Introduction

Abstract

Graphs are discrete structures that are frequently used to model many real-world
problems such as communication networks, social networks, and biological net-
works. We present sequential, parallel, and distributed graph algorithm concepts,
challenges in graph algorithms, and the outline of the book in this chapter.

1.1 Graphs

Graphs are discrete structures that are frequently used to model many real-world
problems such as communication networks, social networks, and biological net-
works. A graph consists of vertices and edges connecting these vertices. A graph
is shown as G = (V, E) where V is the set of vertices and E is the set of edges it
has. Figure 1.1 shows an example graph with vertices and edges between them with
V ={a,b,c,d}and E = {(a, b), (a, e), (a,d), (b,c), (b,d), (b,e), (c,d), (d,e)},
(a, b) denoting the edge between vertices a and b for example.

Graphs have numerous applications including computer science, scientific com-
puting, chemistry, and sociology since they are simple yet effective to model real-life
phenomenon. A vertex of a graph represents some entity such as a person in a social
network or a protein in a biological network. An edge in such a network corre-
sponds to a social interaction such as friendship in a social network or a biochemical
interaction between two proteins in the cell.

Study of graphs has both theoretical and practical implications. In this chapter,
we describe the main goal of the book which is to provide a unified view of graph
algorithms in terms of sequential, parallel, and distributed graph algorithms with

© Springer International Publishing AG, part of Springer Nature 2018 1
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-73235-0_1

2 1 Introduction

Fig.1.1 An example graph —/_@
consisting of vertices

{a,b, ..., h}

O—

emphasis on sequential graph algorithms. We describe a simple graph problem from
these three views and then review challenges in graph algorithms by finally outlining
the contents of the book.

1.2 Graph Algorithms

An algorithm consists of a sequence of instructions processed by a computer to
solve a problem. A graph algorithm works on graphs to find a solution to a problem
represented by the graphs. We can classify the graph problems as sequential, parallel,
and distributed, based on the mode of running these algorithms on the computing
environment.

1.2.1 Sequential Graph Algorithms

A sequential algorithm has a single flow of control and is executed sequentially. It
accepts an input, works on the input, and provides an output. For example, reading
two integers, adding them and printing the sum is a sequential algorithm that consists
of three steps.

Let us assume the graph of Fig.1.2 represents a small network with vertices
labeled {vi1, v, ..., vg} and having integers 1,...,13 associated with each edge. The

Fig.1.2 An example graph

1.2 Graph Algorithms 3

integer value for each edge may denote the cost of sending a message over that edge.
Commonly, the edge values are called the weights of edges. Let us assume our aim
is to design a sequential algorithm to find the edge with the maximum value. This
may have some practical usage, as we may need to find the highest cost edge in the
network to avoid that link while some communication or transportation is done.

Let us form a distance matrix D for this graph, which has entries d (i, j) showing
the weights of edges between vertices v; and v; as below:

(007 0 0 0 0 0 1]
704000 0 9
0 4 02 5 6 141
H_|0 0 20 3 100 0
“l0 0 5 3 0 130 0
0 7 6 10130 4 12
0 7 140 0 4 0 8
(119 1 0 0 128 0 |

If two vertices v; and v; are not connected, we insert a zero for that entry in D.
We can have a simple sequential algorithm that finds the largest value in each row of
this matrix first and then the maximum value of all these largest values in the second
step as shown in Algorithm 1.1.

Algorithm 1.1 Sequential_graph
1: int D[n, n] < edge weights

2: int max[8], maximum

3: for i=1to 8 do

4 max(i] < DJi, 1]

5 for j=2to 8 do

6: if D[i, j] > max[i] then
7. max[i] < Dl[i, j]

8 end if

9: end for

10: end for
11: maximum < max[1]
12: for i=2 to 8 do

13: if max[i] > maximum then
14: maximum < max[i]
15: end if

16: end for

17: output maximum

This algorithm requires 8 comparisons for each row for a total of 64 comparisons.
It needs n” comparisons in general for a graph with n vertices.

