
An Overview of 2D Picture Array Generating
Models Based on Membrane Computing

K. G. Subramanian, Sastha Sriram, Bosheng Song and Linqiang Pan

Abstract A variety of two-dimensional array grammar models generating picture
array languages have been introduced and investigated, utilizing and extending
the well-established notions and techniques of formal string language theory. On the
other hand the versatile computing model with a generic name of P system in the
area of membrane computing, has turned out to be a rich framework for different
kinds of problems in a variety of fields. Picture array generation in the field of two-
dimensional (2D) languages is one such area where P systems with array objects
and array rewriting, referred to as array P systems, have been fruitfully employed
in increasing the generating power of the 2D grammar models. A variety of array
P systems have been proposed in the literature. The objective of this survey is to
review and describe the salient features of the major types of array P systems, which
have served as the basis for developing other kinds of array P systems. Applications
of these array P systems are also briefly described besides indicating possible new
directions of investigation.

K. G. Subramanian
Honorary Visiting Professor (March 2017–February 2021), Department of Mathematics
and Computer Science, Faculty of Science, Liverpool Hope University,
Liverpool L16 9JD, UK
e-mail: kgsmani1948@gmail.com

S. Sriram
Department of Mathematics, KL University, Vaddeswaram, Guntur 522502,
Andhra Pradesh, India
e-mail: sriram.discrete@gmail.com

B. Song · L. Pan (B)
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, China
e-mail: lqpan@mail.hust.edu.cn

B. Song
e-mail: boshengsong@hust.edu.cn

© Springer International Publishing AG 2018
A. Adamatzky (ed.), Reversibility and Universality, Emergence, Complexity
and Computation 30, https://doi.org/10.1007/978-3-319-73216-9_16

333

334 K. G. Subramanian et al.

1 Introduction

The field of membrane computing [28, 30, 55] originated with Gh. Păun developing
a new computing model around the year 2000, inspired by the structure and function-
ing of living cells. The basic version of this new computing model, with a generic
name of P system (named in honour of the originator of this system) involves a hier-
archical arrangement of membranes, one within another but all of them within one
membrane, called the skin membrane and the membrane with no other membrane
inside, being referred to as an elementary membrane. The regions delimited by the
membranes can have objects and evolution rules. The minimal activity in a P system
involves processing at the same time, the objects in all regions of the system by a
nondeterministic and maximally parallel manner of application of the rules to the
objects, thereby allowing the objects to evolve. The objects evolved can continue
to remain in the same region or go to an adjacent region, with the communication
being specified by a target indication. A computation halts when no object in all the
regions can further evolve and the result of a computation is the number of objects
in a specified membrane. Very many modifications and variants of the basic model
of a P system have been proposed and studied but we do not enter into these details
here. Instead our interest here is in a variant known as rewriting P system, initially
introduced in [27] for the string case. The basic idea in a string rewriting P system is
to consider the objects in the regions to be finite (structured) strings over an alphabet
and the evolution rules as rewriting rules transforming a finite string in a region into
another string. When the transformed string is passed through a membrane, it is sent
as a whole in this kind of P system. There has been a number of investigations on
rewriting P systems by several researchers (see, for example, [2–4, 9, 21, 22, 31])
introducing other features.

On the other hand, motivated by problems in the framework of image analysis
and picture processing, several kinds of two-dimensional grammar models (see for
example [17, 25, 33, 34, 45, 51] and references therein) have been introduced for
picture array generation, with many of these models extending the rewriting feature
in string grammars in formal language theory [35, 36]. Utilizing the rewriting rules
in the two-dimensional grammar models, the string-rewriting P systems have been
extended to arrays, resulting in a variety of array P systems (see for example [40]).

In this survey, someof themajor types of arrayP systems are reviewed bringing out
their constructions and their picture array generative power. Applications of the array
P systems in the description of picture patterns are also indicated besides pointing
out possible directions of study in future.

2 Preliminaries

We refer to [35, 36] for notions related to formal string grammars and languages. For
picture array grammars and languages we refer to [15, 17] and for concepts relating
to P systems to [28]. We briefly recall here certain needed notions.

An Overview of 2D Picture Array Generating Models … 335

An alphabet Σ is a finite set of symbols. A word or a string α over Σ is a finite
sequence of symbols taken from Σ . The empty word with no symbols is denoted
by λ. The set of all words over Σ including λ, is denoted by Σ∗. For any word
α = a1a2 . . . an, we denote by tα the word α written vertically, so that tα = t(α).

For example, if w = abb over {a, b}, then tw is
a
b
b
.

Interpreting the two-dimensional digital plane as a set of unit squares, a picture
array in the two-dimensional plane (also called, simply as an array) over Σ , is
composed of a finite number of labelled unit squares (also called pixels), with the
labels taken from the alphabetΣ. The set of all picture arrays overΣ will be denoted
by Σ∗∗. The empty picture array is also denoted by λ and Σ++ = Σ∗∗ − {λ}. An
empty unit square in the plane is indicated by the blank symbol # /∈ Σ .

A pictorial way of representing a picture array is done by showing the labels of
the non-blank unit squares that constitute the picture array. For example, a picture
array representing the digitized Chinese character “center” [52, p. 228] is shown in
Fig. 1. Sometimes, if needed, the blank symbol is shown in some empty square but in
general, we assume that the empty unit square in the plane contains this symbol even
if the blank symbol is not shown. A picture array can be given in a formal manner by
listing the coordinates of the non-blank unit squares of the picture array along with
the corresponding labels of the unit squares. Note that a translation of the picture
array in the two-dimensional plane changes only the coordinates of the unit squares
of a picture array and hence only relative positions of the symbols in the non-blank
unit squares are essential for describing a picture array. For example, for the picture
array in Fig. 1, taking the origin (0, 0) at the lowermost non-blank unit square of
the leftmost vertical line of x′s, the coordinates of the non-blank unit squares of the
picture array can be specified as follows:

{((p, 0), x), ((p, 3), x) | 0 ≤ p ≤ 10} ∪ {((q, r), x) | q ∈ {0, 5, 10}, r ∈ {1, 2}}

∪{((5, s), x) | s ∈ {−1,−2,−3, 4, 5}}.

x
x

x x x x x x x x x x x
x x x
x x x
x x x x x x x x x x x

x
x
x

Fig. 1 A picture array representing the chinese character “center” in digitized form

336 K. G. Subramanian et al.

3 Array Grammars and Languages

Basically there are two types of array grammars, referred to as isometric array gram-
mars [10–12, 15, 33] and non-isometric array grammars [34]. We first describe
isometric array grammars. In an isometric array grammar, the geometric shape of an
array is preserved while an array grammar rule is used in generating an array from
another array.

3.1 Isometric Array Grammars

Analogous to the Chomsky hierarchy [35] in string grammars, there is a corre-
sponding hierarchy [15] in the isometric array grammars. Here our interest is in the
context-free type of rules which we recall now.

Definition 1 [14, 15] A context-free (CF) array grammar G = (N ,T , S,P, #),
where N and T are finite sets of symbols, respectively called nonterminals and
terminals with V = N ∪ T and N and T are disjoint. The symbol S ∈ N is the start
symbol. The set P is a finite set of array rewriting rules of the form r : α → β
where α and β are arrays over V ∪ # (# is the blank symbol) satisfying the following
conditions:

1. the arrays α and β have geometrically identical shapes;
2. exactly one square in α is labelled by a nonterminal in N while the remaining

squares contain the blank symbol # but β contains no blank symbol;
3. in rewriting α by β by the rule r : α → β, the rule should be such that its applica-

tion does not erase the non-blank symbols in α i.e a unit square with a non-blank
symbol should not get replaced by the blank symbol #;

4. the symbols of T that occur inα should be retained in their corresponding squares
in β while applying the rule;

5. the application of the rule r : α → β should preserve the connectivity of the array
in which rewriting is done.

