
Chapter 10
Ride Comfort and Road Holding

Real roads are far from flat. Even freshly paved highways have small imperfections
that interact with the vehicle dynamics by exciting vehicle vertical vibrations.

The capability to smooth down road imperfections affects both the comfort and the
road holding of the vehicle. Improving comfort means, basically, limiting the vertical
acceleration fluctuations of the vehicle body and hence of passengers. Improving road
holding means, among other things, limiting the fluctuations of the vertical force that
each tire exchanges with the road.1 The main parameters that affect both comfort
and road holding are the suspension stiffness and damping.

The study of the vibrational behavior of a vehicle going straight at constant speed
on a bumpy road is called ride [1, 3, 5, 6, 9, 11]. More precisely, ride deals with
frequencies in the range 0.25–25Hz for road cars, a bit higher for race cars. Tires
can, among other things, absorb small road irregularities at high frequency because
of their vertical elasticity and low mass. However, for frequencies below 3Hz the
tires have little influence and can be considered as rigid. Therefore, the burden to
absorb bigger bumps goes to the vehicle suspensions.

While when studying the handling of a vehicle we were also interested in the
suspension geometry, we focus here on springs and dampers. We look for criteria
for selecting the right stiffness and the right amount of damping for each suspension.

Actually, this is only half the truth. Real suspensions have nonlinear springs and
nonlinear dampers, whose features cannot be reduced to a single number like in the
linear case. However, suspensions with linear behavior are a good introduction to the
study of ride and road holding.

Although standard suspension systems are based on two components—springs
and dampers (shock absorbers)—there is a third component that can turn out to be

1Of course, we mean fluctuations due to road imperfections, not to load transfers.
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Fig. 10.1 Schematics for
spring, damper and inerter

useful in some cases. It is the so-called inerter. The inerter is a device that provides
a force proportional to the relative acceleration between its attachment points, much
like a linear damper provides a force proportional to the relative velocity and a linear
spring a force proportional to the relative displacement (Fig. 10.1)

Fk = k(z − y)

Fc = c(ż − ẏ)

Fb = b(z̈ − ÿ)

(10.1)

The inerter was missing indeed, till quite recently [10]. A typical inerter incorpo-
rates a flywheel which rotates in proportion to the relative displacement between its
two ends. So far, it has been employed in some Formula cars. We will show how it
can improve, in some cases, the car road holding.

10.1 Vehicle Models for Ride and Road Holding

Wearemostly interested in the vehicle verticalmotion. To keep our ride analysis quite
simple, we assume that the vehicle goes straight and at constant speed. Therefore,
there are no handling and/or performance implications here. The ride analysis comes
into play because of the uneven road. Actually, we ask for a very peculiar road, albeit
uneven. It must have exactly the same profile for both wheels of the same axle, thus
not inducing roll motion at all. That means that we can rely on a two-dimensional
model.

The vehicle models set up for handling and performance are not suitable for ride.
We need to develop a tailored model like, e.g., the four-degree-of-freedom model
shown in Fig. 10.2. In this model there are three rigid bodies:

• the sprung mass ms (with moment of inertia Jy w.r.t. its center of gravity Gs),
which has vertical motion zs and pitch motion θ ;

• the front unsprung mass mn1 , which has only vertical (hop) motion y1;
• the rear unsprung mass mn2 , which has only vertical (hop) motion y2.

Also shown in Fig. 10.2 are the two suspension springs, with stiffnesses k1 and
k2, and two dampers, with damping coefficients c1 and c2, along with two springs
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Fig. 10.2 Four-degree-of-freedom model to study ride and road holding

p1 and p2 to model the tire vertical stiffnesses. Again, to keep the analysis simple,
we assume that all these components have linear behavior. This is a very unrealistic
hypothesis since real suspensions are designed to have hardening stiffness and are
equipped with dampers with more resistance during the extension cycle than the
compression cycle.

Inerters, with inertances b1 and b2, are also shown in Fig. 10.2. They have been
used sparingly and only in some race cars. They are included for greater generality.

The vehicle model shown in Fig. 10.2 has four degrees of freedom. Points A1

and A2 are the centers of the front axle contact patches and of the rear axle contact
patches, respectively. The two functions h1(t) and h2(t) are the road profiles as “felt”
by the car, that is through the tires [4].

The sprungmass has two degrees of freedom zs and θ . Alternatively, we could use,
e.g., the vertical displacements z1 and z2. All displacements and rotations are absolute
and taken from the static equilibrium position of the vehicle. We are investigating
the oscillations with respect to the equilibrium position, that is the configuration the
vehicle would have on a perfectly flat road.

The vehicle model shown in Fig. 10.2 is governed by three sets of equations, as
usual:

1. congruence equations:
z1 = zs + a1 θ

z2 = zs − a2 θ
(10.2)

that is a purely geometrical link between coordinates;
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2. equilibrium equations:
ms z̈s = F1 + F2

Jy θ̈ = F1a1 − F2a2
mn1 ÿ1 = N1 − F1

mn2 ÿ2 = N2 − F2

(10.3)

that is a link between forces or couples and accelerations;
3. constitutive equations:

F1 = −k1(z1 − y1) − c1(ż1 − ẏ1) − b1(z̈1 − ÿ1) = −(Fk1 + Fc1 + Fb1)

F2 = −k2(z2 − y2) − c2(ż2 − ẏ2) − b2(z̈2 − ÿ2) = −(Fk2 + Fc2 + Fb2)

N1 = −p1(y1 − h1)

N2 = −p2(y2 − h2)
(10.4)

which model springs, dampers and inerters.

By F1 and F2 we mean the vertical forces exchanged between the sprung mass and
the two unsprung masses, respectively. By N1 and N2 we mean the forces exchanged
by each axle with the road. All forces must be intended as perturbations with respect
to the static equilibrium position. That is why the weight was not included in the
equations.

Combining the above sets of equations, we end up with a system of four linear
differential equations with constant coefficients. They are the governing equations
of this vehicle model

M ẅ + C ẇ + Kw = h (10.5)

where w = w(t) = (
zs(t), θ(t), y1(t), y2(t)

)
is the coordinate vector, and

h = h(t) = (
0, 0, p1h1(t), p2h2(t)

)
is the road excitation. We also have the mass

matrixM

M = Mm + Mb =

⎡

⎢
⎢
⎣

ms 0 0 0
0 Jy 0 0
0 0 mn1 0
0 0 0 mn2

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

b1 + b2 b1a1 − b2a2 −b1 −b2
b1a1 − b2a2 b1a

2
1 + b2a

2
2 −b1a1 b2a2

−b1 −b1a1 b1 0
−b2 b2a2 0 b2

⎤

⎥
⎥
⎦

(10.6)

the damping matrix C

C =

⎡

⎢⎢
⎣

c1 + c2 c1a1 − c2a2 −c1 −c2
c1a1 − c2a2 c1a21 + c2a22 −c1a1 c2a2

−c1 −c1a1 c1 0
−c2 c2a2 0 c2

⎤

⎥⎥
⎦ (10.7)
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Fig. 10.3 “Extraction” of two-degree-of-freedom models to study free vibrations (top) and forced
vibrations (bottom). Gray lines show the dropped parts

and the stiffness matrix K

K = Kk + Kp =

⎡

⎢⎢
⎣

k1 + k2 k1a1 − k2a2 −k1 −k2
k1a1 − k2a2 k1a21 + k2a22 −k1a1 k2a2

−k1 −k1a1 k1 0
−k2 k2a2 0 k2

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 p1 0
0 0 0 p2

⎤

⎥⎥
⎦

(10.8)

A linear four-degree-of-freedom system is quite simple in principle, but also quite
cumbersome to be dealt with analytically without the aid of a computer. Therefore,
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for educational purposes, it is useful to simplify this model further. The basic idea
is to extract two models, both with two degrees of freedom. One model to study
free vibrations and the other model to study forced vibrations. The two models are
virtually obtained by cutting off the unnecessary parts (gray lines in Fig. 10.3) from
the four-degree-of-freedom system.

