Chapter 3 M)
Mathematical Giftedness and Creativity Skl
in Primary Grades

Daniela Assmus and Torsten Fritzlar

Abstract Creativity is often seen as a characteristic or a variety of content-specific
giftedness, but also as an independent, more general kind of giftedness. In the first
part of this article, we will discuss some key questions on mathematical giftedness,
creativity and theoretical connections between the two constructs. Subsequently, we
will specify these considerations with regard to primary students. The main ques-
tion of the second part of the paper is how creativity can manifest itself in math-
ematical activities of gifted primary students. Generally, mathematical creativity is
assumed to be closely linked to problem solving and problem posing; for mathe-
matically experienced people both processes are embedded in theory building
processes. Also primary students can vary given problems and solve problems that
usually require only little mathematical knowledge. Moreover, mathematically
gifted primary students are able to create new mathematical objects. We will
describe types and examples of such invention processes in detail.

Keywords Content-specific giftedness - Embedded model of giftedness and
creativity + Mathematical giftedness - Problem solving - Problem posing
Theory building processes

3.1 Introduction

Creativity in the domain of mathematics has met with increasing interest in recent
years. Nevertheless, primary school students have not been a focus of research up to
now. This may be related to the fact that on the one hand, domain-related
knowledge is regarded as an essential prerequisite for creative action (Silver 1997,
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Weisberg 1999), and that on the other hand, the mathematics-specific knowledge
base in the primary school age is usually still very small. Mathematically gifted
primary students may be an exception, as they are expected to have a higher level of
experience and knowledge due to their special abilities and their frequently large
specific interest. Therefore, we consider this special group to be particularly suitable
for exploring mathematical creativity at primary school age and for investigating
possible occasions for creative mathematical action.

In the scientific literature giftedness and creativity are seen as related in many
different ways. Therefore, in the first part of this paper, we will initially consider
both constructs and especially their connection in detail.

PART I

3.2 (Mathematical) Giftedness

In relevant literature, there is no standardised definition of giftedness; neither in
general nor especially for the domain of mathematics. Not only is there unclarity
regarding the definition of this term, but there are also a number of similar (e.g.
talent, expertise) or connected terms (e.g. special abilities, high achievement,
creativity). In this context, Ziegler (2008, p. 14) speaks of a “Babylonian language
chaos” (translation by the authors), which makes a theoretical approach to math-
ematical giftedness extremely difficult.

From a superordinate perspective, there are three key questions regarding a
construct of mathematical giftedness:

e Does the construct of mathematical giftedness describe extraordinary mathe-
matical achievements or rather just the potentials for especially valuable (sub-
sequent) achievements in the field of mathematics?

¢ [s mathematical giftedness an expression of specific cognitive characteristics or
is it, at least for the main part, a result of high general intelligence?

e Is mathematical giftedness a monolithic construct or are there different profiles
of giftedness? (cf. Wieczerkowski et al. 2000).

3.2.1 Giftedness: Potentials and Achievements

It is possible to distinguish the numerous definition approaches for the construct of
giftedness based on the roles ascribed to the extraordinary achievements accom-
plished by the individual. If these are considered preconditions for a person to be
described as gifted, they are referred to as performance-oriented definitions. If
giftedness, however, is conceptualised as a potential for superior performance, one
can speak of competence-oriented definitions.
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With regard to children and adolescents, competence-oriented definitions pre-
dominate; with adults, a greater priority is given to documented achievements. For
instance, Mayer (2005, p. 439) understands “giftedness as an age-specific term that
refers to potential for the beginning stage, achievement for the intermediate stage
and eminence for the advanced stage.”

From our point of view, a competence-oriented definition of giftedness is also
appropriate for the domain of mathematics and, specifically, for studying giftedness
at primary school age, because especially young children cannot possess the
knowledge and experiences needed for extraordinary mathematical achievements.

However, this perspective leads to significant (theoretical and practical) diffi-
culties concerning the diagnosis of giftedness because only achievements can be
measured empirically. That is partly why Sternberg (1998) came up with his
concept of developing expertise, which was specified by Fritzlar (2015) for the
domain of mathematics.

3.2.2 Mathematical Giftedness and General Intelligence

Since the beginning of the 20th century, there has been a more intense theoretical
and empirical discussion on the construct of giftedness. Among others due to the
Terman study, the view of giftedness has been widened and multi-dimensional
models have been created, on the one hand based on the recognition of
domain-specific talents [e.g. Munich Model of Giftedness (Heller 2010) or
Differentiated Model of Giftedness and Talent (Gagné 1985, 2003)], and on the
other hand based on the inclusion of further personal and contextual characteristics
[e.g. Three-Rings Conception by Renzulli (1986)].

Since these kinds of models mostly only differentiate between intellectual and
non-intellectual areas, it remains open at first to what extent an independent
mathematical giftedness exists. The answer to this question depends on one’s
understanding of mathematics in particular. If, for example, mathematical
achievements are recorded using tasks which hardly differ from items used in
intelligence tests and for which it is mainly essential to be fast and accurate
(whereby, incidentally, the latter is exclusively measured by the test developer’s
horizon of expectation, KieBwetter 1992), it is not surprising if the dimensions of
mathematical achievements hardly differ from those of general (test) intelligence
(Zimmermann 1992).

