
2Introduction toGraphs

Abstract

Graphs are used to model many applications with vertices of a graph representing
the objects or nodes and the edges showing the connections between the nodes.
We review notations used for graphs, basic definitions, vertex degrees, subgraphs,
graph isomorphism, graph operations, directed graphs, distance, graph represen-
tations, and matrices related to graphs in this chapter.

2.1 Introduction

Objects and connections between them occur in a variety of applications such as
roadways, computer networks, and electrical circuits. Graphs are used to model such
applications with vertices of a graph representing the objects or nodes and the edges
showing the connections between the nodes.

We review the basic graph theoretical concepts in a rather dense form in this chap-
ter. This review includes notations used, basic definitions, vertex degrees, subgraphs,
graph isomorphism, graph operations, directed graphs, distance, graph representa-
tions andmatrices related to graphs.We leave discussion ofmore advanced properties
of graphs such as matching, connectivity, special subgraphs, and coloring to Part II
when we review sequential, parallel, and distributed algorithms for these problems.
We also delay review of methods and parameters for the analysis of large graphs to
Part III. These large graphs are used to model complex networks such as the Internet
or biological networks, which consist of a huge number of vertices and edges. We
will see there is a need for new parameters and analysis methods for the investigation
of these large graphs.
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16 2 Introduction to Graphs

2.2 Notations and Definitions

A graph is a set of points and a set of lines in a plane or a 3-D space. A graph can be
formally defined as follows.

Definition 2.1 (graph) A graph G = (V, E, g) or G = (V (G), E(G), g) is a dis-
crete structure consisting of a vertex set V and an edge set E and a relation g that
associates each edge with two vertices of the set V .

The vertex set consists of vertices also called nodes, and an edge in the edge set
is incident between two vertices called its endpoints. The vertex set of a graph G
is shown as V (G) and the edge set as E(G). We will use V for V (G) and E for
E(G) when the graph under consideration is known. A trivial graph has one vertex
and no edges. A null graph has an empty vertex set and an empty edge set. A graph
is called finite if both V (G) and E(G) are finite. We will consider only simple and
finite graphs in this book, unless stated otherwise. The number of vertices of a graph
G is called its order and we will use the literal n for this parameter. The number of
edges of G is called its size and we will show this parameter by the literal m. An
edge of a graph G between its vertices u and v is commonly shown as (u, v), uv or
sometimes {u, v}; we will adopt the first one. The vertices at the ends of an edge
are called its endpoints or end vertices or simply ends. For an edge (u, v) between
vertices u and v, we say u and v are incident to the edge (u, v).

Definition 2.2 (self-loop, multiple edge) A self-loop is an edge with the same end-
points.Multiple edges have the same pair of endpoints.

An edge that is not a self-loop is called a proper edge. A simple graph does not
have any self-loops or multiple edges. A graph containing multiple edges is called a
multigraph. An underlying graph of a multigraph is obtained by substituting a single
edge for each multiple edge. An example multigraph is depicted in Fig. 2.1.

Fig. 2.1 A graph with
V (G) = {a, b, c, d} and
E(G) =
{e1, e2, e3, e4, e5, e6}. Edge
e2 is a self-loop and edges e4
and e5 are multiple edges
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Fig. 2.2 a Complement of a sample graph, b Complement of a completely connected graph in
which every vertex is connected to all other vertices

Definition 2.3 (complement of a graph) The complement of a graph G(V, E) is the
graph G(V, E ′) with the same vertex set as G and any edge (u, v) ∈ E ′ if and only
if (u, v) /∈ E .

Informally, we have the same vertex set in the complement of a graph G but only
have edges that do not exist in G. Complements of two graphs are shown in Fig. 2.2.

2.2.1 Vertex Degrees

The degree of a vertex in a graph is a useful attribute of a vertex as defined below.

Definition 2.4 (degree of a vertex) The sum of the number of proper edges and twice
the number of self-loops incident on a vertex v of a graph G is called its degree and
is shown by deg(v).