4 1 Introduction

1.2.2 Parallel Graph Algorithms

Parallel graph algorithms aim for performance as all parallel algorithms. This way of
speeding up programs is needed especially for very large graphs representing com-
plex networks such as biological or social networks which consist of huge number
of nodes and edges. We have a number of processors working in parallel on the same
problem and the results are commonly gathered at a single processor for output.
Parallel algorithms may synchronize and communicate through shared memory or
they run as distributed memory algorithms communicating by the transfer of mes-
sages only. The latter mode of communication is a more common practice in parallel
computing due to its versatility to realize in general network architectures.

We can attempt to parallelize an existing sequential algorithm or design a new
parallel algorithm from scratch. A common approach in parallel computing is the
partitioning of data to a number of processors so that each computing element works
on a particular partition. Another fundamental approach is the partitioning of com-
putation across the processors as we will investigate in Chap. 4. We will see some
graph problems are difficult to partition into data or computation.

Let us reconsider the sequential algorithm in the previous section and attempt to
parallelize it using data partitioning. Since graph data is represented by the distance
matrix, the first thing to consider would be the partitioning of this matrix. Indeed,
row-wise or column-wise partitioning of a matrix representing a graph is commonly
used in parallel graph algorithms. Let us have a controlling processor we will call the
supervisor or the root and two worker processors to do the actual work. This mode
of operation, sometimes called supervisor/worker model, is also a common practice
in the design of parallel algorithms. Processors are commonly called processes to
mean the actual processor may also be doing some other work. We now have three
processes po, p1, and pp, and pg is the supervisor. The process pg has the distance
matrix initially, and it partitions and sends the first half of the rows from 1 to 4 to p;
and 5 to 8 to p» as shown below:

07000001 p
704000009
040256141

5_|002031000

005301300 p
07610130 412
07140 0 4 0 8
(119100128 0 |

Each worker now finds the heaviest edge incident to the vertices in the rows it is
assigned using the sequential algorithm described and sends this result to the super-
visor pg which finds the maximum of these two values and outputs it. A more general
form of this algorithm with k worker processes is shown in Algorithm 1.2. Since data
is partitioned to two processes now, we would expect to have a significant decrease

http://dx.doi.org/10.1007/978-3-319-73235-0_4

1.2 Graph Algorithms 5

in the runtime of the sequential algorithm. However, we have communication costs
between the supervisor and the workers now which may not be trivial for large data
transfers.

Algorithm 1.2 Parallel_graph

1: int D[n, n] < edge weights of graph G
2: int Max[n), E[n/k, nlmaximum

3: if i = root then

4: row-wise partition distance matrix D of graph into Dy, ..., Dy
5: fori=1tok do

6: send D; to p;

7: end for

8 fori=1tokdo

9: receive largest; from p; into max|i]

10: end for

11: find the maximum value of max using the sequential algorithm
12: output maximum

13: else

14: receive my rows into £

15: find the maximum value in E using sequential algorithm

16: send root my maximum value

17: end if

Designing parallel graph algorithms may not be trivial as in this example, and
in general we need more sophisticated methods. The operation we need to do may
depend largely on what was done before which means significant communications
and synchronization may be needed between the workers. The inter-process com-
munication across the network connecting the computational nodes is costly and we
may end up designing a parallel graph algorithm that is not efficient.

1.2.3 Distributed Graph Algorithms

Distributed graph algorithms are a class of graph algorithms in which we have a
computational node represented by a vertex of the graph. The problems to be solved
with such algorithms are related to the network they represent; for example, it may
be required to find the shortest distance between any two nodes in the network so that
whenever a data packet comes to anode in the network, it forwards the packet to one of
its neighbors that is on the least cost path to the destination. In such algorithms, each
node typically runs the same algorithm but has different neighbors to communicate
and transfer its local result. In essence, our aim is to solve an overall problem related
to the graph representing the network by the cooperation of the nodes in the network.
Note that the nodes in the network can only communicate with their neighbors and
this is the reason these algorithms are sometimes referred to as local algorithms.