The sprung mass ms is always much higher than the total unsprung mass mn =
mn1 + mn2 . Typically we have ms � 10mn . Moreover, tire stiffness is, except in
Formula cars, much higher than the suspension stiffness. Typically, pi = 6 − 12 ki .
Therefore, the tires have little influence on the free vibrations and can be considered
as rigid, as done in Fig. 10.3 (top). In Formula cars we have pi = 1 − 2 ki .

On the other hand, the road disturbances involve also high frequencies, and tire
stiffness has to be taken into account. For studying forced vibrations, the vehicle is
then split into two half-car models, as in Fig. 10.3 (bottom), where

ms1 = ms
a2
l

and ms2 = ms
a1
l

(10.9)

Instead of the half-car model, it is customary to use the quarter car model, which is
like the half-car model with all quantities divided by two.

Both models are rather crude approximations, but nevertheless they can provide
very useful insights on how to choose the springs and dampers (and, just in case, the
inerters as well).

10.2 Quarter Car Model

The quarter car model is shown in Fig. 10.4. For simplicity we dropped the subscript
in all quantities. The model consists of a sprung mass ms connected via the primary
suspension to the unsprung massmn of the axle. The suspension is supposed to have
linear behavior with stiffness k and damping coefficient c. An inerter, with inertance
b, is also included. The tire vertical elasticity is represented again by a linear spring
p. The tire damping is so small that it can be neglected.

Quite contrary to common practice, here we prefer not to split the car into four
corners. Instead, we retain the sprung mass of the whole vehicle asms . Consistently,
we have to include in k the stiffnesses of the four suspensions and so on. Following
this approach has several advantages over the classical quarter car model:

• we deal with only one model instead of two (front and rear);
• we do not have to arbitrarily split the mass into front mass and rear mass;
• we are not tempted to usemisleading concepts like the front/rear natural frequency.

Therefore, we are actually using a full car model. We still call it quarter car model
just for the sake of uniformity with other books.

This quarter (full) car model is mainly used to study the vibrational behavior of
the vehicle when travelling on an uneven road. Therefore, the lowermost part of p
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Fig. 10.4 Quarter car model
(better, full car model)

receives from the road a sinusoidal displacement h(t) = H cosΩt . Someone may
object that real roads are not sinusoidal in shape. However, any road profile g(x) of
length L can be expressed by its Fourier series [4]

g(x) =
∞∑

n=0

[
dn sin

(
2πn

L
x

)
+ en cos

(
2πn

L
x

)]
, (10.10)

that is as an infinite sum of trigonometric functions. Fortunately, it is possible to take
only the first n termswithoutmissing toomuch information. If the vehicle travelswith
speed u, the Fourier term with spatial period L/n acts as a forcing displacement of
frequency fn = nu/L . Therefore, the frequency of the excitation depends, obviously,
on the speed of the vehicle.

Because of the assumed linearity of the quarter car model, we can take advantage
of the superposition principle, and “feed” the systemwith one Fourier term at a time.
Should the system be nonlinear, this trick would be meaningless and we could no
longer apply a simple sinusoidal forcing function.

The quarter car model is a damped two-degree-of-freedom system.We employ as
coordinates the vertical displacement z of the sprung mass and the vertical displace-
ment y (hop) of the unsprung mass. The road surface vertical displacement h(t) can
be derived from the road surface profile and the car’s speed. The equations of motion
of the quarter car model are readily obtained from Fig. 10.4 (recommended), or as a
special case of the equations given in Sect. 10.1

ms z̈ = −b(z̈ − ÿ) − c(ż − ẏ) − k(z − y)

mn ÿ = −b(ÿ − z̈) − c(ẏ − ż) − k(y − z) − p(y − h)
(10.11)
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where, as already stated, h(t) = H cosΩt is the excitation due to the road asperities.
The same equations in matrix notation become

M ẅ + C ẇ + Kw = h (10.12)

with mass matrixM

M = Mm + Mb =
[
ms 0
0 mn

]
+

[
b −b

−b b

]
=

[
ms + b −b

−b mn + b

]
(10.13)

damping matrix C

C =
[

c −c
−c c

]
(10.14)

and stiffness matrix K

K = Kk + Kp =
[

k −k
−k k

]
+

[
0 0
0 p

]
=

[
k −k

−k k + p

]
(10.15)

We are mainly interested in the steady-state response, that is in the particular
integral of the system of differential equations (10.11). In a case like this, it can be
expressed as

z(t) = Z cos(Ω t + ϕ)

y(t) = Y cos(Ω t + ψ)
(10.16)

that is in oscillations with the same angular frequency Ω of the excitation, but also
with nonzero phases ϕ and ψ .

The mathematical analysis is much simpler if complex numbers are employed.
The forcing function is therefore given as

h(t) = H(cosΩt + i sinΩt) = HeiΩt (10.17)

with H ∈ R. The steady-state solution is

z(t) = Z [cos(Ωt + ϕ) + i sin(Ωt + ϕ)] = Zei(Ωt+ϕ) = ZeiϕeiΩt = ZeiΩt

y(t) = Y [cos(Ωt + ψ) + i sin(Ωt + ψ)] = Y ei(Ωt+ψ) = Y eiψeiΩt = YeiΩt

(10.18)

where Z = Zeiϕ and Y = Y eiψ are complex numbers with modulus Z and Y , and
phases ϕ and ψ .

Inserting these expressions into (10.11) and dropping eiΩt provides the following
algebraic system of equations in the complex unknowns Z and Y
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{
[(k − bΩ2) − msΩ

2 + i cΩ]Z − [(k − bΩ2) + i cΩ]Y = 0

−[(k − bΩ2) + i cΩ]Z + [p + (k − bΩ2) − mnΩ
2 + i cΩ]Y = pH

(10.19)

whose solution is

Z
H

= p [(k − bΩ2) + i cΩ]
[(k − bΩ2) − msΩ2 + i cΩ][p + (k − bΩ2) − mnΩ2 + i cΩ] − [(k − bΩ2) + i cΩ]2

= p
[(k − bΩ2) + i cΩ]
d(Ω2) + i cΩ e(Ω2)

= Gz(Ω) (10.20)

and

Y
H

= p
[(k − bΩ2) − msΩ

2 + i cΩ]
d(Ω2) + i cΩ e(Ω2)

= Gy(Ω) (10.21)

where, for compactness,

d(Ω2) = msmnΩ
4 − {[p + (k − bΩ2)]ms + (k − bΩ2)mn}Ω2 + p(k − bΩ2).

e(Ω2) = p − (ms + mn)Ω
2

(10.22)
The non-dimensional complex functionsGz(Ω) andGy(Ω), given in (10.20) and

(10.21), can be directly employed to obtain the steady-state solution

z(t) = H Gz(Ω)eiΩt

y(t) = H Gy(Ω)eiΩt
(10.23)

From a practical point of view, we are mostly interested in the amplitude of these
oscillations as functions of Ω

Z

H
= |Z|

H
= p

√
(k − bΩ2)2 + c2Ω2

d2(Ω2) + c2Ω2 e2(Ω2)
= |Gz(Ω)| (10.24)

Y

H
= |Y|

H
= p

√
[(k − bΩ2) − msΩ2]2 + c2Ω2

d2(Ω2) + c2Ω2 e2(Ω2)
= |Gy(Ω)| (10.25)

However, the phases can be obtained as well

tan ϕ = Im(Z)

Re(Z)
tanψ = Im(Y)

Re(Y)
(10.26)

The amplitude of the vertical accelerations of the sprung and unsprung masses
are given by Ω2Z and Ω2Y , respectively.

