
Chapter 7
Handling of Race Cars

Race cars come in a number of shapes, sizes, engine power, type of wings, etc.
However, most of them share the following features relevant to handling:

1. four wheels (two axles);
2. two-wheel drive;
3. aerodynamic devices (and hence, significant aerodynamic downforces, alongwith

significant aerodynamic drag);
4. limited-slip or locked differential;
5. often no intervention by electronic active safety systems like ABS or ESP.

The handling analysis of race cars is more involved than that of road cars (Chap. 6).
The non-open differential makes the vehicle behavior very sensitive to the turn-
ing radius, while the aerodynamic effects make the vehicle handling behavior very
sensitive to the forward speed.

7.1 Assumptions for Race Car Handling

The analysis developed here is based on the vehicle model introduced in Chap. 3 and
summarized in Sect. 3.15. However, it is recommended to read also Chaps. 5 and 6
as a primer for vehicle handling.

For definiteness, let us suppose to deal with a rear-wheel-drive vehicle. Owing to
the presence of a limited-slip differential and of relevant aerodynamic loads (high
downforce and hence high drag), the tires of the driven axle undergo significant
longitudinal slips under almost all operating conditions. Therefore, it does not make
much sense to restrict the analysis to steady state since the very beginning.
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Fig. 7.1 Aerodynamic drag and downforces (all positive)

To highlight the role of the limited-slip differential, we do not consider the vehicle
while braking,1 but only during power-on/power-off conditions. Therefore, we have
at the front axle negligible longitudinal tire forces, that is

Fx11 = Fx12 = 0 and hence σx11 = σx12 = 0 (7.1)

7.1.1 Aerodynamic Downloads

Many race cars have wings and underbody diffuser to create, at high speed, down-
forces that press the race car against the surface of the track. Therefore, the vertical
loads acting on the tires can be very speed dependent.

Aerodynamic forces have been discussed in Sect. 3.7.2. The overall aerodynamic
load can be correctly and conveniently represented as in Fig. 7.1. At high speed, Za

1
and Za

2 , and also the aerodynamic drag Xa , have fairly high positive values.

7.1.2 Limited-Slip Differential

Race cars are usually equipped with a limited-slip differential, that is a differential
with a torque bias, which can become totally locked2 in some cases.

Torque bias means that the torques applied to the left and right shafts may not be
equal to each other. Therefore, as shown in Fig. 7.2, we may have

Fx21 �= Fx22 (7.2)

In a curve, counterintuitive as it may appear, the inside wheel has not necessarily
an angular speed lower than the outside wheel. Just consider a race car accelerating

1Braking of formula cars is discussed in Sect. 4.11.
2A locked differential is actually not a differential. Indeed, a differential mechanism must convey
power from a single shaft to two shafts while permitting different rotation speeds. A locked dif-
ferential no longer has this degree of freedom and the two wheels must rotate at the same angular
speed.
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Fig. 7.2 Road-tire grip
forces for a car with
limited-slip differential
(cf. Fig. 6.1)

while exiting a curve: in some cases, due to the still high lateral acceleration, its inside
wheel is barely touching the ground, and hence it is probably spinning faster than the
outer wheel (Fig. 3.55c). This phenomenon is one of the main reasons that makes
a limited-slip differential almost mandatory in a race car. Otherwise, that is with an
open differential, the car would not accelerate much, as the maximum longitudinal
force would be limited by the inner wheel (the one barely touching the ground). On
the other hand, if a vehicle is turning at low lateral acceleration, the inside wheel
will be turning slower than the outside wheel, and hence it will receive more torque
(Fig. 3.55a).

To make the torques applied to the left and right shafts not equal to each other,
limited-slip differentials are built to have some sort of friction inside the housing.
Indeed, a limited-slip differential is characterized by its internal efficiency ηh � 1,
and hence by a Torque Bias Ratio (TBR = 1/ηh) � 1. The mechanics of any
differential mechanism has been discussed in Sect. 3.14, where the relevant equations
have been obtained.

7.2 Vehicle Model for Race Car Handling

The equations, collected in Sect. 3.15 for the fairly general vehicle model described
in Chap. 3, are now tailored to the case of race cars (limited slip differential, non
constant forward speed, and aerodynamic downforces).
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As in any dynamical system, there are input (known) functions and output (to be
found) functions.

Perhaps, the most natural way to set up the problem is to assign as input functions
the angular speed ωh(t) of the housing of the differential mechanism (Sect. 3.14)
and the angular position δv(t) of the steering wheel. Imposing ωh(t) is more realistic
than imposing directly the forward velocity u(t) (cf. Chap. 6).

The vehicle motion is the sought output. According to Chap. 3, to monitor the
vehicle motion we can use, for instance, the forward velocity u(t), the lateral velocity
v(t) and the yaw rate r(t).

To link the input to the output we have to build a system of differential-algebraic
equations.

7.2.1 Equilibrium Equations

The in-plane equilibrium equations are the most intuitive, and we start with them,
with the aid of Figs. 7.1, 7.2 and 7.3.

For a rear-wheel-drive race car, the in-plane equilibrium equations (3.91) become

max = X

may = Y

Jzṙ = N

(7.3)

or, more explicitly

Fig. 7.3 Vehicle model
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m(u̇ − vr) = X1 + X2 − Xa

m(v̇ + ur) = Y1 + Y2
Jzṙ = Y1a1 − Y2a2 + NX = NY + NX

(7.4)

where
X1 = −Fy11 sin(δ11) − Fy12 sin(δ12)

X2 = Fx21 + Fx22

Xa = 1

2
ρSCxu

2

Y1 = Fy11 cos(δ11) + Fy12 cos(δ12)

Y2 = Fy21 + Fy22

NX = ΔX1 t1 + ΔX2 t2
with

ΔX1 = 1

2

[
Fy11 sin(δ11) − Fy12 sin(δ12)

]

ΔX2 = 1

2

(
Fx22 − Fx21

)

(7.5)

It is kind of interesting to compare these equations with (6.3).
In any two-axle car, the yawing moment

NY = Y1a1 − Y2a2 (7.6)

is always present in the yaw equation, that is in the third equation in (7.4).
The other yawing moment NX collects two very different contributions.
The contribution N f = ΔX1t1 comes from thedifferencebetween the longitudinal

components of the front lateral forces (Fig. 7.4). Therefore, it becomes significant
only when the front steer angles are not small, like in FSAE competitions. In other
competitions, the front steer angles are usually below 0.2 rad (11◦) and hence ΔX1t1
is probably negligible.

Fig. 7.4 Origin of ΔX1
(steer angles of about 30◦)
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The other contribution Nd = ΔX2t2 comes from the limited-slip differential
(Fig. 7.2). It involves the difference between the rear tire longitudinal forces. It can
be quite relevant, depending on the type of differential and on the operating conditions
(lateral acceleration, power-on/power-off, steer angle).

7.2.2 Lateral Forces for Dynamic Equilibrium

Regardless of (7.5), the last two equations in (7.4) can be already solved with respect
to the axle lateral forces Y1 and Y2, thus getting

Y1 = 1

l
(ma2 ay + (Jzṙ − NX )) = Y1(ay, ṙ , NX )

Y2 = 1

l
(ma1 ay − (Jzṙ − NX )) = Y2(ay, ṙ , NX )

(7.7)

A result already obtained in (3.99) and (3.153). The key point is that we can have
(NY = Jzṙ − NX ) �= 0, even if ṙ = 0. Therefore, differently from (6.8), Y1 and Y2
depend, in general, also on the yawing moment NX .

7.2.3 Tire Forces

According to the tire constitutive equations (2.85), and taking (7.1) into account, the
front tire forces can be expressed as

Fx11 = 0

Fy11 = Fy11(Z11, γ11, σy11)

Fx12 = 0

Fy12 = Fy12(Z12, γ12, σy12)

(7.8)

where Z1 j are the vertical loads, γ1 j are the camber angles and σy1 j are the lateral
theoretical slips.

The rear tires are under combined slip conditions and, therefore, also the longi-
tudinal slips σx2 j , that is the angular speed of rotation ω2 j of each wheel, have to be
taken into account

Fx21 = Fx21(Z21, γ21, σx21 , σy21)

Fy21 = Fy21(Z21, γ21, σx21 , σy21)

Fx22 = Fx22(Z22, γ22, σx22 , σy22)

Fy22 = Fy22(Z22, γ22, σx22 , σy22)

(7.9)
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Here we are assuming that we know the grip available in the contact patch. Of
course, this is a rather unrealistic assumption, but we cannot afford in this analysis
to model also the phenomenon of grip generation.

We see that these constitutive (tire) equations need additional algebraic equations
for the vertical loads Zi j , the camber angles γi j , the longitudinal and lateral slips σxi j
and σyi j .

