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Introduction

What are the relationships between mathematical creativity and mathematical
giftedness? How could mathematical creativity contribute to a balanced develop-
ment of the child? What are the characteristics of mathematical giftedness in early
ages? What about these characteristics at university level? What teaching strategies
might enhance creative learning? How mathematical promise of young children can
be maintained and extended towards a variety of professions? These are some of the
questions addressed by this book. The book offers, among others: analyses of
substantial learning environments for supporting creativity in mathematics lessons,
discussions of a variety of strategies in problem-solving and posing, investigations
of students’ progress along years of training, and examinations of technological
tools and virtual resources meant to enhance learning with understanding. Multiple
perspectives in the interdisciplinary fields of mathematical creativity and giftedness
are developed to offer a springboard for further research. The theoretical and
empirical studies included in the book offer consistent data useful for researchers, as
well as for the teachers of the gifted in specialized or inclusive settings, at various
levels of education.
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Chapter 1
Enhancing Creative Capacities
in Mathematically-Promising Students.
Challenges and Limits

Florence Mihaela Singer

Abstract The links between research in mathematics education, psychology of
creativity and research in gifted education started to gain more attention in the last
decade, from researchers and the large public as well. The paper is intended to
provide a concise survey of these links, with a focus on: frameworks for studying
students’ creativity and giftedness in mathematics; domain specificity of creativity;
some characteristics of mathematical creativity resulting from its specificity; rela-
tionships between mathematical giftedness and creativity from a mind-and-brain
perspective; relationships between creativity, giftedness and social inclusion;
underlying connections between mathematical creativity and innovation, creativity
and metacognition, creativity, giftedness and expertise; and the teaching of
mathematically-promising students with a focus on structuring their mathematical
competencies. The paper offers also brief reviews of the chapters included in the
book, stressing on the benefits of an integrated approach of creativity and giftedness
in mathematics education.

Keywords Mathematical creativity � Mathematical giftedness
Mathematically-promising students � Problem solving � Problem posing
Domain-specific creativity � Expertise � Metacognition

1.1 Introduction: Setting the Context

A few years ago, in a comprehensive review study, Leikin (2011) identified a gap
between research in mathematics education and research in gifted education. She
noticed that in the first ten years of the twenty-first century, seven key journals in
the fields of intelligence and giftedness (American Psychologist, Creativity
Research Journal, Gifted Child Quarterly, High Ability Studies, Journal for the
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Education of the Gifted, The Journal of Secondary Gifted Education, and Review of
General Psychology) published very few articles devoted directly to mathematical
giftedness or creativity. In addition, a search of seven leading research journals in
mathematics education (Educational Studies in Mathematics, Focus on Learning
Problems in Mathematics, For the Learning of Mathematics, Journal for Research
in Mathematics Education, Journal of Mathematical Behavior, Mathematical
Thinking and Learning, and ZDM Mathematics Education) revealed that in that
same decade again only few articles were explicitly devoted to mathematical
giftedness. A small number of publications in other journals (such as Journal of
Educational Psychology, Psychological Science Journal, and Journal of Applied
Psychology) have been focused on specific issues related to problem solving and
mathematical reasoning in the gifted population, usually with a focus on creativity
(Leikin 2011). In addition, a few edited volumes had in focus these aspects (e.g.
Sriraman 2008; Leikin et al. 2009).

Things seem to have changed, however, in the last years. Thus, recently, two
new special issues of ZDM Mathematics education address the topics of mathe-
matical giftedness (Singer et al. 2017a) and psychology of mathematical creativity
(Sriraman 2017), completing the series initiated by the special issue devoted to
mathematical creativity (Leikin and Pitta-Pantazi 2013). The change is not only in
the focus, but it goes deeply into the relationship between psychology of creativity
and the applied domain-specific study of creativity and giftedness in mathematics.
Moreover, communities of practice contribute to developing these fields on a more
systematic base, and their activities were reflected in 2016, during the 13th
International Congress on Mathematical Education (ICME-13), through the Topic
Study Group 4 (TSG 4) focused on Activities for, and Research on, Mathematically
Gifted Students and TSG 29, which addressed Mathematics and Creativity. TSG 4
published a topical survey before the congress, and this current monograph builds
on the work presented in both of those TSGs during the congress.

What looked like to be a far-off goal, i.e. situating mathematics education
research within an existing canon of work in mainstream psychology (Sriraman
et al. 2013) seems to be today more tangible than ever. Moreover, the call for
interdisciplinary views appears to have become the rule rather than approaches that
request narrow (frequently ill-defined) conceptualizations. For example, the recent
developed model of the Active Concerned Citizenship and Ethical Leadership
(ACCEL) for understanding giftedness (Sternberg 2017a) covers aspects related to:
teaching for creativity; the role of science, technology, engineering, and mathe-
matics (STEM) in teaching for wisdom; the developmental nature of giftedness;
teacher education (Sternberg 2017a, b), and many other integrative perspectives.
The present book puts together views underlying, beyond the variety of approaches,
strong connections between the psychology of creativity, mathematics education,
and the study of giftedness as an interdisciplinary field.
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1.2 Frameworks for Studying Students’ Creativity
and Giftedness in Mathematics

Starting from the well-known work of Torrance (1974), researchers usually explore
mathematical creativity through the following parameters: originality, fluency, and
flexibility. Adaptations of this approach have been proposed by many researchers,
who analyzed students’ creativity in problem-posing and/or problem-solving;
usually, these approaches are contextualized by the study design. For example,
Kontorovich and Koichu suggested a framework based on four “facets”: resources,
heuristics, aptness, and social context in which problem posing occurs
(Kontorovich and Koichu 2009). A refinement of this framework integrates task
organization, knowledge base, problem posing heuristics and schemes, group
dynamics and interactions, and individual considerations of aptness as parameters
in analyzing creativity in problem-posing situations (Kontorovich et al. 2012).

Another set of studies investigated the relationship between students’ cognitive
flexibility and their abstract thinking using mathematics problem posing as a tool
for detecting creative behavior in school children (Singer and Voica 2015; Singer
et al. 2013a, b). Here, within an organizational-theory context, creativity has been
discussed in terms of cognitive flexibility, which can be conceptualized as consisting
of three primary constructs: cognitive variety, cognitive novelty, and change in
cognitive framing. In problem-posing contexts, cognitive novelty was assessed by
the “distance” from the initial problem. Cognitive variety was measured by the
extension and the differences among the posed problems starting from a given one.
Cognitive framing was assessed through the capacity of generating a pattern of
thinking for a class of problems. In this case, creativity refers to the student’s ability
to change his/her cognitive frame, or even more, to his/her ability of reframing. This
model proved effective for detecting some characteristics of mathematical creativity
less visible when using other study frameworks.

The traditional psychometric approach seems not to offer today enough con-
sistency for the study and understanding of nature and nurture of giftedness.
Scrutinizing some of the deeply held assumptions about the nature of giftedness,
Dai and Chen (2014) consider that a contextual developmental approach is more
viable than simple psychometric tests, and highlight that understanding high
potential and educating youths should be approached beyond the tensions between
the gifted-child and talent-development movements, and between excellence and
equity in a constructive and comprehensive way.

The issue of designing frameworks for the analysis and the development of
students’ creativity and students’ giftedness raised the interest not only of
researchers, but it was seen pragmatically as an issue with political-strategic
implications. Thus, some countries and states developed general frameworks for
designing differentiated learning experiences for gifted students having in view to
complement the official standards and benchmarks. For example, in the US,
Florida’s Frameworks for K-12 Gifted Learners (2005–2007) stipulate that by
graduation from K-12 education, the student identified as gifted will be able to:
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critically examine the complexity and apply investigative methodologies; create,
adapt, and assess multifaceted questions; conduct thoughtful research/exploration;
and think creatively and critically to identify and solve real-world problems. In
addition, the student identified as gifted should be trained so that become able to:
assume leadership and participatory roles in both gifted and heterogeneous group
learning situations; set and achieve personal, academic, and career goals; and
develop and deliver a variety of authentic products/performances that demonstrate
understanding (Florida’s Frameworks for K-12 Gifted Learners (2005–2007).

In some countries, strong emphasis is put on training students for the
International Mathematics Olympiad (e.g., China, Russian Federation, Korea),
while special programs are devoted to (identified) gifted students in others (e.g.
Germany, Israel, Singapore).

In other situations, communities of parents, teachers, and NGOs created groups
that assumed theoretical views on giftedness and tried to influence the perception of
the giftedness and made a plea for more attention granted to this special social
group. The uniqueness of the gifted renders them particularly vulnerable and
requires modifications in parenting, teaching and counseling in order to help these
children to develop optimally (e.g. The Columbus Group, 1991). Concluding this
section, from theoretical frameworks to ad hoc conceptual underpinnings, there is a
large gamut of approaches in discussing giftedness in relation to creativity, and the
involved special target population needs careful attention from both research and
action.

1.3 Domain Specificity of Creativity

From a cultural-anthropological view, each domain of knowledge developed a way
of thinking that is intrinsic to that domain. Therefore, it is meaningful to ask if being
creative is a general trait or it is a domain-specific feature. Various observers of the
theoretical and empirical creativity literature (e.g. Csikszentmihalyi 1988; Gardner
1993; Sternberg and Lubart 2000) assume that the debate might be settled in favor
of domain specificity.

In fact, Baer (2010), among others, provided convincing evidence that creativity
is not only content specific but is also task specific within content areas. Moreover,
research has suggested that transfer across domains is both difficult to achieve and
relatively rare (Willingham 2002, 2007). For example, a large-scale study that
looked at the possibility of transfer of practiced intellectual skills came to a very
negative conclusion. In this 6-week training study, 11,430 participants were trained
several times each week on cognitive tasks designed to improve reasoning, mem-
ory, planning, visuospatial skills, or attention. “Although improvements were
observed in every one of the cognitive tasks that were trained, no evidence was
found for transfer effects to untrained tasks, even when those tasks were cognitively
closely related” (Owen et al. 2010, p. 775).
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If creativity is domain-specific, then the assessment of creativity must also be
domain-specific. However, creativity assessment has often assumed domain gen-
erality. Thus, the most common tests of creativity have been divergent thinking
tests, and the most widely used divergent thinking tests are the Torrance tests of
creative thinking (TTCT), with its two components: figural and verbal, although
both are used as general measures of creativity (e.g. Kaufman et al. 2012). This
finding is in line with evidence Torrance himself offered showing that figural and
verbal divergent thinking scores are not correlated, and are therefore measuring two
essentially unrelated cognitive abilities. Divergent thinking may be important, but
we may need multiple measures of it, domain by domain, for it to be useful (Baer
2012).

Recently, the relationships among domain-general divergent thinking ability,
domain-specific scientific creativity, and mathematical creativity have been
explored through a study that investigated the relative influences of domain
knowledge and divergent thinking ability on scientific creativity and mathematical
creativity (Huang et al. 2017). By exposing 187 primary school sixth-graders to The
Mathematical Creativity Test (MCT) and the New Creativity Test to assess stu-
dents’ domain-general divergent thinking ability, they found that Mathematical
Creativity Test is only modestly positively correlated with the general creativity test
and mathematical achievement can effectively explain the variance in MCT per-
formance, but the creativity test cannot. These results imply that there are diverse
influences from domain knowledge and divergent thinking ability on creativity in
different domains, which, again, supports the domain-specificity of creativity.

Moreover, evaluating potential creativity of 482 children and adolescents,
Barbot et al. (2016) found that the contribution of each variance component
(thinking-process general, thinking-process specific, domain-specific, task-specific,
and measurement error) depends greatly on the task under consideration, and that
the contribution of a general creative thinking-process factor is overall limited.
Consequently, specialized thinking modalities might be the focus of identifying and
developing creativity in a domain-specific approach.

1.4 Mathematical Creativity

As new evidence-based arguments to the debate regarding general versus
domain-specific creativity incline the balance towards the second part, it makes
sense to consistently discuss mathematical creativity. As highlighted above, there is
cumulated evidence that mathematical creativity is of a special type, which dis-
tinguishes from other types of creativity. Large part of evidence comes from
problem solving studies; the literature in this area is vast, in both time extension and
quantity (e.g. Hadamard 1945; Krutetskii 1976; Leikin 2009).

Another set of evidence is brought by problem posing studies, which have
gained more terrain in the last decade. Some of these studies investigated the
relationship between students’ cognitive flexibility and their abstract thinking using
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mathematics problem posing as a tool for detecting creative behavior (Singer et al.
2011, 2013a, b; Pelczer et al. 2011). In problem-posing contexts, creativity has been
discussed in terms of cognitive variety, cognitive novelty, and change in cognitive
framing. In a problem-posing context, an indicator of cognitive variety might be the
number of different posed problems; cognitive novelty was assessed by the “dis-
tance” from the initial problem; cognitive variety was measured by the extension
and the differences among the posed problems starting from a given one. Cognitive
framing refers to the capacity of generating a pattern of thinking for a class of
problems, accompanied by the ability to make changes into that cognitive frame.
Singer and Voica (2013) found that, in PP contexts, high achieving students tend to
make incremental changes to some parameters in order to arrive at simpler and
essential forms needed in generalizing sets of data. It follows that mathematical
creativity requires abstraction and generalization, which emerge from gradual and
controlled incremental changes in cognitive framing (Singer 2012a, b).
Mathematically promising students display a need for consistency that seems to
limit their cognitive flexibility to a certain extent. A tension between the students’
tendency to maintain a built-in cognitive frame, and the possibility to overcome it
(Singer and Voica 2015; Voica and Singer 2012, 2013) is highly visible in the
experimental data. These studies revealed that, in problem-posing situations, the
students develop cognitive frames that make them cautious in changing the
parameters of their posed problems, even when they made interesting generaliza-
tions, because of the constraint they self-impose to devise mathematical problems
that are coherent and consistent.

Consequently, the training for the development of mathematical creativity
should include features that distinguish it from training for creativity development
in general. Briefly said, while in the latter, more general case, techniques are to be
used for stimulating the free development of ideas, in mathematics learning the
variation of parameters should be practiced within a variety of activities where the
processes are mindfully controlled and oriented towards abstraction and general-
ization (e.g. Singer and Voica 2015). More research is needed to address the
characteristics of mathematical creativity as compared to other types of creativity
and the consequences such studies could have on research and practice.

1.5 Relationships Between Mathematical Giftedness
and Creativity—A Mind-and-Brain Perspective

Traditionally, giftedness has been related to a high IQ. However, the IQ concept
becomes more and more controversial. Dweck (2006) supports this statement with
her research on a growth vs. a fixed mindset and its effect on student learning. In
addition, IQs do not remain stable over time. Briefly, a high IQ can be considered
necessary but not sufficient for high achievement (Nolte 2012). As Cross and Riedl
(2017) underlined, IQ testing should be reserved for finding specific forms of high
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ability and as a diagnostic tool, not as a gatekeeper that continues to perpetuate the
underrepresentation of some groups.

A generous direction in cognitive science and neuroscience brings new data to
understanding the development of mathematical talent and innovation in students of
all ages and from all backgrounds. Mathematical giftedness started to be concep-
tualized in recent decades within a context that is sensitive to modern biology,
based on studies of cognition within the discipline of educational neuroscience.
Thus for example, Woolcott (2011) discussed exceptional performance in mathe-
matics in relation to cognition and performance as a product of internal processing
and environmental connectivity of the human organism.

Research that has examined the neuropsychological processes engaged by gifted
and talented learners provides insights into how they process information, convert it
to knowledge and make connections. It also assists in understanding the creative
activity they display. These learners understand, think and know in ways that differ
qualitatively from how regular learners perform these activities (Munro 2005).

Data derived from several psychophysiological studies support an important
relationship between the specialized capacities of the right hemisphere and math-
ematical ability. Commonly, associated with giftedness is right hemisphere domi-
nance (Jin et al. 2007), with frontal asymmetry in the right cortical area as a
possible physiological marker of giftedness (Fingelkurts and Fingelkurts 2002).

The discussion is sometimes in terms of ‘neural efficiency’, where gifted func-
tioning involves a more integrated brain with greater cooperation between the
hemispheres (O’Boyle 2008), with reduced activity in certain areas as compared
with average brains when performing similar tasks—possibly implying that gifted
brains spend less time on such tasks. A more recent functional magnetic resonance
imaging (fMRI) study using mental rotation to analyze mental capacities of
mathematically gifted adolescents (Prescott et al. 2010) seems to confirm this.

Case studies of extremely gifted individuals often reveal unique patterns of
intellectual precocity and associated abnormalities in development and behavior.
The bulk of scientific inquiries provide evidence of unique patterns of right pre-
frontal cortex and inferior frontal activation implicated in gifted intelligence,
although additional studies suggest enhanced neural processing and cerebral
bilateralism (Mrazik and Dombrowski 2010).

Research literature in the area of mathematical ability at a very early age
describes various early signs of mathematical giftedness in children (e.g. Diezmann
and Watters 2000; Winner 1996). For example, Straker (1983) observed that
mathematically gifted preschoolers generally show:

…a liking for numbers including use of them in stories and rhymes; an ability to argue,
question and reason using logical connectives: if, then, so, because, either, or…;
pattern-making revealing balance or symmetry; precision in positioning toys, e.g. cars set
out in ordered rows, dolls arranged in order of size; use of sophisticated criteria for sorting
and classification; pleasure in jig-saws and other constructional toys. (Straker 1983, p. 17)

These signs, recognized in a large gamut of studies, can become abilities in
adults developing a career that value them, or not. Still, the connection between
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mathematical creativity and giftedness can be reconsidered from the perspective of
mathematical promise. The concept has been developed by the National Council of
Teachers of Mathematics (NCTM) with the purpose of maximizing variables such
as abilities, motivation, beliefs, and experiences or opportunities (Sheffield et al.
1999) among all students.

The question if giftedness and creativity are synonyms in mathematics has been
addressed by Sriraman (2005), and his answer discusses the professional and school
realms. The role of creativity in the education of the gifted has been analyzed in
numerous studies (e.g. Mann 2006; Koichu and Berman 2005; Sriraman 2003;
Chamberlin and Moon 2005; Reed 2004). Many of these studies emphasize the
interactions between creativity and the development of mathematical expertise (e.g.
Singer and Voica 2016).

Much of the empirical research explores the learning processes of mathemati-
cally talented students through problem-solving strategies, noticing their creative
approaches (e.g. Amit and Neria 2008). Equally important is the connection
between mathematical creativity and giftedness identification in relation to problem
posing (e.g. Singer et al. 2015). Problem-posing sessions have shown effective for
identifying gifted students. Voica and Singer (2014) found three characteristics that
can offer an indication of mathematical giftedness: a thorough understanding of
conveyed mathematical concepts, an ability to generalize reasoning moving
towards abstractions, and a capacity to frame and reframe content while keeping
consistency of new-created problems. In addition, the level of abstraction used to
solve a given problem was correlated with the novelty of the newly posed problems
starting from the given one; therefore, the abstraction level spontaneously used by a
child might be a good predictor of the child‘s creative potential (e.g. Pelczer et al.
2015). More research is needed to see how mathematical giftedness and creativity
mutually assist each other in children of various ages.

1.6 Creativity, Giftedness and Social Inclusion

Silverman (2013) has suggested that certain affective traits such as heightened
sensitivity, early concern with moral issues, empathy, perfectionism, social matu-
rity, and aesthetic appreciation are evident in gifted children. Beyond considering
these as features allowing giftedness identification, these traits may, in a combi-
nation of internal and situational factors, put children at psychological risk, leading
to interpersonal and psychological problems. Among the issues that may affect
gifted children are their asynchronous development, their difficulties of socializing
with peers and adults, and their own problems with self-learning (e.g. Singer et al.
2016).

There is also a special category of vulnerable students—twice-exceptional
children. These are those who possess giftedness or exceptional ability in one or
more areas in combination with special needs, a learning disability or a handicap in
other areas. They may achieve high scores on certain intelligence tests but may not
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do well in school. They may have giftedness in combination with autism, emotional
and behavioral disorders, or learning disabilities (dyscalculia, dyslexia, dysgraphia),
ADD or ADHD, visual and auditory processing anomalies, or sensory integration
and modulation disorders (Chamberlin et al. 2007).

The need for social integration and acceptance is very strong in gifted and
talented children, although frequently they seem to isolate themselves from peers.
This was identified also in many studies focusing on gifted children social inter-
actions, but also indirectly on problem-posing contexts, where students’ posed
problems reflect not only a mathematical content, but also proposer’s attitudes and
affects. Singer and Voica (2015) noticed that both the posed problems and the
behaviors displayed by the students in these studies highlighted a social dimension
(Singer and Voica 2015; Pelczer et al. 2015).

A review made by Kurup et al. (2013) suggests addressing the following aspects
in helping mathematically promising children develop their full potential: the need
for talent-appropriate stimulation that is not restricted by the chronological age of
the child (Roedell 1989); the need for counseling, acceptance and recognition of
talents by peers, parents and teachers (Gross 1998; Silverman 2002); and programs
and encouragement to aid the growth and blossoming of their special abilities (Reis
et al. 1998).

1.7 Creativity and Innovation

As noted by the US National Science Board (NSB) report, Preparing the Next
Generation of STEM Innovators, giving every student the opportunity to achieve
his or her full potential is critical as we “will increasingly rely on talented and
motivated individuals who will comprise the vanguard of scientific and techno-
logical innovation” (NSB 2010).

Even for moderately gifted students, research shows that approximately 40–50%
of traditional classroom material could be eliminated for targeted gifted students in
one or more of content areas, among which is mathematics (Reis et al. 1998). Care
must be taken not to skip critical material, however, but to ensure that students are
engaged and passionate about the mathematics they are learning, and are not simply
memorizing algorithms or accelerating so they can finish taking required mathe-
matics classes early.

The joint NAGC/NCTM/NCSM publication: Using the Common Core State
Standards for Mathematics with Gifted and Advanced Learners has the following
recommendation:

In order to support mathematically advanced students and to develop students who have the
expertise, perseverance, creativity and willingness to take risks and recover from failure,
which is necessary for them to become mathematics innovators, we propose that a ninth
Standard for Mathematical Practice be added for the development of promising mathe-
matics students – a standard on mathematical creativity and innovation: Solve problems in
novel ways and pose new mathematical questions of interest to investigate. The
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characteristics of the new proposed standard would be that students are encouraged and
supported in taking risks, embracing challenge, solving problems in a variety of ways,
posing new mathematical questions of interest to investigate, and being passionate about
mathematical investigations. (Johnsen and Sheffield 2012, pp. 15–16)

1.8 Creativity, Giftedness and Expertise

The fact that the interplay between interests, activities, the environment, and
mathematical explorations affect students’ mathematical achievement leads to
question whether there is a need to distinguish between giftedness and expertise.
The need for expertise is a useful analog for many seemingly domain-general
theories of creativity. It is true that some degree of expertise is important in many
domains—creativity requires some level of knowledge and skill in most domains—
but the content of such expertise varies by domain.

The formal school learning aims to expose new generations to the knowledge
domains as they have been developed along the cultural history of humanity, by
large contributions of communities of practice. As a product of human culture, each
domain of knowledge has structured a specific way of thinking and, therefore, a
domain-specific training becomes necessary to foster specialized cognitive mech-
anisms that are commonly activated in the expert of a domain.

Glaser (1988) characterizes expertise on six cognitive dimensions: knowledge
organization, complexity of problem-solving representation, changing thinking
schemes, goal-oriented procedural knowledge, automatic procedures, and
metacognition. In terms of knowledge structure and organization, the expert pos-
sesses knowledge organizations that can integrate and structure new information
items so that they are rapidly selected from memory in structured units, while
novices hold isolated, frequently disconnected elements of knowledge. Regarding
the complexity of problem-solving representation, the novice approaches a problem
starting from its surface features, while the expert makes inferences and identifies
principles underlying the surface structures. In changing thinking schemes, the
expert amends his/her own knowledge theories and develops schemes that facilitate
more advanced thinking, while the novice manifests rigidity in changing a thinking
scheme. In terms of goal-oriented procedural knowledge, the expert displays
functional purpose-oriented knowledge, while a novice holds information without
clearly understanding the applicability conditions. In terms of automation that
reduces the concentration of attention, an expert can focus attention that alternates
between basic capacity and higher levels of strategic thinking and understanding,
using automated procedures to achieve good performance, while novices have
difficulty in sharing attention, and they frequently get lost in details.

An important attribute of an expert in a domain is to identify problems and to
tackle them in a knowledgeable manner. In a recent study, Singer and Voica (2016)
found that expertise and creativity mutually support each other in the process of
building a solution for a nonstandard problem. Consequently, in order to get
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individual relevant data (for example, to avoid the situation in which one solves a
problem because he/she internalized automatized strategies for that category of
problems and this is taken as giftedness) the identification of creativity should take
place based on tasks situated in the proximal range of a person’s expertise and
exceeding his/her actual level of expertise, at the time of analysis.

1.9 Creativity and Metacognition

Various experiments that exposed students to problem-posing sessions have shown
that participant children become able to: find alternative pathways, predict out-
comes or generalizations, note failure in understanding, comeback or plan ahead in
order to improve own knowledge. All these are parts of metacognitive capacity
developed within the learning process. The metacognitive dimension manifested in
a couple of ways. Thus, most of the students were able to analyze critically their
own proposals and their own thinking mechanisms, which made them aware of
their strengths, and to use these strengths to reinforce a well-defined cognitive
frame for a problem. The results show that in the problem-posing process, students
develop a genuine philosophy, which refers both to practical actions—embodied in
their problem-posing strategies—and to the qualitative form of the posed problems.
Typically, students start from a model to which they apply certain constraints based
on the philosophy they developed, and they then spontaneously try to get a problem
that is mathematically consistent and coherent (e.g. Voica and Singer 2012).
Moreover, they get a sense of difficulty or beauty of a problem.

Having in view this capability for metacognitive approaches, Sheffield (1994)
recommended that teachers of gifted and talented mathematics students should
convey a sense of the beauty and wonder of mathematics in their enthusiasm for
both mathematics and for teaching; have confidence in their own mathematical
abilities; admit mistakes and enjoy learning along with the students; be continu-
ously involved in professional development; and be willing to let students take over
the direction and responsibility for their own learning.

1.10 Mathematical Competencies and Teaching
Mathematically Promising Students

Research has shown that students have preferences for some sub-areas of mathe-
matics, or for some problem-solving strategies, which can be relatively easy
identified through problem-posing activities. Students’ preferences reveal some
students’ strengths on which teachers can focus in order to develop their mathe-
matical competencies (Singer 2012b; Voica and Singer 2012; Pelczer et al. 2015;
Singer and Voica 2015).
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In general terms, the mathematics-specific competencies to be developed in
students along their school stages refer to: identifying relationships among math-
ematical concepts/objects; interpreting quantitative, qualitative, structural and
contextual data included in mathematical statements; using algorithms and math-
ematical concepts to characterize a given situation locally or globally; expressing
the quantitative or qualitative mathematical features of a contextual situation in
order to model it mathematically; analyzing problem situations to discover strate-
gies, to find and optimize solutions; and generalizing properties by modifying a
given context or by improving or generalizing algorithms (Singer 2006). These
formulations can be particularized, taking into account adequate mathematical
content, for a specific age and curriculum trajectory. The competencies acquisition
along schooling creates the premises for mathematically promising students to
orient their potential towards more expertise in approaching problem situations.

Taking into account the specificity of mathematical creativity, the training for its
development should include features that distinguish it from the development of
creativity in general. Briefly said, while in the latter, more general case, techniques
are to be used for stimulating the free development of ideas, in mathematics the
variation of parameters should be practiced within a variety of activities where the
processes are mindfully controlled and oriented towards abstraction and general-
ization (Singer and Voica 2015).

Thus, adequate tasks should develop a domain-specific intuition that favors
expert behavior. Through multiple representations, students arrive at seeing their
own mistakes, contextualizing them, and explaining them. A focus should be on
developing metacognitive abilities in students. From this perspective, the use of
problem-posing sessions in teaching is beneficial for students’ personal develop-
ment. Data show that mathematically promising students manifest a strong need for
social interaction, which is frequently hidden in certain circumstances.
Consequently, social interaction should be part of the teaching-learning process in
the class in a consistent way, for example, by means of activities involving posing
and solving problems organized in pairs or in small research-teams.

Sriraman (2017) noticed that advances in the study of the psychology of cre-
ativity can be consistently linked with mathematics education. Educating for a
growth mindset in learning is crucial for the development of creativity.

Our contemporary dynamic society, exposed to unpredictable changes, needs
better ways to train students for a changing world. As a practice of learning and
thinking, problem posing may play an essential role in stimulating creative
approaches and thus preparing students for more dynamic use of their knowledge.
Considering that problem-posing research is an emerging force within mathematics
education, Singer et al. (2013, 2015) advocate that the use of problem posing in
classroom settings: can enhance students’ engagement in authentic mathematical
activity; develop students’ creativity; may generate a positive effect on students’
problem-solving achievement and/or their attitudes toward mathematics; and open
students’ thinking towards new ideas and approaches (Singer et al. 2011, 2013a, b;
Ellerton et al. 2015).
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The use of multiple representations together with strategies to move from one
representation to another can provide explicit scaffolding for the transformation of
students’ intuitive ideas into domain-specific concepts and procedures, leading to an
increase in expertise. These are more related to the cognitive part. Still, other
aspects should be equally highlighted. Teachers need a clear goal for gifted edu-
cation to act educating gifted students purposeful. Purpose is needed for transfor-
mational leadership, risk-taking capacity, and skills in ethical thinking. In the
dynamic and inter-connected contemporary world, excellence and creativity should
be combined with ethics.

The era of information and communication technology creates new social and
physical environments and needs. Living in a world where interdependency and
dynamics become main features of the global society, young generations have to
face unpredictable changes they should learn to cope with. In these conditions,
rethinking teaching effectiveness becomes a necessity. There are some capabilities
that technology cannot provide yet, and which people need in the present and future
society, briefly: higher order synthetic thinking, decision-making capacity under
sometimes hardly-predictable situations, transfer capability for solving new prob-
lems in new contexts, and a set of values that orient personal behavior in social (and
communication) contexts. Within this process, as Tirri (2017) underlined, teachers
are seen as key agents in making a significant change in identifying and teaching
the gifted. Researchers in gifted education should take the leadership in this change
and commit to cooperation with schools.

1.11 Brief Overview of This Book

Within the above discussions, the present book synthesizes the developments
presented during two topic-study groups at the 13th International Congress on
Mathematics Education (ICME), which took place in Hamburg, Germany, in July
2016. The Topic Study Group 4 (TSG 4), which was focused on Activities for, and
Research on, Mathematically Gifted Students and the Topic Study Group 29 (TSG
29), which addressed Mathematics and Creativity, put together their theories,
research, policies and practices to generate a complex integrated approach
addressing the issues of giftedness and creativity in mathematics.

The book is structured into four parts, advancing from theoretical underpinnings
to practical matters: (1) Frameworks for studying mathematical creativity and
giftedness; (2) Characteristics of students with exceptional mathematical promise;
(3) Teaching strategies to foster creative learning; and (4) Tasks and techniques to
enhance creative capacities.

A brief presentation of the book content follows, emphasizing some lines of
thought in connection with the main ideas illustrated above.

An old issue is brought into the contemporary debate by Pitta-Pantazi, Kattou
and Christou when discussing four components of Mathematical Creativity:
Product, Person, Process and Press (Pitta-Pantazi et al. 2018, this volume). This
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chapter offers a broad view of various research studies conducted in the field of
mathematical creativity which investigated the adaptation of the 1961 Rhodes’ 4P
model of creativity involving: person (mathematical ability, intelligence, general
creative ability, age, gender, culture, personality traits and biographical experi-
ences); product (a novel and useful idea or concept); process (the methodology, or
the stages of the creative process); press (teaching environment and the teachers’
role, activities and tasks triggering mathematical creativity, new technologies that
support mathematical creativity, students interaction/communication). The authors
stress that interconnections of the 4Ps are as important as its components. Although
these strands can be studied in isolation, when their overlapping and interconnec-
tions are considered, the quality of the analysis is much higher and data interpre-
tation leads to conclusions that are relevant for understanding creativity of various
groups or individuals.

Under the sign of this conclusion, in the next paper of the volume, Assmus and
Fritzlar (2018, this volume) investigate mathematically gifted primary students in
their process of creation, in problem-solving and problem-posing contexts. They
found that gifted second graders are able to create new mathematical objects. Even if
their products are not necessarily true math objects, the chapter contributes with a
new vision of young students’ capacities. Reviewing a large gamut of situations,
Assmus and Fritzlar discuss three instances of the relationship between creativity
and giftedness: (mathematical) creativity as a precondition for (mathematical) gift-
edness, (mathematical) creativity as a possible component of mathematical gifted-
ness, and (mathematical) creativity as a possible consequence of mathematical
giftedness, illustrating each instance with examples and theoretical extrapolations.
The authors opt for an embedded model of giftedness and creativity in which cre-
ativity and giftedness are seen as competence of a person, based on analyzing and
confronting data resulting from two categories of samples: primary students gifted
and not gifted, who have been exposed to the same types of tasks. Their study also
emphasize the idea that tasks like the invention of new mathematical operations
encourage primary school students in regular classes being creative with mathe-
matical objects, making stronger an algebraic perspective, even in early grades.

To what extent parameters such as age and training are relevant for the quality of
newly created products may seem to have a clear answer. However, it seems that
things are not so obvious, and a careful analysis performed by Voica and Singer
(2018, this volume) reveal a framework to study creativity by investigating cog-
nitive variety in rich-challenging tasks. Groups of students of different ages and
studies (from primary to university) selected based on their interest in mathematics
(winners of mathematics competitions, students of faculty of mathematics, pro-
fessional mathematicians) were asked to start from an image rich in mathematical
properties, and generate as many problems related to the given input as possible.
The authors found that cognitive variety seems randomly distributed among the
tested groups and that, when talking about mathematical creativity, more sophis-
ticated parameters, such as validity, complexity and topic variety, as well as the
potential of respondents’ products to break a well-internalized frame have to be
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taken into account. All those are to be balanced against the person’s level of
expertise in the specified domain.

Consequently, when dealing with concepts situated at the interaction between
human knowledge and human psychology, many precautions and careful analysis
are needed in order to formulate generalizable conclusions. A study investigating
students’ performances in multiple-solution tasks (MSTs) brings converging evi-
dence for viewing domain-specificity of mathematical creativity as
subdomain-specificity, e.g., in the contexts of geometry, algebra, or arithmetic
separately (Joklitschke et al. 2018, this volume). Students’ performances along
three different MSTs from different mathematical domains such as geometry and
algebra show that fluency, flexibility, and originality of the solutions differ con-
sistently between the three subdomains of mathematics, and, therefore, precaution
is needed when talking about general mathematical creativity.

The second part of the book starts with a discussion on the characteristics of
mathematical giftedness in early primary school age. Here, Assmus (2018, this
volume) proposes a comparative study that involves mathematically gifted children
and those who are not. The results of the conducted study suggest that the cognitive
abilities of mathematically gifted and non-gifted second graders differ in the
examined areas. According to her conclusions, the following abilities represent
characteristics of mathematical giftedness in early primary school children: ability
to memorize mathematical issues by drawing on identified structures, ability to
construct and use mathematical structures, ability to switch between modes of
representation, ability to reverse lines of thought, ability to capture complex
structures and work with them, and ability to use relational concepts and connec-
tions. A supportive environment can also have a favorable effect, and therefore, the
construct of mathematical giftedness is not reducible to cognitive factors.

Characteristics of mathematically gifted students, such as: unusual quickness in
learning; understanding, and applying mathematical ideas, even grasping new ideas
before the teacher has finished explaining them; high capability for identifying
regularities and complex structures in patterns, extracting them from empirical
contexts, and characterizing them in general terms; ability to generalize and transfer
mathematical ideas to detect general relationships when observing specific cases;
ability to invert mental procedures of mathematical reasoning; flexibility to change
from one problem-solving strategy to another if the new one seems to be more
useful or easier; development of efficient strategies of problem-solving processes,
such as efficiency in using analogical paths in solving various problems—these are
characteristics recommended in the specific literature and identified by Gutierrez
et al. (2018, this volume) in a gifted student. Through the case of a nine-year-old
5th grader in a primary school, who worked on an experimental pre-algebra
teaching unit, the authors test the model of cognitive demand by measuring stu-
dent’s level of intellectual effort as the experiment advanced.

A comprehensive discussion, with intricacies strongly related to cognitive psy-
chology, applied psychology and education is proposed by Nolte (2018, this vol-
ume). Her chapter discusses whether the special learning conditions of
twice-exceptional students need a differentiated approach than what is usually
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applied. Furthermore, by means of examples of affected students, the implications
for learning processes are illustrated. The paper extends beyond presenting
empirical studies, by making a complex discussion of the interactions between
mathematical giftedness occurring together with learning disabilities, attention
deficit disorders (ADD), attention deficit disorders with hyperactivity (ADHD), and
autism spectrum disorders (ASD). The chapter offers an overview of systemic
approaches towards giftedness and learning disabilities and disorders, a model for
acquiring mathematical competencies including barriers, a thorough discussion
about twice exceptionality within the field of mathematics education, about
underachievement as a collective term for different disorders and their implications
in mathematically promising students, about learning disabilities related to reading,
writing, and spelling which affect mathematics learning, including weaknesses in
perception as a special learning disability, and explaining why each of them may
cause problems to students. In addition, the study raises attention to care-givers and
tutors about the masking effect used by these children to hide their giftedness and
provides approaches to support students in these conditions. Using four exemplar
cases, Nolte succeeds to illustrate the complex aspects presented above and dis-
cussed in a large gamut of psychological and educational literature. The study is a
good example of how psychology and education can work together for the benefit
of clarifying issues in both fields and for finding adequate solutions to cure/improve
children’s behaviors in a variety of situations.

The third part of the volume emphasizes some teaching strategies to foster
creative learning. The research reports presented in this part investigate the effect of
various tools on students’ creative capacities.

Daher and Anabousy (2018, this volume) discuss flexibility of pre-service
teachers in problem posing in different environments and conclude that technology,
as well as what-if-not strategy, positively affect students’ problem-posing products.
However, the combination of technology and the what-if-not strategy positively
affected the participants’ flexibility in problem posing more than any one of the two
tools alone. This finding, qualitatively as well as quantitatively checked, makes a
plea for using technology mindfully for a true benefit for students.

Art can also be an important source for creative approaches, stimulating students
in multicultural classrooms to engage in mathematics activities. The use of
everyday objects like ornaments and the creation of ornaments make the students
free to experiment and indulge their imagination (Moraová et al. 2018, this vol-
ume). The study found that if pre-service and in-service teachers face a culturally
heterogeneous classroom, they tend to be very creative in planning their lessons and
at the same time encourage creativity of their students. Thus, cultural heterogeneity
may be perceived as an advantage as it may result in breaking out of stereotypes of
mathematics classrooms. Moreover, the paper brings into discussion a contempo-
rary issue of teaching: working with unmotivated students, in socially heteroge-
neous cultures, with migrant students and students from different socio-cultural
backgrounds, and provides an effective solution to that. In these circumstances,
teachers are naturally motivated to use their creative potential looking for the
mathematics that can be discovered and taught in that particular environment and to
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create substantial learning environments in which the cultural background, the
environment are brought into accessible mathematical expressions.

Still, mathematics itself can offer strong inputs for stimulating creative approa-
ches of both teachers and students. This is demonstrated by the study proposed by
Friedlander and Tabach (2018, this volume). The learning of algebraic procedures
in middle-school algebra is usually perceived as an algorithmic activity, achieved
by performing sequences of short drill-and-practice tasks, which have little to do
with creative mathematical thinking. The authors provide five instances addressing
procedural and conceptual learning, and examine methods of assessing their
potential to induce higher-order, and creative thinking in all students. The occur-
rence of original thinking and students’ fluency, originality and flexibility is related
to the development of the following mathematical capacities: representing, mod-
eling, interpreting, reversed thinking, generating examples, generalizing, justifying
and proving, and thinking divergently.

The last part of the book contains chapters that highlight the benefits of an
integrated approach towards creativity and giftedness. Although very different
concerning structure and the target population taken into account for investigation,
the papers included in this part contain relevant examples of tasks and techniques
that can foster students’ creativity from kindergarten to university.

The first study compares the methods three mathematically gifted university
students used for the resolution of a problem, their strategies, and their transitions
from geometrical to algebraic means and vice versa. Poulos and Mamona-Downs
(2018, this volume) provided students with a problem to solve, which required the
use of software for generating its solution. Observing the solvers’ efforts and
recording their conjectures in very detailed way, the authors succeeded not only to
reveal the solving strategies of these gifted students, but to enrich our understanding
of students’ attitudes towards ‘doing mathematics’ in general.

Frequently, high achievers are confronting competitions that reveal their math-
ematical competencies. Veilande et al. (2018, this volume) propose a paper that
analyzes the works of students who have participated in at least three Open
Mathematical Olympiads in the 6th, 8th and 9th grades. A set of algebra and
number theory problems, whose solving requires high levels of abstract thinking,
algebraic reasoning, and an accurate use of the mathematical language were
selected for this research. The data collected revealed an interesting result: although
very competitive and theoretically well trained, these students showed deficiencies
of algebra knowledge in a significant part of their works. Therefore a question is
legitimate: Does repeated participation at mathematical Olympiads ensure students’
progress in problem-solving? The authors conclude that students need mentors who
would help them broaden their problem-solving competencies. In addition, teach-
ers’ professionalism is a key prerequisite for developing students’ argumentation
and justification skills.

If we think that the winners of mathematical Olympiads may become leaders in
various domains of social-economical life as adults, then the adequate training of
their capacities is more and more important concerning their structured actual
specialized knowledge and the development of values and positive attitudes as well.
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Special programs for gifted youth, student attendance in interest groups and in
clubs, parental support for talent development and collaboration between parents
and school are crucial to develop the mathematical abilities of gifted students.

Finally, we move further from Olympiads complex problems to complex
open-ended tasks to enrich mathematical experiences of kindergarten students. The
chapter proposed by Freiman (2018, this volume) stresses again that at a very young
age, some children already manifest unusually strong precocious mathematical
abilities that need to be fully developed and nurtured in school. This last chapter
investigates in what way a kindergarten curriculum can offer all students a richer
mathematical experience by means of open-ended and complex tasks. The data
collected during the experiment show challenging situations in terms of the
mathematics structures the kindergarten students create during such activities and
the strategies they use. While some students struggle with increasing complexity of
tasks but still remain engaged and try to overcome obstacles, others seem to exhibit
more structured (in terms of mathematical relationships), systematic (in terms of
problem-solving strategies), and abstract (in terms of mathematical symbolism)
approaches. In addition, all students, even at a very young age, can benefit from a
classroom culture of questioning, investigating, communicating, and reflecting on
more advanced and meaningful mathematics that can help develop their mathe-
matical minds.

This last paper urges us to think that using more systematic and efficient
strategies and encouraging self-control and self-efficacy in young children can
further contribute to high mathematics achievement in higher grades. For the
readers, it helps increase understanding of the potential of open and complex tasks
to enhance the development of mathematical high achievers from a very early age.
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Chapter 2
Mathematical Creativity: Product,
Person, Process and Press

Demetra Pitta-Pantazi, Maria Kattou and Constantinos Christou

Abstract In this chapter we provide an overview of the state-of-the-art in math-
ematical creativity. To do so, we will use as a road map the 4Ps theory proposed by
Rhodes in which four strands are used to capture the definition of creativity. In
particular, (1) product: the communication of a unique, novel and useful idea or
concept; (2) person: cognitive abilities, personality traits and biographical experi-
ences; (3) process: the methodology that produces a creative product; and (4) press:
the environment where creative ideas are produced. In this chapter we will first
discuss the four strands in the framework of general creativity and then transfer and
adapt these considerations to the field of mathematics education. In an attempt to
define and describe mathematical creativity we will present several examples drawn
from various research studies, and highlight some of the main findings, hoping to
offer a springboard for further developments. We suggest that although these
strands can be studied in isolation, it is only when their overlap and interconnec-
tions are considered that we may get a clearer picture of the complex concept of
creativity.

Keywords Mathematical creativity � Creative product � Creative person
Creative process � Creative press

2.1 Introduction

Although the issue of creativity is often addressed in an interdisciplinary way,
interest in the field has increased especially in the last 30 years (Hersh and
John-Steiner 2017). As Hersh and John-Steiner (2017) stated, research on creativity
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moved from the traditional perspective of genius, to wider themes of inquiry, such
as creative behavior in everyday life. The same change is true in the field of
mathematics education. Until about a decade ago, very little research had been
undertaken in the field of mathematics education (Leikin and Sriraman 2017). In
recent years, there has been renewed interest in creativity, which has brought about
new and very significant knowledge. Part of the reason for this increased interest in
the mathematics education community may have been the shift of interest that is
observed in various mathematics curricula and international organizations towards
creative and critical thinking (Australian Curriculum, Assessment and Reporting
Authority 2010; Mann 2005; National Council of Teachers of Mathematics 2014;
OECD 2014). Societies nowadays seem to realize that it is not enough for indi-
viduals to hold a vast amount of information, efficiently process it and deeply
understand it; they need individuals who will also be highly creative, offer solutions
to unsolved problems, and create advancements which will lead to a better life.

In order to move towards schools and educational systems that will be able to
enhance individual students’ mathematical creativity, we need to clarify what we
mean by this term, understand its constituent factors, and have a clear idea of what
we have learned from research so far. In the present chapter we do not attempt a
summative review or a meta-synthesis of what is known; instead, we will present
and discuss various studies which investigated general creativity and then transfer
and adapt these considerations in the field of mathematics education through studies
which investigated mathematical creativity. Of course, in such a short document we
are not claiming that our text will be exhaustive or comprehensive. However, we
feel that to make any significant advancements in the field we need some investi-
gation of what we have learned so far about mathematical creativity. For the sake of
clarity, we want to note that in the sections which follow, the term “creativity” is
used as a synonym to “general creativity” and in the cases where we refer to
“mathematical creativity” this term refers to studies which specifically investigated
“mathematical creativity”.

2.2 The Components of Creativity

Interestingly enough, even back in 1961, Rhodes stressed the necessity for preci-
sion in defining creativity. Speaking about this need, Rhodes (1961) collected
different definitions of creativity and observed that the definitions were not mutually
exclusive; rather they overlap and intertwine. He claimed that creativity is not
simple nor unidimensional; hence, it cannot be interpreted as a single unity but
rather as a composition of different factors. Thus, in his seminal paper, Rhodes
(1961) concluded with a framework presented in a Venn diagram (Fig. 2.1), in
which four strands exist—product, person, process and press—to conceptualize
creativity.
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Product: the communication of a unique, novel and useful idea or concept.
Person, as a human being: cognitive abilities, personality traits and biographical
experiences.
Process that is operating in creating an idea: the methodology that produces a
creative product.
Press: the relationship between human beings and their environment.