Due to the oscillations, there are fluctuations in the vertical force exchanged by the
tires with the road. More precisely, we have a sinusoidal force NeiΩt superimposed
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on the constant force due to weight and, possibly, to aerodynamic downforces. From
the quarter (full) car model of Fig 10.4 we get

NeiΩt = p(h − y) = p(H − Y)eiΩt (10.27)

From (10.21), we obtain the amplitude N as a function of the angular frequency Ω

N

p H
= |N|

p H
=

∣∣∣∣
msmnΩ

4 − (ms + mn)Ω
2[(k − bΩ2) + i cΩ]

d(Ω2) + i cΩ e(Ω2)

∣∣∣∣

= Ω2

√
[msmnΩ2 − (k − bΩ2)(ms + mn)]2 + c2Ω2(ms + mn)2

d2(Ω2) + c2Ω2 e2(Ω2)

(10.28)

10.2.1 The Inerter as a Spring Softener

It is worth noting that all these expressions include the term k − bΩ2. This is the
key to understand the inerter (also called J-Damper). It is pretty much like having a
system whose suspension stiffness is sensitive to the frequency Ω of the excitation.
At low frequencies k−bΩ2 � k, but at high frequencies k−bΩ2 � k. The inertance
b acts as a spring softener. This is a very interesting feature in Formula cars, with
high aerodynamic loads, because we can use very stiff springs, thus limiting the
spring deflection due to variable aerodynamic downforces, but at the same time the
car will be able to absorb the high frequency road asperities, as if it were equipped
with not-so-stiff springs. We will elaborate this idea quantitatively and in more detail
in Sect. 10.3.3.

10.2.2 Quarter Car Natural Frequencies and Modes

A linear two-degree-of-freedom vibrating system, damped or not, has two natural
modes, each one associated with its natural frequency.

To obtain these two modes, we consider the homogeneous counterpart of the
system of differential equations (10.12)

M ẅo + C ẇo + Kwo = 0 (10.29)

We seek a solution like
wo = xeμt (10.30)

which, when inserted into (10.29), yields

eμt (μ2M + μC + K)x = 0 (10.31)
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The four values of μ that make (10.30) truly a solution are the roots of the charac-
teristic equation

det(μ2M + μC + K) = 0 (10.32)

In an underdamped vibrating system, the four μ are complex numbers, complex
conjugates in pairs

μ1 = −ζ1ω1 + iω1

√
1 − ζ 2

1 μ3 = μ̄1 = −ζ1ω1 − iω1

√
1 − ζ 2

1

μ2 = −ζ2ω2 + iω2

√
1 − ζ 2

2 μ4 = μ̄2 = −ζ2ω2 − iω2

√
1 − ζ 2

2

(10.33)

where 0 ≤ ζi < 1 are the damping ratios (or damping factors), andωi are close to the
natural angular frequencies ωui of the undamped system.2 The two natural angular
frequencies of the damped system (i.e., of the quarter car model) are

ωdi = ωi

√
1 − ζ 2

i (10.34)

Once the four μi have been obtained, we can go back to (10.31) and obtain the
corresponding generalized eigenvectors xi ∈ C

2, again complex conjugates in pairs.
The general solution of (10.29) is given as linear combination of complex exponential
functions

wo(t) = γ1x1e(−ζ1ω1+iωd1 )t + γ̄1x̄1e(−ζ1ω1−iωd1 )t

+ γ2x2e(−ζ2ω2+iωd2 )t + γ̄1x̄2e(−ζ2ω2−iωd2 )t
(10.35)

As an introduction to the general case, it is useful to study first two very special
cases, that is c = 0 and c = ∞.

10.2.2.1 Undamped Quarter Car Model

Setting c = 0 makes the quarter car model a completely undamped two-degree-of-
freedom vibrating system.

According to the expression of d(ω2) in (10.22), the two natural angular frequen-
cies ωu1 and ωu2 of the undamped system are the solutions of the algebraic equation

msmnω
4 − {[p + (k − bω2)]ms + (k − bω2)mn}ω2 + p k = 0 (10.36)

that is

2Let ωu1 < ωu2 , then ωu1 < ω1 and ω2 < ωu2 . Moreover, ωu1ωu2 = ω1ω2.
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ω 2
u1,2 =k(mn + ms) + (b + ms)p

2mnms + 2b(mn + ms)

±
√−4k[mnms + b(mn + ms)]p + [k(mn + ms) + (b + ms)p]2

2mnms + 2b(mn + ms)
(10.37)

which, if there is no inerter b, simplifies into

ω 2
u1,2 = k(mn + ms) + ms p ± √−4k(mnms)p + [k(mn + ms) + ms p]2

2mnms

= 1

2

⎡

⎣ p + k

mn
+ k

ms
±

√(
p + k

mn
− k

ms

)2

+ 4k2

mnms

⎤

⎦
(10.38)

As already stated, in all road cars we have ms � mn and p � k. Therefore, we
can take the first-order Taylor expansion approximation of (10.38) for small values
of mn and k

ω 2
u1 � kp

(p + k)ms
and ω 2

u2 � p + k

mn
(10.39)

Inmost cases, this very simple formulæ provide very accurate estimates of the natural
frequencies of the undamped quarter car model. For instance, with the data reported
in the caption of Fig. 10.7, we get the following values using first the exact formula
and then the approximate one

fu1 = ωu1

2π
= 1.254 Hz � 1.255 Hz

fu2 = ωu2

2π
= 12.64 Hz � 12.63 Hz

(10.40)

The results are almost identical. Typically, in road cars, fu2/ fu1 � 10.
Of course there is a clear physical interpretation. The two approximate natural

frequencies (10.39) would be the exact natural frequencies of the two one-degree-
of-freedom systems shown in Fig. 10.5. Indeed, as also shown in Fig. 10.5, the two
natural modes of the undamped quarter car model are very peculiar. For instance,
again with the same data, the first mode, the one with fu1 = 1.2 Hz, has z(t) =
8.9y(t), whereas the second mode, with fu2 = 12.6 Hz, has z(t) = −y(t)/89.
That is, they look pretty much as if, in each mode, only one mass at the time were
oscillating.

A Formula 1 car exhibits similar figures, although with some noteworthy differ-
ences. The undamped system has fu1 � 5Hz with z(t) = 2.5y(t), and fu2 � 32Hz
with z(t) = −y(t)/25.

It is very important to know that while the first natural mode is quite insensitive
to damping, the second natural mode is very damping dependent. For instance, in
a road car having what will be called the optimal damping copt, the first mode has
f1 = 1.21Hz, which is very close to fu1 = 1.25Hz with no damping. Moreover, the
amplitude of z(t) is about 8.4 times the amplitude of y(t), pretty much like in the
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(a) (b)

Fig. 10.5 One-degree-of-freedom systems for the approximate evaluation of the two natural fre-
quencies of the undamped quarter car model (road cars only)

undamped case. The second mode, on the other hand, has fu2 = 11.1Hz instead of
f2 = 12.6Hz with no damping. But the most striking difference is that the amplitude
of y(t) is only about 12 times the amplitude of z(t), instead of about 90 times, as it
was with no damping. This is to say that we should not extrapolate results obtained
with no damping to the real case, when there is a lot of damping because of the
dampers.

10.2.2.2 Quarter Car Model with Stuck Damper

The other theoretical case is c = ∞, pretty much like having a stuck damper. The
system behaves like an undamped one-degree-of-freedom system with one mass
ms + mn on top of a spring p (Fig. 10.6). There is only one natural frequency

Fig. 10.6 Quarter car model
with stuck damper, that is
with c = ∞
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ωc =
√

p

(ms + mn)
(10.41)

At first, it may appear a bit strange that c = ∞ leads to an undamped system. The
effect of such an high value of c is to stick ms and mn together, thus leaving only the
undamped oscillation with stiffness p.

10.3 Damper Tuning

The quarter car model can now be used as a tool for the selection of the damping
coefficient c of the damper. Of course, we have first to set up our goal. Typically, in
road cars we are interested in minimizing the amplitude Ω2Z of the vertical acceler-
ation z̈ = Ω2ZeiΩt of the sprung mass, thus optimizing the passenger comfort. On
the other hand, in race cars we are more interested in minimizing the amplitude N
of the oscillating part of the vertical force NeiΩt , thus improving road holding.

10.3.1 Optimal Damper for Comfort

To select the right amount of damping to optimize passenger comfort, let us plot
the normalized acceleration amplitude Ω2Z/H versus the angular frequency Ω of
the road excitation. This is done in Fig. 10.7 for some values of c, including the

Fig. 10.7 Amplitude of the vertical acceleration of the sprungmass in a typical road car (ms = 1000
kg, mn = 100 kg, k = 70 kN/m and p = 560 kN/m)
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two extreme cases c = 0 and c = ∞. The figure was obtained with ms = 1000 kg,
mn = 100 kg, k = 70 kN/m and p = 560 kN/m, that is with ms = 10mn and p= 8k.

