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Abstract The flow downstream of an axisymmetric conical shock wave, with a

downstream pointing apex, can be predicted by solving the Taylor-Maccoll equa-

tions. Previous research, however, has suggested that these theoretical flowfields are

not fully realisable in practice, and that a Mach reflection forms towards the centre-

line of the flow. This phenomenon is investigated for the case where the freestream

Mach number is 3.0 and the shock angle is 150
◦
. A range of complementary predic-

tion techniques that include the solution to the Taylor-Maccoll equations, the method

of characteristics, curved shock theory and CFD, are used to gain insight into this

flow. The case where a cylindrical centrebody is placed along the axis of symmetry

is studied for several values of centrebody radius that are expected to produce regular

reflection at the centrebody surface. An analysis of pressure gradients suggests that

the flowfield downstream of the reflected shock does not contribute to the process of

transition from regular to Mach reflection at these conditions.
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1 Introduction

Previous theoretical analyses have shown that converging, conical, incident shocks

cannot occur at a centreline of symmetry [1–5], and that Mach reflection of the con-

verging shocks should occur instead. This theoretical result is supported by numeri-

cal and physical experiments [6, 7] that have shown that a conical incident shock and

its regular shock reflection, near the axis of symmetry and, in particular, at the apex

point, do not exist. In approaching the axis, the incident, conical, shock becomes

stronger, its angle increases and a Mach reflection results; even for flows with weak

incident shocks. Similar behaviour has also been shown for non-conical shocks

[3, 4, 7]. It thus appears that the transition to, and the appearance of, Mach reflec-

tion is caused by the effects of shock and flow convergence near the centreline. This

raises the intriguing question: How far off the centreline does the regular reflection

have to be so as not to suffer the effects that force Mach reflection?

In studying shocks that converge towards the centreline, it is useful to work with

shocks that maintain a constant strength (shock angle) as they approach the axis.

Such conical shocks and flows can be produced from the solutions of the Taylor-

Maccoll (TM) equations. Integration of the TM equations produces a streamtube,

which may be viewed as a solid surface supporting the conical shock. The trailing

edge of such a streamtube ends at a conical singularity. The flow between the conical

shock, the singularity and the streamtube is called ‘M-flow’ [8] and is one of the

four possible cases of supersonic, conically symmetric, flowfields that are bounded

by a uniform flow [2]. Grozdovskii [2] identified a ‘limiting characteristic’ in the

M-flow, upstream of which the flow is controlled by the surface and is conical. The

downstream flow is therefore not controlled by the M-flow surface, which raises a

question about the nature of the flow further towards the axis. Rylov [5] showed that

centreline Mach reflection must occur since the portion of the shock downstream

of the limiting characteristic must steepen continuously as it approaches the axis.

Furthermore, it was shown that even a sharp expansion corner at the downstream end

of the M-flow surface, producing a local Prandtl–Meyer fan (ordinarily expected to

weaken the shock), cannot prevent the shock from strengthening near the centreline.

The conclusion therefore is that the flow in this region cannot be conically symmetric

and that centreline Mach reflection is unavoidable.

A number of M-flow features render its investigation challenging. Steepening of

the incident shock occurs, primarily, close to the axis of symmetry, as compared to

the entry radius of the M-flow surface. As a result, the size of the Mach disk at the

axis of symmetry may be small, especially for initially weak shocks (a spectacular

example of smallness is provided in [6]). The angle between the bounding rays of the

theoretical M-flow (i.e., between the shock and the singularity) is relatively small,

requiring high-resolution calculations to describe the incident shock angle and cur-

vature with good accuracy.