Tests on school achievements and study capability tend to be more
subject-specific. In a study by Benbow, almost 300 mathematically gifted and a
little more than 150 linguistically gifted thirteen-year-olds were first identified
based on the SAT—they belonged to the best 0.01% of their age group. As a next
step, their achievements were compared using different intelligence and ability tests.
Only 16 boys and 2 girls belonged to both groups, the others showed significant
group differences in almost all areas of ability, with group membership and not
gender having the biggest influence on the test results (Benbow and Minor 1990).
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On this basis, the idea of a general intellectual giftedness that includes a mathe-
matical giftedness cannot be kept.

Especially interesting for studies focusing on primary school age seems a study
by Nolte, where children of third grade work both on a specially developed math-
ematics test as well as on an intelligence test which correlates strongly with grades in
mathematics. In this whole group of more than 1600 girls and boys of nine years, the
results from the intelligence and mathematics tests correlate with —0.34. However,
this relation decreased for children who obtained particularly good results in the
mathematics test. The rather weak statistical correlation and its further decrease can
partly be expected because of the (increasing) selectivity and the (decreasing) sample
size. Nevertheless, it seems reasonable to assume intelligence test results and
mathematical potential correlate based on the total population, but a special math-
ematical giftedness cannot be derived from the 1Q (Nolte 2011, 2013).

From a cognitive-psychological and didactic perspective, different descriptions
of mathematical giftedness have been developed based on mathematics-specific
abilities, characteristics and patterns of action. In this context, the studies carried out
by Képnick (1998) were pivotal in Germany regarding primary school age. For
him, mathematical giftedness is marked by the following characteristics and skills:
remembering mathematical facts, structuring mathematical facts, mathematical
sensitivity and mathematical fantasy, transferring mathematical structures, inter-
modal transfer, reversing lines of thoughts (cf. Bendlken 2015). To what extent
these features characterise mathematically gifted students depends on the mathe-
matical richness of the tasks used to reveal them.

At a first glance, the specificity of some abilities may seem critical. However, in
psychology the position is widespread that abilities do not exist by themselves but
always in connection to specific contents to which they are inseparably related
(Lompscher and Gullasch 1977).

All in all, it seems reasonable to assume that initially general cognitive abilities
first generally develop and then become more specific during activities. In this
regard, the accumulation of knowledge could play a vital role, because knowledge
is on the one hand gained through abilities of the individual and on the other hand
forms an important basis for the development and realisation of mental abilities. In
this sense, abilities, knowledge and activities develop in close interaction and
mutually reinforce.

3.2.3 Profiles of Mathematical Giftedness

If a list of specific abilities or action patterns is used to describe mathematical gift-
edness, the respective authors (e.g. Bendlken 2015; Képnick 1998; Nolte 2011,2013)
always emphasise that they can be evident to a various extent and not all of them are
necessary for the presence of giftedness. Also Krutetskii, who as one of the first ones
soundly studied special abilities of mathematically gifted students, emphasised that
their composition to a structure of mathematical thinking can be individually different,
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whereby certain components can also be compensated by others. High mathematical
achievements can be reached with different complexes of abilities or “mental spe-
cialities”. As a result, there are different manifestations of mathematical giftedness,
especially since, according to Krutetskii, further useful but not necessarily needed
characteristics exist, like the speed of thinking processes, counting skills, a distinct
memory for symbols, numbers and formulas, visual thinking as well as the ability to
vividly imagine abstract mathematical relations and dependencies (Krutetskii 1976).
For older students, he distinguished between a geometric, an analytic and a harmonic
type based on the relation between visual and abstract-logical components. The last
type, however, probably has the highest potential.

Qualitative research studies on mathematical giftedness in primary school have
shown that different profiles of specific abilities already exist at this age (e.g. Fuchs
2006; Képnick 1998). However, it is assumed that interindividual differences
increase through growing domain-specific experience.

To sum up the discussion on the three key questions, mathematical giftedness at
primary school age can, from our point of view, be understood as an extraordinary
high potential to solve mathematically challenging questions and problems (com-
pared to others of the same age). The various aspects of this potential can be dif-
ferently pronounced, but in total it is mostly specific for the domain of mathematics.
A detailed description of mathematical giftedness in early primary school age by
means of specific abilities was recently developed by Assmus (in this volume).

3.3 Creativity

Since the 1950s, creativity research has continually been and is still being
advanced. However, to this day there is neither a consistent definition of creativity
nor a commonly acknowledged creativity theory. In scientific discourse, it is
common to distinguish between creativity as a quality of a product, a person, a
process or creativity-affecting environmental factors. In the English-speaking world
this is also referred to as the “4P’s of creativity” (product, person, process, press)
based on the work of Rhodes (1961). Since in this article we will not discuss
developmental aspects, neither in relation to giftedness nor to creativity, the fourth
aspect (press) is not further considered.