Although the four strands of the model have unique identity and exist separately,
it is only in unity that the four strands operate functionally; hence, their interrela-
tions and overlapping demand a more comprehensive examination of the concept
(Isaksen et al. 1993). Rhodes’ framework provides a simple way to organize our
understanding of creativity and furthermore to visualize the whole system (Isaksen
et al. 2011). Researchers were urged to distinguish the strands of creativity and then
to carefully classify the knowledge that is built through years of research into the
four strands.

Several theoretical models that followed were based on Rhodes’model but offered
different terms to describe the 4Ps. For example, Mooney (1963) replaced the term
“press” with the term “environment”, whereas, Dellas and Gaier (1970) used the
terms: “the nature of the individual”, “the actual expression of the creative acts and
continuing process during creation”, “the nature and quality of product created”, “the
environmental factors and press that tend to initiate and foster creativity”. The COCO
model proposed byTreffinger (1991) is also a variation of the 4Psmodel. In particular,
it describes creative behavior as the result of interactions between the following
elements: Characteristics, Operations, Context and Outcomes. Treffinger (1991)
defined as characteristics, the personality of the creative person; as operations, the
strategies and techniques that are used to solve problems and make decisions; as
context, the cultural framework and the interactions of the environment, as well as the
natural environment in which the individual acts; as outcomes, the products and
concepts derived from a person’s effort. In other words, Treffinger (1991), as well as

Fig. 2.1 Rhodes’ 4P model
about creativity
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using different terms for the 4Ps, gave a different orientation to their meaning; for
instance, “Person” or “Characteristics” in this model, describe only an individual’s
personality without any reference to other abilities or aptitudes.

More than fifty years later, the 4Ps model—as well as its variations—is much
appreciated by researchers in the area of creativity (Babij 2001), and we feel that it
has a lot to offer if we apply it in the field of mathematics education. Indeed, the 4Ps
model manages to connect different definitions of creativity, creating a flexible
framework that gives meaning to the multidimensional nature of the concept
(Isaksen et al. 1993).

It is important to clarify that for the purpose of the present paper we use the 4P
model as the basis for conceptual clarity and the structure of an investigation of the
state-of-the-art of research on mathematical creativity and not as a model/tool for
identifying creative ability or creative individuals. Our attempt is to offer a broad
view of research studies that have been done in these four strands which may serve
as a springboard for further research in mathematical creativity which may also
bring strongly together these four strands. We suggest that it is crucial in mathe-
matics education to investigate the interrelationship of these four strands and for
researchers to become more specific regarding the types of individuals and types of
specific environments which may enhance their creative processes and products.

What follows is first a presentation of each of the 4Ps accompanied by theo-
retical and empirical pieces of evidence.

2.3 Product

The starting point of all research effort about creativity is analysis of the creative
product, given that the creative product is the public face of creativity, the tangible
form of the whole process (Cropley 2006). Therefore, two questions emerge: Which
are the factors/characteristics that differentiate creative products from non-creative
ones? How can we effectively evaluate how creative a product is?

In response to the above questions, several researchers focused on the production
of definitions (“products definitions” or “product bias”) and the establishment of
criteria useful to assess the creative product (Runco 2007). The majority of defi-
nitions agreed that innovation, relevance and utility characterize the creative pro-
duct (e.g. Plucker and Beghetto 2004; Sternberg and Lubart 2000). In particular, in
the field of mathematics education, researchers stressed the importance of creative
ideas being mathematically correct in order to fulfil their purpose and also be useful
for the solution of mathematical problems (Chamberlin and Moon 2005). A number
of researchers invested also in other elements that may characterize the creative
product, such as elaborateness, appropriateness and the desire of mathematically
creative people to dissent from commonly accepted principles and solutions (Klavir
and Gorodetsky 2011).

Research studies which concentrated on the creative product dealt also with what
was distinctive about it, and how it might be assessed. It appears that the majority of
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studies in mathematics education used Torrance’s (1974) definition, who claims
that creativity may be assessed based on originality, fluency, flexibility, and elab-
oration. Mathematics educators seem mainly to have used three of the four criteria:
originality, fluency and flexibility as they are explained below (Klavir and
Gorodetsky 2009; Leikin and Lev 2007; Pitta-Pantazi et al. 2011).

Originality of responses is probably the predominant characteristic to be found in
most definitions of creativity, and this is often used as a synonym by those who are
not familiar with research in the field (Mann et al. 2017). Leikin (2008) argued that
mathematical responses should be original, rare and appropriate to the mathematical
problem, while Shriki (2010) argued that the ability to generalize or to find an
original proof or the discovery of new theorems are also creative products. Mann
et al. (2017) added that “mathematical processes, procedures, and algorithms also
can be highly original” (p. 61). Leikin and her colleagues (Leikin and Kloss 2011;
Levav-Waynberg and Lekin 2012) suggested that originality determines creativity
in a stronger way than fluency and flexibility. Leikin (2009b) also suggested that
originality is rather an internal, unique characteristic of creativity.

Fluency captures the speed and accuracy of producing a large number of dif-
ferent responses (Klavir and Gorodetsky 2009; Mann et al. 2017). According to
Mann et al. (2017), fluent thinkers are able to generate many ideas, possibilities and
possible approaches to find solutions to a problem. Hence, several researchers feel
that fluency is often the springboard for the production of an original response
(Mumford 2003; Vidal 2005), given that the more ideas that are proposed, the more
possibilities there are for an original one to emerge.

Flexibility is the ability to provide different responses to a question (Vidal 2005),
by breaking a preconceived solution path and having the freedom to develop ideas
and solutions (Mann et al. 2017). For this to be achieved, an individual needs to be
able to look at the same thing from a different perspective, to transform represen-
tations, reverse procedures or even redefine ideas and transform the whole problem
(or situation) in order to find a new different way of thinking (Klavir and
Gorodetsky 2009; Mann et al. 2017; Sheffield 2009).

Even though the three components of the creative product are broadly used in the
field of mathematical creativity, we feel that the existence of a measurement method
or a tool that can measure them jointly without overlap or vagueness will be a great
contribution. Such attempt was made by Leikin (2009b), who proposed a model
that contains operational definitions and a corresponding scoring scheme for the
evaluation of mathematical creativity.

2.4 Person

The question “When is a person mathematically creative?” is difficult to answer,
and for this reason no model has been proposed for identifying a creative individual
based solely on the person’s characteristics without taking into consideration his/her
performance in creative tasks. However, indications about cognitive characteristics,
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personality traits and biographical experiences are considered as pieces of evidence
to characterize a person as creative (Davis 2004). In particular, Davis (2004) carried
out a meta-analysis of over 200 adjectives and descriptions and reached 16 cate-
gories of frequently met traits in creative people.

In the following section, we present the most frequently discussed traits of
mathematically creative people that we found in the literature: mathematical ability,
intelligence, general creativity, age, gender, culture and personality traits. Of
course, we do not suggest that an individual will possess all the characteristics that
are suggested in the literature, or that if an individual who possesses one or more of
these characteristics will be mathematically creative (Davis 2004).

2.4.1 Mathematical Ability

A number of studies investigated the relationship between mathematical ability and
mathematical creativity (Haylock 1997; Kattou et al. 2013; Mann 2009).

Most researchers seem to believe that a strong mathematical background is
related to mathematical creativity (Kattou et al. 2013; Mann 2009; Sheffield 2009).
Using structural equation modeling analysis, we (Kattou et al. 2013) concluded that
mathematical creativity is a subcomponent of mathematical ability. Mann (2009)
found that mathematical achievement was the stronger predictor for mathematical
creativity, accounting for 23% of variance. Similarly, Sak and Maker (2006)
investigated the effect of knowledge on mathematical creativity’s components. This
research work concluded that students’ knowledge made a significant contribution
to the interpretation of their fluency, flexibility and originality (Sak and Maker
2006). In the same vein, Bahar and Maker (2011) attempted to find a correlation
between students’ performance in an achievement test and in a divergent thinking
test. The results of this study revealed a strong correlation between the perfor-
mances of students in the two tests. The strong relationship between mathematical
ability and mathematical creativity could be explained by the fact that excellent
content knowledge facilitates people’s ability to recall and process information, and
also to make connections between different concepts and representations (Sheffield
2009).

Moreover, creativity has been highlighted as an important factor in giftedness
(e.g. Leikin 2009a) and has gained an important place in the context of gifted
education (Kaufman et al. 2012). Kaufman et al. (2012) concluded that creativity
should be included as part of a gifted assessment battery, while the measurement of
mathematical creativity is often proposed in the instruments used to identify
mathematical giftedness (Leikin 2009a).

Furthermore, some researchers warn that educators need to be cautious and not
overemphasize mathematical procedures. For instance, Haylock (1997) claimed that
too much emphasis on and exposure to specific algorithms may limit students’
mathematical creativity, since it might guide students to well-practiced procedures.
The assumption is that if a person knows well how things are working in a field, it will
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be difficult to escape from the already known and propose new ideas. This view is
also supported by other researchers, who believe that knowledge might restrict
individuals in stereotyped solutions, or to an erroneous transfer of knowledge to new
situations (Weisberg 1999, 2006). However, these claims do not contradict the
aforementioned research results about the connection between mathematical ability
and mathematical creativity. It is not anticipated that a person who has substantial
mathematical knowledge but is only able to follow procedures and algorithms will
present creative behaviors. Similarly, individuals who can effectively handle and
apply knowledge by breaking a preconceived solution path and develop ideas and
solutions are those who are anticipated to be creative as well (Mann et al. 2017).

2.4.2 Intelligence

The results regarding the relationship between creativity and intelligence are
conflicting (Leikin 2008) and the nature of their interaction is still debatable
(Kaufman and Plucker 2011). Various investigations questioned the existence of
this relationship and the level of their association, either concluding that there is a
statistically significant relation between intelligence and creativity or finding that
intelligence and creativity are unrelated.

Getzels and Jackson (1962) were among the first researchers who claimed that
creativity and intelligence are unconnected structures. In their work, the researchers
compared two groups of middle-class students—the first group had scored well on
intelligence tests, the second group on creativity tests—and they found that the
differences between the two groups were negligible. Following a similar experi-
mental procedure, Wallach and Kogan (1965) identified a low correlation index
among participants’ performance in a creative and an intelligence tool, repeating the
conclusion that the two concepts are not related. Similar results were also obtained
by Silvia (2008) and Kim (2008). In particular, Silvia (2008) meta-analyzed the
data of Wallach and Kogan’s research study and noted that the relationship between
creativity and intelligence is low. As for Kim’s work (2008), she made a
meta-analysis of numerous studies and found a negligible correlation between
creativity and intelligence, suggesting that students with low IQ can be creative as
well, and vice versa. However, the relationship that she identified between the two
constructs was positive (r = .17).

In contrast to the above results, that deal with the relationship between creativity
and intelligence, contemporary studies of mathematical creativity verified the
existence of a relationship between the two constructs. Through a confirmatory
factor analysis which investigated factors that may predict mathematical creativity,
we (Kattou et al. 2015) concluded that intelligence predicts mathematical creativity
to a smaller extent than mathematical ability and general creativity. We explained
that intelligence seems to be a necessary but not a sufficient condition for the
emergence of mathematical creativity. Livne and Milgram (2006) also found that
intelligence contributed in a small way to mathematical creativity.
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Moreover, other researchers took the existence of a relationship between cre-
ativity and intelligence for granted, and focused on characterizing the way in which
the two concepts are linked. For example, in the Structure of Intellect model pro-
posed by Guilford (1967), creativity was considered as an element of intelligence,
while in Sternberg’s theory (Sternberg and Lubart 1996) intelligence is amongst the
variables that are necessary for creativity to appear.

There have also been researchers who reached conclusions combining the above
views. One such theory is the “Threshold theory of intelligence” (Torrance, 1962),
which proposes that creativity and intelligence are separate entities, but there is a
relationship between them. In particular, creativity and intelligence are related to
each other under a cut-off point of intelligence (usually 120) (Runco 2007;
Sternberg and O’Hara 1999). When a person’s IQ is over 120, the relationship
between creativity and intelligence is negligible, and both concepts seem to be
independent mental abilities (Runco 2007).

Although we looked back on a scientific tradition of over 50 years of investi-
gation of the relationship between creativity and intelligence, the value and sig-
nificance of this relationship is still under debate. According to Kim (2008), the
discrepancies in the results can be partially explained by the heterogeneity of the
measures employed and the populations studied. Indeed, we can see from
the aforementioned results that findings differ according to the type of creativity and
intelligence that are measured: General creativity researchers (e.g. Getzels and
Jackson 1962) concluded that there is no relationship between creativity and intel-
ligence, whereas mathematical creativity researchers seem to agree that such a
relationship exists, although its strength is low to moderate (e.g. Kattou et al. 2015).
Furthermore, the design and type of study as well as the sampling procedures
employed might have led to contradictory results. Additionally, the relationship
between intelligence and creativity in different populations may also be different,
giving rise to discrepancies that appear in literature.

2.4.3 General Creativity

With the term general creativity, researchers refer to the universal ability which
contributes to all creative achievements in any cognitive area (Plucker and Zabelina
2009). Accordingly, a domain-specific creativity perspective assumes that creativity
cannot be understood without reference to the domain in which it takes place
(Plucker and Zabelina 2009). In the last decade, various scholarly attempts have
been directed towards examining the extent to which creativity is a domain-general
or a domain-specific ability. Again, it appears that there is no consensus amongst
researchers (Kaufman, Cole and Baer 2009; Plucker and Zabelina 2009). Kaufman
et al. (2009), while measuring individuals’ self-reported creativity, found that the
model that best described the relationship between seven general thematic area

34 D. Pitta-Pantazi et al.



factors with general creativity was the “Amusement Park Theoretical Model”. This
was a hierarchical model which suggested some initial requirements common to all
creative activity followed by seven different large domains (or General Thematic
Areas). In this study, Math/Science and Problem solving had the lowest relationship
with general creativity.

Regarding the relationship between general and specific creativity (in mathe-
matics), recent studies (Hong and Milgram, 2010; Kattou et al. 2015; Livne and
Milgram 2006) confirmed that the former ability may contribute to the interpreta-
tion of the latter. For instance, in one of our studies (Kattou et al. 2015) a
mathematical creativity and a general creativity test was administered to students
10–12 years old. We (Kattou et al. 2015) aimed to investigate in which manner
students’ performance on a domain-general creativity test was related to their
performance in a domain-specific creativity test. Results indicated that general
creativity was an important prerequisite for the emergence of an individual’s cre-
ative potential in the domain of mathematics. According to our results, general
creativity enables individuals to combine ideas and consider alternative approaches
to a situation in original ways (Kattou et al. 2015). Along the same lines were the
results by Hong and Milgram (2010), who worked with preschoolers, aged
3–5 years. They found a statistically significant effect of general creativity on
mathematical creativity. Milgram and Hong (2009) suggested that both general and
specific creativity should be taken into account. In particular, they stated that
general creativity cannot explain the kind of thinking that leads to the production of
mathematical ideas, but that it is a prerequisite for the emergence of creativity in
mathematics (Milgram and Hong 2009).

Despite these findings, it appears that mathematical creativity is not a part of
general creativity; rather it is a specialized ability that is not transferable in other
domains. In one of our studies (Kattou et al. 2015) we verified through the
exploitation of different statistical approaches the domain-specificity of creativity.
Through correlation analysis we found a low relationship between different creative
instruments, whereas through crosstabs analysis we concluded that a person who is
creative, using as indicator his/her performance in one of the instruments, is not
necessarily identified as creative by another instrument. These results were also
verified with a confirmatory factor analysis which indicated that the model that best
fitted to the data was the one suggesting that different types of creativity exist. The
interpretation of these results is that educators should not anticipate that a student
who is creative in mathematics is necessarily creative in one or more other domains,
and vice versa. Accordingly, low creativity in one field does not automatically
exclude an individual from being creative in the subject of mathematics.

2.4.4 Age

Steinberg (2013) provided evidence that it is possible to identify mathematical
creativity in young students as early as the age of four. One case study that she
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conducted showed that a 4-year-old child who was not only able to solve mathe-
matical problems, but also to invent problems for himself and find mathematical
situations in his environment to attend to. Similarly, in their research work with 3 to
5-year-old students, Hong and Milgram (2010) concluded that there are age dif-
ferences. The older students were able to propose more divergent solutions than the
younger ones, leading the researchers to conclude that preschoolers’ experience
(including schooling and culture) affect their mathematical creativity.

Although creative outcomes might be obvious from early years, the relationship
between age and creativity is not clear. According to Kim and Pierce (2013), there
are no large scale studies which allow us to reach solid conclusions about the
relationship between creativity and age, across an entire lifespan. In addition to this,
the results of these studies were often conflicting. Torrance (1968) claimed that the
development of creativity follows a U shaped course. He claimed that although in
early life children are creative, around the age of 10 years this creativity diminishes
and reaches its lowest point, while later on, as individuals become older, creativity
again increases. A similar conclusion was reached by Charles and Runco (2001),
who asserted that students in fourth grade are at the top of their creative capacity,
while there is a steady decline in the fluency, flexibility and originality of fifth
graders. Smith and Carlsson (1983, 1985) concluded that creative development
follows a linear trajectory, in other words, children become more creative as they
get older. Kim’s (2011) study was based on the results from a large number of
individuals, from kindergarten through to grade 12 students and adults, who
responded to the Torrance Tests of Creativity. She found that after secondary
school, although individuals have enhanced cognitive capacities, social pressures
such as the conformity of a profession or a convergent body of knowledge limits
their creativity.

Sak and Maker (2006), when investigating mathematical creativity and its
relation to students’ age, found that the progression followed a plateau-hill-little
top-plateau course. At the age of 8–9 years students’ creativity appeared to plateau,
from 9 to 10 years it increased, then from 10 to 11 years there was another plateau
before it increased again. In one of our studies in which different age groups
participated (Kattou et al. 2016) we found that as students became older, they had
stronger mathematical background and were more creative than their younger peers.
Although as a result it appeared that age significantly contributed to their mathe-
matical creative potential, it is possible that this was not a direct effect but rather an
indirect effect caused by the greater educational experience that the older children
had.

2.4.5 Gender

“…gender differences in creativity has not become an important focus in either the
creativity or psychology of women literatures” (Baer and Kaufman, 2008, p. 76).
Nevertheless, these limited research attempts conducted using test scores, creative
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achievements and self-reported creativity questionnaires, produced conflicting
results (Baer and Kaufman 2008). Baer and Kaufman (2008) wrote an interesting
meta-analysis where they investigated the result of approximately 80 studies
dealing with this topic. They found that some studies showed no gender differences
while others had mixed results. They found that most studies did not find any
differences between males and females, and that the cases where one sex outper-
formed the other were counter-balanced by studies showing the opposite. Their
final conclusion was that it was unlikely that any meta-analysis would show any
significant gender differences. The picture regarding specifically mathematics cre-
ativity appears to be equally hazy.

The whole issue of creativity and gender becomes even more complex when one
tries to untangle the various factors that may come into play—biological differ-
ences, aptitudes, motivations and opportunities. We agree with Baer and Kaufman
(2008) that, in order to get a clearer picture regarding gender and mathematical
creativity, we would need more than mathematical creativity tests. We will need to
use multiple sources of information regarding aptitude, motivation, environment
and opportunities offered to the individuals under examination.

The issue of gender in mathematical creativity research is limited. Among the
relevant research is some conducted over 50 years ago. In particular, Evans (1964),
Jensen (1973) and Prouse (1964) reported that a majority of females outscored their
male peers in a mathematical creative test. Evans (1964) found significant gender
differences only in the seventh and eighth grades, whereas no gender differences
were found in the fifth and sixth grades. As for Jensen’s (1973) work, she found a
significant difference favoring females in one of the three schools involved in her
study. Similarly, Prouse (1964) concluded with a significant mean difference in
creativity scores, favoring females.

In the last fifteen years research interest regarding gender has reawakened. Mann
(2005) compared seventh graders on the “Creative Ability in Mathematics Test”,
and he reported that females scored 6.5 points higher than males. On the contrary,
Walia (2012), Ganihar and Wajiha (2009) found no gender differences in relation to
mathematical creativity. However, Walia (2012) did observe that girls were found
to be better than boys with regard to flexibility.

2.4.6 Culture

According to Csikszentmihalyi (1999), creativity should be perceived as a cultural
and social phenomenon and not simply as a mental process. Rudowicz (2003)
stated that, although since the 1960s researchers acknowledged that creativity was
not simply a mental process but was influenced by culture, they did not seem to
appreciate the extent of this influence. The reason may have been that the majority
of researchers investigating this topic were psychologists.

From an extensive review that Rudowicz (2003) conducted on creativity and
culture, she reached the following conclusions: (a) culture has a significant
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influence on the conceptualization of creativity; (b) the relationship between cre-
ativity and cultural factors is very complex; (c) the relationship between culture and
creativity is not only reciprocal but also involves other historical, societal and
individual factors; (d) creativity is a universal human characteristic; and (e) cre-
ativity is a multifaceted phenomenon, therefore its manifestations need to be
understood from the perspective of the individual involved.

Fewer studies have been conducted concentrating specifically on mathematical
creativity and its connections to different cultures. In a study by Leikin et al. (2013),
culturally-based aspects of the creative person were examined. One thousand one
hundred teachers from six countries (Cyprus, India, Israel, Latvia, Mexico and
Romania) responded to a questionnaire about issues regarding: (a) who is a creative
person; (b) who is a creative student; (c) who is a creative mathematics teacher; and
(d) how is creativity related to culture. The results of this study suggested that,
although all countries acknowledge the importance of creativity in mathematics,
there were differences in their perceptions and approaches to teaching creativity.

In another study, Ma and Rapee (2014), investigating the mathematical perfor-
mance and mathematical creativity of students from different cultures, showed that
although Chinese students had a better performance in mathematics, their
Australian peers with an Anglo-Saxon background had a higher score in the cre-
ativity test. These Chinese students were born in Mainland China, had studied there
for at least 10 years, and had been living in Australia for an average 1 year and
3 months.

2.4.7 Personality Traits

Most researchers agree that creative personalities are independent and autonomous
and are most often aware of their capabilities (Selby et al. 2005). This independence
allows them to find their own way of solving problems and go beyond the known
and accepted methods of working (Hersh and John-Steiner 2017). They are also
characterized by imagination, intuition, open mindedness and a desire to gain new
experiences (Selby et al. 2005). Sternberg (2006) suggested that creative person-
alities are also characterized by persistence, eagerness to overcome obstacles,
curiosity, self-regulation, imagination and the confidence to take risks.

In mathematics education, Klavir and Gorodetsky (2009) and Freiman and
Sriraman (2011) suggested that creative individuals are interested in: deeper
understanding of known results; discovery of new mathematical concepts; diverse
methods of working; properties and connections between areas that at first glance
appear to be completely independent from each other; inventive, practical and
economical solutions. Therefore, open-mindedness, independence, curiosity, per-
severance and conciseness were amongst the most frequently identified character-
istics of creative individuals in mathematics. According to Mann et al. (2017),
creative persons are also characterized by courage: “Without that courage, poten-
tially creative mathematical ideas remain unknown and unexplored” (p. 59).
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2.5 Process

“Researching the creative product may not provide full understanding of the
development of creativity, or may not reflect the creativity used to reach that
product” (Savic et al. 2017, p. 25). Indeed, when we judge the creativity of an
individual we have to pay attention to the process by which this individual arrived
at the results (Pelczer and Rodriguez 2011). The term “creative process” is used to
describe stages, actions and behaviors that are active during the generation of an
idea (Johnson and Carruthers 2006). However, the creative process is neither easily
understandable nor searchable. Hence, questions like: “What makes a process
creative? In what way does a creative process vary from non-creative processes?”
still remain unanswered.

Attempting to understand mathematical creativity, several mathematics educa-
tors tried to describe the creative process in mathematics. Thus, theoretical models
that describe stages of approaching a creative task and/or a problem have been
proposed. The majority of these models are linear whereas some are non-linear.
Additionally, some models are specifically for mathematical creativity and others
have been adopted from general creativity. However, we feel that demystifying the
creative process is not an easy target, due to the fact that it is an internalized
procedure that is obvious through the actions and descriptions provided by the
solver. Nevertheless, investigating the creative process allows us to identify ways
and methods for its improvement (Kilgour 2006).

2.5.1 Stages of the Creative Process

Graham Wallas (1926) was one of the first researchers who attempted to model the
creative process. Through seven discrete stages of encounter, preparation, con-
centration, incubation, illumination, verification and persuasion, Wallas (1926)
offered a model for the creative process. At the first stage, that of encounter, the
existence of a problematic situation is determined, while at the second stage, that of
preparation, the solver tries to understand and explore the problematic situation
(Johnson and Carruthers 2006). During concentration, the solver is working con-
sciously in order to find a solution to the problem, whereas during incubation, work
is taking place subconsciously (Johnson and Carruthers 2006). A promising idea
suddenly comes into conscious awareness at the stage of illumination (Davis and
Rimm 2004). At the stage of verification, tests, configurations and the development
of ideas are taking place (Johnson and Carruthers 2006). At the last stage, per-
suasion, the solver is trying to convince others that the idea or solution he/she
proposes is effective for the purpose it has been created for. A similar model was
proposed by Osborn (1963). His stages were the following: orientation, preparation,
analysis, ideation (in 1953, “hypothesis”), incubation, synthesis and evaluation (in
1953, “verification”). At the orientation stage, the person identifies the problem and
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analyzes it into sub-problems, in order to collect relevant data and information for
solving it. At the analysis stage, the solver is retrieving relevant information, and
during ideation alternative ideas are identified. At the fifth stage, that of incubation,
the person stops consciously dealing with the target. During synthesis, the solver
combines the elements he/she collects, and at the last stage he/she evaluates and
verifies the ideas that have emerged, according to the initial aims. Osborn also
claimed that the creative process “usually includes some or all” (p. 115) of the
phases. Although there are some similarities between Wallas’ (1926) and Osborn’s
(1963) stages, there are also some differences. In Osborn’s version (1963) the stage
of concentration does not appear, and he provides two other stages (analysis and
ideation); he replaces illumination with synthesis, and the persuasion stage where
one is trying to convince others is missing. In later years Wallas’ (1926) model was
narrowed down to four phases—preparation, incubation, illumination and verifi-
cation—and was used as a baseline for similar attempts to conceptualize the cre-
ative process. Cropley and Urban (2000) claimed that the application of the creative
idea was absent from Wallas’ (1926) model. For this reason, they proposed a model
of seven stages to incorporate application in the creative process: preparation,
information (learning or reminding of expertise), incubation, illumination, verifi-
cation, communication (presentation to other people, receiving feedback) and val-
idation (assessing the relevance and effectiveness of solution by judges, e.g.
teachers). During the two last stages, the requisite characteristic of application is
taking place.

Wallas’ (1926) short model was also adopted in the field of mathematics edu-
cation (e.g. Liljedhal 2004; Sriraman 2004). In particular, Wallas’ (1926) first stage,
distinguished by hard, purposeful and conscious work, was characterized by
Poincare (1948) as preliminary and by Hadamard (1945) as initiation, due to the
fact that the person retrieves prior knowledge and experience in order to find the
solution to a problematic situation. If the solver is unable to come up with a
solution, then conscious work on the problem terminates. At this stage the solution
of the problem is treated at an unconscious level (Hadamard 1945). This is the stage
of incubation, which is directly connected to the conscious procedure of the pre-
vious stage. The third stage is characterized by the sudden appearance of the
solution as a combination of conscious and unconscious mind function. Hadamard
(1945) named this step illuminatory. The creative process is not completed at the
third stage, but at a fourth stage, which follows. At the fourth stage, expression and
communication of the result is taking place, through the verification of accuracy and
utilization of the solution, either for the expansion or the exploitation of the idea
(Sriraman 2008). Along the same lines, Sriraman (2004) found that mathemati-
cians’ creative processes follow Wallas’ (1926) four-stage model of
preparation-incubation-illumination-verification.

Liljedhal (2013) explored the nature of illumination in greater depth, and tried to
distinguish it from other mathematical experiences. In doing so, he tried to compare
and contrast the AHA! experiences of preservice teachers with those of prominent
mathematicians. He found that although these two populations manifest creativity
differently, the AHA! experiences are clearly related to affective aspects.
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Although linear models have earned great acceptance in the field, some
researchers are still not satisfied with them (Lubart 2001). In contrast to linear
models that describe a fixed sequence of sub-processes, researchers recently sug-
gested that this type of models is insufficient to represent the complexity of creative
processes. On the contrary, non-linear models in which there is no fixed starting
point and where the transition from one stage to another is according to the solver’s
needs are proposed.

A non-linear heuristic model was proposed by Sheffield (2009), in which five
stages are presented: investigating, relating, creating, evaluating and communicat-
ing. In particular, the stage of investigation refers to an in-depth study of the
available information and relevant mathematical concepts and ideas. The stage of
relation is defined as the process of comparing ideas, identifying similarities and
differences and combining information. At the creation stage, individuals find
solutions or identify new ideas. During evaluation students are reflecting on the
proposed solutions and confirming the success of the targets that were set in the first
place. The communication stage refers to the description and explanation of ideas
and strategies. According to Sheffield (2009), an individual may start from various
points on this model and proceed in a non-linear way to reach a creative solution. For
example an individual may relate the problem to previous solved problems, inves-
tigate possible approaches, reach a creative solution, evaluate this solution, com-
municate the results, create other related problems and communicate these to others.

2.6 Press

The creation of a creative product and the interaction of a creative person and a
creative process do not occur in a vacuum. These interactions and the results of
these interactions occur in a certain environment, which is defined as press.
Csikszentmihalyi (1999) and Nuessel, Stewart and Cedeño (2001) explained that
creativity appears in a social context, and is assessed by cultural and social criteria.
Hence, it is impossible to separate creativity from the context in which it takes place
(Basadur and Hausdorf 1996).

Goldin (2002) argued that for the development of a creative environment which
supports higher order mathematical thinking, one needs to consider the design of a
creative environment, the implementation of appropriate teaching interventions and
the selection of suitable tasks. Yerushalmy (2009) also suggested that the use of
new technologies might be another factor that may support mathematical creativity.

2.6.1 Teaching Environment and the Teachers’ Role

As Gnedenko (1991, in Freiman and Sriraman 2011) said, everyone has innate
creativity that seems to be restricted by the educational system, implying that the
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presence or absence of certain factors in school affects students’ creativity. Wheeler
et al. (2002) believe that teachers are the key to encouraging and developing
creative thinking in school. A teacher might be able to encourage the development
of mathematical creativity if he/she is able to recognize creative behavior and
knows the way to cultivate it (Beghetto and Kaufman 2009). Moreover, it is
important for the teacher to be persuaded about the importance of creativity in
enhancing mathematical understanding (Leikin 2009a). Hence, teachers should be
aware in which ways creativity is related to the mathematics curriculum (Boden
2001) and feel safe (mathematically and pedagogically) to implement corre-
sponding activities in the classroom (Leikin 2009a).

Since creativity in mathematics can be improved through appropriate teaching
methods (Hershkovitz et al. 2009), the teacher’s role is important: during the
selection of activities, in their implementation in the classroom, and in the orga-
nization of students’ work (Freiman 2009). In particular, teachers should involve
students in interesting, creative investigations that engage their interest and
curiosity without limiting them in standard tasks with typical solutions, where they
merely implement rules and algorithms (Mann 2006). At the same time, teachers
should create an emotionally safe climate, where mistakes are not critisized (Goldin
2009; Koichu and Orey 2010; Sheffield 2009). Teaching environments should
allow students to have the freedom to express their opinions and exchange ideas
with their peers (Sriraman 2009). Furthermore, teachers should encourage all stu-
dents to think (Freiman 2009), take risks in order to find solutions that are not
directly perceived (Sriraman 2009), and look for different solutions (Presmeg
2003).

2.6.2 Activities and Tasks Triggering Mathematical
Creativity

Exploring what sort of tasks trigger the emergence of a creative product has been
one of the main lines of research regarding creativity. Among mathematics edu-
cation researchers, there appears to be some consensus that inquiry-oriented
instruction, exploratory learning and generally speaking problem solving environ-
ments support and increase creativity (Silver 1997). Researchers explored the
impact of a variety of activities and found that the following types of activity have a
positive impact on the development of mathematical creativity: mathematical
investigations (Leikin 2014), open-ended approaches (Kwon et al. 2006), and
modeling problems (Chamberlin and Moon 2005; Coxbill et al. 2013; Wessels
2014). Furthermore, daily life scenarios that allow students to decide on the way to
work and how to present the results are considered as great opportunities for
revealing creative ability (Palsdottir and Sriraman 2017). Leikin and Lev (2007)
argued strongly for, and demonstrated convincingly, that multiple solution tasks
offer ample opportunities to individuals to reach creative products.
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Many researchers suggested that problem posing is a powerful tool for identi-
fying and assessing mathematical creativity (Kontorovich et al. 2011). Voica and
Singer (2013) built on this idea and put forward another type of task; they claimed
that problem modification is an additional form of problem posing, offering indi-
viduals the opportunity to produce coherent and consistent, creative problems.
Haylock (1997) also suggested that redefinition may be another type of task which
offers the possibility to recognize students’ mathematical creativity and also help
them overcome fixation.

2.6.3 New Technologies that Support Mathematical
Creativity

“Technology has always been part of the creative process. […] Supportive tech-
nologies can become the potter’s wheel and mandolin of creativity—opening new
media of expression and enabling compelling performances” (Shneiderman 1999,
p. 119). Although numerous studies have explored the impact of technology on
mathematical understanding, there are not that many which investigated the rela-
tionship between technology and mathematical creativity.

Instant feedback, speed, range of information, interactivity and personalization
are some of the facilities that new technologies offer, motivating users to think
creatively in a short time (Yang and Chin 1996). Furthermore, technology enables
individuals to make a pool of ideas, discard the ones that did not work, edit or revise
some of them and finally present the best ones, engaging learners in the creative
process (Loveless et al. 2006). Moreover, technology offers the opportunity to shift
between different perspectives; in other words, to exchange representations or views
of the same construct. This opportunity enables the solver to redefine a situation, to
see and give alternative interpretations of familiar objects, and reach a creative
product (Guilford 1959). As technology provides the opportunity of
testing-retesting a concept or an idea, it enables learners to construct their knowl-
edge in meaningful ways through reflection, application and interaction (Jang 2006;
Macdonald et al. 2001).

A few studies that we were able to trace seem to agree that technology can
support the development of mathematical creativity (Yerushalmy 2009; Yushau
et al. 2005). Writing about creativity in a technological environment, Yerushalmy
(2009) argued that creativity is obvious through individuals’ ability to conjecture, to
go beyond the known, to explore situations, to take initiatives by asking, arguing,
explaining, and disputing. In one of our studies we (Kattou et al. 2012) we found
that technology provides learners with the opportunity to engage in activities that
may otherwise be unattainable. For instance, learners can observe and interact with
mathematical concepts which are difficult to visualize or understand without the
use of technology (Idriset al. 2010). Moreover, technology enables learners to
propose more solutions, using different mathematical ideas (Kattou et al. 2012).
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We (Kattou et al. 2012) argued that, participants’ fluency increased due to the
reduction of the time needed to find, write or draw the solution. As for flexibility,
the easy alternation of representations as well as the opportunity to elaborate and
edit a mathematical idea motivated participants to think flexibly. Originality of
ideas emerged through the fluent and flexible thinking, since quantity of solutions
may embrace quality of solutions (Kattou et al. 2012). In addition to this, in a study
by Sophocleous and Pitta-Pantazi (2011) we investigated whether primary school
students’ creative abilities improved while working with interactive 3D geometry
software. Our results suggested that students’ creative abilities improved, mainly
due to the opportunities the software offered them to imagine, synthesize and
elaborate. However, it needs to be stressed that the way in which technology is
used, the mathematical concept it addresses, the way in which the lessons are
conducted, and the type of participants involved are only some of the factors that
affect the impact of technology on students’ creativity. Therefore, there is no simple
or straightforward answer as to the impact of technology.

2.6.4 Students Interaction/Communication

Students’ interactions are especially important in the development of creativity
(Selby et al. 2005). Indeed, John-Steiner (2000) and Neumann (2007), through their
observations of creative individual’s work in various fields, concluded that coop-
eration and social interactions affected an individual’s creative ability. Similar
conclusions were reached both by Sriraman (2009) and Shriki (2010). In particular,
Sriraman (2009) conducted interviews with five eminent mathematicians, who
mentioned the role of social interactions in enhancing creative work. Shriki (2010)
reported that human interactions support the development of creativity, due to the
fact that creative ideas are developed mainly through the exchange of ideas.
Interactions between people with common interests or motivation, and communi-
cation and discussion of mathematical ideas might inspire students to reflect and
organize their thinking (NCTM 2000; Shriki 2010). This is possible because people
organized in groups might build on each other’s ideas or expand seemingly
insignificant ideas in more creative ways (Makel and Plucker 2007). Therefore, it is
proposed that leaners should be given opportunities to communicate and discuss
mathematical concepts and ideas (NCTM 2000; Shriki 2010; Sriraman 2005).

2.7 Epilogue

The discussion above has revealed that over the past decades, significant progress
has been made in the investigation of mathematical creativity. Rhode’s 4Ps
framework provided a simple way to organize our presentation of the research
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efforts in the domain of mathematical creativity. In particular, research efforts in the
domain of mathematical creativity have focused: on the identification of cognitive
or personality characteristics (e.g. Freiman and Sriraman 2011; Klavir and
Gorodetsky 2009); on the description of stages that define the creative process (e.g.
Sheffield 2009); on the description of the creative outcome (e.g. Chamberlin and
Moon 2005); and on the identification of environments that encourage creativity
(e.g. Goldin 2002; Kleiman 2005; Yerushalmy 2009). Through this review, factors
that might enhance mathematical creativity have been revealed. In particular, the
awareness of cognitive characteristics that might empower the creative ability, as
well as the sub-processes students follow in order to find different and original
solutions, provides teachers and educators with “educational equipment” regarding
the dimensions they should invest in during their lessons.

Although, in our discussion we reviewed the four facets of creativity—person,
product, process and press - separately, the real challenge is to consider the 4Ps as a
whole. Taking into consideration the complexity and complicity of the concept of
mathematical creativity, unidimensional approaches should be avoided since they
are not giving a coherent picture of the concept (Batey 2012). Until now, most
research studies concentrated on one or two of the four facets of creativity. For
example, in order to examine the characteristics of the creative person, researchers
identified their creativity through their products (such as solutions in a test) (e.g.
Kattou et al. 2016). Hence, we feel that questions remain open, and we cannot fully
fathom creativity unless we bring the 4Ps together. The creative process cannot be
addressed without reference to the creative person, as in his/her mind a complex
system of cognitive skills, personal factors, motivation, cognitive style, strategies
and metacognitive skills, work together to lead to creative behaviors. At the same
time, the process cannot be seen independently of the outcome, since the latter is
what will be judged and used to assess the success or failure of the creative effort.
Along the same line of argument, the environment will determine the relevance and
effectiveness of the process or its outcome. According to Batey (2012), the
investigation of each separate facet might provide indications about the nature of
creativity, however, if we take into account the interactions between its compo-
nents, we will have additional clues for a comprehensive definition (Batey, 2012).
Given the importance of considering the 4Ps as a whole, a key priority for research
in the next decade must be to search for overlaps, interconnections and synergies
between these 4Ps. In particular, we need more research studies which will describe
the students’ profile and the impact the specific learning environments have on their
creative processes and products. Not all individuals are the same and one size does
not fit all, thus, we need to identify the differences in individuals and explore the
impact of carefully designed interventions have on their way of thinking, approa-
ches and products.

The conduction of meta-analysis studies may also contribute towards the better
visualisation of the interconnections of the 4Ps. The investigation of what we have
learned and what we need to explore and work on in the future may be revealed.
Having as a guideline the connections that have already been made between
mathematical creativity and its various factors, researchers can avoid repetition of

2 Mathematical Creativity: Product, Person, Process and Press 45



similar studies and concentrate on finding new connections and extensions of
theoretical and empirical information. Thus, different perspectives of the concept of
mathematical creativity might offer a springboard for further development.

Furthermore, in our venture to explore interconnections and synergies between
these 4Ps new research designs, methodologies and tools may also be needed. It is
encouraging that in recent years we have seen the topic of creativity being explored
through new methodologies and tools, such as neuropsychological (Cropley et al.
2017; Lev and Leikin 2017) and eye tracking (Schindler et al. 2016). These new
methodological approaches seem to open new, promising perspectives for the
exploration of the creative person, press, process and product. They allow us to
zoom-in and explore interrelationships and connections which were inaccessible to
us in the past.

This chapter offered a broad view of various research studies conducted in the
field of mathematical creativity which investigated the person, process, product, and
press. We believe the interconnections of the 4Ps open new avenues for research
studies in mathematical creativity and we hope that this chapter is a small step
towards this direction.
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Chapter 3
Mathematical Giftedness and Creativity
in Primary Grades

Daniela Assmus and Torsten Fritzlar

Abstract Creativity is often seen as a characteristic or a variety of content-specific
giftedness, but also as an independent, more general kind of giftedness. In the first
part of this article, we will discuss some key questions on mathematical giftedness,
creativity and theoretical connections between the two constructs. Subsequently, we
will specify these considerations with regard to primary students. The main ques-
tion of the second part of the paper is how creativity can manifest itself in math-
ematical activities of gifted primary students. Generally, mathematical creativity is
assumed to be closely linked to problem solving and problem posing; for mathe-
matically experienced people both processes are embedded in theory building
processes. Also primary students can vary given problems and solve problems that
usually require only little mathematical knowledge. Moreover, mathematically
gifted primary students are able to create new mathematical objects. We will
describe types and examples of such invention processes in detail.

Keywords Content-specific giftedness � Embedded model of giftedness and
creativity � Mathematical giftedness � Problem solving � Problem posing
Theory building processes

3.1 Introduction

Creativity in the domain of mathematics has met with increasing interest in recent
years. Nevertheless, primary school students have not been a focus of research up to
now. This may be related to the fact that on the one hand, domain-related
knowledge is regarded as an essential prerequisite for creative action (Silver 1997;
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Weisberg 1999), and that on the other hand, the mathematics-specific knowledge
base in the primary school age is usually still very small. Mathematically gifted
primary students may be an exception, as they are expected to have a higher level of
experience and knowledge due to their special abilities and their frequently large
specific interest. Therefore, we consider this special group to be particularly suitable
for exploring mathematical creativity at primary school age and for investigating
possible occasions for creative mathematical action.

In the scientific literature giftedness and creativity are seen as related in many
different ways. Therefore, in the first part of this paper, we will initially consider
both constructs and especially their connection in detail.

PART I

3.2 (Mathematical) Giftedness

In relevant literature, there is no standardised definition of giftedness; neither in
general nor especially for the domain of mathematics. Not only is there unclarity
regarding the definition of this term, but there are also a number of similar (e.g.
talent, expertise) or connected terms (e.g. special abilities, high achievement,
creativity). In this context, Ziegler (2008, p. 14) speaks of a “Babylonian language
chaos” (translation by the authors), which makes a theoretical approach to math-
ematical giftedness extremely difficult.

From a superordinate perspective, there are three key questions regarding a
construct of mathematical giftedness:

• Does the construct of mathematical giftedness describe extraordinary mathe-
matical achievements or rather just the potentials for especially valuable (sub-
sequent) achievements in the field of mathematics?

• Is mathematical giftedness an expression of specific cognitive characteristics or
is it, at least for the main part, a result of high general intelligence?

• Is mathematical giftedness a monolithic construct or are there different profiles
of giftedness? (cf. Wieczerkowski et al. 2000).

3.2.1 Giftedness: Potentials and Achievements

It is possible to distinguish the numerous definition approaches for the construct of
giftedness based on the roles ascribed to the extraordinary achievements accom-
plished by the individual. If these are considered preconditions for a person to be
described as gifted, they are referred to as performance-oriented definitions. If
giftedness, however, is conceptualised as a potential for superior performance, one
can speak of competence-oriented definitions.
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With regard to children and adolescents, competence-oriented definitions pre-
dominate; with adults, a greater priority is given to documented achievements. For
instance, Mayer (2005, p. 439) understands “giftedness as an age-specific term that
refers to potential for the beginning stage, achievement for the intermediate stage
and eminence for the advanced stage.”

From our point of view, a competence-oriented definition of giftedness is also
appropriate for the domain of mathematics and, specifically, for studying giftedness
at primary school age, because especially young children cannot possess the
knowledge and experiences needed for extraordinary mathematical achievements.

However, this perspective leads to significant (theoretical and practical) diffi-
culties concerning the diagnosis of giftedness because only achievements can be
measured empirically. That is partly why Sternberg (1998) came up with his
concept of developing expertise, which was specified by Fritzlar (2015) for the
domain of mathematics.

3.2.2 Mathematical Giftedness and General Intelligence

Since the beginning of the 20th century, there has been a more intense theoretical
and empirical discussion on the construct of giftedness. Among others due to the
Terman study, the view of giftedness has been widened and multi-dimensional
models have been created, on the one hand based on the recognition of
domain-specific talents [e.g. Munich Model of Giftedness (Heller 2010) or
Differentiated Model of Giftedness and Talent (Gagné 1985, 2003)], and on the
other hand based on the inclusion of further personal and contextual characteristics
[e.g. Three-Rings Conception by Renzulli (1986)].

Since these kinds of models mostly only differentiate between intellectual and
non-intellectual areas, it remains open at first to what extent an independent
mathematical giftedness exists. The answer to this question depends on one’s
understanding of mathematics in particular. If, for example, mathematical
achievements are recorded using tasks which hardly differ from items used in
intelligence tests and for which it is mainly essential to be fast and accurate
(whereby, incidentally, the latter is exclusively measured by the test developer’s
horizon of expectation, Kießwetter 1992), it is not surprising if the dimensions of
mathematical achievements hardly differ from those of general (test) intelligence
(Zimmermann 1992).

Tests on school achievements and study capability tend to be more
subject-specific. In a study by Benbow, almost 300 mathematically gifted and a
little more than 150 linguistically gifted thirteen-year-olds were first identified
based on the SAT—they belonged to the best 0.01% of their age group. As a next
step, their achievements were compared using different intelligence and ability tests.
Only 16 boys and 2 girls belonged to both groups, the others showed significant
group differences in almost all areas of ability, with group membership and not
gender having the biggest influence on the test results (Benbow and Minor 1990).
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On this basis, the idea of a general intellectual giftedness that includes a mathe-
matical giftedness cannot be kept.

Especially interesting for studies focusing on primary school age seems a study
by Nolte, where children of third grade work both on a specially developed math-
ematics test as well as on an intelligence test which correlates strongly with grades in
mathematics. In this whole group of more than 1600 girls and boys of nine years, the
results from the intelligence and mathematics tests correlate with −0.34. However,
this relation decreased for children who obtained particularly good results in the
mathematics test. The rather weak statistical correlation and its further decrease can
partly be expected because of the (increasing) selectivity and the (decreasing) sample
size. Nevertheless, it seems reasonable to assume intelligence test results and
mathematical potential correlate based on the total population, but a special math-
ematical giftedness cannot be derived from the IQ (Nolte 2011, 2013).