The aim of the present study is to provide detailed quantitative analysis of an

M-flow with a freestream Mach number of 3.0 and a shock angle of 150
◦
, referred

to as M3/150. To add further insight into the issue of centreline shock reflection,
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the case where a cylindrical centrebody is placed along the flowfield axis is studied

for several different values of centrebody radius. Results are then used to look for

mechanisms that may contribute to the transition to Mach reflection. In view of the

above-mentioned flow features and associated difficulties, several complementary

techniques are used, which include: (1) the solution of the TM equations, (2) curved

shock theory (CST) [9], (3) the method of characteristics (MOC) and (4) an adap-

tive unstructured inviscid time-marching finite-volume CFD code Masterix [10].

Another potentially useful tool to be considered elsewhere is a space-marching CFD

code, such as the one described in [11].

2 Approaches

2.1 Theoretical Conical Flow

The TM equations are integrated by a Runge–Kutta scheme starting from the oblique

shock conditions downstream of the conical incident shock. The solution yields

the radial and circumferential components of Mach number in the flowfield [8]. A

streamline and a C
−

characteristic are also traced as part of the calculation. The

fact that the downstream extent of M-flow is terminated by a singularity in the TM

equations means that it can never be exactly reached by numerical integration. The

singularity exists where the Mach number normal to the ray is equal to−1, and there-

fore the integration process is stopped within a tolerance of 10−5 of this value. Then,

due to the self-similarity of conical flows, the C
−

characteristic can be scaled such

that it begins at the downstream end of the M-flow surface. This defines the lim-

iting C
−

characteristic, as originally shown by Grozdovskii [2]. These features are

shown in Fig. 1. For M3/150, it is found that the limiting characteristic intersects the

shock at y∕y1 = 0.384 (where y1 is the leading edge radius), and therefore the shock

is expected to be of constant strength from the leading edge to this point and then to

strengthen towards the axis. Only the straight portion of the shock is shown in Fig. 1

as a solid red line.

2.2 Method of Characteristics

Calculations are conducted for the flow downstream of the limiting characteristic,

where the flow must be assumed to be non-conical. The characteristics method is

based on that described in [12] and is suitable for the analysis of axisymmetric rota-

tional flows. Boundary condition data is provided by the limiting C
−

characteristic

at the M-flow surface trailing edge, where the surface takes on infinite curvature

[5], indicating a corner, so that the local flow can be modelled as a Prandtl–Meyer

expansion. The M-flow shock angle of 150◦ is applied at the point where the shock
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Fig. 1 Schematic for

M3/150 M-flow

configuration

meets the limiting C
−

characteristic. Only 4.5◦ of flow turning at the expansion cor-

ner (out of ∼9◦ flow turning required to realign the local flow with the freestream

direction) is modelled. This is sufficient to take the shock close enough to the axis

and generate a large enough field for cases where the shock reflects from a centre-

body. The spacing between characteristics is defined to be 0.01◦ at the expansion

corner and 𝛥∕y1 = 0.001 along the shock. These particularly fine spacings are cho-

sen to accurately capture gradients for CST analysis, although a convergence study

has shown that the basic shock geometry is captured using much coarser spacings.

Calculations are physically limited to y∕y1 = 0.02 (where the incident shock angle

𝜃i = 134.55◦) to avoid convergence problems associated with the flow approaching

sonic conditions behind the shock.

For cases that include a cylindrical centrebody, MOC analysis of the shock reflec-

tion is possible when the reflection is of regular type with supersonic flow down-

stream from the reflected shock. Flow calculations behind the reflected shock are

driven by the centrebody geometry and the incident field. In theory, MOC can be

used to analyse the reflected field for 𝜃i > 140.66◦, which corresponds to the sonic

limit of shock reflection, and occurs at a centrebody radius of y∕y1 = 0.0387. In prac-

tice however, the downstream Mach number M3 must be slightly above sonic and a

value of y∕y1 = 0.04 (M3 = 1.047) is found to be the practical minimum centrebody

radius at which MOC solutions could be obtained. Characteristics are distributed

along the reflected shock with a spacing of 𝛥∕y1 = 0.001.

