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Abstract

A distributed system consists of a number of computational nodes connected
by a communication network. The nodes of a distributed system cooperate and
communicate to achieve a common goal. We first describe the type of distributed
systems, the communication and synchronization methods used in these systems.
We then investigate few fundamental distributed algorithms including spanning
tree construction, broadcast and convergecast operations over a spanning tree, and
leader election.

5.1 Introduction

A distributed computing system or a distributed system as more commonly termed
consists of a number of computational nodes connected by a communication network.
Computing nodes are autonomous and the network can be awiredmedium; awireless
communication channel or both. The nodes of a distributed system cooperate and
communicate to achieve a common goal. It is evident that synchronization among
computations at the nodes of such system is needed to provide this coordination.

A distributed system appears to users as a single computing system. In that re-
spect, a cloud is a distributed system since there are numerous computing elements
and databases in a cloud, yet it appears as a single system to a user. Distributed
systems are needed because they provide convenient access to remote resources for
users and applications. In many cases, the application itself is inherently distributed.
For example, an airline reservation system is used by many users and provides all
necessary communication and synchronization. Distributed systems provide fault
tolerance in which case failure of a node or a link does not harm the operation of
the system as these are replaced by other nodes or links. Distributed systems are
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commonly dynamic in which nodes and links may be inserted to or deleted from the
network due to failures or movement of the nodes as in the case of a mobile network.
A rescue operation consisting of moving nodes is an example of a mobile network.

A distributed system can be conveniently modeled by a graph in which vertices
of the graph represent the computational nodes and an edge between two nodes
represents a communication facility between them. The algorithms running at the
nodes of a graph representing the distributed systemare commonly termeddistributed
graph or network algorithms. Note that distributed memory-employing algorithms
in a parallel processing environment are also called distributed algorithms in the
literature but in the context of this book, we will use distributed (graph) algorithms to
mean algorithms running in a network represented by a graph. We will see designing
a distributed version of a sequential graph algorithm is not a trivial task. We start
this chapter by describing common distributed system platforms.We then investigate
distributed graph algorithms, classify them, and show the operation of some basic
distributed graph algorithms.

5.2 Types of Distributed Systems

Distributed system applications vary from clusters of computers to networks of
embedded systems. We can classify distributed systems as distributed computing
systems, distributed information systems, and distributed pervasive systems [5]. Dis-
tributed computing systems typically consist of a cluster of homogenous computers
connected by a local area network. The Grid is also a distributed computing system,
which consists of numerous heterogenous computing systems with many different
users that cooperate to achieve a common goal [3]. Cloud computing is more general
than grid computing and provides users with various resources such as storage, data
management, web site hosting, and computation [4]. Fault tolerance due to failing
nodes and links, and load balancing are the main issues to be handled in both Grid
and a cloud.

Distributed information systems commonly involve large database applications
such as a transaction processing system. An online banking system with millions of
users is an example of such system. Distributed pervasive systems typically consist
of small and sometimesmobile computers that communicate usingwirelessmedium.
We will take a closer look at these systems since unlike Grid or a cloud, these can
be modeled conveniently by a graph. The Internet is the largest network in the world
connecting personal, infrastructured, wireless, or any other type of network.

Wireless networks communicate using wireless communication and networking
medium. They can be broadly classified as infrastructured and ad hoc. An infrastruc-
tured wireless network has a fixed wired backbone consisting of routers and access
points to provide communication among hosts of the network such as a cellular net-
work. In contrast, ad hoc wireless networks do not have this structure and each node
in such a network acts as a router for the transfer of messages. Ad hoc networks are
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widely used due to easiness and speed in their deployment. Two types of wireless
networks have gained importance recently; mobile ad hoc networks and wireless
sensor networks.

5.2.1 Mobile Ad hoc Networks

A mobile ad hoc network (MANET) is an infrastructure-less wireless network con-
sisting of nodes that move dynamically. Vehicular ad hoc networks (VANETs) that
provide communication between moving vehicles, military MANETs used by mil-
itary, and MANETs used in rescue operations are examples of such systems. Each
node in a MANET acts as a router for multi-hop communications between hosts in
which a message is transferred between a number of host pairs before it reaches its
destination.

One of the main challenges in a MANET is routing, which is the process of
transferring a message between a sender and a receiver in the most efficient way.
Nodes are mobile which means routes have to be computed dynamically requiring
efficient routing algorithms. Staying connected in aMANET is also another problem
that needs to be solved.A robot network is another example of aMANETand keeping
the network connected at all times is needed for the coordinated operations of robots
in such a network.

