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Preface

Graphs are key data structures for the analysis of various types of networks such as
mobile ad hoc networks, the Internet, and complex networks such as social net-
works and biological networks. Study of graph algorithms is needed to efficiently
solve a variety of problems in such networks. This study is commonly centered
around three fundamental paradigms: Sequential graph algorithms; parallel graph
algorithms and distributed graph algorithms. Sequential algorithms in general
assume a single flow of control and such methods are well established. For
intractable graph problems that do not have sequential solutions in polynomial time,
approximation algorithms which have proven approximation ratios to the optimum
solutions can be used. Many times however, the approximation algorithms are not
known to date and the only choice is the use of heuristics which are common sense
rules that are shown experimentally to work for a wide range of inputs. The
algorithm designer is frequently confronted with this task of knowing what to
search or not; and what road to follow if the solution does not exist. The first aim of
this book is to provide a comprehensive and in-depth analysis of sequential graph
algorithms and guide the designer on how to approach a typical hard problem by
showing how to inspect an appropriate heuristic which is commonly needed in
many cases.

Parallel algorithms are needed to provide speed-up in the running of graph
algorithms. Shared memory parallel algorithms synchronize using a common
memory and distributed memory parallel algorithms communicate by
message-passing only. Distributed graph (or network) algorithms are aware of
network topology and can be used for various network related tasks such as routing.
Distributed algorithms is the common term used for distributed memory and dis-
tributed graph algorithms, however, we will call shared memory and distributed
memory parallel graph algorithms parallel graph algorithms and distributed graph
or network algorithms as distributed algorithms. Design and analysis of parallel and
distributed algorithms as well as sequential algorithms for graphs will be the subject
of this book.

A second and a fundamental goal of this book is to unify these three seemingly
different methods of graph algorithms where applicable. For example, the minimum
spanning tree (MST) problem can be solved by four classical sequential algorithms:
Boruvka’s, Prim’s, Kruskal’s, and Reverse-Delete algorithms all with similar
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complexities. A parallel MST algorithm will attempt to find the MST of a large
network on a fewer number of processors solely to obtain a speedup. In a dis-
tributed MST algorithm, each processor is a node of the network graph and par-
ticipates to find the MST of the network. We will describe and compare all three
paradigms for this and many other well-known graph problems by looking at the
same problem from three different angles, which we believe will help to understand
the problem better and form a unifying view.

A third and an important goal of this work will be the conversions between
sequential, shared, and distributed memory parallel and distributed algorithms for
graphs. This process is not commonly implemented in literature although there are
opportunities in many cases. We will exemplify this concept by maximal weighted
matching algorithm in graphs. The sequential approximation algorithm for this
purpose with 0.5 ratio has a time complexity of OðmlogðmÞÞ with m being the
number of edges. Preis provided a faster localized sequential algorithm based on the
first algorithm with better OðmÞ complexity. Later, Hoepmann provided a dis-
tributed version of Preis’ algorithm. More recently, Manne provided sequential
form of Hoepman’s distributed graph algorithm and parallelized this algorithm. The
sequence of methods employed has been sequential ! sequential ! distributed !
sequential ! parallel for this graph problem. Although this example shows a rather
long transformation sequence, sequential ! parallel and sequential ! distributed
are commonly followed by researchers mostly by common sense. Parallel graph
algorithms $ distributed graph algorithms conversion of algorithms is very seldom
practiced. Our aim will be to lay down the foundations of these transformations
between paradigms to convert an algorithm in one domain to another. This may be
difficult for some types of algorithms but graph algorithms are a good premise.

As more advanced technologies are developed, we are confronted with the
analysis of big data of complex networks which have tens of thousands of nodes
and hundreds of thousands of edges. We also provide a part on algorithms for big
data analysis of complex networks such as the Internet, social networks, and bio-
logical networks in the cell. To summarize, we have the following goals in this
book:

• A comprehensive study and a detailed study of fundamental principles of
sequential graph algorithms and approaches for NP-hard problems, approxi-
mation algorithms and heuristics.

• A comparative analysis of sequential, parallel and distributed graph algorithms
including algorithms for big data.

• Study of conversion principles between the three methods.

There are three parts in the book; we provide a brief background on graphs,
sequential, parallel, and distributed graph algorithms in the first part. The second
part forms the core of the book with a detailed analysis of sequential, parallel, and
distributed algorithms for fundamental graph problems. In the last part, our focus is
on algebraic and dynamic graph algorithms and graph algorithms for very large
networks, which are commonly implemented using heuristics rather than exact
solutions.
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We review theory as much as needed for the design of sequential, parallel, and
distributed graph algorithms and our emphasis for many problems is on imple-
mentation details in full. Our study of sequential graph algorithms throughout the
book is comprehensive, however, we provide a comparative analysis of sequential
algorithms only with the fundamental parallel and distributed graph algorithms. We
kept the layout of each chapter as homogenous as possible by first describing the
problem informally and then providing the basic theoretical background. We then
describe fundamental algorithms by first describing the main idea of an algorithm;
then giving its pseudocode; showing an example implementation and finally the
analysis of its correctness and complexities. This algorithm template is repeated for
all algorithms except the ones that have complex structures and phases in which
case we describe the general idea and the operation of the algorithm.

The intended audience for this book is the senior/graduate students of computer
science, electrical and electronic engineering, bioinformatics, and any researcher or
a person with background in discrete mathematics, basic graph theory and algo-
rithms. There is a Web page for the book to keep errata and other material at: http://
ube.ege.edu.tr/*erciyes/GGA/.

I would like to thank senior/graduate students at Ege University, University of
California Davis, California State University San Marcos, and senior/graduate
students at Izmir University who have taken the distributed algorithms and complex
networks courses, sometimes under slightly different names, for their valuable
feedback when parts of the material covered in the book was presented during
lectures. I would also like to thank Springer editors Wayne Wheeler and Simon
Rees for their help and their faith in another book project I have proposed.

Izmir, Turkey K. Erciyes
An emeritus professor

International Computer Institute
Ege (Aegean) University
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1Introduction

Abstract

Graphs are discrete structures that are frequently used to model many real-world
problems such as communication networks, social networks, and biological net-
works. We present sequential, parallel, and distributed graph algorithm concepts,
challenges in graph algorithms, and the outline of the book in this chapter.

1.1 Graphs

Graphs are discrete structures that are frequently used to model many real-world
problems such as communication networks, social networks, and biological net-
works. A graph consists of vertices and edges connecting these vertices. A graph
is shown as G = (V, E) where V is the set of vertices and E is the set of edges it
has. Figure1.1 shows an example graph with vertices and edges between them with
V = {a, b, c, d} and E = {(a, b), (a, e), (a, d), (b, c), (b, d), (b, e), (c, d), (d, e)},
(a, b) denoting the edge between vertices a and b for example.

Graphs have numerous applications including computer science, scientific com-
puting, chemistry, and sociology since they are simple yet effective to model real-life
phenomenon. A vertex of a graph represents some entity such as a person in a social
network or a protein in a biological network. An edge in such a network corre-
sponds to a social interaction such as friendship in a social network or a biochemical
interaction between two proteins in the cell.

Study of graphs has both theoretical and practical implications. In this chapter,
we describe the main goal of the book which is to provide a unified view of graph
algorithms in terms of sequential, parallel, and distributed graph algorithms with
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2 1 Introduction

Fig. 1.1 An example graph
consisting of vertices
{a, b, . . . , h}

emphasis on sequential graph algorithms. We describe a simple graph problem from
these three views and then review challenges in graph algorithms by finally outlining
the contents of the book.

1.2 Graph Algorithms

An algorithm consists of a sequence of instructions processed by a computer to
solve a problem. A graph algorithm works on graphs to find a solution to a problem
represented by the graphs.We can classify the graph problems as sequential, parallel,
and distributed, based on the mode of running these algorithms on the computing
environment.

1.2.1 Sequential Graph Algorithms

A sequential algorithm has a single flow of control and is executed sequentially. It
accepts an input, works on the input, and provides an output. For example, reading
two integers, adding them and printing the sum is a sequential algorithm that consists
of three steps.

Let us assume the graph of Fig. 1.2 represents a small network with vertices
labeled {v1, v2, . . . , v8} and having integers 1,…,13 associated with each edge. The

Fig. 1.2 An example graph



1.2 Graph Algorithms 3

integer value for each edge may denote the cost of sending a message over that edge.
Commonly, the edge values are called the weights of edges. Let us assume our aim
is to design a sequential algorithm to find the edge with the maximum value. This
may have some practical usage, as we may need to find the highest cost edge in the
network to avoid that link while some communication or transportation is done.

Let us form a distance matrix D for this graph, which has entries d(i, j) showing
the weights of edges between vertices vi and v j as below:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 7 0 0 0 0 0 1
7 0 4 0 0 0 0 9
0 4 0 2 5 6 14 1
0 0 2 0 3 10 0 0
0 0 5 3 0 13 0 0
0 7 6 10 13 0 4 12
0 7 14 0 0 4 0 8
11 9 1 0 0 12 8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If two vertices vi and v j are not connected, we insert a zero for that entry in D.
We can have a simple sequential algorithm that finds the largest value in each row of
this matrix first and then the maximum value of all these largest values in the second
step as shown in Algorithm1.1.

Algorithm 1.1 Sequential_graph
1: int D[n, n] ← edge weights
2: int max[8],maximum
3: for i=1 to 8 do
4: max[i] ← D[i, 1]
5: for j=2 to 8 do
6: if D[i, j] > max[i] then
7: max[i] ← D[i, j]
8: end if
9: end for
10: end for
11: maximum ← max[1]
12: for i=2 to 8 do
13: if max[i] > maximum then
14: maximum ← max[i]
15: end if
16: end for
17: output maximum

This algorithm requires 8 comparisons for each row for a total of 64 comparisons.
It needs n2 comparisons in general for a graph with n vertices.



4 1 Introduction

1.2.2 Parallel Graph Algorithms

Parallel graph algorithms aim for performance as all parallel algorithms. This way of
speeding up programs is needed especially for very large graphs representing com-
plex networks such as biological or social networks which consist of huge number
of nodes and edges. We have a number of processors working in parallel on the same
problem and the results are commonly gathered at a single processor for output.
Parallel algorithms may synchronize and communicate through shared memory or
they run as distributed memory algorithms communicating by the transfer of mes-
sages only. The latter mode of communication is a more common practice in parallel
computing due to its versatility to realize in general network architectures.

We can attempt to parallelize an existing sequential algorithm or design a new
parallel algorithm from scratch. A common approach in parallel computing is the
partitioning of data to a number of processors so that each computing element works
on a particular partition. Another fundamental approach is the partitioning of com-
putation across the processors as we will investigate in Chap. 4. We will see some
graph problems are difficult to partition into data or computation.

Let us reconsider the sequential algorithm in the previous section and attempt to
parallelize it using data partitioning. Since graph data is represented by the distance
matrix, the first thing to consider would be the partitioning of this matrix. Indeed,
row-wise or column-wise partitioning of a matrix representing a graph is commonly
used in parallel graph algorithms. Let us have a controlling processor we will call the
supervisor or the root and two worker processors to do the actual work. This mode
of operation, sometimes called supervisor/worker model, is also a common practice
in the design of parallel algorithms. Processors are commonly called processes to
mean the actual processor may also be doing some other work. We now have three
processes p0, p1, and p2, and p0 is the supervisor. The process p0 has the distance
matrix initially, and it partitions and sends the first half of the rows from 1 to 4 to p1
and 5 to 8 to p2 as shown below:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 7 0 0 0 0 0 1 p1
7 0 4 0 0 0 0 9
0 4 0 2 5 6 14 1
0 0 2 0 3 10 0 0
0 0 5 3 0 13 0 0 p2
0 7 6 10 13 0 4 12
0 7 14 0 0 4 0 8
11 9 1 0 0 12 8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Each worker now finds the heaviest edge incident to the vertices in the rows it is
assigned using the sequential algorithm described and sends this result to the super-
visor p0 which finds themaximum of these two values and outputs it. Amore general
form of this algorithmwith k worker processes is shown in Algorithm1.2. Since data
is partitioned to two processes now, we would expect to have a significant decrease

http://dx.doi.org/10.1007/978-3-319-73235-0_4
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in the runtime of the sequential algorithm. However, we have communication costs
between the supervisor and the workers now which may not be trivial for large data
transfers.

Algorithm 1.2 Parallel_graph
1: int D[n, n] ← edge weights of graph G
2: int Max[n], E[n/k, n]maximum
3: if i = root then
4: row-wise partition distance matrix D of graph into D1, ..., Dk

5: for i=1 to k do
6: send Di to pi
7: end for
8: for i=1 to k do
9: receive largesti from pi into max[i]
10: end for
11: find the maximum value of max using the sequential algorithm
12: output maximum
13: else
14: receive my rows into E
15: find the maximum value in E using sequential algorithm
16: send root my maximum value
17: end if

Designing parallel graph algorithms may not be trivial as in this example, and
in general we need more sophisticated methods. The operation we need to do may
depend largely on what was done before which means significant communications
and synchronization may be needed between the workers. The inter-process com-
munication across the network connecting the computational nodes is costly and we
may end up designing a parallel graph algorithm that is not efficient.

1.2.3 Distributed Graph Algorithms

Distributed graph algorithms are a class of graph algorithms in which we have a
computational node represented by a vertex of the graph. The problems to be solved
with such algorithms are related to the network they represent; for example, it may
be required to find the shortest distance between any two nodes in the network so that
whenever a data packet comes to a node in the network, it forwards the packet to one of
its neighbors that is on the least cost path to the destination. In such algorithms, each
node typically runs the same algorithm but has different neighbors to communicate
and transfer its local result. In essence, our aim is to solve an overall problem related
to the graph representing the network by the cooperation of the nodes in the network.
Note that the nodes in the network can only communicate with their neighbors and
this is the reason these algorithms are sometimes referred to as local algorithms.
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In the distributed version of our sample maximumweight edge finding algorithm,
we have computational nodes of a computer network as the vertices of the graph, and
our aim is that each node in the network modeled by the graph should receive the
largestweight edgeof the graph in the end.Wewill attempt to solve this problemusing
rounds for the synchronization of the nodes. Each node starts the round, performs
some function in the round, and does not start the next round until all other nodes
have also finished execution of the round. This model is widely used for distributed
algorithms as we will describe in Chap.5 and there is no other central control other
than the synchronization of the rounds. Each node starts by broadcasting the largest
weight it is incident to all of its neighbors and receiving the largest weight values
from neighbors. In the following rounds, a node broadcasts the largest weight it has
seen so far and after a certain number of steps, the largest value will be propagated to
all nodes of the graph as shown in Algorithm1.3. The number of steps is the diameter
of the graph which is the maximum number of edges between any two vertices.

Algorithm 1.3 Distributed_graph
1: boolean f inished, round_over ← f alse
2: message type start, result, stop
3: while count ≤ diam(G) do
4: receive max(j) from all neighbors
5: find the maximum of all received values
6: send the maximum value to all neighbors
7: count ← count + 1
8: end while

We now can see fundamental differences between parallel and distributed graph
algorithms using this example as follows.

• Parallel graph algorithms are needed mainly for the speedup they provide. There
are a number of processing elements that work in parallel which cooperate to
finish an overall task. The main relation between the number of processes and
the size of the graph is that we would prefer to use more processes for large
graphs. We assume each processing element can communicate with each other in
general although there are some special parallel computing architectures such as
processors forming a cubic architecture of communication as in the hypercube.

• In distributed graph algorithms, computational nodes are the vertices of the graph
under consideration and communicatewith their neighbors only to solve a problem
related to the network represented by the graph. Note that the process number is
the number of vertices of the graph for these algorithms.

One important goal of this book is to provide a unified view of graph algorithms from
these three different angles. There are cases wemaywant to solve a network problem
on parallel processing environment, for example, all shortest paths between any two
nodes in the network may need to be stored in a central server to be transferred to

http://dx.doi.org/10.1007/978-3-319-73235-0_5
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individual nodes or for statistical purposes. In this case, we run a parallel algorithm
for the network using a number of processing elements. In a network setting, we
need each node to work to know the shortest paths from it to other nodes.

A general approach is to derive parallel and distributed graph algorithms from a
sequential one but there are ways of converting a parallel graph algorithm to distrib-
uted one or vice versa for some problems. For the example problem we have, we
can have each row of the distance matrix D assigned to a single process. This way,
each process can be represented by a network node provided that it communicates
with its neighbors only. Conversions as such are useful in many cases since we do
not design a new algorithm from scratch.

1.2.4 Algorithms for Large Graphs

Recent technical advancements in the last few decades have resulted in the avail-
ability of data of very large networks. These networks are commonly called complex
networks and consist of tens of thousands of nodes and hundreds of thousands of links
between the nodes. One such type of networks is the biological networks within the
cell of living organisms. A protein–protein interaction (PPI) network is a biological
network formed with interacting proteins outside the nucleus in the cell.

A social network consisting of individuals interacting over the Internet may again
be a very large network. These complex networks can be modeled by graphs with
vertices representing the nodes and edges the interaction between the nodes like any
other network. However, these networks are different than a small network modeled
by a graph in few respects. First of all, they have very small diameters meaning the
shortest distance between any two vertices is small when compared to their sizes.
For example, various PPI networks consisting of thousands of nodes are found to
have a diameter of only several units. Similarly, social networks and technological
networks such as the Internet also have small diameters. This state is known as
small-world property. Second, empirical studies suggest these networks have very
few nodes with very high number of connections; and most of the other nodes have
few connections to neighbors. This so-called scale-free property is exhibited again in
most of the complex networks. Lastly, the size of these networks being large requires
efficient algorithms for their analysis. In summary, we need efficient and possibly
parallel algorithms that exploit various properties such as small-world and scale-free
features of these networks.

1.3 Challenges in Graph Algorithms

There are numerous challenges in graphs to be solved by graph algorithms.

• Complexity of graph algorithms: A polynomial time algorithm has a complexity
that can be expressed by a polynomial function. There are very few polynomial
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time algorithms for the majority of problems related to graphs. The algorithms at
hand typically have exponential time complexitieswhichmeans even formoderate
size graphs, the execution times are significant. For example, assume an algorithm
A to solve a graph problem P has time complexity 2n , n being the number of
vertices in the graph. We can see that A may have poor performance even for
graphs with n > 20 vertices. We then have the following choices:

– Approximation algorithms: Search for an approximation algorithm that finds
a suboptimal solution rather than an optimal one. In this case, we need to
prove that the approximation algorithm always provides a solution within an
approximation ratio to the optimal solution. Various proof techniques can be
employed and there is no need to experiment the approximation algorithm
other than statistical purposes. Finding and proving approximation algorithms
are difficult for many graph problems.

– Randomized algorithms: These algorithms decide on the course of execution
based on some randomchoice, for example, selection of an edge at random. The
output is presented typically as expected orwith high probabilitymeaning there
is a chance, if even slightly, that the output may not be correct. However, the
randomized algorithms provide polynomial solutions to many difficult graph
problems.

– Heuristics: In many cases, our only choice is the use of common sense
approaches called heuristics in search of a solution. Choice of a heuristic is
commonly pursued by intuition and we need to experiment the algorithm with
the heuristic for a wide range of inputs to show it works experimentally.

There are other methods such as backtracking and branch-and-bound which work
only for a subset of the search space and therefore have less time complexities.
However, these approaches can be applied to only subset of problems and are not
general. Let us exemplify these concepts by an example. A clique in a graph is a
subgraph such that each vertex in this subgraph has connections to all other vertices
in the subgraph as shown in Fig. 1.3. Finding cliques in a graph hasmany implications
as these exhibit dense regions of activity. Finding the largest clique of a graphG with
n vertices, which is the clique with the maximum number of vertices in the graph,
cannot be performed in polynomial time. A brute force algorithm, which is typically
the first algorithm that comes to mind, will enumerate all 2n subgraphs of G and
check the clique condition from the largest to the smallest. Instead of searching for
an approximation algorithm, we could do the following by intuition: start with the
vertex that has the highest number of connections called its degree; check whether all
of its neighbors have the same number of connections and if all have, then we have a
clique. If this fails, continue with the next highest degree vertex. This heuristic will
work fine but in general, we need to show experimentally that a heuristic works for
most of the input variations, for 90% for example but an algorithm that works fine
for 60 % of the time with diverse inputs would not be a favorable heuristic.
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Fig. 1.3 The maximum
clique of a sample graph is
shown by dark vertices. All
vertices in this clique are
connected to each other

• Performance: Even with polynomial time graph algorithms, the size of the graph
may restrict its use for large graphs. Recent interest in large graphs representing
large real-life networks demands high-performance algorithms which are com-
monly realized by parallel computing. Biological networks and social networks
are examples of such networks. Therefore, there is a need for efficient parallel
algorithms to be implemented in these large graphs. However, some graph prob-
lems are difficult to parallelize due to the structure of the procedures used.

• Distribution: Several large real networks are distributed in a sense each node of
the network is an autonomous computing element. The Internet, the Web, mobile
ad hoc networks, and wireless sensor networks are examples of such networks
which can be termed as computer networks in general. These networks can again
be modeled conveniently by graphs. However, the nodes of the network now
actively participate in the execution of the graph algorithm.This type of algorithms
is termed distributed algorithms.

The main goal of this book is the study of graph algorithms from three angles:
sequential, parallel, and distributed algorithms. We think this approach will provide
a better understanding of the problem at hand and its solution by also showing its
possible application areas. We will be as comprehensive as possible in the study of
sequential graph algorithms but will only present representative graph algorithms for
parallel and distributed cases. We will see some graph problems have complicated
parallel algorithmic solutions reported in research studies and we will provide a
contemporary research survey of the topics in these cases.
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1.4 Outline of the Book

We have divided the book into three parts as follows.

• Fundamentals: This part has four chapters; thefirst chapter contains a dense review
of basic graph theory concepts. Some of these concepts are detailed in individual
chapters. We then describe sequential, parallel, and distributed graph algorithms
in sequence in three chapters. In each chapter, we first provide the main concepts
about the algorithm method and then provide a number of examples on graphs
using the method mentioned. For example, in the sequential algorithm methods,
we give a greedy graph algorithm while describing greedy algorithms. This part
basically forms the background for parts II and III.

• Basic Graph Algorithms: This part contains the corematerial of the book.We look
at the main topics in graph theory at each chapter which are trees and graph tra-
versals; weighted graphs; connectivity; matching; subgraphs; and coloring. Here,
we leave out some theoretical topics of graph theory which do not have signif-
icant algorithms. The topics we investigate in the book allow algorithmic meth-
ods conveniently and we start each chapter with brief theoretical background for
algorithmic analysis. In other words, our treatment of related graph theoretical
concepts is not comprehensive as our main goal is the study of graph algorithms
rather than graph theory on its own. In each chapter, we first describe sequential
algorithms and this part is one place in the book that we try to be as compre-
hensive as possible by describing most of the well-established algorithms of the
topic. We then provide only sample parallel and distributed algorithms on the
topic investigated. These are typically one or two well-known algorithms rather
than a comprehensive list. In some cases, the parallel or distributed algorithms at
hand are complicated. For such problems, we give a survey of algorithms with
short descriptions.

• Advanced Topics: We present recent and more advanced topics in graph algo-
rithms than Part II in this section of the book starting with algebraic and dynamic
graph algorithms.Algebraic graph algorithms commonlymake use of thematrices
associated with a graph and operations on them while solving a graph problem.
Dynamic graphs represent real networks where edges are inserted and removed
from a graph in time. Algorithms for such graphs, called dynamic graph algo-
rithms, aim to provide solutions in shorter time than running the static algorithm
from scratch.
Large graphs representing real-life networks such as biological and social net-
works tend to have interesting and unexpected properties as we have outlined.
Study of such graphs has become a major research direction in network science
recently. We therefore considered it to be appropriate to have two chapters of the
book dedicated for this purpose. Algorithms for these large graphs have somehow
different goals, and community detection which is finding dense regions in these
graphs has become one of the main topics of research. We first provide a chapter
on general description and analysis of these large graphs along with algorithms
to compute some important parameters. We then review basic complex network



1.4 Outline of the Book 11

types with algorithms used to solve fundamental problems in these networks.
The final chapter is about describing general guidelines on how to search a graph
algorithm for the problem at hand.

We conclude this chapter by emphasizing the main goals of the book once more.
First, it would be proper to state what this book is not. This book is not intended as
a graph theory book, or a parallel computing book or a distributed algorithms book
on graphs. We assume basic familiarity with these areas although we provide a brief
and dense review of these topics as related to graph problems in Part I. We describe
basic graph theory including the notation and basic theorems related to the topic at
the beginning of each chapter. Our emphasis is again on graph theory that is related
to the graph algorithmwe intend to review.We try to be as comprehensive as possible
in the analysis of sequential graph algorithms but we review only exemplary parallel
and distributed graph algorithms. Our main focus is guiding the reader to graphs
algorithms by investigating and studying the same problem from three different
views: a thorough sequential, typical parallel, anddistributed algorithmic approaches.
Such an approach is effective and beneficial not only because it helps to understand
the problem at hand better but also it is possible to convert from one approach to
another saving significant amount of time compared to designing a completely new
algorithm.



Part I
Fundamentals



2Introduction toGraphs

Abstract

Graphs are used to model many applications with vertices of a graph representing
the objects or nodes and the edges showing the connections between the nodes.
We review notations used for graphs, basic definitions, vertex degrees, subgraphs,
graph isomorphism, graph operations, directed graphs, distance, graph represen-
tations, and matrices related to graphs in this chapter.

2.1 Introduction

Objects and connections between them occur in a variety of applications such as
roadways, computer networks, and electrical circuits. Graphs are used to model such
applications with vertices of a graph representing the objects or nodes and the edges
showing the connections between the nodes.

We review the basic graph theoretical concepts in a rather dense form in this chap-
ter. This review includes notations used, basic definitions, vertex degrees, subgraphs,
graph isomorphism, graph operations, directed graphs, distance, graph representa-
tions andmatrices related to graphs.We leave discussion ofmore advanced properties
of graphs such as matching, connectivity, special subgraphs, and coloring to Part II
when we review sequential, parallel, and distributed algorithms for these problems.
We also delay review of methods and parameters for the analysis of large graphs to
Part III. These large graphs are used to model complex networks such as the Internet
or biological networks, which consist of a huge number of vertices and edges. We
will see there is a need for new parameters and analysis methods for the investigation
of these large graphs.

© Springer International Publishing AG, part of Springer Nature 2018
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2.2 Notations and Definitions

A graph is a set of points and a set of lines in a plane or a 3-D space. A graph can be
formally defined as follows.

Definition 2.1 (graph) A graph G = (V, E, g) or G = (V (G), E(G), g) is a dis-
crete structure consisting of a vertex set V and an edge set E and a relation g that
associates each edge with two vertices of the set V .

The vertex set consists of vertices also called nodes, and an edge in the edge set
is incident between two vertices called its endpoints. The vertex set of a graph G
is shown as V (G) and the edge set as E(G). We will use V for V (G) and E for
E(G) when the graph under consideration is known. A trivial graph has one vertex
and no edges. A null graph has an empty vertex set and an empty edge set. A graph
is called finite if both V (G) and E(G) are finite. We will consider only simple and
finite graphs in this book, unless stated otherwise. The number of vertices of a graph
G is called its order and we will use the literal n for this parameter. The number of
edges of G is called its size and we will show this parameter by the literal m. An
edge of a graph G between its vertices u and v is commonly shown as (u, v), uv or
sometimes {u, v}; we will adopt the first one. The vertices at the ends of an edge
are called its endpoints or end vertices or simply ends. For an edge (u, v) between
vertices u and v, we say u and v are incident to the edge (u, v).

Definition 2.2 (self-loop, multiple edge) A self-loop is an edge with the same end-
points.Multiple edges have the same pair of endpoints.

An edge that is not a self-loop is called a proper edge. A simple graph does not
have any self-loops or multiple edges. A graph containing multiple edges is called a
multigraph. An underlying graph of a multigraph is obtained by substituting a single
edge for each multiple edge. An example multigraph is depicted in Fig. 2.1.

Fig. 2.1 A graph with
V (G) = {a, b, c, d} and
E(G) =
{e1, e2, e3, e4, e5, e6}. Edge
e2 is a self-loop and edges e4
and e5 are multiple edges

a

b

c

d

e1

e2

e3

e4

e5
e6
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Fig. 2.2 a Complement of a sample graph, b Complement of a completely connected graph in
which every vertex is connected to all other vertices

Definition 2.3 (complement of a graph) The complement of a graph G(V, E) is the
graph G(V, E ′) with the same vertex set as G and any edge (u, v) ∈ E ′ if and only
if (u, v) /∈ E .

Informally, we have the same vertex set in the complement of a graph G but only
have edges that do not exist in G. Complements of two graphs are shown in Fig. 2.2.

2.2.1 Vertex Degrees

The degree of a vertex in a graph is a useful attribute of a vertex as defined below.

Definition 2.4 (degree of a vertex) The sum of the number of proper edges and twice
the number of self-loops incident on a vertex v of a graph G is called its degree and
is shown by deg(v).

A vertex that has a degree of 0 is called an isolated vertex and a vertex of degree
1 is called a pendant vertex. The minimum degree of a graph G is denoted by δ(G)

and the maximum degree by Δ(G). The following relation between the degree of a
vertex v in G and these parameter holds:

0 ≤ δ(G) ≤ deg(v) ≤ Δ(G) ≤ n − 1. (2.1)

Since the maximum number of edges in a simple undirected graph is n(n−1)/2, for
any such graph,

0 ≤ m ≤ n(n − 1)

2
=

(
n
2

)

.

We can, therefore, conclude there are at most 2

(
n
2

)

possible simple undirected
graphs having n vertices. The first theorem of graph theory, which is commonly
refered to as the handshaking lemma is as follows.
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Theorem 2.1 (Euler) The sum of the degrees of a simple undirected graph G =
(V, E) is twice the number of its edges shown below.

∑
v∈V

deg(v) = 2m (2.2)

Proof is trivial as each edge is counted twice to find the sum. A vertex in a graph
with n vertices can have a maximum degree of n − 1. Hence, the sum of the degrees
in a complete graph where every vertex is connected to all others is n(n − 1). The
total number of edges is n(n − 1)/2 in such a graph. In a meeting of n people, if
everyone shook hands with each other, the total number of handshakes would be
n(n − 1)/2 and hence the name of lemma. The average degree of a graph is

∑
v∈V

deg(v)

n
= 2m/n. (2.3)

A vertex is called odd or even depending on whether its degree is odd or even.

Corollary 2.1 The number of odd-degree vertices of a graph is an even number.

Proof The vertices of a graph G = (V, E) may be divided into the even-degree (ve)
and odd-degree (vo) vertices. The sum of degrees can then be stated as

∑
v∈V

deg(v) =
∑
ve∈V

deg(ve) +
∑
vo∈V

deg(vo)

Since the sum is even by Theorem2.1, the sum of the odd-degree vertices should
also be even which means there must be an even number of odd-degree vertices. �

Theorem 2.2 Every graph with at least two vertices has at least two vertices that
have the same degree.

Proof We will prove this theorem using contradiction. Suppose there is no such
graph. For a graph with n vertices, this implies the vertex degrees are unique, from
0 to n − 1. We cannot have a vertex u with degree of n − 1 and a vertex v with 0
degree in the same graph G as former implies u is connected to all other vertices in
G and therefore a contradiction. �

This theorem can be put in practice in a gathering of people where some know
each other and rest are not acquainted. If persons are represented by the vertices of a
graph where an edge between two individuals, who know each other is represented
by an edge we can say there are at least two persons that have the same number of
acquaintances in the meeting.
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2.2.1.1 Degree Sequences
The degree sequence of a graph is obtained when the degrees of its vertices are listed
in some order.

Definition 2.5 (degree sequence) The degree sequence of a graph G is the list of
the degrees of its vertices in nondecreasing or nonincreasing, more commonly in
nonincreasing order. The degree sequence of a digraph is the list consisting of its
in-degree, out-degree pairs.

The degree sequence of the graph in Fig. 2.1 is {2, 3, 3, 4} for vertices a, d, c,
b in sequence. Given a degree sequence D = (d1, d2, . . . , dn), which consists of
a finite set of nonnegative integers, D is called graphical if it represents a degree
sequence of some graph G. We may need to check whether a given degree sequence
is graphical. The condition that deg(v) < n − 1, ∀v ∈ V is the first condition and
also

∑
v∈V deg(v) should be even. However, these are necessary but not sufficient

and an efficient method is proposed in the theorem first proved by Havel [7] and later
by Hakimi using a more complicated method [5].

Theorem 2.3 (Havel–Hakimi) Let D be a nonincreasing sequence d1, d2, . . . , dn
with n ≥ 2. Let D′ be the sequence derived from D by deleting d1 and subtracting
1 from each of the first d1 elements of the remaining sequence. Then D is graphical
if and only if D′ is graphical.

This means if we come across a degree sequence which is graphical during this
process, the initial degree sequence is graphical. Let us see the implementation of
this theorem to a degree sequence by analyzing the graph of Fig. 2.3a.

The degree sequence for this graph is {4, 3, 3, 3, 2, 1}. We can now iterate as
follows starting with the initial sequence. Deleting 4 and subtracting 1 from the first
4 of the remaining elements gives

{2, 2, 2, 1, 1}

continuing similarly, we obtain

{1, 1, 0, 0}

(b)(a)

d

c

a

b

ef

Fig.2.3 a A sample graph to implement Havel–Hakimi theorem b A graph representing graphical
sequence {1, 1, 1, 1} c A graph representing graphical sequence {0, 1, 1}
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The last sequence is graphical since it can be realized as shown in Fig. 2.3b. This
theorem can be conveniently implemented using a recursive algorithm due to its
recursive structure.

2.2.2 Subgraphs

In many cases, we would be interested in part of a graph rather than the graph as a
whole. A subgraph G ′ of a graph G has a subset of vertices of G and a subset of its
edges. We may need to search for a subgraph of a graph that meets some condition,
for example, our aimmay be to find dense subgraphswhichmay indicate an increased
relatedness or activity in that part of the network represented by the graph.

Definition 2.6 (subgraph, induced subgraph) G ′ = (V ′, E ′) is a subgraph of G =
(V, E) if V ′ ⊆ V and E ′ ⊆ E . A subgraph G ′ = (V ′, E ′) of a graph G = (V, E)

is called an induced subgraph of G if E ′ contains all edges in G that have both ends
in V ′.

When G ′ �= G, G ′ is called a proper subgraph of G; when G ′ is a subgraph of
G, G is called a supergraph of G ′. A spanning subgraph G ′ of G is its subgraph
with V (G) = V (G ′). Similarly, a spanning supergraph G of G ′ has the same vertex
set as G ′. A spanning subgraph and an induced subgraph of a graph are shown in
Fig. 2.4.

Given a vertex v of a graph G, the subgraph of G shown by G − v is formed by
deleting the vertex v and all of its incident edges from G. The subgraph G − e is

(a)

(c)

a b

ef

c

d

g

h

(b) a b

ef

c

d

g

h

b c

d

g

Fig. 2.4 a A sample graph G, b A spanning subgraph of G, c An induced subgraph of G
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Fig.2.5 Obtaining a regular graph a The graph b The first iteration, c The 3-regular graph obtained
in the second iteration shown by dashed lines

obtained by deleting the edge e from G. The induced subgraph of G by the vertex
set V ′ is shown by G[V ′]. The subgraph G[V \ V ′] is denoted by G − V ′.

Vertices in a regular graph all have the same degree. For a graphG, we can obtain
a regular graph H which contains G as an induced subgraph. We simply duplicate
G next to itself and join each corresponding pair of vertices by an edge if this vertex
does not have a degree of Δ(G) as shown in Fig. 2.5. If the new graph G ′ is not
Δ(G)-regular, we continue this process by duplicating G ′ until the regular graph is
obtained. This result is due to Konig who stated that for every graph of maximum
degree r , there exists an r -regular graph that contains G as an induced subgraph.

2.2.3 Isomorphism

Definition 2.7 (graph isomorphism) An isomorphism from a graph G1 to another
graph G2 is a bijection f : V (G1) → V (G2) in which any edge (u, v) ∈ E(G1) if
and only if f (u) f (v) ∈ E(G2).

When this condition holds, G1 is said to be isomorphic to G2 or, G1 and G2 are
isomorphic. Three isomorphic graphs are depicted in Fig. 2.6. Testing whether two
graphs are isomorphic is a difficult problem and cannot be performed in polynomial
time. An isomorphism of a graph to itself is called an automorphism. A graph
invariant is a property of a graph that is equal in its isomorphic graphs. Given
two isomorphic graphs G1 and G2, their orders and sizes are the same and their
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Fig. 2.6 Three isomorphic graphs.Vertex x is mapped to vertex x ′

corresponding vertices have the same degrees. Thus, we can say that the number of
vertices, the number of edges and the degree sequences are isomorphism invariants,
that is, they do not change in isomorphic graphs.

2.3 Graph Operations

We may need to generate new graphs from a set of input graphs by using certain
operations. These operations are uniting and finding intersection of two graphs and
finding their product as described below.

2.3.1 Union and Intersection

Definition 2.8 (union and intersection of two graphs) The union of two graphs
G1 = (V1, E1) and G2 = (V2, E2) is a graph G3 = (V3, E3) in which V3 = V1∪V2
and E3 = E1 ∪ E2. This operation is shown as G3 = G1 ∪ G2. The intersection of
two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph G3 = (V3, E3) in which
V3 = V1 ∩ V2 and E3 = E1 ∩ E2. This is shown as G3 = G1 ∩ G2.

Figure2.7 depicts these concepts.

Definition 2.9 (join of two graphs) The join of two graphs G1 = (V1, E1) and
G2 = (V2, E2) is a graph G3 = (V3, E3) in which V3 = V1 ∪ V2 and E3 =
E1 ∪ E2 ∪ {(u, v) : u ∈ V1 and v ∈ V2}. This operation is shown as G3 = G1 ∨G2.

The join operation of two graphs creates new edges between each vertex pairs,
one from each of the two graphs. Figure2.8 displays the join of two graphs. All of the
union, intersection, and join operations are commutative, that is,G1∪G2 = G2∪G1,
G1 ∩ G2 = G2 ∩ G1, and G1 ∨ G2 = G2 ∨ G1.
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Fig. 2.7 Union and intersection of two graphs. The graph in c is the union of the graphs in a and
b and the graph in d is their intersection
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Fig. 2.8 Join of two graphs, a Two graphs b Their join

2.3.2 Cartesian Product

Definition 2.10 (cartesian product) The cartesian product or simply the product of
two graphs G1 = (V1, E1) and G2 = (V2, E2) shown by G1�G2 or G1 × G2 is a
graph G3 = (V3, E3) in which V3 = V1 × V2 and an edge ((ui , v j ), (u p, jq)) is in
G1 × G2 if one of the following conditions holds:

1. i = p and (v j , vq) ∈ E2
2. j = q and (ui , u p) ∈ E1.
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Fig. 2.9 a Graph product of K2 and P4 b Hypercube of dimension 3

Informally, the vertices we have in the product are the cartesian product of vertices
of the graphs andhence each represents twovertices, one fromeachgraph. Figure2.9a
displays the product of complete graph K2 and the path graph with 4 vertices, P4.
Graph product is useful in various cases, for example, the hypercube of dimension
n, Qn , is a special graph that is the graph product of K2 by itself n times. It can be
described recursively as Qn = K2 × Qn−1. A hypercube of dimension 3 is depicted
in Fig. 2.9b.

2.4 Types of Graphs

We review main types of graphs that have various applications in this section.

2.4.1 Complete Graphs

Definition 2.11 (complete graph) In a complete simple graph G(V, E), each vertex
v ∈ V is connected to all other vertices in V .

Searching for complete subgraphs of a graph G provides dense regions in G
which may mean some important functionality in that region. A complete graph is
denoted by Kn where n is the number of vertices. Figure2.10 depicts K1, . . . , K5.
The complete graph with three vertices, K3, is called a triangle.

The size of a simple undirected complete graph Kn is n(n−1)/2 since the degree
of every vertex in Kn is n − 1, there are n such vertices, and we need to divide by
two as each edge is counted twice for both vertices in its endpoints.
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Fig. 2.10 Complete graphs of sizes 1 to 5

Fig. 2.11 A directed graph
with V (G) = {a, b, c, d, e}
and E(G) = {e1, . . . , e10}
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2.4.2 Directed Graphs

A directed edge or an arc has an orientation from its head endpoint to its tail endpoint
shown by an arrow. Directed graphs consist of directed edges.

Definition 2.12 (directed graph) A directed graph or a digraph consists of a set
of vertices and a set of ordered pairs of vertices called directed edges. A partially
directed graph has both directed and undirected edges.

If an edge e = (u, v) is a directed edge in a directed graph G, we say e begins at
u and ends at v, or u is the origin of e and v is its destination, or e is directed from
u to v. The underlying graph of a directed or partially directed graph is obtained by
removing the directions in all edges and replacing each multiple edge with a single
edge. A directed graph is shown in Fig. 2.11. Unless stated otherwise, what we state
for graphs will be valid for directed and undirected graphs. In a complete simple
digraph; there is a pair of arcs, one in each direction between any two vertices.

Definition 2.13 (in-degree, out-degree) The in-degree of a vertex v in a digraph is
the number of edges directed to v and the out-degree of v is the number of edges
originating from it. The degree of v is the sum of its in-degree and its out-degree.
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The sum of the in-degrees of the vertices in a graph is equal to the sum of the
out-degrees which are both equal to the sum of the number of edges. A directed
graph that has no cycles is called a directed acyclic graph (DAG).

2.4.3 Weighted Graphs

We have considered unweighted graphs up to this point. Weighted graphs have edges
and vertices labeled with real numbers representing weights.

Definition 2.14 (edge-weighted, vertex-weighted graphs) An edge-weighted graph
G(V, E,w), w : E → R has weights consisting of real numbers associated with its
edges. Similarly, a vertex-weighted graph G(V, E,w), w : V → R has weights of
real numbers associated with its vertices.

Weighted graphs findmany real applications, for example,weight of an edge (u, v)
may represent the cost of moving from u to v as in a roadway or cost of sending
a message between two routers u and v in a computer network. The weight of a
vertex v may be associated with capacity stored at v which may be used to represent
a property such as the storage volume of a router in a computer network.

2.4.4 Bipartite Graphs

Definition 2.15 (bipartite graph) A graph G = (V, E) is called a bipartite graph
if the vertex set V can be partitioned into two disjoint subsets V1 and V2 such that
any edge of G connects a vertex in V1 to a vertex in V2. That is, ∀(u, v) ∈ E ,
u ∈ V1 ∧ v ∈ V2, or u ∈ V2 ∧ v ∈ V1.

In a complete bipartite graph, each vertex of V1 is connected to each vertex of V2
and such a graph is denoted by Km,n , where m is the number of vertices in V1 and
n is the number of vertices in V2. The complete bipartite graph Km,n has mn edges
and m + n vertices. A weighted complete bipartite graph is depicted in Fig. 2.12.

Fig. 2.12 A weighted
complete bipartite graph
K3,4 with V1 = {a, b, c} and
V2 = {d, e, f, g}
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Fig. 2.13 a A 0-regular graph, b A 1-regular graph, c 2-regular graphs; d A 3-regular graph

Fig. 2.14 a A simple graph
G, b Line graph of G
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2.4.5 Regular Graphs

In a regular graph, each vertex has the same degree. Each vertex of a k-regular graph
has a degree of k. Every k-complete graph is a k−1-regular graph but the latter does
not imply the former. For example, a d-hypercube is a d-regular graph but it is not
a d-complete graph. Examples of regular graphs are shown in Fig. 2.13. Any single
n-cycle graph is a 2-regular graph. Any regular graph with odd-degree vertices must
have an even number of such vertices to have an even number sum of vertices.

2.4.6 Line Graphs

In order to construct a line graph L(G) of a simple graph G, each vertex of L
representing an edge of G is formed. Then, two vertices u and v of L are connected
if the edges represented by them are adjacent in G as shown in Fig. 2.14.

2.5 Walks, Paths, and Cycles

We need few definitions to specify traversing the edges and vertices of a graph.

Definition 2.16 (walk) A walk W between two vertices v0 and vn of a graph
G is an alternating sequence of n + 1 vertices and n edges shown as W =
(v0, e1, v1, e2, . . . , vn−1, en, vn), where ei is incident to vertices vi−1 and vi . The
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Fig. 2.15 A walk
(a, e1, b, e6, f, e7, g, e12,
b, e9, h) in a sample graph
shown by a dashed curve a b c
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vertex v0 is called the initial vertex and vn is called the terminating vertex of the
walk W .

In a directed graph, a directed walk can be defined similarly. The length of a walk
W is the number of edges (arcs in digraphs) included in it. A walk can have repeated
edges and vertices. A walk is closed if it starts and ends at the same vertex and open
otherwise. A walk is shown in Fig. 2.15.

Agraph is connected if there is awalkbetween anypair of its vertices.Connectivity
is an important concept that finds many applications in computer networks and we
will review algorithms for connectivity in Chap.8.

Definition 2.17 (trail) A trail is a walk that does not have any repeated edges.

Definition 2.18 (path) A path is a trail that does not have any repeated vertices with
the exception of initial and terminal vertices.

In other words, a path does not contain any repeated edges or vertices. Paths are
shown by the vertices only. For example, (i, a, b, h, g) is a path in Fig. 2.15.

Definition 2.19 (cycle) A closed path which starts and ends at the same vertex is
called a cycle.

The length of a cycle can be an odd integer in which case it is called an odd cycle.
Otherwise, it is called an even cycle.

Definition 2.20 (circuit) A closed trail which starts and ends at the same vertex is
called a circuit.

All of these concepts are summarized in Table2.1.

http://dx.doi.org/10.1007/978-3-319-73235-0_8
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Table 2.1 Properties of simple graph traversals

Repeated vertices Repeated edges

Walks Yes Yes

Trails Yes No

Paths No except initial and terminal
vertex

No

Circuits Yes, starts and ends at the
same vertex

No

Cycles No except initial and term No

A trail in Fig. 2.15 is (h, e9, b, e6, f, e5, e). When e11 and h are added to this trail,
it becomes a cycle. An Eulerian tour is a closed Eulerian trail and an Eulerian graph
is a graph that has an Eulerian tour. The number of edges contained in a cycle is
denoted its length l and the cycle is shown as Cl . For example, C3 is a triangle.

Definition 2.21 (Hamiltonian Cycle) A cycle that includes all of the vertices in
a graph is called a Hamiltonian cycle and such a graph is called Hamiltonian. A
Hamiltonian path of a graph G passes through every vertex of G.

2.5.1 Connectivity and Distance

We would be interested to find if we can reach a vertex v from a vertex u. In a
connected graph G, there is a path between every pair of vertices. Otherwise, G is
disconnected. The connected subgraphs of a disconnected graph are called compo-
nents. A connected graph itself is the only component it has. If the underlying graph
of a digraph G is connected, G is connected. If there is a directed walk between each
pair of vertices, G is strongly connected.

In a connected graph, it is of interest to find how easy it is to reach one vertex
from another. The distance parameter defined below provides this information.

Definition 2.22 (distance) The distance d(u, v) between two vertices u and v in a
(directed) graph G is the length of the shortest path between them.

In an unweighted (directed) graph, d(u, v) is the number of edges of the shortest
path between them. In a weighted graph, this distance is the minimum sum of the
weights of the edges of a path out of all paths between these vertices. The shortest
path between two vertices u and v in a graph G is another term used instead of
distance between the vertices u and v to have the same meaning. The shortest paths
between vertices h and e are h, b, f, e and h, g, f, e both with a distance of 3 in
Fig. 2.15. Similarly, shortest paths between vertices i and b are i, a, b and i, h, b
both with a distance of 2. The directed distance from a vertex u to v in a digraph is
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the length of the shortest walk from u to v. In an undirected simple (weighted) graph
G(V, E,w), the following can be stated:

1. d(u, v) = d(v, u)

2. d(u,w) ≤ d(u,w) + d(w, v), ∀w ∈ V

Definition 2.23 (eccentricity) The eccentricity of a vertex v in a connected graph G
is its maximum distance to any vertex in G.

The maximum eccentricity is called the diameter and the minimum value of this
parameter is called the radius of the graph. The vertex v of a graph G with minimum
eccentricity in a connected graph G is called the central vertex of G. Finding central
vertex of a graph has practical implications, for example, we may want to place a
resource center at a central location in a geographical areawhere cities are represented
by the vertices of a graph and the roads by its edges. There may be more than one
central vertex.

2.6 Graph Representations

We need to represent graphs in suitable forms to be able to perform computations
on them. Two widely used ways of representation are the adjacency matrix and the
adjacency list methods.

2.6.1 AdjacencyMatrix

An adjacency matrix of a simple graph or a digraph is a matrix A[n, n] where each
element ai j=1 if there is an edge joining vertex i to j and ai j = 0 otherwise. For
multigraphs, the entry ai j equals the number of edges between the vertices i and
j . For a digraph, ai j shows the number of arcs from the vertex i to vertex j . The
adjacency matrix is symmetric for an undirected graph and is asymmetric for a
digraph in general. A digraph and its adjacency matrix are displayed in Fig. 2.16. An
adjacency matrix requires O(n2) space.

2.6.2 Adjacency List

An adjacency list of a simple graph (or a digraph) is an array of lists with each list
representing a vertex and its (out)neighbors in a linked list. The end of the list is
marked by a NULL pointer. The adjacency list of a graph is depicted in Fig. 2.16c.
The adjacency matrix requires O(n + m) space. For sparse graphs, adjacency list
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Fig. 2.16 a A digraph, b Its adjacency matrix, c Its adjacency list. The end of the list entries are
marked by a backslash

is preferred due to the space dependence on the number of vertices and edges. For
dense graphs, adjacency matrix is commonly used as searching the existence of an
edge in this matrix can be done in constant time. With the adjacency list of a graph,
the time required for the same operation is O(n).

In a digraph G = (V, E), the predecessor list Pv ⊆ V of a vertex v is defined as
follows.

Pv = {u ∈ V : (u, v) ∈ E}
and the successor list of v, Sv ⊆ V is,

Sv = {u ∈ V : (v, u) ∈ E}

The predecessor and successor lists of the vertices of the graph of Fig. 2.16a are
listed in Table2.2.
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Table 2.2 Predecessor lists and successor lists of vertices

v Pv Sv

1 {2} {3, 4, 5}

2 {Ø} {1, 3}

3 {1, 2, 5} {4}

4 {1, 3, 5} {Ø}

5 {1} {3, 4}

2.6.3 IncidenceMatrix

An incident matrix B[n,m] of a simple graph has elements bi j = 1 if edge j is
incident to vertex i and bi j = 0 otherwise. The incidence matrix for a digraph is
defined differently as below.

bve =
⎧⎨
⎩

−1 if arc e ends at vertex v
1 if arc e starts at vertex v
0 otherwise

The incidence matrix of the graph of Fig. 2.16a is as below:

B =

⎛
⎜⎜⎜⎜⎝

1 −1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 −1 −1 1 0 0 −1
0 0 0 0 1 1 1 0

−1 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎠

In the edge list representation of a graph, all of its edges are included in the list.

2.7 Trees

A graph is called a tree if it is connected and does not contain any cycles. The
following statements equally define a tree T :

1. T is connected and has n − 1 edges.
2. Any two vertices of T are connected by exactly one path.
3. T is connected and each edge is a cut-edge removal of which disconnects T .

In a rooted tree T , there is a special vertex r called the root and every other vertex
of T has a directed path to r ; the tree is unrooted otherwise. A rooted tree is depicted
in Fig. 2.17. A spanning tree of a graph G is a tree that covers all vertices of G.
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Fig. 2.17 A general tree
structure

root

A minimum spanning tree of a weighted graph G is a spanning tree of G with the
minimum total weight among all spanning trees of G. We will be investigating tree
structures and algorithms in more detail in Chap.6.

2.8 Graphs andMatrices

The spectral analysis of graphs involves operations on the matrices related to graphs.

2.8.1 Eigenvalues

Multiplying an n× n matrix A by an n× 1 vector x results in another n× 1 vector y
which can be written as Ax = y in equation form. Instead of getting a new vector y,
it would be interesting to know if the Ax product equals a vector which is a constant
multiplied by the vector x as shown below.

Ax = λx (2.4)

If we can find values of x and λ for this equation to hold, λ is called an eigenvalue
of A and x as an eigenvector of A. There will be a number of eigenvalues and a set
of eigenvectors corresponding to these eigenvalues in general. Rewriting Eq.2.4,

Ax − λx = 0 (2.5)

(A − λI )x = 0

det (A − λI )x = 0 (2.6)

For A[n, n], det (A − λI ) = 0 is called the characteristic polynomial which has
a degree of n and therefore has n roots. Solving this polynomial provides us with
eigenvalues and substituting these in Eq.2.4 provides the eigenvectors of matrix A.

http://dx.doi.org/10.1007/978-3-319-73235-0_6
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2.8.2 LaplacianMatrix

Definition 2.24 (degree matrix) The degree matrix D of a graph G is the diagonal
matrix with elements d1, . . . , dn where di is the degree of vertex i .

Definition 2.25 (Laplacian matrix) The Laplacian matrix L of a simple graph is
obtained by subtracting its adjacency matrix from its degree matrix.

The entries of the Laplacian matrix L are then as follows.

li j =
⎧⎨
⎩

di if i = j
−1 if i and j are neighbors
0 otherwise.

The Laplacian matrix L is sometimes referred to as the combinatorial Laplacian.
The set of all eigenvalues of the Laplacian matrix of a graph G is called the Lapla-
cian spectrum of G. The normalized Laplacian matrix L is closely related to the
combinatorial Laplacian. The relation between these two matrices is as follows:

L = D−1/2LD−1/2 = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2. (2.7)

The entries of the normalized Laplacian matrix L can then be specified as below.

Li j =

⎧⎪⎨
⎪⎩

1 if i = j
−1√
di d j

if i and j are neighbors

0 otherwise.

The Laplacian matrix and adjacency matrix of a graph G are commonly used to
analyze the spectral properties of G and design algebraic graph algorithm to solve
various graph problems.

2.9 Chapter Notes

We have reviewed the basic concepts in graph theory leaving the study of some of
the related background including trees, connectivity, matching, network flows and
coloring to Part II when we discuss algorithms for these problems. The main graph
theory background is presented in a number of books including books by Harary
[6], Bondy and Murty [1], and West [8]. Graph theory with applications is studied
in a book edited by Gross et al. [4]. Algorithmic graph theory focusses more on
the algorithmic aspects of graph theory and books available in this topic include the
books by Gibbons [2], Golumbic [3].
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Exercises

1. Show that the relation between the size and the order of a simple graph is given
by m ≤ (n/2) and decide when the equality holds.

2. Find the order of a 4-regular graph that has a size of 28.
3. Show that the minimum and maximum degrees of a graph G are related by

δ(G) ≤ 2m/n ≤ Δ(G) inequality.
4. Show that for a regular bipartite graph G = (V 1, V 2, E), |V 1| = |V 2|.
5. Let G = (V1, V2, E) be a bipartite graph with vertex partitions V1 and V2. Show

that ∑
u∈V1

deg(u) =
∑
v∈V2

deg(v)

6. A graph G has a degree sequence D = (d1, d2, . . . , dn). Find the degree se-
quence of the complement G of this graph.

7. Show that the join of the complements of a complete graph Kp and another
complete graph Kq is a complete bipartite graph Kp,q .

8. Draw the line graph of K3.
9. Let G = (V, E) be a graph where ∀v ∈ V , deg(v) ≥ 2. Show that G contains a

cycle.
10. Show that if a simple graph G is disconnected, its complement G is connected.
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Abstract

We review basic algorithm structure and provide a brief and dense review of the
main principles of sequential algorithm design and analysis with focus on graph
algorithms. We then provide a short survey of NP-completeness with example
NP-hard graph problems. Finally, we briefly review the major algorithm design
methods showing their implementations for graph problems.

3.1 Introduction

An algorithm is a finite set of instructions to solve a given problem. It receives a
set of inputs and computes a set of outputs using the inputs. Design and analysis of
algorithms has been a key subject in any Computer Science Curriculum.

There has been a growing interest in the study of algorithms for graph theoretical
problems in the last few decadesmainly because of numerous increasing applications
of graphs in real life. Also, recent technological advancements provided data of
very large networks such as biological networks, social networks, the Web, and the
Internet, which are commonly called complex networkswhich can be represented by
graphs. The problems encountered in these networks can be quite different than the
ones studied in classical graph theory as these networks have large sizes and do not
have random structures. Hence, there is a need for new methods and algorithms in
these networks.

Study of graph algorithms is reported in various headings including algorithmic
graph theory, graphs, and applications. Our main goal in this chapter is to provide
a brief and dense review of the main principles of sequential algorithm design and

© Springer International Publishing AG, part of Springer Nature 2018
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-73235-0_3
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analysis with focus on graph algorithms.We first describe the basic concepts of algo-
rithms and then review the mathematics behind the analysis of algorithms. We then
provide a short survey of NP-completeness with focus on NP-hard graph problems.
When we are dealing with such difficult graph problems, we may use approximation
algorithms which provide suboptimal solutions with proven approximation ratios.
In many cases, however, our only choice is to use heuristic algorithms that work
for most input combinations as we describe. Finally, we briefly review the major
algorithm design methods showing their implementations for graph problems.

3.2 Basics

An algorithm is a set of instructions working on some input to produce some useful
output. The fundamental properties of any algorithm as well as any graph algorithm
are as follows:

• It accepts a set of inputs, processes these inputs, and produces some useful outputs.
• It should provide correct output. Correctness is a fundamental requirement of any

algorithm.
• It should execute a finite number of steps to produce the output. In other words,

we do not want the algorithm to run forever without producing any output. It is
possible to have algorithms running infinitely such as server programs, but these
produce outputs while running.

• An algorithm should be effective. It should perform the required task using a
minimum number of steps. It does not make sense to have an algorithm that runs
2 days to estimate weather for tomorrow since we know what it would be by then.
Given two algorithms that perform the same task, we would prefer the one with
less number of steps.

When presenting an algorithm in this book and in general, we first need to provide
a simple description of the main idea of the algorithm. We then would need to detail
its operation using pseudocode syntax which shows its running using basic structures
as described next. Pseudocode is the description of an algorithm in a more formal
and structured way than verbally describing it but less formal than a programming
language. We then typically show an example operation of the algorithm in a sample
graph. The second fundamental thing to do is to prove that the algorithm works
correctly which is self-evident in many cases, trivial in some cases and need rigorous
proof techniques for various others as we describe in this chapter. Finally, we should
present its worst-case analysis which shows its performance as the number of steps
required in the worst case.
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3.2.1 Structures

Three fundamental structures used in algorithms are the assignment, decision, and
loops. An assignment provides assigning a value to a variable as shown below:

b ← 3

a ← b2

Here we assign an integer value of 3 to a variable b and then assign the square of
b to a. The final value of a is 9. Decisions are the key structures in algorithms as in
daily life. We need to branch to some part of the algorithm based on some condition.
The following example uses if...then...else structure to determine the larger one of
two input numbers:

input a,b
if a > b then print a

else if a=b then print ‘‘they are equal’’
else print b

end if

Yet another fundamental structure in algorithms is the loop structure to perform
an action, respectively. There are three main ways to perform loops in an algorithm
as follows.

• for loops: The for loops are commonly used when we know how many times the
loop should execute before we start with the loop. There is a loop variable and
test condition. The loop variable is modified at the end of the loop according to
the starting line and tested against the condition specified in the testing line. If
this condition yields a true value, the loop is entered. In the following example, i
is the loop variable and it is incremented by 1 at the end of each loop iteration and
checked against the boundary value of 10. This simple loop prints the squares of
integers between 1 and 10.

for i=1 to 10 step 1
print i * i

end for

• while loops: In case we do not know how many times the loop will be executed,
while structure may be used. We have a test condition at the beginning of the loop
and if this succeeds, the loop is entered. The following example illustrates the use
of while loop where we input Q for quitting by the user and otherwise add the two
numbers given by the user. We do not know when the user may want to stop, so
the use of while is appropriate here. Also note that we need two input statements
for control, one outside the loop to be executed once and another one inside the
loop to test iteratively since check is at the beginning of the loop.
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input chr
while chr <> ’Q’

input a,b
print a+b
input chr

end while

• repeat .. until loops: This structure is used in similar situations towhile loopswhen
we do not know howmany times the loop will be executed. The main difference is
that we do the test at the end of the loop which means this loop is executed at least
once whereas the while loop may not be executed even once. We will write the
previous example with the repeat...until (or loop...until) structure with a clearly
shorter code.

repeat
input a,b
print a+b

until chr <> ’Q’

3.2.2 Procedures and Functions

A procedure or a function is a self-contained block of code to perform a specific task.
These modules are provided in programming languages to break large programs or
tasks into smaller ones to ease debugging and maintenance. Also, a procedure or a
function can be used more than once, resulting in simplified code with less space
requirements. A procedure or a function is implemented using the call/returnmethod.
They are called from the main program by the call routine. A procedure or a function
may input parameters to work on, and they end by a return statement that takes the
running program back to the point after they are called from. A function always
returns a value whereas a procedure may not. Algorithm 3.1 displays a procedure
called Count that is called from the main program with the parameter k. It displays
all integers between 1 and k. Running this algorithm will display 1, 1 2, 1 2 3, and
1 2 3 4 at the output calling the procedure four times.

Algorithm 3.1 Proc_Example
1: Input : int n = 4
2: int i � algorithm variable i
3: procedure count(k) � procedure input variable k
4: int j = 1 � procedure local variable j
5: while j ≤ k do
6: output j
7: j ← j + 1
8: end while
9: end procedure
10: for i=1 to n do � main body of the algorithm
11: Count(i) � procedure call
12: end for
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3.3 Asymptotic Analysis

We need to assess the running time of algorithms for various input sizes to evaluate
their performances. We can assess the behavior of an algorithm experimentally but
theoretical determination of the required number of steps as a function of input size
is needed in practice. Let us illustrate these concepts by writing an algorithm that
searches for a key integer value in an integer array and returns its first occurrence as
the index of the array as shown in Algorithm3.2. We want to find out the execution
time of this algorithm as the number of steps executed and if we can find an algorithm
that has less number of steps for the same process, we would prefer that algorithm.
In such analysis, we are not interested in the constant number of steps but rather,
we need to find the number of steps required as the size of the input grows. For
example, initializing the variable i takes constant time but it is performed only once
therefore can be neglected, and this is more meaningful when n � 1. The number of
times the loop is executed is important as it affects the performance of the algorithm
significantly. However, the number of steps, say 2 or 3, inside the loop is insignificant
again since 2n or 3n is invariable when n is very large.

Algorithm 3.2 Search_Key
1: Input : array A[n] of n integers, integer key
2: Output : the first location of key or NOT_FOUND if it is not in A[n]
3: int i
4: for i=1 to n do
5: if key = A[i] then
6: return i
7: end if
8: end for
9: return NOT_FOUND

When we run this algorithm, it is possible that the key value is found in the first
array entry in which case the algorithm completes in one step. This will be the lowest
running time of the algorithm. In the worst case, we need to check each entry of the
array A, running the loop n times. We are mostly interested in the worst execution
time of an algorithm as this is what can be expected as the worst case.

We need to analyze the running time and space requirement of an algorithm as
functions of the input size. Our interest is to determine the asymptotic behavior of
these functions when input size gets very large. The number of steps required to run
an algorithm is termed its time complexity. This parameter can be specified in three
ways: the best-case, average-case, and worst-case complexities described as follows,
assuming f and g are functions from N to R

+ and n is the input size.

The Worst-Case Analysis

The worst running time of an algorithm is f (n) = O(g(n)), if there exists a constant
c > 0 such that ∀n0 ≥ n, f (n) ≤ cg(n). This is also called the big-Oh notation and
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states that the running time is bounded by a function g(n) multiplied by a constant
when the input size is greater than or equal to a threshold input value. There are
many O(g(n)) functions for f (n) but we search for the smallest possible value to
select a tight upper bound on f (n).

Example 3.1 Let f (n) = 5n + 3 for an algorithm, which means its running time
is this linear function of its input size n. We can have a function g(n) = n2 and
n0 = 6, and hence claim cg(n) ≥ f (n), ∀n ≥ n0. Therefore, 5n+3 ∈ O(n2) which
means f (n) has a worst-time complexity of O(n2). Note that any complexity greater
than n2, for example, O(n3), is also a valid worst-time complexity for f (n). In fact
O(n) is a closer complexity for the worst case for this algorithm as this function
approaches n in the limit when n is very large. We would normally guess this and
proceed as follows:

5n + 3 ≤ cn

(c − 5)n ≥ 3

n ≥ 3/(c − 5)

We can select c = 6 and n0 = 4 for this inequality to hold and hence complete
the proof that 5n + 3 ∈ O(n). As another example, consider the time complexity
of 4 log n + 7. We claim this is O(log n) and need to find c and n0 values such that
4 log n + 7 ≤ c log n for n ≥ n0 which holds for c = 12 and n0 = 2.

The Best-Case Analysis

The best or the lowest running time of an algorithm which is also the minimum
number of steps to execute it is f (n) = Ω(g(n)), if there exists a constant c > 0
such that ∀n0 ≥ n, f (n) ≥ cg(n). Informally, this is the best running time of the
algorithm among all inputs of size n. In general, this parameter does not yield much
information about the general performance of the algorithm as the algorithm may be
slow on various other input combinations. Hence, it may not be reliable to compare
algorithms based on their best running times but this parameter still gives us an idea
of what to expect best.

Example 3.2 Let f (n) = 3 log n+2 for an algorithm, and let us consider the function
g(n) = log n to be a lower bound on the running time of the algorithm. In this case,
we need to verify 3 log n + 2 ≥ c log n for some constant c for all n ≥ n0 values for
a threshold n0 value.

3 log n + 2 ≥ c log n

(3 − c) log n ≥ −2

log n ≥ −2/(3 − c)

and for n0 = 2 and c = 4, this equation holds and hence claims 3 log n + 2 ∈
Ω(log n). The key point here was guessing that this function grows at least as log n.



3.3 Asymptotic Analysis 43
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Fig. 3.1 The growth rate of a function

Theta Notation

Θ(n) is the set of functions that grow at the same rate as f (n) and is considered
as a tight bound for f (n). These functions are both in = O(g(n)) and Ω(g(n)).
Formally, g(n) ∈ Θ(n) if there exists constants n0, c1 and c2 such that ∀n ≥ n0,
c1 f (n) ≤ |g(n)| ≤ c2 f (n). The relation between the growth rate of a function f (n),
O(n), Θ(n), and Ω(n) is depicted in Fig. 3.1.

The Average-Case Analysis

Our aim in determining the average case is to find the expected running time of the
algorithm using a randomly selected input, assuming a probability distribution over
inputs of size n. This method in general is more difficult to assess than the worst or
best cases as it requires probabilistic analysis, but it can provide more meaningful
results. Another point of concern is the memory space needed by an algorithm. This
is specified as the maximum number of bits required by the algorithm and called the
space complexity of the algorithm.

General Rules

• The order of growth of commonly found worst cases in increasing order is as
follows:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3), .., O(nk )n ⊂ 2n ⊂ O(n!) ⊂ O(nn)

• When the running time of an algorithm is determined as a polynomial, ignore
low-order terms and the constant factor of the largest term as these will have a
very little effect on the running time when input size is very large. For example,
if the running time of an algorithm is 5n4 + 3n2 + 2n + 5, its worst-case time
complexity is O(n4).
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• O(c f (n)) = O( f (n)) for any constant c.
• The sum of the worst-case time complexities of two algorithms is the worst-case

complexities of the sum of the two algorithms as follows.

O( f (n)) + O(g(n)) = O( f (n) + g(n))

• Similarly, O( f (n))O(g(n)) = O( f (n)g(n)).
• log10 n ∈ Θ(log2 n) since log10 n= log2 n/ log2 10 which is log2 n/3.32. In gen-

eral, loga n ∈ Θ(logb n).

Although asymptotic analysis shows the running time of the algorithm as the size
of the input is increased to very large values, we may have to work with only small
input sizes, which means low-order terms and constants may not be ignored. Also,
given two algorithms, choice of the one with better average complexity rather than
the one with better worst-case complexity would be more sensible as this would
cover most of the cases.

3.4 Recursive Algorithms and Recurrences

We have two main methods of algorithm design and implementation: recursion and
iteration. A recursive algorithm is the one that calls itself and these algorithms are
commonly employed to break a large problem into smaller parts, solve the smaller
parts, and then combine the results as we will see in this chapter. Iterative solutions
keep repeating the same procedure until the desired condition is met. Recursive
algorithms commonly provide shorter solutions but they may be more difficult to
design and analyze. Let us consider a recursive function Power to find the nth power
of an integer x . The iterative solution would involve n times multiplication of x
by itself in a for or another type of loop. In the recursive algorithm, we have the
function calling itself with decremented values of n each time until the base case is
encountered when n = 0. The nested calls to this function start returning to the caller
after this point, each time multiplying x with the returned value. The first returned
value from the last call is 1 followed by x , x2, x3 until xn as shown in Algorithm3.3.

Algorithm 3.3 Power
1: function power(x,n)
2: if n = 0 then � base case
3: return 1
4: else
5: return x × power(x, n − 1) � recursive call
6: end if
7: end function
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In order to analyze the running time of recursive algorithms, we need to define
recurrence relations which are relations defined recursively in terms of themselves.
Let us attempt to form the recurrence relation for the recursive power algorithm
defined above. Let T (x) denote the time spent when x is input to this algorithm.
Considering two constants c1 and c2 show constant time at each step of the algo-
rithm for the base case and recursion case, respectively, we can form the following
recurrence equations:

T (0) = c1

T (1) = c2 + T (1)

T (n) = c2 + T (n − 1)

T (n) = 2c2 + T (n − 2)

T (n) = 3c2 + T (n − 3)

...

T (n) = kc2 + T (n − k)

when k = n,

T (n) = c2 + T (n − n) = c1 + nc2 ∈ Θ(n)

We have thus shown this algorithm takes n steps. Intuitively, we substituted the
recurrence for lower values of n until we saw a pattern which is called the iteration
method for solving recurrences. However, solving recurrences may involve more
complicated procedures than this simple example. A commonly used approach to
solve recurrence relations is by guessing a solution and proving the solution by
induction. For example, let us assume the recurrence function below:

T (n) = 2T (n − 1) + 1

with

T (0) = 0

and guess the solution is T (n) = 2n − 1 simply by looking at the values of this
function for the first few values of n which are 0, 1, 3, 7, 15, 31, and 63 for inputs 0,
1, 2, 3, 4, and 5. Considering the base case, we find it holds.

T (0) = 20 − 1 = 0
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Substitution for the general case yields

T (n) = 2T (n − 1) = 2(2n−1 − 1) + 1 = 2n − 1

Therefore, we conclude our guess was correct.

The Master Method

The Master method is used to solve recurrence relations that can be expressed as
follows:

T (n) = aT (n/b) + f (n)

where a ≥ 1 and b > 1 are constants with a function f (n) of positive n. There are
three cases to consider:

1. f (n) = O(nlog a−ε) for some ε > 0: T (n) = Θ(nlog a).
2. f (n) = Θ(nlog a): T (n) = Θ(nlog a log n).
3. f (n) = Ω(nlog a+ε) for some ε > 0, and a f (n/b) ≤ c f (n) for some c < 1 and

∀n > n0: T (n) = Θ(nlog a).

The proof can be found in [1].

3.5 Proving Correctness of Algorithms

Correctness is a fundamental requirement for any algorithm. It may be easy in many
cases to determine that an algorithm works correctly for any input but in many other
cases, we need to prove formally that the algorithm works. We can use various prov-
ing methods such as direct method, contraposition, contradiction; but mathematical
induction method is used more than others.

A logical statement or a proposition “if p then q” can be written as p → q where
p is called the premise and q is the conclusion. We need to show that the conclusion
holds based on the premise while proving a proposition. The direct proof involves
arriving at the conclusion directly from the premise.

Example 3.3 If a and b are two even integers, their product ab is even.

Proof We can write a = 2m and b = 2n for some integers m and n since they are
even, and therefore are divisible by 2. The product ab = 2m.2n = 4mn = 2(2mn)

is an even number since it is divisible by 2. �
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The proofs may be as simple as in this example. In many cases, however, a proof
involves more sophisticated reasoning to arrive at the conclusion. Let us look at
another example that involves a direct but not so easy to derive proof. Let us see
another example of direct proof.

Example 3.4 Given two integers a and b, if a + b is even then a − b is even.

Proof Since a + b is even, we can write a + b = 2m for some integer m. Then,
substitution for b yields:

a + b = 2m

b = 2m − a

a − b = a − 2m + a

= 2a − 2m

= 2(a − m)

which shows that the difference is an even number and completes the proof. �

3.5.1 Contraposition

A contrapositive of a logical statement p → q is ¬p → ¬q . The contrapositive
of such a statement is equivalent to the statement, and hence, we can prove the
contrapositive to verify the original statement. This method is also called indirect
proof and can be applied to a variety of problems.

Example 3.5 For any integer a > 2, if a is a prime number, then a is an odd number.

Proof Let us assume the opposite of the conclusion, a is even. We can then write
a = 2n for some integer n. However, this implies a is divisible by 2, and hence, it
cannot be a prime number which contradicts the premise. �

3.5.2 Contradiction

In this proof method, we assume the premise p is true and the conclusion q is not
true (p ∧ ¬q) and try to find a contradiction. This contradiction can be against what
we assume as hypothesis or simply be something against we know to be true such
as 1=0. In this case, if we find (p ∧ ¬q) is false, it means either p is false or ¬q is
false. Since we assume p is true as it is the premise, ¬q must be false which means
q is true if there is a contradiction and that completes the proof.
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Example 3.6 Let us prove the statement: 3n + 2 is even when n is even.

Proof Here p = “3n + 2 is even” and q = “n is even”. We will assume ¬q which
is “n is odd” and thus n = 2k + 1 for some integer k. Substituting in p yields
3(2k+1)+2 = 6k+5 = 2(3k+2)+1. Substituting t = (3k+2)which an integer,
results in 3n + 2 = 2t + 1 which is odd by the definition of an odd integer. Hence,
we arrive at ¬p. �

3.5.3 Induction

In induction, we are given a sequence of propositions in the form P(1), ..., P(n) and
we perform two steps:

1. Basis step: Establish P(1) is true.
2. Induction step: If P(k) is true for any given k, then establish P(k + 1) is also

true.

If these two steps provide true results, we can conclude P(n) is true for any n. It is
one of themost commonly usedmethods to prove sequential, parallel, and distributed
algorithms.

Example 3.7 Let us illustrate this method by proving that the sum S of the first n
odd numbers 1+3+5... is n2.

Proof 1. Basis step: P(1) = 1 = 12, so the basis step yields a true answer.
2. Induction step: Assuming P(k) = k2, we need to show that P(k+1) = (k+1)2.

Since the kth element of P(n) is expressed as 2k − 1 as it is an odd number, the
following can be stated:

P(k + 1) = P(k) + 2(k + 1) − 1 = k2 + 2k + 1 = (k + 1)2

Therefore, this proposition is true for all positive integers.
�

3.5.4 Strong Induction

In induction, we attempted to prove the proposition P(k+1) assuming the statement
P(k) is true. In strong induction, we have the following steps:

1. Basis step: P(1) = 1 = 12, so the basis step is true.
2. Strong induction step: Assuming P(1), .., P(k) are all true, we need to establish

that P(k + 1) is true.
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This proof method is useful when P(k+1) does not depend on P(k) but on some
smaller values of k. In fact, the two induction methods are equivalent.

Example 3.8 Every integer greater than 1 is either a prime number or can be written
as the product of prime numbers.

Proof We need to consider the base case and the strong induction case.

• Base case: P(2) = 2 is prime so the base case is true.
• Strong Induction step: Assuming each integer n with 2 ≤ n ≤ k is either a prime

or a product of prime numbers, we need to prove (k + 1) is either prime or a
product of prime numbers. We have two cases as follows:

– (k + 1) is a prime number: Then P(k + 1) is true.
– (k+1) is a composite number and not a prime: Then∃a and bwith 2 ≤ a, b ≤ k

such that k + 1 = a · b. By the strong induction step, a and b are either prime
numbers or product of prime numbers. Therefore, k + 1 = a · b is a product of
prime numbers. �

3.5.5 Loop Invariants

An algorithm with a loop starts by initializing some variables based on some inputs,
executes a loop, and produces some output based on the values of its variables. A
loop invariant is an assertion about the value of a variable after each iteration of a
particular loop, and the final value of this variable is used to determine the correctness
of the algorithm.

A precondition is a set of statements that are true before the algorithm executes
which is commonly represented as a set of inputs, and a postcondition is a set of
statements that remain true after the algorithm executes which are the outputs. We
use loop invariants to help us understand why an algorithm is correct. We must show
three things about a loop invariant:

1. Initialization: The loop invariant should be true before the first iteration of the
loop.

2. Maintenance: If the loop invariant is true for the nth iteration, it should be true
for (n+1)th iteration.

3. Termination: The invariant is true when the loop terminates.

The first two properties of a loop variant assert that the variant is true before each
loop iteration, similar to the induction method. Initialization is like the base case
of induction, and maintenance is similar to the inductive step. There are no definite
rules to choose a loop variant and we proceed by commonsense in most cases. Let
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us consider the following while loop. Our aim is to prove this loop works correctly
and terminates.

a > 0;

b = 0;

while ( a != b)

b = b + 1;

Wewill choose a ≥ b as the loop variant L . We need to show the three conditions:
L is true before the loop starts; if L is true before an iteration, it remains true after
the iteration and lastly, it should establish the postcondition. We can now check
these conditions as follows and can determine that this loop works correctly and
terminates:

1. Initialization: a ≥ 0 and b = 0 before the loop starts is true.
2. Maintenance: (a ≥ 0) ∧ (a = b) → b = b + 1.
3. Termination: (a ≥ 0) ∧ ¬(a = b) → a = b.

3.6 Reductions

We may want to prove that some computational problems are difficult to solve. In
order to verify this, we need to show some problem X is at least as hard as a known
problem Y . An elegant way of proving this assertion is to reduce problem Y to X . Let
us assume we have a problem P1 that has an algorithmic solution A1 and a similar
problem P2 that does not have any solution. Similarity may imply we can borrow
some of the solutions found for P1 if we can find a reduction of problem P2 to P1.

Definition 3.1 (reduction) A reduction of a problem P2 to P1 transforms the inputs
of P2 to the inputs of P1, obtains outputs from P1 by running algorithm A1 and
depicts these outputs as the solutions from P1. A problem P2 is reducible to problem
P1 if there is a function f that takes an arbitrary input to P2, transforms it to an input
to P1, solves there and obtains the solution to x. This is shown as P2 ≤ P1.

Specifying an upper bound on the transformation of the input is sensible as this
process itself may be time-consuming, for example, it may be exponential. If trans-
ferring of any input to problem P2 to problem P1 can be performed in polynomial
time, P2 is said to be polynomial-time reducible to P1 and shown as P2 ≤P P1. Our
interest is mainly on polynomial-time reductions when solving similar problems.
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3.6.1 Difficult Graph Problems

Let us consider the vertex cover problem. A vertex cover (VCOV) of a graph G =
(V, E) is a subset V ′ of its vertices such that any edge e ∈ E is incident to at least
one vertex v ∈ V ′. Informally, we try to cover all edges of G by the vertices in this
subset. The decision form of this problem (VCOV) asks: Given a graph G = (V, E)

and an integer k, does G have a vertex cover of size at most k? The optimization
VCOV problem is to find the vertex cover with the minimum number of vertices
among all vertex covers of a graph.

An independent set of a graph G is a subset V ′ of its vertices such that no vertex
in V ′ is adjacent to any other vertex in V ′. The decision form of this problem (IND)
seeks to answer the question: Given graph G and an integer k, does G contain an
independent set of at least k vertices? The optimization IND problem is to find the
independent set with the maximum number of vertices among all independent sets
of a graph.

A related graph problem is finding the dominating set (DOM) of a graph G =
(V, E) which is a subset V ′ of its vertices such that any v ∈ V \ V ′ is adjacent to at
least one vertex in V ′. The decision formofDOMseeks to answer the question:Given
graph G and an integer k, does G contain a dominating set of at most k vertices?
These subgraphs are displayed in a sample graph in Fig. 3.2. The optimization DOM
problem is to find the dominating set with the minimum number of vertices among
all dominating sets of a graph. Minimal or maximal versions of all of these problems
are to find vertex subsets that cannot be reduced or enlarged by removal/addition of
any other vertices. We will review these problems in more detail in Chap. 10.

(a) (b) (c)

Fig.3.2 Some difficult graph problems. aAminimum vertex cover, b a maximum independent set,
and c a minimum dominating set. Note that a is also a maximum independent set and a minimum
dominating set, b is also a minimum vertex cover and a minimum dominating set but c is only a
minimum dominating set for this graph

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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3.6.2 Independent Set toVertex Cover Reduction

We will show that an independent set of a graph can be reduced to a vertex cover by
first considering the theorem below.

Theorem 3.1 Given a graph G = (V, E), S ⊂ V is an independent set of G if and
only if V − S is a vertex cover.

Proof Let us consider an edge (u, v) ∈ E . If S ⊂ V is an independent set in G,
either u ∈ S or v ∈ S but not both. This means at least one of the endpoints of (u, v)
is in V − S, hence V − S is a vertex cover. We need to prove the theorem in the other
direction; if V − S is a vertex cover, let us consider two vertices u ∈ S and v ∈ S.
Then, (u, v) /∈ E since if such an edge existed, it would not be covered in V − S,
and hence, V − S would not be a vertex cover.

Figure3.3 shows the equivalence of these two problems in a sample graph. Given
the five vertices in (a) with k = 5, we can see these form an independent set. We
now transform this input to an input of the vertex cover problem in polynomial time,
which are the white vertices in (a). We check whether these form a vertex cover in
(b) again in polynomial time and conclude they do. Our test algorithm simply marks
incident edges to black vertices in O(k) time and checks whether any edges are left
unmarked in the end. All edges are covered by these four vertices in this case. Hence,
we can deduce the five black vertices in (a) are indeed a solution to the independent
set decision problem for this graph. We have shown an example of IND ≤P VCOV .

(a) (b)

Fig.3.3 A sample graph with an independent set in a and a vertex cover in b shown by black circles
in both cases. The independent set in b is formed by the white vertices in a
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3.7 NP-Completeness

The problems we face can be classified based on the time it takes to solve them. A
polynomial function O(nk), with n as the variable and k as the constant, is bounded
by nk as we saw. The exponential functions refer to functions such as O(2n) or
O(nn) which grow very rapidly with the increased input size n. A polynomial-time
algorithm has a running time bounded by a polynomial function of its input, and an
exponential algorithm is the one which does not have a time performance bounded
by a polynomial function of n. A tractable problem is solvable by a polynomial-
time algorithm, and an intractable problem cannot be solved by a polynomial-time
algorithm. Searching for a key value in a list can be performed by a polynomial-time
algorithm as we need to check each entry of a list of size n in n time and listing all
permutations of n numbers is an example of an exponential algorithm. In fact, the
third class of problems have no known polynomial-time algorithms but they are not
proven to be intractable either. When we are presented with an intractable problem,
we can do one of the following:

• Attempt to solve a simpler or a restricted version of a problem which can be
accomplished in polynomial time.

• Implement a polynomial-time probabilistic algorithm which provides the correct
solution only with very high probability. This means it may fail on rare occasions.

• Use a polynomial-time approximation algorithm with a proven approximation
ratio. In this case, we have a suboptimal solution to the problem which may be
acceptable in many applications.

• When all fails, we can use some heuristics which are commonsense rules to design
polynomial-time algorithms. We need to show experimentally that the heuristic
algorithmworks finewith awide spectrum of input combinations.Many problems
in graphs are intractable and thismethod is frequently employed especially in large
graphs, as we shall see.

3.7.1 Complexity Classes

The tractable problemshavepolynomial-timealgorithms to solve them.The intractable
problems, on the other hand, can be further divided into two subclasses; the ones
proven to have no polynomial-time algorithms and others that have exponential time
solution algorithms. At this point, we will need to classify the problems based on
the expected output from them as optimization problems or decision problems. In an
optimization problem, we attempt to maximize or minimize a particular objective
function and a decision problem returns a yes or a no as an answer to a given input.
Let us consider the IND problem as both optimization and a decision problem. The
optimization problem asks to find the independent set of a graph G = (V, E) with
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the largest order. The decision problem we saw seeks an answer to the question:
Given an integer k ≤ |V |, does G have an independent set with at least k vertices?
Dealing with decision problems is advantageous not only because these problems
are in general easier than their optimization versions but they also may provide a
transfer to the optimization problem. In the IND decision problem, we can try all
possible k values and find the largest one that provides an independent set to find a
solution to the IND optimization problem.

Complexity Class P

The first complexity class we will consider is P which contains problems that can be
solved in polynomial time.

Definition 3.2 (class P) The complexity class P refers to decision problems that can
be solved in polynomial time.

For a problem A to be in P, there has to be an algorithm with worst execution time
O(nk) for an input size n and a constant k that solves A. For example, finding the
largest value of an integer array can be performed in O(n) time for an array of size
n, and hence is a problem in P.

Complexity Class NP

In cases wherewe do not know a polynomial-time algorithm to solve a given decision
problem, a search can be made for an algorithm that solves an input instance of
a problem in polynomial time. The specific input is called the certificate and the
polynomial-time algorithm that checkswhether the certificate is acceptable, meaning
it is a solution to the decision problem, is called the certifier. We can now define a
new complexity class as follows.

Definition 3.3 (class NP) The complexity class Nondeterministic Polynomial (NP)
is the set of decision problems that can be verified by a polynomial algorithm.

The NP class includes P (P ⊂ NP) class since all of the problems in P have
certifiers in polynomial time but whether P = NP has not been determined and
remains a grand challenge in Computer Science. Many problems are difficult to
solve, but an input instance can be verified in polynomial time whether it yields a
solution or not. For example, given a graph G = (V, E) and a certificate S ∈ V ,
we can check in polynomial time whether S is an independent set in G. The certifier
program is shown in Algorithm3.4 where we simply check whether any two vertices
in S are adjacent. If any such two vertices are found, the answer is NO and the input
is rejected. The algorithm runs two nested loops in O(n2) time, and hence, we have
a polynomial-time certifier which shows IND ∈ NP.
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Algorithm 3.4 IS_Certifier
1: Input : G = (V, E), S ∈ V
2: Output : yes or no
3: for all u ∈ S do
4: for all v ∈ S do
5: if (u, v) ∈ E then
6: return No
7: end if
8: end for
9: end for
10: return Yes

Fig. 3.4 Relation between
complexity classes

P

NP

NP-Complete

NP-Hard

NP-Hard Problems

Definition 3.4 (class NP-Hard) A decision problem Pi is NP-hard if every problem
in NP is polynomial time reducible to Pi . In other words, if we can solve Pi in
polynomial time, we can solve all NP problems in polynomial time.

An NP-hard problem Pi does not need to be in NP. An NP-hard problem Pi means
Pi is as hard as any problem in NP.

NP-Complete Problems

A problem Pi is NP-complete if it is NP-hard and it is also a member of the NP
class.

Definition 3.5 (class NP-Complete) A decision problem Pi is NP-Complete if it is
in NP and NP-hard.

Figure3.4 displays the relation between the complexity classes. Class P is con-
tained in class NP as every problem in P has a certifier, and NP-complete problems
are in the intersection of NP problems and NP-hard problems.
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In order to show that a problem Pi is NP-Complete, we need to do the following:

1. Prove Pi is a decision problem.
2. Show Pi ∈ NP.
3. Show Pi is as hard as any problem that is NP-hard.

3.7.2 The First NP-Hard Problem: Satisfiability

The satisfiability problem (SAT) states that given a Boolean formula, is there a way
to assign truth values to the variables in the formula such that the formula evaluates
true value? Let us consider a set of logical variables x1, x2, ..., xn each of which
can be true or false. A clause is formed by disjunction of logical variables such as
(x1 ∨ x2 ∨ x3). A CNF formula is a conjunction of the clauses as C1 ∧ C2, ... ∧ Ck

such as below:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∧ (x1 ∨ x2 ∨ x3) (3.1)

The CNF formula is satisfied if every clause in it yields a true value. The sat-
isfiability problem searches for an assignment to variables x1, x2, ..., xn such that
CNF formula is satisfied. 3-SAT problem requires each clause to be of length 3 over
variables x1, x2, ..., xn . The SAT problem has no known polynomial-time algorithm
but we cannot conclude it is intractable either. We can try all combinations of the
input in 2n time to find the solution. However, we can have a distinct input and check
whether this input is accepted by the SAT circuit, and hence conclude SAT is in NP.
This problem was shown to be NP-hard and therefore to be NP-complete by Cook
in 1970 [3]. We can, therefore, use 3-SAT problem as basis to prove other problems
to be NP-complete or not. The relationships between various problems is depicted
in Fig. 3.5.