2.3 Curved Shock Theory

CST relates gradients of pressure, flow inclination and vorticity immediately

upstream and downstream of a shock to the curvature of the shock itself. This

includes shocks with curvatures in both the flow and flow-normal planes, such as

those discussed here. The main quantities of interest are: the normalised pressure
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gradient P = (𝜕p∕𝜕s)∕𝜌V2
; the streamline curvature D = 𝜕𝛿∕𝜕s; and shock curva-

tures in the flow plane Sa = 𝜕𝜃∕𝜕𝜎, and in the flow-normal plane, Sb = −cos 𝜃∕y,

where s is measured along the streamline; 𝜎 is measured along the shock; 𝛿 is the

flow inclination to the x-axis; y is the distance from the symmetry axis; 𝜃 is the angle

of shock inclination to the incoming velocity vector; V is the flow velocity along the

streamline; 𝜌 is the density; p is the pressure. In general, two unknown quantities can

be determined given all other values. Further details can be found in [9, 13].

This work applies CST in several ways. First to the incident shock, where down-

stream gradients of pressure, P2, and flow inclination, D2, are determined having

input the incident shock geometry (𝜃i, Sa,i, Sb,i) and the freestream conditions. Sec-

ond, to the point of shock reflection from a centrebody to determine the downstream

pressure gradient, P3, and the reflected shock curvature, Sa,r . In this case, CST is

used to determine gradients downstream of the incident shock and then again to

determine values downstream of the reflected shock, which allows P3 and Sa,r to be

found given D3 = 0 at the cylinder surface. The third application is off-surface data

for the reflected shock, where downstream gradients (P3 and D3) are found given the

reflected shock geometry and the gradients in the incident field.

Where the incident shock is conical (Sa,i = 0), P2 and D2 can be determined based

on the known shock geometry. Where the flow plane curvature of the incident shock

is finite, or in cases where a reflected shock is predicted, the method for obtaining

shock angles and curvatures becomes more involved. These values are provided by

MOC, which predicts a discrete set of coordinates with associated shock properties

as part of the solution process and requires minimal post-processing to derive the

required data; extracting similar data from a CFD solution, for example, would not

have been possible with the same accuracy.

2.4 CFD

The numerical CFD modelling results presented below are obtained with the Euler

(inviscid, non-heat-conducting) flow model. The gas (air) is assumed to be ideal with

constant specific heats (the specific heat ratio 𝛾 = 1.4). An adaptive unstructured

finite-volume flow solver [10] is used. The solver employs a node-centred, second

order in space and time (for smooth solutions and uniform grids), MUSCL-Hancock

TVD finite-volume scheme, see [14] for more details. The grid is locally adapted

to solution peculiarities (e.g. shock fronts, slipstreams etc.) via an h-refinement pro-

cedure governed by a sensor based on the normalised second derivative of density.

Additional uniform refinement is applied in the regions deemed essential for com-

putational accuracy.

The geometry of the solid surface begins at the M-flow leading edge. At the M-

flow trailing edge, the surface becomes parallel to the freestream direction, generat-

ing a sharp corner. The inflow boundary runs from the leading edge of the M-flow

surface along the conical shock and then becomes vertical and comes to the axis

(see Fig. 2). This is done to avoid accuracy issues arising from the interaction of
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numerically smeared shock profile with the M-flow surface. Such inaccuracies can

be, in principle, reduced by grid refinement along the shock. However, very fine

meshes, resulting in very small time steps, render the flow solver computationally

inefficient.

Freestream conditions are used to initialise the entire computational domain for

each computational run, which corresponds to instant placement of the M-flow sur-

face into the freestream. Each computation proceeds until a steady state is reached.

The mesh size for the current case includes ∼1.62 × 105 grid nodes. A region of

refinement is specified to begin upstream of the incident shock and end down-

stream of the conical singularity. Another region of refinement is specified towards

the centreline to capture the region around the Mach reflection. The minimum

cell width (normalised by the leading edge radius y1) in both of these regions is

∼1.3 × 10−3. The minimum allowable cell width within the entire computational

domain is ∼6.25 × 10−4.