5.2.2 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a network of sensors with radio trans-
ceivers and controllers. These networks of physically tiny nodes in most cases, have
many applications including environmental control, e-health, and intelligent build-
ings. A sensor node has a very limited power and sensors are typically controlled by
a central node called the sink with more computational capabilities. Data recorded
by sensor nodes is collected at the sink for further processing. Routing of data mes-
sages to the sink efficiently using network protocols as well as keeping the network
connected are the main issues to be addressed in WSNs. Sensor networks are mostly
stationary and require low-power operation, which is more critical than managing
power in MANETs.

A MANET or a WSN can be conveniently modeled by a graph and the problems
such as routing, connectivity can then be transferred to graph domain to be solved
with methods developed for graphs. For example, efficient routing problem can be
solved with the aid of the method of finding the shortest distance between two
nodes of a weighted graph. However, these problems should now be solved in a
distributed manner without any global knowledge, which makes the problem harder
than an ordinary graph problem. A node in a graph representing a WSN can only
communicate with its neighbors, but we need to have a global decision using the
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Fig. 5.1 The graph
representation of a wireless
network. Transmission range
of a node is shown by dashed
circles centered at that node

r

collected data from all of the sensors. Figure5.1 displays a wireless network with
nodes that can transmit and receive radio signals within a radius of r meters. We can
then connect the nodes that are within transmission ranges of each other by an edge
and obtain the graph shown.

5.3 Models

Messages are crucial for the correct operation of a distributed algorithm. We can
define the widely accepted message passing model of a distributed system formally
as follows [1,6]:

• A process pi at a node i communicates with other processes by exchanging mes-
sages only.

• Each process pi has a state si ∈ S, where S is the set of all possible states that a
process pi can be.

• A configuration of a system consists of a vector of states as C = [s1, . . . , sn]
• The configuration of a system may change by either a message delivery event or

a computation event.
• A distributed system continuously goes through executions as C0, φ1,C1, φ2, . . .

where φi is either a computation or a message delivery event.

A finite-state machine (FSM) or finite-state automaton is a mathematical model
to represent a complex system. An FSM consists of states, inputs, and outputs.
It may change its state based on its current state and the input it receives. FSMs



5.3 Models 121

are widely used to design algorithms, network protocols, and sequence analysis in
bioinformatics. Formally, a deterministic FSM is a quintuple (I, S, S0, δ, F) where

• I is a set of input signals.
• S is a finite nonempty set of states.
• s0 ∈ S is the initial start state.
• δ is the state transition function such that δ : S × I → S.
• O ∈ S is the set of output states.

The next state of an FSM is determined by its current state and the input it re-
ceives. The same input may cause different actions in different states. As an everyday
example, let us consider students in a school who for simplicity can have only two
states: in_class or out_class meaning they can be either in the class or out of the
class. When the bell rings in in_class state, it means they can go out and the bell
ringing in out_class state means they should go in the class. An FSM diagram or a
state transition diagram is a visual aid to understand the behavior of an FSM. The
circles in such a diagram denote its states and transitions between states are shown
by directed arcs which are labeled as a/bwhere a is the set of inputs received and b is
the set of outputs produced when these inputs are received. A double circle denotes
the accept state.

A state table provides an alternative way of representing a FSM. It has states of
the FSM as rows and inputs as columns and the elements of the table can be the next
FSM state and actions to be taken when the input is received. The output of aMoore
Machine type of FSM is the next state, whereas the output in aMealy Machine type
of FSM contains outputs as well as the next state.

Example 5.1 We will design a simple FSM for an elevator that can only go to floors
0, 1, and 2. There are two buttons in the elevator: up and downwhich take the elevator
up and down respectively. We can associate the current state of the elevator with the
floor it currently stays; therefore we have three states 0, 1, and 2. At each state, the up
or down button can be pressed represented by two inputs up by 0 and down by 1. The
FSM diagram for this example is shown in Fig. 5.2 which shows all state transitions,
considering there will be two inputs at each state. We cannot go down from 0 state
and also going up from second floor is not allowed shown by loops at these states.