From a cognitive-psychological and didactic perspective, different descriptions
of mathematical giftedness have been developed based on mathematics-specific
abilities, characteristics and patterns of action. In this context, the studies carried out
by Käpnick (1998) were pivotal in Germany regarding primary school age. For
him, mathematical giftedness is marked by the following characteristics and skills:
remembering mathematical facts, structuring mathematical facts, mathematical
sensitivity and mathematical fantasy, transferring mathematical structures, inter-
modal transfer, reversing lines of thoughts (cf. Benölken 2015). To what extent
these features characterise mathematically gifted students depends on the mathe-
matical richness of the tasks used to reveal them.

At a first glance, the specificity of some abilities may seem critical. However, in
psychology the position is widespread that abilities do not exist by themselves but
always in connection to specific contents to which they are inseparably related
(Lompscher and Gullasch 1977).

All in all, it seems reasonable to assume that initially general cognitive abilities
first generally develop and then become more specific during activities. In this
regard, the accumulation of knowledge could play a vital role, because knowledge
is on the one hand gained through abilities of the individual and on the other hand
forms an important basis for the development and realisation of mental abilities. In
this sense, abilities, knowledge and activities develop in close interaction and
mutually reinforce.

3.2.3 Profiles of Mathematical Giftedness

If a list of specific abilities or action patterns is used to describe mathematical gift-
edness, the respective authors (e.g. Benölken 2015; Käpnick 1998; Nolte 2011, 2013)
always emphasise that they can be evident to a various extent and not all of them are
necessary for the presence of giftedness. Also Krutetskii, who as one of the first ones
soundly studied special abilities of mathematically gifted students, emphasised that
their composition to a structure of mathematical thinking can be individually different,

58 D. Assmus and T. Fritzlar



whereby certain components can also be compensated by others. High mathematical
achievements can be reached with different complexes of abilities or “mental spe-
cialities”. As a result, there are different manifestations of mathematical giftedness,
especially since, according to Krutetskii, further useful but not necessarily needed
characteristics exist, like the speed of thinking processes, counting skills, a distinct
memory for symbols, numbers and formulas, visual thinking as well as the ability to
vividly imagine abstract mathematical relations and dependencies (Krutetskii 1976).
For older students, he distinguished between a geometric, an analytic and a harmonic
type based on the relation between visual and abstract-logical components. The last
type, however, probably has the highest potential.

Qualitative research studies on mathematical giftedness in primary school have
shown that different profiles of specific abilities already exist at this age (e.g. Fuchs
2006; Käpnick 1998). However, it is assumed that interindividual differences
increase through growing domain-specific experience.

To sum up the discussion on the three key questions, mathematical giftedness at
primary school age can, from our point of view, be understood as an extraordinary
high potential to solve mathematically challenging questions and problems (com-
pared to others of the same age). The various aspects of this potential can be dif-
ferently pronounced, but in total it is mostly specific for the domain of mathematics.
A detailed description of mathematical giftedness in early primary school age by
means of specific abilities was recently developed by Assmus (in this volume).

3.3 Creativity

Since the 1950s, creativity research has continually been and is still being
advanced. However, to this day there is neither a consistent definition of creativity
nor a commonly acknowledged creativity theory. In scientific discourse, it is
common to distinguish between creativity as a quality of a product, a person, a
process or creativity-affecting environmental factors. In the English-speaking world
this is also referred to as the “4P’s of creativity” (product, person, process, press)
based on the work of Rhodes (1961). Since in this article we will not discuss
developmental aspects, neither in relation to giftedness nor to creativity, the fourth
aspect (press) is not further considered.

What is normally considered the key criterion of a creative product is its
“novelty”. Since, however, objective novelty independent of space and time is
extremely rare, some authors relativise this criterion in so far as an idea is seen as
new (or unique) if it is rare among a particular population (e.g. Guilford 1967;
Jackson and Messick 1965). In contrast to absolute creativity, we refer to relative
creativity in this regard. Ideas that are new for an individual, but widely spread
among the population considered (e.g. a school class) are not judged creative
according to this definition. In pedagogic situations, however, an individual refer-
ence norm might be used as a basis for the novelty criterion (cf. e.g. Kießwetter
1977), which is then referred to as individual creativity.
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Besides novelty, at least one further criterion is specified, which concerns the
purpose of the product. In this regard, terms such as “meaningfulness”,
“target-orientation”, “real-life relevance” and “usefulness” are used (Preiser 1976).
It should, however, be mentioned that free creative processes would not be clas-
sified as creative according to this approach if the created products did not meet the
criterion of usefulness. Since this would apply to many artistic products, the use-
fulness criterion might be seen as disproportionally constraining the kind and
number of creative products.

Regarding creativity as a quality of individuals, the features based on the work
of Guilford (1950) and their operationalization in the “Torrance Test of Creative
Thinking” of Torrance (1966) are usually cited, namely fluency, flexibility, origi-
nality and elaboration. Fluency refers to the ability to produce as many associations,
thoughts and ideas as possible on a content or problem within a short time.
Flexibility can be described as the ability to think into different directions, to easily
switch from one thinking category into another, and to look at a problem from
different views. Originality is the ability to generate uncommon ideas and solution
approaches. “Uncommonness”, “remoteness” and “cleverness” are mentioned as
measuring criteria for originality. The ability to proceed from an idea to a definite
plan and, thus enriching and developing the idea, is understood as elaboration.

These explanations show that creativity as characteristic of a person cannot be
separated from the creative product. The product characteristic is needed to estimate
the originality of a person. Also, the description of creative processes, for which in
general multilevel phase models are used, like, e.g., that of Wallas (1926) and
respectively Hadamard (1945), which propose the phases preparation, incubation,
illumination and verification (e.g. Aldous 2007; Sriraman et al. 2013), cannot be
made without considering the creative products.

3.4 Relations Between (Mathematical) Creativity
and (Mathematical) Giftedness

Giftedness and creativity are often seen in close connection. However, the basic
assumptions made in the scientific discourse differ concerning the relation between
(mathematical) creativity and (mathematical) giftedness (cf. e.g. Singer et al. 2016
with many references). In our opinion, the different views can be classified as
follows (cf. Aßmus 2017):

1. (mathematical) creativity as a precondition for (mathematical) giftedness
2. (mathematical) creativity as a possible component of mathematical giftedness
3. (mathematical) creativity as a possible consequence of mathematical giftedness
4. creativity as a (mostly) independent area of giftedness.

The single views are further explained below. Since we are mainly interested in
the relation between these two constructs, we will not name and explain further
influencing factors here. This does not imply that no further influencing factors exist.
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Whenever specific study results or theoretical approaches exist for the domain of
mathematics, these are considered, even though mathematical creativity has not
been regarded so far in this paper. As a detailed explanation of the term mathe-
matical creativity is not needed yet at this point, we will provide an in-depth
discussion of the concept in the second part of this paper.

3.4.1 (Mathematical) Creativity as a Precondition
for (Mathematical) Giftedness

Based on this conception, well-developed creativity is seen as a necessary pre-
condition for giftedness (Fig. 3.1). Renzulli’s model (1986) can be cited as an
example in the context of general giftedness. According to this model, the three
factors “above average ability”, “task commitment” and “creativity” are needed for
developing gifted behaviours. Some of the characteristics of creativity as Renzulli
understands it are fluency, flexibility, originality of thought, openness to experience
and willingness to take risks in thought and action.

In the area of mathematical giftedness, this conception can be found e.g. in
Leikin et al. (2009), who consider mathematical giftedness as special problem
solving abilities and, referring to Renzulli, describe mathematical creativity as a
needed component besides “problem solving effectiveness” and “task commitment”
(Leikin et al. 2009). Here, the mathematical creativity is also characterised by the
three subcomponents fluency, flexibility and originality.

3.4.2 (Mathematical) Creativity as a Possible Component
of Mathematical Giftedness

For several models, creativity in the sense of creative abilities is not a precondition
for giftedness, but is rather understood as part of the giftedness itself (Fig. 3.2).

Fig. 3.1 (Mathematical)
Creativity as precondition for
(mathematical) giftedness
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For the domain of mathematics, further mathematics-specific abilities are named
besides creative abilities. Since not all listed abilities are expected to become evi-
dent to an equal extent, different types of mathematical giftedness are possible (cf.
our explanations concerning mathematical giftedness above). As a consequence,
also a well-developed creativity is not mandatory for mathematical giftedness.

This understanding can, e.g., be found in Krutetskii (1976). He does not use the
term “creativity” itself in his components model, but refers to it as “flexibility of
mental processes in mathematical activity” (p. 350), which became apparent in his
studies when participants managed to overcome fixations or break away from a
stereotyped method of solution. Elsewhere, he explains that turning away from
typical procedures as well as finding several different solutions is “the real appear-
ance of mathematical creativity” (Krutetskii 1969, cited from Haylock 1984, p. 30).

Käpnick (1998) also mentions another component pertaining to the concept of
mathematical creativity as one of seven mathematics-specific characteristics of
mathematically gifted children in primary school. He describes it as “mathematical
phantasy”, which he understands as the “most important main aspect of childlike
creativity” (Käpnick 2013, p. 31; translation by the authors). According to him, the
development of diverse imaginative patterns and respectively structures as well as
the development and usage of creative solutions for demanding tasks belong to
phantasy, just like (not necessarily target-oriented) playful actions with mathe-
matical materials (Käpnick 1998).

Kontoyianni et al. (2013) distinguish between the two categories “mathematical
ability” and “mathematical creativity”, which are additionally split up into
sub-categories. For mathematical creativity, the sub-categories fluency, flexibility
and originality are assumed. In their study with students from fourth to sixth grade
they worked out mathematical giftedness as a multi-factorial construct which
contains both special mathematical and creative abilities. However, it was also
possible to conclude from their data that the importance of mathematical abilities
for the construct of giftedness is higher than the importance of creative abilities.
Additionally, they proved the relationship between mathematical abilities and
mathematical creativity using statistical methods. Of the three approached models,
the one that best explained the gathered data was the one that understood

Fig. 3.2 (Mathematical)
Creativity as a possible
component of mathematical
giftedness
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mathematical creativity as a sub-component of mathematical giftedness (Kattou
et al. 2013). Even if the terms are used differently and the models’ sub-components
are not identical, general similarities to the characteristics lists of Käpnick (1998)
and Krutetskii (1976) mentioned above can still be found in the results concerning
the relation of creativity and giftedness.

3.4.3 (Mathematical) Creativity as a Possible Consequence
of Mathematical Giftedness

From this perspective, mathematical creativity is understood as the ability to create
creative products that contribute to a knowledge progress within mathematics as a
science (Fig. 3.3). Creative achievements are therefore reserved for a small group of
people. As a result, mathematical creativity implies mathematical giftedness while
the inversion is not valid (Howe 1999; Sriraman 2005).

Exemplary for such an understanding is the hierarchy of mathematical talent by
Usiskin (2000) (cf. Sriraman 2005). Usiskin proposes eight levels of mathematical
talent starting with level 0, which covers adults who barely know something about
mathematics. The two highest levels (level 6 and 7) are assigned to people who
stand out due to especially creative achievements. The lower levels, too, attest a
mathematical talent to people, but in this case this talent does not come along with
extraordinarily creative achievements.

Also Sheffield (2009) shapes a “Continuum of mathematical proficiency” (innu-
merates—doers—computers—consumers—problem solvers—problem posers—
creators) which considers the creative creation processes as the highest manifestation.

3.4.4 Creativity as a (Widely) Independent Area
of Giftedness

Creativity is considered as a widely independent area of giftedness in several
models (Fig. 3.4). A known example is the “Differentiated Model of Giftedness and

Fig. 3.3 (Mathematical)
Creativity as a consequence of
(mathematical) giftedness
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Talent” by Gagné (1985, 2003) where creativity is listed as one of four areas of
giftedness. Others distinguish two fundamentally different forms of giftedness,
namely educational or academic giftedness on the one hand, and creative giftedness
on the other (cf. e.g. Renzulli and Reis 2003; Hong and Acqui 2004). While
“schoolhouse giftedness” according to Renzulli is a specific giftedness concerning
test and school achievements, the creative giftedness can be seen in real application
situations. “Creative-productive giftedness describes human activity and involve-
ment in which a premium is placed on the development of original material and
products that are purposefully designed to have an impact on one or more target
audience” (Renzulli and Reis 2003, p. 185).

In their “Comprehensive Model of Giftedness and Talent” Milgram and Hong
(2009) distinguish between “analytical-thinking ability” and “creative-thinking
ability”, which can manifest themselves in “expert talent” or “creative talent”. Both
forms of talent require both abilities, however, analytic abilities predominate with
regard to “expert talent” and creative abilities predominate with regard to “creative
talent”. “Creative Talent” according to Milgram and Hong is, besides profound
specialist knowledge in the respective domain, characterised by the creation of
creative and useful products.

Subotnik et al. (2009) examined requirements for the evolution of mathematical
talent. They were able to identify different influence factors; mathematical creativity
however was not among them. “It seems that a number of variables other than
innate mathematical creativity shape the development of talent and ensure a suc-
cessful career trajectory” (p. 177). This could also be indicative for the fact that
mathematical creativity represents a separate area of giftedness. However, the
authors are not clear concerning the term “creativity”. In the above stated quote,
they seem to refer to creativity as ability, but they do not specify it. Furthermore,
they use the term “creativity” in relation to the term “talent”, which suggests that
they see the two concepts as equivalent. The explanations can therefore be inter-
preted as follows: Creative abilities do not play a role in the development of
mathematical talent, but creative products as “output” are closely related to math-
ematical talent.

Haylock (1997) detected that mathematically efficient students are highly diverse
concerning their mathematical creativity. This could also be an indicator of the

Fig. 3.4 Creativity as a
(widely) independent area of
giftedness
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autonomy of both constructs. Maybe, however, these differences can also be
explained by differently evolved personality traits: Students with very good
mathematical, but only relatively poor creative achievements increasingly devel-
oped negative associations with the subject of mathematics, had quite a low
self-esteem and were hardly prepared to take risks when solving mathematical
problems.

All in all, there are many different perspectives on the relations between
(mathematical) giftedness and (mathematical) creativity. In our view, however,
these perspectives are not necessarily contradictory, but they rather result from
different understandings of giftedness and creativity which are not independent
from each other. While giftedness is rather defined as a potential for extraordinary
achievements (and characterised by special abilities), creativity is frequently also
seen as a person’s individual characteristic and the creation of creative products
does not have priority (like in perspective 2). If the construction of creative products
is focussed, this results in perspective 3. In contrast, in a performance-oriented
understanding of giftedness, creative abilities are also seen as a requirement for
special mathematical achievements (perspective 1). Perspectives 1–3 on giftedness
as competence or performance (always related to mathematical giftedness) can be
summarised as follows.

Concerning perspective 4, it can be said that satisfactory evidence on creativity
as an independent area of giftedness has not yet been provided. Related observed
phenomena can possibly also be explained via different forms of giftedness in
perspective 2. Also, in this view, types of giftedness might exist where creativity is
more or less extensively developed.

For these reasons and based on above explanations, the best model for our
purposes is the left one in Fig. 3.5, where giftedness is understood as potential for
extraordinary achievements and creativity is understood as an optional
sub-component of giftedness. This does not exclude overlaps of the component
“creative abilities” and other components.

Fig. 3.5 Relations between creativity and giftedness as competence (left) or performance (right)
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PART II

3.5 Mathematical Creativity in Primary School Age

The embedded model of giftedness and creativity in the left part of Fig. 3.5 was
more or less theoretically assumed. Prerequisite for a stronger empirical support—
especially with regard to mathematics at primary school age—is, first of all, a
sharpening of underlying concepts. This particularly applies to the concept of
mathematical creativity.

As Mann (2006) has pointed out, there is a lack of a widely-accepted definition
of mathematical creativity. In the literature, mathematical creativity is, for instance,
described as the ability to choose (sensu Poincaré) or to engage in non-algorithmic
decision-making. From a common didactical perspective, mathematical creativity
can be seen as the ability to generate novel and useful solutions to problems (cf.
Sriraman 2009). For primary school age, this definition approach can be combined
with the above depicted approach of research on creativity, but specifications and
extensions are needed.

At first it should be discussed to which extent criteria (for products, persons or
processes) from general creativity research could also be suitable for describing
mathematical creativity at primary school age.

(a) Fluency can be expressed by primary school children in the area of mathe-
matics, e.g. when solving a problem in several ways, finding several solutions
for an open problem (field), continuing a pattern in several ways, finding
several representatives for a mathematical characteristic. Such actions demon-
strate that children can vary their approaches to doing mathematics.
However, from our point of view, it should be critically questioned if the
number of created answers, especially in mathematics, could be indicative of
creativity. A large number of similar solutions can be quickly and systemati-
cally developed for many open tasks by creating structures and ordering
principles. The following task to measure fluency used by Kattou et al. (2013,
p. 172) serves as an example in this regard:

A high number of solutions can already be created through additive partition of
the numbers. Creativity is not necessary in this procedure. On the contrary,
abilities to identify and use mathematical structures are needed.

“Look at this number pyramid. All the cells must contain one num-
ber. Each number in the pyramid can be computed by performing 
always the same operation with the two numbers that appear un-
derneath it. Fill in the pyramid, by keeping on the top the number 
35. Try to find as many solutions as possible.”

35
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Quickly creating many answers to a mathematical stimulus can therefore give a
first indication of mathematical creativity, but might as well be based on other,
convergent abilities.

(b) While with “fluency”, the created solutions/products are considered in terms of
quantity, flexibility is mainly about the diversity of the products (Neuhaus
2001). A particular flexibility can also become apparent in the above mentioned
mathematical actions, if the solutions and ideas fundamentally differ from each
other. Additionally, flexibility in doing mathematics can be expressed when the
perspectives are changed or when successfully dealing with adapted processing
aspects. The following aspects of change are possible at primary school age:
representations of a mathematical content, contexts, perspectives on a mathe-
matical content/a mathematical problem, processing directions (e.g. direct vs.
converse lines of thoughts), use of given task elements (e.g. switched given and
searched elements).1

(c) Like the “novelty” of a product, originality can only be evaluated using a
reference group. In relation to this, the individual reference norm is particularly
appropriate for primary school age. For mathematically gifted students, how-
ever, it can be assumed that some of them create extraordinary mathematical
products, find procedures etc. in relation to the peer group or the group of
similarly mathematically experienced students. In these cases, one can assume a
high (relative) creativity.

(d) Concerning “real-life relevance” or “usefulness”, we agree with Sriraman’s
statement (2009, p. 15) that the results of creative mathematical processes do
not always have to be applicable, because mathematics is also a world with its
own value. Consequently, it seems “[…] sufficient to define creativity as the
ability to produce novel or original work.” This is especially valid for primary
school age.

So, from a psychological perspective only the criteria flexibility—concerning
mathematical products and in particular also processes of doing mathematics—and
originality on an individual level seem to be adaptable for describing mathematical
creativity at primary school age.

To continue with the common didactic perspective on creativity already men-
tioned above, we initially have to go a little further.

According to many researchers, creative mathematical processes particularly
occur at problem solving (Chamberlin and Moon 2005; Leikin and Lev 2013;
Pehkonen 1997). In recent years, the importance of problem posing has also been
emphasised. The proximity of creativity and problem solving is, according to
Guilford (1977), already implied by the similar understanding of the two terms:
“Creative thinking produces novel outcomes and problem solving involves

1Changing aspects 1 and 4 are described as creative abilities of mathematically promising students
e.g. by Sheffield (2003).

3 Mathematical Giftedness and Creativity in Primary Grades 67



producing a new response to a new situation, which is a novel outcome” (Guilford
1977, p. 161). He therefore concludes that problem solving involves creative
processes. Since problem solving constitutes an essential part of mathematical
activities, creativity necessarily plays an important role in mathematics. However,
the problem solving process is not always considered as creative. Kießwetter (1977)
and Haylock (1984) only judge solution processes as creative which involve
divergent thinking, like e.g. the association of distant things, the creation of new
means or the novel usage of known/existing means. By contrast, a process which
solely consists of applying solution schemes, logical reasoning or systematic sorting
is not seen as creative.

Guilford already cited problem sensitivity as a special characteristic of a creative
person. What he understands by problem sensitivity is the ability to approach the
material and social environment with an open, critical attitude and to discover
problems and opportunities for improvement, contradictions, inconsistencies and
novelties (Preiser 1976), which is linked to problem posing. In mathematics, as a
constantly broadening science of self-created abstract structures, the identification,
extension, narrowing or widening and transferring of (new) scientific questions
plays a vital role. “Problem finding” or “problem posing” per se is seen as creative
act by some authors (Leung 1997; Silver 1994). It is partly also viewed as impulse
for especially creative performances (Sheffield 2009). In school situations however,
problem posing is often not a consequence of a genuine impulse to discover, but
specifically initiated by the teacher. The specifications here may vary: based on an
already solved problem, related problems can be identified and follow-up questions
can be raised. Independent of a concrete problem, questions may be developed, for
example, concerning a specific mathematical content or context, specific terms or
numbers, specific solution strategies, but also entirely without predefined specifi-
cations. In any case, problem posing is closely related to problem solving. For a
detailed overview of problem posing in mathematics learning see the report by
Singer et al. (2011).

Problem solving is already an important part of mathematics classes in primary
school, where mainly problems are dealt with that can be solved without a broad
mathematical knowledge base. Since it is particularly challenging for young stu-
dents to formulate their own questions, creativity in connection with problem
posing might mainly manifest itself in the design of diverse variations of given,
perhaps even partly solved problems.

With mathematically interested and experienced older students and even more
with adult researchers in mathematics, problem solving and problem posing are
usually embedded in more comprehensive theory building processes. Here, the
handling of an initial problem becomes part of a circular process of problem solving
and problem posing through variation and expansion and the subsequent analysis of
this circle. The results and methods as well as the newly developed terms and
logical relations and, respectively, the novel strategies and tools emerging from this
process form a “theoretical fabric”, which is then optimised, preserved and inte-
grated into the existing knowledge base (Fritzlar 2008).
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In such theory building processes, creative acts, the invention of (subjectively)
new mathematical objects and structures as well as new mathematical methods play
an important role. They also specifically highlight the interplay between divergent
thinking, i.e. the ability to develop and elaborate diverse and original ideas with
fluency, and convergent, i.e. logical and evaluative, thinking.

It can hardly be expected that young students with little mathematical experience
are already capable of such theory building processes. However, concerning
mathematical creativity, it could be possible that primary school children are
already able to create subjectively new mathematical objects and relations and gain
mathematical experiences in investigating these (Fig. 3.6). Thereby the student’s
invention can either be rather target-oriented, especially when they are dealing with
a superordinate problem, or relatively free.

Overall, mathematical creativity in primary school age appears when students
work on low-knowledge problems, vary given problems and create mathematical
objects. This creativity can be especially high when students work flexibly and/or
invent original products.

The close connection between creativity and problem solving or problem posing
has been proposed many times (Chamberlin and Moon 2005; Haylock 1987; Leikin
and Lev 2013; Leung 1997; Pehkonen 1997; Silver 1994; Sriraman 2009; Yuan and
Sriraman 2011). In a case study we therefore want to explore in how far students of
the fourth, fifth and sixth grade are already capable of creating subjectively new
mathematical objects. Focusing on arithmetic, which is of particular significance for
mathematical education at primary school level, possible novel mathematical
objects are, for example, numbers, sequences of numbers, relations, operations and
algorithms.

Mathematically experienced persons Primary students

Varying given problems

Working on problems which require 
only little mathematical knowledge

Purposeful or free creation of  
mathematical objects

Problem solving

Problem posing

Theory building
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Fig. 3.6 Initiating mathematical creativity
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3.6 Creativity as Inventing Mathematical Objects
in Primary School

In recent literature, most researchers suggest that creativity is the result of con-
fluence of different individual and environmental factors. According to Sternberg
and Lubart (1996, 1999), for example, creativity results from the interplay between
six different, but not independent resources: intellectual abilities, knowledge, styles
of thinking, personality, motivation and environment. At this point, we cannot deal
with all mentioned resources in depth, but for the implementation of our case study
this “investment theory” approach had the following consequences: in a first
“round” we worked with children participating in talent programs or special classes
for mathematically gifted students because we could assume that these children
would be intrinsically motivated to deal with mathematical problems and possess a
broader mathematical knowledge base (relative to their age group). In addition, we
have developed a collection of problems which inspire the creation of mathematical
objects and relations. Finally, it was important for us to create an environment in
which students can propose their ideas without the pressure of being assessed.

3.6.1 Inventing Mathematical Operations

The aim of the investigations described below was to encourage the children to
invent subjectively new computing operations. The investigations were carried out
with 127 fourth-graders and 33 fifth-graders. 35 of the fourth-graders participated at
a fostering project for mathematically gifted and interested children. They were
proposed for participation by their teachers. In addition, they had to pass an
entrance test including tasks that test essential characteristics of mathematical
giftedness (cf. Assmus, this volume; Käpnick 1998). The other fourth-graders took
part at a mathematical correspondence circle for mathematically interested children
and were also chosen by teachers. The fifth-graders attended a special school for
mathematics. An entrance test had to be successfully completed for admission to
this school.

To become familiar with this type of task, the students should first decrypt
predefined operations. The next problem was to invent new arithmetic operations
(to design appropriate tasks for their classmates to solve) and to explain how the
calculation works. For example, the following is a concrete task used in the cor-
respondence circle (original German):

“Marc finds the calculation modes addition, subtraction, multiplication and
division boring. He has designed a new type of arithmetic operation and for this
purpose invented this operation sign: ◊

He calculates: 1 ◊ 3 = 5 6 ◊ 4 = 16 3 ◊ 1 = 7 0 ◊ 5 = 5
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(a) Explain how Marc’s type of calculation works.
(b) Find another new type of calculation. Invent an operation sign, give 4 examples

and explain how your calculation works. Think of a name for your type of
calculation.”

For the most part, the students worked alone, partly in pairs. They received no
assistance by the researchers. The students found different ways of creating new
arithmetic operations. Similarly to place-value systems, they for example combined
numbers into new numbers (Fig. 3.7).

In all student groups, familiar arithmetic operations were combined into new
operations in a wide variety of ways. The Figs. 3.8 and 3.9 show some examples.
For a better understanding, we provide the mathematical formula for describing the
operation.

We could also observe combinations of known operations and transformations
of numbers, for instance by rounding or summing their digits. Figure 3.10 shows an
example developed by a fourth-grader. Another member of the correspondence
circle had the idea to change calculation rules (Fig. 3.11).

With fifth-graders, combinations of the already presented invention strategies
could be observed as well (Fig. 3.12).

Very interesting seems the operation on (Fig. 3.13) known operations invented
by a fifth-grader.

We also asked the fifth-graders to investigate their new operations and look for
interesting characteristics. Figure 3.14 shows some examples.

Fig. 3.8 Creating a new operation (4th-grader)

Fig. 3.7 Composing numbers (5th-grader)
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At least in the last examples, the students’ willingness and commitment for
investigating their new operations demonstrate that they do not only use new names
or signs but actually invent (subjectively) new mathematical objects.

Fig. 3.9 Creating new operations

Repeatedly compute the sum of digits of both numbers until they are single figures; 
then add these figures. 

Fig. 3.10 Combining known operation and transformation of numbers (4th-grader)

If # is placed before the arithmetical task, the order of operation rule changes.

Fig. 3.11 Changing calculation rules (4th-grader)
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3.6.2 A Purposeful Invention During Problem Solving

The inventions of arithmetic operations described above can be seen as free cre-
ations; the following example is a purposeful creation during problem solving. In a
math circle for sixth grade students, we used the following problem (cf. Kuzman
2016) for the solution of which the students invented different encryption methods.

Compose both numbers and subtract the sum of digits.

Fig. 3.12 Combining invention strategies (5th-grader)

All natural numbers between two numbers a and b
 will be linked by the specified operation. 

Fig. 3.13 Operation on known operations (5th-grader)
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If the numbers are the 
same, the result is always 
0.

• Can be executed with-
out restrictions

• If one of the numbers is 
1, you only have to 
calculate the result of 
the other number plus 1 

• If the first number is 
less than the second 
number, it is not solva-
ble in .

• If there are two equal 
numbers, the result is 
0.

• If the first number is 1 
greater than the second, 
the result is exactly the 
same as for the addi-
tion task. 

Fig. 3.14 Invented operations with identified characteristics (5th-grader)

For the hundreds digit you take 3 coins with the 
same number, for the tens digit 2 and for the units 
digit 1 coin with the respective number. Thus, I
would take the following coins for the number 812:

8 8 8 2 1 1

Fig. 3.15 Tim’s first idea
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People have always tried to exchange secret messages in a form that cannot
be read by outsiders. Today, it is up to you to invent an encryption method
which could already have been used in ancient times when messages were
still sent by courier. Only those who know the encryption method should be
able to encode and decode the message.

The message can consist of a natural number between 1 and 999.
It should be encrypted by coins, each of which is labelled with a number

between 0 and 9. The courier should be able to carry the coins in a small bag,
which of course is thoroughly shaken during transportation. There are many
coins of each kind available for encoding.

Your task is to invent a really good encryption method!

The six participating students attend the special school for mathematics men-
tioned earlier.

First of all, each student developed their own suggestions for the encryption,
which they then presented to each other. Tim presented three ideas (Figs. 3.15, 3.16
and 3.17).

Here, the hundreds, tens and units digits are coded by three, two and respectively
one coin of the corresponding sort. This code for coins, however, cannot always be
definitely decoded, because for instance 811 and 188 would result in the same coin
representation. (All in all, the algorithm fails at 90 numbers.) In a later discussion,
there was the idea to “repair” this method, namely by using the respective coin four
times in the case of identical units and tens digit number.2

Numbers should be encoded as a product of the coin values. However, this
method fails with multi-digit prime factors (e.g. 23, 51, 91).

Here, numbers are coded by the number of coins. With this method, Tim has
invented a simple procedure which however is easy to see through and not very
practical: on average, 500 coins are needed for encoding one number.

Multiply the numbers of the coins by each other. 
Thus, for the number 18, I would use the following 
coins:

2 9

Fig. 3.16 Tim’s second idea

Take as many coins as is the numerical value.

Fig. 3.17 Tim’s third idea

2Having the same units and hundreds digit is also unproblematic with this improved method.
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Tim’s first coding idea can to a certain extent also be reversed. Jason, for
example, suggested to first choose three kinds of coins and code the units digit with
the corresponding number of coins with the lowest par value, the tens digit with the
appropriate number of coins with medium par value and to proceed analogically for
the hundreds digit. During the discussion, the students themselves realised that it is
not possible to decode numbers with the digit 0 and, respectively, one- and
two-digit numbers. This method, too, can be “repaired” if sender and receiver agree
upon three kinds of coins. Thus, a maximum of 27 coins or, respectively, an
average of 13.5 coins are needed.

Anna presented two options (Figs. 3.18 and 3.19).
Through division, the number to be encoded can first be represented by smaller

numbers, which can then be coded by coins. In the example, 781 would be rep-
resented by 86 coins with a value of 9 and one with a value of 7.

The second suggestion uses the conversion into the dual system. The coins
should be tied up on a string with a knot, which makes it possible to keep the order
of zeros and ones. In the follow-up discussion, the students themselves came up
with the idea of associating the 2n-digit of the binary number with the n-coin type
and of putting a corresponding coin into the bag for each digit 1. Thus, the number
781 would be coded by the coins (9)(8)(3)(2)(0). Since 210 � 1[ 999 applies, all
numbers required by the problem can be unambiguously encrypted with a maxi-
mum of nine coins.

…, i.e. 86 coins with a value of 9 and one with a 
value of 7.

Fig. 3.18 Anna’s first idea

Convert the number into the dual system; tie the coins together with a string
that has a knot marking its beginning. 

Fig. 3.19 Anna’s second idea
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3.7 Conclusion and Outlook

Both examples firstly show that mathematically gifted primary school children are
already capable of being mathematically creative and of developing and investi-
gating subjectively new mathematical objects. With these results, we have achieved
a main objective of our study. It also indicates the wide variety of creative products
even among the small group of students participating in this experiment.
A comparative observation furthermore shows that some products, e.g. in
Figs. 3.11, 3.12, 3.13 or 3.19, are very rare, so in comparison to the others these
products can be judged as very creative. Moreover, the students’ ideas for maxi-
mally accurate and efficient encryption algorithms can be seen as seeds of theory
building processes. It is, of course, also possible to follow up on the idea presented
in the first example, e.g. regarding algebraic properties. Therefore, the described
results and procedures also indicate further mathematical potentials beyond
creativity.

As further investigations have shown, tasks like the invention of new mathe-
matical operations may also encourage primary school students in regular classes to
be creative with mathematical objects. For instance, we asked fourth-graders in two
regular classes to invent new arithmetic operations like the ones presented above.
Almost all of them were able to meet these requirements. Mostly they combined
familiar arithmetic operations into new operations. Although the majority of these
inventions were not as complex and diverse as many inventions in the gifted group,
creative approaches were apparent. Thus, we think the tasks are suitable for initi-
ating mathematical creativity (on different levels) in almost all primary school
children. While in the free creation of mathematical objects, differences between
gifted and non-gifted students appear in the different mathematical complexity of
the invented objects, it could be possible that the purposeful creation of objects
during problem solving is only achievable for gifted students. This hypothesis
should be scrutinised in further studies.

The creation of mathematical objects at primary school age is not reducible to
the creation of mathematical operations and algorithms. Furthermore, children can
invent their own mathematical terms (e.g. special numbers like MUM- and
DAD-numbers; special geometrical shapes) and formulate their characteristics. The
area of geometrical patterns also offers numerous opportunities to create new figure
patterns, geometrical ornaments or tilings. This means that also in primary grades
and for almost all primary school students, there are many chances to be mathe-
matically creative in the sense of creating (subjectively) new mathematical objects.
Further studies with gifted students should investigate their abilities to invent dif-
ferent purposeful mathematical objects to review the embedded model of giftedness
and creativity (left part of Fig. 3.5).

The type of tasks described in this paper does not only allow for creative
mathematical action. It also creates the possibility of detailed investigations of
mathematical characteristics of the created objects. For instance, the computing
operations can be examined with regard to group axioms, commutativity or other
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algebraic features. It is also possible to investigate the relations between details of
the definition of a new operation and its algebraic characteristics. In this way,
students will be encouraged to take a stronger algebraic perspective, also on known
operations and other mathematical objects. Our studies indicate that this is possible
already for younger students.
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Chapter 4
Cognitive Variety in Rich-Challenging
Tasks

Cristian Voica and Florence Mihaela Singer

Abstract Cognitive flexibility—a parameter that characterizes creativity—results
from the interaction of various factors, among which is cognitive variety. Based on
an empirical study, we analyze students’ and experts’ cognitive variety in a
problem-posing context. Groups of students of different ages and studies (from
primary to university) were asked to start from an image rich in mathematical
properties, and generate as many problem statements related to the given input as
possible. The students’ products were compared in-between, and to the problems
posed by a group of experts (teachers of mathematics and researchers) who received
the same images as input. The study revolves around the question: “In what ways
does cognitive variety depend on age or training in mathematically promising
individuals?” We found that cognitive variety seems randomly distributed among
the groups we tested, contradicting the intuitive idea that this is age (and training)
related, except at the expert level. In addition, when talking about mathematical
creativity, more sophisticated parameters, such as validity, complexity and topic
variety, as well as the potential of respondents’ products to break a well-internalized
frame have to be taken into account. All those are to be balanced against the
person’s level of expertise in the specified domain.

Keywords Mathematical creativity � Problem posing � Cognitive flexibility
Cognitive variety � Expertise � Novice � Mathematically promising individuals

C. Voica (&)
Department of Mathematics, University of Bucharest,
14 Academiei Street, 010014 Bucharest, Romania
e-mail: voica@fmi.unibuc.ro

F. M. Singer
Faculty of Letters and Science, University of Ploiesti,
39 Bucharest Boulevard, 100680 Ploiesti, Romania
e-mail: mikisinger@gmail.com

© Springer International Publishing AG 2018
F. M. Singer (ed.), Mathematical Creativity and Mathematical Giftedness,
ICME-13 Monographs, https://doi.org/10.1007/978-3-319-73156-8_4

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73156-8_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73156-8_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73156-8_4&amp;domain=pdf


4.1 Introduction

Traditionally, students’ mathematical creativity has been studied based on quanti-
tative evaluation of the following parameters: originality, fluency, and flexibility
(Torrance 1974; Leikin 2009). In a problem posing context, these evaluations refer
mostly to the number of posed problems that meet certain criteria (such as, for
example, those described in Leikin et al. 2009). However, quantitative approach
when studying mathematical creativity in a problem-posing context does not seem
to be accurate enough when describing sub-components pertaining to creative
students’ behaviors (e.g. Kontorovich et al. 2011), and when “cognitive hetero-
geneity” (Abramovich 2003) is actually the norm; therefore, other parameters and/
or frameworks for analyzing mathematical creativity might be needed.

In this paper, we study mathematical creativity through the lens of the subjects’
cognitive flexibility, which is described by: cognitive variety, cognitive novelty,
and changes in cognitive framing (e.g. Singer and Voica 2017).

We attempt to better identify and evaluate cognitive variety by trying to answer
the following question: “In what ways does cognitive variety depend on age or
training in mathematically promising individuals?” We tackled this by asking
groups that differentiate through training and age to pose as many problems as
possible, starting from a given configuration rich in mathematical properties. To
gain better insights into the qualifiers best describing cognitive variety, we devel-
oped some tools for analysis, which focus mostly on qualitative aspects of the
products built by the respondents.

4.2 Background

4.2.1 Problem Posing

The present study is focused on analyzing the cognitive behavior of students and
experts in a problem posing context. We stand by the definition stating that problem
posing is “the process by which, on the basis of mathematical experience, students
construct personal interpretations of concrete situations and formulate them as
meaningfulmathematical problems” (Stoyanova and Ellerton 1996, p. 518). As Silver
et al. (1996) postulated, a problem-posing task requires the participants to formulate
problem statements that are new to the poser, based on a given set of conditions.

Stoyanova and Ellerton (1996) classified problem-posing situations into three
categories: free (when the participant poses a problem with no constraints on the
content), structured (when the participant poses a problem starting from his/her own
solution to a different problem), or semi-structured (when “an open situation is
given and ask to explore the structure and to complete it by applying knowledge,
skills, concepts and relationships from their previous mathematical experiences”)
(Stoyanova and Ellerton 1996, pp. 519–520).
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4.2.2 Creativity and Problem Posing

Creativity had long been viewed as a domain-general phenomenon. However, recent
evidence shows that creativity is rather domain specific (e.g. Baer 2010; Singer and
Voica 2015). Particularly, mathematical creativity has specific manifestations, which
take into account the deductive nature of the mathematical field (Piirto 1999), but
also its inductive ways of solving problems. Moreover, creativity seems to be not
only domain specific, but even task specific within content areas (Baer 2012).

Throughout the past two decades, mathematical creativity received much
attention from researchers who focused on defining or characterizing it, as well as
on establishing criteria for its assessment (see, for example, Sriraman 2004). Since
it is so hard to precisely define what creativity is, as with general creativity, precise
and generally accepted definition of mathematical creativity is very difficult to give
(e.g. Leikin and Pitta-Pantazi 2013). However, while there are many competing
definitions of the term mathematical creativity and, consequently, various frame-
works for its quantification, literature makes a clear distinction between creativity of
students who still learn mathematics in school, and creativity of professional
mathematicians (e.g. Sriraman 2005).

In the present paper, we are interested in the way mathematical creativity
manifests in school students. We will refer to this as “everyday innovation”, in the
sense used by Kaufman and Beghetto (2009). This type of creativity can be
assessed only in relation to the behaviors within a reference group, any definition of
creativity being, in fact, relativistic (e.g. Liljedahl and Sriraman 2006).

As researchers consider that problem posing is one of the main tools for
mathematical creativity development in all students (e.g. Sheffield 2009), we
exposed students to problem-posing sessions, in order to identify existing or
potentially-developing creative manifestations.

For our analysis, we use a framework based on cognitive flexibility. We have
previously used this framework in a variety of situations (e.g. Pelczer et al. 2013;
Singer and Voica 2015, 2017; Voica and Singer 2012, 2013), inspired by its use in
studying organizational settings, where it is used to measure a person’s ability to
adjust his or her working strategies in variable contexts (e.g. Krems 1995). When
applying the aforementioned framework to a problem-posing situation, we can say
a student displays cognitive flexibility when (s)he understands the context and the
constraints of the task and uses them meaningfully. In other words, we observe
cognitive flexibility when:

1. S(he) operates within an appropriate cognitive frame, which is flexible enough
to change when solving problems or identifying/discovering/creating new ones
(i.e. change in cognitive framing, or reframing).

2. S(he) generates new problem statements that are far from the given situation (i.e.
display of cognitive novelty).

3. S(he) can come up with a wide range of problem statements, starting from the
given input (i.e. display of cognitive variety).
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The reason we chose this framework is that, in problem-posing contexts, a
person faces the analysis of an ill-defined situation, with multiple possible solutions
and personal interpretations, which leads to a type of situation similar to the way
problems are addressed in organizations. Moreover, the analogy is functional in the
context of unpredictable developments in contemporary information society, in
which virtual interactions mediate (and often replace) direct contacts.

Our study compares elements related to mathematical creativity in relation to age
and training differences. This issue is present in the literature. Some studies (e.g.
Roskos-Ewoldsen et al. 2008) do not find statistical differences between younger
and older participants, concerning originality. Other studies (e.g. Sak and Maker
2006) found that age is more related to originality, flexibility, and elaboration than
to fluency in mathematics, but no correlation with students’ grade was found.

4.2.3 Problem Validity in Problem Posing

There can be examples of new and surprising products, but which are not useful,
either from a pragmatic view or an esthetic view. We would not include these into
creative manifestations because, among the criteria of creativity listed in the more
recent literature, there are some related to the social value of those products. These
might refer to the impact at the level of a community (e.g. Gardner et al. 2001), or
to their usefulness (e.g. Amabile 1996; Sternberg and Lubart 1996), or to adap-
tiveness with the task’s constraints (Sternberg and Lubart 1996).

In the problem-posing process, new problems—sometimes unexpected problems
if taking into account posers’ experience—are generated. Previous research (e.g.
Singer et al. 2015) highlights that there are some wordings generated by students,
which look interesting and surprising, but which do not meet minimal conditions of
validity. Therefore, some criteria are needed for accepting a posed problem as being
valid. Abramovich and Cho (2015) used the criterion of didactical coherence in
assessing preservice teachers’ skills for developing curriculum materials in a
technology-supported learning environment. We started the analysis of the stu-
dents’ posed problems by discussing their syntactic and semantic validity (Singer
and Voica 2015; Voica and Singer 2013).

As referring to the syntax, the coherence of a mathematical problem deals with
the rules and principles that govern the structure of a problem, more precisely:

• The following text components: givens, operations, constraints are present;
• The following text components: givens, operations, constraints are recognizable

or identifiable;
• The givens are not redundant, or missing.

Concerning the semantics, the consistency of a mathematical problem refers to
the existence of meaningful links among the elements of the problem, i.e.:
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• The problem data are not contradictory;
• The following text components: givens, operations, constraints are correlated;
• The components of the problem statement satisfy a certain assumed mathe-

matical model;
• The problem is solvable (Voica and Singer 2013).

A new criterion: “task consistency” was introduced in the analysis of the posed
problems by Singer et al. (2017) for the case when problem-posing is conditioned in
a structured or semi-structured way.

4.3 Context

4.3.1 Sample and Method

Students at pre-university level (Group 1), tertiary mathematics students (Group 2),
and experts (Group 3) were exposed to a similar problem posing task, with some
small variations, which will be further explained.

Group 1 consisted of students who participated in a summer camp, as winners of
a national mathematics contest. The competition consisted of two rounds—a gen-
eral round “for all” (approximately 25,000 students participating each year from
grades 2 to 12), and a second very selective round, during which the winners were
chosen. The students ranking on the top 0.5% from each level were invited to the
aforementioned summer camp. Two weeks before the camp started, a call for
posing problems was addressed to the future participants in the camp. The call was
answered by 18 volunteers. To better understand students’ proposals and cognitive
mechanisms activated in solving the task, the respondents were interviewed the next
day after their submission. During the interviews, the students were asked to
explain their proposals and to come up with new problem statements.

Group 2 consisted of university-level students—prospective teachers of mathe-
matics, enrolled in a course of Mathematical Education. They came in this study
from two different departments of the Faculty of Mathematics while attending a
course taught by the same instructor in two successive years. Their problem-posing
task was formulated as a non-mandatory project, which could count for a part of
their grade. The students worked individually for two weeks, and 20 of them
provided the required materials.

Group 3 consisted of experienced high-school teachers involved in international
mathematics competitions and researchers participating in a Mathematics Education
conference. The participants agreed to take part in a problem-posing competition,
with tasks of a similar type with the ones given to the previous two groups.
Participants had 3 days to submit their problem statements. In total, 6 participants
completed their task and posed problems. Given their advanced training, we con-
sider members of this Group 3 as experts.
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As it stems from the above paragraphs, our sample for the analysis consists of
three groups of respondents, amounting to a total of 44 people.

4.3.2 The Task

All the three groups were exposed to a similar problem-posing task, based on
similar images. The inputs for their tasks are presented in the following paragraphs.

(A) For students at pre-university level (group 1)

Martin bought two kinds of stone pieces to pave his yard. He began the 
work putting the pieces as indicated in the next image.  Fortunately, 
Martin did not have to pay much attention to his work because any face of 
a piece he would use fits perfectly into the pavement.

1. Observe the image and pose as many problems as you can on this 
pavement. For each of the posed problem, write the solution.

2. Make another drawing containing a pavement with two different kinds 
of pieces chosen by you. Write a list of similarities and differences you 
observe between the original pavement and your proposal.

(B) For university students, and experts (groups 2 and 3)

We consider the following geometrical context. 

A     B 

The tessellation in the image (A) is made using two types of congruent pieces: the first one is a dart, 
and the second one is a rhombus. These two pieces have symmetry axes, as one can see in image (B). 
Please pose as many problems as you can, referring to this context. The problems can be from any 
mathematical domain and can have any level of difficulty.
For every posed problem, include also the answer and a proof, eventually a short one. 
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4.3.3 Some Comments on the Tasks

As one can easily see, there are slight differences in the wording of the task in the
two cases. We opted for this variation for several reasons.

For Group 1, we placed the problem in an everyday-life context, to make it more
attractive for students (some of them aged just 9 years old). There is no talk about
symmetry (because some of the students in our sample did not know this concept),
but we did say that the tiles of the pavement can be placed on any face and still
match perfectly. For Groups 2 and 3, we used the mathematical name of the pieces
and we referred to their symmetry properties.