3 Results

Figure 2 shows the CFD prediction of the Mach number field, with results from TM

and MOC overlaid for comparison. The CFD prediction shows that incident shock

steepening occurs downstream from the limiting C
−

characteristic. Mach reflection

has occurred, with a Mach stem that appears to be approximately perpendicular to the

freestream flow with a height of y∕y1 = 0.027. The subsonic streamtube (bound by

the slip-surface) downstream of the Mach stem contracts as the flow re-accelerates

towards sonic conditions. The end point of the TM-predicted limiting C
−

charac-

teristic is located almost exactly on the CFD-predicted shock, which appears to be

straight upstream of that point, in agreement with the TM theory. The MOC predic-

tion of the shock begins to deviate slightly from the CFD prediction as it approaches

the axis, although the level of agreement is generally good, with a maximum dis-

crepancy of x∕y1 = 0.003 found at the triple point and visible only on the enlarged

Fig. 2c. The disagreement may be attributed to coarser CFD grids (as compared to

MOC spacings) downstream from the incident shock in the flow regions which affect

the shock shape. Further grid convergence studies are required.

The MOC-predicted Mach number field as well as associated shock angle and

flow plane shock curvature are shown in Figs. 3 and 4. The shock wave clearly

becomes steeper with reducing y, whilst the rate at which it steepens is also found

to increase as it approaches the axis. It is to be noted that the CFD/MOC-calculated

incident shock, that is close to the axis, may be strong enough not to reflect regu-

larly off an axisymmetric cylinder. Then a Mach reflection would ensue for this as

well as for all smaller cylinders. As an example: the MOC calculation reached its

limit at y∕y1 = 0.020 whereas CFD predicted Mach reflection with a stem radius of

y∕y1 = 0.027, so that the Mach stem radius is greater than the MOC limit.

The effects of shock curvature on the pressure gradient P2 and streamline curva-

ture D2 are shown in Fig. 5. In the region between the M-flow surface and the limit-

ing C
−

characteristic, the flow is conical and the trends are explained by considering
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(a) Overall Mach number field

(b) Limiting C− at shock (c) Triple-point vicinity

Fig. 2 CFD prediction of M3/150 (without centrebody cylinder) Mach number field with TM pre-

diction of limiting C
−

characteristic (dash-dotted black line) and MOC prediction of shock position

(solid black line)

Fig. 3 MOC prediction of Mach number field downstream from the incident shock and limiting

C
−

characteristic

that in the direction of streamlines, conical rays become closer to one another when

moving towards the axis; if the conical shock were continued towards the axis both

P2 and D2 would approach infinity. Discontinuities in the gradient of P2 and D2
are found where the limiting C

−
characteristic meets the shock, which is where the
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Fig. 4 MOC-predicted

shock angle 𝜃i and curvature

Sa,i along the incident shock.

Top: complete predicted

shock. Bottom: focus on

shock in the centreline

region. TP indicates the

location of CFD-predicted

triple point for shock

reflection from the axis of

symmetry; ‘det.’, ‘son.’and

‘vN’ indicate the positions of

the detachment, sonic and

von-Neumann points,

respectively, for shock

reflection from a straight

cylindrical centrebody

incident shock curvature Sa,i departs from zero (see Fig. 4). The pressure gradient

P2 passes through zero at y∕y1 = 0.173, which separates regions of accelerating

and decelerating flow downstream of the shock. This point is known as the Thomas

point [9].

MOC predictions for cases with a centrebody cylinder are plotted in Fig. 6 and 7.