What is normally considered the key criterion of a creative product is its
“novelty”. Since, however, objective novelty independent of space and time is
extremely rare, some authors relativise this criterion in so far as an idea is seen as
new (or unique) if it is rare among a particular population (e.g. Guilford 1967,
Jackson and Messick 1965). In contrast to absolute creativity, we refer to relative
creativity in this regard. Ideas that are new for an individual, but widely spread
among the population considered (e.g. a school class) are not judged creative
according to this definition. In pedagogic situations, however, an individual refer-
ence norm might be used as a basis for the novelty criterion (cf. e.g. KieBBwetter
1977), which is then referred to as individual creativity.
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Besides novelty, at least one further criterion is specified, which concerns the
purpose of the product. In this regard, terms such as ‘“meaningfulness”,
“target-orientation”, “real-life relevance” and “usefulness” are used (Preiser 1976).
It should, however, be mentioned that free creative processes would not be clas-
sified as creative according to this approach if the created products did not meet the
criterion of usefulness. Since this would apply to many artistic products, the use-
fulness criterion might be seen as disproportionally constraining the kind and
number of creative products.

Regarding creativity as a quality of individuals, the features based on the work
of Guilford (1950) and their operationalization in the “Torrance Test of Creative
Thinking” of Torrance (1966) are usually cited, namely fluency, flexibility, origi-
nality and elaboration. Fluency refers to the ability to produce as many associations,
thoughts and ideas as possible on a content or problem within a short time.
Flexibility can be described as the ability to think into different directions, to easily
switch from one thinking category into another, and to look at a problem from
different views. Originality is the ability to generate uncommon ideas and solution
approaches. “Uncommonness”, “remoteness” and “cleverness” are mentioned as
measuring criteria for originality. The ability to proceed from an idea to a definite
plan and, thus enriching and developing the idea, is understood as elaboration.

These explanations show that creativity as characteristic of a person cannot be
separated from the creative product. The product characteristic is needed to estimate
the originality of a person. Also, the description of creative processes, for which in
general multilevel phase models are used, like, e.g., that of Wallas (1926) and
respectively Hadamard (1945), which propose the phases preparation, incubation,
illumination and verification (e.g. Aldous 2007; Sriraman et al. 2013), cannot be
made without considering the creative products.

3.4 Relations Between (Mathematical) Creativity
and (Mathematical) Giftedness

Giftedness and creativity are often seen in close connection. However, the basic
assumptions made in the scientific discourse differ concerning the relation between
(mathematical) creativity and (mathematical) giftedness (cf. e.g. Singer et al. 2016
with many references). In our opinion, the different views can be classified as
follows (cf. ABmus 2017):

1. (mathematical) creativity as a precondition for (mathematical) giftedness

2. (mathematical) creativity as a possible component of mathematical giftedness
3. (mathematical) creativity as a possible consequence of mathematical giftedness
4. creativity as a (mostly) independent area of giftedness.

The single views are further explained below. Since we are mainly interested in
the relation between these two constructs, we will not name and explain further
influencing factors here. This does not imply that no further influencing factors exist.
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Whenever specific study results or theoretical approaches exist for the domain of
mathematics, these are considered, even though mathematical creativity has not
been regarded so far in this paper. As a detailed explanation of the term mathe-
matical creativity is not needed yet at this point, we will provide an in-depth
discussion of the concept in the second part of this paper.

3.4.1 (Mathematical) Creativity as a Precondition
Jor (Mathematical) Giftedness

Based on this conception, well-developed creativity is seen as a necessary pre-
condition for giftedness (Fig. 3.1). Renzulli’s model (1986) can be cited as an
example in the context of general giftedness. According to this model, the three
factors “above average ability”, “task commitment” and “creativity” are needed for
developing gifted behaviours. Some of the characteristics of creativity as Renzulli
understands it are fluency, flexibility, originality of thought, openness to experience
and willingness to take risks in thought and action.

In the area of mathematical giftedness, this conception can be found e.g. in
Leikin et al. (2009), who consider mathematical giftedness as special problem
solving abilities and, referring to Renzulli, describe mathematical creativity as a
needed component besides “problem solving effectiveness” and “task commitment”
(Leikin et al. 2009). Here, the mathematical creativity is also characterised by the
three subcomponents fluency, flexibility and originality.

3.4.2 (Mathematical) Creativity as a Possible Component
of Mathematical Giftedness

For several models, creativity in the sense of creative abilities is not a precondition
for giftedness, but is rather understood as part of the giftedness itself (Fig. 3.2).

Fig. 3.1 (Mathematical) (mathematical)
Creativity as precondition for giftedness

(mathematical) giftedness /ﬁ

(mathematical)
creativity
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Fig. 3.2 (Mathematical) mathematical
Creativity as a possible giftedness
component of mathematical

giftedness

component 1

component 2

I

component n-1

component n:
(mathematical)

\ creativity /

For the domain of mathematics, further mathematics-specific abilities are named
besides creative abilities. Since not all listed abilities are expected to become evi-
dent to an equal extent, different types of mathematical giftedness are possible (cf.
our explanations concerning mathematical giftedness above). As a consequence,
also a well-developed creativity is not mandatory for mathematical giftedness.

This understanding can, e.g., be found in Krutetskii (1976). He does not use the
term “creativity” itself in his components model, but refers to it as “flexibility of
mental processes in mathematical activity” (p. 350), which became apparent in his
studies when participants managed to overcome fixations or break away from a
stereotyped method of solution. Elsewhere, he explains that turning away from
typical procedures as well as finding several different solutions is “the real appear-
ance of mathematical creativity” (Krutetskii 1969, cited from Haylock 1984, p. 30).