7.2.4 Tire Slips

In general, the rear (driven) tires apply both longitudinal and lateral forces to the
vehicle. Therefore, we need all slip components. According to (3.61)

σx21 = (u − r t2/2) − ω21 r2
ω21 r2

σx22 = (u + r t2/2) − ω22 r2
ω22 r2

σy21 = v − ra2
ω21 r2

σy22 = v − ra2
ω22 r2

(7.10)

where r2 is the rolling radius.
In compact form, as in (3.199), we have

σx21 = σx21(u, r, ω21) σy21 = σy21(v, r, ω21)

σx22 = σx22(u, r, ω22) σy22 = σy22(v, r, ω22)
(7.11)

where
ω21 = ωh − Δω̂ and ω22 = ωh + Δω̂ (7.12)

Of course, Δω̂(t) is unknown (in the sense that it is not an input quantity).
At the front axle we have longitudinal pure rolling and, accordingly, we can rely

on the expressions (6.21)

σy11 = (v + ra1) cos(δ11) − (u − r t1/2) sin(δ11)

(u − r t1/2) cos(δ11) + (v + ra1) sin(δ11)

σy12 = (v + ra1) cos(δ12) − (u + r t1/2) sin(δ12)

(u + r t1/2) cos(δ12) + (v + ra1) sin(δ12)

(7.13)

In compact form
σx11 = 0 σy11 = σy11(u, v, r, δ11)

σx12 = 0 σy12 = σy12(u, v, r, δ12)
(7.14)

The steer angles δi j need additional algebraic equations.
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7.2.5 Camber Angles

Let, γ 0
i2 = −γ 0

i1 = γ 0
i be the camber angles under static conditions (Fig. 7.5), and let

Δγi1 = Δγi2 = Δγi be the camber variations due to vehicle roll motion (Fig. 7.6).
Like in (6.17), the camber angles of the two wheels of the same axle are thus

given by

γi1 = −γ 0
i + Δγi and γi2 = γ 0

i + Δγi (6.17’)

where the camber variation Δγi , according to (3.110), depends linearly on the roll
angles φ

p
i and φs

i , since the term ±zsi /ci is usually negligible in race cars (Fig. 7.7)

Δγi � −
(
ti/2 − ci

ci

)
φs
i + φ

p
i = Δγi (φ

s
i , φ

p
i ) (7.15)

Different suspensions with the same no-roll center share only the same value of
qi (Fig. 7.7). Therefore they behave differently.

Fig. 7.5 Positive static camber γ 0
i (front view)

Fig. 7.6 Positive camber variations Δγi due to roll motion (front view)

Fig. 7.7 First order suspension parameters for camber variation
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Both the roll angles φ
p
i , due to the tire deflections, and φs

i , due to suspension
deflections, need additional algebraic equations.

7.2.6 Steer Angles

According to (3.198) we have the following (simplified) expressions for the steering
angles of the front wheels

δ11 = −δ01 + τ1δv + ε1
t1
2l

(τ1δv)
2 + Υ1φ

s
1 = δ11(δv, φ

s
1)

δ12 = δ01 + τ1δv − ε1
t1
2l

(τ1δv)
2 + Υ1φ

s
1 = δ12(δv, φ

s
1)

(7.16)

which are functions of the steering wheel rotation δv and of the front suspension roll
angle φs

1.
In (7.16), as discussed in Sect. 3.4, δ01 is the static toe angle, τ1 is the gear ratio of

the whole steering system, ε1 is the Ackermann coefficient for dynamic toe (Fig. 7.8),
and Υ1 is the roll steer coefficient. Most cars have τ2 = ε2 = 0, that is no direct
steering of the rear wheels.

δ11

12δ

ε = 11

δ

11δ
12

ε = −11

τ  δ1τ  δ1

ε = 01

Fig. 7.8 Ackermann steering (top), parallel steering (middle), anti-Ackermann steering (bottom)
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Actually, (7.16) is a Taylor series expansion.We believe it is a goodway to classify
and compare steering geometries. It shows in a quantitative, yet simple, way how
much the steering system differs from parallel steering.

7.2.7 Vertical Loads on Each Wheel

As shown in (3.105), the vertical load acting on each wheel is the algebraic sum of
four contributions (Fig. 7.9):

1. the static load (weight);
2. the aerodynamic load;
3. the longitudinal load transfer;
4. the lateral load transfer.

More explicitly, the expressions (3.106) for the vertical loads on each tire must be
taken in full, except for the Jzxr2 term, which is almost certainly negligible. In
compact form, (3.106) can be recast as (cf. (6.14))

Z11 = 1

2

(
mga2
l

+ ζ1u
2 − maxh

l

)
− ΔZ1 = Z11(u, ax ,ΔZ1)

Z12 = 1

2

(
mga2
l

+ ζ1u
2 − maxh

l

)
+ ΔZ1 = Z12(u, ax ,ΔZ1)

Z21 = 1

2

(
mga1
l

+ ζ2u
2 + maxh

l

)
− ΔZ2 = Z21(u, ax ,ΔZ2)

Z22 = 1

2

(
mga1
l

+ ζ2u
2 + maxh

l

)
+ ΔZ2 = Z22(u, ax,ΔZ2)

(7.17)

where, according to (3.80) and (4.24)

Fig. 7.9 Forces acting on a Formula car



7.2 Vehicle Model for Race Car Handling 333

ζ1 = 1

2
ρa SaCz1 and ζ2 = 1

2
ρa SaCz2 (7.18)

A race car with wings has Czi > 0, and hence ζi > 0 (Fig. 7.1). Of course Xa is
always positive (drag).

It is interesting to compare (7.17)with (6.14). There are two important differences:

1. the speed dependent aerodynamic vertical loads;
2. the longitudinal load transfer due to the longitudinal acceleration ax .

Moreover, there is the effect of the yaw moment Nd on the lateral forces and hence
on the lateral load transfers, as discussed hereafter.

7.2.8 Lateral Load Transfers

The lateral load transfers ΔZi were obtained in (3.148) as linear functions of the
axle lateral forces Y1 and Y2 (Fig. 7.10)

ΔZ1 = 1

t1

[
kφ1

kφ

(Y1 + Y2)
(
h − qb

)
+ Y1q1 + kφ1kφ2

kφ

(
Y2q2
k pφ2

− Y1q1
k pφ1

)]

= ΔZ1(Y1, Y2)

ΔZ2 = 1

t2

[
kφ2

kφ

(Y1 + Y2)
(
h − qb

)
+ Y2q2 + kφ1kφ2

kφ

(
Y1q1
k pφ1

− Y2q2
k pφ2

)]

= ΔZ2(Y1, Y2)

(7.19)
where qb � q (Fig. 7.10).

Synthetically, we have

ΔZ1 = ξ11Y1 + ξ12Y2
ΔZ2 = ξ21Y1 + ξ22Y2

(3.152’)

Fig. 7.10 No-roll axis
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Owing to (7.7), that is to themoment NX ,mainly due to the limited slip differential,
the lateral load transfers no longer depend only on ay . This is quite a big difference
for the complexity of the vehicle dynamic behavior, if compared to (6.9).

7.2.9 Roll Angles

In most race cars the suspension roll stiffnesses ksφi
and the tire roll stiffnesses k p

φ1

are not very much different. Therefore, assuming rigid tires is not quite correct.
We have the following relationships between the axle lateral forces and the roll

angles. According to (3.143), the roll angles (front and rear) due to the tires are

φ
p
1 = 1

k pφ1

kφ1kφ2

kφ

[
(Y1 + Y2)(h − qb)

kφ2

+ Y1q1
ksφ1

+ Y1q1
ksφ2

+ Y1q1 + Y2q2
k pφ2

]

= φ
p
1 (Y1, Y2)

φ
p
2 = 1

k pφ2

kφ1kφ2

kφ

[
(Y1 + Y2)(h − qb)

kφ1

+ Y2q2
ksφ1

+ Y2q2
ksφ2

+ Y1q1 + Y2q2
k pφ1

]

= φ
p
2 (Y1, Y2)

(7.20)
and, according to (3.144), the roll angles due to the suspension springs are

φs
1 = 1

ksφ1

kφ1kφ2

kφ

[
(Y1 + Y2)(h − qb)

kφ2

− Y1q1
k p
φ1

+ Y2q2
k p
φ2

]

= φs
1(Y1,Y2)

φs
2 = 1

ksφ2

kφ1kφ2

kφ

[
(Y1 + Y2)(h − qb)

kφ1

− Y2q2
k p
φ2

+ Y1q1
k p
φ1

]

= φs
2(Y1,Y2)

(7.21)

Therefore, in this model, all roll angles are assumed to be linear functions of the axle
lateral forces Y1 and Y2.