The plot for c = 0 and the plot for c = ∞ have four common points, marked by
O , A, B andC in Fig. 10.7. Obviously, all other curves, for any value of 0 < c < ∞,
must pass through the same points.

The best curve, and hence the best value of the damping coefficient c, is perhaps
the one with horizontal tangent at point A. It is a good compromise, as suggested in
1950 by Bourcier de Carbon [2]. As also shown in Fig. 10.7, lower or higher values
of c would yield less uniform curves.

To obtain this optimal value copt, we have to impose that the derivative at A be
zero

∂
(
Ω2Z(c,Ω)

)

∂Ω

∣∣∣∣
Ω=ΩA

= 0 (10.42)

where Z = Z(c,Ω) is given in (10.24). The result is the sought optimal damping
coefficient copt

copt =
√
msk

2

√
p + 2k

p
(10.43)

where the second square root is quite close to one. With the data used to draw
Fig. 10.7 we get copt = 5916.08 × 1.118 = 6614.38Ns/m. With this value of the
damping coefficient, we have that the two natural modes of the quarter car model

have, respectively, ζ1 = 0.34 and ωd1 = ω1

√
1 − ζ 2

1 = 8.1 rad/s for the first mode,

and ζ2 = 0.44 and ωd2 = ω2

√
1 − ζ 2

2 = 77.0 rad/s for the second mode. We see
that both modes are underdamped (ζi < 1), but with a far from negligible amount of
damping. A vehicle engineer should always bear in mind that the damping ratio ζ1
of the first mode is usually something between 0.3 and 0.4 in road cars.

Another observation is in order here. Although the two values of ζi are quite
similar, the time-rate decaying of the two modes, which depend on ζiωi , are dras-
tically different because the two ωi are quite far apart. For instance, in one second
the amplitude of the first mode drops from 1 to e−0.34×8.61 = 0.05, while that of the
second mode drops to e−0.44×85.7 = 10−17. Quite a big difference.

It is worth noting that copt does not depend on the unsprung mass mn . Therefore,
it is not necessary to change the dampers when, for instance, mounting light alloy
wheel rims. On the other hand, stiffer springs do require harder dampers.

Saying that mn does not affect copt does not imply that the unsprung mass has
no influence at all. The comfort performances for three different values of the ratio
mn/ms are shown in Fig. 10.8. The lower the unsprung mass, the better, because the
resulting curve is more uniform.

The formula for the optimal value of the damping coefficient here obtained perhaps
works to get a close to optimal damping coefficient for a Formula 1 car as well. Figure
10.9 is the counterpart of Fig. 10.7. We see that the two Figures are quite different,
but the copt curve is probably the best.
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Fig. 10.8 Amplitude of the vertical acceleration of the sprungmass for three values of the unsprung
mass (road car with ms = 1000 kg, c = copt, k = 70 kN/m and p = 560 kN/m)

HZ

Fig. 10.9 Amplitude of the vertical acceleration of the sprung mass in a typical Formula 1 car

10.3.2 Optimal Damper for Road Holding

Needless to say that we need high vertical loads to have high friction forces.When the
road is not flat, the vertical force fluctuations may impair road holding. Therefore, we
are interested in how to determine the best damper tuning to counteract these force
fluctuations as much as possible. The quarter car model can be usefully employed
to this end. We have already obtained in (10.28) the expression of the amplitude of
the sinusoidal component of the vertical load. Of course, it is superimposed on the
vertical load due to weight, load transfers and, possibly, aerodynamic downforces.
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Fig. 10.10 Amplitude of the sinusoidal vertical load for a road car (ms = 1000 kg, mn = 100 kg,
k = 70 kN/m and p = 560 kN/m)

The plot of the normalized amplitude N/(pH) versus Ω is shown in Fig. 10.10
for several values of the damping coefficient c. As before, there are the curves for
the extreme cases c = 0 and c = ∞. In this case there are only three fixed points
O , Â and B̂. The curve corresponding to c = 1

2copt, copt, 2 copt are also shown in
Fig. 10.10. As before, we have assumed ms = 1000 kg, mn = 100 kg, k = 70 kN/m
and p = 560 kN/m, that is ms = 10mn and p = 8k.

The curve for c = copt is not as good as it was with respect to comfort. For road
holding optimization in road cars, it is better to use higher values of the damping
coefficient c, that is c > copt.

Reducing the unsprung masses is very beneficial for road holding, as shown in
Fig. 10.11. We see that the lower the unsprung mass, the lower the vertical force
amplitude, and hence the better the road holding. Therefore, using light alloy wheels
is certainly a way to improve road holding.

10.3.3 The Inerter as a Tool for Road Holding Tuning

Formula cars, and Formula 1 cars in particular, have aerodynamic devices that pro-
vide fairly high downforces at high speed. These devices are most efficient if kept
at constant distance from the road surface. To reduce the spring deflections under
variable aerodynamic loads, very stiff springs have to be used. However, stiff springs
are not very good to absorb road irregularities. Here is where the inerter comes into
play. It works as a sort of spring softener at high frequencies, while being almost
irrelevant with respect to static or slowly varying loads.
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Fig. 10.11 Amplitude of the sinusoidal vertical load for a road car for three values of the unsprung
mass and c = copt

HZ

Fig. 10.12 Amplitude of the sinusoidal vertical load for a typical Formula 1 car

Let us have a look at the counterpart of Fig. 10.10 for, e.g., a Formula 1 car. The
plot of N/(pH) versus Ω for a Formula 1 car is shown in Fig. 10.12. Interestingly
enough, the value of copt is optimal indeed. Any other value would be worse.

We are interested in increasing the spring stiffness k without impairing the sus-
pension capability to filter down road irregularities. Unfortunately, simply stiffening
the springs brings a worse plot of N/(pH), as shown in Fig. 10.13 (dashed line).
However, the inerter can help in balancing the stiffer spring, and, in fact we end up
with a much better plot (thick solid line in Fig. 10.13). Typically, we can increase the
stiffness by 10–20%, with an inertance of 25–100 kg per wheel in a Formula Indy
car.
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HZ

Fig. 10.13 Beneficial effect of the inerter in a Formula 1 car with stiffer springs

It is worth noting that in ordinary road cars the inerter would not be beneficial.
This is due to the totally different values of mass, stiffnesses, etc. Indeed, Figs. 10.10
and 10.12 are very different.

10.4 More General Suspension Layouts

More complex suspension layouts are possible. Some of them can be obtained by
setting to zero some components in Fig. 10.14. Of course, never forget that dampers
and inerters always need a spring in parallel to work properly.

Fig. 10.14 Quite general
suspension scheme
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It is kind of interesting to note that setting cs = bn = 0 is not equivalent to
cn = bs = 0. Finding the optimal configuration is not an easy task, but could in
some cases turns out to be very rewarding.

10.5 Road Profiles

In probability theory, stationary ergodic process is a random process which exhibits
both stationarity and ergodicity. In essence this implies that the random process will
not change its statistical properties with time and that its statistical properties (such
as the theoretical mean and variance of the process) can be deduced from a single,
sufficiently long sample of the process.

Road elevation profiles are stationary ergodic processes. This allows for fairly
simple statistical treatment.

The Fourier transform F(ω) is a very powerful tool to obtain the frequency feature
of a given function f (x)

F(ω) =
∫ +∞

−∞
f (x)e−iωxdx (10.44)

The function F(ω) ∈ C is precisely the frequency spectrum of f (x).
We cannot apply directly the Fourier transform to a given road profile g(x) ∈ R

because it does not tend to zero when x → ±∞. However, we can introduce the
spatial autocorrelation function Rg(τ ) defined by

Rg(τ ) = lim
L→∞

1

L

∫ +L/2

−L/2
g(x)g(x + τ)dx (10.45)

where L is the length of the road with profile g(x), and then compute its power
spectral density (PSD) as its Fourier transform

Sg(s) =
∫ +∞

−∞
R(τ )e−isτdτ (10.46)

The power spectral density is measured in m2/(cycles/m), if g is in meters and s is
in cycles/m. Therefore, s is the spatial frequency.