Kiépnick (1998) also mentions another component pertaining to the concept of
mathematical creativity as one of seven mathematics-specific characteristics of
mathematically gifted children in primary school. He describes it as “mathematical
phantasy”, which he understands as the “most important main aspect of childlike
creativity” (Képnick 2013, p. 31; translation by the authors). According to him, the
development of diverse imaginative patterns and respectively structures as well as
the development and usage of creative solutions for demanding tasks belong to
phantasy, just like (not necessarily target-oriented) playful actions with mathe-
matical materials (Képnick 1998).

Kontoyianni et al. (2013) distinguish between the two categories “mathematical
ability” and “mathematical creativity”, which are additionally split up into
sub-categories. For mathematical creativity, the sub-categories fluency, flexibility
and originality are assumed. In their study with students from fourth to sixth grade
they worked out mathematical giftedness as a multi-factorial construct which
contains both special mathematical and creative abilities. However, it was also
possible to conclude from their data that the importance of mathematical abilities
for the construct of giftedness is higher than the importance of creative abilities.
Additionally, they proved the relationship between mathematical abilities and
mathematical creativity using statistical methods. Of the three approached models,
the one that best explained the gathered data was the one that understood
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mathematical creativity as a sub-component of mathematical giftedness (Kattou
et al. 2013). Even if the terms are used differently and the models’ sub-components
are not identical, general similarities to the characteristics lists of Képnick (1998)
and Krutetskii (1976) mentioned above can still be found in the results concerning
the relation of creativity and giftedness.

3.4.3 (Mathematical) Creativity as a Possible Consequence
of Mathematical Giftedness

From this perspective, mathematical creativity is understood as the ability to create
creative products that contribute to a knowledge progress within mathematics as a
science (Fig. 3.3). Creative achievements are therefore reserved for a small group of
people. As a result, mathematical creativity implies mathematical giftedness while
the inversion is not valid (Howe 1999; Sriraman 2005).

Exemplary for such an understanding is the hierarchy of mathematical talent by
Usiskin (2000) (cf. Sriraman 2005). Usiskin proposes eight levels of mathematical
talent starting with level 0, which covers adults who barely know something about
mathematics. The two highest levels (level 6 and 7) are assigned to people who
stand out due to especially creative achievements. The lower levels, too, attest a
mathematical talent to people, but in this case this talent does not come along with
extraordinarily creative achievements.

Also Sheffield (2009) shapes a “Continuum of mathematical proficiency” (innu-
merates—doers—computers—consumers—problem solvers—problem posers—
creators) which considers the creative creation processes as the highest manifestation.

3.4.4 Creativity as a (Widely) Independent Area
of Giftedness

Creativity is considered as a widely independent area of giftedness in several
models (Fig. 3.4). A known example is the “Differentiated Model of Giftedness and

Fig. 3.3 (Mathematical) (mathematical)
Creativity as a consequence of giftedness

(mathematical) giftedness /ﬁ

(mathematical)
creativity
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Fig. 3.4 Creativity as a

(widely) independent area of H
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creativity

concerning the domain
(of mathematics)

Talent” by Gagné (1985, 2003) where creativity is listed as one of four areas of
giftedness. Others distinguish two fundamentally different forms of giftedness,
namely educational or academic giftedness on the one hand, and creative giftedness
on the other (cf. e.g. Renzulli and Reis 2003; Hong and Acqui 2004). While
“schoolhouse giftedness” according to Renzulli is a specific giftedness concerning
test and school achievements, the creative giftedness can be seen in real application
situations. “Creative-productive giftedness describes human activity and involve-
ment in which a premium is placed on the development of original material and
products that are purposefully designed to have an impact on one or more target
audience” (Renzulli and Reis 2003, p. 185).

In their “Comprehensive Model of Giftedness and Talent” Milgram and Hong
(2009) distinguish between “analytical-thinking ability” and ‘“creative-thinking
ability”, which can manifest themselves in “expert talent” or “creative talent”. Both
forms of talent require both abilities, however, analytic abilities predominate with
regard to “expert talent” and creative abilities predominate with regard to “creative
talent”. “Creative Talent” according to Milgram and Hong is, besides profound
specialist knowledge in the respective domain, characterised by the creation of
creative and useful products.

Subotnik et al. (2009) examined requirements for the evolution of mathematical
talent. They were able to identify different influence factors; mathematical creativity
however was not among them. “It seems that a number of variables other than
innate mathematical creativity shape the development of talent and ensure a suc-
cessful career trajectory” (p. 177). This could also be indicative for the fact that
mathematical creativity represents a separate area of giftedness. However, the
authors are not clear concerning the term “creativity”. In the above stated quote,
they seem to refer to creativity as ability, but they do not specify it. Furthermore,
they use the term “creativity” in relation to the term “talent”, which suggests that
they see the two concepts as equivalent. The explanations can therefore be inter-
preted as follows: Creative abilities do not play a role in the development of
mathematical talent, but creative products as “output” are closely related to math-
ematical talent.

Haylock (1997) detected that mathematically efficient students are highly diverse
concerning their mathematical creativity. This could also be an indicator of the
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autonomy of both constructs. Maybe, however, these differences can also be
explained by differently evolved personality traits: Students with very good
mathematical, but only relatively poor creative achievements increasingly devel-
oped negative associations with the subject of mathematics, had quite a low
self-esteem and were hardly prepared to take risks when solving mathematical
problems.