6 1 Introduction

In the distributed version of our sample maximum weight edge finding algorithm,
we have computational nodes of a computer network as the vertices of the graph, and
our aim is that each node in the network modeled by the graph should receive the
largest weight edge of the graph in the end. We will attempt to solve this problem using
rounds for the synchronization of the nodes. Each node starts the round, performs
some function in the round, and does not start the next round until all other nodes
have also finished execution of the round. This model is widely used for distributed
algorithms as we will describe in Chap. 5 and there is no other central control other
than the synchronization of the rounds. Each node starts by broadcasting the largest
weight it is incident to all of its neighbors and receiving the largest weight values
from neighbors. In the following rounds, a node broadcasts the largest weight it has
seen so far and after a certain number of steps, the largest value will be propagated to
all nodes of the graph as shown in Algorithm 1.3. The number of steps is the diameter
of the graph which is the maximum number of edges between any two vertices.

Algorithm 1.3 Distributed_graph

1: boolean finished, round_over < false
2: message type start, result, stop

3: while count < diam(G) do

4 receive max(j) from all neighbors

5 find the maximum of all received values
6: send the maximum value to all neighbors
7 count < count + 1

8: end while

We now can see fundamental differences between parallel and distributed graph
algorithms using this example as follows.

e Parallel graph algorithms are needed mainly for the speedup they provide. There
are a number of processing elements that work in parallel which cooperate to
finish an overall task. The main relation between the number of processes and
the size of the graph is that we would prefer to use more processes for large
graphs. We assume each processing element can communicate with each other in
general although there are some special parallel computing architectures such as
processors forming a cubic architecture of communication as in the hypercube.

e In distributed graph algorithms, computational nodes are the vertices of the graph
under consideration and communicate with their neighbors only to solve a problem
related to the network represented by the graph. Note that the process number is
the number of vertices of the graph for these algorithms.

One important goal of this book is to provide a unified view of graph algorithms from
these three different angles. There are cases we may want to solve a network problem
on parallel processing environment, for example, all shortest paths between any two
nodes in the network may need to be stored in a central server to be transferred to

http://dx.doi.org/10.1007/978-3-319-73235-0_5

1.2 Graph Algorithms 7

individual nodes or for statistical purposes. In this case, we run a parallel algorithm
for the network using a number of processing elements. In a network setting, we
need each node to work to know the shortest paths from it to other nodes.

A general approach is to derive parallel and distributed graph algorithms from a
sequential one but there are ways of converting a parallel graph algorithm to distrib-
uted one or vice versa for some problems. For the example problem we have, we
can have each row of the distance matrix D assigned to a single process. This way,
each process can be represented by a network node provided that it communicates
with its neighbors only. Conversions as such are useful in many cases since we do
not design a new algorithm from scratch.

1.2.4 Algorithms for Large Graphs

Recent technical advancements in the last few decades have resulted in the avail-
ability of data of very large networks. These networks are commonly called complex
networks and consist of tens of thousands of nodes and hundreds of thousands of links
between the nodes. One such type of networks is the biological networks within the
cell of living organisms. A protein—protein interaction (PPI) network is a biological
network formed with interacting proteins outside the nucleus in the cell.

A social network consisting of individuals interacting over the Internet may again
be a very large network. These complex networks can be modeled by graphs with
vertices representing the nodes and edges the interaction between the nodes like any
other network. However, these networks are different than a small network modeled
by a graph in few respects. First of all, they have very small diameters meaning the
shortest distance between any two vertices is small when compared to their sizes.
For example, various PPI networks consisting of thousands of nodes are found to
have a diameter of only several units. Similarly, social networks and technological
networks such as the Internet also have small diameters. This state is known as
small-world property. Second, empirical studies suggest these networks have very
few nodes with very high number of connections; and most of the other nodes have
few connections to neighbors. This so-called scale-free property is exhibited again in
most of the complex networks. Lastly, the size of these networks being large requires
efficient algorithms for their analysis. In summary, we need efficient and possibly
parallel algorithms that exploit various properties such as small-world and scale-free
features of these networks.