If the vehicle travels at constant speed u, we can switch from the profile g(x) to
the time history h(t) by means of the simple formula h(t) = g(ut). The PSD Sh( f ),
measured in m/Hz, of h(t) can be obtained from Sg(s) using

Sh( f ) = Sg( f/u)

u
(10.47)
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In general, if we know the PSD Sh( f ) of the excitation h(t) and the frequency
gainGz(Ω) of the linear system at hand, we can easily obtain the PSD of the system
response z(t) as

Sz( f ) = |Gz(2π f )|2Sh( f ) (10.48)

where, as well known, Ω = 2π f .
For instance, the PSD Sa( f ) of the vertical acceleration z̈ of the sprung mass of

the quarter car model is

Sa( f ) = |(2π f )2 Gz(2π f )|2Sh( f ), (10.49)

with Gz(Ω) = Gz(2π f ) given in (10.20).
There is experimental evidence that the PSD of road profiles has a typical trend:

the amplitude diminishes rapidly with the spatial frequency s. An often employed
empirical formula for this behavior is

Sg(s) = Bs−k (10.50)

Unfortunately, there is not much agreement on the value of the exponent k. Typically
it ranges between 2 and 4, including fractional values. The constant B characterizes
the roughness of the road profile. The smoother the profile, the lower B. It is worth
noting that the units to measure B are affected by the value of the exponent k.

According to (10.47), the counterpart of (10.50) in terms of time frequencies is

Sh( f ) = Buk−1 f −k (10.51)

which, obviously, shows that increasing the vehicle speed brings an increment in the
PSD of the excitation.

10.6 Free Vibrations of Road Cars

The quarter car model looks at each axle as if it were alone. But it is not. Cars have
two axles, and both take part in the vehicle body oscillations. Moreover, when we
obtained the optimal value copt of the damping coefficient in (10.43) by means of
the quarter car model, that was a function of the suspension stiffness k, beside the
sprung mass ms and the tire vertical stiffness p. But how was the stiffness k set? We
do not have much freedom about ms and p, and we may assume both of them as
given for a certain kind of vehicle. But the stiffness k can be selected quite freely,
for both front and rear axles.

Free oscillations are what happens right after the car has hit an isolated bump
or hole. Since road cars usually do not employ the inerter, we use the even simpler
two-degree-of-freedommodel shown in Fig. 10.15, instead of the model of Fig. 10.3.
As already discussed, we can safely consider the tires as rigid. The tires are indeed
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Fig. 10.15 Two-degree-of-freedom system for bounce and pitch analysis (rigid tires)

much stiffer than the springs, and at low frequencies (1–2 Hz) the unsprung masses
oscillate very little. Moreover, the mode with higher natural frequency decays almost
instantaneously, as already shown.

The analysis of the model of Fig. 10.15 will provide useful hints for the selection
and tuning of the front and rear stiffnesses k1 and k2.

10.6.1 Governing Equations

To obtain all relevant equations for the two-degree-of-freedom vehicle model under
investigation we follow the same path as in Sect. 10.1. We have (Fig. 10.15)

1. congruence equations:
z1 = zs + a1 θ

z2 = zs − a2 θ
(10.52)

that is a purely geometrical link between coordinates;
2. equilibrium equations:

ms z̈s = F1 + F2

Jy θ̈ = F1a1 − F2a2
(10.53)

that is a link between forces or couples and accelerations; and
3. constitutive equations:

F1 = −k1z1 − c1 ż1
F2 = −k2z2 − c2 ż2

(10.54)
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When combined all together, they provide the governing equations

ms z̈s = −k1(zs + a1 θ) − c1(żs + a1 θ̇ ) − k2(zs − a2 θ) − c2(żs − a2 θ̇ )

Jy θ̈ = [−k1(zs + a1 θ) − c1(żs + a1 θ̇ )]a1 − [−k2(zs − a2 θ) − c2(żs − a2 θ̇ )]a2
(10.55)

that can also be written in matrix notation as

M ẅo + C ẇo + Kwo = 0 (10.56)

where wo = (zs, θ). Formally, they look like (10.5), except for being homogeneous
now. The 2 × 2 matrices are

M =
[
ms 0
0 Jy

]
(10.57)

C =
[

c1 + c2 c1a1 − c2a2
c1a1 − c2a2 c1a21 + c2a22

]
(10.58)

and

K =
[

k1 + k2 k1a1 − k2a2

k1a1 − k2a2 k1a21 + k2a22

]

(10.59)

As well known, the solutions of (10.56) are in the form wo(t) = xeμ t , with μ and x
such that

(μ2M + μC + K)x = 0 (10.60)

Quite surprisingly, it is common practice in the vehicle dynamic community to
discard damping when studying free oscillations of a vehicle. Most books do that.
But why?

Actually, vehicles have a lot of damping (in the quarter car model we obtained
damping ratios ζi in the range 0.3–0.5). Perhaps they are the most damped system
in mechanical engineering, and a good engineer cannot discard something which is
not negligible at all. A rationale for neglecting damping should be provided, as a
minimum. Unfortunately, in most cases there is just a sentence stating that damping
will be neglected.

Free oscillations of undamped systems are much more predictable than those of
a general damped system. Moreover, through modal analysis they can be treated as
a collection of single-degree-of-freedom oscillators. But, we insist, vehicles are not
undamped. They are very damped systems.

Fortunately, there is a way to have a damped system behave pretty much like an
undamped system: it must have proportional damping (also called Rayleigh damp-
ing). Modes of proportionally damped systems preserve the simplicity of the real
normal modes as in the undamped case, as we are going to discuss in a while.



440 10 Ride Comfort and Road Holding

10.6.2 Proportional Viscous Damping

The definition of proportional viscous damping is (e.g., [8, p. 522])

C = αM + β K (10.61)

that is the damping matrix must be a linear combination of the mass and stiffness
matrices, for suitable constants α and β.

Systems with proportional viscous damping have exactly the same mode shapes
as the corresponding undamped systems. This is the key property.

The proof is quite simple. Inserting (10.61) into (10.56) and assuming, as usual,
wo(t) = xeμ t , we get

(μ2 + μα)Mx + (μβ + 1)Kx = 0 (10.62)

that is (
μ2 + μα

μβ + 1

)
Mx = −Kx (10.63)

With respect to the general case (10.60), we have only two matrices instead of three.
And it makes quite a big difference in the physical behavior of the vehicle, as will
be shown hereafter.

Now, letting

λ = μ2 + μα

μβ + 1
and A = −M−1K (10.64)

we end up with exactly the same eigenvalue problem as the undamped system

Ax = λ x (10.65)

which provides two real eigenvalues λ1 and λ2, and the corresponding real eigen-
vectors x1 and x2.

Solving the first equation in (10.64) with λ = λ1, we obtain μ1 and μ3 = μ̄1.
Similarly, solving with λ = λ2 we obtain μ2 and μ4 = μ̄2. Therefore, we have
apparently four μ j and only two eigenvectors x j . The point is that the eigenvectors
have real components, and hence coincide with their complex conjugates. Strictly
speaking, we have two couples of identical eigenvectors.

The general solution, that is the free oscillations, for proportional damping (and
hence also for no damping, which is just a special case of proportional damping) is3

wo(t) = x1
(
γ1e

μ1t + γ3e
μ3t

) + x2
(
γ2e

μ2t + γ4e
μ4t

)
(10.66)

3The quarter car model is a two-degree-of-freedom system whose damping is certainly not propor-
tional. It is worth comparing (10.66) with the more general (10.35).
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Often, this equivalent expression, which only involves real quantities, is more con-
venient (cf. (6.226)

wo(t) = χ1 x1e−ζ1ω1t sin(ωd1 t + ϕ1) + χ2 x2e−ζ2ω2t sin(ωd2 t + ϕ2) (10.67)

where
μ1 = −ζ1ω1 + i ωd1 and μ2 = −ζ2ω2 + i ωd2 (10.68)

As usual in systems with proportional damping, ζ j are the damping factors and ω j

are exactly the angular frequencies of the corresponding undamped system, while

ωd j = ω j

√
1 − ζ 2

j are the angular frequencies of the proportionally damped system.4

The undamped system has λ = μ2, and hence

ω j = √−λ j and ζ j = 0 (10.69)

The four unknown constants depend on the four initial conditions.
The undamped and proportionally damped systems share almost everything,

except the μ j ’s. The really relevant aspect is that the eigenvectors x j are exactly
the same. This is the possible justification for “neglecting” the damping when study-
ing the free oscillations of a vehicle. But the vehicle must be designed to have
proportional damping, indeed. And a vehicle engineer should be well aware of this
requirement.