0 1 2

up

down

up

down

up

down

Fig. 5.2 FSM of the elevator example
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Table 5.1 Elevator state table

State 0(Up) 1(Down)

0 1 0

1 2 0

2 2 1

We can now form the state table for this FSM with entries showing the next state
of the FSM when the input shown in columns is received at state shown in rows
as shown in Table5.1. This way of expressing an FSM provides a very convenient
way of writing its algorithm. We can form a 2-D array with each element being a
function pointer. We then define functions to be performed for each table entry; for
example, receiving “0” (up) at “1” (first floor) state should cause a transition to state
2 (elevator should move to second floor) which is realized by changing the current
state to “2”. The running of the algorithm is then straightforward; every time an input
is received, we activate the function shown by the FSM table entry as shown by the
C programming language code below.

#include <stdio.h>

# define UP 0

# define DOWN 1

void *fsm_tab[3][2]();

int input;

void act00(){curr_state=1;}

void act01(){curr_state=0;}

void act10(){curr_state=2;}

void act11(){curr_state=0;}

void act20(){curr_state=2;}

void act21(){curr_state=1;}

main()

{ curr_state=0; // initialize curr_state

fsm_tab[0][0]=act00; // initialize FSM table

fsm_tab[0][1]=act01;

fsm_tab[0][2]=act02;

fsm_tab[1][0]=act10;

fsm_tab[1][1]=act11;

fsm_tab[1][2]=act12;

while (true)
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{ printf("Type 0 for up, and 1 for down \n");

scanf("%d", &input);

*fsm_tab[curr_state][input];

printf("now at floor \%d", curr_state)

}

}

5.4 Communication and Synchronization

The algorithms that run at the nodes of a distributed system need to synchronize to
accomplish a common goal. This process can be performed at various levels. Let us
see how synchronization can be handled locally at three main levels of hierarchy; the
hardware, the operating system, and the application. At the lowest level, hardware
may provide synchronization at a certain number of clock ticks periodically. At a
higher level, one of the main tasks of local operating systems at each node is the
synchronization of the processes residing at that node.Moreover, this function can be
extended to processes running at the nodes of the distributed system at the application
level.

However, we need a mechanism to provide synchronization among the nodes
which should be translated to local synchronization mechanisms described above. A
very commonly usedmethod in a distributed system is synchronization viamessages.
In this so-calledmessage passingmodel, each local operating system or middleware
provides two basic primitives; send and receive for sending and receiving messages.
These procedures can be executed in blocking or non-blocking fashion. A blocking
send stops the caller until an acknowledgment from the receiver is received. A block-
ing receivemeans the receiver should wait until a message is received. The blocking
receive maybe selective in which a message from a particular sender is waited and
execution is resumed only after this happens. It is common practice to employ a
non-blocking send with a blocking receive since the sent message is assumed to be
delivered correctly while the actions of a receiver depend on whether the message is
received and also its contents and thus a blocking receive is frequently used.

Sending and receiving are commonly employed indirectly using data structures
called ports or mailboxes. These are depository places for messages, and placement
or removal of messages can be performed asynchronously from these structures.
In a distributed system, the locally executed send procedure typically deposits the
message in themailbox of the network process which appends the necessary network
headers, and transfers the message through lower network layer software to the
network. The receiving network process removes network headers and deposits the
message in themailboxof the receiverwhich takes it from there as shown in simplified
form in Fig. 5.3. There are three main software modules at each node of a distributed
system: system(OS), network protocol stack (N/W), and the application (APP) as
shown in this figure.
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Fig. 5.3 Distributed communication via mailboxes. Process pi at node i sends a message to
process p j at node j using mailboxes via network processes ni and n j

In summary, operating system and network processes provide synchrony between
two processes pi and p j which execute distributed algorithms at nodes i and j of the
network. At a higher level of abstraction at application, synchronization among dis-
tributed algorithms at different nodes may be achieved by roundswhich are executed
in lock-step fashion. In this case, a special process at a node starts each round and
each process waits for all other processes to finish execution before the next round
starts. Synchronization at the beginning of a round can be achieved by broadcasting a
special message and end of a round can be identified by the convergence of messages
which are two basic communication operations as we will see shortly. Commonly, a
process pi of a distributed system performs the following steps at each round:

1. send message.
2. receive message.
3. do some computation.

We assume here that a process sends the results of its computation from round k-1
in kth round. This order is not strict however, we could have compute-send-receive
sequence which would mean each process now computes new results in round k
based on what it has received in the previous round and sends the new results in the
current round. Distributed algorithms that work asynchronously and do not have this
synchronously executing rounds are called asynchronous algorithms. Detecting the
termination of distributed algorithms is needed to stop the algorithm when a certain
condition is met and this is not a trivial task. Although starting and ending a round
cause overheads in terms of needed extra messages, designing synchronous distrib-
uted algorithms is more straightforward than asynchronous algorithms in general.
The asynchronous algorithms require more complex control logic and detection of
termination in such algorithms is also more difficult.