Reflected shock angles are consistent with the two-shock theory of shock reflection,

which is applied as part of the MOC solution. Figure 7 shows that the incident shock

(in the non-conical region) is concave towards the incident flow whereas the reflected

shock is convex, i.e., Sa,i > 0 and Sa,r < 0. This is in agreement with CST [9]. Mach

number distributions downstream of the reflected shock show that pressure gradients

in the positive x and y directions are negative. This observation is highlighted by the

results in Fig. 8, where the black line shows surface pressure gradient, immediately

downstream of the reflected shock, for the possible range of centrebody radius, i.e.,
ycb∕y1 = 0.0387 → 1.0. It shows that negative pressure gradients exist in this region

for any chosen centrebody radius. Other, coloured, lines are for specific centrebody

radii and include off-surface data, which confirms that negative pressure gradients

continue along the reflected shock. A similar picture is found by plotting values

along the centrebody surface itself, see Fig. 9. Again, the black line shows surface

pressure gradient, immediately downstream of the reflected shock, for the possible

range of centrebody radius. Other, coloured, lines are obtained by applying a finite
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difference method to surface MOC data obtained for specific cylinder radii. These

curves indicate that gradients decrease significantly downstream of the shock, and

although asymptotic values are difficult to determine, it seems reasonable to suggest

that the gradients approach zero far from the point of shock impingement.

The reason of our particular attention to Mach number and pressure gradients

behind the reflected shock is related to recent conjectures [9, 15, 16] that regular-to-

Mach-reflection transition might occur not only due to reflected shock detachment by

excessive flow turning, but also due to reflected shock detachment due to local flow
choking. In [9], the post-shock pressure gradient is identified as the underlying cause

Fig. 5 MOC-predicted

pressure gradient P2 and

streamline curvature D2
downstream of the M3/150

incident shock. Top:

complete predicted shock.

Bottom: focus on shock in

the centreline region. TP

indicates location of

CFD-predicted triple point;

‘det.’, ‘son.’and ‘vN’

indicate the position of the

detachment, sonic and

von-Neumann points,

respectively, for shock

reflection from a straight

cylindrical centrebody

Fig. 6 MOC-calculated

Mach number field for flow

behind the reflected shocks

on cylinders with

ycb∕y1 = 0.04, 0.08, 0.12
(from bottom to top)
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Fig. 7 MOC-calculated

incident, 𝜃i, and reflected, 𝜃r ,
shock angles. The common

incident shock is shown in

black. Various reflected

shocks corresponding to

various cylinder radii

(indicated by thin black

lines) are shown in colour

Fig. 8 Pressure gradient P3
downstream of the reflected

shock. Surface values at the

reflection point for all

potential values of

centrebody radius are shown

in black. Off-surface values

for specific centrebody radii

are shown in colour

Fig. 9 Surface pressure

gradient Ps downstream of

shock impingement. Values

immediately downstream of

reflected shock, at the

reflection point, for all

potential values of

centrebody radius are shown

in black. Downstream

surface values for specific

centrebody radii are shown

in colour

of local choking. The above results show that the supersonic flow downstream of the

reflected shock is expanding, and therefore, in the cases considered, the situation is

not conducive to local choking.
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4 Conclusions

An exploratory, analytical study is presented of the flow associated with an ini-

tially conical shock (M-flow) as the shock approaches the axis of symmetry and

as it impinges on, and reflects off, coaxial cylinders of various radii. The analysis

uses direct solutions of the Taylor-Maccoll equations, the method of characteristics,

curved shock theory and CFD. Agreement between CFD and MOC is generally very

good, with some minor discrepancies in the prediction of the shock geometry. MOC

has proved to be a useful tool in terms of providing detailed shock wave data at dis-

crete points along the shock, facilitating analysis by CST. Nonetheless, it has the

obvious restriction of only being able to provide prediction in flows with regular

reflections.

The pressure gradient behind the reflected shock is examined to see if it could lead

to local flow choking and detachment of the reflected shock. For the Mach 3.0, 150
◦

incident M-flow shock the pressure gradient is found to be negative and not con-

ducive to local choking and termination of regular reflection. Further exploration of

stronger incident shocks is warranted for situations where the Mach number behind

the reflected shock is subsonic and the pressure gradient is negative so that the flow

would tend towards choking.
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