10.6.3 Vehicle with Proportional Viscous Damping

Looking at the three matrices (10.57), (10.58) and (10.59) for the case at hand, we
see that the matrix C and the matrix K share the very same structure. Therefore, the
only way to have proportional damping in a vehicle is to set α = 0 and select springs
and dampers such that

β = c1
k1

= c2
k2

(10.70)

thus having in (10.61) C = β K. This can be done fairly easily and cheaply.
From (6.208) we obtain

λ1,2 = − 1

2Jyms

[
Jy(k1 + k2) + ms(k1a

2
1 + k2a

2
2)

∓
√

[Jy(k1 + k2) + ms(k1a21 + k2a22)]2 − 4Jyms(a1 + a2)2k1k2

]
(10.71)

4The two natural frequencies of this model are not, of course, the two natural frequencies of the
quarter car model. Another look at Fig. 10.3 should clarify the matter.
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and the corresponding eigenvectors

x1,2 =
(

1

2(k1a1 − k2a2)ms

[
Jy(k1 + k2) − ms(k1a

2
1 + k2a

2
2)

∓
√

[Jy(k1 + k2) + ms(k1a21 + k2a22)]2 − 4Jyms(a1 + a2)2k1k2

]
, 1

)

(10.72)

More compactly

x1 = (Zs1 , 1) =
(
zs1(t)

θ1(t)
, 1

)
and x2 = (Zs2 , 1) =

(
zs2(t)

θ2(t)
, 1

)
(10.73)

which means that the free oscillations are the linear combination of the two natural
modes

zs(t) = χ1Zs1e
−ζ1ω1t sin(ωd1 t + ϕ1) + χ2 Zs2e

−ζ2ω2t sin(ωd2 t + ϕ2) = zs1 (t) + zs2 (t)

θ(t) = χ1e
−ζ1ω1t sin(ωd1 t + ϕ1) + χ2 e

−ζ2ω2t sin(ωd2 t + ϕ2) = θ1(t) + θ2(t)
(10.74)

The time histories for each mode are shown in Fig. 10.16. In each mode, the two
coordinates move in a synchronous way. This is the key feature of systems with
proportional damping.

Each natural mode is an oscillation around a point Pi which has constantly zero
vertical velocity. These points P1 and P2 are called nodes 5 and are defined as those
points at which no vertical motion occurs when the system oscillates according to
only one mode. Their position can be immediately obtained from (10.73). Each node
Pj is at a horizontal distance d j from Gs equal to Zsj , taken in the positive direction
if Zsj is negative, and vice versa. In some sense, in a vehicle the eigenvectors can be
visualized with a yardstick. This is not magic, it suffices to solve the equation

0 = żs j (t) + d j θ̇ j (t) =⇒ d j = − żs j (t)

θ̇ j (t)
= − zs j (t)

θ j (t)
= Zsj (10.75)

taking (10.73) into account.
The two natural modes and the corresponding nodes are shown in Fig. 10.17.

Typically, the first mode, that is the one with lower natural frequency, has the node
behind the rear axle. This mode is called bounce. The second mode has its node
located ahead of Gs , near the front seat. This mode is called pitch.

We remark that fixed nodes are a prerogative of proportionally damped systems.
More general systems still have two natural modes, but in each mode the two coor-
dinates zs j (t) and θ j (t) are no longer equal to zero simultaneously, i.e., the motion

5Other common names are motion centers or oscillation centers.
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Fig. 10.16 Time histories for bounce (top) and pitch (bottom) in case of proportional damping
(synchronous motion)

is not synchronous. Therefore, their ratio d j (t) is a function of time and ranges from
−∞ to +∞. At each time instant there is a different fixed point. We will discuss
further this topic in Sect. 10.8.

10.6.4 Principal Coordinates

In a vehicle with proportional damping, the nodes P1 and P2 also mark where the
principal coordinates zb and z p are, as shown in Fig. 10.18.

Let S be the matrix whose columns are the two eigenvectors (10.73), that is

S = [
x1|x2

]
(10.76)
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Fig. 10.17 Fixed nodes P1 and P2 of the two natural modes in case of proportional damping

Fig. 10.18 Principal coordinates and equivalent system (proportional damping)

The principal coordinates are equal to

[
zb
z p

]
= S−1

[
zs
θ

]
(10.77)

The key step is the diagonalization of the matrices. We have that

[
mb 0
0 mp

]
= STM S

[
cb 0
0 cp

]
= STC S

[
kb 0
0 kp

]
= STK S (10.78)

The system behaves precisely as if it were made up of two concentrated masses
mb andmp, each onewith its own spring kb and kp and damper cb and cp, respectively
(Fig. 10.18). Obviously, we have that
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2ζ1ω1 = cb
mb

ω2
1 = kb

mb

2ζ2ω2 = cp
m p

ω2
2 = kp

m p

(10.79)

10.6.5 Selection of Front and Rear Suspension Vertical
Stiffnesses

In case of proportional damping, the shape of both modes (and hence the position of
both nodes) depends on two nondimensional parameters: ρ and η.

The first parameter is the dynamic index

ρ = Jy
msa1a2

(10.80)

It is a measure of how far the vehicle mass is distributed from its center of mass, with
respect to the wheelbase. Of course, ρ depends on the whole vehicle architecture
and it is very difficult to modify it. Usually, in ordinary road cars ρ ranges between
0.90 and 0.97 (Fig. 10.19). Cars with ρ > 1 must be like in Fig. 10.20, that is with
the wheelbase much shorter than the whole vehicle length.

Fig. 10.19 A modern car with 0.9 < ρ < 1

Fig. 10.20 An old car with ρ > 1
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Another extremely important parameter is the ratio η

η = k1 a1
k2 a2

(10.81)

which characterizes how the axle stiffnesses relate to each other. Well tuned modern
cars must have η � 0.95.

Parameter η has a simple physical meaning. Just look at it as

η = a1/k2
a2/k1

(10.82)

It is the ratio between the static deflection at the rear mga1/(lk2) and the static
deflection at the front mga2/(lk1).6

For a deeper comprehension of the possible effects of these two parameters ρ and
η, we analyze the model of Fig. 10.15 in some special cases, before addressing how
to tune the suspension stiffnesses in the general case.

For simplicity,we consider here the undamped system,whosegoverning equations
are

ms z̈s + (k1 + k2) zs + (k1a1 − k2a2) θ = 0

Jy θ̈ + (k1a1 − k2a2) zs + (k1a
2
1 + k2a

2
2) θ = 0

(10.83)

10.6.5.1 Case 1: η = 1

If the suspension stiffnesses are selected such that η = 1, that is

k1a1 = k2a2 (10.84)

the two equations in (10.83) become uncoupled. Both matrices are diagonal, which
means that zs and θ are the principal coordinates. The two undamped natural angular
frequencies are

ω1 =
√
k1 + k2
ms

, ω2 =
√
k1a21 + k2a22

Jy
(10.85)

Their ratio is equal, in this case, to the square root of the dynamic index

(
ω1

ω2

)2

= Jy
msa1a2

= ρ (10.86)

6Unfortunately, this physical interpretation often leads to the misconception that there are a front
natural frequency and a rear natural frequency [6, p. 175].
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The two eigenvalues are simply (cf. (10.72))

x1 = (1, 0) and x2 = (0, 1) (10.87)

Therefore, the bounce mode is a pure vertical translation and the pitch mode is a
rotation around Gs = P2.