A vertex that has a degree of 0 is called an isolated vertex and a vertex of degree
1 is called a pendant vertex. The minimum degree of a graph G is denoted by δ(G)

and the maximum degree by Δ(G). The following relation between the degree of a
vertex v in G and these parameter holds:

0 ≤ δ(G) ≤ deg(v) ≤ Δ(G) ≤ n − 1. (2.1)

Since the maximum number of edges in a simple undirected graph is n(n−1)/2, for
any such graph,

0 ≤ m ≤ n(n − 1)

2
=

(
n
2

)

.

We can, therefore, conclude there are at most 2

(
n
2

)

possible simple undirected
graphs having n vertices. The first theorem of graph theory, which is commonly
refered to as the handshaking lemma is as follows.
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Theorem 2.1 (Euler) The sum of the degrees of a simple undirected graph G =
(V, E) is twice the number of its edges shown below.

∑
v∈V

deg(v) = 2m (2.2)

Proof is trivial as each edge is counted twice to find the sum. A vertex in a graph
with n vertices can have a maximum degree of n − 1. Hence, the sum of the degrees
in a complete graph where every vertex is connected to all others is n(n − 1). The
total number of edges is n(n − 1)/2 in such a graph. In a meeting of n people, if
everyone shook hands with each other, the total number of handshakes would be
n(n − 1)/2 and hence the name of lemma. The average degree of a graph is

∑
v∈V

deg(v)

n
= 2m/n. (2.3)

A vertex is called odd or even depending on whether its degree is odd or even.

Corollary 2.1 The number of odd-degree vertices of a graph is an even number.

Proof The vertices of a graph G = (V, E) may be divided into the even-degree (ve)
and odd-degree (vo) vertices. The sum of degrees can then be stated as

∑
v∈V

deg(v) =
∑
ve∈V

deg(ve) +
∑
vo∈V

deg(vo)

Since the sum is even by Theorem2.1, the sum of the odd-degree vertices should
also be even which means there must be an even number of odd-degree vertices. �

Theorem 2.2 Every graph with at least two vertices has at least two vertices that
have the same degree.

Proof We will prove this theorem using contradiction. Suppose there is no such
graph. For a graph with n vertices, this implies the vertex degrees are unique, from
0 to n − 1. We cannot have a vertex u with degree of n − 1 and a vertex v with 0
degree in the same graph G as former implies u is connected to all other vertices in
G and therefore a contradiction. �

This theorem can be put in practice in a gathering of people where some know
each other and rest are not acquainted. If persons are represented by the vertices of a
graph where an edge between two individuals, who know each other is represented
by an edge we can say there are at least two persons that have the same number of
acquaintances in the meeting.
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2.2.1.1 Degree Sequences
The degree sequence of a graph is obtained when the degrees of its vertices are listed
in some order.

Definition 2.5 (degree sequence) The degree sequence of a graph G is the list of
the degrees of its vertices in nondecreasing or nonincreasing, more commonly in
nonincreasing order. The degree sequence of a digraph is the list consisting of its
in-degree, out-degree pairs.

The degree sequence of the graph in Fig. 2.1 is {2, 3, 3, 4} for vertices a, d, c,
b in sequence. Given a degree sequence D = (d1, d2, . . . , dn), which consists of
a finite set of nonnegative integers, D is called graphical if it represents a degree
sequence of some graph G. We may need to check whether a given degree sequence
is graphical. The condition that deg(v) < n − 1, ∀v ∈ V is the first condition and
also

∑
v∈V deg(v) should be even. However, these are necessary but not sufficient

and an efficient method is proposed in the theorem first proved by Havel [7] and later
by Hakimi using a more complicated method [5].

Theorem 2.3 (Havel–Hakimi) Let D be a nonincreasing sequence d1, d2, . . . , dn
with n ≥ 2. Let D′ be the sequence derived from D by deleting d1 and subtracting
1 from each of the first d1 elements of the remaining sequence. Then D is graphical
if and only if D′ is graphical.