Let us show how to reduce the 3-SAT problem to IND problem. In the former, we
know that we have to set at least one term in each clause to be true and we cannot
set both xi and xi to be true at the same time. We first draw triangles for each clause

SAT 3-SATC-SAT CLIQUE

IND

VCOV

HAMDOM 3-COL

Fig. 3.5 The reduction relationship between various NP-hard problems
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x1
__

x2 x3

x1

x3 x2
__ __

x1
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Fig. 3.6 The graph for the 3-SAT equation of Eq.3.1. The black vertices x1, x3 and x2 represent
the independent set of this graph which is also the solution to the 3-SAT of Eq.3.1 with x1 = 1,
x2 = 0 and x3 = 0 values

of 3-SAT with each vertex representing the term inside the clause. A true literal
from each clause suffices to obtain a true value for the 3-SAT formula. We add lines
between a term and its inverse as we do not want to include both in the solution. The
graph drawn this way for Eq. 3.1 is shown in Fig. 3.6.

We now claim the following.

Theorem 3.2 the 3-SAT formula F with k clauses is satisfiable if and only if the
graph formed this way has an independent set of size k.

Proof Let the graph formed this way be G = (V, E). If formula F is satisfiable,
we need to have at least one true literal from each clause. We form the vertex set
V ′ ⊂ V by selecting a vertex from each triangle, and also by not selecting a variable
x and its complement x at the same time since a variable and its complement cannot
be true at the same time. V ′ is an independent set since there are no edges between
the vertices selected. To prove the claim in the reverse direction, let us consider G
has an independent set of size k. The set V ′ cannot have two vertices from the same
cluster and it will not have a variable and its complement at the same time since it
is an independent set. Moreover, when we set true values to all variables in V ′, we
will have satisfied the SAT formula F . Transformation of the 3-SAT problem to IND
problem can be performed in polynomial time; hence, we deduce these two problems
are equivalent, and finding a solution to one means solution to the other one is also
discovered. �

3.8 Coping with NP-Completeness

Many of the graph optimization problems are NP-hard with no known solutions in
polynomial time. However, methods to result in solutions most of the time within
a specified bound of probability (randomized algorithms), or results that are close
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to the exact solution within a specified margin to the exact result (approximation
algorithms); or methods that eliminate some of the unwanted intermediate results to
achieve improvement in the performance (backtracking and branch and bound) are
the topics we will review in this section.

3.8.1 Randomized Algorithms

Randomized algorithms are frequently used for some of the difficult graph problems
as they are simple and provide efficient solutions. Randomly generated numbers or
random choices are typically used in these algorithms to decide on the courses of
computation. The output from a randomized algorithm and its running time varies for
different inputs and even for the same input. Two classes of randomized algorithms
are Las Vegas and Monte Carlo algorithms. The former always returns a correct
answer but the runtime of such algorithms depend on the random choices made. The
algorithm runs a constant amount of time but the answer may or may not be correct
in Monte Carlo algorithms.

The average cost of the algorithm over all random choices gives us its expected
bounds and a randomized algorithm is commonly specified in terms of its expected
running time for all inputs. On the other hand, when we say an algorithm runs in
O(x) time with high probability, it means the runtime of this algorithm will not be
above the value of x with high probability. Randomized algorithms are commonly
used in two cases: when an initial random configuration is to be chosen and to decide
on a local solution when there are several options. The randomized choice may be
repeated with different seeds and then the best solution is returned [2].

Karger’s Minimum Cut Algorithm

We will describe how randomization helps to find the minimum cut (mincut hence-
forth) of a graph. Given a graph G = (V, E), finding a mincut of G is to partition
the vertices of the graph into two disjoint sets V1 and V2 such that the number of
edges between V1 and V2 is minimum. There is a solution to this problem using
the maximum flow as we will see in Chap. 8, here we will describe a randomized
algorithm due to Karger [4].

This simple algorithm selects an edge at random, makes a supervertex from the
endpoints of the selected edge using contraction and continues until there are exactly
two supervertices left as shown in Algorithm3.5. The vertices in each final super-
vertex are the vertices of the partitions.

Contracting two vertices u and v is done as follows:

• Delete all edges between u and v.

http://dx.doi.org/10.1007/978-3-319-73235-0_8
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Algorithm 3.5 Kargel_mincut
1: Input : G(V, E)

2: Output mincut V1 and V2 of G
3:
4: G ′ = (V ′, E ′) ← G(V, E)

5: repeat
6: select an edge (u, v) ∈ E ′ at random
7: contract vertices u and v into a super vertex uv
8: until there are only two super vertices u1 and u2 left
9: V1 ← all of the vertices in u1
10: V2 ← all of the vertices in u2

• Replace u and v with a supervertex uv.
• Connect all edges incident to u and v to supervertex uv.

Let us see how this algorithm works in the simple graph of Fig. 3.7. The edges
picked at random are shown inside dashed regions and the final cut consists of three
edges between V1 = {b, h, a} and V2 = {c, f, d, e, g} as shown in (h). This is not
the mincut however, the minimum cut consists of edges (b, c) and (g, f ) as depicted
in (i).

Karger’s algorithm will find the correct minimum cut if it never selects an edge
that belongs to the minimum cut. In our example, we selected the edge (g, f ) that
belongs to the mincut in Fig. 3.7e deliberately to result in cut that is not minimum.
On the other hand, the mincut edges have the lowest probability to be selected by
this algorithm since they have fewer edges than all edges that do not belong to the
mincut. Before its analysis, let us state few observations about the mincut of a graph.

Remark 1 The size of a mincut of a graph G is at most the minimum degree δ(G)

of G.

This is valid since the mincut is not larger than any cut of G. Therefore, δ(G) sets
an upper bound on the size of the mincut. Since we cannot determine δ(G) easily,
let us check whether an upper bound in terms of the size and order of G exists.

Theorem 3.3 The size of the mincut is at most 2m/n

Proof Assume the size of the mincut is k. Then, every vertex of G must have at least
a degree of k. Therefore, by Euler theorem (handshaking lemma),

m =
∑

v∈V
deg(v)

2
≥

∑

v∈V
k

2
= nk

2
(3.2)

which means k ≤ 2m/n. �
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Fig. 3.7 Running of Kargel’s algorithm in a simple graph

Corollary 3.1 Given a graph G with a mincut C, the probability of selecting an
edge (u, v) ∈ C, P(ε1) is at most 2/n.

Proof There are m edges and at most 2m/n are in the mincut by Theorem3.3, so
P(ε1) = m/(2m/n) = 2/n. �

Remark 2 Given a graph G with a mincut C , the algorithm must not select any edge
(u, v) ∈ C .
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Therefore, probability of not selecting the first edge of the mincut is

P(ε1) = 1 − P(ε1) ≥ 1 − 2

n
≥ n − 2

n
(3.3)

Let us choose a minimum cut C with size k and find the probability that an edge
(u, v) ∈ C is not contracted by the algorithm which will give us the probability
that the algorithm finds the correct result. We will first evaluate the probability of
selecting an edge (u, v) ∈ C in the first round, P(ε1)which is k/m for a mincut with
size k. Therefore,

P(ε1) = k

m
≤ k

nk/2
= 2

n
(3.4)

Let P(εC ) be the probability that the final cut obtained s minimum. This proba-
bility is the product of the probabilities of the probability the first selected edge is
not in mincut, probability the second selected edge is not in mincut, etc., until two
last supervertices are formed. A contraction of an edge results in one less vertex in
the new graph. Therefore,

P(εC ) ≥
(

1 − 2

n

) (

1 − 2

n − 1

) (

1 − 2

n − 2

) (

1 − 2

n − 3

)

...

(

1 − 2

3

)

(3.5)

since nominators and denominators cancel in every two terms except the two first
denominators,

=
(
n − 2

n

)(
n − 3

n − 1

)(
n − 4

n − 2

)

...

(
1

3

)

= 2

n(n − 1)

Hence, the probability that the algorithm returns the mincut C is at least 2
n(n−1) .

We can therefore conclude this algorithm succeeds with probability p ≥ 2/n2 and
running it O(n2 log n) time provides a minimum cut with high probability. Using
the adjacency matrix of the graph, we can run each iteration in O(n2) time, and the
total time is O(n4 log n).

3.8.2 Approximation Algorithms

A common approach in search of a solution to NP-hard graph problems is to relax
the requirements and inspect approximation algorithms which provide suboptimal
solutions.
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Definition 3.6 (approximation ratio) Let A be an approximation algorithm for prob-
lem P, I be an instant of the problem P, and OPT(I ) the value of the optimum cost
of solution for I . The approximation ratio of algorithm A is defined as

αA = maxI
A(I )

OPT (I )
(3.6)

Example 3.9 We had already investigated the vertex cover problem in Sect. 3.6.
Finding the minimum vertex cover which has the least number of vertices among
all vertex covers of a graph is NP-hard. Since our aim is to cover all edges of the
graph by a subset of vertices, we can design an algorithm that picks each edge in
a random order and since we cannot determine which vertex will be used to cover
the edge, we include both ends of the edge in the cover as shown in Algorithm3.6.
For each selected edge (u, v), we need to delete edges incident to u or v from graph
since these edges are covered.

Algorithm 3.6 Approx_Vertex_Cover
1: Input G(V, E)

2: E ′ ← E , V ′ ← Ø
3: while E ′ = ∅ do
4: select randomly an edge (u, v) ∈ E ′
5: V ′ ← V ′ ∪ {u, v}
6: E ′ ← E ′\ { all edges incident to either u or v }
7: end while

The iterations of this algorithm in a sample graph are shown in Fig. 3.8 which
provides a vertex cover with an approximation of 2.

Theorem 3.4 Algorithm3.6 provides a vertex cover in O(m) time and the size of
MVC is 2 |MinVC|.

Proof Since the algorithm continues until there are no more edges left, every edge
is covered, therefore the output from Seq1_MVC is an MVC, taking O(m) time.
The set of edges picked by this algorithm is a matching, as edges chosen are disjoint
and it is maximal as addition of another edge is not possible. Since two vertices are
covered for each matched edge, the approximation ratio for this algorithm is 2. �

3.8.3 Backtracking

In many cases of algorithm design, we are faced with a search space that grows expo-
nentially with the size of the input. The brute-force or exhaustive search approach
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Fig.3.8 A possible iteration of Algorithm3.6 in a sample graph, showing the selected edge in bold
and the vertices included at the endpoints of this edge as black at each step, from a–c. The final
vertex cover has six vertices as shown in d and the minimum vertex cover for this graph has three
vertices as shown in e resulting in the worst approximation ratio of 2

searches all available options. Backtracking is a clever way of searching the available
options while looking for a solution. In this method, we look at a partial solution and
if we can pursue it further, we do. Otherwise, we backtrack to the previous state and
proceed from there since proceeding from current state violates the requirements.
This way, we save some of the operations needed from the current state onwards.
The choices that can be made are placed in a state-search tree where nodes except
the leaves correspond to partial solutions and edges are used to expand the partial
solutions. A subtree which does not lead to a solution is not searched and we back-
track to the parent of such a node. Backtracking can be conveniently implemented
by recursion since we need to get back to the previous choice if we find the current
choice does not lead to a solution.

Let us see how this method works using an example. In the subset sum problem,
we are given a set of S of n distinct integers and are asked to find possibly more
than one subsets of S sum of which equals a given integer M . For example, if
S = {1, 3, 5, 7, 8} and M = 11, then S1 = {1, 3, 7} and S2 = {3, 8} are the
solutions. We have 2n possible subsets and a binary tree representing the state-space
tree will have 2n leaves with one or more leaves providing the solutions if they exist.

Given S = {2, 3, 6, 7} and M = 9, a state-space tree can be formed as shown
in Fig. 3.9. The nodes of the tree show the sum accumulated up to that point from
the root down the tree and we start with 0 sum. We consider each element of the
set S in increasing order and at length i from the root, the element considered is the
i th element of S. At each node, we have the left branch showing the decision if we
include the element and the right branch proceeds to the subtree when we do not
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Fig. 3.9 State-space tree for the subset sum example

include that element in the search. The nodes shown in dashed circles are the points
in the search where we do not need to proceed any further since the requirement can
not be met if we do. For example, when we include the first two elements of the
set, we have 5 as the accumulated sum and adding the third element, 6 will give 11
which is more than M . So we do not take the subtree rooted at left branch of node 5.
Similarly, selecting 3 and 6 gives us the solution and we report it but still backtrack
since all solutions are required. If only one solution was required, we would have
stopped there.

3.8.4 Branch and Bound

Branch and bound method is similar to backtracking approach used for decision
problems, which is modified for optimization problems. The aim in solving an opti-
mization problem is to maximize or minimize an objective function and the result
found is the optimal solution to the problem. Branch and bound algorithms employ
the state-space trees as in backtracking with the addition of the record of the best
solution best found up to that point in the execution. Moreover, as the execution
progresses, we need the limit on the best value nexti that can be obtained for each
node i of the tree if we continue processing from that node. This way, we can com-
pare these values and if nexti is no better than best , there is no need to process the
subtree rooted at node i .

We will illustrate the general idea of this method by the traveling salesperson
problem (TSP) in which a salesperson starts her journey from a city, visits each city,
and returns to the original city using a minimal total distance. This, in fact, is the
Hamiltonian cycle problem with edge weights. Let G = (V, E) be the undirected
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Fig. 3.10 Hamiltonian cycles of a simple weighted graph

graph that represents the cities and roads between them. For the sample graph of
Fig. 3.10, we can see there are six possible weighted Hamiltonian cycles and only
two provides the optimal route. The routes in both are the same but the order of visits
are reversed. Note that starting from any vertex would provide the same routes. In
fact, there are (n − 1)! possible routes in a fully connected graph with n vertices.

A brute-force approach would start from a vertex a, for example, and search
all possible Hamiltonian cycles using the state-space tree and then record the best
route found. We need to define a lower bound value (lb) for the branch and bound
algorithm. The lb value is calculated as the total sum of the two minimum weight
edges fromeach vertex divided by two to get the average value. For the graph depicted
in Fig. 3.10, this value is

((2 + 4) + (3 + 1) + (3 + 2) + (4 + 1))/2 = 10

We can now start to build the state-space tree and every time we consider adding
an edge to the existing path, we will modify the values in the lower bound function
as affected by the selection of that edge and calculate a new lower bound. Then,
we will select the edge with the minimum lower bound value among all possible
edges. The state-space tree of the branch and bound algorithm for TSP in the graph
of Fig. 3.10 is depicted in Fig. 3.11. The optimal Hamiltonian cycles are a, c, b, d, a
and a, d, b, c, a. These paths correspond to paths (f) and (g) of Fig. 3.10.

Key to the operation of any branch and bound algorithm is the specification of
the lower bound. When search space is large, we need this parameter to be easily
computed at each step yet to be selective enough to prune the unwanted nodes of
the state-space tree early. For the TSA example, another lower bound is the sum of
the minimum entries in the adjacency matrix A of the graph G. This is a solid lower
bound since we are considering the lightest weight edge from each vertex and we
know we can not do better than this. For our example of Fig. 3.10, the lower bound
calculated this way is 9. Computing the lower bound in each step would then involve
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Fig.3.11 The state-space tree for the graph of Fig. 3.10. Each tree node has the path and the lower
bound value using this path

deleting the row a and column b from A when the edge (a, b) is considered and then
including lightest edges from each remaining vertices that are not connected to a or
b to compute the lower bound for including the edge (a, b) in the path.

3.9 Major DesignMethods

Given a problem to be solved by an algorithm, we can approach the design using
various methods. One basic approach is the brute-force method in which we basi-
cally evaluate all possibilities. It is simple and easy to apply but usually does not
have favorable performance. Other commonly employed techniques are the greedy
method, divide and conquer method, and dynamic programming.
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3.9.1 Greedy Algorithms

The greedy method searches for solutions that are locally optimal based on the
current state. It chooses the best alternative available using the currently available
information.A real-life example is the change provided by a cashier in a supermarket.
Commonly, the cashier will select the largest coin to result in least number of coins
in the next step which is optimal in some coin combinations such as in the U.S.
In many cases, following the locally best solution at each step will not yield an
overall optimal solution. However, in certain problems, the greedy method provides
optimal solutions. Finding shortest paths between the nodes of a weighted graph and
constructing aminimum spanning tree of a graph are examples of greedymethod that
can be used efficiently to find the solutions. Greedy algorithms can also be used to
find approximate solutions to some problems. We will describe Kruskal’s algorithm
to find the minimum spanning tree (MST) as an example greedy graph algorithm.

3.9.1.1 Kruskal’s Algorithm
Kruskal’sMST algorithm orders the edges of theweighted graphG(V, E, w) in non-
decreasing weights. Then, starting from the lightest weight edge, edges are included
in the partial MST T ′ as long as they do not form cycles with the edges already
contained in T ′. This process continues until all edges in the queue are processed.
This algorithm consists of the following steps:

1. Input: A weighted undirected graph G = (V, E, w)

2. Output: MST T of G
3. Sort edges of G in nondecreasing order and place them in Q
4. T ← Ø
5. while Q is not empty
6. Pick the first element (u, v) from Q that does not form a cycle with any edge

of T
7. T ← T ∪ {(u, v)}

Figure3.12 shows the iterations of Kruskal’s algorithm in a graph.
The complexity of this algorithm is O(n2) as the while loop is executed for all

vertices and the search for the minimum weight edge for each vertex will take O(n)

time. This complexity can be reduced to O(m log n) time by using binary heaps and
adjacency lists. We will review this algorithm in more detail when we investigate
MST algorithms for graphs in Chap.7.

Analysis

The weights of edges of the graph G can be sorted in O(m logm) time. We can
use the data structure union-find described in Chap.7 which results in log n time for
searching and testing for m edges can then be done in O(m log n) time.

http://dx.doi.org/10.1007/978-3-319-73235-0_7
http://dx.doi.org/10.1007/978-3-319-73235-0_7
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3.9.2 Divide and Conquer

The divide and conquer strategy involves dividing a problem instance into several
smaller instances of possibly similar sizes. The smaller instances are then solved
and the solutions to the smaller instances are then typically combined to provide
the overall solution. Solving the smaller instances and combining these solutions is
performed recursively.
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Fig. 3.12 Running of Kruskal’s MST algorithm for a sample graph
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3.9.2.1 Taking Power with Divide and Conquer
We have seen the recursive algorithm to find the nth power of an integer in Sect. 3.4.
Let us attempt to find the nth power of an integer using the divide and conquer
method this time. Dividing step involves halving the problem until the base case is
encountered. Each call to the function results in calling the same function with half
of the power for even n and half of one less than n for odd integers as shown in
Algorithm3.7.

Algorithm 3.7 Power_DivideConq
1: function Power(int a, int n)
2: if n = 1 then � base case
3: return a
4: else
5: if n MOD 2 = 0 then
6: return Power(a, n/2) × Power(a, n/2)
7: elsereturn Power(a, (n − 1)/2) × Power(a, (n − 1)/2) × a
8: end if
9: end if
10: end function

For example, in order to compute 29, we make the following calls shown in
Fig. 3.13.
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2 2 24 4
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2
2
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Fig. 3.13 Recursive calls to compute 29 by Algorithm3.7
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This algorithm has the following recurrence relation:

T (n) = T (n/2) + Θ(1)

which has a solution as O(log n).

3.9.2.2 Fibonacci Series with Divide and Conquer
Let us test another example for this method; we want to find Fibonacci series which
has 0 and 1 as the first two elements, and each term thereafter is the sum of the two
previous terms with 0, 1, 1, 2, 3, 5,…, F(n − 1) + F(n − 2) as the first n terms.
This simple series has numerous diverse applications. We can form this algorithm
recursively in a straightforward manner as shown in Algorithm3.8 using the divide
and conquer method.

Algorithm 3.8 Fibo_DivideConq
1: function Fibo(int n)
2: if n ≤ 1 then � base case
3: return 1
4: else
5: return Fibo(n − 1) + Fibo(n − 2) � recursive call
6: end if
7: end function

Let us try to analyze the recursive calls to this function. For example, F(9) is
F(8) + F(7); F(8) is F(7) + F(6) and moving in this direction, we will reach the
base values of F(1) and F(0). Note the value of F(7) is calculated twice to find
F(9). This recurrence relation has exponential time complexity; however, we can
see some of the calls are repeated, for example, F(3) has to be calculated twice and
deduce this is not the best way to solve this problem. Dynamic programming solution
provides a solution with better complexity as we will see next.

3.9.3 Dynamic Programming

Dynamic programming is an algorithmic method to solve problems that have over-
lapping subproblems. The word programming means a tabular method rather than
actual computer programming. The choices made are based on the current state,
and hence, the word dynamic is used. A dynamic programming algorithm requires
a recurrence relation; the tabular computation and traceback to provide the optimal
solution.
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In this method, the problem is divided into smaller instances first, the small prob-
lems are solved, and the results are stored to be used in the next stage. It is similar to
divide and conquer method in a way as it recursively divides the instance of the prob-
lem into smaller instances. However, it computes the solution to smaller instances,
records them, and does not recalculate these solutions as in divide and conquer.

3.9.3.1 Fibonacci Series with Dynamic Programming
Let us attempt to form the Fibonacci series using dynamic programming this time.
We still divide the problem into smaller instances but we save the intermediate results
to be used later. The dynamic programming solution to Fibonacci series is shown
in Algorithm3.9 where the intermediate results are stored in a table and are used
subsequently resulting in O(n) time complexity.

Algorithm 3.9 Dynamic_Fibo
1: Input : int n
2: Output : array F[n]
3: int i
4: F[0] ← 0; F[1] ← 1
5: for i=2 to n do
6: F[i] ← F[i − 1] + F[i − 2]
7: end for

3.9.3.2 Bellman–Ford Algorithm
As an example of dynamic programming application in graphs, we will consider
the shortest path problem. We are given a weighted graph that has edges labeled
with some real numbers, showing costs associated with edges. Given a weighted
G = (V, E, w)withw : E → R and a source vertex s, our aim is to find the shortest
path from vertex s to all other vertices, the path having the minimum total weight
between the source and a destination vertex. Bellman–Ford provided a dynamic
programming algorithm for this purpose which canworkwith negative weight edges.
It provides all shortest paths and detects negative cycles if they exist. The main idea
of this algorithm is to use the previously calculated shortest paths and if the currently
calculated path has a smaller weight, update the shortest path with the current one. It
is a dynamic programming algorithm aswe use the prior results without recalculating
them.At each iteration, we extend the reachable vertices from the source by onemore
hop as depicted in Algorithm3.10.
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Algorithm 3.10 BellFord_SSSP
1: Input : G = (V, E), s � a directed or undirected edge-weighted graph, a source vertex s
2: Output : du , ∀u ∈ V � distances to s
3: ds ← 0;
4: for all i = s do � initialize distances and predecessors
5: di ← ∞
6: end for
7: for i = 1 to n − 1 do
8: for all (u, v) ∈ E do � update distances
9: du ← min{du , du + w(u, v)}
10: end for
11: end for
12: for all (u, v) ∈ E do � report negative cycle
13: if du + w(u, v) > dv then
14: report “Graph contains a negative cycle”
15: end if
16: end for
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Fig.3.14 An example running of Bellman–Ford algorithm in a sample graph for the source vertex
g.The first reachable vertices are a, f , and e which are included in the shortest path tree T . This
tree is updated at each iteration when less cost paths compared to the previous ones are found
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Example

An undirected and edge-weighted sample graph is depicted in Fig. 3.14 where we
implement this algorithm with source vertex g. The maximum number of changes of
the shortest path for a vertex is n-1 requiring n-1 iterations of the outer loop at line
8. Each loop requires at most m edge checking resulting in O(nm) time complexity
for this algorithm. We will see a more detailed version of this algorithm that also
provides a tree structure in Chap. 7.

3.10 Chapter Notes

We provided a dense review of basic algorithmic methods with focus on graph
algorithms in this chapter.We first reviewed basic algorithm structures and described
asymptotic analysis of time complexity of general algorithms. The worst-case, best-
case, and average-case analysis of an algorithm gives us insight into the time it
requires when input size is large. We noted worst-case time complexity called big-
Oh notation is commonly required for algorithms to predict their running time. Our
approach in presenting algorithms is to first describe the main idea with key points
of the algorithm verbally. We then provide the pseudocode of the algorithm to detail
its operation in a programming language like syntax which is accompanied by an
example operation in a small sample graph in many cases. We then show that the
algorithm works correctly using various proof methods. We also provide the worst-
case timing analysis of the graph algorithm under consideration. We reviewed the
necessary background for all these steps including main proof strategies such as loop
variants and induction which are commonly used.

The second topic we investigated was NP-completeness. We classified problems
as the ones in P, in NP, and the problems that are NP-hard and NP-complete. A
problem that has a solution in polynomial time is in P; a decision problem that has
a certifier which can provide a yes or no answer to a certificate is in NP. An NP-
complete problem is in NP and is as hard as any other problem that is NP-hard. The
problems C-SAT and SAT were the first problems that were shown to be NP-hard
and reductions are used to prove that a problem is as hard as another problem. Once
we know that a problem is NP-hard, we may do one of the following. We can search
an approximation algorithm that provides a suboptimal solution in polynomial time.
An approximation algorithm needs to be proven to have an approximation ratio to the
optimal solution of the problem. Proofs of such algorithms may be complex as we
do not know the optimal algorithm itself to show how the approximation algorithm
converges to it. We may use heuristics which are commonsense rules that are shown
to work with a wide range of inputs in practice. However, there is no guarantee they
will work for every input. Nevertheless, for many graph problems in applications
such as in bioinformatics, using heuristics continues to be the only viable method.

In the final part, we described fundamental algorithmic methods which are the
greedy method, divide and conquer strategy, and dynamic programming. Greedy

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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methods attempt to find an optimal global solution by always selecting the local
optimum solutions. These local solution choices are based on what is known so
far and may not and do not lead to an optimal solution in general. However, we
saw greedy algorithms provide optimal solutions in a few graph problems including
shortest paths and minimum spanning trees. In the divide and conquer method, the
problem at hand is divided into a number of smaller problems which are solved
and solutions are merged to find the final solution. These algorithms often employ
recursion due to the nature of their operation. Dynamic programming also divides the
problem into smaller parts but makes use of the partial solutions found to obtain the
general solution. The background we have reviewed is related mainly to sequential
graph algorithms and we will see that further background and considerations are
needed for parallel and distributed graph algorithms in the next chapters. There are
a number of algorithm books which provide the basic background about algorithms
including the one by Skiena [6], Cormen et al. [1], and by Tardos and Kleinberg [5].

Exercises

1. Work out by proofs the worst-case running times for the following:

a. f (n) = 4n3 + 5n2 − 4.
b. f (n) = 2n + n7 + 23.
c. f (n) = 2n log n + n + 8.

2. Prove 3n4 is not O(n3). Note that you need to show there are no valid constant
c and a threshold n0 values for this worst case to hold.

3. Write the pseudocode of a recursive algorithm to find the sum of first n positive
integers. Form and solve the recurrence relation for this algorithm to find its
worst-time complexity.

4. Prove n! ≤ nn by the induction method.
5. A clique is the subgraph of a graph in which every vertex is adjacent to all other

vertices in the clique. Given a graph G = (V, E) and its subgraph V ′, V ′ is a

Fig. 3.15 Sample graph for
Exercise8
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Fig. 3.17 Sample graph for
Exercise11 and 12
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maximal clique of G if and only if G − V ′ is a maximal independent set. Prove
that the decision problem of finding whether a graph has a maximal clique of
size k is NP-complete by reduction from IND.

6. Find all minimum vertex covers, maximum independent sets, and minimum
dominating sets of the sample graph shown in Fig. 3.15.

7. Work out the vertex cover for the sample graph in Fig.3.16 by first finding its
maximal independent set and then reduction to vertex cover.

8. Find the solution to the following 3-SAT formula using reduction to independent
set:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∧ (x1 ∨ x2 ∨ x3)

9. Work out the optimal path for the TSA problem in the graph depicted in Fig. 3.17
using the lower bound calculated as the sum of the mean weights of two lightest
weight edges from each vertex. Draw the state-space tree by showing all the
pruned nodes.

10. Find the optimal TSA tour for the graph of Fig. 3.17 this time setting the lower
bound as the sum of the weights of the lightest weight edges at each vertex.
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Fig. 3.18 Sample graph for Exercise13
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Fig. 3.19 Sample graph for Exercise14

11. Find the minimal vertex cover for the sample graph in Fig.3.18 using the 2-
approximation algorithm. Show each iteration of this algorithm and work out
the approximation achieved by your iterations.

12. Find the MST of the sample graph of Fig. 3.19 using Kruskal’s algorithm by
showing each iteration.
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Abstract

We investigate methods for parallel algorithm design with emphasis on graph
algorithms in this chapter. Shared memory and distributed memory parallel
processing are the two fundamental models at hardware, operating system, pro-
gramming, and algorithmic levels of parallel computation. We review these meth-
ods and describe static and dynamic load balancing in parallel computing systems.

4.1 Introduction

We have reviewed basic concepts in algorithms and main methods to design sequen-
tial algorithmswith emphasis on graph algorithms in the previous chapter. Our aim in
this chapter is to investigate methods for parallel algorithm design with emphasis on
graph algorithms again. Parallel processing is commonly used to solve computation-
ally large and data-intensive tasks on a number of computational nodes. The main
goal in using this method is to obtain results much faster than would be acquired by
sequential processing and hence improve the system performance. Parallel process-
ing requires design of efficient parallel algorithms and this is not a trivial task as we
will see.

There are various tasks involved in parallel running of algorithms; we first need
to identify the subtasks that can execute in parallel. For some problems, this step can
be performed conveniently; however, many problems are inherently sequential and
we will see a number of graph algorithms fall in this category. Assuming a task T
can be divided into n parallel subtasks t1, ..., tn , the next problem is to assign these
subtasks to processors of the parallel system. This process is called mapping and is
denoted as a function from the task set T to the processor set P as M : T → P .
Subtasksmay have dependencies so that a subtask t j may not start before a preceding
subtask ti finishes. This is indeed the case when ti sends some data to t j in which

© Springer International Publishing AG, part of Springer Nature 2018
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case starting t j without this data would be meaningless. If we know all of the task
dependencies and also characteristics such as the execution times, we can distribute
tasks evenly to the processors before running them and this process is termed as static
scheduling. In many cases, we do not have this information beforehand and dynamic
load balancing is used to provide each processor with fair share of the workload at
runtime based on the load variation of the processes.

We can have shared memory parallel processing in which computational nodes
communicate via a shared memory and in this case, the global memory should be
protected against concurrent accesses. In distributed memory parallel processing,
communication and synchronization among parallel tasks are handled by sending
and receiving messages over a communication network without any shared memory.
Parallel programming implicates writing the actual parallel code that will run on the
parallel processors. For shared memory parallel processing, lightweight processes
called threads are widely used and for parallel processing applications in distributed
memory architectures; the Message Passing Interface (MPI) is a commonly imple-
mented interface standard.Wewill see that we can have differentmodels at hardware,
algorithm, and programming modes. These models are related to each other to some
extent as will be described. For example, message passing model at algorithmic
level requires distributed memory at hardware level which can be implemented by a
message passing programming model that runs the same code with different data or
different codes possibly with different data.

We start this chapter by describing fundamental concepts of parallel processing
followed by the specification of models of parallel computing. We then investigate
parallel algorithm design methods focussing on parallel graph algorithms which
require specific techniques. Static and dynamic load balancing methods to evenly
distribute parallel tasks to processors are outlined and we conclude by illustrating
the parallel programming environments.

4.2 Concepts andTerminology

Parallel computing involves simultaneous employment of multiple computational
resources to solve a computational problem. Commonly applied steps of parallel
computing are partitioning the overall task into a number of parallel subtasks: design-
ing inter-task communication and mapping of subtasks to processors. These steps
are dependent on selecting certain criteria in a step affects the other processes. We
will investigate these tracks in detail later in this chapter. Some of the common
terminology used in parallel computing can be described as follows.

• parallelism versus concurrency: Parallelism indicates at least two tasks are
running physically at the same time on different processors. Concurrency is
achieved when two or more tasks run at the same time frame but they may not
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run at the same physical time. Tasks that communicate using shared memory in a
single-processor system are concurrent but are not parallel. Concurrency is more
general than parallelism and encompasses parallelism.

• fine-grain versus coarse-grain parallelism: When the computation is partitioned
into number of tasks, the size of tasks aswell as the size of data theywork on affects
their running time. In fine-grain parallelism, tasks communicate and synchronize
frequently and coarse-grain parallelism involves tasks with larger computation
times that communicate and synchronize much less frequently.

• embarrassingly parallel: The parallel computation consists of independent tasks
that have no inter-dependencies in this mode. In other words, there are no prece-
dence relationships or data communications among them. The speedup achieved
by these algorithms may be close to the number of processors used in the parallel
processing system.

• multi-core computing: A multi-core processor contains more than one of the
processing elements called cores. Most contemporary processors are multi-core
andmulti-core computing is running on programs in parallel onmulti-core proces-
sors. The parallel algorithm should make use of the multi-core architecture effec-
tively and the operating system should provide effective scheduling of tasks to
cores in these systems.

• symmetric multiprocessing: A symmetric multiprocessor (SMP) contains a num-
ber of identical processors that communicate via a shared memory. Note that
SMPs are organized on a coarser scale than multi-core processors which contain
cores in a single integrated circuit package.

• multiprocessors: Amultiprocessor consists of a number of processors which com-
municate through a shared memory. We typically have a set of microprocessors
connected by a high-speed parallel bus to a global memory. Memory arbitration
at hardware level is needed in these systems.

• multicomputer: Each processor has private memory and typically communicates
with other microcomputers by sending and receivingmessages. There is no global
memory in general.

• cluster computing: A cluster is a set of connected computers that communicate
and synchronize usingmessages over a network to finish a common task. A cluster
is envisioned as a single computer by the user and it acts as a single computer
by the use of suitable software. Note that a cluster is a more abstract view of a
multiprocessor systemwith software capabilities such as dynamic load balancing.

• Grid computing: A grid is a large number of geographically distributed computers
that work and cooperate to achieve a common goal. Grid computing provides a
platform of parallel computing mostly for embarrassingly parallel applications
due to unpredictable delays in communication.

• Cloud computing: Cloud computing enables sharing of networked computing
resources for various applications using the Internet. It provides delivery of ser-
vices such as online storage, computing power, and specialized user applications
to the user.
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• parallel processing with GPUs: A graphical processing unit (GPU) is a
co-processor with enhanced graphic processing capabilities. CUDA is a parallel
computing platform that uses GPUs for parallel processing formed by NVIDIA
[2].

4.3 Parallel Architectures

A processing unit has a processor, a memory, and an input/output unit in its most
basic form.We need a number of processors that should execute in parallel to perform
subtasks of a larger task. These subtasks need two basic operations: communication
to transfer data produced and synchronization.We can have these operations in shared
memory or distributed memory configurations as described next. A general trend in
parallel computing is to employ general-purpose off-the-shelf processors connected
by a network due to the simplicity and the scalability of such configurations.

4.3.1 SharedMemory Architectures

In a shared memory architecture as shown in Fig. 4.8a, each processor has some
local memory, and interprocess communication and synchronization are performed
using a shared memory that provides access to all processors. Data is read from and
written to the shared memory locations; however, we need to provide some form of
control on access to this memory to prevent race conditions. We can have a number
of shared memory modules as shown in Fig. 4.1b with the network interface to these
modules providing concurrent accesses to different modules by different processors.

The main advantage of shared memory parallel processors is fast data access
to memory. However, the shared memory should be protected against concurrent
accesses by the parallel tasks and this process should be controlled by the programmer
inmany cases. Anothermajor disadvantage of sharedmemory approach is the limited
number of processors that can be connected due to the bottleneck over the bus while
accessing the shared memory. In conclusion, we can state shared memory systems
are not scalable.

4.3.2 DistributedMemory Architectures

There is no shared memory in distributed memory architectures, and the commu-
nication and synchronization are performed exclusively by sending and receiving
of messages. For this reason, these systems are also called message passing sys-
tems. Each processor has its own local memory, and address space is not shared
among processors. One important advantage of distributed memory systems is we
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Fig. 4.1 Parallel computing architectures, a a shared memory architecture with a single global
memory, b a shared memory architecture with a number of memory modules, c a distributed
memory architecture, d a distributed and shared memory architecture

can use off-the-shelf computers and connect them using a network to have a parallel
computing system. Access to local memories is faster than global memory access;
however, the algorithm designer should take the responsibility of how and when to
synchronize the processor and transfer of data. The main advantage of distributed
memory systems is their scalability and use of the off-the-shelf computers. Also,
there are no overheads in memory management as in shared memory. As the main
disadvantage, it is the task of the algorithm designer to manage data communication
using messages; and communication over the network is commonly serial which is
slower than the parallel communication of the shared memory system. Also, some
algorithms are based on sharing of global data converting and mapping of which to
distributed memory may not be a trivial task.

In many cases, contemporary parallel computing applications use both shared
memory and distributed memory architectures. The nodes of the parallel computing
system are symmetric multiple processors (SMPs) that are connected via a network
to other SMPs in many cases. Each SMP node works in shared memory mode to run
its tasks but communicates with other nodes in distributed memory mode as shown
in Fig. 4.1d.
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4.3.3 Flynn’s Taxonomy

Flynn’s taxonomy of parallel computers classifies parallel computers based on how
they process instructions and data as follows [3]:

• Single-instruction Single-data (SISD) computers: These computers execute one
instruction per unit time on one data item. First, computers with one processor
operated in this mode. Most modern processors have a number of cores in their
processing unit.

• Single-instructionMultiple-data (SIMD) computers:We have synchronous paral-
lel processors executing the same instruction on different data in this architecture.
Processor arrays and vector pipelines are the two main examples in this model.
These parallel processors are suitable for scientific applications that deal with
large data.

• Multiple-instruction Single-data (MISD) computers: These processors execute
different instructions on the same data. This model is not practical except the case
of pipelining stages within the processor.

• Multiple-instruction Multiple-data (MIMD) computers: We have processors run-
ning different instructions on different data in this case. This model exhibits the
most common and versatile model of parallel computing. Parallel computer clus-
terswith network communications, grids, and supercomputers fall in this category.

Special architectures provide communication links that can transfer data between
multiple source–destination pair of nodes in parallel. In a hypercube, processors are
connected as the vertices of a cube as shown in Fig. 4.2a for a hypercube of size
4. The largest distance between any two processors is log n in a hypercube with n
processors, and a hypercube of size d has n = 2d processors. Each node has an
integer label which has a difference of one bit from any of its neighbors providing
a convenient way of detecting neighbors while designing parallel algorithms on the
hypercube.

A linear array consists of connected processors connected in a line each having
a left and right neighbor except the starting and terminating processor as depicted
in Fig. 4.2b. A ring network has processors connected in a cycle as in Fig. 4.2c.
The mesh architecture has a 2-D array of processors connected as a matrix and the
balanced tree architecture is a tree with nodes as processors each of which has two
children except the leaves as shown in Fig. 4.2c, d. Few parallel computers including
Cray T3D, SGI, and IBM Blue Gene have mesh structures.
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Fig. 4.2 Special parallel processing architectures, a a hypercube of dimension 4, b a linear array,
c a mesh of two dimensions, d a balanced binary tree

4.4 Models

We need a model of parallel computing which specifies what can be done in parallel
and how these operations can be performed. Two basic models based on architectural
constraints are described next.

4.4.1 PRAMModel

The parallel random access memory (PRAM) extends the basic RAM model to
parallel computing. The processor is identical with some local memory, and there is
a global shared memory used for communication and synchronization. Therefore, it
assumes the shared memory architecture described in Sect. 4.3.1. Processors work
synchronously using a global clock and at each time unit, a processor can perform
a read from a global or local memory location; execute a single RAM operation and
write to one global or local memory location. PRAMmodels are classified according
to the read or write access rights to the global memory as follows.

• The exclusive-read-exclusive-write (EREW) model requires each processor to
read from or to write to global memory locations exclusively, one processor at a
time.
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• The concurrent-read-exclusive-write (CREW) model allows concurrent reading
of the same global memory location bymore than one processor; however, writing
to a global memory location has to be done exclusively.

• The concurrent-read-concurrent-write (CRCW) model is the most versatile of all
as it allows both concurrent reads and concurrent writes. In case of concurrent
writes, a mechanism is needed to decide what is to be written as last to thememory
location. There may be arbitrary writes or writing with priority.

The PRAM model is idealistic as it assumes unbounded number of processors
and unbounded size of shared memory. However, it simplifies parallel algorithm
design greatly by abstracting communication and synchronization details. We have
n processors that work synchronously and we can have at most n operations in any
unit time. We can therefore use this model to compare various parallel algorithms to
solve a given problem.We will see examples of PRAM graph algorithms in Sect.4.8.

4.4.2 Message PassingModel

Message passing model is based on the distributed memory architecture. There is no
shared memory, and the parallel tasks that run on different processors communicate
and synchronize using two basic primitives: send and receive. Calls to these rou-
tines may be blocking or non-blocking. A blocking send will stop the caller until an
acknowledgement from the receiver is received. A blocking receive on the other hand
will prevent the caller from continuing until a specific/general message is received.
We can assume that the network is reliable and transfers the messages to its desti-
nation with high reliability and the receiving task needs the data it receives before
continuing. It is therefore general practice to have a non-blocking send and a block-
ing receive pair as shown in Fig. 4.3a. We may need the blocking send and receive
pair of routines as shown in Fig. 4.3b for applications requiring high reliability such
as in parallel hard real-time systems.

blocking sendnon-blocking send

blocking receive

time

blocking receive

time

acknowledge

Sender

Receiver

Sender

Receiver

(a) (b)

Fig.4.3 Blocking and non-blocking communication modes, a a non-blocking send and a blocking
receive, b a non-blocking send and a non-blocking receive. Blocked times are shown by gray
rectangles. Network delays cause the duration between sending and receiving of a message
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4.5 Analysis of Parallel Algorithms

We need to assess the efficiency of a parallel algorithm to decide its goodness. The
running time of an algorithm, the number of processors it uses, and its cost are used
to determine the efficiency of a parallel algorithm. The running time of a parallel
algorithm Tp can be specified as

Tp = t f in − tst

where tst is the start time of the algorithm on the first (earliest) processor and t f in
is the finishing time of the algorithm in the last (latest) processor. The depth Dp

of a parallel algorithm is the largest number of dependent steps performed by the
algorithm. The dependency in this context means a step cannot be performed before
a previous one finishes since it needs the output from this previous step. If Tp is
the worst-case running time of a particular algorithm A for a problem Q using
p identical processors and Ts is the worst-case running time of the fastest known
sequential algorithm to solve Q, the speedup Sp is defined as below:

Sp = Ts
Tp

(4.1)

We need the speedup to be as large as possible for efficiency. The parallel process-
ing time Tp increases with increased interprocess communication costs resulting in
a lower speedup. Placing parallel tasks in fewer processors to reduce network traffic
decreases parallelism and these two contradicting approaches should be considered
carefully while allocating parallel tasks to processors. Efficiency of a parallel algo-
rithm is defined as

Ep = Sp
p

(4.2)

A parallel algorithm is said to be scalable if its efficiency remains almost constant
when both the number of processors and the size of the problem are increased.
Efficiency of a parallel algorithm is between 0 and 1. A program that is scalable
with speedup approaching p has efficiency approaching 1. Let us analyze adding n
numbers using k processors assuming n/k elements are distributed to each processor.
Each pi , 0 ≤ i < k, finds its local sum in Θ(n/k) time. Then, the partial sums
are added in log(k) time by k processors resulting in a total parallel time Tp =
Θ(n/k + log k). The sequential algorithm has a time complexity of Ts = Θ(n).
Therefore, efficiency of this algorithm is

Ep = Ts
kTp

= n

n + k log k
(4.3)
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We need Ep to remain as a constant c and solving for n yields

n = c

1 − c
k log k (4.4)

Listing the efficiency values against the size of the problem n and the number
of processors k, we can see for (n, k) values of (64,4), (192,8), and (512,16), the
efficiency is 80 % [6] for a maximum of (512,32) value; all other efficiency values
are lower. Total cost or simply the cost of a parallel algorithm is the collective time
taken by all processors to solve the problem. The cost on p parallel computers is the
time spent multiplied by the number of processor as pTp, and hence

Tp ≥ Ts
p

which is called the work law. We are interested in the number of steps taken rather
than physical time duration of the parallel algorithm. A parallel algorithm is cost-
optimal if the total work done W is

W = pTp = Θ(Ts)

In other words, when its cost is similar to the cost of best-known sequential
algorithm for the same problem, the parallelism achieved P can be specified in
terms of these parameters as below:

P = W

S

Let us illustrate these concepts by another parallel algorithm to add 8 numbers;
this time each processor does one addition only. A possible implementation of this
algorithm using four processors is shown in Fig. 4.8. We can see the number of
dependent steps which is the depth of this algorithm is 3 and the total work done is
7 as 4, 2, and 1 additions are done in steps 1, 2, and 3. These problems are termed
as circuit problems which include finding minimum/maximum values in an array
and their depth is log n as can be seen. Total work done in these algorithms is n-1
(Fig. 4.4).

4.6 Basic CommunicationModes

Processes residing on different computing nodes of the parallel system need to com-
municate to finish an overall task. We can distinguish the two basic modes of com-
munication between the processes: either all processes involved in the parallel task
communicate or a group of processes communicate with each other. Viewed from
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Fig. 4.4 A parallel
summation algorithm with
four processors p1, .., p4 to
add 8 numbers

p1 p2 p3 p4

p1 p3

p1

1 3 24 5678

12 98 7

20 16

36

+ + + +

+ +

+

another angle, there is also the architecture of the hardware that needs to be con-
sidered when specifying these communication modes. The following are the basic
communication between all n processes of the system or the group [6].

• One-to-all Broadcast: A process pi broadcasts a message m to all n − 1 other
processes. The message m is copied to the private memories of all processes in
the distributed memory model and to the global memory in the shared memory
model. In a tree-structured network, this mode can be realized by the root sending
a message m to its children which transfer m to their children until leaves of the
tree receive it. This transfer is achieved in Θ(log n) time by the transfer of O(n)

messages.
• All-to-one Reduction: The data of each process of the parallel system is combined

using an associative operator and the result is stored in a single memory location
of a specific process.

• All-to-all Broadcast andAll-to-all Reduction:We have each process pi , 0 ≤ i < n
of n processes sending message mi to all other processes simultaneously. Each
process stores messages mi , 0 ≤ i < n at the end of this communication. In the
all-to-all reduction, mode is the reverse operation of all-to-all broadcast in which
each process pi stores n distinct messages sent by other processes in the end.

• Scatter and Gather Operation: A personalized uniquemessage for each process is
sent from a process in the scatter operation. The source process pi has messages
m j , 0 ≤ j < n, j �= i for each of the processes and each process p j , j �= i ,
receives its message m j in the end. The reverse procedure is performed in the
gather operation with each process sending its unique message to be gathered at
one specific process.

• All-to-all Personalized Communications: In this mode, each process pi has a
distinct message mi and sends this message to all other processes. All processes
in the system receive messages mi , 0 ≤ i < n at the end of this communication.

Let us try to implement all-to-all-broadcast communication in a hypercube of
dimension d. Each node i has a distinct message mi in the beginning and we require
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Fig.4.5 All-to-all communication in a 3-D hypercube. The first data exchange between neighbors
is in x direction, then y and finally in z directions in a, b and c consecutively

each node to have all messages mi , 0 ≤ i < n, with n = 2d at the end of the
algorithm. We can have all neighbors exchange their messages along x-axis in the
first step, then exchange the obtained result along y-axis, and finally along z-axis in
the last step for a 3-D hypercube as shown in Fig. 4.2. Note that the size of messages
transmitted is doubled at each step and the total number of steps is d (Fig. 4.5).

The problem here is to write an algorithm that provides data transfer specified
above. We can make use of the labeling of the nodes in a hypercube which differ in
one bit from any neighbor. The least significant bit (LSB) difference of a node from
a neighbor is in x direction, the second LSB difference is in y direction, and so on.
We can therefore bitwise Exclusive-OR of an identity of a node to find the identity
of its neighbor. For example, node 5 (0101B) when XORed with 0001B results in
4 which is the neighbor of node 5 in x direction. Algorithm 4.1 makes use of this
property and selects neighbors (neigh) for transfer which have 1-bit difference at
each iteration. Total number of steps is the dimension d of the hypercube.
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4.7 Parallel AlgorithmDesignMethods

We can employ one of the following strategies when designing a parallel algorithm;
modify an existing sequential algorithm by detecting subtasks that can be performed
in parallel which is by far one of the most commonly used approaches. Alternatively,
we can design a parallel algorithm from scratch or we can start the same sequential
algorithm on a number of processors but with different, possibly random initial
conditions and the first one that finishes becomes the winner. Foster proposed a four-
step design approach for parallel processing stated below [4]. We will look into these
steps in more detail in the following sections.

Algorithm 4.1 All-to-All Broadcast on Hypercube
1: procedure ATA_Bcast_HC(my_id, my_msg, d, all_msgs)
2: for i ← 0 to d − 1 do
3: neigh ← my_id ⊕ 2i

4: send all_msgs to neigh
5: receive msg from neigh
6: all_msgs ← all_msgs ∪ msg
7: end for
8: end procedure

1. Partitioning: Data, the overall task or both, can be partitioned into a number
of processors. Partitioning of data is called data or domain decomposition and
partitioning of code is termed functional decomposition.

2. Communication: The amount of data and the sending and receiving parallel sub-
tasks are determined in this step.

3. Agglomeration: The subtasks determined in the first two steps are arranged into
larger groups with the aim of reducing communication among them.

4. Mapping: The formedgroups are allocated to the processors of the parallel system.
When the task graph that depicts subtasks and their communication is constructed,
the last two steps of this methodology are reduced to graph partitioning problem
as we will wee.

4.7.1 Data Parallelism

Data parallelism or data decomposition method comprises simultaneous execution
of the same function on the elements of a data set. Dividing data to k processors
p1, .., pk , each of which working on its partition can be applied to both PRAM and
message passing models and this method is widely implemented in many parallel
computing problems. Let us illustrate this approach by the matrix multiplication. We
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need to form the product C of two n × n matrices A and B and we partition these
matrices as n/2, n/2 sub-matrices for four processes as follows:

(
C1 C2
C3 C4

)
=

(
A1 A2
A3 A4

)
×

(
B1 B2
B3 B4

)

The tasks to be performed by each process p1, .., p4 can now be stated as below:

C1 = (A1 × B1) + (A2 × B3) → p1

C2 = (A1 × B2) + (A2 × B4) → p2

C3 = (A3 × B1) + (A4 × B3) → p3

C4 = (A3 × B2) + (A4 × B4) → p4

We can simply distribute the associated partitions of matrices to each process
in the message passing model, for example A1, A2, B1, and B3 to p1, or have the
processes work on their related partitions in shared memory in the PRAM model.
In the supervisor/worker model of parallel processing, we have one process, say
p1, that has all the inputs which are matrices A and B in this case. This supervisor
node is responsible for the distribution of the initial data to worker processes and
then collecting the results. It may also be involved in computing the results if there
is a load unbalance such that the supervisor remains idle when other processes are
involved in computation. Intuitively, when there are a large number of processes with
needed dense communication, the role of the supervisor can be confined to manage
basic dataflow and provide the output. Alternatively, in the fully distributed model,
all processes are equal with input data provided to all. Each node in the network
works in its partition but exchanges messages to have the total result stored in them.
This mode may be used in the first step of a parallel task if total results are needed
by each process as input data to the next step of individual computations. We have
used block partitioning of the input matrices in this example where the matrix is
partitioned into blocks of equal size as shown in Fig. 4.6 for an 8 × 8 matrix where
we have 16 processes, p1 to p16 each having a 2 × 2 partition of the matrix.

Row-wise Array Partitioning

Let us consider a matrix A[n, n] with n rows and n columns. In row partitioning, we
simply partition the matrix A to k parts such that pi gets (i − 1)n/k + 1 to in/k
-1 rows. Such a partitioning is depicted in Fig. 4.7a for an 8 × 8 matrix with four
processes p1, p2, p3, and p4.

Column-wise Array Partitioning

In column-wise partitioning of a matrix A[n, n], each process now has n/k consecu-
tive columns of A. Column-wise partitioning of an 8× 8 matrix with four processes
is shown in Fig. 4.7b. Row-wise and column-wise partitioning of a matrix are called
1-D partitioning and the block partitioning is commonly called 2-D partitioning of
a matrix.
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Fig. 4.7 Row-wise and column-wise partitioning of a matrix

4.7.2 Functional Parallelism

Functional parallelism or functional decomposition approach involves applying dif-
ferent operations to possibly different data simultaneously. Also called task paral-
lelism, this model involves simultaneous execution of various functions on multiple
processors on the same or different data sets. The divide and conquer algorithmic
method can be efficiently implemented using this model. We have reviewed the
sequential divide and conquer method in which we recursively divided the problem
into smaller instances, solved the smaller cases, and merged the results recursively
to obtain the final result. Divide and conquer algorithms are good candidates for
parallelization since the recursions can be done in parallel. Let us consider adding n
numbers using divide and conquer as shown in Algorithm 4.2.

Analysis of this algorithm shows it obeys the recurrence relation T (n) =
2T (n/2) + 1 which has solution T (n) = O(n). In order to have a parallel
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Algorithm 4.2 Recursive Sum
1: function sum(A[1..n])
2: if n = 1 then 	 base case
3: return A[1]
4: else
5: x ← Sum(A[1..n/2])
6: y ← Sum(A[n/2 + 1..n])
7: return x + y 	 recursive call
8: end if
9: end function

version of this algorithm, we note the recursive calls are independent as they operate
on different data partitions; hence, we can perform these calls in parallel simply
by performing the operations within the else statement between lines 4 and 8 of
Algorithm 4.2 in parallel. The recurrence relation for this algorithm in this case is
T (n) = T (n/2) + 1 which has solution T (n) = O(log n).

4.8 Parallel AlgorithmMethods for Graphs

The divide and conquermethod requires graph structure to be partitioned into smaller
graphs and this is not an easy task due to the irregular structures of graphs. Partitioning
of data for parallel graph algorithmsmeans balanced partitioning of graph among the
processors which is an NP-hard problem. We need radically different methods for
parallel graph algorithms, and graph contraction, pointer jumping, and randomization
are the three fundamental approaches for this purpose.

4.8.1 Randomization and Symmetry Breaking

A randomized algorithm makes certain decisions based on the result of coin flips
during the execution of the algorithm as we reviewed in Chap. 3. These algorithms
assume any input combination is possible. Two main classes of randomized algo-
rithms are Las Vegas and Monte Carlo algorithms as we have outlined.

Randomized algorithms can be used effectively for parallel solution of various
graph problems. Discovering connected components of a graph, finding maximal
independent sets, and constructing minimum spanning trees of a graph can all be
performed by parallel randomized algorithms as we will see in Part II.

Symmetry breaking in a parallel graph algorithm involves selection of a subset
from a large set of independent operations using some property of the graph. For
example, finding all candidate vertices for the maximal independent set (MIS) of a
graph can be done in parallel. However, we cannot have both of adjacent vertices
included in the MIS as this violates the definition of MIS. A symmetry breaking

http://dx.doi.org/10.1007/978-3-319-73235-0_3
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Fig. 4.8 Partitioning of a
sample graph into three
disjoint vertex sets;
V1 = {a, b, c, d},
V2 = { f, g, h, e} and
V3 = { j, k, l}. A number of
vertices in these partitions
are 4, 4, and 3, respectively,
and there is a total of three
edges between the partitions
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procedure may select the vertex with a lower identifier or a lower degree. In general,
symmetry breakingmay be employed to correct the outputwhen independent parallel
operations on the vertices or edges of a graph produce a large and possibly incorrect
result.

4.8.2 Graph Partitioning

Given an unweighted undirected graph G = (V, E), graph partitioning task is divid-
ing the vertex set V into disjoint vertex sets V1, ..., Vk such that the number of vertices
in each partition is approximately equal and the number of edges between the sub-
graphs induced by the vertices in the partition is minimal. This process is depicted
in Fig. 4.8 where a graph is partitioned to three balanced subgraphs. Vertex and
edges may have weights associated with them representing some physical parameter
related to the network represented by a graph. In such a case, our aim in partitioning
is to have approximately equal sum of weights of vertices in each partition with a
total minimum sum of edge weights between the partitions.

In PRAM and distributed memory model, each process pi works on its partition.
Assuming work done by a processor is a function of the number of vertices and
edges in its partition, the load is evenly distributed. However, inter-partition edges
and border vertices should be handledwith carewhen obtaining the overall solution to
the problem. The duplicated border vertices in partitions they do not belong are called
ghost vertices and using these nodes helps to overcome the difficulties encountered
in the partition boundaries. A simple and effective algorithm was proposed rather
early in 1970 by Kernighan and Lin to partition a graph recursively [9]. It is basically
used to improve an existing partition by swapping vertices between the partitions to
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reduce the cost of inter-partition edges. In themulti-level graph partitioningmethod,
the graph G = (V, E) is coarsened to a small graph G ′ = (V ′, E ′) using suitable
heuristics, a k-way partition ofG ′ is computed, and the partition obtained is projected
back to the original graph G [7]. A parallel formation of this method that uses
maximal matching during coarsening phase is presented in [8].

4.8.3 Graph Contraction

Graph contraction method involves obtaining smaller graphs by shrinking the orig-
inal graph at each step. This scheme is useful in designing efficient parallel graph
algorithms in two respects. It can be conveniently performed in O(log n) steps as
the size of the graph is reduced by a constant factor at each step. Therefore, if we
can find some way of contracting a graph in parallel while simultaneously solving a
graph problem during contraction, then we have a suitable parallel graph algorithm.
Searching for a solution to some graph problems such as minimum spanning trees
during contraction is possible as we will see. Moreover, careful selection of contrac-
tion method maintains basic graph properties, and hence we can solve the problem
on a smaller graph with much ease in parallel and then combine the solutions to find
the solution for the original graph.

Let us assume we have an input graph G and obtain G1, ...,Gk small graphs after
contraction. We can solve the problem in parallel in these small graphs and then
merge the solutions. A graph contraction algorithm template shown in Algorithm 4.3
follows a typical recursive algorithm structure with the base case and an inductive
case. When we reach the base case, we start computing the required function on
the small graph and then recurse on this small graph. Note that the vertex partition
should be disjoint.

Algorithm 4.3 Graph Contraction
1: procedure Contract_Graph(G = (V, E))
2: G ← Gi

3: if graph Gi is small enough then 	 base case
4: compute the required task on Gi

5: return
6: else
7: compute vertex partitioning Vi = V1, ..., Vk of Gi

8: contract each Vj ∈ Vi into a supervertex Vk
9: remove edges inside each supervertex Vk
10: merge multiple edges between supervertices
11: G j (Vj , E j ) ← contracted graph
12: return Contract_Graph(G j (Vj , E j )) 	 recursive call
13: end if
14: end procedure
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Fig.4.9 Contraction of a sample graph. The vertex set in a is partitioned into four subsets and each
subset is represented by one of the vertices in the subset to get the contracted graph in b

Let us consider the example in Fig. 4.10 where we partition the vertex set into four
subsets which have a representative vertex as shown. Assuming the newly formed
graph is small enough, we can now solve the original problem in the small graph
which is the base case and recurse to obtain the full solution (Fig. 4.9).

4.8.3.1 Edge Contraction
The edge partitioning of a graph involves selecting distinct edges or isolated vertices
which will form the partitions. We then contract vertices pairwise that are incident to
these selected edges in this method. Since two vertices and the edge between them
are contracted to have a single vertex, the selected edges must not share endpoints
which in fact is the graph matching problem described as follows.

Definition 4.1 A matching in a graph G = (V, E) is a the set E ′ ⊂ E of its edges
such that any v ∈ V is incident to at most one edge in E ′.

In other words, edges in the matching are disjoint with no shared vertices. A
maximal matching in a graph G cannot be enlarged by the addition of new edges
and the maximum matching in G is the matching with the maximum size among all
matchings in G. We can therefore view edge partitioning and contraction problem
as recursively finding maximal matching E ′ in a graph G, edge contraction in E
to obtain G ′ and continuing with finding maximal matching in G ′, and so on. For
graph contraction, a sufficiently large matching rather than a maximal matching can
be used. We will search the graph matching problem in more detail in Chap. 9.

http://dx.doi.org/10.1007/978-3-319-73235-0_9
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Fig. 4.10 Edge contraction of a sample graph in a. A maximal matching is found and graph is
contracted to obtain the graph inb. The size of partitions is enlarged asmore vertices are included and
the label of a partition is the smallest label it has lexicographically. Final graph has two supervertices

In order to find an edge contraction of a graph, we can use a simple greedy
algorithm that picks an edge (u, v) arbitrarily inG, deletes u, v and all edges incident
to u and v from G, and repeats until no edges are left. Performing parallel matching
is not so simple, however, since more than one vertex may select the same vertex for
matching. One way to overcome this problem is to use randomization for symmetry
breaking.We can select each edge to be included in matchingM with 0.5 probability.
If an edge (u, v) is selected to be in M and all other edges incident to u or v are not
included in M , then (u, v) is decided to be in M [1]. This scheme ensures finding
correct matching in parallel.

4.8.3.2 Star Contraction
Astar graph is an undirected graphwith a center vertex and vertices that are connected
directly by vertices to the center as shown in Fig. 4.11. In star contraction, we select
a vertex in each component as the center of the star and all other vertices connected
directly to this center called satellites are contracted to form a supervertex.

In a sequential setting, we can select a vertex arbitrarily as a center and contract
all its neighbors, remove the star from the graph, and continue until (there are no
vertices left). Figure 4.12 depicts the sequential star contraction.

Aparallel star contraction algorithmcanmake use of randomization and symmetry
breaking as in edge contraction. This time, each vertex selects to be center or a satellite
with probability 0.5. A vertex u that selects to be a center becomes a center; however,
a vertex v that selects to be a satellite searches for a neighbor that has become a center.
If such a neighbor exists, it becomes a satellite of that neighbor. Otherwise, the vertex
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Fig. 4.11 A star network with a center and eight satellites
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Fig. 4.12 Iterations of star contraction of a sample graph. The contracted vertices are shown as
enlarged circles and centers as shaded

v becomes a center. If there are more than one center neighbors of v, it selects one
arbitrarily to be its center [1].

4.8.4 Pointer Jumping

Let us consider a linked list of n elements with each element pointing to the next
element in the list. The pointer jumping method provides each element to point to
the end of the list after log n steps. At each step of the algorithm, each element points
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to the element pointed by its successor as shown in Algorithm 6.1. This algorithm
can run in parallel as each pointer update can be performed in parallel.

Algorithm 4.4 Pointer Jumping
1: Input : a linked list L with n elements
2: Output : modified L
3: for i = 1 to log n� do
4: for each list element a in parallel do
5: a.next ← (a.next).next
6: end for
7: end for

The operation of this algorithm for a linked list of eight elements is shown in
Fig. 4.13. We can use this template for parallel graph algorithm design that uses
linked lists as graphs can be represented by adjacency or edge lists. Pointer jumping
method is suitable for PRAM model with shared memory.

List Ranking

Given a linked list L , finding the distance from each node of L to the terminal node
is called list ranking. Algorithm 6.1 can be modified to compute these distances as
shown in Algorithm 4.5.

1 1 1 1 1 1 1 0

0

0

0

2 2 2 2 2 1

4 4 4

1234567

4 3 2 1

7

2

Fig. 4.13 Pointer jumping method in a linked list of eight elements. After three steps, all of the
elements point to the end of the list. List ranking algorithm is also depicted in this figure at the end
of which all nodes have distances to the head stored
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Algorithm 4.5 List Ranking
1: Input : a linked list L with n elements as (dist, next)
2: Output : distances of list elements to the list head
3: for each list element a in parallel do 	 initialization
4: if a.next = Ø then
5: a.dist ← 0
6: else a.dist ← 1
7: end if
8: end for
9: for i=1 to log n� do
10: for each list element a in parallel do
11: if a.next �= Ø then
12: a.dist ← a.dist + (a.next).dist
13: a.next ← (a.next).next
14: end if
15: end for
16: end for

Line 12 of this algorithm for a node a involves reading the distance of the next
node of a and then adding this distance to own and writing the sum as the new
distance to a. These two consecutive operations can be done in constant time in only
CRCW PRAMmodel. In order to provide EREW version of this algorithm, we need
to replace line 12 by a read line and a write line below, both of which should be
executed in EREW mode. The time complexity of this algorithm is O(log n).

temp = (a.next).d
a.d = temp

4.8.5 Ear Decomposition

An ear decomposition of a graph is defined as follows.

Definition 4.2 (ear decomposition) An ear decomposition of a graph G = (V, E)

is the union of paths P0, P1, ..., Pn with P0 being a simple cycle and Pi (1 ≤ i ≤ n)
is a path with both endpoints in P0 ∪ P1 ∪ ... ∪ Pi−1.

An ear decomposition of a graph is depicted in Fig. 4.14. A graph has an ear
decomposition if and only if it has no bridges. An ear decomposition of a graph
can be used to determine if two edges are part of a common cycle which can be
used to resolve some graph properties such as connectivity and planarity. An ear
decomposition of a graph can be found in logarithmic time in parallel and hence
these problems can be solved in parallel conveniently using this method.
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Fig. 4.14 An ear
decomposition of a graph
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4.9 Processor Allocation

Allocation of subtasks of a task to processors such that each processor is utilized
efficiently during computation is one of the important tasks in parallel computing.We
may know the subtask characteristics such as its computation time, communication
times and durations, and the subtasks it communicates beforehand in which case we
may apply static scheduling strategies. If these parameters are not known, dynamic
load balancing methods are commonly used to keep all processors busy at all times.

4.9.1 Static Allocation

Static allocation of tasks to processors is performed before the execution of the
algorithm. We need to know the execution time of tasks, their interaction, and the
size of data transferred between tasks to be able to perform this allocation. We will
assume the computation time of a subtask ti ; its predecessors which are subtasks
that have to finish before ti and its successors which can start when ti finishes are
known in advance with the duration of each communication. In this case, we can
draw a task dependency graph that illustrates these parameters as shown in Fig. 4.15
for six subtasks of a task. Assuming we have a task set T consisting of n subtasks
t1, ..., tn and a processor set P = p1, ..., pk of k elements, this problem is reduced to
finding the optimal function F : T → P . This process is commonly called mapping
or static scheduling. Unfortunately, the solution set for F grows exponentially with
increased n and heuristic methods for static task allocation are frequently employed.
The chart in Fig. 4.15b which shows the allocation of tasks to processors against
time is called a Gantt chart designed by Henry Gantt in 1910 [5].

4.9.2 Dynamic Load Balancing

In dynamic load balancing,we allocate the tasks to the processor during the execution
of the parallel algorithm. This method is needed when task characteristics are not
known en priori.Wemay have a centralized load balancing scheme inwhich a central
process commonly called the supervisor manages load distribution. Whenever a
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Fig.4.15 Allocation of static tasks using the task dependency graph. We have a graph of nine tasks
in a and a possible allocation to three processors is shown in b. The partitioning here attempts to
put tasks that communicate heavily to the same processor by also trying to keep the workload in
each processor similar
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processor becomes idle, supervisor is informed which provides a new subtask/data
to the idle worker. Fully distributed approaches have no supervisor processes and
monitoring of load at each processor is performed by equal workers which exchange
their states during execution of the parallel program. The overloaded process may
start transfer of work to a lightly loaded process or work transfer may be initiated
by the receiving process. The first approach is called sender-initiated and the latter
receiver-initiated dynamic load balancing.

4.10 Parallel Programming

Parallel programming involves writing the actual code that will run on the parallel
machine.Wewill review parallel programmingwith examples in sharedmemory and
message passing distributed memory models. This task can be modeled as single-
program multiple-data (SPMD) paradigm in which all processes execute the same
code on different data or multiple-program multiple-data (MPMD) model with each
process running different codes on different data in both of these models.

4.10.1 SharedMemory Programming with Threads

Operating systems are built around the concept of a process which is the basic unit
of code to be scheduled that has data such as registers, stack, and private memory.
Organizing the main functions of an operating system which are resource manage-
ment and convenient user interface around this perception has many advantages. In
the very basic sense, many processes can be scheduled independently in multitasking
operating systems preventing the unnecessary waits due to slow input/output devices
such as disks. A process can be in one of the three basic states at any time: running
when it is executing, blocked when it cannot execute due to the unavailability of a
resource, or ready when the only resource it needs is the processor. Using processes
provides switching the processor among different processes. The current environ-
ment of the running process such as its registers, file pointers, and local data is stored
and the saved environment of the new process to run is restored in context switching.
Another problem encountered when using this model of computing is the protection
of the shared memory among processes when data in this area needs to be read or
written. The code of a process or the operating system that performs access to shared
memory with other processes is called the critical section. Although in theory we
can use processes for parallel processing in shared memory environment, two main
difficulties are the costly overhead of context switching and protection of shared
memory segments against concurrent read/write operations by the processes.
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4.10.1.1 Threads
Modern operating systems support threads which are lightweight processes within
a process. A thread has program counter, registers, stack, and a small local memory
making the context switching at least an order of less costly than switching processes.
There is the global area of the process which needs to be protected since threads need
to access this area often. There are two main types of threads: kernel threads and
user threads. A kernel thread is known by the kernel of an operating system and
hence can be scheduled independently contrary to the user threads which are only
identified in user space. The user threads are managed by the runtime resulting in an
order of decrease in their context switch when compared to kernel threads. However,
a user thread blocked on an input/output operation blocks the whole process since
these threads are not identified by the kernel.

4.10.1.2 POSIX Threads
Portable operating system interface (POSIX) is a set of standards which grew out
of necessity as joint efforts by IEEE and ISO to provide compatible software for
different operating systems [13]. POSIX threads standard is an application program-
ming interface (API) specifying a number of routines for thread management. The
fundamental thread management functions in this library can be classified as below.

• Thread function: The thread itself is declared as a procedure with input parameters
and also possible return parameters to be invoked by the main thread.

• Thread creation: This system call creates a thread and starts running it.

int pthread_create(&thread_id,&attributes,start_function,

arguments);

where thread_id is the variable; the created thread identifier will be stored after
this system call, certain properties of a thread can be initialized by the attributes
variable, start_function is the address of the thread code, and the arguments are
the variables passed to the created thread.

• Waiting for thread termination: Themain threadwaits for the threads it has created
using this function call.

int pthread_join(pthread_t thread, void **status);

where thread is the identifier of the thread to wait and status is used for the return
status or passing back a variable to the main thread.

• Thread synchronization: Threads need to synchronize for critical sections and also
for notifying events to each other using data structures such as mutual exclusion
variables, condition variables, and semaphores.
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Mutual Exclusion

Protection of global variables using POSIX threads is provided by mutual exclusion
variables. In the sample C code using POSIX threads below, we have two threads
T 1 and T 2, a global shared variable data between them, and a mutual exclusion
variable m which is initialized by the main thread which also activates threads and
finally waits for them to finish. Each thread locksm before entering its critical section
preventing interruption in this section. Upon exit, it unlocks m to enable any other
thread enter its critical section protected by m. The operating system ensures that
lock and unlock operations on the mutual exclusion variables are executed atomic
and hence cannot be interrupted.

#include <pthread.h>

int data;

pthread_t thread1, thread2;

pthread_mutex_t m;

T1(){ T2(){

... ...

pthread_mutex_lock(&m); pthread_mutex_lock(&m);

data=data+1; data=data*4;

pthread_mutex_unlock(&m); pthread_mutex_unlock(&m);

... } ... }

main() {

pthread_mutex_init(&m);

pthread_create(&thread1,NULL,T1,*void);

pthread_create(&thread2,NULL,T2,*void);

...

pthread_join(thread1,NULL);

pthread_join(thread2,NULL);

}

Synchronization

Threads, as processes, need to synchronize on conditions. Let us assume two threads
one of which produces some data (producer) and needs to inform another thread
that it has finished this task so that the second thread can retrieve and process this
data (consumer). The consumer thread cannot proceed before the first producer
declares the availability of data using some signaling method. Semaphores are data
structures consisting of an integer and commonly a process queue associated with
them. Processes and threads can perform two main atomic actions on semaphores:
wait in which the caller may wait or continue depending on the condition it intends
to wait, and signal call provides signaling the completion of the waited event by also
possibly freeing any waiting process for that event.
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The C code provided below shows how two threads synchronize using two
semaphores sema1 and sema2. We have a thread producer which inputs some data
and writes this data to shared memory location data. It then signals the other thread
consumer which reads this data and processes it. Synchronization is needed so that
unread data is not overwritten by the producer and also data is not read and processed
more than once by the consumer. The semaphore sema1 is initialized to true value in
the main thread thereby allowing thread producer that executes a wait on it to con-
tinue without waiting in the first instance, since it has nothing to wait initially. The
second semaphore sema2 is initialized to false value since we do not want consumer
to proceed before producer signals the availability of data for producer. Semaphores
can also be used for mutual exclusion but employment of mutual exclusion variables
for mutual exclusion should be preferred to enhance readability of the program and
also for performance.

#include <pthread.h> pthread_t t1, t2;

sem_t sema1,sema2;

int data;

void producer() void consumer()

{ while(true) { { while(true){

wait(sema1); wait(sema2);

input some_data; my_data = data;

data = some_data; signal(sema1);

signal(sema2); process my_data;

} }

} }

main() {

pthread_create(&t1,NULL,producer,*void);

pthread_create(&t2,NULL,consumer,*void);

sem_init(&sema1,1,0);

sem_init(&sema2,1,0);

...

}

A multithreaded program with the POSIX thread library (lpthread) can be com-
piled and linked as follows in UNIX environment:

cc -o sum sum.c -lpthread
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A Parallel Algorithm with POSIX Threads

Let us use POSIX threads to calculate the PI number using shared memory parallel
processing. This number can be defined by various methods and one such technique
is taking the integral of 4/(1+x2) between 0 and 1 to find an approximate solution. In
our design, we will divide the area under this curve into n number of strips; calculate
the area of each strip in parallel using POSIX threads and add these areas to find
the whole area under the curve between 0 and 1, using the fact that integral of a
function between two limits is the size of the area with it within these limits and the
x-axis. Each thread has a unique thread identifier given by the operating system at
runtime; however, we pass an increasing sequential integer starting from 1 to each
one to define the area of the curve the thread will work. The global memory variable
total_area is to be updated by each thread and therefore needs to be protected
against concurrent accesses by a mutual exclusion lock named m1.

#include <stdio.h>

#include <pthread.h>

#define n 100

#define n_threads 1024

pthread_t threads[n_threads];

pthread_mutex_t m1;

int total_area;// global variable to store PI

/******************************************************

thread code to be invoked n_threads times

******************************************************/

void *worker(void *id)

{ int me=*((int *)id);

int i, n_slice;

double width, my_sum;

width = 1/(double) n_threads;

x = my_id * width;

y = 4.0 / (double)(1+(x * x));

my_area = x * y; // find my_area

pthread_mutex_lock(&m1); // update total_area

total_area = total_area + my_area;

pthread_mutex_unlock(&m1);

}

/******************************************************
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main thread

******************************************************/

main()

{ pthread_t threads[n_threads];

int i;

pthread_mutex_init(&m1);

for(i=1; i<=n_threads; i++)

pthread_create(&threads[i],NULL,worker,i);

for(i=1; i<=n_threads; i++)

pthread_join(threads[i],NULL);

printf("Approximate PI is:

Figure 4.16 displays the PI curve between 0 and 1 x-axis values where we assume
five parallel threads for simplicity. Precision can be improved by either increasing
the number of threads and/or calculating the area as the mean value of the border
area values as shown in the figure.

Threads can be used conveniently for parallel processing in modern multi-core
processors. They communicate using shared memory and hence do not need to send
messages thereby preventing data communication delays at the expense of overheads
caused for the protection of shared memory. OpenMP is a widely used parallel
processing platform that uses multithreading [12,15].

Fig. 4.16 The PI curve
between 0 and 1 x-axis
values. The area under the
curve can be better
approximated if each thread
calculates the average of the
areas of two rectangles
formed by border values as
shown for T3 which should
find areas for x = 0.4 and
x = 0.6 values and average
them
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4.10.2 DistributedMemory Programming withMPI

Message passing interface (MPI) standard specifies amessage passing library of rou-
tines to provide a portable, flexible, and efficient method to write message passing
programs [10,11].Although it is primarily targeted for distributedmemory programs,
the later developments and versions of MPI provide distributed memory, shared
memory, or hybrid implementations. Parallel Virtual Machine (PVM) is another tool
widely used for parallel processing [14]. MPI consists of routines to send and receive
data among processes and various other modes of communication such as broadcast-
ing a message to all processes in the system or multicasting in which a message is
sent to a group of messages. MPI programs start by initializing the environment, per-
forming parallel computations by sending and receiving messages among processes,
and then terminating. In order to define the set of processes that will run, objects
called communicators are employed. Each process in MPI belongs to a communica-
tor and inside a communicator, each process has a unique identifier called its rank.
The following C routines are used to initialize the parallel computing environment
and then terminate.

• MPI_Init(int *argc, char **argv): Inputs a pointer to the number of arguments and
a pointer to the argument vector. These parameters are passed from the command
line to specify the number of processes to be invoked.

• int MPI_Comm_size(MPI_Comm comm, int *size): The number of parallel
processes in the communicator comm is returned in size in the communicator
comm.

• int MPI_Comm_rank(MPI_Comm comm, int *rank): Returns the rank of a
process in the group comm. The ranks are ordered 0,..., size-1.

• int MPI_Finalize(void): This routine is called by each process before exiting to
clean up the library and terminate.

The main procedures for data transfer are the send and receive routines with many
variations. The blocking send and the blocking receive are specified below:

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

where buf is the address of send/receive buffer, count is the number of elements in
the buffer, datatype is the data type of each send/receive buffer element, dest/source
is the integer rank of destination/source, tag is the type of message, comm is the
communicator, and status is the status object to be examined. Note that two processes
may use message tag to perform different actions by different tags. We can now
write a simple MPI application of two processes sending and receiving messages in
C programming language as below:
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#include <mpi.h>

int main(int argc, char** argv) {

int my_rank, size, data;

// Initialize the MPI environment

MPI_Init(argc, argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (my_rank == 0) { // rank 0 is the sender

data = 23;

MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

printf("This is process

} else if (my_rank == 1) { // rank 1 is the receiver

MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

printf("This is process

}

MPI_Finalize();

}

The same code is run on all processors in this SPMDmodel which is very common
in MPI applications due to the difficulty in writing different codes for different
processes. The instructions to be run by each process are separated by the use of
process identifiers. In this example, rank 0 is the sender and rank 1 is the receiver.
We need to compile and run this code namedmess.c inUNIX environment as follows:

mpicc -o mess mess.c

mpirun -np 8 mess

The first line is the compiling and linking command using the mpicc com-
piler/linker and the second line starts running the executable program with eight
processes. Note that we pass this argument of eight processes to the main program in
which MPI_Init uses to initialize the environment and starts running these identical
processes in a hardware environment we do not know. In fact, we could have installed
MPI on a single computer and eight processes could run on the same computer. The
following example displays the use of MPI to calculate PI using the same method
of finding the area under the curve 4/(1 + x2) between x = 0 and x = 1 as we did
with POSIX threads.
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#include <mpi.h>

#include <math.h>

int main(int argc,char **argv)

{

int i, n, my_id, n_slices, n_procs, n_sl;

double my_area, total_area, width, x, my_sum;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&n_procs);

MPI_Comm_rank(MPI_COMM_WORLD,&my_id);

if (myid == 0) {

printf("Enter the number of slices for each process:");

scanf("%d",&n_slices);

MPI_Bcast(&n_slices, 1, MPI_INT, 0, MPI_COMM_WORLD);

for(i= 1; i < n_procs; i++) {

MPI_Recv( &part_area, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

1, MPI_COMM_WORLD, &status);

total_area += part_area; }

printf("Approximate PI is: %f", total_area);

}

else {

MPI_Recv(&n_sl, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

my_sum = 0.0;

width = 1.0 / (double) (n_sl + 1);

for (i = my_id + 1; i <= n_sl; i++) {

x = width * (double)i ;

my_area += 4.0 / (1.0 + x*x);

}

MPI_Send(&my_area, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);

}

MPI_Finalize();

return 0;

}

Note that this is a supervisor/worker model of message passing parallel processing
that uses SPMD paradigm. The supervisor process, sometimes called the root, has
rank 0 and starts by initialization as all other processes followed by asking the user
with the number of slices to be processed by each process under the curve. It then
broadcasts this value to all processes. Each process then computes the area under
its portion of the curve for the number of slices and sends this partial area to the
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supervisor which adds them and outputs. We could have the supervisor also involved
in the computation of PI (See Exercise 6).

4.11 Conclusions

We have reviewed the parallel computing fundamental concepts in this chapter with
emphasis on design methods for parallel graph algorithms. Parallel algorithms may
use the shared memory or the message passing model in a general sense. The PRAM
model is an idealistic method to design parallel algorithms in the shared memory
platform; moreover, it provides an abstract model hiding details of implementation
and hence can be used for high-level design and comparison of shared memory
parallel algorithms. Access mode to shared memory is important in this model,
and reads and writes can be performed in concurrent or exclusive modes. Message
passingmodel is suitable for distributedmemory processors which communicate and
synchronize by sending and receiving messages only. Basic communication modes
in a parallel computing system maybe classified based on the source and destination
of the data transfer. Grouping the communications under operations such as one-
to-all or all-to-all modes eases the burden of writing a parallel algorithm since we
can simply specify the needed mode rather than writing the actual algorithm for
communications. Design methods for parallel algorithms may be broadly classified
as data or functional decomposition. Data is decomposed into a number of sets to be
processed by parallel processors using the same algorithm in the first and different
tasks are allocated to different processors in the second method.

We saw graphs require special methods of parallel computing and graph contrac-
tion is a commonly used approach to enable parallel graph operations. The graph
under consideration is made smaller at each step, using methods such as edge or
star contraction. Graph contraction can be performed in parallel and also solving the
problem in a smaller graph can be done more conveniently. Some graph problems
can be solved efficiently using sequential algorithms; however, the same problems
do not have simple parallel algorithmic solutions due to the dependencies involved.
Randomization and symmetry breaking methods provide simple and elegant par-
allel graph algorithms for various graph problems such as maximal independent
sets and minimum spanning trees. Data partitioning for graphs frequently involves
dividing the adjacency matrix row-wise, column-wise, or block-wise to a number of
processors. Parallel tasks relations can be depicted by a task dependency graph and
allocation of these tasks to processors is a variation of graph partitioning problem.
This approach requires task computation times and their interaction to be known in
advance which may not be realistic in many real-life applications. Dynamic load bal-
ancing involves keeping the loads on processes even at runtime. Finally, we reviewed
two commonly used platforms for shared memory and distributed memory program-
ming: POSIX threads provide a convenientAPI to implement sharedmemory parallel
algorithms and MPI is widely used for distributed memory programming.
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Fig. 4.17 The hierarchy of
shared and distributed
memory parallel processing
models
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At a more abstract level, we can view the modeling of the whole process of paral-
lel computing at four related levels: hardware, operating system, programming, and
algorithmic levels as shown in Fig. 4.17. In all these layers of design, themain distinc-
tion is whether shared or distributed memory is used. We find operating system and
middleware should provide different services at these levels. The main problem with
shared memory approach is the protection of memory during concurrent accesses
and this is provided by the operating system constructs such as semaphores and
locks. At the programming level, threads which are lightweight processes are widely
used for sharedmemory programming. The POSIX thread library provides all neces-
sary routines for thread synchronization and mutual exclusion. The MPI standard is
widely used for distributedmemory parallel computingwith a wide range of required
message passing procedures. At algorithmic level, the PRAMmodel which assumes
shared memory is not practical as it assumes infinitely large shared memory and
infinite number of processors; however, it is used to compare various parallel algo-
rithms for the same problem. We will mostly consider distributed memory platforms
in our analysis of parallel graph algorithms in this book to provide implementable
solutions, except in few places where we describe PRAM algorithms.

Exercises

1. Write the pseudocode of an EREW PRAM algorithm that uses p processors to
find the sum of p values in O(log p) time.

2. The prefix sum of an array A[1..n] is an array B[1..n] such that B[ j] =∑ j
i=1 A[i]. Design a parallel EREW PRAM algorithm to find the prefix sum

of an input array.
3. Write the pseudocode of one-to-all broadcast communication routine in a hyper-

cube of dimension d. This routine inputs the dimension d and the identifier i of
the node and the message. Assume node 0 is the source of the message and it is
first transmitted in x direction (1), then in y direction, and finally in z direction
(3) as shown in Fig. 4.18. Work out the number of steps and work done.

4. We need to partition the task graph of Fig. 4.19 to two parallel processors. We
want to place processes that have significant communication to the sameprocessor
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to keep interprocess communications as small as possible and also want to keep
the total load (execution time of tasks) on each processor similar. The method
to be employed is to find a matching of the graph such that the heaviest disjoint
edges are selected at each iteration. Then, the vertices at each end of selected
edges are contracted to obtain supervertices. Use graph contraction until only
two supervertices remain each of which can be assigned to a single processor.
Work out the total parallel execution time by drawing aGantt chart of the schedule
of processes. Workout also the total interprocess communication cost ignoring
the communication costs of tasks assigned to the same processor.

5. Write a C program using POSIX threads API that finds the sum of an array of size
n stored in global memory. Use data parallelism to decompose data equally to k
threads. The total sum is kept in global memory and should be protected against
concurrent accesses.

6. Modify the C code for PI computation using MPI of Sect. 4.10.2 so that the
supervisor also computes the area under its portion of curve.

7. Eight processors with labels in increasing order are connected in a unidirectional
ring structure as shown in Fig. 4.20. Each process holds an integer value and
we need to sum these values and output the sum by process p0. Write an MPI
program in C language which starts by p0 sending its value to its next neighbor
which adds the value it receives with the value it has and sends the sum to its next
neighbor. The partial sums are propagated in this manner until p0 receives the
total sum and outputs it as shown in the figure. Modify this program such that p0
has an integer array of size n and distributes the portions of this array to processes
using data decomposition which perform as above to find the total sum of array.

8. A multithreaded file server is to be designed which receives a message by the
front end thread, and this thread invokes one of the open, read, andwri te threads
depending on the action required in the incomingmessage. The read thread reads
the number of bytes from the file which is sent to the sender, the wri te thread
writes the specified number of contained bytes in the message to the specified
file. Write this program in C with POSIX threads.
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Fig. 4.20 A unidirectional ring of eight processes used to calculate sum of integers stored at each
node. The integers stored are shown next to nodes and the messages contain the partial sums
transferred
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Abstract

A distributed system consists of a number of computational nodes connected
by a communication network. The nodes of a distributed system cooperate and
communicate to achieve a common goal. We first describe the type of distributed
systems, the communication and synchronization methods used in these systems.
We then investigate few fundamental distributed algorithms including spanning
tree construction, broadcast and convergecast operations over a spanning tree, and
leader election.

5.1 Introduction

A distributed computing system or a distributed system as more commonly termed
consists of a number of computational nodes connected by a communication network.
Computing nodes are autonomous and the network can be awiredmedium; awireless
communication channel or both. The nodes of a distributed system cooperate and
communicate to achieve a common goal. It is evident that synchronization among
computations at the nodes of such system is needed to provide this coordination.

A distributed system appears to users as a single computing system. In that re-
spect, a cloud is a distributed system since there are numerous computing elements
and databases in a cloud, yet it appears as a single system to a user. Distributed
systems are needed because they provide convenient access to remote resources for
users and applications. In many cases, the application itself is inherently distributed.
For example, an airline reservation system is used by many users and provides all
necessary communication and synchronization. Distributed systems provide fault
tolerance in which case failure of a node or a link does not harm the operation of
the system as these are replaced by other nodes or links. Distributed systems are
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commonly dynamic in which nodes and links may be inserted to or deleted from the
network due to failures or movement of the nodes as in the case of a mobile network.
A rescue operation consisting of moving nodes is an example of a mobile network.

A distributed system can be conveniently modeled by a graph in which vertices
of the graph represent the computational nodes and an edge between two nodes
represents a communication facility between them. The algorithms running at the
nodes of a graph representing the distributed systemare commonly termeddistributed
graph or network algorithms. Note that distributed memory-employing algorithms
in a parallel processing environment are also called distributed algorithms in the
literature but in the context of this book, we will use distributed (graph) algorithms to
mean algorithms running in a network represented by a graph. We will see designing
a distributed version of a sequential graph algorithm is not a trivial task. We start
this chapter by describing common distributed system platforms.We then investigate
distributed graph algorithms, classify them, and show the operation of some basic
distributed graph algorithms.

5.2 Types of Distributed Systems

Distributed system applications vary from clusters of computers to networks of
embedded systems. We can classify distributed systems as distributed computing
systems, distributed information systems, and distributed pervasive systems [5]. Dis-
tributed computing systems typically consist of a cluster of homogenous computers
connected by a local area network. The Grid is also a distributed computing system,
which consists of numerous heterogenous computing systems with many different
users that cooperate to achieve a common goal [3]. Cloud computing is more general
than grid computing and provides users with various resources such as storage, data
management, web site hosting, and computation [4]. Fault tolerance due to failing
nodes and links, and load balancing are the main issues to be handled in both Grid
and a cloud.