7.2.10 Behavior of the Limited-Slip Differential

In a car equipped with a limited-slip differential the two longitudinal forces Fx21 and
Fx22 , exerted by the rear tires on the vehicle, are not necessarily equal to each other
(Fig. 7.2). Therefore we have a yawing moment Nd coming from the longitudinal
forces acting on the vehicle

Nd = ΔX2t2 = Fx22 − Fx21

2
t2 (7.22)

When compared with (6.2), that is with the case of open differential, it looks like
a small difference, but it is not. The limited-slip differential does affect quite a bit
the vehicle handling behavior, and, accordingly, the vehicle model becomes much
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more involved when compared with the model of a vehicle equipped with an open
differential.

Another consequence is that we have significant longitudinal forces at the rear
wheels and, therefore, significant longitudinal slips, even when turning at constant
forward speed

Fx2 j �= 0 and hence σx2 j �= 0 (7.23)

In other words, the longitudinal slips σx21 and σx22 cannot be neglected, and, hence,
the tire constitutive equations (7.9) must include them for the two wheels of the
driven axle.

Any differential mechanism provides the same link between the angular velocities
of the wheels and the angular velocity ωh of the housing of the differential

ω21 = ωl = ωh − Δω̂ and ω22 = ωr = ωh + Δω̂ (7.24)

As discussed in Sect. 3.14.9, a limited-slip differential with internal efficiency ηh ,
provides a link between the longitudinal forces due to the engine power. For a rear
driven vehicle we can model it as

Fx22 = η
ζ(t)
h Fx21 (7.25)

where

ζ(t) = arctan(χΔω̂(t))

π/2
(7.26)

with χ a positive big number, something around 1000 s. This way, the limited-slip
differential action is activated whenever Δω̂(t) has significant values, with a smooth
transition through the locked state of the differential (Δω̂(t) � 0). Figures 3.66,
3.67, 3.68, 3.69, 3.70 and 3.71 are applications of this model. By setting ηh = 1 in
(3.184) we obtain the open differential behavior.

7.2.11 Reducing the Number of Equations

To define this vehicle model for race car handling we have introduced three differ-
ential equations and quite a bit of algebraic equations. It is possible, and convenient,
to reduce the number of algebraic equations by combining them.

From (7.7) we have that the axle lateral forces Yi are known (linear) functions of
the lateral acceleration ay , of the yaw acceleration ṙ , and of the moment NX .

These functions Yi (ay, ṙ , NX ) can be plugged directly into the expressions of the
lateral load transfersΔZi (Y1,Y2), of the suspension roll angles φs

i (Y1,Y2) and of the
tire roll angles φ

p
i (Y1,Y2).
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Then, ΔZi
(
Y1(ay, ṙ , NX ),Y2(ay, ṙ , NX )

)
go into the expressions of Zi j (u, ax ,

ΔZi ), while the roll angles have to be inserted into the camber angle equations
γi j (φ

s
i , φ

p
i ) and, possibly, into the steer angles δi j (δv, φ

s
i ).

The steer angles just obtained have to be plugged into the expressions of the front
lateral slips σ1 j (v, r, u, δ1 j ).

The rear slips involve the angular velocities of the wheels. It is maybe better to
set ω2 j = ωh ± Δω̂, like in (7.24). This way, since ωh is given, we have that only
Δω̂ is unknown.

The just obtained expressions of the vertical loads, of the camber angles, and of
the slip components go into the tire constitutive equations (7.8) and (7.9).

Ultimately, all tire force components can be explicitly, and easily, set as functions
of:

1. the state variables (u(t), v(t), r(t));
2. the accelerations ax (t), ay(t) and ṙ(t), or, equivalently, the derivatives (u̇(t), v̇(t),

ṙ(t))
3. the angular velocity Δω̂(t);
4. the moment NX (t);
5. the given angular velocity ωh(t) of the housing of the differential;
6. the given angle δv(t) of the steering wheel.

That is to say that we know all the following algebraic functions

Fxi j = Fxi j

(
u, v, r, ax , ay, ṙ ,Δω̂, NX ;ωh, δv

)

Fyi j = Fyi j

(
u, v, r, ax , ay, ṙ ,Δω̂, NX ;ωh, δv

) (7.27)

It is very important to note that among the arguments of these functions there is the
moment NX , which is defined in (7.5) in terms of some of the tire force components

NX = ΔX1 t1 + ΔX2 t2

= t1
2

[
Fy11 sin(δ11) − Fy12 sin(δ12)

] + t2
2

(
Fx22 − Fx21

) (7.28)

Moreover, the Eq. (7.25) governing the behavior of the limited-slip differential has
to be included in the mathematical model

Fx22 = η

(
arctan(χΔω̂)

π/2

)

h Fx21 (7.29)

The number of algebraic equations has been drastically reduced, but two of them
are still there and will be there. Indeed, we have three state variables and three
differential equations, but also two other unknown functions (Δω̂(t) and NX (t)), that
require two additional algebraic equations. The two unknown functions “survived”
the equation reduction process because, in general, there is no way to “extract” them
analytically. Therefore, it is convenient to solve numerically a 3 + 2 differential-
algebraic system of equations.
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7.3 Double Track Race Car Model

After a bit of work, we are now ready to set up the fundamental governing equations
for the transient handling of a race car equipped with limited-slip differential and
with aerodynamic devices

m(u̇ − vr) = X (u, v, r, u̇, v̇, ṙ ,Δω̂, NX ;ωh, δv)

m(v̇ + ur) = Y (u, v, r, u̇, v̇, ṙ ,Δω̂, NX ;ωh, δv)

Jzṙ = NX + NY (u, v, r, u̇, v̇, ṙ ,Δω̂, NX ;ωh, δv)

NX = t1
2

[
Fy11 sin(δ11) − Fy12 sin(δ12)

] + t2
2

(
Fx22 − Fx21

)

Fx22 = η

(
arctan(χΔω̂)

π/2

)

h Fx21

(7.30)

As already stated, a fairly practical way to set up the problem is to assign the angular
speed ωh(t) of the housing of the differential (Sect. 3.14) and the angular position
δv(t) of the steeringwheel, and then solve numerically this system of five differential-
algebraic equations in the five unknown functions (u(t), v(t), r(t),Δω̂(t), NX (t)).
Imposing ωh(t) is more realistic than imposing directly the forward speed u(t).

We say it is a system of differential and algebraic equations because there are no
derivatives of Δω̂(t) and NX (t)).

The model (7.30) for race cars is a generalization of the model for road cars
presented inChap. 6.Wingsmake the vertical loads strongly dependent on the vehicle
speed. The limited-slip differential provides a yawing moment very sensitive to the
lateral acceleration and to the steer angle. None of these phenomena can be found
in (most) road cars. On the other hand, torque vectoring can be activated in modern
road cars, whereas any driving aid system is usually prohibited in competitions.

The comparison of (7.30) with (6.34), that is with the governing equation of a
double track model for road vehicles, clearly shows the increased complexity of the
model. But this is no surprise: a race car exhibits indeed a much richer handling
behavior.

7.3.1 Single Track?

A question that naturally arises at this point is whether we can go “single track” or
not, as has been done for road cars in Sect. 6.5. To answer this question we should
recall that by single track [1–3, 7, 12] we meant a vehicle model having two axle
characteristics (6.69), that is two constitutive equations Yi (αi ), one per each axle,
involving only a single kinematic variable each (namely, the axle apparent slip angle).

With limited-slip differentials, this is no longer possible, nor even for the front axle,
since there is a strong interaction between lateral and longitudinal tire forces. More
precisely, the analysis developed in Sect. 6.5.10 about the role of lateral acceleration
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is no longer applicable. Therefore, in this case we cannot end up with a single track
model. We have to stick to the more general double track model. However, this is
somehow good news, as the double track model is much more realistic, and only a
little more complex, than the single track model.

Actually, a sort of generalized single trackmodel can still be formulated provided,
as it was for road cars:

1. the car has parallel steering (ε1 = 0);
2. the car has open differential (ηh = 1) and hence ΔX2 = 0;
3. it is assumed ΔX1 = 0.

The important difference with respect to the classical single track model is that,
owing to the aerodynamic devices, the axle characteristics are functions also of the
forward velocity u, that is Y1 = Y1(α1, u) and Y2 = Y2(α1, u). This is clearly due to
the aerodynamic downforces.

7.4 Basics for Steady-State Handling Analysis

It is customary in vehicle dynamics to start with the steady-state analysis, that is
with all time-derivatives in the governing equations (7.30) set equal to zero. That
means having the vehicle go round along a circle of constant radius at constant
forward speed. In practice, it is much more convenient to do a slowly increasing
steer maneuver, also called constant speed, variable steer test. The vehicle is almost
in steady-state conditions, but the test procedure is much faster.