Yet another distinction is whether a single initiator starts the distributed algorithm
or there are more than one initiators. A single initiator that also controls the overall
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running of the algorithm means a single point of supervision which is easier to
manage than individually controlled processes. We can, hence, classify distributed
algorithms based on synchronization at application or algorithmic level as follows.

• Synchronous Single Initiator (SSI) algorithms: There is a single initiator which
starts the algorithm, synchronizing start and end of each round, and initiating
termination. These algorithms are simpler to design than others since there is a
single process that controls the operation.

• Asynchronous Single Initiator (ASI) algorithms: This type of algorithms have a
single initiator but activity at each node is performed asynchronously from the
other nodes. Synchronization and termination detection aremore difficult for such
an algorithm than a synchronous algorithm.

• Synchronous Concurrent Initiator (SCI) algorithms: These algorithms execute
synchronously but may be started by concurrent initiators.

• Asynchronous Concurrent Initiator (ACI) algorithms: There are more than one
initiators in this case and the activities are asynchronous. This mode of operation
is the most general case but may require complex control.

In the case of an SSI algorithm, a previously built spanning tree to transfer control
messages can be conveniently used. Based on foregoing, a possible SSI algorithm
template is sketched in Algorithm 5.1. All processes start the kth round when they
receive the start message over the spanning tree T , which is basically a broadcast
operation over T as we will see shortly. The three actions in the round are sending
results of the previous round to all neighbors, receiving results of the previous round
from neighbors, and prepare new results for the next round. When a process finishes
executing a round, it waits for all of its children in T to finish before it can send
the stop message to its parent. When the root of the spanning tree T receives stop
message from all of its children, the round k is over and the root can now start the
round k + 1. We will use this structure frequently while designing distributed graph
algorithms.

Algorithm 5.1 SSI_template
1: boolean f inished, round_over ← f alse
2: message type start, result, stop
3: while ¬round_over do
4: receive msg(j)
5: case msg(j).type of
6: start : send result (i) to all neighbors
7: receive result ( j), from each neighbor j
8: compute result (i), f inished ← true
9: stop : if stop received from all children and f inished then
10: send stop to parent
11: round_over ← true, f inished ← f alse
12: end while
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5.5 Performance Criteria

The performance of a distributed algorithm is evaluated in terms of time, message,
space, and bit complexities outlined below:

• Time Complexity: Time complexity is the number of steps required for the distrib-
uted algorithm to finish as in a sequential algorithm. For synchronous distributed
algorithms, we would be mostly interested in the number of rounds as time com-
plexity.

• Message Complexity: This parameter is commonly considered as the dominant
cost of a distributed algorithm since it directly shows the utilization of the network
and indicates synchronization costs among the nodes of the network. Transferring
a message over a network is magnitudes of orders more costly than doing local
computations.

• Bit Complexity: The length of a message may also affect the performance of
a distributed algorithm, especially if message length increases as the message
traverses the network. For a large network modeled by a graph with many vertices
and edges, bit complexity may be significant which directly affects the network
performance.

• Space Complexity: This is the required storage at a node of the distributed system
for the algorithm under consideration.

5.6 Distributed Graph Algorithm Examples

We are now ready to design and implement simple distributed graph algorithms.
We will describe sample basic algorithms which follow a logical sequence. The first
algorithm uses a technique named flooding to send a message from a node of the
graph representing the network to all other nodes.We thenmake use of this algorithm
to build a spanning tree of the network which can be used for efficient broadcast and
convergecast of messages in the network as described next.

5.6.1 Flooding Algorithm

Our aim is to send a message from a single node to all nodes in the graph. This
operation is called broadcast and hasmany applications in real networks, for example
to inform all nodes of an alarm condition that occurs at a node. In the simplest case,
we can have the following rules as a first attempt to solve this problem:

1. The initiator i sends a message msg(i) to all of its neighbors.
2. Any node that receives message msg sends it to its neighbors except the one it

received it from.



5.6 Distributed Graph Algorithm Examples 127

Fig. 5.4 FSM of the
Flooding algorithm

IDLE VISITED

msg(j)msg(j) / msg(i) to N(i)

This algorithm works fine and all nodes will receive message msg sent by pi
eventually. However, we can obtain a more efficient algorithm with less messages
transferred between the nodes by a simple modification: A node sends msg to its
neighbors only when it receives it for the first time. This way, duplicate transmission
along an edge of the graph in the same direction is prevented. We now need a way
to detect whether a message is received first time or not which can be implemented
simply using a variable such as visited which is false initially and becomes true
when msg arrives for the first time. Nevertheless, this modified algorithm is simple
to implement by an FSM having two states as shown in Fig. 5.4, which will also aid
us to understand the use of FSMs in distributed algorithms.