10.6.5.2 Case 2: ρ = 1

Now, let us assume that a vehicle has ρ = 1, that is

Jy = ma1a2 (10.88)

In this case the two principal coordinates are the vertical displacements z1 and z2
given in (10.2) and in Fig. 10.15, that is the displacements of the vehicle body at the
two axles. After a little algebra, it is possible to rewrite the governing equations as

ms1 z̈1 + k1 z1 = 0,

ms2 z̈2 + k2 z2 = 0,
(10.89)

where

ms1 = ms
a2

a1 + a2
ms2 = ms

a1
a1 + a2

(10.90)

The undamped natural frequencies are

ω1 =
√

k1
ms1

ω2 =
√

k2
ms2

(10.91)

Their ratio is, in this case, equal to the square root of η

(
ω1

ω2

)2

= k1 a1
k2 a2

= η (10.92)

The two eigenvectors in the original coordinates zs and θ are (cf. (10.72))

x1 = (a2, 1) and x2 = (−a1, 1) (10.93)

The nodes are precisely over the front axle and the rear axle, as expected. Otherwise,
z1 and z2 would not be the principal coordinates.
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10.6.5.3 Case 3: η = 1 and ρ = 1

But what happens if we set both η and ρ equal to one? From (10.86) and (10.92) we
obtain that (

ω1

ω2

)2

= 1 (10.94)

that is the two undamped modes have exactly the same natural frequency.
The analysis of the shape of the two modes is more tricky. Apparently there is a

paradox: the modes obtained before for η = 1 are not consistent with those obtained
for ρ = 1, and vice versa. Which prevails? There is only one way out. Any point can
be a node, that is, any vector x is an eigenvector. This happens because the matrix
A = −M−1K is like the identity matrix I, times a suitable constant.

A vehicle designed to have η = ρ = 1 would have a very unpredictable behavior.
As a matter of fact, a real vehicle could fulfill this condition only approximately.
Therefore, the two nodes would be quite randomly located. Certainly, not a desirable
behavior.

10.7 Tuning of Suspension Stiffnesses

So far we have obtained the following results about the vehicle free oscillations:

1. tires can be considered as rigid;
2. damping should be proportional to the corresponding stiffness;
3. the two natural frequencies of the undamped system are very close to the natural

frequencies of the proportionally damped system;
4. the shape of the modes of the undamped system are exactly equal to the shape of

the modes of the proportionally damped system.

Now we can proceed to discus how to choose k1 and k2. There are basically two
requirements for road cars:

• both natural frequencies must fall in the range 1.0–1.5Hz;
• the pitch mode should have its node located at about the front seat.

The first rule comes from the observation that oscillations at 1.0–1.5Hz are quite
comfortable for human beings. The second rule is an attempt to reduce the pitch
motion of the driver. Pitch is typically more annoying than bounce.

As already stated, the value of ρ cannot be modified, unless the vehicle is com-
pletely redesigned. Modern road cars have (Fig. 10.19)

ρ � 0.95 (10.95)

To locate the pitch node on the front seat we can act on η, that is on the relative
stiffnesses. Usually, a good value is
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η � 0.95 (10.96)

With both η and ρ slightly lower than one, and with proportional damping, the
car damped oscillations are like in Fig. 10.17, with the pitch node near the front seat
and the bounce node quite far away behind the car. This is usually acknowledged as
comfortable behavior.

For completeness, we provide the general formulæ to compute the horizontal
distances di from Gs of the nodes of bounce and pitch (Fig. 10.17), as functions of
η and ρ

di = (a1 + a2)
ρ − η + (η − 1)(ρ + 1)χ ± √[(η − 1)(ρ − 1)χ + η + ρ]2 − 4ηρ

2(η − 1)
(10.97)

where χ = a2/(a1 + a2). Positive values of di means toward the rear axle, and
viceversa.

10.7.1 Optimality of Proportional Damping

Summing up, for a good suspension design we have found that we should fulfill these
requirements

• c j � copt;
• c1/k1 = c2/k2 (proportional damping);
• η � 0.95 (if also ρ � 0.95).

But do they conflict with each other or not? Let us develop this point.
Optimal damping requires (cf. (10.43))

c1 �
√
ms1k1
2

and c2 �
√
ms2k2
2

(10.98)

where ms1 = msa2/ l and ms2 = msa1/ l. At the same time, proportional damping
requires c1/k1 = c2/k2 = β, which combined with the former expression means

√
ms1k1
2

1

k1
�

√
ms2k2
2

1

k2
(10.99)

that is
√
msa2
k1

�
√
msa1
k2

=⇒ k1a1 � k2a2 =⇒ η � 1 (10.100)

Therefore, we see that these three requirements do not conflict with each other.
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Fig. 10.21 Industrial application of proportional damping

We have insisted many times about having a vehicle with springs and dampers
tuned to have proportional damping. The importance of this feature has been con-
firmed by Hyundai Motor Europe Technical Center GmbH in the communica-
tion entitled “A new R&H evaluation methodology applied during Hyundai i30
development”, presented by Antonino Pizzuto at 2017 VI-grade Users Conference
(Fig. 10.21).

As shown in Fig. 10.17, fixed nodes are a prerogative of proportionally damped
systems. This is the outcome of having synchronous motion of both degrees of
freedom in each natural mode, as shown in Fig. 10.16.

10.7.2 A Numerical Example

Crunching numbers helps a lot to grasp what we are really doing.
Let a vehicle have these features:

• sprung mass ms = 1000 kg and moment of inertia Jy = 1620 kgm2;
• a1 = 1.2m and a2 = 1.5m;
• axle vertical stiffnesses k1 = 31500N/m and k2 = 28000N/m;
• proportional damping with β = c1/k1 = c2/k2 = 0.0936 s.

We obtain immediately the dynamic index

ρ = Jy
msa1a2

= 1620

1800
= 0.9 (10.101)



10.7 Tuning of Suspension Stiffnesses 451

and the ratio

η = k1a1
k2a2

= 31.5 × 1.2

28.0 × 1.5
= 0.9. (10.102)

Both ρ and η are lower than one, although k1 > k2.
The matrix A is

A = −
[

59.5 −4.2
−2.592 66.89

]
(10.103)

with eigenvalues
λ1 = −58.24 s−2 λ2 = −68.15 s−2 (10.104)

and eigenvectors
x1 = (3.336, 1) x2 = (−0.486, 1) (10.105)

The bounce mode has its node 3.336 m behind Gs , and hence 3.33 − 1.50 =
1.83 m behind the rear axle (Fig. 10.17). The pitch mode has its node 0.486 m ahead
of Gs .

Should the system be undamped, the natural frequencies would be

f1 =
√−λ1

2π
= 1.21 Hz f2 =

√−λ2

2π
= 1.31 Hz (10.106)

These frequencies could be estimated by means of the simple formulæ (10.85). The
approximate values are f1 � 1.23 Hz and f2 � 1.30 Hz, quite close to the exact
ones although η �= 1.

With proportional damping, we have to solve (10.64)

μ2 − βλiμ − λi = 0 (10.107)

with β = c1/k1 = c2/k2 = 0.0936 s, thus getting

μ1,3 = −2.73458 ± i 7.12481 s−1 μ2,4 = −3.19975 ± i 7.60983 s−1 (10.108)

From the imaginary part we obtain the natural frequencies of the damped system

fs1 = Im(μ1)

2π
= 1.13 Hz fs2 = Im(μ3)

2π
= 1.21 Hz (10.109)

They are about 10% lower than those of the undamped system. Both fall within the
acceptable range.

The bounce and pitch modes have ζ1 = 0.36 and ζ2 = 0.39, respectively. There
is quite a lot of damping indeed.

If, just to see what happens, we set Jy = 1980 kgm2, thus having ρ = 1.1, we get
that the bounce mode has f1 = 1.24 Hz and its node located 2.93 m ahead of Gs ,
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while the pitch mode has f2 = 1.16 Hz and its node located at 0.67 m behind Gs . As
expected, many things have been inverted, like the node positions and the frequency
order.