1.3 Challenges in Graph Algorithms

There are numerous challenges in graphs to be solved by graph algorithms.

e Complexity of graph algorithms: A polynomial time algorithm has a complexity
that can be expressed by a polynomial function. There are very few polynomial

8 1 Introduction

time algorithms for the majority of problems related to graphs. The algorithms at
hand typically have exponential time complexities which means even for moderate
size graphs, the execution times are significant. For example, assume an algorithm
A to solve a graph problem P has time complexity 2", n being the number of
vertices in the graph. We can see that A may have poor performance even for
graphs with n > 20 vertices. We then have the following choices:

— Approximation algorithms: Search for an approximation algorithm that finds
a suboptimal solution rather than an optimal one. In this case, we need to
prove that the approximation algorithm always provides a solution within an
approximation ratio to the optimal solution. Various proof techniques can be
employed and there is no need to experiment the approximation algorithm
other than statistical purposes. Finding and proving approximation algorithms
are difficult for many graph problems.

— Randomized algorithms: These algorithms decide on the course of execution
based on some random choice, for example, selection of an edge at random. The
output is presented typically as expected or with high probability meaning there
is a chance, if even slightly, that the output may not be correct. However, the
randomized algorithms provide polynomial solutions to many difficult graph
problems.

— Heuristics: In many cases, our only choice is the use of common sense
approaches called heuristics in search of a solution. Choice of a heuristic is
commonly pursued by intuition and we need to experiment the algorithm with
the heuristic for a wide range of inputs to show it works experimentally.

There are other methods such as backtracking and branch-and-bound which work
only for a subset of the search space and therefore have less time complexities.
However, these approaches can be applied to only subset of problems and are not
general. Let us exemplify these concepts by an example. A cligue in a graph is a
subgraph such that each vertex in this subgraph has connections to all other vertices
in the subgraph as shown in Fig. 1.3. Finding cliques in a graph has many implications
as these exhibit dense regions of activity. Finding the largest clique of a graph G with
n vertices, which is the clique with the maximum number of vertices in the graph,
cannot be performed in polynomial time. A brute force algorithm, which is typically
the first algorithm that comes to mind, will enumerate all 2" subgraphs of G and
check the clique condition from the largest to the smallest. Instead of searching for
an approximation algorithm, we could do the following by intuition: start with the
vertex that has the highest number of connections called its degree; check whether all
of its neighbors have the same number of connections and if all have, then we have a
clique. If this fails, continue with the next highest degree vertex. This heuristic will
work fine but in general, we need to show experimentally that a heuristic works for
most of the input variations, for 90% for example but an algorithm that works fine
for 60 % of the time with diverse inputs would not be a favorable heuristic.

1.3 Challenges in Graph Algorithms 9

Fig. 1.3 The maximum
clique of a sample graph is
shown by dark vertices. All
vertices in this clique are
connected to each other

e Performance: Even with polynomial time graph algorithms, the size of the graph
may restrict its use for large graphs. Recent interest in large graphs representing
large real-life networks demands high-performance algorithms which are com-
monly realized by parallel computing. Biological networks and social networks
are examples of such networks. Therefore, there is a need for efficient parallel
algorithms to be implemented in these large graphs. However, some graph prob-
lems are difficult to parallelize due to the structure of the procedures used.

e Distribution: Several large real networks are distributed in a sense each node of
the network is an autonomous computing element. The Internet, the Web, mobile
ad hoc networks, and wireless sensor networks are examples of such networks
which can be termed as computer networks in general. These networks can again
be modeled conveniently by graphs. However, the nodes of the network now
actively participate in the execution of the graph algorithm. This type of algorithms
is termed distributed algorithms.

The main goal of this book is the study of graph algorithms from three angles:
sequential, parallel, and distributed algorithms. We think this approach will provide
a better understanding of the problem at hand and its solution by also showing its
possible application areas. We will be as comprehensive as possible in the study of
sequential graph algorithms but will only present representative graph algorithms for
parallel and distributed cases. We will see some graph problems have complicated
parallel algorithmic solutions reported in research studies and we will provide a
contemporary research survey of the topics in these cases.

