically different. It calls
into question the velocity and intensity of movements in the right column that could
be achieved by a human being. After collecting the data by the two users and
examining the contents closely, two different types of user identities become clear.
While the trajectory on the left side represents a real person’s activity path, the
trajectory on the right side belongs to a group of real persons sharing a Twitter
account. If a real person’s historical tweets can be used for studying corporeal
mobility, it is erroneous to make the same conclusions for a group of persons.

Indeed, what the trajectory on the right side reveals is the movement of infor-
mation among a group of Twitter users, who post tweets to the same user account.
Therefore, it might be stated that the information exchange records inside the group
can be used for studying information’s spatial footprint. Members at different
geographic locations share any messages posted to the account; and the receivers
might then distribute the message to their friends dispersed at different locations. As
information takes no time to cross long distance, the vehement velocity represented
by the right side trajectory becomes reasonable. The great impact of information
being able to fiercely reconfigure space-time relations cannot be overstated. Ample
amount of examples can be enumerated to shed light on the issue. It would be an
impossible mission for OpenStreetMap (OSM) volunteers located globally to help

Fig. 6.1 An example of information exchange between a human Twitter user and a robot Twitter
user https://twitter.com/Holoholo_WG/status/770659561564803072/photo/1
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Fig. 6.2 Two space-time trajectories (left and right columns represent two users; the above
windows show a 3D view and the bottom windows display a 2D geographical dimensions of the
activities) left by human Twitter users (cited from Xu et al. 2015, courtesy of Taylor & Francis
Ltd. http://www.tandfonline.com/)
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Fig. 6.2 (continued)
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create a detailed transportation map of Haiti within days, if they were not connected
by the Internet (Zook et al. 2010). Also the collective efforts of Tianya (a Chinese
online forum) members helped identified a suitable landing place for helicopters at a
remote village after the 2008 Sichuan Earthquake (Qu et al. 2009). In the
humanitarian sector, the utilization of Twitter based approaches has demonstrated
the great impacts that can be made by linking people to each no matter where they
are (Meier 2011). Any messages sent to social media like Twitter would leave
traces that potentially could be collected by other people. But it is a complex
process to leverage the new data source. First, it is necessary to differentiate human
users from machine users. Second, even though a human owns a Twitter account,
the human subject can represent just a single person or a group of persons. Third,
there can be a mixture of corporeal mobility with information mobility within a
person’s digital traces. Figure 6.3 presents place names excavated from a human
Twitter users historical tweets. By referencing the textual contexts of place names,
it becomes clear that some places were locations that the user once being there
physically, while many other places were locations of the user’s contacts on
Twitter. In the second case a piece of information was exchanged between two
geographic locations without the corporeal movement of the sender and the
receiver. Thus, we need an identity structure that can consolidate the differences
between human and machine subjects as well as between single-person account and
multiple-person account. Inside the digital world the boundaries between human
and machine, single and plural are greatly blurred to become digital beings capable
of acting inside an electronic environment (Negroponte 1996).

Fig. 6.3 Place names excavated from a human Twitter user’s records (cited from Xu et al. 2013,
courtesy of Taylor & Francis Ltd. http://www.tandfonline.com/)
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A synergistic situation of bits and atoms creates a hybrid of part material and part
immaterial, something called a cyborg, or a cybernetic organism. It was first a
fiction creature like the robots with subjective experience in the movie Blade
Runner (Nicholls 1984). Clynes and Kline (1995) proposed the term ‘cyborg’ for
organisms augmented by external components for acquiring adaptive capabilities to
environment. The concept also gets academic attention from several special study
areas; Haraway (1991) applies the concept for feminism study, Mirowski (2002)
synergizes the cyborg concept with economics, and in geography, Wilson (2009)
leverages the cyborg theory for performing critical geographical analysis. With the
dispersion and adoption of IoT through out people’s daily lives, cyborg might
reflect the future that we are moving towards (Gunkel 2000). Particularly, with
cyberspace progressing from an ethereal existence that was previously floating
above the physical space and was only attached to the physical world at fixed hubs
toward a coexistence with the physical world via ubiquitous Internet connections,
cyborg is not only a concept, but also one that deserves examination for its
implications. Cyborg represents one realistic situation of human with augment of
modern information and communication technologies (ICTs). People if not already
cyborgs are living in a cyborg society (Gray 2000). For victims of recent Sony
hack, the consequences are not just a horrible dream that vanished when waking up,
but real threats to destroy their personal lives (The Economist 2014).

Here, the subjectivity of cyborg follows a traditional interpretation as an onto-
logical hybridity, which consists of part organism and part machine (Wilson 2009).
Firstly also majorly currently, the cyborg figure includes only the hybridity of
human organism and ICTs; secondly, with scientific advancements in fields such as
artificial intelligence that resulted in machines capable of recognizing cats,3 the
body of organisms might encompass a much versatile types of entities. Artificial
Intelligence (AI) has gained profound progress recently as machines have
demonstrated their capabilities to defeat the best players in games like Go. As AI
increasingly expands its dominance in different facets of people’s daily lives, the
communicative processes and consequences become highly complex. The intension
to put the phenomenon under the umbrella concept of cyborg is to highlight the
intertwined effects of people’s activities in the part-physical and part-virtual hybrid
space. It is about this hybrid space that there is an astronomical amount of infor-
mation. The democratization of web information production by the general users,
for example, featured by the operation of Wikipedia, and the democratization of
GIS first initiated by the availability of Google Earth and then boosted by the
influential OpenStreetMap project incur an avalanche of collectable geographic data
(Miller 2010; Dijck 2009; Goodchild 2007).

The aforementioned differences, e.g., between corporeal and information or
single and plural, highlight some challenging aspects in studies that use the new
types of data. As it is not always clear to what extent the machine and the organism
collaborate in the endeavor, a unity, i.e., cyborg, is thus engaged. The hybrids are

3http://www.wired.com/2014/12/deep-learning-renormalization/.
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capable of acting as one harmonious unit. The action can be automative, such as
reports periodically sent by sensors, or can be communicative, such as human’s or
machine’s engagement in exchanging messages. The implications of the new
identity as cyborg could be enormous; “political-economic practices, the balance of
class power” or the “cultural and social life” would be reoriented according to a
cyborg’s capacities to produce and consume one specific commodity, information.
Extensive exploration of cyborgs is beyond the scope of this chapter. Here the
author takes a practical and incremental approach to delineate the types of cyborg
along three mechanical dimensions of the collectable raw data. New dimensions
would be incorporated as suited to future demands. As illustrated by previous
examples, the organism can be a single unit like individual people, or it can be a
representation of an organization with multiple internal units. Then the movement
of the cyborg can indicate location change of the material (i.e., corporeal) or the
immaterial (i.e., information). Lastly subjective intension is considered stronger in
the case when data is created manually compared to when automatically. Next a
digital identity diagram presents the three dimensions of a cyborg’s activities in a
hybrid space (Fig. 6.4).

The cubic consists of three dimensions for defining the identity of a cyborg
based on its form (corporeal vs. information), action (manual vs. auto) and structure
(single vs. plural). Currently a majority of Twitter users can be recognized to be
single human users that manually post tweets. These tweets can potentially reveal
their producers’ behaviors, but are different from traditional behavioral data from
survey-based approaches. However, a person could be responsible for an organi-
zation account, in which information other than the corporeal movement is more
important and the account represent a collection of internal corporeal units; thus in
the Information/Single/Manual corner. A portion of Twitter accounts is shared by
human members, thus the account identities should be put at the Information/Plural/
Manual corner; and the mobility reflected in the movement of tweets is

Fig. 6.4 An identity cube for
defining a cyborg’s activities
in a hybrid space
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informational rather than corporeal. In the instance of virtual twitter users, some
machines are configured to respond to external information requests therefore their
behavior is more manual. Others are programmed to automatically post messages
either regularly or when triggered by natural events such as an earthquake, thus
their behavior is auto. Also to be potentially put at the Corporeal/Single/Auto corner
are many wearable gadgets that monitor human health status or movements, which
are capable of posting messages about their monitored subjects to Twitter.

6.5 A Cybernetic Linkage Between Micro
and Macro Urban Cognitions

Another term for calling a cyborg is cybernetic organism. The behavioral nature of
the entity is better denoted by this alternative name. An organism’s action is dic-
tated by the goal it seeks to realize. Cybernetics which is a science of purposeful
systems was defined by Claude Shannon and Norbert Weiner’s works almost at the
same time (Shannon and Weaver 1949; Wiener 1948). Shannon and Weiner
worked on different projects but their research on communication and control and
the role of information in the process created the core of the field. While Shannon
simply called the new field “information theory”, Wiener created a mystical word
“cybernetics”.

Mechanically there is endless versatility of systems; cybernetics provides an
ontological definition of systems about their essence. From cybernetics’s perspec-
tive a system has defined goals to be achieved by utilizing its built-in functional-
ities. The system constantly adjusts its behavior until eventually hits the bullseye.
During World War II, Weiner worked on automatic aiming and firing anti-aircraft
guns, and from this work started to formulate the scientific field. The word ‘cy-
bernetics’ was firstly created by Wiener and with a root in Greek word for
‘steersman’ (Wiener 1954). Weiner, different from Shannon, expanded the realm of
cybernetics to beyond its engineering dimension, and suggested the theoretical
framework applicable to examining phenomenon in fields such as biology,
anthropology, and sociology.

Wiener saw the similarity between human and machinery in terms of utilizing
the means of communication and control to adapt to external stimuli. An automatic
anti-aircraft system senses the location of an airplane and repositions its aim
accordingly without operators’ involvement. Information is exchanged during the
process. It is the mechanism of using information communication as to control
behavior of a system that makes mechanical and biological systems comparable.
The mechanism is a core concept in cybernetics, called feedback. Information
technologies have been vehemently reshaping nature and society, and cybernetics
provides a useful lens for examining the implications of the changes through the
loop of communication, control, and feedback. Here the lens is fixed on cities and
the dynamics of their dwellers. After the wikification of GIS, geographical
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information provides critical situational awareness in making smart decisions (Sui
2008). Poore and Chrisman (2006) proposed a social theory of geographic infor-
mation based on cybernetic understanding of geographic information. Next the
paradigm of cybernetics is applied for a critical analysis of geographic information
in revealing human dynamics in cities. In general, techno-optimists view new
technologies like big data computation, cloud computing, or AI as powerful force
for making cities smart. It is hoped the inclusion of cybernetics would contribute to
the understanding of the smart city technologies.

The formation of a communication, control and feedback loop is critical for a
cybernetic system. A system issues a command for an intended behavior and
assesses the effect by receiving feedback; both the command and the feedback are
communicated as information. Weiner and many other cybernetics researchers
demonstrated extensively individual humans follow cybernetic principles in daily
activities. The same principles can also be applied to networked cities; for example,
automation technologies are implemented to improve the efficiency of transporta-
tion networks or water networks of cities. The author of this chapter argues the
becoming of cyborgs transforms the cognitive capacities of both the human tech-
nology users and the urban environment they dwell. Thus, a cybernetic linkage is
created between the micro (individual cyborgs) worlds and the macro (cities)
worlds. Next examples from Twitter users show possible linkages.

The social media platform of Twitter supports three very different communi-
cation modes simultaneously; the interactions among the three modes create a
highly dynamic information sphere. Twitter users’ interactions with others and
reactions to broadcasted messages are captured by the platform and are materialized
as explorable data. The digital traces left by interactivities of humans and machines
create a complex digital world (Pickles 1995). Millions of Twitter users or cyborgs
communicate with each other, receive information from connected machines, or
broadcast to the wild digital world. Correspondingly three layers of communication
exist simultaneously in the Twitter world. The more intimate conversations between
two cyborgs are supported by using the “@” symbol with the information receiver’s
user name. Then information can be received by creating a follower network.
Ultimately there is a broadcasting mechanism that can be used by anyone to send
information to the entire Twitter world by using the “#” symbol with keywords
(Bruns and Moe 2013).

The Twitter Company publishes sampled tweets through several APIs.
Georeferenced tweets that have native location information are streamed through
the geo API. By collecting tweets from this API, Zhang et al. (2015) draw a map of
geographic distribution of mobile Twitter users in the region from the
Washington DC to the New York City metropolitan areas. By analyzing traces left
by these users, Jurdak et al. (2014) concludes that these data help reveal Twitter
users’ activities at the city level. Xu et al. (2015) identified several typical trajectory
patterns that present activities in minute detail (see Fig. 6.2 for two examples).
These trajectories present that people moving from one location to another in a city.
The conglomeration of the apparent chaos at the individual level forms a harmo-
nious rhythm of a city. Figure 6.5 shows a temporal distribution of total tweets by
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plotting the total number of tweets in terms of collected data size against every
30 min time frame for 24 h. The geographic area is New York City, NY.

For a city to become smart or more adaptive to events, it has to be aware of the
city’s status under various conditions. In cybernetics, a system needs not only to
achieve its goal but also to maintain that goal under disturbance. If a city is looked
as an organic cybernetic system and its dwellers become smart sensors, then the
questions would be (1) whether the city has a stable status that can be quantified and
(2) whether the effect of external disturbance can be detected by smart sensors and
reflected as disturbance to the city’s status.

When the total number of tweets is quantified and plotted in a 48-hour contin-
uous fashion (Fig. 6.6), a rhythmic pattern emerges as the tweeting frequency rises
up and wanes following almost identical temporal frame. However, at the turn of
the last day of year 2013 there is a significant spike. It takes no effort to figure out
that during those hours people were celebrating the beginning of year 2014. New
Year’s Eve is a special day and if it is considered as a disturbance event, apparently
the collective behaviors of individual Twitter users (i.e., smart sensors) signify the
moment by the total amount of greeting messages. Many other studies based on
social media data, like from Flickr, also demonstrated the possibilities to use
massive open data for measuring city’s status. These measurements reveal different
facets of cities; potentially controls could be imposed according to information sent
by smart sensors to return cities to intended status.

Fig. 6.5 Total number of tweets collected every 30 min during 24 h from New York City, NY
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6.6 Project Cybersyn and the Cybernetic Possibility
of Smart Cities

Looking cities as living organisms and applying cybernetic principles for opti-
mizing cities’ functionalities, or using a more recent phrase as smart cities, is after
all an idea not new. There is historical experience that can be referred to for a
glimpse of the future. One of the most ambitious cybernetic projects to date was
Project Cybersyn, Chilean efforts to boost national economy through a cybernetic
approach from 1971–1973 (Medina 2011). The project was never fully imple-
mented and was terminated abruptly with the collapse of the Chilean government in
a military coup. During the heyday of Cybersyn, a central control room with
futuristic looking operation panels was built; a national wide telex network was laid
out; economic data from different places of Chile were centralized to the control
center; simulations were run to help experts in the command center for
decision-making; and eventually control commands were dispatched to targeted
places. Replacing the central control room with maybe a city’s information center
or a social media company’s data center, the telex network with the Internet,
economic data with far more versatile types of socioeconomic data, does the system
sound familiar? Cybersyn project ended tragically because a technologically sound
solution is not necessarily politically sound (ibid.). From a cybernetic perspective, a
core teaching from Project Chilean is that a system’s behavior is controlled by the
built-in goals. From the beginning, Project Cybersyn followed Allende’s govern-
ment’s determined goals for economic development (Salvador Allende was
President of Chile during that period of time). Conflict interests were not resolved

Fig. 6.6 Total number of tweets collected every 30 min during 48 h from New York City, NY
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and led to the violence at the end. Undeniably drastic technology advancement has
been made by human and it is likely not very far from delegating many city
management activities to machinery with AI capability. The author argues that
without socioeconomic structures for applying technology advancement for greater
good of society, the cybernetic future of smart cities could be a slavery future for
cyborgs. It is impossible to expand the discussion, but the author would like to call
attention to several aspects of smart city technology at the end of the chapter.

Firstly, message is not equal to information. A cybernetic world is different from
a Newtonian world and is governed by contingency. Both control and feedback in
cybernetics are realized through communication. Communication channels have
inherent noise. When command and feedback signals as information are transmitted
through the channel, noise adheres to the information. Message received by a
receptor of a cybernetic system is a conglomeration of information and noise. It is
thus a critical challenge to recover information from the message. In other words,
information is an organized structure. In the context of smart city, a possible
implication is that big data is not equal to big amount of information. More
important reading of this would come by applying the second order cybernetics,
i.e., cybernetics of cybernetics. First order cybernetics is rather mechanical and does
not fancy the subjective dimension of an information sender or receiver. Second
order cybernetics brings the subjectivity into the cybernetic system, and makes the
scientific principles more applicable to natures possessed by biological organism.
Thus, information as an organized structure is a formulated intension. Without the
existence of the second cybernetic loop, the intension might not be communicated.
Consequently, the intension of the information sender may be misinterpreted by the
receiver, or more seriously the inner cybernetic loop maybe manipulated
intentionally.

To discuss the relevance of second order cybernetics to smart city technologies,
let’s look at a technology that is indispensible to enable the intelligence. As
illustrated by Project Cybersyn, an economic decision was issued to a specific
Chilean place to change the development at the targeted place, geographic location
is one core technology to anchor the information layer to the physical environment
of a city. Location is only the basic dimension of a place as defined by John Agnew
(Agnew 1987). The other two dimensions are locale, the physical environment and
the socioeconomic status of a place, and a sense of place, an entirely subjective
perception of a place. Project Cybersyn already taught a lesson of a mechanical
implementation of technologies to realize intelligence. The author would argue that
smart city has to be not only an optimal technological structure but also a stable
political condition. If smart city is interpreted as a second order cybernetic
organism, the subjective factors can affect the entire technological realm of smart
city. VGI is claimed to compensate authoritative geographic information with
vernacular knowledge of a locale. Without technology support, the effect of VGI is
filtered out by the inner cybernetic configuration.
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Another interpretation of second order cybernetics is an observer-observed
relationship. The inner cybernetic system is observed by an observer as the outer
cybernetic system, and thence subjectivity become an influential element. The
openness and accessibility of current information technology implies that an infinite
number of first order cybernetic systems could be constructed out of the observer’s
intensions. In other words, out of people’s sense of place, smart city can have very
different meanings. Consequently, technology alone will not make city smart. There
will be political struggles among different versions of a smart city. An ideal status
out of the struggles would be a city that is robust to outer disturbance. But, the
struggles may complete a city with a run-away condition or a perpetual oscillation
status.

6.7 Summaries

Time geography can potentially facilitate a paradigm shift from population-based or
place-based approaches to individual-based or people-based approaches and
incorporate temporal dynamics into spatial analysis (Miller 2007; Peuquet 1994).
The incorporation of time geography is thus important to the construction of smart
cities. However, the technological realization of the conceptual design of a time
geographic framework has been restricted by the technology capacity. With the
enhancement in computing power, it becomes more practical to analyze human
behaviors at the individual level that taking into consideration of personal variations
(Armstrong 2004). Meanwhile, the increased Internet penetration into daily lives
continues to transcend the real/virtual dichotomy to a digital-physical hybrid reality
and cyborg is suggested to denote this unity (Coutrix and Nigay 2006; Fernback
2007). The physical space and cyberspace are co-constructed, and because of this
hybridization, flow as a concept depicting the constant interactions between both
spaces becomes important in understanding people’s self-construction through
place-making to concretize part of the space-time continuum as personal memories,
experiences and many other forms (Leander and Mckim 2003). In order to
accommodate human activities in hybrid spaces, the time geographic approach also
has been modified (Shaw and Yu 2009; Yu and Shaw 2008). Recently, more studies
have been focused on analyzing human dynamics by using Twitter data (e.g., Hasan
et al. 2013; Cho et al. 2011). Compared to previous studies using mobile phone
data, the using of Twitter data reveals more features about people’s activities within
and between cities (Jurdak et al. 2014). Potentially the integration of social media
data would help reveal more dynamics happening in a city. But identity as a crucial
part is not sufficiently addressed in most of these studies. There have been rich
amount of studies on identities of social media users, such as Kietzmann et al.
(2011) and Cho et al. (2011). Examining through the lens of cybernetics, the
identity challenge indeed challenges the possibility of technology based smart
cities.
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Ellegard (1999, p. 168) cites Hägerstrand (1991) for arguing, “On a macro-level,
human societies are, where they are located, formed by the continuous process of
individuals performing activities in their everyday life.” Traditionally to conduct
quantitative studies on relations between societies and individual has been chal-
lenging because of the difficulties in data collection about human behaviors. The
emergence of social media data, such as Twitter data, makes it possible to observe
millions of people performing activities in their daily life. However, while the
subject identity is generally unambiguous in traditional survey-based studies, the
subject identity in Twitter based studies is complex. In order to accommodate
the complexity, cyborg as an identity for entities that capable of acting in both a
physical space and a cyberspace is proposed. Because of this dual capacity, when
using the Twitter data for mobility study, attentions need to be paid to either the
corporeal or the information dynamics is discussed. More importantly, methods
need to be developed for categorizing the digital account into different groups.
Although the task is challenging, there are elements that could be relied on for
identification. For example, different spatial temporal patterns in data production or
the construction style of the textual contents could be leveraged.

The conglomeration of digital traces can present an overall rhythmic pattern of
urban life. The demonstration of an urban rhythm is valuable, as Lefebvre (1970)
states that the analysis of rhythm would provide insight into the question of
everyday life, the thing, the object, and life in the urban or rural environment.
Meanwhile the individual activities that collectively form an urban rhythm are also
collectable. Parkes and Thrift (1980) states that “in an urban context, the spatial
distribution of facilities, their temporal availability (in terms of opening hours) and
social institutions such as the working week conspire to create dynamic daily
geographies of availability, or more accurately, presence and absence of opportu-
nities.” It is thence interesting to explore whether social media data in particular and
open data generally could help shed light on the mobility patterns of individuals and
their accessibility to opportunities. By digging into potential mechanisms that form
the overall rhythmic patterns of urban dynamics out of millions of individual
performing their daily activities at different geographic places of a city, it might
help us understand the operations of cities which would lead to a future of smart
cities. These insights can be valuable when urbanization is accelerating around the
world. City is an organism with enormous complexity, if making city smart is a
goal to be achieved, cybernetics offers a theoretical framework to critically examine
the technological means for achieving such goal. The possibility of multiple ver-
sions of a smart city implies political struggles in order to dominate the future.
Whether smart city is achievable would partly depend on if conflicts were con-
solidated in the development.
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Chapter 7
A Location-Based Client-Server
Framework for Assessing Personal
Exposure to the Transmission Risks
of Contagious Diseases

Tzai-Hung Wen, Ching-Shun Hsu, Chih-Hong Sun, Joe-Air Jiang
and Jehn-Yih Juang

7.1 Introduction

Due to the complex interactions between human behaviors and the environment, it
is important to quantify the association between environmental exposure and
human health. Many studies have focused on identifying the spatial distribution and
risk factors of vulnerable populations by analyzing the exposure to a risk. These
results are often used to develop intervention programs (Weis et al. 2005). Previous
studies have shown that understanding personal mobility and routine behaviors are
key factors to assess individual environmental risk exposure (Gerharz et al. 2009;
Kwan 2009; Perchoux et al. 2013). These studies have indicated that different
behaviors by an individual may result in different levels of risk exposure. Therefore,
different personal behaviors should be incorporated into a framework used to assess
risk exposure (Kwan 2009; Setton et al. 2011). Recently, the rapid improvements to
information and communications technology (ICT), such as biological sensors,
geographic information systems (GIS) and global positioning systems (GPS), have
made it possible to quantify individual behaviors more comprehensively. Recent
studies have used ICT technology to quantify the effects of individual behaviors on
the risk of exposure to air pollution and volatile organic compounds (VOCs) (Fang
and Lu 2012; Leyk et al. 2009; Wang et al. 2009). These studies have improved the
differentiation of the types of individual mobility and routine behaviors in time and
space and have provided a detailed understanding of the risk of exposure to
environmental pollution (Gerharz et al. 2009; Dons et al. 2012; Steinle et al. 2015).
These findings provide an important reference for the designations of health poli-
cies and environmental regulations (Gerharz et al. 2009; Leyk et al. 2009; Steinle
et al. 2011).
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Most ICT-based studies focus on collecting behavioral data on individuals to
identify the association between individual behaviors and environmental exposure.
However, it is still unclear how to use ICT-based data to assess the exposure of an
individual to contagious infection risks, such as influenza or the measles (Weis et al.
2005; Perchoux et al. 2013). Contagious diseases are often transmitted by close
person-to-person contact. ICT-based data could capture mobility trajectories and
interpersonal interactions, which are important characteristics for understanding the
spread of infectious diseases (Stoddard et al. 2009). The mechanism of contagious
disease transmission involves complex social interactions and is therefore different
from the risk of exposure to environmental pollution. For example, acute conta-
gious diseases, such as H1N1 or SARS, have shorter latent periods and promptly
cause serious clinical symptoms. Moreover, the risk of exposure to air pollution and
volatile organic compounds (VOCs) is mainly caused by the exposure to the
environment and is not related to person-to-person contact. Complex human con-
tacts cause an exponential increase in the transmission risk during the initial period
of transmission of contagious diseases such as influenza A (H1N1) (De Silva et al.
2009; Lessler et al. 2009). Therefore, the risk of exposure to contagious diseases
may be proportional to the frequency and duration of human contact or visits
(Rothman et al. 2008). In other words, human mobility behavior is a key factor for
measuring the risk of exposure to contagious diseases. Different human contact
structures also influence the patterns of disease transmission (Funk et al. 2009;
Meloni et al. 2011; Wang et al. 2012; Wu et al. 2012). Therefore, incorporating
human mobility and person-to-person contact are necessary to measure personal-
ized risks of exposure to contagious diseases.