For two arrays γ, δ over V and a rule r as above, we write γ ⇒r δ if δ can
be obtained by replacing with β, a subarray of γ identical to α. The reflexive and
transitive closure of the relation ⇒ is denoted by ⇒∗.

A CF array grammar is called regular, if the rules are of the following forms:

A # → a B, # A → B a, #
A

→ B
a

,
A
#

→ a
B

, A → B, A → a,

where A,B are nonterminals and a is a terminal.
The picture array language generated by G is

L(G) = {A | S ⇒∗ A ∈ T++}.

An Overview of 2D Picture Array Generating Models … 337

Note that the start array is indeed {((0, 0), S)} and it is understood that this square
labelled S is surrounded by #, denoting empty squares with no labels. We denote
by L(AREG) and L(ACF) respectively the families of array languages generated by
array grammars with regular and context-free array rewriting rules.

We illustrate with an example.

Example 1 Consider the context-free array grammar Gp with rules

(1) #
S

→ A
C a B

, (2) #
A

→ A
a

,

(3)B # → a B, (4) # C → C a, (5)A → a, (6)B → a, (7)C → a,

where S,A,B,C are nonterminals and a is a terminal. This grammar generates arrays
with three arms over {a}, but with the arms not necessarily of equal length where the
length equals the number of a′s in an arm. In a derivation starting with S, the rule
(1) is applied once. In other words, the first step of the derivation is as follows:

#
S

⇒ A
C a B

This can then be followed, for example, by the application of the rule (2) as many
times as needed, thus growing the vertical upper armand the growth can be terminated
with an application of the rule (5). For example, if the rule (2) is applied twice, then
the derivation takes place as follows:

#
S

⇒ A
C a B

⇒
A
a

C a B

⇒
A
a
a

C a B

⇒
a
a
a

C a B

Likewise, the horizontal right or left arm can be grownby the respective application of
the rules (3), (4). Again the growth in these arms can be terminated by the respective
application of the rules (6), (7), thus yielding an array in the form of the digitized
Math symbol of perpendicularity (Fig. 2).

It is known that analogous to the string case,CF array grammars aremore powerful
than regular array grammars in generating picture array languages.

Theorem 1 [5, 15] L(AREG) ⊂ L(ACF).

338 K. G. Subramanian et al.

a
a
a
a
a

a a a a a a a a

Fig. 2 A picture array representing the math symbol for perpendicularity in digitized form

The inclusion is straightforward from the Definition1 while the strict inclusion is
seen by observing that the picture array language in Example1 cannot be generated
by regular array grammar rules as the rewriting in a regular array grammar cannot
handle all three arms at the “junction” in the Fig. 2. In fact only two of the three arms
can be generated by regular array grammar rules due to the nature of the rules.

Remark 1 Generation of geometric figures such as rectangles and squares by array
grammars has been a problem of interest. One of the earliest studies in this direction
has been done in [50]. Although regular array grammars have the simplest kind of
rules and hence cannot have high generating power, it is interesting to note that
Yamamoto, Morita and Sugata [50] have constructed regular array grammars for
generating picture languages of rectangles and squares, utilizing the ability of the
regular array grammars in sensing the blank symbol #.

While context-free array grammar is an extension to two-dimensions of context-
free string grammar of the Chomsky hierarchy [35], contextual array grammar [16] is
an extension of the contextual string grammars [26] introduced by Marcus [24]. We
now recall the definition of a two-dimensional contextual array grammar [16]. For
our purposes of later relating this study to array P systems we consider the restriction
as in [13], with the “selector” and the “context” being connected and labelled by
only symbols from an alphabet and not the blank symbol # amounting to the case of
the selector and the context having no empty unit squares.

Definition 2 [26] A contextual array grammar (CAG) is a construct G = (V,P,A)

where V is an alphabet, A is a finite set of axioms which are two-dimensional arrays
in V++ and P is a finite set of array contextual rules of the form (α,β) where

(i) α is a function defined on Uα ⊂ Z × Z with values in V and (Uα,α) is called
the selector andUα, the selector area of the production (α,β) ; (Here Z is the
set of all integers);

(ii) β is a function defined onUβ ⊂ Z × Zwith values in V where
(
Uβ,β

)
is called

the context and Uβ , the context area of the production (α,β);
(iii) Uα and Uβ are finite and disjoint.

For arrays C1,C2 ∈ V++, and a contextual rule p : (α,β), we have a derivation,
denoted by C1 =⇒p C2, if in C1 we can find a sub-array that corresponds to the
selector (Uα,α), and if the positions corresponding to

(
Uβ,β

)
are labelled only by

the blank symbol #, so thatwe can add the context
(
Uβ,β

)
, thus obtainingC2.We then

An Overview of 2D Picture Array Generating Models … 339

a a a a a a a
a c c c c c a
a c a a a c a
a c a c a c a
a c a a a c a
a c c c c c a
a a a a a a a

Fig. 3 A 5 × 5 solid square with c in its central position

say that C2 is derivable from C1 and we write C1 =⇒G C2. We denote the reflexive
transitive closure of =⇒G by =⇒∗

G . A t-mode of derivation, denoted by =⇒t
G , is

defined for arbitrary arrays A,B ∈ V++ in the following manner: A =⇒t
G B if and

only if A =⇒∗
G B and there is no C ∈ V++ such that B =⇒G C. The picture array

language generated by a CAG G in the t-mode is defined as follows:

Lt (G) = {
B ∈ V++ | A =⇒t

G B for some A ∈ A
}
.

For a given CAG G, the t-mode (also called maximal mode) corresponds to
collecting only the arrays produced by derivations which cannot be continued at
some stage. On the other hand, in the ∗-mode of derivation, all pictures derivable from
an axiom are taken in the picture language generated. We consider here mainly the
t-mode of derivation. The family of picture languages generated by contextual array
grammars of the form G = (V,P,A) in the t-mode will be denoted by L (cont, t).

We give an example illustrating the working of a contextual array grammar in
t-mode, which generates an array language L consisting of picture arrays of solid
squares of odd side length 4n − 1, n ≥ 1, in the form as shown in Fig. 3 for n = 2,
with the central square labelled c, surrounded by a single “layer” of a′s followed by
a single “layer” of c′s and again followed by a single “layer” of a′s.

Example 2 LetG = ({a, c} ,P,A) be a contextual array grammar with A containing
two axiom picture arrays A1,A2, which are given in pictorial form.

A1 :=
a a a
a c a
a a a

, A2 :=
c
a a a
a c a
a a a

Since the selector area Uα and the context area Uβ are disjoint in a contextual array
production, the rules can be represented by patterns where the unit squares and
symbols of the selector are indicated by enclosing these in boxes. The rules are
defined as follows:

340 K. G. Subramanian et al.

p1 := c c
a a a

, p2 := c c c
a a c

, p3 :=
a c
a c
a

, p4 :=
a c
a c
c c

,

p5 := a a a
c c

, p6 := c a a
c c c

, p7 :=
a

c a
c a

, p′
7 :=

c
c a
c a

, p8 :=
a
c c
c a

,

r1 := a a
c c c

, r2 := a a a
c c a

, r3 :=
c a
c a
c

, r4 :=
c a
c a
a a

, , r5 := c c c
a a

r6 := a c c
a a a

, r7 :=
c

a c
a c

, r′7 :=
a

a c
a c

, r8 :=
c
a a
a c

, r9 := a a
a c

.