All in all, there are many different perspectives on the relations between
(mathematical) giftedness and (mathematical) creativity. In our view, however,
these perspectives are not necessarily contradictory, but they rather result from
different understandings of giftedness and creativity which are not independent
from each other. While giftedness is rather defined as a potential for extraordinary
achievements (and characterised by special abilities), creativity is frequently also
seen as a person’s individual characteristic and the creation of creative products
does not have priority (like in perspective 2). If the construction of creative products
is focussed, this results in perspective 3. In contrast, in a performance-oriented
understanding of giftedness, creative abilities are also seen as a requirement for
special mathematical achievements (perspective 1). Perspectives 1-3 on giftedness
as competence or performance (always related to mathematical giftedness) can be
summarised as follows.

Concerning perspective 4, it can be said that satisfactory evidence on creativity
as an independent area of giftedness has not yet been provided. Related observed
phenomena can possibly also be explained via different forms of giftedness in
perspective 2. Also, in this view, types of giftedness might exist where creativity is
more or less extensively developed.

For these reasons and based on above explanations, the best model for our
purposes is the left one in Fig. 3.5, where giftedness is understood as potential for
extraordinary achievements and creativity is understood as an optional
sub-component of giftedness. This does not exclude overlaps of the component
“creative abilities” and other components.

giftedness giftedness (talent)
various various areas of
components performances
vedn | cOnstruction of creative
==| creative products abilities :Vr\
component: Construction of
creative abilities creative products

Fig. 3.5 Relations between creativity and giftedness as competence (left) or performance (right)
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PART II

3.5 Mathematical Creativity in Primary School Age

The embedded model of giftedness and creativity in the left part of Fig. 3.5 was
more or less theoretically assumed. Prerequisite for a stronger empirical support—
especially with regard to mathematics at primary school age—is, first of all, a
sharpening of underlying concepts. This particularly applies to the concept of
mathematical creativity.

As Mann (2006) has pointed out, there is a lack of a widely-accepted definition
of mathematical creativity. In the literature, mathematical creativity is, for instance,
described as the ability to choose (sensu Poincaré) or to engage in non-algorithmic
decision-making. From a common didactical perspective, mathematical creativity
can be seen as the ability to generate novel and useful solutions to problems (cf.
Sriraman 2009). For primary school age, this definition approach can be combined
with the above depicted approach of research on creativity, but specifications and
extensions are needed.

At first it should be discussed to which extent criteria (for products, persons or
processes) from general creativity research could also be suitable for describing
mathematical creativity at primary school age.

(a) Fluency can be expressed by primary school children in the area of mathe-
matics, e.g. when solving a problem in several ways, finding several solutions
for an open problem (field), continuing a pattern in several ways, finding
several representatives for a mathematical characteristic. Such actions demon-
strate that children can vary their approaches to doing mathematics.
However, from our point of view, it should be critically questioned if the
number of created answers, especially in mathematics, could be indicative of
creativity. A large number of similar solutions can be quickly and systemati-
cally developed for many open tasks by creating structures and ordering
principles. The following task to measure fluency used by Kattou et al. (2013,
p. 172) serves as an example in this regard:

“Look at this number pyramid. All the cells must contain one num-
ber. Each number in the pyramid can be computed by performing
always the same operation with the two numbers that appear un-
derneath it. Fill in the pyramid, by keeping on the top the number
35. Try to find as many solutions as possible.”

A high number of solutions can already be created through additive partition of
the numbers. Creativity is not necessary in this procedure. On the contrary,
abilities to identify and use mathematical structures are needed.
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Quickly creating many answers to a mathematical stimulus can therefore give a
first indication of mathematical creativity, but might as well be based on other,
convergent abilities.

(b) While with “fluency”, the created solutions/products are considered in terms of
quantity, flexibility is mainly about the diversity of the products (Neuhaus
2001). A particular flexibility can also become apparent in the above mentioned
mathematical actions, if the solutions and ideas fundamentally differ from each
other. Additionally, flexibility in doing mathematics can be expressed when the
perspectives are changed or when successfully dealing with adapted processing
aspects. The following aspects of change are possible at primary school age:
representations of a mathematical content, contexts, perspectives on a mathe-
matical content/a mathematical problem, processing directions (e.g. direct vs.
converse lines of thoughts), use of given task elements (e.g. switched given and
searched elements).1

(c) Like the “novelty” of a product, originality can only be evaluated using a
reference group. In relation to this, the individual reference norm is particularly
appropriate for primary school age. For mathematically gifted students, how-
ever, it can be assumed that some of them create extraordinary mathematical
products, find procedures etc. in relation to the peer group or the group of
similarly mathematically experienced students. In these cases, one can assume a
high (relative) creativity.

(d) Concerning “real-life relevance” or “usefulness”, we agree with Sriraman’s
statement (2009, p. 15) that the results of creative mathematical processes do
not always have to be applicable, because mathematics is also a world with its
own value. Consequently, it seems “[...] sufficient to define creativity as the
ability to produce novel or original work.” This is especially valid for primary
school age.

So, from a psychological perspective only the criteria flexibility—concerning
mathematical products and in particular also processes of doing mathematics—and
originality on an individual level seem to be adaptable for describing mathematical
creativity at primary school age.

To continue with the common didactic perspective on creativity already men-
tioned above, we initially have to go a little further.