Distributed information systems commonly involve large database applications
such as a transaction processing system. An online banking system with millions of
users is an example of such system. Distributed pervasive systems typically consist
of small and sometimesmobile computers that communicate usingwirelessmedium.
We will take a closer look at these systems since unlike Grid or a cloud, these can
be modeled conveniently by a graph. The Internet is the largest network in the world
connecting personal, infrastructured, wireless, or any other type of network.

Wireless networks communicate using wireless communication and networking
medium. They can be broadly classified as infrastructured and ad hoc. An infrastruc-
tured wireless network has a fixed wired backbone consisting of routers and access
points to provide communication among hosts of the network such as a cellular net-
work. In contrast, ad hoc wireless networks do not have this structure and each node
in such a network acts as a router for the transfer of messages. Ad hoc networks are



5.2 Types of Distributed Systems 119

widely used due to easiness and speed in their deployment. Two types of wireless
networks have gained importance recently; mobile ad hoc networks and wireless
sensor networks.

5.2.1 Mobile Ad hoc Networks

A mobile ad hoc network (MANET) is an infrastructure-less wireless network con-
sisting of nodes that move dynamically. Vehicular ad hoc networks (VANETs) that
provide communication between moving vehicles, military MANETs used by mil-
itary, and MANETs used in rescue operations are examples of such systems. Each
node in a MANET acts as a router for multi-hop communications between hosts in
which a message is transferred between a number of host pairs before it reaches its
destination.

One of the main challenges in a MANET is routing, which is the process of
transferring a message between a sender and a receiver in the most efficient way.
Nodes are mobile which means routes have to be computed dynamically requiring
efficient routing algorithms. Staying connected in aMANET is also another problem
that needs to be solved.A robot network is another example of aMANETand keeping
the network connected at all times is needed for the coordinated operations of robots
in such a network.

5.2.2 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a network of sensors with radio trans-
ceivers and controllers. These networks of physically tiny nodes in most cases, have
many applications including environmental control, e-health, and intelligent build-
ings. A sensor node has a very limited power and sensors are typically controlled by
a central node called the sink with more computational capabilities. Data recorded
by sensor nodes is collected at the sink for further processing. Routing of data mes-
sages to the sink efficiently using network protocols as well as keeping the network
connected are the main issues to be addressed in WSNs. Sensor networks are mostly
stationary and require low-power operation, which is more critical than managing
power in MANETs.

A MANET or a WSN can be conveniently modeled by a graph and the problems
such as routing, connectivity can then be transferred to graph domain to be solved
with methods developed for graphs. For example, efficient routing problem can be
solved with the aid of the method of finding the shortest distance between two
nodes of a weighted graph. However, these problems should now be solved in a
distributed manner without any global knowledge, which makes the problem harder
than an ordinary graph problem. A node in a graph representing a WSN can only
communicate with its neighbors, but we need to have a global decision using the
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Fig. 5.1 The graph
representation of a wireless
network. Transmission range
of a node is shown by dashed
circles centered at that node

r

collected data from all of the sensors. Figure5.1 displays a wireless network with
nodes that can transmit and receive radio signals within a radius of r meters. We can
then connect the nodes that are within transmission ranges of each other by an edge
and obtain the graph shown.

5.3 Models

Messages are crucial for the correct operation of a distributed algorithm. We can
define the widely accepted message passing model of a distributed system formally
as follows [1,6]:

• A process pi at a node i communicates with other processes by exchanging mes-
sages only.

• Each process pi has a state si ∈ S, where S is the set of all possible states that a
process pi can be.

• A configuration of a system consists of a vector of states as C = [s1, . . . , sn]
• The configuration of a system may change by either a message delivery event or

a computation event.
• A distributed system continuously goes through executions as C0, φ1,C1, φ2, . . .

where φi is either a computation or a message delivery event.

A finite-state machine (FSM) or finite-state automaton is a mathematical model
to represent a complex system. An FSM consists of states, inputs, and outputs.
It may change its state based on its current state and the input it receives. FSMs
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are widely used to design algorithms, network protocols, and sequence analysis in
bioinformatics. Formally, a deterministic FSM is a quintuple (I, S, S0, δ, F) where

• I is a set of input signals.
• S is a finite nonempty set of states.
• s0 ∈ S is the initial start state.
• δ is the state transition function such that δ : S × I → S.
• O ∈ S is the set of output states.

The next state of an FSM is determined by its current state and the input it re-
ceives. The same input may cause different actions in different states. As an everyday
example, let us consider students in a school who for simplicity can have only two
states: in_class or out_class meaning they can be either in the class or out of the
class. When the bell rings in in_class state, it means they can go out and the bell
ringing in out_class state means they should go in the class. An FSM diagram or a
state transition diagram is a visual aid to understand the behavior of an FSM. The
circles in such a diagram denote its states and transitions between states are shown
by directed arcs which are labeled as a/bwhere a is the set of inputs received and b is
the set of outputs produced when these inputs are received. A double circle denotes
the accept state.

A state table provides an alternative way of representing a FSM. It has states of
the FSM as rows and inputs as columns and the elements of the table can be the next
FSM state and actions to be taken when the input is received. The output of aMoore
Machine type of FSM is the next state, whereas the output in aMealy Machine type
of FSM contains outputs as well as the next state.

Example 5.1 We will design a simple FSM for an elevator that can only go to floors
0, 1, and 2. There are two buttons in the elevator: up and downwhich take the elevator
up and down respectively. We can associate the current state of the elevator with the
floor it currently stays; therefore we have three states 0, 1, and 2. At each state, the up
or down button can be pressed represented by two inputs up by 0 and down by 1. The
FSM diagram for this example is shown in Fig. 5.2 which shows all state transitions,
considering there will be two inputs at each state. We cannot go down from 0 state
and also going up from second floor is not allowed shown by loops at these states.

0 1 2

up

down

up

down

up

down

Fig. 5.2 FSM of the elevator example
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Table 5.1 Elevator state table

State 0(Up) 1(Down)

0 1 0

1 2 0

2 2 1

We can now form the state table for this FSM with entries showing the next state
of the FSM when the input shown in columns is received at state shown in rows
as shown in Table5.1. This way of expressing an FSM provides a very convenient
way of writing its algorithm. We can form a 2-D array with each element being a
function pointer. We then define functions to be performed for each table entry; for
example, receiving “0” (up) at “1” (first floor) state should cause a transition to state
2 (elevator should move to second floor) which is realized by changing the current
state to “2”. The running of the algorithm is then straightforward; every time an input
is received, we activate the function shown by the FSM table entry as shown by the
C programming language code below.

#include <stdio.h>

# define UP 0

# define DOWN 1

void *fsm_tab[3][2]();

int input;

void act00(){curr_state=1;}

void act01(){curr_state=0;}

void act10(){curr_state=2;}

void act11(){curr_state=0;}

void act20(){curr_state=2;}

void act21(){curr_state=1;}

main()

{ curr_state=0; // initialize curr_state

fsm_tab[0][0]=act00; // initialize FSM table

fsm_tab[0][1]=act01;

fsm_tab[0][2]=act02;

fsm_tab[1][0]=act10;

fsm_tab[1][1]=act11;

fsm_tab[1][2]=act12;

while (true)
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{ printf("Type 0 for up, and 1 for down \n");

scanf("%d", &input);

*fsm_tab[curr_state][input];

printf("now at floor \%d", curr_state)

}

}

5.4 Communication and Synchronization

The algorithms that run at the nodes of a distributed system need to synchronize to
accomplish a common goal. This process can be performed at various levels. Let us
see how synchronization can be handled locally at three main levels of hierarchy; the
hardware, the operating system, and the application. At the lowest level, hardware
may provide synchronization at a certain number of clock ticks periodically. At a
higher level, one of the main tasks of local operating systems at each node is the
synchronization of the processes residing at that node.Moreover, this function can be
extended to processes running at the nodes of the distributed system at the application
level.

However, we need a mechanism to provide synchronization among the nodes
which should be translated to local synchronization mechanisms described above. A
very commonly usedmethod in a distributed system is synchronization viamessages.
In this so-calledmessage passingmodel, each local operating system or middleware
provides two basic primitives; send and receive for sending and receiving messages.
These procedures can be executed in blocking or non-blocking fashion. A blocking
send stops the caller until an acknowledgment from the receiver is received. A block-
ing receivemeans the receiver should wait until a message is received. The blocking
receive maybe selective in which a message from a particular sender is waited and
execution is resumed only after this happens. It is common practice to employ a
non-blocking send with a blocking receive since the sent message is assumed to be
delivered correctly while the actions of a receiver depend on whether the message is
received and also its contents and thus a blocking receive is frequently used.

Sending and receiving are commonly employed indirectly using data structures
called ports or mailboxes. These are depository places for messages, and placement
or removal of messages can be performed asynchronously from these structures.
In a distributed system, the locally executed send procedure typically deposits the
message in themailbox of the network process which appends the necessary network
headers, and transfers the message through lower network layer software to the
network. The receiving network process removes network headers and deposits the
message in themailboxof the receiverwhich takes it from there as shown in simplified
form in Fig. 5.3. There are three main software modules at each node of a distributed
system: system(OS), network protocol stack (N/W), and the application (APP) as
shown in this figure.
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Fig. 5.3 Distributed communication via mailboxes. Process pi at node i sends a message to
process p j at node j using mailboxes via network processes ni and n j

In summary, operating system and network processes provide synchrony between
two processes pi and p j which execute distributed algorithms at nodes i and j of the
network. At a higher level of abstraction at application, synchronization among dis-
tributed algorithms at different nodes may be achieved by roundswhich are executed
in lock-step fashion. In this case, a special process at a node starts each round and
each process waits for all other processes to finish execution before the next round
starts. Synchronization at the beginning of a round can be achieved by broadcasting a
special message and end of a round can be identified by the convergence of messages
which are two basic communication operations as we will see shortly. Commonly, a
process pi of a distributed system performs the following steps at each round:

1. send message.
2. receive message.
3. do some computation.

We assume here that a process sends the results of its computation from round k-1
in kth round. This order is not strict however, we could have compute-send-receive
sequence which would mean each process now computes new results in round k
based on what it has received in the previous round and sends the new results in the
current round. Distributed algorithms that work asynchronously and do not have this
synchronously executing rounds are called asynchronous algorithms. Detecting the
termination of distributed algorithms is needed to stop the algorithm when a certain
condition is met and this is not a trivial task. Although starting and ending a round
cause overheads in terms of needed extra messages, designing synchronous distrib-
uted algorithms is more straightforward than asynchronous algorithms in general.
The asynchronous algorithms require more complex control logic and detection of
termination in such algorithms is also more difficult.

Yet another distinction is whether a single initiator starts the distributed algorithm
or there are more than one initiators. A single initiator that also controls the overall
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running of the algorithm means a single point of supervision which is easier to
manage than individually controlled processes. We can, hence, classify distributed
algorithms based on synchronization at application or algorithmic level as follows.

• Synchronous Single Initiator (SSI) algorithms: There is a single initiator which
starts the algorithm, synchronizing start and end of each round, and initiating
termination. These algorithms are simpler to design than others since there is a
single process that controls the operation.

• Asynchronous Single Initiator (ASI) algorithms: This type of algorithms have a
single initiator but activity at each node is performed asynchronously from the
other nodes. Synchronization and termination detection aremore difficult for such
an algorithm than a synchronous algorithm.

• Synchronous Concurrent Initiator (SCI) algorithms: These algorithms execute
synchronously but may be started by concurrent initiators.

• Asynchronous Concurrent Initiator (ACI) algorithms: There are more than one
initiators in this case and the activities are asynchronous. This mode of operation
is the most general case but may require complex control.

In the case of an SSI algorithm, a previously built spanning tree to transfer control
messages can be conveniently used. Based on foregoing, a possible SSI algorithm
template is sketched in Algorithm 5.1. All processes start the kth round when they
receive the start message over the spanning tree T , which is basically a broadcast
operation over T as we will see shortly. The three actions in the round are sending
results of the previous round to all neighbors, receiving results of the previous round
from neighbors, and prepare new results for the next round. When a process finishes
executing a round, it waits for all of its children in T to finish before it can send
the stop message to its parent. When the root of the spanning tree T receives stop
message from all of its children, the round k is over and the root can now start the
round k + 1. We will use this structure frequently while designing distributed graph
algorithms.

Algorithm 5.1 SSI_template
1: boolean f inished, round_over ← f alse
2: message type start, result, stop
3: while ¬round_over do
4: receive msg(j)
5: case msg(j).type of
6: start : send result (i) to all neighbors
7: receive result ( j), from each neighbor j
8: compute result (i), f inished ← true
9: stop : if stop received from all children and f inished then
10: send stop to parent
11: round_over ← true, f inished ← f alse
12: end while
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5.5 Performance Criteria

The performance of a distributed algorithm is evaluated in terms of time, message,
space, and bit complexities outlined below:

• Time Complexity: Time complexity is the number of steps required for the distrib-
uted algorithm to finish as in a sequential algorithm. For synchronous distributed
algorithms, we would be mostly interested in the number of rounds as time com-
plexity.

• Message Complexity: This parameter is commonly considered as the dominant
cost of a distributed algorithm since it directly shows the utilization of the network
and indicates synchronization costs among the nodes of the network. Transferring
a message over a network is magnitudes of orders more costly than doing local
computations.

• Bit Complexity: The length of a message may also affect the performance of
a distributed algorithm, especially if message length increases as the message
traverses the network. For a large network modeled by a graph with many vertices
and edges, bit complexity may be significant which directly affects the network
performance.

• Space Complexity: This is the required storage at a node of the distributed system
for the algorithm under consideration.

5.6 Distributed Graph Algorithm Examples

We are now ready to design and implement simple distributed graph algorithms.
We will describe sample basic algorithms which follow a logical sequence. The first
algorithm uses a technique named flooding to send a message from a node of the
graph representing the network to all other nodes.We thenmake use of this algorithm
to build a spanning tree of the network which can be used for efficient broadcast and
convergecast of messages in the network as described next.

5.6.1 Flooding Algorithm

Our aim is to send a message from a single node to all nodes in the graph. This
operation is called broadcast and hasmany applications in real networks, for example
to inform all nodes of an alarm condition that occurs at a node. In the simplest case,
we can have the following rules as a first attempt to solve this problem:

1. The initiator i sends a message msg(i) to all of its neighbors.
2. Any node that receives message msg sends it to its neighbors except the one it

received it from.
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Fig. 5.4 FSM of the
Flooding algorithm

IDLE VISITED

msg(j)msg(j) / msg(i) to N(i)

This algorithm works fine and all nodes will receive message msg sent by pi
eventually. However, we can obtain a more efficient algorithm with less messages
transferred between the nodes by a simple modification: A node sends msg to its
neighbors only when it receives it for the first time. This way, duplicate transmission
along an edge of the graph in the same direction is prevented. We now need a way
to detect whether a message is received first time or not which can be implemented
simply using a variable such as visited which is false initially and becomes true
when msg arrives for the first time. Nevertheless, this modified algorithm is simple
to implement by an FSM having two states as shown in Fig. 5.4, which will also aid
us to understand the use of FSMs in distributed algorithms.

We can implement this algorithm based on the FSM as shown in Algorithm 5.2.
When the message msg arrives for the first time, the VISITED state is entered and
any further receptions of msg are ignored.

Algorithm 5.2 Flooding
1: { code for process i , message received from process j }
2: currstate ← IDLE � start with IDLE state
3: if i = initiator then
4: send msg(i) to N (i)
5: currstate ← VISITED
6: end if
7:
8: while true do � all nodes execute this part
9: receive(msg( j))
10: case currstate of
11: IDLE: send msg(i) to N (i)\ j
12: currstate ← VISITED
13: VISITED: � do nothing
14: end while

We can have some improvements to this algorithm as follows.

• Instead of waiting forever at line 8, we can have a terminating condition. A process
i can wait certain times such as the diameter diam(G) of the graph. This is logical
since diam(G) is the longest path that can be traversed by themessagemsg. Once
the message msg is received diam(G) times, process i terminates.
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Fig. 5.5 FSM of spanning
tree construction using
flooding

IDLE VISITED

check(j) / check(i) to N(i) check(j) / nack(i)

ack(j)
nack(j)

• We can have a counter commonly named time-to-live (TTL) contained in the
message. Each time it is received, TTL is decremented and a message with 0 TTL
value is not forwarded to neighbors.

Analysis

A careful look at this algorithm reveals that each edge of the graph will be traversed
at most twice, once in each direction when both nodes at the ends of an edge start
sending the message msg concurrently. Therefore, message complexity is O(m).
Assuming there is at least one message transfer at each time unit, time taken by this
algorithm is the longest distance between any two vertices of the graph which is its
diameter and thus, time complexity is Θ(diam(G)).

5.6.2 SpanningTree Construction Using Flooding

Wecan design a spanning tree construction of a network using theFlooding algorithm
with few modifications. Building a spanning tree in a network environment means
each node knows its parent and its children in the general sense. We will not attempt
to store all of the tree structure at a special node or at each node of the graph since
parent/children relationship at each node is adequate for transferring messages over
the spanning tree. We have a single initiator as in the Flooding algorithm and this
node becomes the root of the spanning tree to be formed. The first modification we
have is to assign the sender j of the messagemsg( j) as the parent of the receiver i if
msg( j) is received for the first time. Since we also require the parent to be aware of
its children, node i should send an acknowledgment message ack(i) to j to inform
j of this situation. Otherwise, if node i already has a parent, meaning it has been
visited before, it sends back a negative acknowledgment message nack(i) to node j .
We have, therefore, three types of messages; check, ack, and nack. Determining the
types of messages is crucial in the design of distributed graph algorithms, moreover,
determination of states is performed by messages if we are to use a FSM. Let us
modify the FSM of Fig. 5.4 to reflect what we have been discussing. We can see
that the states may remain the same since a node can be either in IDLE or VISITED
state as before. Based on its state and the type of the message, we may need to take
different actions. The modified FSM is shown in Fig. 5.5 with the VISITED state
having all possible message types as input now.
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This FSM can be directly translated to a distributed algorithm as shown in
Algorithm 5.3 where additionally, a termination condition for a node is also speci-
fied. The activity of any node is finished when it has received ack or nack messages
from all of its neighbors except the sender of the message it has received for the first
time.

Algorithm 5.3 Flooding2
1: int parent ← Ø
2: set of int childs← {Ø} , others ← {Ø}
3: message types check, ack, nack
4:
5: if i = initiator then
6: send check to N (i)
7: currstate ← VISITED
8: end if
9:
10: while (childs ∪ others) �= (N (i)\{parent}) do � all nodes execute this part
11: receive(msg( j))
12: case currstate ∧ msg( j).t ype of
13: IDLE ∧ check: parent ← j
14: send check to N (i)\ j
15: send ack to j
16: currstate ←VISITED
17: VISITED ∧ check: send nack to j
18: VISITED ∧ ack: childs ← childs ∪ { j} � j is now a child
19: VISITED ∧ nack: others ← childs ∪ { j} � j is not a child
20: end while

The operation of this algorithm is shown in Fig. 5.6.
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Fig. 5.6 A spanning tree constructed in a graph using flooding. The branch (g, b) is on tree but
(g, a) is not since check message (c) from node a arrives at g later than c from b, which is replied
by a nack (n)message. A similar situation is depicted for branch (e, d)where message c from node
d is replied by an ack (a) message and (d, e) is included in the tree
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We could have easily implemented this algorithm without using an FSM, a node
having a parent or not basically shows its state as IDLE or VISITED. With this in
mind, this algorithm is shown in Algorithm 5.4 as in [2]. However, for complicated
distributed algorithms, using FSMs would ease the design and implementation.

Algorithm 5.4 Flooding3
1: int parent ← ⊥
2: set of int childs← {Ø} , others ← {Ø}
3: message types check, ack, nack
4:
5: if i = initiator then � root initiates tree construction
6: send check to N (i)
7: parent ← i
8: end if
9:
10: while (childs ∪ others) �= (N (i)\{parent}) do
11: receive msg(j)
12: case msg(j).type of
13: check : if parent = Ø then � check received first time
14: parent ← j
15: send ack to j
16: send msg(i).check to N (i) \ {j}
17: else � check received before
18: send msg(i).reject to j
19: ack : childs ← childs ∪ {j} � j is a child
20: nack : others ← others ∪ {j} � j is not a child
21: end while

Analysis

Each edge of the graph will be traversed at least twice by check/ack or check/nack
message pairs and at most four times when two nodes start to send check messages
to each other simultaneously. Therefore, message complexity of this algorithm is
O(m). The depth of the tree constructed will be at most n − 1, assuming a linear
network is built. If there is at least onemessage transfer per unit time, time complexity
is O(n).

5.6.3 Basic Communications

There are a number of basic communication operations performed in a distributed
system. One such process is the broadcast which is initiated by a node by sending a
message and all of the nodes in the distributed system have a copy of the message at
the end of the broadcast operation.Another fundamental primitive is the convergecast
where data from each node is collected at a special node in the system. We will look
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into these two operations in this section. One other activity is the multicast sending
of messages in which a message is delivered to only a specified subset of processes.

Broadcast over a Spanning Tree

For the broadcast operation, we will assume a graph represents the network of the
distributed system and a spanning tree T is already built by an algorithm similar
to what we have discussed. The broadcast is initiated by a node by sending msg to
all of its children. Any node on the tree T that has children simply forwards msg
to all of its children. Since msg is transferred only over tree edges, the number of
messages will be n − 1 for a graph with n vertices. Time taken will be the depth
of T , assuming concurrent sending of messages at each level. Depth of T can be a
maximum of n − 1 assuming a linear network.

Convergecast over a Spanning Tree

In certain networks, data from all nodes are to be collected at a node with more
capabilities and this special node can then analyze and evaluate all of the data, provide
reports containing statistics which can be transferred to more advanced computation
centers or users for further processing. This situation is commonly encountered
in wireless sensor networks where data sensed needs to go through these steps of
operation. Collecting data is very much simplified when a spanning tree constructed
beforehand is used. In this case, the leaves of the tree send their data to their parents,
the parents combine their own data with those of leaves, and send these to their
parents. An intermediate node may in fact perform some simple operation on data
such as taking average or finding extreme values. This way, data sent upwards in the
tree does not have to get much larger at each level. This process of gathering called
convergecast continues until all data is collected at the special node, commonly
called the sink in sensor networks. Algorithm 5.5 shows the pseudocode for the
convergecast process over a spanning tree. Leaves of the tree start the algorithm and
any intermediate node in the tree should wait until data from all of its children are
received before combining these data with its own to be sent to its parent as realized
at line 8 of the algorithm. The termination condition for the root of the tree is met
when it receives the convergecast messages from all of its children at line 12. For all
others, termination is on line 17 when they send their data to their parents.

Message and time complexities for this algorithm are the same as theBroadcast al-
gorithmusing similar reasoning. Figure5.7 shows the operation of theConvergecast
algorithm using the spanning tree built in Fig. 5.6. The messages are labeled with
pair (a, b); a showing the time frame and b is the duration of the message. We can
see the highest level of tree finishes convergecast in 5 time units as this is the longest
duration, followed by 6 units at level 2 and 2 units at level 1 for a total of 13 time
units.
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Algorithm 5.5 Convergecast
1: int parent
2: set of int childs, received ← {Ø} , data ← {Ø}
3: message types convcast
4:
5: if childs = {Ø} then � lea f nodes start convergecast
6: send convcast to parent
7: else � any intermediate node or root
8: while childs �= received do � wait for convergecast messages from all children
9: receive convcast(j)
10: received ← received ∪ { j}
11: data ← data∪ convcast(j)
12: end while
13: end if
14: if i �= root then
15: combine data into convcast
16: send convcast to parent
17: end if

Fig. 5.7 Convergecast over
the spanning tree of Fig. 5.6.
Message label values show
concurrent transfer of
siblings and the duration of
messages
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b c d

efg

(1,2)

(1,4)

(2,6)

(2,3)

(1,5)

(3,2)

5.6.4 Leader Election in a Ring

Leader or coordinator election is needed in distributed systems as this special node
can initiate an algorithm and supervise the overall execution of the algorithm as
in a SSI algorithm. The leader may also take remedy actions when failures are
encountered in the execution of an algorithm. Nodes and communication links may
physically fail and althoughwe can initially assign a node as the leader of the network,
we need to elect a new leaderwhen failure happens.Election algorithms provideways
of assigning a new leader in the network when the current leader fails.

There are many leader election algorithms in literature for distributed systems.
As an introductory distributed algorithm example, we will consider leader election
in a ring with nodes having unique identifiers. The transfer of messages is in one
direction only. This example can be conveniently described by a simple FSM with
the following states:
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• LEAD: The nodes have a leader in this stable state.
• ELECT: Election is going on when a node is in this state.

The main idea of this algorithm is that any node detecting the failure of the current
leader initiates the algorithm by sending an electionmessage containing its identifier
to its neighbor at its right assuming a clockwise unidirectional ring. A node that
receives this message changes its state to ELECT. If the identifier in the message
is greater than its own identifier, it simply passes the election message to its next
neighbor. Otherwise, it inserts its identifier which is greater than the identifier in
the incoming message and sends it to the neighbor. We have two messages in this
example:

• election: Sent by any node that detects leader failure. This message may be sent
by more than one initiator.

• leader: The new leader broadcasts this message to notify all nodes that election
is over.

When a process with identifier i receives a message with an identifier j in it, it
checks and does one of the following:

• i > j : Process i replaces j with i in message and passes it to the next node.
• i < j : Process i simply passes message to next node.
• i = j : Process i becomes the leader and sends the leader message to its next

neighbor.

In the last case, the election message originating from node i has returned to
itself meaning it has the highest identifier among all active processes. Basically, the
highest identifier is transferred between all functioning nodes andwhen the originator
receives its own message, it determines it is the leader and sends the leader message
to its neighbor which is then broadcast to all nodes by neighbor transfers. The FSM
for this algorithm is depicted in Fig. 5.8.

Analysis

The worst case happens when the nodes are ordered from smallest to largest with
respect to their identifiers in clockwise direction and start election concurrently in
anticlockwise direction. The largest identifier message travels through all nodes n
times, the second largest identifier is transferred n − 1 times and in total there will

Fig. 5.8 FSM of the ring
leader election algorithm

ELECTLEAD

election electioni=j / leader
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Fig. 5.9 Ring leader election algorithm: worst and best scenarios. In a, each message by the
originator is tagged with the number of links it travels. For example message originating at node 7
is tagged with 7 since it goes through 7 edges back to node 7. The best case is depicted in b

be
∑n

i=1 = n(n + 1)/2 messages as shown in Fig. 5.9a. The best case occurs for a
total of 2n-1 messages when messages are transmitted in clockwise direction as in
Fig. 5.9b. In this case, even if all nodes start election concurrently, their messages
will be purged by the next nodes for n− 1 times and only the message of the highest
identifier node, which is 7 in this case, will traverse the ring all the way back to
the originator at n step. Total number of steps will then be 2n − 1, excluding the
declaration message sent by the leader.

5.7 Chapter Notes

We have described distributed systems and the fundamental problems in designing
algorithms for such systems in this chapter. Distributed systems are needed since
they provide sharing of resources, fault tolerance and in various implementations,
the application is inherently distributed such as a factory control system. The com-
mon platforms to implement distributed algorithms are the Internet, mobile ad hoc
networks, wireless sensor networks, the Grid, and the Cloud. In many cases, we
can model these networks suitably by graphs with vertices of a graph representing
computational nodes and edges showing the communication links between them.

Distributed systems require distributed algorithms that run at the nodes of such a
system. Synchronization and communication are two basic requirements in efficient
design of such algorithms. Synchronization may be realized at various levels; hard-
ware, operating system/middleware, and at application level.We see synchronization
at application level using messages is commonly used due to versatility and easiness
in implementationwhichmay then be transferred to local synchronization primitives.
In this so-called message passing distributed systems, the main communication and
synchronization are achieved by messages only. The receiver of a message decides
on what to do next mainly by the type of the arriving message. A synchronous dis-
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tributed algorithm typically runs in rounds and the next round is not started until all
nodes finish executing the current round. The synchronization at the beginning and
end of round are commonly realized by special messages sent by a special node.

Distributed algorithms can be modeled by FSMs which are mathematical models
which include states and transitions between states as we have outlined. We can
design a distributed algorithm without a FSM but for complicated algorithms, FSMs
provide a neater algorithmwith visual aid and less error-prone than algorithmswhich
otherwise could involve many decision- making statements.

We then described some sample distributed graph algorithmswhich include build-
ing a spanning tree of the graph, broadcast and convergecast operations over a span-
ning tree, and a leader election algorithm to find the new coordinator of nodes in
a ring when leader fails. We need to prove that a distributed algorithm correctly
achieves what it is intended for; and time, message, bit, and space complexities of
a distributed algorithm are used to evaluate its performance. In general, message
complexity is considered as the dominant cost of a distributed algorithm.

Exercises

1. The elevator algorithm of Example 5.1 is to be modified so that a green light
showing moving up and a yellow light for downwards movement are added.
Provide the necessary modifications to the FSM diagram, FSM table, and C
code to incorporate these two outputs.

2. A binary bit string S has even parity if the number of bits in S is an even number
and has odd parity otherwise. Provide the FSM diagram, FSM table, and the C
code of an algorithm that reads a binary string bit-by-bit and decides to be in
either even or odd state after each read. Use the programming style shown in the
C code of Example 5.1.

3. We need to modify the broadcast algorithm over a spanning tree so that the
initiator becomes aware that each node has received the broadcast message.
This can be realized simply by each node deferring to send an acknowledgment
to the sender of the message until it receives acknowledgments from all of its
children, similar to the convergecast operation which should be started by the

Fig. 5.10 Ring structure for
Exercises 4

1

2

3

4

5

6

7

8

X



136 5 Distributed Graph Algorithms

leaves of the spanning tree once they receive the broadcast message. Write the
pseudocode for this algorithmwith comments andwork out its time andmessage
complexities.

4. Show the execution of the ring election algorithm for the nodes shown in
Fig. 5.10. Assume nodes 2 and 5 find concurrently that the leader is not working
and decide to run an election.

5. In a fully connected graph with each node having unique identifiers, bully al-
gorithm may be used to elect a new leader. A node u that finds leader is not
functioning may start this algorithm by sending an election message to all nodes
that have higher identifiers than itself. Any node v that receives this message
sends back and ack message to the node u which then leaves election. The node
v now starts election and this process continues until there is one winner which
is the active node with highest identifier. The new leader broadcasts it is winning
by a special message to all nodes. Write the pseudocode for this algorithm and
find its time and message complexities. Show its operation in a complete graph
of 8 nodes where nodes 4 and 6 find simultaneously the leader 8 is down.
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Abstract

A tree is a connected acyclic graph and a forest consists of trees. In this chapter, we
first describe the tree structure, algorithms to construct a spanning tree of a graph,
and tree traversal algorithms. Two main methods of graph traversal are depth-first
search and breadth-first search. We review sequential, parallel, and distributed
algorithms for these traversals along with their various applications.

6.1 Introduction

A tree is a connected acyclic graph and a forest consists of trees. Trees find many ap-
plications in computer science and real-life situations. For example, the organization
of a university or any establishment is typically shown by a tree, and family trees
illustrate the parental relationships between the individuals. In computer science,
trees are used for efficient data storage and tree-based algorithms find a wide range
of applications. A spanning tree of a graph is its tree subgraph that includes all of
the vertices of the graph. A graph may have a number of spanning trees. We have
described trees briefly in Chap.2; now, we provide a more detailed analysis of trees
with related algorithms in this chapter. We start by defining the tree structure and
stating its properties. We then describe algorithms for constructing spanning trees
and tree traversals and briefly review special tree types.

Traversing all vertices or all edges of a graph in some order is required in various
applications, for example, to find all reachable vertices in a graph. The algorithms that
perform traversalsmay also be used as the building blocks ofmore complicated graph
algorithms. In an indirected graph traversal, all edges are consideredwhereas only the
outgoing edges from a node are considered in a directed graph. Twomain methods of
graph traversal are the depth-first search and breadth-first search. In the first method,
we start from any vertex of a graph and go as deep as we can by visiting neighbors of
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each visited vertex. The breadth-first search involves visiting all neighbors of a vertex
first, then visiting all neighbors of these neighbors and proceeding in this manner
until all vertices are visited. Both these methods produce spanning trees rooted at
the start vertex. We describe sequential, parallel, and distributed algorithms for both
of these approaches with their possible applications in this chapter.

6.2 Trees

A graph is a tree if it is connected and does not contain any cycles. A forest is a graph
with no cycles. Every path is a tree and a tree T is path if and only if the maximum
degree of T is 2.A tree can be rooted or unrooted. A designated node called the root
in a rooted tree is at the top of the hierarchy and every other vertex of T has a path
to the root; the tree is unrooted otherwise. A binary tree consists of nodes that have
at most two children. The following statements equally define a tree T :

1. T is connected and has n − 1 edges.
2. Any two vertices of T are connected by exactly one path.
3. T is connected and each edge is a cut-edge removal of which disconnects T .

Definition 6.1 (level) The level of a vertex in a rooted tree is its distance to the root.
The level of a vertex is also called its depth in the tree.

Definition 6.2 (parent, child) A vertex v that is connected to vertex u (the predeces-
sor of u) on the path to the root is called the parent of u and v is called the child of
u.

A vertex v can have only one parent as having more than one parent produces a
cycle and the resulting structure therefore will not be a tree.

Definition 6.3 (leaf, internal vertex, siblings) A leaf is a vertex of the tree that has
no children. An internal vertex of a tree has a parent and one or more children.
Siblings in a tree have the same parent.

The maximum level of a leaf is the height (or depth) of the tree as it is the farthest
vertex to the root.

Definition 6.4 (spanning tree) A spanning tree T = (V, E ′) of a graph G = (V, E)

has the same vertex set of G with an edge set that is a subset of the edges of G.

A minimum spanning tree MST(G) of a weighted, undirected graph G is a span-
ning tree of G with minimum total edge weight cost among all spanning trees of G.
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MSTs find numerous applications and we will investigate sequential, parallel, and
distributed algorithms for MSTs in Chap.8.

Definition 6.5 (m-ary tree (m ≥ 2)) An m-ary tree is a rooted tree in which every
vertex other than the leaves has at most m children. In a binary tree, m = 2.

Definition 6.6 (complete m-ary tree) A complete m-ary tree is an m-ary tree in
which every internal vertex of the tree has exactly m children and all leaves have the
same depth.

Definition 6.7 (ordered tree) In an ordered tree, there is a linear ordering of the
children of each node. This means we can identify the children as first, second, etc.

Figure6.1 displays these concepts.

Definition 6.8 (center of a tree) A center of a tree T is either a vertex v such that
max(d(u, v)) ∀u ∈ V is minimum or two adjacent centers with this property.

We can find center(s) of a tree by recursively removing its leaves until there are
one or two centers left. This procedure is illustrated in Fig. 6.2.

6.2.1 Properties of Trees

Theorem 6.1 An undirected graph G is a tree if and only if there is a unique simple
path between any two vertices of G.

Proof We will first assume G is a tree which means it has no cycles. Now, if there
are two simple paths between any vertex pair (u, v) in G, the total path from u to v

Fig. 6.1 The vertices of a
sample tree which is a 3-ary
tree since all vertices other
than the leaves have at most
three children

leaf

internal

v level(v)=2

root

parent of v

child of v
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(a) (b) (c)

Fig. 6.2 Finding two centers of an unrooted tree. The leaves are recursively removed from a–c to
obtain the two centers

and then back to u would form a cycle; however, from the definition of a tree, we
know G does not have a cycle and therefore a contradiction. In the other direction
of the statement, let us assume G is a graph in which any two vertices u and v are
connected by a unique path. If there were two distinct paths between a vertex pair u
and v, these paths would form a cycle and since G is a tree and does not contain a
cycle, we have a contradiction. ��

Theorem 6.2 Every tree of order n has size m = n − 1.

Proof We will prove this theorem by induction n. The induction hypothesis is that a
tree with n nodes has n−1 edges. For the base case, when n = 1, the trivial graph has
no edges; therefore, the base case holds. Let us consider a tree T with n + 1 nodes.
Removing a leaf node v with its incident edge from T leaves a tree T ′ = (V ′, E ′).
Since we have not created a cycle in doing so, T ′ is also a tree, say with p edges and
q vertices. With the inductive hypothesis, p = q − 1. Since we removed one edge
and one node from T , p = m − 1, q = n − 1. Substitution yields p = n − 2, when
q = n − 1, hence m = n − 1. ��

Theorem 6.3 Any connected graph G with n vertices and n − 1 edges is a tree.

Proof We need to show G is acyclic. Let us assume the contrary that G has at least
one cycle, and iteratively remove edges from cycles until we have a graph G ′ which
is acyclic and therefore is a tree. We can conclude G ′ has n − 1 edges by Theorem
6.2. Since we have removed at least one edge to obtain G ′, G had a size at least n
which is one greater than the size of G ′ and hence a contradiction. ��

6.2.2 Finding Root of a Tree by Pointer Jumping

In pointer jumping method, we would have each element of a linked list point to the
link of the element it points to in each step. This method can be conveniently used to
find the root of a rooted tree as shown in Algorithm 6.1. After �log depth	 steps, all
vertices of the tree will point to the root. Note that this method is inherently parallel.
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Algorithm 6.1 Finding Root of a Tree
1: Input: a rooted tree T = (V, E) with n elements
2: Output: each vertex v points to the root
3: for i=1 to �log depth	 do
4: for each tree vertex v ∈ V in parallel do
5: (v− > parent) ← ((v− > parent)− > parent)
6: end for
7: end for

(a) (b) (c)

Fig. 6.3 The root of a tree is found in two iterations by all nodes

Fig. 6.4 All possible labeled three spanning trees of K3

Finding the root of a tree with depth 3 is shown in Fig. 6.3. It takes three iterations
for all node to point to the root.

6.2.3 Counting SpanningTrees

A spanning tree of a graph G is its subgraph that is a tree and contains all vertices of
G. Every connected and undirected graph has at least one spanning tree. Spanning
trees find various applications such as providing a communication infrastructure in
computer networks and cluster analysis. Let us denote the number of spanning trees
of a graph G by τ(G). Cayley provided a formula to find the number of spanning
trees of a labeled complete graph Kn which has a unique identifier for each of its
vertices as follows [4]:

τ(Kn) = nn−2 (6.1)

The 3 spanning trees of K3 and 16 spanning trees of labeled K4 are shown in
Fig. 6.4 and Fig. 6.5.
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Fig. 6.5 All possible labeled 16 spanning trees of K4

6.2.4 Constructing SpanningTrees

We describe three simple algorithms to construct a spanning tree of an undirected,
simple, and connected graph in this section.

6.2.4.1 The First Algorithm
As a simple approach, we will start with the all edges of a graph belonging to T
which may not be a tree in fact, and then iteratively remove edges from T which
will not result in a disconnected graph G. We continue until T has one of the basic
tree properties described above; that is, it has n − 1 edges, it is acyclic, etc. The
pseudocode of this algorithm is given in Algorithm 6.2 where we check the tree
property that each edge of a tree is a cut-edge, that is, removal of any edge leaves a
tree disconnected.
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Algorithm 6.2 ST_Alg1
1: Input: G = (V, E)

2: Output: Spanning Tree T of G
3: T ← E
4: repeat
5: pick any edge e ∈ T removal of which does not disconnect T
6: T ← T − {e}
7: until T any edge removal leaves T disconnected

(b)

(c) (d)

(a)

Fig.6.6 Steps ofAlgorithm 6.2 in a sample graph. All of the graph edges shown in bold are included
in the spanning tree initially. Then, an edge removal which does not disconnect the tree is removed
at each iteration starting from a until this is not possible

The steps of operation of this algorithm are depicted in Fig. 6.6. We remove an
edge in each iteration, and hence the repeat − until loop is executed O(m) times.
Alternatively, we could check that the resulting structure after each edge has n − 1
edges and is connected. Checking the former is simple by keeping a counter and
decrementing it after each edge deletion. However, checking the connectedness of
the graph is not trivial as we will see in the second part of this chapter. Note that we
require both properties by Theorem 6.3. We will see we can construct spanning trees
with special properties in linear time in Chap.6.

6.2.4.2 The Second Algorithm
An alternative algorithm to build a spanning tree T of a graph G = (V, E) can be
constructed as follows. This time, we start with an empty tree T and pick an arbitrary
vertex u, and include u in T . Thereafter, we arbitrarily select any outgoing edge (u, v)
which is an edge with one endpoint say u in T and the other endpoint v outside T ,
and include (u, v) in T . We proceed in this manner until all vertices are processed
as shown in Algorithm 6.3.

http://dx.doi.org/10.1007/978-3-319-73235-0_6
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Algorithm 6.3 ST_Alg2
1: Input: G = (V, E)

2: Output: Spanning Tree T of G
3: T ← an arbitrary vertex u
4: V ′ ← Ø
5: while V ′ �= V do
6: select any outgoing edge (u, v) from T vertices with u ∈ T ∧ v /∈ T
7: T ← T ∪ {(u, v)}
8: V ′ ← V ′ ∪ {v}
9: end while

(a) (b) (c)

(d) (e) (f)

Fig. 6.7 Construction of a spanning tree of a small sample graph using outgoing edge concept.
Selected outgoing edge at each iteration is shown by a dashed line

Correctness is evident since any outgoing edge will not produce a cycle with
edges already included in the tree. Hence, the resulting structure will be cycle free
and therefore a tree. A possible operation of this algorithm in a small sample graph is
shown inFig. 6.7. The time complexity isO(n)which is the number of times thewhile
loop is executed. Note that we do not need any extra processing such as checking
tree property or connectivity as in the previous algorithm. Selecting outgoing edges
from the set of edge already included in the tree will be useful in forming minimum
spanning trees as we will see in the next chapter.

6.2.4.3 The Third Algorithm
Another approach to build a spanning tree is to first start with each vertex being
a tree and merge any two trees until this is not possible. The main idea and the
related correctness argument here is that merging of two trees will always produce
another tree simply because each tree before the merge is acyclic and an edge joining
them will not produce a cycle with the smaller trees. We have again O(n) steps of
this algorithm to form the spanning tree as in the linear graph case with iteratively
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(b) (c)

(d)

(a)

(e) (f)

Fig. 6.8 Running of the third spanning tree construction algorithm in a sample graph. Spanning
tree edges are shown in bold and each vertex is a tree initially

merging each vertex with the neighbor vertex. The operation of this algorithm in a
sample graph is depicted in Fig. 6.8.

This method lends itself to parallel processing since independent subtree forma-
tions are possible. In fact, it is also suitable for distributed processing in a network
environment. Each vertex is a network node and requests merge operation from a
neighbor node. We need to be careful as not to form cycles when concurrent requests
are made by two nodes from the same subtree to two nodes that coexist in another
neighbor subtree. This problem can be handled by selecting a leader for each subtree
which controls the requests to merge by a suitable protocol.

6.2.5 Tree Traversals

Tree traversal is the process of recursively visiting each node of the tree exactly once.
Traversing trees in some determined sequence is useful in many graph applications.
We can classify tree traversals by the order inwhich the vertices are visited as preorder
and postorder for general trees.

Preorder Traversal

In preorder traversal of a rooted tree, a vertex is visited before its descendants as
shown in Algorithm 6.4. The time complexity of this traversal is O(n) for a tree with
n vertices.

The preorder traversal of the sample tree of Fig. 6.9 results in vertex processing
sequence of a, b, c, d, e, f, g, h, i, j, k, l, n, o,m.

Postorder Traversal

Postorder traversal of a tree involves visiting a tree vertex after visiting its de-
scendants as depicted in Algorithm 6.5. The postorder traversal of the sample tree of
Fig. 6.5 provides vertexprocessing sequenceof c, f, g, h, e, d, b, j, n, o, l,m, k, i, a.
Since each vertex is visited exactly once, time complexity of this method is O(n).
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Algorithm 6.4 Preorder
1: procedure Preorder(root)
2: Input: tree T and its root root
3: Output: preorder traversal of T
4: if root �= Ø then
5: process(root)
6: Preorder(root → le f t)
7: Preorder(root → right)
8: end if
9: end procedure

Fig. 6.9 A sample tree for
tree traversals
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Algorithm 6.5 Postorder Traversal
1: procedure Postorder(root)
2: Input: tree T and its root root
3: Output: postorder traversal of T
4: if root �= Ø then
5: Postorder(root → le f t)
6: Postorder(root → right)
7: process(root)
8: end if
9: end procedure

6.2.6 Binary Trees

Definition 6.9 (binary tree) A binary tree is a rooted tree in which every vertex has
at most two children and each child of a vertex v is left child or right child of v.

A complete binary tree of depth d has 2d+1 − 1 vertices which is the maximum
order of any binary tree. Binary trees can be traversed as preorder or postorder as in
general trees. An additional traversal method for binary trees is inorder tree traversal.
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Inorder Traversal

In this mode of binary tree traversal, the vertices at each left subtree of a vertex
are processed first, the vertex is processed second, and the right subtree vertices
of the vertex are processed finally. The pseudocode for this operation is shown in
Algorithm 6.6. The time complexity of this algorithm is also O(n).

Algorithm 6.6 Inorder Traversal
1: procedure Inorder(root)
2: Input: tree T and its root root
3: Output: inorder traversal of T
4: if root �= Ø then
5: inorder(root → le f t)
6: process(root)
7: inorder(root → right)
8: end if
9: end procedure

We can store arithmetic or logical expressions in a binary tree where leaves of
the tree are operands and internal nodes are unary or binary operators as shown in
Fig. 6.10. Such a binary tree is commonly referred to as an expression tree. This
method is used by compilers to parse and evaluate various expressions. We can see
that inorder traversal of an expression tree yields the expression.

A binary search tree (BST) is a binary tree in which the value in every node is
greater than all values in the left subtree of the node and less than all the values in the
right subtree of the node as shown in Fig. 6.11. BSTs are used in various applications
such as sorting or data search.

Fig. 6.10 Evaluation of an
expression using a binary
tree
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Fig. 6.11 Example of a
binary search tree
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6.2.7 Priority Queues and Heaps

A priority queue is a data structure to store a set of elements each having a value called
a key. This data structure is useful in implementing various graph algorithms as we
will see when reviewing algorithms for weighted graphs in Chap. 7. A min-priority
queue provides the following operations.

• Insert(S,x): Inserts the element x into the set S.
• Minimum(S): The element of S with the largest key is returned.
• ExtractMin(S): Similar toMinimum(x) but the element x is deleted from S.
• DecreaseKey(S,x,k): The value of the key of x is decreased to k.

When we are dealing with a max-priority queue, the operations in such a queue
are Maximum(S), ExtractMax(S), and IncreaseKey(S,x,k) which find the maximum
element of the queue, extract this value, and increase the value of the key of an
element in turn.

Heap as a Priority Queue

A min-binary heap is a complete binary tree except possibly the leaves in which
the keys of the children of any vertex u are greater than or equal to the key of u.
Therefore, along each path from the root, keys monotonically increase and the root
has the minimum key value as shown in Fig. 6.12. We can have max-binary heap in
which the key values decrease from the root downward.

All of the priority queue operations defined above can be implemented with heaps
as HeapInsert, HeapExtract, HeapMin, and HeapDecrease procedures in O(log n)

time and building the binary heap takes O(n) time. A detailed description of the
heap structure is provided in [5].

6.3 Depth-First Search

Depth-first search (DFS) is a basicmethod to traverse all nodes of a graph. It basically
traverses a graph by going as deep as possible from a given vertex and hence the

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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Fig. 6.12 Example of a
heap. The dashed path from
the root to a leaf shows the
monotonically increasing
key values
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name. We explore a path as far as we can go by marking vertices we visit along the
path and when we cannot go any further since either we encounter a vertex with a
degree of 1 or all neighbors of a vertex are visited, we return to where we come
from. This method can be best described by a person in a maze carrying a chalk and
a string. Each room (vertex) has a number of doors (neighbors) and the person after
entering the room selects one of the unmarked doors and marks it with the chalk and
goes through that door to another room. If that has no unmarked doors (all neighbors
visited) or no doors other than the one she came from (a vertex with one edge), she
returns to where she came from. The string is used to keep track of where she came
from. TheDFS algorithm has two versions as recursive and iterative described below.

6.3.1 A Recursive Algorithm

Weassume the graph is connected and if it is not, DFS algorithm is performed on each
component of the graph. The latter version of the algorithms is called DFS_Forest .
We select any vertex u of the graph G and this vertex is the root of the DFS tree to be
formed. We then select an edge (u, v) that is incident to u. This edge is a tree edge
and is included in the DFS tree T , and the vertex u is the parent of vertex v in T .
We proceed in this manner by always selecting unexplored edges that are incident
to vertices that are not visited. If all the edges incident on a vertex u are explored
meaning all of its neighbors are visited, we return to the parent of u and continue the
search from there. When we find an unexplored edge (u, v) incident on a vertex v,
the edge (u, v) is traversed, it is included in T , and u becomes the parent of v as in the
root case. If v has been visited before, and (u, v) is unexplored, (u, v) is a non-tree
edge and is not included in T . The pseudocode of an algorithm that performs the
described procedure is given in Algorithm 6.7. We also record the visit times for
each vertex; the first time of visit when a vertex is discovered is in d[v] and the final
time when we return from the recursive call to v is stored in f [v].

The output of the algorithm is a DFS tree stored in the array Pred which shows
the predecessors of each vertex. There are few things to note about this algorithm as
follows.



152 6 Trees and Graph Traversals

Algorithm 6.7 DFS_Recursive_Forest
1: Input: G(V, E), directed or undirected graph
2: Output: Pred[n]; d[n], f [n] � place of a vertex in DFS tree and its visit times
3: int time ← 0; boolean Marked[1..n]
4: for all u ∈ V do � initialize
5: Marked[u] ← f alse
6: Pred[u] ←⊥
7: end for
8: for all u ∈ V do
9: if Marked[u] = f alse then
10: DFS(u) � call for each connected component
11: end if
12: end for
13:
14: procedure DFS(u)
15: Marked[u] ← true
16: time ← time + 1; d[u] ← time � first visit
17: for all (u, v) ∈ E do � visit neighbors
18: if Marked[v] = f alse then
19: Pred[v] ← u
20: DFS(v)
21: end if
22: end for
23: time ← time + 1
24: f [u] ← time � return visit
25: end procedure

• We can select the neighbors of the visited vertex arbitrarily or using some ordering
in line 17. If vertices are labeled with unique integers, the ordering can be linear,
from smallest to the largest vertex identifiers. When vertices are labeled with
letters, we can have a lexicographically first choice. As a consequence, the DFS
tree obtained as the result of this algorithm is not unique as the order of the
selection of unexplored edges affects the structure of this tree.

• If the adjacency matrix representation of the graph is used, we need to check the
entire row that belongs to vertex u in lines 17 and 18 for n times for a graph
with n vertices. Using adjacency list means the checking in these lines will be a
maximum of Δ(G) times; hence, we can deduce using adjacency list is a better
choice for this algorithm than using adjacency matrix.

• The DFS procedure terminates when it returns to the root vertex it is called from.
The algorithm terminates when the DFS procedure is run on all components of
the graph.

• The first visit time d[v] of a vertex v is called the depth-first number of vertex u
and corresponds to the number given to it during the preorder traversal of the tree
formed. We will see first and last visit times of vertices can be used for various
DFS applications.
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• If we know the graph G is connected prior to executing the algorithm, we can
simply execute the procedure between the lines 14 and 25 for a vertex u to find a
DFS tree rooted at u.

Analysis

The edges included in the DFS tree form a directed spanning tree of G. This is true
since we never form a cycle by never selecting an edge between two marked vertices
(lines 18 and 19) and all of the vertices are marked and are included in the DFS tree
in the end. We need to invoke the DFS procedure n times, one for each vertex. Each
activation of this procedure involves checking each entry in the adjacency matrix
for a total of n times. The time taken using the adjacency matrix is therefore Θ(n2).
Using the adjacency list means checking each edge in G twice for each vertex in its
ends plus the time taken for initialization resulting in a total time of Θ(n + m).

Example

The running of DFS_Forest algorithm on a sample graph with two components is
shown in Fig. 6.13. We can see two DFS trees which are directed spanning trees of
two components are formed.

For any two vertices u and v on the DFS tree formed with u as the ancestor of v,

d[u] < d[v] < f [v] < f [u]
since vertex u is discovered before vertex v andwe return to vertex u after we com-

plete processing vertex v. When these vertices are on different trees or on the same
tree but do not have parental relationship, then either f [u] < d[v] or f [v] < d[u].
Edge Properties

TheDFS run on a directed graphworks similarly except that we have to consider only
the outgoing edges from a vertex when searching its neighbors. The DFS algorithm
working in this manner partitions the edges of a directed graph into the following
types.
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Fig. 6.13 Running of DFS_Recursive_Forest algorithm in a sample disconnected graph with
first and last visit times shown next to the vertices. The source vertices are i and d in the components
and the arrows point to parents in the tree
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• tree edges: These are the edges on the tree formed. An edge (u, v) belongs to DFS
tree if DFS(u) calls DFS(v).

• back edges: When vertex u of an edge (u, v) is a descendant other than its children
of vertex v in tree, (u, v) is a back edge.

• front edges: When vertex u of an edge (u, v) is an ancestor of vertex v other than
its parent in tree, (u, v) is a front edge.

• cross edges: Any edge that is not a tree, back or front edge is called a cross edge.

There is also the following relationship between the discovery time d and finish
time f of vertices in a graph G, commonly called the parenthesis theorem. Other
orderings of discovery and finish times are not possible.

• Vertex u is a descendant of v in the DFS forest if and only if [d(u), f (u)] is a
subinterval of [d(v), f (v)].

• Vertex v is a descendant of u in the DFS forest if and only if [d(v), f (v)] is a
subinterval of [d(u), f (u)].

• Vertex u is not related to v in the DFS forest if and only if [d(u), f (u)] and
[d(v), f (v)] are disjoint intervals.

Figure6.14 displays these edges in a sample graph. Discovering a back edge on
a DFS tree helps us to discover various properties of a graph. Let us modify the
DFS procedure in Algorithm 6.7 for a directed graph to classify these edges using
the discovery and finish times of their endpoints described above. We will use three
colors for each vertex in this implementation: a vertex iswhitewhen it is unexplored,
it is gray when it is explored but not finished, and it is black when it is finished. The
array color is initialized to white for all vertices and holds the color of each vertex.
The pseudocode for the modified DFS is shown in Algorithm 6.8 [5].

We search all of the neighbors of a vertex u that the procedure takes as input;
if we encounter an edge with an endpoint v that is completed before, then (u, v) is
a forward edge if d[u] < d[v] else it is a cross edge. The vertex v may be gray
meaning it is explored but not finished in which case (u, v) is a back edge, otherwise
it is a tree edge. In an undirected graph, there are no forward or cross edges; hence,

Fig. 6.14 DFS edges of a
digraph; ( j, b): back edge,
(c, i): forward edge, (e, f ):
cross edge and all other
edges are DFS tree edges b c

f

g h

a

d e

ij

forward edge

back edge cross edge

tree edge
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Algorithm 6.8 DFS2_Edges
1: procedure DFS(u)
2: color [u] ← grey
3: time ← time + 1; d[u] ← time � first visit
4: for all (u, v) ∈ E do � visit neighbors
5: if color [v] = black then
6: if d(u) < d(v) then
7: t ype(u, v) ← f orward_edge
8: elset ype(u, v) ← cross_edge
9: end if
10: if color [v] = grey then
11: t ype(u, v) ← back_edge
12: end if
13: if color [v] = white then
14: t ype(u, v) ← tree_edge
15: DFS(v)
16: end if
17: end if
18: color [u] ← black
19: Pred[v] ← u,
20: time ← time + 1
21: f [u] ← time � return visit
22: end for
23: end procedure

we only need to check the color of the neighbor vertex v of the vertex u; if it is gray,
we have a back edge and otherwise v is white and (u, v) is a tree edge. The running
time for this edge classification algorithm is Θ(n + m) since we have only added
constant time operations to the DFS procedure in Algorithm 6.7.

6.3.2 An Iterative DFS Algorithm

When we know the recursion depth of a graph is very large, for example more than
few thousand, we can replace recursive calls with a stack and obtain a non-recursive
DFS algorithm. The iterative DFS algorithm shown in Algorithm 6.9 starts from the
source vertex and at each iteration, the neighbors of the vertex u under consideration
are pushed into a stack S. This way, visiting all neighbors of u is guaranteed. Once
this step is finished, a vertex w is popped from S, marked as visited and the parent
of w is marked as u. This step is repeated now for vertex w. Note that this algorithm
performs recursive visiting of vertices using the stack S which keeps track of vertices
seen but not processed. Different than the recursive DFS algorithm, we have the last
pushed vertex on to the stack being processed first.We have the same time complexity
of Θ(n + m).
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Algorithm 6.9 DFS_Iterative
1: Input: G(V, E) and a vertex v, directed or undirected graph
2: Output: Pred[n]; d[n], f [n] � place of a vertex in DFS tree and its visit times
3: int time ← 0; boolean Marked[n]; stack S ← Ø
4: for all u ∈ V do � initialize
5: Marked[u] ← f alse
6: Pred[u] ←⊥
7: end for
8: push(S,v) � push source vertex in stack
9: while S �= Ø do
10: u ← pop(S)
11: if visi ted[u] �= true then
12: visi ted[u] ← true
13: Pred[u] ← v
14: for all (u,w) ∈ E do � push neighbors onto stack
15: push(S,w)

16: end for
17: end if
18: end while

6.3.3 Parallel DFS

Due to the nature of its execution, DFS algorithm is difficult to parallelize. A simple
way to provide parallel processing is to divide the search space among processors.
However, this static allocation commonly results in poor load balance since the size of
the subtrees may vary significantly. Search space in general is formed dynamically
and is difficult to estimate beforehand. Dynamic load balancing for parallel DFS
processing may then be used.

A simple dynamic load balancing for parallel DFSmaywork as follows. A process
pi works on a given search space and when it finishes its work, it requests work from
other processes. This can be handled by a central process or in a truly distributed
manner with no central control. In terms of implementation, the whole search space
may be given to a single process and all other processes may be given empty search
spaces initially as described in [8]. The search space is then divided among processes
when they request work.

6.3.4 Distributed Algorithms

In a network setting, our aim is to have the nodes of the network cooperate to find the
DFS of the whole network.Wemay use the DFS tree formed for various applications
such as finding connected nodes in such a distributed environment. The DFS tree
information may be gathered at the root which may then transfer the connected
vertices in the network to a management utility which can take remedy actions if
there are unconnected nodes. There are various algorithms for this purpose and we
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will review a basic one that imitates the sequential algorithm we have seen, using
a special message called the token. This special message provides a single point of
execution which is the holder of the token. Any node that possesses the token can
run the algorithm while the others stay idle. The token serves a second purpose; it
holds the identifiers of the nodes that are visited to prevent visiting them again.

This algorithm called the Token_DFS [6]which operates using the same principle
as in the DFS procedure is shown in pseudocode in Algorithm 6.10 [6]. We have now
a root node which starts the algorithm which is where we would start the sequential
algorithm. A node receiving the token for the first time records the sender as its
parent. It then checks whether it has an unvisited neighbor by comparing the list
contained in the token with its neighbors. If such a neighbor exists, it sends the token
to that node.Otherwise, token is returned to the parentwhich is basically imitating the
return from the recursive procedure in the sequential algorithm. Correct termination
of the distributed algorithm is a fundamental problem in a distributed setting. Any
node other than the root terminates when it returns the token to its parent. The root
has a different termination, it stops when token is returned to it, and it has no other
unvisited neighbors.

Algorithm 6.10 Token_DFS
1: int parent ← ⊥
2: set of int childs← {Ø} , others ← {Ø}, list ← {Ø}
3: boolean used[] ← f alse
4: message types token
5:
6: if i = root then � root node starts the algorithm
7: parent ← i , choose j ∈ N (i)
8: send token({i}) to j
9: end if
10:
11: while true do
12: receive token(j,list)
13: if parent = ⊥ then � token received first time
14: parent ← j
15: end if
16: if ∃ j ∈ {N (i) \ {list} } then � choose an unvisited node if it exists
17: choose j ∈ {N (i) \ {list}}
18: send token(list ∪ {i}) to j
19: else if i = root then � if i is the root and all visited, terminate
20: exit
21: else � if all visited and i is not root, return token to parent
22: send token(list ∪ {i}) to parent
23: exit � all nodes except root terminate
24: end if
25: end while
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Analysis

Theorem 6.4 The Token_DFS correctly constructs a DFS tree in 2n−2 time using
2n − 2 messages.

Proof Since the operation is basically the same of the sequential DFS algorithm, the
DFS tree will be constructed correctly, that is, visiting each node in DFS manner and
forming a tree without any cycles. The DFS tree constructed will have n − 1 edges
since any tree with n vertices has n − 1 edges, and only the edges of this tree will
have been traversed twice, once in each direction resulting in a total of 2n − 2 token
transfers among the nodes resulting in 2n − 2 messages. The non-tree edges will
not be traversed since we always search unvisited nodes. There is a single activity at
any time dictated by the possession of the token, and each message transfer takes a
single time unit resulting in 2n − 2 time.

We followed a very simple route to design a distributed algorithm following the
same logic of the sequential one. A good side of this algorithm is that the token is
forwarded only along tree edges. However, a known problem with this algorithm
is that the size of the token is dependent on the order of the graph. Assuming we
need log n bits to hold the identifier of a node, the required size of the token would
be n log n which means we need to transfer a message of O(n log n) size through
n−1 edges of the DFS tree. Moreover, the operation is sequential as there is a single
activity by the holder of the token at any time.

Example

An operation of this algorithm in a sample graph is depicted in Fig. 6.15. We can see
that the token is transferred 12 times which is 2× n − 2, n being 7 in this case. This
is also the time taken by the algorithm. The number of bits required in the token is
O(n log n) = 21.

As an attempt to provide an algorithm that uses a token as before but without
containing the identifiers of the visited nodes, Awerbuch proposed a distributed al-
gorithm for DFS tree construction [1]. In this algorithm, a node informs its neighbors
by a specialmessage named vis that is visited for the first time. The neighbors respond
by ack messages. The nodes can keep a track of visited and unvisited neighbors at
the expense of extra messages. This algorithm requires 4m messages in 4n− 2 time.

The classical distributed DFS algorithm also implements a token and works using
three rules as follows [6]. This algorithmneeds 2mmessages and 2m time to construct
a DFS tree.

1. A node never forward the token through the same edge.
2. Any node other than the root forward the token to its parent when first rule is not

applicable.
3. A node receiving the token sends it back through the same edge if this is allowed

by rules 1 and 2.
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Fig.6.15 Running of Dist_BFS algorithm in a sample graph. The contents of the token are shown
only when there is a change. The directed tree is rooted at vertex a and the arrows show the sequence
of execution

6.3.5 Applications of DFS

We can use the DFS algorithm to test connectivity of undirected or directed graphs,
to detect cycles in undirected or directed graphs and for topological order.

6.3.5.1 Testing Connectivity
The DFS algorithm may be used to find the connected components of a graph. If
a single call to procedure DFS visits all vertices of G, then it is connected. As a
consequence, we can also determine the number of connected components of G;
this can be achieved simply by adding a counter to find the number of times the
DFS procedure is called in line 10 of Algorithm 6.7. If count is 1, there is only one
component in the graph, that is, graph is connected.

DFS was also used by Hopcroft and Karp for bipartite matching [9]. Another use
of DFS method was proposed by Hopcroft and Tarjan to test the planarity of a graph
in linear time [10] and Even and Tarjan provided vertex and edge connectivity algo-
rithms based on DFS [7]. An essential DFS application is the topological ordering
or topological sorting of a directed acyclic graph (DAG) as we will describe.

6.3.5.2 Detecting Cycles
A cycle in a graph is a path that starts and ends at the same vertex. We can use the
DFS algorithm to detect cycles in undirected or directed graphs by the observation
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that there will not be any back edges such as an edge (u, v) with v being the ancestor
of u in the tree in acyclic graphs. We can make use of the following theorem to detect
a back edge.

Theorem 6.5 Given an undirected or directed graph G = (V, E), (u, v) ∈ E is a
back edge if and only if d(v) < d(u) < f (u) < f (v).

Proof If (u, v) is a back edge, it connects vertex u to its ancestor v; hence, vertex
u is a descendant of vertex v. By the parenthesis theorem, the interval [d(u), f (u)]
is a subinterval of [d(v), f (v)] so the forward direction of the theorem holds. For
the reverse direction, let us consider the parenthesis theorem again. When d(v) <

d(u) < f (u) < f (v), vertex u is a descendant of v. This means edge (u, v) connects
a vertex to its ancestor and hence it is a back edge. ��

Wecan therefore detect cycles in anundirectedor directedgraphby simply running
the DFS algorithm in O(n + m) time to assign discovery and finish times for each
vertex and then checking the type of edges formed in O(m) time for this property,
resulting in a total of O(n +m) time. In order to detect back edges online as we are
performing a DFS, we can check the finish time f (u) of a vertex u with the discovery
time of its neighbors. If there exists a neighbor v such that d(v) < f (u), then v is an
ancestor of u and (u, v) is a back edge. Note that this test is adequate to determine
d(v) < d(u) < f (u) < f (v) since we know d(v) < f (v) and d(u) < f (u) for any
vertex pair u, v of the graph. In the example graph of Fig. 6.13, edge (h, i) is a back
edge since vertex i is an ancestor of vertex h; d(h), f (h) = 3, 4; d(i), f (i) = 3, 4
and hence d(h) < f (i).

As an alternative approach, we can use the coloring scheme of Algorithm 6.8
where white is unexplored, gray is discovered but not finished, and black means we
have discovered and returned from that vertex. Whenever we consider a neighbor
vertex v of a vertex u as in line 18 of Algorithm 6.8, we check its color. If it is gray,
vertex v has to be an ancestor of vertex u on the DFS tree and therefore (u, v) is a
back edge which means graph G is not acyclic.

6.3.5.3 Topological Order
Topological ordering is an important process on digraphs where we search for a
linear ordering of vertices such that for any edge (u, v) in the graph, u precedes v in
the ordering. Let us assume there are n tasks some of which are dependent on other
tasks to start, similar to what we have in a computational task dependency graph
described in Sect. 4. In order to perform these tasks, we need to arrange them in the
order displaying their dependencies. Topological sorting in a digraph with a cycle is
not possible and hence, we will assume the input digraph is cycle free. Basically, if a
vertex v can be reached from a vertex u, then vertex u should have a lower ordering
(Fig. 6.16).

http://dx.doi.org/10.1007/978-3-319-73235-0_4
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Fig.6.16 Iterations of the simple algorithm for topological ordering in a sample graph. The selected
vertexwith no incoming edges at each iteration is shown inside a dashed circle. The ordering formed
is {a, f, b, c, e, d} in the order of deleted vertices

Definition 6.10 (topological order) A topological order ≺ of a directed acyclic
graphG = (V, E) is a total order of the vertex setV such that for all edges (u, v) ∈ E ,
u ≺ v.

A Simple Algorithm

Wecan have a simple algorithm for topological order as follows.We first find a vertex
v with in-degree 0. There is always such a vertex in a DAG since it is loop-free. If
there are more than one such vertices, an arbitrary selection is made. This vertex
is placed in the ordered output list; and v with all of its outgoing edges is deleted
from graph. This process is repeated until there are no vertices left. Correctness is
ensured since if deleting outgoing edges from a vertex v placed in the list leaves a
vertex u with no incoming edges, than we know v ≺ u. Algorithm 6.11 shows this
routine in pseudocode where we have L as the ordered output list. The operation of
this algorithm is shown in Fig. 6.16.

Analysis

In terms of implementation, we can have an array A of adjacency lists of the graph
and also an array D showing the in-degrees of each vertex as shown below for the
example graph of Fig. 6.17. We need to check each entry of D for a 0 value and if
there is more than one such vertex, we select one arbitrarily. We then remove this
vertex from graph by inserting a –1 in the in-degree array D and deleting this vertex
and removing it from the array A of adjacency lists of its outgoing neighbors. This
process is repeated until there is one vertex with an in-degree of 0.
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Algorithm 6.11 BFS
1: Input : G(V, E) � A directed, connected graph G
2: Output : L � List of ordered elements
3: G ′ = (V ′, E ′) ← G = (V, E)

4: while V ′ �= Ø do � do until V ′ is empty
5: find v ∈ V ′ such that indeg(v) = 0
6: L ← L ∪ {v}
7: G ′ ← G ′ \ {v}∪ {all outgoing edges of v}
8: end while
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Fig.6.17 The values of array D during iterations of the simple topological ordering algorithm for
the graph of Fig. 6.17

Initializing the in-degree array D takes O(m) time, searching each entry is O(n)

time resulting in O(n2) time for the whole array D. We then reduce in-degree of
all its neighbors in O(m) time resulting in a total runtime of O(n2 + m) for this
algorithm.

DFS-Based Algorithm

We can make use of the edge properties discovered during the recursive DFS algo-
rithm to perform topological order. When we run the recursive DFS algorithm on a
graph G to obtain a DAG G ′, every edge (u, v) in G ′ has f (v) < d(u) since there
are no back edges in G ′. This provides us the necessary information to form the
topological order of G: simply list the vertices of G ′ from the largest finish time to
the smallest. We can obtain this list by adding the identity of the vertex to the front
of a list L when we finish with it and when DFS is completed, the list L contains the
topological ordering of vertices. Total time taken therefore is Θ(n +m) as in the re-
cursive DFS. Figure6.18 displays a DFS tree obtained in the same graph of Fig. 6.17
and sorting the finish times of vertices provides the same topological ordering as the
previous algorithm in this graph.
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Fig. 6.18 Topological
ordering by DFS on the
sample graph of Fig. 6.18.
The DFS tree is shown in
bold and the first and last
times of a visit to each vertex
is shown next to it. The
ordering using the last visit
times of vertices found using
this method is
{a, f, b, c, e, d}
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Analysis

Theorem 6.6 The DFS-based topological sort algorithm correctly provides a topo-
logical sort of an acyclic digraph G = (V, E).

Proof We need to show that for any directed edge (u, v) ∈ E , f (v) < f (u) for the
correctness of this algorithm. For any edge (u, v) considered during the DFS, vertex
v cannot be an ancestor of vertex u since G is given acyclic, hence f (v) < f (u).
In terms of our color coding of vertices, vertex v cannot be gray; it can either be
white (unexplored) or black (explored). If vertex v is white, it will be processed and
become black before u becomes black and hence f (v) < f (u). If it is black, this
means it has already been processed to have its finishing time f (v) determined and
vertex u will have a greater finish time than v in this case as well. ��

6.4 Breadth-First Search

The main idea of the breadth-first search (BFS) method is to visit all neighbors of
a vertex first before visiting other vertices, and hence the name. Starting from the
source vertex s, we first visit all neighbors of s in an arbitrary order. These neighbor
vertices, N (s), all have a distance of unity from the vertex s after the visit. We then
visit neighbors of vertices in N (s) which are labeled with distance of 2 to vertex s.
This process continues until all vertices are visited.

6.4.1 The Sequential Algorithm

We can implement this algorithm by inserting the adjacent vertices of the currently
visited vertex in a queue, and then removing them from the queue one by one and
repeat the process. We need to keep track of the visited vertices as in the DFS
algorithms to prevent a vertex to be visited again. Algorithm 6.12 shows one way of
implementing the described procedure.
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Algorithm 6.12 BFS
1: Input : G(V, E), s � undirected, connected graph G and a source vertex s
2: Output : D[n] and Pred[n] � distances and predecessors of vertices in BFS tree
3: for all v ∈ V \ {s} do � initialize all vertices except source s
4: D[v] ← ∞
5: Pred[v] ←⊥
6: end for
7: D[s] ← 0 � initialize source s
8: Pred[s] ← s
9: Q ← s
10: while Q �= Ø do � do until Q is empty
11: v ← deque(Q) � deque the first element u
12: for all (u, v) ∈ E do � process all neighbors of u
13: if D[u] = ∞ then
14: D[u] ← D[v] + 1
15: Pred[u] ← v
16: enque(Q, u)

17: end if
18: end for
19: end while

Fig. 6.19 Running of BFS
algorithm in a sample graph
from vertex a. The directed
tree is rooted at a and the
levels of vertices are shown
next to them. Note that we
mark tree edges with arrows
to point to their parents along
the path to the source vertex
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Analysis

The distance and predecessor initialization for vertices takes O(n) time. Each vertex
is enqueued at most once and each edge is explored at most twice, once for each
vertex incident to it. Total time spent to construct the BFS tree is therefore O(n+m).

Example

The running of BFS algorithm on a sample graph is shown in Fig. 6.19. The BFS
tree constructed shows the shortest paths from the root vertex a.

Properties

The properties of the BFS graph traversal are as follows.

• A directed spanning tree of the graph G is obtained as a result of this algorithm.
We update distances of vertices with infinity distances only in line 13 which are
not visited and hence no cycles are formed. Note that we do not need a variable to
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check whether a vertex is visited or not as in the DFS algorithm since the distance
value of infinity shows that vertex is not visited. All vertices will be processed at
the end of the algorithm and therefore the output is a spanning tree of G.

• The order we select and hence enqueue the neighbors of v in line 12 of the
algorithm affects the structure of the BFS tree obtained and therefore this tree is
not unique.

• The BFS algorithm partitions the edges of an undirected graph into tree edges and
back edges.

6.4.2 Parallel BFS

When we view the BFS procedure, we can see all the vertices at the same level can
be processed in parallel. For example, we can have a parallel loop to explore all of
the neighbor vertices of vertices at level i to find the vertices at level i +1. However,
we can have a situation in which two vertices u and v at level i will both attempt to
set level of an unexplored neighbor vertex w to i +1 and set themselves as the parent
of w. However, this seemingly race condition does not cause any problem as it does
not matter which vertex sets the level of w to i + 1 and it is also immaterial whether
u or v is the parent of w. Moreover, we need to synchronize all of the processes at
level i to ensure they all finish before starting the parallel processing at level i + 1
to find vertices at level i + 2.

This level-synchronous approach is implemented in various parallel BFS algo-
rithms as described in [3]. A PRAM-based approach may work similar to what we
have described providing parallel loop processing by a number of processing units
and atomic level updates with barrier synchronization between level processing.
The total execution time based on this model would then be O(diam(G)) since the
number of levels would not exceed the diameter of the graph G. Various parallel
algorithms, whether shared or distributed memory, adapt this strategy with possibly
added load balancing during parallel processing of the exploration loop. A fine-grain
parallel BFS algorithm running on shared memory Cray MTA-2 system is reported
in [2]. In a distributed memory parallel processing system, partitioning of the graph
to processing nodes is commonly pursued. A distributed memory parallel algorithm
using 2-D graph partitioning is implemented in BlueGene/L in [12].

6.4.3 Distributed Algorithms

We review two distributed algorithms to form aBFS tree in a network:A synchronous
algorithm that works in rounds and an asynchronous algorithm. Termination should
be handled carefully in both cases.
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6.4.3.1 A Synchronous BFS Algorithm
Our starting point will again be the sequential BFS algorithm and we will attempt to
have its distributed version. This time, however, we will assume the method of single
initiator synchronous distributed (SISD) algorithm. There is a root (supervisor) node
r which is where the BFS tree will be rooted and the algorithm runs in synchronous
rounds [6]. The root enlarges the current BFS tree T ′ with a new layer at each round.
The messages used in this algorithm are as follows.

• round: Sent by root r at the beginning of each round over the partial tree T ′. Each
node on T ′ broadcasts round to its children.

• probe: Sent by leaves of T’ to all neighbor nodes except the parent.
• ack: A non-tree node responds to probemessage by an ack message. It marks the

sender of probe as its parent and the receiver of ack marks the sender as one of
its children. If there are more than one probemessages received concurrently, the
receiving node arbitrarily picks one of them.

• nack: If the receiver of a probe message already has a parent assigned, its ends
the sender a nack message.

• upcast: Sent by leaves of T ′ to their parents to inform the round is over.

Once a new layer is formed, the leaves from the previous round collect all ack and
nack messages and start a convergecast operation described in Sect. 5.6.3 over the
edges of T ′. When the root receives upcast messages from all of its children, it can
start the next round. Algorithm 6.13 shows round k of the distributed synchronous
BFS algorithm run by any node except the root. The set childs is the set of children
for the root and intermediate nodes; others are the set of neighbors of a leaf node
that are not its children and the set collected is used to keep track of which children
have sent an upcast message to an intermediate node.

We can see this algorithmworks rather asynchronously in one synchronous round.
We do not pay attention to the order of messages received although we know each
node on T ′ will first receive the round message and it will act differently depending
on whether it is a leaf or an intermediate node. A leaf node searches for neighbors to
be included in the next layer and an intermediate node simply acts as a gateway by
sending the roundmessage to its children. Upon completion of the round, an interme-
diate node collects upcast messages from its children and sends an upcast message
to its parent. We check whether a leaf node has received ack or nack messages from
all of its neighbors; or a non-leaf node has received upcast messages from all of its
children to decide if the round is over. When this is decided, an upcast message is
sent to the parent.

http://dx.doi.org/10.1007/978-3-319-73235-0_5
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Algorithm 6.13 Synchron_BFS
1: int parent ← Ø
2: set of int childs ← {Ø}, others ← {Ø}, collected ← {Ø}
3: message types round, probe, ack, nack
4: boolean visi ted ← f alse; round_over ← f alse
5: while ¬round_over do
6: receive msg(j)
7: case msg(j).type of
8: round(k) : if lea f _node then � if leaf check neighbors
9: send probe(k) to N (i) \ { j}
10: else
11: send probe(k) to childs � else send probe to children
12: probe(k) : if ¬visi ted then � update distance
13: parent ← j ; visi ted ← true
14: send ack(k) to j � inform parent I am child
15: else
16: send nack(l) to j � else reject sender
17: ack(k) : childs ← childs ∪ {j} � include sender in children
18: nack(k) : others ← others ∪ {j} � include sender in unrelated
19: upcast (k) : collected ← collected ∪ { j} � collect upcast signals
20: if (lea f _node ∧ (childs ∪ others) = N (i)) ∨ (¬lea f _node ∧ (collected = childs))

then
21: send upcast to parent
22: round_over ← true; collected ← {Ø}
23: end if
24: end while

Aswith all distributed algorithms, termination detection is needed. In other words,
the root should know how many rounds it has to initiate at most. We can see that the
number of rounds needed is the farthest distance between the root and any node in
the network which is the diameter of the network graph and hence the root needs to
know the diameter prior to running the algorithm. Unfortunately, this creates another
problem; however, close inspection of the algorithm may provide an easier and an
elegant way out as follows. A leaf node l in the graph terminates when either it has a
degree of unity or all of its neighbors have rejected it, meaning they are children of
other intermediate tree nodes. This means there is no reason for l to continue as it has
no children to transfer round or upcast messages nor any neighbors to probe. We can
elaborate on this condition and when this happens, a special terminate message can
be convergecast toward the root. When all of the children of an intermediate node v
upcast a terminatemessage, the node v terminates and sends a terminatemessage to
its parent and the root terminates when all of its children upcast a terminatemessage
(See Ex. 10).

Example

An example operation of this algorithm is depicted in Fig. 6.20 where the root node
g starts the algorithm by sending probemessages to its neighbors a and f in the first
round which respond by ack messages and the edges (g, a) and (g, f ) become BFS
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Fig.6.20 Running of Algorithm 6.13 on a sample graph for four rounds. Only probemessages (p)
that are acknowledged with ack (a) messages are shown

tree edges. Note that nodes a and f send probe messages to each other in the next
round (round 2) which are rejected. The number of rounds started by the node g is
4 which is the diameter of the graph.

Analysis

Theorem 6.7 Algorithm Synchron_BFS correctly constructs a BFS tree in
O(diam2(G)) time using O(n · diam(G) + m) messages.

Proof At each step of the algorithm, only leaves at layer k of the partial tree formed
will be sending probemessages to form layer k+1 leaves which would be enlarging
the partial BFS tree one layer. Hence, BFS tree property is obeyed to form the final
BFS tree.

At each kth step of the algorithm, time spent will be proportional to the current
level k as messages are broadcast and convergecast through k layers. We can have at
most diam(G) levels and hence totaling gives

diam(G)∑

k=1

k = O(diam2(G))

An analysis of message complexity is as follows. There will be a maximum
of n synchronization messages in each round for a total of O(n · diam(G))

since there will be at most diam(G) rounds. Also, each edge will be traversed
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at most twice by probe/ack or probe/nack message pairs resulting in O(m) mes-
sages for queries. Total number of messages needed will be the sum of these as
O(n · diam(G) + m). ��

6.4.3.2 An Asynchronous BFS Algorithm
We will attempt to provide a distributed version of the dynamic Bellman–Ford al-
gorithm described in Sect. 3.9.3.2. This algorithm provided shortest distances in a
weighted graph; however, we will use it for an unweighted graph with the same rea-
soning as in [6,11]. The distributed version is a single-source asynchronous algorithm
and hence we do not know the order of the messages to be received. Therefore, we
need to modify distances of the nodes to the source node at each incoming message.

We have three distinct messages level(k), ack(k), and nack(k). The root node
starts the algorithm by sending level(0)message to its neighbors. All nodes initialize
their distance to the root as infinity first and any node that receives this message
compares its distance value to the root with the value contained in the message. If the
route to the root via the neighbor sending themessage is shorter, the sending neighbor
is assigned as the parent and the distance ismodified as shown inAlgorithm 6.14. The
modified distance is broadcast to neighbors so they can also update their distances.
This is needed since the newly found route may affect the shortest distances of the
neighbors to the root. We have the sets childs and others as in the synchronous
algorithm since we need a node to be aware of the neighbors that are children and
that are unrelated.

Algorithm 6.14 Asynchron_BFS
1: int parent ← Ø, my_layer ← ∞, count=1
2: set of int childs← {Ø} , neighbors ← {Ø}, others ← {Ø}
3: message types level, ack, nack
4: if i = root then
5: send level(0) to N (i) � Only root executes this part
6: end if
7: while count ≤ diam(G) do
8: receive msg(j)
9: case msg(j).type of
10: layer(l) : if my_level > l + 1 then � update my distance
11: parent ← j
12: my_level ← l + 1
13: send ack(l) to j � inform parent i am child
14: send my_level to N (i) \ {j} � inform neighbors of new level
15: else
16: send nack(l) to j � else reject sender
17: ack(l) : childs ← childs ∪ {j} � include sender in children
18: nack(l) : others ← others ∪ {j} � include sender in unrelated
19: count ← count+1
20: end while

http://dx.doi.org/10.1007/978-3-319-73235-0_3
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It can be seen this process eventually builds a BFS tree starting from the root. The
termination conditionwould be the traversingof the longest shortest path between any
two nodes which would be the diameter of the graph G. Therefore, each node should
wait a maximum of diam(G) of the network messages. Unlike the synchronous
algorithm, this time we do not have an easy solution for termination since we do not
know the diameter en priori. We can include a time-to-live field in each message
which is initialized to an upper limit of the diameter value and is decremented at
each reception at a node. When this field becomes zero, the message is no longer
transmitted to neighbors.

Theorem 6.8 Algorithm Asynchron_BFS correctly constructs a BFS tree in
O(diam(G)) time using O(nm) messages.

Proof After diam(G) steps, all nodes will have received layer(diam(G) − 1 mes-
sage and will set its distance to this value and hence the BFS tree will be constructed.
Time needed is the diameter of the network to reach the farthest node from the root
node, hence time complexity is O(diam(G)). The longest path in the network will
have a length of n − 1 and a node having this value for the first time may need to
change it n−2 times and will send at most n ·deg(v)messages resulting in the below
total number of messages [11].

m∑

v=1

n.deg(v) = O(nm)

��

6.4.4 Applications of BFS

We can find whether a graphG is connected or not using this algorithm as in the DFS
algorithm. If all of the vertices of G are processed at the end, then it is connected.
Finding the shortest path from the root vertex to all others in an undirected is also
provided by thismethod. TheBFS algorithm in an unweighted simple graph provides
the distance between a vertex v and the source vertex; this distance is simply the level
of v in the BFS tree formed.

6.4.4.1 Testing Bipartiteness
A graph G(V, E) is bipartite if its vertex set V can be partitioned into two subsets V1
and V2 such that every (u, v) ∈ E has one endpoint in V1 and the other endpoint in
V2. In other words, there are no edges between any two vertices in V1 and no edges
between any two vertices in V2. We can use the BFS algorithm to check whether a
graph G is bipartite or not as follows. An edge joining two layers of the BFS tree
means G has a cycle of odd length, and hence cannot be bipartite. We give the same
color to each node of G in the same layer discovered by the BFS algorithm. Clearly,
we can color all of the nodes using two colors, say white and gray. Hence, if G is
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bipartite, there will not be any edge of G that has two vertices of the same color at
its endpoints. Specifically, we have the following steps of this algorithm.

1. Input: G = (V, E)

2. Output: Evaluate G as bipartite or non-bipartite
3. Select s ∈ V and set color(s) ← white
4. Run modified BFS algorithm starting from vertex s ∈ V as follows.

a. Color a vertex v at level i by the color gray if vertices at level (i − 1) are
white. Conversely color v white if level(i − 1) vertices are gray.

b. Let color(v) = c for a vertex v colored as above.
c. If ∃u ∈ N (v) such that color(v) = color(u)

d. Output “G is not bipartite”. Stop.

5. If all vertices are colored properly, then output “G is bipartite”

Figure6.21 shows a sample graph partitioned into two sets by the BFS algorithm
and we can see it is not bipartite as there is an edge joining two vertices of the same
color.

This algorithm works correctly with the following reasoning to show only one of
the cases is valid.

• If there is not an edge between two vertices in the same layer, vertices in adjacent
layers will be colored with opposite colors. Therefore, G is bipartite in this case.

• Let us assume there is an edge (u, v) between vertices u and v of the same layer
L j . Let w be the least common ancestor of u and v in the BFS tree T at layer Li .
Then, w − u − v − w is a cycle of the graph having length 2( j − i) + 1 which is
an odd cycle. Hence, G is not bipartite.

BFS is accomplished in O(n+m) time and scanning the edges can be performed
in O(m) time resulting in a total time of O(n + m) for this algorithm.

1

1

1 1

11 2

2
3

a

Fig. 6.21 A graph that is partitioned into white and gray vertices by the BFS algorithm from a
source vertex a. Levels of vertices are shown next to them. The edge enclosed in the dashed ellipse
is between two vertices that are gray, therefore this graph is not bipartite
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6.5 Chapter Notes

We described tree structure in graphs in the first part of this chapter. Trees have
numerous implementations in computer science and in real-life applications. We
reviewed algorithms to construct spanning trees in a graph and then tree traversal
algorithms.

In the second part of the chapter, we reviewed two fundamental graph traversal
methods: DFS and BFS. We saw DFS can be implemented as an effective recursive
algorithm with O(n + m) time complexity and it also has an iterative version using
a stack with the same time complexity. It can be used to test connectivity and to
find the number of components of a graph. An important DFS implementation is
to find the topological order of a directed acyclic graph in which vertices have
precedence relationships.DFS algorithm is difficult to parallelize due to its sequential
and dependent nature of execution between each algorithm step. However, the graph
contraction method in which we obtained a coarser graph of a previous step can be
used for parallel DFS construction. Distributed DFS tree building involves nodes
of a communication network cooperating to construct this tree. We can convert the
sequential DFS algorithm to a distributed one using a special message called token
between the nodes. Any node that possesses the token is allowed to execute, and
hence we have in fact a sequential algorithm running in a distributed manner. There
are various other distributed DFS algorithms which achieve better parallelism at the
expense of increased number of messages as we have reviewed.

The BFS algorithm visits vertices of a graph using layer-by-layer search and it can
be used to find distances from a source vertex to all other vertices in an undirected,
unweighted graph. For a weighted graph, we need to modify this algorithm to find
distances as we will see in the next chapter. BFS algorithm can be used to test
bipartiteness of an undirected graph aswe saw. The parallel version of BFS algorithm
uses graph contraction as in the parallelDFSalgorithm.There are fewdistributedBFS
algorithms and one such algorithm works synchronously in rounds under the control
of a special node called the supervisor. This node enlarges the BFS tree layer-by-
layer at each round and in fact imitates the sequential BFS algorithm in a distributed
setting. Other than solving explicit problems such as connectivity, topological order,
and bipartiteness, these twobasicmethods of graph traversals provide building blocks
of various more complex graph algorithms as we will see. The implementations of
these algorithms in directed graphs are similar, and we should consider only the
outgoing edges from a vertex in a digraph.

Exercises

1. Write the pseudocode of the recursive tree center finding algorithm of Sect. 6.2
and show step-by-step execution of this algorithm in the sample tree depicted in
Fig. 6.22.

2. Construct a possible spanning tree of the graph depicted in Fig. 6.23 using the
second spanning tree algorithm of Sect. 6.2.4.2.



6.5 Chapter Notes 173
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3. Design and form the pseudocode of a distributed algorithm that forms a span-
ning tree based on the third algorithm of Sect. 6.2.4.3 for spanning tree construc-
tion. Show a possible running of this algorithm in the network graph shown in
Fig. 6.24.