A maximal (that is, t-mode) derivation in G generating a 7 × 7 picture array of the
language L1 is shown below:

c
a a a
a c a
a a a

=⇒p1

c c
a a a
a c a
a a a

=⇒p2

c c c c
a a a c
a c a
a a a

=⇒p3

c c c c
a a a c
a c a c
a a a

=⇒p4

c c c c
a a a c
a c a c
a a a c

c c

=⇒p5

c c c c
a a a c
a c a c
a a a c
c c c

=⇒p6

c c c c
a a a c
a c a c

c a a a c
c c c c c

=⇒p7

c c c c
a a a c

c a c a c
c a a a c
c c c c c

=⇒p′
7

c c c c
c a a a c
c a c a c
c a a a c
c c c c c

=⇒p8

a
c c c c c
c a a a c
c a c a c
c a a a c
c c c c c

=⇒r1

a a
c c c c c
c a a a c
c a c a c
c a a a c
c c c c c

=⇒r1

a a a
c c c c c
c a a a c
c a c a c
c a a a c
c c c c c

=⇒r2

a a a a a a
c c c c c a
c a a a c
c a c a c
c a a a c
c c c c c

=⇒r3

a a a a a a
c c c c c a
c a a a c a
c a c a c
c a a a c
c c c c c

The derivation proceeds in this way due to the t-mode of derivation and halts when
no rule is applicable. The resulting array is collected in the picture language of the
CAG.

3.2 Non-isometric Array Grammars

We review here a basic non-isometric array grammar model introduced in [37] and
extensively studied by different researchers and another comparatively recent model,

An Overview of 2D Picture Array Generating Models … 341

which has been introduced in [41] and investigated in [1]. In thesemodels, the picture
arrays considered are rectangular arrays with the symbols defining a picture array
being arranged in rows and columns. We first recall the two-dimensional grammar
model (originally named as 2D matrix grammar [37]), which we call here as two-
dimensional context-free grammar (2CFG), consistent with the terminology used
in [17].

Definition 3 [17]A two-dimensional context-free grammar (2CFG) isG = (Vh, Vv,

Vi,T , S,Rh,Rv), where Vh, Vv, Vi are finite sets of symbols, respectively called as
horizontal nonterminals, vertical nonterminals and intermediate symbols; Vi ⊂ Vv;
T is a finite set of terminals; S ∈ Vh is the start symbol;Rh is a finite set of context-free
rules of the form X → α, X ∈ Vh,α ∈ (Vh ∪ Vi)

∗; Rv is a finite set of right-linear
rules of the form X → aY or X → a, X ,Y ∈ Vi, a ∈ T ∪ {λ}.

When the rules in Rh are regular grammar rules, then the 2CFG is called a two-
dimensional right-linear grammar (2RLG).

There are two phases of derivation in a 2CFG. Starting with S, the context-free
rules are applied in the first horizontal phase, generating strings over intermediates,
which act as terminals of this first phase. The intermediate symbols in a string gen-
erated in the first phase, serve as the start symbols for the second vertical phase.
The right-linear rules are applied in parallel to this string of intermediates in the
second phase for generating the columns of the rectangular arrays over terminals.
In this phase at a derivation step, either all the rules applied are of the form
X → aY , a ∈ T or all the rules are of the form X → Y or all the rules are the termi-
nating vertical rules of the form X → a, a ∈ T or all are of the form X → λ. When
the vertical generation halts, the picture array obtained over T , is collected in the pic-
ture language generated by the 2CFG. Note that the picture language generated by a
2CFG consists of rectangular arrays of symbols. We denote by L(2CFG), the family
of picture array languages generated by two-dimensional context-free grammars and
by L(2RLG), the family of picture array languages generated by two-dimensional
right-linear grammars.

We illustrate the working of 2RLG with an example.

Example 3 Weconsider the 2RLG G1 having in the first phase, the horizontal regular
rulesS → AX ,X → BY ,Y → AZ,Z → BwhereA,B are the intermediate symbols
and in the second phase the vertical right-linear rules 1 : A → aC, 2 : C → bC, 3 :
C → bD, 4 : D → a, 5 : B → aB, 6 : B → a where a, b are the terminal symbols.
Thederivation in thefirst phase is as in a string grammar.Thehorizontal rules generate
words of the form ABAnB, n ≥ 1. In the second phase every symbol in such a word
ABAnB is rewritten in parallel either by using the right-linear nonterminal rules rules
1 and 5 adding a row of the form an+3 followed by using the rules 2 or 3 and 5 adding
a row of the form babna. When the terminal rules 4 and 6 are applied in parallel, the
derivation terminates adding a row of the form an+3 thus generating a rectangular
picture array. Such a picture array for n = 3 is shown in Fig. 4. In fact, for this picture
array, the derivation in the second phase is as follows:

342 K. G. Subramanian et al.

a a a a a a
b a b b b a
b a b b b a
b a b b b a
a a a a a a

(i)

a a a a a a
a a
a a
a a

a a a a a a
(ii)

Fig. 4 i A picture array generated in Example3 ii Digitized form of symbol D

A B A A A B ⇒ a a a a a a
C B C C C B

⇒
a a a a a a
b a b b b a
C B C C C B

⇒
a a a a a a
b a b b b a
b a b b b a
C B C C C B

⇒

a a a a a a
b a b b b a
b a b b b a
b a b b b a
D B D D D B

⇒
a a a a a a
b a b b b a
b a b b b a
a a a a a a

The rules used are 1, 5 once, followed by 2, 5 two times, followed by 3, 5 once and
finally 4, 6 once. Note that, if we interpret the symbol b as the blank symbol, then
the picture array in Fig. 4a corresponds to the digitized form of the letter D over the
symbol a Fig. 4b.

An extension of the 2CFG (resp., 2RLG) which we call here as the two-
dimensional tabled context-free grammar (2TCFG) (resp., tabled right-linear gram-
mar (2TRLG)) was introduced in [39] (originally called as 2D tabledmatrix grammar
in [39]) to generate picture languages that cannot be generated by any 2CFG (resp.,
2RLG). This kind of two-dimensional grammar is defined similar to 2CFG (resp.,
2RLG) except that in the second phase, the right-linear rules are grouped into differ-
ent sets, called tables such that (i) all the rules in a table are nonterminal rules of the
form eitherA → aB only orA → B only or (ii) all are terminal rules of the form either
A → a only or A → λ only and in the parallel derivation in the vertical direction, at a
time rules in a single table are used. We denote by L(2TCFG) (resp., L(2TRLG)) the
family of picture array languages generated by two-dimensional tabled context-free
(resp., right-linear) grammars.

Another non-isometric array grammarmodelwhich is simple to handle yet expres-
sive, is pure 2D context-free grammar introduced in [41] and subsequently investi-
gated in [1]. We recall this 2D model now.