According to many researchers, creative mathematical processes particularly
occur at problem solving (Chamberlin and Moon 2005; Leikin and Lev 2013;
Pehkonen 1997). In recent years, the importance of problem posing has also been
emphasised. The proximity of creativity and problem solving is, according to
Guilford (1977), already implied by the similar understanding of the two terms:
“Creative thinking produces novel outcomes and problem solving involves

1Changing aspects 1 and 4 are described as creative abilities of mathematically promising students
e.g. by Sheffield (2003).
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producing a new response to a new situation, which is a novel outcome” (Guilford
1977, p. 161). He therefore concludes that problem solving involves creative
processes. Since problem solving constitutes an essential part of mathematical
activities, creativity necessarily plays an important role in mathematics. However,
the problem solving process is not always considered as creative. Kiewetter (1977)
and Haylock (1984) only judge solution processes as creative which involve
divergent thinking, like e.g. the association of distant things, the creation of new
means or the novel usage of known/existing means. By contrast, a process which
solely consists of applying solution schemes, logical reasoning or systematic sorting
is not seen as creative.

Guilford already cited problem sensitivity as a special characteristic of a creative
person. What he understands by problem sensitivity is the ability to approach the
material and social environment with an open, critical attitude and to discover
problems and opportunities for improvement, contradictions, inconsistencies and
novelties (Preiser 1976), which is linked to problem posing. In mathematics, as a
constantly broadening science of self-created abstract structures, the identification,
extension, narrowing or widening and transferring of (new) scientific questions
plays a vital role. “Problem finding” or “problem posing” per se is seen as creative
act by some authors (Leung 1997; Silver 1994). It is partly also viewed as impulse
for especially creative performances (Sheffield 2009). In school situations however,
problem posing is often not a consequence of a genuine impulse to discover, but
specifically initiated by the teacher. The specifications here may vary: based on an
already solved problem, related problems can be identified and follow-up questions
can be raised. Independent of a concrete problem, questions may be developed, for
example, concerning a specific mathematical content or context, specific terms or
numbers, specific solution strategies, but also entirely without predefined specifi-
cations. In any case, problem posing is closely related to problem solving. For a
detailed overview of problem posing in mathematics learning see the report by
Singer et al. (2011).

Problem solving is already an important part of mathematics classes in primary
school, where mainly problems are dealt with that can be solved without a broad
mathematical knowledge base. Since it is particularly challenging for young stu-
dents to formulate their own questions, creativity in connection with problem
posing might mainly manifest itself in the design of diverse variations of given,
perhaps even partly solved problems.

With mathematically interested and experienced older students and even more
with adult researchers in mathematics, problem solving and problem posing are
usually embedded in more comprehensive theory building processes. Here, the
handling of an initial problem becomes part of a circular process of problem solving
and problem posing through variation and expansion and the subsequent analysis of
this circle. The results and methods as well as the newly developed terms and
logical relations and, respectively, the novel strategies and tools emerging from this
process form a “theoretical fabric”, which is then optimised, preserved and inte-
grated into the existing knowledge base (Fritzlar 2008).
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In such theory building processes, creative acts, the invention of (subjectively)
new mathematical objects and structures as well as new mathematical methods play
an important role. They also specifically highlight the interplay between divergent
thinking, i.e. the ability to develop and elaborate diverse and original ideas with
fluency, and convergent, i.e. logical and evaluative, thinking.

It can hardly be expected that young students with little mathematical experience
are already capable of such theory building processes. However, concerning
mathematical creativity, it could be possible that primary school children are
already able to create subjectively new mathematical objects and relations and gain
mathematical experiences in investigating these (Fig. 3.6). Thereby the student’s
invention can either be rather target-oriented, especially when they are dealing with
a superordinate problem, or relatively free.

Overall, mathematical creativity in primary school age appears when students
work on low-knowledge problems, vary given problems and create mathematical
objects. This creativity can be especially high when students work flexibly and/or
invent original products.

The close connection between creativity and problem solving or problem posing
has been proposed many times (Chamberlin and Moon 2005; Haylock 1987; Leikin
and Lev 2013; Leung 1997; Pehkonen 1997; Silver 1994; Sriraman 2009; Yuan and
Sriraman 2011). In a case study we therefore want to explore in how far students of
the fourth, fifth and sixth grade are already capable of creating subjectively new
mathematical objects. Focusing on arithmetic, which is of particular significance for
mathematical education at primary school level, possible novel mathematical
objects are, for example, numbers, sequences of numbers, relations, operations and
algorithms.
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Fig. 3.6 Initiating mathematical creativity
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3.6 Creativity as Inventing Mathematical Objects
in Primary School

In recent literature, most researchers suggest that creativity is the result of con-
fluence of different individual and environmental factors. According to Sternberg
and Lubart (1996, 1999), for example, creativity results from the interplay between
six different, but not independent resources: intellectual abilities, knowledge, styles
of thinking, personality, motivation and environment. At this point, we cannot deal
with all mentioned resources in depth, but for the implementation of our case study
this “investment theory” approach had the following consequences: in a first
“round” we worked with children participating in talent programs or special classes
for mathematically gifted students because we could assume that these children
would be intrinsically motivated to deal with mathematical problems and possess a
broader mathematical knowledge base (relative to their age group). In addition, we
have developed a collection of problems which inspire the creation of mathematical
objects and relations. Finally, it was important for us to create an environment in
which students can propose their ideas without the pressure of being assessed.