Pretty much like in Sect. 6.7, everything is based on the steady-state maps

ρ = r

u
= ρ(δv, ãy) and β = v

u
= β(δv, ãy) (7.31)

which, beside being important by themselves, make also possible to unambiguously
define the gradients

grad ρ =
(

∂ρ

∂ ãy
,

∂ρ

∂δv

)
= (ρy, ρδ)

grad β =
(

∂β

∂ ãy
,

∂β

∂δv

)
= (βy, βδ)

(7.31’)

All these quantities are well defined in any vehicle, including race cars.
The new global approach to handling evaluation, called MAP, introduced in

Sect. 6.8, turns out to be very informative for race cars as well, as will be shown
shortly. The analysis will be particularly interesting when aerodynamics is taken into
account.

In (7.31) we have omitted, with respect to (6.98) and (6.111), the r.h.s. terms,
that is those involving the apparent slip angles α1 and α2 (6.53) and the steering
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angles. This has been done for greater generality, because α1 and α2 are not well
defined, unless we assume ε1 = ε2 = 0,3 as in (6.49). But the key point is that α1 and
α2, even if well defined, are no longer functions of the lateral acceleration ãy only.
This aspect has a lot of important consequences. For instance, the classical handling
diagram [8–10] does not exist any more. As will be shown in the next section, it has
to be replaced by the handling surface, first introduced in [4–6].

7.5 The Handling Diagram Becomes the Handling Surface

Although, in our opinion, the handling surface has been superseded by the MAP
approach, it still deserves to be explained.

The well known handling diagram, discussed in Sect. 6.7.4, is made up of the
handling curve and a straight line (Fig. 6.28).

As already stated in Sect. 6.7.4, this is quite a fortunate coincidence. In general,
the handling curve must be replaced by the handling surface. Indeed, any steady-
state configuration depends on two parameters (as aminimum), like, e.g., the forward
speed u and the steering angle δv. In vehicles with open differential and no wings,
it happens that some quantities depend only on one parameter, namely the lateral
acceleration ãy . Therefore, the handling surface becomes a cylinder,whose projection
is the handling curve, as shown in [5]. Let us elaborate this concept in detail.

7.5.1 Handling with Locked Differential (and No Wings)

Before dealing with the handling of race cars with significant aerodynamic down-
forces, we address the effect of the locked differential alone, with respect to the
open differential. To do this, we consider road cars, which have very little, if any,
aerodynamic vertical forces (no wings and not too high speed).

7.5.1.1 Steady State

According to the classical theory, we perform a number of (almost) steady-state tests,
like slowly increasing steer manoeuvres, first for a vehicle with open differential, and
then for the same vehicle but with a locked differential.

In all caseswemonitor the forward speedu, the lateral speed v (or, equivalently, the
vehicle slip angle β = v/u), the yaw rate r , the steering wheel angle δv. Although not
strictly necessary, it is very convenient tomonitor directly also the lateral acceleration
ãy = ur . We also know the gear ratios of the steering system. Assuming, as in (6.49),

3However, many race cars do have ε1 = ε2 = 0, that is parallel steering.
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Fig. 7.11 Vehicle with open
differential: handling
curve(s) obtained in constant
speed, variable steer tests
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ε1 = ε2 = 0, we can define the front steer angle δ1 = τ1δv and the rear steer angle
δ2 = τ2δv. The last useful piece of information is the wheelbase l = a1 + a2.4

The classical handling curve is the plot of (δ1 −δ2)− l/R = δ− l/R versus ãy , as
discussed in Sect. 6.7.4. An understeer vehicle with open differential has a handling
diagram like in Fig. 7.11: we get about the same curve, as function of ãy , regardless
of the combination of forward speed and steer angles. On the other hand, performing
constant speed, variable steer tests on the same vehicle, but with locked differential,
yields a different handling curve for each forward speed, as shown in Fig. 7.12.

The framework to understand what is going on in these cases is the handling
surface, that is the plot of

δ − l

R
= f

(
ãy,

l

R

)
(7.32)

which is no longer a function of ãy only, but needs another variable, like, e.g., l/R.
Indeed, since there are two input quantities, like the forward speed and the steer
angle, it is normal to have to deal with two variables at steady-state. The handling
curves are just the projections of some sections of the handling surface onto the plane
(ãy, δ − l/R).

It happens that the handling surface is almost a cylinder for the open differential
case, as shown in Fig. 7.13. Therefore, it always collapses into almost a single curve
when projected. But more general vehicles (or better, less peculiar vehicles), that is
all vehicles with at least one of the following features:

4Actually, vehicle dynamics had better avoid using the wheelbase, as discussed in Sect. 6.9.
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Fig. 7.12 Vehicle with locked differential: handling curves obtained in constant speed, variable
steer tests
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Fig. 7.13 Cylindrical handling surface for a vehicle with open differential

• locked differential;
• limited-slip differential;
• aerodynamic wings;
• more than two axles;
• large steer angles;

they all exhibit a non-cylindrical handling surface, like the one shown in Fig. 7.14.
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Fig. 7.14 Non-cylindrical handling surface for a vehicle with locked differential

0 2 4 6 8
ay0

2

4

6

8

l R

0 2 4 6 8
ay0

2

4

6

8

l R

Fig. 7.15 Vehicle with locked differential: comparison between handling curves obtained in con-
stant speed, variable steer tests (left) and constant steer, variable speed tests (right)

Therefore, drawing handling curves can be very confusing for a vehicle with
locked differential, as the kind of test matters a lot. For instance, constant steer,
variable speed tests yield curves that are totally different with respect to the constant
speed, variable steer tests, as shown in Fig. 7.15. They are, however, just different
sections of the very same handling surface. Again, if the differential is open, the
handling surface is cylindrical, and all tests, that is all sections, project onto about
the same curve, as shown in Fig. 7.16, regardless of the kind of maneuver.

To elaborate this idea further, we present Figs. 7.17 and 7.18 taken from [5]. The
first Figure shows sections of the handling surface for several values of the constant
speed u. In the plane (l/R, ãy) = (lr/u, ur), they appear as straight lines from the
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Fig. 7.16 Vehicle with open differential: comparison between handling curves obtained in constant
speed, variable steer tests (left) and constant steer, variable speed tests (right)

Fig. 7.17 Handling curves at constant speed (left) as sections of the handling surface (right) [5]

origin. The projections of each of these sections in the plane (ãy, δ − l/R) are shown
in the left part. Similarly, the second Figure shows sections of the handling surface for
several values of the constant radius R. In the plane (l/R, ãy), they appear as vertical
straight lines. The projections of each of these sections in the plane (ãy, δ − l/R) are
shown in the left part.

At low speed, like u = 9 m/s, and large steer angle δ1 = 18◦, an ordinary road car
receives from the road, more or less, the forces depicted in Fig. 7.19 when equipped
with an open differential, and the forces shown in Fig. 7.20 when equipped with a
locked differential. Also shown, in Fig. 7.21, is the case of a limited-slip differential
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Fig. 7.18 Handling curves at constant turning radius (left) as sections of the handling surface
(right) [5]

Fig. 7.19 Vehicle with open differential: forces received from the road at u = 9 m/s and δ1 = 18◦

with internal efficiency ηh = 0.33. Similar figures can be found in Sect. 3.14. The
three cases are deeply different. The yawing moment of the two longitudinal forces
is obviously zero with open differential. With locked differential, at such low speed
and high steer angle, the external wheel provides a braking force, which must be
counteracted by the inner wheel: the yawing moment is so high to affect significantly
both front and rear lateral forces. The limited-slip case is something in between, with
a small yawing moment coming from the longitudinal forces.

At much higher speed, say u = 54 m/s, and low steer angle, say δ1 = 3◦, the
moment due to the locked differential changes sign, as shown in Fig. 7.22. This is a
typical and important phenomenon, due to the lateral load transfer. The inner wheel
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Fig. 7.20 Vehicle with locked differential: forces received from the road at u = 9m/s and δ1 = 18◦

Fig. 7.21 Vehicle with limited-slip differential (ηh = 0.33): forces received from the road at u = 9
m/s and δ1 = 18◦

Fig. 7.22 Vehicle with locked differential: forces received from the road at u = 54m/s and δ1 = 3◦
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Fig. 7.23 Handling curves obtained in constant speed, variable steer tests: comparison between
locked differential (thin lines) and open differential (thick lines)

2 4 6 8
ay

3000

2500

2000

1500

1000

500

0

500

Nd

Fig. 7.24 Locked differential: yawing moment versus lateral acceleration for several speeds

barely touches the ground and cannot provide much longitudinal force, thus limiting,
with an open differential, the external force as well.