Definition 4 [41] A pure 2D context-free grammar (P2DCFG) is a 4-tuple

G = (Σ,P1,P2,M0)

where

(i) Σ is a finite set of symbols;

An Overview of 2D Picture Array Generating Models … 343

(ii) P1 = {ci | 1 ≤ i ≤ p}, where ci, called a column rule table, is a finite set of
context-free rules of the form a → α, a ∈ Σ,α ∈ Σ∗ satisfying the condition
that for any two rules a → α, b → β in ci, α and β have equal length;

(iii) P2 = {rj | 1 ≤ j ≤ q}, where rj, called a row rule table, is a finite set of rules of
the form c → tγ, c ∈ Σ, γ ∈ Σ∗ such that for any two rules c → tγ, d → tδ
in rj, γ and δ have equal length;

(iv) M0 ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

A derivation in a P2DCFG G is defined as follows: Let A,B ∈ Σ∗∗. The picture
array B is derived in G from the picture array A, denoted by A ⇒ B, if B is obtained
from A either (i) by rewriting in parallel all the symbols in a column of A, by rules
in some column rule table or (ii) rewriting in parallel all the symbols in a row of A,
by rules in some row rule table. All the rules used to rewrite a column (or a row) at
a time should belong to the same table.

The picture language generated by G is the set of picture arrays L(G) =
{M ∈ Σ∗∗ | M0 ⇒∗ M for someM0 ∈ M0}. The family of picture languages gener-
ated by P2DCFGs is denoted by L(P2DCFG).

Example 4 Consider the P2DCFG G2 = (Σ,P1,P2, {M0}) where Σ = {a, b, c, d},

P1 = {ct},P2 = {rt}, where ct = {a → bab, c → ada}, rt =
⎧
⎨

⎩
a →

b
a
b
, d →

a
c
a

⎫
⎬

⎭
,

andM0 =
b a b
a c a
b a b

. It can be seen that starting with the axiom array, the column table

ct alone is applicable,which can be followed by an application of the row table rt
only, giving a derivation as shown below:

b a b
a c a
b a b

⇒
b b a b b
a a d a a
b b a b b

⇒

b b a b b
b b a b b
a a c a a
b b a b b
b b a b b

Remark 2 It has been shown in [41] that the family L(P2DCFG) is incomparable
with the family L(2CFG) (Definition3) but is not disjoint with it.

4 P Systems for Picture Arrays

We now review the array P system models that have been proposed for handling
picture array languages. In recent years, construction of rewriting P systems for the
generation of two-dimensional picture languages has received more attention (see,
for example, [40]). We consider here mainly the array-rewriting P systems that are
based on the array grammar models reviewed in Sect. 3.

344 K. G. Subramanian et al.

4.1 Array-Rewriting P System

The array P system introduced in [5] linked the two areas of membrane computing
and picture grammars and is one of the earliest models in this direction, which has
stimulated further research in the area of array P systems.We now review this system.

Definition 5 [5] An array-rewriting P system of degree m ≥ 1 is a construct

Π = (V,T , #,μ,F1, . . . ,Fm,R1, . . . ,Rm, io),

where

(i) V is an alphabet;
(ii) T ⊆ V is the terminal alphabet;
(iii) # /∈ V is the blank symbol;
(iv) μ is a membrane structure with m membranes labelled in a one-to-one corre-

spondence with 1, 2, . . . ,m;
(v) Fi, 1 ≤ i ≤ m is a finite set of axiom arrays over V in the region i, 1 ≤ i ≤ m;
(vi) Ri, 1 ≤ i ≤ m is a finite set of context-free array rewriting rules over V in the

region i, 1 ≤ i ≤ m with the rules having attached targets here, out, in; and
(vii) io is the label of an elementary membrane of μ, called the output membrane.

Here we consider array-rewriting P systems with context-free (CF) or regular
(REG) array-rewriting rules.

A computation in an array-rewriting P system is defined analogous to the compu-
tation in a string rewriting P system [27]. But halting computations are considered
as successful computations. Each array in every region of the system, that can be
rewritten by a rule in that region, should be rewritten and the rewriting is sequential
at the level of arrays in the sense that only one rule is applied to an array. The target
associated with the rule used in rewriting an array decides to which region (imme-
diately inner or immediately outer or the same region) the generated array is sent
and these are indicated by the targets in, out, here. In fact here means that the array
remains in the same region, outmeans that the array exits the current membrane (but
if the rewriting was done in the skin membrane, then it exits the system and is “lost”
in the environment) and in means that the array is immediately sent to one of the
directly lower membranes, nondeterministically chosen if several there exist and if
no internal membrane exists, then a rule with the target indication in cannot be used.
A computation is successful only if it stops in the sense that no rule can be applied to
the existing arrays in any of the regions. The result of an halting computation consists
of the picture arrays composed only of symbols from T collected in the membrane
with label io in the halting configuration. The set of all such picture arrays generated
or computed by an array-rewriting P system Π is denoted by AL(Π).

The family of all picture array languages AL(Π) generated by such systems Π ,
with at most m membranes and with rules of type α ∈ {REG,CF} is denoted by
EAPm(α); if we have V = T (referred to as non-extended systems), we ignore the

An Overview of 2D Picture Array Generating Models … 345

condition to have at least one nonterminal unit square in the left hand side of rules
and the family of picture languages in this case is written as APm(α).

We give an example of an array-rewriting P system with regular array grammar
rules in the regions, generating a picture array language Lp consisting of picture
arrays representing the Math symbol of perpendicularity as in Fig. 2 but with all
three “arms” of equal length, i.e., the number of symbols a in the middle vertical
line equals the number of symbols in the horizontal bottom line in the portion to the
right or to the left counting from the symbol in the “junction”.

Example 5 Consider the array-rewriting P system

Πp = ({A,B,B′,C,D, a}, {a}, #, [1[2[3]3]2]1,F1,∅,∅,R1,R2,R3, 3),

where F1 =
{

A
C a B

}
,

R1 = { #
A

→ A
a

(in)},R2 = {B # → a B′(in), B′ → B(out)},

R3 = {# C → C a(out), # C → D a,A → a,B′ → a,D → a}.

In a computation in Πp, only region 1 has an axiom array

{
A

C a B

}
and so an

application of the rewriting rule in region 1, to this array grows the middle column
vertically up by one symbol a and the generated array is sent to region 2 due to
the target indication in. In region 2, an application of the rule for B in this region,
grows the bottommost horizontal arm to the right by one symbol and the array is
sent to region 3. An application of the rule # C → C a(out), grows the bottommost
horizontal arm by one symbol to the left and the array is sent back to region 2
where the primed symbol B′ is changed into B after which the array is sent back to
region 1. The process can be repeated. If in region 3, the rule applied is C → D a,
then the array remains in the same region so that the application of the terminal rules
A → a,B′ → a,D → a generates a picture array over a in the output region 3. The
picture array is then collected in the language of the system. Note that in region 3, if
A,B′ are changed into a prior to an application of a rule for C and the nonterminal
rule # C → C a(out), is applied, then the array is sent to region 2 and remains stuck
there. Note also that the lengths of the vertical arm, the left horizontal arm and the
right horizontal arm of the picture array generated are of equal length.

In [5], the generative power of the array-rewriting P system is investigated in
a very general sense. Since we are concerned here with array-rewriting P system
mainly with CF or regular array grammar rules, we state a result on the generative
power of the array-rewriting P systemwith only regular array grammar (Definition1)
rules in order to show the power of such array-rewriting P systems.