On the other hand, in formulating tasks for Group 1, we preferred to remove a
part of the pattern, which makes the statement more plausible, but also gives the
students a reason for focusing on the possibility of completing the pavement. We
also formulated an assignment to draw another pavement, just to make the Group
1’s participants, who had less knowledge of geometry, to focus on the properties of
the given figure and on the relationships that can be obtained. We considered that
this would guide the students from our sample into analyzing the given configu-
ration more carefully. When we did the data analysis, we equated the proposal of a
new pavement with a new posed problem and we have thus included the pavements
drawn by students in their lists of problems.

4.3.4 A Brief Analysis of the Task

The proposed task represents a semi-structured problem-posing situation (in the
terminology used by Stoyanova and Ellerton 1996). We have chosen this task for
two reasons.

On the one hand, the suggested image, rich in geometric and algebraic rela-
tionships, offers a high degree of freedom for formulating new problems. This
open-ended frame leaves more room for personal initiatives, which may allow
emphasizing cognitive variety.

On the other hand, we used a semi-structured problem-posing situation to get
lists of problems which have some connections between them. This is useful in
relation to group’s behavior, precisely because we can find terms of comparison
between the proposed problems within personal proposals and within groups’
proposals as well.

For solving the task, participants were supposed to analyze the given image,
identify the relationships that can be highlighted by the tessellation, and then for-
mulate new problems. There are many relationships of algebraic and geometric
nature between the elements of the given geometric model, which are suggested by
the possibility of covering the plane with the two types of pieces. For example:
analyzing the positioning of the five rhombuses in the middle, as well as the way
the pieces match, we can determine the measures of the angles of these
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quadrilaterals; analyzing the number of rhombuses successively added in the tes-
sellation, and how the model develops, we can identify the increase in an arithmetic
progression (see Fig. 4.1).

Some of the relationships suggested by the given figure are proven to be true, but
this context rich in properties can also induce false perceptions. For example,
observing the figure, we can say that some sides of the constituent pieces make a
straight angle (which is true), or that the external vertices of the rhombi are on the
same circle (which is false).

4.4 Tools for Data Analysis

To solve the task, the respondents must understand the various constraints of the
given figure, build understanding around the relationships between these con-
straints, and formulate mathematical statements. We focused on understanding the
cognitive mechanisms activated by this task, as follows:

– The link algebra-geometry. The given context is rich in information of geo-
metric nature easily transferable in counting with possibilities of expansion in
generalizations of algebraic nature. To what extent do participants detect these
links and use them effectively?

– The relationship between the possibilities of expanding the model and the
geometrical properties of the figure. The concentric development of the tessel-
lation suggests that it may be continued following the same rule as for the first
“circles”. Does common perception act as a barrier on the explicit formulation of
the likely continuation of the model also when trying to formulate a proof? This
question is meaningful especially because we are dealing with both mathe-
matically promising students of various ages, and experts.

To answer these questions, we developed several tools to help with the analysis
of the participants’ proposals. These tools refer to: the validity of the posed
problems, the degree of complexity of the problems, and the topic variety of the
lists of generated problem statements.

72°24°
24°

5 

20

35

Fig. 4.1 Geometric and algebraic relations in the given pattern
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4.4.1 Problem Validity

We used the coherence and the consistency tools (as presented in Sect. 4.2.3) to
analyze all the problems posed by the participants in the study.

We also used the criterion “task consistency”, because it proved useful (when
referring to posing problems based on a given image) by indicating the extent to
which the proposer shows cognitive framing. In fact, understanding the frame (e.g.
the fact that the given “mosaic” coverage supposes joining pieces without spaces, or
that only pieces of two types are used, or that the pieces follow a pattern, etc.) is a
necessary condition for a valid proposal.

We consider that a problem statement can be deemed consistent (relative to the
given task) if: it capitalizes on consequences derived from the constraints imposed
by the given tessellation, it highlights properties of pieces of the given tessellation,
and it uses pieces of two types that admit symmetry axes in developing new
tessellations. We consider that a problem statement is not task-consistent when it
does not meet any of the above, even if the other validity conditions were met. For
example, the following problem was proposed by one of the students in our sample:

Let’s consider the rhombus ABCD with m(A) = 60° and the diagonal AC of 12 cm.
Calculate the perimeter of the rhombus.

The problem refers to one of the elements that form the tessellation (a rhombus),
but the numerical data, more precisely: the measures of the angles of the rhombus
do not take into account the constraints derived from the given figure (the rhom-
buses that form the tessellation actually have angles of 72° and 108°). We would
expect that the proposer has developed a new tessellation based on this type of
rhombus. If this would have been the case, the problem would have been task
consistent. However, no reference was included towards a new pattern; therefore, it
is rather a simple recourse to the use of the 60° angle, very frequent in canonical
problem solving. Consequently, this problem was classified as being coherent and
mathematically consistent, but not task consistent.

4.4.2 Problem Complexity

In the data analysis we did for this study, we associated to each problem the main
concepts and techniques that were circulated by the wording and the solving of the
problem statement posed by a participant. To simplify the discourse, we’ll use the
term procept meaning “a combined mental object consisting of a process, a concept
produced by that process, and a symbol which may be used to denote either or
both” (Tall 1993, p. 7).
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We further introduce two parameters that are meant to describe the complexity
of a proposal made by the participants in our study: conceptual complexity, which is
related to the list of procepts associated with a posed problem, and procedural
complexity, which is related to the essential steps needed to solve a posed problem.
To characterize the problems based on these parameters, we endowed them with
numerical measures.

To get a numerical measure of conceptual complexity, we roughly associated to
every procept an integer between 1 and 4, taking into account the key-stage of
education when that respective concept/procedure is studied in school: the later the
concept is studied, the bigger the associated number. The association was made
based on Romania’s national curriculum. Generally, this curriculum has a pro-
gression of concepts and procedures relatively similar to the one at international
level, which additionally allows international comparative studies and bench-
marking (e.g. Martin et al. 2008; Singer 2007).

The conceptual complexity of a problem was expressed by the weighted arith-
metical mean of the numerical values associated with the procepts used in that
problem. In this way, to each list of posed problems a numeric sequence was
associated, representing the conceptual complexity of the proposal made by a
respondent.

On the other hand, we identified the procedural complexity of solving a problem
by determining the number of essential steps needed to solve it. In this way, we
positioned each posed problem on a scale from 1 to 5 (where 1 indicates a low
procedural complexity and 5 a high procedural complexity). This second numerical
sequence represents procedural complexity of the proposal made by a respondent.

4.4.3 Topic Variety

The present study is focused on cognitive variety in a sample of problem posers. To
better capture this dimension, we have characterized each list of posed problems
through thematic variety and mathematical variety. Thematic variety and mathe-
matical variety are the two components of the topic variety of a posed list of
problems.

Thematic variety refers to the number of distinct themes addressed in the set of
problems; a topic might be a specific domain of mathematics (e.g. qualitative
geometry, arithmetic, probability, etc.), or an extra-mathematical domain (e.g. rules
of games, commercial offers, rules of coloring, etc.). Therefore, this parameter
captures meta-mathematical aspects involved in the list of problems.

Mathematical variety refers to the number of distinct procepts circulated in the
list of posed problems.
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4.5 Data and Results

As mentioned above, we analyzed the data collected from the participants using the
following parameters associated to each individual’s list of posed problems:
validity, complexity, and topic variety. In processing the data, we excluded only the
problems critically invalid; we accepted mistakes or awkward wording if the
mathematical meaning of the problem could be deduced. Moreover, we included in
the analysis those problems that were task-inconsistent but were referring to rec-
ognizable elements of the initial geometric context, even if the relationships and
constraints of the posed problem text did not take into account this context.

As a result, we had to completely remove the responses received from three of
the respondents: we took this decision because the three (one from each group) only
posed a single problem, which did not meet the minimal conditions of validity. For
example, one of these respondents made a drawing of a quadrilateral, wrote several
general mathematical relationships—such as the sum of the angles of a quadrilat-
eral, but did not give an intelligible wording of the problem.

Consequently, the analysis we made is based on 406 proposals received from 41
respondents.

4.5.1 Group 1 Proposals—Brief Description

The 17 students participating in Group 1 generated 144 problems (average number
of posed problems 8.5, median 7). The extremes: 2 posed problems (minimum),
versus 25 posed problems (maximum). The next problem is found in most of the
students’ proposals:

How many pieces are needed to complete the pavement?

To answer, some students carefully completed the drawing and numbered the
pieces, so that they could be easily counted. (Two examples of this type are shown
in Fig. 4.2.)

We have also encountered other approaches: Radu (5th grade) split the figure
into congruent sectors, counted how many pieces a complete sector has, and then
expanded this number to the incomplete sectors. Vlad (also 5th grade) identified
various correspondences between the positions of darts (arranged with the vertices
inward or outward) and the rhombuses of the median “circle” and external “circle”.
This reasoning helped him find the correct number of pieces.

We present below four cases from this sample, which are relevant for charac-
terizing this group’s cognitive behavior.
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4.5.1.1 The Case of Diana (4th Grade)

Diana proposed 25 problems. The first problems were very simple (such as: How
many rhombuses are in the given picture?), but her next proposals extended in
various mathematical domains and the formulations became more elaborate.
Although a 4th grader, Diana displayed a certain mastery of problem-solving
techniques. For example, to determine how many pieces are on the next “row”, after
completing the figure, she notified one-to-one associations and geometric regular-
ities, such as:

From the given pavement, we understand that between each two rhombuses there are two
darts, but once at two intervals there is just one dart. So, every three intervals there are 5
darts. (…) If we know this, it will be very easy to calculate (…)

Her problems cover a variety of topics. Judging by her statements, Diana seems
to “take the problem to the street”—she imagines herself or characters from her
close environment playing hopscotch, coloring, adding pieces, cutting pieces,
buying new pieces, putting them in a variety of combinations, etc. All these show
that Diana has concrete thinking, which she exploited in proposing a large gamut of
problems.

4.5.1.2 The Case of Andrei (4th Grade)

Andrei posed a total of 9 problems. For 5 of his posed problems the solver needs to
imagine and make different calculations about the circular “row” made of
rhombuses.

Fig. 4.2 The drawings made by two students to compute the number of missing pieces
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As 4th grader, Andrei did not have the knowledge and tools to investigate the
properties of the given geometric configuration. He filled the gap of lacking these
tools through an arithmetic approach, in which recursion played an important role.
Thus, he noted that the number of rhombuses in the figure, for every “row” is 5, 20,
35, and concluded that these numbers correspond to an increase by 15 (i.e. make an
arithmetic progression). Starting from here, he could predict, by calculation, how
many rhombuses appear on the “row” 100, or how many complete rows can be
formed if he would use 2016 “arrow” pieces.

Andrei decomposed the given geometric configuration and transposed it into a
union of sequences whose elements enter into different correspondences. For
example, in solving one of the suggested problems, he stated that “the number of
arrows in a row is formed by summing up the rows of rhombuses that are inter-
twined between” and expressed the assertion in the following way:

R1 arrows ¼ R1 rombusþR2 rombus R ¼ rowð Þ

We notice that Andrei duplicated his arithmetic intuition with elaborate rea-
soning, quite complex for his age, when calculating the number of figures from
various rows based on 1-to-1 correspondences.

4.5.1.3 The Case of Alexandru (6th Grade)

Alexandru posed a total of 7 problems. At first, Alexandru said that the given
tessellation can be continued. He proved a geometric intuition—he noticed regu-
larities in the original drawing that he emphasized graphically, by drawing rays
highlighting possible extensions of the configuration (Fig. 4.3). On this basis, his
next step was sketching (with dotted lines) a rhombus on an arc—as a represen-
tative of the rhombi “on the 4th zone”. His geometric intuition led him to assimilate
the distribution of rhombi in circular shapes and to identify new rhombuses formed
by joining three pieces of the pavement (he marked a representative of this category
of rhombi by hatching).

However, Alexandru’s geometric intuition operated within certain limits. Thus,
although the rays extending the drawing were generated as an intuition of invari-
ance to rotation, he did not check a series of conjectures of geometrical nature that
he utilized. For example, he wrongly assumed that the common vertices of the
external rhombuses are situated on a circle.

Although strong, Alexandru did not actually use his geometric intuition in the
problem statements formulation. When he posed problems based on the given
configuration, Alexandru made a shift from geometry to algebra. None of his posed
problems has a geometric nature—all of them are counting-type problems. For
example, to find out how many rhombus-type pieces are in the 4th zone (repre-
senting the first level that is not shown in the figure), he identified the terms of an
arithmetic progression and got the result based on the appropriate formula.
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4.5.1.4 The Case of Laura (9th Grade)

Laura posed eight problems: all of her problems are valid (mathematically coherent
and consistent). In the first two problems, Laura addressed simple questions about
the number of pieces of the pavement (such as: How many tiles of each kind are
missing? What is the total number of paving blocks of every kind?). Later, she
became interested in the geometric properties of the tessellation and formulated the
following geometry problems:

Determine, using the given drawing, the measures of the angles of a
convex-quadrilateral-shape tile.

Check if the angles of the concave quadrilateral (a.n. of the tessellation) are equal.

What are the measures of the angles of the concave quadrilateral?

Laura carefully analyzed the relationships between the compound pieces, she
identified details of the whole configuration (which she represented separately as in
Fig. 4.4) and calculated such measures of angles.

Laura proved that she had a geometric intuition, backed by judgments she could
do, including due to more advanced knowledge of geometry she possessed, com-
pared to the younger students in her group.

Fig. 4.3 The drawing made
by Alexandru to highlight
geometric regularities in the
tessellation
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4.5.2 Group 2 Proposals—Brief Description

The 19 students from Group 2 generated a total of 245 problems (with an average of
12.9 posed problems, median 12); extremes: 4 posed problems (minimum) versus
25 posed problems (maximum).

Relatively many of the posed problems by students from Group 2 focused on the
properties of the constituent pieces of the given tessellation and have only a weak
connection with the task. For example, the next problem lies in several lists of
proposals:

Show that joining the midpoints of the sides of a rhombus, ones get a rectangle.

This problem is mathematically coherent and consistent. We considered it,
however, task-inconsistent because the midpoints of the sides of the rhombus
neither appear as such in the given configuration nor involve further developments
in a new pattern; they are brought into discussion just because the students learned
very well this theorem as part of their previous training.

We further include in our analysis three relevant cases from this group.

4.5.2.1 The Case of Simona (Undergraduate University Student)

Simona posed 23 problems. She processed the original figure in various ways,
emphasizing various regularities: symmetry axes, properties of the polygons of the
configuration, conditions that some points are con-circled, etc.

Simona tried an exhaustive treatment of the given configuration, structuring her
posed problems in 5 content areas mentioned from the beginning: probability,
geometry, algebra, mathematical analysis, and “others”. Most of her problems show
an explicit link with the given figure: for example, she required the calculation of
the angles of the two types of tiles.

Fig. 4.4 The details identified by Laura to solve her posed problems
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Simona transferred the initial configuration in other contexts and explored its
properties in relevant ways to pose problems with meaning and substance. For
example, she formulated the following problems framed in the domains probability,
respectively algebra:

Calculate the probability that, randomly selecting three external vertices of the figure, the
obtained triangle is acute-angled.

Describe the isometry group of the figure obtained by joining the vertices of the rhombi
from the center.

Simona made also transfers within a domain of mathematics. For example, she
noted that the numbers of rhombuses on each row form an arithmetic progression;
hence, she formulated a problem with this topic, which she completed with the
following problem:

Prove that an infinite arithmetic progression of integers cannot have all the different terms
prime numbers.

Given the correlation with the previous problem, we still accepted this problem
as task consistent.

4.5.2.2 The Case of Cristina (Graduate Student in Mathematics)

Cristina posed a total of 13 problems. Initially, she identified various regularities of
the figure (e.g. division into congruent sectors, regular pentagons, etc.) and marked
these regularities on a drawing (Fig. 4.5). Even if the figures are not entirely correct
(the points added by her not being concyclic in reality), her problem statements
show that she has, at an intuitive level, an understanding of the properties of the
given configuration.

The identified regularities allow Cristina to decompose the figure and, thus, to
simplify the counting process. Those regularities were also used to make the
transfer towards arithmetic problems because she could use geometric reasoning to
prove that the numbers of rhombuses from the successive “rows” make an arith-
metic progression.

Cristina posed elementary geometry problems based on the given figure (such
as, for example: How many axes of symmetry does the figure have?), but also
problems that require the calculation of measures (of angles or areas). Interestingly,
she asked, (formulating the question as a posed problem) if there is another way of
arranging the dart pieces between “rows” of rhombuses and she made a transfer
from the given configuration to probability problems, interpreting the figure as a
spinner. We noticed that Cristina consistently exploited the configuration—geo-
metrically and algebraically. Starting from the identified properties, she succeeded
to pose very different problems, which refer to counting, coloring, calculations of
areas and measures of angles, or probabilities.
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4.5.2.3 The Case of Daniela (Undergraduate University Student
in Mathematics)

Daniela posed several problems, each with several requirements. In total, there were
25 posed problems.

She used elementary configurations: in each of her posed problems a rhombus
and a dart were used. Some of the Daniela’s proposed problems are obvious; for
example:

In rhombus ABCD, find a symmetry-point of A about the diagonal BD.

In all her posed problems, Daniela only retains from the given configuration the
shape of component pieces and their properties of symmetry; none of her posed
problems refers to the geometrical configuration per se. This shows that Daniela has
seen the details but not the big picture. This claim is supported by the fact that in
some problems, Daniela indicated arbitrary measures of angles, with no connection
to the given geometric context. Because of this, we classified all her posed problems
as being task-inconsistent. However, if we look at those posed problems inde-
pendently from the task, some of them are challenging (or at least less frequent
among her colleagues’ usual behaviors), such as for example the following:

We make a cardboard dart ABCD and fold the figure along the line AC. Prove that after
folding, the lines AC and BD remain perpendicular.

Fig. 4.5 The drawings made by Cristina to highlight geometric regularities of the tessellation (she
printed the given configuration and completed it by hand)
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Her case is interesting because the large number of posed problems could, at first
sight, indicate cognitive variety. It happened yet that her problems were not really
consistent, and many of them were very similar. Consequently, the number of posed
problems cannot offer alone a good indication of cognitive variety.

4.5.3 Group 3 Proposals—Brief Description

The 5 participants from Group 3 generated a total of 17 problems (average of 3.4).
With one exception (a problem in which the wording is not too well defined—
possibly because of its formulation in a language that is not native for the person),
we classified all the posed problems as valid.

As a general feature, the problems posed by this group have a high degree of
complexity and difficulty. Most problems require many essential steps to arrive to a
solution, as well as strategic thinking and proof of conjectures. For comparison, in
many of their posed problems, Group 2 formulated explicitly several sub-problems
of the original problem, which decreased the level of complexity and difficulty,
because through the requirements they made, they directed the path to a solution.
This guidance led to a larger number of problems compared to the number of
proposals made by Group 3.

We further present two relevant cases for this group.

4.5.3.1 The Case of Mihai (Ph.D. Mathematics Student)

Mihai proposed a total of 8 problems. He preferred to call the pieces of the tes-
sellation “1-piece” and “2-piece”, instead of “rhombus” and “dart”. The problems
posed by Mihai are from different areas of mathematics: geometry, algebra, cal-
culus, number theory, and combinatorics. For his first problems, Mihai used geo-
metric arguments to prove that the given model can be continued in the same way,
and found recurrence relations between the terms of two sequences (representing
the number of 1-pieces, denoted an, and 2-pieces, noted bn, in layer n). His argu-
ments refer to how the pieces are arranged in the given configuration. Once the
general term of these sequences determined, Mihai can formulate new problems,
such as, for example:

We expand the configuration in the same way by adding successive layers of 1-pieces and
2-pieces. Prove that there is a layer of 1-piece with just 2015 pieces.

Calculate the total number of pieces (denoted An), from which a pavement can be created
with n layers of 1-pieces and n − 1 layers of 2-pieces.

Determine the solutions in whole numbers of the equation An = k2.

To calculate the number An, Mihai explained the terms of the sequences (an)n
and (bn)n defined above. More precisely, Mihai used arguments of a geometric
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nature (in which the way of joining the pieces is actually used in the reasoning he
made) to deduce the recurrence relationships:

anþ 1 ¼ bn � an; bnþ 1 ¼ 3bn � 4an:

These relationships allowed him to explain the general terms of the sequences:
an = 5(3n − 2), bn = 5(6n − 1). Mihai used these algebraic expressions, as well as
the equality

An ¼
Xn

i¼1

ai þ
Xn�1

i¼1

bi;

to deduce the equality:

An ¼ 5
2

3n� 1ð Þ 3n� 2ð Þ:

Mihai utilized the geometrical configuration only once in the input stage, when
information of geometrical/positional nature were used to argue on the possibility of
extending the pattern and to determine recurrence relationships. After the numerical
information was specified, the geometric/visual support was abandoned and the
focus was in directions that are no more intuitive—like equations in the set of
integers, or convergent series.

Mihai suggested problems with a high degree of difficulty and abstraction. He
used different notations having in view emerging generalizations, which again
indicates a capacity for high degree of abstraction. All these show that in solving
this task, Mihai acted as an expert, trying to mathematically enrich the given
context as much as possible. He was not interested in formulating elementary
problems of a metric nature (such as, calculating measures of angles or areas),
which would enable him to generate immediately many problems, but he kept a
challenging degree of difficulty and complexity of the posed problems.

4.5.3.2 The Case of Adriana (Mathematics Teacher)

Adriana proposed a single problem, namely:

To pave a dance floor, 50 tiles are used, arranged as shown above. The rhombus-shaped
tiles are painted with white paint, while for the darts blue paint is used. We know that for 5
rhombuses, 20 g of paint are used; find the quantities of white paint and blue paint required.

Adriana proposed a contextualized problem: she imagined an everyday-life
situation in which a geometric pattern of the given type could be used. Her problem
statement starts from the assumption (which is not explicitly formulated, but can be
accepted) that painting is uniformly distributed, the amount of paint (white or blue)
being proportional with the painted surface.
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To solve Adriana’s problem, many steps are needed: determining the number of
pieces of each kind; calculating measures of the angles of the two quadrilaterals;
calculating the ratio between rhombus and dart areas (including, among others,
finding tg12°); expressing proportions and finding unknown terms.

This shows that Adriana’s problem is complex, and contains several
sub-problems that a solver would need to formulate and then solve.

4.5.3.3 The Case of Ina (Mathematics Education Researcher)

Ina posed the next 4 problems:

Prove that all three acute angles of the dart are equal.

Is it possible to expand the picture in a similar way (by constructing additional arc of darts
and rhombuses around the given flower)?

Find the minimal number of colors used such that any two neighbor figures (with common
edge) are in different colors.

Find the longest way (and/or length of this way) to visit as many figures as possible – any
figure no more than once.

The last problem was considered by Ina as being open-ended. This problem
statement is not really well formulated—it does not specify what does “way” mean
(is this about crossing the edges?) or what does it mean to “visit a figure”. We
considered that the wording ambiguities stem from the fact that the proposal has
been made in English—which is not Ina’s mother tongue. Perhaps the statement
refers to the existence of an Euler path in the graph of the sides.

We acknowledged that the four problems are from different content areas (ge-
ometry, optimization, graph theory) and require different solving methods (calcu-
late, prove or disprove, find a minimal number, and an open problem without
known solution).

4.5.4 A Global Analysis on the Three Groups’ Proposals

In this study we analyze the responses to a call for posing problems from three
groups: students in pre-university education (Group 1), university students from the
Faculty of Mathematics (Group 2) and experts (Group 3). The products realized by
these groups have been organized in three clusters that are further discussed in view
of the criteria presented in Sect. 4.4.
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4.5.4.1 Validity

Table 4.1 shows synthetically the scores on the validity criterion, more specifically
the number of problems posed by each group of the sample, and a report on the
coherent, mathematically consistent and task-consistent problems, which is pre-
sented numerically and by percentage.

Table 4.1 reveals quite different cognitive behaviors in the three samples.
On average, the largest number of problems is recorded for the university stu-

dents, and the lowest from experts. However, the higher number of posed problems
by the university students is not aligned with a quality criterion—many problems in
this group are not mathematically coherent or consistent.

Group 2 (university students) put forth a relatively small percentage of
task-consistent problem statements. Some of the students in this group tend to retain
only disparate elements of the given context, and many of the proposed problems
(35%) have little connection to the initial context.

Unlike students in groups 1 and 2, the experts propose far fewer problems, but
the results of their work are (with one exception) both coherent and consistent.

4.5.4.2 Complexity

As explained in Sect. 4.4.2, we associated to each list of posed problems two
numerical sequences representing conceptual complexity and respectively proce-
dural complexity. To have a global view on the complexity of the proposed lists of
problems, we plotted the numerical values obtained for conceptual complexity and
procedural complexity in an orthogonal system, for each group from our sample.

For the graphical representation, each number sequence was ordered increas-
ingly, the data scaled against a reference of 25 problems—which represents the
maximum number of proposed problems in our sample—and an exponential trend
line was used to better describe the amplitude of problemistic spectrum of each list
of problems. We used this type of representation because the exponential function
highlights variation, and thus trends become more visible. In this way, for each
group of the sample and for each of the utilized parameters: conceptual complexity
and procedural complexity, we obtained a family of curves.

Table 4.1 The number of problems posed by the three groups, and statistical data on the validity
criterion

Group No. of
participants

Total no.
of posed
problems

Mean of
numbers of
posed
problems

# of
coherent
posed
problems

# of
consistent
posed
problems

# of task-
consistent
posed
problems

1 (pre-university) 17 144 8.5 140 (97%) 139 (96%) 141 (98%)
2 (university) 19 245 12.9 210 (86%) 208 (85%) 159 (65%)
3 (expert) 5 17 3.4 16 (94%) 17 (100%) 17 (100%)
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In these representations, we were interested in the general trend of each sample,
but also in the deviations. Each chart contains, as a dotted curve, the arithmetic
mean of the data.

In Fig. 4.6 we graphed the conceptual complexity of the problem lists proposed
by students of Group 1 and Group 2. (We have not included a similar representation
for Group 3 because, being too small numerically, it is not significant in this type of
analysis.)

In the next paragraphs, we discuss the interpretation of the data represented in
Fig. 4.6, for the two clusters of task results (lists of posed problems) of the two
groups. For Cluster 1, one can observe as a majority trend (marked on the chart with
a shadow) the location of the posed problems in an area where the circulated
mathematical content is at a basic level. According to the grading scale of procepts
used in the study, we encounter in this area problems classified at a level of
conceptual complexity between 1 and 2. This trend is natural, considering that most
students in this group are at the primary-education level (10–12 years old).

In the graphical representation, we can see two types of deviations:

– The line graph denoted by a, corresponds to a list of problems that have con-
stantly a degree of conceptual complexity higher than average.

– The line graphs denoted by b, indicate a large variation in the conceptual
complexity of the posed problems. In these cases, the graph amplitude (visible
in the variation on the vertical axis) is the highest as compared to the other
curves that accumulate in the area of the general trend.

For Group 2—university students, the graph in Fig. 4.6 indicates a congestion
(marked by glow) of the curves representing the conceptual complexity in the zone
of values 1 and 2, thus clarifying a trend of Group 2 for posing problems that
vehiculate procepts situated in the primary or intermediate educational stages (very
rarely—high school), in which procepts practiced at the university level are usually
avoided (with very few exceptions).
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Fig. 4.6 Trends in the conceptual complexity for Cluster 1 and Cluster 2. The dotted curve
represents the arithmetic mean of the data
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Deviations from the major trend—i.e. the line graphs denoted by c (and
depicting Simona’s, Stefania’s, and Ioana’s proposals) indicate high amplitude in
conceptual complexity, covering the full scale of measurement.

We note that the dotted curves (representing the arithmetic mean of the data for
each cluster) are almost “parallel” and very closely situated—that means that the
two groups are behaving quite similar with respect to the conceptual complexity of
their proposals. One would expect the “average” curve for Group 2 be positioned at
higher values on the chart, given the higher level of education of these students, but
as we can see, this did not happen.

In Fig. 4.7 we graphed the procedural complexity of the problem lists proposed
by students in Group 1 and Group 2, following the same set of conventions: the
general trend is marked with glow, and the dotted curves represent the arithmetic
mean of the data.

In general, procedural complexity covers a range (variation between the mini-
mum and maximum number of steps to solving) that is smaller for cluster 1 as
compared to cluster 2. This is expected given the mathematical knowledge (cor-
related with age) of respondents from the two groups. However, the exceptions are
significant.

In Cluster 1, the deviations from the general trend are of two types:

1. Situations where the posed problems are numerous and of relatively
high-procedural complexity (marked by d)

2. Situations where most problems have procedural complexity below average
(marked by e).

We found that deviations of type 1 have the amplitude much greater than the
average in Cluster 1, but even more, the amplitude is surprisingly bigger compared
to the variations in Cluster 2.
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Fig. 4.7 Trends in the procedural complexity for Cluster 1 and Cluster 2. The dotted curve
represents the arithmetic mean of the data
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In Cluster 2, deviations from the general trend are also of two types, but different
from those in Cluster 1:

1. Situations where procedural complexity is maintained at a relatively constant
level and simple procedural problems are kept at a higher level than the average
(marked by f )

2. Situations where most problems have procedural complexity below average
(marked by g).

In Cluster 2, the family of curves illustrating the major trend has the amplitude
higher than the curves representing deviations, which does not happen on Cluster 1.

In Group 3, all five participants posed problems procedurally complicated (i.e.
needing at least 4 steps to solve), which seems to be a characteristic of experts.

Deviations from the general trend are more obvious in Group 1, the variety of
topics being greater here. Group 2 acts somewhat uniform, making it difficult to
identify obvious deviations from the major tendency behavior. Concluding, we
found that the exceptions in Group 1 are farther from the general trend compared to
the exceptions in Group 2. In addition, the curves indicating relative
high-procedural complexity (marked by d, respectively f ) have greater amplitude in
Group 1, compared to those from Group 2. At the same time, however, the curves
representing the average are virtually identical in the two groups.

4.5.4.3 Topic Variety

To obtain a global picture on topic variety of problems, we graphed the values
obtained for each problem list through a point in the plane, in which the horizontal
axis shows thematic variety, and the vertical axis—the mathematical variety of
problem lists. We thus obtained the diagrams in Fig. 4.8, one for each group.

In these representations, a marker represents the characteristics of a list of
problems for each cluster; we increased the marker size proportionally to the
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Fig. 4.8 Schematic representation of problem statements topic variety in the three clusters.
Thematic variety is represented horizontally and mathematical variety is represented vertically
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number of problems of each list. Those lists where a significant number of posed
problems were not valid had been represented by using a no fill marker.

In these representations, we were interested in studying the accumulation-point
areas per cluster, as well as occurring deviations (isolated points).

The graph for Cluster 1 shows a concentration of the markers in the 0–10 zone of
thematic variety and in the 0–20 zone of conceptual variety. For Cluster 2, the
diagram shows a greater conceptual scattering (crowding zone being 10–30), while
the thematic variety is similar to that for Cluster 1. Submissions from students in
Group 2, who posed relatively more problems that were not valid, display relatively
low thematic variety, but a greater level of mathematical variety compared to those
of Group 1.

4.6 Discussion

As we emphasized at the beginning, we analyze mathematical creativity of par-
ticipants in our study based on a cognitive-flexibility framework, highlighting
students’ behaviors on three components: cognitive variety, cognitive novelty, and
changes in cognitive framing (Singer and Voica 2015; Voica and Singer 2013).

There is a cultural component of creativity: creativity cannot manifest in the
absence of an environment in which it can be nurtured and valued
(Csikszentmihalyi 1996; Gardner 1993, 2006). Therefore, the elements based on
which we try to determine the presence or absence of a creative behavior need to be
applicable to the considered context. This aspect was included in the analysis made
in the present study, by considering the validity of the students’ posed problems.
Psychologically, the validity of the posed problems is relevant for cognitive
framing, which represents a person’s ability to build an adequate representation of
the situation expected to be transformed or improved. The construction of an
adequate representation (which acts as a witness for cognitive framing) is a pre-
requisite for creative manifestations, at least in the studied context (i.e. when posing
mathematical problems). In the present paper, we focused on specific behaviors that
are markers of cognitive variety.

As previously defined in an organizational context, cognitive variety refers to the
diversity of mental templates for problem solving that exist in an organization
(Eisenhardt et al. 2010), or to the diversity of cognitive pathways or perspectives
that can be mobilized in an organizational setting (Furr 2009). In a problem-posing
context, an indicator of cognitive variety might be the number of distinct problem
statements. We concluded that this indicator is not relevant enough, as the work of
some of the participants in our study, who proposed more problems than their peers,
did not satisfy the validity criterion, a criterion considered necessary to demonstrate
cognitive framing. Therefore, to capture the finer aspects of cognitive variety, we
defined other two possible indicators: the complexity of the posed problems and the
topic variety of the lists of problems.
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Briefly expressed, the complexity of a problem refers to the number of inde-
pendent factors involved in the problem. The graphic representations of conceptual
complexity, and procedural complexity respectively (Figs. 4.6 and 4.7) showed that
there is a similar average behavior in the Groups 1 and 2. Using those graphical
representations, we further analyze “positive” deviations from the average trend in
the two groups: those deviations describe situations in which there are relatively
many posed problems with large variation of conceptual complexity and relatively
many problems with high procedural complexity.

For Cluster 1, the curves furthest from the average behavior, on both graphs,
correspond to Andrei (4th grade), Alexandru (6th grade) and Laura (9th grade). If
the deviation can be considered normal in Laura’s case (given that, at the moment
of the study, she was starting secondary school and, thus she had access to the
knowledge of both primary and middle school), this deviation is exceptional for
Andrei and Alexandru. The two students have come up with problem statements
using a wide range of procepts—from some studied in elementary school to some
usually studied in high school—and the number of steps needed to solve the
problems that they proposed is higher than their group’s average.

For Cluster 2, the curves furthest from the average behavior, on both graphs,
correspond to Simona and Cristina. Between their proposals, there is a big differ-
ence in terms of the number of proposed problems (23 by Simona, 12 by Cristina)
but, while all of Cristina’s problems can be deemed valid, 4 of the problems posed
by Simona do not meet this condition.

It is noteworthy here that, except Simona, the problems posed by students from
the two groups who have proposed the most problems [Diana (4th grade)—25
problems, and Ana (5th grade)—15 problems in Group 1; Daniela—25 problems,
and Madalina—19 problems in Group 2] have a relatively low complexity com-
pared to the average.

We found that this trend is dominant in the samples: faced with a context of
problem posing, atypical for what they are usually asked to do, many students in
Groups 1 and 2 have relied on problems of low complexity, without relating the
task to their current knowledge. This trend is prominent in Group 2 (university
students) who frequently posed canonical problems that seem taken from a textbook
for middle school. For comparison, the members of Group 3 proposed complex
problems that cover a lot of procepts and require many steps in solving.

Concluding the discussion about the complexity of proposals, we found that:

1. Complexity can act as an inhibiting factor in problem posing, especially for high
achieving respondents (such as those in group 3), who avoid too simple prob-
lems, thus reducing the total number of proposals;

2. The number of proposed problems seems to inversely correlate with their degree
of complexity (without emphasizing a proportionality factor here).
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The topic variety of the problems characterizes the variety of mathematical or
meta-mathematical aspects targeted in a proposal. Comparing the graphic repre-
sentations for the problems proposed by the three groups (Fig. 4.8), we found that,
in all cases the congestion of markers occurs in the area of 0–10 for thematic
variety, but there are differences regarding the accumulation zone relatively to the
mathematical variety (0–20 for Groups 1 and 3 and 10–30 for Group 2). We further
analyze isolated points of these graphs, considered as deviations from the major
trend.

For Group 1, deviations correspond to Diana (4th grade), Andrei (4th grade),
Sandu (4th grade) and Laura (9th grade). Diana, Andrei, and Sandu (4th grade)
were shown thematic variety above the mean, while Diana and Laura proved a
mathematical variety above the mean. These results are not surprising: in our
sample, primary-school students tent to “populate” their problems with different
characters and actions. By comparison, students from higher grades displayed a
lower level of thematic variety, but some of them compensated that through
mathematical variety.

In Group 2, there are deviations corresponding to lists of problems that do not
qualify based on the validity criterion. In these cases, we found a wide mathe-
matical variety: probably just the “freedom” to propose problems beyond the task
constraints (freedom which is manifested most likely at an unconscious level)
allowed these students to digress, posing long list of problems with a high variation
in topic variety. We have seen that, in those cases, students do not demonstrate
cognitive framing, which is a necessary condition for considering some creative
manifestations. Therefore, we focus the discussion on those deviations describing
lists of valid problems: they correspond to Simona and Cristina. In these cases, we
found a lower thematic variety compared to deviations in Group 1, but a greater
mathematical variety. Analyzing the lists of problems proposed by the two students,
we noticed the existence of a true “program” for posing problems, whose design
seems to have been made prior to the time of solving the task. Thus, Simona
grouped her posed problems in “folders” related to different areas of mathematics;
her strategy in generating problems seems to be “what probability (for example)
problems could I propose?”, then she moves to another mathematical domain
asking the same question. Cristina exploited the given image quite systematically,
and performed transfers between geometry and algebra in a natural way.

As referring to Group 3, the deviation concerning topic variety corresponds to
Mihai, who has a training profile closer to Group 2, as Ph.D. student. The major
tendency in Group 3 seems to be that of posing more targeted problems: the
respondents’ quality of teachers can be guessed in the background, the wordings
being more elaborated, as if targeting a concrete/real solver.
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From the analysis of the topic variety parameter, we can formulate the following
conclusions:

1. A large number of posed problems have a low level of thematic or mathematical
variety;

2. As advancing in school level, the thematic variety seems to diminish, but
mathematical variety seems to widen.

Although the focus of this paper is on cognitive variety, we briefly take into
account below the other factors of cognitive flexibility: cognitive novelty and
changes in cognitive framing for our groups of respondents.

To think “out of the box”, it is necessary for a student to understand the essential
invariants of the given configuration, which allow a surprising problem. We further
compare the following two problems generated by two students from our sample:

Problem 1 (Posed by Madalina - university student): A tourist visiting Egypt during the
holiday went to the pyramids. At first pyramid, the guide gave information about the
pyramid shape and dimensions: the base is a rhombus with diagonals of 250 m and 200 m,
and the length of lateral edges is 300 m. How tall is this pyramid?

Problem 2 (Posed by Mihai, Ph.D. student): We denote by An the total number of pieces
that can create a pavement with n layers of 1-pieces and n-1 layers of 2-pieces. Show that
the series

P1
n¼1

1
An

is convergent and find the sum of the series.

Problem 1 appears to be generated by interpreting, in another mental registry a
detail of the tessellation. Madalina drew the figure formed by joining a dart and a
rhombus, interpreted this figure as the plane drawing of a geometric solid and posed
a problem about a quadrilateral pyramid (see Fig. 4.9).

In Problem 2, Mihai defines the terms of a series, and makes a problem about its
convergence.

Viewed from outside, both problems are far from the given input (the initial
configuration). However, there is a significant difference between them: while
problem 2 relates significantly to the essential elements of the given context,
problem 1 makes a leap in which the invariants (filling with no gaps, matching
pieces of two kinds, etc.) are ignored. Therefore, in the context studied in this paper,
although problem 1 seems far from the given situation, and therefore a creative
product, we rather consider it as a misinterpretation of the requirements, witnessing
lack of cognitive framing. The same happened with other problems posed by Group
2, which have been presented to show the topic variety of proposals, but have to be
excluded when discussing cognitive flexibility.

Fig. 4.9 Interpretation of a
detail of tessellation as the
plane representation of a 3D
object
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4.7 Conclusions

This study is focused on the cognitive variety of the responses given by different
groups to a call for problems. The sample consisted of three distinct groups whose
responses have been analyzed as three distinct clusters. Subsequently, specific cases
have been discussed in each group and comparisons have been made between the
clusters.

Common to all these groups is the members’ selection based on their focus on
mathematical problem solving and problem posing. Group 1 consists of winners of
a two-round national contest in mathematics and, taking into account the selection
process they followed, they can be considered mathematically promising students.
The participants in Group 2, consisting of university mathematics students, have
been selected by their option for (future) professional careers in mathematics and/or
mathematics education. Group 3 represents experts in mathematics. Therefore, all
three groups have a major interest in mathematics learning or mathematics practice.

In these circumstances, we looked into how cognitive variety (seen as a com-
ponent of creativity) manifests in these groups.

In the present study, we discussed creativity in relation to the norm group. This
option is natural because it is not about absolute creativity of geniuses who revo-
lutionize a field, but about “small c” creativity (e.g. Bateson 1999; Kaufman and
Beghetto 2009). Therefore, all comments we made are in relation to the normative
behavior of the groups’ members of our sample.

To better capture aspects related to cognitive variety, we have developed some
tools used to quantitatively model qualitative aspects of the respondents’ proposals.
We thus introduced two parameters that are meant to describe the complexity of a
proposal made by the participants: conceptual complexity, which is related to the
list of procepts associated to a posed problem, and procedural complexity, which is
related to the essential steps needed to solve a posed problem. Other two parameters
were used to characterize the problems topic variety: thematic variety and mathe-
matical variety of the lists of posed problems.

To study cognitive variety, we plotted the measures for the complexity and,
respectively topic variety of a proposal in coordinate systems and we identified on
these graphs the dominant behavior of the sample (identified by accumulation of
curves or points) and isolated cases/deviations from that behavior.

The following conclusions emerge from the study:

• The existence of a cognitive frame generated by the given input for problem
posing is a necessary condition to discuss an individual’s mathematical cre-
ativity, and for the study of cognitive variety.

• The number of posed problems is not a sufficient indicator of cognitive variety
for some reasons. For example, the concern for proposing only problems with a
high degree of complexity acts as an inhibiting factor for the number of posed
problems. Conversely, in many cases, students who pose a large number of
problems either do not show cognitive framing, or pose problems of low level of
complexity. In determining cognitive variety, it is necessary to consider several
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parameters; besides the number of posed problems, we need to pay attention to
the validity of the posed problems, to their complexity, and to their breadth of
topics.

• The data analyzed in this paper show that, in terms of cognitive variety, there are
no significant differences between Group 1 (consisting of students aged 9–16)
and Group 2 (consisting of university students at the Faculty of Mathematics),
but there are significant differences between these groups and Group 3 (experts).
It seems that, beyond the knowledge increase and age-related cognitive matu-
ration, cognitive variety is not age or training related up to the expert level.
Expertise also may happen that it is not age-related to a certain extent (but it is
very much training-related).

On the other hand, the present study confirms findings from other studies (e.g.
Singer and Voica 2015) according to which, in a semi-structured problem-posing
context, cognitive novelty is limited: students who are apparently more creative do
not have a built-in cognitive frame and the problems they generate, although seem
to be far from the given context—therefore more creative, actually are not
task-consistent; in these cases, proposers did not fulfill a basic condition to be
considered mathematically creative. Consequently, when dealing with concepts
situated at the interaction between human knowledge and human psychology, many
precautions and careful analysis are needed to formulate generalizable conclusions.
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Chapter 5
Mathematical Creativity and Its
Subdomain-Specificity. Investigating
the Appropriateness of Solutions
in Multiple Solution Tasks

Maike Schindler, Julia Joklitschke and Benjamin Rott

Abstract In mathematics education, researchers often talk about mathematical
creativity. However, we see a lack of research on the question of whether such an
ability exists for mathematics in general; or whether mathematical creativity should
rather be viewed subdomain-specifically; for instance, in the contexts of geometry,
algebra, or arithmetic separately. In this paper, we present results of an empirical
study investigating upper secondary school students’ performances in Multiple
Solution Tasks (MSTs). First, we elaborate on the notion of appropriateness and its
influence on the investigation of creativity; and illustrate implications based on the
given data. Second, we give an insight into students’ performances along three
different MSTs from different mathematical domains and point out correlations
between students’ performances in two domains: geometry and algebra. Our results
do not support the construct of domain-specific or subdomain-specific creativity,
but indicate that mathematical creativity should be considered task-specifically.
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5.1 Introduction

Creativity is an ability that is mostly associated with arts or music. Famous artists
such as Mozart or van Gogh composed or painted numerous and outstanding pieces
of art and are therefore regarded as creative people. Moreover, creativity can be
seen as an important aspect in problem solving: Activities such as generating new
solutions or elaborating on extraordinary and rare ideas may involve creativity to
some extent. With the growing demand of our society for innovation and creative
solutions to complex problems in domains such as technology, engineering, or
natural sciences—domains in which mathematics plays a crucial role—mathemat-
ical creativity is gaining increasing significance. It is important to foster students’
creativity (Sheffield 2009, 2013; Silver 1997; Hershkovitz et al. 2009) to both
prepare students for their current and future lives in modern societies and to face the
needs that our society encounters now and in the future. Whereas research has
focused on creativity of outstanding mathematicians and exceptional people for a
long time (Hadamard 1954), recent research has increasingly addressed creativity of
everyone, especially students’ creativity (e.g., Mann 2005).

In mathematics education, research aiming to understand and grasp students’
mathematical creativity is so far quite rare (Leikin and Pitta-Pantazi 2013).
Approaches to investigate mathematical creativity include problem solving as well
as problem posing (Silver 1997; Leikin 2009). Many of the existing studies draw on
students’ products (e.g., written solutions or drawings) to assess mathematical
creativity (Leikin and Lev 2013; Kattou et al. 2015). Performances are quantified
along the dimensions fluency, flexibility, and originality, which originally arose
from research on intelligence (Guilford 1967). Moreover, Kattou et al. (2015) found
that creativity needs to be regarded domain-specific (within mathematics) and not
domain-general. However, previous research has not yet sufficiently clarified
whether students’ performances in different creativity problems correlate and, thus,
can be attributed to a single construct called students’ mathematical creativity. The
question of whether creativity is to be regarded a domain-specific or subdo-
main-specific ability is not yet clarified.