Superimposing the handling curves obtained in constant speed, variable steer tests
for both open and locked differential, as shown in Fig. 7.23, we can appreciate the
understeer effect at low lateral acceleration and the oversteer effect at high lateral
acceleration. This is due to the yawing moment Nd , which has the typical behavior
shown in Figs. 7.24 and 7.25 in case of locked differential. Of course, Nd is equal to
zero when the differential is open.
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Fig. 7.25 Locked differential: yawing moment versus steer angle for several speeds
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Fig. 7.26 Limited slip differential (ηh = 0.33): yawing moment versus lateral acceleration for
several speeds

In case of limited-slip differential with ηh = 0.33, the yawing moment Nd due
to the longitudinal forces is something like in Figs. 7.26 and 7.27. It is worth noting
the “knee” in some curves due to the internal wheel switching from slow wheel to
fast wheel.

7.5.1.2 Power-Off and Power-On

When braking using the engine, that is in power-off conditions, while negotiating a
curve, the longitudinal forces are like in Fig. 7.28 in case of locked or limited-slip
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Fig. 7.27 Limited slip differential (ηh = 0.33): yawing moment versus steer angle for several
speeds

Fig. 7.28 Vehicle with locked or limited-slip differential: forces received from the road during
power-off
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Fig. 7.29 Locked differential: yawing moment versus steer angle for several speeds during power-
off
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Fig. 7.30 Limited slip differential (ηh = 0.33): yawing moment versus steer angle for several
speeds during power-off

Fig. 7.31 Vehicle with locked or limited-slip differential: forces received from the road during
power-on

differential. The corresponding yawing moments Nd are plotted in Figs. 7.29 and
7.30 versus the steer angle δ = δ1 − δ2, for several values of the forward speed.

While during power-off it is always the external wheel that receives the highest
(braking) longitudinal force, as shown in Fig. 7.28, under power-on conditions, while
negotiating a curve with a vehicle with locked differential, there can be two possible
cases, depending on the value of the lateral acceleration ay (Fig. 7.31). This is better
understood looking at the plot of Nd as a function of the lateral acceleration ay , as
shown in Fig. 7.32 for locked differential, and in Fig. 7.33 for limited-slip differential,
in both cases for several values of the forward speed u (ranging from 9 m/s up to 54
m/s): the moment can either be negative or positive, whereas in Figs. 7.29 and 7.30
it is always negative.
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Fig. 7.32 Locked differential: yawing moment versus lateral acceleration for several speeds during
power-on
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Fig. 7.33 Limited slip differential (ηh = 0.33): yawing moment versus lateral acceleration for
several speeds during power-on

Although they are the main topic of the next section, we show the MAPs for
the power-off and power-on cases of a road car. This new global approach has been
already introduced and described in detail in Sect. 6.8 for steady-state handling
analysis of road cars. The maps ρ–δ for locked differential are shown in Fig. 7.34,
while the same maps for open differential are given in Fig. 7.35. The oversteer effect
of power-on for a rear-wheel-drive car is evident in both cases. However, the locked
differential makes this phenomenon stronger.
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Fig. 7.34 Lines at constant speed u in the handling map ρ–δ during power-off (left) and power-on
(right) for a road vehicle with locked differential
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Fig. 7.35 Line at constant speed u in the handling map ρ–δ during power-off (left) and power-on
(right) for a road vehicle with open differential

The maps β–ρ for power-off and power-on for a vehicle equipped with a locked
differential are shown in Fig. 7.36. Again, the lines at constant steer angle clearly
show, anddo it in a quantitativeway, the oversteer effect of power-on. For comparison,
the same maps for a vehicle with open differential are given in Fig. 7.37.
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Fig. 7.36 Handling map β–ρ during power-off (left) and power-on (right) for a road vehicle with
locked differential (constant u: solid thick lines, constant δ: thin solid lines, constant ay : dashed
lines)
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Fig. 7.37 Handling map β–ρ during power-off (left) and power-on (right) for a road vehicle with
open differential (constant u: solid thick lines, constant δ: thin solid lines, constant ay : dashed lines)

7.6 Handling of Formula Cars

It is in the handling of Formula Cars that aerodynamics comes really into play
(Fig. 7.9). Thanks to well designed aerodynamic devices, very high downforces are
generated at high speeds, although at the price of high drag as well. A mathematical
model that takes aerodynamics into account has been developed in Sect. 7.1. Here
we discuss some of the main phenomena that make the handling of this kind of cars
so peculiar. We start with the handling surface to move on to the Maps of Achievable
Performance (MAP’s), first at steady state, and then during power-off and power-on.

Although these cars have a limited-slip differential, at the center of a bend, that is
when the vehicle ismore or less close to steady state, the differential is basically open.
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Therefore, the steady-state analysis is more realistic if done with open differential,
leaving the locked one for power-off and power-on. In all cases we consider speeds
in the range 20–80 m/s.

7.6.1 Handling Surface

The handling surface has been introduced and discussed in Sect. 7.5. It is the plot
of δ − l/r as a function of the lateral acceleration ãy and the ratio l/R = lρ. In
case of significant aerodynamic effects, it is not cylindrical. This geometric feature
is the counterpart of a very practical and obvious phenomenon: the speed matters a
lot when a car is making a turn. The faster the car, the higher the lateral acceleration
that can be achieved, assuming the same physical grip between the tires and the road.
Therefore, once again, if we try to get the classical handling curve we will end up
with a number of different handling curves, one for each testing condition. Tests at
constant speed and variable steer will yield a different curve for each speed. Tests at
constant steer and variable speed will produce a different set of curves, and so on.

These aspects are better understood looking at Fig. 7.38,which shows the handling
curves for a Formula car with open differential as obtained in constant speed, slowly
variable steer tests. It is evident that the higher the speed, the higher the lateral
acceleration.

Fig. 7.38 Formula car with
open differential: different
handling curves obtained in
constant speed, variable steer
tests
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Fig. 7.39 Formula car with
locked differential: different
handling curves obtained in
constant speed, variable steer
tests
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Locking completely the differential affects these handling curves, but not much,
as shown in Fig. 7.39 (the aerodynamics is more influential). The main difference
is, perhaps, that all curves in case of open differential share the same slope near the
origin of the reference system, whereas in case of locked differential each one has a
different slope, even when ãy � 0.

As expected, performing constant steer, slowly variable speed tests yield differ-
ent handling curves, as shown in Fig. 7.40. However, all these curves are just the
projections of some sections of the handling surface, as shown in Fig. 7.41.

7.6.2 Map of Achievable Performance (MAP)

The global approach MAP has been introduced in Sect. 6.8. The emphasis there
was on road cars, that is cars without any significant aerodynamic downforces and
with open differential. However, this new approach is completely general, and its
application to race cars is straightforward. More precisely, MAPs for road cars and
race cars are qualitatively the same, differing only quantitatively.

The basic idea, as discussed on p. 262, is to employ the maps
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Fig. 7.40 Formula car with open differential: comparison between handling curves obtained in
constant speed, variable steer tests (left) and constant steer, variable speed tests (right)
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Fig. 7.41 Non-cylindrical handling surface for a Formula car with open differential

ρ = ρ(δ, u) = δ

l
− α1(δ, u) − α2(δ, u)

l

β = β(δ, u) =
(

(1 + χ̂)a2 + χ̂a1
l

)
δ − α1(δ, u)a2 + α2(δ, u)a1

l

(6.114’)

as functions of two variables to monitor the vehicle at steady state. This is a more
general point of view than the handling surface (not tomention the handling diagram).

The maps in this section are typical for a Formula 1 car, year 2013. As usual, all
quantities are in SI units, except angles that are in degrees.
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7.6.2.1 ρ–δ MAP (Curvature-Steer Angle)

The first map to be considered is the curvature ρ = r/u versus the wheel steer angle
δ (although we could employ the steering wheel angle δv as well). In Fig. 7.42 we
can see the lines at constant speed u, ranging from 20 to 80 m/s, and also the lines
at constant lateral acceleration ãy , in case of open differential. In Fig. 7.43, we have
the same picture, but for locked differential.

Lines at constant speed for open and locked differential are compared in Fig. 7.44.
As expected, the locked differential makes the car turn on bigger radiuses (hence
smaller values of ρ).

The strong influence of aerodynamics on the handling of the vehicle is highlighted
by the pattern of the lines at constant lateral acceleration. Going back to Fig. 6.44,
that is to the map for an ordinary road vehicle, we see that each line at constant ãy
intersects all lines at constant u. That means that the level of lateral acceleration that
can be achieved is not affected by the forward speed (no wings). On the other hand,
in Figs. 7.42 and 7.43, only lines up to about 16 m/s2 intersect all constant speed
lines. The lines for ãy > 16 m/s2 only intersect lines for sufficiently high speed.
Indeed, 1.6 is about the grip coefficient between the tire and the road, that is the
“physical grip”. The grip that does not need any aerodynamic contribution. Higher
values of apparent grip do indeed need aerodynamic downforce and hence they can
be achieved only for sufficiently high values of the forward speed u. The map shows
this fact, and does so in a clear and global way. A close-up is shown in Fig. 7.45 for
better clarity.