4. Work out a possible DFS tree rooted at vertex a in the digraph of Fig. 6.25 by
showing the discovery and finish times for each vertex. Show also the tree edges,
front edges, back edges, and cross edges in the graph.
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Fig. 6.26 Sample graph for
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5. The token-basedDFSalgorithm is to be executed in the sample graphof Fig. 6.26.
Work out a possible DFS tree rooted at vertex a. Show the iterations of the
algorithm in this graph with the contents of the token.

6. Write the pseudocode of the DFS-based cycle detection algorithm that uses
discovery times and finish times of vertices. Show the step-by-step running of
this algorithm in the graph of Fig. 6.27.

7. Work out the topological order of vertices in the DAG of Fig. 6.28 using both
the simple algorithm and the DFS-based algorithm.
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8. Find the BFS tree rooted at vertex g in Fig. 6.29 by showing the levels for each
vertex.

9. Design thedistributed synchronousBFSalgorithmofSect. 6.13 (Algorithm6.13)
with FSMs. Draw the FSM diagram and write the pseudocode for this algorithm.

10. Modify Algorithm 6.13 such that termination using a special terminate message
upcast by leaves is used.
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Abstract

A weighted graph can have weights associated with its edges or its vertices. The
weight on an edge typically denotes the cost of traversing that edge and theweights
of a vertex commonly show its capacity to perform some function. In this chapter,
we review sequential, parallel, and distributed algorithms for weighted graphs
for two specific tasks; the minimum spanning tree problem and the shortest path
problem.

7.1 Introduction

A graph can have weights associated with its edges or its vertices. The weight on an
edge typically denotes the cost of traversing that edge and the weights of a vertex
commonly show its capacity to perform some function. Our aim in this chapter is to
review algorithms for weighted graphs for two specific tasks; the minimum spanning
tree problem and the shortest path problem.

A tree is a connected graph with no cycles and a spanning tree of a connected
graph is a tree that includes all nodes of the graph as we reviewed in the previous
chapter. A minimum spanning tree (MST) of a weighted, undirected, and connected
graph is the spanning tree with the minimum total cost of edges among all spanning
trees of that graph. There can be more than one MST in a graph if edge weights are
not distinct. MSTs find a wide range of applications such as connecting a number
of cities, components or other objects. In general, our aim in search of an MST of a
graph is to use a minimum amount of roads, wires, or any other connecting medium
to connect the objects under consideration. MSTs are also used for clustering of
large networks consisting of tens of thousands of nodes and hundreds of thousands
of edges such as biological networks. Removing a number of heaviest weight edges
results in clusters in such networks.
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We review sequential, parallel, and distributed algorithms for MST construction
in the first part of this chapter. In the second part of this chapter, we look at algorithms
to find the shortest paths between the vertices of a graph. This problem has many
practical usages, especially in computer networks when we want to transfer a data
packet between the two nodes of such a network with minimum costs. We describe
sequential, parallel, and distributed algorithms to find shortest paths between a vertex
and all other vertices, and between each pair of vertices in a graph.

7.2 Minimum SpanningTrees

In this section, we will first describe the four main sequential algorithms to construct
MSTs of weighted graphs. We will then investigate ways of obtaining parallel algo-
rithms from these algorithm followed by the illustration of a distributed algorithm
that can be used to find the MST of a computer network. We will also consider
conversion between parallel and distributed algorithms for this problem.

7.2.1 Background

Given aweighted, undirected, and connected graph G = (V, E, w), we are searching
for the MST T ⊆ G such that w(T ) given below is minimized.

w(T ) =
∑

(u,v)∈T

w(u, v) (7.1)

In search for a solution to this problem,wewill consider few seemingly reasonable
heuristics. First of all, we do not want heavy-weight edges in the MST and attempt
to include as many light edges as possible. We also need to prevent cycles as a tree is
required. Lastly, the bridges of a graph are to be included in theMST since excluding
these edges leaves the MST disconnected. Two rules defined below will help to form
MSTs.

Theorem 3 (Cut property) Consider a weighted, undirected, and connected graph
G = (V, E, w). Let A be a subset of edges that is contained in some MST of G.
For any cut (S, V \ S) of G that has no edges of A crossing the cut, let (u, v) be the
least weight edge across this cut such that u ∈ S and v /∈ S. Then the edge (u, v) is
contained in some MST of G. If the edge weights of G are distinct, then there is a
unique MST T ∗ of G which contains the edge (u, v).

Proof Consider an MST T that contains the set A and does not contain the edge
(u, v). Then there must be a path p that connects the vertex u to the vertex v since
the MST T must cover all vertices. Let us combine the edge (u, v) with the path p
to form a cycle C in G. The edge (u, v) is across the cut which means there must
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be at least an edge (w, z) ∈ C that goes through the cut. Let us now replace (w, z)
with (u, v) to form a new tree T ′ = T ∪ {(u, v)} − {w, z}. T ′ is a spanning tree of G
since we added one edge and removed one edge resulting in n − 1 edges. Moreover,
w(T ′) = w(T ) + w(u, v) − w(w, z) ≤ w(T ) since w(u, v) ≤ w(w, z) which means
T ′ that contains the edge (u, v) is an MST of G. �

The cut property is useful in forming an MST of a graph. Any least weight edge
across any cut of the graph can be included in theMSTuntilwe haven−1 edgeswhich
means the formed tree is an MST. The cycle property is also a useful characteristic
of an MST.

Theorem 7.1 (Cycle property) Let C be any cycle in G and (u, v) be the maximum
weight edge in C. There is no MST of G that contains (u, v).

Proof Let T be anMSTofG and assume the contrary that T contains (u, v). Deleting
(u, v) from T results in two subgraphs with vertices VT and V − VT . The cycle C
has another edge (w, z) �= (u, v) that has exactly one end point in VT and w(w, z) <

w(u, v) since edge (u, v) is the maximum weight edge of C . Form a new tree T ′ =
T −{(u, v)}∪{(w, z)}. The total weight of T ′ is less than the total weight of T which
is a contradiction. �

Theorem 7.2 Let G = (V, E, w) be a connected, weighted, undirected graph. If the
edge weights of G are distinct, then G has a unique MST.

Proof Let T be anMSTofG. For each edge (u, v) ∈ T , the tree T ′ = (V, T \{(u, v)}
has two connected components say P and Q. The edge (u, v) is the only edge of
T across the cut between P and Q and it is the least weight unique edge between
these two sets by the cut property and because edges of G have distinct weights.
Therefore, every MST of G must contain (u, v) and if we consider all edges of T ,
every MST of G must contain all edges of T . Hence every MST is equal to T . �

7.2.2 Sequential Algorithms

We can have a generic algorithm to build the MST of a graph G as follows. We start
with an MST T = Ø of G and always add safe edges to T that should be in the MST
of G. The fundamental algorithms to build the MST of a weighted graph using this
method are due to Prim, Kruskal, and Boruvka as we will review next.

7.2.2.1 Prim’s Algorithm
This algorithm was initially proposed by Jarnik and then by Prim to find MST of
a connected, weighted, directed, or undirected graph G(V, E, w) [16]. The idea of
this algorithm is to always select a safe edge using the cut property of Theorem 3 to
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be included in the set A which has a subset of edges of an MST of G. This algorithm
assumes that edges in A form a single tree. It starts from an arbitrary vertex s and
includes it in the MST. Then at each step of the algorithm, the minimum weight
outgoing edge (MWOE) (u, v) from the current tree fragment T such that u ∈ T
and v ∈ G \ T is found and added to the tree T . If T is an MST fragment of G,
T ∪ (u, v) is also an MST fragment of G by Theorem 3. Proceeding in this manner,
the algorithm finishes when all vertices are included in the final MST as shown in
Algorithm 7.1. Figure7.3 shows the iterations of Prim’s algorithm in a graph.

Algorithm 7.1 Prim_MST
1: Input : G(V, E, w)

2: Output : MST T (V, ET ) of G
3: VT ← {s}
4: T ← Ø
5: while VT �= V do 
 continue until all vertices are visited
6: select the edge (u, v) with minimal weight such that u ∈ T and v ∈ G \ T
7: VT ← VT ∪ {v}
8: ET ← ET ∪ {(u, v)}
9: end while

Analysis

Theorem 7.3 (correctness) Prim’s algorithm provides an MST of the input graph
G = (V, E, w).

Proof The cut property ensures correctness of this algorithm since we always select
the MWOE that is part of the MST by this property. We will show an alternative
proof. In each iteration, we add a vertex v ∈ V − VT that is connected to a vertex
u ∈ VT over the lightest edge (u, v) between the two sets. Since edge (u, v) is
always between two disjoint sets, it cannot form a cycle with vertices of VT , hence
T is always a tree throughout the algorithm running. Also, since VT contains all
vertices of G in the end as tested in line 5, T is a spanning tree of G.

We now need to check whether T is an MST out of all spanning trees of G and we
will do this by induction. Since each vertex must be covered by the MST, the basis
of induction is proven. We now want to show that if Ti−1 is part of the MST, then
addingMWOE to it will provide Ti which will also be part of MST. Let us assume Ti

is not part of the MST and let Ti−1 is a partial MST of G and by adding the MWOE
(u, v) of Ti−1 to we obtain Ti according to the rule of Prim’s algorithm. We will
assume (u, v) /∈ Tn−1 which is the final MST built. In this case, there is another edge
(w, z) in the cutset between Ti−1 and Ti that is part of Tn−1. Moreover, (u, v) and
(w, z) are edges of a cycle. Deleting (w, z) from G results in another tree T

′
of G

which has a total weight less than Tn−1 since w(u, v) ≤ w(u, v). This means Ti is
included in another MST of G which contradicts our initial assumption. �
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Fig. 7.1 Running of Prim’s MST algorithm in a small graph starting from vertex a

Theorem 7.4 (complexity) Prim’s algorithm runs in O(m log n) time.

Proof The main operation performed by this algorithms is the selection of the
MWOE at each iteration in line 6 of Algorithm 7.1. An array d can hold theminimum
distances to any node in VT for ∀v ∈ V − VT , let us call this set V

′
T . We can then find

the minimum value vertex v of this array to include it in VT with the corresponding
edge (u, v) in ET . We also need to update the entries in this array as inclusion of
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the new node v may result in change of values of its neighbors. We need to check
n − 1 vertices to find the minimum value of d in the first iteration, followed by n − 2
iterations in the second step with one less step than the previous one at each step,
resulting in O(n2) steps. Updating of d values requires checking the neighbors of
node v at each step, resulting in the sum of degrees of nodes in total which is 2m. The
total time taken therefore is O(m + n2). We may use a heap data structure to store
the values of V

′
T as we will show in detail in the next section. Finding the minimum

value of V
′
T in the heap can be done in log n time in each step in this case. Updating

the d values for neighbors of v requires a further deg(v) log n at each step. Summing
these two operations for n steps results in O(n log n + m log n). For a dense graph,
we can assume m � n and the resulting time is O(m log n). �

Implementation

Finding the MWOE from the MST fragment is key to the operation of this algo-
rithm. We will use a min-priority queue based on a key attribute as was described in
Sect. 6.2.7. We define key(v) of a vertex v to be the minimum weight of any edge
connecting v to a vertex in the tree which is initialized to ∞ since we do not have a
tree at start. The queue Q contains all of the vertices of the graph initially and we
extract a vertex with the minimum key value from Q at each iteration of the while
loop. We also assign the parent of each vertex v in P[v] to form the tree structure
during iterations. The procedure ExtractMin(Q) removes the element with the low-
est key from Q. Hence, we invoke this procedure to find MWOE until Q becomes
empty. The pseudocode for this algorithm is shown in Algorithm 7.2.

Algorithm 7.2 Prim_MST2
1: Input : G(V, E, w) undirected, connected, and weighted graph
2: s source vertex
3: Output : MST T (V, ET ) of G
4: for all u ∈ V do
5: key(u) ← ∞
6: P[u] ← Ø
7: end for
8: key(s) ← 0
9: T ← Ø
10: Q ← V
11: while Q �= Ø do 
 continue until all vertices are visited
12: u ← ExtractMin(Q)

13: for all (u, v) ∈ E do
14: if v ∈ Q and w(u, v) < key(v) then
15: P[v] ← u
16: key(v) ← w(u, v)
17: end if
18: end for
19: end while

http://dx.doi.org/10.1007/978-3-319-73235-0_6
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Analysis of Priority Queue Implementation

We will prove the correctness of this implementation with a priority queue using
loop variants as in [5]. We specify a loop variant with three components before each
iteration of the while loop as follows:

1. The set V ′ = {(v, P[v]) : v ∈ V − {s} − q} is maintained. When we select the
lightest edge (u, v) with vertex u ∈ q we add u to the set V − Q which are the
tree vertices. Hence, the edge (u, P[u]) is added to MST T .

2. The set V − Q contains vertices that are included in the MST T . This is valid
since every time we remove a vertex from Q, we add it to the set of vertices in
the MST T .

3. For any vertex v ∈ Q, if P[v] �= Ø then key(v) < ∞ and key(v) = w(u, v) with
u ∈ T . That is, any vertex v that is outside the partial MST built with a parent
defined has a key value lower than ∞ and is connected to a vertex u in the MST
assigned as its parent. We update the key and parent of every neighbor vertex of
u without altering any of these values in the tree T and hence this part of the loop
variant is maintained.

The time complexity of this implementation depends on how the min-priority
queue Q is structured. If binary min-heap described in Sect. 6.2.7 is used, we need
to form the heap in O(n) time initially. The while loop is run n times with the
ExtractMin procedure taking O(log n) at each run resulting in O(n log n) times
to call ExtractMin. Testing the key values of the neighbors of the vertex u using
adjacency list requires 2m time in total checking each edge twice. Checking whether
v ∈ Q can be performed in constant time by keeping a boolean variable for each
vertex. Assignment of the key value at line 16 can be performed by the DecreaseKey
procedure which requires O(log n) time. Total time taken therefore is O(n log n +
m log n) = O(m log n).

7.2.2.2 Kruskal’s Algorithm
Kruskal’s MST algorithm takes a different approach by ordering the edges of the
graph G = (V, E, w) in nondecreasing weights. Then, starting from the lightest
weight edge, edges are included in the partial MST T ′ as long as they do not form
cycles with the edges already contained in T ′. This process continues until all edges
in the queue are processed as shown in Algorithm 7.3.

Figure7.2 shows the iterations of Kruskal’s algorithm in a graph. Testing whether
addition of an edge creates a cycle is crucial in the operation of this algorithm. When
we have a forest of trees, we need to determine whether the endpoints of the edge
(u, v) to be considered belonging to the same tree. If they are, including this edge
in the MST will create a cycle and therefore we should discard this edge. We also
need to merge two trees by the edge under consideration if doing so does not create
a cycle. We can use the Union-Find data structure for this purpose which has the
following defined operations:

http://dx.doi.org/10.1007/978-3-319-73235-0_6
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Fig. 7.2 Running of Kruskal’s MST algorithm for the same graph of Fig. 7.1. The same MST is
obtained as edge weights are distinct

• MakeSet(x): Create a new set consisting only of the element x .
• FindSet(x): Find the name (pointer to the representative) of the set containing the

element x .
• Union(x): Merge the sets that contain x and y to form a new set. The old sets are

deleted.



7.2 Minimum Spanning Trees 185

Algorithm 7.3 Kruskal_MST
1: Input : G = (V, E, w)

2: Output : MST T of G
3: T ← Ø
4: Q ← sorted edges in nondecreasing weights of E
5: while Q �= Ø do 
 continue until all edges are checked
6: pick an edge (u, v) from Q
7: if (u, v) does not make a cycle with vertices in T then
8: add (u, v) to T
9: end if
10: end while

Implementation

Based on these operations, we can restructure Kruskal’s algorithm as shown in
Algorithm 7.4. All vertices of the graph are components of the forest first. The
edges are sorted and inserted into the queue Q, we then test whether the endpoints
of an edge (u, v) dequeued from Q are in the same tree. If they are, we know that
adding (u, v) to the MST T will create a cycle and we discard this edge. Otherwise,
the trees of u and v are merged by the Union operation to form a new tree.

Algorithm 7.4 Kruskal_MST2
1: Input : G = (V, E, w) undirected, weighted graph
2: Output : MST T = (V, ET ) of G
3: T ← Ø
4: Q ← sorted edges in nondecreasing weights of E
5: for all v ∈ V do
6: Make-Set(v)
7: end for
8: while Q �= Ø do 
 continue until all vertices are visited
9: (u, v) ← deque(Q)

10: if FindSet(u) �= FindSet(v) then 
 check cycles
11: ET ← ET ∪ {(u, v)} 
 include edge in MST
12: Union(u, v) 
 merge trees if edge not in cycle
13: end if
14: end while
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Analysis

Theorem 7.5 (correctness) Kruskal’s algorithm provides an MST of the input graph
G(V, E, w).

Proof At each iteration, we add a vertex v ∈ V
′
T that is connected to a vertex u ∈ VT

over the cheapest edge (u, v) between the two sets. Since edge (u, v) is always
between two disjoint sets, it cannot form a cycle with vertices of VT , hence T is
always a tree throughout the algorithm running. Also, since VT contains all vertices
of G as tested in line 5, T is a spanning tree of G. We now need to prove T is an
MST of G. During the i th iteration of the algorithm, let Ai be the subset of edges of
the final MST T ∗. Note that unlike in Prim’s algorithm, Ai may contain a disjoint set
of edges. There will not be any edge in Ai that has a greater weight than any edge in
E \ Ai simply because we include low weight edges in Ai starting from the lowest
one. This means if the new edge (u, v) to be added creates a cycle with the existing
edges in Ai , it is the highest weight edge in that cycle. By the cycle property, we are
rejecting an edge that does not belong to the MST. On the other hand, whenever we
accept an edge, it belongs to the MST by the cut property. �

Initialization by MakeSet takes n steps. Since there will be n − 1 MST edges,
we need to execute the Union procedure n − 1 times. We also need to test each
edge twice for each of its endpoints by the Find-Set procedure resulting in 2m times
invocation. Using linked lists, theUnion procedure takes O(n) time andMakeSet and
FindSet take O(1) time resulting in O(n2) time for these procedures. Furthermore,
the weights of edges of the graph G can be sorted in O(m logm) time which is the
dominant time for this algorithm. Assuming m < n2, logm < 2 log n and hence
complexity can be assumed to be O(m log n).

7.2.2.3 Reverse-Delete Algorithm
As another approach to build an MST of a graph, we can start with all edges of
the graph and delete edges that will never be included in the MST until we have a
connected graph that has the tree property, that is, it is acyclic or has n − 1 edges.
We delete edges in the order of decreasing weights as long as removal of a such edge
does not disconnect the graph since any bridge of the graph should be contained in
the MST. More specifically, the algorithm consists of the following steps:

1. Input: An undirected weighted graph G = (V, E, w)

2. Output: An MST T of G
3. Sort edges of G in nondecreasing order into Q
4. Let T = G
5. Repeat
6. Dequeue the first edge (u, v) from Q
7. Remove (u, v) from T
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8. If such removal leaves T disconnected then
9. Join (u, v) to T

10. Until Q = Ø

Running of this algorithm in a small graph is shown in Fig. 7.3.

Analysis

Theorem 7.6 (correctness) Reverse edge deletion algorithm provides an MST of the
input graph G = (V, E, w).

Proof This algorithm produces a spanning tree since the resulting structure does not
contain any cycles as we delete the heaviest weight edge that lies on a cycle removal
of which does not disconnect the graph. We will show the resulting spanning tree
T is an MST of G as follows. Let (u, v) be the edge removed during an iteration
of the algorithm. Before removal, it must have been on a cycle C as otherwise such
removal would disconnect G. Since it is the first edge encountered on C , it is the
heaviest weight edge on the cycle C . By the cycle property, the edge (u, v) does not
belong to any MST of G. Therefore, this algorithm results in an MST of G since it
removes edges that cannot be contained in any MST of the graph G. �

The weights of edges of the graph G can be sorted in O(m logm) time or
O(m log n) time for a dense graph. The main problem with this algorithm is the
testing of the connectedness of the graph. This can be performed by the DFS or the
BFS algorithm in O(n + m) time after each edge removal resulting in O(nm + m2)

time. Total time taken is then O(m logm +nm +m2). It is shown in [18] that remov-
ing an edge, checking the connectivity after removal and reinserting the edge if graph
is disconnected can be performed in O(m log n(log log n)3) time per operation.

7.2.2.4 Boruvka’s Algorithm
Boruvka’s algorithm was the first reported algorithm to construct an MST of a
weighted graph G(V, E, w). It was designed to build an electric network of Moravia
in Czech Republic in 1926. It starts by finding the lightest weight edge (u, v) incident
to each vertex v ∈ V . It then contracts u and v to have a component C which contains
u, v and the edge (u, v) in it, and the edge (u, v) is included in the MST. It is possible
that the edge (u, v) is the lightest incident edge to the vertex v but another edge, say
(u, w), is the lightest edge incident to the vertex u. In such a case, both edges (u, v)
and (u, w) are included in the MST, and these edges with all the vertices incident to
these edges are placed in the same component. Then, in all of the steps after initial-
ization; two components Cx and Cy are contracted to form a larger component Cz

using the lightest weight edge (u, v) between them and the edge (u, v) is included
in the MST. If component Cx and/or Cy has lighter edges than (u, v) incident to
them, these edges are also included in the MST and these edges with their incident
vertices are placed in the new component Cz . This process is repeated until there is
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Fig.7.3 Running of reverse edge deletion algorithm for the same graph of Fig. 7.1. The sameMST
is obtained as in Prim’s and Kruskal’s algorithms as edge weights are distinct
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Fig.7.4 Running of Boruvka’s MST algorithm in the graph G of Fig. 7.1. The first step in a divides
the graph into two components C1 = G[a, f ] and C2 = G[b, c, d, e] with the lightest weight
incident edges included in MST as shown in bold. The lightest edge between these components
is ( f, d) which is used to merge them and this edge becomes part of the MST as shown in b.
Arrows show the vertex that the lightest edges are incident. The same MST as in Prim’s, Kruskal’s
algorithms and the reverse-delete algorithms is obtained as edge weights are distinct

only one component which contains all of the vertices providing a spanning tree and
the selected edges are the edges of MST as shown in Algorithm 7.5.

Algorithm 7.5 Boruvka_MST
1: Input : G(V, E, w)

2: Output : MST T (VT , ET ) of G
3: Let each vertex v ∈ V be a component
4: T ← Ø
5: while there is more than one component do
6: combine two neighbor components Cx and Cy using the lightest edge (u, v) between them
7: ET ← ET ∪ {(u, v)} 
 include lightest edge in T
8: VT ← VT ∪ {u, v} 
 include vertices in T
9: if ∃(p, q) ∈ Cx : w(p, q) > w(u, v) and/or ∃(r, s) ∈ Cy : w(r, s) > wu,v then
10: ET ← ET ∪ (p, q) and/or ET ← ET ∪ {(r, s)}
11: VT ← VT ∪ {p, q} and/or VT ← VT ∪ (r, s)
12: end if
13: end while

Figure7.4 shows two iterations of Boruvka’s algorithm in a graph.
Note that we may end up discovering the full MST even with one iteration of this

algorithm if lightest edges incident to each vertex are selected as shown in Fig. 7.5.
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Fig. 7.5 Running of
Boruvka’s MST algorithm
when all MST edges are
selected in one iteration.
MST edges are shown in
bold and arrows show the
vertex that the lightest edges
are incident
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Analysis

Lemma 7.1 Suppose edge weights of the graph G = (V, E, w) are distinct. Let ev

be the least weight edge incident to a vertex v ∈ V . The MST T of G contains every
such edge ev.

Proof Let us assume the MST T , which is unique due to distinct edge weights, does
not contain some edge ev = (u, v). Adding the edge (u, v) to T creates a cycle. Let
the vertex w be a neighbor of vertex v, then w(u, v) < w(v, w) since (u, v) is the
lightest edge incident on v. If we delete (v, w) from T and add (u, v) to T , we obtain
T ′ = T − {(v, w)} ∪ {(u, v)} which is still a tree having n − 1 edges and has a total
weight smaller than the weight of T resulting in a contradiction. �

Theorem 7.7 (correctness) Boruvka’s algorithm produces the MST of the input
graph G = (V, E, w) that has distinct edge weights.

Proof The final component T is a tree since we join two tree components by exactly
one edge preventing cycles at each iteration. This component T includes all of the
vertices of G as we continue until there is one component, it is a spanning tree of
G. Edges to be included in the tree T at each iteration are part of the MST of G by
Lemma 7.1 hence the resulting tree T is the MST of G. �

Note that we required the edgeweights to be distinct to select a unique least weight
edge incident to a vertex. This restriction can be relaxed by varying the weights of
equal-weight edges slightly to have unique edge weights.

Theorem 7.8 (complexity) Boruvka’s algorithm runs in O(m log n) time.

Proof Each step of the algorithm reduces the number of vertices by at least a factor
of 2 and therefore the total number of steps is log n. Each step requires O(m) time
for contraction resulting in O(m log n) time. �
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7.2.3 Parallel MST Algorithms

Out of the four algorithms we have reviewed, Boruvka’s algorithm is most suitable
for parallel processing due to relatively independent contraction operations involved.
Wewill however first look atways of parallelizing Prim’s algorithm and then describe
briefly how Boruvka’s algorithm can run on a distributed memory parallel system.

7.2.3.1 Parallel Prim’s Algorithm
Given the input graph G = (V, E, w), we will consider Prim’s algorithm to find the
MST T = (V, ET ) of G in parallel. We start by considering the modified version of
the algorithm with the array d[n] holding the minimum distance values of the nodes
that are in V − VT to VT for parallel operation. Algorithm 7.6 shows the operation
of the sequential algorithm as in [10] where we arbitrarily select a vertex s and first
initialize the array values for the neighbors of s. Then at each iteration, we find the
minimum value of array d which is the MWOE of the current iteration. The node v
having this value with edge (u, v) as the MWOE is included in the MST. We need to
update array values as the distance to the new VT vertex v has now to be considered.

Algorithm 7.6 Prim_MST3
1: Input : G = (V, E, w)

2: Output : MST T of G
3: VT ← {s}
4: for all u ∈ V − VT do
5: if (u, s) ∈ E then
6: d[u] ← w(u, s)
7: end if
8: end for
9: T ← Ø
10: while VT �= V do 
 continue until all vertices are visited
11: select the minimum element of d with vertex v and edge (u, v)
12: VT ← VT ∪ {v}
13: ET ← ET ∪ {(u, v)}
14: for all u ∈ N (v) do 
 update distances to VT considering the new node v
15: d[u] ← min{d[u], w(u, v)}
16: end for
17: end while

This algorithm is inherently sequential as we search for the MWOE at each itera-
tion. However, searching forMWOE can be done in parallel within a single iteration.
The general idea of the parallel algorithm is to divide the vertices to k processes and
have them find the MWOEs in their partitions. The global MWOE can then be
found by a special process which broadcasts it to all others for local updates as in
lines 14–16 of the sequential algorithm. In the implementation, we have k processes
p0, . . . , pk−1 with p0 as the supervisor. We divide the vertices into k subsets where
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each process pi gets n/k vertices in the set Vi . The array d is 1-D block partitioned
to k processes and the weighted adjacency matrix A is also column partitioned to k
processes. Each process then finds the minimum value of array d in its partition by
using matrix A and the global minimum is computed using the all-to-one reduction
at the root process p0 which then broadcasts it to all processes. The processes update
their distances and form their partition of d for the nodes they are responsible. This
process continues until array d has no elements left meaning all nodes are in VT .
The pseudocode for this algorithm is depicted in Algorithm 7.6.

Algorithm 7.7 Parallel_Prim_M ST
1: Input : A[n, n] : weighted adjacency matrix of G = (V, E, w)

2: P = {p0, p1, ..., pk−1} 
 set of k processes
3: Output : MST T = (VT , ET ) of G
4: if pi = p0 then 
 if I am the root process
5: for i = 1 to k − 1 do
6: send columns ((i − 1)n/k)) + 1 to in/k of A to pi

7: end for
8: for round = 1 to n − 1 do 
 loop for n-1 rounds
9: all-to-one receive MWOEs in values
10: min_val(u, v) ← min(values) 
 find the global minimum distance
11: one-to-all broadcast new_MW O E(u, v) to all processes
12: VT ← VT ∪ {v}
13: ET ← ET ∪ {(u, v)}
14: end for
15: else 
 I am a worker process
16: round ← 0
17: receive my column partition D[my_cols] from p0
18: while round < k do 
 get local minimum values from processes
19: api (u, v) ← minimum distance between u and v in d[my_columns]
20: send proc_min(u, v, dpi ) to p0
21: receive new_MW O E(u, v) from p0
22: for all u ∈ N (v) ∧ u ∈ d[my_columns] do 
 update distances to VT considering the

new node v
23: d[u] ← min{d[u], w(u, v)}
24: end for
25: round ← round + 1
26: end while
27: end if

We will show the implementation of this parallel algorithm using four processes
p0, . . . , p3 for the same graph we have used to demonstrate sequential algorithms.
Weighted adjacency matrix, sometimes called the distance matrix, A is formed and
partitioned as follows:
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p1 | p2 | p3
a b | c d | e f

a 0 10 |11 5 | 9 1
b 10 0 | 4 8 | ∞ ∞
c 11 4 | 0 2 | ∞ ∞
d 5 8 | 2 0 | 6 3
e 9 ∞ | ∞ 6 | 7 7
f 1 ∞ | ∞ 3 | 7 0

The first entries of the array d would then be as follows:

b c d e f

10 11 5 9 1

The root process gathers the minimum values of 10, 5, and 1 from processes p1,
p2 and p3 respectively and determines the global minimum value of 1 between nodes
a and f . It then broadcasts this value which is included in VT , node f is removed
from V

′
T and all neighbor edges are tested to obtain the new d as below:

b c d e

10 11 3 9

This time node d is broadcast to all processes, it is removed from V
′
T , and d is

updated to yield d with (8, 2, 6) for nodes b, c, and e respectively. Three more rounds
of the parallel algorithm provide the same MST found by other methods.

Analysis

Each process pi finds the minimum value and performs the updates in Θ(n/k) time
and the total time is Θ(n2/k) for n rounds. It takes log k time to perform one-to-all
communication in each round, resulting in Θ(n log k) total time for communication.
Total time taken is

TP = Θ(n2/k) + Θ(n log k) (7.2)

Since the sequential time isΘ(m log n) for Prim’s algorithm, the speedup obtained
is

S = Θ(m log n)

Θ(n2/k) + Θ(n log k)
(7.3)
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7.2.3.2 Parallel Kruskal’s Algorithm
Kruskal’s algorithm grows multiple trees which can be performed in parallel. We
implement a similar strategy as in parallel Prim’s algorithm by partitioning the ad-
jacency matrix among k processes. The parallel Kruskal algorithm then consists of
the following steps [14]:

1. Each process pi sorts edges in its partition Vi .
2. Each process pi constructs an MST or a forest of MSTs in its partition using

Kruskal’s algorithm.
3. MSTs found by process are merged pairwise by a process sending its MST

edges to another process. This step can be handled by breaking symmetries
using identifiers. The lower identifier process can send its MST edges to an
arbitrarily selected higher identifier process. The lower identifier process then
should halt.

4. Step 3 is repeated until there is one process that contains the MST.

Merging edges in step 2 can be performed using Kruskal’s algorithm. Figure7.6
shows the operation of this parallel algorithm in a small graph where we partition the
adjacency matrix to four processes. Computing the edges of MST in each partition
takes O(n2/k) time and there are O(log k) merging operations each with a cost of
O(n2 log k) and each process sends O(n) edges in one merge resulting in a total
parallel time of O(n2/k) + O(n2 log k) [14].

7.2.3.3 Parallel Boruvka’s Algorithm
Boruvka’s algorithm can operate in parallel as we show in the high-level pseudocode
of Algorithm 7.8.

Algorithm 7.8 Par_Boruvka
1: Input : G(V, E, w) undirected, weighted graph
2: Output : MST T of G
3: for all v ∈ V ′ in parallel do
4: Find the lightest edge incident to v
5: end for
6: Contract edges
7: Merge adjacency lists
8: Recurse until all edges are processed

Various parallel MST algorithms are based on Boruvka’s algorithm. One such
approach is reported in [4] where the resulting super vertices after contraction consist
of trees of vertices. Neighborhood information is kept in edge lists, one for each
vertex. There are at most n − 1 elements in each edge list. The steps of the parallel
Boruvka’s algorithm in this study consists of the following steps:
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Fig.7.6 Running of parallel Kruskal’s algorithm in a sample graph. There are 4 processes and the
adjacency matrix of the graph is partitioned to four processes p0, p1, p2 and p3 as shown by dashed
lines
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1. Choose lightest edge: The edge list of each vertex is searched to find the lightest
weight edge incident to that vertex to form components. Cycles are removed to
have a tree for each component.

2. Find root: Each vertex finds the root of the tree it belongs using the pointer
jumping method.

3. Rename vertices: Each process pi , 1 ≤ i ≤ k determines the new name of each
vertex listed in its edge lists.

4. Merge: The edge lists in each component are merged to the root edge list to shrink
it into a single super-vertex.

5. Clean up: Each process pi runs the sequential MST algorithm in its edge list.

The parallel running time for this algorithm is given as Θ((ts + tw)(m log n/p)

which results in a speedup comparable to the number of parallel processes but the
constant (s + tw) may be very large [4]. Contraction can be performed using the
edge or star contraction methods we have reviewed in Chap.3 to obtain a parallel
Boruvka’s algorithm [1].

7.2.4 Distributed Prim’s Algorithm

In the distributed version of this problem, we are interested in finding the MST of a
network in which every node is involved in the construction. We will consider each
of the three sequential algorithms for this purpose. As a first attempt, investigation of
Prim’s algorithm reveals it is basically sequential in nature. However, the synchro-
nous single initiator (SSI) model of distributed processing may be convenient for this
purpose. We will build and use the MST for proper transfer of message between the
root and other nodes in the tree. The processing is performed in synchronous rounds
in this model and we have a root process a which initiates each round. In the first
round, it includes the lightest edge incident to it in theMST. In each round thereafter,
the root solicits the MWOE of each leaf of the partial T which are convergecast to
the root. It then finds the smallest of MWOEs received from children and broadcasts
this to the members of T which can update their states. In essence, we are processing
the graph exactly as in the sequential algorithm but since we do not know the global
MWOE beforehand, the special process root has to receive all candidates from each
leaf of T and determine the lightest edge.Wewill describe a possible implementation
of this idea similar to [7,15]. The messages needed are as follows.

• start: This is sent by the root to its children in each round. It has a dual purpose;
initiation of a new round k and carrying the MWOE (u, v) determined in round
k-1 of the partial tree T .

http://dx.doi.org/10.1007/978-3-319-73235-0_3
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• reply: This is the convergecast message from leaves to the root. At each intermedi-
ate node, the MWOEs of children are gathered, compared with the own MWOE,
and the smallest of them is sent by the reply message to the parent.

• check: This message is needed to avoid cycles. The newly added node v sends it
to neighbors to check the ones already in T and for such a node u, edge (u, v) is
marked as internal so it will not be considered as MWOE of v in future rounds.

• status: This message is returned by a node u as a reply to check message from v
and contains information about whether u ∈ T or not.

Algorithm 7.9 shows one way of implementing the procedure we have described.
The synchronization is provided by messages only and the root starts the next round
only after all convergecast messages from its children are received. It selects the
lightest edge (u, v) with v as the new vertex and sends it to the nodes of the partial T
in the next round. Any node x that has an edge to vertex v marks this edge (x, v) as
internal to prevent cycles in T . The vertex v checks whether its neighbors are in T or
not. This is again needed to prevent cycles as a neighbor may have become part of T .
The leaves start the convergecast process which ends at root with MWOEs received
from children.

The running of this algorithm in a small network graph is depicted in Fig. 7.7
where the building of the MST is completed in seven rounds.

This algorithm correctly finds the MST of a graph as it mimics the sequential
Prim algorithm in a distributed setting. Each step k of the algorithm requires O(k)

time and messages. The time and message complexities are therefore both O(n2).
Looking at other sequential algorithms, Kruskal’s algorithm is difficult to be im-

plemented by the nodes in the network as it requires global ordering of the weights of
edges. However, Boruvka’s algorithms involve independent steps. Since each graph
node now is a node in the network, finding the lightest incident edge in the initial
phase can be done by each node in a single step. We need however to find ways
to contract and manage the contracted nodes. A simple yet effective approach is to
elect a leader for each contracted component which can find the MWOE of nodes in
its component and ask the connected component in the other end of this MWOE for
merge operation. The leader may be the lowest identifier node or the newest node in
the component. The leaders of each component then communicate with neighboring
leaders and decide on the lightest edge between them. A similar method is employed
in the algorithm of Gallager, Humblet, and Spira to find the MST of a network [8].
The nature of Boruvka’s algorithm provides distributed processing conveniently.
However, the choice of the leader has to be performed.
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Algorithm 7.9 Distributed_Prim_MST
1: Input : G(V, E, w)

2: Output : MST T (Vt , Et ) of G
3: if a = root then
4: let (a, b) be the lightest edge
5: T ← (a, b) 
 a becomes the parent of b
6: repeat 
 round k
7: send start(v, (u, v), k) to children
8: receive reply((p, q)i , we(p,q)i ) from each child i
9: if reply = Ø from all children then
10: send stop to all children
11: else
12: (u, v) with new node v is the lightest edge of all MWOEs received from children
13: T ← T ∪ (u, v) 
 include (u, v) in T
14: end if
15: until reply = Ø from all children
16: else 
 I am node x on T
17: while stop not received do
18: receive start (v, (u, v), k)

19: if (v, x) ∈ N (x) then 
 check cycles
20: state(v, x) ← internal
21: else if x = v then
22: for all u ∈ N (x) do
23: send check to u
24: end for
25: for all u ∈ N (x) do
26: receive status(res) from u
27: state(u, x) ← res 
 mark neighbor edges as internal or external
28: end for
29: end if
30: if x is a leaf then
31: let (x, z) be my MWOE such that state(x, z) = external
32: send((x, z), we(x,z) to parent
33: else 
 convergecast data of children
34: receive reply((p, q)i , w(p,q)i ) from each child i
35: find the lightest edge (p, q)i including my MWOE
36: send((p, q), we(p,q) to parent
37: end if
38: end while
39: end if
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7.3 Shortest Paths

In various real-life situations, we may be interested to find the shortest path, that
is, the path with minimum total weight among all other paths between two vertices.
For example, the shortest traveling route between two cities may be required. We
review algorithms for this problem in this section. In all of these algorithms, we will
employ a technique called relaxation which can be described as follows. Given a
weighted graph G = (V, E, w), we want to find shortest paths from a source vertex
s ∈ V to all other vertices in the graph G. We define a distance value dv which
shows the best estimate of the current distance of v to s and a predecessor vertex
u of v which is its parent in the tree formed rooted at the source vertex s. We will
be forming a spanning tree T rooted at s at the end of a shortest path algorithm,
sometimes referred to as shortest path tree in which the sum of weights of a path
from s to a vertex v in this tree will be minimum among all possible paths from s
to v. Distance of each vertex from the source vertex is set to infinity and its parent
is undefined initially. Relaxation then involves checking whether a shorter path of a
vertex v through a neighbor vertex u than its current distance is found in which case
its distance is updated to go through that neighbor vertex u and its parent is set to
u as shown in the following steps performed for each vertex v. We need to add the
weight of the edge between these two vertices to the distance of vertex u to get the
actual distance.

1. for all u ∈ N (v)
2. if dv > du + w(u, v)
3. dv = du + w(u, v)
4. Pv = u

Another issue of concern iswhether the graph has negativeweights and/or negative
cycles.

7.3.1 Single Source Shortest Paths

In the more general case, we can search shortest paths from a single vertex to all
other vertices which is called the single source shortest path (SSSP) problem for
which we review a fundamental algorithm due to Dijkstra.

7.3.1.1 Dijkstra’s Algorithm
Dijkstra proposed an iterative algorithm tofind shortest distances froma single source
vertex to all other vertices in aweighted, directed, or undirected graphG = (V, E, w)

[6]. The general idea of this algorithm is to start from a source vertex s and initially
label distance values of all neighbors of s with the weight of edges from s,0 and the
rest of the vertices with infinity distance values. and the distance value of s to itself as
0. The neighbor vertex v which has the smallest distance to s is then included in the
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visited vertices set. Thereafter at each iteration, distance value and predecessor of any
neighbor u of the newly included vertex v has been updated if distance through v is
smaller than its current distance. This algorithm processes all vertices and eventually
forms a spanning tree rooted at source vertex s. We have a vertex set S which shows
vertices to be processed, an array D with D[i] showing the current shortest distance
of vertex i to the source vertex s and another array P with P[i] which shows the
current predecessor of a vertex i along this path as shown in Algorithm 7.3.

Algorithm 7.10 Dijkstra_SSSP
1: Input : G(V, E, w) 
 connected, weighted graph G and a source vertex s
2: Output : D[n] and P[n] 
 distances and predecessors of vertices in the tree
3: tree vertices T
4: for all v ∈ V \ {s} do 
 initialize all vertices except source s
5: D[v] ← ∞
6: P[v] ←⊥
7: end for
8: D[s] ← 0; P[s] ← s
9: V ← V ′; T ← Ø
10: while V ′ �= Ø do
11: find v ∈ S with minimum distance value
12: for all (u, v) ∈ E do 
 update neighbor distances to v
13: if D[u] > D[v] + w(u, v) then
14: D[u] ← D[v] + w(u, v)
15: P[u] ← v 
 update tree structure
16: end if
17: end for
18: V ′ ← V ′ \ {v} 
 remove new vertex from searched
19: T ← T ∪ {v} 
 add it to tree vertices
20: end while

The running of this algorithm is depicted in Fig. 7.8. The source vertex is f and
the nearest vertex to f is a which is included in the searched vertices. Then all
neighbors of a which are b and e are checked whether they have shorter distance to
the source vertex f through a. Since these vertices had infinity distances initially,
their distances are modified for smaller values through a. Then we find vertex e has
the smallest distance value and include it in the searched vertices and update distance
values of its neighbors. Note that vertex b has a smaller distance value of 7 through
e and therefore its distance is updated and its predecessor becomes e. This process
continues until we search all vertices which is performed by removing the shortest
distance v from the initial vertex set V ′ at each iteration.

Analysis

Theorem 7.9 (correctness) For each vertex v ∈ S at any time during Dijkstra’s
shortest path algorithm execution, the path Ps,v obtained by the algorithm is the
shortest path between the source vertex s and the vertex v.
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Fig. 7.8 Running of Dijkstra’s SSSP algorithm in a sample directed graph from the source vertex
f . At each iteration, the vertex with the minimum distance value shown by a large circle is selected

We will have proved the correctness of the algorithm by proving this theorem
since the set S will contain all of the vertices of the graph at the end of the algorithm.

Proof We will use induction for the proof as in [11]. For the base case, d(s) = 0
and S = {s} when |S| = 1 and hence Ps,s is the shortest path.

Let us assume adding a vertex v /∈ S to S when the size of S is k and u ∈ S
is a neighbor vertex of v on the shortest path Ps,v from source vertex s to vertex v.
Consider any arbitrary path P from s to v. Our hypothesis is that the total weight
of this path is at least as high as the total weight of Ps,v. Let vertex a be the last
vertex on P just before it leaves S and the vertex b ∈ {V \ S} be the first vertex that
is the neighbor of vertex a on this path as depicted in Fig. 7.9. We know the total



7.3 Shortest Paths 203
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weight of path Ps,u , w(Ps,u), is the minimum distance to vertex u from the source
vertex s by the inductive hypothesis. If w(a, b) < w(u, v) the algorithm would have
selected the edge (a, b) rather than the edge (u, v). Therefore,w(P) ≥ w(Ps,v)which
means Ps,v found during the k+1th iteration of the algorithm is the shortest path from
vertex s to vertex v. Note that we have relied on the nonexistence of negative weight
edges. �

We need to run the while loop of the algorithm O(n) times for n vertices since we
process a single vertex at each iteration. We also need to find the smallest distance
of unprocessed vertices to the source vertex s in O(m) time since we may need to
consider all edges to find the minimum value. Hence the time complexity of this
algorithm is O(nm) in this straightforward implementation.

We can improve the performance of this algorithm by using a priority queue.
In this case, we will use three priority queue operations; Insert, ExtractMin, and
DecreaseKey. We need to insert all vertices in the queue Q by the Insert operation,
find the minimum value of the queue by the ExtractMin operation and DecreaseKey
operation during relaxation where we update distance values of the neighbors of
the selected vertex. When a binary min-heap is used as the priority queue, time to
construct the queue takes O(n) time.We need n ExtractMin operations for n vertices
each with O(log n) time and O(m) steps of relaxation using DecreaseKey during
relaxation each with O(log n) time. Hence, total time taken is O((n + m) log n). A
Fibonacci heap that has an amortized O(log n) time for ExtractMin operation and
O(1) amortized time for DecreaseKey operation can be used instead of the binary
min-heap. In this implementation, the time complexity is reduced to O(n log n +m).

7.3.1.2 Bellman–Ford Algorithm
It is possible to have negative weights in some graphs and in such cases, Dijkstra’s
SSSPalgorithm fails to provide correct shortest routes froma sourcevertex aswehave
counted on nonnegative weights for the correct operation of the algorithm. Dijkstra’s
algorithm is based on the assumption that a shortest path consists of smaller shortest
subpaths. Let p = {v1, v2, . . . , vk, } be a shortest path from a source vertex v1 to
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a destination vertex vk . Then for 2 ≤ i < k, p = {v1, . . . , vi , } is also a shortest
path for the algorithm to work correctly. Clearly, this assumption is valid only for
nonnegative edge weights. Negative weight edges are encountered in some real-life
applications such as currency trading and minimum cost flows hence there is a need
for a shortest path algorithm in the presence of negative weight edges.

The dynamic algorithm provided by Bellman and Ford works in the presence of
edges with negative weights, however, it will only detect negative cycles when there
is one [2]. A negative cycle in a graph G is a cycle {v0, v1, . . . , vk, v0} such that
w(v0, v1) + w(v1, v2) + · · · + w(vk, v0) < 0.

The working of this algorithm is simple, it performs relaxation for each vertex
progressively that is 1, . . . , n−1 hops away from the source vertex s to allow changes
along the longest path which is n −1 hops as shown in Algorithm 7.11. We use array
D for distance values and array P for identities of predecessor vertices in the tree.
Running of this algorithm in a sample undirected graph is shown in Fig. 7.10.

Algorithm 7.11 BellFord_SSSP
1: D[s] ← 0
2: for all i �= s do 
 initialize distances and predecessors
3: D[i] ← ∞
4: P[u] ←⊥
5: end for
6: for k = 1 to n − 1 do
7: for all {u, v} ∈ E do 
 update distances
8: if D[u] > D[v] + w(u, v) then
9: D[u] ← D[v] + w(u, v)
10: P[u] ← v
11: end if
12: end for
13: end for
14: for all (u, v) ∈ E do 
 report negative cycle
15: if D[u] + w(u, v) > D[v] then
16: return false
17: end if
18: return true
19: end for

Analysis

The following lemma helps to prove correctness of this algorithm [12]:

Lemma 7.2 (optimality principle) Let G = (V, E) be a weighted graph with no
negative cycles and let u and v be two vertices of G. Let P be a shortest path
between u and v with at most k edges and let (w, v) be the final edge in this path.
Then, P ′ = P \ {w, v} (or P[u,w]) is a shortest path from u to w with at most k − 1
edges.
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Fig.7.10 Running of Bellman–Ford algorithm from the source vertex g in 4 iterations. The visited
vertices at each iteration are shown in gray and the current distance value of a vertex is shown next
to it

Proof Assume R is a shorter u − w path than P ′ and |E(R)| ≤ k − 1. Then,
w(E(R)) + w(w, v) < w(E(P)). If v /∈ R, then R ∪ {(v, w)} is a shorter u − v
path than P (Case 1). Otherwise R[v,w] ∪ {(w, v)} is a nonnegative cycle and thus
the cost of R[u,v],w(E(R[u,v])) = w(E(R[u,v])+w(w, v)−w(E(R[v,w]+w(w, v)) <

w(E(P)) − w(E(Rv,w)(w + v)) ≤ w(E(P)) (Case 2). In both cases there is a
contradiction to the assumption P is a shortest path between vertices u and v with
at most k edges. �

Theorem 7.10 (correctness) Bellman–Ford algorithm correctly computes SSSP
paths from a source vertex s to all other vertices of an undirected or directed graph
when there are no negative cycles. Let d(s, vi ) be the distance label of vertex vi after
iteration i and dist (s, vi ) be the distance (shortest path) of vertex vi to source vertex
s. More specifically, we claim that after k iterations of the algorithm, d(s, vi ) is at
most dist (s, vi ).

Proof We will prove this theorem by induction on the number of iterations.

• Base case: The distance labels of every vertex other than the source vertex s have
infinite labels when the algorithm starts. After the iteration i=1, only the neighbors
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of vertex s will have a distance label such that∀v ∈ N (s), d(v, s) = w(s, u). Thus,
all of these neighbors will have the shortest distance to s when k = 1.

• Inductive case: Let us consider the kth iteration, and assume theorem holds for
all i < k. Let P be a shortest s − vk path with at most k edges and and (vk−1, vk)

be the last edge of P . By Lemma 7.2, the part of path P up to the vertex vk−1
(Ps,vk−1 ) is a shortest path between s and vk−1; and by the induction hypothesis,
dist (s, vk−1) ≤ w(E(Ps,vk−1)) after the (k −1)th iteration. After the kth iteration,
we have dist (s, vk) ≤ dist (s, vk−1) + w(vk−1, vk) ≤ w(E(P)).

The above reasoning is valid when there are no negative cycles in the graph.
We now want to prove using contradiction that this algorithm returns false when
there is a negative cycle. Let us assume graph G contains a negative cycle C =
{v0, v1, . . . , vk, v0} such that

∑k
i w(vi , vi+1) < 0 with vk+1 = v0 and the algorithm

returns true. There is a path from the source vertex s to v1 and to all other vertices
of C and let d(vi ) be the distance obtained in the first part of the algorithm using
relaxation. Since we assumed the algorithm returns true without detecting negative
cycles, d(vi+1) ≤ d(vi ) + w(vi , vi+1) for i = 1, ..., k. When we sum for all vertices
in the cycle, we obtain

k∑

i=1

d(vi+1) ≤
k∑

i=1

(d(vi ) + w(vi , vi+1))

k∑

i=1

d(vi+1) ≤
k∑

i=1

d(vi ) +
k∑

i=1

w(vi , vi+1)

Since we sum over the cycle C ,
∑k

i=1 d(vi+1) = ∑k
i=1 d(vi ) and canceling in the

above equation results in the following.

0 ≤
k∑

i=1

w(vi , vi+1)

This contradicts our initial assumption and therefore Bellman–Ford algorithm
returns false when there is a negative cycle in the graph. �

Theorem 7.11 (complexity) Bellman–Ford algorithm has a time complexity of
O(nm).

Proof We need to have n − 1 iterations of the outer for loop to consider the longest
path in a graph since there may be n − 1 changes of the distance of a vertex over this
longest path. There may be at most m edge checking at each iteration of the inner
loop at line 7 and hence, the total time complexity of this algorithm is O(nm). It
is, therefore, a slower algorithm than Dijkstra’s SSSP algorithm, however, it allows
negative weight edges which may be needed in real-life applications. �
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7.3.1.3 Parallel Dijkstra’s Algorithm
We can form a parallel version of Dijkstra’s SSSP algorithm in a similar manner to
the method of parallel Prim’s algorithm. The weighted adjacency matrix A is parti-
tioned columnwise such that each process pi is assigned n/k consecutive columns
of A. Then each pi computes n/p values of array l. The communication among
processes are similar to parallel Prim algorithm and the performance is the same as
this algorithm [10].

7.3.1.4 Distributed Algorithms
In a network environment, our aim is to have each node of the network to compute
shortest routes from itself to all other nodes in the network.

7.3.1.5 Synchronous Distributed Bellman–Ford Algorithm
We can sketch a synchronous distributed algorithm (DBF_SSSP) using the method
of Bellman–Ford algorithm in a network environment. There is a special node called
the root which initiates synchronous round by the round message over a spanning
tree built prior to the execution of the algorithm. Each node exchanges its distance
value to the source node with its neighbors by the update message in each round.
Any node i that finds it has a shorter path to the source node via a neighbor j
makes j its parent and updates its distance to the source by adding the weight of
edge (i, j) to the distance of node j . All of this operation is analogous to Bellman–
Ford algorithm in a network. There will be n-1 rounds to be initiated by the root
as in the sequential case, hence the root should know the number of nodes in the
network. Due to the uncertainty in the delivery sequence of messages in a round,
an update message can reach a node before a round message. Therefore, we have
included a boolean variable round_recieved which is checked by each node before
updating distances. When all of the neighbor messages are received along with a
round message, updating is performed and another boolean variable round_over is
set true to enable convergecasting of synchronization messages. A single round of
this algorithm is shown in Algorithm 7.12.

Theorem 7.12 SDB F_SSS P algorithm correctly finds APSP distances from a
source node in O(n) rounds using O(nm) messages.

Proof Since the distributed algorithm has the same logic as the sequential algorithm,
we can conclude each node finds its distance to a source node correctly. We have
noted that the root needs to execute n − 1 rounds to take the longest path in the
network into account, hence time complexity in rounds for this algorithm is O(n).
Each edge is in the network is used to send update messages in both directions in
each round, resulting in a total of 2m messages per round. Total number of messages
exchanged will, therefore, be O(nm). �
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Algorithm 7.12 SDBF_SSSP
1: message types round, update
2: int i, j, my_dist , dist
3: set of int received ← Ø;
4: boolean round_over ← f alse, round_recvd ← f alse
5: while ¬round_over do 
 A single round executed by each node except the source
6: receive msg(j)
7: case msg(j).type of
8: round(k) : send update(k,my_dist) to N (i)
9: round_recvd ← true
10: update(k, dist) : received ← received ∪ {j}
11: if received = N (i) ∧ round_recvd then
12: for all j ∈ N (i) do
13: if my_dist > (dist + wi j )
14: my_dist ← dist + wi j

15: parent ← j
16: round_over ← true
17: end while

7.3.2 All-Pairs Shortest Paths

In a more general case, we may need to discover shortest paths from all vertices to
all other vertices in the graph which is called the all-pairs shortest paths (APSP)
problem. As a first approach, we can run Dijkstra’s SSSP algorithm for each vertex
of the graph resulting in O(n2 log n) time complexity. When the graph has edges
with negative weights, we cannot use Dijkstra’s algorithm and using Bellman–Ford
algorithm for this purpose yields a time complexity of O(n2m) considering running
it for n vertices.Wewill search for algorithmswith better performanceswhen dealing
with negativeweight edges andone such approach is due toFloyd–Warshall described
in the next section.

7.3.2.1 Floyd–Warshall Algorithm
Floyd–Warshall Algorithm (FW_AP S P) solves the APSP problem in linear time
using dynamic programming. As often practiced in dynamic programming, the prob-
lem is divided into smaller subproblems which are then solved to obtain intermediate
results to be used in the overall solution. In this algorithm, negative weight edges
are allowed but negative cycles are not. It uses the relaxation method we have seen,
this time for distance between all pairs of vertices using each vertex as a pivot in
sequence. For convenience, the vertices are labeled with integers 1, . . . , n. Let us
consider the shortest path pi j with weight d(k)

i j between any two vertices i, j ∈ V
with elements taken from 1, 2, . . . , k. There are no intermediate vertices when k = 0
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and therefore d(0)
i j = wi j . We can define d(k)

i j recursively as follows [5]:

d(k)
i j =

{
wi j if k = 0
min{d(k−1)

i j , d(k−1)
ik + d(k−1)

k j } if k ≥ 1
(7.4)

We can now implement Floyd–Warshall algorithm as shown in Algorithm 7.6.
We have two nested loops to apply the relaxation to the distance between each vertex
pair (i, j) to see whether distance between these vertices is shorter through a pivot
vertex k than their current distance. Each vertex is assigned as the pivot in sequence
and hence we have another outer loop to select pivot vertices resulting in three nested
loops as shown in

We have the distance matrix D[n, n] with elements di j showing the current dis-
tance between vertices i and j which is initialized to infinity for vertices that are not
directly connected and to the weight of the edge between them if they are neighbors.
The predecessor matrix P[n, n] has entries pi, j which shows the first vertex over the
current shortest path between the vertices i and j .

Algorithm 7.13 FW_APSP
1: Input : G(V, E, w) 
 connected, weighted directed, or undirected graph G
2: Output : D[n, n] and P[n, n] 
 distances and predecessors of vertices
3:
4: for i = 1 to n do 
 initialize
5: for j = 1 to n do
6: if (i, j) ∈ E then
7: D[i, j] ← w(i, j), P[i, j] ← j
8: else
9: D[i, j] ← ∞, P[i, j] ←⊥
10: end if
11: end for
12: end for
13:
14: for k = 1 to n do 
 pivot vertex
15: for i = 1 to n do
16: for j = 1 to n do
17: if D[i, k] + D[k, j] > D[i, j] then 
 relaxation
18: D[i, j] ← D[i, k] + D[k, j], P[ j] ← k
19: end if
20: end for
21: end for
22: end for



210 7 Weighted Graphs

Fig. 7.11 Sample graph for
FW_APSP algorithm
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Correctness follows from the relaxation rule as we always improve the shortest
paths using all possible pivots. We have three nested loops each running n times
resulting in a time complexity of O(n3) for this algorithm with the initialization
taking O(n2) time. A small example graph is depicted in Fig. 7.11.

The contents of the distance matrix initially and for k = 1 in sequence are shown
below with modified contents displayed in bold figures.

D(0) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 1 ∞ ∞ 6 2
2 1 0 2 1 4 ∞
3 ∞ 2 0 6 ∞ ∞
4 ∞ 1 6 0 2 ∞
5 6 4 ∞ 2 0 9
6 2 ∞ ∞ ∞ 9 0

⎞

⎟⎟⎟⎟⎟⎟⎠
−→ D(1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 1 ∞ ∞ 6 2
2 1 0 2 1 4 3
3 ∞ 2 0 6 ∞ ∞
4 ∞ 1 6 0 2 ∞
5 6 4 ∞ 2 0 8
6 2 3 ∞ ∞ 8 0

⎞

⎟⎟⎟⎟⎟⎟⎠
↙

The D matrix is displayed below for k = 2. There is no change in distance values
when vertex 3 is the pivot and thus we show D values when k = 4.

D(2) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 1 3 2 5 2
2 1 0 2 1 4 3
3 3 2 0 3 6 6
4 2 1 3 0 2 4
5 5 4 6 2 0 7
6 2 3 6 4 7 0

⎞

⎟⎟⎟⎟⎟⎟⎠
−→ D(4) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 1 3 2 5 2
2 1 0 2 1 4 4
3 3 2 0 3 6 6
4 2 1 3 0 2 4
5 5 4 6 2 0 6
6 2 4 6 4 6 0

⎞

⎟⎟⎟⎟⎟⎟⎠
↙

There are no further changes in D matrix contents when k = 5 and k = 6. The
P matrix is shown below which displays the first vertex on the shortest path from a
vertex i to j .

P =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 2 2 2 2 6
2 1 0 3 4 4 1
3 2 2 0 2 2 2
4 2 2 2 0 5 2
5 2 4 4 4 0 4
6 1 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
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7.3.2.2 Parallel APSP Using Dijkstra’s Algorithm
We can use Dijkstra’s SSSP algorithm to find APSP routes in two different ways as
vertex-partitioned and computation-partitioned methods as described in [10].

Vertex-Partitioned SSSP Paths

In the first approach, vertices are partitioned evenly to all processes of the parallel
processing system. Each pi then computes SSSPs for all of the vertices it is responsi-
ble. The distance matrix is replicated at each node, and hence there is no interprocess
communication. The parallel running time, in this case, is TP = Θ(n2) and since
the sequential time is TS = Θ(n3) when Dijkstra’s SSSP algorithm of Θ(n2) time
complexity is run for n vertices, the speedup S obtained and the efficiency E is

S = Θ(n3)

Θ(n2)
= n, E = Θ(1) (7.5)

If the number of processes k is smaller than the number of nodes, this algorithm
has good performance, otherwise, it will scale poorly.

Computation-Partitioned SSSP Paths

We can have the SSSP algorithm running on a number of parallel processes when
k > n as follows. Assuming we have k processes available for parallel computation,
we assign k/n processes to each vertex and then run k/n processes in parallel for each
vertex as described in Sect. 7.3.1.3 when parallelizing Dijkstra’s SSSP algorithm. In
other words, we have n parallel SSSP computations each of which is handled by n/k
processes.

TP = Θ(n3/k) + Θ(n log k)

S = Θ(n3)

Θ(n3/k) + Θ(n log k)
= n, E = 1

1 + Θ((k log k)/n2)
(7.6)

7.3.2.3 Parallel Floyd–Warshall Algorithm
We can form a parallel version of FW_AP S P algorithm by dividing the task of
matrix D computation among p processes. We will describe a possible partitioning
using 2-D block mapping for this problem as described in [10]. In this approach,
D is divided into blocks of size (n/

√
p) × (n/

√
p) with each process assigned a

single block. Processes are positioned in a grid of
√

p by
√

p and a process pi, j has
a subblock with upper-left corner ((i − 1)n/

√
p + 1, (( j − 1)n/

√
p + 1 and a lower

right corner in/
√

p, jn/
√

p as shown in Fig. 7.12.
Each process pi, j computes its subblock of D during each iteration but needs

the elements held by processes in its row and columns to be able to perform this
computation. Therefore, we need one-to-all broadcast of D values along rows and
columns held by processes. Algorithm7.14 shows oneway of realizing this algorithm
using 2-D partitioning.
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Fig. 7.12 2-D partitioning of 16 × 16 D matrix for a graph with 16 vertices to 16 processes
in PFW_APSP algorithm. The process p2,3 for example, has upper left corner coordinates (5,
9) and lower right coordinates (8, 12). This process needs all matrix entries held by processes
p2,1, p2,2, p2,4 in its row and by processes p1,3, p3,2, p4,3 in its column to be able to compute its
subblock D values for the current iteration

Algorithm 7.14 P FW_AP S P

1: Input : subblock of D0 
 my postion of the distance matrix
2: Output : Dn

i, j 
 shortest path values for my subblock
3:
4: for j = 1 to n do 
 update distances and next node
5: broadcast my segment of D(k−1) to all processes in
6: broadcast my segment of D(k−1) to all processes in
7: receive D(k−1) values from processes in my row and column
8: compute D(k) for my subblock
9: end for

Each process pi, j holds n/
√

p elements of the kth row or column which are
broadcast in Θ((n log p)/

√
p) time. Synchronization in line 7 requires Θ(log p)

time and computation of n2/p values assigned to a process requires Θ(n2/p) time
resulting a total parallel processing time of

TP = Θ(
n3

p
) + Θ(

n2

√
p
log p) (7.7)

We know that sequential algorithm has a time complexity of Θ(n3), therefore the
speedup S can be stated as follows:

S = Θ(n3)

Θ(n3/p) + Θ(n2 log p/
√

p)
(7.8)
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Therefore the efficiency E is,

E = 1

1 + Θ(
√

p log p/n)
(7.9)

From the speedup and efficiency equations, we can conclude this algorithm can
employ O(n2/ log2 n) processes. Synchronization step can be omitted to result in a
faster-pipelined version of 2-D algorithm with efficiency 1/(1 + Θ(p/n2) [10].

7.3.2.4 Distributed Floyd–Warshall Algorithm
In a distributed setting, we need n nodes of the network each of which determines
its SSSP to all other nodes in the end of the algorithm. We can have a synchronous
distributed version of FW_APSP algorithm with the modification that each node i
now holds only a vector Di [n] which shows its best estimate of its shortest distance
to all other nodes in the network. This vector, in fact, corresponds to the row that
node i has in the distance matrix D in the sequential algorithm. A local vector Pi [n]
held at node i shows the first node along the current shortest path estimate from
node i to all other nodes. In order to adapt the sequential algorithm to this network
environment in full, we need to have the pivot node k broadcast its local vector Dk[n]
so that each node i can compare values in Dk with the values in Di and update Di

and Pi accordingly as in Algorithm 7.15 where a single round for a node i is shown.
We assume the following:

• There is a special node called the root which initiates each round.
• A spanning tree is built beforehand to send and receive control messages such as

broadcast round and convergecast round_over messages.
• Nodes have unique integer identifiers in the range 1, . . . , n.
• The root sends round number r in each roundwhich is interpreted as the parameter

k in the sequential algorithm. Any node that finds its identifier equals r will
broadcast its D values for all other nodes to compare.

Figure7.13 displays the running of this algorithm in a small network.Broadcasting
of Dk vector is the main bottleneck in this algorithm.We can have the node r send its
D vector to the root which then broadcasts this vector to all nodes over the spanning
tree. Toueg provided an asynchronous version of this algorithm by reducing the set
of nodes that should receive the Dk values with a time complexity O(n2) and a
message complexity O(nm) [19].
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Algorithm 7.15 DFW_APSP
1: set of int D[n], P[n] 
 local distance and next node vectors
2:
3: D[i] ← 0, P[i] ← i 
 initialize
4: for j = 1 to n do
5: if j ∈ N (i) then
6: D[ j] ← w(i, j), P[ j] ← j
7: else
8: D[ j] ← ∞, P[ j] ←⊥
9: end if
10: end for
11: 
 a single round
12: receive round(r) message
13: if i = r then broadcast Dk [n] 
 if I am the pivot, broadcast Dk [n]
14: else receive Dk [n] from node k 
 otherwise receive the pivot vector
15: end if
16: for j = 1 to n do 
 update distances and next node
17: if D[ j] + D[k] < D[ j] then
18: D[ j] ← D[ j] + D[k]
19: P[ j] ← k
20: end if
21: end for
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Fig.7.13 Running of DFW_APSP algorithm in a small network. The current vectors at each node
are shown next to them. At iterations k = 2 and k = 4, there are no changes to previous distance
values and these are not shown. After five iterations, all of the shortest paths are determined
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7.4 Chapter Notes

We looked at weighted graph algorithms in this chapter where edges in a graph
have weights associated with them. We reviewed a fundamental problem in such
graphs; finding the MST and described methods for the construction of the MST
of a weighted, undirected, and connected graph in this chapter. The MST problem
can be solved by greedy sequential algorithms in polynomial time. These algorithms
are due to Boruvka, Kruskal, and Prim in chronological order, each with a different
approach. We showed in detail how to form a parallel version of Prim’s algorithm by
finding the MWOEs in parallel and also described ways of parallelizing Boruvka’s
algorithm. Survey of MST algorithms are provided in [9] and in [17].

In a network setting where each node of the graph is a computational node, our
first approach is again to consider these sequential algorithms. We described how
to obtain a distributed network version of Prim’s algorithm and reviewed a method
based on Boruvka’s algorithm for distributed processing in a network. The contents
of themessages and the instants they are sent are important in a network aswe discuss.
We are interested in both time and message complexities in network algorithms.

As for conversions between the three fundamental methods, we have already
performed Seq(Prim) → Par(Prim) and Seq(Prim) → Dist(Prim), and we de-
scribed ways to achieve Seq(Boruvka) → Par(Boruvka) and Seq(Boruvka) →
Dist(Boruvka). One thing to consider is whether we can have conversions such
as Par(Prim) ↔ Dist(Prim). One way of achieving this would be partitioning of the
graph into nonoverlapping k partitions and distributing the subgraphs G0, . . . , Gk−1
to processes p0, . . . , pk−1 of the network. The root process p0 performs sequential
Prim algorithm in its partition until edges that cross the partitions are met. It can
then perform the process as in the distributed version of Prim’s algorithm by asking
for MWOEs from each partition rather than individual nodes. Each node is a parti-
tion now and what we have described is a conversion from distributed algorithm to
parallel algorithm for this method.

We then considered shortest path problems; these problems are considered as
single source shortest path (SSSP) or all pairs shortest paths (APSP) problems. A
fundamental algorithm due to Dijkstra solves the SSSP problem but does not work
with negative weight edges or negative cycles. Bellman–Ford algorithm works with
negative weights and reports negative cycles with increased time complexity. We
looked ways of having parallel and distributed versions of these algorithms. Floyd–
Warshall algorithm finds APSP paths in a graph with negative-weight edges. We
also presented a parallel version and a distributed version of this algorithm. These
algorithms provide significant examples of conversion between a sequential, parallel,
and distributed versions of the same method.
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Fig. 7.14 Sample graph for
Exercise 1
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Fig. 7.15 Sample graph for
Exercise 2
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Exercises

1. Find the MST of the sample graph of Fig. 7.14 using Prim’s MST algorithm.
2. Work out the MST of the graph depicted in Fig. 7.15 using both Kruskal’s and

Boruvka’s MST algorithms and show they both result in the same MST of this
graph since edge weights are distinct.

3. Work out single source shortest paths from vertex a of the digraph depicted in
Fig. 7.16 using Dijkstra_SSSP algorithm by showing each iteration.

4. Write the pseudocode of parallel Dijkstra_SSSP algorithm and work out its
efficiency.

5. Construct single source shortest paths from vertex a of the digraph depicted in
Fig. 7.17 using BF_SSSP algorithm by showing each iteration.

6. Construct all-pairs shortest paths of the digraph depicted in Fig. 7.18 using
FW_APSP algorithm by showing each iteration.

7. Form the distance matrix D for the graph of Fig. 7.19 and provide a 2-D parti-
tioning of this matrix to 4 processes. Show the data sent by each process during
parallel running of Floyd–Warshall algorithm for the first two iterations. Work
out the final D values after k iterations.

8. Modify distributed APSP algorithm DFW_APSP pseudocode so that the root
node may also execute this code by showing starting and ending of each round.
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Fig. 7.16 Sample graph for
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8Connectivity

Abstract

An undirected graph is connected if there is a path between any pair of its vertices.
In a digraph, connectivity implies there is a path between any two of its vertices
in both directions. We start this chapter by defining the parameters of vertex and
edge connectivity. We continue by describing algorithms to find cut-vertices and
bridges of undirected graphs. We then review algorithms to find blocks of graphs
and strongly connected components of digraphs. We describe the relationship
between Connectivity, and network flows and matching and review sequential,
parallel and distributed algorithms for all of the mentioned topics.

8.1 Introduction

Connectivity is a fundamental concept in graph theorywhich has both theoretical and
practical implications. An undirected graph is connected if there is a path between
any pair of its vertices. In a digraph, connectivity implies there is a path between any
two of its vertices in both directions. In practice, the study of connectivity is needed
for reliable communication networks as connectivity has to be provided in loss of
edges (links) or vertices (routers) in these networks. A cut-vertex of a graph G is a
special vertex in G removal of which disconnects G. Similarly, removing an edge
called bridge of a connected graph G disconnects G. It would be of interest to detect
such parts of networks to enhance connectivity around these regions by supplying
additional communication devices and links.

We start this chapter by formally defining the parameters of vertex and edge
connectivity. We continue by describing algorithms to find cut-vertices and bridges
of undirected graphs. Blocks are maximal connected components of a graph without
a cut-vertex and we review algorithms to find blocks of graphs. We then review
strongly connected components of digraphs along with algorithms to discover them.

© Springer International Publishing AG, part of Springer Nature 2018
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-73235-0_8
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Connectivity is related to network flows and matching as we will see. Our main goal
in a flow network is to find the maximum flow from a source node to a destination
node and we show an algorithm to find maximum flowmay be used to find how well
connected a graph is. A matching of a graph is a set of its disjoint edges and we
will see in the next chapter a flow algorithm can be employed to find a maximum
matching of a bipartite graph. We also provide parallel and distributed algorithms
for most of the topics discussed.

8.2 Theory

We define the basic connectivity parameters in this section.

Definition 8.1 (connected graph, component) A graph (directed or undirected) is
connected if there is a walk between every pair of its vertices. Any graph that does
not have this property is disconnected. The maximal connected subgraphs of a graph
are called components.

In other words, a graph G = (V, E) is connected if for every u, v ∈ V , there
exists a (u, v) path in G. The vertex-deletion subgraph F = (V ′, E ′) of a graph G
shown by G − F is obtained by deleting all vertices of V ′ and their incident edges
from G. Similarly, the edge-deletion subgraph H = (V ′, E ′) of a graph G shown
by G − H is obtained by deleting all edges in E ′.

Definition 8.2 (biconnected graph) A connected undirected graph G = (V, E) is
called biconnected if for every vertex v ∈ V , G − v is connected.

That is, a connected and undirected graph is biconnected if it remains connected
after removal of any one of its vertices. A cycle, for example, is 2-connected. In
practical terms, this means failure of a node in a biconnected computer network
will leave it still connected as there will be alternative routes. If a graph is not
biconnected, removal of at least one of its vertices will cause it to be disconnected.
Such disconnecting vertices are called cut-vertices or articulation points.

Definition 8.3 (vertex-cut) A vertex-cut of a connected graph G is a subset V ′ of its
vertices such that G − V ′ has at least two different components.

When V ′ consists of a single vertex, this vertex is called the cut-ertex (or the articu-
lation point) of G. A complete graph Kn of order n does not have a cut-vertex since
there is no single vertex removal of which disconnects such a graph. Edge-cut of a
graph can be defined similarly as follows.
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cut-vertex

bridge

Fig. 8.1 Cut-vertices and bridges in a sample graph

Definition 8.4 (edge-cut) An edge-cut of a connected graph G is a subset E ′ of its
edges such that G − E ′ has at least two different components.

When E ′ consists of a single edge, this edge is called a cut-edge or a bridge. An
edge e is a bridge if and only if it is not included in any cycle of G. If e was part of
a cycle, then deleting it from G would not disconnect G. Figure8.1 displays these
concepts.

8.2.1 Vertex and Edge Connectivity

Definition 8.5 (vertex-connectivity) The vertex-connectivity κ(G) of a connected
graph G is the minimum number of vertices removal of which results in a discon-
nected or a trivial graph.

It is the cardinality of the minimum vertex-cut of a graph. In a graph G of order
n, the maximum degree Δ(G) will be at most n − 1. Hence,

0 ≤ κ(G) ≤ n − 1 (8.1)

A graph G is called k-connected if κ(G) ≥ k. In other words, a graph is k-connected
if removal of k vertices disconnects the graph. Therefore, a k-connected graph is
also m-connected for every integer m with 0 ≤ m ≤ k. For a complete graph Kn ,
κ(Kn) = n − 1.We can define edge-connectivity similarly as follows.

Definition 8.6 (edge connectivity) The edge-connectivity λ(G) (or λ(G)) of a con-
nected graph G is the minimum number of edges removal of which results in a
disconnected graph

A graph G is called k-edge-connected if λ(G) ≥ k. Therefore, a k-edge-connected
graph is also m-connected for every integer m with 0 ≤ m ≤ k. For a complete graph
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Kn , λ(Kn) = n − 1. For every graph G of order n, we need to remove at most n − 1
edges from the highest degree vertex V to make v isolated and hence to have G
disconnected. Therefore,

0 ≤ λ(G) ≤ n − 1 (8.2)

The vertex connectivity and edge connectivity of a disconnected graph are both
0 since we do not need to remove any vertex or edge to have it disconnected. The
vertex connectivity and edge-connectivity numbers of the graph in Fig. 8.1 are both
unity.

Theorem 8.1 (Whitney [15]) For every graph G,

κ(G) ≤ λ(G) ≤ Δ(G)

Proof A graph G becomes disconnected if all edges incident to a vertex v are
removed. The maximum value of edge connectivity will, therefore, be Δ(G) since
edges around the minimum degree vertex v form an edge-cut of G and hence, the
inequality at right-hand side holds. In order to prove the left side of the inequality, let
us consider, a minimum edge-cut C ∈ E of G which separates the vertices in G into
the subsets S and S′. In the worst case, we would have all vertices in S connected
to all vertices in S′. The loose upperbound on connectivity for any graph is that of a
complete graph which is n − 1. Therefore, λ(G) = |S| · |S′| ≤ n − 1. In the case,
when all vertices in S are not connected to all vertices of S′, we have at least an edge
(u, v) /∈ C with u ∈ and v ∈ S′. �

8.2.2 Blocks

Definition 8.7 (block) A block or a biconnected component of a graph G is a max-
imal connected subgraph of G without a cut-vertex (articulation point)

A block of a graph G is a maximal set of edges Every graph is a union of its blocks.
A block B of a graph G may contain a cut-vertices of G although it cannot have a
cut-vertex of its own. An edge is a block of a graph G if and only if it is a bridge of G.
Therefore, each edge of a tree is its blocks and every isolated vertex of a graph are its
blocks. In summary, the blocks of a graph consists of all bi-connected components,
all bridges and all isolated vertices. Blocks of a sample disconnected and undirected
graph are shown in Fig. 8.2.

8.2.3 Menger’s Theorems

We need to define disjoint paths between two vertices of a graph before stating
Menger’s theorems for connectivity.
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Fig. 8.2 Blocks of an undirected graph shown encircled. The bold vertex, for example, is a cut-
vertex of the graph but not the cut-vertex of the block it belongs

Definition 8.8 (edge connectivity of two vertices)Let u and v be two distinct vertices
of an undirected graph G. The edge connectivity of vertices u and v, λ(u, v), is the
least number of edges that are to be deleted from G to have u and v disconnected.

Definition 8.9 (vertex connectivity of two vertices) Let u and v be two distinct ver-
tices of an undirected graph G. The vertex connectivity of vertices u and v, κ(u, v),
is the least number of vertices selected from V −{u, v} that are to be deleted from G
to have u and v disconnected. We can immediately see that the vertex connectivity
of the graph G is the minimum of κ(u, v) for each pair of vertices u and v.

Definition 8.10 (vertex disjoint paths) Collection of paths between the two vertices
u and v of a graph G are called vertex disjoint (independent) if they do not share any
vertices other than u and v. The greatest number of independent paths between the
two vertices u and v is denoted as κ(u, v).

Definition 8.11 (edge-disjoint paths) Collection of paths between the two vertices
u and v of a graph G are called edge disjoint (edge-independent) if they do not share
any edges. The greatest number of edge-independent paths between the two vertices
u and v is denoted as λ(u, v).

We will now state Menger’s theorems without proving them which provide nec-
essary and sufficient conditions for a graph to be k-connected or k-edge connected.

Theorem 8.2 (Menger’s Theorem, vertex version)Let κ(u, v) be the maximum num-
ber of vertex disjoint paths between the vertices u and v. A graph is k-connected if
and only if each vertex pair in the graph is connected by at least k disjoint paths.
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Theorem 8.3 (Menger’s Theorem, edge version) Let λ(u, v) be the maximum num-
ber of edge disjoint paths between the vertices u and v. A graph is k-edge-connected
if and only if each vertex pair in the graph is connected by at least k edge-disjoint
paths.

8.2.4 Connectivity in Digraphs

Connectivity in digraphs require further specifications as the connection between
vertices is not symmetric in such graphs. That is, it may be possible to reach a vertex
v from a vertex u but not vice versa. We require that there is a path between every
pair of vertices in both directions in a digraph for the connectivity to hold. A strongly
connected digraph is defined as follows.

Definition 8.12 (strongly connected digraph)Adigraph is called strongly connected
if for every u − v pair of vertices, there is a path from u to v and a path from v to u.

Definition 8.13 (strongly connected components of a digraph)A strongly connected
component (SCC) of a directed graph is a maximal subset of vertices containing a
directed path from each vertex to all others in the subset.

The following properties for SCCs in digraphs can be observed.

• Every vertex belongs to exactly one SCC
• Any two SCCs are disjoint
• The SCCs of a graph G form a partition of G

Definition 8.14 (weakly connected digraph) A digraph is weakly connected if its
underlying undirected graph is connected.

8.3 Sequential Connectivity Algorithms

Wewill review algorithms to find connected components, articulation points, bridges,
SCCs, and blocks of graphs in the next sections.

8.3.1 Finding Connected Components

We can always check connectivity of an undirected graph G = (V, E) by running
DFS or BFS from an arbitrary vertex v and recording the visited vertices in a list V ′
during the search. If visited vertex set V ′ = V , then G is connected. This algorithm
works since these searches will always visit every vertex that is connected via a
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path to the source vertex, forming a spanning tree rooted at the source in the end.
Time spent will be O(n + m) as in the DFS or BFS algorithm. We can find the
connected components of an undirected graph using theDFS algorithmwith a simple
modification; run DFS on the graph to get a forest; each tree in the forest formed by a
call from the main program is then a connected component as shown in this modified
version of DFS in Algorithm 8.1. Every time a return is performed from the DFS
procedure, all of the vertices in that component have been visited. We can actually
label the vertices with the components they are in by defining an array label[1 . . . n],
where label[i] shows the number of the component vertex i belongs. Time taken to
find the components of the graph G using the DFS algorithm is O(n + m).

Algorithm 8.1 DFS_Component
1: Input : G(V, E), an undirected graph
2: Output : C = {C1, C2, . . . , Ck} � components of G
3: boolean visi ted[1 . . . n]
4: count ← 0
5: for all u ∈ V do � initialize
6: visi ted[u] ← f alse
7: end for
8: for all u ∈ V do
9: if visi ted[u] = f alse then
10: count ← count + 1
11: DF S(u) � call for each connected component
12: end if
13: end for
14:
15: procedure DF S(u)
16: visi ted[u] ← true � first visit
17: label[u] ← count
18: Ccount ← Ccount ∪ {u}
19: for all (u, v) ∈ E do � visit neighbors
20: if visi ted[v] = f alse then
21: DF S(v)
22: end if
23: end for
24: end procedure

8.3.2 Articulation Point Search

An articulation point or a cut-vertex of an undirected graph G is a vertex-cut consist-
ing of a single vertex, hence removing of such vertex will make G disconnected. A
router is the basic building block of a computer network directing messages coming
from its input ports to its output ports. A router that is an articulation point in a
computer network is a single point of failure breakdown of which will cause a dis-



228 8 Connectivity

connected and hence, a deficit network. We need to find such articulation points in
networks to provide additional links around them to make the network more robust
to failures. We will first describe a naive algorithm to find articulation points of an
undirected graph and then a DFS-based algorithm with better time complexity.

8.3.2.1 The Naive Algorithm
As a simple approach to find the articulation point of a graph G, we can remove
vertices one by one from the graph G and check whether G is connected or not by
applying DFS or BFS algorithm after each removal, as shown in Algorithm 8.2. If
removal of a vertex v leaves G disconnected, then v is an articulation point. The f or
loop is executed n times and the DFS or BFS traversal takes O(n+m) time, resulting
in O(n(n + m)) time for this algorithm. We would need to search algorithms for
better complexities to be used in large graphs.

Algorithm 8.2 Naive_AP
1: Input : G = (V, E)

2: Output : articulation points of G in P
3: set of vertices L ← Ø
4: for all v ∈ V do
5: G ′ ← G − {v}
6: run DF S(G ′, u) where u is any vertex in G ′
7: record the visited vertices in L
8: if V ′ 	= L then
9: P ← P ∪ {v}
10: end if
11: end for

8.3.2.2 DFS-Based Algorithm
Tarjan presented an algorithm to find articulation points of graph G using DFS [13].
Before reviewing this algorithm, let us recall the back edge property in a DFS tree.
A back edge (u, v) of a vertex w in a DFS tree is an edge from any vertex v of the
subtree rooted at w to any ancestor vertex u of w in the tree. From this definition, we
can see that edge (u, v) is not part of the DFS tree as it forms a loop.

Remark 4 A vertex w with a back edge (u, v) in a DFS tree of a graph G cannot be
an articulation point as removal of w does not leave G disconnected.

We can see this is valid as (u, v) still keeps the graph G connected and conversely,
removal of a vertex w that does not have a back edge leaves G disconnected and
therefore, w is an articulation point. We now have a property to classify vertices;
any vertex that does not have a back edge from a vertex in its subtree to one of its
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ancestors in a DFS tree is an articulation point. The root r of the DFS tree needs
special treatment as it has no back edges but it can still be an articulation point if and
only if it has more than one child. In such a case, if any two vertices in the subtrees
of the children of the root were connected by a non-tree edge, they would be in the
same subtree. Therefore, when root r has more than one children, removal of r will
leave the graph G disconnected.

Remark 5 The root vertex of a DFS tree of a graph G is an articulation point if and
only if it has more than one child.

We can construct an algorithm based on this property only by simply running
DFS from each vertex of the graph and checking whether each root has more than
one child. This approach requires O(n(n + m)) time, however, we can have a better
performance by using the back edge property together with this root property as
described next.

We need a way to detect back edges and DFS provides this property by the times
of visiting the vertices, and hence, the reason for using DFS. We will perform a DFS
from any vertex in G and record the discovery times for vertices as they are visited.
Let this number be num(v) for a vertex v. We will also record for each vertex v
the earliest discovered vertex that is connected to any vertex in the subtree of v and
low(v) be the vertex with the lowest number that can be reached from v using 0 or
more spanning tree edges and then at most one back edge. We can now see low(v)
is the minimum of:

1. num(v) (Rule 1)
2. lowest num(u) among all back edges (v, u) (Rule 2)
3. lowest low(u) among all tree edges (v, u) (Rule 3)

Any vertex v other than the root in the DFS tree is an articulation point if and only
if low(u) ≥ num(v) for any child u of v meaning there are no back edges from any
vertex in the subtree of v to any one of its ancestors. The root is an articulation point
if and only if it has more than one child. We can now structure an algorithm based on
the foregoing as shown in Algorithm 8.3. The procedure assign_num is basically
a DFS algorithm which also assigns the num values to vertices as they are visited.
The second procedure check_AP finds the low values for vertices by checking the
rules above and tests articulation point condition and includes vertices that satisfy
this condition in V ′.

Running of this algorithm is shown in Fig. 8.3. A simple graph with two articula-
tion points b and d is given in (a). We form a DFS tree shown in (b) for this graph and
label every vertex v with num(v) and low(v) as described. For example, vertex g has
7, 1 since it has been discovered last in the DFS and the back edge (g, b) connects
it to vertex b which has a num value of 1, therefore, its low value is set to 1. We
find d has a descendant vertex e which has a low value of 4 which is equal to the
num value of d, therefore, vertex d is an articulation point. Vertex b is an articulation
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Algorithm 8.3 DFS-based_AP
1: Input : connected and undirected graph G = (V, E)

2: Output : articulation points V ′ ⊂ V of G
3: select any vertex v ∈ V
4: counter ← 1
5: assign_num(v)
6: check_AP(v)
7:
8: procedure assign_num(vertex v)
9: num(v) ← counter + +
10: visi ted(v) ← true
11: for all u ∈ N (v) do
12: if visi ted(u) = f alse then
13: parent (u) ← v
14: assign_num(u)

15: end if
16: end for
17: end procedure
18:
19: procedure check_ap(vertex v)
20: low(v) ← num(v) � Rule 1
21: for all u ∈ N (v) do
22: if num(u) ≥ num(v) then
23: check_ap(u)

24: if low(u) ≥ num(v) then
25: V ′ ← V ′ ∪ {v} � AP found
26: end if
27: low(v) ← min(low(v), low(u)) � Rule 3
28: else if parent (v) 	= u then
29: low(v) ← min(low(v), num(u)) � Rule 2
30: end if
31: end for
32: end procedure

point simply because it has more than one child. Other possible DFS trees rooted at
vertices c and e are shown in (c) and (d) of the same figure. We find vertices b and d
are again articulation points in both with the same reasoning as above. The runtime
of this algorithm is simply the time it takes for DFS which is O(n + m).

8.3.3 Block Decomposition

Ablock or a biconnected component of a graphG is amaximal biconnected subgraph
of G. We note that each block of G is connected to one or more blocks by articulation
points and an articulation point belongs tomore than one block.With this observation,
we can structure an algorithm similar to the DFS-based articulation point algorithm
as described next.
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Fig. 8.3 Running of DSF-based AP algorithm in a sample graph for three different DFS trees
formed. The articulation points found are vertices b and d in all cases shown in double circles

Hopcroft–Tarjan Algorithm

Hopcroft and Tarjan provided an algorithm to find blocks of a graph using DFS as
in the articulation point algorithm [10]. The main idea of this algorithm is the key
observation that the blocks are separated by the articulation points of the graph. Note
that an articulation point of a graph is not an articulation point of any block it belongs
since a block does not contain an articulation point of its own. We can, therefore,
discover articulation points in the graph and all vertices between any two articulation
points will be a block. This algorithm uses this fact and operates similarly to theDFS-
based articulation point finding an algorithm with the exception that we push edges
visited in a stack until we discover such a cut-vertex and pop all the vertices of
edges from the stack into a block data structure when we do. The variables num and
low as in the articulation point algorithm are used and the algorithm consists of the
following steps.

1. Start DFS from an arbitrary vertex s of the graph G = (V, E). Set counter ← 1
and num(s) ← 1, low(s) ← 1.

2. Perform DFS as usual and whenever a neighbor vertex v of the vertex u under
consideration is encountered, check the edge (u, v).
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a. The vertex v is discovered for the first time and thus (u, v) is a tree edge.
Increment counter and set num(v) = counter , low(v) = num(v). Push the
edge (u, v) onto stack S.

b. The vertex v has been visited before and num(v) < num(u). Therefore the
edge (u, v) is a back edge. Set low(u) = min{low(u), num(v)}. Push the
edge (u, v) onto stack S.

c. The vertex v has been visited before with num(v) > num(u). Thus, the edge
(u, v) is a forward edge. This is valid only when G is a digraph. Since the
edge (u, v) has already been processed in this case, we do nothing.