This means if we come across a degree sequence which is graphical during this
process, the initial degree sequence is graphical. Let us see the implementation of
this theorem to a degree sequence by analyzing the graph of Fig. 2.3a.

The degree sequence for this graph is {4, 3, 3, 3, 2, 1}. We can now iterate as
follows starting with the initial sequence. Deleting 4 and subtracting 1 from the first
4 of the remaining elements gives

{2, 2, 2, 1, 1}

continuing similarly, we obtain

{1, 1, 0, 0}

(b)(a)

d

c

a

b

ef

Fig.2.3 a A sample graph to implement Havel–Hakimi theorem b A graph representing graphical
sequence {1, 1, 1, 1} c A graph representing graphical sequence {0, 1, 1}
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The last sequence is graphical since it can be realized as shown in Fig. 2.3b. This
theorem can be conveniently implemented using a recursive algorithm due to its
recursive structure.

2.2.2 Subgraphs

In many cases, we would be interested in part of a graph rather than the graph as a
whole. A subgraph G ′ of a graph G has a subset of vertices of G and a subset of its
edges. We may need to search for a subgraph of a graph that meets some condition,
for example, our aimmay be to find dense subgraphswhichmay indicate an increased
relatedness or activity in that part of the network represented by the graph.

Definition 2.6 (subgraph, induced subgraph) G ′ = (V ′, E ′) is a subgraph of G =
(V, E) if V ′ ⊆ V and E ′ ⊆ E . A subgraph G ′ = (V ′, E ′) of a graph G = (V, E)

is called an induced subgraph of G if E ′ contains all edges in G that have both ends
in V ′.

When G ′ �= G, G ′ is called a proper subgraph of G; when G ′ is a subgraph of
G, G is called a supergraph of G ′. A spanning subgraph G ′ of G is its subgraph
with V (G) = V (G ′). Similarly, a spanning supergraph G of G ′ has the same vertex
set as G ′. A spanning subgraph and an induced subgraph of a graph are shown in
Fig. 2.4.

Given a vertex v of a graph G, the subgraph of G shown by G − v is formed by
deleting the vertex v and all of its incident edges from G. The subgraph G − e is

(a)

(c)
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h

(b) a b
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g

Fig. 2.4 a A sample graph G, b A spanning subgraph of G, c An induced subgraph of G
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Fig.2.5 Obtaining a regular graph a The graph b The first iteration, c The 3-regular graph obtained
in the second iteration shown by dashed lines

obtained by deleting the edge e from G. The induced subgraph of G by the vertex
set V ′ is shown by G[V ′]. The subgraph G[V \ V ′] is denoted by G − V ′.

Vertices in a regular graph all have the same degree. For a graphG, we can obtain
a regular graph H which contains G as an induced subgraph. We simply duplicate
G next to itself and join each corresponding pair of vertices by an edge if this vertex
does not have a degree of Δ(G) as shown in Fig. 2.5. If the new graph G ′ is not
Δ(G)-regular, we continue this process by duplicating G ′ until the regular graph is
obtained. This result is due to Konig who stated that for every graph of maximum
degree r , there exists an r -regular graph that contains G as an induced subgraph.

2.2.3 Isomorphism

Definition 2.7 (graph isomorphism) An isomorphism from a graph G1 to another
graph G2 is a bijection f : V (G1) → V (G2) in which any edge (u, v) ∈ E(G1) if
and only if f (u) f (v) ∈ E(G2).

When this condition holds, G1 is said to be isomorphic to G2 or, G1 and G2 are
isomorphic. Three isomorphic graphs are depicted in Fig. 2.6. Testing whether two
graphs are isomorphic is a difficult problem and cannot be performed in polynomial
time. An isomorphism of a graph to itself is called an automorphism. A graph
invariant is a property of a graph that is equal in its isomorphic graphs. Given
two isomorphic graphs G1 and G2, their orders and sizes are the same and their
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Fig. 2.6 Three isomorphic graphs.Vertex x is mapped to vertex x ′

corresponding vertices have the same degrees. Thus, we can say that the number of
vertices, the number of edges and the degree sequences are isomorphism invariants,
that is, they do not change in isomorphic graphs.