The purpose of this study is to investigate students’ creative performances along
different fields of mathematics—namely geometry and algebra. For this purpose, we
conducted an empirical qualitative study with 21 upper secondary school students.
For conducting a thorough data analysis, we first perused the question of which
student solutions are to be taken into consideration when investigating creativity:
Following Leikin (2013; Levav-Waynberg and Leikin 2012), we discuss the term
appropriateness of solutions and investigate whether and to what extent solutions
that are not correct, have flaws, or lead to a wrong solution may be regarded
appropriate nevertheless. Based on these findings, we focus on students’ perfor-
mances along three different MSTs. In this first approximation to investigate the
specificity of mathematical creativity, we found that the scores for mathematical
creativity seem not to be consistent along different MSTs.
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5.2 Theoretical Background

The growing demand in our society and economy for creativity is undeniable.
People need skills to solve complex non-routine problems in extraordinary ways.
Extraordinary and original ideas are not only important for managers and
employees, but also for students in schools and high schools. Especially the fast
development of science and technology requires more and more experts who are
able to cope with these challenges. Special skills to solve problems creatively
become more important for the coming generation, as Kattou et al. (2013) point out:
“Given that students, as future citizens, will face problems that are unknown at
present, it is especially crucial for them to be creative in order to efficiently tackle
the challenges they will meet” (p. 180). Assessing and fostering mathematical
creativity has accordingly become an important research field (e.g., Haylock 1987;
Silver 1997). The recent development shows that this field is growing; in 2017 at
ICME13, there was a distinct topic study group on “mathematics and creativity”.
The aim to learn more about creativity and the question of how to measure and
foster creativity have become important for research in mathematics education. In
this line of thought, Leikin (2009) points out: “I consider developing mathematical
creativity in school students to be one of the important objectives of school
mathematics education. This implies that tools for the evaluation of students’
mathematical creativity are needed to realize the students’ creative potential and to
assess the effectiveness of various mathematical curricula” (p. 129).

In the following, we will outline theoretical aspects regarding mathematical
creativity. First, we give an insight into concepts on creativity in general. Second,
we focus on creativity in the field of mathematics. Third, we give an overview on
methods to quantify products in order to assess mathematical creativity.

5.2.1 What Is Creativity?

So far, researchers are discordant about a coherent definition of creativity (Sriraman
2009). There are various concepts, which cannot all be addressed in this article.
However, we give an insight into the beginnings of research on creativity and
introduce some prominent concepts.

The current tradition of research on creativity started in the 1940s and 50s when
Guildford (1950) conceptualized creativity as one component of intelligence
(Guilford 1950). Guilford’s psychological model of intelligence was the first one
that comprised different forms of creativity. He differentiated, among others,
between convergent production and divergent production: “Convergent production
is in the area of logical deductions or at least the area of compelling inferences.
Convergent production rather than divergent production is the prevailing function
when the input information is sufficient to determine a unique answer. […] For
example, if we ask, ‘What is the opposite of HARD?’” (Guilford 1967, p. 171). In
comparison to convergent production, he describes divergent production as
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“a concept defined in accordance with a set of factors of intellectual ability that
pertain primarily to information retrieval and with their tests, which call for a
number of varied responses to each test item. […] [These] tests require examinees
to produce their own answers, not to choose them from alternatives given to them”
(Guilford 1967, p. 138). Divergent abilities are “most relevant to creative perfor-
mance. [For these abilities a] […] factor of fluency […], a factor of flexibility […]
and [a] […] factor of originality materialized. Later, in a study of planning abilities,
a factor of elaboration was expected and was demonstrated” (Guilford 1967,
p. 169; emphasis by M.S./J.J./B.R.). The dimensions fluency, flexibility, original-
ity, and—partly—elaboration are nowadays used in many creativity tests. In this
context, fluency stands for the ability to come up with a multitude of produced
answers. Flexibility is to be understood as the capability to generate answers in
various ways. Originality means the uniqueness of answers, and elaboration the
level of details of the solutions.

In addition to the question of what creativity is, the question of who or what can
be creative is discussed (Leuders 2010; Liljedahl 2013; Rhodes 1961). Rhodes
(1961) describes different strands of research on creativity as four Ps of creativity
which are product, process, person, and press. Concerning products, Bailin (1988)
states that creativity is reflected in certain achievements or rather products. Liljedahl
(2013, p. 255), for instance, focuses on processes arguing “that such a use of
assessment of end product pays very little attention to the actual process that brings
this product forth”. The focus on processes goes along with problem solving pro-
cesses, mostly along the lines of processes as described by Wallas (2014) in his
seminal work art of thought. Wallas first published his book in 1926 drawing on
ideas by the French mathematician Henry Poincaré, describing stages of conscious
and unconscious cognitive processes with a moment of illumination. According to
Rhodes (1961, p. 308) “the term process applies to motivation, creativity to persons
—mostly to persons who were considered to be a genius”. For example, Kneller
(1965) or Ghiselin (1985) investigated various geniuses. Rhodes completes his
remarks with the influence of the press: “The term press refers to the relationship
between human beings and their environment” (Rhodes 1961, p. 308). He con-
cludes that these four aspects are strongly interwoven.

In our investigation, we focus on Guilford’s components fluency, flexibility, and
originality by analyzing students’ products. We do not focus on the component
elaboration as this aspect has rarely been considered in mathematics education
research as we will point out below.

5.2.2 What Is Mathematical Creativity?

Referring to a product-based conception of creativity (see below) and using a con-
firmatory factor analysis, Kattou et al. (2015) showed that creativity is not
domain-general but domain-specific: “Therefore, psychologists and educators should
no longer characterize individuals as creative, but instead, as creative in specific
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domains” (Kattou et al. 2015, p. 1022). In this respect, Kattou et al. focus on students’
products as well as on creativity as a personal trait. Whether one speaks of “students’
creativity” depends on the underlying conception and definition of creativity. In
mathematics, the term creativity is often considered along the lines of Poincaré’s
(1948) results regarding the Fuchsian functions. The four-step process described by
Poincaré and later expatiated by Hadamard (1954) has become synonymous to
mathematical creativity for some researchers (e.g., Liljedahl 2013). Accordingly,
Sriraman (2009, p. 15) defines mathematical creativity “as the publishing of original
results in prominent mathematics research journals.” However, researchers such as
Mann (2005) state that not only famous mathematicians can be creative but also
everyone else, especially students (see also Sheffield 2009; Hershkovitz et al. 2009).
This apparent contradiction has been addressed in the discussion labeled “big C”,
referring to extraordinary creativity, and “little c”, referring to everyday creativity (cf.
Sriraman et al. 2014). Our understanding of creativity is not limited to big C or the
so-called genius approach on creativity (Hadamard 1954) but includes subjectively
new results by students (e.g., Leikin 2009).

5.2.3 Methods to Evaluate Creativity

Guilford proposed ideas to measure components of creativity, for instance, in the
form of his well-known Alternative Uses Test (1967). This test is closely related to
the Brick Uses Test: Here, the participants are asked to name as many uses for a
brick (or another common object) as they can think of in a certain amount of time.
With a view to all of the four dimensions fluency, flexibility, originality, and
elaboration, the creativity score gets higher, the higher each component is rated.
The fluency score depends on the number of solutions. To rate flexibility, the
number of different categories of uses is taken into account. If a participant names
“building a house”, “building a wall”, and “building a floor” the flexibility is low,
whereas “throw at a cat”, “make bookends”, and “make a filter” show a high level
of flexibility (Guilford 1967, p. 143). The dimension originality is rated based on
the relative frequency of the given answer in the focused group. Elaboration refers
to the level of detail: Answers such as “use the brick to filtrate tainted water” are
more elaborative than “make a filter” and would be rated with a higher score. This
task can be managed without a specific content knowledge due to the ordinariness
of a brick.

Based on Guilford’s theory, Torrance (1974) developed the Torrance Test of
Creative Thinking (TTCT). This test contains slightly altered versions of Guilford’s
test, called “Unusual Uses Activities”, as well as additional subtests. Examples of
these subtests include verbal items such as the “Ask and Guess”-test where the
participants are supposed to ask questions to given drawings. Other subtests are
constructed to be non-verbal such as the “Picture Completion”-test, which consists
of incomplete figures that have to be completed. This test has earned a widespread
acceptance for the analysis of creativity in different components.
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5.2.4 Methods to Evaluate Mathematical Creativity

A domain-specific adaptation of Guilford’s conception of creativity is suitable to
get a more detailed insight into mathematical creativity, especially with a focus on
problem solving (Leikin and Lev 2013). Therefore, domain-specific research in
mathematics education has focused on these seminal ideas; and has adapted them to
mathematics education (see Leikin and Pitta-Pantazi 2013). Leikin (2009;
Levav-Waynberg and Leikin 2012) has introduced the concept of Multiple Solution
Tasks (MSTs) within the domain of mathematics education: Mathematical tasks
that are supposed to be solved in different ways.

Furthermore, Guilford’s and Torrance’s ideas on measuring creativity have been
used: Based on this, researchers such as Leikin and Lev (2013) as well as Kattou
et al. (2013) developed tests, which draw on Multiple Solutions Tasks (MSTs),
where the students’ products’ fluency, flexibility and originality are evaluated.
Fluency is scored by the number of given answers. For the flexibility, the students’
solutions are classified depending on their diversity. Originality addresses the rel-
ative frequency of a given solution in comparison to the reference group of par-
ticipants. The component elaboration is mostly not evaluated “due to the difficulty
of determining levels of elaboration in mathematical tasks” (Kattou et al. 2013,
p. 174). This approach is linked to the “little c” concept of mathematical creativity:
solutions are analyzed with respect to the reference group with comparable prior
experience.

In contrast to the brick task, some of the MSTs deal with more or less complex
problem solving tasks from different fields of mathematics. As such, they may
require a certain mathematical background, which—as pointed out by Leikin and
Sriraman (2017)—may lead to a correlation of mathematical creativity and math-
ematical ability. Especially for evaluating mathematical creativity in cases of
complex problem-solving tasks, it appears reasonable to not only take into account
solutions that are entirely correct but also those that are appropriate (Leikin 2013).
Levav-Waynberg and Leikin (2012) point out that also imprecise solutions are
scored when assessing creativity; Leikin (2013) explains that the term appropri-
ateness is used instead of the term correctness “to allow evaluation of reasonable
ways of solving a problem that potentially lead to a correct solution outcome
regardless of the minor mistakes made by the solver” (p. 391). The scores for each
appropriate solution (fluency, flexibility, originality) result in a score for mathe-
matical creativity across a set of MSTs. In this chapter, we want to connect to this
idea and focus on the question of what makes appropriate solutions appropriate.
Following Leikin’s work, we elaborate on what kinds of flaws solutions may entail
to still being regarded appropriate. Accordingly, our first research question is as
follows:

What kinds of flaws may appropriate solutions entail to still be regarded appropriate? What
does appropriateness mean in terms of mathematical MSTs?
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Furthermore, there are other approaches to assess mathematical creativity.
According to Silver (1997) and Bruder (2001), creativity is not only assessable
through problem solving but also through problem posing. The capability to gen-
erate subsequent questions to a mathematical phenomenon shows a high level of
creativity (Silver 1997). Singer et al. (2017) address problem posing as well: Here,
the concept of cognitive flexibility is crucial, which comprises the dimensions
cognitive variety, cognitive novelty, and changes in cognitive framing. Singer
et al.’s results indicate that a student’s cognitive style might be a predictor for their
mathematical creativity. In both cases (focusing on problem solving or posing),
mathematical creativity is seen as a relative construct because researchers focus on
students’ performances.

Another—non psychometric—approach is, for instance, the psychodynamic
approach (Sternberg 1999), which focuses on the shifts between conscious and
unconscious mind. Liljedahl (2013) uses this approach when analyzing students’
essays; and draws on a social-personality approach (Sternberg 1999), since he
focuses on affective components. Here, mathematical creativity is also seen as a
relative construct because students’ reports are in the focus and students reflect on
their creative moments.

Along these concepts of assessing mathematical creativity, we see that students’
performances in certain tasks are taken into regard in order to assess students’
mathematical creativity. However, it is not clear whether students’ performances
along different tasks are consistent. In this chapter, we therefore ask the question of
whether one can speak of “students’ mathematical creativity” in general—or
whether mathematical creativity is rather to be regarded subdomain-specifically.
This leads to our second research question:

To what extent do students’ performances vary across different MSTs? Does students’
mathematical creativity differ between the sub-domains of geometry and algebra?

5.3 Methods Part I: Investigating Appropriateness

The investigation took place in a project at the University of Duisburg-Essen in
Germany called MBF2, which is a German acronym for Focusing on mathematical
giftedness—for upper secondary school level (in German: Mathematische
Begabung im Fokus—in der Sekundarstufe II). About 21 students (with slightly
varying number from lesson to lesson) from different local schools participated in
this project. They met every second week for a total of ten times. The students
worked on challenging mathematical problems from different mathematical fields
such as graph theory, cryptography, and spherical geometry. Furthermore, they
worked on special problems that allowed us to investigate mathematically gifted
behavior in upper secondary school children (Joklitschke et al. 2017). We focused
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on mathematical giftedness from different points of view: students’ problem solving
processes, student’s products, and students’ behavior. As some researchers see
creativity as one component of gifted behavior (Renzulli 2002) we focused on
mathematical creativity as well (see, e.g., Rott and Schindler 2017). There were no
criteria for a previous selection of the students such as intelligence tests or certain
grades in school. All participating students were highly interested in mathematics
and attended this extracurricular course in their free time—independently from their
regular schooling. In order to estimate students’ cognitive abilities, we conducted
the Culture Fair Test (CFT20-R) during the project span, which resulted in a
measured IQ of 121 on average. Thus, the participating students may be considered
above-average intelligent.

To assess mathematical creativity, we used MSTs and evaluated students’
products. We used two geometrical problems (Figs. 5.1 and 5.2) and one algebraic
problem (Fig. 5.3). For all problems, the wording of the general instructions was
the same: “Solve the following problem. Can you find different ways to solve the
problem? Find as many ways as possible.” The three problems were given in
different sessions and the students had a processing time of 30 min for each
problem.

Solve the following problem. Can you find
different ways to solve the problem? Find as 
many ways as possible.

This figure is a triangle ABC. The points P, Q 
resp. R, S divide sides AB resp.
AC each in three equal parts. 

What is the area of the quadrangle in 
comparison to the area of the triangle? 

Fig. 5.1 MST “triangle” (see
Novotná 2017)

Solve the following problem. Can you find 
different ways to solve the problem? Find as 
many ways as possible.

This figure is an
equilateral hexagon. How 
big is the angle ε? 
Remember, in an
equilateral hexagon, all 
sides have the same length
 and all angles have the
 same size, which is 120°. 

ε

Fig. 5.2 MST
“hexagon” (see, e.g.,
Schindler et al. 2016)
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When evaluating students’ products, we used different schemes: First, we only
took into consideration correct solutions. In a second analysis, we took into account
solutions that we considered appropriate. Through this approach, we analyzed
differences between appropriate and correct solutions in order to investigate
appropriateness of solutions thoroughly. Our analyses were based on the rating
scheme as used by the research group around Leikin (e.g., Leikin and Lev 2013);
once based on correct solutions, once based on appropriate ones (similar to Leikin
and Lev 2013). In the first version, which we call “strict” in the following, wrong
answers were sorted out and not used in the scoring. In the second analysis, we
lowered this level to evaluate the products even if they entailed certain flaws,
mistakes, or imprecisions.

For considering whether the approaches were considered appropriate, we con-
sensually validated whether the reasoning was sufficient. Based on this, we eval-
uated whether the approach would be included in the first way of analysis; or only
in the second one. In both ways of evaluation, we calculated a total creativity score
for each problem and each student. Following Leikin and Lev (2013), we used the
following formula:

Cr ¼
Xn

i¼1

Flxi � Ori

Here, the flexibility score and the originality score are multiplied. Then, all (here n)
solutions, respectively approaches (depending on the first or second analysis),
presented by each student in one task are summed up to a total score.

Lena produces 80 liters of punch for the 
Christmas market. She fills the punch in equal 
shares into barrels.
When putting the barrels into the car, she 
notices that four barrels do not fit into the car 
and have to be left at home. Nevertheless, she 
wants to take all of the punch to the Christmas 
market. Therefore, she distributes the content of 
the four not-fitting barrels in equal shares to the 
other barrels. 
After this, she realizes that she had added 
exactly ¼ of the previous amount to each of the 
barrels. How many barrels did she have in the 
beginning? 

Fig. 5.3 MST “punch” (see
Leikin and Lev 2013)
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5.4 Methods Part II: Students’ Performances Across
Three MSTs

The results of the first part of our study regarding appropriateness of solutions build
the basis for the second part of our investigation, where we study students’ per-
formances in the presented problems across the disciplines geometry and algebra.

To analyze to what extent the students’ performances vary across the different
problems, we need a non-parametric test, which measures the ordinal association
between the three MSTs pairwise. Therefore, we use Kendall’s Tau Test, which is
designed for small sample sizes. This test quantifies the similarity of orderings of
students’ performances.

5.5 Results Part I: Comparison of Two Evaluation
Schemes

A first overview (see Table 5.1) displays how many students worked on the three
different MSTs (14–21) and on how many approaches the students worked on
average (1.5–3.5 on average).

In this section, we elaborate on the students’ performances by illustrating
meaningful examples for each of the three MSTs. We furthermore explain which
differences occur when choosing the first or the second kind of analysis. In a second
part, we compare students’ performances by giving an insight into examples from
students in all three MSTs.

In the first analysis based on only correct solutions, all non-correct approaches
(in the above-mentioned sense) were sorted out in the beginning before calculating
a creativity score. In the second analysis, we widened the spectrum of included
approaches and included all approaches that were considered appropriate (see
above). Table 5.2 displays the number of approaches we took into account in the
first and in the second kind of analysis for each task. It displays the total creativity
score; not the particular components such as flexibility or originality.

Furthermore, Table 5.2 displays the differences in creativity scores resulting
from the first and second way of analysis. The number of students that worked on

Table 5.1 Overview of the number of students and approaches in the three MSTs

Triangle-problem Hexagon-problem Punch-problem

Number of students 21 17 14

Number of approaches 32 59 19

Average number of approaches
per student

1.5 3.5 1.4
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the triangle problem was 21, whereas 17 and 14 students worked on the hexagon
and punch problem respectively. For the hexagon problem, the students found by
far the most approaches (i.e. 59). We see that there are major differences in the
number of approaches, which were included into the particular analysis. Especially
in the triangle MST (4 correct vs. 21 appropriate approaches) and in the hexagon
MST (39 correct vs. 59 appropriate approaches), the differences are remarkable.
This has, of course, consequences for the students’ creativity scores. In the triangle
problem, 19 out of 21 students have a creativity score of 0 when the first—strict—
analysis is applied (because these students do not have any entirely correct solu-
tion), but only 7 students have a score of 0 when the second analysis is used
(because other, partly wrong approaches are furthermore taken into account).
Moreover, in all three given MSTs, the second analysis leads to an improvement of
students’ creativity scores.

In the following, we use examples of students’ approaches for each of the three
problems in order to illustrate what makes students’ approaches appropriate even
though they may be wrong. We furthermore point out why we think it may be
important to include also those approaches that have weaknesses but are
comprehensible.

5.5.1 The Triangle Problem

Steven’s approach (see Fig. 5.4) shows an algebraic calculation. He uses vectors to
represent the corners P,W, S, and R of the given triangle, as well as the subdivisions
of the line segment AB, resp. AC in relation to A which he chooses as the origin. In
the next step, he tries to calculate the surface area of the gray quadrilateral.
Therefore, he sees the area as a composition of a parallelogram and a triangle. After
substituting the unknown lengths with the known ratios of 1

3 � AB and 1
3 � BC,

respectively, and after having set the lengths of the sides AB and AC to 1, he is able

Table 5.2 Students’ performances in the three MSTs (considering correct vs. appropriate
solutions)

Triangle-problem Hexagon-problem Punch-problem

Correct Appropriate Correct Appropriate Correct Appropriate

Number of
approaches included

4 21 39 59 13 19

Number of students
who have a
creativity-score of 0

19 7 1 0 3 0

Number of students
with an improvement
(2nd vs. 1st analysis)

0 20 0 11 0 9
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to get to the result of 3/18. This outcome, however, does not refer to the triangle
ABC, but to the parallelogram which can be constructed by adding a second triangle
rotated by 180°. The last step, namely a division by 1/2, is missing. Therefore, this
approach must be considered wrong. He misses the last step and, moreover, uses a
special case to handle the problem. In consequence, if only correct solutions are to
be considered, Steven gets 0 points for this approach. However, focusing on
appropriateness, we can see a clear and comprehensible strategy. Indeed, the last
step is missing and therefore, his conclusive answer is wrong, but his idea is well
founded. Interestingly, no one else in our group of participants worked on this
problem by using vectors, so that his approach shows a high level of originality. In
the second analysis, this approach is included into the calculation scheme and raises
Steven’s creativity score.

The next example shows Lilly’s approaches (see Fig. 5.5).

Fig. 5.4 Steven’s approach
(triangle problem)

Fig. 5.5 Lilly’s approach
(triangle problem)
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Lilly works on two ideas which are discussed in the following: On the top of her
sheet, there is the triangle ABC, which she completes to a parallelogram by rotating
the triangle at the middle of the line segment BC. Furthermore, she extends the lines
PS and QR. To the right of Lilly’s sketch, there are two lines of equations, which
illustrate the same lengths for the different sections of AB and AC respectively. In
the rest of her notes, she does not refer to this sketch. Of course, she refers to the
triangle, but she does not elaborate on the parallelogram anymore. In her notes, she
tries to express the gray surface area by building differences (see the line underneath
the sketch in Fig. 5.5). Following this line of thought, to determine the particular
surface area, she uses the Pythagorean Theorem to determine the lengths of some
line segments but does not have any success. Finally, she writes down the pro-
portion of the line segments and the two sides of the triangle. We see two very
different approaches with which Lilly tries to solve the triangle problem. In the first
one, she has the important idea of building a parallelogram but she does not proceed
with this idea, even though she extends the line segments. When only correct
solutions are to be considered, this solution is not included into the evaluation
scheme, because there are no notes referring to the sketch or a conclusive answer.
When appropriate solutions are in focus, we can see that she completes the triangle
to a parallelogram. This move constitutes an important and creative part to come to
a right solution. Especially the line extensions can be a hint at a reasonable idea. For
this reason, we decided to include this approach in the second way of analysis.
Lilly’s second attempt is about the Pythagorean Theorem. Lilly tries to use this,
even though the triangle is not right-angled. Furthermore it is not clear why she tries
to calculate lengths of the line segments. We were not able to understand her
strategy in this case. This example shows that there were cases in which an
approach cannot be taken into account for a further evaluation with neither the
strictly dichotomous first nor the broader-viewed second kind of analysis.

5.5.2 The Hexagon Problem

The hexagon problem was the second MST the students worked on. Most students
integrated many ideas and approaches within one picture. Therefore, it is difficult to
identify the particular approaches. In the following, two examples are presented,
which have some similarities.

Figure 5.6 displays many approaches as carried out by Lilly. In the paper at
hand, we have a closer look at one particular approach.

In this approach, Lilly draws a line from A to D. Together with the given line AE
she writes that her auxiliary line halves the interior angle BAF in two angles of
equal size, namely 60�. Then, she argues that the given line AE leads to a second
halving, so that she comes to the conclusion that the angle e is 30°. However, there
is no reasoning provided about why the mentioned lines exactly halve the focused
angle. Probably she had reasons of symmetry in mind, but we can neither be sure
about this nor is symmetry a trivial argument in this problem. The non-trivial
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argumentation why AD and AE are halving the angle e twice and the fact that she
misses to note some explanations may indicate that she is acting intuitively or is not
aware of the correct mathematical argumentation. However, she comes to the right
solution that FAE is 30°. We see that Lilly’s approach has the right outcome but her
reasoning is insufficient. For this reason, this approach is excluded under the per-
spective of the first analysis which—because of the high flexibility—leads to a
reduction of her creativity score. In the second analysis, we decided to consider this
approach appropriate and include it because of the right solution and an under-
standable way of solving the problem. Even though it may lack proper mathe-
matical reasoning, it is a character of mathematical creativity.

Tina (Fig. 5.7) works on three approaches.
In the first one, she calculates the size of e from the angle sum of a right triangle.

Her next approach, which will be analyzed in the following, is similar to Lilly’s
solution presented above. Tina also divides an angle: She focuses on the angle BAE
and divides it into thirds. She then comes to the right solution of 30°. Here, two
aspects in the argumentation are missing. First, it is not pointed out why the angle

Fig. 5.6 Lilly’s solution
(hexagon problem).
(Students’ note “AD divides
the angle in 2 equal 60°
angles. AE divides one of this
in two angles of equal size
30°”)

Fig. 5.7 Tina’s solution (hexagon problem)
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BAE is right-angled. She could argue drawing on the alternate angle, which she
used in her first approach. However, she does not mention this. Another explanation
could be that Tina does not feel the necessity to motivate this. Second, it is not
obvious why the inserted line segments AC and AD divide the right angle into
thirds. This approach is—compared to Lilly’s approach—more sophisticated. Tina
is probably not aware of the reasons and therefore this approach might be excluded
in the first analysis, although her solution is right. However, we consider this
approach appropriate, because it shows a clear idea that can be completed. Tina’s
third approach is very similar to her previous one. She divides the interior angle into
four parts like Lilly. As in the approach before, Tina does not give any reasons for
why her division is correct. Here, the evaluation follows the same line of argu-
mentation as in Lilly’s case: In the first analysis, the approach is excluded, whereas
in the second analysis this approach is included. Again, we consider approaches
appropriate for assessing students’ mathematical creativity that lack certain expli-
cation of steps in the student’s proof.

5.5.3 Christmas Punch Problem

The third problem was an algebraic one. And it seems to be the most complex one
of the problems we used: The maximum number of solutions provided by the
students was two, but most of the students only worked out one approach. In the
following, one example is given.

In Olive’s approach (see Fig. 5.8, left), we see some notes at the beginning,
which build the central information for solving the problem.

The most interesting lines to understand her procedure are “3=4þ 1=4 ¼ 1” and
“4 barrels = 3/4 filled”. Here, it becomes clear that Olive’s idea refers to the wrong
underlying set. She assumes that the barrels are filled to 3/4 in the beginning
(Fig. 5.8, right). She therefore comes to the wrong solution of 16 barrels in total.
In the first analysis, because of this mistake, her approach cannot be integrated into

Fig. 5.8 Left: Olive’s approach (Christmas punch); right: illustration to Olive’s approach
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the calculation scheme. However, when focusing on appropriateness, we see an
approach which, due to a wrong text comprehension, entails a reasonable strategy
to solve the problem. Of course, the mathematical notation is not elaborated but
her thoughts are structured and clear. Therefore, this approach is considered
appropriate and integrated into the calculation scheme. Because Olive did not
work on a further approach, she gets a score greater than 0 only if this approach is
taken into account. Nevertheless, many of the students had a very similar solution
so that the originality score and thus the whole creativity score is rather low, but
higher than 0, in general.

These examples illustrate that under the “strict” scheme of the first analysis,
several approaches have to be excluded, which hint at creative thoughts and original
ideas. Given that only entirely correct approaches are taken into consideration, we
feel that the students’ scores are heavily influenced by their ability to produce
correct solutions. Therefore, we follow Leikin’s (2013) suggestion to replace the
notion of correctness with the notion of appropriateness.

In sum, considering our first research question of what kinds of flaws appro-
priate solutions may entail to still be regarded appropriate and what appropri-
ateness means in terms of mathematical MSTs, we found that in most cases, the
appropriate solutions

• lack certain steps in the reasoning of the proof but still are reasonable and
understandable,

• provide an appropriate strategy and are understandable, but include other mis-
takes (arithmetical, algebraic, or geometrical) leading to a wrong solution, or

• are incomplete but may lead to a correct solution and could be complemented to
a correct solution.

5.6 Results Part II: Students’ Performances Across Three
MSTs

In the next part of our study, we focus on students’ performances across different
MSTs.

Based on our previous finding that a scoring based on appropriateness gathers a
broader spectrum of students’ creative approaches, we ranked students’ perfor-
mance in each MST in order to compare students’ ranks. Thereby, we aimed at
analyzing the consistency of students’ performances across three MSTs. By doing
so, we wanted to investigate whether students’ performances in different MSTs
correlate and, thus, can be attributed to a single construct called students’ mathe-
matical creativity or not.
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Table 5.3 shows the pairwise rank correlation coefficients between each two
MSTs which were calculated with Kendall’s tau. There is a weak rank correlation
between the triangle MST and the hexagon MST (r = .233). This positive rank
correlation is not significant (p = .283). If we look at the other two comparisons
(triangle MST and hexagon MST; hexagon MST and punch MST), we see no
positive correlation (r = −.019, resp. r = −.281). Actually, there is a weak negative
rank correlation between the triangle MST and the punch MST, but with p = .939
this correlation coefficient is not convincing. We see that in each comparison there
is no informative rank correlation. That means that there is no statistical evidence
for a successful or unsuccessful performance along the three MSTs. However, it
needs to be taken into consideration that due to the small sample size and the
above-average IQ, the group under investigation is not representative; with
according consequences for the results of the statistical analysis.

To give a qualitative insight, we focus on three students (Kirsten, Claire, and
Phil) in the following and present their performance across the three tasks. We
choose these students because their diverse performances are generic for the stu-
dents in the project.

5.6.1 Kirsten’s Case

In her approach to solve the triangle problem (see Fig. 5.9), Kirsten divides the grey
area into a parallelogram and a triangle by drawing an auxiliary line through S that
is parallel to AB. Then, she uses the intercept theorem to reason on proportions
between different line segments. In comparison to the reference group, her approach
is elaborated, as she is the only student who motivates the equality of the lengths of
the line segments. Because of the originality of her approach, she receives a high
creativity score ðCr1Þ. Although she does not write down another solution, she gets
one of the highest total creativity scores ðCrÞ in this MST.

In the second geometrical MST (the hexagon problem), her performance is also
high (see Fig. 5.10). She works out four approaches. In her first approach, she
makes use of the angle sum. Therefore, she focuses on an isosceles triangle, which
consists of one interior angle of the hexagon which is given with 120° and two
angles e. Then, she calculates the correct size of the angle. This approach was

Table 5.3 Correlations
between each two MSTs

Problem

Triangle Hexagon Punch

Triangle – r = .233
(p = .280)

r = −.019
(p = −.939)

Hexagon – – r = −.281
(p = .257)

Punch – – –

Calculated with Kendall’s tau
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worked out by several students. Therefore Kirsten’s originality score is only 1 for
this approach. The flexibility is 10, because this approach was her first one. Her
second approach is from another category, so that the flexibility is scored with 10
for that approach as well.

The originality is also scored with 10: she inscribes an equilateral triangle and
thereby divides the interior angle into 2 angles e and one angle of the equilateral
triangle which is 60°. In her next approach, she divides the interior angle into four
angles of equal size. In the analysis, we take this solution into account, although
there are missing steps regarding the argumentation (appropriateness). Because she
uses the strategy again to divide an angle, the flexibility is 1, but the originality is
rated with 10, because this solution does not appear often. In her last approach,
Kirsten divides a right angle into thirds. Therefore, flexibility is rated with 1 again.
The originality is also rated with 1, because this approach is common. With this
performance, Kirsten’s creativity score in this task is one of the highest.

In the third MST (the punch problem), Kirsten’s performance (Fig. 5.11) is
weaker. She works out one insight-based solution. Indeed, her solution is correct,
but most students have a solution from the same category so that the originality
score is 0.1. Therefore, her creativity score for this MST is lowest among all
students participating in this study.

Fig. 5.9 Kirsten’s solution for the triangle problem

Fig. 5.10 Kirsten’s approaches for the hexagon problem
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Kirsten’s case illustrates that there are students who perform highly in some
MSTs but low in other ones. In this particular case, the creativity scores were high
in both geometry MSTs, whereas they were low in the algebra MST. Her creative
performance appears to be content- or subdomain-dependent. This might indicate,
for instance, that her abilities in the domain of geometry are stronger than in
algebra; or it might reflect different norms that are established in her regular
mathematics teaching in these different domains. It might also indicate that she has
more practice with geometrical proofs than with problem solving in algebra.
Finally, the differences might rely on difficulties to understand the situation in the
last MST or on other influencing factors (concentration, motivation, etc.). However,
what we see is that her creative ability does not come to light equally in the three
MSTs. Her case indicates that mathematical creativity should possibly be consid-
ered subdomain-specifically (here: in geometry vs. algebra) rather than in general.

5.6.2 Claire’s Case

Claire is one of the mathematically strongest students in the course. She performs
very well in almost all problems given in the course.

In the first MST, her performance is not outstanding, but good (see Fig. 5.12).
She works out two approaches, both rated with an originality of 1. In the first one,
she completes the triangle to a parallelogram (although she writes “rectangle”) and
reasons why the grey area is 1/3. Remarkable is her note at the end in which she
states that this relation only works with the area in the middle. In her second
approach, she divides the given triangle into nine small similar triangles of equal
size and determines the ratio.

In the hexagon problem, Claire works out four approaches (see Fig. 5.13).
In one approach, she inscribes a rectangle und then subtracts 90° from the

interior angle of 120°. Because of the low originality (rated with 1) she gets 10
points (10 for flexibility). Additionally, she provides two approaches in which she
uses the angles sum of triangles—once in an isosceles triangle (similar to Kirsten,
see above) and the other time in a right triangle. Both are rated 1 for originality and
10, respectively 1 for flexibility. In her last approach, she halves one interior angle
twice. Here, she gets 1 point for both flexibility and originality. Although Claire

Fig. 5.11 Kirsten’s approach for the punch problem

5 Mathematical Creativity and Its Subdomain-Specificity … 133



provides many ideas, her creativity score is below average, because her presented
ideas show only a low level of flexibility and originality.

In the punch problem, Claire is one of the few students who works out two
different approaches (see Fig. 5.14). Her first approach draws on a diagram, which
illustrates the distribution of the barrels. Compared to the solutions of the peers, this
solution is original, because only one other student used this idea as well.
Therefore, she gets a score of 100. In her second approach, she uses two variables in
a system of equation. This is also rated with a score of 100. As in the triangle and
hexagon problem, she describes her ideas by giving additional information or
writing down exact intermediate steps. In this problem, Claire has the highest score
of all participants.

As in Kirsten’s case, we see that Claire works on MSTs on different levels.
Claire performs outstanding in the triangle MST and in the punch MST. In the
hexagon MST, she performs below average as compared to her peers. We can

Fig. 5.13 Claire’s
approaches for the hexagon
problem

If you complement the triangle to a rectangle [she 
means parallelogram], you can recognize easily 
the share is one third. The area for the rectangle 
[not correct but this is what she said] has been 
multiplied by two. Therefore, the share of the area 
is also true for the triangle. 
But this works only for the piece in the middle.

Parallelogram is just the same as a rectangle [she means 
the calculation of the area]

because of< …
With this, the big triangle can be divided into several 
smaller ones of equal size.
In total: 9 small triangles
Selected area: 3 small triangles
Therefore 1/3 of the whole

Fig. 5.12 Claire’s approaches for the triangle problem
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assume that she might have a certain affinity to algebraic problems, because here,
she shows a very sophisticated solution. An alternative reason could be motiva-
tional or affective influences or issues. Claire’s case suggests that creativity might
not even be conceptualized subdomain-specifically, but only task-specifically,
depending on the particular MSTs.

5.6.3 Phil’s Case

In the following, we give an insight into Phil’s performances, which are lower than
in the above-mentioned cases. When working on the triangle problem (see
Fig. 5.15), Phil did not come to a conclusive result. We see that he sketched a right
triangle as a special case and completed it in another sketch to a square. On his
sheet of paper there are also some notes, in which we see rudiments of how to
calculate the surface area of the grey area as the sum of a rectangle and a triangle. In
all of his notes, we cannot identify a clear strategy that would give insight into his
ideas. Even when including appropriate solutions, he gets a creativity score of 0 in
this task.

In the hexagon MST, Phil’s performance (see Fig. 5.16) is strong. He gets a high
score for fluency, because he has figured out four approaches. In the first approach,
he divides one of the interior angles into a right angle and e. This approach is rated
with 10 for flexibility and 10 for originality. The second approach is from another
category (10 for flexibility), but not very original (rated with 1): He calculates the
angle e by the differences of interior angles of a right triangle. The next approach is
similar to the first one: He uses a right angle. This results in 0.1 points for flexi-
bility, but 10 points for originality. In his last approach, he refers to the sum of
interior angles of a kite. Even though this approach gets 10 points for originality,

Fig. 5.14 Claire’s approaches for the punch problem
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Fig. 5.15 Phil’s approach to the triangle problem

Fig. 5.16 Phil’s approaches for the hexagon problem
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the flexibility is rated with 1, because Phil has worked in this category before.
A difficulty for rating Phil’s work lies in the fact that it does not become clear in
which order he noted his ideas. However, a calculation that is based on another
order would lead to the same total score.

Phil’s approach for the punch problem (see Fig. 5.17) shows an insight-based
solution (similar to Kirsten’s) which is rated with 0.1 for originality. He does not
work on another approach, so that his creativity score for this problem is 1.

Phil only performs on a high level in the hexagon MST. It seems as if he does
not find a proper access to the triangle MST. In the punch MST, he works out a
common solution. This case is complex because of two reasons: First, Phil does not
perform better in one of the disciplines algebra or geometry. Second, he does not
improve over the three problems. This might indicate that performances in MSTs
depend on the problems themselves and that mathematical creativity is not a
question of domain-specificity or even subdomain-specificity.

5.7 Discussion and Outlook

The purpose of our study was to investigate students’ creative performances along
different fields of mathematics. For inquiring into this question, we first intended to
peruse the question of what appropriateness of solutions—a concept as offered by
Leikin (2013)—may entail and imply in contrast to correctness of solutions.

We investigated these questions based on an empirical study with upper sec-
ondary school students, who were mathematically interested, showed strong cog-
nitive abilities, and who worked on three MSTs—two geometrical tasks and one
algebraic task—that were evaluated quantitatively as well as qualitatively.

A review of the literature in the field of creativity reveals that there is no
consistent definition of the term creativity. This goes along with a wide field of
ideas about how to conceptualize and operationalize creativity (e.g., Haylock 1987;
Sriraman 2005). There are, for example, different assumptions about which persons
can be mathematically creative—only professional mathematicians or everyone.
This aspect goes along with the distinction between relative creativity and absolute
creativity—called “little c” (for relative) and “big C” (for absolute creativity).

Fig. 5.17 Phil’s approach for the punch problem
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We assume that everyone can be creative—at least in a relative way. In mathe-
matics, research focuses on assessing creativity by using problem posing and in
problem solving (Silver 1997). Therefore, different approaches are used to assess
mathematical creativity. In our study, we focused on a product-based evaluation
method where students’ products from problem solving tasks were analyzed and
rated in the dimensions of fluency, flexibility, and originality (see, e.g., Leikin and
Lev 2013; Kattou et al. 2013).

We used the existing and broadly accepted evaluation scheme developed by
Leikin and Lev (2013) to quantify mathematical creativity in students’ products. As
suggested by Leikin (2013), we took into account appropriate solutions. In the first
part of this chapter, we investigated the characteristics that appropriate solutions
may have. We found that appropriate solutions may either be correct, may lack
certain steps in the reasoning of the proof (while still being reasonable and
understandable), or include other mistakes (arithmetical, algebraic, or geometrical)
leading to a wrong solution while still providing an appropriate strategy.

We found that non-correct appropriate approaches provided us with insights into
students’ creative potential even though they contained flaws such as lacks in ways
of reasoning, mistakes in calculations, or a missing answer. In our paper, we used
cases of students to illustrate the value of focusing on appropriate solutions (as
suggested by Leikin 2013) for thoroughly evaluating mathematical creativity of
students’ products. In qualitative analyses, we illustrated that despite their partial
incorrectness, these products include creative efforts that would have been disre-
garded by excluding these approaches.

However, we also experienced that in some cases it is difficult to decide whether
a student’s approach is to be considered appropriate or not. In these cases, we drew
on a consensual validation, in which we discussed whether student approaches
impart a comprehensible strategy and can be included into the second analysis or
not. Even though this procedure results in high efforts, taking into account
appropriate solutions uncovers a broad spectrum of creative approaches which
otherwise were excluded, if only correct solutions were regarded. Of course, when
appropriate solutions are considered, this has the potential effect that the originality
and flexibility scores that are assigned to some approaches are lowered due to a
higher number of graded approaches and therefore a higher frequency of solutions.

Furthermore, our study emphasizes that students’ prior knowledge should be
considered when assessing mathematical creativity. The used MSTs are from the
fields of geometry and algebra. To solve these problems in multiple ways, a certain
spectrum of mathematical background is necessary. In this respect, Singer and
Voica (2017) found that “that creativity manifestation is conditioned by a certain
level of expertise” (p. 75). It is therefore difficult to distinguish clearly between
mathematical abilities and mathematical creativity. Research results rather indicate
that creativity and expertise mutually influence and support one another (Singer and
Voica 2017). However, with our understanding of appropriateness of solutions, we
see a potential path to face this issue (at least partly). Through including not only
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correct solutions but also partially correct approaches, the view on mathematical
creativity is broadened.

Naturally, the idea of taking into account appropriate solutions (and not only
correct ones) is especially useful when the given tasks are complex problems; such
as geometrical proofs. If the students solve problems which do not require complex
reasoning or proofs, it is eventually more appropriate to focus only on correct
solutions. For example, when using a problem in which the students are asked to fill
in a number pyramid (see Kattou et al. 2013) it is not necessary and probably not
even adequate to lower the criterion of correctness. A modification of the evaluation
scheme has to be carefully considered against the backdrop of the given problems,
their complexity, and the required reasoning.

From the perspective of test theory, there is an important discussion about the
visible performance of students and their rather invisible potential (Foth and van
der Meer 2013). In our study, we were able to have a look at a broader spectrum of
students’ potential by also taking into account incomplete approaches. Through
focusing on appropriate solutions (similar to Leikin 2013) and elaborating on the
notion of appropriateness, our study contributes to efforts to bridge this gap
between potential and performance. But even when regarding appropriate solutions,
it is challenging to grasp students’ potential regarding mathematical creativity. To
face this issue, we think that a shift in the perspective from products to processes is
significant. There is more empirical research needed that inquires into students’
mathematical creativity from a process-view. First studies (e.g., Schindler et al.
2016; Schindler and Lilienthal 2017a) hint at the potential that empirical studies
focusing on students’ processes may have for extending the body of knowledge
regarding mathematical creativity. Especially, eye-tracking appears to be a research
method with certain potential for investigating mathematical creativity from a
process-view in the future (Schindler and Lilienthal 2017b).

We studied students’ performances across three different MSTs; two geometric
and one algebraic problem. Focusing on rank correlations and using Kendall’s Tau
Test, we did not find a statistical significant correlation between students’ perfor-
mances in different MSTs. This indicates that MSTs in different subdomains but
even within a single mathematical subdomain (geometry) do not require exactly the
same competencies. In particular, we hypothesize that it is rather
content-knowledge than a creative ability that affects students’ performances in
these MSTs. A qualitative analysis of the students’ products shows a broad spec-
trum of performances across the three MSTs. There are cases such as Kirsten’s who
seems to prefer geometric problems, or Claire who might show outstanding results
in all domains, or Phil who only performs well in one geometrical MST, but not in
the other one.

In the sense of mathematical creativity as a domain-specific construct (Kattou
et al. 2015), we would have expected a stronger consistency within the ranks
regarding the three MSTs. There are various possibilities to explain our results.
First, we investigated a selected group of students. These students were mathe-
matically interested and had—as the results from the intelligence test showed—an
above average IQ of 121 on average. Given that high intelligence might correlate
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with mathematical giftedness (Foth and van der Meer 2013), we assume that a
ceiling effect might affect our analysis and disguise possible rank correlations.
Second, the students did not have prior experiences working with MSTs. We
assume that this might influence the results as well. Accordingly, we recommend to
conduct creativity tests with students who are familiar with MSTs. Third, because
of the ordinal scaled data in our analysis, a direct comparison was not possible.
Therefore, we had to work with ranks and rank correlation, but we have to have in
mind that this method does not represent their performances adequately.

Referring to mathematical creativity as a domain-specific concept (Kattou et al.
2015), our results gave hints that the construct of mathematical creativity is not as
consistent and homogeneous as it might appear eventually. Possibly, creativity in the
field of mathematics should be rather viewed as a subdomain-specific construct (which
means that there could be a construct like geometric creativity or algebraic creativity);
or even as task-specific. This relates to Singer et al.’s (2017) research on cognitive
styles. In particular, they found “that cognitive flexibility—a basic indicator of cre-
ativity—inversely correlates with a style that has dominance in metric GN [Geometric
Nature] and structured CD [Conceptual Dispersion], showing that the detected cog-
nitive style may be a good predicator of students’mathematical creativity” (p. 37). We
think that this interesting phenomenon requires more research in the future.

In comparison to studies such as Kattou et al.’s (2015), we cannot present
quantitative values such as correlation coefficients or model calculations that are
statistically reliable. This relies on the fact that our group of participants was small
and not representative. Our intention was rather to share and discuss thorough
considerations about mathematical creativity and its evaluation. Finally, we hope
that our contribution can lift future scientific discussion on the evaluation of
mathematical creativity, the notion of appropriateness, and the question of whether
mathematical creativity is to be considered domain-specifically, subdomain-
specifically, or rather task-specifically.
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Chapter 6
Characteristics of Mathematical
Giftedness in Early Primary School Age

Daniela Assmus

Abstract This study examines characteristics of mathematical giftedness in second
graders. First, a possible system of characteristics was designed in theory. Then,
this system was verified by giving a paper-and-pencil test with tasks developed for
this purpose to 182 mathematically gifted children as well as 69 children of a
reference group. In addition to the written tests, semi-structured interviews were
conducted with all the participants regarding their results and strategies. The out-
comes of the study show that all of the analyzed characteristics of mathematical
giftedness can be confirmed. These include the ability to memorize mathematical
issues by drawing on identified structures, the ability to construct and use mathe-
matical structures, the ability to switch between modes of representation, the ability
to reverse lines of thought, the ability to capture complex structures and work with
them, the understanding of relational concepts and the ability to use relational
concepts and connections.

Keywords Mathematical giftedness � Characteristics � Primary grades
Second graders � Comparative study

6.1 Mathematical Giftedness as Domain-Specific
Giftedness

Before conducting theoretical and empirical investigation of mathematical gifted-
ness, it is of essential importance to answer the question of whether giftedness
should be regarded as domain-general or rather domain-specific. The answer to this
question has consequences in terms of the modelling of the construct as well as in
terms of choosing adequate instruments of diagnosis. Currently, giftedness is
predominantly understood as domain-specific. This can be seen, for example, in
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terms of multidimensional models, such as the Munich Model of Giftedness (Heller
2004) or the Differentiated Model of Giftedness and Talent of Gagné (2003), which
distinguish between various areas of ability, e.g. intellectual, creative and
socio-affective abilities. In these models, however, the domains are quite broad, so
that no more precise differentiation with regard to intellectual abilities occurs. It
remains unclear whether domain-specific characteristics might exist in this area as
well. However, it is of great interest for research on mathematical giftedness to
understand its relatedness to intellectual abilities.

Basically, three models can be considered for investigating the relationship of
mathematical and intellectual abilities (Heilmann 1999):

Model 1: Mathematical giftedness as a component of general intellectual
giftedness,

Model 2: Mathematical giftedness as general intellectual giftedness in combina-
tion with specific mathematical abilities,

Model 3: Mathematical giftedness as a specific giftedness which can also occur
independently of general intellectual giftedness.