10.8 Non-proportional Damping

Avehiclewith non-proportional dampinghas, in eachnaturalmode, non-synchronous
motion of the two degrees of freedom, as shown in Fig. 10.22, where the front damp-
ing coefficient has been reduced by 10%, while the rear damping coefficient has been
increased by 10%. Also shown in Fig. 10.22 are the plots of d1(t) and d2(t), that is
the time-varying positions of the nodes w.r.t. Gs

Fig. 10.22 Time histories for bounce (top) and pitch (bottom) in case of non-proportional damping
(non-synchronous motion)
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0 = żs j (t) + d j (t)θ̇ j (t) =⇒ d j (t) = − żs j (t)

θ̇ j (t)
(10.110)

These positions are functions of time and cycle from zero (when żs = 0) to ±∞
(when θ̇ = 0). Therefore, the vehicle still has two modes, but their shapes are
somehow mixed up. They are not so neatly different as they are with proportional
damping. It is no longer possible to define the principal coordinates.

Actually, in some sense, both modes share some fundamental features. In both
modes there are time instants in which żs = 0 with θ̇ �= 0, and hence the vehicle
body is rotating around Gs , and other time instants in which θ̇ = 0 with ż �= 0, and
hence the vehicle body is having a pure vertical translation.

Also observe that, differently from (10.75), the ratio in (10.110) do not extend to
the ratio of coordinates.

10.9 Interconnected Suspensions

So far we have employed the model of Fig. 10.15. Implicitly, we have considered it
to be quite a general model for studying the ride of a two-axle vehicle. But it is not.
Let us address the problem from a fresh point of view.

Still using zs and θ as coordinates, a more general form of the equations of motion
(10.83) for a linear two-degree-of-freedom undamped system are

ms z̈s + kzz zs + kzθ θ = 0

Jy θ̈ + kθ z zs + kθθ θ = 0
(10.111)

where kzθ = kθ z .
Each stiffness has a clear physical meaning. Let us impose a pure translation zs to

the system, that is with θ = 0. The system reacts with a force −kzz zs and a couple
−kθ z zs . Similarly, imposing a pure rotation aroundGs , the system reacts with a force
−kzθ θ and a couple −kθθ θ .

In general, any 2× 2 stiffness matrix is characterized by three coefficients. But in
the system of Fig. 10.15 we have only two parameters, namely k1 and k2. Therefore
the following equations

k1 + k2 = kzz
k1a1 − k2a2 = kzθ

k1a
2
1 + k2a

2
2 = kθθ

(10.112)

may not all be fulfilled. As anticipated, the scheme of Fig. 10.15 is not as general
as it may seem at first. We need a suspension layout with three springs, although we
still have only two axles.



454 10 Ride Comfort and Road Holding

Fig. 10.23 Schematic for interconnected suspensions

Fig. 10.24 Interconnected suspensions activated when bouncing

Interconnected suspensions are the solution to this apparent paradox. A very basic
scheme of interconnected suspensions is shown in Fig. 10.23. Its goal is to explain
the concept, not to be a solution to be adopted in real cars (although, it was actually
employed many years ago).

To understand how it works, first suppose the car bounces, as in Fig. 10.24. The
springs contained in the floating device F get compressed, thus stiffening both axles.
On the other hand, if the car pitches, as in Fig. 10.25, the floating device F just
translates longitudinally, without affecting the suspension stiffnesses. This way we
have introduced the third independent spring k3 in our vehicle.

Obviously, hydraulic interconnections are much more effective, but the principle
is the same.We have an additional parameter to tune the vehicle oscillatory behavior.
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Fig. 10.25 Interconnected suspensions not activated when pitching

Fig. 10.26 Transversal interconnection by means of the anti-roll bar [7]

Although only a few cars have longitudinal interconnection, almost all cars are
equipped with torsion (anti-roll) bars, and hence they have transversal interconnec-
tion. An example is shown in Fig. 10.26.

Using interconnected suspensions may lead to non-proportional damping, if
proper counteractions are not taken, that is if the floating device F adds a stiffness
k3 without also adding a damping coefficient c3.
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10.10 Exercises

10.10.1 Playing with η

By means of (10.97) it is fairly easy to locate the nodes of bounce and pitch modes,
in a vehicle with damping proportional to stiffness. Assuming a1 + a2 = 2.6m and
χ = a2/(a1 + a2) = 0.5, find d1 and d2 in the following cases:

1. η = 0.95, ρ = 0.95;
2. η = 0.99, ρ = 0.95;
3. η = 0.9, ρ = 0.95;
4. η = 0.6, ρ = 0.95;
5. η = 0.3, ρ = 0.95.

Before jumping at the solution, try to figure out what the outcome can be.

Solution

To visualize and understand the results it is recommended to refer to Fig. 10.17

1. d1 = 3.06m, d2 = −0.52m;
2. d1 = 13.06m, d2 = −0.12m;
3. d1 = 2.03m, d2 = −0.79m;
4. d1 = 1.40m, d2 = −1.14m;
5. d1 = 1.33m, d2 = −1.21m.

10.10.2 Playing with ρ

By means of (10.97) it is fairly easy to locate the nodes of bounce and pitch modes,
in a vehicle with damping proportional to stiffness. Assuming a1 + a2 = 2.6m and
χ = a2/(a1 + a2) = 0.5, find d1 and d2 in the following cases:

1. η = 0.95, ρ = 0.95;
2. η = 0.95, ρ = 0.9;
3. η = 0.95, ρ = 0.8;
4. η = 0.95, ρ = 1;
5. η = 0.95, ρ = 1.1;
6. η = 1.1, ρ = 1.1.

Before jumping at the solution, try to figure out what the outcome can be.

Solution

To visualize and understand the results it is recommended to refer to Fig. 10.17

1. d1 = 3.06m, d2 = −0.52m;
2. d1 = 5.35m, d2 = −0.28m;
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3. d1 = 10.27m, d2 = −0.13m;
4. d1 = 1.3m, d2 = −1.3m;
5. d1 = 0.34m, d2 = −5.41m;
6. d1 = 3.29m, d2 = −0.56m.

Quite interesting the comparison between the first and the last cases.

10.11 Summary

In this chapter, the ride behavior of vehicles has been investigated. To keep the
analysis very simple, two two-degree-of-freedommodels have been formulated. The
first, called quarter car model, has been used for determining the right amount of
damping to have good comfort and/or road holding when the vehicle travels on
a bumpy road (forced oscillations). In this framework, the inerter has been also
introduced and discussed.

Free oscillations have been studied assuming the tires are perfectly rigid. The
importance of proportional damping has been highlighted. This analysis has given
indications on how to select spring stiffnesses.

Interconnected suspensions have been mentioned to show how to have a very
general stiffness matrix.

10.12 List of Some Relevant Concepts

p. 418 — the inerter is a device that provides a force proportional to the relative
acceleration between its attachment points;

p. 423 — the quarter car model is mainly used to study the vibrational behavior of a
vehicle travelling on an uneven road;

p. 426 — the inertance acts as a spring softener at high frequencies;
p. 429 — the quarter car model is a tool for the selection of the damping coefficient

of the dampers;
p. 440 — systems with proportional viscous damping have exactly the same mode

shapes as the corresponding undamped systems;
p. 443 — only vehicles with proportional viscous damping have simple bounce and

pitch modes.

10.13 Key Symbols

a1 distance of G from the front axle
a2 distance of G from the rear axle
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b inertance
c damping coefficient
C damping matrix
ci damping coefficient
copt optimal damping
f frequency (Hz)
G center of mass
h vertical displacement
H amplitude of the excitation
i imaginary unit
l wheelbase
Jy moment of inertia
k stiffness
K stiffness matrix
ki stiffness
M mass matrix
mn unsprung mass
ms sprung mass
N amplitude of the vertical load on the tire
p tire vertical stiffness
x coordinate
x eigenvector
y coordinate
Y amplitude (real)
Y amplitude (complex)
z coordinate
zb principal coordinate (bounce)
z p principal coordinate (pitch)
zs vertical coordinate of G
Z amplitude (real)
Z amplitude (complex)

α coefficient
β coefficient
γi coefficient
ζi damping ratio
η k1a1/(k2a2)
θ pitch rotation
λ eigenvalue
μ complex exponent
ρ dynamic index
ωi natural angular frequency
ωdi natural angular frequency of the damped system
Ω angular frequency of the excitation
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