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Abstract Planar shock reflection from straight wedges and wedges with small con-

cave tips is considered. It is demonstrated that, in shock tube experiments for a certain

wedge angle and incident shock Mach number, the resulting reflection is of irregu-

lar type in the presence of a small concave tip with an arc radius as small as 4 mm

while a straight wedge with the same wedge angle produces a regular reflection. In

the numerical experiments, corner signal tracking is used to demonstrate that in the

case of a concave tip wedge the corner signal is always merged with the Mach stem

and never detaches. It is concluded that for the prediction of the Mach-to-regular

reflection transition angle for wedges with concave tips, it is essential to predict as

accurately as possible the strength of the Mach stem. An initial development of an

analytical method to predict the transition angle is then provided.

1 Introduction

The present paper continues previous studies on unsteady shock wave reflections

from wedges with straight and concave tips [1, 2]. Lau-Chapdelaine and Radulescu

[2] numerically demonstrated that the resulting reflection pattern (regular or Mach

reflection) established far away from the wedge tip may differ depending on whether

the reflecting wedge has a straight or concave tip. Parametric studies by Alzamora

Previtali et al. [1] showed that the effect is observed for shock Mach numbers cor-

responding to the dual solution domain (where both Mach and regular reflection are
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physically admissible) and wedge angles ranging from the transition angle predicted

by the sonic criterion to a value slightly lower than predicted by von Neumann’s

criterion, i.e., within the most part of the dual solution domain. The first experimen-

tal demonstration of the effect for a concave tip wedge with the radius of curvature

R = 12 mm and a straight wedge with the same angle (52
◦
) is also provided in [1].

It is obviously of interest to investigate whether or not even smaller, minute, radii

of curvature would also alter the resulting reflection pattern as compared to the one

observed with a straight wedge of the same angle. As a step in this direction, Sect. 2 of

the present paper presents experimental results obtained with the radius of curvature

R as small as 4 mm.

The subsequent Sect. 3 contains some preliminary developments aiming at an

analytical treatment to predict the Mach-to-regular reflection transition angle for

wedges with concave tips. The final section of this paper summarizes the current

findings and outlines the directions of future studies.

2 Experimental Studies

The experimental shock tube setup and diagnostics used in the present paper are sim-

ilar to the ones described in [1, 3]. As shown in Fig. 1, the experiments are conducted

in a conventional diaphragm-operated shock tube with rectangular 150 mm × 75 mm

Fig. 1 Schematic sketch of the experimental model in the test section
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cross section. The test section windows of 215 mm in diameter allow for optical

access. The wedge plate of 170 mm in length attached to the wedge base has two tips:

straight and concave. Therefore, by simply turning the plate by 180
◦
, the desired tip

is facing the incoming shock wave.

The test gas is air. Different initial pressures in the test section, ranging from 3.7

to 16 kPa, are used to obtain the desirable shock Mach numbers for given driver gas

pressure and diaphragm thickness. The tests are conducted at ambient temperature,

which is in the range of 290–293 K. The driver gas is helium. The shock Mach num-

ber is determined from time-of-arrival data obtained by means of three KISTLER

pressure transducers mounted flush with the shock tube wall ahead of and within the

test section. Each Mach number obtained from such a measurement has an uncer-

tainty of ±0.006.

High-speed video cameras (Shimadzu HPV-1 and HPV-X) are used for time-

resolved shadowgraph or schlieren visualization at frame rates of 106 (HPV-1) and

107 (HPV-X) frames per second with an exposure time of 250 ns (HPV-1) and 55 ns

(HPV-X). The spatial resolution of the cameras is 312 × 260 pixels for the HPV-1

and 400 × 250 pixels for the HPV-X. The pixels of the HPV-X are about half the

size of those of the HPV-1, which leads to an improved spatial resolution. Both

cameras have an in-situ image storage sensor (ISIS) and record 100 (HPV-1) and

128 (HPV-X) frames, respectively.

2.1 Results

The experimental results for a nominal incident shock Mach number 3, a wedge angle

of 52
◦
, and a wedge tip radius of 4 mm are shown in Figs. 2 and 3.

With the goal of improving resolution, different portions of the test model were

visualized in different experiments with correspondingly increased image magnifi-

cation. The first three images in Fig. 2a–c are from a single test giving a magnified

view near the rounded tip of the wedge while the fourth image, Fig. 2d, shows the

area near the wedge’s trailing edge in a second test (the Mach numbers for the two

experiments are essentially identical within measurement uncertainty: 3.017 ± 0.006
and 3.020 ± 0.006). Figure 3 corresponds to an experiment (shock Mach number

2.986 ± 0.006) with an even higher magnification near the concave tip. It is clear

from these images that even with such a small concave tip the resulting reflection

(Fig. 2) is and remains of irregular type.