3.6.1 Inventing Mathematical Operations

The aim of the investigations described below was to encourage the children to
invent subjectively new computing operations. The investigations were carried out
with 127 fourth-graders and 33 fifth-graders. 35 of the fourth-graders participated at
a fostering project for mathematically gifted and interested children. They were
proposed for participation by their teachers. In addition, they had to pass an
entrance test including tasks that test essential characteristics of mathematical
giftedness (cf. Assmus, this volume; Kapnick 1998). The other fourth-graders took
part at a mathematical correspondence circle for mathematically interested children
and were also chosen by teachers. The fifth-graders attended a special school for
mathematics. An entrance test had to be successfully completed for admission to
this school.

To become familiar with this type of task, the students should first decrypt
predefined operations. The next problem was to invent new arithmetic operations
(to design appropriate tasks for their classmates to solve) and to explain how the
calculation works. For example, the following is a concrete task used in the cor-
respondence circle (original German):

“Marc finds the calculation modes addition, subtraction, multiplication and
division boring. He has designed a new type of arithmetic operation and for this
purpose invented this operation sign: ¢

He calculates: 1 ¢ 3 =35 6O 4=16 3O01=7 0d5=5
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(a) Explain how Marc’s type of calculation works.

(b) Find another new type of calculation. Invent an operation sign, give 4 examples
and explain how your calculation works. Think of a name for your type of
calculation.”

For the most part, the students worked alone, partly in pairs. They received no
assistance by the researchers. The students found different ways of creating new
arithmetic operations. Similarly to place-value systems, they for example combined
numbers into new numbers (Fig. 3.7).

In all student groups, familiar arithmetic operations were combined into new
operations in a wide variety of ways. The Figs. 3.8 and 3.9 show some examples.
For a better understanding, we provide the mathematical formula for describing the
operation.

We could also observe combinations of known operations and transformations
of numbers, for instance by rounding or summing their digits. Figure 3.10 shows an
example developed by a fourth-grader. Another member of the correspondence
circle had the idea to change calculation rules (Fig. 3.11).

With fifth-graders, combinations of the already presented invention strategies
could be observed as well (Fig. 3.12).

Very interesting seems the operation on (Fig. 3.13) known operations invented
by a fifth-grader.

We also asked the fifth-graders to investigate their new operations and look for
interesting characteristics. Figure 3.14 shows some examples.

3 99=397
g 7y 867 Y708

Fig. 3.7 Composing numbers (5th-grader)
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Fig. 3.8 Creating a new operation (4th-grader)
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Repeatedly compute the sum of digits of both numbers until they are single figures;
then add these figures.

Fig. 3.10 Combining known operation and transformation of numbers (4th-grader)

#3"5-?-4 >7F #G+7-6-60
Fedth=98 #7144 6-6%

If # is placed before the arlthmetlcal task, the order of operatlon rule changes.

Fig. 3.11 Changing calculation rules (4th-grader)

At least in the last examples, the students’ willingness and commitment for
investigating their new operations demonstrate that they do not only use new names
or signs but actually invent (subjectively) new mathematical objects.
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Compose both numbers and subtract the sum of digits.

Fig. 3.12 Combining invention strategies (5th-grader)

91 - g-7-64-4-32

All natural numbers between two numbers @ and b
will be linked by the specified operation.

Fig. 3.13 Operation on known operations (5th-grader)

3.6.2 A Purposeful Invention During Problem Solving

The inventions of arithmetic operations described above can be seen as free cre-
ations; the following example is a purposeful creation during problem solving. In a
math circle for sixth grade students, we used the following problem (cf. Kuzman
2016) for the solution of which the students invented different encryption methods.
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If the numbers are the
same, the result is always

2-(a—b)

e (Can be executed with-
out restrictions

e If one of the numbers is
1, you only have to
calculate the result of
the other number plus 1

a® + b®

e If the first number is
less than the second
number, it is not solva-
ble in N.

e If there are two equal
numbers, the result is
0.

If the first number is 1
greater than the second,
the result is exactly the
same as for the addi-
tion task.

(a+b)-(a—Db)

Fig. 3.14 Invented operations with identified characteristics (5th-grader)
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Fig. 3.15 Tim’s first idea

For the hundreds digit you take 3 coins with the
same number, for the tens digit 2 and for the units
digit 1 coin with the respective number. Thus, I
would take the following coins for the number 812:

@ 00
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Multiply the numbers of the coins by each other.
Thus, for the number 18, T would use the following

Aa coins: : :

Fig. 3.16 Tim’s second idea

B) S ikl Meoriws npdimtn e olas 2okl geoft ash Take as many coins as is the numerical value.
W) Ao LT Upwztov 7 v ’ :

Fig. 3.17 Tim’s third idea

People have always tried to exchange secret messages in a form that cannot
be read by outsiders. Today, it is up to you to invent an encryption method
which could already have been used in ancient times when messages were
still sent by courier. Only those who know the encryption method should be
able to encode and decode the message.

The message can consist of a natural number between 1 and 999.

It should be encrypted by coins, each of which is labelled with a number
between 0 and 9. The courier should be able to carry the coins in a small bag,
which of course is thoroughly shaken during transportation. There are many
coins of each kind available for encoding.

Your task is to invent a really good encryption method!

The six participating students attend the special school for mathematics men-
tioned earlier.