2.3 Graph Operations

We may need to generate new graphs from a set of input graphs by using certain
operations. These operations are uniting and finding intersection of two graphs and
finding their product as described below.

2.3.1 Union and Intersection

Definition 2.8 (union and intersection of two graphs) The union of two graphs
G1 = (V1, E1) and G2 = (V2, E2) is a graph G3 = (V3, E3) in which V3 = V1∪V2
and E3 = E1 ∪ E2. This operation is shown as G3 = G1 ∪ G2. The intersection of
two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph G3 = (V3, E3) in which
V3 = V1 ∩ V2 and E3 = E1 ∩ E2. This is shown as G3 = G1 ∩ G2.

Figure2.7 depicts these concepts.

Definition 2.9 (join of two graphs) The join of two graphs G1 = (V1, E1) and
G2 = (V2, E2) is a graph G3 = (V3, E3) in which V3 = V1 ∪ V2 and E3 =
E1 ∪ E2 ∪ {(u, v) : u ∈ V1 and v ∈ V2}. This operation is shown as G3 = G1 ∨G2.

The join operation of two graphs creates new edges between each vertex pairs,
one from each of the two graphs. Figure2.8 displays the join of two graphs. All of the
union, intersection, and join operations are commutative, that is,G1∪G2 = G2∪G1,
G1 ∩ G2 = G2 ∩ G1, and G1 ∨ G2 = G2 ∨ G1.
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Fig. 2.7 Union and intersection of two graphs. The graph in c is the union of the graphs in a and
b and the graph in d is their intersection

(a) (b)

Fig. 2.8 Join of two graphs, a Two graphs b Their join

2.3.2 Cartesian Product

Definition 2.10 (cartesian product) The cartesian product or simply the product of
two graphs G1 = (V1, E1) and G2 = (V2, E2) shown by G1�G2 or G1 × G2 is a
graph G3 = (V3, E3) in which V3 = V1 × V2 and an edge ((ui , v j ), (u p, jq)) is in
G1 × G2 if one of the following conditions holds:

1. i = p and (v j , vq) ∈ E2
2. j = q and (ui , u p) ∈ E1.
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K2
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K2 X P4

a
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x y z w

ax ay az aw

bx by bz bw
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Fig. 2.9 a Graph product of K2 and P4 b Hypercube of dimension 3

Informally, the vertices we have in the product are the cartesian product of vertices
of the graphs andhence each represents twovertices, one fromeachgraph. Figure2.9a
displays the product of complete graph K2 and the path graph with 4 vertices, P4.
Graph product is useful in various cases, for example, the hypercube of dimension
n, Qn , is a special graph that is the graph product of K2 by itself n times. It can be
described recursively as Qn = K2 × Qn−1. A hypercube of dimension 3 is depicted
in Fig. 2.9b.

2.4 Types of Graphs

We review main types of graphs that have various applications in this section.

2.4.1 Complete Graphs

Definition 2.11 (complete graph) In a complete simple graph G(V, E), each vertex
v ∈ V is connected to all other vertices in V .

Searching for complete subgraphs of a graph G provides dense regions in G
which may mean some important functionality in that region. A complete graph is
denoted by Kn where n is the number of vertices. Figure2.10 depicts K1, . . . , K5.
The complete graph with three vertices, K3, is called a triangle.

The size of a simple undirected complete graph Kn is n(n−1)/2 since the degree
of every vertex in Kn is n − 1, there are n such vertices, and we need to divide by
two as each edge is counted twice for both vertices in its endpoints.
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K1 K2 K3 K4 K5

Fig. 2.10 Complete graphs of sizes 1 to 5

Fig. 2.11 A directed graph
with V (G) = {a, b, c, d, e}
and E(G) = {e1, . . . , e10}
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2.4.2 Directed Graphs

A directed edge or an arc has an orientation from its head endpoint to its tail endpoint
shown by an arrow. Directed graphs consist of directed edges.