The characteristic shape of the reflected wave corresponding to a DMR (double

Mach reflection) is not only clearly visible near the trailing edge of the wedge but

can also be traced back to very early moments, such as the right image of Fig. 3.

As shown in Fig. 4, a straight wedge of the same angle, for a close shock

Mach number of 2.872 ± 0.006, produces a regular reflection. As is typical for a
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Fig. 2 Shadowgraph movie frames for the wedge angle 𝜃w = 52◦ and the concave tip radius

R = 4 mm: a–c the shock Mach number Ms = 3.017; d Ms = 3.020. The scale on the wedge

indicates length in millimeters

Fig. 3 Shadowgraph movie frames for the wedge angle 𝜃w = 52◦, the concave tip radiusR = 4mm,

and the shock Mach number Ms = 2.986. The scale on the wedge is not visible due to the absence

of front lighting; however, the scale can be judged from the radius of wall curvature equal to 4 mm.

The experiment corresponds to the highest magnification possible with the present setup
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Fig. 4 Schlieren movie

frame for the straight wedge

with the angle of 𝜃w = 52◦,

and the shock Mach number

Ms = 2.872. The scale on the

wedge indicates length in

millimeters

regular reflection off a wedge with an angle exceeding the angle corresponding to

the sonic transition criterion, the reflected shock is initially straight and begins to

bend smoothly only when affected by the corner signal.

3 Preliminary Theoretical Analysis

The theoretical analysis suggested below is partly based on the findings from numer-

ical modeling. Therefore, in the next subsection, a brief summary of the CFD tools

used in the present study is given.

3.1 CFD Tools

The numerical results presented below are obtained with the Euler (inviscid, non-

heat-conducting) flow model. The gas is assumed to be ideal with constant specific

heats (𝛾 = 1.4). An adaptive unstructured finite-volume flow solver [4] is used. The

solver employs a node-centered, second order in space and time (for smooth solutions

and uniform grids), MUSCL-Hancock TVD finite-volume scheme [5].

To shed some light on the disturbance propagation in the flow under considera-

tion, the signal tracking technique proposed in [6] is used to study the propagation

of the corner signal front. In this technique, signals are considered as infinitesimally

weak sound waves propagating with the local speed of sound relative to the flow

and being carried by the flow itself as well. The tracking is done at the end of each

time step as a post-processing procedure. Since no actual disturbance is introduced
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to the flow, the technique is as accurate as the numerical flowfield itself. Information

about the velocity of the corner signal and its path can therefore be obtained from

numerical experiments.

3.2 Analytical Considerations

There are at least three ways to be followed if one desires to develop an analytical

treatment to predict the Mach-to-regular reflection transition angle for wedges with

concave tips. It is to be emphasized that the transition considered here is between

the resulting Mach or regular reflection established asymptotically, far away from

the concave tip. In other words, for wedges with concave tips, the initial reflection

is always of irregular type which eventually (when the incident shock has covered a

distance considerably exceeding the tip radius of curvature) either remains a Mach

reflection or, if the wedge angle exceeds a certain critical angle called “transition

angle,” turns into a regular reflection. It is the transition angle between these two

final outcomes that are of interest.

The first possible approach is to generalize the treatment suggested by Itoh et al.

[7] for the transition on a fully concave (cylindrical) surface. Their idea is to consider

the trajectory of the triple point and find its intersection with the wall surface, which

is, by definition, the transition point. Since this task appears to be intractable using

the full conservation laws (the Euler equations) without any simplifying assump-

tions, Itoh et al. [7] use the geometrical shock dynamics approach based on the CCW

(Chester–Chisnell–Whitham) theory. Along the lines proposed by Milton [8], they

derive a correction accounting for the presence of the reflected shock wave and the

tangential discontinuity for an incident shock of arbitrary strength.

The second way is to follow the ideas of Ben-Dor and Takayama [9, 10], see also

a summary in [11], for the transition on concave cylindrical surfaces. Their approach

is based on the length-scale concept and involves the consideration of corner signal

propagation behind the incident shock and the induced Mach stem. According to

this concept, the moment just before transition represents the last time the corner-

generated signal can catch up with the triple point.