Previous studies on exposure risk assessment have focused on quantifying the
relationships between personal contacts and exposure dose (Dons et al. 2011, 2012)
and modeling the spatial distributions of exposure risk (Gerharz et al. 2009; Leyk
et al. 2009; Steinle et al. 2011; Wang et al. 2009; Liu et al. 2013). These studies have
been based on the decisions of individual behaviors and could be beneficial for
reducing personal exposure risk (Gerharz et al. 2009). However, other recent studies
have used smartphones as a mobile health platform to improve the timely delivery of
medical advice and health communication between health care workers and patients
(Martin et al. 2016; Stanton et al. 2016). Moreover, recent studies have also focused
on the interactions between human behaviors and disease transmission (Mao 2014;
Zhao and Wu 2014). People may change their behaviors to avoid infection if they
realize the increased risk of being infected during an epidemic period. Meanwhile,
changes to individual behaviors may also provide feedback on the dynamics of
transmission. For example, Mao (2014) established an agent-based model to inte-
grate information, disease diffusion and behavioral changes and simulate these three
diffusion aspects in metropolitan areas. These studies have concentrated on mea-
suring the impacts of behavioral changes on disease diffusion, although the mech-
anisms of these interactions remain unclear (Funk et al. 2009; Wu et al. 2012; Kiss
et al. 2013; Perra and Vespignani 2013). Perra and Vespignani (2013) used network
approaches to create a behavior-disease meta-population model to understand the
mechanisms of different societal reactions that trigger changes in the mobility
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behavior of individuals. Most of these studies have used computer modeling
approaches to simulate the impacts of behavioral changes of individuals on disease
transmission. However, how to broadcast epidemic information to individuals
effectively and monitor their behavioral changes promptly have not been fully
investigated or implemented. Applications (apps) on smartphones are now an
appropriate low-cost platform that can be used to collect personal behavior data and
transfer digital information between individuals (English 2016).

The client-server framework integrates with the transmission dynamics of the
disease simulation models and can reflect transmission risks due to behavioral
changes in a timely manner. Apps on smartphones are an appropriate platform for
individuals to effectively collect information on changes in personal mobility
behaviors. Through a location-based framework, individuals can also receive timely
risk alerts to assess their movement patterns and reduce their risks of exposure to
infection. Therefore, the purpose of this study is to establish a location-based
client-server architecture to assess the exposure of an individual to the risk of
contagious disease transmission. The specific aim is to integrate transmission
dynamics with mobility behaviors to develop a personalized exposure assessment
framework that will broadcast the individual risks of exposure to infection in a
timely manner. A hypothetical scenario of an influenza epidemic at a university
campus was used as a pilot study to demonstrate the feasibility of a location-based
client-server framework.

7.2 Methods

7.2.1 The System Architecture for Personalized Exposure
Assessment

A client-server architecture is adopted for the framework for personalized exposure
assessment (Fig. 7.1) and consists of two major components. The first component is
the is client-side smartphone-based exposure assessment module. We developed an
Android application to collect course enrollment records and real-time location data
to display personalized exposure scores. The second component consists of the
server-side database and the simulation model. The simulation model calculates the
personalized exposure score based on the course enrollment records or the real-time
GPS logs of individual mobility data from the client-side of the Android application.

We used the main campus of National Taiwan University (NTU) in a pilot study
to demonstrate the feasibility of the framework. Attending classes results in long
durations of face-to-face contact in an indoor environment and could increase the
risk of contagious disease transmission. Therefore, this study focused on analyzing
the spatial structures of class attendance behaviors. To represent the class atten-
dance behavior, we used class enrollment data from a major university in Taiwan.
The records of the students enrolled in courses were used to build the
origin-destination (OD) matrix used to capture the mobility of students around the
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campus. We then modeled the spatial interaction relationships among classroom
buildings. In addition, we also developed a GPS tracking module to record the
temporal and spatial mobility history of individuals in case they changed their
course schedule or were absent from classes. The exposure risk was measured based
on the parameters of disease progression and the contact frequency from the
individual mobility matrix. The flowchart in Fig. 7.1 illustrates that the server-side
epidemic simulation is triggered when a student is reported by the routine com-
municable disease reporting procedures of the Taiwan Centers for Disease Control
(Taiwan-CDC) or local health centers. Each student who installed the client-side
risk assessment module on their smartphone receives a personalized exposure score
when an epidemic outbreak occurs on the NTU campus.

7.2.2 Server-Side Epidemic Dynamics Simulation Model

The epidemic simulation consists of two components: (a) the building space-time
mobility network; and (b) the simulation of the progression of an epidemic. The
detailed procedure is described below.

Fig. 7.1 The client-server framework for assessing the personalized risk of exposure to
contagious diseases
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7.2.2.1 Space-Time Mobility Network

The class enrollment data included several tables: a list of students and departments,
a list of departments and buildings and student course enrollment records. Because
we focused on the disease transmission within department buildings, outdoor
courses were excluded from the dataset. Moreover, classes held on other campuses
were also excluded. Thus, all indoor lecture/seminar courses that occurred at the
main campus were included in our dataset. Our dataset included 24,975 students,
3214 courses, 190,469 registration records, 6059 classes, the locations of 75
department buildings, and the relevant information for these departments. We
summarized the data into several tables in a database, including the total number of
students who took classes in each building, the number of students moving between
each department building, and the geographical distance between each building. To
capture the potential contact frequency among students in different departments
each day, we summarized the different locations of classroom buildings for each
student from Monday to Friday to capture the mobility heterogeneity within one
week. The study constructed geo-referenced location networks based on the stu-
dents’ class locations and the degree of mobility among department buildings in
terms of the OD matrix. Furthermore, to capture the mobility heterogeneity within
each day, the matrix was further decomposed into different mobility networks in
two time-slices: morning (before 13:00) and afternoon (after 13:00). Finally, we
constructed a mobility network with 10 time-slices (2 time-slices/day � 5 days) for
one week for each student, which captures the variations within one day and
between days in a week (Fig. 7.2).

7.2.2.2 Simulating the Progression of an Epidemic

The four-state Susceptible-Latent-Infective-Removed (SLIR) mathematical model,
which integrates space-time mobility networks, was built to simulate the progres-
sion of an epidemic and determine the exposure score for each classroom building.
We proposed a network-based meta-population model to simulate the space-time
diffusion of an epidemic (Hess et al. 2001). The model is composed of various
subpopulations as nodes in a network, and the links between the nodes can rep-
resent the mobility of the individuals moving among these nodes (Meloni et al.
2011; Perra and Vespignani 2013; Tsai et al. 2010). In our pilot study at the
campus, a subpopulation is defined as a classroom building, and a link is defined as
the degree of mobility between classroom buildings. The epidemic status of an
individual is initially set at Susceptible (vulnerable to infection but not yet infected),
followed by Latent (infected but unable to infect others), Infective (capable of
infecting other individuals), and Removed (i.e., recovered, deceased, or otherwise
not posing any further threat).

The number of pathogens that Susceptible-to-Latent hosts carry are insufficient
to actively transmit to other Susceptible hosts. These numbers eventually reach
levels where hosts become Infectious, begin to infect other Susceptible hosts, and
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eventually move toward a Removed status. The dynamics of these four epidemic
states of classroom building i, Si(t), Li(t), Ii(t) and Ri(t), over time are expressed as
Eqs. 7.1–7.4, with the following descriptions.

dSi tð Þ
dt

¼ �bSi tð ÞIi tð Þ
Ni

�
X
j6¼i

bSi tð Þ W j; ið Þ tð ÞP
k W j; kð Þ tð Þ

Ij tð Þ
Nj

ð7:1Þ

dLi tð Þ
dt

¼ bSi tð ÞIi tð Þ
Ni

þ
X
j6¼i

bSi tð Þ W j; ið Þ tð ÞP
k W j; kð Þ tð Þ

Ij tð Þ
Nj

� hLi tð Þ ð7:2Þ

dIi tð Þ
dt

¼ hLi tð Þ � cIi tð Þ ð7:3Þ

dRi tð Þ
dt

¼ cIi tð Þ ð7:4Þ

Fig. 7.2 A conceptual diagram of the space-time individual mobility network
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Ni is the total population of classroom building i. The transmission rate b is a
constant representing the transmissibility of a communicable disease. Susceptible
individuals become Infected and acquire a Latent status (no clinical symptoms and
cannot infect others). The latent rate h is a constant used to determine the latent
period from Latent to Infective status (fever onset and begin to infect others). The
removed rate c is a constant used to determine speed of transformation from
Infected to Recovered. The outbreak of influenza A/H1N1 was simulated as the
hypothetical scenario in this study. The parameters of the epidemic progression
were set as b = 0.585, h = 0.32, c = 0.09 (Samanlioglu et al. 2009). We simulated
the transmission dynamics of the influenza A/H1N1 over 120 days after the first
infected student was identified.

To capture the frequency of contact among students in different classroom
buildings, the proposed SLIR model was used to reflect the effect of space-time
mobility (Eq. 7.1). For all i and j locations in a mobility network W(j, i), we

propose the concept of the geodemographic weight shown as W j;ið Þ tð ÞP
k
W j;kð Þ tð Þ

Ij tð Þ
Nj

to

measure the frequency of contact among students in different classroom buildings.
W(j, i) indicates the population flow from the locations of classroom buildings j to i
at time-slice t. The geodemographic weight refers to the proportion of the infected
students in classroom building j who move to building i. bSi tð Þ indicates the
number of infected cases in the classroom building i that results from one infectious
person at time-slice t. Therefore, the result of the multiplication in Eq. 7.1 repre-
sents the transmission risk of classroom building i due to the mobility of students
around the campus. Moreover, the force of infection ðkÞ is defined as the rate at
which susceptible individuals become infectious (Balcan et al. 2010; Sattenspiel
2009). Since the indicator captures the intensity of the disease transmission, it is
used as the score of the exposure to the infection risk in classroom building i at
time-slice t (Eq. 7.5).

ki tð Þ ¼ b� Ii tð Þ
Ni

ð7:5Þ

7.2.3 Client-Side Personalized Risk Assessment Module

We used smartphones as the platforms for the client-side risk assessment. The
platforms include (a) service registration; (b) the records of individual mobility, and
(c) the personalized exposure score.

7.2.3.1 Service Registration

We developed the service registration module to provide personalized service. Each
user account and their smartphone identifier, International Mobile Equipment
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Identity (IMEI), are created in a back-end relational database with the personal
account. Each user account can provide personalized services based on course
schedules, mobility behaviors, and exposure scores.

7.2.3.2 The Records of Individual Mobility

The smartphone app provides two modes for recording individual mobility:
self-reporting and GPS logs. Users can self-report their locations and the time of
visit using a map-based user interface for data input. Otherwise, users can use their
GPS receivers in the smartphones to record their locations. Both self-reporting data
and GPS logs transfer to the back-end database. The transferred information
includes the locations and time of the visit, the visit duration, and the cell phone
identifer IMEI code. Since the IMEI code is unique, we only use the code to reflect
the different behaviors among individuals rather than request any personally
identifiable information, such as name or gender.

7.2.3.3 The Score of Personalized Exposure to the Infection Risk

The exposure score in building i in one time-slice t, ki tð Þ, can be measured as the
force of infection (Eq. 7.5). Based on the records of mobility behavior of one
student k, we can create the list of buildings visited Bk ¼ i1; i2; i3. . .; inf g, visit time
Tk ¼ t1; t2; t3. . .; tnf g and visit duration (hours) Dk ¼ d1; d2; d3. . .; dnf g. Then, we
can determine the exposure in each building Rk ¼ k1; k2; k3. . .; knf g, and then

weight the exposure by visit duration Rk � Dk
24 . Figure 7.3 illustrates one student

that traveled among the buildings with different exposure scores. We can use the
trajectories of mobility of an individual to determine his/her exposure to the
infection risk. If student k visited n buildings within one day, the probability of not

having any exposure to the risk could be calculated as
Qn

i¼1 1� Rk;i � Dk;i

24

� �
.

Therefore, the exposure score of student k for the day is expressed by the following
equation (Eq. 7.6).

Ek ¼ 1�
Yn
i¼1

1� Rk;i � Dk;i

24

� �
ð7:6Þ
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7.3 Results and Discussion

The user case diagram is illustrated to demonstrate the interactions between users
and the system architecture in Fig. 7.4. A User, such as a student, registers their
account in the smartphone app, and the app then collects their mobility behaviors
and transfers this information to back-end database via WIFI or telecommunication.
The users ultimately receive the score of their exposure to the risk based on their
mobility behaviors when there is an epidemic outbreak. The competent authorities,
such as personnel at the health center, receive the confirmed cases from the disease
reporting system and trigger the transmission dynamics. The estimated transmission
risk of each building can be uploaded and monitored by the user’s smartphones. We
show the following results of the different scenarios based on user-side and com-
petent authority-side applications.

Fig. 7.3 An example of the tracking of the mobility of an individual to measure the personalized
exposure to the infection risk

7 A Location-Based Client-Server Framework … 141



7.3.1 User-Side Application

The personalized exposure to the risk is measured by either course schedule or
mobility records. Figure 7.5 show the results of different modes for visualizing the
spatial distribution of the exposure scores. Figure 7.5a illustrates the personalized
exposure to the risk based on an individual’s course schedule. The app also reports
the predicted risk over the next two days if the individual chooses to attend these
courses. Figure 7.5b illustrates the spatial distribution of the transmission risk in
each classroom building. Based on the risk map, an individual can choose to visit
the classroom buildings with lower transmission risks or avoid traveling near the
buildings with high risks.

In addition, the app also reports the risk based on the mobility behaviors from
the self-reporting or GIS logs in Fig. 7.5c. If a student appears with symptoms of
acute contagious diseases during the epidemic period, such as a cough or sneeze,
they can check the mobility trajectories around the campus over the past few days.
The app then reports the estimated exposure to the risk based on the mobility data.
The student could realize the possibility of getting infected on the campus. A higher
exposure score may represent a higher association between the mobility patterns of
the student and the risk of disease transmission.

7.3.2 Competent Authority-Side Applications

The results of the simulated transmission dynamics could also provide a competent
authority with the overall epidemic progression and the spatial and temporal dis-
tribution of the transmission risk. This information could be importation for policy
interventions. For example, Table 7.1 shows the NTU guidelines for epidemic

Fig. 7.4 A user case diagram demonstrating the interactions between the users and the system
architecture
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control measures based on different levels of epidemic alerts during the 2009
influenza/H1N1 pandemic. Phases 1 to 4 describe the different levels of an epidemic
and determine which control measures to implement, such as disinfection of
instruments and hands, quarantines or school closure. The temporal and spatial
estimated risk provides valuable clues to implement the appropriate measures.
Figure 7.6 shows the results of the scenarios from the authority-side applications.
Figure 7.6a shows the four-stage population dynamics, and the user can determine
the predicted scale of the epidemic peak and the estimated time to the peak.
Figure 7.6b shows the spatial-temporal distribution of the transmission risks in each
classroom building. Based on the map, the campus could be further partitioned into
zones with different risk levels, and the spatial clustering of the high-risk areas can
be identified. The classroom buildings in these focused areas could be considered

Fig. 7.5 Example scenarios from the user-side applications

Table 7.1 NTU Guidelines for epidemic control measures

Epidemic level Control measures

Phase 1 No case in the country Self-health management

Phase 2 Cases have occurred in the country but
no case on campus

1. fever screening
2. disinfection of instruments
3. avoidance of large-scale activities

Phase 3 Cases have occurred sporadically on
the campus

1. health authorities enter and are
stationed at the university

2. arrange quarantine locations

Phase 4 Clusters of cases on the campus 1. suspend classes or close the school
2. forbid large-scale activities
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for high-intensity disinfection or suspended classes. Figure 7.6c illustrates the
intensity of the interaction among buildings. The nodes and links in the map show
the high degree of mobility of students among these buildings. In other words, if
clustered infected cases occur in the red node, the blue nodes have the highest
priority for high-intensity disinfection to block the transmission chain.

7.4 Conclusion

Based on individual mobility behaviors, this study proposed a location-based
client-server framework to measure personalized exposure to the transmission risks
of contagious diseases at a university. Classes are the most common indoor activity
and result in face-to-face contact and increased transmission risk of acute conta-
gious diseases. We used a course enrollment database to generate a spatial and
temporal mobility network to reflect the heterogeneity of the contact frequency of
students among the classroom buildings. In addition, our framework allowed for

Fig. 7.6 Example scenarios from the authority-side of the application
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individuals to self-report their locations or use GPS logs to capture more accurate
information on mobility behaviors. Therefore, based on the epidemic simulation
and the individual mobility network, each student who uses their smartphone as a
personalized platform can understand the progression of the epidemic and make
better behavior decisions, such as wearing a face mask or reducing their contact
frequency, based on the personalized exposure scores from the server-side com-
putation. In sum, the framework presents complex interactions among the reception
of personal risk, behavioral changes, and epidemic progression. More scenarios can
be implemented in a future study to quantify the effects of risk reception or
behavioral changes on the progression of an epidemic.
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Chapter 8
An Exploratory Analysis of the Effects
of Spatial and Temporal Scale
and Transportation Mode on Anonymity
in Human Mobility Trajectories

Jennifer A. Miller and Brendan Hoover

8.1 Background

Advancements in location-acquisition technologies such as global positioning
systems (GPS), radio frequency identification (RFID), cellular phone networks, and
WiFi hotspots have resulted in significant increases in the availability of highly
accurate data on moving objects, with unprecedented high spatial and temporal
resolution. These location data are often studied as ‘trajectories’, comprised of a
series of time-stamped sequential locations. Moving objects of interest have
extended beyond the traditional scale associated with people, animals, and vehicles
to include weather events such as hurricanes (Dodge et al. 2012) and eye tracking,
where gaze trajectories are compared with computer mouse movement to study
human-computer interaction (Demšar et al. 2015).

As a result of the increasingly wide range of types of moving objects studied,
several different interdisciplinary communities are now focusing on issues associ-
ated with collecting, managing, visualizing, and analyzing spatio-temporal data
associated with moving objects. Originating from the relatively long history of
animal tracking and telemetry studies, ‘movement ecology’ has become a rapidly
growing subfield in ecology focused on understanding the “causes, mechanisms,
and spatiotemporal patterns of (organismal) movement and their role in various
ecological and evolutionary processes” (Nathan et al. 2008: 19,052). Within geo-
graphic information science (GIScience), ‘computational movement analysis’ has
recently emerged as a subfield that focuses on the development and application of
computational techniques for collecting, managing, and analyzing movement data
in order to better understand the processes that are associated with them
(Gudmundssen et al. 2012). ‘Trajectory data mining’ harnesses new computing

J. A. Miller (&) � B. Hoover
Department of Geography and the Environment, The University of Texas
at Austin, Austin, TX, USA
e-mail: jennifer.miller@austin.utexas.edu

© Springer International Publishing AG, part of Springer Nature 2018
S.-L. Shaw and D. Sui (eds.), Human Dynamics Research in Smart
and Connected Communities, Human Dynamics in Smart Cities,
https://doi.org/10.1007/978-3-319-73247-3_8

149



technologies to discover knowledge from trajectory data (Zheng 2015) with
applications mainly in location-based social networks, transportation systems, and
urban computing.

Depending upon the technology used to collect the data, the location information
can be represented by precise latitude and longitude coordinates (e.g., GPS data
from a smartphone or other device) or the catchment area of a single cellular tower
(e.g. call detail records (CDR) from cellular phones). These relatively low cost
location data have been used to explore human mobility patterns related to, for
example, urban planning (Steenbruggen et al. 2015), transportation infrastructure
(Wu et al. 2013), disaster planning/evacuation strategies (Ghurye et al. 2016),
potential disease spread (Oliver et al. 2015), and many other applications (see
review by Becker et al. 2013). Deville et al. (2014) introduced a framework for
using mobile phone data to calculate temporally explicit population data at the
spatial resolution of cellular tower service areas in order to supplement census data
and better understand human dynamics. Mobile phone data have also been used to
represent spatiotemporal human mobility dynamics in the context of the spread of
diseases such as malaria in Kenya (Wesolowski et al. 2012) and cholera in Senegal
(Finger et al. 2016). The spatial resolution of CDR data varies as a function of
population density. In their seminal study in an unnamed Western European
country, de Montjoye et al. (2013) reported CDR catchment areas ranging from
0.15 km2 in cities to 15 km2 in rural areas.

Higher precision GPS data, typically collected with user- or vehicle-carried
smartphones, have been used to study route choice behavior (Huang and Levinson
2015), the effects of built environment on physical activity and health (Collins et al.
2012; Carlson et al. 2015), to determine the risk of cycling injury (Strauss et al.
2015), to detect travel model (Xiao et al. 2015), and to provide social itinerary
recommendations (Yoon et al. 2011). Sila-Nowicka et al. (2016) explored
contextual information linked to GPS locations in order to identify “third places”
beyond home and work.

8.1.1 Location Privacy

While studies using mobile phone and GPS data have made important contributions
to a better understanding of human mobility and spatiotemporal dynamics in
general, there are significant issues associated with the distribution or availability of
these data. As often happens with technological advancements, the collection of
these data has preceded extensive study on how and what they can (or should) be
used for, as well as the privacy implications associated with them.

In particular, there are important privacy issues associated with location or
mobility data that can be traced to a single or very few individuals that are often
overlooked. Wernke et al. (2012) classify potential location privacy attacks based
on the information possessed by the adversary: single or multiple locations, con-
textual information, and historical information. Ma et al. (2013) provide defensive
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approaches for scenarios in which an adversary is passive and is given individual
mobility data as well as scenarios in which an adversary is active and physically
collects contextual and/or ancillary data along with the mobility data. In addition to
what might be considered superficially harmless privacy violations, an adversary
could use location data for malicious purposes such as stalking or opportunistic
criminal activities. Locations or movement patterns could also be used to make
inferences that have potentially negative implications, for example, repeated visits
to a medical clinic may be a concern for a prospective employer.

Measures that have been implemented to preserve privacy have been shown to
be superficial or ineffective. Location data are often released after they have been
‘anonymized’—which means that the trajectory has been stripped of any identi-
fying information such as name, address, and phone number. However, as Golle
and Partridge (2009) note, anonymity is “a useful but imperfect tool for preserving
location privacy” (p. 390). Personal points of interest (home, work) can still be
identified by mining trajectory data for movement patterns, and these points of
interest are often associated with unique individuals.

Using an extensive dataset of home and work locations in the U.S., Golle and
Partridge (2009) showed that at the spatial scale of a census block, the pair of home/
work locations is unique for a majority of the working population. At the scale of
census tracts, the pair of locations was uniquely identifying for only 5% of the
working population but at the much coarser county scale, the 44% of workers who
live and work in different counties are considerably more vulnerable to
de-anonymization. Zang and Bolot (2011) used anonymized CDR from 25 million
individuals across the U.S. to determine the “top N” locations at which calls were
recorded for each of three months. They found that when N = 2 (typically corre-
sponding to work and home locations), up to 35% of the individuals could be
uniquely identified. When N = 3 (they suggested the 3rd location typically repre-
sented a school or shopping related location), 50% could be uniquely identified.

It should be emphasized here that the concept of unicity or the ability to uniquely
identify a movement trajectory based on a small subset of locations of which it is
comprised is not equivalent to de-anonymization, but it is a requisite first
step. Quantifying the uniqueness of locations through which an individual moves is
necessary to better understand privacy implications associated with increasingly
available human mobility datasets.