Theorem 2 [5] EAP3(REG) − ACF
= ∅.

346 K. G. Subramanian et al.

The picture array language in Example5 is in EAP3(REG) but it can be seen
that this language Lp cannot be generated by any context-free array grammar as in
Definition1 in view of the fact that the growth in the arms of the picture arrays of
the language Lp can take place independently on using context-free array grammar
rules and cannot be controlled.

Remark 3 Recently, in [29], rewriting in parallel mode was employed on the arrays
in the regions of the array-rewriting P system (Definition5) and the constructions
in [42] were improved in [29] resulting in a reduction in the number of membranes
used.

4.2 Contextual Array P System

We now review an array P system which is based on contextual array grammar kind
of rules and the method of application of the rules as described in Definition2.

Definition 6 [13] A contextual array P systemwithm ≥ 1membranes is a construct

Π = (V, #,μ,A1, . . . ,Am,P1, . . . ,Pm, io),

where

(i) V is an alphabet;
(ii) # /∈ V is the blank symbol;
(iii) μ is a membrane structure with m membranes labelled in a one-to-one corre-

spondence with 1, 2, . . . ,m;
(iv) Ai, 1 ≤ i ≤ m is a finite set of axiom arrays over V in the region i, 1 ≤ i ≤ m;
(v) Pi, 1 ≤ i ≤ m is a finite set of array contextual rules over V as in Definition2;

the rules have attached targets here, out, inj, 1 ≤ j ≤ m or in and
(vi) io is the label of an elementary membrane of μ, called the output membrane.

A computation in a contextual array P system is done analogous to the array-
rewriting P system (Definition5) again with the halting computations defined as
successful computations. For each array A in each region of the system, if an array
contextual rule p in the region, nondeterministically chosen can be applied toA, then
it should be applied and the application of a rule is sequential at the level of arrays.
The resulting array, if any, is sent to the region indicated by the target associated
with the rule used interpreting the attached target here, in, out in the usual manner as
described in Definition5. Also, inj is a target indication which means that the array
is immediately sent to the directly lower membrane with label j. A computation is
successful only if it stops such that a configuration is reached where no rule can be
applied to the existing arrays. The result of a halting computation consists of the
arrays collected in the membrane with label io in the halting configuration. The set
of all such arrays computed or generated by a system Π is denoted by CAL(Π).

An Overview of 2D Picture Array Generating Models … 347

b
a
a
a
a a a a a

Fig. 5 A picture array describing the digitized shape L

The family of all picture array languages CAL(Π) generated by systems Π as men-
tioned above, with at most m membranes, is denoted by APm(cont).

Example 6 [13] Let Ll be a picture language consisting of arrays describing the
digitized shape of the letter L with each square labelled by a except for the one in
the uppermost position of the vertical arm which is labelled by b and both the arms
having equal length i.e. equal number (at least three) of unit squares. A member of
Ll is shown in Fig. 5. A contextual array P systemΠl with 2 membranes can generate
Ll and is given by Πl = ({a, b}, #,μ,A1,A2,P1,P2, 2) where μ = [1 [2]2]1 and
A1 := { a

a a }, A2 := ∅. The rules are as follows:

P1 := {p1} := {(
a a a, in

)}
,

P2 := {
p2,1, p2,2

} :=
⎧
⎨

⎩

⎛

⎝
a
a
a

, out

⎞

⎠ ,

⎛

⎝
b
a
a

, here

⎞

⎠

⎫
⎬

⎭
.

Starting from the axiom array a
a a in membrane 1, the rule p1 is applied adjoining the

context a to the selector aa and then the resulting array a
a a a is sent to membrane

2 due to the target indication in attached to p1. Note that there is no initial array in
membrane 2. If the rule p2,1 is applied in membrane 2, then the context a will be
adjoined resulting in the array

a
a
a a a

which is sent back to membrane 1, due to the

target indication out in rule p2,1. The rule p1 in membrane 1, can now be applied
and the resulting array is sent again to membrane 2. The process can be repeated. If
rule p2,2 is applied in membrane 2, then the uppermost square is “filled” with b and
the picture remains in membrane 2 due to the target indication here. Note that the
number of symbols in both the horizontal and vertical arms of the resulting L shaped
picture will be the same so that the arms are of equal length (of at least three). Hence,
only arrays from Ll can be produced and all arrays of Ll can be produced in this way.

We now state comparison results established in [13] for small number of mem-
branes in contextual array P systems.

Theorem 3 L (cont, t) ⊂ AP2(cont) where L (cont, t) is defined in Definition2.

Theorem 4 AP2(cont) ⊂ AP3(cont).

348 K. G. Subramanian et al.

An interesting result established in [13] is now stated which shows the existence
of a proper infinite hierarchy with respect to the classes of languages described by
contextual array P systems.

Theorem 5 For every k ≥ 1, APk(cont) ⊂ AP3k(cont).

5 Sequential/Parallel Array P Systems

Here we recall array P systems, called sequential / parallel array P systems [46],
having the objects in the membranes as rectangular arrays and the rules as 2CFG or
2RLG type of rules as described in Definition3.

Definition 7 [46] A sequential / parallel array P system of degree m ≥ 1 is a con-
struct π = (V1 ∪ V2, I ,T ,μ,F1, · · · ,FM ,R1, · · · ,RM , i0) where

(i) V = V1 ∪ V2 is an alphabet,V1 − I is the set of horizontal nonterminals, I ⊆ V1

is the set of intermediates, V2 − T is the set of vertical non-terminals, T ⊆ V2

is the set of terminals, V2 − T includes the elements of I ;
(ii) μ is a membrane structure with m membranes labeled in a one-to-one manner

with 1, 2, · · · ,m;
(iii) F1, · · · ,Fm are finite sets (can be empty) of axiom strings in the regions of μ

where horizontal rules are present; the regions where vertical rules are present,
are initially empty;

(iv) R1, · · · ,Rm are finite sets of rules as in Definition3 associated with the m
regions of μ; the rules can be either context free rules (called horizontal rules)
of the form A → α, A ∈ V1 − I , α ∈ V ∗

1 or sets of right-linear nonterminal
rules (called vertical nonterminal rules) of the form X → aY ,X ,Y ∈ V2 − T ,

a ∈ T ∪ {λ} or sets of right-linear terminal rules (called vertical terminal rules)
of the formX → a, X ∈ V2 − T , a ∈ T ∪ {λ}. ThehorizontalCF rules canbe,
in particular, regular rules of the form A → aB, A → a, A ∈ V1 − I , w ∈ I∗.
Horizontal rules and sets of vertical rules have attached targets, here, out, in
(in general, here is omitted). A membrane has either horizontal rules or sets of
vertical rules; horizontal rules are applied in a sequential manner; the vertical
rules in a parallel manner in the vertical direction as in a 2CFG grammar;

(v) Finally, io is the label of an elementary membrane of μ which is the output
membrane.

A computation in a sequential / parallel array P system is similar to a string
rewriting P system; the successful computations are the halting ones; each object
(either a string or a rectangular array), from each region of the system, which can
be rewritten by suitable rules (a horizontal rule or a set of vertical rules) associated
with that region, should be rewritten; The target (here, in, out) associated with the
horizontal rule or the set of vertical rules, have the usual meaning as in other rewriting
P systems (described earlier). A computation is successful only if it stops by reaching

An Overview of 2D Picture Array Generating Models … 349

a configuration where no rule can be applied to the existing arrays. The result of a
halting computation consists of the rectangular arrays composed only of symbols
from T placed in the membrane with label io in the halting configuration.