Definition 2.12 (directed graph) A directed graph or a digraph consists of a set
of vertices and a set of ordered pairs of vertices called directed edges. A partially
directed graph has both directed and undirected edges.

If an edge e = (u, v) is a directed edge in a directed graph G, we say e begins at
u and ends at v, or u is the origin of e and v is its destination, or e is directed from
u to v. The underlying graph of a directed or partially directed graph is obtained by
removing the directions in all edges and replacing each multiple edge with a single
edge. A directed graph is shown in Fig. 2.11. Unless stated otherwise, what we state
for graphs will be valid for directed and undirected graphs. In a complete simple
digraph; there is a pair of arcs, one in each direction between any two vertices.

Definition 2.13 (in-degree, out-degree) The in-degree of a vertex v in a digraph is
the number of edges directed to v and the out-degree of v is the number of edges
originating from it. The degree of v is the sum of its in-degree and its out-degree.
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The sum of the in-degrees of the vertices in a graph is equal to the sum of the
out-degrees which are both equal to the sum of the number of edges. A directed
graph that has no cycles is called a directed acyclic graph (DAG).

2.4.3 Weighted Graphs

We have considered unweighted graphs up to this point. Weighted graphs have edges
and vertices labeled with real numbers representing weights.

Definition 2.14 (edge-weighted, vertex-weighted graphs) An edge-weighted graph
G(V, E,w), w : E → R has weights consisting of real numbers associated with its
edges. Similarly, a vertex-weighted graph G(V, E,w), w : V → R has weights of
real numbers associated with its vertices.

Weighted graphs findmany real applications, for example,weight of an edge (u, v)
may represent the cost of moving from u to v as in a roadway or cost of sending
a message between two routers u and v in a computer network. The weight of a
vertex v may be associated with capacity stored at v which may be used to represent
a property such as the storage volume of a router in a computer network.

2.4.4 Bipartite Graphs

Definition 2.15 (bipartite graph) A graph G = (V, E) is called a bipartite graph
if the vertex set V can be partitioned into two disjoint subsets V1 and V2 such that
any edge of G connects a vertex in V1 to a vertex in V2. That is, ∀(u, v) ∈ E ,
u ∈ V1 ∧ v ∈ V2, or u ∈ V2 ∧ v ∈ V1.

In a complete bipartite graph, each vertex of V1 is connected to each vertex of V2
and such a graph is denoted by Km,n , where m is the number of vertices in V1 and
n is the number of vertices in V2. The complete bipartite graph Km,n has mn edges
and m + n vertices. A weighted complete bipartite graph is depicted in Fig. 2.12.

Fig. 2.12 A weighted
complete bipartite graph
K3,4 with V1 = {a, b, c} and
V2 = {d, e, f, g}
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(a)
(b) (c)
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Fig. 2.13 a A 0-regular graph, b A 1-regular graph, c 2-regular graphs; d A 3-regular graph

Fig. 2.14 a A simple graph
G, b Line graph of G
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2.4.5 Regular Graphs

In a regular graph, each vertex has the same degree. Each vertex of a k-regular graph
has a degree of k. Every k-complete graph is a k−1-regular graph but the latter does
not imply the former. For example, a d-hypercube is a d-regular graph but it is not
a d-complete graph. Examples of regular graphs are shown in Fig. 2.13. Any single
n-cycle graph is a 2-regular graph. Any regular graph with odd-degree vertices must
have an even number of such vertices to have an even number sum of vertices.

2.4.6 Line Graphs

In order to construct a line graph L(G) of a simple graph G, each vertex of L
representing an edge of G is formed. Then, two vertices u and v of L are connected
if the edges represented by them are adjacent in G as shown in Fig. 2.14.

2.5 Walks, Paths, and Cycles

We need few definitions to specify traversing the edges and vertices of a graph.