In one of the first studies to address quantification of unicity of individual
trajectories, de Montjoye et al. (2013) used fifteen months of anonymized mobile
phone data (CDR) for 1.5 million individuals in a western European country and
found that four randomly selected spatiotemporal points were sufficient to uniquely
identify 95% of the individuals. Perhaps more troubling, they found that over 50%
of individuals were uniquely identifiable from just two randomly selected locations
(typically also corresponding to home and work). Song et al. (2014) found similar
results with a dataset of one week of mobility data for 1.14 million people (total 56
million records): 60% of the trajectories were unique using just two random points.

Due to data availability, most of the previous work on measuring ‘unicity’ or the
uniqueness of movement traces or trajectories has been with much coarser scaled
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cell phone data. However, even relatively coarse spatial resolution location data
such as that associated with call detail records (CDR), where ‘location’ is an area
defined by its proximity to a specific cell phone tower, can be used to uniquely
identify an individual. Locations of cell phone towers or antennae are based on
population density and the area associated with each one varies considerably. In
their study in a small (unnamed) European country, de Montjoye et al. (2013) found
that the reception or catchment area for an antenna ranged from 0.15 km2 in urban
areas to 15 km2 in rural areas.

It is important to note that uniqueness does not equate to re-identifiability and the
objectives of these studies were to examine how unique individual trajectories were,
not to actually de-anonymize them or re-attach an individual’s information to a
unique trajectory. However, the ability to measure uniqueness of locations on a
trajectory is an important prerequisite for re-identification (which would involve
correlation with an ancillary dataset) and therefore, represents a potential threat to
individual privacy.

8.1.2 Measuring Unicity

While a single widely used or standard measure of unicity has not yet emerged,
unicity has been measured in different ways, depending on characteristics of the
mobility dataset and research objectives. In studies similar to the research presented
here, unicity has typically been quantified by comparing a randomly selected subset
of points (either location or location + time) to points in the mobility trajectories;
unicity would be high if the subset of points matches very few other trajectories.
Unicity would be low (and location privacy less problematic) if the subset of points
matched many other trajectories. de Montjoye et al. (2013) measured ‘unicity’ as
the percentage of 2500 random traces that were unique given p random points
(p ranged from 2 to 5). Song et al. (2014) defined uniqueness of trajectories as the
percentage of all available trajectories that were uniquely associated with p random
points, which they varied from 2 to 6. While anonymity (or lack thereof) has been
studied with CDR data, as the previous examples show, it has not yet been more
extensively addressed with finer spatiotemporal resolution available as GPS loca-
tions from, e.g., smartphones (but see Rossi et al. 2015). These datasets could
potentially be far more unique and therefore more difficult to anonymize.

In addition to location and location + time, Rossi et al. (2015) also tested how
additional movement information derived from three different published mobility
datasets could be uniquely associated with individual trajectories. They calculated
distance traveled, average speed, and average angle of travel for a specific time
window and measured unicity as the average uniqueness over the whole dataset
using 1000 subsets of points (number of points ranged from 1 to 5) per individual.
They found that direction was the most unique movement parameter for all three
datasets, with five points able to uniquely identify 95% of the users.
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The degree of uniqueness of trajectories can vary as a function of factors such as
typical commuting patterns, transportation modes, and geographical region (which
also affects commuting patterns and transportation modes). While measurement
precision and geographic scale have been varied in order to assess their effects on
unicity of a mobility dataset, the influence of these other factors has rarely been
examined. Information on transportation modes associated with trajectory segments
has only recently been provided as a component of some mobility datasets,
although previous research has focused on inferring likely transportation modes
based on movement characteristics analyzed from the locations (Lin and Hsu 2014;
Zheng et al. 2010). Sila-Nowicka and Thakuriah (2016) used travel diaries and
mobility data for 358 users in Glasgow, Scotland to compare spatial patterns
between the original mobility data and generalized data that resulted from kernel
density estimation for four different travel modes (driving, walking, train, bus).
They calculated Pearson’s correlation coefficient for the original and generalized
data and the values ranged from 1.0 for train to 0.852 for walking. No previous
studies explicitly examined how different transportation modes affected unicity.

The importance of quantifying the ‘anonymity’ of a database has been a research
focus in information sciences far longer than the relatively new issue of unicity and
there are several widely accepted methods. The most commonly used method of
k-anonymity was introduced by Sweeney (2002) as a measure to increase anon-
ymity for non-spatial databases. When applied to spatial databases, it ensures that
any set of records (locations) for an individual is at least the same as k − 1 indi-
viduals. Generally, k = 2, ensuring that at least two trajectories are equivalent, but
as k increases, so too does the anonymity. Extensions of k-anonymity include
l-diversity and t-closeness (Li et al. 2007).

These measures are generally used to manage trajectory datasets (e.g., data would
be manipulated so that the level of anonymity reached the reported k level), but in
order to quantify the actual level of anonymity of trajectory datasets, a rigorous
analysis comparing random points from each trajectory to all other trajectories still
needs to be conducted. With trajectory datasets now available at one second temporal
resolution, the volume of these data can result in computationally intensive analysis.

In addition to removing any identifying information, ‘cloaking’ or other
obfuscation techniques have been used to add noise to or reduce the precision of
location data associated with mobility traces (Gambs et al. 2010; Ma et al. 2013).
While there has been extensive research on approaches to preserve location privacy
(see Kar et al. 2013; Seidl et al. 2016) most of the methods result in significant loss
of information and none has been considered to be broadly successful (Narayanan
and Felten 2014).

The research presented here explores issues related to privacy and identity
associated with more recently available high resolution GPS location data. We
quantified the unicity of GPS movement trajectories testing the effect of spatial
resolution and temporal resolution. In addition to location, we explored how
effective derived movement parameters such as direction could be for uniquely
identifying a trajectory. We also calculated unicity for different user-labelled
transportation modes and explored how it is affected by spatial resolution.
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8.2 Data

We explored these issues using GeoLife Trajectories (Zheng et al. 2008a, b, 2010),
a well-known mobility data of individuals in Beijing, China collected by Microsoft
Asia. This is an extremely dense dataset, with temporal resolution of *1–5 s and
spatial resolution of *5–10 m. For the first part of our analysis, we used only one
year of data (January 2009–December 2009) and the spatial extent of Beijing
(39.6°–40.2°N latitude and 116°–116.8°E longitudes) to remove users who traveled
outside of the city during this time period. This resulted in 71 users who had a total
of 7243 daily trajectories (number of locations visited within trajectories varied but
the mean was 1600). Here we use an individual’s daily trajectory (where a day is
considered to begin and end at midnight) as the basic trajectory unit; each begins
and ends at a time that is dependent on the individual’s daily activity.

The second part of our analysis focused on how unicity varied as a function of
transportation mode. Individual-labelled transportation modes (bus, subway, train,
taxi, car, walk) were only available for 69 individuals in the GeoLife dataset, so we
did not confine these trajectories to a certain year and therefore did not include
temporal information in the unicity analysis. Transportation mode was attached to
the appropriate section of an individual’s trajectory and we considered trajectories
to be separate if they were at least fifteen minutes apart even if they involved the
same transportation mode.

8.3 Methods

The basis of our unicity test involved extracting 500 sets of points of size n (n = 2, 3,
4, and 5 points) from each user and counting how many other trajectories contain
those points. The percentage of 500 sets of points that matched only one trajectory
was calculated and this was done for each of the 71 users for the four different point
sizes (n = 2, 3, 4, and 5). Our measure of unicity, u, was the percentage of 500
random points of size n that are contained in only one trajectory averaged across all
71 users. A unicity value close to 100 indicates a highly unique trajectory that could
theoretically be de-anonymized, or re-connected with identifying user information
more easily; a low unicity value suggests that the random set of points are contained
in several different trajectories and therefore would make de-anonymizing trajecto-
ries far more challenging. The amount of information from each point was varied—
we used just location (x and y), location + time (x, y, and t), and the direction (the
absolute angle for point i is measured between the x direction and the step built by
relocations i and i + 1).

The original latitude and longitude coordinates for these locations had a spatial
precision of six decimal places (*0.1 m). In order to test how spatial and temporal
resolution affected measurement of unicity, the geographic coordinates were
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coarsened first to four decimal places (*10 m) and the temporal resolution was
coarsened to 30 s, then further coarsened to three decimal places (100 m) and 60 s.
Additionally, the precision of the absolute angle measure was decreased from the
original (five decimal places) to three decimal places.

For the transportation mode analysis, unicity was calculated the same way,
except the n points were compared only to points labelled with the same trans-
portation mode. The same two levels of coarsening were applied to the geographic
coordinates, but temporal information was not used here in order to provide a more
general location comparison. The use of different transportation modes varied
widely. The 69 individuals collectively used a total of 12,291 transportation-
labelled trajectory segments, but the number of labelled trajectories per individual
ranged from 1 to *2800 (i.e., some individuals had only one transportation-
labelled daily trajectory, while others had several thousand). The mean use of each
transportation mode per individual, along with minimum and maximum, is given in
Fig. 8.1 (bars) along with the mean percentage of total trajectory sections per
transportation mode (line). Walking was the most frequently reported transportation
mode (52% of all trajectory segments) while train was the least frequently used
(2%). Cars represented only about 8% of all trajectory segments, but the mean
percentage of use across each individual’s trajectory segments was 15%, with a
minimum of 0% and maximum of 100% (i.e., at the extremes, some individuals
never used cars for transportation, while cars were the exclusive transportation
model for other individuals).

Fig. 8.1 The mean, minimum, and maximum of the percentage of each individual’s labelled
trajectory segments that was associated with each transportation mode (bars, left axis); and the
percentage of total labelled trajectory segments associated with each transportation mode (line,
right axis)
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8.4 Results

The mean unicity values associated with the size of each random point set and level
of coarsening for location, location + time, and direction (absolute angle) are
plotted in Fig. 8.2. In general, the locations on a trajectory were highly unique. 90%
of the random sets of just two points composed of only location (no timestamp)
were associated with only one trajectory. Adding the timestamp increased the
unicity of two points to 97%. When five points with location and timestamp were
used, the unicity increased to almost 99%. The implications for location privacy are
alarming, as these were randomly selected locations and not the ‘most visited’ that
might be associated with potentially more unique work-home pairs of locations.
Somewhat surprisingly, the angle of movement alone also had high unicity—when
the angles of four points were tested, the unicity (u = 66%) was similar or greater
than the unicity of location for CDR using two points as found in de Montjoye et al.
(2013) and Song et al. (2014). Five angle values could uniquely identify a trajectory
73% of the time, although coarsening the precision of the angle measurements had a
much more negative effect on unicity. More research is needed to address the
unicity of derived movement parameters separated from actual locations as a
potential privacy issue.

When just two points (no timestamp) were used at the first level of coarsening
(spatial precision reduced tenfold to *10 m), unicity was still almost 69%; when
the coarsened time (*30 s) information was added to location, the unicity was
similar to the original resolution (88%).

Fig. 8.2 Mean unicity for different types of information (location in blue, location + time in red,
and absolute angle (direction) in green) and different measurement precision (solid line is original
precision, dashed line is first level of coarsening, and dotted line is second level of coarsening).
The number of sample points compared is on the x-axis
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The final level of coarsening decreased the spatial resolution of an x/y pair
to *100 m and the temporal resolution was coarsened to one minute. The spatial
resolution here was closer to the resolution of the antenna reception areas used in
the de Montjoye et al. (2013) paper (where spatial resolution ranged from 115 m to
15 km), but the coarsened temporal resolution was still much more precise than the
one used in the CDR studies. As a result, using location + time for just two points
resulted in a high unicity (mean 80.3%), while five points increased the mean
unicity to almost 88%. Using just location (no timestamp), the unicity degraded to
32% for two points and 66% for five points.

Using four or five points, the first level of coarsened time + location had similar
unicity to the original precision location coordinates (93–94%), while coarsest
time + location was similar to the first level of coarsened location coordinates (86–
87%). Only one level of coarsening was used for direction, as unicity of the
absolute angle degraded substantially—unicity was only 5% when a set of five
points was used.

Unicity of trajectories (location only) associated with different transportation
modes is plotted in Fig. 8.3. We don’t include the results from trajectories labelled
with train, as it was only used by 20 individuals and represented only 2% of all
labelled trajectory segments. Walking had the highest unicity for all four point
sample sizes (u ranged from 86% for two points to 93% for five points). Subway

Fig. 8.3 Mean unicity for five transportation modes (subway is yellow, taxi is purple, bus is
green, walk is red, and car is blue) and three measurement levels (solid line is original precision,
dashed line is first level of coarsening, and dotted line is second level of coarsening). The number
of sample points compared is on the x-axis
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mode was the next most unique transportation mode, but had slightly higher unicity
with two sample points (85%) than for three points (83%) and five points only
increased unicity to 85%. Trajectory sections that involved taxis and cars had the
most constant unicity across all four sample sizes, ranging from u = 80% (taxis)
and 77% (cars) for two points to u = 82% (taxis) and 78% (cars) for five points.
These transportation modes were also relatively less frequently used (10% of all
trajectory segments involved taxis while 8% involved cars). Unicity associated with
buses increased from 77% with two points to 87% with five points.

The spatial resolution of the location coordinates was coarsened to the same two
levels as described above (10 and 100 m) in order to assess how unicity associated
with transportation modes was affected. Unicity for taxis and cars was only slightly
decreased at the first level of coarsening and unicity for both modes was fairly
constant across all sample sizes. Unicity did decrease substantially for taxis and cars
at the second level of coarsening, although unicity for cars remained higher than for
taxis (28–30% and 27–20%, for cars and taxis respectively). Unicity also decreased
marginally as the number of sample points increased for taxis and cars, although
this could result from their relative scarcity in the dataset.

Unicity for subways, buses, and walking decreased markedly (u was less than
60%) with the first level of coarsening. While buses and walking had similar unicity
across all sample sizes, subways had the highest unicity with just two sample points
(57%). At the coarsest level, unicity dropped considerably for all five transportation
modes, ranging from 31% for cars with two sample points to 12% with five points
for buses and subways.

8.5 Conclusion

With the much higher precision and spatial resolution of GPS data currently
available, two x/y locations are sufficient to be uniquely associated with a single
trajectory 90% of the time, adding the timestamp matches a single trajectory 97% of
the time. The three pieces of information—location + time—are so specific that
increasing the number of points to match to five increases the unicity very little
because it is already so high using just two points. The first level of coarsening for
location + time (*10 m spatial, 30 s temporal) has similar unicity to the original
resolution for just location coordinates, and when four or five points are used, the
coarsened location + time has slightly higher mean unicity. The location coordi-
nates (no timestamp) show the greatest increase in unicity when additional points
are used for matching. This suggests that there is a trade-off between location
resolution and amount of information (location points) available.

The relatively unique signature of derived movement information alone high-
lights potential location privacy issues even when location information (x/y) have
been removed from the dataset. Movement parameters such as speed, angle, and
step length have rarely been tested as potential identifiers of trajectories, but the
case study here focusing on absolute angle highlights their potential importance.
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Five absolute angle data points were uniquely associated with a single trajectory
72% of the time. This suggests that individual movement, irrespective of absolute
geographic location, can be identifiable with a sufficient level of precision of angle
measurements and data points. Future work should focus specifically on how
movement parameters could be used singly or together to identify a trajectory.

It was not surprising that unicity varies with transportation mode. Among the
five transportation modes used here, walking is the least constricted while subway
is likely the most constricted. Consequently, walking was the most unique travel
mode at the original precision, although unicity was greatly decreased as precision
decreased. This is particularly disconcerting given that walking individuals are
perhaps the most vulnerable in the broadest sense of potential privacy attacks. All
five transportation modes had unicity values of 78% or higher at original precision
for as few as two points. The effect of transportation mode and unicity would also
likely vary based on spatial characteristics of a city (ex., extent of sprawl), popu-
lation characteristics of a city, transportation infrastructure, climate and other fac-
tors. Unicity would also be expected to be dependent on the amount of time an
individual spends on a public transportation mode—shorter routes would presum-
ably have lower unicity while longer routes might have higher unicity (with
exceptions related to well-traveled but more distant destinations such as an airport).
The unicity associated with taxi, car, bus, and subway transportation modes was
similar at the original resolution, although there were far more occurrences of bus
travel in the data. However, at the first level of coarsening, taxi and car mode
continued to have high unicity, even higher than walking. This suggests that the
spatial scale at which roads are resolved contributes to higher unicity. More
research is needed to better understand how unicity varies with transportation mode
based on user-provided travel information.

This unicity study has particularly important implications for privacy and the
increasing availability of ‘anonymized’ trajectory datasets. This is one of the few
studies to explore unicity with higher resolution GPS data and it should be troubling
how unique a set of two location points can be. Coarsening the spatial and temporal
resolution reduces the unicity, but five points with x, y coordinates at the coarsest
resolution tested here were still uniquely associated with a single trajectory more
than 60% of the time. Our results also show an increase in unicity when more than
two points are used, presumably the “third place” (see Sila-Nowicka et al. 2016)
after points representing e.g., home and work can be an important determinant of
unicity. This effect persists with scale coarsening and when just angle of movement
is used. We detected a few instances where trajectories were duplicated in this
dataset, which could result in conservative estimates of unicity. Conversely, the
calculation of unicity will be dependent upon how many individual trajectories are
used in the comparison—as we use trajectories for *70 individuals, unicity could
potentially be overstated here. More research is needed on how calculation of
unicity is affected by dataset characteristics like number of individuals and trajec-
tories, geographic region, infrastructure, and social factors that affect movement
patterns.
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It is important to note here that the focus of this study was not to re-attach user
information to trajectories, it was just to examine how unique trajectories were
based on different types and levels of information stored with or derived from them.
Problems with anonymizing published mobility datasets have already been high-
lighted using the relatively coarse spatial resolution of call detail records. These
privacy issues will only be exacerbated as higher quality GPS location datasets
become increasingly available. The dataset used here represents trajectories for 71
and 69 individuals (transportation mode data), which may be too small to make
inferences about unicity. GeoLife was not originally collected for studies focused
on location privacy, although it has been used in similar studies (Rossi et al. 2015).

In addition to measuring unicity of location and location + time, further study is
needed on how different factors such as transportation mode and movement
parameters affect unicity as well as potential implications involving linked datasets
from social surveys. While each of the issues addressed here focuses on a single
dataset for the case study, we would expect the results to be broadly applicable to
other similar mobility datasets.
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Chapter 9
Uncovering Geo-Social Semantics
from the Twitter Mention Network:
An Integrated Approach Using Spatial
Network Smoothing and Topic Modeling

Caglar Koylu

9.1 Introduction

Advancements in mobile technology and wide use of online social networks have
enabled large scale structural and geographic analysis of social ties and human
communication. Previous studies utilized user generated textual communication
data such as geo-referenced tweets and messages exchanged in online platforms and
metadata from call detail records to study the effect of geographic proximity on
social interactions (Backstrom et al. 2010; Han et al. 2017); the influence of
information diffusion and social networks on real-world geographic events such as
demonstrations, protests, and group activities (Vasi and Suh 2013); and structural
and geographic characteristics of the communication network (Kylasa et al. 2015;
Takhteyev et al. 2012). Although such studies use information flows to model
social interactions, they often are content agnostic—ignore the content of the
information exchanged between the individuals of the network (Hansen 1999).
However, user generated content can indicate underlying interpersonal, ideological,
structural and even geographic relationships between people (Lin et al. 2016).

User generated content have been the focus of researchers in information and
communication sciences as well as computational linguistics. Despite the efforts
that incorporate latent semantic analysis and probabilistic models to extract com-
mon topics and themes from large textual data, there has been little work (Chen
et al. 2016; Kim et al. 2016) that focus on understanding of geo-social semantics of
interpersonal communication, i.e., how the semantics of information vary based on
the geographic locations and communication ties among individuals.

This paper introduces an approach to extracting and visualizing geo-social
semantics from a geographically-embedded communication network. Different
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from the previous work that examine the geographic variation in the content pro-
duced by individuals, this paper presents an analysis of reciprocal conversations
among individuals using an integrated approach of spatial network smoothing and
topic modeling. To demonstrate the approach, over 700 million geo-located tweets
in the U.S. from Aug. 1, 2015 to Aug. 1, 2016 were analyzed. First, geo-located
tweets were preprocessed to extract mention tweets between personal accounts.
Second, a geo-located reciprocal mention network was constructed in which a node
represents an individual and a link represents the collection of mentions and replies
between two individuals. Within the geo-located reciprocal mention network, each
individual was assigned to an areal boundary (i.e., county) for sustaining the pri-
vacy of the user and make use of place-tagged tweets. Messages among every pair
of individuals were then combined into a collection of documents such as chat
histories. Third, probabilistic topic modeling was performed on the collection of
documents to classify each chat history into a multivariate set of topics with dif-
fering probabilities. Fourth, the individual-to-individual reciprocal mention network
with classified conversations was summarized into an area-to-area network by
smoothing the ego-centric network of reciprocal connections per area. Finally,
topical probabilities were calculated and mapped for each area to reveal geographic
and semantic patterns of communication.

9.2 Background and Related Work

In the following sub-sections, the use of Twitter as an interpersonal communication
network is discussed, and a review of related work that examines the structural,
geographic and semantic patterns of communication networks is provided.

9.2.1 Twitter as a Communication Network

Due to data availability and functional relationships between its users such as
follow, reply, mention and retweet, Twitter has become one of the most studied
communication networks. Follower, favorite and retweet functions are often used
for broadcasting information and studying the process of information diffusion. On
the other hand, the form of direct communication among individuals is either
through private messages or replies and mentions. While a reply is a response to
another user’s tweet that begins with the @username of the person that she/he is
replying to, a mention is a tweet that contains another user’s @username anywhere
in the body of the tweet. Mentions and replies allow users to join conversations on
Twitter, which social interaction could be inferred as a means of direct personal
communication. The context of communication can also be inferred by close
observation of the textual content of the messages being exchanged.
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Previous studies (Compton et al. 2014; Jurgens 2013; Yamaguchi et al. 2013)
revealed that user mentions on Twitter occur between users that are in close geo-
graphic proximity. To understand the structural characteristics, Kato et al. (2012)
compared the favorite, follow and mention networks and found that all three net-
works are scale-free in degree distribution; and they reveal similar predominant
network motifs that highlight mutual links. Cogan et al. (2012) reconstructed
evolving graphs of user mentions and replies on Twitter around a particular mes-
sage content and found two common typologies. The first one is “path”, which
illustrate back-and-forth conversations in a group of connected users. The second
typology is “star”, which corresponds to conversations where a single user gener-
ates a tweet to which a large number of people reply, however, the users do not
respond to each other’s replies. This paper focuses on the “path” typology, to study
reciprocal communication among the users through the use of user mentions on
Twitter.

9.2.2 Topic Analysis

A variety of methodologies including wavelet analysis (Weng and Lee 2011),
principal component analysis (PCA) (Kondor et al. 2013), support vector machine
(SVM) (2010) and generative models (Eisenstein et al. 2011) have been used to
provide automatic or semi-automatic detection of relevant themes from Twitter
data. Computational and semantic analysis techniques have been developed to infer
human behavior, ideological and attitudinal similarity between individuals (Adamic
et al. 2014), common topics and way of speaking (McCallum et al. 2007), and
group identities (Tamburrini et al. 2015). Moreover, semantic analysis and proba-
bilistic models such as Latent Dirichlet Allocation (LDA) (Chae et al. 2012; Hu and
Ester 2013; Hu et al. 2015; Liu et al. 2013; Pozdnoukhov and Kaiser 2011; Sakaki
et al. 2010; Zhang et al. 2009) have been successfully employed to detect geo-
graphic events, recommend places, and friends based on user location, and simi-
larity of shared content between users in social media posts.

LDA is based on term frequency-inverse document frequency (TF-IDF) (Salton
and McGill 1983), which is a statistic that takes into account the frequency of words
in the corpus and reflects how important each word is to a document in a collection
of documents or corpus. The TF-IDF value increases proportionally to the number
of times a word appears in a document. A tweet can contain up to 140 characters
which do not allow multiple co-occurrences of words being used within the same
tweet. Thus, training a topic model with short documents (i.e., individual tweets)
results in unstable classifications with increased uncertainty due to the severe data
sparsity (Yan et al. 2013). Several methods have been proposed to address the issue
which suggest combining multiple tweets into document bins. Grant et al. (2011)
aggregated tweets into buckets based on a group of similarity measures. Hong and
Davison (2010) showed that training a topic model on aggregated tweets by users
provide a higher quality and significantly better performance in classifying tweets.
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In addition to aggregating tweets by similarity and user, Malik et al. (2013) com-
bined tweets into bins that cover a given time range which allows the discovery of
temporal changes in topics. Gerber (2014) employed space-time binning and
compiled tweets into a single document based on a time window and a spatial
neighborhood. Different from these studies, in this paper, tweets exchanged among
a pair of individuals are combined into a document such as a chat history, and topic
modeling is performed on the collection documents in order to discover themes of
conversations.