Finally, another approach is advocated for concave cylindrical surfaces in the

companion paper of these Proceedings [12]. It is based on the examination of the

propagation of weak disturbances (“corner signals”) in the flow. Such an examina-

tion, carried out via numerical modeling, reveals that the speed of corner signals

(generated by the leading edge of the reflecting surface as well as by all subsequent

wall segments) always exceeds that of the foot of the Mach stem, and, therefore, the

signal fronts stay merged with the Mach stem at all times. From this point of view,

the speed of corner signals does not appear to be the deciding factor in transition. In

[12], it is shown that the prediction of the Mach stem velocity along the reflecting

surface is a key for accurate prediction of transition.
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Fig. 5 Inviscid CFD simulations of shock wave (Ms = 3.0) reflection from wedges with corner

signal tracking. The corner signal front at the displayed time moment is shown with a thin solid

line. The wedge angle is 𝜃w = 52◦ in both cases shown: a the case of a straight wedge; the corner

signal front runs along the reflected shock and then comes to the surface well behind the reflected

point, i.e., the signal is not catching up with the reflection point. This corresponds to the regular

nature of the observed shock reflection; b the case of a concave tip wedge; it is seen that the Mach

stem and the respective portion of the corner signal front coincide

In the present paper, a similar examination of corner signal propagation is con-

ducted for wedges with concave tips. Figure 5a shows an instant Mach number flow-

field (the Mach number is given in the laboratory frame of reference) generated when

a planar shock wave with shock Mach number 3.0 reflects from a straight wedge of

52◦ (the same angle as in the experiments shown in the previous section). This sim-

ulation tracks the corner signal, which is induced when the incident shock has just

reached the wedge leading edge. The instant corner signal front is shown in Fig. 5a as

a thin black line. As expected for a wedge angle exceeding the sonic angle (50.81
◦
),

the corner signal is clearly behind the reflection point. There is a straight portion

of the reflected shock, not affected by the corner signal. Figure 5b shows the instant

corner signal front for a concave tip wedge with the wedge angle of 52◦. It is seen

that the portion of the front propagating along the wedge coincides with the Mach

stem, from the wedge wall to the triple point. The analysis of the reflection process

as a whole confirms that the corner signal is always merged with the Mach stem

and never detaches. This should be expected because the flow downstream from the

Mach steam is always subsonic relatively to the Mach stem and, therefore, the corner

signal velocity V + c behind the Mach stem in the laboratory frame of reference is

greater than the velocity of the Mach stem in the same reference frame (V is the local

flow velocity, and c is the local speed of sound). Hence, the corner signal catches up
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Fig. 6 Schematics of

InMR–TRR (inverse Mach

reflection–transitioned

regular reflection) transition

on a wedge with a concave

tip, illustrating the analytical

treatment of the present

paper
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with the Mach stem at the same instant as it is generated and stays merged with it

(obviously, it cannot go ahead of the Mach stem).

From this point of view, as already mentioned above, similarly to the case of a

fully concave reflecting surface, the corner signal speed does not appear to be the

deciding factor in transition: the speed of the foot of the Mach stem will determine

when (and if) the Mach stem vanishes.

The subsequent derivations are assisted by the schematics shown in Fig. 6. The

transition takes place at the time moment ttr when the Mach stem vanishes at x = xtr
or xw = xtrw. In Fig. 6, the coordinate x is along the horizontal x-axis while the curvi-

linear coordinate xw is along the reflecting surface; the origin of both coordinates is

at the leading edge of the wedge. The incident shock moves with a constant velocity

Vs so that ttr = xtr∕Vs. The foot of the Mach stem moves with a velocity Vst
w which is

changing in time during the course of wave propagation. Therefore, the time ttr can

be also determined via integration along the reflecting surface. This would then lead

to the following general relation for the determination of the transition point:

xtr
Vs

=

xtrw

∫
0

dxw
Vst
w

(1)

The integral can be split into two parts corresponding to the circular arc of the con-

cave tip and the straight portion of the wedge:

xtr
Vs

=

xAw

∫
0

dxw
Vst
w

+

xtrw

∫
xAw

dxw
Vst
w
, (2)

where xAw (or xA) is the coordinate of the point where the circular and straight seg-

ments of the wedge meet.