The set of all such arrays computed or generated by the system π is denoted
by RAL(π). The family of all array languages RAL(π) generated by systems π as
above, with at most m membranes, with horizontal rules of type α ∈ {REG,CF} is
denoted by S/PAPm(α) where REG, CF stand respectively for regular or context-
free type of rules.

Example 7 Consider the sequential / parallel array P system in the class S/PAP4

(REG)

Π = (V1 ∪ V2, I ,T , [4[3[2[1]1]2]3]4, S1BS2,∅,∅,∅,R1,R2,R3,R4, 4).
V1 = {S1, S2,A,B}, V2 = {A,B,C, a, b}, I = {A,B},T = {a, b}
R1 = {S1 → AS1(in), S1 → A(in)} R2 = {S2 → AS2(out), S2 → A(in)},
R3 =

{{
A → a

C
,B → a

B
,C → b

C

}
, {C → b,B → a}

}
, R4 = ∅.

Region 1 has the initial axiom word S1BS2. There are no objects initially in
the other regions. Starting with S1BS2 an application of the rule S1 → AS1 gener-
ates the word AS1BS2 which is sent to region 2 where an application of the rule
S2 → AS2 sends the string AS1BAS2 generated back to region 1. When the termi-
nating rule S1 → A is applied in region 1, the string AABAS2 generated is sent to
region 2 where an application of the rule S2 → A generates AABAA and sends it
to region 3. An improper application of the rules in regions 1 and 2 will make the
string get stuck in one of the regions. In general, the string sent to region 3 is of
the form AnBAn. In region 3, application in parallel of the vertical rules in the table{
A → a

C
,B → a

B
,C → b

C

}
allows growth in the vertical direction with an array

generated being of the form
an a an

bn a bn

· · ·
· · ·

bn a bn

Cn B Cn

.

Application of the rules of the table {C → b,B → a} in parallel terminates the
derivation, yielding arrays, one member of which is shown in Fig. 6. The picture
language generated by Π consists of rectangular arrays describing the letter T with
equal “horizontal arms” over a (Fig. 6) to the left and right of the middle vertical
arm, interpreting b as blank.

Now the generative power of the sequential/parallel array P systems is given in
the following Theorem6.

350 K. G. Subramanian et al.

a a a a a a a
b b b a b b b
b b b a b b b
b b b a b b b
b b b a b b b

(a)
a a a a a a a

a
a
a
a

(b)

Fig. 6 a A 5 × 7 array representing Letter T over a with equal “horizontal arms” b Digitized form
of Letter T

Theorem 6 (i) S/PRAP3(REG) ⊃ L(2RLG);

(ii) S/PRAP3(CF) ⊃ L(2CFG);

(iii) S/PRAP4(REG) ⊂ S/PRAP4(CF).

5.1 Pure 2D Context-Free Grammar Based P System

Wenow recall an array P system that involves rules of pure 2D context-free grammars
as in Definition3.

Definition 8 [44] An array-rewriting P system (of degree m ≥ 1) with pure 2D
context-free rules is a construct

Π = (V,μ,F1, . . . ,Fm,R1, . . . ,Rm, io),

where V is an alphabet, μ is a membrane structure with m membranes labelled in a
one-to-one waywith 1, 2, . . . ,m;Fi is a finite set of rectangular arrays over V associ-
ated with the region i, 1 ≤ i ≤ m, ofμ;Ri is a finite set of column tables or row tables
of context-free rules over V (as in a P2DCFG) associated with region i, 1 ≤ i ≤ m,
of μ; the tables have attached targets here,out, in (in general, here is omitted),
finally, io is the label of an elementarymembrane ofμ, which is the outputmembrane.

A computation in Π is defined in the same way as in an array-rewriting P system
with the successful computations being the halting ones: each rectangular array in
each region of the system,which can be rewritten by a column/row table of rules (with
the rewriting as in a P2DCFG) associated with that region, should be rewritten; this
means that one table of rules is applied; the array obtained by rewriting is placed in the
region indicated by the target associatedwith the table used (heremeans that the array
remains in the same region, outmeans that the array exits the current membrane; and
in means that the array is immediately sent to one of the directly lower membranes,
nondeterministically chosen if several exist there; if no internalmembrane exists, then
a table with the target indication in cannot be used). A computation is successful only
if it stops, a configuration is reached where no table of rules can be applied to the

An Overview of 2D Picture Array Generating Models … 351

existing arrays. The result of a halting computation consists of rectangular arrays
over V placed in the membrane with label io in the halting configuration.

The set of all such arrays computed or generated by a system Π is denoted
by AL(Π). The family of all array languages AL(Π) generated by systems Π as
above, with at most m membranes, is denoted by APm(P2DCFG).

We illustrate with an example.

Example 8 [44] Let

Π1 = (V,μ,F1,F2,F3,F4,R1,R2,R3,R4, io),

whereV = {u, ut, ub, ul, u′
l, v, vt, vb, vr, v

′
r, x, y, z,w, s, s1, s2},μ = [1[2[3[4]4]3]2]1,

indicating that the system has four regions, one within another, i.e. region 1 is the
‘skin’ membrane which contains region 2, which in turn contains region 3, and which
in turn contains region 4. i0 = 4 indicates that the region 4 is the output region.

R1 = {tc1}, R2 = {tc2, tr3}, R3 = {tr1, tr2}, R4 = ∅.

The tables of rules are given by

tc1 = {ut → zutx, u → yux, ub → wubx, s1 → ss1x, s → ssx}(in),

tc2 = {vt → vtz, v → vy, vb → vbw, s2 → s2s, s → ss}(in),

tr1 =
⎧
⎨

⎩

ul
ul → y

u
,

s
s → y

s
,

s1
s1 → u

s

⎫
⎬

⎭

⋃
⎧
⎨

⎩

x
x → x

x
,

s2
s2 → v

s
,

vr
vr → y

v

⎫
⎬

⎭
(in),

tr2 = {ul → u′
l, s → s, s1 → s1, x → x, s2 → s2, vr → v′

r}(out),

tr3 = {u′
l → ul, s → s, s1 → s1, x → x, s2 → s2, v

′
r → vr}(out),

F1 = {M0},F2 = F3 = F4 = ∅, M0 =
z z ut vt z z
ul s s1 s2 s vr
w w ub vb w w.

Starting withM0 in the region 1, the rules of the column table tc1 are applied and
the array is sent to region 2 wherein the rules of the column table tc2 are applied and
the array is again sent to region 3. If in region 3, the rules of the row table tr1 are
applied, then the array is sent to region 4 wherein it remains and gets collected in the
language generated. On the other hand, if in region 3, the rules of the row table tr2
are applied changing ul into u′

l and vr into v′
r , then the array is sent back to region 2

wherein the symbols u′
l and v′

r are respectively changed back into vl and vr and the
array is sent to region 1. The process then repeats. An array M generated by Π1 is
shown in Fig. 7.

352 K. G. Subramanian et al.

M =

z z z z z ut x x x vt z z z z z
ul s s s s s1 x x x s2 s s s s vr
y y y y y u x x x v y y y y y
u s s s s s x x x s s s s s v
y y y y y u x x x v y y y y y
u s s s s s x x x s s s s s v
w w w w w ub x x x vb w w w w w

Fig. 7 An array M generated by Π1

Results on comparison of generative power of array-rewriting P systems based
on Pure 2D context-free grammars have been established in [44]. We state some of
these here (Theorem 7).