10 1 Introduction

1.4 Outline of the Book

We have divided the book into three parts as follows.

e Fundamentals: This part has four chapters; the first chapter contains a dense review
of basic graph theory concepts. Some of these concepts are detailed in individual
chapters. We then describe sequential, parallel, and distributed graph algorithms
in sequence in three chapters. In each chapter, we first provide the main concepts
about the algorithm method and then provide a number of examples on graphs
using the method mentioned. For example, in the sequential algorithm methods,
we give a greedy graph algorithm while describing greedy algorithms. This part
basically forms the background for parts II and III.

e Basic Graph Algorithms: This part contains the core material of the book. We look
at the main topics in graph theory at each chapter which are trees and graph tra-
versals; weighted graphs; connectivity; matching; subgraphs; and coloring. Here,
we leave out some theoretical topics of graph theory which do not have signif-
icant algorithms. The topics we investigate in the book allow algorithmic meth-
ods conveniently and we start each chapter with brief theoretical background for
algorithmic analysis. In other words, our treatment of related graph theoretical
concepts is not comprehensive as our main goal is the study of graph algorithms
rather than graph theory on its own. In each chapter, we first describe sequential
algorithms and this part is one place in the book that we try to be as compre-
hensive as possible by describing most of the well-established algorithms of the
topic. We then provide only sample parallel and distributed algorithms on the
topic investigated. These are typically one or two well-known algorithms rather
than a comprehensive list. In some cases, the parallel or distributed algorithms at
hand are complicated. For such problems, we give a survey of algorithms with
short descriptions.

e Advanced Topics: We present recent and more advanced topics in graph algo-
rithms than Part II in this section of the book starting with algebraic and dynamic
graph algorithms. Algebraic graph algorithms commonly make use of the matrices
associated with a graph and operations on them while solving a graph problem.
Dynamic graphs represent real networks where edges are inserted and removed
from a graph in time. Algorithms for such graphs, called dynamic graph algo-
rithms, aim to provide solutions in shorter time than running the static algorithm
from scratch.

Large graphs representing real-life networks such as biological and social net-
works tend to have interesting and unexpected properties as we have outlined.
Study of such graphs has become a major research direction in network science
recently. We therefore considered it to be appropriate to have two chapters of the
book dedicated for this purpose. Algorithms for these large graphs have somehow
different goals, and community detection which is finding dense regions in these
graphs has become one of the main topics of research. We first provide a chapter
on general description and analysis of these large graphs along with algorithms
to compute some important parameters. We then review basic complex network

1.4 Outline of the Book 1

types with algorithms used to solve fundamental problems in these networks.
The final chapter is about describing general guidelines on how to search a graph
algorithm for the problem at hand.

We conclude this chapter by emphasizing the main goals of the book once more.
First, it would be proper to state what this book is not. This book is not intended as
a graph theory book, or a parallel computing book or a distributed algorithms book
on graphs. We assume basic familiarity with these areas although we provide a brief
and dense review of these topics as related to graph problems in Part I. We describe
basic graph theory including the notation and basic theorems related to the topic at
the beginning of each chapter. Our emphasis is again on graph theory that is related
to the graph algorithm we intend to review. We try to be as comprehensive as possible
in the analysis of sequential graph algorithms but we review only exemplary parallel
and distributed graph algorithms. Our main focus is guiding the reader to graphs
algorithms by investigating and studying the same problem from three different
views: a thorough sequential, typical parallel, and distributed algorithmic approaches.
Such an approach is effective and beneficial not only because it helps to understand
the problem at hand better but also it is possible to convert from one approach to
another saving significant amount of time compared to designing a completely new
algorithm.

	1 Introduction
	1.1 Graphs
	1.2 Graph Algorithms
	1.2.1 Sequential Graph Algorithms
	1.2.2 Parallel Graph Algorithms
	1.2.3 Distributed Graph Algorithms
	1.2.4 Algorithms for Large Graphs

	1.3 Challenges in Graph Algorithms
	1.4 Outline of the Book