3. Upon backtracking from a vertex v that was searched by using the edge (u, v), set
low(u) = min{low(u), low(v)}. If low(v) ≥ num(u), vertex u is an articulation
point as in Algorithm 8.3. In this case, pop all edges from the stack S up to and
including the edge (u, v). The vertices incident to these edges will form a block
of G.

4. When a return from the source vertex s is performed, pop all remaining edges
from the stack S and include all incident vertices on these edges in a single block.

Algorithm 8.4 shows a possible pseudocode of this algorithm in more detail. We
assume the graph may consist of more than one component.

Operation of this algorithm in a small graph is depicted in Fig. 8.4. DFS is run
from vertex a and all the DFS tree edges shown in bold pointing to parents are pushed
onto stack S. The edge (d, b) is a back edge since low(b) < low(d). The edge (d, b)

is pushed onto S and the low value for vertex d is corrected to 2. Upon return from
vertex d to c, the low value of vertex c is corrected and articulation point condition
is checked which is false. Next, upon return from vertex c to b, no correction of
low(b) is needed, however, vertex b is an articulation point since low(c) ≥ num(b)

and thus we call the block forming procedure which pops edges from the stack S
until and including the edge (b, c). The vertices in the first block B1 are b, c and d
as shown encircled in the graph and bold in the stack. In (b), we continue with the
DFS and include edges (b, e) and (e, f ) in the DFS tree shown in bold and push
these edges onto stack S. The vertices e and f are found to be the articulation points
and block B2 with vertices e and f and block B3 with vertices b and e are formed.
Finally, return from the source vertex a means we remove all the remaining edges
which is only the edge (a, b), to form the last block B4. The time complexity of this
algorithm is O(n + m) due to the DFS performed.

8.3.4 Finding Bridges

Abridge is an edge of a graph G removal of which increases the number of connected
components ofG.When a graphG is connected, such removal leaves it disconnected.
A computer network has links between its routers and these links may fail causing
an interruption in network message transfers. We need to find these deficit links
and provide alternative paths around them for a more reliable network. As another
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Algorithm 8.4 DFS_Block
1: Input : An undirected graph G = (V, E)

2: Output : Block set B = {B1, . . . , Bk}
3: counter ← 1; bl_cnt ← 1 � DFS and block counters
4: for all u ∈ V do
5: visi ted(u) ← f alse
6: end for
7: select an arbitrary vertex r to start DFS
8: num(r) ← 1; low(r) ← 1
9: DF S_Block(r)

10: pop all remaining edges on S to Bbl_cnt

11: for all w ∈ V do � check other components
12: if ¬visi ted(w) then
13: DF S_Block(w)

14: pop all remaining edges on S to Bbl_cnt

15: end if
16: end for
17:
18: procedure DFS_Block(u)
19: visi ted(u) ← true
20: counter ← counter + 1
21: num(u) ← counter ; low(u) ← num(u)

22: for all v ∈ N (u) do
23: if visi ted(v) = f alse then � (u, v) is a tree edge
24: Push(S, (u, v))
25: parent (u) ← v
26: DF S_Block(v)
27: if low(v) ≥ num(u) then � u is an articulation point
28: Form_Block((u, v)) � pop edges of the block
29: end if
30: low(u) = min{low(u), low(v)}
31: else if parent (u) 	= v then � (u, v) is a back edge
32: Push(S, (u, v))
33: low(u) = min{low(u), num(v)} � correct low value
34: end if
35: end for
36: end procedure
37:
38: procedure Form_Block((u, v))
39: repeat
40: (x, y) ← Pop(S)

41: Bbl_cnt ← Bbl_cnt ∪ {x, y}
42: until (x, y) = (u, v)
43: B ← B ∪ Bbl_cnt

44: bl_cnt ← bl_cnt + 1
45: end procedure
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Fig. 8.4 Running of Hopcroft–Tarjan algorithm in a small graph

example, a bridge connecting two persons A and B in a connected social network
graph shows A and B are friends and if this friendship breaks up, the social network
will have two components and persons in one component will not have a connection
to the other one. Let us review some useful properties of bridges of a graph.

• Removing an edge that is part of a cycle of a graph G does not disconnect G and
hence, an edge (u, v) is a bridge if and only if (u, v) is not contained in any cycle.

• Consider a bridge (u, v) of a graph G. The vertices u or v are articulation points
of G if they have a degree greater than 1.

We can apply the same strategy to find bridges of an undirected graph G = (V, E)

as we did in finding the cut-vertices; remove each edge one-by-one and check the
connectivity of the graph using DFS or BFS after each removal. If G becomes
disconnected after removing an edge e, this edge e is a bridge (cut-edge) of G. We
need to execute the loop for each edge for a total ofm times and checking connectivity
takes O(n + m) time by DFS or BFS resulting in a total time of O(m(n + m)) for
this algorithm. Again, this method is not favorable for large graphs and we look for
algorithms with better performances.
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Tarjan’s Bridge Finding Algorithm

Tarjan provided a linear time algorithm to discover bridges in a graph using the back
edge principle as before [14]. We note that any DFS tree edge (u, v) that has a back
edge from any vertex from the subtree rooted at v to u or any ancestor of u forms a
cycle containing the edge (u, v) and hence (u, v) can not be a bridge. The algorithm
proposed by Tarjan consists of the following steps.

1. Perform a DFS of the graph G = (V, E) from any vertex of G to obtain the DFS
tree T and label each vertex v with num(v) with respect to its first visit time.

2. For each vertex v ∈ V do the following.

a. Compute the number of descendants N D(v) of v. This is the number of chil-
dren of v plus 1 as a vertex itself is counted.

b. Compute low(v) which is the lowest num value reached from v using tree
edges and at most one back edge.

c. Compute high(v) which is the highest num value reached from v using tree
edges and at most one back edge.

d. Bridge Condition: Tarjan showed that for an edge (u, v) ∈ T with u being
parent of v; if low(v) = num(v) and high(v) < num(v) + N D(v) then (u, v)
is a bridge [14].

We need to test this condition for every vertex in theDFS tree. In order to do so, we
will run the DFS algorithm in the graph G and record the discovery time (num(v))
for each vertex v. Then, we compute the values of N D(v), low(v) and high(v) for
each vertex and check the bridge condition. Running of this algorithm in a small
graph is shown in Fig. 8.5. The edges (b, c) and (d, e) shown in bold are the two
bridges of the graph in (a) as can be seen. We run the DFS algorithm and compute

(a)
a

b c

de

f

gh
b

a

g

e

d

f

h

c

1,8,1,8

2,7,1,8

3,6,1,8

4,5,4,8

5,4,4,8

7,2,4,8

8,1,4,8

6,1,6,6

(b)

num, ND, low, high

Fig. 8.5 Tarjan’s bridge finding algorithm execution in a sample graph
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the num, N D, low and high values for each vertex as shown next to each vertex in
the DFS tree in (b). Then, we check the bridge condition for every vertex v incident
on edge (u, v); low(v) = num(v) and high(v) < num(v) + N D(v). Only vertices c
and e satisfy this condition and hence (b, c) and (d, e) are the bridges of this graph.
The running time is simply the time for the DFS which is O(n + m).

8.3.5 Strong Connectivity Check

Adigraph can be used tomodel a finite-state machine and strong connectivity in such
a digraph implies recovery from a malfunction state as there is always a path from
every state to another. We may want to find strongly connected people in a social
network who are close friends to analyze such a network. We can check whether a
digraph G = (V, E) is strongly connected or not by selecting an arbitrary vertex
v, running DFS (or BFS), reversing the direction of edges to obtain the transpose
graph GT and then running DFS (or BFS) from that vertex in GT again. If the
visited vertices in both directions equals V , G is strongly connected. This method is
sufficient as it is possible to get from any vertex u to w via v. The digraph may not
be strongly connected, in this case, this algorithm determines the strongly connected
component containing the start vertex v. This component called Vc has the common
vertices visited during DFS or BFS of G and then GT as shown in Algorithm 8.5.
Since we run DFS or BFS in both directions, the time required for this algorithm is
O(n + m).

Algorithm 8.5 Strong_Conn
1: Input : G = (V, E)

2: Output : Show whether G is strongly connected
3: set of vertices V1 ← Ø, V2 ← Ø, Vc ← Ø
4: pick any v ∈ V
5: run DF S(G, v) (or B F S(G, v))
6: record the visited vertices in V1

7: reverse direction of edges to obtain GT

8: run DF S(G, v) (or B F S(G, v))
9: record the visited vertices in V2

10: if V1 	= Ø ∧ V2 	= Ø then
11: if V1 = V2 = V then
12: Output “G is strongly connected”
13: else
14: Output “G is not strongly connected”
15: end if
16: end if
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8.3.6 Detecting Strongly Connected Components

Decomposing a digraph into its SCCs is useful in various algorithms as it allows inde-
pendent runs of the algorithm on each SCC, therefore, allowing parallel processing.
There are two fundamental algorithms to detect SCCs in a digraph due to Tarjan
[13] and Aho [1]. Both algorithms make use of DFS, Tarjan’s algorithm works with
a single DFS call while Kosaraju’s algorithm requires two DFS calls, however is
simpler to implement than Tarjan’s algorithm.

8.3.6.1 Tarjan’s SCC Algorithm
This algorithm inputs a directed graph G = (V, E) and detects SCC s in this graph
[13]. The key idea in this algorithm is the observation that a SCC of a graph is a
subtree of a DFS tree. In other words, there will not be a back edge from a subtree
rooted at a vertex v from any of its descendants to any of its ascendants if v is the
root of a SCC.

The use of a stack appropriately is crucial in the operation of this algorithm.
Vertices are pushed on a stack S in the order they are visited. The invariant property
is that a vertex v is left on the stack S after it is visited if and only if there is a path
in G from v to some other vertex already on the stack S. When the call to a vertex
v and its descendants returns, we check whether v has a path to a vertex already on
the stack. If there is such a path, the vertex v is left on the stack to maintain the
variant. Otherwise, the vertex v is the root of a SCC and thus is popped from the
stack together with the SCC that it is assigned as the root.

Each vertex v is assigned num(v) in the order of the DFS first visit and low(v) is
the smallest num value to be reached from the vertex v including itself. If low(v) =
num(v), vertex vmust be removed from the stack S as the root of a SCC.Otherwise, if
low(v) < num(v), vertex vmust stay on the stack. The pseudocode for this algorithm
is shown in Algorithm 8.6.

This algorithm is a modified DFS procedure that requires O(n +m) time. Testing
to findwhether a vertex is on the stack can be performed in constant time if a Boolean
array is maintained for entries on the stack, as proposed by the author [13].

8.3.6.2 Kosaraju’s Algorithm
We can use the transpose of a digraph to find its SCCs based on the observation that
the graph G and its transpose GT has exactly the same SCCs. The algorithm due to
Kosaraju is based on the contraction of a digraph defined below.

Definition 8.15 (contraction of a digraph)The contraction of a digraph G is another
digraph GSCC with SCCs of G as super vertices C1, . . . , Ck with edges defined as
follows. If there is an edge in G from a vertex u in SCC Cx to a vertex v in Cy , then
Cx and Cy are connected by an edge in GSCC .
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Algorithm 8.6 Tarjan_SCC
1: Input : a directed graph G = (V, E)

2: Output : SCC set S = {S1, . . . , Sk} of G
3: i ← 0; scc_cnt ← 1
4: stack S ← Ø
5: for all u ∈ V do
6: num(u) ← 0
7: end for
8: for all u ∈ V do
9: if num[u] = 0 then
10: SCC(u)

11: end if
12: end for
13:
14: procedure SCC(v)
15: low(v) ← num(v) ← i ; i ← i + 1 � initialize v
16: push v on S
17: for all w ∈ N (v) do
18: if num(w) = 0 then � (v, w) is a tree edge
19: SCC(w)

20: low(v) ← min(low(v), low(w))

21: else if num(w) < num(v) then � (v, w) is a frond or a cross edge
22: if w ∈ S then
23: low(v) ← min(low(v), num(w))

24: end if
25: end if
26: end for
27: if low(v) = num(v) then � v is the root of a component
28: while w is on top of S ∧ num(w) ≥ num(v) do
29: delete w from S
30: Sscc_cnt ← Sscc_cnt ∪ {w}
31: end while
32: S ← S ∪ Sscc_cnt

33: scc_cnt ← scc_cnt + 1
34: end if
35: end procedure

Weobserve that the contracted digraphGSCC , commonly called component graph
of G, has no cycles, in other words, it is a directed acyclic graph. If there was a cycle
between SCCs, they could be contracted into a larger SCC. Kosaraju’s algorithm
is based on the idea that same SCCs exist in a graph G and its transpose GT . We
show the high-level description of this algorithm in Algorithm 8.7. It consists of two
phases, we first perform a DFS on G to form a DFS forest and place the vertices on a
stack with respect to their finish times during DFS. In the second phase, we remove
a vertex from stack and perform a DFS on the graph transpose GT . The second call
to DFS is, in fact, to visit the vertices in GSCC . When the search ends, we have all
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the vertices of a SCC visited. We then continue with the next vertex from the stack
until all vertices are visited and placed on the SCCs.

Algorithm 8.7 Kosaraju_SCC
1: Input : G = (V, E)

2: Output : SCCs of G
3: stack S ← Ø
4: while S 	= V do
5: pick an arbitrary vertex v /∈ S
6: run DF S(G, v) by putting finished vertices on stack S
7: end while
8: reverse direction of edges to obtain GT

9: while S 	= Ø do
10: u ← pop(S)

11: run DF S(G, u) � form a DFS tree for each vertex on S
12: end while
13: vertices in each tree rooted at stack vertices are the SCCs of G

A sample digraph and the operation of the first phase of this algorithm is depicted
in Fig. 8.6.

The second phase of the algorithm pops vertices from the stack and performs a
DFS on these vertices to obtain SCCs as shown in Fig. 8.7.

Fig. 8.6 Kosaraju’s
algorithm first phase; a the
digraph, b DFS tree formed,
c final contents of the stack
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Fig. 8.7 Kosaraju’s
algorithm second phase;
a GT , b the stack, c SCCs
extracted by DFS on stack
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Analysis

Given a digraph G = (V, E) with two distinct SCCs C1 and C2, consider an edge
(u, v) ∈ E with u ∈ C1 and v ∈ C2. We then have the following observation.

Remark 6 It can be shown that f in(C1) > f in(C2). Similarly, if (u, v) is an edge
in GT with u ∈ C1 and v ∈ C2, then f in(C2) > f in(C1) [3].

Theorem 8.4 Kosaraju’s algorithm correctly finds the SCCs of a digraph G =
(V, E) in O(n + m) time.

Proof We will prove the correctness of this algorithm by induction. Let k denote the
number of trees formedwhen DFS is called on GT . When k = 0, the base case holds,
and assume the first k − 1 trees obtained this way are SCCs of the graph G. Let u be
the root of the kth tree and a member of the SCC C1 of G. For any undiscovered SCC
Cx at step k, f in(C1) > f in(Cx ) and all other vertices of C1 will be descendants of
u in the discovered DFS tree. Any edge that is leaving C1 in GT should be directed
to SCCs already discovered by the above remark. Therefore, all descendants of u
will be only in the SCC C1 and no other SCCs of GT [3]. The time complexity of
this algorithm is O(n + m) since it involves two DFS calls, first one in G and the
second one in GT . �

A practical approach to implement Kosaraju’s algorithm is depicted in Fig. 8.8.
We traverse the graph using DFS and label vertices with their first visit times at
numerators shown. Whenever we do a backtrack, the finish times are recorded at
denominators as shown. After this first phase is over, we sort the denominators,
reverse the direction of the edges of G to obtain GT and perform a DFS forest
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Fig. 8.8 A practical implementation of Kosaraju’s algorithm

starting from the largest denominator vertex. Each discovered component by the
DFS is a SCC.

8.3.7 Vertex and Edge Connectivity Search

Finding the vertex and edge connectivity numbers of computer networks provide us
with the vital information on how reliable they are. Clearly, the larger the connectivity
number is, the more robust a network is. We will see efficient ways of finding the
vertex and edge connectivity of a graphwhenwe review the network flows in the next
section. We review shortly a brute-force algorithm that will find vertex connectivity
and then a brute-force algorithm for edge connectivity.

As a first attempt, we can implement the following brute-force strategy. We first
find all subsets of the vertices of the network graph; sort these in increasing order
and then remove each subset from graph starting from the smaller subsets and check
the connectivity of the graph using the BFS (or the DFS) algorithm as shown in the
pseudocode of Algorithm 8.8. The B F S_Conn algorithm checks the connectivity
of the graph using the BFS algorithm and returns true if the graph is connected and
false otherwise.

This brute-force method will provide the exact k value for the graph. Although
it will work, major problem in practice with this algorithm is its exponential time
complexity. For a graph with n vertices, the number of subsets of its power set is
2n , resulting in 2n iterations of the for loop. The BFS algorithm within each loop
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Algorithm 8.8 Finding k-connectivity value
1: Input : G(V, E), directed or undirected graph
2: Output : value of k
3: P ← Power Set (V )

4: P ′ ← Sort (P)

5: for all s ∈ P ′ in increasing order of |s| do
6: G ′ ← G − {s}
7: result ← B F S_Conn(G ′)
8: if result = f alse then
9: return |s|
10: end if
11: end for

iteration also has O(n + m) time complexity resulting in a total time complexity of
O(2n(n + m)) which is unacceptable even for moderate size graphs.

The same method can be applied to find the edge connectivity of a graph G, this
time by forming the power set of edges of G. The number of the power set is 2m this
time and hence, the total time needed is O(2m(n + m)) in this case.

8.3.8 Transitive Closure

In many cases, we would be interested to find if any two vertices of a graph are
connected, that is, there is a path between these two vertices. The below graph
derived from the original graph provides this information.

Definition 8.16 (transitive closure) The transitive closure of a graph G = (V, E)

is the graph G ′ = (V, E ′) where (u, v) ∈ E ′ if there is a path between u and v in the
graph G.

The connectivity matrix of the graph defined below provides a suitable represen-
tation of a graph that is equivalent to its transitive closure.

Definition 8.17 (connectivity matrix) The connectivity matrix of a graph G =
(V, E) is a matrix C with elements ci, j such that ci, j = 1 if there is a path between
vertices i and j in G and when i = j , and ∞ otherwise.

Thus, finding the transitive closure of a graph is reduced to working out its con-
nectivity matrix. We can set 0 for vertices that are not neighbors instead of ∞ in C
to obtain the matrix A and compute the powers of A, say Ak using matrix multipli-
cation using logical or and logical and instead of scalar multiplication and addition
to obtain connectivity of vertices that are k + 1 hops away. Since longest path in a
graph may be of length n − 1 at most, An−1 will be equal to C . Alternatively, run-
ning the BFS algorithm for each vertex will provide C or setting weights of edges 1
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and running Floyd–Warshall algorithm using the adjacency matrix of the graph with
edges having unity weights will also result in the connectivity matrix in O(n3) time.
Warshall’s algorithm can be implemented to find the connectivity matrix C . We have
a directed graph G = (V, E)with an adjacency matrix A[n, n], where A[i, j] = 1 if
(i, j) ∈ E , and compute the matrix C , where C[i, j] = 1 if there is a path of length
greater than or equal to 1 from i to j as shown in Algorithm 8.9. This algorithm has
Θ(n3) time complexity due to three nested loops.

Algorithm 8.9 Warshall’s Algorithm
1: Input : G(V, E), directed or undirected graph
2: Output : connectivity matrix C
3: for i = 1 to n do � initialize C
4: for j = 1 to n do
5: C[i, j] ← A[i, j]
6: end for
7: end for
8: for k = 1 to n do
9: for i = 1 to n do
10: for j = 1 to n do
11: if C[i, j] = 0 then
12: C[i, j] ← C[i, k] ∧ C[k, j]
13: end if
14: end for
15: end for
16: end for

8.4 Flow-Based Connectivity

Connectivity search thatmakes use of the network flowalgorithms is based on finding
the edge or vertex connectivity values between every pair of vertices of a graph. Once
we have these values, the edge or vertex connectivity is assigned to the minimum
value of the computed values. We will first review, network flow method with two
basic algorithms to compute flow in a network and then describe algorithms to find
the vertex and edge connectivity using this method.

8.4.1 Network Flows

Let us assume a directed graph G = (V, E) in the usual sense. We will form a flow
network as follows. Each edge e ∈ E of G is assigned a nonnegative integer called
the capacity c(e) and we have a source vertex s and a sink vertex t . A flow f (u, v)
through the edge (u, v) in this network satisfies the following:
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• Capacity constraint: ∀(u, v) ∈ E ,

0 ≤ f (u, v) ≤ c(u, v)

which means a flow through an edge may not exceed the capacity assigned to that
edge.

• Flow Conservation: ∀u ∈ {V − {s, t}},
∑

v∈V

f (v, u) =
∑

v∈V

f (u, v)

In other words, the flow into the vertex u equals the flow out of u for any vertex
u except the source vertex s and the sink vertex t .

The value | f | of a flow f is defined as follows.

| f | =
∑

v∈V

f (s, v) −
∑

v∈V

f (v, s) (8.3)

That is, the flow value of a flow network is the difference of the sum of flows from
the sink vertex s to the sum of flows into s. The maximum flow problem is to find a
flow with a maximum value in a flow network. An example flow network is depicted
in Fig. 8.9.

8.4.1.1 Cuts

Definition 8.18 (cut) A cut (S, T ) of a flow network divides the network into two
sets S and T of disjoint nodes such that s ∈ S and t ∈ T . The capacity of a cut,
c(S, T ) is defined as

∑
e∈[S,T ] c(e).

An edge (u, v) with u ∈ S and v ∈ T is called a forward edge of the cut (S, T ).
When v ∈ S and u ∈ T , the edge (u, v) is said to be a backward edge. The flow
across a cut (S, T ) is the difference between the sum of the flows in forward edges
and the sum of the flows in backward edges. The cut shown by a dashed curve in
Fig. 8.9 has a flow of 2 + 3 − 1 = 5 value. Given, a flow network G with any cut
(S, T ) of G, the following remarks can be shown.

Fig. 8.9 A flow network. A
label on an edge is the
flow/capacity of the edge
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Remark 7 The value of flow f in G is equal to the value across the cut (S, T ).

Remark 8 The value of flow f across the cut (S, T ) does not exceed the capacity of
the cut (S, T ).

8.4.1.2 Residual Networks

Definition 8.19 (residual network) Given a flow f on a graph G = (V, E), the
residual network G f = (V, E f ) has the same set of vertex set as G and edges with
positive residual capacities defined as follows.

c f (u, v) =
{

c(u, v) − f (u, v) if (u, v) is a forward edge
f (u, v) if (u, v) is a backward edge

In otherwords, the residual capacity of an edge (u, v) is the amount of flow that can
be pushed through (u, v) and the residual capacity of the edge (v, u) is the flow that
is used. When we are updating a residual network after a flow change, we should
always modify these values so that flow conservation at a node of the network is
obeyed. For example, if we increase the value of flow through an edge (u, v) by 3
units, then we should increase the value of flow through the edge (v, u) by 3 units to
maintain flow network property. Also, flow used by the edge (v, u) may be returned
if it will cause a larger network flow by doing so. In summary, G f has edges that may
be utilized to have more flows through them. The residual network of the network
of Fig. 8.9 is shown in Fig. 8.10.

Definition 8.20 (augmenting path) A path p from the source s to destination t in
a residual network G f is called an augmenting path with respect to flow f . We
can increase the flow value through an augmenting path P by its residual capacity
defined below:

c f (P) = min{c f (u, v)}

where the residual capacity c f (P) of a path P is the minimum residual capacity of
its edges. We can push a maximum additional flow through P by the value of c f (P)

as otherwise, we will be violating the capacity constraint in the residual network.

Fig. 8.10 The residual
network of the network of
Fig. 8.9
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Theorem 8.5 A flow is maximum if and only if there are no augmenting paths from
source s to sink t. The value of this flow | f | = c(S, T ) for some cut (S, T ) of G.

Proof If there is an augmenting path from s to t , then we can increase the value of
maximum flow f through this path. Therefore, f would not be maximum.

As a consequence, the following theorem can be stated.

Theorem 8.6 The value of a maximum flow, | f ∗|, in a flow network G is equal to
the capacity of a minimum cut of the network G.

8.4.1.3 Ford–Fulkerson Algorithm
With this background, we can see that as long as there exists an augmenting path
in a residual network, we can increase more flow through that path. Ford–Fulkerson
algorithm uses this idea and finds the maximum flow value in a flow network which
has a source vertex s and a sink vertex t and positive edge capacities by gradually
incrementing flow in the residual graph. Themain idea in this algorithm is to increase
theflow through edges of the network by investigating an augmenting path.Whenever
such a path is found, flow is augmented by the residual capacity of the path p as
shown in Algorithm 8.10.

Algorithm 8.10 Ford–Fulkerson Algorithm
1: Input : G(V, E), directed or undirected graph
2: Output : The value of maximum flow f
3:
4: f ← 0
5: G f ← G
6: while ∃ an (s − t) path P of G f do
7: c f (P) ← ∞
8: for all e ∈ P do � compute the residual capacity c f (P) of path P
9: if c f (e) < c f (P) then
10: c f (P) ← c f (e)
11: end if
12: end for
13: for all e ∈ P do � update flows through edged of path P
14: if c f (e) > 0 then
15: f (e) ← f (e) + c f (P)

16: else
17: f (e) ← f (e) − c f (P)

18: end if
19: end for
20: end while
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Fig. 8.11 Operation of Ford–Fulkerson algorithm in a small network

Note that when a flow fx is pushed through an edge (u, v) for the first time, we
need to form a new edge (v, u)with label fx if such an edge does not exist. Figure8.11
displays the operation of this algorithm in a small network. We start with 0 flow and
the sum of all possible flows to any node u is equal to the sum of all possible flows
from u. We have an arbitrary cut in this network with a value of 7 as shown and this
value is the maximum flow to be attained in this network as shown by the max-flow
min-cut theorem. We then search for augmenting paths and whenever such a path
p is found, flows through all edges of this path are decreased by the value of the
minimum flow along the path p and flow is increased with this value. We find the
edge with the minimum value in the augmenting path s − a − b − c − t is (s, a)

with the value of 3. Hence, flow f is set to 3, the residual graph is updated to obtain
the graph in (c) and proceeding in this manner, we have the final residual graph in
(f) after four iterations which do not have any augmenting paths and we stop with a
final f value of 7 as in the cut.
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Analysis

Since flow values are integers, we will be incrementing the flow value | f ∗| times at
most where f ∗ is the maximum flow value, since flow value is incremented by one
at each step in the worst case. Each augmenting path can be found by the DFS or the
BFS algorithm in O(n + m) time resulting in a total time of O(| f ∗|(n + m)) time.
When the choice of the augmenting paths are done arbitrarily and | f ∗| is large, the
time complexity of this algorithm may be high.

8.4.1.4 Edmonds–Karp Algorithm
The Edmonds–Karp algorithm works similar to Ford–Fulkerson algorithm with the
exception of selecting the augmenting path with the minimal length among all pos-
sible augmenting paths. Selection of the shortest augmenting paths is done by the
BFS algorithm.

Algorithm 8.11 Edmond–Karp Algorithm
1: Input : G(V, E), directed or undirected graph
2: Output : The value of maximum flow f
3:
4: f ← 0
5: G f ← G
6: while G f contains an s − t path P do
7: P ← an s − t path in G f with minimum length
8: augment f using P
9: update G f

10: end while

The minimum length path p can be determined in O(n + m) time using BFS.
Having found the shortest path p, we can augment f in O(n) and update of G f takes
also O(n) time resulting in ≈ O(m) time for one iteration of the while loop. There
are O(n) iterations resulting in a total time of O(m2n) [2].

8.4.2 Edge Connectivity Search

The edge connectivity λ(u, v) of two vertices u and v of a simple graph G is the least
number of edges deletion of which makes u and v disconnected. In an undirected
graph, λ(u, v) = λ(v, u) and in the case of a directed graph this equality may not
hold.We can see that when an undirected graph G is not trivial, the edge connectivity
of G, λ(G), is the minimum value of λ(u, v) for each pair of unordered vertices u and
v. For a digraph G ′, λ(G ′) is the minimum value of λ(u, v) for each pair of ordered
vertices u and v.

With this background, we can compute the value of λ(G) for an undirected or
a directed graph if we have a method to find the connectivity values for each pair
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of vertices. This method is in fact based on the maximum flow algorithm we have
reviewed above. Even provided an algorithm based on the maximum flow to com-
pute λ(u, v) for each pair of vertices and the graph edge connectivity is simply the
minimum of all the values computed [6]. The algorithm to find λ(u, v) consists of
the following steps [4,6].

1. Input: An undirected or a directed graph G = (V, E) and a pair of vertices u
and v.

2. Output: The value of λ(u, v).
3. Form the network G ′ = (V ′, E ′) by implementing the following.

a. Replace each edge (x, y) ∈ E with arcs (x, y) and (y, x).
b. Designate u as the source and v as the sink vertex.
c. Assign a capacity of 1 to each arc.

4. Find the maximum flow function f in G ′.
5. λ(u, v) ← f

We have n(n − 1)/2 unordered pairs in an undirected graph and n(n − 1) ordered
pairs in a digraph to check. Hence, we need to call the above procedure so many
times. It was shown in [6] that the time complexity of this algorithm is O(nm).

Let us consider the graph G of Fig. 8.12. The edge-cut C shown in dashed line
separates the vertices into two subsets of G1 and G2. If C is minimum edge-cut and
we select a single vertex a ∈ G1 and check connectivity ∀v ∈ G2, it can be seen that
κ(G) is the minimum of these values.

We can, therefore, have an algorithm consisting of the following steps [5]:

1. Input: An undirected or a directed graph G = (V, E).
2. Output: The value of λ(G).
3. Find the minimum edge-cut C of G that separates G into G1 and G2.

a b c

d

e

fghi

k

C

G1

G2

Fig. 8.12 A sample graph
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4. Select an arbitrary vertex u ∈ G1.
5. Compute λ(u, v), ∀v ∈ G2.
6. λ(G) ← min{λ(u, v) |v ∈ G2}

This algorithm requires n(n − 1)/2 edge connectivity computations instead of
n(n−1) of the first algorithm, however, a problemwith this algorithm is to determine
the minimum edge separator C . Even and Tarjan noticed that computation of the
minimumedge-cut is not necessary, andhence,wecan computeλ(u, v) for all vertices
v 	= u of the graph G and implement the algorithm above without computing the
minimum edge-cut [7]. A set Y that contains vertices both from G1 and G2 such that
Y Ĝ1 	= Ø and Y Ĝ2 	= Ø is called a λ-covering of graph G. Selecting vertices from
such a small set in line 3 of the above algorithm results in an algorithm with better
performance.

8.4.2.1 A SpanningTree-Based Algorithm
Esfahanian and Hakimi proposed an algorithm to form a spanning tree with a large
number of leaves and few intermediate vertices [5]. Consider a spanning tree T =
(V, E(T )) of a graph G with L ∈ V as non-leaf vertices. Then L is a λ-covering
of G which means both partitions G1 and G2 contain at least one vertex that is an
intermediate vertex of T . Using this reasoning, selecting a spanning tree of a graph G
with as few intermediate vertices as possible results in an algorithm that has to select
from only a few such vertices to compute edge connectivity values. The pseudocode
of the spanning tree forming algorithm is shown in Algorithm 8.12 where I (u) refers
to the set of all edges incident at a vertex u, and A(u) to refers to the set of all vertices
adjacent to u.

Algorithm 8.12 Spanning Tree Algorithm
1: Input : G(V, E)

2: Output : A spanning tree T of G
3: V (T ) ← Ø; E(T ) ← Ø
4: select u ∈ V (G)

5: V (T ) ← {u} ∪ A(u)

6: E(T ) ← E(T ) ∪ I (u)

7: while |E(T )| < |V (T )| − 1 do
8: select a leaf vertex w ∈ T such that |A(w)(̂V (G)−V (T ))| ≥ |A(x)(̂V (G)−V (T )|, ∀x ∈ T

that is a leaf vertex
9: for all v ∈ A(w) ∪ ((V (G) − V (T )) do
10: V (T ) ← V (T ) ∪ {v}
11: E(T ) ← E(T ) ∪ {(w, v)}
12: end for
13: end while
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Once a spanning tree is constructed using Algorithm 8.12, the graph edge con-
nectivity can be computed by the following algorithm.

1. Input: An undirected or a directed graph G = (V, E).
2. Output: The value of λ(G).
3. Construct a spanning tree T of G using Algorithm 8.12.
4. P ← the minimum of the order of the leaves or the inner vertices of T
5. Select an arbitrary vertex u ∈ P .
6. Compute λ(u, v), ∀v ∈ P \ {u}.
7. c ← min{λ(u, v)}
8. λ(G) ← min{c, δ(G)}

8.4.2.2 A Dominating Set-Based Algorithm
A dominating set of a graph G = (V, E) is the set V ′ ⊂ V of its vertices such that
any vertex v ∈ V is either an element of V ′ or a neighbor of a vertex in V ′. Edge
connectivity of a graph G can be computed by using a dominating set of G as shown
by Matula [11]. A dominating set D of a graph is first formed and a vertex u ∈ D is
selected. The edge connectivity values for u and v, ∀v ∈ D are then computed using
the maximum flow algorithm. The edge connectivity of the graph G, λ(G), is then
the minimum of the minimum λ value and the smallest degree of the graph as in the
above algorithm. Clearly, a smaller dominating set ofG results in better performance.
Finding the minimum order dominating set of a graph is NP-hard, however, finding a
minimal dominating set which is not contained in any other dominating set of G can
be found using a greedy approach. Algorithm 8.13 shows how to compute a small
dominating set. Matula showed that using this dominating set algorithm λ(G) can
be computed in O(nm) time [11].

Algorithm 8.13 Minimal Dominating Set Algorithm
1: Input : G(V, E)

2: Output : A minimal dominating set D of G
3:
4: select u ∈ V
5: D ← {u}
6: G ′ ← G − u
7: while G ′ 	= Ø do
8: select a vertex v in G’
9: D ← D ∪ {v} ∪ N (v)
10: G ′ ← G − D
11: end while
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8.4.3 Vertex Connectivity Search

The vertex connectivity κ(u, v) of two vertices u and v of a simple graph G = (V, E)

is the least number of vertices deletion of which makes u and v disconnected. When
(u, v) ∈ E , κ(u, v) = n − 1. The method employed to find vertex connectivity
is similar to the edge connectivity computation. We can find the edge connectivity
values of all vertex pairs in G using maximum flowmethod and assign the minimum
of these values as the edge connectivity of G as shown in [6]. This algorithm we will
call Even’s algorithm consist of the following steps.

1. Input: An undirected or a directed simple graphG = (V, E) and a pair of vertices
u and v.

2. Output: The value of κ(G).
3. Form the network G ′ = (V ′, E ′) by implementing the following.

a. Replace each vertex a with two vertices a1, a2 ∈ E ′ which are connected
by an edge ea1a2 . Each edge (a, b) ∈ E is then replaced by two edges e1 =
(a2, b1) and e2 = (b2, a1)

b. Designate u as the source and v as the sink vertex.
c. Assign a capacity of 1 to each arc in G ′

4. Find the maximum flow function f in G ′.
5. κ(u, v) ← f .

TheG ′ graph obtained thiswaywill have 2n vertices and 2n+m edges. Figure8.13
displays the directed graph G ′ obtained from an undirected graph G using this pro-
cedure. The racs in G’ are labeled with unity values and the maximum flow in this
network fromvertex u2 to v1 is computed. Itwas shown in [6] that the time complexity
of the above algorithm is O(mn2/3).

Even and Tarjan showed that we do not need to find κ(u, v) for each pair of
vertices u and v and we need only compute values for the set V ′ ⊂ V of vertices
with |V ′| = κ + 1 and update the minimum value of κ(u, v) as we do as shown in
Algorithm 8.14 [7].

Fig. 8.13 Obtaining the
expanded directed graph G ′
in b from the sample graph
G in a

a b

cd

a1 a2 b1 b2

c1 c2d1 d2

(a) (b)



8.4 Flow-Based Connectivity 253

Algorithm 8.14 Even–Tarjan Algorithm
1: Input : G(V, E), directed or undirected graph
2: Output : The value of κ(G)

3:
4: min_conn ← n − 1
5: i ← 1
6: while i ≤ min_conn do
7: for j = i + 1 to n do
8: if i > min _conn then
9: break
10: else if vi and v j are not adjacent then
11: compute κ(vi , v j ) using Even’s algorithm
12: min_conn ← min{min_conn, κ(vi , v j )}
13: end if
14: end for
15: end while
16: κ(G) ← min_conn

8.5 Parallel Connectivity Search

We may need to find whether a graph representing a network is connected and its
connectivity parameters. We present algorithms for this purpose in this section.

8.5.1 Computing the Connectivity Matrix

The n × n connectivity matrix C of a graph G of order n is defined as follows.

C[i, j] =
{
1 if there is a path of length 0 or more from vi to v j

0 otherwise

We can obtain the connectivity matrix C from the adjacency matrix A of a graph
G by multiplying A n − 1 times by itself, in other words, taking the n − 1th power
of A. However, we need to perform the required addition and multiplication in the
usual matrix multiplication as Boolean addition (logical or operation) and Boolean
multiplication (logical andoperation).Before performing theBooleanmultiplication,
we need to generate matrix B which differs from the adjacency matrix A with all
diagonal elements as 1’s instead of 0’s. This matrix B now has 1’s for all paths in G
that have 0 or 1 length. Multiplying B by itself provides B2 which shows paths of
length 2 or less and in general, Bk contains 1’s for paths of length k or less between
any two vertices.

The maximum path length in a graph G with n vertices can be n − 1 and hence,
we need to find Bn−1. The required number of Boolean multiplications is then
�log (n − 1)�. For example, to find B8, we need to find B × B to yield B2; then
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Fig. 8.14 A sample undirected graph and its adjacency matrix A

B2 × B2 to give B4 and finally B4 × B4 to obtain B8 for a total of �log 7� = 3
multiplications. C = Bm where m = 2�log (n−1)� when n − 1 is not a power of 2
since Bm = Bn−1 when m > n − 1 [2]. A sample graph and its adjacency matrix is
shown in Fig. 8.14.

B2 and B4 for this sample graph are as follows.

B =

⎡

⎢⎢⎢⎢⎣

1 0 1 0 0
0 1 1 0 0
0 0 1 1 0
1 0 0 1 1
1 0 0 0 1

⎤

⎥⎥⎥⎥⎦
, B2 =

⎡

⎢⎢⎢⎢⎣

1 0 1 1 0
0 1 1 1 0
1 0 1 1 1
1 0 1 1 1
1 0 1 0 1

⎤

⎥⎥⎥⎥⎦
, C = B4 =

⎡

⎢⎢⎢⎢⎣

1 0 1 1 1
1 1 1 1 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1

⎤

⎥⎥⎥⎥⎦

Now, checking the entry C[i, j] shows whether there is a path from vertex i to
j . We can see that the vertex b can reach all other vertices whereas it cannot be
reached by any other vertex as evident from the graph. In order to parallelize this
algorithm, we can use any of the parallel matrix multiplication procedures such as
the one described in Sect. 4.7.1 using Boolean multiplication and addition instead
of multiplication and addition of real numbers.

8.5.2 Finding Connected Components in Parallel

Wehave seen how tofind connected components of an undirected graph in Sect. 8.3.1.
We will now describe two algorithms to find the components of an undirected graph
in parallel.

8.5.2.1 Using the Connectivity Matrix
We know how to work out the connectivity matrix C in parallel from the previous
section. Let us now define a matrix D which has entries as follows [2].

D[i, j] =
{

v j if C[i, j] = 1

0 otherwise

http://dx.doi.org/10.1007/978-3-319-73235-0_4
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The row i of D has the names of the vertices vertex i is connected which are in
fact in the same component as i since there is a path between each of them and vertex
i . We can now assign a vertex vi to component k if k is the smallest index for which
D[i, k] 	= 0. The parallel formation of this algorithm has three steps as follows.

1. Form the matrix C in parallel
2. Construct matrix D from C in parallel
3. Assign a component to each vertex in D.

8.5.2.2 Using the AdjacencyMatrix
We have reviewed how to find the connected components of an undirected graph
sequentially using the DFS algorithm. Every time we called the DFS procedure from
the main program, a new component was processed since each call would process
every vertex in a component. We will now attempt to construct a parallel algorithm
based on the sequential algorithm. Let A be the adjacency matrix of the undirected
graph that we are investigating. We will row-wise partition A to k parallel processes
such that each process pi gets �n/k� rows. Each process then finds DFS spanning
forests for the subgraphs that include the edges they are responsible. The final step
involves merging of the spanning forests pairwise until one spanning forest remains.
Merging of the forests can be done efficiently using the find and union operations
[9]. Figure8.15 displays an undirected graph with two components. The adjacency
matrix has 8 rows which can be partitioned to two processes p0 (rows 1–4) and p1
(rows 5–8)

Process p0 has the subgraphs shown in Fig. 8.16a and p1 has the subgraphs
displayed in Fig. 8.16c. Each process then constructs the DFS spanning trees for
their subgraphs shown in (c) and (d) of the same figure.

These two spanning forests are then merged using the find and union procedures
to find the componentsC1 = {a, b, c, d, e} andC1 = { f, g, h} as shown in Fig. 8.17.
Analysis

When we use 1-D block mapping with k processes, computing the spanning forest at
each process pi needs Θ(n2/k) time since n/k × k block of the adjacency matrix is
assigned to each process. Merging of the spanning forests takeΘ(n log k) time since
there are log k merging each taking Θ(n) time. The communication cost of sending
spanning forests is also Θ(n log k). The parallel runtime of this algorithm is then,

TP = Θ

(
n2

k

)
+ Θ(n log k) (8.4)

The speedup S and efficiency E considering the sequential complexity of Θ(n2)

for this algorithm are then as follows.
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Fig. 8.17 Components of
the sample graph of Fig. 8.15 a b
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S = Θ(n2)

Θ(n2/k) + Θ(n log k)
(8.5)

E = 1

1 + Θ((k log k)/n)
(8.6)

8.5.3 A Survey of Parallel SCC Algorithm

The classical algorithms of Tarjan and later Kosaraju to find SCCs of a digraph are
difficult to parallelize due to the inherently sequential operation of theDFS algorithm
employed in both. A parallel algorithm called divide and conquer strong components
(DCSC) algorithm by Fleischer et al. [8] uses a different approach by partitioning the
digraph into three disjoint subgraphs and processing these subgraphs recursively in
parallel. We will briefly describe this parallel algorithm as it can be used in practice
with some modifications.

Given a digraph G = (V, E), the descendants Desc(G, v) of a vertex v are the
vertices in G that are reachable from v including itself. The predecessors Pred(G, v)
of a vertex v can be defined similarly as the set of vertices from which the vertex v
is reachable. The remaining vertices in graph G are called the remainder shown by
Rem(G, v) = V \ {Desc(G, v) ∪ Pred(G, v)}. It is shown that

SCC(G, v) = Desc(G, v) ∪ Pred(G, v)

and anySCCofG is a subset of Desc(G, v), Pred(G, v)or Rem(G, v). The designed
algorithm makes use of this property by first selecting a random vertex v, finding its
predecessor and descendant sets and then finding the SCC that contains this vertex.
It then recurses on the remaining vertices in parallel as shown in Algorithm 8.15.
It was shown in [8] this algorithm has an expected time complexity of O(n log n)

in the serial case. Later on, McLendon et al. extended this algorithm by a simple
modification to improve performance [12].
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Algorithm 8.15 Finding SCCs in parallel
1: procedure DCSC(G)
2: if G = Ø then
3: return
4: end if
5: select a vertex v ∈ V
6: SCC(G, v) = Desc(G, v) ∪ Pred(G, v)
7: output SCC(G, v)
8: do in parallel
9: DC SC(Pred(G, v) \ SCC(G, v))
10: DC SC(Desc(G, v) \ SCC(G, v))
11: DC SC(Rem(G, v))
12: end do
13: end procedure

8.6 Distributed Connectivity Algorithms

In a network environment, our aim is to have each node of the network find out the
connectivity values of the graph that represents the network.

8.6.1 A Distributed k-Connectivity Algorithm

We know that the lowest degree δ(G) of a graph G is an upper bound on the value of
the connectivity κ(G) since we can isolate this vertex by removing all edges incident
to it to haveG disconnected. This concept can be used in a distributed setting by nodes
exchanging their degrees to estimate δ(G). Three localized distributed algorithms to
determine the value of κ(G), say k, that works with neighbor knowledge only are
proposed by Jorgic et al. [16, 1]. In the first algorithm called local neighbor discovery
(LND), each node discovers its degree di by first sending hellomessages to neighbors
and counting the responds from them. Each node then exchanges degree information
with their neighbors and send this data to neighbors. Repeating this process p times
results in degrees of nodes transferred to all nodes within p hops from them. Nodes
can then simply sort the degrees they received in total and denote the lowest value as
the value of k. The pseudocode of a possible implementation is shown in Algorithm
8.16 and although the original algorithm uses the time-to-live field of the message
which is initialized to p, we provide a SSI algorithm version that works in p rounds
to achieve the same function.

All of the edges of the graph will be traversed in both directions in each round, so
there will be O(pm)messages in total. Although this linear timemay look favorable,
a high value of p is needed to estimate k more correctly. Moreover, δ(G) is an upper
bound on the value of k so the actual value may be much lower. In the second
algorithm called local subgraph connectivity detection (LSCD) proposed by the
same authors, a further test is made to find a subgraph of p-hop neighbors of a given
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Algorithm 8.16 Local Neighborhood Detection
1: boolean round_over
2: message type deg
3: set of int degs, all_degs
4: degs ← di ; all_degs ← di

5: for i = 1 to p do
6: round_over ← f alse
7: while ¬round_over do
8: send degs to N (i)
9: receive deg( j)
10: degs ← deg( j).d j

11: all_degs ← all_degs ∪ degs
12: received ← received ∪ { j}
13: if received = N (i) then
14: round_over ← true
15: end if
16: end while
17: degs ← {Ø}
18: end for
19: k ← min{d j ∈ all_degs ∪ di }

node is k-connected. A node v determines that the graph is k-connected when both
of the following conditions are satisfied:

• All of the p-hop neighbors of v have at least a degree of k
• The union of v and subgraph of p-hop neighbors of v is k-connected

The third algorithm searches for critical nodes removal of which will disconnect
graph.

8.7 Chapter Notes

Connectivity is a fundamental concept in graph theory that has immediate applica-
tions in the computer networks. A digraph is strongly connected if there is a path
in both directions between any vertex pair u, v in such a digraph. Finding strongly
connected components which are subgraphs of a digraph that are strongly connected
has various applications such as detecting highly connected regions in biological and
social networks. A one-way road system in a city should also be strongly connected.
We reviewed two linear time algorithms due to Tarjan and Kosaraju to detect such
SCCs of digraphs.

Removal of an articulation point or a bridge from a connected undirected graph
G leaves G disconnected. We need to find these vertices and edges of a computer
network to reinforce additional routers and links in these areas to have a more robust
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network. We described a linear time DFS-based algorithm that makes use of the
simple property that any vertex on a DFS tree of a graph that does not have a back
edge from its subtree to its ancestors is an articulation point.

A block of a graph is a maximal connected subgraph without any articulation
points. We reviewed two linear-time algorithms to identify blocks in a graph. We can
find connectivity and strong connectivity of a graph in parallel as demonstrated by
two algorithms. Finally, we described a heuristic distributed algorithm that estimates
the vertex connectivity of a network.

Exercises

1. Show the articulation points, bridges, and the blocks in the undirected graph of
Fig. 8.18.

2. Write the pseudocode of the DFS-based articulation point search algorithm as
one main procedure. Identify articulation points in the sample undirected graph
of Fig. 8.19 using the DFS-based algorithm. Show the low and num values of
vertices at each iteration.

3. Find the bridges of the same graph of Fig. 8.19 using Tarjan’s algorithm.
4. Work out the blocks of the sample graph depicted in Fig. 8.20 using the Hopcroft–

Karp algorithm by showing the iterations of the algorithm.
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Fig. 8.18 Sample graph for Exercise 1
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Fig. 8.19 Sample graph for Exercise 2 and 3
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Fig. 8.20 Sample graph for Exercise 4

Fig. 8.21 Sample graph for
Exercise 5 a b c d

fgh e

Fig. 8.22 Sample network
for Exercise 6
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5. Find the SCCs of the digraph in Fig. 8.21 using Kojarasu’s algorithm. Show the
contents of the stack and the DFS trees formed.

6. Find the maximum flow in the network of Fig. 8.22 using the Ford–Fulkerson
algorithm by showing all iterations of the algorithm.
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9Matching

Abstract

Amatching of a graph is a subset of edges that do not share any endpoints. Match-
ing can be used in many applications including channel frequency assignment in
radio networks, graph partitioning, and clustering. In an unweighted graph, max-
imum matching of a graph is the set of edges that has the maximum cardinality
among all matchings in that graph. In an edge-weighted weighted graph, our aim
is to find a matching with the maximum (or minimum) total weight. Finding a
maximum (weighted) matching in an unweighted or weighted graph is one of the
rare graph problems that can be solved in polynomial time. We review sequential,
parallel, and distributed algorithms for unweighted and weighted general graphs
and bipartite graphs in this chapter.

9.1 Introduction

A matching M of a graph G = (V, E) is a subset of edges of G that do not share any
endpoints. In other words, each vertex of G is incident to at most one edge of M .
We can also view a matching M as a set of independent edges in G. Matchings can
be used in a variety of applications such as channel frequency assignment in radio
networks, alignment of protein interaction networks when similarity between two or
more such networks is investigated [8]. It is also used in multilevel graph partitioning
algorithms [15].

Maximal matching is the set M of edges that cannot be enlarged any further by
the addition of new edges. In an unweighted graph, maximum matching of a graph is
the set of edges that has the maximum cardinality among all matchings in that graph.
In an edge-weighted graph, our aim is to find a matching with the maximum (or
minimum) total weight. Finding a maximum (weighted) matching in an unweighted
or weighted graph is one of the rare graph problems that can be solved in polynomial

© Springer International Publishing AG, part of Springer Nature 2018
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-73235-0_9

263
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time. However, there are various approximation algorithms to improve the runtime
of matching. Also, approximation algorithms turn out to be easier to implement
with significantly less lines of code than exact algorithms. Unweighted or weighted
matching in bipartite graphs can be treated separately than general graphmatching as
the structure of bipartite graphs can be exploited for designing conceptually different
algorithms than the general case.

In this chapter, we review the matching problem in general graphs and bipartite
graphs for both unweighted and weighted cases. We describe sequential, parallel,
and distributed algorithms for these graphs.

9.2 Theory

We will review theory, parameters and notation used in matching in unweighted or
weighted general graphs and bipartite graphs starting with unweighted matching in
this section.

9.2.1 UnweightedMatching

A matching of a graph G = (V, E) is a set of edges M ⊆ E which do not pairwise
share endpoints. A vertex is matched or saturated if it is incident to an edge of
matching, otherwise, it is a free or an unmatched or an unsaturated vertex. An edge
that is part of a matching is called matched and unmatched otherwise. A maximal
matching (MM) of a graph G cannot be made larger by the addition of a new edge
meaning it is not contained in any larger matching. A maximum matching (MaxM)
of a graph G has the maximum size among all matchings of G. In perfect matching,
every vertex of the graph is incident to an edge that is included in the matching.
In other words, all vertices of a graph are saturated in a perfect matching. MM and
MaxM of a sample graph are displayed in Fig. 9.1.

Weneed fewmoredefinitions before reviewing sequential, parallel, anddistributed
matching algorithms.

a b c

de

a b

de

efg

c

efg

(a) (b)

Fig. 9.1 a A MM of size 3, b A MaxMM with size 4 of a sample graph. Path (e, a, g, f, b, c) is
an augmenting path in (a) and path (g, f, b, c) is an alternating path in (b). There is no augmenting
path in (b) since the matching is maximum. We can also see that matching in (b) is perfect as each
vertex is saturated
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Definition 9.1 (alternating path) An M-alternating path of a matching M is a path
that alternates between edges in M and edges in E − M (edges not in M).

Definition 9.2 (augmenting path) An M-augmenting path of a matching M is a path
that is an alternating path that starts and end in unsaturated vertices.

Augmenting and alternating paths are displayed in Fig. 9.1. An augmenting path
of a matching M that contains k edges contains exactly k +1 edges that are not in M
for a total of 2k +1 edges. We try to find augmenting paths since we can increase the
size of a matching that has an augmenting path by toggling the edges of matching in
the path with edges that do not belong to matching in the path.

Definition 9.3 (alternating tree) An alternating tree is rooted at a free vertex and
each path of this tree is an alternating path.

For example, the tree rooted at vertex e in Fig. 9.1b is an alternating tree with
branches e, a, b, c, e, g, f and e, a, b, e, d.

Definition 9.4 (graph factor) spanning subgraph or a factor of a graph G contains
all vertices of G. A k-regular spanning subgraph of G is called its k-factor. A 1-factor
of G is a perfect matching of G that saturates all vertices of G.

Definition 9.5 (symmetric difference of two graphs) Symmetric difference of two
graphs G and G ′ shown as G ⊕ G ′ (or GΔG ′) is a graph G ′′ that is induced on
the edge set that contains edges in either G or G ′ but not in both which is equal to
(G − G ′) ∪ (G ′ − G).

This means we need to find edges that are present in only one of the input graphs
and include vertices incident on those edges. Two graphs and their symmetric dif-
ference is shown in Fig. 9.2.

Lemma 9.1 Given a graph G with a matching M and an augmenting path P of M,
M ⊕ P is again a matching with a cardinality one more than that of M.

a b

cd

a b

cd

e

a b

cd

e

(a) (b) (c)

Fig. 9.2 Symmetric difference of the two graphs in a and b is shown in c
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Proof The symmetric difference of a matching M with an augmenting path P with
respect to M , that is an augmenting path that is incident with edges of M , results in
a new matching M ′ which has edges that were not part of matching in P as matched
edges and the matched edges in P are now unmatched. In other words, we switch
the edges of matching in P with edges that are not in matching. The new matching
M ′ is in fact formed by taking the symmetric difference of an augmenting path P of
a matching M with M , to result in a matching that has a size one unit larger than M
as shown below.

M ′ = M ⊕ P = (M − P) ∪ (P − M)

Now to prove this lemma, we see that P has odd number of edges and its edges
alternate between as edges in M and edges not in M . Edges in the complement of the
path P have the same set of neighbors in M as in M ′ and vertices in P have exactly
one neighbor in M ′, therefore M ′ is also a matching of G. �

This process is called augmenting the matching M and can be used in a number
of maximum matching algorithms. The matching in augmenting path in Fig. 9.3a is
augmented to have a matching with an incremented size in (b).

We can now state an important theorem by Berge which forms the basis of few
fundamental matching algorithms [3].

Theorem 9.1 (Berge) A matching M is maximum if and only if there are no aug-
menting paths with respect to M.

Proof We know by Lemma 9.1 that if matching M has an augmenting path, it is
not of maximum cardinality. Now we need to prove the reverse direction of the
statement; if there are no augmenting paths of a matching M , then M is maximum.
Let us assume M is not maximum when there are no augmenting paths. This means
there exists a matching M ′ that is maximum such that |M ′| > |M |. Let us form
H = M ⊕ M ′. Each vertex v of H is incident to at most one M edge and one M ′
edge, therefore each vertex of H has at most a degree of 2. Also, each path of H
alternates with edges in M and edges in M ′. Since each path is alternating, each cycle
must be even. As the size of M ′ is greater than the size of M , H has a path P that has

a b c d

efgh

i a b c d

efgh

i

(a) (b)

Fig. 9.3 a A MM M of size 3 is shown in sample graph in a. However, there is an augmenting
path P = {i, g, f, e, c, d} in this matching and the new matching M ′ obtained by taking symmetric
difference of M with P results in a matching that has a size of 4 as shown in b
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more maximum matching edges than M edges. This path P begins and ends with a
maximum matching edge, therefore it is an augmenting path of M , meaning M can
be enlarged using P . This contradicts the first assumption that M has no augmenting
paths. �

This gives us a simple algorithm template to find maximum matching M of a
graph consisting of following steps:

1. M ← Ø
2. while ∃ an augmenting path P with respect to M
3. M ← M ⊕ P
4. end while
5. return M

We need a method to find the augmenting path P and we will see it is more
convenient to have different procedures for bipartite graphs and general graphs in
the next sections.

9.2.2 WeightedMatching

In the matching of a weighted graph, our aim is to find the matching with the
maximum or minimum total weight. A maximum weighted matching (MaxWM)
of a weighted graph G = (V, E, w) with w : E → R

+ has the maximum total
weight among all weighted maximal matchings of G where the weight of a match-
ing M is defined asw(M) = ∑

e∈M w(e). Similarly, theminimum weighted matching
(MinWM) of G has the total least weight among all weighted maximal matchings
of G. By a maximal weighted matching (MWM) of a weighted graph G, we mean
a weighted matching of G which cannot be enlarged by a new edge. We will see
both MaxWM and MinWM have practical applications. Figure 9.4 displays MWM
nd MaxWM of a sample graph.
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8(a) (b)

Fig. 9.4 a A MWM of total weight 13, b A MaxMM with total weight 29 of a sample graph
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9.3 Unweighted Bipartite GraphMatching

Amatching M in a bipartite graph G = (A ∪ B, E) has the same property, that is, no
vertex v ∈ A or v ∈ B is incident to more than one edge in M . The unweighted and
weighted maximal and maximum matchings in bipartite graphs are defined similar
to general graphs. Bipartite matchings in two sample graphs are shown in Fig. 9.5.
A vertex cover of a graph G = (V, E) is a subset V ′ of its vertex set such that every
edge e ∈ E is incident to at least one vertex in V ′.

Given a bipartite graph G = (A ∪ B, E), the neighborhood N (S) of a set of
vertices S ⊂ A is a set of vertices in B such that ∀u ∈ S and (u, v) ∈ E , v ∈ N (S).
In other words, N (S) is the union of the neighbors of the vertices in S.

Theorem 9.2 (Hall) A bipartite graph G = (A ∪ B, E) contains a matching that
saturates every vertex in A if and only if,

|N (S)| ≥ |S|, for all S ⊂ A (9.1)

Proof In the forward direction of the proof, every vertex in S ⊂ A is matched to
a vertex in N (S) under the matching M and since all vertices in A are saturated
with any two distinct vertices in S being matched to two distinct vertices in N (S), it
follows |N (S)| ≥ |S|.

In the reverse direction, we need to prove if |N (S)| ≥ |S|, then G has a match-
ing that saturates every vertex of A. For this condition, assume M∗ is a maximum
matching in G and u ∈ A is not a saturated vertex by M∗. Let us consider the set
W which contains vertices that can be reached from u by an alternating path. Let
S = W ∩ A and T = W ∩ B. We can see that every vertex in S \ {u} is saturated and
every vertex in T is also saturated which means |T | = |S| − 1. We can then write
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Fig.9.5 a AMM of an unweighted bipartite graph, bAmaximal weighted matching of magnitude
19 of a weighted bipartite graph, c the maximum weighted matching of magnitude 29 of of the
same weighted bipartite graph of b. The matching edges are shown in bold
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|N (S)| = |T | which means |N (S)| < |S| and therefore a contradiction. We can now
conclude that no such vertex exists and hence every vertex in S is saturated. �

Theorem 9.3 (König 1931) For any bipartite graph G = (A ∪ B, E), the maximum
size of a matching α(G) is equal to the minimum size of a vertex cover β(G) [16].

We will show a constructive proof of this theorem that results in an efficient
algorithm to find the minimum vertex cover of a bipartite graph when we review
vertex cover algorithms in Chap. 10.

9.3.1 A Sequential AlgorithmUsing Augmenting Paths

We will use the approach of enlarging the matching with augmenting paths to find a
maximummatching in an unweighted bipartite graph. In order to do so, let us consider
a bipartite graph G = (A ∪ B, E) and construct a digraph G ′ = (A ∪ B, E ′) where
each edge e ∈ E ′ is directed from A to B if e /∈ M and it is directed from B to
A if e ∈ M . We can see that there is an augmenting path with respect to matching
M in G if and only if there is a directed path from an unmatched vertex in A to a
unmatched vertex in B in the graph G ′. Let us now rewrite the generic matching
algorithm formally as shown in Algorithm 9.1 with the procedure Find_AP to find
the augmenting paths.

Algorithm 9.1 MaxM_UBG1
1: Input: An undirected bipartite graph G = (A ∪ B, E)

2: Output: Maximum matching M of G
3:
4: M ← any edge e ∈ E
5: repeat
6: P ← Find_AP(G, M)

7: if P �= Ø then
8: M ← M ⊕ P
9: end if
10: until P = Ø
11:
12: procedure Find_AP(G(A ∪ B), M)
13: A′ ← a set of free vertices in A
14: B ′ ← a set of free vertices in B
15: direct unmatched edges from A to B, matched edges from B to A to construct G ′
16: find the shortest path P from A′ to B ′ in G ′
17: if P not found then
18: return Ø
19: else
20: return P
21: end if
22: end procedure

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Correctness is evident since the procedure Find_AP returns an augmenting path
P if such a path exists in G’ as it starts from a free vertex and ends at a free vertex
using matched edges.

Theorem 9.4 Algorithm Max M_U BG1 has O(nm) complexity.

Proof The upperbound on the size of the matching is n/2 and at each step we can
only extend the current matching by 1 resulting in O(n) time for the loop that calls
Find_AP . An augmenting path can be found in O(m) time searching all of the
edges in the worst case. The total time needed is therefore O(nm). �

Running of this algorithm in a sample graph is depicted in Fig. 9.6.

Finding Augmenting Paths Using BFS

We still have not shown how to search for an augmenting path in G ′. One way of
achieving this is by adding a source vertex s to the left of the bipartite graph and

A B A BA B

A B A B A B

(a) (b) (c)

(d) (e) (f)

Fig.9.6 Running ofMaxM_BPG1 in a small bipartite graph G = (A∪ B, E). The initial arbitrarily
selectedmatching M in a is shown in bold. Using thismatching an augmenting path shown in dashed
lines starting from a bold vertex in A and ending at a bold vertex in B is shown in bwhich is XORed
with M to obtain the matching in c. We find an augmenting path now with this matching shown in
dashed lines shown in d to form matching in e in which another augmenting path shown in dashed
lines is discovered. The final matching obtained by XORing this path with current matching does
not have any augmenting paths as all vertices are now saturated after 3 steps
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(a) (b)

(c) (d)

Fig. 9.7 Running of FindBFS_AP in the graph of Fig. 9.6. The two existing matched edges are
made directed from B to A and all other edges are directed from A to B. A vertex s is added to the
left with directed edges to all unmatched vertices in A and directed edges from unmatched vertices
in B to the new vertex t . We can now run BFS from s to t to find the shortest path shown as dashed
lines in b of the figure. We know augment this path to obtain the augmenting path shown in c and
the final maximum matching is shown in d which is different than the maximum matching found
in Fig. 9.6 but has the same size

connecting it by directed edges to all free vertices of A. A sink vertex t is also added
to all of the free vertices in B by directing all edges from vertices of B to vertex t
as shown in Fig. 9.7. We then run BFS from s and return the shortest path as shown
in procedure FindBFS_AP in Algorithm 9.2. The shortest path starting from s and
ending in t will be an augmenting path as it goes through free vertices in A and B
and it has to go through some matched edges to be able to return to B. The running
time for BFS is O(n + m) ≈ O(m) in a dense graph and hence the total time of
Algorithm 9.1 using BFS-based approach is O(nm) since the size of the matching
can be at most n/2.

The operation of this algorithm is shown in Fig. 9.7 on the same bipartite graph
of Fig. 9.6 with different initial matching .
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Algorithm 9.2 MaxM_UBG2
1: procedure FindBFS_AP(G(A ∪ B), M)
2: A′ ← a set of free vertices in A
3: B ′ ← a set of free vertices in B
4: direct unmatched edges from A to B, matched edges from B to A to construct G ′
5: add s, t to G ′
6: run BFS from s of G ′ to obtain shortest path P
7: if P not found then
8: return Ø
9: else
10: return P \ {s, t}
11: end if
12: end procedure

A
B

A
B

s

t

1

1

1

1

1
1

1

1
1

1

1 1

1

1

1

1

1

1

1

(a) (b)

Fig. 9.8 The flow-based re-construction of an example bipartite graph in a is shown in b. The
maximum flow edges which correspond to maximum matching edges are shown in bold

9.3.2 A Flow-Based Algorithm

Finding maximum matching in an unweighted bipartite graph G = (A ∪ B, E) can
be performed using maximum flow as follows. We add a source vertex s and sink
vertex t , connecting s to all vertices of A using directed edges and all vertices of B
to vertex t again using directed edges. We also direct edges from A to B and give a
capacity of unity to all edges to obtain graph G ′ as shown in Fig. 9.8. We now solve
the maximum network flow problem in this graph using Ford–Fulkerson algorithm.
The edges that are used in the maximum network flow correspond to the edges of
the maximum matching of G. We will have a flow through an edge or not since
capacities are all 1.

The capacities of the edges of G ′ are all 1, therefore flow through an edge is either
0 or 1. Each u ∈ A has exactly one incoming edge of flow from vertex s, then there
can be at most one edge (u, v) with v ∈ B that can have a flow of 1 by the flow
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conservation law. Each vertex v ∈ B has exactly one outgoing edge that can pass
flow to vertex t and hence, at most one of its incoming edges can carry the maximum
flow, again by the flow conservation law. This is to say the edges of the maximum
flow are disjoint resulting in a matching. Therefore, each u ∈ A will be matched
with at most one vertex of B forming a maximum matching in G. When we have a
flow of value k, this corresponds to a matching of size k with the same set of edges
of G. Since we attempt to maximize the flow, we are maximizing the matching.

Time complexity of this algorithm is the same of Ford–Fulkerson which is O(kC)

where k is the number of edges that the flow runs through and C is the maximum
flow in the graph which is |A| = n. The number of edges in the newly formed graph
G ′ is 2n + m since we added 2n new edges to the vertices s and t . The complexity
of this algorithm is therefore O(n2 + nm).

9.3.3 Hopcroft–Karp Algorithm

The Hopcroft–Karp algorithm also makes use of augmenting paths while finding
the maximum matching in a bipartite graph. This algorithm however searches many
paths simultaneously rather than one by one as in the previous algorithm and brings
down the time complexity to O(

√
nm) [14]. The working principle of this algorithm

is based on the following lemma.

Lemma 9.2 Given a bipartite graph G = (A ∪ B, E) with a matching M and a
maximum matching M∗ for this graph, let |M∗|− |M | = k for some integer k. Let P
be the symmetric difference M ⊕ M∗. Then P contains at least k disjoint augmenting
paths.

Proof All of the edges in the set E ′ obtained by M ⊕ M∗ have a maximum degree of
2 meaning the connected components of the subgraph G ′ induced by E ′ are simple
paths and cycles. Let us consider paths and cycles separately in G ′. Each cycle has
the same number of edges in M∗ as in M , however, each M-augmenting path has
exactly one less edge in M as in M∗. In M ⊕ M∗, we have exactly k more edges
in M∗ than edges in M . Therefore, G ′ contains k vertex disjoint augmenting paths
of M . �

The algorithm consists of a number of phases and all possible vertex disjoint
augmenting paths are searched in each phase. The symmetric difference of the union
of all of these paths with the existingmatching is computed to yield the newmatching
as shown in the high-level description of the algorithm in Algorithm 9.3.

Finding the disjoint augmenting paths of a bipartite graph G = (A∪ B, E) in each
phase can be done by a modified BFS algorithms as follows. The BFS algorithm is
run for each unmatched vertex v ∈ A to form layers starting at v using alternating
paths of unmatched and matched edges to form an alternating edge tree rooted at v.
The BFS algorithm stops when one or more unmatched vertices in B are reached
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Algorithm 9.3 HK1_UBM
1: Input: An undirected bipartite graph G = (A ∪ B, E)

2: Output: Maximum matching M of G
3: M ← Ø
4: while M is not maximum do
5: find P = {P1, ..., Pk} a maximal set of vertex disjoint shortest M-augmenting paths
6: M ← M ⊕ P
7: end while

since we are looking for shortest augmenting paths. A path reaching an unmatched
vertex in B will be an augmenting path since it started from an unmatched vertex and
traversed alternating edges. All of the unmatched vertices reached in B are stored in
the set F . After this first part of the phase is over, a modified DFS algorithm is run
for each vertex in F until an augmenting path ending at a free vertex in A is found.
The modified DFS algorithm should run through alternating edges to discover an
augmenting path. Each discovered path Px is added to the set P , vertices in Px are
removed from the BFS tree with the orphan vertices and this procedure is repeated
for other free vertices in B. At the end of each phase, the new matching is formed
by XORing the set P with the existing matching M . The detailed version of this
algorithm is depicted in Algorithm 9.4.

Algorithm 9.4 HK2_UBM
1: Input: An undirected bipartite graph G = (A ∪ B, E)

2: Output: Maximum matching M of G
3: M ← Ø, P ← Ø
4: while P �= Ø do � continue until no augmenting paths found
5: for all u ∈ A do,
6: B F S_Mod(u) � run modified BFS
7: end for
8: F ← all reached free vertices in B
9: for all v ∈ F do,
10: Pv ← DF S_Mod(v) � run modified DFS
11: remove Pv and orphan vertices from BFS graph
12: P ← P ∪ Pv

13: end for
14: M ← M ⊕ P
15: P ← Ø
16: end while

Correctness of the algorithm is evident since theBFS andDFS algorithms discover
augmenting paths based on their operations. Also, since we delete the augmenting
path found duringDFS from theBFS trees, the paths discovered are disjointmaking it
possible to include the union of them to matching at once. Running of this algorithm
in a bipartite graph G = (A ∪ B, E) is depicted in Fig. 9.9 with A = {a, b, c, d, e}
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Fig.9.9 Running of Hopcroft–Karp algorithm in a small bipartite graph. Augmenting paths in BFS
trees are enclosed in dashed lines

and B = {1, 2, 3, 4, 5}. The first iteration of the algorithm starts with M = {Ø} and
all of the vertices are unmatched. The BFS from all of vertices in A ends in all of
the free vertices in B which results in a BFS tree same as the original graph which
is not shown. Therefore, the free vertex set F has {1, 2, 3, 4} at the end of BFS and
we stop BFS in the first layer since we have reached free vertices in B. We now run
DFS from each of the vertices in F to find paths to be included in P . We should
delete the edges and vertices found in the path along with any remaining orphan
vertices before searching the next path. We have selected the matching shown in (a)
by always opting for the first free vertex in A from left while running DFS. In the
second phase, we run the BFS from the free vertices d and e in A to obtain the BFS
trees shown in (a) rooted at vertices d and e which end at free vertices 4 and 5 in B.
Note that vertex 3 is not a free vertex and we need not run DFS from there but we had
to stop at layer 3 since we reached free vertices in B. Running DFS from vertices 4
from first tree and 5 from the second one results in the final maximum matching of
the graph with size 5 in two phases which is a perfect matching since each vertex is
matched as shown in (b). If we had selected the augmenting path from vertex 5 in the
BFS tree on the left, we would have edges (5, c) and (2, d) matched and would need
a third phase that would select the augmenting path (e, 3), (3, b), (b, 5)(5, c), (c, 4),
however, we would arrive at the same maximum matching.

Analysis

We will first state a lemma to aid the analysis of the complexity of this algorithm.
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Lemma 9.3 If the shortest augmenting path with respect to a matching M in a graph
G has l edges, then the size of the maximum matching in G has a maximum size of,

|M | + |V |
l + 1

Proof Let M∗ be the maximummatching of G. Then M∗ ⊕ M contains |M∗|− |M |
vertex disjoint augmenting paths by Lemma 9.2. Every such augmenting path has at
least l edges, hence at least l +1 vertices. Therefore, we can have at most |V |/(l +1)
of such paths meaning M can be increased at most that much. �

We can now state the time complexity of this algorithm.

Theorem 9.5 Hopcroft–Karp algorithm has a running time of O(
√

nm).

Proof Each phase of the algorithm increases the length of the shortest augmenting
path by at least one. Therefore, the length of the shortest augmenting path after
�√n� iterations will be at least �√n�+ 1. There will be at most |n|/(√n + 1) ≤ √

n
augmenting paths left and hence, the algorithm will run for another

√
n iterations at

most. The total number of loop execution will therefore be 2
√

n times. Each iteration
of the while loop requires O(m) time due to BFS and DFS algorithms making the
time complexity of this algorithm O(

√
nm). �

Parallel Hopcroft–Karp Algorithm

The disjoint BFS operations during the first part of each phase and disjoint DFS
operations in the second part of Hopcroft–Karp algorithm make it suitable for par-
allel processing. The BFS-based graph construction can be performed in parallel by
initiating the modified BFS algorithm simultaneously from free vertices in the left
set of the bipartite graph. This approach among other methods such as lookahead
DFS algorithm is experimented in [2] using multithreads.

9.4 UnweightedMatching in General Graphs

Wewill reviewsequential, parallel, anddistributedmatching algorithms inunweighted
general graphs in this section.

9.4.1 Sequential Algorithms

The first sequential algorithm is a greedy one that selects legal edges iteratively and
the second algorithm finds MaxM in linear time.
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9.4.1.1 Greedy Algorithm
For an unweighted graph G, a greedy algorithm to find MM M can be designed so
as to pick an edge (u, v) randomly, include it in M and remove all edges that are
incident to u or v from G as shown in Algorithm 9.5.

Algorithm 9.5 Seq_MM
1: Input : G = (V, E)

2: Output : MM M of G
3: M ← Ø
4: E ′ ← E
5: while E ′ �= Ø do
6: select any (u, v) ∈ E ′
7: M ← M ∪ {(u, v)}
8: E ′ ← E ′ \ {{(u, v)}∪ all (u, x) ∈ E ′∪ all (v, y) ∈ E ′}
9: end while

This process is repeated until there are no edges left. Operation of this algorithm
is depicted in Fig. 9.10 The greedy algorithm is correct since we never select any
adjacent edges to be included in M (matching rule) as these are deleted from graph
and we continue until graph becomes empty meaning there can be no more edges
added to M (MM rule). The number of iterations of the while loop has an upper
bound as the number of edges and hence the time complexity of this algorithm is
O(m).

(a) (b)

(c) (d)

Fig. 9.10 Three iterations of the greedy matching algorithm in a sample graph results in MM of
cardinality 3 as shown in a, b and c. Matching edges are shown in bold and the deleted edges are
shown as dashed. A MaxM of the same graph is displayed in d
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Fig. 9.11 The flower, blossom and stem of a sample graph and contracting and uncontracting of
the blossom

9.4.1.2 Edmond’s Blossom Algorithm
We have seen the main method of obtaining a maximum matching in unweighted
graphs; start with some initial matching M , find an augmenting path P with respect
to M and form M ⊕ P to get a matching M ′ which has a size one unit larger than M ;
and repeat this procedure until no more augmenting paths are found. We described
methods to find augmenting paths in bipartite graphs, however, finding augmenting
paths in a general graph is more difficult due to odd alternating cycles which do
not exist in bipartite graphs. Let us take a look at the graph in Fig. 9.11a where the
current matching is shown with bold edges and let us try to find an augmenting path
from the free vertex a. The augmenting path search may traverse the 5-cycle and fail
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to find the augmenting path that has a and j as endpoints by ending with edge (i, e)
or edge ( f, e) instead. We need a way to find augmenting paths in the presence of
such odd alternating cycles.

Edmond presented a linear time algorithm to overcome this difficulty in unweigh
ted general graphs [7]. This algorithm improves the current matching by finding
augmenting paths in the graph as in other matching algorithms but by also taking
care of odd alternating cycles. The general idea of this algorithm is to detect such
cycles and remove them by shrinking them to super nodes and then carry on search of
augmenting paths. A blossom in a graph G is an odd cycle consisting of 2k +1 edges
with exactly k edges belonging to the current matching M as shown in Fig. 9.11a
where the blossom consists of vertices e, f , g, h, i and the stem is an even-length
alternating path of vertices a, b, c, d and e, starting from a free vertex and ending
at the base (or the tip) of the blossom. The base vertex of the blossom is connected
to the stem and is both part of the stem and the blossom. The stem and the blossom
form the flower. The essence of this algorithm relies on the following theorem which
we state without proof.

Theorem 9.6 Let G = (V, E) be an unweighted general graph with a matching M.
Let B a blossom discovered in this graph and G ′ = G \ B with a matching M ′ the
graph obtained after contracting G using B as a single vertex. M ′ is a maximum
matching in G if and only if M is a maximum matching in G.

We can therefore investigate augmenting paths in the contracted graph G ′ by
contracting blossoms as we perform the search and whenever an augmenting path
P ′ is discovered in G ′, we uncontract blossoms to get G and mark the corresponding
augmenting path P in G. Last step of the iteration is to update current matching to
obtain M ← M ⊕ P . An M ′-augmenting path in G ′ exists if and only if there is an
M-augmenting path in G. If we find an M ′-augmenting path P ′ in G ′, we can form
an augmenting path P in G after uncontracting the blossom B with a base vertex bB

as follows:

1. If P ′ starting from a free vertex u in G ′ goes through bB and ends at a free vertex
v in G ′, then P ′ is replaced by a path u → (x → ... → y) such that the edges in
the blossom included in P are alternating.

2. If P ′ starting from a free vertex u in G ′ ends at bB , the path u → vB is replaced
by the path u → (x → ... → y) such that path P = u → y is alternating and y
is a free vertex.

The contraction of the blossom of the graph G in Fig. 9.11a to get G ′ is depicted
in (b) where we have an augmenting path and no more blossoms, therefore we
can uncontract the blossom in (c) to mark the augmenting path shown by dashed
lines. As this path runs through the blossom B, we select alternating edges in B
to complete the augmenting path that ends at vertex j . Finally, we form the new
matching M ← M ⊕ P with size 5 which in fact is maximum for this graph as there
are no blossoms or augmenting paths left. Another example when the alternating



280 9 Matching

path ends in a blossom is shown in Fig. 9.12. We apply the same strategy, shrink
the blossom B to obtain G ′ first in (b), search for an augmenting path in G ′ and
when such a path P finishing at B is found as shown in (c), unshrink B and mark the
edges of the augmenting path inside the blossom accordingly (c). Finally, perform
M ← M ⊕ P to obtain the matching M of size 5 in (d) which is maximum as there
are no other blossoms or augmenting paths.

As we have seen in these examples, there are three possibilities while searching
for an augmenting path in the graph G;

1. No augmenting path found: In this case, the current matching M is maximum
and algorithm terminates

2. An augmenting path P is found: M ← M ⊕ P; continue
3. A blossom B is found: The blossom B is contracted by replacing it with its base

vertex.

Therefore, this algorithm will either find an augmenting path or a blossom or
conclude that these do not exist in the graph in which case, the matching is maximum
and the algorithm stops.We show a high-level pseudocode of Edmond’s algorithm in
Algorithm 9.6. The algorithm starts to build a BFS tree from an exposed vertex and
labels edges at even levels as outer (O) and at odd level as inner (I).Wheneverwe find
two outer vertices that are neighbors, a blossom with an odd cycle is encountered.
This blossom is contracted to a single vertex and the search continues. When we find
an augmenting path P in the contracted graph, then all of the blossoms found so far
are uncontracted and the new matching M ← M ⊕ P is computed.

Algorithm 9.6 Edmond_Blossom
1: Input : G = (V, E)

2: Output : MaxM M of G
3: M ← Ø
4: S ← an arbitrary free vertex in V
5: for all v ∈ V such that v is saturated do
6: search for simple paths starting from v
7: shrink any blossoms found
8: if any found path P ends at a saturated vertex then
9: M ← M ⊕ P � P is an augmenting path
10: else if no augmenting paths found then
11: discard v in future searches
12: end if
13: end for

Amore detailed example with two nested blossoms is shown in Fig. 9.13.We start
a BFS from a free vertex a and label vertices as inner and outer corresponding to
odd and even levels respectively. Vertices c and e are both outer vertices, therefore a
blossom is detected and this is contracted to vertex B1 in the new graph G ′. We find
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Fig. 9.12 Searching an augmenting path when path ends in a blossom

another blossom (B2) in G ′ and this is contracted to give the new graph G ′′. Note
that in between G ′ and G ′′ formation, we have not encountered an augmenting path,
otherwise we would have uncontracted B1 in G ′ to get a new matching. We find an
augmenting path in G ′′ and therefore uncontract blossoms and mark the augmenting
path P through them so as to alternate. Finally the new matching M is formed by
M ← M ⊕ P .

Analysis

The algorithm is based on Berge’s theorem, it attempts to find an augmenting path
in a general graph and when such a path is found, it enlarges it. It only remains to
show contracting and uncontracting of blossoms do not disturb the augmenting paths
found.
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Fig. 9.13 Working of Edmond’s algorithm in a simple graph

Theorem 9.7 Edmond’s algorithm has a time complexity of O(n2m).

Proof There will be at most n augmentations and there will be at most n/2 times
of blossom shrinking between any two augmentations. The alternating tree can be
constructed in O(m) time, therefore the total time taken is O(n2m). �

An improvement to the running time of this algorithm to O(
√

nm) was provided
by Micali and Vazirani [19] and a complete proof was given in [25].

9.4.2 A Greedy Distributed Algorithm

In a distributed environment, wewant to findMMof a network such that each node of
the network should decidewhether it is saturated or adjacent to a node that is saturated
in the end. We will describe a distributed algorithm that uses edge coloring. An edge
coloring of a graph G is assignment of colors in the form of integers to each edge
of the graph such that no two adjacent edge has the same color as we will review in
more detail in Chap. 11. Edges of the same color constitute an edge color class and
we can see instantly that any edge coloring of a graph G provides a matching of G
since edges in a color class cannot be adjacent. However, when attempting to find a
maximal matching using this method, we need to be careful since the union of edge
color classes clearly contains adjacent edges. However, we can start with color class
1 for example, include all edges of this class in matching since these are not adjacent

http://dx.doi.org/10.1007/978-3-319-73235-0_11
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Fig. 9.14 The FSM of the matching algorithm for node i with a neighbor node j

by the definition of edge coloring and then continue with color class 2. We should
include an edge in this class only if it is not adjacent to any previously matched edge.

A distributed algorithm based on this observation is proposed in [12] to find a
maximal matching in a network which is already edge colored with k colors. It is
an SSI algorithm working in rounds under the control of a root node. There are k
rounds starting with round 1 and at round r , any node that has an incident edge (u, v)
colored with r checks wether it can include (u, v) in matching legally. That is, there
are no other edges adjacent to (u, v) that are included in the matching in the previous
rounds. We will sketch a possible implementation of this algorithm as in [9] but by
using a FSM. There are three states of a node as follows, also as shown in Fig. 9.14.

• UNMATCHED: Initially, all nodes are in UNMATCHED state which means they
can compete to be a matched node.

• MATCHED:Any node that has an incident edge incident to it which is determined
to be a matching edge enters this state.

• NEIGH_MATCHED: When a node has a neighbor that is MATCHED, it is
assigned to this state.

We have the following message types:

• round(r): Sent by the root i to initiate round r .
• match(r): Sent by a node i that is matched to its neighbors.
• unmatch: Sent by a node i that does not have an incident edge with the same color

of the round number r . This is needed for synchronization.
• neigh_match(r): Sent by a node i that does not have an incident edge with the

same color of the round number r .
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The pseudocode for a single round of this distributed algorithm for a node i is
shown in Algorithm 9.7.

Algorithm 9.7 Edgecol_M M
1: int i,j � i is this node, j is the sender of a message
2: message types round, match,unmatch
3: states UNMATCHED, MATCHED, NGH_MATCHED
4: boolean round_over, round_recvd ← false
5: curr_neighs ← N (i); received, neighs_removed ← {Ø}
6: currstate ← UNMATCHED
7: for r = 1 to k do
8: { round r for all nodes}
9: while ¬round_over do
10: receive msg(j)
11: case msg(j).type of
12: round(r): if currstate �= MATCHED then
13: if (∃j ∈ curr_neighs such that col(i, j) = r) then
14: currstate ← MATCHED
15: send match to j
16: send neigh_match to curr_neighs \ {j}
17: else send unmatch to curr_neighs
18: round_recvd ← true
19: match(r): currstate ← NEIGH_MATCHED
20: received ← received ∪ { j}
21: neigh_match(r): received ← received ∪ {j}
22: neighs_removed ← neighs_removed \ {j}
23: unmatch(r): received ← received ∪ { j}
24:
25: if round_recvd ∧ (received = curr_neighs) then
26: curr_neighs ← {curr_neighs \ neighs_removed}; received ← Ø
27: round_recvd ← false ; round_over ← true;
28: end if
29: end while
30: end for

The operation of this algorithm in a small sample network is depicted in Fig. 9.15.
This algorithm correctly finds a maximal matching in a network since we obey the
matching rule in each round by not considering adjacent edges of the matched edges
and also, we continue until each color class is considered and thus the matching is
maximal. There will be a total of k rounds for a k-edge-colored network and each
edge will be traversed at most once by the match, unmatch or neigh_match messages
and thus the total number of messages transferred is O(km).
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Fig.9.15 Running of Algorithm 9.7 in a sample network. The first and second rounds are shown in
a and b respectively. In only two rounds a maximal matching of size 5 is obtained. The maximum
matching of size 7 for this network is shown in c

9.5 Weighted Bipartite GraphMatching

Edges of a weighted bipartite graph G = (A ∪ B, E, w), w : E → R have weights
associated with them. Our aim is to search for a total maximum or minimum weight
maximal matching in such graphs.

9.5.1 Greedy Algorithm

We can implement a greedy strategy in which we always select the greatest weight
available edge from all available edges. We need to sort the weights of edges initially
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and then check availability. The running time of this algorithm is dominated by the
sorting operation and hence we need O(m logm) and the approximation factor is
1/2 [22].

Algorithm 9.8 MWM_BPG
1: Input: An undirected weighted bipartite graph G = (A ∪ B, E)

2: Output: Maximal weighted matching M of G
3:
4: Q ← sorted edges of G in the order of decreasing weights
5: while Q �= Ø do
6: (u, v) ← Q. f ront
7: M ← M ∪ (u, v)
8: remove all edges incident to u or v from Q
9: end while

Running of this algorithm in a small bipartite graph is shown in Fig. 9.16.

9.5.2 The HungarianMethod

The Hungarian method, so-called by its developer Kuhn as it relies on the earlier
ideas of two Hungarian mathematicians König and Egervary, finds the maximum
matching in a weighted complete bipartite graph with the same order of bipartite
vertex sets in linear time [17]. This method solves the assignment problem which
aims to assign objects such as machines, people, processors to tasks by finding
minimum or maximum weighted matching in such a graph. Let us assume we are
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Fig.9.16 Running of the greedy algorithm to findMWM in aweighted bipartite graphwithweights
shown next to edges. The largest weight available edge is selected in each step to obtain the final
matching of total weight 26 shown with bold lines in c in 3 iterations
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given a set of people and a set of tasks these people can performwhich are the vertices
of the bipartite graph consecutively. The weight on an edge (u, v) shows the time
required by person u to perform task v and our aim is to have the minimum amount
of time to get all tasks done. We could have processors of a multiprocessing system
instead of people and tasks would be software modules running on these machines
in this case. We will describe this method in two equivalent approaches; using the
cost matrix and as a graph-theoretic method (Kuhn-Munkres algorithm). These two
approaches have the same time complexity.

9.5.2.1 Matrix Interpretation
We can consider the assignment problem as a weighted bipartite graph G = (A ∪
B, E) where we need to assign vertices in A to the vertices in B to result in optimal
mapping. The graph can be represented by the cost matrix C with elements ci j

denoting the cost of assigning ai ∈ A to b j ∈ B. The order of A and B should be
equal and if this is not provided, we can simply add dummy rows or columns with 0
entries to make them equal. This algorithm relies on the following two observations.

• If a number is added to or subtracted from all of the entries of any one row or
column of a cost matrix Ci to get a cost matrix Ci+1, then on optimal assignment
for the cost matrix Ci+1 is also an optimal assignment for the cost matrix Ci .

• We have an optimal assignment of ai to b j if ci j = 0. In other words, if we can
reduce the cost of assigning an element of A to an element of B to zero, this
assignment is optimal.

The approach of the matrix interpretation of the Hungarian method is then to
transform the original cost matrix C1 to a matrix Ck to provide zero assignment in
each row and column using add and subtract operations. We can have the following
steps of the algorithm to achieve this goal.

1. Reduce rows: Subtract the least value of each row from all of the entries in its
row.

2. Reduce columns: Subtract the least value of each column from all of the entries
in its column.

3. Cover zeroes: Cover the zero entry rows and columns using minimum number of
lines.

4. if number of lines is n goto 6.
5. else Find the smallest uncovered element x . Subtract x from all of the uncov-

ered elements ofC and add x to elements that are at the intersection of the covering
lines in 3. Goto 1.