Model 2 as well as model 3 consider a specific giftedness, i.e. a high display of
specific mathematical abilities which occur additionally to or independently of
higher intellectual ability. In model 1 no specific giftedness is assumed. Instead,
general intellectual giftedness is seen as a necessary prerequisite for mathematical
giftedness. This way, mathematically gifted people must always display high
intellectual abilities. The fact that in reverse, not all intellectually gifted must dis-
play high mathematical abilities can be explained by looking at other factors that
influence the development of giftedness, as model 1 shows. Especially, factors that
refer to interest and motivation carry particular importance. It is possible that
mathematical giftedness occurs when very early on, specialized engagement with
mathematical content is spurred as specific giftedness (while simultaneously
neglecting the development of competences in other disciplines), even if—ac-
cording to this model—general intellectual giftedness exists, primarily developed in
one domain (Heilmann 1999).

For all three models, indicators and arguments can be found in academic dis-
course. Indicators in terms of the validity of model 1 are derived from psychological
correlation studies in which medial to high correlations within the total population
were proven between IQ-results and mathematical achievement (e.g. Primi et al.
2010; Taub et al. 2008). Individual studies with mathematically gifted children and
teenagers which reported on this extreme group spoke of similar correlations (Birx
1988).

Model 2 is supported among others by one study conducted by Gawlick and
Lange (2010) in which 684 fifth graders took part in an intelligence test (CFT-20R)
as well as in an indicator task test by Käpnick (1998). Statistical analyses showed
that a model explained the results of the Käpnick test best in which the general
factor of intelligence as well as mathematically specific factors had an impact on
mathematical performance. The extensive analyses by Lubinski and Humphreys
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(1990), in which data of various tests (i.e. mathematically specific tests and tests on
cognitive abilities) from over 900 American highs schools were evaluated, provided
indicators for validity of model 1 as well as of model 2: “For the most part,
mathematical talent appears intimately related to general intelligence as indexed by
conventional measures, however mathematical giftedness also appears to be
somewhat specific” (p. 340).

Indicators for the domain specificity of mathematical giftedness (model 3) can be
found in a study by Benbow and Minor (1990). Together with 106 mathematically
and 20 linguistically gifted teenagers (by measure of SAT), as well as 18 persons
who belonged to both groups, different intelligence and ability tests were carried
out. The groups of mathematically and linguistically gifted persons distinguished
themselves in nearly all areas of ability. “The verbally precocious scored higher on
verbal and general knowledge types of tests, the strengths of the mathematically
precocious were in the nonverbal abilities” (p. 25). However, this can be explained
by the fact that both constructs of mathematical and linguistic giftedness show great
differences and can therefore not be part of a general intelligence.

Moreover also, in favour of model 3 speaks the fact that in various case studies,
children and teenagers have proven their mathematical giftedness in challenging
mathematical situations despite any signs of general intellectual giftedness (e.g.
Assouline and Lupkowski-Shoplik 2005; Käpnick 1998; Kontoyianni et al. 2013;
Nolte 2004). Hence,many but not all children and teenagers showed thatmathematical
giftedness comes along with a high IQ. This implies a sort of specific giftedness which
may exist together with a general intellectual giftedness but not necessarily.

As the studies at hand show, the question of relationship between mathematical
and intellectual giftedness cannot be unequivocally answered. Considering also
studies and theoretical concepts which exclusively look at the phenomenon of
mathematical giftedness and ignore explicitly examining the relationship with
general intellectual abilities, mathematical giftedness is often times considered a
domain-specific giftedness (e.g. Benölken 2015; Fritzlar 2013; House 1999;
Käpnick 1998; Krutetskii 1976; Singer et al. 2016).

This view is manifested in the efforts to describe the construct of mathematical
giftedness as detailed as possible while also deriving mathematically specific
abilities and patterns of action which when exhibited on a large scale could be
characteristic for mathematical giftedness. As a consequence, over the course of the
previous three decades, various lists of characteristics were developed (e.g. Käpnick
1998; Kießwetter 1985; Krutetskii 1976; Miller 1990; Sheffield 2003). Identifying
mathematical components of giftedness allows for the conclusion that also the
entire construct is domain-specific.

However, it is also problematic that mathematics specificity of some listed
components is not always immediately evident. When for example characteristics
of giftedness, such as a high ability of abstraction and generalization or a particular
flexibility in thinking are mentioned, these terms themselves do not always display
their reference to mathematics directly. “These investigations […] hardly make
explicit what it is that is ‘specifically mathematical’ about these abilities. Rather, it
seems to be general ability that is needed for mathematics albeit to a larger extend
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but necessary also for all other intellectual challenges” (Heilmann 1999, p. 39;
translation by the author).

In contrast to this, other authors are of the opinion that ability does not exist in
isolation, but always tied to specific content. Therefore, initially general abilities
may occur as specific abilities during specific tasks (e.g. Gullasch 1973). Similarly,
Krutetskii remarks:Certain features of a pupil’s mental activity can characterize his mathe-

matical activity alone – can appear only in the realm of the spatial and numerical rela-
tionships expressed in number and letter symbols, without characterizing other forms of this
activity and without correlating with corresponding manifestations in other areas. Thus,
mental abilities that are general by nature (such as the ability to generalize) in a number of
cases can appear as specific abilities (the ability to generalize mathematical objects,
relations, and operations). There appears to be every basis for speaking of special, specific
abilities, and not of general abilities that are only refracted in a unique way in mathematical
activity. (Krutetskii 1976, p. 360; emphasis in original)

Summing up the depictions discussed above, mathematical giftedness is regar-
ded as a domain-specific giftedness in this article. It can occur coupled with general
intellectual giftedness but also independent of it. The following working definition
forms the basis for all further elaborations:

Mathematical giftedness is an extraordinarily high potential, compared to others of the same
age, to successfully solve mathematically challenging questions and problems. (cf. Nolte
2013)

It is assumed that mathematical giftedness can be described with so-called
characteristics which refer to a high display of topic-specific abilities or patterns of
action.

6.2 Characteristics of Mathematical Giftedness

One emphasis of researching mathematical giftedness lies on developing
mathematics-specific characteristics of giftedness. This is expected to be of great use
especially for identifying mathematically gifted children and youths. The compre-
hensive studies of the Russian psychologist Krutetskii (1976) were groundbreaking
in this field: Using a variety of research methods, he assembled an overview of
different components of mathematical giftedness; the “structure of mathematical
abilities” (1976, p. 350). Similar lists were established by other authors (e.g. Greenes
1981; House 1987; Miller 1990) in the following years. In many cases it was,
however, not specified, which age groups the respective compilations referred to. It is
possible that some characteristics only manifest themselves strongly in certain
learning and development steps that cannot occur until a certain age or stage of
development. It is therefore questionable, whether lists of characteristics without a
specified target group can be applied to primary school children without any
restrictions. It might be necessary to define a selection or even other characteristics of
giftedness.
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The German mathematics educationalist Käpnick (1998) explicitly investigated
primary school children’s characteristics of giftedness and tested them empirically
with third and fourth graders. During his research, he identified the following
mathematics-specific abilities as characteristics: (1) remembering mathematical
facts, (2) structuring mathematical facts, (3) mathematical sensitivity and mathe-
matical fantasy, (4) transferring mathematical structures, (5) intermodal transfer and
(6) reversing lines of thoughts (Käpnick 1998, translated by the author; cf.
Benölken 2015). Like other authors he points out that abilities are not always
necessarily developed equally, which means that individual profiles of giftedness
can vary quite a lot.

Regarding the early primary school age, no studies have been published to my
knowledge which deal with characteristics of mathematical giftedness that have
been validated by comparative studies involving mathematically gifted children and
those who are not. The study at hand attempts a contribution to reducing this lack of
research. The study builds on Käpnick’s research and its goal is to develop
mathematics-specific characteristics of giftedness that can already be observed in
second graders.

6.3 Design of a Combined Test and Interview Study

The basis of the conducted research was a theoretical analysis of already existing
systems of mathematical giftedness characteristics regarding their transferability to
younger children. In addition, studies on developing mathematical competencies
during the first school years were examined to include further possible distinctive
features of younger mathematically gifted children. These theoretical analyses led
to the conception of a preliminary system of mathematical giftedness characteristics
in second graders. In order to verify the characteristics system, special indicator
tasks were developed among other measures. Solving these tasks successfully
suggests a high level of the individual characteristics. For various reasons (difficult
operationalization of some characteristics, restricted test length due to the young
age of the participants), not all theoretically established characteristics resulted in
the development of indicator tasks. The following characteristics were included in a
total of 10 subtasks: (1) Ability to memorize mathematical issues by drawing on
identified structures, (2) Ability to construct and use mathematical structures,
(3) Ability to switch between modes of representation, (4) Ability to reverse lines of
thought, (5) Ability to capture complex structures and work with them. A selection
of tasks is presented in the next chapter. In order to avoid repetition, the individual
characteristics of giftedness will be explained content-wise in the sections:
description of the task and results.
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6.3.1 Research Methods

These tasks were given to mathematically gifted as well as “ordinary” second
graders under similar conditions in a paper-and-pencil test. After the
paper-and-pencil test, all participants were asked by specially trained pre-service
teacher students about their solutions and strategies by means of semi-structured,
recorded interviews. On the one hand, these interviews were supposed to help
understand the thoughts and notations of the children, and to recognize practical
approaches even if the solutions were not correct. Thus, it was possible, to apply a
rather differentiated evaluation system that displayed differences in levels directly in
the allocation of points. On the other hand, during these interviews, the used
methods and strategies could be defined retrospectively and analyzed in addition to
the problem-solving success.

6.3.2 Choice of Test Persons

The participants of the test group were 182 (149 males, 33 females) children that
were chosen by teachers to participate in an extracurricular fostering project for
mathematically gifted second graders. The reference group (N = 69; 34 males, 35
females) was composed of children from two urban as well as two rural school
classes.

The teacher’s judgment was chosen as selection instrument for the following
reasons: on the one hand, there was no empirically approved test for the age group
under scrutiny that would reflect the represented understanding of mathematical
giftedness. On the other hand, we wanted to avoid that the test group consisted of
pupils involved in longer-standing projects fostering mathematically gifted children,
as this would have implied an advantage in experience with unfamiliar and chal-
lenging tasks in comparison to the children from the reference group. Therefore, the
only remaining possibility was to hand the choice over to persons who regularly
experience the children in relation to others of their age group.

Because of the subjectivity of individual experiences and possible stereotypical
views, however, the teacher’s judgment is not an optimal selection instrument. The
following measures have been taken to increase the reliability of the selection:

• The schools were informed in written form about the realization of an
extracurricular fostering project for mathematically gifted second graders. In
order to provide support to teachers regarding questions such as how to identify
a case of mathematical giftedness or which children are eligible for such a
project, the information flyer also provided a number of indicative questions.
These questions (Assmus 2017) targeted changed behaviour regarding mathe-
matical contents or the case of students being underchallenged by regular
classes. The characteristics of giftedness examined in this particular study were
not adopted.
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• In addition, after registration of the children teachers were asked to write an
open assessment. This should explain what makes the child stand out regarding
their handling of mathematical contents, how their mathematical giftedness can
be evaluated and why the teacher considers additional fostering reasonable. For
91% of the 226 students, teachers complied with this request.

• Before the empirical study, all children participated in a trial lesson during
which they could gain an insight into the project and independently decide
whether or not they wanted to participate. In addition, a pre-test was conducted
with all children (also the reference group) intended to help the participants
familiarize themselves with the test procedure.

202 children registered for the fostering project eventually participated in the
actual empirical study. Prior to the study, based on the teachers’ assessments and
first observations, 20 children were classified as probably not mathematically gifted,
which is why their results were not considered in the statistical analysis.

Hence, 182 children remained in the test group. It is possible that a few more
children among the test group had been suggested for the project based on teachers’
misconceptions, but this could not safely be predicted prior to the study. Teachers
of the reference classes were also asked to assess the mathematically giftedness of
the students. Those children who were described as mathematically gifted by the
teachers or candidates for the project anyway were not eligible for the reference
group.

To enable comparative evaluations of the two participating groups, this study
classifies all remaining children in the test group as mathematically gifted and all
children in the reference group as not mathematically gifted, even though this might
relate to misconceptions in individual cases.

The two groups differed significantly in gender proportions (test group: 149
males, 33 females; reference group: 34 males, 35 females). Since the test group
consisted of potential candidates for the fostering project, and since their registra-
tion for the project depended on external assessments by teachers and parents as
well as the children’s own interest, it was not possible to influence the gender
relations in this group. This aspect, however, must be considered in the analysis.

6.3.3 Data Analysis

For data analysis, qualitative and quantitative methods were combined. An over-
view is given in Fig. 6.1.

First, the semi-structured interviews1 and the notes from the paper-pencil-test
were analyzed in the sense of a qualitative content analysis (Mayring 2015),
employing inductive category formation (number 1 in Fig. 6.1). As the majority of
children’s task-solving procedures could reasonably be accounted for, i.e. the

1For this, the relevant parts of the interviews were transcribed.
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meaning of the notes was mostly clear,2 a differentiated evaluation system was used
to assess the results for each task in terms of their (partial) accuracy (number 2 in
Fig. 6.1).

The data thus obtained was subjected to various statistical analyses: The data
was first analyzed using tests of significance regarding the group differences in the
problem-solving success. The t-test was used to make sure that possible differences
in the results between the two groups were not due to the varying gender ratio.
Afterwards, the results of the test and the reference group participants were com-
pared using the Mann-Whitney test. Additionally, the effect size d (according to
Cohen 1969) was calculated. Finally, the group-specific allocations of points were
examined in detail for each task.

Additionally, the results from the analysis of the interviews were, for each task,
quantitatively examined regarding differences between the groups. The group
comparisons referred to the task-specific requirements and used procedures, iden-
tified and used mathematical structures as well as possibly occurring mistake
patterns.

6.4 Tasks Used in this Study

Among others, the following tasks were used (for reasons of space, the instructions
are not always represented in their original form).

Fig. 6.1 Data analysis

2It should be mentioned that the described procedures after the test cannot be claimed to definitely
correspond to the thinking processes during the study. This, however, applies to all attempts to
reconstruct thinking processes and thus does not only concern this study.
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Task 1: Number square
The children were given 60 s to look at the number square (Fig. 6.2) and memorize
the numbers and their placement. The task was then to correctly complete the
solution template (Fig. 6.3) with the numbers from memory. Based on the
assumption that short-term memory is limited to seven to eight unstructured indi-
vidual pieces of information (Anderson 2007), the correct memorization of numbers
should require the usage of mathematical structures. If these structures are optimally
employed, the numbers to be memorized can be reduced to 4, possibly even to one.
If the child e.g. recognizes that always the outer neighboring numbers form the sum
of 10 and all numbers are arranged point-symmetrically to the centre, it is sufficient,
e.g. to learn the numbers 1–4 in the upper two rows. All other numbers can be filled
in by reconstructing them with the help of the structures mentioned above.

With this task the “ability to memorize mathematical issues by drawing on
identified structures” is examined.

Task 2: Tim’s figure
In Fig. 6.4a, b, the empty circles should be completed with numbers so that the
following rules apply:

8 2 1 9

7 3 4 6

6 4 3 7

9 1 2 8

Fig. 6.2 Number square

Fig. 6.3 Solution template
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1. When two numbers are directly above and below one another, the lower
number is always greater by 1 than the upper number.

2. When two numbers are adjacent, the right-hand number is always greater
by 4 than the left-hand number.

3. In diagonals, the sum of the two numbers in the corners is always the
number in the middle circle.

Firstly in this task it is important to understand the mathematical structures
described in the text. (“Ability to construct and use mathematical structures”.) In
order for this to happen, mathematical content and relational terms (above/below,
right/left, greater) as well as terms, such as “sum” must be grasped and connected
with the given numbers. In task a based on the 1 in the upper left circle, the rules
could be applied one after another. In the follow-up task b, not the first number of
the sequence is given, but the last one, which can be considered as reversed situ-
ation. Thus, for succeeding at this task, this reversal must be recognized (“Ability to
reverse lines of thought”). For solving this task, different approaches are possible.
For example an arbitrary number can be placed in the left upper corner which forms
the basis from which all other given rules are realized. In the end, it will be checked
whether the results in the middle show the number 15. If this is not the case then the
number in the left upper corner will be changed until the middle number is correct.
The reversed line of thought becomes apparent here in recognizing the reversed
situation (Assmus 2016; Fritzlar 2010). Otherwise, if one follows the third rule and
looks for decompositions of 15, two-way associations are used (the 15 is connected
with its decompositions as a number triple. These can be turned into addition as
well as subtraction tasks). The establishing of two-way associations is considered
another aspect of the ability to reverse lines of thought (Assmus 2016; Krutetskii
1976).

Furthermore, for correctly solving this task it is necessary to simultaneously
follow all the given rules (“Ability to capture complex structures and work with
them”). In task b this is not possible by following through with the results forwards
or backwards. When expectably approaches to solving the tasks are carried out, the
change of individual numbers always impact the realization of all rules likewise. In
order to solve the task successfully, one has to handle the complex situation and has
to also simultaneously pay attention to the impact on the validity of rules.

Fig. 6.4 Solution template
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Task 3: Number triangle (“Ability to construct and use mathematical structures”)

(a) Find a rule in this number triangle, draw
lines and add appropriate calculations.

(b) Invent your own number triangle in which
two rules can be discovered.

The number triangle is a mathematical pattern whose constitution is based on
several mathematical structures. In order to name in (a) a general rule that applies to
the number triangle, a mathematical structure must be recognized. Recognizing can
be made visible by giving suitable tasks and by describing the structure.

Completing the task successfully requires a grounded understanding of the term
rule which second graders may not have acquired yet. In order to reduce misun-
derstandings and insecurities because of unfamiliar terms used in the task, the
respective term is jointly worked out in the introductory task. Therefore, in the first
part always two diagonally neighboring numbers are connected from the upper left
to the lower right by drawing a line. Additionally, there are matching supplement
tasks given to the number triangle (1 + _ = 4, 4 + _ = 7, 3 + _ = 6, 8 + _ = 11).
Their supplementary summands are equal. This way a rule is developed which is
worked out with the test leader by calculating the tasks, matching them with the
lines, and recognizing a regularity (“always plus 3”) which is formulated and
written down by the children.

In (a) another rule must be given. The following rules could be used, for example:

• From the upper left to the lower right the numbers increase by 2.
• Vertically down, the numbers increase by 5.
• Within one horizontal row, numbers increase from left to right by 1.

Both subtasks refer to the “Ability to construct mathematical structures”. While
this applies in task (a) to recognizing already existing structures, task (b) asks for the
construction of a new pattern. Additionally, this may expose mathematical creativity.

Task 4: Figurative numbers

Here grows a magic forest, which always takes the shape of a rectangle.
Every year, the forest changes according to a certain rule.

(a) How many trees does the forest
comprise in year 5?

(b) How many trees does the forest
comprise in year 9?

(c) One year, the forest counts 110
trees. Which year is that?

Fig. 6.5 Number triangle

year 1    year 2     year 3          year 4

Fig. 6.6 Figurative numbers
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The first two subtasks require the identification and usage of a valid rule of for-
mation of mathematical sequence (“Ability to construct and use mathematical
structures”). In task (a) the elementary number of the immediately subsequentfigure is
searched. Hence, a near generalization (Stacey 1989) of the mathematical structure is
necessary. In contrast to this, in task (b) a further distanced figure is inquired which
demands a further generalization (Stacey 1989). The problem to be solved in task (c) is
the opposite of the problems presented in tasks (a) and (b), because the elements that
are given and the elements to be identified are reversed (“Ability to reverse lines of
thought”). For second graders, however, it is not yet possible to solve this task directly
by reversal operations, but through continuation of the previously chosen solution
strategy. This task reveals the recognition of reversed situations, which is considered
one aspect of the ability to reverse lines of thought (Assmus 2016; Fritzlar 2010).

In addition, all three tasks require students to switch between modes of repre-
sentation (“Ability to switch between modes of representation”). I distinguish
between external and self-initiated modes of representation change (Assmus 2017).
Externally initiated representation change occurs when a task is not solvable
without this change. This is the case in the current task. Because an amount is
inquired, a change from a graphical to a symbolic representation is necessary to
solve the task successfully. Additionally, a self-initiated change can be applied, if
the test persons already work with symbolic representations i.e. when they have
chosen an arithmetical approach. Referring to the findings by Käpnick (1998) it is
assumed that mathematically gifted second graders distinguish themselves from
non-gifted children by applying self-initiated representation changes.

6.5 Results and Discussion

The children of the test group clearly solve the indicator tasks better than the
children of the reference group. For all tasks, the differences between mathemati-
cally gifted and non-gifted second graders were very significant (p < .01). The
differences that were calculated using the effect sizes d mainly varied between a half
and a total standard deviation (sometimes even more). According to Cohen (1969)
this equals a medium to high range. The results therefore support the allocation of
the tested mathematics-specific abilities in the characteristics system of mathe-
matical giftedness in second graders. Slightly lower effects (d = .3 to d = .4) were
only observed in tasks regarding memorizing mathematical issues by drawing on
identified structures.

Moreover, differentiated evaluations are noted regarding differences between the
children of the test and the reference group for all studied characteristics of
mathematical giftedness.

Ability to memorize mathematical issues by drawing on identified structures

The mathematically gifted second graders were better able than non-gifted second
graders to mentally store structured number arrangements. In doing so, they used
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structures more often and more successfully than children who were not mathe-
matically gifted. Structures which optimally reduce the information to be memo-
rized were almost exclusively used by mathematically gifted children. This became
particularly clear in task 1: what proved to be particularly successful was the
combination of the point reflection of the number arrangement towards the figure
centre and the addition to 10 with the outer adjacent numbers. All children who
used this strategy (11 in the test group, 1 in the reference group) accurately
reconstructed the numbers.

In the test group the high share of structure-based memory strategies corresponds
with the expectations. It was shown in previous studies with older test persons (van
der Meer 1985; Käpnick 1998) that mathematically gifted children structure sets of
facts, which they are asked to memorize, after mathematical aspects already in the
phase of acquiring information. Also in Dubrowina’s follow-up studies to
Krutetskiis’s inquiries similar observations have been made. The mathematically
gifted children, in contrast to the non-gifted children, did not only remember
individual facts but were also able to reproduce their mathematical relations.
Especially relevant for memorizing mathematical sets of facts was apparently their
mathematical relation because if children forgot something, it was usually just a
piece of information (Krutetskii 1976).

The tests presented in this article, however, also showed that not all and not only
mathematically gifted second graders store the given information using structures.
Especially simpler mathematical structures like the point reflection of the number
arrangement in task 1 was also used by not mathematically gifted children (test
group: 50.8%, reference group: 39.1%). Hence, significant differences between both
groups existed above all in the type of recognized structures as well as when it came
to the success of applying them.

Ability to construct and use mathematical structures

In various mathematic situations, the mathematically gifted second graders
demonstrated that they were able to recognize, construct and use mathematic
structures better than not mathematically gifted children of the same age
group. Most of them identified arrangement structures in number patterns, such as
in task 3 (e.g. the numbers increase by 2 diagonally down to the left), and proved
this by stating the regularities in writing (or verbally). In tasks regarding the con-
tinuation of patterns (e.g. task 4), many gifted children recognized the underlying
structure rules and they were usually able to use these rules for forming the sub-
sequent component, i.e. for a near generalization (Stacey 1989). Especially with
non-linear structures, however, not all of them succeeded in using the same rules for
defining a component that is further away (far generalization, Stacey 1989),
e.g. identifying the number of elements in the 9th figure. However, in contrast to
most not mathematically gifted second graders, many mathematically gifted second
graders were able to find suitable solution approaches.

Thus, 52.7% of the test group children as compared to 28.9% of the children in
the reference group provided adequate solution strategies, 42.3% as compared to
14.5% implemented them appropriately and 28.6% as compared to 9% obtained the
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correct result for the 9th figure. The groups thus did not only differ concerning the
proportion of those who identified an appropriate approach to solving the task, but
also in the further implementation of the solution strategy. Not mathematically
gifted children seemed to have more difficulties to adequately implement an
identified solution strategy than mathematically gifted children. Further differences
were found concerning the handling of inadequate solution strategies. A high
proportion of both groups used linear solution strategies (Test group: 29.7%, ref-
erence group: 24.6%). However, while the non-gifted children mostly overgener-
alized partial structures and repeatedly added a constant number (e.g.
20 + 8 + 8 + 8 + 8 + 8, because the difference between the 4th and 5th figure is
8), many mathematically gifted children identified correct structures, but implicitly
assumed a proportional growth (e.g. “year 4 + year 5 = year 9”) for simplifying the
calculation. In mathematics classes in Germany, students are rarely confronted with
non-proportional situations until the end of the second school year. Thus, they are
used to obtaining correct solutions by applying this strategy in similar tasks, which
is why this “trick” might appear practicable. Hence, it is possible that students in the
test group recognized useful structures, but did not test the compatibility of the
proportionality assumption and the structure of the task.

A tendency of differences might be observed in the types of recognized and used
structures. In the present study, this has been indicated particularly through
applying graphic strategies for continuing figure patterns. Both groups were prone
to mistakes in their use of graphic strategies. However, while the mistakes of
mathematically gifted children mostly resulted from imprecisions in their drawings,
many not mathematically gifted children drew quadratic or other arrangements
which appear to result from a failure to accurately recognize or implement the figure
sequence.

In this case it is possible that non-gifted second graders focus more on superficial
structures, whereas gifted children of the same age group mainly tend to recognize
and use deeper structures.

Furthermore, most mathematically gifted children considered, in contrast to most
non-gifted children, mathematical structures as rules when constructing their own
number arrangements, like for example in a self-invented number triangle (see
Fig. 6.5).

To sum up, it can be said that the differences were very prominent between both
groups when it came to recognizing and using mathematical structures in all tasks
given. This is in line with the results of the previously mentioned comparative
studies by Krutetskii (1976) and Käpnick (1998) with older test persons. The
matching of “Abilities to construct and use mathematical structures”, as a charac-
teristic of mathematical giftedness is further supported by this or a similar char-
acteristic is mentioned in nearly all lists of characteristics. Also studies by Mulligan
and Mitchelmore (2005, 2009) which deal with awareness of mathematical pattern
and structure, though not explicitly with the topic of mathematical giftedness but
also with mathematically gifted children as test persons, provide indicators that
mathematically gifted children show a greater ability to structure and working with
mathematical objects than non-gifted ones.
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Ability to switch between modes of representation

The mathematically gifted second graders could easily relate different forms of
representation in a task and used the differently represented information for solving
a task. They seldom had difficulties with changes in representation/mode, which
were necessarily required for naming the solution. Concerning tasks which were
iconically represented, but allowed for both a graphic and computational solution
(e.g. task 4), mathematically gifted second graders, in contrast to not mathemati-
cally gifted children of the same age group, sooner switched to solving the problem
in the symbolic mode.

Thus, 28% of the children in the test group used adequate mathematical
strategies to determine the number of elements in the 5th figure, even though the
result can mostly be obtained with minimal effort by graphic continuation of the
figure sequence so that switching modes is not necessarily required. In the reference
group, corresponding computational solutions practically did not occur. Instead, the
4th figure was cognitively or graphically expanded, or a completely new drawing
was created. This difference became even more pronounced in subtask b. The
comparison of the participants with viable solution strategies (test group: 52.7%;
reference group: 28.9%) showed that the majority (61.9%) of the test group children
worked with viable solution strategies in the symbolic mode. By contrast, the
majority (11 of 20 children) of the reference group children with appropriate
solution strategies kept the iconic mode given in the task.

The studies by Käpnicks (1998) provided corresponding results of third and
fourth graders. In a similar task on figurative numbers, the share of mathematical
procedures in a task on far generalization of the test group was also significantly
greater than in the reference group. This could be explained with special abilities
that enable children to switch between modes of representation and a preference for
symbolic representations that mathematically gifted children exhibit, which also
Fuchs (2006) observed in her studies on problem-solving behavior. However,
connections can also be assumed when it comes to recognizing and applying
structures because mathematical structures make it much easier to solve tasks of this
nature than a strictly graphic approach.

Ability to reverse lines of thought

The ability to reverse lines of thought was better developed with mathematically
gifted second graders than with not mathematically gifted children of the same age
group. This particularly manifested itself in tasks which require the recognition of a
reverse situation and allow for the usage of two-way associations (like, e.g., in task 2).

In the present study, significant differences between the two groups could be
observed: 60% of the test group versus 17% of the reference group could accurately
implement two or three rules. A larger proportion of the test group (44%) than of
the reference group (23.1%) proceeded by firstly orienting themselves towards the
third rule, i.e. they used two-way associations. In addition, the results obtained by
the test group children using this procedure were by 20% better than those achieved
by the reference group children (average result in the test group: 57.1%, reference
group: 37.5%).
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Regarding the continuation of patterns, mathematically gifted children displayed
a significantly better developed ability to reverse lines of thought with tasks posing
reversed problems (cf., e.g., task 4c).

Thus, the study showed that most test group children applying successful
solution strategies in the previous subtask managed to continue with these strategies
in the task posing the reversed problem. In the reference group, this could only be
observed to a lesser extent. As for faulty solution strategies, mathematically gifted
children were also better able to continue these strategies than non-gifted ones. It
might be possible that not mathematically gifted children often do not succeed at
solving the tasks posing reversed problems because they cannot identify the par-
allels to the previous subtasks and thus consider the reversed tasks in isolation. The
subtask posing reversed problems is thus perceived as independent task for which a
new solution not relating to the other subtasks should be found. This also corre-
sponds to the observations made by Krutetskii (1976).

The ability to reverse lines of thought at working backwards (no exemplary task
is provided here) was better developed with mathematically gifted as compared to
not mathematically gifted second graders, and many gifted children displayed initial
approaches to working backwards. However, a correct reversal of operations and
sequences of operations at a task with four steps was only possible for a few
mathematically gifted second graders.

Even if this study clearly demonstrated that there were significant differences
between the mathematically gifted and non-gifted children when it comes to
reversing lines of thoughts, it must be said that also mathematically gifted second
graders had difficulties with correctly reversing their line of thought. Quite a few
mathematically gifted children found it difficult to find an approach to solving a task
which includes a reversed question. This is in line with the results of Käpnick (1998),
who observed third and fourth graders exhibiting this characteristic of giftedness to
varying degrees. Whether it is appropriate to speak of different types of giftedness, of
a quality feature that the reversion of line of thought illustrates or this characteristic
may be developed at certain points in time can neither be answered conclusively on
the basis of the study by Käpnick nor on the basis of the study at hand.

Ability to capture complex structures and work with them

Mathematically gifted second graders were more successful at simultaneously
considering several relevant details in mathematical situations than non-gifted
children of the same age group. In task (2b), the children of the test group
demonstrated that they were able to complete Tim’s figure in a way which corre-
sponded to considerably more rules than the children of the reference group did.
Thus, 60% of the test group, as opposed to 17% of the reference group, managed to
complete the figure so that two or three rules were correctly implemented.

This potential characteristic of giftedness has not been observed systematically
by previous studies. However, indicators in terms of its validity can be found in,
e.g. Nolte and Kießwetter (1996) who concluded from their investigations in the
problem field of “Folding Task” that mathematical giftedness can be detected by
“equal consideration of the details with regard to complex problems” (p. 156,
Translation by the author).
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Altogether, the study presented in this paper implies that giftedness character-
istics which have been developed for third and fourth graders can already be
observed in second graders. It could therefore be confirmed that Käpnick’s results
also apply to younger children. Moreover, “Ability to capture complex structures
and work with them” can be added as one further talent characteristic. However, it
can be assumed that this is not an age-specific capability, but rather a characteristic
which is also found in older pupils. Furthermore, this study confirms that abilities
like reversing lines of thought are not always developed in an equally strong way.

6.6 Further Investigations

The study at hand was extended by further investigations. This was done to ensure,
enrich, and specify previous results. For this purpose extra classes were given to
selected mathematically gifted second graders and also in an ordinary primary
school class (second grade).

60 participants (52 males, 8 females) of the test group of the comparative study
described above were selected to take part in a fostering project at university
bi-weekly. In this project children engaged in challenging mathematical problems
mostly independent of further instructions and partially on their own. Additionally,
the learning material from the extra classes was used under similar conditions in the
second grade of a primary school, including 22 children (8 males, 14 females) that
have participated as a comparative class in the study presented above. In both
groups, progress protocols of the participating children were compiled for every
lesson which listed essential observations regarding the child’s solution procedures
and solutions as well as other aspects, such as motivation, cooperation with other
children, etc. The interpretation of the protocols was enriched by the written notes
of the children.

The investigations brought forward many interesting results which cannot all be
depicted here. The following results are of greatest significance:

The assumption gained from the main study that mathematically gifted second
graders focus more on deep structures while those deemed not mathematically
gifted pay rather attention to superficial structures has been concretized. This can be
seen in the task below:

Additionally the children worked on tasks, such as these:

• Write the numbers of series 5 above.
• How many numbers are in series 7 (15)?
• Which number are in series 8 (9) in 13th place?

In this task, different structures can be recognized. On the one hand, there are
structures which describe the order of numbers. This includes, e.g. that the numbers
rise starting from 1 to the middle number (which corresponds with the number of
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the series) from left to right and then fall again. When these structures are recog-
nized the tasks above can be answered correctly by completing the following series
mentally or in written form. It is not possible to find a way to solve this task apart
from the order of numbers. These structures are described as superficial structures in
this example. On the other hand, there are deep structures which when applied open
the opportunity of different mathematical approaches. This way, for example, the
amount of elements in each series can be described as an order of odd numbers
whose following elements can be either calculated recursively by the continuous
addition of 2 or explicitly, e.g. via (number of series) + (number of series − 1).

The investigations showed that the children of the ordinary school class
exclusively worked on the tasks with the help of writing down and counting the
numbers. In contrast to this, in the gifted group nearly half of the children made use
of structural characteristics which allowed for a mathematical solution of the task.
Conclusively it can be said that the type of structures that were used differed
considerably between the two groups.

Furthermore, the investigations provide clues concerning the correlation between
abilities to construct and use mathematical structures and abilities to reverse lines of
thought. Already the main study showed that tasks with reversed questions can be
better solved when the correct solving of the problem or the recognition of sensible
structures in preceding parts of the task was accomplished. Further investigations
enrich these results as above all the use of relations and structures which allow for a
shortening of the solution process have proven beneficial. This can be seen, e.g.
when looking at the reversed question of the task in Fig. 6.7. (In which series are
there 39 numbers?) Here primarily children were successful who solved the pre-
ceding tasks mathematically by applying deep structures. Even more clearly this
relation can be seen in the following task (Fuchs and Käpnick 2004):

A dog chases a rabbit. The rabbit has a head start of 22 ft. But he can only do
6-ft-long jumps, the dog’s jumps, however, are 8-ft-long.

(a) After how many jumps has the dog caught up with the rabbit?
(b) How many feet of a head start would the rabbit have had at the beginning,

if the dog had caught up with the rabbit after 15 jumps?

Series 1 1
Series 2
Series 3
Series 4

1 2 1
1 2 3 2 1

1 2 3 4 3 2 1
Series 5

Fig. 6.7 Number arrangement
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Task (a) can be solved notably more efficiently if the difference between the
jump length of the rabbit and that of the dog is used. Since the dog catches up by
2 ft every time he jumps, the result can be determined by calculating how often the
jump difference of 2 ft appears in the head start of the rabbit. Additionally, there are
also (here not described) other approaches to the solution which generate the correct
answer but don’t make use of the jump difference.

In the investigations, only mathematically gifted children managed to solve this
task. It was salient that the correct results of task (b) were exclusively determined
by approaches based on the abridging structuring via the jump difference of 2. The
recognition that the jump difference is the length that the dog catches up every time
he jumps, seems, therefore, a significant parameter for the solution of task (b) and
this way, also for reversing the line of thought in this task. Possibly, reversing the
line of thought is achievable in reversed questions especially when mathematical
situations and solving processes are reduced in their complexity by building
structures so that reversed processes do not demand high cognitive efforts and are
easily accessible.

In addition to the theoretically developed characteristics of giftedness, already
the main study exposed that there could be a particular age-specific difference
between gifted and non-gifted second graders when it comes to understanding and
using relational concepts and connections. What was shown inductively by the data
was more closely investigated in the follow-up investigations. They exhibited
strong differences:

• when it comes to using the term half: In contrast to non-gifted children, the
gifted ones showed that they knew what the relativity of the term half entails.
Great differences between both groups occurred in that gifted children as
opposed to the non-gifted knew about the term half. Significant difference
between both groups appeared when the children had to work with ‘half’
repeatedly. Non-gifted children often gave independently from the initial
number the identical number.

• when it comes to understanding and applying relational terms which describe
differences between numbers/amounts: Understanding and dealing with infor-
mation, such as increase by 5, 1 year older did not pose a problem to the
mathematically gifted children. Tasks that included several common relational
information, the gifted children, in contrast to the non-gifted ones, were able to
order the information in accordance with their relations without further problems.

This component is closely connected to dealing with structures. However, I see
here essential new aspects which could be eligible for describing the difference
between mathematically gifted and non-gifted children at primary school level. The
understanding of relational terms and their successful application to mathematical
situations was for every child an intended learning objective. But it is assumed that
building an understanding for relational numbers is only completed towards the end
of the full development of the number concept (Fritz and Ricken 2008; Krajewski
2008) so that some children are possibly missing the prerequisite for understanding
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relational terms at an early school age. Also the application of relational concepts in
context is regarded as especially difficult (Stern 1998). It is possible that insight is
especially gained in the above mentioned differences between mathematically
gifted and non-gifted children with regard to their developmental stages. The dif-
ferences might also be explained and traced back to higher-developed cognitive
abilities coupled with a faster understanding of mathematical concepts and also a
head start of mathematically gifted children as they are usually more experienced
when it comes to engagement in mathematical content. It could be assumed that the
observed differences decrease with age as children develop a growing under-
standing of relational concepts the older they get. This way this potential indicator
of giftedness could be especially dependent on development stages and might,
therefore, be age- or class-specific which results in an exceptional status of this
indicator among the characteristics of giftedness.

Furthermore, these investigations showed that several mathematically gifted
second graders display creativity in dealing with mathematics. Moreover, some
children showed special competences in constructing and using mathematical
analogies (cf. Assmus and Förster 2015).

All in all, it can be concluded that the results of the investigations did not
contradict in any case the results of the main study. All investigated characteristics
displayed great differences between the two groups during the extra classes.
However, it needs to be said that the number of the participants, especially in the
comparative group, was rather small so that the results are not generalizable. Also,
during those times that children worked independently, entirely controlled condi-
tions were not realizable as participants sometimes worked together or communi-
cated about their tasks. The latter can be simultaneously regarded as an advantage
and a disadvantage. It is disadvantageous because it was not always possibly to
evaluate whether the children could have achieved the same results on their own.
This way, quantitative statements can only be made when tasks were solved
individually (as for example in the dog-rabbit-task). Of advantage is, however, that
the extra classes seem to resemble quite closely the pedagogical work done in
school so that other facets can be explored than in a standardized testing situation.
This way, the further investigations provide beneficial insights and additions to the
main study.

6.7 Summary

The results of the conducted study suggest that the cognitive abilities of mathe-
matically gifted and non-gifted second graders differ in the examined areas.
Therefore, it is reasonable to assume that the following abilities represent charac-
teristics of mathematical giftedness in early primary school children.

• Ability to memorize mathematical issues by drawing on identified structures,
• Ability to construct and use mathematical structures,
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• Ability to switch between modes of representation,
• Ability to reverse lines of thought,
• Ability to capture complex structures and work with them,
• Understanding of relational concepts and ability to use relational concepts and

connections,
• Ability to construct and use mathematical analogies,
• Mathematical creativity.

However, the final two characteristics have not been verified in comparative
studies under controlled conditions.

Finally, it is important to mention that many of these abilities are not restricted
exclusively to the mathematically gifted, but that they are, up to a certain level,
developed by all pupils. Thus, the differences between gifted and non-gifted chil-
dren occur only when solving comprehensive and challenging mathematical tasks
(Nolte 2004). However, merely displaying a high level of the mentioned cognitive
capabilities is usually not enough for outstanding mathematical achievements.
Generally, this requires further favorable personality characteristics, such as an
extraordinary interest for mathematics as well as concentration and endurance.
A supportive environment can also have a favorable effect here. With this in mind,
the construct of mathematical giftedness is not reducible to cognitive factors.
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Chapter 7
The Cognitive Demand of a Gifted
Student’s Answers to Geometric Pattern
Problems

Analysis of Key Moments in a Pre-algebra
Teaching Sequence

Angel Gutierrez, Clara Benedicto, Adela Jaime and Eva Arbona

Abstract Mathematically gifted students require specific teaching methodologies
to foster their interest in mathematics and their engagement in solving problems.
Geometric pattern problems are an interesting context in which to introduce algebra
to those students. We present the case of a nine-year-old student engaged in a
teaching unit based on geometric pattern problems that was aimed at helping him
start learning algebra, equations, and algebra word problems. To analyze and assess
the cognitive effort the student made to solve the problems, we used a particular-
ization to this context of the cognitive demand model. We analyzed answers typical
of the different kinds of problems posed throughout the teaching unit, showing the
student’s learning trajectory and related characteristics of mathematical giftedness.
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7.1 Introduction

Mathematically gifted students (hereafter referred to as “gifted students”) tend to
show unusual paths of reasoning and methods of solving problems. Authors such as
Freiman (2006), Greenes (1981), Krutetskii (1976), and Miller (1990) have sug-
gested a number of characteristics of gifted students related to aspects of their
mathematical or social activities. Some characteristics are quite general, such as
good memory or the enthusiasm for mathematics, while others are more specific,
such as the abilities to identify patterns and relationships among different elements,
generalize and transfer mathematical ideas or knowledge from one context to
another, or invert mental procedures of mathematical reasoning. These abilities are
especially useful in particular contexts, such as the one we are dealing with in this
chapter: the use of geometric pattern problems to introduce gifted students to
algebraic language and equations. Other traits of gifted students are that they need
much less time than average students to solve problems (Budak 2012) and require
challenging problems to maintain their interest during the mathematics classes
(Kennard 2001). This raises, for teachers and researchers, the issue of finding
criteria to determine problems’ appropriateness for certain specific gifted students.

Research also shows that gifted students understand and learn mathematical
concepts quite quickly, so it may be useful to teach them some advanced topics that
open a door for them into new kinds of challenging problems (Cai and Knuth 2011;
Diezmann and Watters 2002; Kennard 2001). For gifted students in upper primary
grades, one such topic is elementary algebra, since it provides them with new tools
to solve problems when arithmetic is not sufficient. Different researchers have
designed curricular variations and teaching units to introduce elementary algebra to
ordinary groups, including gifted students (Gavin et al. 2009).

A successful methodology to initiate students into elementary algebra is posing
geometric pattern problems (Cai and Knuth 2011; Rivera 2013). What we are here
calling geometric patterns have also been called visual patterns, pictorial patterns,
growing patterns, or just patterns by other authors. Typical geometric pattern
problems include questions asking students for the value of the term in a position of
the sequence (direct questions). They may also pose questions where the value of a
term in the sequence is given and students are asked to calculate the position of that
term in the sequence (inverse questions).

The literature has reported many teaching experiments involving direct questions
given to students of different ages, from kindergarten (Papic et al. 2011) and early
primary (Radford 2011; Rivera 2010; Warren 2005) to lower secondary (Warren
et al. 2016). Research has shown a variety of strategies used by students (Rivera
2010) and different focuses of attention to analyze this context (Cai and Knuth
2011), with some research focusing on gifted students (Amit and Neria 2008;
Benedicto et al. 2015; Fritzlar and Karpinski-Siebold 2012).

Rivera and Becker (2005) identified two methods to analyze these patterns:
numerical and figural. García-Reche et al. (2015) described several strategies to
calculate the value of a term of the sequence, labeled: counting, recursive,
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functional, and proportional. Radford (2006) described several types of general-
ization, ranging from naïve trial and error to the sophisticated symbolic algebraic
generalization.

There are very few publications about inverse questions in geometric pattern
problems. Rivera (2013) reported an experiment where Grade 2 students solved
pattern problems represented by means of manipulatives and drawings. The stu-
dents found the inverse tasks very difficult, with very few students solving them
meaningfully. According to Rivera, a source of difficulty was the language, since
children confused data and result values. Warren (2005) conducted an experiment
where Grade 4 students solved several geometric pattern problems including
reversing the thinking questions. This author reported that this type of questions
was very difficult for most children, although she included neither examples nor
descriptions of students’ answering strategies in the paper.

The context of geometric pattern problems seems especially interesting in pro-
moting access to pre-algebraic concepts in mixed-ability classrooms, since all
students, regardless of their mathematical ability and previous knowledge, may
explore geometric patterns and obtain some answers (Smith et al. 2007). This
context has been shown to be particularly useful for gifted students, since they may
advance faster and further than average students. However, there have only been a
few publications reporting gifted students’ behavior when solving these problems.
Amit and Neria (2008) confirmed that generalization via pattern problems is an
appropriate gateway to developing the algebraic skills of gifted students. Fritzlar
and Karpinski-Siebold (2012) explored the algebraic abilities of primary school
students aged 9–10 of varying performance levels, including gifted students. As
expected, the more able students got the better results, although none were able to
adequately answer questions about the nth term of sequences. Benedicto et al.
(2015) asked gifted children in Grades 5, 6 (primary school), and 7 (secondary
school) to calculate the values of the 5th, 20th, 100th and nth terms in a triangular
numbers pattern. They found that some students in the sample were not able to
obtain any kind of expression for the nth term, others verbalized a recursive
expression (the nth term is obtained by adding the numbers from 1 to n), and the
most talented were able to write an algebraic expression to calculate the nth term
(the value of the nth term is n + (n + 1)/2). These results prove that some questions
commonly asked in geometric pattern problems may be appropriate for some stu-
dents but not for others, even among gifted students, so teachers need to evaluate
the suitability of questions to students. Therefore, again, a reliable criterion to
decide on which questions are appropriate for specific gifted students is needed.

Giving a meaning to equations and learning to solve linear equations is one of
the possible objectives of posing students geometric pattern problems. When they
start learning to solve linear equations, students are often asked to solve simple
equations such as 3x + 4 = 19. However, in the context of geometric pattern
problems, students may also be faced with solving complex equations such as
2(x + 1) + 2(x + 2) = 86. Filloy et al. (2008) suggested the existence of a didac-
tical obstacle in between simple and complex linear equations that explains the
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difficulties students find in solving complex linear equations even when they solve
simple equations easily.