We can implement this algorithm based on the FSM as shown in Algorithm 5.2.
When the message msg arrives for the first time, the VISITED state is entered and
any further receptions of msg are ignored.

Algorithm 5.2 Flooding
1: { code for process i , message received from process j }
2: currstate ← IDLE � start with IDLE state
3: if i = initiator then
4: send msg(i) to N (i)
5: currstate ← VISITED
6: end if
7:
8: while true do � all nodes execute this part
9: receive(msg( j))
10: case currstate of
11: IDLE: send msg(i) to N (i)\ j
12: currstate ← VISITED
13: VISITED: � do nothing
14: end while

We can have some improvements to this algorithm as follows.

• Instead of waiting forever at line 8, we can have a terminating condition. A process
i can wait certain times such as the diameter diam(G) of the graph. This is logical
since diam(G) is the longest path that can be traversed by themessagemsg. Once
the message msg is received diam(G) times, process i terminates.
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Fig. 5.5 FSM of spanning
tree construction using
flooding

IDLE VISITED

check(j) / check(i) to N(i) check(j) / nack(i)

ack(j)
nack(j)

• We can have a counter commonly named time-to-live (TTL) contained in the
message. Each time it is received, TTL is decremented and a message with 0 TTL
value is not forwarded to neighbors.

Analysis

A careful look at this algorithm reveals that each edge of the graph will be traversed
at most twice, once in each direction when both nodes at the ends of an edge start
sending the message msg concurrently. Therefore, message complexity is O(m).
Assuming there is at least one message transfer at each time unit, time taken by this
algorithm is the longest distance between any two vertices of the graph which is its
diameter and thus, time complexity is Θ(diam(G)).

5.6.2 SpanningTree Construction Using Flooding

Wecan design a spanning tree construction of a network using theFlooding algorithm
with few modifications. Building a spanning tree in a network environment means
each node knows its parent and its children in the general sense. We will not attempt
to store all of the tree structure at a special node or at each node of the graph since
parent/children relationship at each node is adequate for transferring messages over
the spanning tree. We have a single initiator as in the Flooding algorithm and this
node becomes the root of the spanning tree to be formed. The first modification we
have is to assign the sender j of the messagemsg( j) as the parent of the receiver i if
msg( j) is received for the first time. Since we also require the parent to be aware of
its children, node i should send an acknowledgment message ack(i) to j to inform
j of this situation. Otherwise, if node i already has a parent, meaning it has been
visited before, it sends back a negative acknowledgment message nack(i) to node j .
We have, therefore, three types of messages; check, ack, and nack. Determining the
types of messages is crucial in the design of distributed graph algorithms, moreover,
determination of states is performed by messages if we are to use a FSM. Let us
modify the FSM of Fig. 5.4 to reflect what we have been discussing. We can see
that the states may remain the same since a node can be either in IDLE or VISITED
state as before. Based on its state and the type of the message, we may need to take
different actions. The modified FSM is shown in Fig. 5.5 with the VISITED state
having all possible message types as input now.
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This FSM can be directly translated to a distributed algorithm as shown in
Algorithm 5.3 where additionally, a termination condition for a node is also speci-
fied. The activity of any node is finished when it has received ack or nack messages
from all of its neighbors except the sender of the message it has received for the first
time.

Algorithm 5.3 Flooding2
1: int parent ← Ø
2: set of int childs← {Ø} , others ← {Ø}
3: message types check, ack, nack
4:
5: if i = initiator then
6: send check to N (i)
7: currstate ← VISITED
8: end if
9:
10: while (childs ∪ others) �= (N (i)\{parent}) do � all nodes execute this part
11: receive(msg( j))
12: case currstate ∧ msg( j).t ype of
13: IDLE ∧ check: parent ← j
14: send check to N (i)\ j
15: send ack to j
16: currstate ←VISITED
17: VISITED ∧ check: send nack to j
18: VISITED ∧ ack: childs ← childs ∪ { j} � j is now a child
19: VISITED ∧ nack: others ← childs ∪ { j} � j is not a child
20: end while

The operation of this algorithm is shown in Fig. 5.6.
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Fig. 5.6 A spanning tree constructed in a graph using flooding. The branch (g, b) is on tree but
(g, a) is not since check message (c) from node a arrives at g later than c from b, which is replied
by a nack (n)message. A similar situation is depicted for branch (e, d)where message c from node
d is replied by an ack (a) message and (d, e) is included in the tree
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We could have easily implemented this algorithm without using an FSM, a node
having a parent or not basically shows its state as IDLE or VISITED. With this in
mind, this algorithm is shown in Algorithm 5.4 as in [2]. However, for complicated
distributed algorithms, using FSMs would ease the design and implementation.