6. Assignment: Select a row or column with only one zero and assign. If not found,
select arbitrarily. Select other assignments so that no two tasks are assigned to
same persons.
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Fig. 9.17 A sample unweighted fully connected bipartite graph to test the Hungarian algorithm

Let us see the operation of this algorithm through an example shown in Fig. 9.17a.
The cost matrix C for this graph is given as below and the first two steps of the

algorithm which reduces rows and then columns results in the matrices shown.

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 8 2 5 7 9
B 12 1 6 4 7
C 9 3 8 9 5
D 7 4 9 3 6
E 5 3 4 1 2

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

2
1
3
3
1

⎞

⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 6 0 3 5 7
B 11 0 5 3 6
C 6 0 5 6 2
D 4 1 6 0 3
E 4 2 3 0 1

⎞

⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 2 0 0 5 7
B 7 0 2 3 6
C 2 0 2 6 2
D 2 1 3 0 3
E 2 2 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

(
4 0 3 0 1

)

Covering rows and columns with zeroes results in the first left matrix C below
with covered entries shown in bold. Since the number of covered lines is 4 which is
less than 5, we need to continue with the algorithm. We select the lowest uncovered
value which is 2 and subtract 2 from all of the uncovered values and add it to the
entries at the intersection of the covered entries to obtain the secondmatrix and cover
this matrix this time again with covered rows and columns shown in bold figures.
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⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 2 0 0 5 7
B 7 0 2 3 6
C 2 0 2 6 2
D 2 1 3 0 3
E 2 2 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 2 2 0 7 7
B 5 0 0 3 4
C 0 0 0 6 0
D 0 1 1 0 3
E 2 4 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

We find that the number of covered rows and columns is 5 which is the number
of vertices of the bipartite graph, therefore we stop and move on to the assignment
step. We search for single 0 rows first as this means that person can only do the task
that has 0 in its column. Person A has such a property and we assign task 3 to her
and delete task 3 column as this task cannot be assigned to another person. Person
F can do tasks 3 and 4 but since task 3 is already assigned, we have to assign task
4 to her and delete column 4 from the matrix. Similarly, person C is assigned task
2 and person E can only be assigned to task 1 which leaves person D only with
task 5 although she is capable of performing tasks 1, 2, 3 and 5. The assignments
in 0 locations are shown in bold in the final cost matrix in below left and the actual
assignment in the original cost matrix using these values is shown in below right.
For the total time taken, we calculate this as 5 + 1 + 5 + 7 + 1 = 19 units from the
original cost matrix. This matching is depicted in the bipartite graph of Fig. 9.17b.

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 2 2 0 7 7
B 5 0 0 3 4
C 0 0 0 6 0
D 0 1 1 0 3
E 2 4 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

↔

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

A 8 2 5 7 9
B 12 1 6 4 7
C 9 3 8 9 5
D 7 4 9 3 6
E 5 3 4 1 2

⎞

⎟
⎟
⎟
⎟
⎠

9.5.2.2 Kuhn-Munkres Algorithm
The Kuhn-Munkres algorithm was first proposed by Kuhn [17] and later analyzed
by Munkres [20] to solve the assignment problem efficiently. Before describing the
operation of this algorithm, we need to make few definitions.

Definition 9.6 (vertex labeling) A vertex labeling of a graph G = (V, E) is a func-
tion l : V → R. A legal labeling allows labeling two vertices u and v of a bipartite
graph G such that,

l(u) + l(v) ≥ w(u, v), ∀(u, v) ∈ E (labeling rule) (9.2)

Definition 9.7 (equality graph) The equality graph of a graph G = (V, E) with
respect to a labeling function l is a graph Gl = (V, El) such that

El = {l(u, v) : w(u, v) = l(u) + l(v)} (9.3)
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Fig. 9.18 a A legally labeled weighted bipartite graph, b Its equality graph

We can see immediately that Gl is a spanning subgraph of G since it contains all
vertices ofG and El ⊆ E aswe select edges ofG inGl that only provide equivalence.
A feasible labeling of a bipartite graph G = (A∪ B, E) can be achieved by assigning
each vertex of the set B the maximum of the weights of all edges incident to it and
0 to each vertex of the set A. That is,

∀u ∈ A, l(u) = 0, and ∀v ∈ B, l(v) = max{w(u, v)} (9.4)

This way, we make sure labeling rule is obeyed and an initial equality graph is
obtained. A bipartite graph that is labeled accordingly and its equality graph are
depicted in Fig. 9.18. Note that when the bipartite graph is not fully connected, we
need to append edges with 0 weights.

The following theorem due to Kuhn and later Munkres provides the basis for this
graph-theoretic assignment algorithm.

Theorem 9.8 (Kuhn-Munkres) Given a weighted bipartite graph G = (A ∪ B, E)

and its equality graph Gl = (A ∪ B, El), M is a perfect matching in Gl if and only
if M is a maximum weight matching in G.

Proof Let us assume Gl contains a perfect matching M . The matching M is also a
perfect matching in G since all edges of Gl are contained in the edge set E of G
which means,

w(M) =
∑

e∈M

w(e) =
∑

v∈V (G)

l(v) (9.5)
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Let us assume M ′ is any matching in G. Then, the labeling rule implies,

w(M ′) =
∑

e∈M ′
w(e) ≤

∑

v∈V (G)

l(v) (9.6)

Therefore w(M ′) ≤ w(M) which means M is a maximum matching of the graph
G. �

Thus, finding the maximum weight matching in the original graph G is reduced
to finding a perfect matching of the equality graph Gl . We can now form the steps
of the algorithm based on this theorem.

1. l is a legal labeling of G, M is an initial matching of Gl

2. while M is not perfect matching in Gl

3. find an augmenting path P in Gl

4. M ← M ⊕ P
5. if P = Ø
6. l ′ ← l such that El ⊂ El ′

Finding new labeling l ′ is crucial in the operation of this algorithm. For a legal
labeling of the graph G, let us first define the neighborhood relations of a vertex in
Gl and the set S,

Nl(u) = {v : (u, v) ∈ El}, Nl(S) =
⋃

u∈S

Nl(u) (9.7)

For S ⊆ A and T = Nl(S) �= B, let us define parameter al

al = min{u ∈ S, v /∈ T }{l(u) + l(v) − w(u, v)} (9.8)

Now, the improved labeling l ′ for any vertex of G can be specified in terms of the
previous labeling l using al as follows.

l ′(x) =
⎧
⎨

⎩

l(x) − al , if x ∈ S
l(x) + al , if x ∈ T

l(x) otherwise
(9.9)

We can now write the pseudocode of the Kuhn-Munkres algorithm as shown in
Algorithm 9.1.

An example operation of this algorithm in a small weighted bipartite graph is
depicted in Fig. 9.19.

Analysis

There are n phases of the algorithm and at each phase the size of the matching is
incremented by 1. Initial slack calculation takes O(n2) time. When a vertex moves
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Algorithm 9.9 Kuhn-Munkres_WBM
1: Input: An undirected weighted complete bipartite graph G = (A ∪ B, E)

2: Output: Maximum weighted matching M of G
3:
4: El ← {(u, v) ∈ E(G) : w(u, v) = l(u) + l(v)} � labeling of G according to Eqn. 9.4
5: M ← some initial matching of G
6: while A is not M-saturated in Gl do
7: select an unmatched vertex x ∈ A
8: S ← {x}, T ← Ø
9: repeat
10: if NGl (S) = T then
11: al ← minu∈S,v/∈T {l(u) + l(v) − w(u, v)}
12: for all u ∈ S do
13: l(u) ← l(u) − al

14: end for
15: for all v ∈ T do
16: l(v) ← l(v) + al

17: end for
18: update Gl

19: end if
20: select v ∈ {NGl (S) − T }
21: while v is M-saturated and NGl (S) �= T do
22: u ← a vertex in A matched to v in M
23: S ← S ∪ {u}, T ← T ∪ {v}
24: if NGl (S) �= T then
25: select v ∈ {NGl (S) − T }
26: end if
27: end while
28: until v is M-unsaturated
29: P ← M-augmenting path from x to v
30: M ← M ⊕ P
31: end while

from S to T , we compute slacks for all y ∈ T . In each phase, at most n vertices go
from S to T , so n slack re-calculations, each at O(n) time, for a total of O(n2). The
algorithm takes O(n3) time in total.

9.5.3 The Auction Algorithm

Matching in weighted bipartite graphs problem can be solved efficiently using the
auction method which is based on game theory. Auctions in everyday life involves an
auctioneer opening bidding and bidders submitting bids and the object under consid-
eration is acquired by the bidder that offers the highest price. Auction algorithms are
based on this principle in which a bipartite graph G = (A∪ B, E) is considered with
vertex set A as buyers and B as objects [4]. Each object i has a price pi associated
with it and the weight of an edge between a bidder i and an object j , w(i, j) shows
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Fig. 9.19 Running of Kuhn-Munkres algorithm in a small weighted bipartite graph. The edges of
the matching obtained at each iteration are shown in bold

the amount that bidder i values object j , in other words, it is the cost of the object
as seen by buyer i . The algorithm consists of the bidding phase and the assignment
phase. Each object can be sold to only one person and each person can buy only one
object.

For each object, a buyer has a benefit and a price to be the owner of that object.
The profit for an object by a buyer is the difference between the benefit and the price
for an object. Algorithm 9.10 displays the pseudocode for the sequential auction
algorithm as adapted from [24]. At each iteration, the first element of the buyers
from the set B is selected, then an object with the maximum profit for that buyer
is found. The second highest profit yielding object is also computed and the bid is
computed as the difference of the first two best profits. The object that provides this
bid is then assigned to the buyer in the assignment phase. The new price for the
object is then increased by the bid and a small value designated as the ε which may
be initialized to δ ← 1/(n + 1). Iterations continue until each buyer is assigned to
an object.
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Algorithm 9.10 Auction_Alg
1: Input : G(A ∪ B, E, w) � undirected weighted bipartite graph
2: Output : Matching M
3: B = {1, ..., n1} : set of buyers
4: M ← Ø
5: initialize ε

6: for j=1 to n2 do � initialize prices for objects to all zeroes
7: p j ← 0
8: end for
9: while B �= Ø do � start auction
10: select i ∈ B � select an available buyer
11: ji ← max j {wi j − p j } � find the best object for this buyer
12: si ← wi ji − p ji � profit for the best object
13: if si > 0 then
14: ti ← max j �= ji {wi j − p j } � second best profit
15: p ji ← p ji + si − ti + ε � update the bid for object
16: M ← M ∪ (i, ji ); B ← B \ {i} � assign buyer to object
17: M ← M \ (k, ji ); B ← B ∪ {k} � release previous owner k
18: update ε

19: else
20: B ← B \ {i} � no object with profit found for buyer i found,
21: end if
22: end while

We will show the operation of this algorithm using the weighted bipartite graph
of Fig. 9.19 as an example in Fig. 9.20. We have four buyers 1, 2, 3 and 4 and four
objects A, B, C and D with initial bids all set to zeroes and ε = 0. We start with the
lowest index buyer 1 who has the highest profit at objectC with cost 8 and the second
highest profit is object A with profit 3. The bid is therefore 8 − 5 = 3 for object C
as shown. Buyer 1 is assigned to this object and we start the second iteration with
buyer 2. Similarly, buyer 2 is assigned to object A with bid 3 which is the difference
of its two best profits as shown in (b) and buyer 3 is assigned to the object B with
the bid 2 as depicted in (c). We have a different situation in (d) where buyer 4 can
bid 7, which is the difference between its two best profits, for object B. This bid is
higher than the current bid of 2 for object B and therefore we release buyer 3 from
object B and assign buyer 4 to this object. Finally, buyer 3 is re-assigned this time to
object D as shown in (d) which is the maximumweighted matching for this bipartite
graph.

Recently, it was shown in [21] that the expected time complexity of the auction
algorithm for random bipartite graphs where each edge is independently selected

with probability p ≥ c log n
n with c > 1 is O(

n log2 n
log np ). Also in this study, the expected

time complexity of this algorithm in a shared memory parallel system with O(log n)

processors is shown to be O(n log n) (Fig. 9.20).
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Fig. 9.20 A sample weighted bipartite graph to test the Auction algorithm. We have the same
maximum matching as in Fig. 9.19

Parallel Auction Algorithms

The bidding and the assignment phases of the auction algorithm are both convenient
for parallel processing. When each of these steps is performed simultaneously, a
synchronous parallel algorithm is formed. Also, a buyer can make bids at arbitrary
times in asynchronous operation. The asynchronous parallel mode of operation along
with shared memory synchronous procedure are described and analyzed in [5]. Par-
allelization by distributing the vertices of the weighted bipartite graph to a set of
parallel processes is presented in [24]. Each process performs the bidding phase of
the algorithm for free buyers in its set and then these bids are exchanged with other
processes to determine the largest global bid. Therefore, the bidding step is performed
independently by each process with synchronization in the end. The implementation
was carried in a distributed memory computer using MPI. Other implementations
of parallel auction algorithm were performed on distributed memory computers in
[6,23].
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9.6 WeightedMatching in General Graphs

As a first approach to design an approximation algorithm to find the maximal weight
matching in a weighted graph, we can use the same strategy as in the unweighted
graph case. This time, we need to change line 6 of Algorithm 9.5 to select the globally
heaviest weight edge. This algorithm requires sorting of the edges with respect to
their weights and hence the dominant time taken is this step resulting in a time
complexity of O(m logm). This method results in the same MWM for the sample
graph in Fig. 9.4. This algorithm has an approximation factor of 1/2 [22].

9.6.1 Preis Algorithm

Preis cameupwith a greedyweightedmatching algorithm that has better performance
than the global greedy algorithm [22]. The idea of this algorithm is to select the locally
heaviest edges rather than a globally maximum weight one. A locally heaviest edge
is the edge with largest weight among all of its adjacent edges. Selection of a locally
heaviest edge is done arbitrarily choosing an edge (u, v) but if an adjacent edge that
has a largerweight is found, then that edge is selected. The operation of this algorithm
is depicted in Algorithm 9.11. We can see the local operations are independent and
for this reason, this approach is suitable for distributed and also parallel matching.

Algorithm 9.11 Preis_MWM
1: Input : G = (V, E)

2: Output : MM M of G
3: M ← Ø
4: E ′ ← E
5: while E ′ �= Ø do
6: select some locally heaviest weight edge e ∈ E
7: M ← M ∪ {e}
8: E ′ ← E ′\ {e and its adjacent edges}
9: end while

The iterations of this algorithm are illustrated in Fig. 9.21. The time complexity
of this algorithm is O(m log n) with an approximation ratio of 2 [22].

9.6.2 Hoepman’s DistributedMatching Algorithm

In a distributed setting, we aim to have a maximal matching where nodes of a com-
puter network are actively involved in the matching process. Hopeman modified the
sequential algorithm of Preis so that nodes cooperate to find the locally heaviest
weight edge [13]. The main idea is that if nodes u and v at the ends of an edge (u, v)
decide (u, v) is the heaviest edge incident to both of them, there cannot be a heavier
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Fig.9.21 The operation of Preis’ algorithm in a sample graph. The first selected edge is (d, e) but
an adjacent edge (e, f ) has a greater weight so (e, f ) is checked and found to be locally heaviest
and included in the matching M in a. All adjacent edges to (e, f ) are removed from the graph to
obtain the subgraph in b. This time edges (i, h), then (h, b) and then (b, a) are selected in sequence
to find the locally heaviest edge (b, a) which is added to M in b. The third iteration selects (c, d)

and (c, g) in turn to add (c, g) to M . The last edge to add is (i, h) as shown in d and the final
matching with a total weight 39 is shown in e

edge adjacent to this edge and hence it can be included in the MWM. There are
two message types, request and drop; a node u that finds (u, v) is the heaviest edge
incident to it sends request to neighbor node v. If this node finds (u, v) is the heaviest
weight edge incident to it, it replies by a request message and (u, v) is included in
the MWM as shown in Algorithm 9.12.

Analysis

An edge of the network graph may be traversed by at most two messages, either
by req from two nodes at its endpoints or a req and a drop message. Therefore,
total number of messages exchanged will be 2m. Since this algorithm imitates the
sequential Preis algorithm, the output is the same matching produced is the same
of the global heaviest matching algorithm with the same approximation ratio of 1/2
[13].
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Algorithm 9.12 Hoepman_MW M
1: set of int R, S
2: message types req,drop
3: R ← Ø
4: N ← N (i)
5: c ← candidate(i, S)

6: if c �=⊥ then
7: send request to c
8: end if
9: while S �= Ø do
10: receive msg(j)
11: case msg(j).type of
12: req: R ← R

⋃{u}
13: drop: S ← S \ {u}
14: if u = c then c ← candidate(i, S)

15: if c �= ⊥ then send req to c
16: if c �= ⊥ ∧ c ∈ R then
17: for all ∈ N \ {c} do
18: send drop to w
19: end for
20: S ← Ø
21: end if
22: end while

9.6.3 Parallel AlgorithmMethods

In search of a parallel algorithm for the matching problem, we can partition the graph
and distribute the vertices to processors. Each process then performs the following
for its partition of the graph.

1. while there are edges left
2. A pointer from each vertex is set to point to the neighbor heaviest vertex.
3. if two vertices u and v point to each other, edge (u, v) is included in the

matching.

We need to be careful while considering the border vertices in the partitions. This
can be handled by the introduction of ghost vertices which are the non-member
vertices that are connected to the border vertices of a partition. In this case, when a
border vertex v is matched in a partition i , the process pi responsible for the partition
i should inform processes p j which hold ghost vertices that are neighbors of v of
the matching.

Parallelizing Hoepman’s Algorithm

Manne et al. described the similarity between the Hoepman algorithm and the Luby’s
parallel algorithm to build an independent set of a graphwewill describe in Chap.10.

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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A sequential version of Hoepman algorithm is first developed which in fact is similar
to Preis algorithm using the notation of Algorithm 9.12. This algorithm searches for
dominating edges in the graph. A parallel version of this algorithm is then formed
which allocates a block of vertices to each process pi of the parallel processing sys-
tem. The graph under consideration is partitioned by replicating the border vertices
and each process runs the sequential algorithm in its partition to result in a global
maximal matching. The authors show that the designed parallel algorithm is efficient
up to 32 processors [18].

9.7 Chapter Notes

We reviewed matching and related problems in this chapter. Finding maximum
matching of an unweighted or weighted general graph can be performed in poly-
nomial time as we have seen, in fact, this problem is one of the very few problems
related to graphs that can be performed in polynomial time. However, there are var-
ious approximation algorithms to reduce the linear time. It was shown in [11] that
any unweighted greedy matching is a 1/2 approximation to the maximum match-
ing. Moreover, any greedy weighted matching that selects legal edges with maxi-
mum weights has the 1/2 approximation to the maximum weight matching [1]. The
sequential algorithm we have reviewed in this chapter are shown in Table 9.1. The
greedy algorithm and the algorithm due to Preis are approximation algorithms and
all other listed algorithms are exact. Edmonds provided the first polynomial time
algorithm for weighted matching with O(n2m) time complexity [7].

It should be noted there are various improvements to these basic algorithms. For
example, Gabow improved the running time for weighted matching to O(nm +
n2 log n) [10]. There are various parallel algorithms for unweighted or weighted,
general or bipartite graphs. We saw how Hopcroft–Karp algorithm can be conve-
niently parallelized due to disjoint BFS and DFS processing in each phase. Auction
algorithm for weighted bipartite graph matching can be modified to have parallel
processing in the bidding and assignment phases. Also, we can partition a general
graph and distribute partitions to parallel processes which perform matching and the

Table 9.1 Sequential matching algorithms

Bipartite graphs General graphs

Unweighted matching Augmenting-path algorithm:
O(nm)

Greedy algorithm: O(nm)

Hopcroft–Karp algorithm: O(n2) Edmond’s algorithm: O(n2m)

Weighted matching Hungarian algorithm: O(n3) Preis’ algorithm: O(nm)

Flow-based algorithm
O(m2 + mn)
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results can then be gathered at a root process which merges them to find the global
matching. A recent survey of parallel algorithms for maximummatching in bipartite
graphs is provided in [2].

In many cases, approximation matching algorithms turn out to be faster at the
expense of returning an approximate solution rather than an exact one. For very
large graphs, they may be preferable as times involved may be very high. We have
also described how a series of conversions from one type of algorithm can lead to
efficient solutions. The algorithm that sorts edges and then includes legal edges to
matching has O(m logm) complexity due to sorting process and has an approxima-
tion ratio of 1/2. Preis came up with the idea of selecting local heaviest edges which
are independent of each other to result in a better time complexity of O(m). Hoepman
later on provided a distributed version of this algorithm with the same approxima-
tion ratio as we reviewed. Finally Manne et al. presented a parallel approximation
matching algorithm based on Hopeman’s work. We can see the sequence of develop-
ment here are a sequential algorithm; an improved sequential algorithm; a distributed
algorithm from the improved sequential algorithm and a distributed memory parallel
algorithm that builds upon the distributed algorithm. This path, although in less steps,
is commonly followed in various graph problems as we saw.

Distributed matching algorithms need careful consideration as matching of an
edge incident to a node in a network requires notification to two-hop neighbors since
they will be affected. Matching has numerous applications and hence there is need
for parallel and distributed algorithms with better performances.

Exercises

1. Given the graph of Fig. 9.22 with initial matching shown in bold, find augmenting
paths iteratively to obtain a maximum matching for this graph.

2. Work out the maximum matching in the bipartite graph of Fig. 9.23 using the
augmenting path algorithm.

3. Find themaximummatching in the bipartite graphofFig. 9.24using theHopcroft–
Karp algorithm showing the BFS trees constructed in all iterations.

4. Determine the maximum matching in the graph of Fig. 9.24 this time using the
maximum flow method of Ford–Fulkerson algorithm.

5. A multiprocessor system has 5 computers P1, . . . , P5 that should finish 5 tasks
1, . . . , 5. The time to finish tasks for each processor is given in the below cost
matrix. Work out the minimum time to finish all tasks by these 5 processors using

Fig. 9.22 Sample graph for
Exercise 1
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Fig. 9.23 Sample graph for
Exercise 2

a

b

c

d

e

f

g

Fig. 9.24 Sample graph for
Exercises 3 and 4
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the Hungarian algorithm. Show each step of the algorithm.

C =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

P1 8 1 4 3 2
P2 2 5 9 6 4
P3 6 2 3 4 5
P4 1 4 7 9 3
P5 5 0 8 1 2

⎞

⎟
⎟
⎟
⎟
⎠

(9.10)
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Fig. 9.25 Sample graph for Exercise 6

6. Design a distributed synchronous weighted matching algorithm that finds the
minimal weighted matching in a network of computers. A node v that has the
least degree among its neighbors has the privilege to propose to its neighbor u
if (u, v) is the least weight edge incident to it. Work out the time and message
complexities of this algorithm and show its operation in the network depicted in
Fig. 9.25.

7. Provide an extension to the pseudocode of the edge coloring based maximal
matching algorithm (Algorithm 9.7) so that when there are no more nodes that
are in UNMATCHED state, the algorithm at a node is stopped without waiting
to finish k rounds. The root is also informed of this condition.
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10Independence,Domination,
andVertexCover

Abstract

Subgraphs of a graph may have some special properties and detecting these sub-
graphs may be useful for various applications. In this chapter, we study theory and
sequential, parallel, and distributed algorithms for three such special subgraphs:
independent sets, dominating sets, and vertex cover.

10.1 Introduction

Detecting subgraphs of a graph with special properties may be useful in various
implementations. In this chapter, we study detection of three such special subgraphs:
independent sets, dominating sets, and vertex cover. We will see that all of these
problems are equivalent in terms of complexity and finding solution to one of them
yields the solution to the other ones.

An independent set of a graph is a subset of its vertices such that no two vertices
in this set are neighbors. Finding a maximum independent set of a graph G which is
the maximum order independent set among all independent sets of G is NP-hard. An
independent set of a graph G is a clique in the complement of G. A dominating set
of a graph is a subset of vertices such that each vertex of the graph is either in this set
or a neighbor to a vertex in this set. Finding a minimum dominating set of a graph
is again NP-hard. The last problem we study in this chapter is the vertex cover of a
graph which consists of vertices such that every edge of the graph is incident to at
least one vertex in this set. Independent sets, dominating sets, and vertex covers may
be used for various real-life complex network applications such as detecting clusters
in biological networks and routing in computer networks. These special subgraphs
may also serve as building blocks of more complex graph algorithms. In this chapter,
we investigate theoretical properties of these vertex sets in graphs, show how they
are related, and study sequential, parallel, and distributed algorithms to find them.

© Springer International Publishing AG, part of Springer Nature 2018
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
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10.2 Independent Sets

An independent set of a graph is a subset of its vertices such that no vertex in this
set is adjacent to any other vertex contained in this set. We can formally define the
independent set as follows.

Definition 10.1 (independent set) An independent set of a graph G = (V, E) is a
subset I of its vertices such that ∀u ∈ I and ∀v ∈ I , (u, v) /∈ E .

An independent set is maximal if it cannot be enlarged further by additional
vertices, that is, a maximal independent set (MIS) is not properly contained in any
other independent set of G. A maximum independent set (MaxIS) of a graph G is
the largest order independent set of G among all its independent sets. The number
of vertices in an MaxIS is called the independence number, α(G), of the graph G.
Figure10.1 displays maximal and maximum independent sets of a sample graph.
Finding a MaxIS of a graph is NP-hard and the decision version of this problem
which is determining whether a graph has a maximum independent set of order k or
more is NP-complete [2]. However, we can find the MIS of a graph in linear time
as we will see. When each vertex in the graph has an associated weight, our aim is
to find the independent set with maximum total weight (MaxWIS). This problem is
again NP-hard and is also very hard to approximate.

10.2.1 Reduction to Clique

We can reduce the problem of finding an independent set in a graph to finding a
clique. A clique of a graph G = (V, E) is a subset C of its vertices such that every
vertex in C is connected to all other vertices in C . In an independent set I of G,
which is not necessarily maximal, no two vertices are adjacent. Therefore, when we
take the complement of a graph to obtain graph G, the set I will be a clique since
the complement will exhibit all nonexisting edges in G. Figure10.2 displays a graph
with an independent set and the complement of this graph has the independent set
as a clique.

This duality shows that the clique problem is at least as hard as the independent
set problem and also the independent set problem is at least as hard as the clique

(a) (b)

Fig. 10.1 a An MIS with order 3. b A MaxIS with order 4 of a sample graph. The vertices in the
independent sets are shown in bold
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Fig. 10.2 a An MIS with
order 3 in a sample graph.
b The same vertices form a
clique in the complement of
the sample graph

(a) (b)

problem which means they can be reduced to each other in polynomial time stated
as follows:

Independent Set Problem (IND) ≤p Clique Problem (CLIQUE)

Clique Problem (CLIQUE) ≤p Independent Set Problem (IND)

10.2.2 Sequential Algorithms

We will review four sequential algorithms to find the MIS of a graph, starting with a
randomgreedy one. The second algorithm uses a heuristic and the third one considers
labels of vertices while selecting members of MIS while the fourth algorithm is a
general method that searches an independent set at each step.

10.2.2.1 The RandomGreedy Algorithm
As a first attempt, we will adopt a greedy strategy to form the MIS. Intuitively, we
can arbitrarily pick a vertex v of the graph G, include this vertex in the MIS, and
remove v and all of its neighbors N (v) together with incident edges on these vertices
from the graph, simply because its neighbors cannot be included in the MIS. We
proceed in this manner until there are no more vertices left. Algorithm 10.1 displays
the code for this procedure.

The output set I is an independent set since we never include any neighbor of
the selected vertex v in the graph to obey the IS property, that is, no two vertices in

Algorithm 10.1 Seq_MIS1
1: Input : G = (V, E) an undirected unweighted graph
2: Output : MIS I of G
3: I ← Ø
4: V ′ ← V
5: while V ′ �= Ø do
6: select any v ∈ V ′
7: I ← I ∪ {v}
8: V ′ ← V ′ \ {{v} ∪ N (v)}
9: end while
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(a) (b)

(c) (d)
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Fig. 10.3 Running of Seq_MIS1 in a sample graph. The first three iterations are shown in a–c;
and the last two iterations are shown in d. The independent set vertices are shown in bold and the
deleted neighbor vertices in gray with the deleted edges marked with dashed lines

this set should be adjacent. It is also maximal since we proceed until there are no
vertices left and hence cannot enlarge I any further. This algorithm requires O(n)

steps as we may end up selecting a vertex and its single neighbor repeatedly as in the
case of a linear network. The running of this algorithm in a sample graph is shown
in Fig. 10.3.

10.2.2.2 The Lowest Degree First Algorithm
As another approach to form the MIS of a graph, we can select the vertex with the
lowest degree at line 5 of Algorithm 10.1 instead of a random vertex. We call this
algorithm the Lowest Degree First algorithm (LDFA). This heuristic is reasonable
since our aim is to have an independent set as large as possible which means we
want to remove as few neighbors of a selected vertex as possible. Hence, we always
select vertices with the least number of neighbors. The running of this algorithm is
depicted in Fig. 10.4. Note that we had eight steps instead of four steps of the random
greedy algorithm but we obtained anMIS of size 6 which is maximum for this graph.

Theorem 10.1 LDFA provides anMIS I such that |I | ≥ n/(Δ(G)+1)whereΔ(G)

is the maximum degree of the graph.

Proof A vertex u is included in V \ I when a vertex v ∈ N (u) is selected to be
in the set I . If we mark such a vertex u each time one of its neighbors is selected
to be in I , it can be marked at most Δ(G) time. Therefore, |V \ I | ≤ Δ(G)|I |.
Also, a vertex can either be in the MIS or a neighbor of a vertex in the MIS.
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(g) (h)

Fig. 10.4 Running of LDFA in the same graph of Fig. 10.3. The final MIS is shown in h

Therefore, |I | + |V \ I | = n. Hence, (Δ(G) + 1)|I | ≥ n which means
|I | ≥ n/(Δ(G) + 1). �

Corollary 10.1 LDFA is an1/(Δ(G)+1)approximationalgorithm for themaximum
independent set problem.

10.2.2.3 The Lexicographically First Algorithm
In a slightly different manner but using the greedy approach again, we can label n
vertices of a graph with order n as v1, . . . , vn and find the MIS in sequence using
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these labels as shown in Algorithm 10.2. In this case, we knowwhich vertex to select
at each iteration and this algorithm is called Lexicographically First MIS algorithm
(LFA). However, this algorithm does not improve the runtime of the previous one
as it has a similar greedy approach as the first one and has a time complexity of
O(n + m) time since we check neighbors of each vertex.

Algorithm 10.2 Seq_MIS3
1: Input : G = (V, E) an undirected unweighted graph
2: Output : MIS I of G
3: I ← Ø
4: for i = 1 to n do
5: if I ∩ N (vi ) = Ø then
6: I ← I ∪ {vi }
7: end if
8: end for

10.2.2.4 The Incremental Algorithm
Yet another approach to find MIS is to gradually enlarge the current independent set
I by new independent sets formed from vertices not in the set I . Instead of selecting
a single vertex in line 4 of Algorithm 10.1, we select an independent set of the graph
G this time. The selected independent set I ′ of the input graph G is then added to the
MIS I and all vertices of I ′, their neighbors with their incident edges are removed
from the graph since these neighbors cannot be considered further. The IS I ′ need
not be an MIS of G. The algorithm terminates when there are no more vertices left
to consider as shown in Algorithm 10.3.

Algorithm 10.3 Seq_MIS4
1: Input : G = (V, E) an undirected unweighted graph
2: Output : MIS I of G
3: I ← Ø
4: G ′ ← G
5: while G ′ �= Ø do
6: select any independent set I ′ of G ′
7: I ← I ∪ {I ′}
8: G ′ ← G ′ − I ′
9: end while

Clearly, the choice of the independent set at line 6 determines the performance of
this algorithm. We will see that randomization in this selection provides algorithms
with good performances (Fig. 10.5).
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Fig. 10.5 Finding MIS of a sample graph by selecting an IS at each step. The independent set
vertices are shown in bold and the deleted neighbor vertices in gray with the deleted edges marked
with dashed lines

10.2.2.5 MIS Construction UsingVertex Coloring
A vertex coloring of a graph is assigning colors to its vertices in the form of integers
1, . . . , k such that no two adjacent vertices receive the same color as we will review
in the next chapter. We can make use of vertex coloring to find the MIS of a graph.

A color class V ′ ∈ V in a vertex colored graph G = (V, E) is a set of vertices of
G that have the same color. Since no two adjacent vertices of a graph have the same
color, each color class is an independent set of G. We can exploit this property to
find the MIS of a graph G by first including all vertices of color 1 in the MIS then
iteratively checking vertices of increasing colors to be included in the MIS or not as
shown in Algorithm 10.4. If a vertex u has a neighbor v that is in already in the MIS,
we cannot include vertex u in the MIS.We will assume that the graph is colored with
k colors before running this algorithm.

Algorithm 10.4 Seq_MIS5
1: Input : G = (V, E) an undirected unweighted graph
2: Output : MIS I of G
3: I ← vertices of color 1
4: for i = 2 to k do
5: I ← I∪ all allowed vertices of color k
6: end for

Running of this algorithm in a sample graph is depicted in Fig. 10.6 for a sample
graph colored with four colors. Time complexity of this algorithm is O(km) since
we need to run the for loop O(k) times and we may need to check all of the edges
at each run. We also need the time C to color vertices of the graph G and thus total
time is C + O(km).

10.2.3 Luby’s Parallel MIS Algorithm

We can implement selection of an independent set in Algorithm 10.3 using various
approaches. An efficient randomized parallel Monte Carlo algorithm was proposed
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Fig. 10.6 Running of vertex
coloring-based MIS
algorithm in a sample graph
which is colored with four
colors. The MIS shown by
bold vertices is almost
formed by including all
vertices of color 1 in the MIS
in the first step. The only
vertex added to the MIS after
the first step when k = 4 is
shown inside a large circle

(a)

(b)
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1

3

4

Algorithm 10.5 Luby_MIS
1: Input : G = (V, E)

2: Output : MI S I of G
3: I ← Ø
4: G ′ = (V ′, E ′) ← G = (V, E)

5: while V ′ �= Ø do in parallel do
6: choose a random set of vertices V ′ ∈ V (G ′) by choosing each vertex with probability

1/(2d(v))
7: for all (u, v) ∈ E(G ′) do in parallel do
8: if (u ∈ V ′ ∧ v ∈ V ′) then
9: remove the endpoint with lower degree to obtain S from V ′
10: end if
11: end for
12: I ← I ∪ V ′
13: G ′ ← G ′ \ {S ∪ N (S)}
14: end while

by Luby in 1986 to find MIS of a graph which proceeds as follows [7]. Each vertex v
is marked with probability 1/(2d(v)) in parallel, where d(v) is the degree of v, to be
included in the independent set or not. This marking may produce edges with both
endpoints marked to be in theMIS since assignment is done in parallel independently
and hence corrections are needed. The next step identifies such edges and for each
such edge (u, v) with both u and v covered in the MIS, the vertex with the higher
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degree is selected and in the case of a tie, vertex identifiers are used to select only
one of such vertices. The selected vertices and their neighbors are then deleted from
the graph and this process is repeated until the graph becomes empty as shown in
Algorithm 10.5.

The selection of the nodes to be included in the independent set can be imple-
mented on a EREW-PRAM using O(m) processors with each execution taking
O(log n) time. It can be shown that the execution of the while loop is O(log n)

times [7] resulting in a total time of O(log2 n) for this algorithm. We will use this
algorithm as the basis of a distributed algorithm as described in the next section.

We can form a shared memory parallel version of Luby’s algorithm as described
in [3]. We have three vectors of n elements for n vertices; C , I , and R. I [i] shows
whether vertex i is included in the MIS or not, C[i] displays whether vertex i is a
candidate to be included with 0 meaning it is either in MIS or a neighbor of a vertex
in the MIS and therefore cannot be included, and finally R[i] holds the generated
random number for vertex i at each iteration. The vector C is initialized to all 1 s
meaning all vertices are candidates and I is initialized to all 0 s since noMISmember
is determined. The vectors are 1-D partitioned among k processes and each process
performs the following steps at each iteration until MIS is found which is determined
by all entries of vectorC becoming 0 as shown in Algorithm 10.6 for parallel process
i for a total number of k processes. This algorithm requires synchronization at each
step, otherwise its performance is similar to Algorithm 10.5 when synchronization
is not considered.

Algorithm 10.6 SMLuby_MIS
1: Input : G = (V, E)

2: Output : MI S I [n] of G
3: boolean I [n], C[n], R[n]
4: for j = ((i − 1) ∗ n/k) + 1 to i ∗ n/k do  initialize my partition
5: C[i] ← 1
6: I [i] ← 0
7: end for
8: repeat
9: generate a random number for each available vertex i (C[i] �= 0) in my partition w.r.t

1/(2d(v))
10: check the random numbers for neighbors of my vertices in R
11: for any vertex i in my partition that has highest random number than its neighbors do
12: C[i] ← 0
13: I [i] ← 1
14: for all j ∈ N (i) do
15: C[ j] ← 0
16: end for
17: end for
18: until C[i] = 0, ∀1 ≤ i ≤ n
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10.2.4 Distributed Algorithms

We can use various heuristics to design distributed algorithms for the MIS problem
in a network setting.We describe three distributedMIS algorithms in this section; the
first algorithm uses identifiers of nodes to break symmetries and the second algorithm
is a distributed version of Luby’s parallel algorithm with the third one being another
randomized distributed algorithm with a better performance. Although the last two
algorithms have similar structures, we show two common ways of implementation,
using finite-state machines in the first one and a more straightforward approach in
the second one by showing control messages explicitly.

10.2.4.1 Greedy Distributed Algorithm
In our first attempt to find a distributed MIS algorithm, we will modify the greedy
MIS algorithm (Seq_MIS1), this time, decisions to join the MIS should be made
locally based on some criteria. We will assume each node has a unique identifier
and the node with the largest identifier among neighbors joins the MIS as shown in
Algorithm 10.7 executed by an active node i in each synchronous round. We assume
each node knows the identifiers of its neighbors initially. Each node of the network
can be in one of the following states.

• IDLE: This is the initial state for a node.
• INMIS: A node assigned to the MIS enters this state and informs neighbors by

the in_mis message.
• NONMIS: A node in this state has given up being in MIS because one of its

neighbors has become amember ofMIS. It informs its neighbors by the neigh_mis
message.

Algorithm 10.7 Dist_MI S1
1: Input: unweighted undirected graph G = (V, E)

2: Output: MIS I of G
3: message types: in_mis, neigh_mis
4: states: {IDLE, INMIS,NONMIS}  states of a node
5: state ← IDLE  initialize
6: while state = I DLE do  not in MIS or a neighbor to a MIS vertex
7: if id > ids of all current neighbors then
8: state ← INMIS
9: send in_mis(i) to N (i)  inform neighbors of INMIS state
10: else if in_mis( j) is received from neighbor j then
11: state ← NONMIS
12: send neigh_mis(i) to N (i)
13: else if neigh_mis( j) is received from neighbor j then
14: N (i) ← N (i) \ { j}  remove neighbor j from neighbor list
15: end if
16: end while
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Fig. 10.7 Execution of Dist_MIS1 in a sample graph with unique node identifiers. The in_mis
messages are shown by arrows, the MIS nodes are in black, and the neighbor nodes that enter
NONMIS state are shown by double circles. In only two rounds shown in a and b, the MIS is
formed

A node that is included in theMIS should not participate in the algorithm in further
rounds. This is accomplished by changing its state and informing its neighbors by
in_mis message so they should as well remain inactive in further rounds. Any node
that is adjacent to a neighboring node of anMIS node is informed by the neighbor by
the neigh_mis message so that it is dropped from the active neighbors list. Operation
of this algorithm in a sample network is shown in Fig. 10.7.

The time complexity of this algorithm is O(n) as there can be purely sequential
operation as in a linear network with increasing/decreasing identifiers or a general
network with neighbors that have increasing or decreasing identifiers in a sequence.
The number of messages transmitted is proportional tom. This algorithmmay there-
fore turn out to be slow.

10.2.4.2 The First Randomized Distributed Algorithm
In search of an algorithm for better performance, we will attempt to convert Luby’s
algorithm to a synchronous distributed algorithm which we will call Dist_Luby that
works in rounds. Each round is made up of two phases; in the first phase, each active
node i marks itself with probability 1/2d(i) to be in theMIS. In this MARKED/UN-
MARKED state, it exchanges status with neighbors to conclude the phase. In the
second phase, if node i is marked and there is another MARKED neighbor node, the
higher degree one is included in theMISwith the other one being dropped from active
nodes again by exchanging status messages. The pseudocode for node i is shown in
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Algorithm 10.8. This algorithm completes in expected number of O(log n) rounds
[12] and since the number of messages is proportional to the number of edges, total
number of messages is O(m log n).

Algorithm 10.8 Dist_MI S2
1: Input: unweighted undirected graph G = (V, E)

2: Output: MIS I of G
3: message types: in f o  sent by nodes to inform their states to neighbors
4: states= {IDLE, INMIS, NONMIS}  states of a node as idle, in, or neighbor to a node in MIS
5: init_states= {MARKED, UNMARKED}  initial states at each round
6: I ← Ø; state ← IDLE  initialize vertex cover C
7: while state = I DLE do  not in MIS or a neighbor to a MIS vertex
8: mark ini t_state MARKED with probability 1/(2d(i))  Phase 1
9: send in f o(ini t_state) to N (i)
10: receive in f o(ini t_state j ) from ∀ j ∈ N (i)
11: if ini t_state=MARKED then  Phase 2
12: if � j ∈ N (i) with state j=MARKED then
13: state ← INMIS
14: else
15: state ← NONMIS
16: end if
17: send in f o(state) to N (i)
18: receive in f o(state j ) from ∀ j ∈ N (i)
19: end if
20: if ∃ j ∈ N (i) with state j=INMIS then
21: state ← NONMIS
22: end if
23: if ∃ j ∈ N (i) with state j=NONMIS then
24: state ← NONMIS
25: N (i) ← N (i) \ { j}  remove neighbor j from neighbor list
26: end if
27: end while

10.2.4.3 The Second Randomized Distributed Algorithm
Our last distributed algorithm is a more recent randomized one that has better per-
formance than the distributed version of Luby’s algorithm in which each active node
i picks a random number r between 0 and 1 in each round. If node i has the largest r
among its neighbors, it assigns itself to MIS and informs its neighbors of its decision
so they will not participate in MIS selection in next rounds. The detailed ready to be
coded pseudocode for a node is shown in Algorithm 10.9 where we show explicitly
the logic for terminating a round [1]. This algorithm has the same time and message
complexity as the first one since the logic is similar.
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Algorithm 10.9 Dist_MI S3
1: set of int curr_neighs ← N (i); received , values ← Ø
2: message types round, in f o
3: states INMIS, NONMIS
4: boolean in f lag, out f lag, round_recvd , round_over ← f alse
5: while ¬round_over do
6: receive msg(j)
7: case msg(j).type of
8: round(k) : if inflag then state ← INMIS
9: in f lag ← f alse
10: else if outflag then state ← NONMIS
11: out f lag ← f alse
12: else draw rval ∈ [0, 1]
13: send info(k,rval, state) to curr_neighs
14: round_recvd ← true
15: in f o(k, r, sta) : received ← received

⋃
{j}

16: values ← values
⋃

{j}
17: if sta = INMIS then out f lag ← true
18: if sta = INMIS/NONMIS
19: lost_neighs ← lost_neighs

⋃
{j}

20: if round_recvd ∧ (received = curr_neighs) then
21: if ∀x ∈ curr_neighs : rval > rx ∈ values then
22: in f lag ← true
23: end if
24: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
25: round_recvd ← f alse; received , values, lost_neighs ← {Ø}
26: end if
27: end while

10.3 Dominating Sets

A dominating set of a graph is a subset of its vertices such that every vertex is either
in this set or adjacent to a vertex in it. We can formally define this set as follows:

Definition 10.2 (dominating set) A dominating set of a graph G = (V, E) is a
subset D of its vertices such that ∀v ∈ V , either v ∈ D or v ∈ N (u) where u ∈ D.
Equally, a set D ∈ V is a dominating set if

⋃
v∈D N [v] = V . In other words, the

union of closed neighborhoods of each vertex of the graph should be equal to the
vertex set of the graph.

There are various applications of dominating sets in communication networks
and surveillance systems. A dominating set can be used effectively as a backbone to
transfer messages in a wireless network as we will see in Chap. 14.

Every maximal independent set is a dominating set as every vertex of the graph
will be either in this set or adjacent to a vertex in this set. However, not every domi-
nating set is an independent set since members of a dominating set can be neighbors.

http://dx.doi.org/10.1007/978-3-319-73235-0_14
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(a) (b)

Fig.10.8 a A connected DS with order 4. bAn unconnected MDS with order 3 of a sample graph.
The vertices in the dominating sets are shown in black

A minimum dominating set (MinDS) of a graph is the set with the minimum order
among all dominating sets of that graph. The cardinality of MinDS of a graph G is
called the domination number (γ (G) of G). A minimal dominating set (MDS) of a
graph does not contain any other dominating sets of that graph as a proper subset as
shown in Fig. 10.8. In other words, removing a vertex from such a set will destroy
the dominating set property of this set. In a connected dominating set (CDS), there
is a path between each pair of vertices in the dominating set, consisting only of dom-
inating set vertices. Formally, ∀u ∈ D ∧ v ∈ D, there is a path u, x1, . . . , xk, v such
that u, x1, . . . , xk, v ∈ D.

A k-dominating set D of a graph G = (V, E) consists of vertices such that every
v ∈ V −D is adjacent to at least k elements of D. A k-distance dominating set which
is sometimes confused with the k-dominating set concepts is a set of vertices that
have a distance of at least k to at least one of the vertices of the dominating set. Note
that the latter definition loosens the general dominating set definition.

Finding MinDS of a graph is NP-hard [2] and we are mostly interested in find-
ing minimal dominating sets of graphs when we review sequential, parallel, and
distributed algorithms for this purpose in this section.

10.3.1 A Greedy Sequential Algorithm

For the design of a greedy algorithm, we will use coloring of vertices such that
vertices in MDS will be shown in black, their dominated neighbors are colored gray
and any other vertex in the graph is white with all vertices initialized to white. The
span of a vertex v is the number of white neighbors it has including itself if it is
white. The heuristic we will use is to always select a white or a gray vertex with the
highest span in the graph. Since our aim is to find a MDS, we are trying to cover as
many white vertices as possible at each step with this heuristic. The pseudocode for
this algorithm called Span_MDS is depicted in Algorithm 10.10.

Figure10.9 displays operation of this algorithm in a sample graphwhere the vertex
with the highest span is colored black at each iteration. We can see that after three
iterations, there are no white vertices left and the algorithm terminates. If we always
select a gray vertex with the highest span at each iteration after the first one, we have
a connected DS as shown in Fig. 10.9d.
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Algorithm 10.10 Span_MDS
1: Input : An undirected unweighted graph G = (V, E)

2: for all v ∈ V do  all nodes are white initially
3: color [v] ← white
4: end for
5: V ′ ← V , D ← Ø
6: while ∃u ∈ V ′, color [u] = white do
7: select v ∈ V ′ with the highest span
8: color [v] ← black  select a MDS vertex
9: V ′ ← V ′ \ {v}
10: for all w ∈ (V ′ ∩ N (v)) do  color its white neighbors grey
11: if color [w] = white then
12: color [w] ← grey
13: end if
14: end for
15: end while

1

2

3

4

(3)

(a) (b)

(c) (d)

Fig. 10.9 Running of MDS_Span in a sample graph. The three iterations are shown in a–c with
the dominating set vertices in black and the dominated vertices in gray. A connected DS is shown
in d for the same graph with the iteration step numbers displayed next to included vertices

The Span_MDS algorithm provides a DS of a graph G since there are no white
vertices left when this algorithm terminates. This means all of the vertices of G end
up in gray or black color as dominator or dominated vertices. The DS is minimal
(MDS) since at each step, one or morewhite vertices are colored by coloring a single
vertex black that has the highest span. Removing this vertex from graph will leave
one or morewhite vertices and hence the DS obtained is minimal being not contained
in a larger DS. The time complexity of this algorithm is O(n) since we may need to
have n iterations as in the case of a linear network. The approximation ratio of this
algorithm is lnΔ as shown in [12].

In certain graphs, this algorithm may yield a dominating set which may be far
from optimal. For example, in a graph where two vertices u and v are connected by
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n vertices using separate paths, this algorithm may start by coloring u or v black and
then attempt to color all of the intermediate vertices black, resulting in n − 1 steps
where coloring of u and v black suffices to form a DS in two steps.

10.3.1.1 Guha–Khuller Algorithms
Guha–Khuller algorithms provide improvements to Span_MDS so that such cases
are handled more efficiently [4]. The first algorithm presented by these authors starts
by coloring all vertices white. It then colors the highest degree vertex of the graph
black and all of its neighbors gray. Thereafter at each step, the white neighbors of
gray and white nodes are found and depending on the number of white neighbors,
either a gray vertex or a gray–white vertex pair is colored black to be able to color the
most number of possible white vertices gray. This process continues until there are
no more white vertices left. This algorithm provides a MCDS with an approximation
ratio of 2(1+H(Δ))where H is the harmonic function [4]. Running of this algorithm
is depicted in Fig. 10.11 (Fig. 10.10).

The second algorithm also colors all vertices white initially. A piece is defined
as a white vertex or a connected set of black vertices. This algorithm has two main
phases. In the first phase, the vertex u black coloring of which will yield the greatest
decrease in the number of pieces is selected; vertex u is colored black and its neigh-
bors are colored gray. This phase continues until there are no white vertices left.
Since the MDS obtained may not be connected, vertices of the MDS are connected

(a) (b)

(c) (d)

Fig.10.10 Running of Guha–Khuller’s first algorithm in a sample graph. Selected MCDS vertices
are colored in black and their neighbors are shown in gray. The selected vertex or vertex pairs are
shown inside dashed regions. The MCDS is formed after four iterations of the algorithm
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.11 Running of Guha–Khuller’s second algorithm in a sample graph. The selected vertex
at each iteration is shown inside a dashed circle to be shown in black in the next iteration. Note that
we could have opted to include the white vertex in MDS in c since it doing so also results in one
less piece. Also, we could have selected the gray vertex next to the white one in d to result in one
less step. The unconnected MDS in e is connected in f. The MCDS is formed after six iterations of
the algorithm

using a Steiner tree based algorithm in the second phase. The output MCDS has an
approximation ratio of 3 + lnΔ [4].

10.3.1.2 MIS-based Algorithms
An alternative way of constructing a MCDS is to first form an MIS of the graph and
then connect the vertices in thisMIS to get aMCDS in the second step.We can use any
algorithm to find MIS such as the lowest degree first greedy algorithm. Connecting
the MIS vertices can be performed using various heuristics such as selecting the
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vertex with the highest degree between theMIS vertices or using a Steiner tree based
algorithm as in Guha–Khuller second algorithm.

10.3.2 A Distributed Algorithm to FindMDS

A simple distributed algorithm based on the span of a node in its two-hop neighbor-
hood in the network can be formed as follows. Each node exchanges its span with
all of its two-hop neighbors and if it has the highest span among all of these neigh-
bors, it enters the MDS. The algorithm is executed by a node i until it has no white
neighbors which are neither MDS or dominated nodes as shown in Algorithm 10.11.
It can be shown that this algorithm computes a MDS with lnΔ + 2 approximation
ratio [12]. The number of rounds needed is O(n) since there will be at least one new
node entering the dominating set at each round.

Algorithm 10.11 Dist_CDS
1: Input G = (V, E)

2: S ← V , MI S ← ∅
3: while ∃ j ∈ N (i) : color [ j] = white ∧ state �= INCDS do 
4: s ← span(i)
5: send s to nodes at distance of at most 2
6: receive spans of nodes at distance 2
7: if s > all spans then
8: state ← INCDS
9: end if
10: end while

10.4 Vertex Cover

A vertex cover or a cover of a graph is a subset of its vertices such that every edge is
incident to at least one vertex in this subset. Vertex cover has numerous applications,
such as placing stores in a region so that every road leads to at least one store, in
bioinformatics [10] and in chemistry [9]. We can define this set property formally as
follows:

Definition 10.3 (vertex cover) A vertex cover of a graph G = (V, E) is a subset V ′
of its vertices such that ∀(u, v) ∈ E , either u, or v or both in V ′.

A minimum vertex cover (MinVC) of a graph is the set with the minimum order
vertex cover among all vertex covers of that graph. A minimal vertex cover (MVC)
of a graph does not contain any other vertex covers of that graph as depicted in
Fig. 10.12. In other words, removing a vertex from a MVC will destroy the vertex
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(a) (b)

Fig.10.12 a An unconnected MVC with order 5. b A connected MinVC with order 4 of a sample
graph. The vertices in the vertex covers are shown in gray. The vertex cover in b is connected

cover property of this set. Finding MinVC of a graph is NP-hard [2] and commonly,
our goal is to find a minimal vertex cover of a graph.

We had stated this before in Chap.3 as an example of a reduction and it would
be appropriate to restate it here. A set V ′ is a vertex cover of a graph G = (V, E)

if and only if V \ V ′ is an independent set of G. Since V ′ is a vertex cover, every
edge (u, v) has at least one endpoint in V ′. If both of vertices u and v are in V \ V ′,
then (u, v) /∈ E as otherwise V ′ will not be a vertex cover since it does not have a
vertex incident to the edge (u, v). Therefore, V \ V ′ is an independent set of G. We
saw that I is an independent set of a graph G if and only if I is a clique in G. Thus,
all of the three problems of independent set, clique, and vertex cover are equivalent.

Vertices of a graph may have weights associated with them depicting some phys-
ical property such as the capacity of a router in a computer network. In such a case,
our aim is to find a vertex cover with the minimal total weight. The minimumweight
vertex cover (MinWVC) is the vertex cover with minimum total weight among all
weighted vertex covers of a graph. Viewed from another perspective, we may require
to find a minimal connected vertex cover (MCVC) which is to say that there is a
path between each pair of vertices in the cover consisting of a subset of vertices in
this set only. We will review sequential, parallel, and distributed algorithms to find
unweighted and weighted minimal vertex covers in this section.

10.4.1 UnweightedVertex Cover

Unweighted vertex cover algorithms assume the vertices of the graph have noweights
(or sometimes unity weights) assigned to them.

10.4.1.1 Unweighted General GraphVertex Cover
As a first natural approach, we may select the vertex with the highest degree first to
be included in the vertex cover and continue by always selecting the highest degree
vertices. Instead of selecting the vertices with initial static degrees, we select the

http://dx.doi.org/10.1007/978-3-319-73235-0_3
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current highest degree at each iteration since deleting a vertex and its incident edges
will cause a decrease in the degrees of its active neighbors. However, this approach
does not yield a fixed approximation ratio. In fact, the approximation ratio isΘ(log n)

which is not favorable as it depends on the number of vertices.
We have already reviewed how to compute the vertex cover of a graph from

a matching which yielded a constant approximation ratio of 2 as an example of
an approximation algorithm (See Sect. 3.8.2). In this algorithm, we find a maximal
matching of a graph by selecting an arbitrary legal edge and including both ends of the
selected edge in the MVC. The selected edge and its adjacent edges are deleted from
the graph and the process is repeated until there are no edges left. As for a parallel
vertex cover algorithm, we can always use a parallel maximal matching algorithm
by including both endpoints of matching edges in the vertex cover consequently.

10.4.1.2 Unweighted Bipartite GraphVertex Cover
In any bipartite graph, the number of edges in a maximum matching equals the
number of vertices in aminimum vertex cover byKönig’s theorem [5].We know how
to find a maximum matching of a bipartite graph by the augmenting path algorithm
in O(nm) time or by the Hopcroft–Karp algorithm in O(

√
nm) time (See Sect. 9.3).

Once we have a maximum matching M∗ of a bipartite graph G = (A ∪ B, E), we
know the size of the minimum vertex cover, |V ∗|, equals |M∗| but we need to find
the elements of the set VC . We will first provide a method to do so and then prove its
correctness. But first of all, we note ∀(u, v) ∈ M∗, we need to include either vertex
u, or vertex v but not both in V ∗ simply because one endpoint of the edge (u, v) is
sufficient to cover it. Our procedure to find the vertices contained in the minimum
vertex cover is based on this observation. If we mark all possible vertices that can
be reached using alternating paths from unmatched vertices in A in sets S and T for
those in A and B respectively, the minimum vertex cover set V ∗ is (A \ S)∪ (B ∩T )

as shown in Algorithm 10.12.
An example bipartite graph with a maximum matching shown in bold lines is

depicted in Fig. 10.13a.We first formG ′ by orienting the edges. The only unmatched
vertex in A is d, we therefore run the DFS algorithm from this vertex visiting vertices
{r, a, p, b, s, d} shown in gray. The minimum vertex cover is then ({a, b, c, d, e} \
{a, b, d, e})∪ ({p, q, r, s, t} ∩ {p, r, s} = {c, e, p, r, s} with order 4 which is the size
of the maximum matching as shown in Fig. 10.13b. We can see only one end of
matched edges are included in the minimum vertex cover.

Theorem 10.2 Algorithm 10.12 correctly constructs a minimum vertex cover of a
bipartite graph from its maximum matching in O(n + m) time.

http://dx.doi.org/10.1007/978-3-319-73235-0_3
http://dx.doi.org/10.1007/978-3-319-73235-0_9
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Algorithm 10.12 Biparti te_MinVC
1: Input: an undirected, unweighted bipartite graph G = (A ∪ B, E)

2: a maximum matching M∗ of G
3: Output: minimum vertex cover V ∗ of G
4:
5: form G ′ by directing matched edges from B to A and unmatched edges from A to B
6: for all u ∈ A of G ′ that is free do
7: run DFS(u) and insert all vertices visited in A in S, and visited in B in T
8: end for
9: V ∗ ← (A \ S) ∪ T
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Fig. 10.13 A sample bipartite graph to test minimum vertex cover algorithm from maximum
matching. The shaded vertices in a are visited by DFS from vertex d and the dark vertices in b are
contained in the minimum vertex cover

Proof We will first prove V ∗ is a vertex cover, then it is a minimum one. Let us
assume V ∗ is not a vertex cover. Then ∃(u, v) ∈ E with u ∈ A and v ∈ B such that
u /∈ V ∗ and v /∈ V ∗. Since V ∗ = ((A \ S) ∪ T ), we must have u ∈ S and v ∈ B \ T .
We have two possibilities in such a case:

1. Assume edge (u, v) ∈ M∗. Since u ∈ S, we must have visited it by DFS. How-
ever, we can only reach u over a matched edge meaning v ∈ T resulting in a
contradiction.

2. Assume edge (u, v) /∈ M∗. In this case, since u ∈ S, v is included in T which is
a contradiction again since we assumed b /∈ T .
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We will now show |V ∗| ≥ M∗ and since |M∗| ≥ V ∗, we will have proven
|M∗| = |V ∗|. The following observations can be stated [11].

1. �u ∈ (A \ S) that is unmatched since we start each DFS from an unmatched
vertex in A which is included in S.

2. �u ∈ T that is unmatched since this would mean there exists an augmenting path
of G with respect to M∗ and therefore M∗ would not be maximum.

3. �(u, v) ∈ M∗ such that u ∈ (A \ S) and B ∈ T . If such an edge existed, u
would be in S when b was found to be in T which results in a contradiction since
u ∈ (A \ S).

We can conclude that each vertex of the set V ∗ is incident to a matched edge by
the first two observations and two endpoints of a matched edge are not both included
in V ∗ by the last observation. �

10.4.1.3 Distributed Algorithms
We can use any of the distributed matching algorithms described in Chap.9 to find
matching edges. Any node that has an incident matching edge can then mark itself
as being a member of the MVC in a distributed setting. This approach will provide a
MVC with an approximation ratio of 2 as in the sequential case since we are merely
imitating the sequential operation in a network environment. We will describe two
synchronous distributed algorithms; the first one is the distributed version of the
greedy algorithm that favors high-degree nodes and the second one has fixed number
of rounds providing a constant approximation ratio.

Greedy Algorithm

The highest degree vertex first heuristic provided an approximation ratio that
depended on the order of the graph. We will however describe a distributed version
of this algorithm to give another example of how to convert a sequential algorithm
to a distributed one.

The distributedMVC algorithm using this heuristic works in synchronous rounds.
Each active node compares its current degree with its active neighbors and if it has
the highest degree, it marks itself to be in the MVC and informs its neighbors of its
decision. The execution of this algorithm in a sample graph is depicted in Fig. 10.14.

Parnas–Ron Algorithm

Parnas and Ron provided a distributed synchronous unweighted vertex cover algo-
rithm that works for a constant number of rounds dependent on the highest degree
Δ in a graph [8]. Each node in the network checks whether its degree is greater than
Δ(G)/2i in each round i . If this check returns a true value, it becomes part of the
vertex cover.

A major drawback with this algorithm is that Δ(G) parameter must be broadcast
to all nodes before the execution of the algorithm. The operation of this algorithm
in the same sample graph of Fig. 10.14 is shown in Fig. 10.15.

http://dx.doi.org/10.1007/978-3-319-73235-0_9
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Fig.10.14 Execution of the greedy distributed vertex cover algorithm in a sample undirected graph.
Nodes included in the cover are shown in bold with deleted edges as dashed at each iteration

Algorithm 10.13 Parnas_MVC
1: Input: unweighted undirected graph G = (V, E), Δ(G)

2: Output: vertex cover C of G
3: message types: in_cover  sent by a node entering VC
4: states: {INVC, NONVC}  states of a node as in or not in the vertex cover
5: C ← Ø; state ← NONVC  initialize vertex cover C
6: for i = 1 to logΔ(G) do
7: if d(i) ≥ Δ(G)/2i then
8: state ← INVC
9: send in_cover(i) to N (i)
10: end if
11: if in_cover( j) is received from neighbor j then
12: N (i) ← N (i) \ { j}  remove neighbor j and the edge (i, j) from graph
13: end if
14: end for

Theorem 10.3 Parnas_MVC algorithm correctly constructs a minimal vertex
cover VC such that |V ∗| ≤ |VC | ≤ (2 logΔ(G) + 1) · |V ∗| where V ∗ is the
minimum vertex cover.

Proof In the last iteration of the algorithm, all vertices that have degree ≥ 1 will be
included in the vertex cover, therefore all of the edges of the graph will be removed
with at least one of their incident vertices included in the vertex cover, hence the
algorithm correctly constructs a vertex cover.
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Fig. 10.15 Running of Parnas–Ron algorithm in the same sample graph of Fig. 10.14

The number of iterations is at most logΔ(G) since after logΔ(G) iterations, the
remaining vertices in the graph will have 0 degree. At each iteration, there are at
most 2|V ∗| new vertices that are added from G − V ∗ to VC . At the beginning of
the i th iteration, the degree of each vertex is at most d/2i−1. Therefore, the number
of edges between V ∗ and G − V ∗ is at most |V ∗| · Δ(G)/2i−1. Let us assign xi to
the number vertices in G − V ∗ of degree at least d/2i at the beginning of the i th
iteration. Hence, xi · d/2i ≤ |V ∗| · d/2i−1; therefore, xi ≤ 2|V ∗|. Since we have at
most logΔ(G) iterations, it follows that the total number of vertices included in VC
is at most 2|V ∗| · logΔ(G) [8]. �

10.4.2 WeightedVertex Cover

When vertices have weights, we search for a minimal weighted vertex cover. Finding
the vertex cover with the minimum total weight is NP-hard as most of the problems
we have studied. The Pricing algorithm is a sequential approximation algorithm for
MWVC problem as described next together with parallel and distributed algorithms
for the MWVC problem.

10.4.2.1 Pricing Algorithm
The main idea of this algorithm is to cover an edge with the minimum weight vertex
it is incident. An edge e pays a price pe ≥ 0 to be covered by vertex u it is incident
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and the sum of prices assigned to edges that are incident to a vertex u should not
exceed the weight wu of a vertex. Formally,

• an edge e ∈ E pays a price pe ≥ 0 to be covered by a vertex that it is incident.
• ∀u ∈ V , �u,v pe ≤ wu .

When the sum of the prices of edges incident to a vertex equals its weight, the
vertex is said to be tight . A possible implementation of this algorithm is shown in
Algorithm 10.14 where each vertex v ∈ V has a capacity ci which is initialized to
its weight and the active edge set S is initialized to E . The algorithm inspects each
edge euv ∈ S and if u or v has a remaining capacity, it charges the edge e with the
lower of the capacities. When the capacity of u or v becomes 0, it is labeled as a
tight node and included in the MWVCV ′. The algorithm stops when each vertex
has a tight vertex at least incident to one of its endpoints, meaning all of the edges
are covered by tight vertices on one or both ends. The execution of this algorithm is
shown in Fig. 10.16.

Algorithm 10.14 Pricing_MWVC
1: Input G(V, E)

2: S ← E , V ′ ← ∅
3: while S �= ∅ do
4: pick any euv ∈ S
5: if cu �= 0 ∨ cv �= 0 then
6: q ← node with min{cu , cv}
7: pe ← cq , q ← tight
8: V ′ ← V ′ ∪ {q}; S ← S \ {e}∪ any other edge incident at q
9: end if
10: end while

Theorem 10.4 Pricing_MWVC algorithm correctly constructs a MWVC of a
graph in O(n) iterations with an approximation ratio of 2.

Proof This algorithm correctly constructs a vertex cover sincewe continue exploring
all edges until there are no edges left with a tight vertex on one or both of its endpoints,
therefore all of the edges are covered. There will be at least one tight vertex at each
iteration, resulting in O(n) time complexity

LetV ′ be the set of all tight vertices at the endof the algorithmandV ∗ theminimum
vertex cover vertices. We need to show w(V ′) ≤ 2w(V ∗). Since all vertices in V ′
are tight, we can write the following equation.

w(V ′) =
∑

v∈V ′
wv =

∑

v∈V ′

∑

e=(u,v)

pe ≤
∑

v∈V

∑

e=(u,v)

pe (10.1)



330 10 Independence,Domination, and Vertex Cover

(a) (b)

(c) (d)

6

4

5

311

8

11 7

6

4

5

7 311

8

11 \
1

6

6

4

5

31111

3

1

6

5

1

6

4

5

311

8

11

/
3

6

5

1

Fig.10.16 Running of Pricing_MWVC algorithm in a sample graph. The weights of vertices are
shown inside them and tight vertices are shown with double circles. After five iterations, MWVC
is formed as shown in f with a total weight of 18

Since each edge is counted twice, we can write the above as

= 2
∑

e∈E
≤ 2w(V ∗) (10.2)

�

10.4.2.2 Distributed Algorithms
We can again use any of the distributed weighted matching algorithms with the sim-
ple modification of including both endpoints of the matched edges in the minimal
vertex cover. As another simple approach, we can use the greedy method in a syn-
chronous distributed algorithm where each node that has the smallest weight in its
neighborhood enters the vertex cover set. The algorithm designed this way is basi-
cally very similar to the greedy distributed algorithm that used degrees of nodes and
the locally highest degree node is assigned to the vertex cover in the unweighted
vertex cover case. However, in certain network topologies, it may yield a solution
that is far from optimal as shown in the star configuration of Fig. 10.17.
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Fig. 10.17 a A star graph
with MWVC vertices shown
in black formed by the
greedy distributed MWVC
algorithm that has a total
weight of 17 for the cover
b the optimal MWVC for the
same graph
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10.4.3 Parallel Algorithms

Parallel algorithms whether shared memory or distributed memory for MVC in
unweighted or weighted case are scarce. A basic approach to perform parallel finding
of vertex cover can be achieved by partitioning the graph into a number of approx-
imately same order of subgraphs and have each process find vertex covers in its
subgraphs. Each process can work independently to form its vertex covers, however,
caremust be takenwhen dealingwith vertices that appear on the borders of partitions.
One way of dealing with this problem is to use the ghost vertex concept in which
border vertices are replicated at each process and the choice of a ghost vertex to be
included in which partition can be handled by breaking symmetries using unique
vertex identifiers as we have briefly described in Chap.4.

This concept is illustrated in Fig. 10.18 where a simple graph with 8 vertices
is partitioned to two parallel processes p1 and p2. Each vertex has a unique integer
identifier and the border vertices between partitions are 1, 3, 6, 8, and 2. Each process
is responsible for the higher identifier border vertex it is assigned. In this respect,
edges (1, 8) and (1, 3) have to be covered by process p2 and (6, 2) is covered by
process p1. Vertices in cover are shown by double circles.

Algorithm 10.15 displays a possible pseudocode of a parallel algorithm to perform
parallel vertex cover in which a special process, the root , partitions the graph using a
suitable algorithm, sends each partition to processes, and gathers the partial minimal

Fig. 10.18 Handling of
ghost vertices

1 34

89 6 2

7

p1

p2

http://dx.doi.org/10.1007/978-3-319-73235-0_4
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vertex cover results to form the final minimal vertex cover of the graph. Each process
finds theminimal vertex cover in its partition by including higher identifier neighbors
of border vertices in its partition and sends the partial minimal vertex cover to the
root .

Algorithm 10.15 Par_MVC
1: Input: unweighted undirected graph G = (V, E), Δ(G)

2: Output: minimal vertex cover MVC of G
3: if i = root then
4: partition G into k subgraphs G(1), ...,G(k)
5: for i = 1 to k do
6: send G(i) to pi with neighbors of border vertices
7: end for
8: for i = 1 to k do
9: receive VC(i) from pi
10: MVC ← MVC ∪ VC(i)
11: end for
12: else
13: receive G(i) with neighbors of border vertices
14: for all u ∈ border vertices do
15: if ∃v ∈ neighbors of border vertices such that (u, v) ∈ E then
16: if id(u) > id(v) then
17: G(i) ← G(i) ∪ {v}
18: else
19: G(i) ← G(i) \ {u}
20: end if
21: end if
22: end for
23: find vertex cover VC(i) of G(i)
24: send VC(i) to root
25: end if

10.5 Chapter Notes

We have reviewed three problems in graphs; the maximum independent set, the
minimum dominating set, and the minimum vertex cover problems. All of these
problems are NP-hard and the algorithms proposed in literature are approximation
or heuristic algorithms that find maximal or minimal solutions rather than maximum
or minimum order subgraphs. We can employ greedy algorithms commonly by the
use of some heuristic but algorithms with better performances are frequently sought.
As we have noted in the highest degree first algorithm to find a minimal vertex cover,
a seemingly natural heuristic may not provide a constant approximation ratio.
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Wesaw the independent set, clique, andvertex cover problems are computationally
equivalent; a vertex set V ′ of a graphG = (V, E) is a vertex cover ofG if and only if
V \V ′ is an independent set ofG. Also, the set V \V ′ is a clique inG if and only if V ′
is an independent set of G. A dominating set may be connected and an independent
set may be used as the first step of forming a connected dominating set. A vertex
cover may also be connected and also vertices may have weights associated with
them depicting some physical parameter attributed to the nodes of the system that
the graph represents. The weighted versions of these problems commonly require
different considerations than unweighted ones.

The parallel algorithms for these problems are scarce andwith the recent advance-
ments resulting in the availability of data for very large real networks, there is an
increasing need for parallel algorithms. In some cases, fast, efficient deterministic
parallel algorithms have been developed for these problems but these algorithmsmay
be quite complicated. For parallel computation of MDS, we can use a similar algo-
rithm as the one used for vertex cover by partitioning the graph to a set of processes
each of which runs an MDS algorithm in its partition.

Distributed network algorithms are at a more fairly investigated level for these
problems aswe have noted. Inmany cases, these algorithms are derived from sequen-
tial ones, however, there is a still need for algorithms with better performances.

Exercises

1. Propose a heuristic to find the IS in Algorithm 10.2 and implement this method
with Algorithm 10.2 to find the MIS of Fig. 10.19.

2. In order to find the MaxIS of a rooted tree, we can include all leaves of the tree in
the MaxIS and move upwards in the tree by not including one level in the MaxIS
and next level in the MaxIS.

a. Write the pseudocode for this sequential algorithm.
b. Prove that this algorithm finds the MaxIS for a rooted tree.
c. Show how the sequential code can be converted to a distributed algorithm.
d. Propose a method to find the MaxIS of a tree in parallel using this method.

3. Implement Guha–Khuller first algorithm to find the MDS in the example graph
of Fig. 10.20.

4. Implement the distributed span algorithm to find the MDS in the example graph
of Fig. 10.21.

5. Find the MVC of the example bipartite graph of Fig. 10.22 using matching. Show
all iterations of the algorithm.

6. Work out the MWVC in the sample graph of Fig. 10.23 using Pricing algorithm.
7. Implement the greedy distributed weighted vertex cover algorithm to find the

MWVC in the graph shown in Fig. 10.24, where weights of vertices are shown
inside them.



334 10 Independence,Domination, and Vertex Cover

Fig. 10.19 Sample graph for Exercise 1

Fig. 10.20 Sample graph for Exercise 3

Fig. 10.21 Sample graph for Exercise 4
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11Coloring

Abstract

Coloring in a graph refers either to vertex coloring, edge coloring or both in which
case it is called total coloring. Each vertex is assigned a color from a set of colors
such that no two adjacent vertices have the same color in vertex coloring. Edge
coloring is the process of assigning colors to the edges of a graph such that no
two edges incident to the same vertex are assigned the same color. We review
sequential, parallel, and distributed algorithms for vertex and edge coloring in
this chapter.

11.1 Introduction

Coloring in a graph refers either to vertex coloring, edge coloring or both in which
case it is called total coloring. Each vertex is assigned a color from a set of colors such
that no two adjacent vertices have the same color in vertex coloring. This method has
many applications including channel frequency assignment and scheduling of jobs.
Assignment of frequency channels to radio stations may be modeled by coloring of a
graph with the vertices representing radio stations and an edge connects two stations
if they are within interference distance to each other. Different colors in this case
correspond to different broadcast frequencies. As a scheduling example, we may
need to assign final exams in a university so that no student takes two exams at the
same time. We can represent each exam by a vertex in a graph and an edge connects
two vertices a and b if a student is taking both final exams a and b. If the colors of
vertices represent time slots for final exams, our aim is to color each vertex of the
graph such that two adjacent vertices receive a different color, meaning a student
taking both exams will attend them in different time slots. Edge coloring is the
process of assigning colors to the edges of a graph such that no two edges incident to
the same vertex are assigned the same color. Edge coloring may be used in planning

© Springer International Publishing AG, part of Springer Nature 2018
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a timetable for teachers to teach courses in a school to achieve the minimum amount
of course time. A bipartite graph with teacher and course partitions of vertices can
be formed, and we search a minimal edge-coloring of this graph. Then, we find a
maximum time value that any teacher is involved in teaching, which is the maximum
time spent in teaching all of the courses. Time division multiple access network
communication protocols for sensor networks may be realized using edge coloring,
representing each time slot with a color [7].

The main goal of any coloring method is to use a minimum possible number of
colors. Since this is an NP-hard problem for vertex and edge coloring [10], various
heuristics are commonly employed. Parallel vertex coloring algorithms attempt to
concurrently color different regions of the graph under consideration by a number
of processes to achieve speedup. A distributed graph coloring algorithm on the other
hand, is executed by each node of the network graph so that each node determines
its color in the end.

Wecanhaveparallel anddistributed edge coloring algorithms as in vertex coloring.
Total graph coloring can be achieved by both coloring vertices and edges of a graph.
We start with the vertex coloring problem in this chapter by describing sequential,
parallel and distributed algorithms for this task and continue with algorithms for
edge coloring.

11.2 Vertex Coloring

A vertex coloring of a graph is the assignment of colors to its vertices such that no
two adjacent vertices have the same color. It can be formally defined as follows.

Definition 11.1 (vertex coloring) A vertex coloring or coloring of a graph G =
(V, E) is an assignment function φ : V → C such that ∀(u, v) ∈ E, φ(u) �= φ(v),
where C is a set of colors elements of which are commonly the elements of N+.

For a graph with n vertices, the set C with n elements will provide its coloring,
however, our aim is to find theminimumnumber of colors in the optimization version
of the vertex coloring problem. The decision version of this problem seeks to find an
answer to the question. “can we color the vertices of a graph with at most k colors?.”
We will consider connected and simple graphs for this problem. A k-coloring of a
graph G is the coloring of G using k colors. In a proper vertex coloring of a graph,
adjacent vertices are colored with distinct colors. The vertices of the same color in
a graph form a color class.

Definition 11.2 (chromatic number) The chromatic number χ(G) of a graph G is
the minimum number of colors required to color its vertices properly.
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Finding χ(G) of G is an NP-hard problem [10]. However, we can specify an
upper bound on the value of this parameter as we will see.

Remark 9 Any subgraph H of a graph G can be colored with less colors than G,
that is, χ(H) ≤ χ(G).

While coloring G we will have colored all of its subgraphs and it is probable that
we use less colors to color its subgraphs.

Remark 10 The chromatic number χ(G) of a graph G with n vertices is n if and
only if G = Kn . That is, χ(Kn) = n.

This is valid since all vertices are connected to all other vertices in Kn and hence,
we need n distinct colors to color such a graph.

Remark 11 The chromatic number χ(G) of a star graph Sn with n vertices is 2 since
we can color all of the vertices connected to the center with the same color and the
center with another color.

There are some interesting properties of vertex coloring as follows.

• A bipartite graph has no odd length cycles and hence can be colored with 2 colors.
We can color a bipartite graph by running the BFS algorithm of Chap.7 and color
vertices at odd levels with color 1 and the vertices at even levels with color 2.

• Since a tree is a bipartite graph, we can color a tree with two colors.
• A cycle graph with an even number of vertices is a bipartite graph and therefore,

we can color such a graph with two colors Fig. 11.1a.
• A cycle graph with an odd number of vertices is not a bipartite graph. We can

color such a graph with n vertices using a total of three colors; two colors for
n − 1 vertices and a third color for the nth vertex as shown in Fig. 11.1b.

(a) (b)

Fig. 11.1 Coloring of even and odd-cycle graphs

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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Theorem 11.1 (Brook’s Theorem [4]) For a connected graph G that is not fully
connected or an odd cycle,

χ(G) ≤ Δ(G) + 1 (11.1)

Lovasz gave a short and simple algorithmic proof of this theorem by considering
three cases [15].

Remark 13 The equality holds in only two cases.

• In a complete graph Kn with n ≥ 3, Δ(Kn) = n − 1 and χ(Kn) = n. Therefore,

Δ(Kn) + 1 = n = χ(Kn)

• For an odd-cycle graph G, χ(G) = 3 and since Δ(G) = 2, χ(G) = Δ(G) + 1

We will see the greedy algorithm presented in the next section also has a complexity
as this upper bound. Brook showed that the equality holds only for odd-cycle graphs
and complete graphs. However, this upper bound on a chromatic number of a graph
may turn out to be very far from the real value as in the star graph Sn with n vertices;
Δ(Sn) = n − 1 and χ(Sn) = 2 in such a graph.

11.2.1 Relation to Independent Sets and Cliques

A subset I of vertices of a graph G = (V, E) is called an independent set if no
two vertices in I are neighbors and the maximum independent set (MaxIS) is an
independent set with the maximum order as we described in Sect. 10.2. A maximal
independent set (MIS) on the other hand is an independent set which cannot be
enlarged by the addition of vertices. We have reviewed a method to obtain an MIS
from a k-colored graph in Chap.10 and the reverse operation of coloring vertices
of a graph using independent sets is also possible. We observe that vertices in an
independent set can be colored with the same color since they are not adjacent. In
fact, we will use this property in designing vertex coloring algorithms as we will
see. Given a k-chromatic graph G, we can partition the vertices of G into k disjoint
independent sets I1, . . . , Ik which are called color classes. Each vertex in color class
Ii can then be colored by i . In other words, we can find k disjoint independents sets
of a graph G such that

⋃k
i=1 Ii = V which are not necessarily maximal, we can

color all elements of each set with a new color and the chromatic number for this
graph is k.

Remark 14 If a graph G can be partitioned into k disjoint independent sets but not
less, then χ(G) = k.

http://dx.doi.org/10.1007/978-3-319-73235-0_10
http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Each coloring class Ii of G is an independent set. Therefore,

|Ii | ≤ α(G)

where α(G) is the maximum independence number of G. Since

|I1| + |I2|, . . . , |Ik | ≤ kα(G) = χ(G)α(G)

we can conclude,

χ(G) ≥ � n

α(G)
	 (11.2)

A clique of a graph G is a complete subgraph of G. The clique number ω(G) of a
graph G is the order of its largest clique. There is a relation between a clique and an
independent set of a graph G as we have noted in Sect. 10.2.1, a subset V ′ of vertices
of G = (V, E) is a clique if and only if V ′ is a maximal independent set in G.

Theorem 11.2 Let ω(G) be the clique number of graph G, that is, it is the order of
the largest clique of G. Then,

χ(G) ≥ ω(G) (11.3)

Proof Since all of the vertices of a clique are adjacent to each other, each such vertex
must be colored with a different color. Therefore, the order of the maximum clique
in a graph G sets a lower bound on the chromatic index of G. �

11.2.2 Sequential Algorithms

Since coloring the vertices of a graph with its chromatic number of colors is an
NP-hard problem, various heuristics are proposed in the literature that approximate
the number of colors to χ(G). In this section, we first present a greedy coloring
algorithm template and then review four algorithms using different heuristics which
are the randomalgorithm, thefirst-fit algorithm, the largest-degree-first algorithmand
the saturation-based-ordering algorithm. All of these algorithms may be classified
as greedy approaches as they select the vertex that best meets the required criteria at
each iteration.

11.2.2.1 AlgorithmTemplate
Weneed to color every vertex of the graphwith colors obeying the coloring principle,
that is, each vertex is assigned a color that does not conflict with the already assigned
colors of the neighbors. We will form an algorithm template without specifying the
selection criteria as shown in Algorithm11.1 and then discuss various heuristics for

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Fig. 11.2 Random selection; a A random coloring heuristic by Algorithm11.1 selects vertices
b-g-e-a-d-h-i-c in sequence and uses four colors shown next to vertices as integers; b The largest-
degree-first heuristic uses three colors for this graph, irrespective of the choice of vertices when
degrees are the same

the selection of the vertex to be colored. In the simplest form, a vertex is selected ran-
domly and the smallest available color is assigned to this vertex in random selection.
The operation of this algorithm in a simple graph is depicted in Fig. 11.2a.

Algorithm 11.1 Coloring_Template
1: Input : G = (V, E)

2: Output : φ : V → C where C = {1, 2, ..., n}
3: V ′ ← V
4: while V ′ �= ∅ do
5: select a vertex v ∈ V ′ according to some heuristic
6: φ(v) ← the smallest legal color from C
7: V ′ ← V ′ \ {v}
8: end while

Selection of vertex v in line 5 of the algorithm can be performed using various
heuristics as follows.

• Identifier-based Algorithm: In this case, vertices of the graph are numbered from
1 to n to yield a vertex set V = {v1, . . . , vn} and the vertices are colored in
sequence obeying the rules of coloring; that is, coloring each vertex with the
minimum possible color that does not conflict with neighbors. This algorithm is
also called the first-fit algorithm and uses at most 2χ(G) colors on the average
[11]. It is simple and fast in general sense but can yield an approximation ratio of
n/4 in some special graphs [12] requiring O(m) running time.

• Largest-Degree-First (LDF) Algorithm: It makes sense to color the large degree
vertices first to have a less number of colors since the low-degree vertices can
usually be colored in a more flexible way as proposed in [20]. The operation of
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Fig. 11.3 Saturation-based
ordering. The order of
vertices selected are
c-g-i-d-b-a-e- f
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this algorithm is shown in the graph of Fig. 11.2b and we can see it results in one
less color than the greedy approach. This algorithm can be implemented to have
O(m) time complexity (Fig. 11.3).

• Saturation-Degree-Ordering (SDO) Algorithm: A further refinement to the LDF
algorithm can be provided as follows [3]. The saturation degree s(v) of a vertex v
is defined as the number of distinct colors currently assigned to its neighbors. This
parameter is dynamic and a greedy algorithm based on the saturation degrees can
be designed to always select the vertex with the highest value of this parameter.
In case of ties, the vertex with the highest degree is selected which means we are
searching the largest value of the pair (s(v), deg(v)) of all vertices v ∈ V that are
not assigned a color. Note that such an algorithm will start by the largest degree
vertex v of the graph and assign the minimum color to v, and will continue with
the largest degree neighbor vertex of v. The operation of SDO algorithm is shown
in Fig. 11.3. This algorithm has O(n2) time complexity [3].

• Incident-Degree-Ordering Algorithm: This heuristic is a modified form of the
SDO. The incident degree of a vertex is the number of its colored neighbors. Note
that the colors of neighbors need not be distinct as in the saturation-based heuristic.
The vertex that has the highest incident degree is selected at each iteration of the
algorithm [6]. Vertex identifiers are used in case of ties as in the saturation degree
algorithm. It is a linear time algorithm running in O(m) time.

11.2.2.2 Independent Set-Based Algorithms
Themain idea of independents set-based algorithms is that the vertices in an indepen-
dent set can be assigned the same color as they are nonadjacent. We can, therefore,
find (maximal) independent sets of a graph G and color all of the vertices of this
set with a new color, remove vertices from graph G, and continue until all vertices
are colored as depicted in Algorithm11.2. Clearly, the performance of this generic
algorithm is influenced by the method used in finding the independent sets.
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Algorithm 11.2 IS_Vcolor
1: Input : G = (V, E)

2: Output : φ : V → C where C = {1, 2, ..., k}
3: V ′ ← V
4: while G ′ �= ∅ do
5: I ← Find_MI S(G ′)
6: color the vertices in I with a new color
7: V ′ ← V ′ \ I
8: G ′ ← graph induced by V ′
9: end while

1 2 3

(a) (b)

(c) (d)

Fig.11.4 Maximal independent set-based vertex coloring of the same graph of Fig. 11.2; a, b, and
c displays the iterations of the algorithm, where a new color is assigned to each new independent
set as shown by different patterns; d shows the final coloring of the graph

11.2.3 Parallel Algorithms

There are only few algorithm for coloring vertices of a graph in parallel. We describe
independent-set-based algorithms and the identifier-based algorithm for this purpose
next.

11.2.3.1 Parallel Independent Set-Based Algorithms
Wecanuse the independent set-based coloring algorithm for parallel coloringvertices
of a graph since we can perform finding a maximal independent set in parallel.
Algorithm11.3 displays the code for parallel independent-set-based vertex coloring
algorithm. The code within the while loop is executed in parallel synchronously.
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Algorithm 11.3 ParIS_Vcolor
1: Input : G = (V, E)

2: Output : φ : V → C where C = {1, 2, ..., k}
3: G ′ ← G
4: while G ′ �= ∅ in parallel do
5: I ← Find_MI S(G ′)
6: color the vertices in I with a new color
7: V ′ ← V ′ \ I
8: G ′ ← graph induced by V ′
9: end while

We have seen how an independent set can be constructed in parallel using Luby’s
Monte Carlomethod in Sect. 10.2.3. In this algorithm, verticeswere assigned random
permutations 1, . . . , n at each iteration and a vertex with a local minimum value was
colored these values were used to break symmetries and decide the colors of vertices.
We can simply implement this algorithm for this purpose and then color the vertices
of the graph accordingly.

Jones–Plassmann Algorithm

In another and more recent approach, Jones and Plassmann presented independent
set-based parallel graph coloring algorithm (JP_Color) [13]. Their approach is dif-
ferent than Luby’s algorithm as the random numbers are assigned only once at the
beginning of the algorithm and do not change. Also, assigning of the colors to the
independent set vertices is assigned individually for each vertex, that is, each vertex
in the set is colored with the minimum color that does not exist in its neighbors
as shown in Algorithm11.4. Each vertex v is assigned a random number which is
its weight w(v) initially. If the weight of a vertex is greater than all of the weights
assigned to its neighbors, then v is assigned to the independent set I with ties broken
by unique vertex identifiers. This step is performed in parallel and the elements of
the set I are also colored in parallel with legal colors. Different than Algorithm11.3,
the independent set I formed at each step need not be MIS as in Luby’ method and
the vertices of I may be colored with different colors. Jones and Plassmann showed
that the expected runtime of this algorithm in bounded degree graphs using PRAM
model is O(log n/log logn) [13].

The parallel Largest-Degree-First (PLDF) algorithm has a similar structure to
JP_Alg with the difference that the weights that are assigned are the degrees of the
vertices and the ties are broken by selecting a random number. A parallel vertex
coloring method using graph partitioning is described in [9]. An experimental study
reported in [1] compares parallel independent set, Jones and Plassmann and LDF
algorithms for parallel vertex coloring.

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Algorithm 11.4 JP_Vcolor
1: Input : G = (V, E)

2: Output : φ : V → C where C = {1, 2, ..., k}
3:
4: G ′ ← G
5: while G ′ �= ∅ do
6: for all v ∈ V ′ in parallel do
7: I = {v} such that w(v) > w(u), ∀u ∈ N (v)
8: for all u ∈ I in parallel do
9: assign u the minimum color not used by N (u)

10: end for
11: end for
12: V ′ ← V ′ \ I
13: G ′ ← graph induced by V ′
14: end while

11.2.3.2 Cole–Vishkin Algorithm
Cole and Vishkin proposed a method to reduce the colors used in a graph in parallel
[5], however, the same technique can be implemented in a distributed algorithm to
color the nodes of a network. Basically, given a proper k-coloring of a graph G with
a possible large k, it aims to find a coloring of G with a smaller k value, hence,
it is a color reduction technique. The general idea of this algorithm is to initially
have nodes assigned unique labels of log n bits. Then, new node labels that are much
smaller than the previous ones are computed at each iteration of the algorithm.