Fig. 7.42 ρ–δ MAP of a
Formula 1 car with open
differential. Curves at
constant speed u and curves
at constant lateral
acceleration ãy
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Fig. 7.43 ρ–δ MAP of a
Formula 1 car with locked
differential. Curves at
constant speed u and curves
at constant lateral
acceleration ãy
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Fig. 7.44 Comparison
between Figs. 7.42 and 7.43
for lines at constant speed
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Fig. 7.45 Close-up of
Fig. 7.42
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7.6.2.2 β–ρ MAP (Vehicle Slip Angle-Curvature)

Also interesting is the handling β–ρ MAP, that is vehicle slip angle versus curvature.
The lines at constant speed u and the lines at constant lateral acceleration ãy are shown
in Fig. 7.46. Again, only lines for ãy < 16 m/s2 intersect all lines at constant speed,
thus indicating that 1.6 is indeed the physical grip (of coursewe could bemore precise
by drawing more lines). Therefore, we have a tool to obtain a good approximation
of the physical grip.

Also interesting is the overall picture, which shows how the control parameter u
and δ are related to curvature and vehicle slip angle. For instance, if u > 30 m/s, we
have basically β ≤ 0 (in a left turn) at any speed.

Fig. 7.46 β–ρ MAP for a
Formula 1 car with open
differential. Curves at
constant speed u and curves
at constant lateral
acceleration ãy
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Fig. 7.47 β–ρ MAP or a
Formula 1 car with open
differential. Curves at
constant speed u and curves
at constant steer angle δ

0.01 0.02 0.03 0.04 ρ0

2

β

δ =
20 m/s

25

30

35
40

50

60

70

80 m/s

- 4

- 2

Fig. 7.48 β–ρ MAP for a
Formula 1 car with open
differential. Superimposition
of Figs. 7.46 and 7.47
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Lines at constant steer angle are shown in Fig. 7.47. Looking at the slope of these
curves, it immediately arises that the vehicle is more understeer at low speeds than
at high speeds.

To help the reader catch other features in this map, all lines are shown in Fig. 7.48.
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7.6.2.3 Set-Up Identification

Another interesting application of the MAP’s is to compare set-ups. This is done in
Figs. 7.49 and 7.50 for two set-ups which have different aerodynamic balances. The
second set-up (dashed lines) has higher aerodynamic load on the front axle and less
aerodynamic load on the rear axle.

Fig. 7.49 Comparison of
curve at constant lateral
acceleration for two set-ups
with different aerodynamic
balance
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Fig. 7.50 Comparison of
curve at constant steer angle
for two set-ups with different
aerodynamic balance

0.01 0.02 0.03 0.04
ρ

4

2

0

2

β

δ =



7.6 Handling of Formula Cars 361

Very interesting is to observe that the lines at constant ãy that are more affected
are precisely those that need aerodynamic downforces to be achieved (Fig. 7.49).

From Fig. 7.50 we see that the new aerodynamic balance does not affect the lines
at constant δ in a uniform way. This may help understand which set-up is faster for
a given circuit.

7.6.2.4 Power-Off and Power-On

So far we have considered steady-state conditions. However, a Formula car is almost
always under transient conditions, with the driver acting on the gas and/or brake
pedals. The MAP’s can be useful to monitor what is going on also during these more
general working conditions. The trick is to do, e.g., constant speed, variable steer
simulations as if the car were constantly going uphill or downhill. This way, we have,
strictly speaking, steady-state conditions, but the loads on the tires are pretty much
like if the car were accelerating or slowing down with the engine (no braking), that
is during power-on and power-off conditions.

During power-off and power-on, the differential of a Formula 1 car is locked.
Therefore, all Figures in this section are for locked differential.

A few Figures are provided to show how the MAP’s can be used to have a global
view of the vehicle behavior even under pseudo-transient conditions. Figure 7.51

Fig. 7.51 Lines at constant
speed in the ρ–δ MAP for a
Formula 1 car during
power-off (dashed lines) and
power-on (solid lines)
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Fig. 7.52 Lines at constant
u and constant δ in the β–ρ
MAP for a Formula 1 car
during power-off (dashed
lines) and power-on (solid
lines) 0.01 0.02 0.03
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shows the ρ–δ map with lines at constant speed during power-off (dashed lines) and
power-on (solid lines). Speeds below 30 m/s have been omitted. The two cases are
for a longitudinal acceleration of ±0.5 m/s2. In Fig. 7.52 there is the comparison of
power-off (dashed lines) and power-on (solid lines) in the plane β–ρ. At high steer
angles and relatively low speeds there are, as expected, very big differences.

During power-on, the locked differential generates a yawing moment that can
have either the same sign as the yaw rate (Fig. 7.53) or opposite sign (Fig. 7.54),
depending on the operating conditions of the vehicle.

Fig. 7.53 Power-on with locked differential: forces received from the road at u = 40 m/s and
δ = 7◦
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Fig. 7.54 Power-on with locked differential: forces received from the road at u = 40 m/s and
δ = 5◦

7.7 Exercises

7.7.1 Vehicle Kinematic Equations

The vehicle kinematic equations, introduced in Sect. 3.2, are relationships between
kinematic quantities. Some of these kinematic quantities (telemetry data) are mea-
sured directly on the vehicle. They can then be combined to compute other quantities
(mathematical channels). We remind that kinematics is the branch of mechanics con-
cerned with objects in motion, but not with the forces involved.

Playingwith real world quantities helps developing quantitative reasoning. There-
fore, let us consider the telemetry data measured directly in a race car (Dallara GP2)
during one lap of the Barcelona circuit (sample rate is 100 Hz):

• forward velocity u of G (Fig. 7.55);
• vehicle slip angle β̂ at G (Fig. 7.56);
• yaw rate r (Fig. 7.57);
• longitudinal acceleration ax of G (Fig. 7.59);
• lateral acceleration ay of G (Fig. 7.60);
• front wheel steer angle δ1 (Fig. 7.61).
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Fig. 7.55 Forward velocity u, in m/s, versus time, in s
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Fig. 7.56 Vehicle slip angle β̂, in deg, versus time
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Fig. 7.57 Vehicle yaw rate r , in rad/s, versus time
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Fig. 7.58 Computed trajectory of the center of mass of a GP2 car. Also shown the six positions of
G corresponding to the instants of time of Tables 7.1 and 7.2

All data in Figs. 7.55, 7.56, 7.57, 7.58, 7.59, 7.60 and 7.61 were filtered to reduce
noise.

According to (3.16) and (3.18), the lateral velocity v(t) of G is promptly obtained
as

v(t) = u(t) tan β̂(t) (7.33)

As shown in (3.8), the integral of r(t) provides the vehicle yaw angle ψ(t). Then,
as discussed in Sect. 3.2.2, the trajectory of G can be obtained. The final result is
shown in Fig. 7.58.
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Fig. 7.59 Longitudinal acceleration ax , in m/s2, versus time
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Fig. 7.60 Lateral acceleration ay , in m/s2, versus time
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Fig. 7.61 Front wheel steer angle δ1, in deg, versus time

Typically, the computed trajectory is not a closed curve. This is due to the accumu-
lation of small errors and noise which inevitably affect the measured data. However,
in this case the result is pretty good. In Fig. 7.58 all turns of the Barcelona circuit
are numbered sequentially, as customary.

The accelerations ax and ay are also measured directly, thus avoiding the very
unreliable computation of u̇ and v̇, if we had to employ (3.26) and (3.27).

The plot of the longitudinal acceleration ax (t) is shown in Fig. 7.59 (negative
values mean braking). It is worth noting how sharp are the transitions whenever a
braking application begins.



366 7 Handling of Race Cars

Table 7.1 Samples of measured telemetry data of a GP2 car

t
(s)

turn
No

u
(m/s)

β̂

(deg)
r

(rad/s)
ax

(m/s2)
ay

(m/s2)
δ1

(deg)

1 10.87 1 44.21 1.26 −0.39 −14.63 −14.05 −1.68

2 12.66 1 32.67 3.16 −0.61 −0.05 −20.86 −3.84

3 30.98 4 43.16 1.92 −0.37 7.72 −17.77 −1.65

4 61.84 10 30.26 −0.94 0.27 −9.52 9.56 2.41

5 63.87 10 20.64 −1.80 0.81 4.22 16.53 7.81

6 64.87 10 24.60 −1.05 0.33 9.05 9.12 1.71

The plot of the lateral acceleration ay(t) is shown in Fig. 7.60. As expected after
(3.27), this plot is similar to that of r(t).