9.3 Methodology

9.3.1 Data Cleaning

The Twitter Streaming API is used to collect geo-located tweets using a geographic
bounding box. Tweets with exact geographic coordinates (geo-tagged tweets) and
place names (place-tagged tweets) which correspond to an area (e.g., city, neigh-
borhood) are used, while place-tagged tweets at state or country level are disregarded.
Geo-located tweets are preprocessed to extract mention tweets between personal
accounts. The metadata provided by the API is used to filter the tweets and users.
Each tweet includes an attribute that contains whether the tweet was generated using
an external application, and what that application was. A review of the contents
produced by each of these applications is performed to filter tweets from
non-personal user accounts such as TweetMyJobs, which is used to recruit
employees, local weather reports, emergency reports, traffic crash reports, news feeds
and etc. Also, tweets generated by a number of external applications (e.g., Foursquare
and Instagram) are removed. Most of those tweets produced by external applications
do not include conversational context. For example, Foursquare enables automatic
generation of a tweet’s content with a standard text to indicate a user’s location: “I’m
at Smyrna; TN in Smyrna; TN”. In addition, tweets from users with more than 3000
followers are removed to prevent any bias caused by a large number of user mentions
attracted by a few users, i.e., celebrities (Lansley and Longley 2016).

9.3.2 Identifying and Locating Pairs of Reciprocal
Communication

One can construct an individual-to-individual communication network, where a
node represents a user, and a link represents a tweet sent from user A to user B
(whom user A mentions or replies to). Replies and mentions are embodied within
the message of the tweet and can be downloaded using the Twitter’s streaming API.
A geo-located tweet includes only the location of the sender who mentions or
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replies to another user (recipient). A representative location of the recipient in a
mention can be derived only if the recipient has at least one geo-located tweet in the
sample. In this paper, tweets from users who mention and reply each other at least
once, and whose locations are known are used.

Since individuals are mobile, locations of tweets from each user are variable
across space. A geo-located reciprocal mention network is constructed in which a
node represents an individual and a link represents the collection of mentions and
replies between two individuals. Within the geo-located reciprocal mention net-
work, each individual is assigned to an areal boundary (i.e., county) for sustaining
the privacy of the user and make use of the place-tagged tweets that are in lower
resolution (i.e., an areal boundary instead of exact coordinates). Tweet locations are
overlayed with census data (e.g., county boundaries) to identify a home area (e.g.,
county) for each user based on the most frequent tweet location. Another commonly
used strategy is to determine the home location based on tweets posted at night time
where individuals are assumed to be home. In this paper, geo-located tweets with
exact coordinates and place names that corresponded to an area at least at city scale
are used.

9.3.3 Topic Modeling of Interpersonal Communication

Messages among every pair of individuals are combined into a collection of doc-
uments such as chat histories. To classify the content of each chat history, a
probabilistic topic model, LDA is performed. LDA provides a model of documents
that assumes a collection of k topics defined as a multinomial distribution over
words. In this paper, a document corresponds to a chat history which contains all
the mention and reply tweets exchanged between a pair of users. This strategy
allows classifying conversations rather than tweets from a user, tweets from certain
time periods, or tweets from certain locations.

P ZjW ;Dð Þ ¼ WZþ bw

total tokens in Z þ b
� DZþ/

For each possible topic Z, P ZjW ;Dð Þ is the probability that word W came from
document D, which is calculated by the multiplication ofWZþbw (i.e., the frequency
of W in Z), by DZþ/ (i.e., the number of other words in document D that already
belong to Z). b and bw are hyper-parameters that represent the chance that word W
belongs to topic Z even if it is nowhere else associated with Z (Blei et al. 2003).
Based on this formula, LDA iteratively goes through the collection, word by word,
and reassigns each word to a topic. Words become more common in topics where
they have higher frequencies; and thus, topics become more common in documents
where they occur more often. After each iteration, the model becomes more con-
sistent as topics with specific words and documents. The model eventually reaches
an equilibrium that is as consistent as the collection allows. However, it is not
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possible to obtain a perfectly consistent model because topics and words do not
have a one-to-one relationship (Underwood 2012). Mallet toolkit (McCallum 2002)
is used to implement the LDA model and include stop words (e.g., commonly used
words such as “the”, “of”, “am”) from 28 languages prior to training the model. The
topic model classifies conversations among each pair of individuals (i.e., all of the
tweets between two users) with a mixture of latent topics in differing probabilities.
For example, the conversations between an individual i and j might be classified as
50% about sports, 20% about fashion, 10% about food, and 10% about the other
topics.

9.3.4 Estimating Topical Probabilities Over Geographic
Areas

Once the conversations among each pair of individuals are classified into a set of
topics, one can calculate the average topical probabilities per unit area. For
example, among 1000 reciprocal user pairs in Kings County NY, one can calculate
the average probability of a topic such as football, by simply adding the probability
of the topic per user pair, and dividing the sum by the total number of user pairs.
However, because of the variable population density some counties (or areas) will
have a small number of user pairs. Thus, sparse sampling of the reciprocal user
pairs across small areas (i.e., the small area problem in spatially-embedded net-
works) result in spurious variations, where a single node or connection is often too
small (with insufficient data) for deriving stable statistical measures. To address the
problem, adaptive kernel smoothing can be applied to network data in order to
compute and map graph measures both in space (Koylu and Guo 2013) and
space-time (Koylu et al. 2014). An adaptive kernel allows expanding the search
space to include reciprocal connections of the geographic neighbors when the initial
search space is found to be insufficient. This paper utilizes an adaptive kernel
smoothing approach to consider connections from nearby areas. The approach is
explained in the following sub-sections.

9.3.5 Neighborhood Selection and Kernel Smoothing

Neighborhood selection is the process of determining the reciprocal connections of
each area which we can define as the ego-centric network. The ego-centric network
includes not only the user pairs that both users reside within the same area but also
the pairs that one of the users is in the area while the other user resides in a different
area are also included. A major disadvantage of an adaptive kernel approach is
over-smoothing the characteristics of areas with sparse observations especially
when there is an area with dense observations in close geographic proximity.
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For example, when the ego-centric network of a rural area includes reciprocal
connections from a nearby urban setting, the network measure or topical proba-
bilities for the rural area will resemble and be dominated by that of the urban area.
Also, it is likely that the content of conversations in a rural area will be different
than the conversations in an urban setting.

In order to limit the influence of areas with higher density of connections on the
areas with sparse connections, a similarity threshold based on connection density is
used in the neighborhood selection process. The distribution of the number of user
pairs for all areas is considered, and one standard deviation of gross flow per area is
used as the similarity threshold. Alternatively, one can incorporate a measure of
topological similarity such as one that considers the network structure (e.g., triads),
or measures such as centrality and clustering coefficient. Neighborhood selection
and the adaptive kernel smoothing algorithm are introduced below.

Description of the Neighborhood Selection and Smoothing Algorithm

Definitions:

Ai The area i for calculating the network measure. Ai 2 A (the total set of
n unit areas, i.e., counties).

t Neighborhood size threshold based on gross volume of flows.
WFi The number of reciprocal pairs within Ai.
r A similarity threshold to evaluate whether to include or not include a

geographic neighbor into the neighborhood for smoothing. The standard
deviation of WFi is used as the threshold.

N (Ai, t) The t-size neighborhood of an area Ai, N (Ai, t), t > 0, is defined as the
smallest KNN ðAi;KÞ ¼ fAj 2 A and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðWFi �WFjÞ 2
p

\rg that has a
total size

P

Sq [ t:
LF (Ai, t) The list of flows within, and in and out of the neighborhood of N (Ai, t).
B (Ai, t) The bandwidth of the t-Size Neighborhood of Ai, is the radius of the

smallest circle centered on Ai that covers all areas in the N (Ai, t).
K Kernel function. Uniform function is used where all weights = 1 in the

neighborhood.
F (Ai, t)

PLFðAi;tÞ
f Vol:ðf Þ �weightðf Þ: The weighted total volume of flows within,

and in and out of the neighborhood of N (Ai, t). In a kernel function
(other than uniform) the weight of a flow can be calculated by the
distance from the centroid of the area to the mid-point of the flow.

Steps:

(1) Compute WF, the number of reciprocal pairs within each unit area and r, the
standard deviation of number of reciprocal pairs for all units.

(2) Construct a Sort-tile-recursive (STR) tree for finding k-nearest-neighbors.
(3) Determine the neighborhood
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i. FOR each area Ai:
ii. IF WFi  < t

iii. Sort the nearest neighbors of A
iv. FOR each neighbor j
v. IF

vi. Add j into N (Ai, t):
vii. FOR each flow in Fj

viii. IF flow does not exist in F (Ai, t):
ix. Calculate flow weight based on K 
x. Add [flow * weight] into F (Ai, t)

Given a positive neighborhood size threshold t based on the number of recip-
rocal pairs, a t-size neighborhood is derived for each area Ai Є A, which is the
smallest k-nearest-neighbor neighborhood of Ai (including itself) that meets the size
constraint.

9.3.6 Calculating Topical Probabilities Per Area

Given the neighborhood and the list of reciprocal pairs, LF (Ai, t), the topical
probabilities per area can be calculated by using the following formula:

Pz Aijhð Þ ¼
PFðAi;tÞ

Fij2LFðAi;tÞ;i 6¼j f ði; jÞ � pzði; jÞ
FðAi; tÞ

Pzði; jÞ is the probability of topic z in conversations among the users i and j,
which at least one of them reside in the neighborhood of Ai. LF (Ai, t): is the list
of reciprocal pairs in N (Ai, t) (i.e., the neighborhood of A), and fA is the number of
reciprocal pairs in the neighborhood N (Ai, t). PZ Aijhð Þ is the average probability of
topic z given all the topical probabilities ðhÞ in N (Ai, t).

9.4 Results

Table 9.1 illustrates the descriptive statistics of the geo-located tweets within the
Contiguous U.S. from Aug. 1, 2015 to Aug. 1, 2016. After the data cleaning and
processing, there were 2,675,130 reciprocal contacts (distinct pairs of users that
exchanged tweets among each other) with 33,141,460 mention tweets exchanged
between those contacts. Similar to the findings of the previous work, the amount of
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communication greatly decreased by increasing geographic distance. While 50% of
the geo-located reciprocal communication pairs were within the same county and
77% were within the same state.

9.4.1 Topics of Interpersonal Communication

To evaluate the influence of parameter selection in the results of the topic model, a
set of topic models were trained using 20, 50, and 100 topics with 2000 iterations.
The topical overlap among the models with different parameters were evaluated
using cosine similarity. The model with 50 topics was selected based on an eval-
uation of overlapping topics within the model as well as the distinctness of the
topics as compared to the models with 20 and 100 topics. Measures of probability
(P), entropy (E) and corpus distance (CD) were used to interpret the topic modeling
results. The probability of a topic represents the proportion of the corpus assigned
to the topic, and calculated by the ratio of the number of word tokens assigned to
the topic, to the sum of the token counts for all topics. The most interesting topics
reside within the range of non-extreme values whereas extreme values indicate
unreliable topics. A small probability indicates that a topic may not be reliable
because we do not have enough observations to examine the topic’s word distri-
bution. On the other hand, a large probability indicates extremely frequent topic,
which could be considered as a collection of corpus specific stop-words. Document
entropy illustrates whether a topic is distributed evenly over conversations among
many users (high entropy), or occur a lot in a smaller number of conversations (low
entropy). Corpus distance measures how far a topic is from the overall distribution
of words in the corpus. A greater corpus distance means the topic is more distinct; a
smaller distance means that the topic is more similar to the corpus distribution.

Table 9.2 illustrates thirteen topics that were selected based on a probability
range of 0.01 and 0.03 (the median probability of all topics). The table includes
both the words and metrics of each topic. Words are ranked by their probability of
occurrence from the highest to the lowest. One can infer the latent topic using the
combination of the words that commonly co-occur. Some of the latent topics such
as “friends & family” and “couples” do not contain words that can be used to infer

Table 9.1 Tweet and user statistics

Total tweets 700,078,319 Users 6,570,305

Tweets with mentions 221,030,872 Users > 3000 followers 249,847

Geo-located user mentions 71,438,987
(32%)

Users with tweets in only
one county

1,433,870

Tweets exchanged among
reciprocal contacts

33,141,460
(46%)

Users mentioned another
user at least once

4,719,197

Reciprocal contacts 2,675,130 Users with reciprocal
contacts

1,539,396
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the context of the conversation. These topics are formed by language elements used
in conversational context including social media acronyms (e.g., bc, ppl, ily, idk,
and etc.), or words in particular dialects (e.g., yall, bruh, ima, finna, and etc.). Latent
topics of “football” and “civil rights” are among the most common topics. Although

Table 9.2 Thirteen latent topics with words and diagnostics measures P: Probability, E: Entropy,
CD: Corpus distance

Topic Words P E CD

Football Game, team, year, win, play, football, season, qb, won,
games, big, fans, teams, beat, years, week, nfl, guy,
coach, defense

0.035 10.66 1.48

Civil rights Black, white, point, agree, women, isn, read, law, ppl,
wrong, police, guns, problem, kids, racist, country,
understand, true, cops, matter

0.030 10.54 1.65

Friends and
family

Literally, bc, cute, tho, wow guys, wtf, true, ily, crying,
wait, rn, idk, tweet, mom, thought, funny, ugh, honestly,
bye

0.025 12.39 0.91

Couples Baby, babe, beautiful, cute, wait, birthday, amazing, bae,
sweet, girlfriend, perfect, heart, boyfriend, wcw, lucky,
boo, months, princess, blessed, gorgeous

0.023 11.42 1.76

Weather Snow, rain, weather, nice, cold, live, beach, storm, water,
north, winter, south, week, long, beautiful, west, fun,
year, weekend, hope

0.021 9.10 1.83

Faith Sis, church, jesus, twug, amen, pastor, lord, bless, faith,
blessed, christ, worship, plz, family, pray, twugs,
cuffmedanny, praying, sunday, word

0.021 8.27 3.22

NBA Team, game, year, lebron, win, play, curry, player, cavs,
warriors, nba, kobe, won, steph, season, kd, games,
finals, tho, ball

0.021 10.12 1.70

College
sports

Congrats, team, luck, coach, game, win, boys, season,
year, big, work, job, congratulations, girls, school,
awesome, ready, support, week, 2016

0.019 10.58 2.05

Baseball
and hockey

Game, team, year, win, baseball, season, games, play,
cubs, fans, mets, guy, hockey, guys, series, won, years
trade, teams, big

0.018 10.66 1.32

Learning Team, students, work, awesome, join, excited, meeting,
learning, support, event, amazing, community, check,
sharing, congrats, ready, thx, job, fun, share

0.018 10.47 2.12

Primaries Trump, vote, Hillary, Bernie, Cruz, Obama, Gop,
president, party, Clinton, voting, Sanders, won, win,
support, America, country, Donald, candidate, agree

0.016 10.17 1.96

Driving Work, drive, money, pay, buy, ride, bike, lot, driving,
nice, truck, parking, city, cars, house, park, bus, gas,
street, live

0.012 11.36 1.49

Drinking Beer, drinking, cheers, photo, wine, drink, coffee, nice,
ipa, bar, beers, food, awesome, dinner, enjoy, fun, tap,
delicious, lunch, bottle

0.010 9.77 2.64
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the data was captured during the primary elections, mentions about primary elec-
tions and candidates is among the low probability topics. Main reason for having a
low probability distribution for political topics may be that the majority of political
or election related conversations are likely to be among users who do not share
geographic locations of their tweets. We can also attribute the lower probability for
election related mentions to the fact that most election related content are produced
and retweeted within highly segregated partisan networks where there are limited
connections and conversations among left and right leaning users (Conover et al.
2011; Grabowicz et al. 2012). On the other hand, user mentions in a political
context often occur within a single heterogeneous cluster of users in which opposite
views interact with a much higher rate than in retweet networks. However, these
clusters have been observed to be less dense than more homogenous clusters of
retweets (Conover et al. 2011).

Latent topics derived by the topic model are often vague in terms of the senti-
ment and context of conversations. This is due to the loss of sentiment and context
as a result of the bag of words approach used in topic modeling. For example,
words such as won, vote, voting, win, support and agree are used with any of the
candidates, however, the context for their usage is lost.

Table 9.3 represents outlier topics with high and low probabilities. “Birthday”
topic has the highest probability among all topics, and represent happy birthday
messages and celebrations. “Food” and “Fashion” related conversations are also
quite common among the users. On the other hand, low probability topics indicate
rare mentions. The two topics with the lowest probability represent mentions in
languages other than English, i.e., Arabic and Spanish.

Table 9.3 Example outlier topics (high and low probability)

High probability topics

Topic Words P E CD

Birthday Birthday, hope, pretty, bday, beautiful,
amazing, hbd, ily, gorgeous, awesome, enjoy,
lots, babe, sweet, aw, wonderful, fun, wait,
congrats, guys

0.111
(the highest
prob.)

13.04 2.37

Food Food, eat, chicken, cheese, pizza, eating,
dinner, lunch, taco, breakfast, fries, sauce, hot,
bacon, tacos, meat, burger, cook, wings, bread

0.061 11.19 2.50

Fashion Hair, wear, black, wearing, color, white, cute,
shirt, buy, red, cut, shoes, dress, makeup, blue,
pretty, nice, long, tho, pink

0.037 11.64 1.79

Low probability topics

Spanish Gracias, ko, feliz, ang, batb, ng, mo, hola,
amiga, saludos, dias, jajaja, nga, ay, ba,
naman, quiero, noches, jajajaja, yan

0.004 7.54 2.50

Arabic ي,وب,يللا,يش,وم,تنا,هللاو,انا,سب,هللا , 笑, ,كل,يلا
ءاش,وت,وباي,ريخ,ول,تنا,و,ك,يلع

0.0006
(the lowest
prob.)

7.26 5.76
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9.4.2 Geo-Social Semantics of Interpersonal
Communication

Using the adaptive kernel approach, one can produce a probability map for each
topic for understanding the geo-social semantics of reciprocal mentions among
users. Figure 9.1 illustrates the geographic distribution of two political topics:
mentions of primary elections, and civil rights. Both maps in Fig. 9.1 has the same
legend which allows comparing the resulting probabilities of the two topics.
Probability value refers to the commonality of the topic mentioned among indi-
viduals for the ego-centric reciprocal network of each area on the map.

Fig. 9.1 Topic probabilities. a Primary candidates and elections. b Civil rights. While the topic of
primary candidates and elections was prominent at locations of primary elections and core
supporters of candidates; civil rights was a prominent topic across the whole country
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The topic of primary elections consisted of candidate names, words of political
context such as gop, obama, party, and candidate; and other election specific words
such as vote, support, and win. On the other hand, civil rights topic was formed by
commonly used words such as black, white, women, law, ppl (people), kids, police
and guns, and words used in debates such as point, agree, isn (is not), read, wrong,
problem, racist, country, understand, true and matter (Table 9.2). The word cloud
represents frequently co-occurring words for each topic. Some words co-occur with
a much higher frequency than others, which makes word clouds difficult to inter-
pret. For example, the most commonly used word within the topic of primary
elections was Trump, which occurred approximately three times the words Hillary
and Bernie, and ten times the least frequent word agree. In order to make the word
cloud more readable, font sizes are assigned based on the ranking of words within a
topic. The larger the font size the highest the ranking of the word, which is assessed
by its frequency within the topic.

From Fig. 9.1a we can infer that individuals were highly engaged in election
related conversations in the North-East states of Vermont, New Hampshire and
Maine; and in the north of Wisconsin and Michigan. Election related content was
discussed within certain geographic locations that reflect the locations of primary
elections and supporters of candidates. On the other hand, Fig. 9.1b highlights the
metropolitan areas such as Denver, St. Louis, Washington D.C., Seattle, Portland,
Minneapolis and New York City as hot spots of civil rights discussions. While the
topic of primary candidates and elections highlighted localized clusters of high
values in some metropolitan areas, and the North-East and rural areas in the north of
Wisconsin; civil rights was a prominent topic across the whole country.

Figure 9.2 highlights a clustering of “faith” topic in the South, which peaked
around the states of Tennessee, South Carolina and North Carolina. Although faith
is a rare topic mentioned among individuals, the clustering of high topical proba-
bilities align well with the religious regions of the US. It is striking that coastal
areas do not have as high values as the inland areas in the South. There are also
regional clusters of Idaho and the north of Nevada, and New Mexico. Besides these
clusters there are also spikes of metropolitan suburbs with elevated probabilities.
While the words that form this topic are coherent and mostly have religious context,
there is an exception of the word “cuffmedanny” which is a hashtag used in a TV
series. Presence of words about this TV show in mention tweets suggest second
screening (Doughty et al. 2012), which refer to individuals that live-tweet during a
broadcast. In this topic, the religious references and the show co-occurred in sub-
stantial portion of conversations.

Figure 9.3 illustrates the geographic distribution of the topic “NBA finals”.
Unsurprisingly, NBA finals were predominantly discussed in metropolitan areas
with major NBA teams such as Cleveland, San Francisco and Oklahoma City.
Similar to the candidate names in primary elections, this topic was formed by the
names of NBA teams such as Cavs and Warriors, and NBA players such as Stephen
Curry, LeBron James and Kevin Durant (KD).
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9.5 Discussion and Conclusion

A novel approach for extracting topical themes and their spatial patterns from a
geographically-embedded interpersonal communication network was presented.
The approach was demonstrated using a year of geo-located reciprocal user men-
tions on Twitter. The results revealed varying geographic patterns of communica-
tion on topics such as civil rights, primary elections and candidates, sports, weather,

Fig. 9.3 Topic probabilities “NBA Finals”. Unsurprisingly, NBA finals were predominantly
discussed in metropolitan areas with major NBA teams such as Cleveland, San Francisco and
Oklahoma City

Fig. 9.2 Topical probabilities “Faith”. Although faith is a rare topic mentioned among
individuals, the clustering of high topical probabilities align well with the religious regions of
the US
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faith, food and fashion. Extracted topics reflect geo-social dynamics of the society;
way of speaking in the context of friendship, and couples; and linguistic variation
and the use of social media acronyms. Unlike the given time period of the dataset
which covers the entire period of primary elections, mentions about the primary
candidates and elections were among the least prominent topics. On the other hand,
mentions about civil rights, which include race, gender and gun rights were found
to be among the highest probability topics, and widely discussed across the whole
country. Although the tweets were collected during primary and presidential
elections, political topics discovered from the reciprocal mentions focused more on
civil rights rather than the candidates and primaries. Also, individuals were highly
engaged in civil rights conversations across the country, whereas election related
content was discussed within certain geographic locations that reflect the locations
of primary elections and supporters of candidates.

There are a number of directions for future work. First, a major limitation of this
study is that the temporal variation of the topics was ignored. The topic model can
be trained to extract temporally varying topics and the evolution of topical content
over time. Unsurprisingly, the topics extracted from reciprocal mentions align well
with regional geographies of semantic content such as politics, faith and NBA.
There is a need to compare the patterns of topics derived from the reciprocal
communication of users with the content of the tweets generated, or retweeted
without mentioning others. Such analysis would help us understand the semantic
variation and the differences in geographic patterns between the interpersonal
communication and user behavior for information broadcasting on Twitter.
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Chapter 10
Grouping People in Cities: From
Space-Time to Place-Time Based Profiling

Tao Cheng and Jianan Shen

10.1 Introduction

Before the Internet and mobile devices become part of our everyday life, early
studies of human activity patterns were confined to traditional statistical and survey
studies that involved tracking, logging, managing and analysing the massive and
detailed life cycles of individuals. Modern ubiquitous telecommunication and
sensor technologies make this process simpler. Large scale data collection con-
cerning the movement trajectories of massive numbers of users, such as GPS data
and mobile phone user data, has become technically feasible and economically
affordable. The information contained in the moving trajectory datasets makes them
particularly suitable for the research of human dynamics (Tsou 2015).