Each node in the graph has at most one successor meaning this algorithm can be
used in directed paths, directed cycles. The k-coloring is reduced to log k coloring
in one step and 6-coloring of the graph is determined after few iterations. Each node
v in parallel sends its color to its successor. A node v receiving the color cu of its
predecessor u, compares it with its color cv and finds the rightmost bit that is different.
It then sets its new color as the concatenation of the index with the value in the index
as shown in Algorithm11.5. The iterations continue until we have k = 6, that is,
colors in the range 0, . . . , 5. We need other methods if further reduction is needed.

0001 0001
0100 1001 0111
0110 1001 1011 100

Lemma 11.1 Algorithm11.5 correctly finds a legal coloring of a graph G.

Proof The initial coloring of vertices is legal. We need to show the newly formed
colors are also legal. Let us assume two cases.
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Algorithm 11.5 CV_Vcolor
1: Input : G = (V, E)

2: Output : φ : V → C where C = {0, 1, 2, 3, 4, 5}
3: G ′ ← G
4: for all v ∈ V do
5: color(v) ← vi
6: end for
7: while ∃vi : color(vi ) > 5 in parallel do
8: assume color(vi ) and color(vi−1) as little-endian bit strings
9: let j be the smallest bit index x they differ
10: c ← j ∪ x
11: color(vi ) ← c
12: end while

• Case 1: Successor of vertex u, vertex v, chooses the same index. Since bit values
are different, they have different colors assigned.

• Case 2: When they have different indexes, they have different colors. �

The log∗ n is an extremely slowly growing function of n. It is defined as follows.

Definition 11.3 Starting with n, log∗ n is the number of times logarithm on base
2 is applied until reaching a number smaller than or equal to 2. That is, log∗ n =
min{i : logi n ≤ 2}. In other words, ∀n ≤ 2, log∗ n = 1 and ∀n > 2, log∗ n =
1+log∗ (log n). For example, log∗ 232 = 1+log∗ 32 = 2+log∗ 16 = 3+log∗ 4 = 4.

Theorem 11.3 Algorithm11.5 computes a 6-coloring of a graph in log∗ n time.

Proof Let n j be the maximum number of bits used by the color cv of vertex v after
iteration j and let n0 = �log n� be the number of bits used for initial coloring of
nodes. We can state n j+1 ≤ �log n j� + 1 ≤ log n j + 2. We can continue to find
n1 ≤ log n0 + 2 and n2 ≤ log (log n0 + 2) + 2 ≤ log log n0 + 3 when log n0 ≥ 2.
We can see for j = 1, 2, . . . with log( j) n0 ≥ 3, n j ≤ log( j) n0 + 3. Hence, when
the number of iterations j = log∗ n0, n j ≤ 5. Since n0 = �log n�, the number of
bits for cv is at most 5. The number of bits after two more iterations is reduced to
3 and hence, the number of possible colors becomes 8. Another iteration makes the
palette size 6 as the first part of the color has 3 possible values [2]. �

Note that this algorithm can only reduce the colors to 6 colors. For example, let
us assume node u is the predecessor of vertex v and φ(v) = 101B and φ(u) = 011B ,
the index is 001B and the node v will set 011B which will be the same as the color
value of u.
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11.2.4 DistributedVertex Coloring

In a distributed setting, our aim is to have each node in the network assigned a legal
color. We will first present a simple color reduction algorithm using identifiers of
nodes as initial colors and then a synchronous algorithm that breaks symmetries
using the identifiers of nodes and an algorithm to color the nodes of a tree in this
section.

11.2.4.1 A Synchronous Reduction Algorithm
We will use the SSI model of distributed computing with a single initiator that starts
synchronous rounds. In this algorithm, we assume each node of the network has a
unique identifier i and is colored with that identifier initially. Our aim is to reduce
the coloring of the nodes in synchronous rounds and use the round number for this
purpose. The rounds are numbered from Δ + 2 to m since we know a legal coloring
requires a chromatic number less than Δ + 1 by Brook’s theorem and hence, we
want to reduce any initial coloring number larger than this value. Any node i that
finds it has a color greater than the round number changes its color to the smallest
color not used by its neighbors and informs neighbors of this choice as shown in
Algorithm11.6. Note that unique identifiers are used to select the running node and
hence, there will be only one node executing the code at any time. This algorithm
is simple requiring no symmetry breaking technique but its operation is inherently
sequential.

Figure11.5 displays the execution of this simple algorithm in a small network.
Note that the operation is sequential and the number of colors used is exactly Δ + 1
for n > Δ + 1 in this algorithm.

Algorithm 11.6 Dist_Vcol1
1: Input: neighbor list N (i)
2: Output: color my_color of node i in the network
3: for r = Δ + 2 to n do
4: if my_color = k then
5: my_color ← first free color not used by neighbors
6: inform neighbors of my color by the status message
7: else if status message received from a neighbor then
8: update available color list
9: end if
10: end for

Theorem 11.4 Algorithm11.6 provides legal coloring of a networkwithΔ+1 colors
in n − Δ + 1 time using O(Δn) messages.
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Fig.11.5 Distributed coloring of a sample graph using Algorithm11.6. Rounds 6, 7, and 8 provide
a legal coloring with 8 (Δ + 1) colors

Proof Since the initial coloring is legal and the color changing nodes perform legal
coloring, that is; selecting a color not used by neighbors, the final coloring is legal
and usesΔ+1 colors exactly for n > Δ+1 in n−Δ+1 rounds. The only messages
sent in a round is by the node i that has an identifier equalling the round number and
therefore, this would be O(Δ) messages. The total number of messages exchanged
will then be O(Δn). �

11.2.4.2 A Synchronous Rank-Based Algorithm
We use the SSI model again for its simplicity in this algorithm. The unique identifier
of nodes are used to assign priorities this time to break symmetries. The general
idea of this algorithm is to give priority to nodes that have the highest (or lowest)
identifier. In each round, an uncolored node that finds it has the highest identifier
among its uncolored neighbors assigns a legal color to itself and informs its decision
to all of its neighbors. One way of implementing this algorithm for a node i at each
round is shown in detail with needed data structures in Algorithm11.7.
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Algorithm 11.7 Dist_Vcol2
1: Input: neighbor list N (i)
2: Output: color my_color of node i in the network
3: message types: decided(x, col), undecided(x) � sent by node x coloring itself by col and a

message by undecided node
4: states: {COLORED, UNCOLORED} � states of a node as colored or uncolored
5: neigh_colors ← ∅

6: my_state ← UNCOLORED
7: send my_id to N (i)
8: receive ids of neighbors
9: while my_state = UNCOLORED do
10: if my_id > ids of all active neighbors then
11: color ← first free color c /∈ neigh_colors
12: state ← colored
13: send decided(i, c) to N (i)
14: else if decided( j, col) received from neighbor j then
15: N (i) ← N (i) \ { j} � remove neighbor j from active neighbor list
16: neigh_colors ← neigh_colors ∪ {col}
17: end if
18: end while

The operation of this algorithm is depicted in Fig. 11.6 for the same sample graph
of Fig. 11.5. This graph is colored with three legal colors in four rounds. We can
apply a different criteria such as degrees of vertices or a random number picked
between 0 and 1 to break symmetries instead of vertex identifiers resulting basically
in a very similarly structured algorithm.

Theorem 11.5 Algorithm11.7 correctly colors the nodes of a network in O(n) time
with O(Δ + 1) colors.

Proof Correction is evident since coloring rule is applied at each step. As in other
rank-based greedy distributed algorithms we have reviewed, number of rounds re-
quired may be as high as the number of vertices n as in the case of a network with
sorted identifier neighbors. The maximum number of colors used will be Δ + 1 as
there will always be a free color in that range. �

11.2.4.3 Tree Coloring
A network that is configured as a rooted tree can be colored using two colors only.
The root starts the algorithm by coloring itself with color 0 and sending its color to
its children which color themselves with the other color. Continuing in this manner,
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Fig. 11.6 Distributed coloring of a sample graph Algorithm11.7. In four rounds, three colors
assigned to eight nodes

two colors suffice to color the whole tree. The steps of this algorithm for node i are
as follows.

1. if i = root then
2. ci ← 0
3. send color(1) to children
4. else receive color(c)
5. ci ← 1 − c
6. if i �= lea f then
7. send color(ci ) to children

Each node should be aware whether it is root, an intermediate or a leaf node in
this algorithm. Figure11.7 depicts a tree constructed using the above procedure. We
can run this algorithm in synchronous rounds in the SSI model or asynchronously.
The running time of the algorithms is the depth d of the tree O(d) in both cases. The
total number of messages exchanged in both cases is the number of edges of the tree
which is n-1. The algorithm proposed by Cole and Vishkin can be used to color trees
in a distributed way.
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Fig. 11.7 Distributed
coloring of a sample tree
with two colors
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11.3 Edge Coloring

In the edge coloring of a graph, edges are assigned colors such that adjacent edges
have different colors.

Definition 11.4 (edge coloring) An edge coloring of a graph G = (V, E) is an
assignment φ′ : E → C such that any two edges ei and e j that are incident on the
same vertex have φ′(ei ) �= φ′(e j ), where C is a set of colors elements of which are
commonly the elements of N+.

In proper edge coloring, adjacent edges are assigned distinct colors.Edge coloring
problem is finding the minimum number of colors to color edges of a graph. In the
decision version of this problem, we try to find an answer to whether the edges of
a graph can be colored with at most k different colors. A graph is said to be k-edge
colorable if there is a coloring φ : E → C such that |C | = k. The edge chromatic
number or the chromatic index χ ′(G) of a graph G is the minimum value of k such
that G is k-edge colorable. In other words, G is k-edge chromatic if χ ′(G) = k.

Theorem 11.6 For any simple graph G,

χ ′(G) ≥ Δ(G) (11.4)

Proof Let v be the vertex with the maximum degree in G. Every edge incident to
v must be colored with a different color, therefore χ(G) must be at least equal to
Δ(G).

Strong lower and upper bounds exist for edge coloring of graphs. Vizing has
shown that for every nonempty simple graph G with no multiple edges and no loops
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Fig. 11.8 Edge coloring of even-and odd-cycle graphs

[19],

χ ′(G) ≤ 1 + Δ(G) (11.5)

Based on Eqs. 11.4 and 11.5,

Δ ≤ χ ′(G) ≤ 1 + Δ(G), (11.6)

which means for every nonempty simple graphG, either χ ′(G) = Δ(G) or χ ′(G) =
1 + Δ(G). The simple graphs G where χ ′(G) = Δ(G) are called Class 1 graphs
and graphs which have χ ′(G) = Δ(G) + 1 are called Class 2 graphs.

Remark 16 A star graph Sn has n − 1 edges. Since all of these edges are adjacent to
each other, χ(Sn) = n − 1. Therefore, Sn is a Class 1 graph.

Remark 17 An even-cycle graph can be edge-colored with two colors. An odd-cycle
graph on the other hand, needs three colors as there will be at least one edge that
needs a third color as shown in Fig. 11.8. Hence, even-cycle graphs areClass 1 graphs
and odd-cycle graphs are Class 2 graphs.

11.3.1 Relation to GraphMatching

In a proper edge-coloring of a graph G, the edges of the same color constitute a
matching in G since these edges are not adjacent to each other. In other words, given
any two edges (u, v) and (w, y) of a matching, u or v cannot be neighbors to either w
or y. We can, therefore, define edge coloring EC of a graph G as the union of a set
of disjoint matchings M1 ∪ M2 ∪ . . . , Mk of G. For a graph G with m edges and a
maximummatching size α′(G), every edge coloring of G must use at leastm/α′(G)

colors.

Theorem 11.7 For a graph G = (V, E) with size m greater than 1,

χ ′(G) ≥ m

α′(G)
(11.7)
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Proof Let us assume χ ′(G) = k and E1, E2, . . . , Ek are the color classes of G.
∀Ei ∈ E , 1 ≤ i ≤ k; |Ei | ≤ α′(G) since edges in each color constitute a matching
of G and α′(G) is the size of the maximum matching of G. Therefore,

m = |E(G)| =
k∑

i=1

|Ei | ≤ kα′(G) (11.8)

hence, χ ′(G) ≥ m
α′(G)

. �

A possible method to find EC is then find a maximal matching Mi of graph G
and color it with a new color, remove all edges of Mi from G and repeat this process
until all edges are colored as shown in Algorithm11.8. Note that we find an unused
color simply by incrementing the index i .

Algorithm 11.8MM_Ecolor
1: Input : G = (V, E)

2: Output : φ′ : E → C where C = {1, 2, ..., k}
3: G ′(V ′, E ′)′ ← G(V, E)

4: i ← 1
5: while E ′ �= ∅ do
6: Mi ← Find_MM(G ′)
7: color the edges in Mi with i
8: E ′ ← E ′ \ Mi

9: i ← i + 1
10: end while

The performance of this algorithm clearly depends on how finding the maximal
matching is performed. The operation of this algorithm is depicted in Fig. 11.9, where
the MM edges of a sample graph found at each step are colored with a new color.

11.3.2 A Greedy Sequential Algorithm

The greedy algorithm for edge coloring of a graph can be sketched similar to the
greedy algorithmswe have seen.An uncolored edge e is picked randomly and colored
with the minimum legal color that does not conflict with the assigned colors of the
adjacent edges of the edge e. This edge is then removed from the graph and the
process is repeated until there are no more uncolored edges left. Algorithm11.9
displays the pseudocode for this algorithm.

The colors required for this algorithm can be as high as 2Δ − 1 as shown in
Fig. 11.10, where two vertices with Δ degrees are connected by an edge that we
want to color. The only available color in this case, is 2Δ − 1.
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Fig. 11.9 Operation of Algorithm11.9 in a small sample graph. Selected edges at each iteration
are shown in bold with an assigned color number next to the edges. We have colored the edges of
this graph with Δ + 1 = 6 colors

Algorithm 11.9 Greedy_Ecolor
1: Input : G = (V, E)

2: Output : φ′ : E → C where C = {1, 2, ..., 2Δ − 1}
3: E ′ ← E
4: while E ′ �= ∅ do
5: select an edge (u, v) ∈ E ′
6: φ′((u, v)) ← the smallest legal color from C
7: E ′ ← E ′ \ {(u, v)}
8: end while
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Fig. 11.11 Operation of Algorithm11.9 in a small sample graph. Selected edges at each iteration
are shown in bold with assigned color number next to the edges. We could color this graph with Δ

colors

Operation of this algorithm in a simple sample graph is depicted in Fig. 11.11.
The while loop is executed m times to color all edges. There is also Δ time needed
to find an available color for each vertex resulting in O(Δm) time complexity.

The edge-coloring of a graph G is equivalent to the vertex-coloring of the line
graph L(G) of G. Given Δ for the maximum degree of G, the maximum degree of
L(G) is 2Δ−2 which means we can color the vertices of L(G) using 2Δ−1 colors
using Brook’s Theorem. Hence, G can be edge-colored with 2Δ − 1 colors since
each edge of G corresponds to a vertex in L(G).

11.3.3 Bipartite Graph Coloring

The edges of bipartite graphs can be colored with Δ colors as proved by König [14]
which means,

χ ′(G) = Δ(G) (11.9)
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Every bipartite graphG is contained in aΔ(G)-regular graph.We can add vertices
and edges to a bipartite graphG = (V1, V2, E) to make it aΔ-regular bipartite graph
G ′ with V1 = V2. Such formed graph has always a perfect matching. Then, we can
find a perfect matching M1 (1-factor) such that every vertex of G ′ is incident to an
edge of M1 and color this perfect matching with the first available color. Removing
M1 fromG and finding another perfectmatchingM2 of the new graph and continuing
in this manner, we can have Δ colors for the edges of G. This method motivates an
algorithm to color the edges of a bipartite graph as shown in Algorithm11.10.

Algorithm 11.10 Bipartite_Ecolor
1: Input : G = (V1, V2, E)

2: Output : φ′ : E → C where C = {1, 2, ..., Δ}
3: E ′ ← E
4: G ′ ← G∪ {added edges} ∪ {added vertices}
5: for i = 1 to Δ(G) do
6: find a perfect matching M of G ′
7: ∀(u, v) ∈ M : φ′((u, v)) ← i
8: G ′ ← G ′ − {M}
9: end for
10: remove added edges from G ′ to get edge colored G

Finding a perfect matching in a k-regular bipartite graph takes O(km) time (see
Chap.9), hence Algorithm11.10 provides edge coloring of a bipartite graph with a
maximum degree Δ in O(Δm) time. The execution of this simple algorithm in a
small bipartite graph is shown in Fig. 11.12.

11.3.4 Edge Coloring of Complete Graphs

A complete graph Kn can be colored with n − 1 colors if n is even, otherwise, n
colors are needed when n is odd. We can find edge coloring of a complete graph Kn

by iteratively selecting disjoint maximal matchings of it as depicted in Fig. 11.13.
Edge coloring of even and odd complete graphs are shown in Fig. 11.14.

11.3.5 A Parallel Algorithm

Edges of the same color in a properly colored graph G establish a maximal matching
ofG as we have seen.We have reviewed in Chap.9 how to perform parallel matching
of a graph and hence, we can use these algorithms to perform parallel edge coloring.
Algorithm11.11 displays the pseudocode of such an algorithm which performs find-
ing MM and removing these edges from the graph in addition to assigning colors to
the edges of the maximal matching.

http://dx.doi.org/10.1007/978-3-319-73235-0_9
http://dx.doi.org/10.1007/978-3-319-73235-0_9
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Fig. 11.13 Edge coloring of K5. Disjoint maximal matchings are selected at each iteration with
each matching assigned a new color. The final colored graph shown in e has 5 distinct colors
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Fig. 11.14 Coloring of K6.
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Algorithm 11.11 Par_Ecolor
1: Input : G = (V, E)

2: Output : φ′ : E → C where C = {1, 2, ..., k}
3: G ′(V ′, E ′)′ ← G(V, E)

4: while E ′ �= ∅ in parallel do
5: Mi ← Find_MM(G ′)
6: color the edges in Mi with a new color
7: E ′ ← E ′ \ Mi

8: end while

11.3.6 A Distributed Algorithm

In a network setting, each node should act independently to color the edges adjacent to
it. We need a way to break symmetries in a distributed environment as we commonly
implement. Let us define a heuristic to be the node with maximum degree decides
what color to be assigned to its adjacent edge. Different than distributed vertex
coloring problem, we need to consider the case when a node with a lower degree
receives requests from two maximum degree neighbors. In such a case, we will
assume it selects the one with the larger degree. The messages to be used in the
algorithm we propose are as follows.

• degree(i,deg(i)): Sent by node i to inform neighbors of its degree deg(i).
• propose(i,col): Sent by node i to request coloring of the edge (i, j) adjacent to its

neighbor j .
• ack(i), nack(i): Sent by node i to acceptmessage and to reject the incoming request

message
• decide(i,col): Sent by node i to node j confirm the edge coloring of edge (i, j)

with color col.

We assume each node is aware of its neighbors and hence, its degree initially. The
variable list curr_neighs holds the identifiers of currently active neighbors of a node
i such that ∀ j ∈ curr_neighs, the edge (i, j) is not yet colored. The algorithm starts
by each node exchanging its degree with neighbors. Thereafter, as long as there are
uncolored edges adjacent to a node i , it checks its degree with the current neighbors.
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If it finds it has the maximum degree among them, then node i broadcasts a propose
message to all of its active neighbors. A neighbor that receives more than one request
message responds to the sender with the largest degree by the ack message as shown
in a coarse sketch of this algorithm in Algorithm11.12.

Algorithm 11.12 Dist_Ecol
1: Input: neighbor list N (i)
2: Output: set of edge colors edge_cols of node i in the network
3: message types: degree(x, deg(x), propose(x, col), ack(x), nack(x), decide(x, col(x))
4: curr_neighs ← N (i) � active neighbors initialized
5: neigh_colors ← ∅

6: send degree(deg(i)) to N (i) � exchange degree values with neighbors
7: receive degree(deg( j)) from all j ∈ N (i)
8: while curr_neighs �= ∅ do
9: if deg(i) > deg( j) ∀ j ∈ curr_neighs then
10: for all j ∈ curr_neighs do
11: send minimum available color c in neigh_cols to j in propose(i,c)
12: end for
13: receive ack/nack messages from all nodes in curr_neighs
14: update neigh_cols
15: update curr_deg
16: select one of the senders ( j) of ack messages arbitrarily
17: select first available color c /∈ edge_cols
18: send decide(i, c) to j
19: else if propose received from neighbor j or more than one neighbor then
20: select the highest degree requesting neighbor j
21: send ack(i) to j
22: send nack(i) to all others
23: receive decide( j, c)
24: end if
25: neigh_colors ← neigh_cols ∪ {c}
26: curr_neighs ← curr_neighs \ { j}
27: broadcast in f o(curr_deg, neigh_cols) to curr_neighs
28: end while

The operation of this algorithm in a small sample network is depicted in Fig. 11.15,
where nodes with highest degrees in their neighborhoods decide to color edges
incident to them by proposing to their neighbors. The maximum colors used will be
2Δ(G) − 1 since there will always be a color in this range proposed by the highest
degree nodes. Grable et al. proposed a synchronous randomized distributed edge
coloring algorithm in which each edge (u, v) picks a random color c from its palette
of (1+ ε)max{deg(u), deg(v)} colors in each round [10]. If color c is not in conflict
with any of the selected colors of neighbors, c is determined to be the color of the
edge (u, v). It is shown this algorithm colors the edges of a graph with (1+ ε)Δ(G)

colors for any ε > 0 in O(log log n) rounds for graphswith sufficiently large degrees.
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Fig. 11.15 Edge coloring of
a small network by
Dist_Ecol. The black nodes
have the maximum current
degree among their
neighbors. They propose
edge colors for their
uncolored edges from their
neighbors which respond by
ack (a) or nack (na)
messages. Colored edges are
shown in bold. Broadcasting
of info messages are not
shown. The final coloring
requires 6 colors
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11.4 Chapter Notes

Vertex coloring is the process of coloring the vertices of a graph such that no two
adjacent vertices have the same color. It can form the basis of more complicated
graph algorithms and also has various practical implementations such as assigning
channel frequencies in wireless networks. We reviewed theoretical aspects of vertex
coloring and then described sequential, parallel, and distributed algorithms for this
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purpose. Coloring vertices of a graph with its chromatic number is NP-hard but
otherwise coloring with Δ + 1 coloring is straightforward.

A simple parallel algorithm makes use of the independent set property where no
two vertices in such a set are adjacent. We can, therefore, assign the same color to
the vertices of an independent set. We can find an independent set in parallel as was
shown in Chap.10, hence, this algorithm can be used to assign colors in parallel.
There are various distributed vertex coloring algorithms. We described a basic rank-
based algorithm which is slow as its execution time in rounds is dependent on the
number of nodes in the network and another simple algorithm to color trees.

Edge coloring refers to assigning colors to the edges of a graph such that no
two edges with common endpoints receive the same color. We described a simple
sequential algorithm and parallel and distributed algorithms for edge coloring. Edge
coloring can make use of matching algorithms since edges of the same class in a
graph, that is edges with the same color, constitute a matching in that graph. This
way, we can perform edge coloring in parallel using a parallel maximal matching
algorithm as we reviewed. Distributed algorithms for edge coloring require careful
consideration as we need to check colors of edges incident to neighbors of a node v
when coloring an edge incident to v. Total graph coloring requires both the vertices
and edges of a graph to be colored.

Exercises

1. Color the vertices of the graph in Fig. 11.16 using the greedy algorithm that selects
the first uncolored lowest index.

2. Partition the sample graph of Fig. 11.17 into all possible disjoint maximal inde-
pendent sets and color each set with a new color to find the vertex coloring of this
graph.

3. Find the vertex coloring of the graph shown in Fig. 11.18 using the greedy dis-
tributed method of Algorithm11.6. Assign identifiers to nodes arbitrarily.

4. Color the edges of the bipartite graph shown in Fig. 11.19 by first forming a Δ-
regular bipartite graph and then finding disjoint maximal matchings of this graph
and coloring edges of each matching with a new color.

5. Use the disjointmaximalmatchingmethod to color the edges of the graphdepicted
in Fig. 11.20.

6. Work out the edge coloring of the graph shown in Fig. 11.21 using the greedy
distributed method of Algorithm11.12.

62 5

73 10

1 4

Fig. 11.16 Sample graph for Exercise1

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Fig. 11.17 Sample graph for Exercise2

Fig. 11.18 Sample graph for Exercise3

Fig. 11.19 Sample graph for Exercise4

Fig. 11.20 Sample graph for Exercise5
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Fig. 11.21 Sample graph for Exercise6
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Abstract

Algebraic graph theory is the study of algebraic methods to solve graph problems.
We review algebraic solutions to the main graph problems in the first part of this
chapter. Many real-life networks are represented by dynamic graphs in which
new vertices/edges may be inserted and some vertices/edges may be deleted as
time progresses. We describe few dynamic graph problems that can be solved by
dynamic graph algorithms, and finally we give a brief description of the methods
used in dynamic algebraic graph algorithms, which are used for dynamic graphs
using linear algebraic techniques.

12.1 Introduction

Algebraic graph theory is the study of algebraic methods to solve graph problems.
Linear algebra and group theory are the two of the mostly referred areas of algebra
while dealing with graphs. Algebraic graph algorithms using linear algebra com-
monly make use of the matrices associated with a graph to solve various problems in
graphs. By using this approach to form graph algorithms for many of the problems,
we have seen has a number of benefits. First of all, we can use various existing matrix
operations for this task which results in simpler algorithms which can be converted
to executable codes with ease in general. As another advantage, parallel matrix oper-
ations and such software environments for them are readily available making parallel
formation of these tasks simpler.

Our purpose in the first part of this chapter is to introduce this paradigm, and
give examples of solving some of the graph problems we have investigated in Part
II of this book. We start with a short review of matrices that are used to represent
graphs. We then review algebraic graph algorithms for some graph problems, which
include graph traversals, shortest paths from a single source, all-pairs shortest paths,

© Springer International Publishing AG, part of Springer Nature 2018
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-73235-0_12
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connectivity, and matching. We also discuss parallel implementations of various
algorithms presented. A thorough treatment of this topic, namely, algebraic graph
algorithms can be found in [13].

In the second part of this chapter, we look at dynamic graph algorithms.Many real-
life networks are represented by dynamic graphs in which new vertices/edges may
be inserted and some vertices/edges may be deleted as time goes by. For example,
new interactions are possible in protein interaction networks and two friends of a
person in a social network may be acquainted to form an edge between them in such
a network. Rather than running the algorithms, we have seen in Part II from scratch in
such dynamic graphs it is beneficial to use new algorithms with better performances
as we will investigate. Lastly, we review dynamic algebraic graph algorithms which
are used for dynamic graphs using linear algebraic techniques.

12.2 GraphMatrices

An m × n matrix contains mn real numbers organized as m rows and n columns.
We show the element at i th row and j th column of a matrix A as ai j or sometimes
A[i, j] in algorithms. When the number of rows and the number of columns of a
matrix A are equal, A is called a square matrix. Basic operations such as addition,
multiplication by a scalar, and matrix multiplication are described in AppendixB.3.
An n × 1 matrix is called a column vector and 1 × n matrix is called a row vector.
The three main matrices associated with a graph are its incidence matrix, adjacency
matrix, and its Laplacian matrix, as we saw in Chap.2, which we will now briefly
review.

Incidence Matrix

Let us assume an undirected or directed graph G with n vertices v1, . . . , vn and
E = {e1, . . . , em} edges. The incidence matrix Q(G) of a graph G is defined as
qi j = 0 if e j is not incident to vertex vi ; qi j = 1 if e j starts from vi and qi j = −1 if
e j ends at vertex vi . The following properties of Q(G) can be stated [1].

• The column sums of Q(G) is zero, therefore the rows of Q(G) are linearly inde-
pendent.

• Rank of Q(G) is n − 1 for a connected graph G.
• Q(G) = n − k for a graph with k components.

Adjacency Matrix

We have used the adjacency matrix A(G) of a graph G in various algorithms. Let
us briefly review basic algebraic properties of A(G) as regards to graphs. The entry
ai j of A(G) is equal to 0, if vertices vi and v j are not adjacent and is 1 if they are
neighbors. An entry aii is 0 in A(G) and hence A(G) has zeros in its diagonal. We
observe the following properties of A(G).

http://dx.doi.org/10.1007/978-3-319-73235-0_2
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• A[i, j]k is the number of paths of length k from vertex i to vertex j .
• Let us form An−1 using Boolean multiplication and addition. Entry (i, j) in this

matrix is 1 if vertex i is connected to vertex j . We have used this property to form
the connectivity matrix of the graph G.

• If distance d(i, j) between the two vertices i and j is k, then the matrices
I, A, . . . , Ak are linearly independent [1].

Eigenvalues

Let us consider the equation Ax = λx where A is a non-singular square matrix, x is
a vector, and λ is a constant. When a vector is multiplied by a matrix, its direction
changes. Some vectors such as x are different since they do not change direction.
These vectors are called eigenvectors of the matrix A and the number λ is called an
eigenvalue of A. When A is the identity matrix, all vectors are the eigenvectors of A
with all eigenvalues being 1. Let us rewrite the equation Ax = λx .

Ax − λx = 0 (12.1)

(A − λI )x = 0,

therefore,

det (A − λI )x = 0. (12.2)

The equation det (A − λI ) = 0 is called the characteristic polynomial of A.
This provides us the method to find the eigenvalues and eigenvectors of a graph by
implementing the following steps.

1. Compute the determinant of A − λI . This gives a polynomial of degree n in λ.
2. Solve det(A − λI ) = 0 to find n roots λ1, . . . , λn which are the n eigenvalues

of A.
3. Solve (A−λi I )x = 0 for i = 1, . . . , n to find the corresponding eigenvectors for

each eigenvalue.

Laplacian Matrix

The Laplacian matrix L(G) of an undirected unweighted graph G without multiple
edges is defined as

L(G) = D(G) − A(G), (12.3)

where D is the degree matrix with an entry dii as the degree of vertex i with all other
elements equal to 0 and A(G) is the adjacency matrix of G. The other entries in L
are −1 if vertex i is adjacent to vertex j and 0 otherwise. The Laplacian L(G) of a
graph G is related to its incidence matrix Q(G) as follows:

L(G) = Q(G)QT (G), (12.4)
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where QT (G) is the transpose of the incidence matrix. The normalized Laplacian L
of G is defined as

L = D−1/2LD−1/2 = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2. (12.5)

The normalized Laplacian L then has the following entries:

li j =
⎧
⎨

⎩

di if i = j
−1 if i and j are neighbors
0 otherwise.

(12.6)

The set of all eigenvalues of the Laplacian matrix of a graph G is called the
Laplacian spectrum or just the spectrum of G. We will see shortly the eigenvalues
of the Laplacian matrix, which will provide vital information about the connectivity
of a graph.

12.3 Algebraic Graph Algorithms

Algebraic graph algorithms employ various operations using the three main matri-
ces associated with a graph, its adjacency matrix A which is sparse in general, its
incidence matrix I , and the graph Laplacian L . We provide algebraic algorithms for
sample graph problems in this section.

12.3.1 Connectivity

The second smallest eigenvalue of the Laplacian matrix of a graph G, called the
Fiedler value, provides information on howwellG is connected. This value is greater
than 0 if and only if G is connected. Moreover, the larger this value is, the more con-
nected G is and the number of 0s in the Laplacian eigenvalues of a graph G is the
number of connected components of G. The Fiedler value of a graph G, shown by
α(G), is called the algebraic connectivity ofG and has been used in numerous appli-
cations involving spectral graph theory and combinatorial optimization problems. Let
κ(G) denote the vertex connectivity of G. Fiedler showed that [9]

κ(G) ≥ α(G). (12.7)

The Laplacian matrix L(G) of a graph G can also be used to enumerate the
spanning trees of the graph G according to the theorem below.

Theorem 18 (matrix-tree theorem) Let u and v be the vertices of a graph G =
(V, E) and let L(G)(u, v) be the submatrix resulting from the deletion of row u
and column v from its Laplacian matrix L(G). Then |det L(G)(u, v)| is equal to the
number of spanning trees of G.



12.3 Algebraic Graph Algorithms 373

Strongly Connected Components

A strongly connected digraph has paths between any of its {u, v} vertex pairs in
both directions. A strongly connected component (SCC) of a directed graph G is a
subgraph G ′ of G, such that each vertex in G ′ is connected to all other vertices in G ′.
We reviewed two main algorithms to detect SCCs of a directed graph due to Tarjan
and Kosaraju in Chap.8. The first one used back edges in a DFS tree of a graph
G to detect SCCs, and the latter performed a DFS in the graph by putting vertices
visited in a stack according to their last visit times, then obtained transpose of G
and formed DFS subtrees of G by popping vertices from G. Each subtree rooted at
popped vertices is then an SCC of G.

We can structure a simple algorithm using the connectivity matrix C of a directed
graph to find its SCCs. The connectivity matrix C has entries ci j = 1 if there is a
path from a vertex i to j and ci j = 0 otherwise. The key observation here is that if
we form the transpose of C , then CT should have a path from its i to j showing the
path from j to i in C for i and j to be in the same SCC. We can then form a new
matrix C ′ which is formed by taking logically and of each element of C with CT .
This matrix C ′ has entries ci j = 1 if and only if there is a path from i to j and from
j to i meaning vertices i and j are in the same SCC. Let us illustrate this method by
the graph in Fig. 12.1.

The connectivity matrix C and its transpose CT can be structured as follows:

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8

1 1 1 1 0 0 0 0 0
2 1 1 1 0 0 0 0 0
3 1 1 1 0 0 0 0 0
4 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 0
6 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 0
8 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, CT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 0 0 0 1 1 1 1 1
5 0 0 0 1 1 1 1 1
6 0 0 0 1 1 1 1 1
7 0 0 0 1 1 1 1 1
8 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Performing logical and of these two matrices gives us the new matrix C ′. Any
element i in this matrix is in the same SCCwith an entry j if and only ifC ′[i, j] = 1.
For this example of directed graph, we can see that the SCCs are {1, 2, 3}, {4, 5, 6,
7}, and {8}.

Fig. 12.1 Sample graph for
Exercise6 1

23

4 5

67 8

http://dx.doi.org/10.1007/978-3-319-73235-0_8
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C ′ = C ∧ CT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8

1 1 1 1 0 0 0 0 0
2 1 1 1 0 0 0 0 0
3 1 1 1 0 0 0 0 0
4 0 0 0 1 1 1 1 0
5 0 0 0 1 1 1 1 0
6 0 0 0 1 1 1 1 0
7 0 0 0 1 1 1 1 0
8 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The connectivity matrix C can be formed by successively multiplying the adja-
cency matrix A of the directed graph to get An−1, since the longest path in a graph
may not be longer than n − 1. For example, for a graph with 12 vertices, we need to
formC = A11 which can be obtained by A2 = A×A; A4 = A2×A2; A8 = A4×A4

and A11 = A8 × A3 for a total of 4 matrix multiplications using logical and and
logical or operations instead of scalar multiplication and addition. We would need
�log n� matrix multiplications and since an n × n matrix multiplication requires
O(nω) operations, the complexity of this step is O(nω log n). Taking the transpose
of C and forming C ∧ CT both take O(n2) time, therefore total time complexity is
O(nω log n) with ω < 2.376. Tarjan’s or Kosaraju’s SCC detection algorithms both
use DFS and hence have better performances of O(n + m). However, parallelizing
DFS is difficult as discussed in Chap.6, but matrix multiplication can be parallelized
simply by distributing the rows or columns of matrices to a set of processes as we
saw in Chap.4.

12.3.2 Breadth-First Search

In breadth-first search (BFS), we explored vertices that are k hops away from a
given source vertex before exploring the ones that are k + 1 hops away as discussed
in Chap.6. This resulted in shortest distance paths in an undirected unweighted
graph. Let us consider the sparse adjacency matrix A of an undirected unweighted
graph G = (V, E). We have a sparse vector X to show the source vertex position,
for example, X [3] = 1 with all other elements 0 meaning vertex 3 is the source.
Multiplying AT by X gives us the vector that has 1s in all neighbors of vertex 3.
Multiplying the product again by AT provides neighbors that are two hops away and
so on. We can now sketch an algebraic algorithm using this property as shown in
Algorithm12.4. We have the matrix A and vector X as input and we want to form the
n × n matrix N , which shows the vertices that are i distance away in its i th row. We
need to provide a simple modification since the result of the multiplication shows all
vertices that are at most i hops away.

http://dx.doi.org/10.1007/978-3-319-73235-0_6
http://dx.doi.org/10.1007/978-3-319-73235-0_4
http://dx.doi.org/10.1007/978-3-319-73235-0_6
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Algorithm 12.1 BFS_Algeb
1: Input : G(V, E), A, X � connected, directed or undirected graph G, its adjacency matrix A

and source vertex vector X
2: Output : N [n, n] � vertices that are 1 to n hops away
3:
4: form AT

5: temporary matrix T
6: N ← 0
7: for i = 1 to diam(G) do
8: Y (i) ← AT × X � find neighbors i hop away
9: T ← Y (i) − Y (i−1)

10: Y (i−1) ← Y (i)

11: N [i, ∗] ← T � store neighbor identifiers
12: X ← Y � update
13: end for

Let us investigate how this algorithmworks for the sample graph of Fig. 12.2. The
transpose of the adjacency matrix A is itself since graph G is undirected.

The matrices A and X formed for source vertex 7 in this graph and the resulting
neighbor matrix N [1, ∗] are as follows. We show the full matrix for comparison but
only its i th row shown in bold is modified in i th iteration.

AT

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7

1 0 1 0 0 0 1 1
2 1 0 1 1 1 1 0
3 0 1 0 0 0 0 0
4 0 1 0 0 0 0 0
5 0 1 0 0 0 1 0
6 1 1 0 0 1 0 1
7 1 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× X (1)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→ N (1)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7

1 1 0 0 0 0 1 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The second iteration of the f or loop results in the following. Note that the result
of the multiplication is the vector (1 1 0 0 1 1 1) and we subtract the previous value
(1 0 0 0 0 1 0) from this product to obtain (0 1 0 0 1 0 0), which becomes the second

Fig. 12.2 Sample graph to
test algebraic BFS algorithm

5

7

1 2 3

46
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row of N .

AT

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7

1 0 1 0 0 0 1 1
2 1 0 1 1 1 1 0
3 0 1 0 0 0 0 0
4 0 1 0 0 0 0 0
5 0 1 0 0 0 1 0
6 1 1 0 0 1 0 1
7 1 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× X (2)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→ N (2)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7

1 1 0 0 0 0 1 0
2 0 1 0 0 1 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The final value of N at third iteration is shown below. The first row has 1s at
immediate neighbors of vertex 7, the second row has 1s at two-hop neighbors and
the third row shows three-hop neighbors. Since the diameter of the graph is 3, we
can stop at the third iteration.

N (3)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7

1 1 0 0 0 0 1 0
2 0 1 0 0 1 0 0
3 0 0 1 1 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We need diam(G) iterations of the f or loop and also we need to perform Θ(n2)
multiplications at each iteration resulting inΘ(n2diam(G)) time complexity for this
algorithm. We can immediately see that this algebraic approach can be parallelized
conveniently by 1-D partitioning of AT and X and distributing these to a number of
processes.

12.3.3 Shortest Paths

We look at the algebraic versions of twomain algorithms for shortest paths: Bellman–
Ford SSSP algorithm and Floyd–Warshall APSP algorithm in this section.

12.3.3.1 Bellman–Ford Algorithm
Bellman–Ford algorithm is based on dynamic programming and builds shortest paths
from a source vertex in an undirected or directed weighted graph progressively as we
reviewed inChap.7. It canwork in the presence of negative-weight edges of the graph,
however, it will only report negative cycles if they exist. Given a weighted graph
G = (V, E,w) with w : E → R and a source vertex s, it starts with an estimation
of distance d(v), ∀v ∈ V using the adjacency matrix A and performs relaxation at

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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each step until the shortest distances are found. Relaxation of an edge (u, v) is stated
as providing d(v) = min{d(v), d(u) + w(u, v)}. An algebraic formulation of this
algorithm will use the sparse adjacency matrix A[n, n] and a vector D[n] which
shows shortest distance d(i) from s, ∀i ∈ V in the end as shown in Algorithm12.2.

Algorithm 12.2 BF_Algeb
1: Input : G(V, E), A[n, n], D[n] � connected, directed or undirected weighted graph G, its

adjacency matrix A and distance vector D
2: Output: D[n] � shortest distances
3:
4: D ← ∞
5: for k = 1 to n do
6: D ← D min.+ A � find neighbors i hop away
7: if D �= d min. + A then
8: return “negative cycle found”
9: end if
10: end for

12.3.3.2 Floyd–Warshall Algorithm
This dynamic algorithm provided APSP among all vertices of a graph in O(n3) time
as we have reviewed in Chap.7. It used the relaxation method to update distances by
working on the adjacency matrix of the graph. Hence, we can say it is an algebraic
graph algorithm. The pseudocode of this algorithm using matrix notation is shown
in Algorithm12.5.

Algorithm 12.3 FW_Algeb
1: Input : G(V, E), A[n, n], D[n, n] � connected, directed or undirected weighted graph G, its

adjacency matrix A and distance vector D
2: Output: D[n] � shortest distances
3:
4: D ← A
5: for k = 1 to n do
6: D ← D .min[D(:, k) min.+D(k, :)] � find neighbors i hop away
7: end for

12.3.4 Minimum SpanningTrees

A minimum spanning tree (MST) of an undirected weighted connected graph G =
(V, E,w), w : E → R is a spanning tree of MST with the minimum sum of
weights of edges among all spanning trees of G. An MST of a graph is unique if all

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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edge weights are distinct. A minimum spanning forest of an unconnected undirected
weighted graphG consists ofMSTs in each component ofG.Wewill now reconsider
Prim’s algorithm we reviewed in Chap.7, but this time using the algebraic version.

Prim’s Algorithm

This algorithm starts with a set S consisting of any vertex of the graphG = (V, E,w)

initially and iteratively searches theminimumweight outgoing edge (MWOE) e from
S. The edge e is included in the MST tree T and the endpoints of the edge e are
added to S. The algorithm terminates when S = V and has a time complexity of
O(m log n) or O(m + n log n) when priority queue data structure is used.

In the algebraic version of this algorithm, we will assume vertices are numbered
from 1 to n for convenience and describe an algorithm as in [13]. We have the sparse
distance matrix D with entries di j = 0 when i = j , equals wi j when (i, j) ∈ E and
is assigned ∞ when (i, j) /∈ E . A 1 × n vector M with entries mi displays whether
vertex i ∈ S or not with mi = 0 if i /∈ S and mi = ∞ if i /∈ S. A 1 × n vector Q
with entries qi shows the lightest edge weight connecting i to the set S and qi = 0
if i ∈ S.

We start the algorithm by including the first vertex i in the set M making its value
∞ to mean it is an element of set S and assign Q to the first row of the distance
matrix D. The variable wt stores the sum of the weights of the edges of the MST
at any time. We then enter the while loop and continue until all elements of M are
processed and have ∞ values. The argmin operation at line 8 is used to find the
vertex u, which has the lightest edge to a vertex in S. This is actually searching the
MWOE in the classical algorithm. This vertex is included in S by setting its value
to ∞ in M . We also need another vector π which holds the parent of each vertex
to store MST information. A tuple < weight (u, v), u > can be defined to find the
parent of the newly added vertex u with v ∈ S. The parent of the edge when it is
included in the MST is kept in the variable x in line 10 and the parent of the vertex
at the end of the new edge when its is entered in the MST is saved to assign to the
parent value in π .

We need Θ(n) for the argmin operation and the total time, therefore, is O(n2)
which is worse than the original Prim algorithm for sparse graphs but comparable for
very dense graphs.However, the algebraic approach is suitable for parallel processing
as in other algebraic graph algorithms.

12.3.5 Algebraic Matching

A matching M of an undirected graph G = (V, E) is a subset of its edges such that
no edges in M share endpoints. In a perfect matching M , every v ∈ V is incident
to an edge e ∈ M . A maximum matching M ′ of G has the largest size among all
matchings of G and a maximal matching M is not contained in any other matching
of G.

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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Algorithm 12.4 Prim_Algeb
1: Input : G(V, E), A[n, n], D[n] � connected, directed or undirected weighted graph G, its

adjacency matrix A and distance vector D
2: Output: D[n] � shortest distances
3:
4: M ← 0, wt ← 0
5: � ← Ø, M[1] ← ∞
6: Q ← D[1, :]
7: while M �= ∞ do
8: u ← argmin{M + Q}
9: M[u] ← ∞
10: < w, x >← Q[u]
11: wt ← wt + Q[u]
12: π [u] ← x
13: Q ← Q .min D[u, :]
14: end while

Definition 12.1 (Tutte matrix) The Tutte matrix T (G) of an undirected simple graph
G = (V, E) is an n × n matrix with elements;

Ti j =
⎧
⎨

⎩

xi j if (i, j) ∈ E and i < j
−xi j if (i, j) ∈ E and i > j
0 if (i, j) /∈ E,

where xi j are formal variables. Tutte proved an important relation between the Tutte
matrix and perfect matching of a graph [24].

Theorem 12.1 (Tutte) Let G = (V, E) be an undirected simple graph with a Tutte
matrix T . Then, G has a perfect matching if and only if det(T ) �= 0.

Tutte matrix consists of variables and its determinant is a polynomial of its vari-
ables. The determinant should be a polynomial with all zero parameters to have a
perfect matching. We can, therefore, compute Tutte matrix T , compute its determi-
nant, and check whether this is zero. However, computing T may take exponential
time. Lovazs provided a randomized algorithm to test the perfect matching condition
of a graph by substituting for each variable of Tutte matrix T from a polynomially
large set of integers and then checking whether T is non-singular [14]. Lovazs also
showed that the rank of Tutte matrix of a graph G provides the size of the maximum
matching of G [15] shown by the following theorem.

Theorem 12.2 (Lovazs) Let G = (V, E) be an undirected simple graph with a Tutte
matrix T and k be the size of the maximum matching of G. Then rank(T ) = 2k.
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Rabin–Vazirani Algorithm

Once we know that the graph G has a perfect matching, we need an algorithm to
find this matching. Let us assume an edge (u, v) that belongs to a perfect matching
in G. The subgraph obtained by removing (u, v) and all of its adjacent edges from G
has also a perfect matching. If we know how to find an edge e of a perfect matching,
we can recursively build a perfect matching of G. Rabin and Vazirani found that the
inverse T−1 of Tutte matrix provides this information as shown by the following
theorem.

Theorem 12.3 (Rabin–Vazirani) Let G = (V, E) be an undirected simple graph
with a Tutte matrix T . Then, (T (G ′)−1)i, j �=0 if and only if G − {i, j} has a perfect
matching.

Rabin and Vazirani developed a randomized algorithm based on this theorem,
which computes Tutte matrix and its inverse and finds an edge (i, j) satisfying the
property in Theorem12.3. This edge belongs to the perfect matching and thus is
added to the current matching. It is then removed from the graph with all its adjacent
edges. The algorithm continues with the remaining graph until it becomes empty.

Algorithm 12.5 RV _Alg
1: Input : G = (V, E) � undirected simple graph G
2: Output: M � perfect matching of G
3:
4: M ← Ø
5: G ′ = (V ′, E ′) ← G = (V, E)

6: while G ′ �= Ø do
7: compute T (G ′) and instantiate each variable with a random value from {1, . . . , n2}
8: compute T (G ′)−1

9: find i and j such that (vi , v j ) ∈ E ′ and (T (G ′)−1)i, j �= 0
10: M ← M ∪ {(vi , v j )}
11: G ′ ← G ′ − {vi , v j }
12: end while

Rabin and Vazirani showed that n/2 matrix inversions are sufficient as each inver-
sion provides one edge of matching. Matrix inversion which takes O(nω) time dom-
inates the time taken for the algorithm and each trial to find the perfect matching
takes O(nω+1) time [19].

12.4 Dynamic Graph Algorithms

We have seen static graph algorithms that provide an output of some function on
the graph data structure up to now. However, graphs that represent many real-life



12.4 Dynamic Graph Algorithms 381

networks are not static going through modifications in time. A dynamic graph G
may evolve with time due to changes in G such as insertion or removal of edges.
Dynamic graphs represent many real-life networks, for example, the Internet, protein
interaction networks, and social networks in which such changes occur frequently.
A dynamic graph algorithm allows the following operations on dynamic graphs:

• query: We evaluate a certain property of the graph G. For example; “Is graph
connected?”

• insert: An edge or an isolated vertex is inserted to the graph.
• delete: An edge or an isolated vertex is deleted from the graph.

The two latter operations are commonly called update procedures.We can perform
these operations using the static graph algorithms we have seen up to now from
scratch for themodified graph. However, themain goal of a dynamic graph algorithm
is to provide more efficient solutions for these operations than the static algorithms.
These algorithms are classified as follows:

• Fully dynamic: Insertions and deletion of edges and vertices are allowed.
• Incremental: Only insertions of edges and vertices are allowed.
• Decremental: Only deletion of edges and vertices are allowed.

The last two types of algorithms are named partial dynamic graph algorithms.
Queries are allowed in all of the algorithms described. Intuitively, answering a query
in a dynamic graph in general is simpler than performing an update operation.
Another distinction is between undirected and directed graphs. A dynamic graph
operation whether a query or an update is generally more difficult in a directed graph
than an undirected graph. The task of a dynamic graph algorithm remains to provide
a better performance than its static counterpart. We will see the design of clever data
structures is crucial when forming dynamic algorithms.

The fully dynamic connectivity algorithm in an undirected graph allows insertion
an deletion of edges, and enables queries such as “is graph connected” or “are vertices
u and v in the same component?”. In the fully dynamic minimum spanning tree
problem, we maintain a forest of minimum spanning trees when edges are inserted,
deleted, and weights of edges change. The main problems in directed graphs are
dynamic transitive closure and dynamic shortest paths. In the first problem, we keep
information to evaluatewhether a vertex v is reachable froma vertex uwhen edges are
deleted and inserted. The shortest path problem involves providing and maintaining
information about shortest paths when edges are inserted and deleted in a dynamic
environment.

We start this section byfirst defining somemethods to be used in designing efficient
dynamic graph algorithms for undirected and directed graphs and then provide a brief
survey of algorithms for two representative dynamic graph problems; connectivity
and matching.
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12.4.1 Methods

The methods for undirected graphs and directed graphs differ significantly. We will
classify these methods as described in [7] for undirected and directed graphs.

12.4.1.1 Undirected Graphs
The main methods of designing algorithms for the dynamic undirected graph are
clustering, sparsification, and randomization.

Clustering

The clustering method for dynamic graphs was proposed in [10], where the graph
is partitioned to a number of clusters and update operation is performed in only the
related cluster, for example, a spanning tree may be partitioned into a number of
subtrees. It was shown in [10] that the minimum spanning forest of a graph can be
maintained in O(

√
m) per update using this method.

Sparsification

Sparsification is a technique that is used as a black box in the design of dynamic
graph algorithms as described in [8]. This is a divide and conquer method in which
the graph G is partitioned into a set of O(m/n) sparse subgraphs. Each subgraph
information is kept in a certificate which is merged in pairs with other subgraphs
resulting in a balanced tree for the graph with each vertex having a sparse certificate.
An update operation is then performed in O(logm/n) graphs with each having O(n)

edges [7,8].

Randomization

Randomization is a powerful method for algorithm design. It also proved to be
efficient in the design of dynamic graph algorithms for undirected graphs in [11].
They used random sampling to select a non-tree edge when a tree edge is removed
from the graphwhenmaintaining a spanning tree. It can also be combinedwith graph
decomposition.

12.4.1.2 Directed Graphs
Tools for directed graphs are outlined in [7] in terms of data structures used and
methods employed. A special tree structure named reachability tree can be used to
solve dynamic graph problems. The aim of using this data structure is to keep a BFS
tree during edge deletions. Two types of operations supported are the Delete(u,v)
which removes edge (u, v) from the graph and Level(u) which returns the level of
a vertex u in the BFS tree. Matrix data structures can also be used to keep dynamic
graph information with dynamic operations on rows and columns.

Demetrescu and Italiano proposed locally shortest paths defined as paths which
have every proper subpaths as shortest paths [4]. Given a graphG = (V, E), the long
paths propertymeans selecting S ⊂ V at random results in sufficiently long paths of
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G having common vertices in S with high probability. Using this property, we can
find a long path using short searches to design algorithms for transitive closure and
shortest paths [5,7].

12.4.2 Connectivity

In the dynamic connectivity problem, we need to test the connectivity of the graph
when there are queries and updates. Typical querieswould be testingwhether graphG
is connected (connected(G)) and are vertices u and v connected (connected(u, v)).
For the update problem, we would need to perform these queries when an edge
(u, v) is inserted or deleted from graph. We will consider two cases separately as
their implementations are very different; the incremental and decremental dynamic
connectivity.

12.4.2.1 Incremental Algorithms
We want to maintain information on the connected components of an undirected
graph G dynamically with the use of following operations.

• connected(u,v): Report whether u are v are in the same connected
component of G

• insert(u,v): Add edge (u, v) to G.

Let us recall the union-find data structure we have reviewed in Chap.7. This
structure maintains disjoint groups of data items with each group having a represen-
tative. It supports two operations; f ind(x) returns the representative of the set that
x belongs and union(x, y) merges the groups of x and y. We can check whether
two data items are in the same group by testing their representatives with find to see
if they have the same representative. If they do, they are in the same group. We can
also unite two groups by the union operation. The union-find data structure can be
implemented in O(α(n)) time where α(n) is the inverse of the very fast growing
Ackermann function [22].

We can see this data structure is adequate to have a dynamic incremental connec-
tivity algorithm. We can perform a DFS algorithm in the graph and store each tree
of the forest in a group with the root of the tree being the representative of the tree.
Each query can be realized by find(x) operations, which outputs the root of the tree
that x is contained and an insert(u,v) operation is realized by the union operation
which merges two trees if u and v are in different trees.

12.4.2.2 Decremental Algorithms
In the decremental connectivity problem, we want to remove an edge by delete(u, v)
operation and check whether graph is still connected or not. The union-find struc-
ture does not work in this case and several studies aimed to find a solution to this

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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Fig. 12.3 An Euler tour of a tree. Visit times for the vertex h is shown

problem. An update time of O(
√
m) using clusters was presented in [10] which was

improved to O(
√
n) using the method of sparsification in [8]. A randomized algo-

rithm with amortized O(log2 n) expected time per operation was proposed in [11].
A deterministic algorithm with amortized O(log2 n) per operation was presented in
[12] and a randomized algorithm with expected O(log n(log log n)3) amortized time
per operation is described in [23]. We will take a closer look at a novel data structure
called Euler tour tree that can be used for dynamic connectivity problem.

Euler Tour Trees

The Euler tour tree (ETT) was presented in [11] to store information about dynamic
graphs. An Euler tour of a graph G is a path that traverses each edge of G exactly
once. A tree does not have an Euler tour, in order to realize an Euler tour of a tree
T , each edge is considered bidirectional and hence each edge is traversed twice and
the tour starts and ends at the root vertex [11]. An Euler tour tree (ETT) associates a
weighted or unweighted key for each vertex. An ETT is basically a balanced binary
tree of an Euler tour of the tree T . We can think of an Euler tour of a tree T as a
depth- first traversal of T . An Euler tour of a sample tree is shown in Fig. 12.3, where
the BST stores the vertices in the order of their visit times and each vertex in the tree
holds pointers to the vertices in the BST showing their first and last visited times.

The main idea of the connectivity algorithm based on ETTs is to store the Euler
tour of a tree instead of storing the tree. Edge insertions or deletions can be performed
by modifying Euler trees of the forest. Testing whether two vertices are connected
can be done by checking if these vertices are in the same ETT. The following main
operations are provided in an ETT:

• FindRoot(v): Finds the root of the tree that contains vertex v. Since the root is
visited as the first element and the last element of the tree, the minimum or the
maximum element of the tree is returned.
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Fig. 12.4 Operation of the Cut (h) procedure on the sample graph of Fig. 12.3

• Cut(v): The subtree rooted at vertex v is cut from the tree it is contained. This
can be implemented by dividing the BST into three segments; segment before
the first visit to v, segment between the first and last visit to v, and the segment
after the last visit to v. The second segment is shown as the bold box in Fig. 12.4.
The first segment contains Euler tour of the tree before reaching vertex v, Euler
tour of the subtree rooted at v and the Euler tour of the tree after v is visited last
time. We can now merge the first and third segment to perform the cut operation.
This procedure is illustrated in Fig. 12.4 for vertex h. Note that one occurrence of
vertex e has to be deleted from the BST.

• Link(u,v): The subtree rooted at vertex u is connected as a child of vertex v. We
divide the BST into two segments; left segment Sl is from the beginning until
before the last visit to v, and the second segment Sr is the rest of the BST. The
ETT of the forest is then ET TF = {S1 ∪ v ∪ ET Tu ∪ S2}, where ET Tu is the
ETT of the tree rooted at the vertex u.

There are various other procedures to modify the ETTs as described in [11]. In
order to answer the connected(u,v) query, the roots of the ETTs that contain these
vertices are found by the FindRoot procedure and checked whether they are the
same. Insertion and deletion are performed by the reconstruction of Euler tours with
changes in only O(log n) vertices of the balanced BST. Queries can be answered
in O(log n/ log log n) time and insertions take O(log2 n/ log log n) time using this
method [11].
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12.4.3 Dynamic Matching

Dynamic matching of a graph G should maintain the maximal matching of G in
the presence of edge insertions and removals. In order to do so, we need to ensure
that there is no edge (u, v) of G with both free endpoints since such an edge should
be included in the matching. We need to check the following while inserting and
deleting edges to a graph with a maxima matching M .

• insert(u,v): Whenever an edge (u, v) is to be inserted in G, we can check its
endpoints and include this edge in the maximal matching M of G if both u and v
are free.When an unmatched edge (u, v) is deleted, we do not need to do anything
since this edge is not part of the maximal matching. For other cases, we need to
check the neighbors of the vertices u and v and update the maximal matching as
appropriate.

• delete(u,v): We need to consider two cases when an edge (u, v) is deleted from the
graph; when a matched edge (u, v) is deleted, we need to check deg(u) + deg(v)
neighbors of these vertices which is fine when degrees of vertices are small. For a
graph with large degrees, randomization can be used in which a vertex is matched
with a neighbor vertex selected at random in randommating. The simple approach
described is combinedwith randommating is presented in [2] to result in expected
amortized O(log n) time per update.

We will take a closer look at a deterministic algorithm that works on the described
logic to update the maximal matching of a graph.

Neiman and Solomon Algorithm

Neiman and Solomon presented a deterministic algorithm to find maximal matching
of a graph that runs in O(

√
m) update time with a 3/2-approximation [17]. The main

idea of this algorithm is to consider three cases when adding an edge (u, v) to the
graph G. If both endpoints of (u, v) are free, then (u, v) is added to the existing
matching. If both u and v are matched, then matching is not changed. When one
endpoint of edge is matched and other is not, neighbors of vertices u and v are
searched. When a matched edge (u, v) is deleted from the graph, the neighbors of
u and v are checked to see if an edge (u,w) or (u, y) or both can be added to the
matching. The algorithm works in rounds and the three invariants to be maintained
at the i th round of the algorithm are as follows.

1. The degree deg(v) of a free vertex v that can be matched at all times is
≤ √

2(mi + n)

2. For a free vertex v, deg(v) ≤ √
2mi . When a high-degree vertex u becomes free

and all of its neighbors are matched, a surrogate v′ is searched in place of u. The
vertex v′ is matched to a neighbor v of u such that deg(v′) ≤ √

2m. Then u and
v can be matched and the low-degree vertex v′ becomes free.

3. M is maximal
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Algorithm12.6 displays the pseudocode of the insert procedure in this algorithm.
We have a procedure called Surrogate that is called when one endpoint of the edge
to be inserted is matched and the other is free. In this case, adding the edge (u, v)
may result in an augmenting path which means the maximal matching M can be
enlarged.

Algorithm 12.6 Inserting an edge
1: procedure Insert((u, v))
2: E ← E ∪ {(u, v)}
3: mi ← mi + 1
4: if both u and v are free then
5: M ← M ∪ {(u, v)}
6: if u is free and v is matched (or other way) then
7: surrogate(u) (or v)
8: end if
9: end if
10: end procedure

The Insert procedure calls the procedure surrogate when one end of the added
edge (u, v) is free and the other is not. In the first case, if (u, v) /∈ M , we simply
remove the edge (u, v) from the graph without changing the matching M . In the
second case, (u, v) ∈ M , and the edge (u, v) is deleted from the matching M . This
may result in forming new augmenting paths of length less than or equal to 3 which
start either at u or v. In this case, we check whether there is a free vertex w that is
a neighbor of vertex u or v in which case edge (u, v) is added to the matching M .
Furthermore, the degree of vertex u under consideration is checked; two cases are
when deg(u) ≤ √

2m or deg(u) >
√
2m. In the first case, u may become free but

a search for an augmenting path is carried. When deg(u) >
√
2m, u is not allowed

to be free since its degree is high or it has no free neighbors. In this case, the proce-
dure Surrogate is called to find a surrogate vertex that may become free instead of
vertex u.

A recent work on dynamic deterministic approximate maximum matching with
worst-case update time of O(log3 n) time is presented in [3] and randomized 2-
approximate matching algorithms are reported in [18,21].

12.5 Dynamic Algebraic Graph Algorithms

A dynamic algebraic graph algorithm aims to solve a problem in a dynamic graph
using algebraic methods. Our main focus here is again implementing linear algebra
operations for the given graph problem. A dynamic matrix library to be used for this
purpose can be formed and we will first list possible operations in such a library.
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We will then survey dynamic algebraic graph algorithms for two main problems we
have been investigating in this chapter; connectivity and matching.

12.5.1 A Dynamic Matrix Library

A dynamic matrix operation can be defined as the procedure that performs a matrix
function such as finding determinant or inverse of a matrix when a change such
as the contents of a row or column occurs. This procedure should implement the
required function without having to run the static counterpart from scratch, and
therefore should provide a better performance. The following matrix operations can
be performed dynamically as described in [20].

• determinant of a matrix
• adjoint of a matrix
• inverse of a matrix
• matrix rank
• characteristic polynomial of a matrix
• linear system of equations

It was shown in [20] that finding dynamic determinant of a matrix, computing
matrix inverse, matrix adjoint and solving linear system of equations with non-
singular row and column updates, can be solved with the following costs:

• initialization: O(nω) arithmetic operations.
• update: O(n2) arithmetic operations.
• query: O(1) arithmetic operations.

12.5.2 Connectivity

We have searched a solution to the connectivity problem using algebraic methods
first, then reviewed the dynamic connectivity problem. We now want to investigate
dynamic connectivity algorithms using linear algebra. Let us recall the two main
algebraic methods for connectivity:

• Laplacian Matrix: The second smallest eigenvalue λ2 of the Laplacian matrix
called algebraic connectivity or the Fiedler value provides information on the
graph connectivity. The Laplacian of an unweighted graph is a symmetric, positive
semidefinite matrix that has a positive λ2 if and only if the graph is connected. In
order to find this value, we need to solve the equation det(A − λI )x = 0.

• Adjacency Matrix: The sum of the powers C = ∑k
i=0 A

k of the adjacency matrix
A for k ≤ n− 1 provide information on the connectivity of a graph. The ci j entry
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of C shows the number of paths of length k or less between the vertices i and j .
If all entries of Ak are positive, then the graph is connected.

Finding the determinant of a matrix can be performed dynamically [20] and hence
we have a dynamic method to find the connectivity using the Laplacian matrix. Sim-
ilarly, matrix multiplication of dynamic matrices can be performed to result in a
dynamic connectivity method using the adjacency matrix. Maintaining connectiv-
ity in a distributed system consisting of many autonomous computing elements has
a number of applications. For example, providing connectivity in a mobile robot
network is needed for the coordination of the robots and maintaining positive defi-
niteness of positive entries ofC is sufficient to provide connectivity in such a network
[25].

12.5.3 Perfect Matching Using Gaussian Elimination

We described Rabin and Vazirani algorithm [19] for perfect matching in Sect. 12.3.5.
The random adjacency matrix A(G) of the graph G, called Tutte matrix T , is created
first in this algorithm. Its inverse A−1(G) is then computed and an allowed edge e
is found, this edge and its endpoints are removed from G and a new Tutte matrix T
is created for the new graph. This loop continues until G becomes empty. The time
to compute the matrix T−1(G) is O(nω) resulting in O(nω+1) time in total.

Mucha and Sankowski found that computing the inverse of Tutte matrix in each
iteration is not necessary since Tutte matrix at r th iteration, Tr+1, is Tr with two rows
and columns corresponding to i and j deleted [16]. The following theorem was used
to form a relation between T−1

r+1 and T−1
r .

Theorem 12.4 (Elimination) Let A be a non-singular n× n matrix. Then, A and its
inverse can be written as

A =
(
a11 vT

u B

)

, A−1 =
(
â11 v̂T

û B̂

)

where a1,1, â1,1 are numbers, u, v, û, v̂ are n − 1 × 1 vectors and â1,1 �= 0. Then,
B−1 = B̂ − ûv̂T /â1,1

Using this theorem, we can compute the inverse of a matrix dynamically after
removing a row and column without having to compute the inverse from scratch. We
consider the columns as variables and the rows as the equations, and the described
procedure eliminates the first variable using the first equation.Mucha and Sankowski
provided a O(n3) algorithm shown in Algorithm12.7 that finds the perfect matching
of a simple undirected graph based on Rabin–Vazirani algorithm using the method
we have described [16].
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Algorithm 12.7 MS_AlgMatch
1: Input : G(V, E) � undirected simple graph G
2: Output: M � perfect matching of G
3:
4: M ← Ø
5: A ← T−1

G
6: G ′ = (V ′, E ′) ← G = (V, E)

7: while G ′ �= Ø do
8: find i such that (vi , v j ) ∈ E ′ and ai j �= 0
9: M ← M ∪ {(vi , v j )}
10: G ′ ← G ′ − {vi , v j }
11: eliminate i-th row and j-th column of A
12: eliminate j-th row and i-th column of A
13: end while

12.6 Chapter Notes

Wehave reviewedfirst algebraic, then dynamic graph algorithms, andfinally dynamic
algebraic graph algorithms in this chapter. A class of algebraic graph algorithms
relies heavily on matrices related to a graph and operations on them to solve a graph
problem. We can see the already available matrix library functions can be used
for such problems whether in sequential or parallel operations. The algebraic graph
algorithms provided solutionswhichmay haveworse performances than the classical
counterparts, but they are much easier to parallelize than the classical ones. Matrix
multiplication is frequently used to solve various graph problems as we have seen.
Since this basicmatrix operation can be parallelized conveniently, we can deduce that
these problems can be parallelized more easily than the traditional graph algorithms
described until now. Dynamic graph algorithms provide more efficient solutions
than the static ones when there is a change in the structure of the graph. Designing
sophisticated data structures is crucial for dynamic graph algorithms since updates
andqueries depend largely on the data structures used.We reviewedbasicmethods for
undirected graphs which include sparsification, randomization, and clustering; and
directed graphs with reachability trees, matrix data structures, locally shortest paths,
and long paths. We then reviewed algorithms for dynamic connectivity and dynamic
matching. Our last topic of reviewwas the dynamic algebraic graph algorithmswhich
work on dynamic graphs using methods of linear algebra. We looked at two main
problems again; connectivity and matching. We saw how a simple modification to
Rabin–Vazirani algebraicmatching algorithm using a basicmethod again from linear
algebra led to a more efficient solution.

These topics are relatively more recent areas of study than the static graph algo-
rithms we have seen until now and they have been the focus of many recent studies.
Ourmain goal in the analysis of these topics is to provide a general surveywith exam-
ples to give some idea on the related concepts rather than being comprehensive. A
good review of algebraic graph algorithms is provided in [13]. A detailed survey of
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dynamic graphs and dynamic graph algorithms are provided in [6,7] and algebraic
theory related to graphs is presented in [1]. A thorough analysis of dynamic matrix
operations for some graph problems is provided in [20].
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Exercises

1. Find the Laplacian matrix for sample graph shown in Fig. 12.5 and work out the
eigenvalues and eigenvectors of this graph.

2. Work out the algebraic BFS algorithm in the sample graph depicted in Fig. 12.6
for source vertex 2. Show the contents of neighborhoodmatrix N at each iteration.
Describe how to run this algorithm in parallel using two processes p0 and p1 using
this graph as an example.

3. Discover the SCCs of the directed graph depicted in Fig. 12.7 using its connec-
tivity matrix and its transpose.

4. Form the union-find data structures as trees for the graph of Fig. 12.8. Show the
operation of f ind(c), connected(d, f ), and insert (e, k) using this data structure
on this graph.

5. Sketch a parallel version of Rabin–Vazirani algorithm for perfect matching to
run using k processes po, . . . , pk−1 on distributed memory computers. Write the
pseudocode for a process by showing the interprocess communication explicitly.
You can assume amaster/slave or a fully distributedmodel of a parallel processing
system.
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13Analysis of LargeGraphs

Abstract

Analysis of these graphs requires introduction of new parameters and methods
conceptually different than the ones used for relatively smaller graphs.Wedescribe
new parameters and methods for the analysis of these graphs and also describe
various models to represent them in this chapter. Two widely used models for the
large graphs representing real networks are small-world and scale-free models.
The former means the average distance between any two nodes in large graphs
is small and only few nodes with high degrees exist with majority of the nodes
having low degrees in the latter.

13.1 Introduction

Large graphs consist of thousands of vertices and tens of thousands of edges.Analysis
of these graphs requires introduction of new parameters and methods conceptually
different than the ones we have reviewed up to this point. Global description of large
graphs is very difficult due to the large sizes involved. One way of tackling this
problem is to select a sample and representative subgraph of a given graph, analyze
it, and extend the results obtained to the whole graph. However, sample selection is
a problem on its own and reliability of extrapolating the analysis results is another
issue to be considered. Alternatively, and more commonly, we can analyze the local
properties of vertices and edges in these graphs and use the results obtained to have
some idea on the overall structure of the graph.

We start this chapter by defining some new parameters for large graph analysis.
Real large networks represented by large graphs have some interesting properties.
These networks, commonly called complex networks, exhibit small-world and scale-
free structures. The former means the distance between any two nodes in these net-
works is small compared to the number of nodes they have and the scale-free property
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is depicted by the existences of few very high-degree nodes and many low-degree
nodes. These attributes are not found in random networks and we provide a brief
review of these real-life network models. Main types of complex networks are the
technological networks, biological networks, and social networks as we will analyze
in the next chapter. We describe the centrality concept which provides assigning im-
portance values to vertices and edges based on their usage in a network andwe review
the main algorithms to asses centralities in networks. Clustering provides grouping
similar objects using some similarity measure. Graph clustering is the process of de-
tecting dense regions of a given graph. We define parameters to assess the quality of
the output of any clustering method and review few basic algorithms to find clusters
and cluster-like structures in graphs in the last part of this chapter.

13.2 Main Parameters

Analysis of large graphs is difficult due to the amount of data to represent them.
We can however analyze local properties in these graphs with the aim of deducing
their global properties. We need to define some new parameters for the assessment
of global properties of large graphs as described in the next sections.

13.2.1 Degree Distribution

Definition 13.1 (degree distribution) The degree distribution of a graph G is the
ratio of the number of vertices with degree k to the total number of vertices.

This parameter basically shows the probability of a randomly selected vertex to
have a degree k. It can be formulated as follows:

P(k) = nk
n

, (13.1)

where nk is the number of vertices with degree k and n is the number of vertices.
Plotting of P(k) against the degrees provides visual analysis of the distribution of
the vertex degrees of the graph. For a random graph, we expect the degree distrib-
ution to be binomial with peak around the average degree of the graph. For graphs
representing many real-life networks, we see rather interesting distributions which
are radically different than the binomial. A degree distribution of a simple graph is
depicted in Fig. 13.1

In an assortative network, a node has a high probability of being neighbor of a
node with similar degree. For example, nodes of a social network are persons and
this property is exhibited in such networks since a person with many friends has a
high chance of having another person with many friends as a friend, as in the case of
celebrities who know each other. In disassortative networks, a high-degree vertex is
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Fig. 13.1 Degree distribution of a simple graph

commonly attached to vertex with a low degree as in the case of biological networks
such as the protein interaction networks.

13.2.2 Graph Density

The density of a graphG, ρ(G), is defined as the ratio of the size of its existing edges
to the maximum possible of size of edges that can exist as follows:

ρ(G) = 2m

n(n − 1)
(13.2)

In an undirected graph, the sum of the degrees is equal to 2m by the handshake
theorem (See Chap.2) and the average degree of a graph, deg(G), is the sum of all
degrees divided by the number of its vertices is 2m/n. Substitution in Eq.13.2 yields

ρ(G) = deg(G)

n − 1
≈ deg(G)

n
when n is large (13.3)

In a dense graph, ρ(G) is stable when n is increased to very large values and
ρ(G) approaches 0 with large values of n in sparse graphs. The average degree of
the graph in Fig. 13.1 is 38/13 = 2.9.

13.2.3 Clustering Coefficient

Clustering coefficient is a local property defined for a vertex in a graph as follows.

Definition 13.2 (clustering coefficient) The clustering coefficient CC(v) of a vertex
v in a graph G is the ratio of the number of edges between the neighbors of v to the
maximum possible number of connections between these neighbors.

http://dx.doi.org/10.1007/978-3-319-73235-0_2
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Since the maximum possible number of connections between k vertices in a graph
is k(k − 1)/2, the clustering coefficient CC(v) of a vertex v is defined as follows.

CC(v) = 2nv
|N(v)|(|N(v)| − 1)

, (13.4)

where nv is the number of edges between the neighbors of vertex v. This parameter
basically shows how well the neighbors of a vertex are connected and hence their
tendency to forming a clique. In a social network for example, the clustering coeffi-
cient of a person provides evaluation of how much friends of that person are friends
of each other. The average clustering coefficient of a graph G, CC(G), is the mean
value of all of the clustering coefficients of vertices as follows:

CC(G) = 1

n′
∑

v∈V
CC(v), (13.5)

where n′ is the number of nodes that have a degree of two or more. For a vertex vwith
a degree less than two, CC(v) is sometimes considered one or zero and in this case,
the denominator in the above equation can be taken as n. If this parameter is high in
a graph G, we can deduce that the vertices of G are well connected and therefore G
is a dense graph. Clustering coefficients of vertices of a sample graph are depicted
in Fig. 13.2.

The transitivity T(G) of a graphG = (V,E) as proposed in [12] assesses howwell
neighbors of the vertices of a graph are connected. Let a triangle subgraph of a graph
G be Gt = (Vt,Et) with Vt = {v1, v2, v3} and Et = {(v1, v2), (v2, v3), (v1, v3)}. A
triplet is a three-vertex subgraph Gr = (Vr,Er) with Vr = {v1, v2, v3} and Er =
{(v1, v2), (v2, v3)} with v2 in the middle. Each triangle contains three triplets; the
transitivity of a graph can now be defined as follows:

T(G) = 3 × number of triangles

number of connected triplets
(13.6)

A simple four-vertex graph is depicted in Fig. 13.3. The clustering coefficients
are given next to vertices. Graph clustering coefficient is the average of these values,
yielding (2 + 4

3 )/4 = 5/6. There are two triangles in this graph and eight triplets,

Fig. 13.2 Clustering
coefficient values of the
vertices of a sample graph a b c
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Fig. 13.3 Comparison of
transitivity and the clustering
coefficient in a sample graph
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counting three triplets per triangle and including {d, a, b} and {a, b, c} triplets giving
a total of eight triplets. Hence, the transitivity of this graph is 3 × 2/8 = 0.75.

13.2.4 Matching Index

One way of assessing similarity between the two vertices of a graph is to find the
number of their commonneighbors.Matching index defined below is used to quantify
this similarity.

Definition 13.3 (matching index) The matching index of two vertices u and v in
a graph G is defined as the ratio of the number of their common neighbors to the
number of the union of their neighbors.

In Fig. 13.2, the matching index of vertices b and f ,mbf , is 0.33 since the union of
their neighbor set is N(b) ∪ N(f ) = {a, c, d, e, g, h} with a size of 6 and they have
two common neighbors, c and g. The vertices in a graph may be far apart especially
in the case of very large networks in which case common neighbors may not exist.
In such a case, we propose the k-hop matching index parameter which is basically
the ratio of common neighbors of two vertices in k-hop neighborhood to all of their
neighbors in such a neighborhood. We can evaluate this parameter sequentially, and
also in a distributed setting. The following distributed algorithm steps for a node
i of a distributed system can be employed for this purpose. The algorithm can be
implemented in k synchronous rounds under the control of a supervisor using SSI
model.

1. degs[1] ← deg(i)
2. for i = 1 to k
3. send degs[k] to N(i)
4. receive degs[k + 1] from N(i)
5. end for
6. comm ← common neighbors in degs[1..k]
7. all ← neighbors in degs[1..k]
8. mi ← |comm|

|all|
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13.3 NetworkModels

The network models can be classified as random networks, small-world networks,
scale-free networks, and hierarchical networks.

13.3.1 RandomNetworks

A random network model assumes that the edges between nodes are inserted ran-
domly. In the basic random graph model, G(n, p), proposed by Erdos–Renyi, there
are n vertices and each edge is successively added between two vertices with prob-
ability p independently [7,8]. In order to generate a random network based on this
G(n, p) model, the following steps are applied:

1. There are n isolated nodes initially.
2. Select a node pair u and v from these and generate a random number 0 ≤ x ≤

1. If x ≥ p then connect u and v to form edge (u, v), otherwise leave them
unconnected.

3. Repeat Step 2 for each of the n(n − 1)/2 vertex pairs.

We will have a different random network with the same values of n and p for
each generation. The degree distribution in random networks is binomial centered
around the average degree and these networks also exhibit small average clustering
coefficient with low diameter with respect to the number of nodes.

13.3.2 Small-World Networks

A small-world network has a small diameter compared to its size which means
reaching from any node to any other in such a network can be performed by few
number of hops. This property is observed in many real large networks such as
social networks and biological networks. This is a useful property in large networks
as fast communication between any two nodes is possible. The small-world property
is characterized by a low value of average path length l defined as the mean of
distances between all pairs of n nodes in a graph G = (V,E) as below:

l = 1

n(n − 1)

∑

u,v∈V,u 	=v

d(u, v) (13.7)

In a small-world network, the value of l should be bounded by log n. This prop-
erty in complex networks was commonly associated with a high average clustering
coefficient indicating the presence of clusters as shown byWatts and Strogatz [4,18].
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13.3.3 Scale-Free Networks

An interesting property observed in large graphs representing real-life networks is
the degree distribution displayed by P(k) ≈ Ak−γ with 2 < γ < 3 instead of
a binomial distribution of a random network. In practical terms, this means there
are few nodes called hubs with very high degrees with most of the nodes having
small degrees in these networks. This power-law degree distribution of vertices can
be generated following the rules of growth and preferential attachment as in the
following algorithm:

1. Growth: A new vertex v is generated and connected to one of the existing vertices
with the following rule.

2. Preferential attachment: Vertex v is attached to one of the existing vertices, say
u, with a probability related to the degree of vertex u.

Starting with a small number of vertices, a scale-free graph is obtained when these
two steps are repeated sufficient number of times as proven by Barabasi and Albert
[1].

Let us define the clustering function C(k) of a graph G as the average clustering
coefficient of the nodes with degree k. In various biological networks, C(k) ≈ k−1

showing the clustering coefficient parameter is higher in lower degree nodes than
the higher degree nodes. This basically means higher degree nodes have neighbors
that are less connected than neighbors of lower degree nodes. This new model was
named hierarchical networks in which low-degree nodes are densely clustered and
these regions are connected by high-degree nodes [6,15].

13.4 Centrality

Centrality of a vertex or an edge in a graph denotes a value showing its importance
in the graph. Importance may have different meanings; for example, the centrality of
an edge may reflect the percentage of shortest paths through it. We review the main
centrality parameters for graphs in the next sections.

13.4.1 Degree Centrality

TheindexDegree centrality degree of a vertex is denoted as its degree centrality. A
vertex with a higher value than the average degree of a graph gives some insight to
its importance in the network. In general, it is difficult to predict the overall structure
of a graph from the value of its average degree. However, plot of its degree sequence
does provide information about the general organization of the graph. Given the
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adjacency matrix A of a graph G = (V,E), we can form the centrality vector DC
which has the centrality value DC(i) for vertex i as follows:

DC = A × [1] (13.8)

In a distributed setting, we can have a root process pi gathering all of the degree
values of nodes over a previously constructed spanning tree T using the convergecast
operation with the SSI model. This process can then compute the average graph
degree deg(G) and the centrality vector C. Upon reception of a start message from
the root over the tree T , the role of nodes is to simply convergecast their degrees over
the edges of T to the root.

13.4.2 Closeness Centrality

In the closeness centrality attribute, we evaluate distance of a vertex v to all other
vertices in the graph, assuming a vertex that is closer to all other vertices in the graph
is more important than a vertex which is not so close to all others. The closeness
value of a vertex is defined as follows:

CC(v) = 1∑
u∈V

d(u, v) (13.9)

We sum the distance of every vertex to vertex v and take the reciprocal of this
value. A possible way to evaluate the closeness centralities of all vertices in a graph
is then to compute APSP routes in a graph using a modified version of Dijkstra’s
algorithm we saw in Chap.7 for this purpose. We need to add the calculation of
the sums of distances while assigning a vertex to the set of decided routes (See
Exercise4). In a parallel or distributed setting, we can use the algorithms described in
Chap.7 with the modification described (See Exercise5). If the graph is unweighted,
the BFS algorithm can be used with a similar modification. Figure 13.4 depicts a

Fig. 13.4 Closeness
centrality values for vertices
a, b, c, d, and e in this graph
are 1/10, 1/9, 1716, 1/16,
and1/13 respectively
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sample undirected weighted graph from which the closeness centrality values can
be computed using the shortest paths.

13.4.3 Betweenness Centrality

In another attempt to assess the importance of a vertex or an edge in a graph, we can
evaluate the usage of a vertex or an edge when communications between vertices
of a graph are needed. The vertex centrality value of a vertex is the percentage of
shortest paths between all pairs of vertices that run through that vertex. Similarly, the
edge betweenness value of an edge refers to the percentage of shortest paths that go
through that edge. We will describe formal definitions and algorithms to find these
parameters in graphs in the next sections.

13.4.3.1 Vertex Betweenness Centrality
The vertex betweenness of a vertex v in a graph G is the ratio of the shortest paths
that run through v to the total number of shortest paths in G as follows:

BC(v) =
∑

s 	=t 	=v

σst(v)

σst
, (13.10)

with σst(v) as the total number of shortest paths between vertices s and t that run
through vertex v, and σst as the total number of shortest paths between vertices s and
t. For an unweighted graph, we can simply run the BFS algorithm for every vertex,
count the number of shortest path through each vertex, and divide this number by
the total number of shortest paths in the graph. For a weighted graph, we need to run
a APSP algorithm. The vertex betweenness values of a sample graph are depicted in
Fig. 13.5.

We can count the number of shortest paths through each vertex excluding the
starting and ending vertices to find 3, 0, 7, 0, 0, and 9 for vertices a, b, c, d, and
e, respectively. There are a total of 15 shortest paths between each vertex pairs and
the vertex betweenness values for these vertices are then 0.2, 0, 0.47, 0, 0, and 0.6,
respectively, in lexicographical order.We can conclude vertex f is themost influential
vertex since the largest number of paths pass through it which can in fact be detected
visually.

13.4.3.2 Edge Betweenness Centrality
The edge betweenness of an edge e in a graph G is the ratio of the shortest paths that
run through e to the total number of shortest paths in G as follows:

BC(e) =
∑

s 	=t 	=v

σst(e)

σst
(13.11)
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Fig. 13.5 Vertex betweenness value calculations of a sample graph

We will now describe an algorithm due to Newman and Girvan [11] to compute
edge betweenness centrality values of edges in a graph. This algorithm has two parts:
a vertex weight assignment and edge weight assignment phases. Vertices are labeled
with the number of shortest paths that go through them first and then this information
is used to find edge weights to yield edge centrality values later. The first part of the
algorithm is depicted in Algorithm13.1 which works for a source node s that has a
distance of 0 and a weight of 1 initially [6]. The vertex weight assignment procedure
then iteratively assigns distance values to the vertices as in a BFS algorithm with
additional vertex weight values. However, if a vertex u is visited before and has a
weight one more than the weight of its ancestor v, its weight is made equal to the
sum of its previous weight and the weight of its ancestor. This is needed since an
alternative shortest path to the source vertex s is discovered through the ancestor
vertex v. We need to repeat this procedure for all vertices with each one as the source
vertex in an iteration and the vertex weight of a vertex v is the sum of all of the values
assigned to it at each run of the procedure.
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Algorithm 13.1 Label_Vertex
1: Input : G(V,E)

2: Output : ∀v ∈ V : wv weight of vertex v
3: ds ← 0; ws ← 1 � initialize source vertex s
4: for all v ∈ N(s) do � initialize neighbors of vertex s
5: dv ← ds + 1, wv ← 1
6: end for
7: repeat
8: for all u ∈ N(v) do
9: if u is not assigned a distance then
10: du ← dv + 1; wu ← wv

11: else if du = dv + 1 then � test multiple shortest paths
12: wu ← wv + wu

13: end if
14: end for
15: until all vertices have assigned distances

The second procedure of the algorithm uses the vertex weights assigned to denote
edge weights. It starts by assigning weights to edges that end up in leaf vertices as
the ratio of the vertex weight of its ancestor to the weight of itself. We are basically
denoting weights that show the percentage of shortest paths to the leaf edges. Then,
as wemove upward in the tree toward the source vertex s, each edge (u, v) is assigned
a weight that is the sum of all edge weights below (u, v) multiplied by the ratio of
the weight of vertex u to the weight of vertex v. Again the sum of all shortest paths
through edge (u, v) is scaled to give the percentage of shortest paths through that
edge as shown in Algorithm13.2. This process has to be repeated for all vertices
considering each of them as the source and the edge betweenness value of an edge is
determined as the sum of all values found for that edge. Total time needed is O(nm)

considering n vertices. The edge betweenness values of the edges of a sample graph
for a single source vertex is depicted in Fig. 13.6.

Fig. 13.6 Edge betweenness
values of the edges of a
sample graph for source
vertex h. Vertex distance,
weight values obtained from
the first procedure are shown
next to vertices with edge
betweenness values obtained
by the second procedure
displayed on the edges
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Algorithm 13.2 Edge_Betweenness
1: Input : G(V,E)

2: Output : ∀v ∈ V : wv weight of vertex v
3: for all v ∈ V which is a leaf vertex do
4: for all u ∈ N(v) do wuv ← wu/wv � initialize leaf edges
5: end for
6: end for
7: repeat
8: move upwards to the source vertex such that u is closer to s:
9: wuv ← (1 + sum of the edge weights below v) × wu/wv

10: until vertex s is reached

13.4.4 Eigenvalue Centrality

The general idea of eigenvalue centrality is to attribute importance to a node if it
has important neighbors as frequently happens in a social network. The importance
scores of the neighbors of a node i affect its score as follows [6]:

xi = 1

λ

∑

j∈N(i)

xj = 1

λ

∑

j∈V
aijxu, (13.12)

where N(i) is the set of neighbors of node i and aij is the ij-th entry of the adjacency
matrix A of the graph G = (V,E), and λ is a constant. We can rewrite this equation
in matrix notation as follows:

Ax = λx, (13.13)

which turns out to be the eigenvalue equation of the matrix A. There will be n
eigenvalues and corresponding eigenvectors associated with the adjacency matrix
A. The eigenvalue centrality values of vertices are determined by the eigenvector
corresponding to the largest eigenvalue of A as shown by Perron–Probenius theorem
[14]. We can now state the steps of an algorithm to find the eigenvalue centralities
of the vertices in a graph G = (V,E) as follows:

1. Construct the adjacency matrix A of G.
2. Compute eigenvalues λ1, . . . , λn of A using the equation det(A − λI) = 0 and

select the largest eigenvalue λm from these eigenvalues.
3. Compute the eigenvector Xm associated with λm.

Every vertex vi ∈ V has an eigenvalue centrality value xi ∈ Xm. Eigenvalue
centrality can be used for page ranking on the Web and also to investigate gene–
disease associations [13].
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13.5 Dense Subgraphs

We will now look at ways of finding dense subgraphs of a given graph. These sub-
graphs, often termed clusters, indicate a region of dense activity in the network
represented by the graph. In the extreme case, a clique is a subgraph that is fully
connected. However, clique-like or cliquish structures are more commonly encoun-
tered in practice. We will review methods to find cliques and these structures in this
section.