First of all, each student developed their own suggestions for the encryption,
which they then presented to each other. Tim presented three ideas (Figs. 3.15, 3.16
and 3.17).

Here, the hundreds, tens and units digits are coded by three, two and respectively
one coin of the corresponding sort. This code for coins, however, cannot always be
definitely decoded, because for instance 811 and 188 would result in the same coin
representation. (All in all, the algorithm fails at 90 numbers.) In a later discussion,
there was the idea to “repair” this method, namely by using the respective coin four
times in the case of identical units and tens digit number.”

Numbers should be encoded as a product of the coin values. However, this
method fails with multi-digit prime factors (e.g. 23, 51, 91).

Here, numbers are coded by the number of coins. With this method, Tim has
invented a simple procedure which however is easy to see through and not very
practical: on average, 500 coins are needed for encoding one number.

Having the same units and hundreds digit is also unproblematic with this improved method.
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Tim’s first coding idea can to a certain extent also be reversed. Jason, for
example, suggested to first choose three kinds of coins and code the units digit with
the corresponding number of coins with the lowest par value, the tens digit with the
appropriate number of coins with medium par value and to proceed analogically for
the hundreds digit. During the discussion, the students themselves realised that it is
not possible to decode numbers with the digit 0 and, respectively, one- and
two-digit numbers. This method, too, can be “repaired” if sender and receiver agree
upon three kinds of coins. Thus, a maximum of 27 coins or, respectively, an
average of 13.5 coins are needed.

Anna presented two options (Figs. 3.18 and 3.19).

Through division, the number to be encoded can first be represented by smaller
numbers, which can then be coded by coins. In the example, 781 would be rep-
resented by 86 coins with a value of 9 and one with a value of 7.

The second suggestion uses the conversion into the dual system. The coins
should be tied up on a string with a knot, which makes it possible to keep the order
of zeros and ones. In the follow-up discussion, the students themselves came up
with the idea of associating the 2"-digit of the binary number with the n-coin type
and of putting a corresponding coin into the bag for each digit 1. Thus, the number
781 would be coded by the coins (9)(8)(3)(2)(0). Since 2!° — 1 > 999 applies, all
numbers required by the problem can be unambiguously encrypted with a maxi-
mum of nine coins.

Bsp- J0A:0=8g %2 ..., 1.e. 86 coins with a value of 9 and one with a
ey 1Ohh BELREN 1 ¢ S Ly 1 : value of 7.
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Fig. 3.18 Anna’s first idea
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Convert the number into the dual system; tie the coins together with a string
that has a knot marking its beginning.

Fig. 3.19 Anna’s second idea
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3.7 Conclusion and Outlook

Both examples firstly show that mathematically gifted primary school children are
already capable of being mathematically creative and of developing and investi-
gating subjectively new mathematical objects. With these results, we have achieved
a main objective of our study. It also indicates the wide variety of creative products
even among the small group of students participating in this experiment.
A comparative observation furthermore shows that some products, e.g. in
Figs. 3.11, 3.12, 3.13 or 3.19, are very rare, so in comparison to the others these
products can be judged as very creative. Moreover, the students’ ideas for maxi-
mally accurate and efficient encryption algorithms can be seen as seeds of theory
building processes. It is, of course, also possible to follow up on the idea presented
in the first example, e.g. regarding algebraic properties. Therefore, the described
results and procedures also indicate further mathematical potentials beyond
creativity.

As further investigations have shown, tasks like the invention of new mathe-
matical operations may also encourage primary school students in regular classes to
be creative with mathematical objects. For instance, we asked fourth-graders in two
regular classes to invent new arithmetic operations like the ones presented above.
Almost all of them were able to meet these requirements. Mostly they combined
familiar arithmetic operations into new operations. Although the majority of these
inventions were not as complex and diverse as many inventions in the gifted group,
creative approaches were apparent. Thus, we think the tasks are suitable for initi-
ating mathematical creativity (on different levels) in almost all primary school
children. While in the free creation of mathematical objects, differences between
gifted and non-gifted students appear in the different mathematical complexity of
the invented objects, it could be possible that the purposeful creation of objects
during problem solving is only achievable for gifted students. This hypothesis
should be scrutinised in further studies.

The creation of mathematical objects at primary school age is not reducible to
the creation of mathematical operations and algorithms. Furthermore, children can
invent their own mathematical terms (e.g. special numbers like MUM- and
DAD-numbers; special geometrical shapes) and formulate their characteristics. The
area of geometrical patterns also offers numerous opportunities to create new figure
patterns, geometrical ornaments or tilings. This means that also in primary grades
and for almost all primary school students, there are many chances to be mathe-
matically creative in the sense of creating (subjectively) new mathematical objects.
Further studies with gifted students should investigate their abilities to invent dif-
ferent purposeful mathematical objects to review the embedded model of giftedness
and creativity (left part of Fig. 3.5).

The type of tasks described in this paper does not only allow for creative
mathematical action. It also creates the possibility of detailed investigations of
mathematical characteristics of the created objects. For instance, the computing
operations can be examined with regard to group axioms, commutativity or other
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algebraic features. It is also possible to investigate the relations between details of
the definition of a new operation and its algebraic characteristics. In this way,
students will be encouraged to take a stronger algebraic perspective, also on known
operations and other mathematical objects. Our studies indicate that this is possible
already for younger students.
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