Algorithm 5.4 Flooding3
1: int parent ← ⊥
2: set of int childs← {Ø} , others ← {Ø}
3: message types check, ack, nack
4:
5: if i = initiator then � root initiates tree construction
6: send check to N (i)
7: parent ← i
8: end if
9:
10: while (childs ∪ others) �= (N (i)\{parent}) do
11: receive msg(j)
12: case msg(j).type of
13: check : if parent = Ø then � check received first time
14: parent ← j
15: send ack to j
16: send msg(i).check to N (i) \ {j}
17: else � check received before
18: send msg(i).reject to j
19: ack : childs ← childs ∪ {j} � j is a child
20: nack : others ← others ∪ {j} � j is not a child
21: end while

Analysis

Each edge of the graph will be traversed at least twice by check/ack or check/nack
message pairs and at most four times when two nodes start to send check messages
to each other simultaneously. Therefore, message complexity of this algorithm is
O(m). The depth of the tree constructed will be at most n − 1, assuming a linear
network is built. If there is at least onemessage transfer per unit time, time complexity
is O(n).

5.6.3 Basic Communications

There are a number of basic communication operations performed in a distributed
system. One such process is the broadcast which is initiated by a node by sending a
message and all of the nodes in the distributed system have a copy of the message at
the end of the broadcast operation.Another fundamental primitive is the convergecast
where data from each node is collected at a special node in the system. We will look
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into these two operations in this section. One other activity is the multicast sending
of messages in which a message is delivered to only a specified subset of processes.

Broadcast over a Spanning Tree

For the broadcast operation, we will assume a graph represents the network of the
distributed system and a spanning tree T is already built by an algorithm similar
to what we have discussed. The broadcast is initiated by a node by sending msg to
all of its children. Any node on the tree T that has children simply forwards msg
to all of its children. Since msg is transferred only over tree edges, the number of
messages will be n − 1 for a graph with n vertices. Time taken will be the depth
of T , assuming concurrent sending of messages at each level. Depth of T can be a
maximum of n − 1 assuming a linear network.

Convergecast over a Spanning Tree

In certain networks, data from all nodes are to be collected at a node with more
capabilities and this special node can then analyze and evaluate all of the data, provide
reports containing statistics which can be transferred to more advanced computation
centers or users for further processing. This situation is commonly encountered
in wireless sensor networks where data sensed needs to go through these steps of
operation. Collecting data is very much simplified when a spanning tree constructed
beforehand is used. In this case, the leaves of the tree send their data to their parents,
the parents combine their own data with those of leaves, and send these to their
parents. An intermediate node may in fact perform some simple operation on data
such as taking average or finding extreme values. This way, data sent upwards in the
tree does not have to get much larger at each level. This process of gathering called
convergecast continues until all data is collected at the special node, commonly
called the sink in sensor networks. Algorithm 5.5 shows the pseudocode for the
convergecast process over a spanning tree. Leaves of the tree start the algorithm and
any intermediate node in the tree should wait until data from all of its children are
received before combining these data with its own to be sent to its parent as realized
at line 8 of the algorithm. The termination condition for the root of the tree is met
when it receives the convergecast messages from all of its children at line 12. For all
others, termination is on line 17 when they send their data to their parents.