13.5.1 Cliques

Asubgraph inwhich every vertex is a neighbor to all others in this subgraph is called a
clique. A clique of a graph G is a densely connected region in G which may indicate
a special kind of activity in the network that is represented by G, for example, a
clique of friends in a social network. Therefore, detecting cliques is a commonly
required task in such graphs representing real-life phenomena. In real-life networks,
one often finds clique-like structures than full cliques in graphs representing real-life
networks such as protein interaction networks of the cell and social networks and
hence we present algorithms to discover such structures in graphs.

Definition 13.4 (clique)A clique of a graph G = (V,E) is a subset C of its vertices
such that every vertex in C is adjacent to all other vertices in C. In other words, a
clique is an induced complete subgraph of G.

A maximal clique of a graph G is the clique that is not a subset of a larger clique.
Themaximum clique of a graph G is the clique of G with the largest order among all
cliques of G as shown in Fig. 13.7. The order of the maximum clique of G is denoted
by ω(G) and is called the clique number of G. Finding the maximum clique in a
graph is called themaximum clique problem and is NP-hard [9], and therefore various

a b c
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efgi j
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C D

Fig.13.7 Cliques of a sample graph; A = {a, b, k} is a clique but not maximal as it included in the
larger clique B = {a, b, k, i, j} which is also the maximum clique of the graph. C = {c, d, f , g} and
D = {d, e, f } are maximal cliques as they are not a subset of larger cliques
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heuristics are commonly used to compute an approximation to this parameter. The
decision version of this problem, k-clique problem, is determining whether a graph
has a clique with at least k vertices. Finding all maximal cliques of a graph is also
NP-Hard as the number of such cliques grows exponentially with the order of the
graphs.

Detecting cliques in a graph have various implications as these represent intense
interaction among the entities represented by the nodes of the graph. A clique in a
networkwould represent an intimate groupdetecting ofwhichmayhelp to understand
the general behavior in such a network. However, wemay be interested to find clique-
like structures rather than cliques in graphs since cliques occur less frequently and
also finding them is not a trivial task. Clique-like structures we may search are as
follows [6]:

Definition 13.5 (k-clique) A k-clique of a graph G is exhibited by a subgraph Gc,
where the shortest path between any two vertices in Gc is at most k. Paths may
consist of vertices and edges external to Gc.

Some k-clique examples are shown in Fig. 13.8.

Definition 13.6 (k-club) A k-club of a graph G is a subgraph Gc in which
diam(Gc) ≤ k.

Every k-club of a graph is also its k-clique. However, not every k-clique of a graph
is its k-club since a k-cliquemay contain vertices outside ofGc. Themaximum k-club
problem is to find the largest k-club of a graph and is NP-hard.

Definition 13.7 (k-plex) In a k-plex subgraph Gc ⊆ G, each vertex is connected to
at least n − k other vertices in G.

Definition 13.8 (k-core) A k-core subgraph Gc of G consists of vertices that have
at least a degree of k. A clique is a (k-1) core.

We can find some clique-like structures such as k-cores in polynomial time. We
first describe a recursive algorithm that has exponential time complexity which has
been used as basis for various parallel algorithms as we will see. We then present an
algorithm to find k-cores of a graph which works in polynomial time.

Fig. 13.8 k-clique
examples, a 1-clique b
2-clique c 3-clique

(a) (b) (c)
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13.5.1.1 Bron and Kerbosch Algorithm
Bron and Kerbosch provided a simple backtracking procedure that finds all maximal
cliques of an undirected graph [5]. The algorithm uses three sets of vertices, R is
the set of vertices to be included in the clique, X is the set to be excluded from the
clique, and P is the set to be decided. The set R is initially empty and is expanded
using vertices in P and without using vertices in X. The following steps comprise
the algorithm:

1. Select a candidate vertex v ∈ P.
2. Add v to R.
3. Create new sets P and X from the old sets by removing all vertices not connected

to R.
4. Call the extension operator on the newly formed sets.
5. Upon return, remove v from R, add it to X.

The pseudocode for this algorithm is shown in Algorithm13.3 [6]. We need set
P to be empty so R cannot be extended and X to be empty to ensure that the clique
is not included in another clique to have a maximal clique in R. This condition is
checked at each recursive call to the procedure first. Otherwise, a recursive call is
made that adds a vertex in P to R and its neighbors in P and X. Experimentally,
the time complexity was found to be O(4n) and a second version using pivoting
resulted in time complexity of O(3.14n) [5]. Various parallel implementations of
this algorithm exist; using MPI in [10], using thread pools in Java in [3] and on a
Cray XT supercomputer in [17].

Algorithm 13.3 Bron Kerbosch Algorithm
1: procedure BronKerbosch(R,P,X)
2: P ← V includes all of the vertices and R,X ← Ø
3: if P = Ø ∧ X = Ø then
4: return R as a maximal clique
5: else
6: for all v ∈ P do
7: BronKerbosch(R ∪ {v},P ∩ N(v),X ∩ N(v))
8: P ← P \ {v}
9: X ← P ∪ {v}
10: end for
11: end if
12: end procedure
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Fig. 13.9 Cores of sample graph with two components. 1, 2, 3, and 4 cores are encircled and the
core values of vertices are shown with filled colors

13.5.2 k-cores

Let us consider a graph G = (V,E); a subgraph H = (V ′,E′) of G induced by
the vertex set V ′ is a k-core of G if and only if ∀v ∈ V ′, deg(v) ≥ k and H is
the maximum graph with this property [6]. Main core of a graph G is a core of G
that has the maximum order and the coreness value or the core value of a vertex
v is the highest order of a core that includes the vertex v [2]. Cores of a graph are
naturally nested and a subgraph core with a larger core value is nested within cores
with smaller values as shown in Fig. 13.9.

Finding cores of a graph is useful in detecting dense regions of a graph as each
vertex in a k-core has at least a degree of k. Hence, rather than trying to find cliques or
clique-like structures of a graph to discover dense regions in that graph, we can find
cores of a graph which can be accomplished in polynomial time due to an algorithm
described in the next section.

13.5.2.1 Batagelj and Zaversnik Algorithm
In the algorithm proposed by Batagelj and Zaversnik [2], the core values for each
vertex is determined in linear time. The general idea of this algorithm is to remove
all vertices having degree less than k from the graph under consideration to obtain
the k-core of the graph. The algorithm starts by sorting all vertices in the graph
with respect to their degrees and the vertices are placed in a queue in increasing
degrees. The vertex v from the front of the queue is then removed, is labeled with
the core value that equals its degree, and the degrees all of the neighbors of v that
have degree more than v are decremented by one. The degree of any neighbor u with
the same degree of v is not decremented as this would result in u to be included in a
class of vertices with a lower k value than itself. The pseudocode of this algorithm
is depicted in Algorithm13.4 [2,6]. The authors showed that the time complexity
of this algorithm in a general graph is O(max(m, n)), and this becomes O(m) in a
connected network as m ≥ n − 1 in such a graph.
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Algorithm 13.4 Batagelj_Alg
1: Input : G = (V,E)

2: Output : core values of vertices
3: Q ← sorted vertices of G in increasing degrees
4: while Q 	= Ø do
5: v ← front of Q
6: core(v) ← deg(v)
7: for all u ∈ N(v) do
8: if deg(u) > deg(v) then
9: deg(u) ← deg(u) − 1
10: end if
11: end for
12: update Q
13: end while

Fig. 13.10 A sample graph
with two cores

a b c d

efh g

1

2

Table 13.1 BZ algorithm execution

Queue sorted in ascending degree Coreness values

Iterations 1 2 3 4 k=1 k=2

1 h, d, e a c b, f , g {h} {Ø}
2 d, e a c, g b, f {h, d} {Ø}
3 e a, c g b, f {h, d, e} {Ø}
4 − c, g g, f b {h, d, e} {a}
5 − g, b, f b, f − {h, d, e} {a, c}
6 − b, f − − {h, d, e} {a, c, g}
7 − f − − {h, d, e} {b, a, c, g}
8 − − − − {h, d, e} {b, f , a, c, g}

Let us see the step-by-step operation of this algorithm in the sample graph of
Fig. 13.10. The contents of the sorted queue along with the removed and labeled
vertices are shown in Table13.1 for running the algorithm in this simple graph.
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13.5.3 Clustering

Clustering is the process of grouping of similar objects based on some metric. When
the nodes of a graph are used to represent objects and edges depict their relations,
this process is equivalent to finding dense subgraphs of the graph representing the
network. In this case, the aim of a clustering algorithm is to divide the graph into
subgraphs such that density within a subgraph is maximized with minimum number
of edges among clusters. When edges are weighted, we need to maximize the total
number of edge weights within a cluster and minimize the total weight of edges
among them.

We can have a vertex belonging to more than one cluster in graph clustering and
a vertex may belong to only one cluster in graph partitioning. We need to assess the
quality of the clusters obtained after using a clustering method. A convenient way
to achieve this is to compare the densities of clusters and the average density of the
graph. The density ρ(G) of an unweighted, undirected simple graph G is the ratio of
the size of its edges to the size of maximum possible edges in G as ρ(G) = 2m

n(n−1) .
The edges inside a cluster are called internal edges of the cluster and the edges

connecting the cluster vertices to the other vertices of the graph are called external
edges. We can examine whether a vertex v is appropriately placed in a cluster by
examining the ratio of the number of internal edges incident to v to the number of
external edges on it. We can now define intracluster density of a cluster Ci as the
ratio of all internal edges in Ci to all possible number of edges in Ci as follows [16]:

degint(Ci) = 2
∑

v∈Ci
degint(v)

|Ci||Ci − 1| (13.14)

The intracluster density of the whole graph as the average of all intracluster den-
sities as follows [6]:

degint(G) = 1

k

k∑

i=1

degint(Ci), (13.15)

where k is the number of clusters obtained. Clearly, we would need degint(G) as
high as possible when compared with graph density for proper clustering. A sample
graph divided into three clusters is depicted in Fig. 13.11 with calculated intracluster
densities.

We can now define the intercluster density degext(G) as the ratio of the size of the
intercluster edges to the maximum allowed number of edges between the clusters
as shown below [16] and we need this parameter to be significantly lower than the
graph density for a good quality clustering.

degext(G) = 2 × sum of inter cluster edges

n(n − 1) − ∑k
i=1(|Ci||Ci − 1|) (13.16)
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Fig. 13.11 A sample graph
divided into three clusters
C1, C2, and C3. The
intracluster densities are
δint(C1) = 0.83,
δint(C2) = 0.7, and
δint(C3) = 0.6 with the
average graph intracluster
density of 0.71. Graph
density is 0.28

C1

C2

C3

The intercluster density of the sample graph in Fig. 13.11 is 0.092 which is signif-
icantly lower than the graph density 0.28 and hence we can consider the clustering
in this graph is favorable. Similar cluster parameters for edge-weighted graphs can
be defined. Let us first consider the density of an edge-weighted graph which is the
ratio of the sum of edge weights to the maximum possible number of edges as below:

ρ(G(V,E,w)) = 2
∑

(u,v)∈E w(u,v)

n(n − 1)
(13.17)

The intracluster densities now are formed as the ratio of the sum of edge weights
in a cluster to the maximum possible number of edges in that cluster and the graph
intracluster density is the average value of all the clusters contained in the graph.
In both unweighted and weighted graphs, a good clustering should result in average
graph intracluster values which are significantly higher than the graph densities. The
intercluster density in the case of a weighted graph is the ratio of the sum of weights
of all edges between each pair of clusters to the maximum possible number of edges
between clusters.

13.6 Chapter Notes

Analysis of large graphs as a whole is difficult due to their huge sizes. As one
approach to overcome this problem to some extent, local properties around vertices
can be assessed and global properties may then be approximated using these local
properties. For example, the degree of a vertex and its clustering coefficient are
local properties; degree distribution and the average clustering coefficient are global
properties of a graph that give some insight on its overall structure. We reviewed
these parameters along with the matching index of two vertices and the density of a
graph in the first part of this chapter.
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Real-world networks such as technological networks, biological networks, and
social networks are termed complex networks and graphs are commonly used to
represent them. We then described main models of these networks which are small-
world and scale-free networks along with random networks. Distance between any
two vertices is small compared to network size in small-world networks which also
have high average clustering coefficients than expected. Scale-free networks have
few high-degree nodes and the rest of the nodes have only few degrees with high
clustering coefficients. Complex networks commonly exhibit these two properties
but in the case of biological networks, other models such as hierarchical networks
may be needed.

Centrality is a key concept in the analysis of large graphs and again, we can
estimate global properties of a graph from the various forms of this local parameter.
Degree centrality of a vertex is simply its degree and closeness centrality shows
the importance of a vertex based on its distance to all other vertices in the graph.
Betweenness centrality of a vertex or an edge manifests the percentages of shortest
paths that run through them and eigenvalue centrality is based on the spectra of the
graph. Edge betweenness and eigenvalue centralities are used in practice more to
analyze and also to discover clusters in graphs than other centrality measures.

Detection of dense subgraphs in large graphs is needed as these regions may
indicate heavy activity there.We reviewedalgorithmsdiscoveryof cliques and clique-
like structures and described few methods of clustering in large graphs.

Exercises

1. Plot the degree distribution of the graph depicted in Fig. 13.12.
2. Work out the graph density, intracluster densities for three clusters, and the

intercluster density and the average cluster density for the graph in Fig. 13.13.
3. Find the clustering coefficient for each vertex in the graph shown in Fig. 13.14

and also work out the average clustering coefficient.
4. The closeness centrality values of the vertices of a graph are to be computed.

Modify Dijkstra’s APSP algorithm to find the closeness centrality values.
5. Modify distributed Bellman–Ford Algorithm of Chap.7 to find closeness cen-

tralities in a computer network.
6. Compute the vertex betweenness values for each vertex in the example graph

depicted in Fig. 13.15.

Fig. 13.12 The sample
graph for Exercise1

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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C1
C2

C3

Fig. 13.13 The sample graph for Exercise2
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Fig. 13.14 The sample graph for Exercise3

Fig. 13.15 The sample
graph for Exercise6
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14ComplexNetworks

Abstract

Complex networks consist of tens of thousands of nodes and hundreds of thou-
sands of edges connecting these nodes. The graphs used to model these networks
are large and special methods are commonly needed for the analysis of these
networks. The main complex networks which are biological networks, social net-
works, technological networks and information networks are reviewed with brief
description of the algorithms needed to solve some problems in these networks
in this chapter.

14.1 Introduction

Complex networks consist of tens of thousands of nodes and hundreds of thousands
of edges connecting these nodes. The graphs used to model these networks are large
and we will see special methods are commonly needed for the analysis of these
networks. In theory, we can use the algorithms we have reviewed in Part II for some
of the problems encountered in complex networks but even the linear time algorithms
may require substantial computation time and hence the heuristic algorithms with
lower complexities are usually preferred. Yet many problems in these networks are
NP-hard making the use of heuristics as the only choice.

We will review the main real-life complex networks which are biological net-
works, social networks, technological networks and information networks with brief
description of the algorithms needed to solve some problems in these networks in this
chapter. Clustering or community detection is a problem in all of these networks and
we will describe fundamental sequential, parallel, and distributed algorithms for this
purpose with emphasis on parallel clustering in biological networks and distributed
clustering in computer networks. Efficient search algorithms are needed in the Web
and we will review two such algorithms in the last part of this chapter.

© Springer International Publishing AG, part of Springer Nature 2018
K. Erciyes, Guide to Graph Algorithms, Texts in Computer Science,
https://doi.org/10.1007/978-3-319-73235-0_14
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14.2 Biological Networks

Biological networks are the networks of organisms with nodes representing biolog-
ical entities and edges showing the interactions among them. The cell is the basic
biological unit of all organisms. Biological networks can be classified as networks
within the cell and networks outside the cell at a more macroscopic level. Cells are
mainly of two types: eukaryotic cells which have nuclei carrying the genetic infor-
mation in chromosomes and prokaryotic cells which do not have nuclei. A gene is
the basic unit of hereditary and consists of a string of nucleotides which are small
molecules that make deoxyribonucleic acid (DNA) in a double helix structure.

Genes are decoded tomake amino acidswhich are chained tomake proteinswhich
are large molecules outside the nucleus of the cell carrying al vital functions related
to life. This process is called the central dogma of life. Proteins are large molecules
and their main functionality depends on their amino acid sequences, their 3-D shape
and also the interaction with other proteins. These interactions can be represented by
graph edges to obtain protein-protein-interaction (PPI) networks with proteins as the
nodes of the network. Figure14.1 displays the PPI network ofT. pallidum. Othermain
networks in the cell are the gene regulation networks (GRNs) formed by interacting
proteins and genes and metabolic networks represent biochemical reactions in the
cell to generate metabolism [8]. Other biological networks outside the cell include
brain networks, neural networks, phylogenetic networks and the food web [8]. The
main problems encountered in biological networks are clustering, network motif
search and network alignment.

14.2.1 Clustering

Finding clusters in biological networks is needed as these dense regions of bio-
logical activity bears some significance, sometimes showing disease states of an
organism. Clustering algorithms in biological networks can be broadly classified as
hierarchical clustering, density-based clustering, flow-based clustering and spec-
tral clustering [8]. We have already reviewed density-based clustering as searching
clique-like structures in Chap.10 and we will review sample methods in the next
sections.

14.2.1.1 MST-Based Clustering
Hierarchical clustering is a classical, simple and a popular method of clustering. an
example of this method is the MST-based clustering algorithm which is based on the
idea that two nodes that are farthest in the MST may be assigned to two different
clusters. Since MST is acyclic, removing of an edge from MST divides it into two

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Fig. 14.1 The PPI network of T. pallidum taken from [22]

clusters. This process may be repeated until a certain cluster quality criterion is met.
The algorithm is implemented using the following steps:

1. compute the MST T of the graph G = (V, E)

2. repeat
3. euv ← max{∀(u, v) ∈ T , wuv}
4. G ← G − {euv}
5. label vertices of new clusters
6. until a quality criterion is met

Note that MST is computed only once and heaviest edges are removed iteratively.
Labeling of the newly formed clusters can be done simply by the BFS algorithm in
linear times for the two clusters.Wemay remove a number of edges at each step from
the MST that are more than a threshold distance apart. Computation of MST can be
performed in parallel using any of the algorithms described in Chap.7. Clustering

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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throughMST in parallel (CLUMP) is a proposed method of clustering for biological
data [20] in which bipartite subgraphs are constructed in parallel.

14.2.1.2 Spectral Clustering
We saw the adjacency matrix representation of a graph G and its unnormalized
Laplacian matrix is L = D − A where A is the adjacency matrix and D is the
degree matrix with degrees of vertices in the diagonal. The normalized Laplacian is
L = 1 − D1/2AD−1/2. L in both forms is real and symmetric and its eigenvalues
are therefore real. The second smallest eigenvalue of L bears information about its
connectivity as we saw in Chap.12. We can also use this value called the Fiedler
value and its eigenvector called Fiedler vector [9] to divide the graph G into two
clusters C1 and C2 as below [12]:

1. G = (V, E) with V = {v1, . . . , vn}
2. C1 ← Ø, C2 ← Ø
3. L ← D − A
4. compute Fiedler vector F of L
5. for all F[i] of F then
6. if F[i] ≤ τ

7. C1 ← C1 ∪ {vi }
8. else C2 ← C2 ∪ {vi }
9. end if
10. end for

The threshold value τ is commonly taken as 0 and a recursive implementation
of this algorithm will yield k clusters. Other methods of clustering in biological
networks include a flow-based approach called Markov Clustering Algorithm which
uses the idea that random walks in a graph will end up in a cluster [6]. There are
various other algorithms for clustering in biological networks most of which use
heuristics.

14.2.2 NetworkMotif Search

A network motif is a recurring connected subgraph in a biological network. These
are considered as building blocks of such networks and commonly assumed to have
some basic function associated with them. Discovery of motifs aid to understand the
structure of biological networks and also various networks representing organisms
can be compared to seek whether they have common ancestors. Figure14.2 displays
some motif examples.

Motif discovery is one of the fundamental research areas in biological networks.
It is a complicated process where heuristics are commonly used and consists of the
following steps:

http://dx.doi.org/10.1007/978-3-319-73235-0_12
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(a) (b)

Fig. 14.2 Network motif examples of order 3

1. Motif search: Either all instances of a motif are searched or sampling is used
where only a sample subgraph is searched and the results are projected to the
whole graph. For very large graphs, the latter is commonly employed.

2. Isomorphic classes: Different looking subgraphs may be isomorphic, therefore
they need to be grouped together for correct processing.

3. Statistical significance: We need to determine the statistical significance of dis-
covered subgraphs. This process is usually performed by generating a set of ran-
dom graphs similar in structure to the target graph and performing the search in
these graphs. The results obtained in two cases can then be compared to determine
whether the found subgraphs are actual motifs.

14.2.3 Network Alignment

It is often required to compare two biological networks as a whole or partly to
determine their relatedness which may help to understand the evolutionary process
better. We can compare two biological networks in pairwise alignment or a number
of biological networks in multiple alignment to search their similarities. In global
alignment, whole networks are compared for similar species whereas similar sub-
networks are searched in local alignment for diverse species.

In order to assess similarity of two networks, we can evaluate node similarity
or topological similarity of the networks, in many cases however, both metrics are
used with different weights. The former may reflect the internal structure of nodes
such as amino acid sequences of proteins in PPI networks. Let us assume we have
to graphs G1 and G2 representing two biological networks. A similarity matrix R
can be formed that has entry ri j with a weight depicting the similarity between node
i from G1 and node j from G2. Based on the entries of R, a complete weighted
bipartite graph can be constructed and the problem of network alignment is then
reduced to maximal bipartite matching problem we have studied in Chap.9.

14.3 Social Networks

Social networks consist of individuals or groups of people with relationships among
them. A graph representing a social network has its nodes as persons or groups and

http://dx.doi.org/10.1007/978-3-319-73235-0_9
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edges depict the relationships. Social networks have small-world and scale -free
properties like other complex networks.

14.3.1 Relationships and Equivalence

Some terminology related to the relationships in a social network are as follows.

• Triadic closure: Let us assume A and B are two friends in a social network. There
is a good chance that a friend of A (or B) who does not know B (or A) will become
friends with that person in future. This property is called triadic closure as there
will be a triangle formed among the three persons in future by the composition of
an edge between the two people who have not met before.

• Homophily: The homopholy property observed in dynamic social networks is
that the individuals or groups have tendency to arrange relationships with other
individuals or groups like themselves. The similarity could be the age or the
philosophy or something else in common.

• Relations: In a friendship social network, we can label edges between two persons
as positive (+) meaning they like each other or negative (−) showing they dislike
each other, assuming these relations are symmetric. In a small social network of
triangle structure with three people A, B and C ; we can have four cases:

1. A, B and C are mutual friends.
2. A, B and C all dislike each other.
3. One of them is friends with two others but these two do not like each other.
4. Two of the three are friends with each other but neither of them is a friend with

the third one.

The first case and the last case are balanced relations while the second and third
are not. With three people who all dislike each other, there is a tendency for two
to become friends against the third one and hence this case is unbalanced. Also,
the third case implies two persons who do not want to be together but want to
be together with a third person causing again an unbalanced situation. The last
case is balanced as there is no conflict. In graph-theoretical terms, this means any
triangle with one or three positive relations are balanced and triangles with zero or
two positive edges are unbalanced. We can now find all triangles in a given social
network with assigned relations and if all of these are balanced, the whole social
network is a balanced network, otherwise even if there exists one unbalanced
triangle, the network is said to be unbalanced.

• Structural balance: A general method to determine whether a social network is
balanced or not was proposed by Harary [13] in the Balance Theorem.

Theorem 14.1 A complete social network is balanced when all pairs of its nodes
have positive relations with each other or when its nodes can be partitioned into
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Fig. 14.3 A complete graph
showing balanced social
network separated into two
sets of nodes by the dashed
line. The three triangles in
the two sets all have + labels
on their edges and all other
inter-group edges have −
signs meaning this network
is balanced according to
structure balance theorem
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two sets V1 and V2 such that all nodes within these groups are friends with all other
nodes in their groups and each node of one group has negative relations with all
other nodes in the other group.

Abalanced social network according to this theorem is depicted in Fig. 14.3. It can
be seen that any triangle which has two nodes in one group and one in the other has
just one + label which means these triangles are balanced. The remaining triangles
are all embedded in each group and have + labels on their edges, therefore they are
also balanced resulting in a balanced network.

• Equivalence: Equivalence concept in a social network is related to the positions or
roles of people or a person in a social network. If the positions of two equivalent
persons in a social network are changed, the operation of the network should not
change.

14.3.2 Community Detection

Detecting communities which are dense regions of activity in social networks have
many implications; for example, we can analyze these clusters of persons or groups
to understand their behavior. We will review two algorithms for this purpose which
are implemented in social networks.

Edge Betweenness-Based Algorithm

The edge-betweenness value of an edge e in a graph G was the fraction of all, pairs-
shortest-paths that pass through e. Intuitively, edges with high values have a greater
probability of joining dense regions of the graph than edges with lower values. In the
extreme case, a bridge removal of which disconnects a graph has a very high edge-
betweenness value. Based on this observation, Girvan et al. proposed an algorithm to
detect clusters in a complex network represented by a graph G = (V, E) consisting
of the following steps with a similar structure to MST-based clustering [11]:
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1. repeat
2. compute edge-betweenness value σxy for each edge (x, y) of graph G.
3. euv ← the edge with maximum σ value
4. G ← G − {euv}
5. until a quality criterion is met

The most time consuming step for this algorithm is the calculation of the edge-
betweenness values and hence it has low performance for graphs which have more
than few thousand nodes. This method is also used for detecting clusters in biological
networks.

14.3.2.1 Modularity-Based Algorithm
The quality of clusters formed by a clustering algorithm can be assessed by the
modularity concept. Let us assume a graph G is divided into k clusters and eii is the
fraction of edges in cluster i and ai is the fraction of edges with at least one end in
cluster i . The modularity Q of this graph can be determined as follows [19]:

Q =
k∑

i=1

(eii − a2i ). (14.1)

Using this equation, we are in fact evaluating the difference in probabilities of an
edge being in module i and that a random edge would fall in module i and summing
these values for all clusters. When the percentage of edges within clusters are much
higher than the ones with one end in a cluster (inter-cluster edges), we expect a high
value of Q, in fact the value of Q approaches unity when there are only few edges
between clusters. A clustering algorithm based on the modularity concept can then
be formed such that two clusters are combined to increase modularity as follows
[19].

1. Each node of the graph is considered a cluster initially
2. repeat
3. combine the two clusters that will increase modularity most
4. until merging of clusters increase modularity

This algorithm provides clusters as a dendogram which can be used to obtain the
required number of clusters. The time complexity of this algorithm is O((m + n)n)

or O(n2) on sparse graphs [19].
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14.4 Ad HocWireless Networks

Computer networks consist of computational nodes such as personal computers,
servers, routers and phones connected by an interconnection network. The com-
munication medium between the nodes may be coaxial cable, fiber link, a wireless
medium or more frequently a combination of all of these. Data to be transferred
between the nodes of a computer network is commonly divided into packets. These
data units are delivered to destination using a packet-switching network where each
packet is commonly routed independently to the destination and then the whole data
consisting of a number of packets is reassembled in the destination before being deliv-
ered to the user or the application. This way, many users/applications may share the
same communication medium. In contrast, a part of the communication medium is
dedicated to the application during data transfer in circuit switching. Network packets
may carry control information or data information. The control packets are used by
the communication protocols to perform tasks such as routing and synchronization
of communicating parties.

The wired medium may be twisted pair, coaxial cable or fiber optic links in
the order of performance and cost from low to high. Wireless communication links
commonly employmicrowave, satellite and also optical communication technologies
to transfer data. Network nodes consist of repeaters, bridges, switches, routers and
MODEMs. Since an electrical signal is weakened and distorted through distance,
a repeater is needed to remove noise from an electrical signal and transfer it by
empowering it at regular distances. These devices operate on the physical layer of
the ISO OSI 7-layer model [14]. Bridges and switches work at the data link layer
of the OSI model to filter traffic and forward packets. Routers working at network
layer are the key devices to determine the path the packet is to be transferred.

An ad hoc network is formed without any central administration with nodes serv-
ing as hosts and routers at the same time. Wired or wireless, a computer network
may be conveniently modeled as a graph with the vertices of the graph representing
the nodes and the edges showing the communication links between the nodes. In
wireless networks, a link between two nodes exits if they are within communication
range of each other. Note that we may need a digraph to represent such a network if
the communication capabilities of two nodes are not the same. Two types of widely
used wireless ad hoc networks are the mobile ad hoc networks (MANETs) where
nodes move dynamically and wireless sensor networks (WSNs) with small sens-
ing computational nodes. A WSN can also be mobile but mostly, these networks
have fixed wireless topologies. The nodes of such ad hoc networks use multi-hop
communication where data packets are relayed to other nodes towards destination.

A wireless ad hoc network does not need a fixed network infrastructure using
devices such as routers and access points. Such a structure has many advantages
as we do not have to install and maintain expensive infrastructure equipment like
routers, access points and the wired communication medium. However, we are faced
with new problems such as managing mobility in a MANET and the need for power-
efficient algorithms in a WSN as battery power is scarce. A vehicular network is
an example of a MANET where vehicles communicate and coordinate on the road
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Fig. 14.4 A MANET with three nodes a, b and c. They are all within ranges r of each other in a
and node c moves to a new position which is out of range of node a in b; causing the edge (a, c)
be deleted from the graph and the edge (b, c) to be modified

to prevent accidents and exchange information. An example MANET is depicted in
Fig. 14.4.

AWSN consists of small sensor nodes that detect a physical phenomenon such as
heat, vibration ormotion and communicatewith each other to convey this information
to a special node with higher capabilities called the sink. WSNs are commonly
employed for environmentalmonitoring, home automation and e-healthwhere health
states of individuals can be monitored remotely. Figure14.5 shows a WSN with a
sink node. The fundamental graph-theoretic problems faced in MANETs andWSNs
are the connectivity, backbone construction, clustering and routing as described in
the next section.

We start this chapterwith the graph theoretic solutions to the problems encountered
in ad hocwireless networkswhich are:monitoring connectivity, clustering, backbone
formation and routing.

14.4.1 k-Connectivity

Connectivity in a graph G = (V, E) meant there is a path between any two nodes
u and v in G as we reviewed in Chap.8. Connectivity is needed in any computer
network for transfer of information between each pair of nodes but this problem is
more eminent in a wireless network. For example, moving nodes in a MANET may
disrupt connectivity easily and a sensor node that runs out of battery power may
cause disconnection in such a network. The probabilities of these events are much
higher than the failure of a router in a wired network.

Let us recall the k-connectivity problem: A network is k-connected if there is at
least k disjoint paths between any two of its nodes. We can deduce that the failure
of a minimum of k-1 nodes results in a disconnected and therefore non-functional

http://dx.doi.org/10.1007/978-3-319-73235-0_8
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SINK

Fig. 14.5 A WSN with a sink node. Transmission ranges of all nodes are shown

network in a k-connected network. Clearly, the higher the value of k, the more
strongly connected the network becomes. Hence, we can say a network with a higher
k connectivity value is more reliable and fault tolerant against node failures than a
network with a lower k value. In general, we have three main problems related to
k-connectivity in an ad hoc wireless network [1]:

1. Placement the nodes of a WSN or a MANET at anytime so that k-connectivity is
achieved.

2. Detection of the value of k in a given MANET or a WSN network.
3. Restoration of the value of k.

In search of a solution to the first problem, the neighbors of a node or the radio
power of nodes are increased iteratively in various research studies. Even when this
first step is accomplished, we need to monitor and determine the value of k to take
remedial action when this falls below a desired value. When this happens, we can
place new nodes in a WSN or move mobile nodes to new locations in a MANET to
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increase the value of k. We have already reviewed algorithms to determine the value
of k in Chap.8.

14.4.2 Clustering inWireless Ad Hoc Networks

Clustering in a wireless ad hoc network is performed by grouping nodes that are
within their radio transmission ranges. A specific node in a cluster is commonly
assigned as the clusterhead (CH) and this node functions as the cluster manager.
Clustering with CHs is advantageous for a number of reasons. First of all, a hierar-
chical structure is obtained in which various tasks can be assigned to CHs which can
work in parallel to implement the required tasks in their clusters such as MAC layer
functions including channel access, power measurements and maintain time division
frame synchronization. The CHs also can be formed as directly or indirectly con-
nected to each other and can be used to build a backbone for message transfers. This
type of routing a message over the backbone until the closest CH to the destination
node on the backbone is reached eliminates excessive message passing as shown in
Fig. 14.6. There is no need to store and manage global data since each CH knows
the identifiers of nodes in its cluster and every time a message is received on the
backbone, a check is made with the destination field in the message and the cluster
node identifiers. If there is a match, the message is relayed to the node in the cluster,
otherwise the message is transferred to the neighbor backbone node.

b

a

C1

C2

C3

C4

ordinary node gateway CH

Fig. 14.6 An example backbone in a wireless ad hoc network. Clusters C1, C2, C3 and C4 are
shown inside dashed circles and CHs are shown in bold. Node a in C4 sends a message to its CH
which forwards the message along the backbone until the cluster of b which is C3 is found

http://dx.doi.org/10.1007/978-3-319-73235-0_8
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The nodes of a k-cluster are mutually reachable by a path of length at most k.
A k-cluster with k = 1 is a clique. A k-hop cluster consists of nodes which are at
most k-hop distance from their CH. The nodes in a clustered ad hoc network can be
classified as CHs, gateway nodes that connect two clusters and ordinary nodes as
shown in Fig. 14.6. Optimal clustering and the selection of optimal number of CHs
are both NP-hard and various heuristics to perform these functions are commonly
used. Once a cluster is formed, a CH can be selected by symmetry breaking among
the nodes using their identifiers, their degrees, node mobility, node battery power
or various combinations of these parameters. After the construction of clusters and
selecting CHs, clusters need to be maintained. Maintaining the cluster structure in
a MANET is difficult due to the dynamicity of the nodes and new CHs are needed
to be assigned by the nodes when the CH moves away. A moving node on the other
hand, may join a new cluster it approaches.

The energy consumed by a CH is larger than an ordinary node due to its message
relaying function in the network. For this reason, CH function may be rotated among
ordinary nodes to provide load balancing.Mobility is themajor concern in aMANET
and the limited power of batteries should be considered when clustering in WSNs.
We will review a simple algorithm to form clusters and CHs simultaneously in
an wireless ad hoc network and review construction of a backbone using graph-
theoretical approaches.

14.4.2.1 Algorithms
Gerla and Tsai proposed a clustering algorithm using the identifers of nodes in
wireless ad hoc networks [10]. A node in such a network broadcasts periodically the
identifiers of the neighbors in its transmission range in its unit disk graph. After the
broadcast, it listens to the medium for a while and does one of the following:

• A node that does not hear a node with a higher identifier than itself after a timeout
decides to be a CH and broadcasts this condition.

• The lowest identifier neighbor that a node hears is assigned as its CH, unless that
node voluntarily gives up its position as a CH.

• A node that hears the declaration of two or more CHs assigns itself as a gateway
bridging two clusters.

As can be seen, the symmetry breaking condition is the choice of the node with
the lowest identifier in the transmission range and hence the name of the algorithm.
The node that hears all higher identifier nodes becomes the CH and broadcasts itself
as the CH. Nodes that hear the CH declaration message become part of the cluster
managed by that CH. A final correction in the algorithm involves selecting a node as
a gateway when it hears two nodes as CHs. This simple algorithm creates clusters in
linear time, however, a low identifier node joining a cluster results in reorganization
of a cluster which may be costly.

The authors proposed another algorithm to form clusters called highest connec-
tivity cluster algorithm which aims to select the node with the highest degree as the
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Fig. 14.7 a Lowest identifier algorithm, b Highest connectivity algorithm implementations. CHs
are shown in bold and gateway nodes are gray

CH [10]. The following rules are applied in this algorithm after a node broadcasts
the list of nodes it can hear including itself:

• A node that has elected a CH is covered, otherwise it is uncovered.
• The node with the highest connectivity (degree) among is uncovered neighbors is

elected as the CH. Identifiers are used to break ties.
• A node that elects a CH gives up being a CH.

This time, nodes with higher degrees are selected assuming they can access the
nodes in their clusters easily. In both algorithms, no two CHs will be adjacent to
each other and in a cluster the distance between any two nodes is at most two-hops.
Figure14.7 displays clusters formed by both algorithms. Total number of messages
communicated in the first algorithm is 2n as each node will broadcast one message
(update) to its neighbors and anothermessage (i_am_chead or ordinary) to inform
whether it is a CH or an ordinary node.

14.4.3 Backbone Construction with Dominating Sets

Instead of grouping the wireless ad hoc network into clusters with CHs and then
forming a backbone with these CHs, we can use connected dominating sets as the
backbone. A dominating set D of a graph G = (V, E) is a subset of its vertices
such that ∀v ∈ V , either v ∈ D or v is adjacent to a vertex u ∈ D. In a connected
dominating set (CDS), there is a path between any two vertices in this set. Recall
finding the minimum order connected or unconnected dominating set is NP-hard
(see Chap. 3 and we need to form a CDS to have correct operation of the backbone.
Otherwise, we need to insert vertices between the elements of the dominating set.We
also form clusters this way by denoting each element of D as CH and any neighbor
connected to such a CH becomes the member of the cluster of this CH. For example,

http://dx.doi.org/10.1007/978-3-319-73235-0_3
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the CHs in Fig. 14.6 form a 3-hop dominating set with shown clusters around them.
We can build a maximal independent set (MIS) of the graph and then connect the
nodes in the MIS to obtain a CDS. We will describe a direct algorithm that finds the
CDS in linear time in the next section. An evident requirement is that the backbone
nodes should be connected and that every node should be in the backbone or a
neighbor to a backbone node.

14.4.3.1 Pruning-Based Algorithm
The algorithm proposed by Wu and Lin [23] finds the MCDS of a network with
nodes having unique identifers using the neighbor information of nodes and hence
is a local distributed algorithm consisting of two steps. The identifers of neighbors
of all nodes are exchanged in the first step and any node that finds it has at least
two unconnected neighbors, nominates itself to be in MCDS by changing its color
to black. Every node then sends its status to all of its neighbors in the second step
after which the following pruning rules are applied to remove redundant nodes from
the MCDS:

• If ∃u ∈ N [v]|(coloru = black) ∧ (N [v] ⊆ N [u]) ∧ (idv < idu) then coloru ←
white

• If ∃u,w ∈ N (v)|(coloru = colorv = black) ∧ (N (v) ⊆ (N (u)
⋃

N (w))) ∧
(idv = min{idv, idu, idw}) then color ← white

The first rulemeans a node that finds all of its neighbor set is covered by a neighbor
with a lower identifier removes itself from the CDS.We have two nodes covering the
same neighbors in this case and one of them can be removed and identifiers are used
to break the symmetry. The second rule removes a node from CDS if its neighbors
are covered by the union of the neighbors of two higher identity nodes in the CDS. In
this case, we are looking at the union of nodes which may be partly covered by two
neighbor nodes. As each node sends exactly two broadcast messages in a wireless ad
hoc network in this implementation, total number of messages transmitted is 2n and
it can be used conveniently in a MANET due to its low maintenance requirements.
When a node moves away, only its neighbors need to update their states. Figure14.8
shows an example network where a minimal CDS is formed in two steps.

Cokuslu and Erciyes modified this algorithm by incorporating the degrees of
the nodes as well as their identifiers while pruning in the second step [4]. They
compared their algorithm with Wu’s algorithm and showed experimentally that it
provides significantly smaller MCDSs. Das et al. [5] provided two algorithms that
are the distributed versions of Guha–Khuller algorithms we have seen in Chap. 10.
In the first algorithm, nodes are assigned weights as their effective degrees which is
the number of their non-CDS neighbors. Initially a small dominating setC is formed
whichmay have several disconnected components. The forest consisting of the edges
{v1, v2} where v1 ∈ C and v2 ∈ N (v1) is then connected in the second stage using
a distributed minimum spanning tree (MST) algorithm. The CDS consists of the

http://dx.doi.org/10.1007/978-3-319-73235-0_10
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Fig. 14.8 Implementation of Pruning-based Algorithm in a small graph. Nodes that mark them-
selves black since they have two directly unconnected neighbors are shown in a and implementing
Rule 1 and Rule 2 in nodes 5 and 3 respectively results in the smaller CDS shown in b

non-leaf nodes of the MST formed. This algorithm provides an approximation ratio
of 2HΔ + 1 in O((n + |C |)Δ time using O(n|C | + m + n log n) messages [5].

14.4.3.2 Greedy Distributed Algorithms
In the second algorithm, one or two step paths emanating from the current CDS
are investigated to find the node with the greatest number of white nodes in each
round. A node or a pair of nodes with the highest number of span is added to the
existing CDS as in [5]. This algorithm achieves an approximation ratio of 2HΔ in
O(|C |(Δ + |C |)) time using O(n|C |) messages [5].

14.4.3.3 MIS Based Distributed CDS Construction
Alzoubi et al. proposed a CDS construction algorithm based on UDGs that consists
of three phases as follows [2]:

1. Leader Election: A spanning tree is constructed rooted at the leader and nodes
notify leader that this phase is over.

2. Level Calculation: The leader starts this phase by sending a level 0 message
and then each node increases the level received from parent and transfers level
message to children if they exist. A convergecast operation by completemessages
to the root concludes this phase.

3. Color Marking: The nodes in the MIS are colored black and all other nodes are
colored gray at the end of this phase. The dominator message is sent by a node
that marks itself black and the dominatee is sent by a node that marks itself gray.

Initially, all nodes are white and the algorithm is executed according to the fol-
lowing rules [2]:

1. A white node which receives a dominator message first time marks itself gray
and broadcasts a dominatee to inform it has been dominated.
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2. A white node that has received dominatee messages from all of the neighbors
with lower ranks marks itself black, sends a dominator message to all of its
neighbors and assigns its parent in T as its dominator.

3. A gray node receiving a dominator message from a child node in T for the first
time which has never sent a dominatee message, it changes its color to black
and sends dominator message to all of its neighbors.

4. Whenever a black node finds that all of its neighbors are black and have lower
ranks than itself, it changes its color to gray and sends dominatee message to all
of its neighbors.

Rule 1 ensures that if the neighbor of a white node is included in the CDS, it
colors itself gray to be a neighbor node of a CDS node. In Rule 2, if all the lower
rank neighbors are gray, a node may be assigned as a CDS node. The second phase
finishes when the leaves of the tree are marked. At the end of the first two phases,
an MIS is formed and the nodes in this set are connected using invi te and join
messages. This algorithm has time complexity of O(n), message complexity of
O(n log n) and the resulting CDS has a size of at most 8|MinCDS| + 1 [2].

14.5 The Internet

The Internet is the largest computer network in the world and consists of billions of
devices including personal computers, servers, mobile phones connected by various
networks. The Internet is a complex network exhibiting small-world and scale-free
properties as discovered experimentally [3]. The average distance between any two
nodes is between 3 and 9 and a small fraction of nodes in the Internet have very
high number of connections with most of the nodes having low degrees. In fact, the
average degree of nodes in the Internet is between 2 and 8 [3].

Routing in Internet is needed to find efficient paths from a source to many desti-
nations in the network. A routing protocol specifies a set of rules for efficient data
transfer between sources and destinations. There are various choices for Internet
routing protocols; the information can be stored globally or decentralized. We have
all routers having complete topology information in the former and a router is aware
of its neighbors and the link costs to these neighbors in the latter. The network may
be staticwith routes changing slowly or dynamicwith frequent route changes. Addi-
tionally, the routingmay be sensitive to load in the network or not. Two representative
routing algorithms in the Internet are the distance vector and link state algorithms.
In both of these algorithms, it is assumed that the router is aware of the address of its
neighbors and the cost reaching those neighbors. We will see the routing problem in
the Internet can be solved efficiently with graph algorithms.
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14.5.1 DistanceVector Protocol

The distance vector routing (DVR) protocol uses a local distributed and a dynamic
algorithm that adapts to changes and link failures. It is based on the Bellman–Ford
dynamic shortest path algorithm we reviewed in Chap.3. The main idea of this
algorithm is the diffusion of the shortest paths to neighbors. Each node i periodically
sends its shortest distances to all other nodes in a message update including vector
length[1..n] with entry length[ j] showing its distance to node j . When a node
receives these vectors from the neighbors, it updates its shortest paths to all other
nodes in the network based on the values in length. When a node i receives an
update message, it checks the entries in length vector and if there is a shorter route
to a destination j in length than its own, it updates its local routing table with that of
the one in length. The count-to-infinity problem is encountered in this protocol when
a node becomes isolated due to a link failure or breaks down and all nodes start to
increase their distances to this node.

14.5.2 Link State Algorithm

The link state protocol uses a global distributed algorithm in which each router is
aware of the entire network topology and computes the shortest paths to all other
nodes individually using the Dijkstra’s single source shortest path (SSSP) algorithm
we saw in Chap.7. The network information is transferred by periodic link state
packets (LSPs) that includes the cots of reaching neighbors a sequence number and
time-to-live field which is decremented at each hop. Nodes gather the information
flooded through the network and use it to compute routes using the SSSP algorithm.
The local routing tables need to be large as whole network information is to be stored.

14.5.3 Hierarchical Routing

Up to this point, we have assumed all routers are in a flat networks structure which is
not realistic. Hierarchical routing in the Internet is based on hierarchical placement
of routers which is more reasonable than storing routing information for millions
of destinations at a single node. Routers are clustered into autonomous systems
(ASs) and routers in the same AS use the same routing protocol whereas routers
in different ASs can run different routing protocols. There is an inter-AS routing
protocol for data transfer among ASs. If a packet received by a router is destined for
a destination in the same AS, the shortest route computed by the inter-AS routing
algorithm is used. Otherwise, the packet is transferred to one of the gateway routers
to be delivered to the destination AS. The required destination AS is computed by
the inter-AS routing protocol. The standard inter-AS protocol of the Internet is the
Border Gateway Protocol (BGP) [21].

http://dx.doi.org/10.1007/978-3-319-73235-0_3
http://dx.doi.org/10.1007/978-3-319-73235-0_7
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14.6 TheWeb as an Information Network

The world wide web (WWW), or Web, is an information network formed by the
references in Web documents. We can think of the Web as a higher level structure
over the Internet which consists of Web pages with links to each other. Such an
organization of Web pages can be conveniently modeled by a digraph, commonly
denoted as theWebgraph.We can then search solution to the problems such as finding
the most relevant page to a query encountered there using this digraph. The hyper
text transfer protocol (http) is used for communication between the Web clients and
Web servers and the links between Web pages are called hyperlinks.

The Web graph is very dynamic with numerous nodes (pages) being added and
deleted at any time. It is a complex network consisting of millions of nodes bearing
the commonly found complex network properties such as small-world and scale-free
networks. In other words, there are only few hops between any two documents on
the Web and only a small percentage of the nodes have very high degrees with most
of the nodes having small degrees. TheWeb graph was found experimentally to have
a very large strongly connected component called the giant component (GC) with
other nodes grouped as follows:

• IN : This the set of nodes that have directed links to the GC.
• OUT : Nodes that have directed links from the GC form this component.
• Tendrils: A tendril has Web pages connected to either IN or OUT but are not part

of IN, OUT or the GC.
• Disconnected nodes: Pages that cannot be accessed from any component.

These components in IN-GC-OUT sequence form a bow-tie structure. Our main
goal from graph-theoretical point of view in the Web is to design efficient algo-
rithms for convenient access to pages on the Web graph. There are two fundamental
algorithms for this purpose: the HITS and PageRank algorithms described in the
following sections.

14.6.1 HITS Algorithm

Kleinberg presented an algorithm called hypertext-induced topic selection (HITS)
to assign values to pages on the Web for efficient search during a query [16]. The
main idea of this algorithm is to give importance to some nodes on the graph based
on their votes in pointing to a document during a Web query. The Web pages related
to a query are divided to the hubs which cast votes and the pages pointed by hubs
are called the authorities. Both of these pages have scores associated with them to
reflect their importance. These scores can be assigned based on the following rules
[16]:



436 14 Complex Networks

Fig. 14.9 Implementation of
HITS algorithm in a small
Web graph for the first
iteration. The scores next to
the authorities show the
number of hubs that point to
them. The hubs have a score
reflecting the total score of
authorities they point
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• Authority Update Rule: The authority score of a page is the sum of the hub scores
of all pages pointing to it.

• Hub Update Rule: The hub score of a page is the sum of the authority scores of
all pages that it points to.

With these rules, we give more importance to authorities that are pointed by more
hubs than others. Moreover, if a hub has pointed to authorities which have been
pointed by many hubs, its importance is also raised. This feedback structure may
be repeated in a loop to determine the importance of authorities which can then be
presented to the user with respect to their priorities. A one-step implementation of
this algorithm is shown in Fig. 14.9.

A possible pseudocode of this algorithm is depicted in Algorithm 14.1 in which
the hub and authority scores of the pages are initialized to 1 and the above rules are
applied iteratively [7]. The final scores at each iteration are calculated by dividing
the score value with the sum of the scores. It was shown in [16] the scores for hub
and authority pages converge as the number of iterations go to infinity.

14.6.2 PageRank Algorithm

We have analyzed a dynamically formed Web graph in response to a query. This
bipartite graph contained two different type of pages as hubs and authorities. The
Web graph in general is not bipartite and can be viewed as a directed graph where the
bipartite structure may exist only locally. Page rank is an attribute of importance of a



14.6 TheWeb as an Information Network 437

Algorithm 14.1 HITS
1: Input : P = {p1, ..., pn} 
 p is set of n pages
2: k steps
3: Output : authority and hub values for all pages
4: for all p ∈ P do 
 initialize authority and hub values
5: hubp ← 1; auth p ← 1
6: end for
7: for j ← 1 to k do 
 apply rules for k steps
8: for all p ∈ P do
9: apply Authority Update Rule to p to assign auth p values
10: end for
11: for all p ∈ P do
12: apply Hub Update Rule to p to assign hubp values
13: end for
14: auth_total ← ∑

p∈P auth p 
 calculate total values
15: hub_total ← ∑

p∈P hubp
16: auth p ← auth p/auth_total 
 calculate normalized values
17: hubp ← hubp/hub_total
18: end for

page in the Web graph based on the number of pages that reference it. It is basically
a score for a page based on the votes it receives from other pages. This is a sensible
metric for the importance of a page since the relative importance and popularity of
a page increases by the number of pages referencing it. Page rank can be considered
as a fluid that runs through the network accumulating at important nodes. The page
rank algorithm to find importance of pages in aWeb graph assigns ranks of the pages
in theWeb graph such that the total page rank value in the network remains constant.
It initially assigns rank values of 1/n to each page in an n node network as shown in
Algorithm 14.1. The current rank value of a page is evenly distributed to its outgoing
links and then, the new page rank values are calculated as the sum of the weights of
the ingoing links of pages. Execution of this algorithm for k steps results in more
refined results for page rank values as in the Authority and Hubs algorithm and the
page rank values converge as k → ∞.

Finding the initial edge weights using this algorithm in a small Web graph with
five nodes is depicted in Fig. 14.10.

Running of the Page Rank algorithm for the graph of Fig. 14.10 for the first three
iterations is shown in Table14.1. We can see page 3 has the least rank as it is pointed
by only one page and page 4 has slightly higher rank than others as it is the only page
pointed by 3 pages. A page that does not point to many pages as other pages but has
many input edges may have high scores after a significant number of iterations. This
situation is corrected by the introduction of damping factor d which is used to scale
down page rank values by (1 − d)/n [16].
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Algorithm 14.2 Page Rank Algorithm
1: Input : P = {p1, ..., pn} 
 set of n pages
2: k steps
3: Output : page rank values rankp , ∀p ∈ P
4: Ep(in) ← ingoing edges to page p
5: Ep(out) ← outgoing edges from page p
6: for all p ∈ P do 
 initialize page rank values
7: rankp ← 1/n
8: end for
9: for r ← 1 to k do 
 apply for k steps
10: for all p ∈ P do
11: for all e ∈ Ep(out) do
12: we ← rankp/|Ep(out)|
13: end for
14: rankp ← ∑

e∈Ep(in) we 
 find sum of the weights of all links pointing to pi
15: end for
16: end for

Fig. 14.10 Implementation
of PageRank algorithm in a
small Web graph to find
weight values per edge
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Table 14.1 Page Rank values of the Web nodes of Fig. 14.10

Vertices 1 2 3 4 5

nout 3 2 2 2 1

k = 1:
weight/edge

0.067 0.1 0.1 0.1 0.2

rank 0.2 0.3 0.067 0.267 0.167

k = 2:
weight/edge

0.067 0.15 0.034 0.134 0.167

rank 0.284 0.201 0.034 0.251 0.201

k = 3:
weight/edge

0.095 0.101 0.017 0.067 0.167

rank 0.168 0.184 0.095 0.213 0.162
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14.7 Chapter Notes

Wehavedescribed and reviewed fundamental complex networkswhich are biological
networks, social networks, technological networks and information networks. All of
these networks exhibit small-world and scale-free properties of complex networks.
We then took a closer look at some of the representative examples for these networks.

PPI networks are biological networks that exist outside the nuclei in the cell and
three main problems encountered in these structures are detecting clusters, finding
network motifs and aligning two networks. Clusters or dense subgraphs in these
networks may indicate some dense activity in this region and we reviewed two
algorithms for the purpose of discovering clusters. Network motifs are repeating
subgraphs and finding them is another important task and research area in PPI net-
works and other biological networks. These structures are assumed to have some
basic functionality and are considered to be the basic building blocks of organisms.
Moreover, finding similar network motifs in two or more organisms may indicate
common ancestry. Alignment of two or more networks show their similarities and is
frequently used to compare various networks.

Social networks are formed by individuals or groups of individuals and finding
communities which are closely related groups provides insight to the structure of a
social network. We reviewed two main algorithm for this purpose and also described
relations, and balanced and unbalanced social networks. Wireless ad hoc networks
are technological networks like the Internet. Two main types of these networks are
the mobile ad hoc networks and wireless sensor networks. We described various
clustering algorithms in these networks in detail which are all distributed algorithms
executed by individual nodes of the network. We also reviewed main routing algo-
rithms in the Internet which are extensions of the routing algorithms described in
Chap.7. We lastly reviewed the Web which is an information network and analyzed
two algorithms to attribute importance to Web pages for efficient Web queries. The
first algorithm called HITS divides the nodes to hubs and authorities during a query
and assigns scores to these nodes based on the scores of nodes they point and are
pointed by. The PageRank algorithm is more general and finds wide use in the Web.

We can say clustering is a fundamental research area in all of these networks
and heuristics are widely used to find the dense regions in the large graphs that
represent these networks. There is not a single algorithm that fits all of the needs
of the application and the experimental results obtained along with its complexity
are commonly accepted as the goodness of an algorithm. Parallel and distributed
algorithms are needed in all areas of research in these complex networks. A survey of
parallel clustering algorithms with newly proposed ones are given in [8]. Distributed
clustering algorithms in wireless ad hoc networks have been studied extensively but
the same is not valid for clustering in other complex networks. There are only few
studies for parallel network motif search and parallel network alignment which are
potential research areas.

http://dx.doi.org/10.1007/978-3-319-73235-0_7
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Fig. 14.11 The sample graph for Exercise 1

Fig. 14.12 The sample
graph for Exercise 2
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Exercises

1. Work out the MST of the graph shown in Fig. 14.11 using any algorithm. Then,
divide this graph into three clusters by removing the heaviest two edges from the
MST. Find the total cost of inter-cluster edges and the cost of edges within the
clusters and compute cluster quality.

2. Find whether the social network depicted in the labeled graph of Fig. 14.12 is
balanced or not by checking every triangle. Suggest what to do to make this
network balanced.

3. Work out the scores of hub and authority pages of the Web query graph of
Fig. 14.13 for three iterations of the HITS algorithm. Determine whether there is
a convergence of score values or not.

4. A Web graph is given in Fig. 14.14. Implement the PageRank algorithm in this
graph for four iterations by showing the page rank scores for each page.
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Fig. 14.13 The sample
graph for Exercise 3 a
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15Epilogue

15.1 Introduction

We have described the fundamentals of sequential, parallel, and distributed graph
algorithms in Part I. We then reviewed basic graph algorithms which may be used
as building blocks to solve more complicated problems related to graphs in Part II
which formed the core of the book. We looked at sequential, parallel, and distributed
algorithmic solutions to the problems studied in this part. In the final part, we first
briefly reviewed algebraic and dynamic graph algorithms. Then, our emphasis was
on large graphs that represent real-life large networks commonly called complex net-
works. Graph algorithms for such large networks required new analysis approaches
and efficient algorithms as we noted.

Our aim in this final chapter is to briefly provide a guide when dealing with a
new problem which can be modeled by a graph. We attempt to sketch a road map
when a graph algorithm is needed for a task we have and we may not have an
existing graph algorithm to solve the problem. Once we have a workable method
for the problem at hand, we need to investigate the options of using sequential,
parallel, or distributed algorithms for this purpose.Moreover, relatively newmethods
of algebraic and dynamic graph algorithms may be conveniently used. Algebraic
graph algorithms allow the use of existing matrix library functions in sequential
or parallel form and dynamic graph algorithms are needed when edge deletions
and insertions occur as in many real-life networks. We describe where to use these
methods and conclude the chapter with a case study.

15.2 RoadMap for Difficult Problems

We know by now most of the problems encountered in graph world are NP-Hard
except few ones such as the matching problem where we searched for the disjoint
edges with the maximum size. Any new problem we face will probably not have a

© Springer International Publishing AG, part of Springer Nature 2018
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solution in polynomial time. We will attempt to specify the steps to follow in such a
case as follows.

• In-depth understanding of the basic graph algorithms is very helpful. These algo-
rithms such as the DFS and BFS algorithms may be used as the building blocks to
solve a more complicated problem. In many cases, a modified form of the basic
algorithm can be used. We saw how simple DFS algorithm with some modifica-
tions can be used for various problems such as finding articulation points, bridges,
strongly connected components, and the blocks of a graph.

• When dealing with an NP-hard graph problem, we can search an approximation
algorithm if it exists. In many cases however, approximation algorithms are rare
and attempting to design a newone is not a trivial task. After all, if one can come up
with a new approximation algorithm that has a better proven approximation ratio
than existing ones, this can be published in an article. In some cases, wemay opt to
use an approximation algorithm that has a slightly worse approximation ratio than
the best available one, due to the complexity of implementing a better algorithm.
For example, finding the minimal vertex cover of a graph using matching is a
simple algorithm with an approximation ratio of 2.

• In the more common case, use of heuristics is unavoidable. Choice of a heuristic
largely depends on the nature of the problem at hand. When we are to design a
new graph algorithm or modify an existing one, we have only few properties to
beginwith. Especially in the case of altering an existing algorithm for our purpose,
degree of nodes can be incorporated to break symmetries or to directly select a
node to work on. Degree of neighbors or degree of k-hop neighbors can also be
used. We can define new parameters which use degrees and neighbors and their
relationship. The clustering coefficient of a vertex for example shows how well
connected neighbors of that vertex are.

• For problems related to large graphs, we may opt for an approximation algorithm
with better performance than a polynomial algorithm to solve the problem due to
the high execution times involved. Moreover, parallelization is always helpful to
improve performance.

• A computer network consists of autonomous nodes that function independently.
For network problems,weneed efficient distributed algorithmswhich are executed
by the network nodes. These algorithms commonly use neighbor information to
find local solutions which are then used to find a global solution to a problem.

15.3 Are Large Graph Algorithms Different?

We can use any of the algorithms we have developed in Part II for large graphs.
However, even a linear time algorithm may be problematic due to the size of these
large graphs. Employment of the following techniques is frequently needed in such
large graphs.
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• Use of heuristics: Heuristics are commonly used in solving NP-hard graph prob-
lems as we noted. In some cases, one may opt for a heuristic algorithm that has,
for example, O(n) complexity using a heuristic than a deterministic algorithm
that has O(n2) complexity. This improvement in performance may be significant
for a large graph to decide to use the heuristic solution.

• Scalable parallel algorithms: Parallel algorithms are needed in the analysis of
large graphs representing complex networks due to the magnitude of the graph.
This method is a necessity rather than a choice in such implementations.

• Distributed algorithms: In the case of a large computer networks such as the
Internet or a wireless sensor network, distributed algorithms are needed.

15.4 Conversions:When Are They Useful?

We have three modes for graph algorithms: sequential, parallel, and distributed as
emphasized throughout the book. We may then have the following possible conver-
sions:

• Sequential to parallel: We can either design a parallel algorithm from scratch or
convert an existing sequential algorithm to a parallel one. Two commonly used
methods in the latter are distributing data (data parallelism) and distributing code
(functional parallelism) when we have a distributed memory parallel processing
system as we have reviewed in Chap.4. While using the shared memory model
of parallel processing, we need to provide control of shared address space using
locks, semaphores, or other mechanisms. Message passing is widely used for
parallel processing in distributed memory computers.

• Sequential to distributed: Distributed algorithms run at the nodes of a computer
network to solve a problem related to the network. Each node cooperates by
communicating with its neighbors in finding the result and a global solution is
commonly reached by a special node which may then transfer the result to indi-
vidual nodes. We can design a distributed algorithm from scratch or convert an
existing sequential algorithm to a distributed one as in the parallel case. Convert-
ing a sequential algorithm to a distributed one requires detailed analysis of what to
communicate and when. A well-known problem in a computer network is routing
where we search for shortest paths between each pair of nodes. We described how
to convert the sequential Bellman–Ford algorithm that uses dynamic program-
ming to find shortest paths from a source node. The main difference between the
sequential and the distributed algorithms is having each node compute its short-
est distance to the root based on its current information in each round. We need
synchronization in each round which can be performed by a special node. In sum-
mary, we need tomake sure synchronization is flawless while using a synchronous
distributed algorithm. Asynchronous distributed algorithms are more flexible but
in general are more difficult to design than the synchronous ones.

http://dx.doi.org/10.1007/978-3-319-73235-0_4
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• Distributed to parallel: Let us assume we have a network and a distributed algo-
rithm A to solve a problem B related to the network and each vertex of the graph
represents a computing node of the network in the general sense. Our goal is to
provide a solution to P in a parallel computing environment and then transfer the
results to each node. A possible conversion of algorithm A to a parallel algorithm
B may involve the following steps. We coarsen the graph iteratively using a suit-
ablemethod such as edge contraction or star contraction to obtain supernodes each
of which represents a number of nodes with incident edges of the original graph.
We can then assign each supernode to a parallel processing system where each
process p solves the problem for the supernode it is assigned. It may communicate
with the neighbors of the supernode in the coarsened graph using the distributed
algorithm A. The results may be collected at a root node which computes the
global result by merging the results from each process p and transfers the results
to each node. We need to consider the border vertices between each partition
carefully as symmetry breaking such as using unique identifiers may be needed to
assign a border vertex to a neighbor supernode for convenience. Let us consider
the matching problem in a computer network and we want to find the solution in
a parallel computer with k processes. We should have each network node to know
whether any one of its incident edges is included in the final matching M . We can
coarsen the graph to k subgraphs of supernodes G1, . . . ,Gk and assign each Gi

to a process pi to have each pi work out the matching Mi in its supernode Gi .
The processes can now communicate with neighbor supernodes as if they are the
nodes of a network to find the global solution either using a supervisor or in fully
distributed manner.

• Parallel to distributed: Given a parallel algorithm B to solve a graph problem
P , we want to know whether converting B to a distributed algorithm A is more
convenient than designing a distributed algorithm from scratch or convert an
existing sequential algorithm to a distributed one for problem P . Our strategy
in this conversion can be to work in the reverse direction of the method used
in distributed algorithm to parallel algorithm conversion this time. Instead of
coarsening, we attempt to refine the parallel algorithm to the level where each
parallel process pi is responsible for a single vertex of the graph and thus we can
partition each row of the adjacency or the distancematrix to a distinct process. The
restriction we have is that the process can only communicate with its neighbors.
If this is possible, we have a distributed algorithm that can run on autonomous
nodes of the network.

15.5 Implementation

Once we have some way of solving the problem, we need to consider the imple-
mentation choices. We saw three ways of implementations that consider data flow in
an algorithm for a given problem; sequential, parallel, or distributed. From another
perspective, the data structures used and the environment the algorithm is practiced
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play an important role to classify the algorithm as classical, algebraic, dynamic, or
sometimes all.

15.5.1 Sequential, Parallel, or Distributed

Wehave devotedmost of the book to sequential graph algorithmswith sample parallel
and distributed algorithms to specific graph problems. The size of the problem and
the environment it is implemented is crucial in deciding whether we should look for a
parallel or a distributed algorithm. For a large graph representing a complex network,
parallel algorithms are commonly required to provide efficiency. On the other hand,
if we are to solve a network problem in which network nodes participate in finding
the solution, we need to search a distributed algorithm for the task at hand. In many
cases, these boundaries are not so clear. For example, we may have a wireless sensor
network with a cluster of computing nodes used as the sink and hundreds of sensing
nodes. Solving a problem such as routing or more complicated problems can be
handled by nodes performing some local operation and sending their data to the sink
using a distributed algorithm; the sink finding the solution efficiently using parallel
computing and then sending the result to the individual nodes using the distributed
algorithm.

As a general rule, we can say that parallel computing is required in solving prob-
lems related to complex networks represented by large graphs. These problems such
as network motif search or network alignment are NP-hard in many cases which
require use of heuristics, and even such implementations take considerable time due
to the huge size of the graph. The speedup obtained by such a parallel algorithm is
the ratio of the sequential time to the parallel computing time and the efficiency is
defined as the speedup divided by the number of processing elements used.

When we are dealing with a problem in which network nodes represent graph
vertices, we should look for efficient distributed algorithms. We saw single initiator
synchronous distributed algorithms are frequently used in such cases due to their
relatively ease of implementation. The number of rounds and the total number of
messages exchanged to terminate the algorithm provide us a good indication of its
performance.

15.5.2 Classical,Algebraic,Dynamic, or All?

The main part of this book including parts I and II and most of Part III is dedicated
to graph algorithms that can be considered as classical algorithms in a sense that
traditional algorithmic techniques such as greedy, dynamic, and divide and conquer
methods are employed.We reviewed alternative and relativelymore recentmethod of
algebraic graph algorithm design in Chap.12. This method makes use of main matri-
ces associated with a graph: adjacency matrix, incidence matrix, and the Laplacian
matrix. The review of solutions to few graph problems showed the performances of
such algorithms are commonly inferior to their classical counterparts. However, the

http://dx.doi.org/10.1007/978-3-319-73235-0_12
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algebraic method provides simpler algorithms andmore importantly, a vast library of
matrix operations in sequential and parallel form are readily available for use in such
algorithms. For example, if the algebraic algorithm involves matrix multiplication,
we already have a method to perform this operation in parallel by row, column, or
block partitioning. Therefore, we do not need to spend a lot of time to find a parallel
algorithm for the problem studied if we can form the algebraic solution using basic
matrix operations.

Dynamic graph algorithms are a necessity rather than a choice since real networks
are almost always dynamic with frequent addition and deletion of edges. Examples
of these networks are the Internet, theWeb, social networks, and biological networks
of the cell. Instead of running a known static (classical or algebraic) algorithm for
the modified network from scratch, it is sensible to design algorithms that make use
of the existing network information and solve the problem faster. We noted the main
challenge in the design of dynamic graph algorithms lies in the design of clever data
structures so that modifications can be handled quickly.

Lastly, we investigated dynamic algebraic graph algorithms which are even a less
investigated area than algebraic and dynamic graph algorithms. When we have an
algebraic method to solve a graph problem, there is the possibility to have a dynamic
version of this technique by using some known result from linear algebra and also by
using a dynamic matrix library operation.We have seen such a procedure in dynamic
algebraic matching when an algebraic solution to this problem was combined with
dynamic matrix operations and a theorem from linear algebra.

In conclusion, graph algorithm design using the traditional approaches will be
used for small to moderate size problems. Moreover, they commonly provide the
basic design methods to be used in algebraic or dynamic algorithms for graphs.
However, when we are searching for a solution in a large graph, parallel processing
is needed and such operation can be handled more conveniently by algebraic graph
algorithms. Dynamic graph algorithms are needed for dynamic networks for better
performance. Inmany cases, dynamic networks such as protein interaction networks,
social networks, and the Internet are large. We can therefore conclude dynamic
algebraic graph algorithms will continue to be an effective research area in future.

15.6 A Case Study: Backbone Construction inWSNs

Let us elaborate on a case study to illustrate the guidelines we have expressed until
now. We need to cluster nodes of a WSN for the general benefits obtained from such
process. Electing a clusterhead (CH) eases various tasks such as routing since the
CH may perform these tasks on behalf of the nodes in its cluster. This hierarchi-
cal structure is clearly useful in managing any establishment including countries.
However, we need a spanning tree in the WSN to broadcast various commands
from the root and also aggregate the data of the sensors to the root. We may use two
distinct algorithms for our purpose but a closer look reveals that two tasks can be per-
formed by one algorithm in a more efficient way. We will call this process spanning
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Fig.15.1 Cluster formation in a sample WSN with a sink node. The maximum hop count is 2 and
CHs are shown in gray with clusters in dashed regions

tree-based clustering. The general idea of the new algorithm is to build clusters and
the spanning tree simultaneously. Each cluster will be a subtree in the spanning tree.

We now search for a spanning tree algorithm and see if we can modify this
algorithm for our purpose. We saw how to build a spanning tree using flooding in
Chap.5. Erciyes et al. presented an algorithm that builds a spanning tree and forms
clusters simultaneously using flooding [3]. The main idea of this algorithm is to keep
a record of the depth of the spanning tree obtained during the iterations and assign
the nodes of the tree within every d hops to a cluster.

The root node starts the algorithm by sending the first probe message and the
nodes receiving this message first time mark the sender as their parent and send
back an ack message, otherwise, the sender is replied with a nack message as in the
original flooding algorithm. Additionally, the depth of subtree cluster is determined
prior to execution in the variable max_depth and at every message reception by the
nodes, the variable count is incremented and checked against max_depth. The end
of the cluster is marked when this is reached and another cluster is started as shown
in Algorithm 15.1 [2]. An unvisited node that receives a message probe with a 0 in
count field becomes a CH of its subtree. All nodes other than the root are classified as
CH, ordinary or leaf at the end of the algorithm. Clusters formed with this algorithm
in a sample WSN are shown in Fig. 15.1.

Theorem 15.1 Time complexity of ST _Clust is O(d), where d is the diameter of
the network and its message complexity is O(m).

http://dx.doi.org/10.1007/978-3-319-73235-0_5
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Algorithm 15.1 ST _Clust
1: int parent ← ⊥
2: set of int childs← {Ø} , others ← {Ø}
3: message types probe, ack, reject
4: states CH, ordinary, leaf
5: if i = root then � root initiates tree construction
6: send probe(0, 0) to N (i)
7: parent ← i
8: end if
9:
10: while childs ∪ others) �= (N (i)\{parent} do
11: receive msg(j)
12: case msg(j).type of
13: probe(cid, n_hops) : if parent = ⊥ then � probe received first time
14: parent ← j
15: send ack to j
16: if count = 0 then � i am the clusterhead
17: state ← CH
18: cid ← i
19: else if count = ds then
20: state ← lea f
21: else state ← ordinary
22: count ← (count + 1) MOD max_depth
23: send probe(cid, count) to N (i)\ {j}
24: else send reject to j � probe received before
25: ack : childs ← childs ∪ { j} � include j in children
26: reject : others ← others ∪ { j} � include j in unrelated
27: end while

Proof The diameter of the graph is the upper bound on the time required for the
algorithm as it is the farthest distance between any two vertices. Since each edge will
be traversed twice by either probe/ack or probe/reject message pairs, the message
complexity of the algorithm is O(m).

Banerjee and Khuller [1] also proposed a protocol based on a spanning tree by
grouping branches of a spanning tree into clusters of an approximate target size.

15.7 Conclusions

Wecan briefly summarize the steps to followwhenwe need to decide on an algorithm
for the graph problem we have:

1. Investigate carefullywhether the problem can be solved by a combination of basic
graph algorithms such as direct or modified BFS and DFS. We saw BFS is used
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effectively to find the edge betweenness values in a graph and DFS for various
connectivity problems. If this is not possible, we can search for an approximation
algorithm that works in linear time. If we cannot find an appropriate algorithm,
our best choice will be to use some heuristics that give good results most of the
time.

2. If the graph is large, it is alwaysworthwhile to attempt to parallelize the algorithm.
In this case, we saw partitioning of the adjacency matrix of the graph yields fea-
sible solutions in many cases. We can also partition the graph by first contracting
its vertices to obtain a simpler graph and then partition the simple graph. For such
graphs, using algebraic graph algorithms provides easiness in parallelization as
parallel matrix operations are already available.

3. If we need to design a distributed algorithm for a computer network such as a
WSN, we may attempt to convert the sequential algorithm to a distributed one
as a general approach. This may not be a trivial task especially if the sequential
algorithm relies heavily on global data since the distributed algorithms commonly
work using local data around the nodes.
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APseudocodeConventions

A.1 Introduction

We show the conventions of pseudocode writing used throughout the book here. We
follow the mainstream adaptations such as in [1, 2]. Main points to be emphasized
are as follows:

• Every algorithm starts with the declaration of its input and the output produced
by it.

• The lines of the algorithm are numbered for reference.
• We use indentations to show blocks which are executed within control structures.
• A procedure that is used from the main body of the algorithm is shown explicitly.

The data structures, control structures, and distributed algorithm structures are
described in the next sections.

A.2 Data Structures

Each line of an algorithm is a statement which commonly evaluates an expression or
performs a specific function such as calling a procedure. An expression consists of
constants, variables, and operators. Declaration of a variable is performed as shown
in the following examples:

booolean visi ted ← f alse

Here a Boolean variable visited is declare and initialized to false value.

setofint vertices ← {Ø}
© Springer International Publishing AG, part of Springer Nature 2018
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Table A.1 General algorithm conventions

Notation Meaning

a ← b Assignment

= Comparison of equality

�= Comparison of inequality

true, f alse Logical true and false

null Nonexistence

� Comment

Table A.2 Arithmetic and logical operators

Notation Meaning

¬ Logical negation

∧ Logical and

∨ Logical or

⊕ Logical exclusive-or

a/b a divided by b

a.b or ab Multiplication

A set of vertices which will contain integer values is declared and initialized as
empty.

The assignment in the above examples is performed by using the← operator. The
value on the right of this operator is evaluated and assigned to the variable on the
left in the usual sense. Sometimes, we have two or more short expressions which are
placed in the same line of the algorithm separated by semicolons as follows. Note
that a statement line does not end with a semicolon.

i ← 5; j ← 8

Pseudocode conventions used in the book are shown in Table A.1.
Arithmetic and logical operators used are shown in Table A.2.
We use sets instead of arrays to show a collection of variables. An element x is

contained in a set A is performed by the union (∪) operator as follows:

A ← A ∪ {x}

and removing an element y from the set A is performed by using the setminus (\)
operator as follows:

A ← A \ {v}
Table A.3 shows the set operations used in the text with their meanings.
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Table A.3 Set operations

Notation Meaning

|S| Cardinality of S

Ø Empty set

u ∈ S u is a member of S

S ∪ R Union of S and R

S ∩ R Intersection of S and R

S \ R Set subtraction

S ⊆ R S is a subset of R

S ⊂ R S is a proper subset of R

max/min{....} S Maximum/minimum value of a set of values

A.3 Control Structures

Control structures are used to alter the flow of execution. Selection and repetition
are two main modes of control as described below.

Selection

Selecting one of few alternative flows is commonly performed by the if-then-else
construction. The Boolean expression after the if statement is evaluated and the
branch after then is taken if this expression yields a true value. We can specify an
else block to specify the alternative flow when the expression yields a false value.
An example is depicted in Algorithm A.7 where we want to test which of the given
two integers a and b is greater than the other or whether they are equal to each other.
We see line 7 is executed in this example.

Algorithm A.1 if-then-else structure
1: a ← 3; b ← 5
2: if a > b then � test condition
3: output “a is greater”
4: else if a = b then � else if of i f statement
5: output “a = b”
6: else
7: output “b is greater”
8: end if � end of i f statement

We can select a specific flow of execution from a number of alternative flows
again by the evaluation of a number of expressions using the case-of structure. A
simple calculator that can perform addition, subtraction, multiplication, and division
is shown in Algorithm A.3.
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Algorithm A.2 A Simple Calculator
1: input operator
2: input a and b
3: case operator of
4: “+” : c ← a + b
5: “-” : c ← a − b
6: “*” : c ← a ∗ b
7: default c ← a/b
8: output c

Repetition

We use the loop constructs f or , while, and repeat ..until to implement a statement
for a number of times. The for-do loop is commonly used when the number of
iterations is known beforehand. The example shown in Algorithm A.3 finds the sum
of the elements of a matrix with integer elements.

Algorithm A.3 Sum of a Matrix
1: Input: int A[n] = {...}
2: Output: sum of the elements of A
3: for i = 1 to n do
4: sum ← sum + A[i]
5: end for

When we are dealing with sets and do not know the size of the set, the for all loop
can be conveniently used. Commonly, we arbitrarily select an element of the set and
perform an operation on this element as shown in Algorithm A.4 where we simply
output each element of set S which consists of integers.

Algorithm A.4 Output Elements of a Set
1: Input: set of int S = {...}
2: Output: elements of S
3: for all u ∈ S do
4: output u
5: end for

There are cases when wewant to enter a loop based on a condition. Thewhile loop
can be used for such implementations, and this type of loopmay be entered 0 or more
times based on the evaluation of a Boolean expression as shown in Algorithm A.5
where the sum of numbers entered is calculated until 99 is entered. Note that 99 may
be entered as the first input causing no execution of the block inside the loop.
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Algorithm A.5 Sum of Integers
1: Input: set of int S
2: Output: elements of S
3: input a
4: while a �= 99 do
5: sum ← sum + a
6: input a
7: end while

Our last loop structure we use in the algorithms is the Repeat .. Until loop where
the decision to execute the loop is made after the loop is run. This type of loop is used
when we know the loop is to run at least once as shown in Algorithm A.6, where we
implement the above example of adding numbers entered. Note that we do not need
the input statement before the loop this time since we know the loop will execute at
least once.

Algorithm A.6 Sum of Integers
1: Input: set of int S
2: Output: elements of S
3: input a
4: repeat
5: input a
6: sum ← sum + a
7: until a �= 99

A.4 Distributed Algorithm Structure

A distributed algorithm is executed by a node of a network, and the action to be done
is commonly decided by the type and contents of the message received. We have a
case structure after the message is received and then each necessary action is decided
by the type and then the contents of the received message. The code is executed by
node i and we frequently omit writing the identity of the node i in various operations
performed for simplicity. For example, send msgx to j means sending of message
msgx from node i to node j . We need to check reception of message condition,
for example, when messages are received from all neighbors or only one message
received from the parent in a tree, etc. In synchronous distributed algorithms, we
need a Boolean variable to show us that the round is over and commonly, we have
a while loop that tests this condition. When this condition becomes true, we do not
wait for any more messages as shown in Algorithm A.6.
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Algorithm A.7 Distributed Algorithm Structure 1
1: int i, j � i is this node; j is the sender of a message to i
2: while ¬ f lag do � all nodes execute the same code
3: receive msg(j)
4: case msg(j).type of
5: a1 : action1
6: ... : ...
7: an : actionn
8: if messages received from all neighbors then
9: f lag ← true
10: end if
11: end while
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B.1 Introduction

A graph can be represented by its adjacency matrix or incidence matrix. The Lapla-
cian matrix of a graph provides information about the spectral properties of a graph.
The algebraic graph theory is based on applying algebraic methods to graph prob-
lems and commonly, the matrices associated with a graph are used for this purpose.
Linear algebra is a branch of mathematics that deals with matrices. We provide a
very brief and partial review of linear algebra sufficient to be a background for the
spectral graph properties and algebraic graph algorithms described in the book.

B.2 Basic Matrix Types

A matrix is a set of elements organized into rows and columns.

• A general matrix with m rows and n columns can be written as

Am,n =

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

⎞
⎟⎟⎟⎠
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• transpose of a matrix: This matrix is obtained by writing rows as columns and
columns as rows. The transpose of the above matrix is

AT
n,m =

⎛
⎜⎜⎜⎝

a1,1 a2,1 · · · an,1
a1,2 a2,2 · · · an,2
...

...
. . .

...

a1,m a2,m · · · an,m

⎞
⎟⎟⎟⎠

• diagonal matrix: All entries except the diagonal values of this matrix is 0. For a
4 × 4 matrix

A =

⎛
⎜⎜⎝
a1,1 0 0 0
0 a2,2 0 0
0 0 a3,3 0
0 0 0 a4,4

⎞
⎟⎟⎠

• identity matrix: The identity matrix I a diagonal matrix with all diagonal values
of unity. I4 is shown below:

A =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

• symmetric matrix: The values symmetric to the diagonal are equal in this matrix,
which means this matrix is equal to its transpose.

A =

⎛
⎜⎜⎝
a1,1 a1,2 a1,3 a1,4
a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,4 a2,4 a3,4 a4,4

⎞
⎟⎟⎠

• upper triangular matrix: Matrix A is upper triangular if Ai j = 0 when i > j as
shown below:

A =

⎛
⎜⎜⎝
3 1 5
0 7 1
0 0 4
0 0 0

⎞
⎟⎟⎠

• lower triangular matrix: Matrix A is lower triangular if Ai j = 0 when i < j .

A =
⎛
⎝
2 0 0 0
4 1 0 0
3 6 4 0

⎞
⎠
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• submatrix: A submatrix of a matrix is formed by deleting a set of rows and/or
a set of columns. Deleting row 1 and column 2 of a matrix results in the shown
submatrix.

A =
⎛
⎝
2 1 0 4
5 3 2 1
0 2 4 3

⎞
⎠ →

(
5 2 1
0 4 3

)

• vector: A vector is a n × 1 matrix.

B.3 Matrix Operations

• addition: Two matrices can be added if they have the same dimension. The cor-
responding items of the matrices can then be added to form the sum matrix. The
addition of two 3 × 3 matrices A and B to get matrix C is as below:

C = A + B

⎛
⎝
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

⎞
⎠ =

⎛
⎝
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞
⎠ +

⎛
⎝
b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

⎞
⎠

=
⎛
⎝
a1,1 + b1,1 a1,2 + b1,2 a1,3+b1,3
a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3
a3,1 + b3,1 a3,2 + b3,2 a3,3 + b3,3

⎞
⎠

• multiplication with a scalar: Two matrices can be added if they have the same
dimension. The corresponding items of the matrices can then be added to form
the sum matrix. The addition of two 3× 3 matrices A and B to get matrix C is as
below:

C = k · A

C = k ·
⎛
⎝
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞
⎠ =

⎛
⎝
k · a1,1 k · a1,2 k · a1,3
k · a2,1 k · a2,2 k · a2,3
k · a3,1 k · a3,2 k · a3,3

⎞
⎠

• matrix multiplication: Multiplication of a matrix by the identity matrix does not
change it AI = A

C = A × B

=
(
a1,1 a1,2
a2,1 a2,2

)
×

(
b1,1 b1,2
b2,1 b2,2

)

=
(
a1,1b1,1 + a1,2b2,1 + a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 + a2,1b1,2 + a2,2b2,2

)
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For example,
(

5 4
−3 −2

)
=

(
1 2

−1 0

)
×

(
3 2
1 1

)

Multiplying an m × n matrix by the n × n identity matrix In does not change it.

AIn = A = Im A

For an n × n matrix A, if there exists a n × n matrix B such that

AB = A = BA = I

Then, the matrix B is called the inverse of A written as A−1, and A is called a
non-singular matrix. When such an inverse matrix can not be determined, the matrix
A is called singular. A square matrix is singular if and only if its determinant is 0.

Determinant of a Matrix

The determinant of a square matrix A, shown by det(A) or |A|, is used for various
operations including in finding the inverse of the matrix A. Determinant of a 2 × 2
matrix A is calculated as follows:

|A| =
∣∣∣∣
a b
c d

∣∣∣∣ = ad − bc

Determinant of a 3 × 3 matrix A can be found selecting a row or a column
and multiplying each element of the selected row/column by the determinant of the
subgraph obtained by deleting the row/column and column of that element from the
matrix as below:

|A| =
∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣
= a

∣∣∣∣
e f
h i

∣∣∣∣ − b

∣∣∣∣
d f
g i

∣∣∣∣ + c

∣∣∣∣
d e
g h

∣∣∣∣

= aei − b f g + cdh − ceg − bdi − a f h

The minor Mi j of an element ai j of a square matrix A is the determinant of the
submatrix obtained by deleting i th row and j th column from A. The cofactor of ai j ,
Ci j , is obtained by multiplying its minor by (−1)i+ j . In the above example, det(A)
is calculated as the sum of the cofactors multiplied by row elements of the first row
of A. The inverse of a matrix can be computed using various methods. When the
matrix A is not large, its inverse can be determined as follows:

A−1 = 1

det (A)
CT
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where C is the cofactor matrix of A. For a 2 × 2 matrix A, its inverse is calculated
as below:

A−1 =
(
a b
c d

)
= 1

det(A)

(
d −b

−c a

)
= 1

ad − bc

(
d −b

−c a

)

B.4 Properties of Matrix Operations

The following properties of matrix operations are valid assuming the matrices are of
appropriate sizes:

• A + B = B + A.
• A(B + C) = AB + AC .
• (AT )T = A.
• (A + B)T = AT + BT .
• (AB)T = BT AT .
• (AB)−1 = B−1A−1.
• k(A + B) = k A + kB for a scalar k.

B.5 Linear Equations

A system of linear equations of the form shown below can be solved using matrix
operations.

a11x+a12x2 + · · · + a1n = b1

...

am1x+am2x2 + · · · + amn = bm

Let A be an m × n matrix of coefficients, and x is an n × 1 vector representing m
variables. We can write these equations in matrix form as follows:

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1
x2

· · ·
xm

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

b1
b2

· · ·
bm

⎞
⎟⎟⎟⎟⎠
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The solution vector x is then solution to the equation,

x = A−1b

Let us consider the following linear equation with two variables x1 and x2:

2x1 + 3x2 = 4

x1 + 2x2 = 3

We can write this equation using matrix notation as Ax = b as follows:

(
2 3
1 2

) (
x1
x2

)
=

(
4
3

)

We can now compute A−1 and then x = A−1b as below:

(
x1
x2

)
=

(
2 −3

−1 2

) (
4
3

)
=

(−1
2

)

to yield values x1 = −1 and x2 = 2.

Gaussian Elimination

Another method to solve a system of linear equations is to first form the matrix
equation Ax = b as before. We then form the augmented matrix equation as below:

AG
m,n =

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n |b1
a2,1 a2,2 · · · a2,n |b2

...
...
. . .

... | · · ·
am,1 am,2 · · · am,n |bm

⎞
⎟⎟⎟⎠

Next, the augmented matrix AG is transformed into an upper triangular matrix
AU using elementary row operations. We then solve for xm and then use the value of
xm to obtain the value for xm−1, etc., using backward substitution. Let us consider
the following system of equations with three variables x1, x2, and x3:

x1 + x2 − x3 = −2

3x1 − 2x2 + x3 = 7

2x1 − x2 − 3x3 = 9
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The augmented matrix is then as follows:

AG
3,3 =

⎛
⎝
1 1 −1 | −2
3 −2 1 | 7
2 −1 3 | 9

⎞
⎠

Multiplying the first row by −2 and adding it to the third row; then multiplying
the first row by −3 and adding it to the second row yields the first matrix below. The
final upper triangular matrix obtained by multiplying the second row by −3/5 and
adding it to the third row is as follows:

⎛
⎝
1 1 −1 | −2
3 −2 1 | 7
0 −3 5 | 13

⎞
⎠ →

⎛
⎝
1 1 −1 | −2
0 −5 4 | 13
0 −3 5 | 13

⎞
⎠ →

⎛
⎝
1 1 −1 | −2
3 −2 1 | 7
0 0 13/5 | 26/5

⎞
⎠

We can now determine x3 = 2 by evaluating the last row. Backward substitution
of x2 in the second row provides x2 = −1, and then substituting the values of x1 and
x2 in the first row yields x3 = 2.
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L
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clique, 407
Bron and Kerbosch algorithm, 409

clustering, 412
degree distribution, 396
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Rabin–Vazirani algorithm, 380
Randomization, 315, 316, 320, 382
Randomized algorithms, 58
Karger’s algorithm, 58

Random networks, 400
Recurrence, 44
Reductions, 50
Residual network, 245
Reverse edge deletion, 186
Routing, 435
hierarchical, 435
link state, 435

S
Satisfiability, 56
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Sensor network, 426
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connectivity, 427

Shortest path, 200, 376
Bellman–Ford algorithm, 203, 207
Dijkstra’s algorithm, 200, 207, 211



Index 471

Floyd–Warshall algorithm, 208, 211, 213
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edge-betweenness, 424
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Strong connectivity, 236
Strong induction, 48
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Kosaraju’s SCC algorithm, 237
parallel, 257
Tarjan’s SCC algorithm, 237
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Symmetric difference, 265

T
Tarjan’s bridge algorithm, 235
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pointer jumping, 142
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Pricing algorithm, 328
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Warshall’s algorithm, 243
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HITS algorithm, 436
PageRank algorithm, 437
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