It would be more convenient to operate with the wall angle 𝜃w (which is also the

polar angle of the arc, see Fig. 6) and the respective transition angle 𝜃
tr
w . Furthermore,

let us express the distance between point A and the transition point as 𝜆R where 𝜆 is

a nondimensional factor and R is the radius of the concave cylindrical portion of the
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wedge. This leads to the following relation:

R sin 𝜃trw + 𝜆R cos 𝜃trw
Vs

=

𝜃

tr
w

∫
0

Rd𝜃w
Vst
w

+

xAw+𝜆R

∫
xAw

dxw
Vst
w
. (3)

After dividing both sides by R and making a simple variable transformation, x̃w =
(xw − xAw)∕R, in the second integral, we arrive at

sin 𝜃trw + 𝜆 cos 𝜃trw
Vs

=

𝜃

tr
w

∫
0

d𝜃w
Vst
w

+
𝜆

∫
0

dx̃w
Vst
w
. (4)

It is to be noted that assuming 𝜆 = 0, i.e., considering a fully concave cylindrical

surface, without a straight wedge, Eq. (4) reduces to the relation obtained in [12] for

the concave cylindrical surface:

sin 𝜃trw
𝜃

tr
w

= Vs ×
1
𝜃

tr
w

𝜃

tr
w

∫
0

d𝜃w
Vst
w
. (5)

Numerical experiments show, see the data presented in [1], that the asymptotic

angle 𝜒 between the triple point trajectory and the wedge surface approaches zero at

transition, and therefore, it can be safely assumed that 𝜆 ≫ 1, which means that the

transition takes place far away from the wedge tip—it may be conjectured that this

happens “at infinity.” This is also consistent with the goal of obtaining the transition

angle between the resulting, asymptotic (xw → ∞) reflection patterns. By consider-

ing that 𝜆 ≫ 1, Eq. (4) can therefore be simplified to

cos 𝜃trw
Vs

= 1
𝜆

𝜆

∫
0

dx̃w
Vst
w

=
⟨

1
Vst
w

⟩
(6)

or

cos 𝜃trw = Vs ×
⟨

1
Vst
w

⟩
(7)

where ⟨ 1
Vst
w
⟩ denotes an averaged value of the inverse velocity of the Mach stem foot

along the straight portion of the wedge.

Numerical experiments indicate that the strength of the Mach stem does not vary

significantly when it propagates along the wedge away from the tip, see Fig. 7. Then,

the Mach stem velocityVst
w can be assumed to have a constant value of ⟨Vst

w ⟩, resulting

in
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Fig. 7 Mach number

history of the Mach stem on

the reflecting surface of a

wedge with a concave tip

(Ms = 3.0 and 𝜃w = 52◦).

The vertical solid line

corresponds to the point

where the concave tip and

the straight portion of the

wedge meet

cos 𝜃trw =
Vs⟨Vst
w ⟩ . (8)

The relation can be also rewritten in terms of Mach numbers as follows:

cos 𝜃trw =
Ms⟨Mst
w⟩ . (9)

Thus, to predict the transition angle, it is necessary to predict the Mach stem

strength when it propagates along the wedge. The correctness of this principle can

be verified via numerical experiments. For example, for the incident shock Mach

number Ms = 3.0 and the wedge angle 𝜃w = 59.5◦ (the value is chosen to be close

to the transition angle), numerical experiments give the value of 5.852 for ⟨Mst
w⟩ at

the end of the wedge. Then, Eq. (9) results in 𝜃

tr
w = 59.2◦, which is very close to the

transition angle value of 59.79◦ for Ms = 3.0 determined via numerical experiments

in [1]. Thus, it is to be concluded that if one succeeded in predicting the Mach stem

strength along the wedge, this would automatically lead to a correct prediction of

transition.

As demonstrated in Fig. 7, the CCW theory results in a significantly lower value

of the Mach stem Mach number as compared to the numerical prediction. It is also

seen that the use of V + c value behind the incident shock as the velocity of the

Mach stem, as in [9, 10], is completely unacceptable. The issue remains open for

investigation.
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4 Conclusions

In the shock tube experiments of the present paper, it is demonstrated that, for a

certain wedge angle and incident shock Mach number, the resulting reflection is of

irregular type in the presence of a small concave tip with the arc radius as small as 4

mm while a straight wedge with the same wedge angle produces a regular reflection.

The result is of obvious practical significance: it clearly points to the possibility,

under certain conditions, of having an unexpected reflection pattern (and pressure

and temperature values associated with it) due to corner roundings which might be

erroneously perceived as insignificant.

The present paper provides a basis for the subsequent development of an analytical

method to predict the MR–RR transition angle for wedges with concave tips. It is

shown that it is essential to predict as accurately as possible the strength of the Mach

stem. Further developments aiming at such predictions are presently under way.

Numerical simulations using the Navier–Stokes equations are also to be carried

out. The study of the influence of viscous effects is essential because in most shock

tube experiments, high Mach numbers (>2) can only be achieved at low pressures

in the test section. As a result, the Reynolds number based on the tip radius R can

be as low as 15,000 for R = 4 mm, and, therefore, viscous effects may significantly

shift the transition boundaries.
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