Location-based service (LBS) has been an especially popular industry with the
above-mentioned technologies in recent years. Some of the LBS applications, such
as Foursquare and Twitter, have penetrated all aspects of daily life and provided a
huge amount of data, recording the “check-ins” and place visiting behaviours of
millions of users (Shaw et al. 2016). These data provide “3W” information, namely
“when s/he visited the place, where the place is located, and what the place/activity
is about”, thus capturing semantically meaningful snapshots of personal behaviour
patterns which enables the analysis “who specific people are”. Shen and Cheng
(2016) developed a framework to uncover space-time activity patterns from indi-
vidual’s movement trajectory data and segregate users into subgroups according to
these patterns. They introduced the concept of ‘where, when and how long you stay
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is who you are’, which is especially suited for analysing human dynamics of
relatively small populations in small areas.

Goodchild (2015) proposed that “Platial views offer new insights beyond tra-
ditional spatial perspectives as human activity is more aligned with place rather than
geometric space”, which indicated the importance of “what the place/activity is
about” over the physical location (where). Here, we further develop the concept of
group human dynamics into ‘what place, when and how long you stay is who you
are’, expanding the focus from location to place by integrating the semantic
meaning of places into the analysis. This evolution also enables us to analyse a
large population with much higher heterogeneity and dynamism in a large city-scale
area.

To take advantage of spatial, temporal and semantic information, we attempt to
establish a universal framework that enables comprehensive analysis of space, time
and activity in order to study how people spend their days differently. The
framework segregates individuals into subgroups based upon what (place), when
(time) and how long (duration) certain activities take place for each individual. We
enrich the semantics and significance of places by using Points of Interest (POIs) in
a city. An individual’s profile is described as a summary of his/her time budget in
different places, which are further clustered into groups of people with similar
space-time activity patterns. This is tested by grouping the foot patrol police officers
in London based on their GPS trajectories. This specific application demonstrates
the potential of using the framework and methods for other GPS-based mobility
datasets.

10.2 Related Works

We first discuss the related works in detecting regions of interest (ROIs) based upon
GPS data, then brief on semantic enrichment of the ROIs. At last, methods of
clustering semantic trajectories and behaviour patterns are summarised.

10.2.1 Detecting Regions of Interests

A generic and well-known paradigm of pre-processing the raw GPS trajectories is
trip segregation, which separates the GPS points of every individual object into
several consecutive trips. Every trip can be further transformed and divided into
‘move episodes’ and ‘stop episodes’ (Alvares et al. 2007; Spaccapietra et al. 2008),
and semantic meaning or contextual information can be added to each episode.

The semantic analysis mostly focuses on the stay points of the stop episodes in
which the moving objects stop moving, move in a small and confined area or move
at a speed lower than a predefined speed threshold (Parent et al. 2013; Ying et al.
2013; Zheng et al. 2009). Areas with high density aggregation of identified stay
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points are considered as interesting regions or regions of interests (ROI) for the
moving objects. For detecting ROIs, Zhao (2011) used minimum bounding boxes
(MBB) to define the highly active region of moving objects’ trajectories. Yan et al.
(2013) used spatial bounding rectangle of the stop episode or the centre of the stay
points to find interesting places.

Density based clustering (DBSCAN) is the most common methods for ROI
detection as well (Giannotti et al. 2007; Güting et al. 2006; Parent et al. 2013; Li
et al. 2010; Karlis and Saygin 2009; Palma et al. 2009). Researchers also improved
and adapted the traditional density based method to cater for different case studies
and research purposes. Zimmermann et al. (2009) designed a time-based OPTICS
algorithm to cluster stay points, considering both spatial and temporal properties of
a trajectory. Similarly, Shen and Cheng (2016) applied another variant of
DBSCAN, ST-DBSCAN (Birant and Kut 2007), to detect spatio-temporal regions
of interests (ST-ROI) and generated interesting regions with not only spatial
location but also time span.

10.2.2 Enriching the Semantic Meaning of ROIs
with POI Information

A semantic trajectory is a series of moving and stopping behaviours whose pred-
icate bears on contextual information. POI and land use data, which was originally
used to answer user-centred navigation questions such as ‘What is here?’, can also
be applied to enrich location data with behavioural meaning (Krüger et al. 2015).
Hence, information of the context objects that fall in the adjacency of the ROIs are
analysed for semantic enrichment. For examples, Yan et al. (2013) used well
defined land use and POI data to annotate the meaning of places and road segments.
Krueger et al. (2013, 2015) also use POI for the same purpose and made a simple
assumption that the meaning of a place is determined by the dominant type of POIs
in the region.

Furthermore, Krüger et al. (2013) considered distance between the POIs and the
location of individuals’ activities to improve the semantic enrichment and compared
the suitability of the POI data provided by Foursquare, Facebook and Google for
semantic analysis. In their work, POIs closer to the individual’s locations are
considered to impose bigger impact on the individual than other POIs in the area.
Damiani et al. (2011) also weighted POIs differently for protection of the indi-
viduals’ privacy in sensitive stops. Since POIs nearby the individuals’ locations
may have a different degree of sensitivity according to their semantic meanings,
lowering the significance of certain types of POIs can keep the individual sensitive
behaviours from being compromised. For instance, stopping at normal restaurants
are considered less sensitive than being in hospitals, and restaurants and hospitals
should be given different weights. One noticeable fact is that all the land use and
POI data used for semantic analysis in the works above are hierarchically classified
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into multiple categories and subcategories so that the sematic meaning can be
summarised in different levels of details.

Besides the spatial context, temporal information is also used for semantic
enrichment since most trajectories contain temporal records. Liao et al. (2006)
proposed that different activities have different temporal durations and temporal
patterns, which can be used to distinguish activities nearby multiple POIs.
Andrienko et al. (2013) suggested to interpret semantic meanings of places based
on cyclic temporal patterns of visiting times. Reumers et al. (2013) designed a
classification tree to identify semantic places, which purely relies on temporal stop
durations.

10.2.3 Clustering Analysis of Semantic Trajectories

Most commonly, the behaviour similarity computation is based on a distance or
dissimilarity measure. The usual distance measures are spatial distance and tem-
poral distance (Lee et al. 2007). Zheng et al. (2009) defined a similarity metric to
find people of similar behaviour patterns based on the number of commonly visited
POIs. Shen and Cheng (2016) defined the dissimilarity of behaviours base on the
Jessen Shannon Distance (JSD) between the time budget allocation profiles (i.e.
space time profiles) of individual persons. Yan et al. (2013) also compared the
stopping and moving time distribution of vehicle trajectories in different types of
semantic places to show the behavioural differences of cars, buses, taxis, and trucks.

10.3 Methodology

In our previous work (Shen and Cheng 2016), the concept of ‘where, when and how
long you stay is who you are’ is realised via five steps:

(1) Space-Time regions of interest (ST-ROI) detection: Discovering interesting
places in space and time, determining where the places are and when they are
‘interesting’;

(2) ST-profiling: Describing individual profiles with the users’ time allocation and
staying behaviour in different places and time periods;

(3) Profiling comparison: Defining similarity metrics for measuring and quantify
the behavioural differences between individual profiles;

(4) Hierarchical clustering: Grouping people with similar behavioural patterns
based on the defined similarity metrics;

(5) Semantic validation: Explaining how these groups are formed.

This framework is specifically suited for analysing human dynamics of relatively
small populations in small areas. To extend this concept to a large population that
will generate many ST-ROIs, the comparison of profiling would be time
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consuming. To overcome this limit, a new concept of ‘what place, when and how
long you stay is who you are’ is proposed here. The main difference between this
newly-proposed concept and the original is that the focus has been switched from
“Where” (the geographical location) to “What place” (the semantic meaning of the
place). The reason for this is that in a big city, there are many places offering similar
functions and services, such as gyms in different districts of a city. Individuals
doing the same activity at different places, rather than people doing different things
in neighbouring areas, should be considered similar in terms of behavioural
patterns.

To make sense of these ST-ROIs, we can use POIs feature type data to extract
the semantic meaning of the ST-ROIs and summarise them into generic types, such
as tube stations, shops, public infrastructures and museums. In this way, the profiles
of individuals will be made up of the time allocated to each generic ST-ROI type,
not each specific ST-ROI that is associated with a spatial location. This means that
the concept can evolve from ‘where (ST-ROIs), when and how long you stay is who
you are’ to ‘what place (ST-ROI types), when and how long you stay is who you
are’, so that the precise locations of places are replaced by their meanings and
people undertaking similar things in difference locations can be grouped together.

This new concept can be realised via four steps based upon movement trajectory
data, as follows:

(1) ST-ROI detection: Extracting ST-ROIs for individuals. This step is identical to
the first step in previous work (Shen and Cheng 2016), but is applied to a much
larger dataset in a much larger study area;

(2) Semantic enrichment of ST-ROIs: Using and weighting POI data to analyse
the semantic meaning of extracted ST-ROIs;

(3) Building user semantic profiles: Simplifying users’ activities as
one-dimensional time budget allocations to different semantic ST-ROIs to build
a semantic profile for each user;

(4) Hierarchical clustering: Grouping similar semantic profiles of users to sum-
marise representative behavioural patterns. No further semantic explanation like
the final step in the previous work (Shen and Cheng 2016) is necessary,
because the semantic analysis of places is already incorporated into the
semantic enrichment process.

Step 1 here is exactly the same as Step 1 in our previous work (Shen and Cheng
2016). ST-DBSCAN (Birant and Kut 2007) was chosen to detect places and time
periods with high visit intensity because of its capability of clustering objects with a
combination of both spatial and temporal measurements, and detecting noise when
different densities exist. The next two sections will explain Steps 2, 3 and 4 in
greater detail.

We first applied this new method on the same trajectory dataset used in our
previous work (Shen and Cheng 2016) to show the differences the new method can
make on in the same study area. The dataset was generated by foot patrol police
officers’ GPS-integrated portable radio sets, which record positions every 10 min.
In the chosen study period of February 2012, 355 officers generated 84,027 point
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records with call sign information, device IDs and time-stamped geo-locations. For
further details, please refer to Shen and Cheng (2016). Afterwards, the proposed
method was tested with an extended and multiple-borough case study in Sect. 10.4.

10.3.1 Semantic Enrichment of ST-ROIs

Enriching the semantic meaning of the ST-ROI can help better answer “what the
place/activity is about” and explain why individuals allocate their time differently
among ST-ROIs. This is a crucial step towards evolving the concept of ‘where (ST-
ROIs), when and how long you stay is who you are’ from our previous work to
‘what place (ST-ROIs types), when and how long you stay is who you are’ that is
introduced in the present article.

The semantic meanings of the ST-ROIs are achieved through the following
steps. First, the spatial boundaries of the ST-ROIs are generated by creating a 20-m
buffer zone for the minimal convex hull covering all the stay points in a ST-ROI,
then the buildings and POIs that locate in the expanded convex hull area (i.e. the
buffer zone of the minimum convex hull) are extracted. Lastly, the various cate-
gories of POIs are weighted using term frequency–inverse document frequency
(TF–IDF) to move their semantic contribution index to the ST-ROI area into which
they fall.

10.3.2 Bounding Convex Hulls of ST-ROIs

Figure 10.1 shows 28 ST-ROIs detected in police patrol activities in the Borough of
Camden, London, based upon an Automatic Personnel Location System (APLS)
dataset provided by the London metropolitan police. As can be seen in Fig. 10.1a,
the visualisation is a 3D dot distribution map. Dot distribution maps represent spatial
distribution of geo-referenced data using points as a basic graphical element (Slocum
et al. 2008). Every point represents a datum with geo-location information. The
points can only show the density of an area, rather than depict the clear boundary and
exact location of the area. We must therefore implement a method that allows us to
define the boundary of the ST-ROI sets before explaining the semantic meaning
within the area. Convex hulls are usually used to turn point-based objects into spatial
areas, and the minimal convex hull bounding method can create a polygon area
enclosing all the stay points of each ST-ROI, making it the most ideal way to serve
this purpose (Andrew 1979). In this step, we used the parallel spatial retrieving
method (Miller and Stout 1988) to find the convex hulls that define the spatial
boundaries of the ST-ROIs (see Fig. 10.1b). In practice, a 20 m buffer zone (i.e. the
expanded convex hull) is used to define the actual coverage area of each ST-ROI.
This buffer distance is set with the consideration that all the recorded GPS points
have spatial errors and 20 m is the mean value of error in our dataset.

186 T. Cheng and J. Shen



10.3.3 Semantic Meaning of ST-ROIs

A POI dataset contains the information of all the public buildings (POIs) that can be
summarised to interpret the semantic meaning of a place in which they exist
(Alvares et al. 2007; Alves et al. 2011; Braun et al. 2010). In order to understand the
staying behaviour within each ST-ROI area, we used POI data to depict the
functional images of the ST-ROIs and enrich the semantic meaning of users’ visits
to these ST-ROIs. The POI dataset used in the case study contains the information
of a wide range of finely categorised infrastructures and buildings that offer different
services and utilities (Ordnance Survey 2016). Similar to the hierarchical category
structure of POI information used by Krüger et al. (2015) and Yan et al. (2013), the
official Ordnance Survey POI classification scheme has three levels, with nine
major categories and 52 sub-categories that can be further broken down into more
than 600 detailed classes. Customers can adopt the official classification scheme
defined by the Ordnance Survey. They are also encouraged to customise their own
classification by selecting POIs from any combination of categories or
sub-categories (Ordnance Survey 2016). We therefore made slight changes to the
official classification scheme. By separating the original “health and education”
category into two independent categories and moving all “government and
organisations” POIs out of “public infrastructure” to become a major category by
themselves, a new 11-category classification scheme that fits our research purpose
was generated (Table 10.1).

Fig. 10.1 a The 28 ST-ROIs found via the ST-DBSCAN method in our previous prototype
framework (Shen and Cheng 2016); b Bounding convex hull and its 20 m buffer zone enclosing
the stay points are generated to define the spatial area covered by the ST-ROIs
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10.3.4 Significance of the POIs

Just as the First Law of Geography formulated by Tobler (1970) proclaims that
“everything is related to everything else, but near things are more related than
distant things”, POIs and buildings of identical functions are likely to aggregate in
the same neighbourhood. Based on this phenomenon, Krüger et al. (2013) and
Polisciuc (2015) used the quantity of POIs in a place or bounding area to explain

Table 10.1 The reclassified POI categories based on the Ordnance Survey POI classification
scheme

Customised classification scheme

01 Accommodation, eating and drinking
01 Accommodation
02 Eating and drinking

02 Commercial services
03 Construction services
04 Consultancies
07 Contract services
05 Employment and career agencies
06 Engineering services
60 Hire services
08 IT, advertising, marketing and media
services
09 Legal and financial
10 Personal, consumer and other services
11 Property and development services
12 Recycling services
13 Repair and servicing
14 Research and design
15 Transport, storage and delivery

03 Attractions
58 Bodies of water
16 Botanical and zoological
17 Historical and cultural
19 Landscape features
18 Recreational

20 Tourism
04 Sport and entertainment
22 Gambling
23 Outdoor pursuits
21 Sport and entertainment support services
24 Sports complex
25 Venues, stage and screen

05 Education and health
26 Animal welfare
28 Health practitioners and establishments
29 Health support services

06 Public infrastructures
34 Infrastructure and facilities

07 Manufacturing and production
37 Consumer products
38 Extractive industries
39 Farming
40 Foodstuffs
41 Industrial features
42 Industrial products

08 Retail
46 Clothing and accessories
47 Food, drink and multi-item retail
48 Household, office, leisure and garden
49 Motoring

09 Transport
53 Air
59 Bus transport
57 Public transport, stations and
infrastructure
54 Road and rail
55 Walking
56 Water

10 Education
27 Education support services
31 Primary, secondary and tertiary
education
32 Recreational and vocational education

11 Government and organisations
33 Central and local Government

Annotation:

XX Major category code
xx Sub-category code
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the major semantic meanings of places in a simple manner. The significance of one
type of POI (of major category I) to the area ST-ROI (j) they fall in can be
expressed as the following (Eq. 10.1):

SCI;j ¼ fI;j ¼ countI;jP
k countk;j

ð10:1Þ

where countI;j is the number of major category I POIs in ST-ROI j, and
P

k countk;j
is the total number of all POIs in ST-ROI j. fI;j is therefore the raw frequency of the
major category I POIs among all POIs in ST-ROI j.

Quantities of different categories of POIs vary dramatically in urban space,
however. For instance, a large number of iconic public telephones and red pillar
mailboxes can be found throughout London, but they have a relatively small
influence on the meaning or function of an area. On the contrary, if there is only one
museum in the entire city, the influence of this museum upon the local region where
it is located should be magnified to outrank the many telephone boxes nearby.
Hence, directly using the quantity of POIs for semantic enrichment is not enough.
The bias caused by unbalanced quantities of different POIs should be subdued. An
example in our study shows that 33% of the POIs in ST-ROI No. 10 belong to

Fig. 10.2 Summarising the Points of Interest (POIs) located within the expanded convex hull of
ST-ROI No. 10. The POIs’ categories are represented by different colours and the difference the
weighting process made for the 11 categories is shown on the right
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‘public infrastructure’ category (see Fig. 10.2). As we know, public infrastructures,
such as electricity poles and traffic lights, can be found in large numbers throughout
the city and should be considered as less significant POIs in the semantic enrich-
ment process.

A similar case can be found in text mining studies where article words like “the”
and “a” appear far more frequently than the truly meaningful words in most sen-
tences. The significance (semantic contribution) of a given word in one sentence
increases proportionally to the number of times this word appears in the sentence,
but is offset by the frequency of the word in the whole context. Likewise, the more
sibling POIs (i.e. POIs that belong to the same major category) fall into an
ST-ROI’s expanded convex hull, the more impact they have on a place; however,
the more sibling POIs exist in the entire district or other places, the less impact the
POIs should have on the current place. In other words, POIs distributed ubiqui-
tously are less relevant to the meaning of the local area.

In information retrieval and text mining studies, Term Frequency–Inverse
Document Frequency (TF–IDF) is designed to measure the semantic contribution
(weighting factor) of a word to the meaning of the sentence it falls in (Salton and
Buckley 1988). TF–IDF can downplay the semantic contribution of a word if it
appears everywhere in the entire article. Inspired by its function in semantic analysis
of articles and documents, we introduce TF–IDF method to reweight and readjust the
significance (semantic contribution) of different categories of POIs to each ST-ROI
so that the negative effect of dominant insignificant POIs can be eliminated.

In our case of study, a double normalisation weighting scheme was chosen for
term frequency (TF) calculation and a classic inverse document frequency
(IDF) weighting scheme was chosen for IDF calculation, so that the original TF–
IDF for text mining was amended to process the semantic POIs, as in Eq. 10.2.
Every sub-category of POIs was equivalent to one word in the article and every
ST-ROI was considered to be a document sentence. The semantic contribution of
the POI sub-category i to the ST-ROI j is:

TF�IDFi;j ¼ 0:5þ 0:5
fi;j

maxi fi;j

� �
� log N

counti
ð10:2Þ

where j is the set of points representing all POIs in one ST-ROI’s expanded convex
hull and i is one of the 52 POI sub-categories. fi;j is the raw frequency of
sub-category i POIs among all POIs in ST-ROI j and fi;j ¼ counti;jP

k
countk;j

. N is the total

number of ST-ROIs.
As shown in Eq. 10.3, the semantic contribution of the 52 POI sub-categories

was weighted by TF–IDF and summed up to generate the semantic contribution of
the 11 major categories according to the major category to which they belonged.

SCI;j ¼
X

i2I TFIDFi;j=
X11

I¼1

X
i2I TFIDFi;j ð10:3Þ
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where I is one of the 11 major categories. One major POI’s semantic contribution to
an ST-ROI is the normalised sum of the semantic contribution of all the
sub-categories within a major category.

The expanded convex hull area of ST-ROI No. 10, an embassy outside Camden
(Fig. 10.1), is presented in Fig. 10.2. This ST-ROI was generated by many police
officers standing in front of the Syrian embassy keeping protestors out of the
building. The simplest way of inferring the semantic meaning of a place is to
directly use the quantity of sibling POIs as their semantic contribution index in an
area. Figure 10.2 shows that the less significant “public infrastructure” POIs make
up for a considerable portion of the total number of POIs in ST-ROI No. 10.
Therefore, the semantic contribution of public infrastructures in ST-ROI
No. 10 calculated by count is relatively high. Obviously, however, the police
officers were not interested in the “public infrastructures” in that area. Quantity of
public facilities did not translate into significant semantic contribution in this case.
Therefore, Table 10.2 shows that the impact of the ubiquitous “public infrastruc-
tures” had been significantly weakened after the TF–IDF weighting process, from
0.333 to 0.043. In contract, small-size categories, such as educational POIs, were
emphasised and the weight of governmental POIs were reinforced after the sig-
nificance is recalculated with TF–IDF, corresponding to the common sense that this
is an embassy area.

Table 10.3 shows the TF–IDF weights of the 11 categories of POIs in the 28
ST-ROIs. The weights are added to officers’ staying time allocations (space time
profiles) on ST-ROIs generate offices’ semantic profiles (SP) in the next step.

Table 10.2 The semantic contribution weights of different categories of POIs in ST-ROI
No. 10 calculated with Eqs. 10.1 and 10.3
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10.3.5 Semantic Profiling and Hierarchical Clustering

In our previous work, users’ behaviour profiles were generalised based on their time
budget allocation (i.e. space time profiles) in the ST-ROIs. In this way, the users’
inclinations in different time periods and spatial locations were discovered.
Figure 10.3 is an example of three officers (A, B and C) allocating their individual
working hours differently in the 28 ST-ROIs; however, this method did not consider
semantic meaning regarding the generated ST-ROIs. Spending time in two different
places does not necessarily indicate any differences in visit purposes because the
two places may have similar functions or semantic meanings even though they are
far apart. Moreover, the previous method cannot work in large cities because more
and more ST-ROIs will be detected as the study area expands dramatically, and the
difference between users’ time allocation profiles will be erased. By summarising
ST-ROIs into a limited number of categories according to their semantic and
functional meanings, the time budget allocation analysis can be translated into
semantic profiles that demonstrate the time spent on different semantic places
instead of meaningless locations.

Most of the officers on duty are foot patrol officers (FP), community support
officers (CSO) and senior officers (SO). The time that different types of officers
allocate to ST-ROIs can be very different, because the different tasks they are
required to undertake are determined by their types. The time allocation profile of
three typical police officers can be seen in Fig. 10.3; the identity call signs of the
officers have been encrypted for security’s sake.

In order to understand how officers performing different roles on patrol allocate
their attention across different functional areas and activities, the TF–IDF weights
of the ST-ROIs were added to the analysis. One officer’s staying time in a ST-ROI

Table 10.3 The TF–IDF weighted semantic contribution of different categories of POIs in each
ST-ROI in Camden

ST-ROI No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Accommodation, eating and drinking 0.0230 0.1004 0.0964 0.1248 0.0271 0.0192 0 0.1040 0.0870 0 0 0.0257 0.1204 0.0856
Commercial services 0.1657 0.2751 0.2494 0.2533 0.3181 0.2806 0.2570 0.2712 0.2482 0 0.3890 0.7276 0.1957 0.2698
Attractions 0.2664 0.0103 0.0128 0.0238 0.0501 0.0711 0.1412 0.0136 0 0 0.4033 0.1488 0.0083 0.0142
Sport and entertainment 0 0.1022 0.0962 0.0640 0.0294 0.0416 0 0.0828 0.0993 0 0 0 0.0756 0.0746
Education and health 0.0907 0.0628 0.0666 0.0266 0 0 0 0.0478 0.0438 0 0 0.0338 0.0293 0.0533
Public infrastructure 0.0310 0.0233 0.0269 0.0134 0.0137 0.0162 0.0103 0.0203 0.0201 0.0434 0.0470 0.0087 0.0165 0.0206
Manufacturing and production 0.1179 0.0415 0.0234 0.0573 0.0456 0.0647 0 0.0441 0 0 0 0 0 0.0413
Retail 0.1677 0.2855 0.3304 0.3514 0.1476 0.1950 0 0.3135 0.4164 0 0 0.0257 0.4586 0.3446
Transport 0.0796 0.0518 0.0576 0.0514 0.0228 0 0 0.0558 0.0578 0 0.1607 0.0297 0.0423 0.0534
Education 0.0580 0.0317 0.0277 0.0248 0.0517 0.0733 0.1561 0.0298 0.0274 0.3299 0 0 0.0367 0.0357
Government and organisations 0 0.0153 0.0126 0.0092 0.2940 0.2384 0.4355 0.0172 0 0.6267 0 0 0.0166 0.0070

ST-ROI No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Accommodation, eating and drinking 0.2339 0 0.1895 0 0.2471 0.1032 0.0573 0.1626 0.2867 0 0.1448 0 0 0.0439
Commercial services 0.3543 0.7264 0.3659 0 0.2438 0.2509 0 0.5179 0.1193 0.8689 0.4040 0.5718 0 0.2244
Attractions 0.0187 0 0.0205 0.1525 0 0.0159 0 0 0.0702 0 0 0 0 0.0290
Sport and entertainment 0.0438 0 0 0.0751 0.0833 0.1043 0.2611 0 0.0779 0 0.0872 0 0 0.0642
Education and health 0.0133 0 0.0145 0 0.0324 0.0525 0.1504 0.0184 0.0497 0 0.0280 0 0 0.0082
Public infrastructure 0.0306 0 0.0112 0.0111 0.0166 0.0207 0.0193 0.0047 0.0765 0 0.0287 0.0411 0 0.0084
Manufacturing and production 0.0792 0 0.0866 0 0 0.0332 0 0.0932 0 0 0.1079 0 0 0.0832
Retail 0.2145 0 0.2125 0 0.0861 0.3385 0 0.0921 0.3197 0 0.1451 0.1811 1 0.4177
Transport 0.0116 0.2736 0.0741 0 0.2343 0.0346 0.1320 0.1109 0 0.1311 0.0542 0.2060 0 0.1051
Education 0 0 0 0.1685 0 0.0349 0.3801 0 0 0 0 0 0 0.0158
Government and organisations 0 0 0.0252 0.5929 0.0563 0.0112 0 0 0 0 0 0 0 0
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was assigned to the 11 categories of POI according to each POI’s semantic con-
tribution to that specific ST-ROI, as Eq. 10.4 describes. This process turns space
time profiles (i.e. time allocations across ST-ROIs) into semantic profiles (i.e.
allocation across functional areas), so that the differences in higher activity levels
can be revealed.