Message and time complexities for this algorithm are the same as theBroadcast al-
gorithmusing similar reasoning. Figure5.7 shows the operation of theConvergecast
algorithm using the spanning tree built in Fig. 5.6. The messages are labeled with
pair (a, b); a showing the time frame and b is the duration of the message. We can
see the highest level of tree finishes convergecast in 5 time units as this is the longest
duration, followed by 6 units at level 2 and 2 units at level 1 for a total of 13 time
units.
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Algorithm 5.5 Convergecast
1: int parent
2: set of int childs, received ← {Ø} , data ← {Ø}
3: message types convcast
4:
5: if childs = {Ø} then � lea f nodes start convergecast
6: send convcast to parent
7: else � any intermediate node or root
8: while childs �= received do � wait for convergecast messages from all children
9: receive convcast(j)
10: received ← received ∪ { j}
11: data ← data∪ convcast(j)
12: end while
13: end if
14: if i �= root then
15: combine data into convcast
16: send convcast to parent
17: end if

Fig. 5.7 Convergecast over
the spanning tree of Fig. 5.6.
Message label values show
concurrent transfer of
siblings and the duration of
messages
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5.6.4 Leader Election in a Ring

Leader or coordinator election is needed in distributed systems as this special node
can initiate an algorithm and supervise the overall execution of the algorithm as
in a SSI algorithm. The leader may also take remedy actions when failures are
encountered in the execution of an algorithm. Nodes and communication links may
physically fail and althoughwe can initially assign a node as the leader of the network,
we need to elect a new leaderwhen failure happens.Election algorithms provideways
of assigning a new leader in the network when the current leader fails.

There are many leader election algorithms in literature for distributed systems.
As an introductory distributed algorithm example, we will consider leader election
in a ring with nodes having unique identifiers. The transfer of messages is in one
direction only. This example can be conveniently described by a simple FSM with
the following states:



5.6 Distributed Graph Algorithm Examples 133

• LEAD: The nodes have a leader in this stable state.
• ELECT: Election is going on when a node is in this state.

The main idea of this algorithm is that any node detecting the failure of the current
leader initiates the algorithm by sending an electionmessage containing its identifier
to its neighbor at its right assuming a clockwise unidirectional ring. A node that
receives this message changes its state to ELECT. If the identifier in the message
is greater than its own identifier, it simply passes the election message to its next
neighbor. Otherwise, it inserts its identifier which is greater than the identifier in
the incoming message and sends it to the neighbor. We have two messages in this
example:

• election: Sent by any node that detects leader failure. This message may be sent
by more than one initiator.

• leader: The new leader broadcasts this message to notify all nodes that election
is over.

When a process with identifier i receives a message with an identifier j in it, it
checks and does one of the following:

• i > j : Process i replaces j with i in message and passes it to the next node.
• i < j : Process i simply passes message to next node.
• i = j : Process i becomes the leader and sends the leader message to its next

neighbor.

In the last case, the election message originating from node i has returned to
itself meaning it has the highest identifier among all active processes. Basically, the
highest identifier is transferred between all functioning nodes andwhen the originator
receives its own message, it determines it is the leader and sends the leader message
to its neighbor which is then broadcast to all nodes by neighbor transfers. The FSM
for this algorithm is depicted in Fig. 5.8.

Analysis

The worst case happens when the nodes are ordered from smallest to largest with
respect to their identifiers in clockwise direction and start election concurrently in
anticlockwise direction. The largest identifier message travels through all nodes n
times, the second largest identifier is transferred n − 1 times and in total there will

Fig. 5.8 FSM of the ring
leader election algorithm

ELECTLEAD

election electioni=j / leader
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Fig. 5.9 Ring leader election algorithm: worst and best scenarios. In a, each message by the
originator is tagged with the number of links it travels. For example message originating at node 7
is tagged with 7 since it goes through 7 edges back to node 7. The best case is depicted in b

be
∑n

i=1 = n(n + 1)/2 messages as shown in Fig. 5.9a. The best case occurs for a
total of 2n-1 messages when messages are transmitted in clockwise direction as in
Fig. 5.9b. In this case, even if all nodes start election concurrently, their messages
will be purged by the next nodes for n− 1 times and only the message of the highest
identifier node, which is 7 in this case, will traverse the ring all the way back to
the originator at n step. Total number of steps will then be 2n − 1, excluding the
declaration message sent by the leader.

5.7 Chapter Notes

We have described distributed systems and the fundamental problems in designing
algorithms for such systems in this chapter. Distributed systems are needed since
they provide sharing of resources, fault tolerance and in various implementations,
the application is inherently distributed such as a factory control system. The com-
mon platforms to implement distributed algorithms are the Internet, mobile ad hoc
networks, wireless sensor networks, the Grid, and the Cloud. In many cases, we
can model these networks suitably by graphs with vertices of a graph representing
computational nodes and edges showing the communication links between them.