Definition 2.16 (walk) A walk W between two vertices v0 and vn of a graph
G is an alternating sequence of n + 1 vertices and n edges shown as W =
(v0, e1, v1, e2, . . . , vn−1, en, vn), where ei is incident to vertices vi−1 and vi . The
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Fig. 2.15 A walk
(a, e1, b, e6, f, e7, g, e12,
b, e9, h) in a sample graph
shown by a dashed curve a b c
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vertex v0 is called the initial vertex and vn is called the terminating vertex of the
walk W .

In a directed graph, a directed walk can be defined similarly. The length of a walk
W is the number of edges (arcs in digraphs) included in it. A walk can have repeated
edges and vertices. A walk is closed if it starts and ends at the same vertex and open
otherwise. A walk is shown in Fig. 2.15.

Agraph is connected if there is awalkbetween anypair of its vertices.Connectivity
is an important concept that finds many applications in computer networks and we
will review algorithms for connectivity in Chap.8.

Definition 2.17 (trail) A trail is a walk that does not have any repeated edges.

Definition 2.18 (path) A path is a trail that does not have any repeated vertices with
the exception of initial and terminal vertices.

In other words, a path does not contain any repeated edges or vertices. Paths are
shown by the vertices only. For example, (i, a, b, h, g) is a path in Fig. 2.15.

Definition 2.19 (cycle) A closed path which starts and ends at the same vertex is
called a cycle.

The length of a cycle can be an odd integer in which case it is called an odd cycle.
Otherwise, it is called an even cycle.

Definition 2.20 (circuit) A closed trail which starts and ends at the same vertex is
called a circuit.

All of these concepts are summarized in Table2.1.

http://dx.doi.org/10.1007/978-3-319-73235-0_8
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Table 2.1 Properties of simple graph traversals

Repeated vertices Repeated edges

Walks Yes Yes

Trails Yes No

Paths No except initial and terminal
vertex

No

Circuits Yes, starts and ends at the
same vertex

No

Cycles No except initial and term No

A trail in Fig. 2.15 is (h, e9, b, e6, f, e5, e). When e11 and h are added to this trail,
it becomes a cycle. An Eulerian tour is a closed Eulerian trail and an Eulerian graph
is a graph that has an Eulerian tour. The number of edges contained in a cycle is
denoted its length l and the cycle is shown as Cl . For example, C3 is a triangle.

Definition 2.21 (Hamiltonian Cycle) A cycle that includes all of the vertices in
a graph is called a Hamiltonian cycle and such a graph is called Hamiltonian. A
Hamiltonian path of a graph G passes through every vertex of G.

2.5.1 Connectivity and Distance

We would be interested to find if we can reach a vertex v from a vertex u. In a
connected graph G, there is a path between every pair of vertices. Otherwise, G is
disconnected. The connected subgraphs of a disconnected graph are called compo-
nents. A connected graph itself is the only component it has. If the underlying graph
of a digraph G is connected, G is connected. If there is a directed walk between each
pair of vertices, G is strongly connected.

In a connected graph, it is of interest to find how easy it is to reach one vertex
from another. The distance parameter defined below provides this information.

Definition 2.22 (distance) The distance d(u, v) between two vertices u and v in a
(directed) graph G is the length of the shortest path between them.

In an unweighted (directed) graph, d(u, v) is the number of edges of the shortest
path between them. In a weighted graph, this distance is the minimum sum of the
weights of the edges of a path out of all paths between these vertices. The shortest
path between two vertices u and v in a graph G is another term used instead of
distance between the vertices u and v to have the same meaning. The shortest paths
between vertices h and e are h, b, f, e and h, g, f, e both with a distance of 3 in
Fig. 2.15. Similarly, shortest paths between vertices i and b are i, a, b and i, h, b
both with a distance of 2. The directed distance from a vertex u to v in a digraph is
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the length of the shortest walk from u to v. In an undirected simple (weighted) graph
G(V, E,w), the following can be stated:

1. d(u, v) = d(v, u)

2. d(u,w) ≤ d(u,w) + d(w, v), ∀w ∈ V

Definition 2.23 (eccentricity) The eccentricity of a vertex v in a connected graph G
is its maximum distance to any vertex in G.