Theorem 7 [44] (i) L(P2DCFG) = AP1(P2DCFG);
(ii) L(P2DCFG) ⊂ AP2(P2DCFG);
(iii) L(2RLG) ⊂ L(T2RLG) ⊆ AP2(P2DCFG);
(iv) L(2CFG) ⊂ L(T2CFG) ⊆ AP2(P2DCFG);
(v) AP2(P2DCFG) \ L(T2CFG)
= ∅.

6 Application to Picture Pattern Generation

Interesting classes of picture patterns can be generated using the array P systems.We
illustrate by considering one of the systems discussed in the earlier sections, namely
the array-rewriting P system based on P2DCFG type of rules. In the arrays gener-
ated by the array-rewriting P system with P2DCFG type of rules in the Example8,
we use a well-known technique of replacing the letter symbols in the generated
picture arrays by ‘primitive patterns’ (Fig. 8). Each symbol of a rectangular array
M over an alphabet Σ is considered to occupy a unit square in the rectangular
grid so that a row of symbols or a column of symbols in the array respectively
occupies a horizontal or a vertical sequence of adjacent unit squares. A mapping i,
called an interpretation, from the alphabet Σ = {a1, a2, . . . , an} to a set of primi-
tive picture patterns {p1, p2, . . . pm} is defined such that for 1 ≤ i ≤ n, i(ai) = pj, for
some 1 ≤ j ≤ m. Then i(M) is obtained by replacing every symbol a ∈ M by the
corresponding picture pattern i(a). In the Example8, the interpretation i is given
by i(ul) = i(ut) = i(ub) = i(u) = u, i(z) = z, i(x) = x, i(s1) = i(s2) = i(s) = s,
i(vr) = i(vt) = i(vb) = i(v) = v, i(w) = w, i(y) = y. The interpretation i applied
to the array M gives a pattern commonly called a “kolam” pattern [38] (or a floor
design) as in Fig. 9. The primitive kolam patterns are shown in Fig. 8.

An Overview of 2D Picture Array Generating Models … 353

Fig. 8 Primitive patterns of a “floor design”: x, y are called pupil, u, v fan, s diamond and z,w drop

Fig. 9 A “floor design” based on a “kolam” pattern

7 Conclusion and Discussion

We have reviewed here certain main types of array-rewriting P systems, with array
objects and with two of these systems based on isometric type of array grammar
rules and another two based on non-isometric type of array generating grammar
rules. We have indicated an application of one of these systems in the description of
floor-designs, commonly called “kolam” patterns [38].

Based on and following the types of array generating P systems reviewed here,
several other kinds of array P systems have been proposed in the literature (see, for
example, [6, 8, 18, 19, 43, 47]). The interesting application problem of generation
of patterns of “floor-designs” has been considered in some of these array P systems
(see, for example [19]). On the other hand string language generating models based
on spiking neural P systems [7, 20, 53, 54, 56] have been proposed. It will be

354 K. G. Subramanian et al.

interesting to examine the possibility of picture array generation based on spiking
neural P systems, which is an intensively investigated research area in recent times.

P systems with controlled computations have been introduced and investigated in
[23]. In [32], study of the family of control languages of spiking neural P systems
in comparison with other families of string languages, is undertaken. Recently, in
[48, 49], besides considering 8-directional array P systems, control language study
is also done. It will be interesting to investigate the effect of such a control language
on the array P systems reviewed here, like the contextual array P system.

Acknowledgements The authors are grateful to Prof.AndrewAdamatzky for extending the authors
a valuable opportunity to have this paper in a volume celebrating the life-time achievements of
Prof. Kenichi Morita, a wonderful researcher with great contributions in many areas including
two-dimensional languages. The authors thank the referees for their very useful comments which
enabled them to provide a better presentation. The work was supported by National Natural Sci-
ence Foundation of China (61320106005, 61602192, and 61772214), China Postdoctoral Science
Foundation (2016M600592 and 2017T100554). The first and second authors, K.G. Subramanian
and Sastha Sriram, gratefully acknowledge the support extended to them by Prof. Linqiang Pan for
an academic visit to Huazhong University of Science and Technology, Wuhan, China fromMay 03,
2017 to June 02, 2017, where part of this research was done.

References

1. Bersani, M.M., Frigeri, A., Cherubini, A.: Expressiveness and complexity of regular pure two-
dimensional context-free languages. Int. J. Comput. Math. 90(8), 1708–1733 (2013)

2. Besozzi, D., Ferretti, C., Mauri, G., Zandron, C.: Parallel rewriting P systems with deadlock.
DNA Computing. Lecture Notes Computer Science, vol. 2568, pp. 302–314. Springer, Berlin
(2003)

3. Besozzi, D., Mauri, G., Zandron, C.: Hierarchies of parallel rewriting P systems - a survey.
New Gener. Comput. 22(4), 331–347 (2004)

4. Bottoni, P., Labella, A., Martin-Vide, C., Păun, Gh: Rewriting P systems with conditional
communication. Formal and Natural Computing. Lecture Notes in Computer Science, pp.
325–353. Springer, Berlin (2002)

5. Ceterchi, R., Mutyam, M., Pǎun, Gh, Subramanian, K.G.: Array-rewriting P systems. Nat.
Comput. 2, 229–249 (2003)

6. Ceterchi, R., Subramanian, K.G., Venkat, I.: P systems with parallel rewriting for chain code
picture languages. In: Proceeding 11th Conference on Computability in Europe (CiE), pp.
45–155 (2015)

7. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages gener-
ated by spiking neural P systems. Fundam. Inf. 75(1–4), 141–162 (2007)

8. Dersanambika, K.S., Krithivasan, K.: Contextual array P systems. Int. J. Comput. Math. 81(8),
955–969 (2004)

9. Ferretti, C., Mauri, G., Păun, Gh, Zandron, C.: On three variants of rewriting P systems. Theor.
Comput. Sci. 301, 201–215 (2003)

10. Fernau,H., Freund, R ., Holzer,M.: The generative power of d-dimensional #-context-free array
grammars. In: Proceedings Intenational Colloquium Universal Machines and Computations,
MCU’98, Vol. II, pp. 43–56 (1998)

11. Fernau, H., Freund, R., Holzer, M.: Regulated array grammars of finite index. Part I: theoret-
ical investigations. Grammatical Models of Multi-Agent Systems, pp. 157–181. Gordon and
Breach, Reading (1999)

An Overview of 2D Picture Array Generating Models … 355

12. Fernau, H., Freund, R., Holzer, M.: Regulated array grammars of finite index. Part II: syntactic
pattern recognition. Grammatical Models of Multi-Agent Systems, pp. 284–296. Gordon and
Breach, Reading (1999)

13. Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Contextual array
grammars and array P systems. Ann. Math. Artif. Intell. 75(1–2), 5–26 (2015)

14. Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun, Gh (ed.) Math-
ematical Aspects of Natural and Formal Languages, pp. 97–137. World Scientific Publishing,
Singapore (1994)

15. Freund, R.: Array grammars. Technical Rep. 15/00, Research Group onMathematical Linguis-
tics, Rovira i Virgili University, Tarragona, 164 pages (2000)