Although not strictly necessary in this framework, also the plot of the front wheel
steer angle δ1 is shown (Fig. 7.61). Quite interestingly, β̂ and δ1 always have opposite
sign.

As discussed in Sect. 3.2, the measured telemetry data shown in Figs. 7.55, 7.56,
7.57, 7.58, 7.59, 7.60 and 7.61 allow the computation, among others, of the following
kinematic quantities as mathematical channels:

• lateral velocity v of G (Eq. (7.33));
• coordinates S and R of the velocity center C in the vehicle frame (Eqs. (3.14) and
(3.13));

• radius of curvature RG of the trajectory of the center of mass G (Eq. (3.36));
• ratios β and ρ (Eqs. (3.16) and (3.17));
• tangential acceleration at of G (Eq. (3.34));
• centripetal acceleration an of G (Eq. (3.35)).

Values of telemetry data measured at six different instants of time during the same
lap are listed in Table 7.1. The corresponding positions of the vehicle on the track
are marked by black points in Figs. 7.55, 7.56, 7.57, 7.58, 7.59, 7.60 and 7.61. More
precisely, there are two points on turn 1, one point on turn 4 and three points on turn
10. The corresponding values of the mathematical channels listed above are given in
Table 7.2. It is strongly recommended to try to figure out what is going on at each of
these instants of time.

Values of the angular acceleration ṙ(t) are reported in the last column of Table 7.2.
As already stated in Sect. 3.2.8, it would be desirable to have sensors to measure
directly ṙ . For the moment we have to compute it as the numerical derivative of the
filtered signal r(t). Quite an arbitrary process, as will be shown, e.g., in Fig. 5.23.

After this long introduction, here is the exercise.
Discuss, from a kinematic point of view, the data given in Tables 7.1 and 7.2.
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Table 7.2 Computed values (mathematical channels) from the telemetry data of Table 7.1

t
(s)

Turn
No

v
(m/s)

S
(m)

R
(m)

RG
(m)

β

(deg)
at

(m/s2)
an

(m/s2)
ṙ

(rad/s2)

1 10.87 1 0.96 2.49 −114.30 −142.50 1.25 −14.93 −13.73 −0.32

2 12.66 1 1.80 2.97 −53.70 −51.40 3.16 −1.20 −20.83 0.31

3 30.98 4 1.45 3.90 −116.40 −103.50 1.92 7.12 −18.02 0.02

4 61.84 10 −0.49 1.83 113.10 97.37 −0.93 −9.67 9.41 1.53

5 63.87 10 −0.65 0.80 25.41 25.60 −1.81 3.69 16.65 −0.08

6 64.87 10 −0.45 1.38 75.67 65.21 −1.04 8.88 9.28 −0.52

Solution

Points 1 and 4 have significant negative values of ax . Moreover, at both points |ax | �
|ay|. Therefore the driver is still braking while entering the turn.

Point 2 is at the so-called apex of the corner, characterized by |ax | � 0 and
maximum |ay |.

Points 3, 5 and 6 have positive values of ax . Therefore, the vehicle is accelerating.
It is also exiting the turn, as confirmed by the values of ay .

In all cases |β̂| is very small, and hence β̂ � β. Indeed, the lateral velocity v is
much lower than u. Nonetheless, (ax , ay) are similar, but not almost equal to (at , an).

The coordinate S of the velocity centerC is always positive. Therefore, the vehicle
slip angle β̂ and the front wheel steer angle δ1 always have opposite sign. The
coordinate R of C is usually quite different from the radius of curvature RG of the
trajectory of G. They get closer to each other when the vehicle is near the apex of
the corner.

7.7.2 Spin Slip Contributions

According to (3.62), there are three contributions to spin slip ϕi j . Discuss their
relevance in a GP2 car.

Solution

From Fig. 7.57, we see that the yaw rate |r | is always lower than 1 rad/s. From
Fig. 7.61, we can estimate that the steer angle rate |δ̇i j | does not exceed 0.5 rad/s,
and usually it is much lower. With a camber reduction factor εi of about 0.5 and a
camber angle γi j of, say, 4 degrees, the third term ranges between 1 rad/s and 5 rad/s,
depending on the value of the wheel angular speed ωi j .



368 7 Handling of Race Cars

Table 7.3 Coordinates of K and components of aC , both in the vehicle reference frame, according
to the telemetry data of Table 7.1 and to the last column in Table 7.2

t
(s)

Turn
No

GKx
(m)

GKy
(m)

aCx

(m/s2)
aCy

(m/s2)

1 10.87 1 −53.74 20.65 −51.45 2.26

2 12.66 1 27.62 −33.50 15.31 −0.08

3 30.98 4 70.08 −121.20 9.02 −1.70

4 61.84 10 −6.52 −5.91 −182.70 4.26

5 63.87 10 9.23 23.96 5.68 −0.30

6 64.87 10 20.39 −13.35 47.97 0.41

7.7.3 Acceleration Center K and Acceleration of the Velocity
Center C

Employing the measured values reported in Table 7.1, along with the values of ṙ
reported in the last column in Table 7.2, compute in the vehicle reference frame the
coordinates of the acceleration center K and the components of aC .

Solution

We can use (3.46) and (3.48). Results are given in Table 7.3. It is worth noting that,
in most cases, K and C are quite far apart.

7.7.4 Aerodynamic Downforces

A GP2 race car has the following features (notation as in Sect. 3.7.2):

• m = 680 kg;
• a1/a2 = 1.27, that is weight distribution front/rear of 0.44/0.56;
• Sa Cz1 = 1.5 m2;
• Sa Cz2 = 2.1 m2;
• Sa Cx = 1.1 m2.

Compute the vertical loads acting on the front axle and on the rear axle when the
car is stationary, and when it is running straight at 150 km/h and at 300 km/h.

Solution

The car total weight is mg = 6670.8N. Therefore, according to (3.102), the vertical
static loads are Z0

1 = 0.44 × 6670.8 = 2935.15N for the front axle, and Z0
2 =

0.56 × 6670.8 = 3735.65N for the rear axle.
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We can now employ (3.80) to evaluate the aerodynamic downforces Za
1 and Za

2
when the car has a speed of 150 km/h = 41.67 m/s. The air density is assumed
to be ρa = 1.25 kg/m3. After a simple calculation we get Za

1 = 1627.47N and
Za
2 = 2278.46N.
Therefore, at 150 km/h, according to (3.100), the total vertical load Z1 acting on

the front axle amounts at Z1 = Z0
1 + Za

1 = 2935.15+ 1627.47 = 4562.62N, while
for the rear axle we obtain Z2 = Z0

2 + Za
2 = 3735.65 + 2278.46 = 6014.11N.

The drag force Xa at 150 km/h is equal to 1193.48N.
Now, let us repeat the computation for a speed of 300 km/h = 83.33m/s. For the

aerodynamic downforces on each axle we get Za
1 = 6509.90N and Za

2 = 9113.85N.
Doubling the speed makes the aerodynamic loads four times that much.

At 300 km/h, the total vertical load Z1 acting on the front axle amounts at Z1 =
Z0
1 + Za

1 = 2935.15 + 6509.90 = 9445.05N, while for the rear axle we obtain
Z2 = Z0

2 + Za
2 = 3735.65 + 9113.85 = 12849.50N.

It is interesting to check the front/rear balance of the total loads. It was 0.44/0.56
at zero speed, to become 0.43/0.57 at 150 km/h, and 0.42/0.58 at 300 km/h. Indeed,
the front/rear balance of the aerodynamic loads alone is 0.42/0.58.

7.7.5 Roll Stiffnesses in Formula Cars

Formula cars, including FSAE cars, have rather flexible tires in the radial direction.
The goal of this exercise is to appreciate how much the radial stiffness of the tires
can affect the vehicle roll stiffness, and hence the roll motion of the car. This topic is
addressed in Sect. 3.10.12. The data are as follows:

• mass m = 305 kg;
• front track t1 = 1.21m;
• rear track t2 = 1.11m;
• a1 = 0.816m;
• a2 = 0.724m;
• center of mass height h = 0.32m;
• front no-roll center height q1 = 0.025m;
• rear no-roll center height q2 = 0.045m;
• front suspension roll stiffness ksφ1

= 21740.6Nm/rad = 379.4Nm/deg;
• rear suspension roll stiffness ksφ2

= 22322.2Nm/rad = 389.6Nm/deg;
• tire radial stiffness p1 = p2 = 85000N/m;
• grip μ = 1.4.