The maximum eccentricity is called the diameter and the minimum value of this
parameter is called the radius of the graph. The vertex v of a graph G with minimum
eccentricity in a connected graph G is called the central vertex of G. Finding central
vertex of a graph has practical implications, for example, we may want to place a
resource center at a central location in a geographical areawhere cities are represented
by the vertices of a graph and the roads by its edges. There may be more than one
central vertex.

2.6 Graph Representations

We need to represent graphs in suitable forms to be able to perform computations
on them. Two widely used ways of representation are the adjacency matrix and the
adjacency list methods.

2.6.1 AdjacencyMatrix

An adjacency matrix of a simple graph or a digraph is a matrix A[n, n] where each
element ai j=1 if there is an edge joining vertex i to j and ai j = 0 otherwise. For
multigraphs, the entry ai j equals the number of edges between the vertices i and
j . For a digraph, ai j shows the number of arcs from the vertex i to vertex j . The
adjacency matrix is symmetric for an undirected graph and is asymmetric for a
digraph in general. A digraph and its adjacency matrix are displayed in Fig. 2.16. An
adjacency matrix requires O(n2) space.

2.6.2 Adjacency List

An adjacency list of a simple graph (or a digraph) is an array of lists with each list
representing a vertex and its (out)neighbors in a linked list. The end of the list is
marked by a NULL pointer. The adjacency list of a graph is depicted in Fig. 2.16c.
The adjacency matrix requires O(n + m) space. For sparse graphs, adjacency list
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Fig. 2.16 a A digraph, b Its adjacency matrix, c Its adjacency list. The end of the list entries are
marked by a backslash

is preferred due to the space dependence on the number of vertices and edges. For
dense graphs, adjacency matrix is commonly used as searching the existence of an
edge in this matrix can be done in constant time. With the adjacency list of a graph,
the time required for the same operation is O(n).

In a digraph G = (V, E), the predecessor list Pv ⊆ V of a vertex v is defined as
follows.

Pv = {u ∈ V : (u, v) ∈ E}
and the successor list of v, Sv ⊆ V is,

Sv = {u ∈ V : (v, u) ∈ E}

The predecessor and successor lists of the vertices of the graph of Fig. 2.16a are
listed in Table2.2.
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Table 2.2 Predecessor lists and successor lists of vertices

v Pv Sv

1 {2} {3, 4, 5}

2 {Ø} {1, 3}

3 {1, 2, 5} {4}

4 {1, 3, 5} {Ø}

5 {1} {3, 4}

2.6.3 IncidenceMatrix

An incident matrix B[n,m] of a simple graph has elements bi j = 1 if edge j is
incident to vertex i and bi j = 0 otherwise. The incidence matrix for a digraph is
defined differently as below.

bve =
⎧⎨
⎩

−1 if arc e ends at vertex v
1 if arc e starts at vertex v
0 otherwise

The incidence matrix of the graph of Fig. 2.16a is as below:

B =

⎛
⎜⎜⎜⎜⎝

1 −1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 −1 −1 1 0 0 −1
0 0 0 0 1 1 1 0

−1 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎠

In the edge list representation of a graph, all of its edges are included in the list.

2.7 Trees

A graph is called a tree if it is connected and does not contain any cycles. The
following statements equally define a tree T :

1. T is connected and has n − 1 edges.
2. Any two vertices of T are connected by exactly one path.
3. T is connected and each edge is a cut-edge removal of which disconnects T .

In a rooted tree T , there is a special vertex r called the root and every other vertex
of T has a directed path to r ; the tree is unrooted otherwise. A rooted tree is depicted
in Fig. 2.17. A spanning tree of a graph G is a tree that covers all vertices of G.
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Fig. 2.17 A general tree
structure

root

A minimum spanning tree of a weighted graph G is a spanning tree of G with the
minimum total weight among all spanning trees of G. We will be investigating tree
structures and algorithms in more detail in Chap.6.