There is increasing agreement among mathematics education researchers and
teachers that a successful methodology to promote meaningful learning in all stu-
dents, particularly in gifted students, is to pose them challenging tasks that promote
high-level thinking (Silver and Mesa 2011). An issue in this context is to have at
our disposal a theoretical tool to discriminate tasks that promote high-level thinking
from those that do not promote it. The cognitive demand model may evaluate the
intellectual effort required when students solve mathematics problems, so it helps
decide on which problems are more appropriate to promote high-level thinking in
different kinds of students. To assess the power of tasks to help develop students’
mathematical thinking, Stein et al. (1996) analyzed a diversity of types of tasks,
varying from ones requiring only recall from memory to others requiring complex
and original use of mathematical knowledge. To allow teachers to select tasks with
an appropriate level of challenge or demand for their pupils, Smith and Stein (1998)
stated a set of criteria to classify mathematical tasks or problems into four levels of
cognitive demand corresponding to different grades of cognitive effort required to
solve them.

Most researchers determine the level of cognitive demand of a problem by
analyzing the statement of the problem (Boston and Smith 2009; Wijaya et al.
2015), but this procedure does not acknowledge that a problem may be solved
correctly in several ways that require from students different degrees of cognitive
effort. Instead, we have adopted an original approach that uses the levels of cog-
nitive demand to also make an analysis of students’ answers to those problems. In
this way, we can better understand their processes of reasoning and decide on the
appropriateness of tasks (Benedicto et al. 2015). This way of using the cognitive
demand model has proved in our research experiments to be a framework that
reliably identifies problems appropriate to students with diverse mathematical
capabilities, in particular to gifted students. It has also allowed us to analyze
individual students’ answers to different problems, providing information about the
students’ learning trajectories.

To use the levels of cognitive demand to analyze students’ answers to geometric
pattern problems, we have rephrased the generic characteristics of the levels to
make them appropriate to the particularities of the geometric pattern problems
posed and the answers to their questions.

The issues that emerged in this introduction are related to researchers’ interest in
knowing how gifted students solve problems and progress in learning more abstract
and complex strategies and how to determine which questions are appropriate to
promoting gifted students’ high-level thinking while learning and understanding
mathematics (pre-algebra in particular). The objective of this chapter is to offer some
answers to these questions in the context of geometric pattern problems and
pre-algebra, to gain knowledge about gifted students’ behavior, and to evaluate the
cognitive effort required to solve the problems posed to them. This information could
help teachers prepare sets of problems tailored to the particular needs and expertise of
their gifted pupils. The specific objectives of the research we present here are:
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(i) To identify and analyze the solution strategies gifted students use to solve
geometric pattern problems and the evolution of these strategies throughout
the course of a teaching unit.

(ii) To analyze the relationships between types of geometric pattern problems
and the cognitive demand required by gifted students’ solution methods.

(iii) To analyze the relationships between the complexity of the generalizations
made by gifted students and the cognitive demand required by their methods
to answer the inverse relationship tasks.

To provide information on these objectives, we carried out a teaching experi-
ment aimed at guiding a nine-year-old gifted student to the ultimate learning
objective of being able to solve verbal algebraic problems based on linear equa-
tions. The intermediate objectives were to help the student: understand and learn the
process of mathematical generalization, contextualized in geometric patterns; start
managing the basic components of algebraic reasoning in order to learn to translate
verbal descriptions of the general terms of sequences into algebraic expressions;
and learn and understand a meaning of linear equations and the procedures for
solving them.

7.2 Theoretical Framework

The description and analysis of the teaching experiment presented in the next
sections is based on three elements that integrate our theoretical framework: the
geometric pattern problems, which are the environment where the teaching
experiment took place and the student’s algebraic thinking arose; the cognitive
demand model, which is the analytic tool used to interpret and categorize the
different instances of cognitive effort made by the student participating in our
experiment when solving the problems we posed him; and the characteristics of
mathematical giftedness, since we have observed a gifted student’s behavior to
identify traits of giftedness present in his mathematical activity that explain the
student’s success in learning algebraic language and solving linear equations and
algebraic word problems.

7.2.1 The Solution of Geometric Pattern Problems

Radford (2000) differentiated algebraic thinking from algebra; the former refers to
the use, possibly intuitive, of basic algebraic concepts such as unknown, variable,
and generalization (i.e., expressions of the general term of a sequence) without
employing the algebraic symbolic system of signs, and the latter refers to the
explicit use of the analytic ways of representing and managing the above mentioned
concepts in contexts such as solution of equations. According to Radford (2010),
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algebraic thinking may adopt different forms depending on the kinds of tasks posed.
Our research is situated in the context of algebraic thinking, so it is necessary to
characterize the particularities of our teaching experiment.

Geometric pattern problems typically show, as data, a pictorial representation of
the first terms of an increasing sequence of natural numbers (see some examples
below), although some authors may present as data non-consecutive terms. The
problems pose students direct questions (Amit and Neria 2008) about some terms of
the sequence, usually asking them: to calculate the values Vn of immediate, near,
and far terms (Stacey 1989); to verbalize a general rule valid for calculating any
specific term; and to write an algebraic expression for such a rule [i.e., to write an
algebraic expression in mathematical terms for the function Vn = f(n)]. Students
may also be asked inverse questions, consisting of calculating specific cases of the
inverse relationship (Rivera 2013), that is, to get the place n of a term given its
value Vn (i.e., mathematically speaking, to solve the equation f(n) = Vn).

The pictorial representation of the sequence provides students with objects
carrying numerical information and graphically exhibiting the algebraic relationship
between the terms of the sequence, that students can identify and induce in different
ways (Amit and Neria 2008; Rivera and Becker 2005). Rivera and Becker (2005)
differentiated between figural and numerical procedures of using the information
provided by the geometric patterns, depending on whether students use the
graphical representation of the terms to answer the questions or only pay attention
to the numerical values of those terms (i.e., the number of elements in the pictures
of the terms), respectively.

According to García-Reche et al. (2015), students use several strategies to get the
numeric answers to the direct questions:

Counting: Students reproduce the graphical pattern by drawing the requested term
and count the number of elements in the new drawing to get the numeric answer.
Students do not use any mathematical property of the sequence to get the answer.
Recursive: Students identify the graphical or numerical pattern of growth in the
sequence, relating each term to the preceding one(s). They then calculate the terms
one by one until they get the requested term. This strategy is helpful in calculating
immediate and near terms, but it is too time consuming when calculating far terms
and does not work to get the general term of the sequence.
Functional: Students identify a mathematical expression that allows them calculate
the value of any specific term of the sequence. This expression can also be used as
the general term of the sequence.
Proportional: Students use the ratio between the values of two specific terms to
calculate the value of any other term of the sequence. For instance, if V3 is 5 times
V1, then V9 is 15 times V1. This strategy usually produces wrong answers.
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7.2.2 The Cognitive Demand Model

The cognitive demand model identifies four levels of cognitive effort required from
students to solve mathematical problems based on the complexity of the reasoning
the students used to produce the answers. The basic characteristics of the tasks
typically associated with each level are (Smith and Stein 1998):

• Memorization: tasks asking students to reproduce facts, rules, formulas or
definitions previously learned or information explicitly presented in the state-
ment of the task.

• Procedures without connections to concepts or meaning: tasks focused on
getting correct answers but not on connecting to the underlying contents,
requiring students to perform in a routine manner an algorithmic process already
learned.

• Procedures with connections to concepts and meaning: tasks focused on dis-
covering the underlying contents and gaining mathematical understanding of
them, requiring students to perform an algorithmic process that is not routine,
since it presents some ambiguity on how to carry it out.

• Doing mathematics: tasks requiring complex and non-algorithmic thinking from
students. Students have to understand the underlying mathematical contents and
explore their relationships.

A more detailed and operational description of the levels of cognitive demand
can be found in Smith and Stein (1998). As in the cognitive demand model, in this
text the terms algorithm and procedure are equivalent, and they should be under-
stood in a broad way, including the well-known algorithms for arithmetic calcu-
lations, solving equations, getting the derivative of a polynomial function, etc., and
also any procedure to get a result by means of a purposeful sequence of steps, such
as calculating the angles of a convex polygon with a protractor or drawing the
element of a geometric pattern following the terms given.

7.2.3 Particularization of the Cognitive Demand Model
to the Geometric Pattern Problems

The characterization of the levels of cognitive demand by Smith and Stein (1998) is
good to give a general idea of their meaning and to show the main differences
between them, but it is not sufficiently precise to evaluate geometric pattern
problems or students’ answers to these problems. To make operational and helpful
use of the levels of cognitive demand to analyze specific students’ answers, we
needed to particularize the general descriptions of the levels to the specific context
of the geometric pattern problems. To do this, we matched up the core character-
istics of each level of cognitive demand to the specific characteristics of the
questions posed in these problems and rephrased the characteristics to include
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aspects of geometric pattern problems. We present below a synthetic analysis of
each type of task included in the geometric pattern problems used in our teaching
unit and then a table with the detailed characteristics of each level of cognitive
demand in this context. A thorough description and validation of the process of
transformation of the initial characteristics of the levels into the specific charac-
teristics can be read in Benedicto et al. (2017).

The ordinary procedures of calculating immediate and near terms of geometric
patterns require only continuing the numeric or geometric structure shown by the
terms given in the statement of the problem, either by drawing the requested term
and counting its elements or by recursively determining its value (for instance, by
adding 3 again and again). To do this, students do not need to be aware of the
algebraic relationship underlying the pattern (i.e., the general term of the sequence)
and only need to make a limited cognitive effort to do such calculations, which
corresponds to the procedures without connections level of cognitive demand.

Far terms cannot be calculated without finding an algebraic relationship
underlying the sequence and using it. To solve these tasks, typical students analyze
previous information (terms in the statement of the problem and immediate and near
terms already calculated) to connect relevant data from them and get a relationship
or rule that can be used to calculate the value of any other specific term. This is not
a routine procedure, since it requires using underlying algebraic relationships and
has to be carefully applied in different ways to different patterns. Therefore, the
cognitive effort necessary to calculate far terms corresponds to the procedure with a
connections level of cognitive demand.

To verbally or algebraically express a general rule for calculation of terms,
students need to find an expression for the algebraic relationship underlying the
sequence (i.e., its general term) and be able to abstract that relationship in order to
express it without the support of specific terms. There is not an algorithmic guide
that can help primary school students to solve this kind of task, so they need
complex non-algorithmic thinking to analyze the task, extract useful information,
and make appropriate use of it. All this activity requires originality and a consid-
erable cognitive effort from students, which corresponds to the doing mathematics
level of cognitive demand.

To calculate inverse relationships, typical students’ answers are based on the
rules of generalization obtained in direct questions. The rules may have a simple
algebraic structure (for instance, Vn = 3n + 2) or a complex one (for instance,
Vn = 3n + 2(n + 1) + 1), so the levels of cognitive demand required to solve the
inverse tasks vary depending on the complexity of the generalization made. When
the rule of generalization has a simple structure, students simply need to make
arithmetic calculations in the appropriate order, determined by an easy algorithm, so
students have to make limited cognitive effort, which corresponds to the procedures
without connections level.

When the rule of generalization has a complex structure, students need to
explicitly state and solve an equation to get the answer. When these tasks are posed
before students know how to solve equations, they can only find the solution by
making a (sometimes carefully organized) trial-and-error checking of possible

176 A. Gutierrez et al.



values. This process of solution is quite straightforward and it does not require
understanding of the algebraic structure of the sequence, so it only requires limited
cognitive effort, which corresponds to the procedures without connections level.

When students have learned to solve equations, they may state and solve an
appropriate equation derived from the rule of generalization. Stating a correct
equation cannot be made without understanding the algebraic relationship under-
lying the pattern, so it requires a quite high cognitive effort, which corresponds to
the procedures with connections level.

Table 7.1 presents the characterization of the levels of cognitive demand par-
ticularized to geometric pattern problems (Benedicto et al. 2017) that we have used
to analyze the student’s outcomes presented in next sections. Table 7.1 does not
include the level of memorization because it is not used in the analysis made in this
chapter.

Table 7.1 Characterization of the cognitive demand of answers to geometric pattern problems

Levels of Cogn.
Dem.

Categories Characteristics of the task

Procedures without
connections

Process of
solution

• Is algorithmic. The procedure consists of following the pattern
shown in the statement to calculate (either recursively or
functionally) immediate or near terms, either graphically by
drawing the terms and counting their elements, or arithmetically
by calculating the number of elements of the terms. However,
the students do not understand the underlying algebraic
structure of the sequence. The calculation of the inverse
relationship is based on a learned sequence of basic arithmetic
operations or on checking possible answers by trial and error

Objective • Focus students’ attention on producing a correct answer (the
number of elements in an immediate or near term), but not on
developing understanding of the algebraic structure of the
sequence

Cognitive effort • Solving it correctly requires limited cognitive effort. Little
ambiguity exists about what has to be done and how to do it,
because the statement clearly shows how to continue the
sequence

Implicit content • There is implicit connection between the underlying structure of
the sequence and the procedure used. However, students do not
need to be aware of such connection since they may answer the
question by drawing terms and counting their items

Explanations • Requires explanations that focus only on describing the
procedure used. It is not necessary to identify the relationship
between the answer and the term

Representation
of solution

• A geometric representation is used to get the number of
elements and an arithmetic one to write the result. Students use
the representations without establishing connections between
them or with the algebraic structure of the sequence

Procedures with
connections

Process of
solution

• The data or the answers to previous tasks suggest general
functional procedures that are connected to the underlying
algebraic structure. The students understand the algebraic
structure of the sequence and they use it to solve the task, but

(continued)
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7.2.4 Characteristics of Mathematically Gifted Students

As mentioned in Sect. 7.1, researchers have determined quite many of the char-
acteristics of gifted students’ behavior. A few of these characteristics are pertinent
to the differential particularities of geometric pattern problems (Greenes 1981;
Krutetskii 1976; Miller 1990):

Table 7.1 (continued)

Levels of Cogn.
Dem.

Categories Characteristics of the task

they are not able to obtain a general algebraic expression. The
calculation of the inverse relationship is based on solving the
equation of the general procedure previously obtained

Objective • It directs students’ attention to the use of general procedures
aiming to deepen their understanding of the underlying
algebraic structure of the sequence

Cognitive effort • Solving it correctly requires rather considerable cognitive effort.
Students may use a general procedure, but they need to have
some understanding of the algebraic structure of the pattern

Implicit content • To solve the task, students need to explicitly consider the
algebraic relationship between any term and its value
underlying the correct procedures of solution

Explanations • Requires explanations referring to the general algebraic
relationship between the terms and their values, based on using
specific cases (particular terms of the sequence)

Representation
of solution

• The solution connects several representations. Geometric,
arithmetic, and algebraic representations may be used, and
students use those which help them to make an abstract
reasoning

Doing mathematics Process of
solution

• Requires complex and non-algorithmic thinking. The statement
does not suggest any way to get the general term of the
sequence. Students have to understand and analyze the algebraic
structure of the sequence to get a general algebraic expression
that lets them obtain any term of the sequence

Objective • Requires students to analyze the solutions to previous tasks and
possible limitations to get an algebraic expression of the general
term of the sequence

Cognitive effort • Requires considerable cognitive effort, since it is necessary to
use abstract reasoning to determine how to algebraically
represent the general term

Implicit content • Requires that students access relevant knowledge and previous
experiences (immediate, near, and far terms) and make
appropriate use of them in working through the task to get an
algebraic expression of the general term

Explanations • Explanations consist of the proof of the algebraic expression of
the general term

Representation
of solution

• The solution is based on an algebraic representation, which may
be connected to geometric and/or arithmetic representations
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– An unusual quickness in learning, understanding, and applying mathematical
ideas: Gifted students understand and learn very quickly. They usually need
only a few explanations; they even grasp new ideas before the teacher has
finished explaining them.

– Ability to see mathematical patterns and relationships, sometimes in original
ways: Gifted students have a high capability for identifying regularities and
complex structures in patterns, extracting them from empirical contexts, and
characterizing them in general terms.

– Ability to generalize and transfer mathematical ideas to another context: Gifted
students are able to detect general relationships when observing specific cases
and are able to extract the relationships they have identified in specific contexts
and formulate them in general terms.

– Ability to invert mental procedures of mathematical reasoning: Gifted students
are able to manage unidirectional relationships in ways that allow them to see
whether they can be inverted and, when possible, the direct or the inverse
relationship can be used. They are then able to create new procedures by
inverting the steps in known procedures.

– Flexibility to change: Gifted students are able to quickly move from one
problem-solving strategy to another if they believe that the new one will be
more useful or easier.

– Development of efficient strategies and abbreviation of problem-solving pro-
cesses: Because gifted students tend to see better procedures of solving a type of
problem, they are able to more efficiently solve other problems of the same type.

We present in this chapter a research experiment where a nine-year-old gifted
student solved a teaching sequence based on geometric pattern problems aimed to
teach him to generalize and to solve verbal algebraic problems based on linear
equations. The analysis of the student’s behavior presented in next sections will
show that he had the above mentioned traits of mathematical giftedness and he put
them to work when solving the different kinds of problems.

7.3 The Research Methodology

This research is based on an experimental case study, analyzed qualitatively to
provide answers to the specific objectives stated in the first section. We present and
analyze data from a teaching experiment with a gifted student who solved a
sequence of problems aimed at guiding him in understanding and learning the basic
algebraic concepts necessary to solve verbal problems based on linear equations.
Most problems in the sequence were geometric pattern problems.
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7.3.1 Sample and Experimental Setting

The subject participating in this study was Juan (a pseudonym), a 9 year old who
had been identified as gifted student after having been administered the standard
identification procedure used by the educational authority. Furthermore, Juan had
proved to have a very high mathematical talent during his participation in several
mathematics workshops conducted by the authors over several years. In the Spanish
educational system, 9-year-old children are typically in primary school Grade 3, but
Juan had been accelerated one grade. We invited Juan to participate in our study
because he had showed a high interest for mathematical problem solving and he
was willing to learn more complex mathematics.

The teaching experiment was an out-of-school workshop having the format of
clinical interviews, which were conducted by the fourth author. It started in August
during the summer holidays after Juan had finished Grade 4 and ended in December
of the same year, when Juan was studying Grade 5. It was not possible for the
researcher-teacher and the student to meet each other, so the sessions were con-
ducted by means of videoconferences using Skype, which were audio- and
video-recorded using screen-capture software.

As the first action to start working on a problem, the teacher posted a document
for Juan with the statement of the problem. Juan could draw or write in a notebook,
but he had to answer and give explanations verbally, except when he had to write
algebraic expressions. The teacher asked Juan to explain his answers whenever he
did not do it spontaneously. When Juan started writing algebraic expressions, he
used a word processor and shared his screen with the teacher so she could read what
Juan was writing. The information written in the notebook was not relevant for our
analysis because it mostly consisted of calculations that Juan described verbally to
the teacher when necessary.

7.3.2 The Teaching Unit

The experimental teaching unit consisted of a sequence of problems divided into
three parts. To easily identify the problems in each part of the teaching unit in this
text, we have labeled them as Problems 1.n, 2.n, and 3.n. Some problems were
taken from the literature and the others were created by the authors to fit specific
requirements for methods of solution or structure of the general relationships of
their sequences.

The first part had the objectives of (i) teaching Juan to identify and verbally
express generalizations of the relationships underlying the sequences represented by
the patterns and handle those generalizations, and (ii) helping Juan start implicitly
using variables and unknowns while solving the problems. Over nine sessions, Juan
solved 20 geometric pattern problems ordered according to their difficulty.
All problems had the same structure and included the same tasks (Fig. 7.1):
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Three direct questions (a–c) asking for calculation of the values of an immediate, a
near, and a far term in the sequence, and an inverse question (d) asking for the term
in the sequence having a given value.

From the very beginning, Juan correctly solved most problems, showing a high
ability to generalize from the data presented in the problems, which is one of the
previously mentioned characteristics of mathematical giftedness.

The second part of the teaching unit aimed at (i) introducing Juan to the use of
algebraic symbols (letters, equal sign, parentheses, etc.) to algebraically represent
his generalizations and (ii) introducing Juan to the solution of linear equations
contextualized by an applet representing a balance. Over three sessions, Juan solved
six geometric pattern problems different from the ones in the first part. All problems
had the same structure and included the same tasks (Fig. 7.2): A direct question
(a) asking for calculation of a near term of the sequence, a question (b) asking a
written algebraic representation of the calculations made in question a, and an
inverse question (c) aimed to be solved using an equation. The aim of these
problems was no longer to teach Juan to get generalizations, so we removed the

Marc and his friend want to make sets of houses with sticks as follows:

1 house 2 houses 3 houses

a) How many sticks will they need to make 6 houses? How did you know? 

b) How many sticks will they need to make 11 houses? How did you know?

c) Can you tell me a way to calculate how many sticks will they need to make 44 houses? How did
you know?

d) If they have 51 sticks, how many houses can they make? Explain how you got the answer.

Fig. 7.1 A typical geometric pattern problem (1.8) from the first part of the teaching unit

At the school we have learned how to build wooden cabinets having as many shelves as you like. We
used pieces of wood to make the cabinets in this way: 

1 shelf     2 shelves     3 shelves

a) How many pieces of wood do we need to make a cabinet with 13 shelves? How did you know? 

b) Write down the formula you used in the previous question.

c) If we have 98 pieces of wood, how many shelves can the cabinet have? How did you know? 

Fig. 7.2 A typical geometric pattern problem (2.5) from the second part of the teaching unit
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unnecessary questions and included new questions focusing on the algebraic rep-
resentation of the general relationship.

To answer question b, Juan learned to write algebraic expressions representing
the calculations made in question a. Next, to answer question c, Juan learned to
write an equation by using his answer to question b and the data in question c. In
the first problem of this part, Juan was introduced to the meaning of equation as
equilibrium using an applet (NLVM 2016) showing a balance that allows repre-
sentation and solution of linear equations by adding pieces to or removing them
from the balance beams. When there is not equilibrium, the balance swings down.
Juan quickly learned to write algebraic expressions and solve linear equations with
the help of the balance model, showing one of the traits of mathematical giftedness.

The third part of the teaching unit aimed at (i) teaching Juan to transform
algebraic expressions and simplify complex linear equations, (ii) teaching Juan
solve algebraic word problems and gain practice in solving linear equations, and
(iii) showing Juan the usefulness of equations in solving a diversity of mathematical
problems. Over two sessions, Juan solved seven geometric pattern problems,
including shortened versions of six problems from the first part of the teaching unit
in which Juan was not able to correctly solve the inverse question or he solved it by
trial and error. He also solved four linear equations to gain practice and six alge-
braic word problems. All geometric pattern problems had the same structure and
included the same tasks (Fig. 7.3): A question (a) asking for a written algebraic
representation of the general term of the pattern, a question (b) asking about the
possibility of shortening the algebraic expression produced in a, and an inverse
question (c) asking for a transformation of the expression in b into an equation and
its solution.

In objective (iii) of this part of the teaching unit, the geometric pattern problems
used were the ones from the first part of the teaching unit whose inverse questions
Juan had found very difficult to solve and on which he had had to use trial and error
(Table 7.3). This showed Juan that having learned to state and solve equations
allowed him to solve these problems easily.

Marc and his friend want to make sets of houses with sticks as follows: 

1 house 2 houses 3 houses

a) Write down an algebraic formula to calculate the number of sticks necessary to make any number 
of houses.

b) Do you believe that it is possible to get a simpler formula? If so, write it down.

c) If they have 96 sticks, how many houses can they make? Explain how you got the answer.

Fig. 7.3 A typical geometric pattern problem (3.5) from the third part of the teaching unit, related
to problem 1.8 (Fig. 7.1)
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7.3.3 Source and Analysis of Data

In this chapter we analyze Juan’s answers to the geometric pattern problems he
solved in the three parts of the teaching unit, but we do not take into consideration
the word problems or the linear equations he solved in the third part. We make a
multi-faceted analysis of those answers based on the three theoretical constructs
described in the second section of the chapter. The main analysis is based on
matching the answers to the characteristics of the levels of cognitive demand in
Table 7.1, in order to get information about the cognitive effort required to solve the
problems and look for a learning trajectory throughout the course of the teaching
unit. However, we have also analyzed Juan’s answers in relation to his procedures
of using the graphic data of the problems (numerical and figural; Rivera and Becker
2005), the procedures he used to calculate specific terms of the sequence (counting,
recursive, functional, and proportional; García-Reche et al. 2015), and the
appearance of traits of mathematical giftedness. This multi-faceted analysis pro-
vides a more complete picture of this student’s behavior and helps in understanding
why he made more or less cognitive effort in the solution of different problems.

7.4 Analysis of the Cognitive Demand of Student’s
Solutions

In this section, we present examples of the various types of strategies Juan used to
solve the geometric pattern problems and, based on Table 7.1, analyze the levels of
cognitive demand necessary to produce those answers. Due to the differences
between strategies of solution of direct and inverse questions, we present them in
two different sub-sections.

7.4.1 Analysis of the Cognitive Demand of Solutions
to Direct Questions

Two relevant aspects of the strategies of solution of direct questions in geometric
pattern problems are the ways of using the graphical information and the procedures
used to calculate the values of specific terms and obtain the general relationships
needed to calculate any term. We are considering Rivera and Becker’s (2005)
figural and numerical procedures of use of the pictorial information. Juan used one
or the other depending on the complexity of the geometric pattern of each problem.
We are also considering the counting, recursive, functional, and proportional types
of calculations described by García-Reche et al. (2015). Examples 1–4 present a
diversity of answers corresponding to the different types, showing that Juan made
calculations of the recursive and functional types, but he never used the counting
and proportional types.
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Example 1: Recursive numerical counting from the pattern and a cognitive demand
in the procedures without connections level. In a few problems, Juan identified the
constant difference between the total number of objects in two consecutive given
terms and recursively used this difference to get the answers for the immediate or
even the near terms. In problem 1.7 (Fig. 7.4), in order to calculate the number of
leaves the plant has after 5 and 13 days, Juan made recursive calculations:

Juan: On the fifth day it has 13.
Teacher: Very good. How do you know?
Juan: I was adding 3.
Teacher: And what about day 13?
Juan: 38 [the correct answer is 37, but he made a mistake in the calculations].
Teacher: It is 37. How did you calculate this?
Juan: Plus 3, plus 3, plus 3.

The geometric pattern clearly suggests that each day the plant has three new
leaves, so the geometric pattern induced Juan to use a recursive strategy to solve the
immediate and near terms. However, when he had to answer question c, Juan
moved to a functional strategy. The recursive strategy is algorithmic, since it
consists of adding 3 a number of times and requires a very low cognitive effort since
following it does not require awareness of the algebraic relationship underlying the
sequence. The objective of this solution method was producing a correct result but
not gaining understanding of the structure of the sequence. Juan’s answers to a and
b were typical of the procedures without connections level.

Example 2: Functional numerical counting from the pattern and cognitive demand
in the procedures without connections level. In some problems, Juan counted the
total number of objects in each given term and worked with the numeric sequence
without paying attention to the graphical information of the pattern. In problem 1.5,
in order to calculate the number of tiles around a pool of size 5 (Fig. 7.5), Juan
made a guess about a general functional relationship:

My mother has bought a strange plant. It grows during the night and, when we get up in the morning, 
we see new leaves: 

Day 1     Day 2      Day 3

a) How many leaves will the plant have on day 5? How did you know? 

b) How many leaves will the plant have on day 13? How did you know? 

c) How many leaves will the plant have on day 65? How did you know? 

Fig. 7.4 Problem 1.7
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Juan: We need 22 tiles.
Teacher: Why?
Juan: I discovered that it [the number of tiles] is 4 times the size of the pool

plus 2.
Teacher: How did you discover this?
Juan: Looking at the examples. The first pool has 6 [tiles], and 4 � 1 + 2 = 6.

The second has 10, and 4 � 2 + 2 = 10. And the third has 14, and
4 � 3 + 2 = 14.

Juan either was not able to find an adequate decomposition of the geometric
pattern or directly got the numeric values of the given terms and used trial and error
to look for an arithmetic way to relate the value of each term to its position. Despite
the result he obtained, consisting of finding a general formula, he did not show an
awareness of the underlying algebraic structure of the sequence, since he described
the procedure used to solve the task but was not able to give a reason for it. The
strategy of the solution chosen may have required rather cognitive effort to produce
the general relationship, but it did not require understanding the structure of the
sequence. The objective of this solution was focused only on producing a correct
result. This solution then corresponds to the procedures without connections level.

Example 3: Functional figural decomposition of the pattern with a cognitive
demand in the procedures with connections level. Most geometric patterns show
procedures to split the figures into parts that can be considered like independent
patterns, making it easy to find a general procedure to calculate the values of the
terms in the sequence. This is Juan’s explanation of his method of calculating the
number of chairs around the tables in question a of problem 1.12 (Fig. 7.6):

Juan: I think this is correct. I take 3, or whatever number, times 3 and add 2.
Teacher: Fine. How did you get it [this procedure]?
Juan: For one table, [I added] the numbers [of chairs] above and below, 1 and

2, and 1 � 3 = 3. For two tables, 3 above and 3 below, 2 � 3 = 6 and
3 + 3 = 6. And we still have to add those two [chairs on the sides]. For
three tables, 5 + 4 = 9 and 3 � 3 = 9.

We want to build a swimming pool with tiles around it. We want to know how many tiles will be
needed for pools with different sizes:

Size 1         Size 2  Size 3

a) How many tiles do we need for the pool of size 5? How did you know? 

Fig. 7.5 Problem 1.5
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To answer question a, Juan divided the chairs into three sets (top, bottom, and
sides), and this helped him elaborate a general procedure to calculate the number of
chairs for any number of tables. This answer offers a functional relationship to
calculate the number of chairs based on the algebraic structure of the sequence
represented by the geometric pattern. The geometric pattern can be easily split,
which helps in understanding the algebraic structure of the sequence. This allowed
Juan to understand the algebraic structure of the pattern and produce a generalized
functional relationship. The strategy of the solution chosen required rather con-
siderable cognitive effort to produce the general relationship. Therefore, this answer
is in the procedures with connections level. This transcript is also an example of the
functional strategy of solution of geometric pattern problems that Juan used in most
problems.

Example 4: Functional figural decomposition of the pattern and cognitive demand
in the doing mathematics level. Question b in the problems in the second and third
parts of the teaching unit (Fig. 7.2) asked explicitly for an algebraic expression of
the general rule of calculation of terms that should have been derived from question
a. This new question meant an increase in Juan’s cognitive effort while solving the
problems, particularly for those problems whose pattern was more complex. We
present Juan’s answer to questions a and b of problem 2.5 (Fig. 7.2). After having
read question a, Juan spent about 2:50 min thinking about it. Then he said:

Juan: I have a way. In the [cabinet] 1, 1 � 4 + 2 [pieces of wood]. In the 2,
2 � 4 + 2. In the 3, 3 � 4 + 2.

Teacher: Where do the 4 and the 2 come from?
Juan: The 2 is because … in the first … there are two extra pieces on the top of

the cabinets… like the roof. And the 4 is because they [the shelves] are 4
and 4 [each shelf].

Juan: [He wrote] 13 � 4 + 2 = 54.

Next, to answer question b, Juan started writing:

Juan: N = [then he deleted the text and wrote again] S =
Juan: Will you understand if I write shelves?

My parents are organizing a family party. There are many people in my family, and my parents do not 
know how many will come. They have to decide how many tables and chairs they will need:

1 table 2 tables 3 tables       

a) How many chairs will there be around 6 tables? How did you know? 

d) If there will be 50 guests, how many tables will they need? How did you know? 

Fig. 7.6 Problem 1.12
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Teacher: Yes.
Juan: If I write S instead of N?
Teacher: Yes. You can use any letter you like. S for shelves is fine.
Juan: [He wrote] S � 4 + 2.

To answer question a, Juan divided the cabinets into shelves (made of four
pieces) and the two extra pieces on the top. This was a quite complex graphical
structure that did not suggest a procedure of decomposition to get the general term.
The abstract explanation he offered for his answer to question a correctly justified
the meaning of the coefficients in the algebraic expression. To answer question b,
Juan had to use the information produced in question a and transform it into a
functional algebraic expression using the initial letter of shelf to give meaning to the
algebraic expression. The cognitive effort required to produce the answers was
high, since Juan had to decompose the graphical pattern and obtain an algebraic
expression for such decomposition, following a non-algorithmic complex way. This
solution was in the doing mathematics level. The teaching method of suggesting
that students write the initial letter of the unknown instead of its whole name proved
to be successful in helping Juan make the transition from verbal expressions to
algebraic expressions and understand the use of letters in algebraic expressions.
This is clearly seen when he changed the letter N to S because the unknown were
shelves.

The examples of solutions presented here demonstrate that Juan was able to
interpret correctly most patterns presented to him, showing an ability to interpret
them and convert them into meaningful arithmetic or algebraic information after a
process of generalization from the particular cases worked out. This behavior is
quite different from what is observed in average students in Grade 5, therefore
showing traits of mathematical giftedness related to identification of patterns and
generalization of mathematical ideas.

7.4.2 Analysis of the Cognitive Demand of Answers
to Inverse Questions

As explained in Sect. 7.2.3, strategies for calculating inverse relationships are
conditioned by students’ awareness of algebra (or lack of it) and ability to solve
equations (or lack of it). When the teaching experiment started, Juan had not
received any previous instruction on algebra, so he neither knew how to write
algebraic expressions nor solve equations. He also had not studied square roots.
Examples 5–7 demonstrate that, during the first part of the teaching experiment, he
showed three strategies to calculate inverse relationships (trial and error, wrong
inversion, and correct inversion) that we consider typical of students without
knowledge of algebra. Examples 8 and 9 then show the great change that occurred
in Juan’s ways of approaching and solving the problems when he started to learn
algebraic concepts, use its system of signs, and solve equations.
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Example 5: Trial and error direct calculations, with a cognitive demand in the
procedures without connections level. When the general procedures Juan had found
for the direct questions were of the linear type y = ax + b(x ± c) ± d or the
quadratic types y = x2 or y = (x ± a)(x ± b), Juan was unable to find a procedure
to invert such complex expressions and he resorted to trial and error. We present
below Juan’s answer to the inverse question in the problem of the walls (problem
1.11, Fig. 7.7), where the generalization he got in the direct questions was the
functional relationship Vn = (n + 1) � 2 + n.

Juan: I had a procedure, but it doesn’t work. … I did 38 divided by 2 minus 2.
Juan: [after 1:35 min of making calculations] I believe it is 13.
Teacher: Why?
Juan: I have tried numbers [for the size of the wall].
Teacher: What did you do while you were trying numbers?
Juan: I did 13 + 1 = 14 … No, sorry, it is 12. Because 12 + 1 = 13,

13 � 2 = 26 and 26 + 12 = 38.

Trial and error is an algorithmic process that does not connect to the algebraic
structure of the pattern and is only aimed at getting the correct answer. Juan did not
understand the algebraic structure of the generalization he had obtained in previous
questions of the problem, so he could not use it. He made a limited cognitive effort
to get the answer, since he only had to make direct arithmetic calculations by
checking different values for n until he found the correct one. He used an arithmetic
representation that did not help him to connect to the algebraic properties of the
sequence. He only correctly answered the question when the teacher helped him.
Therefore, this strategy required a cognitive effort in the procedures without con-
nections level.

Even though this trial and error strategy was far from our objectives of learning,
Juan showed an ability to look for a different strategy of solution when he was not
able to use a more correct one. Furthermore, nobody taught him this trial and error
strategy; rather, it was Juan who developed it. Therefore, Juan demonstrated traits
of mathematical giftedness related to flexibility in changing his focus and ability to
develop efficient strategies to solve problems.

Example 6: Correct inversion of the order of operations, with a cognitive demand in
the procedures without connections level. When the direct calculations were of
types y = ax or y = ax ± b, most of the time Juan correctly applied the inverse

A group of masons has to build walls of different sizes, as shown below:

Size 1                 Size 2                      Size 3      

d) If they have used 38 bricks, what size is wall they have built? How did you know? 

Fig. 7.7 Problem 1.11
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arithmetic operations to get the position of the term, such as in question d of
problem 1.12 (see Example 3, Fig. 7.6). To answer the direct questions, Juan used
the general relationship Vn = 3n + 2. His answer to the inverse question d was:

Juan: It is 16 [tables]. … I did 50 minus 2, which is 48, and then divided by 3.

Inverting arithmetic operations is not just a matter of memory: it is a simple
algorithm that can be applied in a straightforward way, requiring very limited
cognitive effort because the student only needed to make basic arithmetic calcu-
lations. The aim of this procedure is to get a correct solution: the explanation was
just a description of the calculations made, and it is not necessary to be aware of the
algebraic structure of the sequence to get the correct answer. Therefore, this
solution required a cognitive effort in the procedures without connections level.

Example 7: Wrong inversion of the order of operations, with a cognitive demand in
the procedures without connections level. Although Juan correctly solved most
problems like the previous example, sometimes he was not aware of the relevance
of the order of calculations. In the problem of the friezes (problem 1.10, Fig. 7.8),
the generalization he got in the direct questions was the functional relationship
Vn = 2n + 1.

Juan was first asked to calculate the number of triangles made with 20 sticks
(question d). After his wrong answer, the teacher helped him by making him aware
of the need to consider the order of calculations.

Juan: I did 20 divided by 2 minus 1.
Teacher: Well, … look, before [in questions a to c] you first multiplied by 2 and

then added 1. Now, what do you have to do first, subtraction or division?
Juan: Subtraction.

Juan was then asked to calculate the number of triangles made with 31 sticks
(question e).

Juan: It is 15. … I subtracted 1 from 31 and got 30, and 30 divided by 2 is 15.

Juan did not understand the algebraic structure of the pattern, which induced him
to decide on an incorrect order for the calculations. He made a limited cognitive
effort to give a solution because he did not try to analyze the way he had made the
calculations in the direct questions. Furthermore, the teacher helped Juan to

John wants to make friezes with sticks to decorate his bedroom. The friezes are made of triangles, as 
follows:

1 triangle 2 triangles 3 triangles

d) If John has 20 sticks, how many triangles can he make? How did you know? 

e) If John has 31 sticks, how many triangles can he make? How did you know? 

Fig. 7.8 Problem 1.10
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understand the order in which the inverse calculations had to be made, so he
repeated the teacher’s instructions (first subtraction, then division). Besides, as he
did not know how to represent the arithmetic expression algebraically, he had to use
the arithmetic representation of the data. So, this solution required a cognitive effort
in the procedures without connections level.

At the beginning of the second part of the teaching experiment, Juan learned to
state and solve linear equations. From that moment, he was able to answer any
inverse question by writing and solving an equation, as shown in Example 8.

Example 8: Statement and solution of an equation, with a cognitive demand in the
procedures with connections level. We present now Juan’s answer to the inverse
question (c) in problem 2.5 of the second part (Fig. 7.2), which follows the answer
we presented in Example 4, where Juan wrote S � 4 + 2 to answer question b.
When the teacher asked him to answer question c, he immediately gave the correct
answer (24 shelves) by doing the inverse calculations. However, the teacher asked
him to solve the question by using algebra.

In previous sessions, Juan had solved problems 2.1–2.4. When solving problem
2.1, the teacher introduced him to the use of the virtual balance (NLVM 2016) to
represent and solve equations. The teacher guided Juan to understand the objective
of solving equations by maintaining the balance in equilibrium while reducing the
number of pieces in order to isolate the unknown. He practiced by solving a few
equations (ax + b = c) with the virtual balance.

After having solved problem 2.1 with the virtual balance, Juan did not need to
use it anymore; instead, he preferred to write a simulation of the virtual balance
using the word processor (Fig. 7.9):

Teacher: First, you have to write the balance, like the equation. OK?
Juan: Do I write S times 4 plus 2?
Teacher: S times 4 plus 2 is a side of the balance. Now we know the [number of]

pieces of wood. In question a, we knew the number of shelves but not
the number of pieces. Now we do not know the number of shelves, so we
write S instead of 13. So, what do we need now?

Juan: The balance?
Teacher: We already have a part. We need the other part, OK? …What should we

write in the other part [of the balance]?
Juan: X.
Teacher: Look at question a. We had the first part of the balance [she meant

S � 4 + 2] and, as we knew how many shelves we had, we used 13
instead of S. Right? And we calculated the number of pieces we needed.
Do we now know how many pieces of wood we have?

Juan: Yes.
Teacher: So we write it down, OK?
Juan: [wrote] S � 4 + 2 = 98.

Juan now continued representing the equation on the word processor screen as if
it were in the balance (Fig. 7.9a) and solving it by reproducing the compensations

190 A. Gutierrez et al.



that he would make in the balance (Fig. 7.9b). Finally, he calculated 96 � 4 = 24
shelves.

Juan’s first answer to this question was based on arithmetical inversion, like in
Example 6, because that procedure was easy for him. However, unlike in Examples
5–7 above, Juan had now learned to state and solve linear equations, so, when asked
by the teacher, he was now able to correctly connect the pattern and the general-
ization he had obtained to the algebraic expression representing it and state (with
some help by the teacher) and solve the equation.

Once Juan learned the procedure to write equations for the geometric pattern
problems, this procedure became algorithmic for him, since he learned to combine
the answers to questions a and b and the data in question c in a meaningful way
related to the algebraic structure of the sequence represented, and from this he was
able to write the corresponding equation. This algorithmic procedure cannot be
followed automatically, but it is necessary to understand the specific algebraic
structure of the sequence to decide on the way to write the equation. We see that, in
this problem, the solution required Juan to put forth a quite high cognitive effort in
order to decide which parts of the information available were useful and how to
combine them. Juan used algebraic and diagrammatic (a balance-like diagram)
representations to state and solve the equation. Therefore, this solution required a
cognitive effort in the procedures with connections level.

Example 9: Algebraic solution of a problem that Juan could not solve arithmetically
in the first part of the teaching unit, with a cognitive demand of the new solution in
the procedures with connections level. To close this section, we present an example
of the solution of a geometric pattern problem from the third part of the teaching
unit. As mentioned in the description of the teaching unit, these problems were
aimed at showing Juan the power that equations have in solving the problems that
he found too difficult during the first sessions.

Problem 3.6 was an advanced version of problem 1.11 (Example 5, Fig. 7.7). As
shown in Fig. 7.3, the new version of the problem explicitly asked for an algebraic

S × 4 + 2 = 98 S × 4 + 2 = 98

S  S 

S  S 

S -----  S ----- 

S -----  S ----- 96

1 

1 98

(a) (b)

Fig. 7.9 Steps in the solution of problem 2.5, in the second part of the teaching unit
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expression of the general term of the sequence, then it asked for a simplification of
that expression if possible, and, finally, it asked an inverse question, to be answered
by solving an equation. The algebraic expression Juan wrote in question a was
(S + 1) � 2 + S, the same expression he used in problem 1.11. After question b,
Juan simplified this formula to 3S + 2. Question c asked for the size of the wall
having 50 bricks, so Juan wrote, without any help:

Juan: 3S + 2 = 50
3S = 48
S = 48 � 3
S = size 16

This answer required a cognitive effort in the procedures with connections level,
for the same reasons stated for Example 8. The cognitive effort of a long answer
depends on its most complex parts. In this case, for the problems in the third part of
the teaching unit, Juan was able to solve question c (state and solve equations) more
efficiently, since he had gained practice in operating with parentheses, simplifying
the equations, and solving them. However, he had to make the same mental rea-
soning and the same cognitive effort as in previous problems in order to understand
the algebraic structure of the graphical pattern and adequately combine the data to
translate them into an equation.

The examples of solutions presented in this section demonstrate that Juan was
able to interpret relationships and invert them arithmetically or algebraically. This
behavior corresponds to the ability of gifted students related to identification and
inversion of mental procedures.

7.5 Discussion on the Analysis of the Student’s Answers

In the previous section we have presented examples of the different types of
answers to the geometric pattern problems solved by Juan, and we have analyzed
them from the viewpoints of the cognitive demand model and algebraic thinking.
To discuss this student’s behavior and his learning trajectory in the teaching
experiment, we present information about the types of answers and the cognitive
demand required to answer the direct questions (Table 7.2) and the inversion
questions (Table 7.3) in all the problems solved in the first part of the teaching unit.
After that, we also analyze the answers to the geometric pattern problems solved in
the second and third parts of the teaching unit.

The first striking result from Table 7.2 is that, since the very first problem, Juan
was able to solve correctly all direct questions without significant help (although he
sometimes made errors in mental arithmetical calculations) by formulating and
using appropriate verbalizations of the general term of the sequences. Only in
problem 1.17, he was not able to calculate by himself the near and far terms, and the
teacher helped him to get a generalization so he could try to answer the inverse
question.

192 A. Gutierrez et al.



Furthermore, Juan made calculations of recursive and functional types, but he
never used the counting and proportional types. He only used valid mathematical
procedures to solve the problems, trait related to the unusual quickness in learning,
understanding, and applying mathematical concepts typical of gifted students.

The facts that Juan had never had prior contact with mathematical generalization
or algebra and that he had never solved geometric pattern problems before this
teaching experiment clearly point to the presence of some traits characteristic of
mathematically gifted students. Some of these are the ability to recognize mathe-
matical patterns and structures, the ability to generalize mathematical ideas, and the
ability to invert mental processes. It is clear from Table 7.2 that these abilities were
very well developed in Juan.

Table 7.2 Cognitive demand of the answers to the direct questions in the first part of the teaching
unit

Problems a) Immediate terms b) Near terms c) Far terms Cognitive demand* 

1.1 Numer. - Recurs. Figural - Funct. Figural - Funct. P. wout c. P. with c. 

1.2 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.3 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.4 Figural - Funct. Figural - Funct. Figural - Funct. P. with c.

1.5 Numer. - Funct. Numer. - Funct. Numer. - Funct. P. wout c. 

1.6 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.7 Numer. - Recurs. Numer. - Recurs. Numer. - Funct. P. wout c. 

1.8 Figural - Recurs. Figural - Funct. Figural - Funct. P. wout c. P. with c. 

1.9 Numer. - Recurs. Figural - Funct. Figural - Funct. P. wout c. P. with c. 

1.10 Numer. - Funct. Numer. - Funct. Numer. - Funct. P. wout c. 

1.11 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.12 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.13 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.14 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.15 Numer. - Funct. Numer. - Funct. Numer. - Funct. P. wout c. 

1.16 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.17 Numer. - Recurs. No answer No answer P. wout c. - - 

1.18 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 

1.19 Numer. - Funct. Numer. - Funct. Numer. - Funct. P. wout c. 

1.20 Figural - Funct. Figural - Funct. Figural - Funct. P. with c. 
* Levels of cognitive demand: P. wout c. = procedures without connections; P. with c. =
procedures with connections.
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Table 7.2 also shows that the student did use functional procedures to solve most
of the 20 geometric pattern problems. He used the recursive strategy to find the
immediate term in five problems and to find the near term in one of those problems.
This is a clear sign of high mathematical talent, since this flexibility in changing the
basic strategy of solution to a more efficient one is not found in average Grade 5
students. However, it is most interesting to note that he used this method of solution
even to calculate the immediate terms, for which it is not necessary. He soon
noticed that the last questions in the problems required a generalization, so when he
started solving a problem, he worked to find a general rule and he applied it to
calculate all the terms, exhibiting his ability to develop efficient and shorter
problem-solving strategies.