SPo;I ¼ Po;j � SCI;j ð10:4Þ

where Po;j is the space time profile of officer o, and SPo;I is the semantically-
weighted profile of officer o in the 11 POI major categories.

For instance, officer 8986PO spend 90% of his/her staying time in ST-ROI
No. 21 and 10% staying time in ST-ROI No. 2. According to the semantic weights
in Table 10.3, 2.75% ð0:2751 � 10%þ 0 � 90%Þ of 8986PO’s total active time is
assigned to places of commercial services, whereas 34.5% ð0:0317 �
10%þ 0:3801 � 90%Þ of 8986PO’s total active time is assigned to educational
venues. Figure 10.4 displays the comparison of the three chosen officers after their
space time profiles are turned into semantic profiles by Eq. 10.4.

It is worth noting that the time allocations to ST-ROIs of officers “1812PO”,
“8972PO” and “8986PO” were by no means the same (Fig. 10.3). After interpreting
the behaviours of the officers with POI impacts, however, the profiles of officer
“1812PO” and officer “8972PO” became quite similar to each other semantically
(Fig. 10.4). This is because they have visited semantically similar places, despite
the locations they have visited are different. Their common interests in retail and
commercially-related areas were revealed, whereas semantically interpreting the
profile of officer “8986PO” made it prominently distinct from the other two officers.
This shows the new method’s capability to find users with similar behaviours,
despite the fact that the places in which they are active may be spatially far apart.

After profiling the users (officers), the pairwise differences among the officers’
TF–IDF weighted profiles could be quantified with Jessen Shannon Distance
(JSD) (Lin 1991) and similar profiles could be grouped together as a result of the

Fig. 10.3 Three police officers’ time allocation in 28 ST-ROIs
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hierarchical clustering method. Equation 10.5 shows how the JSD value between
semantic weight profiles of two people, SP.p and SP.q, is calculated.

JSD ðSP:pjSP:qÞ ¼ 1
2

X
i

SP:pðtÞln 2 � SP:pðtÞ
SP:pðtÞþ SP:qðtÞ

þ 1
2

X
i

SP:qðtÞln 2 � SP:qðtÞ
SP:pðtÞþ SP:qðtÞ

ð10:5Þ

Figures 10.5 and 10.6 show the hierarchical clustering results without and with the
consideration of semantic meaning and the significance of the places, respectively.
With the space time profiles in previous method (Shen and Cheng 2016), the
officers are divided into 8 groups, as suggested by the Dunn index (Dunn 1973).
With the newly proposed semantic profiles, the officers are divided into 5 groups.
The call signs of officers have been encrypted and the three exampled officers are
marked with dashed rectangles. In Fig. 10.5, the three example officers are grouped
into three different groups because of their differences in space time profiles. In
contrast, Fig. 10.6 shows that the new method can find the semantic similarities
between officers “1812PO” and “8972PO”, despite their location differences. The
new method also generated clearer and simpler grouping results than the old one.
This is because there are a smaller number of summarised semantic categories than
the actual number of the extracted ST-ROIs.

Fig. 10.4 The summarised user semantic profiles of three police officers, i.e. the officers’ time
allocation to different semantic places
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10.4 Extended Case Study

Greater London consists of 32 boroughs (local authority districts), each of which is
assigned a Borough Operational Command Unit (BOCU) of Metropolitan Police.
All BOCUs provide police officers (regulars and specials) who are responsible for
patrolling and responding to emergencies.

We have showcased how the new method works within one borough and how
different it is from the previous method above. Here, to prove that the new method
improves its capability to process larger scale data, we implemented the algorithms
in parallel with police foot patrol activities in all 32 BOCUs, based on a new
version of the APLS dataset. Thanks to the hardware upgrades of the Metropolitan

Fig. 10.5 Taxonomy tree showing the clustering results of previous work purely based on
officers’ space time profiles (time allocation to ST-ROIs) (Shen and Cheng 2016)
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Police, the location accuracy has improved and sampling rate of the GPS devices is
now updated every 5 min.

ST-DBSCAN was first used on all metropolitan police patrol activities in all
BOCU areas in one month in 2015. For simplicity of visualisation, we demon-
strated the results of the three inner boroughs (City of Westminster, Islington and
Camden) in central London. Figure 10.7 shows all 54 ST-ROIs generated in the
extended case study area. For security reasons, we cannot label those ST-ROIs,
though we choose 5 places that people are familiar with in the next step.

The second step in the extended case study was to import the POI data of the
entire Greater London and enrich the semantic meaning of the 54 ST-ROIs.
Table 10.4 shows the semantic weights of POIs in the five ST-ROIs shown in
Fig. 10.7 as examples. It shows that the TF–IDF results are in line with the citizens’
common impression on the meaning of the places. These weights were used to
explain the semantic meanings of the detected ST-ROIs and turn the officers’ time
allocation to ST-ROIs into time allocation to semantic places, in order to generate
the semantic profiles according to Eq. 10.3.

Fig. 10.6 Taxonomy tree showing the clustering results based on semantic profiles
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After the semantic profiles were grouped via the JSD-based hierarchical clus-
tering method, officers with similar activity patterns across all boroughs could be
detected, even if they never belonged to the same BOCU area branch. 54 ST-ROIs
are detected in the three boroughs and even more will be generated if method is to
be applied to the entire London. The drastically increasing number of ST-ROIs
means that the time allocation profile will contain much more variables in the

Table 10.4 The TF–IDF semantic weights and names of five chosen ST-ROIs in the extended
case study

ST-ROI ID 2 6 7 27 34
Name of the place Backingham Palace Soho Trafalgar Square Camden Sta on White Hall

Accommonda on, ea ng, drinking 0.0000 0.3233 0.0642 0.1041 0.1375
Commercial services 0.0487 0.1676 0.1910 0.2370 0.1818

A rac ons 0.7438 0.0375 0.2413 0.0119 0.0156
Sport & entertainment 0.0000 0.1339 0.0000 0.1047 0.0288

Health 0.0000 0.0411 0.0000 0.0812 0.0000
Public infrastructure 0.0233 0.0387 0.0644 0.0236 0.0268

Manufacture & produc on 0.0000 0.0426 0.0203 0.0267 0.0000
Retail 0.0523 0.1412 0.0419 0.3027 0.0000

Transport 0.0000 0.0332 0.2551 0.0375 0.0357
Educa on 0.0000 0.0296 0.0300 0.0534 0.0000

Government & organisa ons 0.1319 0.0114 0.0918 0.0170 0.5738

Fig. 10.7 The 54 ST-ROIs in three BOCU areas chosen for demonstration
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previous methodological framework (Shen and Cheng 2016), which will lead to the
‘curse of dimensionality’ (Bellman 1961) in the following clustering process. By
applying the newly proposed method in this work, the number of dimensions of the
semantic profile is limited to 11 (the number of POI major categories) and the
problem of ‘curse of dimensionality’ in large study areas can be avoided.

As the Dunn index test suggested, the optimal group number should be five in
the hierarchical clustering for the extended case study. There are more than 600
active officers patrolling in these three boroughs, which made the visualisation of
the hierarchical results shown in Figs. 10.5 and 10.6 impossible to present properly
on the printed page. The average semantic profile of each officer group was sum-
marised to show the representative pattern of their activities (Fig. 10.8). It shows
that the focus of officers on different semantic places varied greatly. Officers in
Group 1 allocated their time more evenly than did others and paid more attention to
commercial and retail streets. Group 2 preferred to stay near tourist attractions,
whereas Group 3 focused on sport and entertainment events and Group 5 patrolled
around both governmental and public infrastructures. Group 4 spend most of their
time nearby hospitals and has much less activities than other groups. This
demonstrates that the activity patterns of police officers show clear differences when
the semantic meaning of places is brought into the profile clustering process, and
each group has its own major interest.

Fig. 10.8 ST-ROIs in three BOCU areas chosen for demonstration
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10.5 Conclusion and Discussions

New datasets of time-series locations have enabled the study of behaviours that
conventional studies cannot process, due to the lack of advanced status logging
approaches. In this research, we improved our previous work (Shen and Cheng
2016) by introducing new concept that ‘what place, when and how long you stay is
who you are’ to focus on place than locations. Methodologically, the semantics and
significance of the places are extracted and measured based upon POIs in cities, so
that the new method is able to extend the behaviour grouping to a larger spatial
scale and generate more meaningful results. We used police foot patrol data as a
case study to represent kindred location-based applications.

The framework further extends the traditional ideas of time budget allocation in
behavioural studies and existing spatial-location-based user similarity definitions to
a semantic explanation of people visiting places. It can profile the activity patterns
of people according to space, time and semantic aspects by defining the JSD
behavioural similarity metric, which is closer to people’s place visiting purposes in
reality. Furthermore, after determining what the place is about semantically, the
pattern differences of individuals’ activities are better explained. The developed
method can be applied to other massive GPS movement datasets, such as
volunteer-collected cyclist and taxi data, and can detect similar communities and
anomalies within them. It can also work with location-based check-in services to
support friend recommendation applications in location-based social networks.

Further work will turn this methodological framework into a street
network-based version in order to further improve the accuracy of the estimated
police patrol routes and visited locations, and to further adapt the method to the
urban street environment. To this end, map-matching algorithms and a
network-based space-time clustering method will be developed.
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Chapter 11
Open Source Social Network Simulator
Focusing on Spatial Meme Diffusion

Xinyue Ye, Lanxue Dang, Jay Lee, Ming-Hsiang Tsou and Zhuo Chen

11.1 Introduction

In today’s geospatially connected world, data-driven computing and analytics have
become increasingly essential to understand coupled human–environment systems
(Wang 2016). Indeed, the complexities of such systems and their connectivity at
various spatial and temporal scales have posed daunting challenges to effective
solutions to a variety of sustainable development issues. Due to the rapid progress
of spatial data science and open social data, opportunities have been presented for
human-environment interaction research from a very finer scale to global scale.

Social media has been gaining a spectacular popularity in the past several years.
With the proliferation of social media platforms such as Twitter, Facebook, and
Instagram, information generated and disseminated from these outlets has become
an important part of our everyday lives. A meme is an idea, behavior, or style that
spreads from person to person (Chesterman 2016). The dynamics of meme has been
facilitated by the wide adoption of social media apps, along with the widespread of
mobile devices. Social media messages contain a wealth of location information,
which can help us understand some of the phenomena associated with the geo-
graphic location and reveal the law hidden behind the phenomenon. Location-based
social media data offer a golden opportunity to examine spatial social dynamics at
multiple scales. Particularly noteworthy is that users can post the latest stories,
ideas, opinions and news about what users consider are exciting or important in
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geographical and social environment. For instance, social media has become an
important emergency information and communication backbone where individuals
and organizations request and share information for disaster relief within and
outside the affected area (Wang et al. 2016).

As Wang and Ye (2017) stated, “due to the capability of capturing human
activities, social sensing techniques featured by various big data sources such as
social media data and movement data are gaining increasing attention from geo-
graphic information scientists and domain scientists”. It is important to discover,
track, summarize, and even predict popular topics and events occurring in the social
network in the space-time context (Shaw et al. 2016). At the same time, it is very
useful that a series of “what if” scenarios can be developed to estimate the meme
diffusion. However, spatial social scientists have been slow to adopt and implement
new methods for social media data analysis due to the lack of open source software
packages, which become a major impediment to the promotion of human dynamics
research. The availability and widespread use of source codes will play a critical
role in the adoption of new perspectives and ideas enhancing spatial social network
analytics (Ye and Rey 2013). The proposed Open Source Social Network Simulator
implements the methodological advances in an open source environment of Python
for exploring spatial meme diffusion, using twitter data as the case study. Synthesis
of spatial and social network analytics has contributed to our understanding of
geography of social media such as the spatiotemporal effect in the information
diffusion process. More toolkits are needed to interface the open source revolution
and human/socioeconomic dynamics analysis seeking cross-fertilization between
these two fast-growing communities (Ye 2017). The methods are built in open
source environments and thus are easily extensible and customizable. The open
source movement can also facilitate the explosion of the social media analytics
routines by increasingly easier development processes with powerful scripting
language environments.

The motivation initiating the development of this toolkit is discussed in the next
section of literature review. Section 11.3 provides an overview of the design,
implementation, and functionality of Social Network Simulator. A selection of its
analytical capabilities are then demonstrated that highlight the strength and
extensibility of the package in the follow-up section. The article is summarized with
a roadmap of future plans.

11.2 Literature Review

An integrated open source statistical and visual toolkit is needed to support the
analysis of multiple dimensions of social media data. Extensive studies with sig-
nificant societal impacts have been recently reported based on location-based social
media data. Hundreds of millions of social media users, sometimes referred to as
“citizen sensors”, share the opinions, experiences and observations of surrounding
environments via social media, and at the same time generate a huge amount of
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social media data sets (e.g., text messages, photos, videos, and structure of social
network). The inclusion of location or spatial dimensions in social media, or
location-based social media (LBSM), blurs the interface between the cyberspace of
social media and geographic space of the real world, and renders the social media as
a promising lens to examine human behaviors and social dynamics. Our ways of
examining social-spatial interactions are increasingly transformed by the develop-
ment of more powerful computing technologies, emerging big and open
data sources, and new perspectives on social-spatial processes (Shaw et al. 2016;
Li et al. 2017).

There have been extensive studies on how information (media contents) diffuse
and spread in a social communication network (Ye et al. 2018). In early studies,
researchers have utilized and refined the disease-propagation SIR (Susceptible,
Infected and Recovered) model in epidemiology (Bailey 1975) to simulate and
understand the information spreading process (Newman et al. 2002). Many recent
studies considered the spread of a piece of information through a social network as
an innovation diffusion process, where two fundamental models, LT (Linear
Threshold) model (Granovetter 1987) and IC (Independent Cascade) model
(Goldenberg et al. 2001), are frequently used. A few studies introduced more
generalized LT and IC models by relaxing their synchronization nature (Guille and
Hacid 2012). Several other approaches, such as linear influence model (LIM) (Yang
and Leskovec 2010), partial differential equations (PDE) (Wang et al. 2012), and
regression based methods (Yang and Counts 2010), are proposed for predicting the
spreading of information. Network structures (Weng et al. 2013), semantics/topics
(Romero et al. 2013), and temporal-spatial properties (Liang et al. 2013), are also
essential for information spreading.

The processes of meme diffusion over network communities can be modeled in
several ways following the various approaches in the spatial diffusion studies since
Hägerstrand (1967). Gregory and Urry (1985) provided a critique to Hägerstrand’s
models, noting that such models lack the ability to deal with spatial diffusion over
intangible media such as social networks and the model’s inability to deal with
conflicts and resistance that may exist in the networks. Following this, Morrill et al.
(1988) reviewed and discussed quantitative models of spatial diffusion processes by
categorizing them as stochastic models or deterministic models. A stochastic model
is one in which the elements include probability. This means that an observed
spatial pattern of diffusion phenomena may be the result of forces that have a
random component. Alternatively, a deterministic model does not allow for chance.
With a deterministic model, the way a geographic phenomenon diffuses is
according to certain fixed forms in deterministic models. Several spatial diffusion
models were discussed in Morrill et al. (1988) that include mathematical variants of
the Hägerstrand’s model, epidemiology model, and spatial-temporal models.
Besides adding spatial terms to classic statistics and using them to help detect and
distinguish contagious and hierarchical diffusion processes, Allaway et al. (1994,
2003) added spatial and temporal lag as variables in event history analysis to
describe contagious diffusion processes for how retail market areas evolved over
time. Knoke (1982) applied event history analysis by incorporating the population
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size and spatial lag to illustrate the spread of local governing policies as hierarchical
and expansion diffusion processes. Similar approaches can be seen in studies on
diffusion of union formation and formation of political parties, same-sex marriage
bans, spread of changes in income tax policies, and ethnic violence.

Researchers have been actively investigating the spatiotemporal effect in the
information diffusion process across a wide range of disciplines. Baybeck and
Huckfeldt (2002) investigated the spatial and temporal diffusion of political
information within urban areas. Zhang et al. (2012) examined an information dif-
fusion theory-based methodology for spatiotemporal risk assessment of natural
disasters. Doo (2012) presented the activity-base social influence model based on
activity enhanced heat diffusion kernel and a suite of activity influence rank based
top k algorithms. Cao et al. (2012) proposed a visualization design, “Whisper”, for
tracing the process of information diffusion in social media in real time. The design
highlights three major characteristics of diffusion processes in social media: the
temporal trend, social-spatial extent, and community response of a topic of interest.
Such social, spatiotemporal processes are conveyed based on a sunflower metaphor
whose seeds are often dispersed far away.

Spread of information or ideas is not confined to either a localized geography or
through a limited network of contacts (Lee et al. 2014). New opportunities emerge
as we are able to model interactions between social and physical spaces at multiple
spatial and temporal scales and with very fine granularity (Spitzberg 2014). Citizens
produce, assemble, and diffuse a large variety of social media information for
enhancing situational awareness especially during emergency management and
disaster relief (Wang et al. 2016). Social media data are multi-dimensional. Besides
analyzing spatial and temporal characteristics of social media data, some studies
focused on mining the actual content of social media messages to improve
knowledge about situations. Each tweet contains multiple fields such as user ID,
post time, text, coordinates, and retweet relationship. Space, time, content, and
network are all important attributes of social media data and should be fully used to
gain insights into situational awareness (Wang et al. 2016). In Twitter, the hashtag
may be considered as a surrogate of topics or events; however, in the general social,
news and blog media, topics and events have to be extracted and recognized from
the contents. Researchers have utilized the temporal and social dynamics to help
discover and understand the rise and fall of emerging topics and events in social
media (Wang et al. 2017). Identifying the influence spreaders in a network has
become a major task for viral marketing, targeted advertisement, and even emer-
gency response; these spreaders can help quickly and maximally spread a piece of
information in a network environment. This problem is often referred to as an
influence maximization problem in social network mining, with the goal of
selecting a list of seed nodes, which can ensure the information/adoption reaching
on average a maximal number of nodes (Kempe et al. 2003). In the meantime, there
are studies aiming to identifying the top spreaders from the social media and
network analysis (Romero et al. 2011). Finally, since misinformation and/or rumors
can also be spread into the system, how to (quickly) identify and stop the spread
the spread of misinformation is hence of considerable interest. Budak et al. (2011)
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studied how to limit the spread of misinformation in social networks by using
“limiting campaigns” to counteract the effect of misinformation. They proposed
algorithms to minimize the efforts of a spread of misinformation.

11.3 Overview of Toolkit

Many efforts have been witnessed in the development of powerful packages for
analyzing the structure and dynamics of social network/media data. For example,
Gelphi is an open source interactive visualization and exploration platform inves-
tigating network and its properties. Pajek, an open source toolkit on the very large
networks, can conduct more complicated analyses. Developer tools such as
NetworkX and SNAP can be customized to calculate many computationally
intensive metrics in the network data sets. However, these tools cannot simulate
information propagation. Hence, our toolkit integrates network generator, network
analysis, community detection, and information diffusion into one open source
package to conduct computing and simulation on both artificial and real-world
networks. Developed using the Python object-oriented scripting language, these
modules can be combined to facilitate interactive programming and access to the
many spatial analysis and network analysis libraries contained within Python.

This open source toolkit aims to explore the pattern of information diffusion over
time on the social network, so it displays a complete process that starts with
preparing a network and ends with demonstrating how information propagates over
the network. There are four core modules in this toolkit, including Network
Generator, Network Analysis, Community Detection, and Information Diffusion.
The related functions are described in Table 11.1. A graphical user interface
(GUI) integrates most of the analytical modules to support the interactive explo-
ration of the spatial, temporal, and network dimensions of Meme Diffusion pro-
cesses. Spatiotemporal visualization can be applied to intuitively reflect the
complex process of information diffusion. These visualization techniques allow
analysts to iteratively and interactively explore the dataset and thus gain deeper

Table 11.1 Modules and description of open source social network simulator

Modules Function description

Network
generator

Generate networks with different structures based on parameter settings

Network
analysis

Examine the characteristics of networks or nodes

Community
detection

Detect the distinct groups in a network

Information
diffusion

Provides various algorithms to select seed nodes and opinion leaders to
demonstrate information diffusion over network in the independent
cascade model and the linear threshold model
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understanding of the origination, propagation, and clustering of information. Scripts
in this toolkit can also be customized for batch-oriented analyses and simulation.

11.3.1 Network Generator

Social network is where information propagates. It is noted that each type of
network has different structure and related characteristics, such as average degree,
network centrality, and average shortest path. There is a growing awareness that the
network structure would affect the procedure of information dissemination (Bakshy
et al. 2012). Centola (2010) examined how social networks might affect the spread
of behavior, finding clustered-lattice networks are more effective for behavioral
diffusion than random networks. This module can generate various network models,
such as random network, full network, small-world network, and preference
attachment network.

Random network can be generated by connecting any two randomly chosen
nodes until a desired number of edges is achieved (Erdös and Rényi 1960). In the
Full network, edges exist between any two nodes (Hanneman 2000). Both random
network and full network are not the representative of the real world, since most
networks are neither random nor regular. Small-world network is a sparse network
featured with larger cluster coefficient, shorter average path length, and scalable
entropy (Barrat and Weigt 2000). Watts and Strogatz (1998) developed a
small-world network from a regular network by adjusting edges and properties of
the original network. In a preferential attachment network, a few hubs are extremely
well connected, while the rest are poorly linked (Barabási and Albert 1999). This
module provides various network models to better understanding the differences
among them and explore how these varieties might influence the procedure of
information diffusion. More network models or modified models can be added to
this module on demand because this tool is highly customizable in the Python
environment.

11.3.2 Network Analysis

This module provides both a theoretical framework that conceptualizes the con-
nection among individual actors and a group of analytic methods modeling these
interactions. On one hand, this module delivers some metrics to measure social
network, such as number of nodes, number of edges, average degree, average
shortest path, modularity, and diameter (Scott 2012). On the other hand, the feature
of a node can be described using the indicators such as betweenness centrality,
closeness centrality, eigenvector centrality, degree, out degree, and in degree,
identifying the relative importance of a node within a network (Newman 2008). All
social networks are modeled using similar relational structure composed of nodes
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and edges, and are analyzed based on a set of mathematical methods grounded in
graph theory (Newman 2003).

11.3.3 Community Detection

Community is an underlying structure representing how individual actors interact
with each other in social network. Actors or nodes in the same community are more
possibly influenced than those in different communities. This module contains three
algorithms of community detection, including OSLOM (Lancichinetti et al. 2001),
CNM (Clauset et al. 2004) and GN (Girvan and Newman 2002). OSLOM optimizes
locally the statistical significance of communities. CNM is a hierarchical agglom-
eration algorithm for large-scale networks. GN algorithm detects the communities
based on betweenness centrality. Users can explore which community structure is
more efficient to propagate messages during the information diffusion through this
module.