Distributed systems require distributed algorithms that run at the nodes of such a
system. Synchronization and communication are two basic requirements in efficient
design of such algorithms. Synchronization may be realized at various levels; hard-
ware, operating system/middleware, and at application level.We see synchronization
at application level using messages is commonly used due to versatility and easiness
in implementationwhichmay then be transferred to local synchronization primitives.
In this so-called message passing distributed systems, the main communication and
synchronization are achieved by messages only. The receiver of a message decides
on what to do next mainly by the type of the arriving message. A synchronous dis-



5.7 Chapter Notes 135

tributed algorithm typically runs in rounds and the next round is not started until all
nodes finish executing the current round. The synchronization at the beginning and
end of round are commonly realized by special messages sent by a special node.

Distributed algorithms can be modeled by FSMs which are mathematical models
which include states and transitions between states as we have outlined. We can
design a distributed algorithm without a FSM but for complicated algorithms, FSMs
provide a neater algorithmwith visual aid and less error-prone than algorithmswhich
otherwise could involve many decision- making statements.

We then described some sample distributed graph algorithmswhich include build-
ing a spanning tree of the graph, broadcast and convergecast operations over a span-
ning tree, and a leader election algorithm to find the new coordinator of nodes in
a ring when leader fails. We need to prove that a distributed algorithm correctly
achieves what it is intended for; and time, message, bit, and space complexities of
a distributed algorithm are used to evaluate its performance. In general, message
complexity is considered as the dominant cost of a distributed algorithm.

Exercises

1. The elevator algorithm of Example 5.1 is to be modified so that a green light
showing moving up and a yellow light for downwards movement are added.
Provide the necessary modifications to the FSM diagram, FSM table, and C
code to incorporate these two outputs.

2. A binary bit string S has even parity if the number of bits in S is an even number
and has odd parity otherwise. Provide the FSM diagram, FSM table, and the C
code of an algorithm that reads a binary string bit-by-bit and decides to be in
either even or odd state after each read. Use the programming style shown in the
C code of Example 5.1.

3. We need to modify the broadcast algorithm over a spanning tree so that the
initiator becomes aware that each node has received the broadcast message.
This can be realized simply by each node deferring to send an acknowledgment
to the sender of the message until it receives acknowledgments from all of its
children, similar to the convergecast operation which should be started by the

Fig. 5.10 Ring structure for
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leaves of the spanning tree once they receive the broadcast message. Write the
pseudocode for this algorithmwith comments andwork out its time andmessage
complexities.

4. Show the execution of the ring election algorithm for the nodes shown in
Fig. 5.10. Assume nodes 2 and 5 find concurrently that the leader is not working
and decide to run an election.

5. In a fully connected graph with each node having unique identifiers, bully al-
gorithm may be used to elect a new leader. A node u that finds leader is not
functioning may start this algorithm by sending an election message to all nodes
that have higher identifiers than itself. Any node v that receives this message
sends back and ack message to the node u which then leaves election. The node
v now starts election and this process continues until there is one winner which
is the active node with highest identifier. The new leader broadcasts it is winning
by a special message to all nodes. Write the pseudocode for this algorithm and
find its time and message complexities. Show its operation in a complete graph
of 8 nodes where nodes 4 and 6 find simultaneously the leader 8 is down.

References

1. Attiya H, Welch J (2004) Distributed computing: fundamentals, simulations, and advanced
topics, 2nd edn. Wiley, New York

2. Erciyes K (2013) Distributed graph algorithms for computer networks. Springer computer
communications and networks series. Springer, Berlin. ISBN- 10:1447151720 (May 16, 2013)

3. Foster I, Kesselman C (2004) The grid: blueprint for a new computing infrastructure. Morgan
Kaufmann, San Mateo

4. Mell P, Grance T (2011) TheNIST definition of cloud computing. National institute of standards
and technology, US department of commerce, special publication, 800145

5. Tanenbaum AS, Steen MV (2007) Distributed systems, principles and paradigms, 2nd edn.
Pearson-Prentice Hall, Upper Saddle River. ISBN 0-13-239227-5

6. Tel G (2000) Introduction to distributed algorithms, 2nd edn. Cambridge University Press,
Cambridge


	5 Distributed Graph Algorithms
	5.1 Introduction
	5.2 Types of Distributed Systems
	5.2.1 Mobile Ad hoc Networks
	5.2.2 Wireless Sensor Networks

	5.3 Models
	5.4 Communication and Synchronization
	5.5 Performance Criteria
	5.6 Distributed Graph Algorithm Examples
	5.6.1 Flooding Algorithm
	5.6.2 Spanning Tree Construction Using Flooding
	5.6.3 Basic Communications
	5.6.4 Leader Election in a Ring

	5.7 Chapter Notes