Solution

According to (3.121), we compute the front and rear tire roll stiffnesses k p
φ1

=
62224.3Nm/rad = 1086.0Nm/deg and k p

φ2
= 52364.3Nm/rad = 913.9Nm/deg,

respectively.
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We see that k p
φ1

> k p
φ2

because t1 > t2. Moreover, as expected, tire roll stiff-
nesses are bigger than suspension roll stiffnesses, but not that much. More precisely
k p
φ1

/ksφ1
= 2.86 and k p

φ2
/ksφ2

= 2.35.
The roll stiffnesses kφ1 and kφ2 of the front and rear axles can be computed

using (3.119). We obtain with a simple calculation kφ1 = 16111.4Nm/rad =
281.2Nm/deg and kφ2 = 15650.6Nm/rad = 273.2Nm/deg. Adding these two
quantities, as in (3.145), we obtain the vehicle global roll stiffness
kφ = 31762.0Nm/rad = 554.4Nm/deg.

For simplicity, we assume to apply at the center of mass G a lateral force, say,
Y = μmg = 4188.9N. The height q = 0.036m of the no-roll axis under the center
of mass is given by (3.137). How much is the vehicle roll angle φ?

We are now ready to make a mistake. As a matter of fact, we are tempted to
employ the very simple equation (3.154) to estimate the vehicle roll angle φ under a
lateral force Y . The (wrong) result would be φ = 2.15◦.

The correct equation is (3.146), which needs Y1 = Ya2/(a1 + a2) = 1968.8N
and Y2 = Ya1/(a1 +a2) = 2220.1N, and provides the vehicle roll angle φ = 2.23◦.

Moreover, by means of (3.143) we can compute the tire roll angles φ
p
1 = 0.61◦

and φ
p
2 = 0.74◦, and, by means of (3.144) the suspension roll angles φs

1 = 1.61◦
and φs

2 = 1.48◦. Of course, they must fulfill (3.130).
With the (wrong) assumption of rigid tires, as in (3.154) with kφ = ksφ1

+ ksφ2
=

44062.8Nm/rad = 769.0Nm/deg, the (wrong) vehicle roll angle would have been
φ = 1.55◦.

7.7.6 Lateral Load Transfers in Formula Cars

With the data and results of the former exercise, compute the lateral load transfers
ΔZ1 and ΔZ2.

Solution

Since, as already stated, the tires cannot be assumed as rigid, we have to use (3.138)
for computing the lateral load transfers. The results are ΔZ1 = 547.4N and ΔZ2 =
610.9N, which makes ΔZ1/(ΔZ1 + ΔZ2) = 0.47.

We know that part of these load transfers come from the suspension links and part
from the suspension and tire stiffnesses. Employing (3.150) and (3.151) we obtain
ΔZY

1 = 40.7N, ΔZ L
1 = 506.7N, ΔZY

2 = 90.0N and ΔZ L
2 = 520.9N.

Of course, Yh = ΔZ1t1 + ΔZ2t2.
According to (3.102), the static load on the front axle is Z0

1 = 1406.3N, while
on the rear axle it is Z0

2 = 1585.8N. We remind that the static load on each single
wheel is not necessarily 50% of the axle load (see p. 103).
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For comparison, we repeat the computation assuming (erroneously) rigid tires and
get ΔZ1 = 526.5N and ΔZ2 = 633.7N, which makes ΔZ1/(ΔZ1 +ΔZ2) = 0.45.
This result confirms that tire stiffness has to be taken into account.

We invite the reader to figure out what can be done on the car to end up with the
ratio ΔZ1/ΔZ2 > 1, as it should be to have an understeer vehicle.

7.7.7 Centrifugal Force not Applied at the Center of Mass

Going from turn 1 to turn 2 of the Barcelona circuit requires a sharp change in
direction, which means fairly high values of ṙ . For instance, at the end of turn 1 a
Formula car had, at a given instant, ṙ = 1.56 rad/s2 and ay = −8.34m/s2.Assuming
m = 680 kg and Jz = 700 kgm2, compute how far was the lateral force Y from the
center of mass G. We also know that the steer angle δ1 of the front wheels was only
0.21◦.

Solution

To answer this question we can rely on (3.98). Indeed, it is precisely xN the sought
for distance. Therefore, we need the lateral force Y = may = 5671.2N and the
vertical moment N = Jzṙ = 1092Nm. We can assume NX � 0 because the car was
going almost straight and hence the limited-slip differential had no effect.

The distance of the lateral (centrifugal) force Y from G is xN = N/Y = 0.19m.
As expected, the centrifugal force does not act through the center of mass (cf. [11,
p. 133]).

7.7.8 Global Aerodynamic Force

Combine the three aerodynamic forces shown in Fig. 7.1 to obtain the line of action
and the magnitude of the global aerodynamic force Fa .

Solution

We prefer to use a graphic approach. Since forces are applied vectors, we can redraw
them only along their line of action. As shown in Fig. 7.62, first we combine Xa and
Za
1 . The resulting vector is then added to Za

2 , again keeping each force on its line of
action, thus obtaining the global aerodynamic force Fa .

It is interesting to compare this result with the analogous result for a road car,
shown in Fig. 3.20.
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Fig. 7.62 Vectorial sum of
the aerodynamic drag and
axle downforces to obtain the
global aerodynamic force

7.8 Summary

Limited slip differential and wings are typical of race cars. Both greatly impact on
the vehicle handling (otherwise they would not be used). Therefore, the first part of
this Chapter has been devoted to the formulation of a suitable vehicle model, which,
in this case, cannot be single track. As a matter of fact, there is a strong interaction
between lateral and longitudinal forces.

The concept of handling diagram becomes inadequate and must be replaced by
the handling surface. This fairly new tool has been introduced in the framework of
handling of road cars with locked or limited-slip differential.
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The handling of Formula cars has been first addressed by means of the handling
surface. However, a more powerful description has been provided by means of the
Maps of Achievable Performance - MAP. With this new approach it is possible to
better understand the effects of different vehicle set-ups at steady state and also in
power-on/off conditions.

7.9 List of Some Relevant Concepts

p. 339 — Non-open differential makes vehicle behavior very sensitive also to the
turning radius. Aerodynamic effects make the vehicle handling behavior
very sensitive to the forward speed;

p. 340 — the handling curve must be replaced by the handling surface;
p. 347 — the curves on the handling diagram are the projections of sections of the

handling surface;
p. 346 — the yawing moment due to the limited-slip differential can be either pos-

itive or negative;
p. 356 — by means of the Map of Achievable Performance (MAP) it is possible to

single out the physical grip.

7.10 Key Symbols

a1 distance of G from the front axle
a2 distance of G from the rear axle
an centripetal acceleration
at tangential acceleration
ax longitudinal acceleration
ay lateral acceleration
ãy steady-state lateral acceleration
C velocity center
Ci lateral slip stiffness of ith axle
Cx , Cy , Cz aerodynamic coefficients
d diameter of the inflection circle
Fxi j tire longitudinal force
Fyi j tire lateral force
Fzi j tire vertical force
g gravitational acceleration
G center of mass
h height of G
Jx , Jy , Jz moments of inertia
K acceleration center
K classical understeer gradient
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kφ total roll stiffness
kφi global roll stiffness of ith axle
k p
φi

tire roll stiffness
ksφi

suspension roll stiffness
l wheelbase
m mass
N yaw moment
Nβ , Nρ stability derivatives
Nδ control derivative
q1 height of the front no-roll center
Q1 front no-roll center
q2 height of the rear no-roll center
Q2 rear no-roll center
r yaw rate
R lateral coordinate of C
ri rolling radii
S longitudinal coordinate of C
Sa frontal area
t1 front track
t2 rear track
u longitudinal velocity
v lateral velocity
X longitudinal force
Xa aerodynamic drag
Y lateral force
Yi lateral force on the ith axle
Yβ , Yρ stability derivatives
Yδ control derivative
Z vertical force
Zi vertical load on ith axle
Z0
i static vertical load on ith axle

Za
i aerodynamic vertical load on ith axle

ΔZ longitudinal load transfer
ΔZi lateral load transfer on ith axle

αi j tire slip angles
β ratio v/u
β̂ vehicle slip angle
βt shifted coordinate
(βy, βδ) gradient components
γi j camber angles
δi j steer angle of the wheels
δv steering wheel angle of rotation
ε1 Ackermann coefficient



7.10 Key Symbols 375

ζ exponent
ζ damping ratio
ηh internal efficiency of the differential housing
ρ ratio r/u
ρa air density
ρt shifted coordinate
(ρy, ρδ) gradient components
σxi j tire longitudinal slips
σyi j tire lateral slips
τ steer gear ratio
φ roll angle
Φi slope of the axle characteristics
ϕi j spin slips
ψ yaw angle
ωh angular velocity of the differential housing
ωi j angular velocity of the rims
ωn natural angular frequency
ωs damped natural angular frequency
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