11.3.4 Information Diffusion

To simulate how information is disseminated over time through social network
among nodes (users), this module implements independent cascade model (IC
model) and linear threshold model (LT model). Independent cascade model is
sender-centric, where a node (user) sends a message and all connected nodes has
the same probability to receive the message. While linear threshold model is
receiver-centric, where whether a node might be influenced depends on its neigh-
bors with weights representing how influential it is. The focal node will be influ-
enced if the sum of its active neighbors’ weights reaches a threshold. This
simulation process could help us find out how network structure, seed node, and
information diffusion model might jointly affect information dissemination over
social network.

11.4 Toolkit Illustrations

To study meme diffusion from a GIScience perspective, we adopt the concept of
network communities as suggested by Weng et al. (2013) that demonstrate how
clustered people form communities (in real space or virtual space) and form the
entities in social networks that allow us to study, model and predict meme diffusion
processes. Community structure has been demonstrated to affect information dif-
fusion. It was also the basis for studying the activities of individuals and the speed
of diffusion. Although the use of network communities as a concept to study meme
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diffusion is not new, we use agent-based simulations to model the spread of memes
so that we not only model different forms of diffusion processes with simulations
but also using simulated processes to enable prediction of ways meme diffusion
may proceed over social networks. Agent-based modeling has been extensively
used to predict human behavior like posting, forwarding or replying a message with
regard to topics and sentiments (Ye and Lee 2016; Lee and Ye 2018).

We develop social media simulators using a bottom-up approach (micro level) to
evaluate the emergent behavior (macro level). In this research, a network-based
diffusion analysis (NBDA) has been developed to fit agent-based models of social
and asocial learning to the observed data using maximum-likelihood estimation.
The underlying learning mechanism is identified using model selection based on the
Akaike information criterion. NBDA is able to discriminate between social and
asocial learning in comparison with diffusion curve analysis. NBDA thus offers a
more reliable statistical test of learning mechanisms. Spatiotemporal visualization is
applied to intuitively reflect the complex process of information diffusion. These
visualization techniques allow analysts to iteratively and interactively explore the
dataset and thus gain deeper understanding of the origination, propagation, and
clustering of information.

The main interface of this toolkit is composed of two parts, a menu bar on the
top and a preview window below. Preview window holds a canvas for visualizing
spatial data and network data. Menu bar contains eight drop-down lists that provide
various groups of functions. File menu includes functions such as Open, Save, Save
As and Close, which are designed for importing, manipulating, and exporting GIS
and network files. Network menu is used to generate networks with different
structures. Analysis menu provides functions to investigate attributes of nodes,
edges, and networks. Community menu contains a group of algorithms regarding
community detection. Text menu holds functions of content analysis and text data
mining. Simulator menu contains the algorithms simulating information diffusion
over spatial and virtual networks. Some of aforementioned menus can add a control
panel to the main interface on the left of Preview such as Fig. 11.1. Windows menu
is used to show or hide a specific control panel. Help menu provides information for
users to check the background and tutorial of this tool.

After clicking Network menu, users can generate simulated social networks on
the network generator control panel, and display the simulated networks on the map
on the Preview Canvas (Fig. 11.1). If the background geographic map is needed,
users can check Base Map on the control panel. Then users will be guided to click
Select button to open shape file and click View button to display the shape file on
the Canvas. Users can zoom out or zoom in base map on the Canvas view
(Fig. 11.1) with mouse wheel. After configuring parameters of the selected network
type, users can click Generate Network button to create the simulated network and
display it on the top of the base map. It should be noted that the availability of
parameters here depends on the selected network type. Edge checkbox is a switch to
show or hide edges among nodes. Users can always delete the social networks on
the base map by clicking Reset Network button on the control panel (Fig. 11.1).
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In addition to generating a single model network, the tool also supports
user-generated composite networks (Fig. 11.2). The composite network can be
developed by connecting multiple network models through selecting a group of
nodes based on some predefined rules. These networks can belong to the same or

Fig. 11.1 Network generator

Fig. 11.2 Composite network
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different model. The key to generating a composite network is how to select nodes
for connecting different networks and how many nodes are selected. The parameters
can be set by the researcher. Users can specify the number or proportion of nodes
selected from a network, and then specify the rules to select these nodes, such as
selecting a node by a certain Centrality and then adding a connection between
different networks to form a more complicated composite network. As shown by
Fig. 11.2, this composite network is formed by two models: small-world network
and preference attachment network.

To conduct social network analysis, users can click Analysis menu to show
Network Analysis control panel (Fig. 11.3). By clicking Run button, users can
derive the network measurements in the table widget. By clicking Degree
Centrality, Between Centrality, Closeness Centrality, or Eigenvector Centrality,
users can compute different centralities measurements for each node. Centrality
values are saved and exported with the name of centrality indicator, such as
“DegreeCentralityResult.txt”.

In the Community menu, there are three sub menus accessing different com-
munity detection algorithms, namely, CNM, Girvan Newman, and OSLOM. After
users click a specific community detection sub menu, nodes are rendered by colors
representing different communities (Fig. 11.4). At the same time, a result txt file
will be created and exported based on this calculation as “results.txt”, which stores
nodes ids by community.

Text Analysis is a tool for content analysis on tweets (posts of twitter users).
Text analysis helps reveal why some messages go viral from the semantic per-
spective. The integration of space, time, network, and content analysis facilitates the
understanding of information diffusion over social network (Wang et al. 2016).

Fig. 11.3 Network analysis
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There are six functions in the Text Analysis tool (Fig. 11.5). Before running any of
these functions except Frequency Distribution, users need to specify one or mul-
tiplekeywords: (1) clicking Search Text button will search all tweets; (2) clicking
Search Similar Text button will identify other words based on the distributional

Fig. 11.4 Results of community detection

Fig. 11.5 Text analysis
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similarity and most similar words will be listed first; (3) clicking Search Common
Context Text button will find contexts where the specified words appear and list
most frequent common contexts first; (4) clicking Search Collocations button will
derive the collocations from the text. A collocation is a sequence of words or terms
that co-occur more often than would be expected by chance; (5) clicking Dispersion
Plot button draws the location of the keyword in the text to visualize the changes of
language use over time. Clicking Frequency Distribution button plots cumulative
frequency of the most used words in the text (Fig. 11.6).

In addition to the analysis of historical tweets in the aforementioned functions,
users can click Simulator menu to display Simulating Information Diffusion panel
(Fig. 11.7). In this panel, users need to specify the number of seed nodes and a
specific algorithm, then Click Generate Seed Node button to get blue nodes. In
order to maximize the influence of information, there are seven algorithms: greedy
algorithm, discount degree algorithm, betweenness centrality, closeness centrality,
eigenvector centrality, degree centrality and random algorithm, which allow users
to explore seed nodes (early adopters) initiating the spread of information. In the
social network, opinion leaders usually have a greater authority and tend to be more
active in the information sharing and diffusion. This toolkit allows users to specify a
certain percentage of nodes as opinion leaders in the entire network or in a specific
community. After selecting a propagation model, independent cascade model (IC
model) or linear threshold model (LT model) can be chosen with specified
parameters. Then the users can click Information Diffusion button to conduct the
simulation. An animation will demonstrate the process of message propagating over
the simulated network. The red nodes represent the nodes that have been influenced
(Fig. 11.7). The simulation process could help the users find out how various
driving forces affect meme diffusion.

The propagation probability of opinion leaders and normal nodes can be set
differently to run various scenarios of information diffusion. The appropriate
probability parameters can be identified through many times of iteration. The
procedure is to set an initial parameter pair with the increment of each probability
value until the final diffusion outcome reaching closer to the actual situation
(Fig. 11.8). Locating optimal early adopters towards efficient information diffusion
would depend on the network structure and propagation probabilities of nodes in

Fig. 11.6 Results of
frequency distribution
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the network. The contour map (Fig. 11.8) plots the areas of errors (difference
between simulated results and real information diffusion outcomes). Areas of light
green indicate areas with fewer errors.

The information diffusion model at the city level can also be designed to sim-
ulate how the occurrence of events spread in the urban network. The model assumes

Fig. 11.7 Information diffusion

Fig. 11.8 Contour map of errors illustrating the information diffusion model on the propagation
probabilities of opinion leaders (X) and normal nodes (Y)
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that there is an urban network with the nodes representing the cities and the edges
between cities indicating the communication strength between cities. When a
specific event occurs in one or more cities, the model simulates how the event has
developed over a certain number of days (steps) and diffused to other cities. The
model allows users to set the daily intensity of the event (Emergency Index), which
records its ability to spread out. The intensity can change over time (Fig. 11.9). For
the influence of spatial weight, two models are provided for the user to select
(Fig. 11.10). Because a nationwide event is not affected by the distance among
cities, the Fixed option can be used. In other words, spatial weight is not considered
in this case. However, if the event is local or regional, the Decaying option is
needed. That is, it is necessary to set the Decaying radius and Decaying ratio to
reflect the diffusion structure influenced by the distance among cities. Given the
same number of nodes and edges, the network with higher average path length
tends to have wider information diffusion. The trend of simulation statistics is

Fig. 11.9 Information diffusion across urban network

Fig. 11.10 Spatial weight in
information diffusion
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presented in Fig. 11.11. The left figure reports the newly involved cities in each
step of information diffusion while the right figure shows the cumulative percentage
over step.

Figure 11.12 demonstrates a real-world case of wild fire taking place at the north
of San Diego County from May 13 through May 23 in 2014 as an example. We
collected all tweets within 40 miles around the center of San Diego during that time.
The top right figure inside Fig. 11.12 in shows both the process of tweets posted in
the space over time and the regression curve of the nearest neighborhood ratio for
the purpose of estimating spatial diffusion processes (Lee et al. 2014). We use this

Fig. 11.11 Statistics of information diffusion across cities

Fig. 11.12 A real world case of information diffusion
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ratio to test the degree of spatial cluster of geo-tagged tweets, in order to model
spatial diffusion processes. The main characteristics of information diffusion pro-
cesses can then be detected and distinguished (Li et al. 2016). According to the
process and the curve, users can better understand the pattern of message propa-
gation over a social network in the real world.

11.5 Summary

As Sui (2014) noted, “(big) geospatial information and perspectives are becoming
an imperative for major decisions at both individual and collective levels”. Social
media data such as tweets is fast becoming a source of geographic data, informa-
tion, and perhaps even knowledge. There is a long tradition of linking relational and
physical spaces for geographical issues across scales. Spatial and social network
analyses also correspond to the notions of space and place, respectively. Moreover,
beyond academia, government agencies, practitioners, as well as engaged citizens
are increasingly recognizing the linkages between social space and physical envi-
ronment. Rigorous analysis and simulation of meme diffusion is likely to open up a
rich context for advancing our knowledge on complex socioeconomic events and
bettering policy interventions. Interdisciplinary approaches of exploring and sim-
ulating rich and complex geo-tagged social media dynamics are highly demanded to
ignite transformative geospatial-social innovation and discovery for enabling
effective and timely solutions to challenging social and environmental problems
(Wang et al. 2017). In this package, we develop models and algorithms to generate
and analyze spatial social networks as well as simulate information diffusion. This
open-source package can promote collaboration among researchers who want to
improve current functions or add extensions to address specific research questions
on spatial meme diffusion.

This toolkit has its origins as a specialized program to support research on
geo-tagged tweets analysis. Recent developments have focused on several directions.
First, we will develop a schema to facilitate the generation of data analysis tasks based
on various dimensions of social media data (Wang and Ye 2017). More simultaneous
analyses can be developed with the increasing dimensions. In addition to social media
data, informative human-centric contents could also be found in many other sources
such as OpenStreetMap and newspaper (Hu et al. 2017). Epidemiology-basedmodels
have also been used for investigating social network phenomenon.Wewill use a novel
form of the classical susceptible–infected–susceptible disease model which includes
the possibility for ‘spontaneous’ (or ‘automatic’) infection, in addition to disease
transmission (the SISa model). Determining to what extent particular emotions or
behaviors are infectious is a promising direction for further research with important
implications for social science, epidemiology and health policy. The next-step ABM
provides a theoretical framework for studying the interpersonal spread of any state that
may also arise spontaneously, such as emotions, behaviors, health states, ideas
or diseases with reservoirs. Due to the growing social media data size, a high
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performance computing power and related packages are needed to be implemented to
facilitate the further growth of this toolkit. Based on the strength of interactive
visualization techniques, this research stresses the need to study the geography of
social network. On this basis, the sincere hope here is that this dialogue between social
network analysis and GISwill embrace the real-world challenges and opportunities of
big social data.
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Chapter 12
The Opportunities and Challenges
with Social Media and Big Data
for Research in Human Dynamics

Atsushi Nara, Ming-Hsiang Tsou, Jiue-An Yang
and Cheng-Chia Huang

12.1 Introduction

Social media and Big Data have transformed our daily lives into interconnected
cyberspace and realspace (Shaw and Yu 2009; Tsou 2015). As more location-aware
technologies becoming available, social media platforms have increasingly
embraced the location-based dimension (Sui and Goodchild 2011) and GIScience
have attracted more interest in the dynamic relations of human behaviors and the
environment (Shaw et al. 2016). Geographers can now collect, trace, and visualize
the spread of social movements, disease outbreaks, nature hazards, and popular
events by digitally collecting social media and Big Data with locational contents
(Tsou 2015). This is largely due to the advances in location sensing and information
and communication technologies, in particular on a mobile platform. These new
technologies enable automatic tracking of human movement and behavior outdoor
and indoor at a high level of details in space and time using location-aware tech-
nologies (LATs) such as global positioning systems (GPS), cellular networks, WiFi
positioning system, Radio-Frequency Identification Device (RFID), surveillance
camera, and various kinds of portable smart devices with LATs. Spatially and
temporally fine-granular timestamped location data can reconstruct individual tra-
jectories and describe dynamic movement behaviors in detail. In addition,
individual-scale data can avoid conventional data scaling problems such as eco-
logical fallacy and modifiable areal unit problems by aggregating data from
bottom-up, allowing researchers examining both individual and collective behavior.
Furthermore, the pervasiveness of smartphone and internet usage as well as the
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increasing trend of social media usage accelerate the generation of social media and
big data with location information. The dynamic characteristics of social media and
Big Data offer geographers research opportunities for examining and modeling
human behaviors, communications, and movements (Tsou 2015). This short
viewpoint paper reports on a summary of papers presented in a series of special
sessions, Human Dynamics in the Mobile Age: Linking Physical and Virtual
Spaces, at the Association of American Geographers (AAG) annual meeting in
2015 and Symposium on Human Dynamics Research: Social Media and Big Data
at the AAG annual meeting in 2016. The summative report is categorized into three
research components in these papers: data, method, and application. In addition, we
discuss the current state-of-the-arts in human dynamics research and highlight their
key concepts, opportunities, and challenges.

12.2 Human Dynamics Research: Summary of Papers
in AAG Special Sessions

Human dynamics is a transdisciplinary research field focusing on the understanding
of dynamic patterns, relationships, narratives, changes, and transitions of human
activities, behaviors, and communications. The advent of location aware technolo-
gies, ubiquitous network infrastructures, and mobile technologies accelerate human
dynamics research by providing opportunities for researchers to access to a large
amount of fine-granular individual-scale data, which were not available in the past.
The availability of such social media and big data is leading to a data-driven sci-
entific inquiry, which is purely inductive and emergent forms of analysis that data to
speak for itself (Kitchin 2014; Kwan 2016). To encourage more geographers and
GIScientists to study this emerging research themes, a series of special sessions were
organized at AAG annual meetings in 2015 and 2016, Human Dynamics in the
Mobile Age: Linking Physical and Virtual Spaces (6 sessions) and Symposium on
Human Dynamics Research: Social Media and Big Data (3 sessions) respectively,
and the total of 42 papers were presented. We analyzed paper titles, abstracts, and
keywords and summarized this new research theme by analyzing the data, methods,
and applications from the 42 representative research abstracts (Table 12.1).

12.2.1 Data

Of the 42 papers presented at the AAG human dynamics sessions, just over half
(n = 22, 52.4%) used social media data, which was broken down into Facebook
(n = 1), Flickr (n = 3), Foursquare (n = 1), Instagram (n = 2), Twitter (n = 16),
and Weibo (n = 1). These counts are not mutually exclusive and one paper used
data from multiple social media. The social media data can be gathered via
Application Programming Interfaces (APIs), which allow users to access to publicly
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available social media contents, or purchased from social media providers. Types of
social media data that researcher can have access vary by social media platforms.
These include, for example, media contents such as text messages, photos,

Table 12.1 Characteristics of papers presented at the AAG annual meetings in 2015 and 2016

Total number of papers 2015 2016 Total

(n) (n) (n)

27 15 42

Data Activity record 1 1

Cadastral record 1 1

Camera/video image 2 2

Census 1 1

Interview/survey 1 1

Mobile phone data (CDRs/SMS) 7 1 8

Social media 12 10 22

GPS tracks 1 1

Volunteer geographic information 2 2

Unknown/no data 2 1 3

Methoda GIS GIS/Web-GIS (general) 4 6 10

Spatial analysis 2 2

Spatial statistics 1 1

Spatiotemporal analysis 7 2 9

Visualization 2 1 3

Modeling Geosimulation 1 1

Spatial interaction 1 1

Statistical modeling/analysis 3 2 5

Data mining/machine learning 4 3 7

Literature review/overview 1 3 4

Network/graph analysis 2 2

Qualitative method 1 1 2

Text mining/semantic analysis 6 3 9

Trajectory analysis 2 2

Applicationa,b Disaster/risk 3 2 5

GIS/Web-GIS tools 2 2

Health 3 1 4

Human mobility/movement behavior 9 6 14

Marketing 1 1

Communication 1 1 2

Realspace-cyberspace 3 2 5

Transportation 3 3

Urban dynamics 2 2 4
aThese counts are not mutually exclusive
bSeveral studies do not mention any specific application
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and check-ins, tags, timestamps, and locations on media contents, user profile, and
user’s social network relationships. As smartphones have become pervasive in
everyday life, location attributes are often associated with users’ mobile phone
location acquired by GPS, cellular networks, or assisted GPS (A-GPS) supported by
cellular networks. Data used in the remaining papers include mobile phone data
such as Cell Detail Records (CDRs) and Short Message Service (SMS) (n = 8),
camera/video imagery (n = 2), Volunteer Geographic Information (VGI) (n = 2),
GPS (Global Positioning System) tracks (n = 1), US Census (n = 1), activity record
(n = 1), cadastral record (n = 1), and interview/survey (n = 1).

12.2.2 Methods

Among a variety of methodological approaches were presented, the largest men-
tioned was GIS (n = 25) as a general framework and a tool to analyze and visualize
human dynamics data in conjunction with other analytical methodologies. Under
the GIS category, 10 papers mentioned GIS or Web-GIS as a base framework.
Spatiotemporal analysis (n = 9) was the second largest GIS method mentioned in
papers to study human dynamics in both spatial and temporal dimensions and most
papers mentioned it in conjunction with other specific methodologies such as tra-
jectory analysis and text mining. Since social media data often contain text data,
text mining and semantic analysis appeared as a popular analytical methodology
(n = 9). Specific methodologies applied to text data include, for example, Support
Vector Machine (SVM) and Latent Dirichlet Allocation (LDA) for finding text
similarities and topics. Papers mentioned data mining and machine learning as
general data analytics frameworks (n = 7), while others employed social network/
graph-based analysis (n = 2) and trajectory analysis (n = 2). Spatial modeling
approaches were presented to describe process and flow of human dynamics and
their behavior including geosimulation (n = 1) and spatial interaction (n = 1). Other
methods included spatial statistics (n = 1), spatial analysis (n = 2), statistical
analysis/modeling (n = 5), visualization (n = 3), literature reviews (n = 4), partic-
ipant observation/interview as a qualitative method (n = 2), and an overview dis-
cussing challenges and opportunities of human dynamics research (n = 1).

12.2.3 Applications

A total of 15 papers applied to study general human dynamics and movement
behavior including inter- and intra-urban population flows, tourist’s movement, and
human activity space. Studies also utilized social media and big data to examine
human mobility, human behavior, and information flow in application to risk
assessment and management during disastrous events (n = 5) (e.g., disaster alerts
and responses), public health (n = 4) (e.g., infectious disease dynamics, diet
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behavior), urban dynamics (n = 5) (e.g., gentrification), transportation (n = 3) (e.g.,
driving and parking behavior), communication (n = 2) (e.g., public perception and
information diffusion), and marketing (n = 1) (e.g., cyberspace interaction and
consumer behavior). In addition, 5 papers examined human behaviors, communi-
cations, and movements and these relationships between cyberspace and realspace.

12.3 The Current State of the Arts in Human
Dynamics Research

Papers presented at the AAG sessions covered a broad range of the current state of
the arts research topics related to human dynamic research utilizing social media
and big data, and related works have been reported in the recently published lit-
erature. In terms of data, more disaggregated geo-referenced social media and big
data collected via LATs as well as conventional methods (e.g., Census survey) have
been utilized to study human dynamics. A few examples are Instagram and Twitter
to analyze urban dynamic activity and demographic patterns (Boy and Uitermark
2016; Longley et al. 2015), CDRs to assess the validity of using CDR data for
understanding human mobility (Zhao et al. 2016), GPS and accelerometer data to
examine physical activity related to built environments (Miller et al. 2015), and the
Longitudinal Employer-Household Dynamics (LEHD) data to study disaggregated
work trip flows socio-spatial interaction (Niedzielski et al. 2015). In addition, new
web and mobile tools have been developed to effectively collect and analyze such
social media and big data for human dynamics research (Yang et al. 2016).
Furthermore, High Performance Computing (HPC) enables to simulate large-scale
human dynamics where millions of agents move and interact in a virtual space
under the framework of Agent-Based Modeling (ABM). Such geosimulation
frameworks can generate massive microscopic human movement data for exploring
and investigating complex streetscape dynamics (Torrens 2016).

Quite a few methodologies have been proposed to conduct research on human
mobility, their behavior, and contexts at both disaggregated and aggregated scales.
For example, human movement behavior and mobility contexts can be analyzed by
examining statistical and geometric properties of human dynamics data (Dodge
et al. 2012; Torrens et al. 2012). Space-time analytics can examine reoccurring
movements of individuals and from the reoccurring movements to identify patterns
of life and their opportunities for interactions based on proximity in space and time
(Yuan and Nara 2015). The trajectory-based analysis is used to extract movement
characteristics of surgical staff from data collected by an ultrasonic-based location
aware system as well as video imagery, which can ultimately describe surgical
contexts (Nara et al. 2017). Location-based social network attempts to find human
interactions and community structures by creating and analyzing graph networks
based on spatial and spatio-temporal constraints under the Time-geography
framework (Crooks et al. 2016; Yuan et al. 2014). ABM simulates mobility,
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decision making process, human-human interaction, and human-environment
interaction for modeling complex human dynamics over space and time (An
et al. 2014; Heppenstall et al. 2012; Torrens 2015). Text mining and machine
learning techniques can be applied to social media and big data to reduce noises and
extract meaningful contexts (Allen et al. 2016).

Application examples include public health and epidemiology surveillance
(Nagel et al. 2013), criminology (Malleson and Andresen 2015), social movements
(Tsou et al. 2013), risk assessment and management for nature hazards and dis-
astrous events (De Longueville et al. 2009; Wang et al. 2016), to name a few.

12.4 Research Opportunities

There are numerous research directions that researchers can take to investigate
human dynamics utilizing social media and big data in the coming years. Here we
present three examples, location-based social network, location-based linguistic
analysis, and dynamic spatial ontology. The first research direction is along the line
of the brining the spatial dimension to social network analysis (SNA) and inte-
grating social networks (SNs) into GIS. Social networks are built on the basis of
node-edge graph structures where the distance between nodes is the geodesic dis-
tance, i.e. the shortest path between two nodes. This distance is known as degree
and fits well for modeling the relationships and influences in graphs. However, it
ignores the fact that human activities happen at a specific location in physical space
and the importance of physical distance is not considered in SNA. By bringing the
spatial dimension to SAN, researchers can examine the spatial context and geom-
etry alongside with the graph characteristics (Brockmann and Helbing 2013;
Doreian and Conti 2012; Hristova et al. 2016). Nevertheless, there have been few
attempts in developing metrics that can combined the existing SNA with spatial
analysis to quantify interactions among nodes in the spatial context. In terms of the
convergence of SNs and GIS, challenges remain when representing complex
multilevel SNs in GIS at the conceptual level (Sui and Goodchild 2011). At the
application end, some efforts can be seen in laying out guidelines for modeling
various types of SNs in geographic space for understanding human behavior (Yuan
and Nara 2015; Andris 2016). One application example is combining SNs and
geovisual analytics to representations the spatially embedded SNs from social
media. As shown in Fig. 12.1, adding spatial attributes to the social network from
Twitter conversations can suggest how location and urban hierarchy might have
impacts on how metropolitan areas response to information.