2.8 Graphs andMatrices

The spectral analysis of graphs involves operations on the matrices related to graphs.

2.8.1 Eigenvalues

Multiplying an n× n matrix A by an n× 1 vector x results in another n× 1 vector y
which can be written as Ax = y in equation form. Instead of getting a new vector y,
it would be interesting to know if the Ax product equals a vector which is a constant
multiplied by the vector x as shown below.

Ax = λx (2.4)

If we can find values of x and λ for this equation to hold, λ is called an eigenvalue
of A and x as an eigenvector of A. There will be a number of eigenvalues and a set
of eigenvectors corresponding to these eigenvalues in general. Rewriting Eq.2.4,

Ax − λx = 0 (2.5)

(A − λI )x = 0

det (A − λI )x = 0 (2.6)

For A[n, n], det (A − λI ) = 0 is called the characteristic polynomial which has
a degree of n and therefore has n roots. Solving this polynomial provides us with
eigenvalues and substituting these in Eq.2.4 provides the eigenvectors of matrix A.

http://dx.doi.org/10.1007/978-3-319-73235-0_6
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2.8.2 LaplacianMatrix

Definition 2.24 (degree matrix) The degree matrix D of a graph G is the diagonal
matrix with elements d1, . . . , dn where di is the degree of vertex i .

Definition 2.25 (Laplacian matrix) The Laplacian matrix L of a simple graph is
obtained by subtracting its adjacency matrix from its degree matrix.

The entries of the Laplacian matrix L are then as follows.

li j =
⎧⎨
⎩

di if i = j
−1 if i and j are neighbors
0 otherwise.

The Laplacian matrix L is sometimes referred to as the combinatorial Laplacian.
The set of all eigenvalues of the Laplacian matrix of a graph G is called the Lapla-
cian spectrum of G. The normalized Laplacian matrix L is closely related to the
combinatorial Laplacian. The relation between these two matrices is as follows:

L = D−1/2LD−1/2 = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2. (2.7)

The entries of the normalized Laplacian matrix L can then be specified as below.

Li j =

⎧⎪⎨
⎪⎩

1 if i = j
−1√
di d j

if i and j are neighbors

0 otherwise.

The Laplacian matrix and adjacency matrix of a graph G are commonly used to
analyze the spectral properties of G and design algebraic graph algorithm to solve
various graph problems.

2.9 Chapter Notes

We have reviewed the basic concepts in graph theory leaving the study of some of
the related background including trees, connectivity, matching, network flows and
coloring to Part II when we discuss algorithms for these problems. The main graph
theory background is presented in a number of books including books by Harary
[6], Bondy and Murty [1], and West [8]. Graph theory with applications is studied
in a book edited by Gross et al. [4]. Algorithmic graph theory focusses more on
the algorithmic aspects of graph theory and books available in this topic include the
books by Gibbons [2], Golumbic [3].
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Exercises

1. Show that the relation between the size and the order of a simple graph is given
by m ≤ (n/2) and decide when the equality holds.

2. Find the order of a 4-regular graph that has a size of 28.
3. Show that the minimum and maximum degrees of a graph G are related by

δ(G) ≤ 2m/n ≤ Δ(G) inequality.
4. Show that for a regular bipartite graph G = (V 1, V 2, E), |V 1| = |V 2|.
5. Let G = (V1, V2, E) be a bipartite graph with vertex partitions V1 and V2. Show

that ∑
u∈V1

deg(u) =
∑
v∈V2

deg(v)

6. A graph G has a degree sequence D = (d1, d2, . . . , dn). Find the degree se-
quence of the complement G of this graph.

7. Show that the join of the complements of a complete graph Kp and another
complete graph Kq is a complete bipartite graph Kp,q .

8. Draw the line graph of K3.
9. Let G = (V, E) be a graph where ∀v ∈ V , deg(v) ≥ 2. Show that G contains a

cycle.
10. Show that if a simple graph G is disconnected, its complement G is connected.
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