16. Freund, R., Păun, Gh, Rozenberg, G.: Contextual array grammars. In: Subramanian, K.G.,
et al. (eds.) Formal Models, Languages and Applications. Series in Machine Perception and
Artificial Intelligence, vol. 66, pp. 112–136. World Scientific, Signapore (2007)

17. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, G.
(eds.) Handbook of Formal Languages, pp. 215–267. Springer, Berlin (1997)

18. Isawasan, P., Muniyandi, R.C., Venkat, I., Subramanian, K.G.: Array-rewriting P systems with
basic puzzle grammar rules and permitting features. International Conference on Membrane
Computing. Lecture Notes in Computer Science, vol. 10105, pp. 272–285. Springer, Berlin
(2017)

19. Isawasan, P., Venkat, I., Muniyandi, R.C., Subramanian, K.G.: A membrane computing model
for generation of picture arrays. Advances in Visual Informatics. Lecture Notes in Computer
Science, pp. 155–165. Springer, Berlin (2015)

20. Jiang, K., Chen, W., Zhang, Y., Pan, L.: On string languages generated by sequential spiking
neural P systems based on the number of spikes. Nat. Comput. 15(1), 87–96 (2016)

21. Krishna, S.N., Rama, R.: On the power of P systems based on sequential/parallel rewriting.
Int. J. Comput. Math. 77(1–2), 1–14 (2000)

22. Krishna, S.N., Rama, R.: A note on parallel rewriting in P systems. Bull. EATCS 73, 147–151
(2001)

23. Krithivasan, K., Păun, Gh, Ramanujan, A.: On controlled P systems. Fundam. Inf. 131(3–4),
451–464 (2014)

24. Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées.
14, 1525–1534 (1969)

25. Morita, K.: Two-dimensional languages. In: Martin-Vide, C., Mitrana, V., Păun, Gh (eds.)
Formal Languages and Applications. Series in Fuzziness and Soft Computing, vol. 148, pp.
426–437. Springer, Berlin (2004)

26. Păun, Gh: Marcus contextual grammars. Studies in Linguistics and Philosophy, vol. 67.
Springer, Dordrecht (1997)

27. Pǎun, Gh: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
28. Păun, Gh: Membrane Computing: An Introduction. Springer, Berlin (2000)
29. Pan, L., Pǎun, Gh: On parallel array P systems. Automata, Universality, Computation. Emer-

gence, Complexity and Computation, vol. 12, pp. 171–181. Springer, Berlin (2015)
30. Păun, Gh, Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing.

Oxford University Press, New York (2010)
31. Pan, L., Song, B., Subramanian, K.G.: Rewriting P systems with flat-splicing rules. Proceeding

International Conference on Membrane Computing, vol. 10105, pp. 340–345. Springer, Berlin
(2016)

32. Ramanujan, A., Krithivasan, K.: Control languages associated with spiking neural P systems.
Rom. J. Inf. Sci. Technol. 15(4), 301–318 (2012)

33. Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)
34. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1(3), 229–245 (1993)
35. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin

(1997)
36. Salomaa, A.: Formal Languages. Academic Press, Reading (1973)

356 K. G. Subramanian et al.

37. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture lan-
guages. Comput. Gr. Image Process. 1, 284–307 (1972)

38. Siromoney, G., Siromoney, R., Krithivasan, K.: Array grammars and Kolam. Comput. Gr.
Image Process. 3(1), 63–82 (1974)

39. Siromoney, R., Subramanian, K.G., Rangarajan, K.: Parallel/sequential rectangular arrays with
tables. Int. J. Comput. Math. 6(2), 143–158 (1977)

40. Subramanian, K.G.: P Systems and picture languages. Machines, Computations, and Univer-
sality. Lecture Notes in Computer Science, pp. 99–109. Springer, Berlin (2007)

41. Subramanian, K.G., Ali, R.M., Geethalakshmi, M., Nagar, A.K.: Pure 2D picture grammars
and languages. Discret. Appl. Math. 157(16), 3401–3411 (2009)

42. Subramanian, K.G., Isawasan, P., Venkat, I., Pan, L.: Parallel array-rewriting P systems. Rom.
J. Inf. Sci. Technol. 17(1), 103–116 (2014)

43. Subramanian, K.G., Isawasan, P., Venkat, I., Pan, L., Nagar, A.K.: Array P systems with per-
mitting features. J. Comput. Sci. 5(2), 243–250 (2014)

44. Subramanian, K.G., Pan, L., Lee, S.K., Nagar, A.K.: A P system model with pure context-free
rules for picture array generation. Math. Comput. Model. 52, 1901–1909 (2010)

45. Subramanian,K.G., Rangarajan,K.,Mukund,M. (eds.): FormalModels, Languages andAppli-
cations. Series in Machine Perception and Artificial Intelligence, vol. 66. World Scientific,
Singapore (2007)

46. Subramanian, K.G., Saravanan, R., Robinson, T.: P system for array generation and application
to kolam patterns. Forma 22, 47–54 (2007)

47. Subramanian, K.G., Saravanan, R., Geethalakshmi, M., Helen Chandra, P., Margenstern, M.:
P systems with array objects and array rewriting rules. Prog. Nat. Sci. 17(4), 479–485 (2007)

48. Sureshkumar, W., Rama, R.: Chomsky hierarchy control on isotonic array P systems. Int. J.
Pattern Recogit. Artif. Intell. 30(2), 1–20 (2016)

49. Sureshkumar,W., Rama, R., Krishna, S.N.: 8-directional array P systems: power and hierarchy.
In:Gheorghe,M., et al. (eds.)MultidisciplinaryCreativity, pp. 150–169. SpanduginoPublishing
House, Bucharest (2015)

50. Yamamoto, Y., Morita, K., Sugata, K.: Context-sensitivity of two-dimensional regular array
grammars. Array Grammars, Patterns and Recognizers. WSP Series in Computer Science, vol.
18, pp. 17–41. World Scientific, Singapore (1989)

51. Wang, P.S.P. (ed.): Array Grammars Patterns and Recognizers. World Scientific, Singapore
(1989)

52. Wang, P.S.P.: A Formal Parallel Model for Three-Dimensional Object Pattern Representation.
In: Chen, C.H., et al. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 211–
231. World Scientific, Singapore (2010)

53. Wu, T., Zhang, Z., Pan, L.: On languages generated by cell-like spiking neural P systems. IEEE
Trans. NanoBiosci. 15(5), 455–467 (2016)

54. Zeng, X., Xu, L., Liu, X., Pan, L.: On languages generated by spiking neural P systems with
weights. Inf. Sci. 278, 423–433 (2014)

55. Zhang, G., Pan, L.: A survey of membrane computing as a new branch of natural computing.
Chin. J. Comput. 33(2), 208–214 (2010)

56. Zhang, X., Zeng, X., Pan, L.: On string languages generated by spiking neural P systems with
exhaustive use of rules. Nat. Comput. 7(4), 535–549 (2008)

	An Overview of 2D Picture Array Generating Models Based on Membrane Computing
	1 Introduction
	2 Preliminaries
	3 Array Grammars and Languages
	3.1 Isometric Array Grammars
	3.2 Non-isometric Array Grammars

	4 P Systems for Picture Arrays
	4.1 Array-Rewriting P System
	4.2 Contextual Array P System

	5 Sequential/Parallel Array P Systems
	5.1 Pure 2D Context-Free Grammar Based P System

	6 Application to Picture Pattern Generation
	7 Conclusion and Discussion
	References