Location-based linguistic analysis is another promising research direction, which
utilizes text mining techniques to study human dynamics related to feelings,
emotions, and opinions about places extracted from a large amount of textual
contents of georeferenced social media and big data. For example, sentiment
analysis, a text classification method, can be used to investigate how geographic
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places correlate with certain textual contents such as the levels of happiness
(Mitchell et al. 2013). Topic modeling such as Latent Dirichlet Allocation
(LDA) and Probabilistic Latent Semantic Indexing (PLSI) (Aggarwal and Zhai
2012) allows to explore the spatial patterns of themes discovered from
geo-referenced text data; for example, the spatial patterns of health behavior topics
like “childhood obesity and schools,” “obesity prevention,” and “obesity and food
habits” (Ghosh and Guha 2013) and those of common topics on Twitter and their
associations with demographic and socio-economic characteristics of Twitter users
as well as places and local activities (Lansley and Longley 2016). Text clustering
can be applied to group similar unstructured text documents into clusters and allows
to investigate spatial clusters associated with built environments and place char-
acteristics. For example, text documents including email correspondence, tran-
scribed face-to-face interviews, and phone calls can provide new and important
clues in a criminal investigation (Helbich et al. 2013).

Social media and big data also provide research opportunity to establish dynamic
ontology for places (location names) and geographic regions. Traditional spatial
ontology is defined by experts or gazetteer dictionaries which are difficult to for-
malized and standardized. We can define “place” ontology by aggregating hundreds
of thousands of geo-tagged social media data (e.g., tweets) mentioned a specific
place name (such as “SDSU”) with linguistic analysis (Fig. 12.2). Cartographic
visualization methods (e.g., kernel density estimate) can be used to identify the
spatial boundary of place names, whereas content analysis can be employed to
reveal the meaning of places. These methods can be further applied to observe the
temporal changes of the boundaries associated with place names between different
seasons. Different from the traditional definition of place names from gazetteers or
experts, this new social media and big data-based ontology framework is
human-centered and can provide useful information and operational meanings for
places.

Fig. 12.1 An example of a spatial social network between the top 30 U.S. populated Metropolitan
Statistical Areas (right) as compared to a regular social network (left). Directed edges between
nodes indicate the frequencies of retweeting activities among different SRAs related to the
California vaccine exemption conversations
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12.5 Research Challenges

While social media data and big data provide new research opportunities, there exist
notable challenges. Tsou (2015) listed seven research challenges related to mapping
social media and big data; (1) lack of demographic profile, (2) data integration
problems, (3) issues with user privacy and locational privacy, (4) needs of multi-
disciplinary collaborations, (5) needs of contextual analysis, (6) filtering noises, and
(7) difficulty of the falsifiability of hypotheses and theories. In addition to these
challenges, we further identified two key challenges. One challenge relates to the
fact that social media platforms/services and the internet of things (IOT) are
dynamically evolving over time. APIs of a social media platform will be updated
and major revisions on the service and the data access policy can affect data
collection and possibly lead a data inconsistency issue. At the time of writing
(October, 2016), APIs have been changed, for example, 14 times for Instagram
since April 2014, 36 times for Flickr API since November 2010, 68 times for
Foursquare API since November 2010, and 113 times for Twitter API since
December 2012. Some involve major API changes; for instance, Twitter was
originally designed as a text messaging service with a limitation of 160 characters
including 20 characters for a user name and 140 characters for a message post. It is
now allowing users to post a text message with emoji, images, and videos. These
changes not only alter the data structure but likely influence user behavior, which
makes human dynamics research using Twitter data more complex. Instagram has
also made significant changes to its API in June 2016 that include the deprecation
real-time subscriptions for tags, locations and geographies (an equivalent to the
Twitter streaming API) and the mandatory requirement of a valid access-token to
use APIs in order to fully access Instagram contents (Instagram 2016). To obtain a

Fig. 12.2 The kernel density estimate hotspot of geotagged tweets containing the “SDSU”
keyword (left) and the word could from the SDSU geotagged tweets (right)
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valid access-token, it requires researchers to develop a live application that has to be
reviewed and approved by Instagram. The availability of social media data in a
currently accessible data format, therefore, will likely be changed in the near future,
which makes researchers especially difficult to conduct a longitudinal study.

Another key challenge is related to data and algorithm uncertainty. In spite of the
emerging new research opportunities to produce geographic knowledge by utilizing
social media and big data, most of these data are not the output of instruments
designed to produce valid and reliable data amenable for scientific analysis (Lazer
et al. 2014). Regarding the spatial data quality, location information in most social
media and big data can be controlled by end users and it is challenging to know the
level of uncertainty by researchers. For example, a location of an Instagram post is
selected by a user based on a list of locations provided by Instagram; therefore, a
user can easily manipulate his/her location. Furthermore, there exist quite a few web
tools and mobile applications to fake location information. While these users’
decision to fake location, or spoof location, protect individual’s geo-privacy, few
studies have discussed and incorporated location spoofing in the existing GIScience
literature (Zhao and Sui 2017).

Kwan (2016) also questioned that big data-driven research ignores the poten-
tially significant influence of algorithms on research results, and thus geographic
knowledge generated with big data might be more of an artifact of the algorithms
used than the data itself. For example, Fischer (Fischer 2014) mapped six billion
geo-tagged tweets and observed a banding phenomenon, where the original tweet
locations tend to align with the closest latitude or longitude, suggesting that tweet
locations might have been fuzzed by Twitter through snapping them to the closest
latitude or longitude to prevent people’s exact locations being disclosed.
Researchers often do not have access to, or even do not know about such algorithms
being used by social media providers who generate, process, and provide their data
through APIs. Moreover, in order to deal with big data, algorithms are increasingly
implemented as computerized procedures, and they become increasingly detached
from and less visible to researchers who use them (Kwan 2016). Consequently,
such algorithms introduce greater uncertainty and potentially result in significant
differences in research findings. Hence, it is crucial to examine and evaluate the
validity of data and algorithms in order for maximizing the utility of social media
and big data.

Addressing these 9 challenges will be an ongoing endeavor to move forward
with human dynamics research utilizing new technologies, social media data, and
big geospatial data. In two AAG special sessions, a few papers undertook some of
these challenges. For example, two papers integrated more than two data sources;
one utilized mobile phone location data, CDRs, and subway smartcard data to
uncover dynamic urban population flow patterns, and the other combined Twitter,
Flickr, and Instagram data to delineate dynamic place boundaries. One paper
applied interview data to explore the practices, potentials, and problems in using
data produced through mobile communications for disease disaster management.
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While majority of papers presented in the AAG sessions focused on the exploratory
data analysis revealing interesting patterns related to human dynamics, there is a
need for human dynamics research tacking those challenges to critically discuss the
use of new forms of data.
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Chapter 13
Outlook and Next Steps: From Human
Dynamics to Smart and Connected
Communities

Daniel Sui and Shih-Lung Shaw

13.1 Summary/Recap

Although framed from a predominantly GIS and geographic perspective, the pre-
vious chapters in this volume represent some major advances in research related to
human dynamics in recent years. The field seems to have been continuing
expanding with growing interdisciplinary interests (Orsucci 2015; Wang et al.
2016; Zha et al. 2016; Shaw et al. 2016). In sharp contrast to Forrester’s (1961,
1969, 1971) top-down and simulation-driven approach to studying industrial,
urban, and world dynamics via systematic analysis almost half a century ago, the
chapters in this volume and some of the latest papers on the topic (Wang et al.
2017; Yan et al. 2017) have not only signaled a recent surge in interdisciplinary
study of human dynamics but also has witnessed a profound paradigm shift as
defined by the following trends, which are worth recapping:

1. Instead of relying on simulation, human dynamics research is heavily
data-driven. Almost all but one chapter use data harvested from various social
media platforms (Gautam et al.; Xu). In addition, cell phone data (Xu et al.),
GPS data from MicroSoft’s Geolife (Miller and Hoover); SMS & CDR data are
also used in studying human dynamics (Nara et al.)

2. Instead of aggregated analysis at certain geographic level (e.g. census tracts,
TAZ units etc.), recent human dynamic research has much improved spatial and
temporal granularity, mostly focusing on human at the individual level,
potentially covering both indoor and outdoor mobility and network activities
(Gao et al.; Xu; Wen et al.).
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3. Moving away from merely empirical analysis, recent human dynamics research
also tend to be more theoretically informed and guided. There seems to be a
keen concern about the semantics and ontology (Koylu et al.), a shift from space
to place and time (Cheng and Shen), and attempts have been made to link
human dynamics research to a cybernetic framework (Xu).

4. As exemplified in the previous chapters, human dynamics research increasingly
try to capture the link/connection between physical and virtual space, which is
consistent with recent work on the O2O (on-line–offline) interaction and
cyber-physical system (CPS) (Gao et al.; Xu et al.; Wen et al.)

5. Methodologically, we also witness the new advances in text mining/semantics
(Nara et al.)—SVM/LDA, trajectory analysis, machine learning and data min-
ing, time geography (Xu et al.), the resource description framework (RDF) (Fan
and Stewart), and the new development of open-source tools (Ye et al.).

13.2 From Human Dynamics to Smart and Connected
Communities

As we discussed in the introductory chapter, the advances in a plethora of tech-
nologies in information and communication (ICT), GIS/GPS, and sensor tech-
nologies etc. have transformed human communications in dramatic and profound
ways. The new human dynamics as manifested at different scales are all directly or
indirectly results of these technological advances. More than ever, humans are
interconnected not only in the cities or communities they physically live but also
increasingly linked together in virtual communities, or communities without
propinquity defined by the space of information flows at the speed of light. Smart
technologies have not only enabled this new round of research on human dynamics
but also contributed to the birth and expansion of the so-called smart city and
connected communities. The human dynamics constitute and are also constituted by
emerging smart and connected communities in both physical and virtual spaces.
Although implicitly, chapters in this volume (except Chap. 12) are also contributing
broadly to our understanding of the dynamics of smart and connected communities.

Cities and communities in the U.S. and around the world are entering a new era
of transformational changes, in which their inhabitants and the surrounding built
and natural environments are increasingly connected by smart technologies, leading
to new opportunities for innovation, improved services, and enhanced quality of life
(Townsend 2013; Ratti 2015; Herzberg 2017). We believe that research on human
dynamics is intimately related to the study of smart and connected communities.
Studies on smart and connected communities should start with new understanding
of human dynamics whereas new findings in human dynamics should be scalable
and helpful for us to better understand the dynamics of smart and connected
communities.
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In many ways similar to the concept of human dynamics, the concept of smart and
connected communities is also elusive. Rapid and pervasive technological changes
are transforming urban life and urban governance around the world. The active
engagement of city governments around the world with these changes is reflected by
the fact that by the end of 2013 there were more than 143 smart city projects around
the world and the number of smart city projects have been continuing to grow (Lee
et al. 2014). Albino et al. (2015) noted that smart city is a “fuzzy concept (…) used in
ways that [are] not always consistent. There is neither a single template of framing a
smart city, nor a one-size-fits-all definition of it (page 4)”. However, it is abundantly
clear that smart city or smart and connected communities always entail the dual
aspects—the smart technologies (i.e. the technological infrastructure) and the new
governance and practices enabled by these technologies (i.e. the human side)
(Kitchin 2014).

Until recently, research on smart and connected communities has been shaped
and driven predominantly by the engineering and technology disciplines. The
emphasis on the smart infrastructure has renewed the belief that smart governance
of the ‘data-polis’ might translate in increased possibilities to steer our cities
towards a more efficient operation. But any student of the history should recognize
that no technological innovations have made the desirable social progresses without
a concomitant change in human behavior and decision making process. In recent
years there is an increasing interest for the smart city from the social sciences. But
clearly, much remains to be done, especially coupling/linking the human dynamics
study with the research of smart and connected communities. Without linking it
more closely to studies of human dynamics, smart cities may risk excluding groups
without capacities from participating in an increasingly technological world. As
being demonstrated by the smart city literature so far, with its focus on algorithms
and calculable data, and related processes of depoliticization, responsibilities
become more opaque in the smart and connected communities. At the same time,
possibilities for participatory governance evaporate if our focus is on the technical
rather than the human side of the smart city. Apparently, these sort of issues will
have a huge impact on urban life in the decades to come, we have only started to
explore these socio-political issues (Leszczynski 2016). On top of this, much of the
commentary and analysis is rooted in US and European experiences, yet arguably
the on-the-ground transformations in terms of hardware and software are most
evident in the fast paced urbanization of Asia and other parts of the developing
world. One emerging mandate is to put the citizen and citizen participation at the
front and center of smart city research. By integrating studies of human dynamics
with research on smart and connected communities, we can surely make human
dynamics research more scalable and also fulfill the mandate of human-centered
study on smart and connected communities.
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13.3 Outlook and Next Steps

The convergence of GIS, human dynamics, and smart and connected research is
accelerating (Roche 2016). Moving forward, as we close the research gap between
human dynamics and smart city, we venture to outline the following thoughts as
discussion launching pad for the next phase of research on human dynamics and
smart and connected communities, especially from a GIS and geographical
perspective.

13.3.1 Integrating Organic with Designed Data: Moving
Beyond the Big Data Hype

Big data has been trendy during the past 10 years in interdisciplinary research. To a
large extent, recent advances in human dynamics research can be attributed to the
big data deluge, as demonstrated in the previous chapters in this volume. However,
we believe big data is an overly hyped term and it has lost its precise scientific
meaning as what is big or small is all relative to our computing capabilities. Moving
forward, a more useful distinction for human dynamics research is between
designed data (‘made’ data) and organic data (‘found’ data). Designed data is the
data collected through surveys, censuses, and administrative forms, while organic
data refers to the self-generated ‘big data’ (Grove 2011). Designed and organic data
are different in their stimulus to data production. Designed data are generated
according to some specific, pre-defined data stimulus (the question), and the data
will be applied to solve the stimulus question (Grove 2011). As for the organic data,
however, data stimulus does not have to be determined before data production. As a
result, for most of the time, the source data was generated to support its original
application, but might also be valuable to another application as data are limited or
not easy to obtain in this additional application field. However, as the original
purpose of gathering the source data is not for the additional application, the data
might not be suitable to be used directly. There are cases of this gap between the
generation of data and the utility of data. For example, taxi trajectory data are
primarily generated for security management, but could be used to identify pas-
sengers’ travel behavior and traffic conditions; cell-phone data collected for fee
management can also be used to estimate population distribution.

In our current rush to use big/organic data, we should not lose sight on the value
and utility of small/designed data as they reveal different aspects of human
dynamics. Major breakthroughs in human dynamics research will rely on the further
integration of both organic and designed data.
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13.3.2 Balancing the Positive and Normative Perspectives

Similar to the unreasonable effectiveness of mathematics of the early 20th century
(Wigner 1960), we are witnessing the unreasonable effectiveness of data (Halvy
et al. 2009) in the early 21st century, which has prompted calls for the end of theory
in empirical research (Anderson 2008). Far from the truth, we need to have better,
more rigorous theoretical framework to guide our empirical inquiries more than
ever. Abundance of data is helpful, but data rarely speak for themselves unless and
until they are put in proper theoretical and conceptual contexts. For human
dynamics research, a balance between positive and normative inquiries is
warranted.

In his recent work The New Science of Cities, Batty (2013) discussed the
positive (focusing on “what is”) dimension of the city science and the normative
(focusing on “what should be”) aspect of urban research. In the field of urban
studies, the positive approach, or empirical approach, is related to urban modeling
and simulation, while the normative approach, or idealistic approach, is more in line
with the tradition of urban design. According to Batty (2013), these two dimensions
of city sciences are not mutually exclusive, and their tools and methods could be
effectively combined to examine urban issues.

For research related to human dynamics, the field is predominantly positive so
far. Driven by scientific methods, human dynamics research aims to understand the
emerging regularities of human mobility and activities. While the research along the
positive tradition is crucial, it is also important to articulate a normative vision on
what an optimal/ideal human dynamics should be and what changes we can and
should do to facilitate the optimal human dynamics. In other words, we need to
move human dynamics research from being descriptive (what is) to being more
prescriptive (what should be). The positive and normative research of human
dynamics are not mutually exclusive. Rather than simply being the passive users of
technology, which is very bias-prone (The Guardian 2016), we can play an active
role in designing the new system to incorporate insights gained from the positive
research such as the recent work to remove gender biases from algorithms (Zou
2016). Findings from positive research regarding human mobility and behavior can
inform normative research such as geodesign. One of Jay Forrester’s (1998) last
papers actually focuses on designing the future and how to make social system
more sustainable. Given the accelerated trend towards ubiquitous computing, we
believe that it should be fruitful to explore how to use geodesign to create the
optimal human dynamics. Furthermore, we also need to creatively apply the
insights gained from human dynamics research to better design our smart and
connected communities.
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13.3.3 Crossing the Quantitative Versus Qualitative Chasm:
Towards a Mixed Method Approach

Methodologically, studies in human dynamics as of today are still driven pre-
dominantly by quantitative approaches, but the complexity of human dynamics
calls for methodological hybridity to cross the quantitative versus qualitative chasm
(Sui and DeLyser 2012). We believe a lot more productive research can be done
through a mixed method approach by linking the spatial-analytical with the
social-critical approaches.

Furthermore, we strongly believe that the emerging data-driven storytelling
(Genauer 2016) should be an integral part of the tool box for human dynamics
research. In fact, research storytelling is a much broader interdisciplinary trend that
cuts across physical and social sciences as well as humanities, reflecting a renewed
focus on the political possibilities afforded by storytelling (Sui 2015). Echoing this
general trend of digital storytelling and data curation, one creative way to practice the
so called qualitative GIS in recent years is through map stories or location-based
storytelling more generally. Such map-based geospatial storytelling has empowered
contemporary map makers to describe reality in a way unattainable by traditional
quantitative approaches alone (http://mapstory.org; http://storymaps.esri.com/home).
Story maps often integrate text, multimedia, and interactive functions to inform,
educate, entertain, and inspire people. Story maps can empower a global community
to organize knowledge about the world spatially and temporally. With platforms
such as mapstory.org or storymaps.esri.com, people of all kinds can turn into story
tellers who are capable of creating, storing, and collaborating on map stories and
improve on understanding of global dynamics. Incorporating four Cs (countries,
cities, companies, and communities) as integral components of geostrategy,
GIS-based story-telling is helping people in all walks of life to better understand the
world. With more and more platforms for location-based story-telling coming into
existence, such as echolocation and storieseverywhere.org, we can tell a better story
about the new human dynamics and smart and connected communities.

13.3.4 Striving for Efficiency, Equity, and Sustainability

As far as policy options are concerned, human dynamics research is dispropor-
tionately towards making the urban system more efficient, especially in the context
of human mobility in our increasingly crowded cities. While these works on effi-
ciency are commendable, future research should also give attention to equity and
sustainability. As more and more smart technologies are replacing humans in the
workplace, there will be new winners and losers. How can we use the smart
technologies to create a more just and equitable society and to narrow the gap
between the rich and poor? Furthermore, it’s also quite murky and uncertain at this
point at the environmental impacts of these smart technologies? Are they going to
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consume less materials and energy, thus more environmentally friendly or just the
opposite? Recent studies on the emerging sharing economy show mixed results. For
example, the growing popularity of Uber is not only further exacerbating the haves
and have-nots but also caused extended hours of traffic congestion and further
contribute to the deteriorating air quality. Apparently, there are challenging issues
for human dynamics researchers to tackle in the coming years.

In response to these challenges, research on human dynamics should engage
critically with the smart cities agenda that is in relation to the technological capa-
bilities for more active urban citizenship and for more inclusive and responsive
urban policy making. Are we allowing citizens to be participatory in the process of
city design as well as smart city network? At the same time, it will explore the
potential downside in relation to more centralized and less transparent decision
making systems, ‘automatized’ and monetized control and distribution systems,
more extensive surveillance and digital exclusion. Regardless, a more holistic
policy purview to include concerns for efficiency, equity, and sustainability should
serve us well both in the short as well as the long term.

13.3.5 Towards Robust and Reliable Research in Human
Dynamics and Smart City

To make human dynamics and smart city research and practice gain the respect,
credibility, and acceptance by the broader research community and policy makers,
we strongly feel the next step for the human dynamics research is to make it more
robust and reliable. This means that we need to intensify our efforts to make our
research (to the best of our ability) to pass the acid test of reproducibility, repli-
cability, and generalizability. This is the only way we make human dynamics more
trust worthy and respected (Donoho 2014). According to a document released by an
NSF interdisciplinary panel (NSF 2015a), robust and reliable scientific research
must be reproducible, replicable, and generalizable:

• Reproducible: researchers can reproduce the results of a prior study using the
same materials and procedures as used by the original researcher;

• Replicable: researchers can duplicate the results of a prior study if the same
procedures are followed but new data are collected;

• Generalizable: researchers can empirically demonstrate that the results of a
study are applicable in other contexts or populations.

Compared to other fields in physical sciences, engineering, and social sciences
(King 2003; Chang and Li 2015; Camerer et al. 2016; Stodden et al. 2016), human
dynamics research lags behind in our efforts to promote robust and reliable
scientific practices. We still know little whether the voluminous studies published
so far in human dynamics and smart city research based on organic data
are reproducible, replicable, and generalizable. We need to conduct more
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replication and generalization studies of human dynamics research findings, and the
practice of the emerging open science paradigm is apparently the first step towards
the goals of robust and reliable science. The U.S. NSF has already mandated all
funded projects to improve their public access plan (NSF 2015b). Refereed journals
can also do more to promote robust and reliable sciences by requiring authors make
their protocols and both organic and designed data available as a pre-condition for
acceptance of publication, which can facilitate cross-validation between the findings
from organic and designed data. Academic journals can further encourage repro-
duction and replication efforts by publishing negative results. Academic institutions
can do their fair share by changing the incentive for success in science so that
data-sharing and replication studies are rewarded as an integral part of the scientific
research. However, we also should keep in mind that reproducible and replicable
findings do not necessarily guarantee that the findings reflect the truth. It is rela-
tively easy to replicate and reproduce similar results based on the same or similar
open data and procedures published in a paper. However, the data could be biased
or inappropriate methods could be used that lead to misleading results (Zhao et al.
2016). In the meantime, there often exist some unique characteristics of human
dynamics beyond the generalizable results when similar data from different cities
are compared. These remain as critical challenges to human dynamics and smart
city researchers to develop robust and reliable research.

13.4 Conclusion

In the geographic literature, Finch (1939) was one of the earliest pioneers envi-
sioned the study of human dynamics in geographic science. Forrester’s work
focused on the system dynamics in the 1960s and 1970s at the aggregate level, but
dipped into a low point in the 1980s and 1990s. However during the past twenty
years, interests in dynamics have resurged with the data avalanche and new level of
theoretical sophistication (Barabasi 2005). Now the growing interests in smart and
connected communities are signaling that study of human dynamics should be
further integrated and embedded in a broader geographical setting. We have indeed
come to a full circle. The convergence of interdisciplinary research mandates that
we need to make our future research scalable from human dynamics to smart and
connected communities.

The U.S. National Science Foundation created a cross-directorate Smart and
Connected Communities (S&CC) program in 2016, whose goal is “to support
strongly interdisciplinary, integrative research and research capacity-building activ-
ities that will improve understanding of smart and connected communities and lead to
discoveries that enable sustainable change to enhance community functioning.”
(https://www.nsf.gov/pubs/2016/nsf16610/nsf16610.htm) It clearly indicates the
complex and interdisciplinary nature of the challenges. The U.S. National Science
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Foundation recently also proposes 10 big ideas for future NSF investments (https://
www.nsf.gov/about/congress/reports/nsf_big_ideas.pdf). Among them, the “Work at
the Human-Technology Frontier: Shaping the Future” which is about the changing
ways of producing goods, providing services, and collaborating with colleagues in
relation to changing education to the preparation offuture work force, the “Harnessing
Data for 21st Century Science and Engineering” which supports basic research of
enabling data-driven knowledge discovery and development of national research data
infrastructure for the deluge of data, and “Growing Convergence Research at NSF”
which blends scientific disciplines and fosters robust collaborations to address com-
plex research problems are closely related to the theme of this edited volume. These
newnational initiativeswill further propel research on human dynamics and smart city
to a new level of excellence and we can’t wait to share with you the exciting research
findings in human dynamics and smart and connected communities in the subsequent
volumes of this book series.
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