Table 7.3 presents the types of solutions to the inversion questions in the first
part of the teaching unit. As showed by Examples 5–7, all the solutions are in the
procedure without connections level, since both arithmetic inversion and arithmetic

Table 7.3 Types of answers to the inversion questions in the first part of the teaching unit (two
types in the same problem mean two attempts of solution)

Problems d) Inverse questions

1.1 Correct inversion

1.2 Trial and error

1.3 Wrong inversion 

1.4 Correct inversion

1.5 Correct inversion

1.6 Wrong inversion Trial and error

1.7 Trial and error

1.8 Trial and error

1.9 Trial and error

1.10 Wrong inversion Correct inversion

1.11 Wrong inversion Trial and error

1.12 Correct inversion 

1.13 Trial and error

1.14 Trial and error

1.15 Trial and error

1.16 Trial and error

1.17 - - 

1.18 Trial and error

1.19 Trial and error

1.20 Trial and error
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trial and error procedures were applied without needing understanding of the
algebraic structure underlying the geometric patterns representing the sequence.

Table 7.3 shows other traits of giftedness, as the abilities to invert mathematical
processes and develop efficient strategies. In this case, the efficient use of such
abilities by Juan was limited by his ignorance of algebraic language and linear
equations. However, Juan managed to find an alternative procedure to solve the
inversion questions, since he consistently used arithmetical inversion, and, when
this strategy was not useful due to the complexity of the general expression he had
found (Table 7.4), he resorted to a careful trial and error. The very few publications
analyzing students’ answers to inverse questions in geometric pattern problems
have not yet described a new behavior that we found in our experiment: a student
systematically using, from the very beginning, an organized trial and error pro-
cedure to solve inversion questions. He tried a possible solution, and, if it was too
big or small, he tried a smaller or bigger number, continuing this process until he
found the correct solution.

Cai and Knuth (2011) described several learning trajectories of students solving
geometric pattern problems, but none of them fit Juan’s behavior. Tables 7.2 and
7.3 show that Juan was quite consistent throughout the course of the teaching unit
in his methods of solving problems with shared characteristics (for instance,
problems with the same grade of algebraic complexity), which is another contri-
bution of this research to the knowledge about gifted students.

The problems in the second part of the teaching unit (Fig. 7.2) were focused on
introducing our student to the basic concepts of algebra, to algebraic symbolization,
and to the statement and solution of linear equations. On the direct questions of
problems 2.1–2.3, Juan needed some help from the teacher to correctly write the
algebraic expressions—in particular the use of parentheses—but he no longer needed
help in the three last problems. To represent the unknown, he even wrote the initial
letter of the objects presented in the pattern (days, shelves, etc.). In the direct ques-
tions, as shown by Example 4, Juan worked at the doing mathematics level, since he
was discovering new algebraic ideas. On the inverse questions, all answers consisted
of stating and solving an equation based on the data in the question, so the cognitive
demand in all the student’s answers was in the procedures with connections level.

The problems in the third part of the teaching unit (Fig. 7.3) were all solved by
stating an algebraic expression for the generalized relationship in the sequence and

Table 7.4 Solutions to the inverse questions in the first and third parts of the teaching unit

Problems Generalization Inverse questions Problems Inverse questions

1.1 y = ax Correct inversion 3.1 Equation

1.2 y = ax + b Trial and error 3.2 Equation

1.6 y = ax + b(x + c) Wrong inv.—Tr. & err. 3.3 Equation

1.7 y = ax + b(x + c) Trial and error 3.4 Equation

1.8 y = ax + b(x + c) Trial and error 3.5 Equation

1.11 y = ax + b(x + c) Wrong inv.—Tr. & err. 3.6 Equation

1.16 y = ax − b(x − c) + d Trial and error 3.7 Equation
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then stating an appropriate equation and solving it, so the student worked at the
procedures with connections level. Table 7.4 presents a comparison of the strategies
of solution of the inverse question in the problems posed both in the first and third
parts of the experiment. After the student had all the necessary knowledge and
abilities to understand and use the algebraic approach to the geometric pattern
problems, he used them confidently to solve those problems without difficulty.

In line with gifted students’ quickness in learning and understanding mathe-
matical concepts, Juan only needed the help of the virtual balance in very few
problems, since he began to solve question c by imagining the balance and writing
the transformations of equations paralleling the manipulations made in the balance.
This internalization of the balance and the way he represented it on the word
processor screen (Fig. 7.9) is a consequence of the giftedness trait of development
of efficient strategies.

7.6 Conclusions

We have presented the case of a nine-year-old student in primary school Grade 5
who worked on an experimental pre-algebra teaching unit. As an answer to the first
research question, we have shown that, as the experiment advanced, the student also
progressed in his learning of the different concepts, structures, and procedures
necessary to meaningfully learn basic algebra and linear equations and appropri-
ately modified his strategies to solve the problems. This experiment shows that
mathematically gifted students are much faster than average students in under-
standing and learning mathematical contents, but they also need to be taught
mathematics.

We have used the cognitive demand model to evaluate a student’s cognitive
behavior in the different questions in the problems and also in the consecutive parts
of the teaching unit. Related to the second research question, we have shown that,
in trying to solve the problems during the first and second parts of the teaching unit,
the student made all necessary cognitive effort, as much as was possible due to his
limited knowledge of algebra. The model has proved to be useful to differentiate the
cognitive effort required from the student by the different types of questions posed.

As for the third research question, the student exhibited ability to adapt his
solving strategies and his cognitive effort to the mathematical complexity of the
generalizations he had obtained and the algebraic tools he had learned at each
moment. By the end of the teaching unit, the students showed the ability to work
confidently on solving linear equations and algebraic word problems. This behavior
is also typical of mathematical giftedness.

This research shows only the case of one student, so we do not suggest that this
behavior may be generalized; however, it has some similarities to—and also dif-
ferences from—other cases reported in the mathematics education literature. This
research experiment was done in a laboratory context, but we believe that the
teaching unit may be modified to adapt it to the context of ordinary schools, where
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it could be useful for teachers of the upper primary grades and lower secondary
grades when starting to teach pre-algebra to all their pupils, but with the possibility
of paying special attention to the gifted students.
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Chapter 8
Twice-Exceptional Students: Students
with Special Needs and a High
Mathematical Potential

Marianne Nolte

Abstract Twice-exceptional students are students with both a high potential for
mathematical abilities and educational special needs. They are particularly at risk
for neither their potential nor their disabilities being recognized. Students who work
below their potential are called underachievers. This chapter discusses whether the
special learning conditions of twice-exceptional students need a differentiated
approach than what is usually applied for underachievement. Furthermore, by
means of examples of affected students, the implications for learning processes are
illustrated. The focus is put on mathematical giftedness occurring together with
learning disabilities (LD), attention deficit disorders (ADD), attention deficit dis-
orders with hyperactivity (ADHD), and autism spectrum disorders (ASD).

Keywords Twice exceptional � Special needs � Underachiever
Mathematical giftedness � Learning disabilities � Attention deficit disorders
Autism

8.1 Introduction

Twice-exceptional students are students who have both mathematical potential and
handicaps or educational special needs. Twice exceptionality needs theoretical
discussion as well as empirical research because there is still a research gap in the
subject in the field of mathematics education. Research on this topic has been
impeded because there are two different theoretical domains involved in discussions
about affected children: mathematically promising students and students with
handicaps or educational special needs, such as (learning) disabilities and disorders.
In addition, these two fields deal with different paradigms, which poses the question
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of whether clear definitions of giftedness and learning disabilities are possible (for
an overview see Scherer et al. 2016; Singer et al. 2016). One reason for the research
gap may be the low prevalence. Although information about the prevalence of twice
exceptionality has to be used very carefully (Nielsen 2002), one of my studies
showed that about 15% of identified mathematically gifted students were affected
(Nolte 2013). Due to its low incidence, discussions about twice exceptionality in
mathematics education are mostly based on case studies (e.g., Montgomery 2003b).

One essential problem in working with twice-exceptional students is the
“masking effect”: twice-exceptional students are in particular at risk that neither
their potential nor their disabilities are recognized. There are different reasons for
low performance in mathematics, such as inadequate methods, a low level of
potential, and barriers in learning processes that may hinder the development of
mathematical achievement. To underline that an achievement is not a firm trait in a
student, the term promising student often is used (Sheffield 1999). Mathematics
teachers have to address all students with all their different needs. Nevertheless,
noticing students’ needs is especially difficult when it comes to twice exception-
ality. Twice-exceptional students require both a challenging learning environment
and support to overcome barriers in their learning processes. For a student with a
high potential in mathematics, performance at a high level can be expected.
Nevertheless, this is not always the case. Various factors may lead to an under-
achievement. However, can we call twice-exceptional students underachievers if
difficulties, handicaps, and disorders have an impact on their learning processes?

The complexity of the learning situation of twice-exceptional students deserves
closer attention. First of all, the general aspects of the development of achievement
in both fields have been described and summarized in a model developed by the
author that takes into account barriers in learning processes. If promising students
do not achieve at the level they may be capable of raises the question of whether
they are underachievers. In the context of twice exceptionality especially this is not
an easy question. Therefore, the section about underachievement proposes to make
distinctions between different reasons for levels of achievement.

This chapter examines the examples of four students to illustrate different aspects
of the situations of twice-exceptional students. Because they are often used as
examples for twice exceptionality, four different disorders and their impacts on
problem-solving processes are outlined: learning disabilities (LD), attention-deficit
disorders (ADD), attention-deficit disorders with hyperactivity (ADHD) and
autism-spectrum disorders (ASD).

Cases of affected students are used to exemplify difficulties of achievement with
problem-solving and communication processes. Furthermore, they give an impres-
sion about why it is so hard for their teachers to notice the potential as well as the
difficulties that come with the disorders. In the section about the masking effect,
considerations about reasons for not noticing either high potential or special needs
are summed up. The chapter closes with considerations on how to work with affected
students based on a distinction between situational and long-time interventions.
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8.2 Systemic Approaches Towards Giftedness

Within the field of giftedness, the development of high competences are currently
described in models based on influencing factors (e.g., Gagné 2004; Heller and
Perleth 2008; Renzulli 2012). Some authors make a distinction between potential to
perform and developed performances; for example, Gagné (2004) and
Wieczerkowski and Wagner (1985) phrase potential as an inherited gift and sys-
tematically developed performance as talent. This differentiation underlines the
importance of educational influences on the developmental process. Furthermore,
because activities of the students moderated by individual factors such as interest
and motivation play an important role in modelling the development of giftedness,
actual models have described the developmental process as being guided by
intrapersonal and environmental catalysts.

Giftedness designates the possession and use of untrained and spontaneously expressed
outstanding natural abilities or aptitudes (called gifts), in at least one ability domain, to a
degree that places an individual at least among the top 10% of age peers. Talent designates
the outstanding mastery of systematically developed competencies (knowledge and skills)
in at least one field of human activity to a degree that places an individual at least among
the top 10% of ‘learning peers’ (those who have accumulated a similar amount of learning
time from either current or past training). (Gagné 2013, p. 5)

In addition to these models, Ziegler et al. (2013) points out that the situation of a
child may change over time depending on various conditions. Focusing on the
activities of students with his actiotope model of giftedness, Ziegler et al. (2013)
refers also to the interplay between environmental aspects and individual activities.
However, because the situation of a student may vary with the teacher, the situation
in the classroom, and biographic aspects, it is reciprocal: these factors influence the
student’s activities. Theoretical positions on giftedness argue that performance
cannot be regarded as synonymous with potential to perform: High potential
measured by intelligence tests does not guarantee high performance. Crucial is the
interplay between several factors that lead to the activities of a child in a cer-
tain situation and over a certain period of time. These positions lead to an
approximation between positions about giftedness and research on expertise.

8.3 Systemic Approach Towards Learning Disabilities
and Disorders

In the field of special educational needs there was a similar shift from an individual
perspective focusing on the needs of a child that come with weaknesses or disor-
ders1 towards a more systemic approach (Hassanein 2014; Nolte 2000).

1The terms disabilities and disorders are not always used as equivalent; however, in this article,
they are. As a more general term to describe different kinds of deficits, the term weakness is used in
this article.
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An individual perspective offers a child a special (e.g., medical) treatment. From a
systemic perspective, performance does not exclusively depend on inborn potentials
and restrictions. Further, equally important influencing factors are the child’s
learning environment at home and in school, learning biography, and, with this,
what a child does and can do under certain circumstances. In discussions about
dyscalculia, these aspects are called questions about the matches between children
and their possibilities and the conditions of their situations (e.g., Lorenz 1998).
Difficult situations at home and in school cause a risk that a student will not perform
at an appropriate level.

Furthermore, Betz and Breuninger (1982) underline the interplay between beliefs
and actions of persons who are involved in learning processes. For instance,
repeated experience of failure, and with this low performance, can lead to low levels
of self-efficacy and self-esteem in students. Students may show adaptive behavior
that can, for example, result in avoidance of obstacles and aversive reactions.
Teachers and parents also interpret the achievement as the behavior.

8.4 Model for Acquiring Mathematical Competencies
Including Barriers

Approaches towards both the development of giftedness and developmental dis-
orders explain the dependency of the achievements of a student on various vari-
ables. Thus, the accent on the activities of students and the interplay between
involved persons in both approaches can be generalized for the development of
achievement for all students.

In both fields, there are discussions about labelling and identifying a student as
gifted or showing a special disorder. In the field of special educational needs, a
broad and ongoing discussion points out that there is a dilemma between the
identification of a disorder as a prerequisite for interventions and the problems that
come with labelling a person as disabled (Hassanein 2014). Both fields point out the
interplay between the activities of a student in learning processes and, with this
more or less explicit, the importance of intrapersonal and environmental variables.
Both fields, however, do not explicitly combine a high potential with a certain
barrier. When it comes to twice-exceptional students, both a high potential and a
learning disability or a disorder must be assumed. A disability or disorder may
cause a barrier that restricts the activities of students and thus high achievement in
the field of their potential. This barrier may be one cause for underachievement in
mathematics in the sense that the word has commonly been used. Figure 8.1 uses
aspects of the development of mathematical competencies that have both fields in
common. The barrier underlines the difficulties twice-exceptional students have to
overcome because of the disorder.

Combining aspects from both fields, the model describes the development of
mathematical competencies in general as the result of a developmental/learning
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process, which is based on learning preconditions including inherited dispositions,
perceptual preconditions, and further developmental preconditions. These precon-
ditions have an impact not only on intrapersonal variables such as interest and
perseverance but also on the students’ inner dialogues and thus on their self-esteem.
Mathematical competencies such as knowledge about facts and concepts depend on
the activities of a child, which are further influenced by attribution and beliefs about
self-efficacy. They also have an impact on how teachers interpret students’
achievement. While students may have good learning preconditions depending on
their activities, in the case of disorders, learning preconditions can also cause
restrictions in the developmental or learning process.

The arrows in both directions refer to the interplay between competencies and
intrapersonal variables as well as the interplay between competencies and envi-
ronmental variables. Environmental aspects, such as teachers’ pedagogical inter-
ventions or parents’ support, show a reciprocal effect on intrapersonal variables as
well as on beliefs about competencies.

Twice-exceptional students have additional barriers in the learning process that
may hinder the full development of potential. Such barriers in the context of
mathematical giftedness could be, for instance, a learning difficulty in reading,
writing, and spelling.

This model can be adapted to the conditions of a special student. Preconditions
may vary depending on the learning environment. A high mathematical potential
can be combined with, for instance, learning disabilities or kinds of disorders.
Disabilities or disorders may build barriers that make it harder for students to
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Mathematical 
competencies 
Factual, 
procedural, and 
conceptual 
knowledge; 
internal 
representations; 
relations; 
interconnectedness
…

Learning preconditions 
and previous 
knowledge
Genetic disposition;
intellectual abilities; 
aspects of general 
development:  
e.g., motor skills, 
perception (visual, 
auditory, …) 

Intrapersonal variables
Motivation, interest, perseverance, self-
efficacy, beliefs…

Environmental variables
At school: didactical and methodological 
aspects, peers, and situation in classroom; 
at home: parents, siblings, support …

Fig. 8.1 Barriers as an influencing variable in mathematical learning processes (adapted from
Nolte 2013)
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enhance their capabilities. Depending both on the level of performance and on a
child’s activities, the reaction of teachers, peers, and parents will differ. This situ-
ation is not stable and may change if the activities and/or the behavior of the
interconnected persons change. Thus, environmental variables influence achieve-
ment and at the same time achievement has an impact on the environment. This is
similar for intrapersonal variables. Recurring experiences of success, disappoint-
ment, or obstacles have an impact on attributions and beliefs for both students and
teachers.

Barriers during the developmental process do not necessarily lead to learning
disorders. Taking into account the interplay between individual and environmental
factors, high competencies can be gained if in a particular situation there is a match
between the conditions of the learning environment and a child’s possibilities (von
Aster 2000). Neither low nor high performances are regarded as stable; rather, they
are regarded as dynamic due to the underlying interplay between several
influencing aspects.

8.5 Approach to a Conceptualization: Twice
Exceptionality Within the Field of Mathematics
Education

Gifted students who have to overcome barriers or who show weaknesses in their
learning process are labeled twice exceptional. Twice-exceptional students have
also been referred to as dual exceptional (Brody and Mills 1997; Silverman 1997)
or double exceptional (Montgomery 2003b) or with combinations of giftedness and
disorders, such as gifted with ADHD (Fugate and Gentry 2015).

Giftedness does not imply protection against developmental or other disorders
(Bachmann 2008; Silverman 2006). Twice exceptionality in mathematics education
refers to a high potential in mathematics. The barriers and weaknesses mathemat-
ically gifted students have to face can be very different. This includes physical
limitations and handicaps such as hearing or visual disorders (Brandl and
Nordheimer 2016), developmental disorders, learning disabilities, attention deficit
disorders, or autism spectrum disorders. The three last appear most frequently in the
discussion about twice exceptionality (Pereira et al. 2015).

However, when giftedness is seen as developmental advancement or as advanced abstract
reasoning ability, it becomes apparent that a bright student may have difficulty reading,
writing, spelling, calculating, or organizing. Giftedness can be combined with blindness,
deafness, cerebral palsy, other physical handicaps, and psychological dysfunctions. It
provides no immunity against physical diseases and accidents that impair functioning.
(Silverman 2006, p. 28)

Often twice-exceptional students do not achieve at the level of their potential.
Can we call them underachievers?
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8.5.1 Underachievers

Underachievement seems easily to be defined: It occurs when achievement is lower
than potential. With this approach, underachievement can be defined as (a) a dis-
crepancy between performance and IQ, i.e., the potential measured by an intelli-
gence test is higher than the achievement that has occurred. Another approach is to
define underachievement as (b) a discrepancy between the expected performance
and the shown performance. Combined with definitions about underachievement,
there are conceptualizations of the terms achievement, potential, and intelligence
used in the particular definitions. Reis and McCoach (2000) discuss the problems
involved with this variety of definitions and also question the underlying concepts
of achievement and intelligence. Nevertheless, a discrepancy between potential and
achievement is commonly the basis for the definition of underachievement.

Underachievement is observed on different levels of potential and is relatively
stable (Sparfeldt et al. 2006). Holling et al. (2004) distinguish between general and
partial underachievement. Many underachievers show emotional and motivational
problems (Hanses and Rost 1998). Commonly discussed traits of gifted under-
achievers are, for instance, low academic self-efficacy, low academic
self-perception, low academic self-esteem, and further motivational components
combined with a perfectionistic approach to tasks (see McCoach and Siegle 2003;
Sparfeldt et al. 2006). The reasons behind this may be multifaceted. Referring to the
model (Fig. 8.1), because the described traits influence the activities of a child,
environmental variables should also be taken into account. If teachers or parents do
not realize the high potential of a child, the learning environment may not be
demanding enough. But motivation depends also on interesting challenges. These
are even important for the regulation of attention (Durstewitz et al. 1999;
Güntürkün and Westphal 2009). With this, boredom or the motive to adapt to an
expected (average) level often lead students to hide their capabilities (Nolte 2016).

8.5.1.1 Underachievement as a Collective Term for Different
Disorders

Underachievement is also used as a collective term for different disorders.
Underachievement, described as a “discrepancy between expected achievement (as
measured by standardized achievement test scores or cognitive or intellectual ability
assessments) and actual achievement (as measured by class grades and teacher
evaluations)” (Reis and McCoach 2000, p. 157), allows the inclusion of both
students with learning disabilities and those with disorders. This brings up the
question of whether students with disorders are covered under the concept of
underachievement. Reis and McCoach (2000) answer this question by excluding
students with a diagnosed learning disability: “To be classified as an underachiever,
the discrepancy between expected and actual achievement must not be the direct
result of a diagnosed learning disability” (p. 157). This detailed definition requires a
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differentiated identification of both high potential and learning difficulties and
disorders. It is not clear whether affected students may also fall under the general
description of underachievement. The discrepancy between IQ and performance or
expected versus shown performance does not give differentiated information about
reasons for the level of achievement. Furthermore, an identification based on IQ
may not be correct, because developmental disorders or disabilities often build a
barrier for successfully working on tests (Harder 2009).

8.5.1.2 Implications

Often, students are first identified as having emotional or behavioral problems, but
these problems may be the result of repeated failure of success or a mismatch
between potential and given tasks. It may be helpful for teachers and parents to be
conscious of the fact that emotional and behavioral problems can be observed on
the surface while the needs of a twice-exceptional student may be hidden.

If students have a learning disability and high potential at the same time, and if
they show general low achievement it is only partial underachievement (see Holling
et al. 2004). This may be the case if the high potential is unidentified or if students
cannot develop their potential because they are unable to compensate for their
barriers.

If students have a disorder such as ADD/ADHD or ASD, the characteristics of
the disorder may be a barrier in learning processes, and this may lead to a lower
level of performance than student could have shown without the disorder. In these
cases, the low level of achievement can be described as subordinate.

Based on these considerations, the term underachiever should be used with care.
Several conditions may cause students not to perform at the level of their potential.
Figure 8.2 shows different possibilities for underachievement in twice-exceptional
students. Here, the word disorders is used as an umbrella term for a superordinate
concept for different disabilities and disorders. The figure exemplifies an analytical
differentiation between different possibilities, knowing that levels of achievement
and disorders fall on a continuum.

Some of the students can compensate for disorders while others cannot (von
Aster 2000). The four fields show the different possibilities. If students show certain
disorders and at the same time perform at the expected level they can be called
twice exceptional. If achievement does not meet the level appropriate to the
potential, the twice-exceptional student is also an underachiever. Furthermore,
students with no disorders who show a high potential are gifted students. Students
who do not show disorders and do not achieve at the expected level are called
underachievers.
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8.5.2 Mathematically Promising Students, Learning
Disabilities, and Disorders

A closer look at four disorders that are often discussed in the literature about twice
exceptionality illustrates the barriers affected students have to overcome. Other than
Timo’s case, the examples are based on case studies done by the author within the
framework of a project called PriMa.2 Within this project at the University of
Hamburg, mathematically talented primary school students in Grades 3 and 43 can
participate in an enrichment program. After an identification process that is com-
prised by several steps (Nolte 2012), we work with about 50 students every second
week using complex fields of problems (Nolte 2012; Nolte and Pamperien 2017).
Since 1999 more than 6000 students have participated in the talent search and about
950 students in Grades 3 and 4 have been accepted into this fostering program.
Students with disorders or weaknesses participate frequently in this project (about
15% of the students in the program; see Nolte 2013).

The described examples will give an impression of the complexity and inter-
connectedness of the various aspects of every single case and underline the pro-
totypical aspects of each disorder.

Disorders
Perfor-
mance as 
expected for
gifted students

yes no

yes twice-
exceptional 

student 

gifted 
student

no

twice-
exceptional

students

underachiever
underachiever

Fig. 8.2 Underachievement
and twice exceptionality: a
given student may or may not
have a disorder. A student
who performs as a gifted
student (in spite of the
disorder) is considered a
twice-exceptional student.
A student who does not
perform as expected of a
gifted student is considered
twice exceptional and an
underachiever

2PriMa is an abbreviation of “Primary grade students on different ways towards mathematics.” It is
a cooperation project started in 1999 by the Hamburger Behörde für Schule und Berufsbildung, the
William Stern Society (Hamburg) and the University of Hamburg.
3Since 2010 we have extended the program up to Grade 7.
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8.5.2.1 Learning Disabilities

“Students who are gifted and also have learning disabilities are those who possess
an outstanding gift or talent and are capable of high performance, but who also have
a learning disability that makes some aspect of academic achievement difficult”
(Brody and Mills 1997, p. 282).

The term learning disabilities is used in different ways in different countries [for
a survey, see Scherer et al. (2016)]. One difference lies in the use of this term with
general learning disabilities as opposed to special learning disabilities in a particular
subject. Furthermore, sometimes there is a distinction made between difficulties,
disabilities, and disorders, for which difficulties are regarded as a weaker form.
A commonly used term (in the context of medical research) is special learning
disorder (American Psychiatric Association 2016b). In general, the term learning
disabilities describes a level of performance well below the average level described
in curricula. Unlike the focus on discrepancies between performance and curricula,
in the context of giftedness the term learning disability is also used to describe a
discrepancy between the abilities of a child in certain domains (intrapersonal per-
spective). Consequently, learning disability can be used to describe average per-
formance compared to high performance. This raises questions of how to determine
how great the level of differences needs to be to be described as having a disability.
Preckel and Baudson (2013) point out that individual weaknesses and strengths
(distinct profiles of potentials in intelligence tests), such as high mathematical
abilities and lower verbal abilities, occur more frequently in gifted students.
However, at what point should a discrepancy between abilities be called a barrier?
This depends on the situation. If there are possibilities of compensation, and the
applied methods and materials match the child’s learning precondition, then dis-
abilities will not build barriers in learning processes.

8.5.2.2 Reading, Writing, and Spelling

Amongst the twice-exceptional students, mathematically gifted children very often
show difficulties in the domains of reading, spelling, and writing. The difficulty can
be a learning disability compared to the curricula or a weakness—and in this sense a
learning disability—compared to a high level of potential in mathematics. Difficulty
in reading mathematical problems may especially hinder a student working on
problems, causing the teacher to observe mathematical achievement below the
potential of the student.

Justin

Justin is an example of a student with a discrepancy between his mathematical and
his reading capabilities. At the time we worked with him, he was an 8-year-old boy
who participated in the PriMa project during the third and fourth grade. After a
short time in the fostering project, he seemed to lose motivation. His mother was
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concerned because she did not understand why he lost motivation. The tutors told
us that Justin often seemed to misunderstand the tasks. Both we and Justin were
uncertain whether he was identified correctly as mathematically gifted. Therefore,
we tested him again. When we gave him a problem, we observed that he had
difficulty reading it, so we tested his reading abilities. The test showed that his
reading abilities were at an average level (PR 354). We assumed that the discrep-
ancy between his potential in mathematics and his reading abilities caused his
irritation and his loss of motivation. As the level of mathematical problems given in
the fostering project increases (compared with the level at school), the demands on
reading mathematical texts increase as well (Nolte 2013).

Going back to the model, Justin’s achievement was not as high as expected. His
motivation to work on the problems and his self-esteem decreased. The tutors
recognized his low motivation and his low performance and questioned the quality
of the test results we got during the talent search process. Because of the dis-
crepancy between his potential and his performance, Justin can be described as
underachieving. However, it was only after identifying the reason for his low level
of performance that corresponding methodological interventions could be devel-
oped (Fig. 8.3).

In terms of his environment, we as his teachers tested his reading abilities and
found that this crucial learning precondition was insufficient for reading challenging
mathematical problems. We discussed the following measures with Justin and his
mother: As compensation for his average reading capabilities during the fostering
lessons, the tutors or his peers supported him to understand the texts.

General learning process 
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Mathematical 
competencies 
Low 
performance in  
problem solving

Learning preconditions 
and previous knowledge
High mathematical 
potential, 
average reading abilities 

Intrapersonal variables
Loss of motivation, perseverance, unsettled 
self-esteem

Environmental variables
Tutors: Is his mathematical potential 
sufficient? Tasks written in a challenging 
language, successful peers, a caring mother, 
school teacher who thinks the mother is too 
ambitious.

Fig. 8.3 Influencing variables of Justin’s learning process

4PR is an abbreviation of percentile rank. It indicates the percent of cases that are at or below a
score in tests.
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This immediately had an impact on his performance, his motivation, and his
self-esteem. We explained the test results to Justin and encouraged him to find his
own way of compensation. So, as a first approach we tried to make the conditions of
the learning environment more suitable for him. At home, his mother took care of
an intervention (therapy) to improve his reading abilities. In the long term, this also
influenced the development of his mathematical potential (Fig. 8.4).

8.5.2.3 Why May Average Capacity in Reading Cause Problems?

The problems we developed for mathematically gifted students are written at a very
low level of redundancy and the given information is complex. The used language
can be described as academic discourse or academic language (Gogolin 2012;
Gogolin and Lange 2011). Although the problems are phrased mathematically
correctly and adapted for children, understanding the phrasing of these problems is
far more challenging than understanding the phrasing of problems normally given
in school. Comprehensive reading depends on reading fluency (reading speed and
understanding). The speed in the reading process is crucial, because if the reading
process is too slow, the information to be stored in working memory is too high and
due to this, internalizing the meaning is not possible. In well-known contexts, weak
reading capabilities or slow reading may be compensated by interpretation of the
context, but the low level of redundancy in our tasks requires comprehension of
every word. Besides understanding the mathematical content of the problems,
reading is also needed for interaction and therefore important for the communica-
tion processes, e.g., reading what is written on the blackboard or on other student’s
papers. Furthermore, the chance to reread a problem reduces the load of information
that must be stored in a student’s working memory. Due to the high-level mathe-
matical terminology, weaknesses in reading also effect verbal communication

General learning process with
compensation for reading

Mathematical 
competencies 
Growing 
performance in 
problem solving

Learning preconditions 
and previous knowledge
High mathematical 
potential, 
average reading 
capabilities 

Intrapersonal variables
Growth of motivation, perseverance, self-
esteem

Environmental variables
Tutors repeated texts, peers read texts for him,
fostering treatment 

Fig. 8.4 Influencing variables of Justin’s learning process with compensation for reading
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capabilities. A child who has difficulty reading also has difficulties internalizing
mathematical terminology into his spoken vocabulary, which thus creates a barrier
in problem-solving processes. So, mathematical problem-solving processes are also
mediated by different learning preconditions, in this case a weakness in compre-
hensive reading.

8.5.2.4 Weaknesses in Perception as a Special Learning Disability

Besides focusing on learning content such as mathematics or language, learning
disabilities are also described as focusing on perception or sensory disorders.
Silverman (1997) lists, for instance, “auditory processing weaknesses, … visual
perception difficulties, spatial disorientation” (p. 4). Discussions about develop-
mental disorders describe sensory disorders such as weaknesses in auditory or
visual perception as risk factors, but not as causes for learning disabilities. Due to
the fact that these factors may occur alongside learning disabilities but do not occur
in all cases, individual weaknesses may be overcome by one student but not by all
students (von Aster 2000; Nolte 2001). In mathematical learning processes, visu-
alizations of mathematical content are an important tool for exemplifying this
content. Therefore, weaknesses in visual perception should rarely appear together
with mathematical giftedness.5 This assumption is confirmed by the results of a
questionnaire we gave to about 400 parents of students who participated in the
talent search process in the PriMa project. We asked about learning disabilities and
developmental disorders they observed during the developmental process of their
child. About one third of the parents answered and among them about one third
mentioned learning disabilities or (developmental) disorders. No child was men-
tioned showing weaknesses in visual perception. However, seven students had
auditory processing disorders, partly in combination with disabilities in reading and
writing.

Lars

Lars’s (9 years old) case gives an example for barriers caused by auditory per-
ception disorders. He also participated in our fostering program in class three and
four and showed shifting levels of participation. When the lessons began, he was
highly motivated, but over time his engagement went down. We tested his intel-
ligence (PR 99.9), his mathematical school achievement (PR 97), and his reading
capabilities. The results he obtained in tests in vocabulary (PR 90), stumbling
words6 (PR 58), and reading (41 out of 50 points) were different. During trial
lessons at the university, he placed 95 out of 370. These trial lessons are the first

5Assouline et al. (2012) refer to studies, which underline the importance of visual spatial skills for
mathematical abilities.
6The stumbling words test measures understanding while reading. Students must identify words
that are useless to various sentences. The test requires automatically reading at a high speed.
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step of the talent search process in the PriMa project (see Nolte 2012). The second
step is a mathematics test for mathematically gifted students. In this test, he was
nearly in the highest third (76 out of 226). Taken together, the results of the
different observations and, taking into account Lars’s discrepancies between dif-
ferent test results, we observed a very high intelligence, high mathematical
potential, and average verbal capabilities. Comparing his IQ with his capabilities in
the stumbling words test, there was a difference of about five standard deviations.
But what are the reasons for this discrepancy? His parents told us about a diagnosis
of auditory perception disorder. In his school report states that he is well integrated
into the class community and that he likes to support his classmates, but does not
always seem to be able to control anger (Nolte 2013).

8.5.2.5 Why May Disorders in Auditory Perception Cause Problems?

Students with auditory perception disorders must make an effort to understand what
is going on in the classroom. During lessons, there are always noises in the
background. For most of the students, it is easy to focus on the relevant noises, such
as the voice of the teacher or a partner. This is not the case for students with
auditory perception disorders. This may explain symptoms of fatigue, such as levels
of participation that are different at the beginning of fostering lessons than they are
later on in those lessons. In particular, communication and interaction can be hard
for children with auditory perception disorders because they may have difficulty in
understanding others say (Nolte 2000, 2004), thereby making it difficult to figure
out what is really meant in communication processes. Disorders in auditory per-
ception can therefore be a reason for misunderstandings that may lead to emotional
reactions. In general, even if students try to compensate for sensory disorders in
perception, it is far more exhausting for them to participate in communication
processes and to concentrate on working on a problem. These aspects could also
explain uncontrolled anger (see Lars).

Communication processes normally depend on interpretations, so that in
well-known contexts it is not necessary to understand every single word. This is
different in a learning environment for mathematically gifted students, where the
level of necessary concentration is higher. Going back to the model (Fig. 8.1),
Lars’s disorder in auditory perception builds a barrier. It was exhausting to over-
come this barrier and his decreasing participation can be seen as missing perse-
verance. Lars did not work with as much concentration as other children. While his
performance was still high, it did not reflect his potential.

Disorders in auditory perception are often not recognized, and children’s efforts
to compensate for auditory problems, such as repeatedly asking questions, may be
misinterpreted as inattention. If the teachers know about this weakness, it is easy to
support the student. Clear language, a low level of background noise, and frequent
verification as to whether the student has internalized the context or not are all
helpful.

212 M. Nolte



8.5.3 Autism Spectrum Disorders (ASD)

Autism spectrum disorders (ASD) are one of the best known pervasive develop-
mental disorders in the discussion about giftedness (For an overview see, e.g., Cash
1999; Foley Nicpon et al. 2011; Montgomery 2003a). Recently, the name of these
disorders has been changed from different subtypes of autism (e.g., Asperger) to
autism spectrum disorders in order to underline “that these subtypes are most likely
a variation of the same underlying condition or etiology” (Young and Rodi 2014,
p. 759). Characteristics of autism spectrum disorders (ASD) vary in a broad range:
They fall on a continuum, but the focus lies on delays in the development of
socialization and communication skills. “People with ASD tend to have commu-
nication deficits, such as responding inappropriately in conversations, misreading
nonverbal interactions,… In addition, people with ASD may be overly dependent
on routines, highly sensitive to changes in their environment, or intensely focused
on inappropriate items” (American Psychiatric Association 2016a). This intensity of
focus occurs also with mathematics. Focusing is a strength that is very useful in the
context of learning mathematics. It is therefore no surprise that studies confirm the
coexistence of mathematical giftedness and ASD (Chiang and Lin 2007, p. 552).

Knowledge about ASD and high mathematical capabilities are often based on
case studies.

To date, only one empirical study (Foley Nicpon et al. 2012) has reviewed the cognitive
and academic profiles of individuals with very high cognitive ability (an ability index score
of 120 or higher) and ASD. This study yielded information that gives a fuller understanding
of the very broad cognitive range of individuals with ASD, specifically addressing cog-
nitive strengths and weaknesses relative to the different ASD diagnoses. (Assouline et al.
2012, p. 1782f)

Regularly, students who participate in our fostering project are diagnosed with
an autism spectrum disorder. In the above-mentioned questionnaire, 5 out of 132
parents told us about an ASD diagnosis. In most of the cases, we recognized that the
students needed attention, but in a different way compared to those with a severe
disorder. This was different with Leon.

Leon

At the beginning of our fostering program,7 Leon’s parents informed us that he, a
9-years-old, was autistic. He showed characteristics ascribed to ASD such as “a
rigid fascination with an interest; a need for precision; intellectual rigidity; a lack of
social skills; the need to monopolize conversations and situations; … difficulties in
adapting to the way of thinking of others; and a tendency to introversion” (Cash
1999, p. 23). We tested his intelligence (PR 99.9), his mathematical school
achievement (PR 97), and also his reading capabilities. Similar to Lars’s case,

7Leon participated in the project PriMa during Grades 3–6.
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the tests we performed, vocabulary (PR 90), stumbling words (PR 58), and reading
(42 out of 50 points) gave different results. As result of our observations during trial
lessons during the talent search process, he placed 9 out of 370. His results in the
mathematics test for gifted students were also very high, placing 25 out of 226. His
results in the stumbling words test were about five standard deviations from his IQ.
Nevertheless, his reading capabilities were at an average to a higher level.

Leon felt completely comfortable when working with us at the university. He
was fascinated by doing mathematics. His achievements were impressive. Most of
his thoughts and computations he did mentally, using an almost unlimited number
space. He preferred to work alone and was never distracted by anything while
working on mathematics problems. In plenary discussions or in discussions with his
tutors he precisely explained his ideas at a very high level of language. However,
due to his need for precision, in general, participation in discussions with others was
difficult for him. Likewise, plenary phases were a challenge for him, especially if
other contributions were not as exactly and completely as his own thoughts. It was
hard for him to endure others not being as fast and as capable in deeply under-
standing mathematical content as he was (Nolte 2013).

8.5.3.1 Why Does Weakness in Social Interaction and Communication
Processes Cause Problems?

Working with children with characteristics of ASD in a group is a challenge for all
participants. The rigid fascination with an interest is very helpful when it comes to
problem solving with its need for volition and perseverance. Working precisely is
also an important aspect in mathematical thinking processes. However, intellectual
rigidity may be a hindrance for broadening the mind for different approaches to
content. In communication and interaction processes with a whole group or with a
partner, an exchange of ideas is an important tool to learn more about the content.
Furthermore, discussions with others are based on the capabilities of the interacting
persons to grasp their ideas, to understand their ideas, and to compare them with
own ideas. Thus, difficulties in adapting to others’ ways of thinking are a hindrance
to participating in these processes. However, thinking the ideas of others through
offers a chance to learn new approaches to content. This way, communication about
mathematics broadens knowledge. Participating in plenary discussions enables the
participants to link different ideas at a higher intellectual level. Therefore, the
rigidity that comes with ASD is a barrier for flexibility and so perhaps for creativity.

8.5.3.2 Approaches to Support Students

There are therefore some traits of ASD that support a high level of mathematical
thinking and other traits that make it hard to show fluency and flexibility. In this
case, normative interactions and hints can be helpful, such as “mathematicians
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always look for patterns” or “now it is your task to understand the pattern behind
what others are saying.”

In terms of interaction with peers, the need to monopolize conversations and
situations combined with rigidity may make it hard to bear such a child. In Leon’s
case, his brilliance in mathematics required emotional support for other students.
His rigidity in conversations was a challenge to cope with for peers and teachers.
Peers were confronted with the fact that their contributions were often of a lower
level of mathematical insight. This experience caused some of the other children to
feel that they were less capable than they actually were.

Knowledge about characteristics in communication processes is helpful. In
Leon’s case, teachers had to take into account that his insistence on considerations
or facts was as stressing for him as they were for the teachers. Another characteristic
often found with ASD is taking everything said literally: “Can you solve this task?”
may lead to a simple answer of “Yes,” while “Please solve this task!” may lead to
actually working on the task.

8.5.4 Attention Deficit Hyperactive Disorder (ADD/ADHD)

Attention deficit disorders can be observed with (ADHD), without hyperactivity
(ADD), or as a mixed type. The core symptoms that teachers and parents often
describe are that children with attention deficit disorders do not listen, have diffi-
culties organizing themselves, lose things, seem to be very forgetful, and/or show a
high level of distractibility. We see impulsive behavior in communication processes
when children cannot wait and interrupt others (see Schulte-Markwort 2004,
p. 14ff) or have excessive motoric restlessness (Asherson 2013, p. 2). Another
difficulty lies in the shift of attention. “However, recent studies suggest that ADHD
is best perceived as having three main components consisting of an inattention
factor, a hyperactivity-impulsivity factor, and a general factor that combines
symptoms from both symptom domains” (Asherson 2013, p. 3). Diamond (2005,
2011) underlines that students with ADD and ADHD should be distinguished
because of “dissociable cognitive and behavioral profiles” (2005, p. 808). Although
the American Psychiatric Association (2016c) did not follow her proposal to dis-
cuss the subtypes as different, her observations show the necessity for treating the
groups differently. The inattentive subtype is “not so much distractible as easily
bored and under-aroused” (Diamond 2005, p. 808). Looking for distraction means
looking for events and things that may be interesting. “Where hyperactivity is
prominent, children with ADHD tend to be frenetic” (Diamond 2011, p. 322). Both
types show difficulty in concentrating as long as other students. Nevertheless, both
types need different interventions. As an example, Diamond refers to test situations.
Hyperactive children often get more time to work on a test, but “children with the
inattentive subtype often perform better when challenged by presenting test items at
a quick rate” (Diamond 2011, p. 322).
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Timo

At the time we worked with him, Timo8 was an 8-year-old boy whose mother asked
me for advice because she thought her son might be underachieving. She described
him as oblivious and absent minded in everyday life situations. This, however, was
not the case with content he was fascinated by. At home he engaged himself with a
great amount of concentration in technical questions or in mathematics. In first
grade, he started to lose his motivation and seemed to be unhappy. His performance
in mathematics quickly dropped to an average level. In achievement tests, his
performance was on an average level because he tended to overlook some of the
given tasks; therefore, his performance in school gave no hint of underachievement.
Despite what his performance in school suggested, intelligence test results showed
high potential in mathematics combined with an average potential in language. His
high potential in mathematics was confirmed by observations on how he solved
complex mathematical problems. In order to identify causes for these inconsistent
observations, a child and youth psychiatrist was consulted. Eventually, he was
diagnosed with attention deficit disorder (ADD) and hyperacusis (Nolte 2016).

8.5.4.1 Why Do Attention Deficit Disorders Cause Problems?

Learning processes require the potential to focus on information, to analyze ideas, and
to store knowledge in memory. Even in classrooms at the primary level, the infor-
mation that should be learned is embedded in longer processes of activities. Often
even solving easy tasks demands following several steps. Students with ADHD fre-
quently show difficulties in focusing long enough, working on tasks step by step and
pursuing a goal. Problem-solving processes are farmore demanding. Problem-solving
requires selecting the most relevant information, planning different steps, organizing
material, and proving results. Parts of this process may be repeated so that the amount
of information that must be organized increases. During the whole process, it is
important to focus simultaneously on both the different steps and the goal in order to
get the solution, which requires a frequent shift of attention. The problem solver has to
evaluate the quality of previous steps on the path towards a solution. Because the path
from the question to the solution can be long, for some students it is hard to hold their
attention at an appropriate level. The difficulty rises with the amount of steps and with
the complexity of the problem. Lucangeli and Cabrele (2006) point out that students
with ADHD or ADDmay “fail in a variety of cognitive tasks because of their inability
to focus on the most relevant information” (p. 56).

Observations of mathematically gifted students give a contradictory impression.
Because the traits of mathematical giftedness include the ability to handle complex
information, skip steps and abbreviate analytic-synthetic activities (Krutetskii 1976,
p. 107f), mathematically gifted children can often focus on the essential content in

8Timo did not participate in the PriMa project. Here the results of a case study are described (Nolte
2016).
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problem solving. Furthermore, interest and motivation play an essential role when it
comes to perseverance. A child with ADD/ADHD does not show difficulty in
focusing on a topic in every situation. That is why Timo’s attention to mathematics
and technical questions does not contradict the ADD diagnosis.

Nevertheless, some of the students get lost in repeatedly, coming up with a
number of ideas and approaches to reach a solution but not taking the next steps to
actually prove the applicability of their ideas. In such cases, a high level of pro-
ductivity and creativity may not be efficient and may even become a hindrance in
solving the problem. This experience of lack of success is disappointing and may
lead to emotional problems.

In group processes, there are always background noises. Students who work
together obviously talk to each other. Teachers may communicate with students.
Similar to students with auditory weaknesses, this noise level is hard to bear for a
child with ADD/ADHD. They cannot shield themselves against irrelevant stimuli,
which are hard to avoid when dealing with other children.

Taken together, “maintaining an appropriate problem-solving set to achieve a
future goal, inhibiting an inappropriate response or deferring a response to a more
appropriate time representing a task mentally (i.e., in working memory), cognitive
flexibility, and deduction based on limited information” (Barry et al. 2002, p. 260) are
necessary tools in problem solving processes. However, to maintain a focus, inhibit
an impulse, and to defer a reaction are difficult for students with ADHD/ADD..

8.5.4.2 Approaches to Support Students with ADD/ADHD

We did not observe that most of the students in our fostering project paid more
attention to the problems than other students did. The following conditions, derived
from the literature and our field observations, are supportive in fostering programs
and in school (Fielker 1997; Schulte-Markwort et al. 2004; Nolte 2016):

• The problems are challenging at an appropriate level.
• The students are well treated by a therapist.
• The lessons follow a structured and a familiar plan.
• The lessons are based on acceptance and a good relationship between affected

students and teacher and other participants or classmates.
• The teachers are aware of the importance of offering possibilities for students to

get the necessary information when they lose their train of thought.
• The teachers offer space for moving, especially for students with hyperactivity.

8.6 The Masking Effect

Twice-exceptional students need support to develop their high potential and at the
same time support to overcome their barriers or to compensate for disorders.
However, often neither the high potential nor the disorders are recognized.
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This masking effect is well known in discussions about twice exceptionality. “When
gifts and handicaps exist in one individual, they often mask each other so that the
child may appear ‘average’ or even as an ‘underachiever’” (Silverman 1989, p. 37).
According to Baum (1990), students may be identified as gifted without the
learning disability being identified or vice versa. A third category consists of stu-
dents “whose giftedness and disability mask each other” (Besnoy et al. 2015,
p. 108).

Due to the masking effect, it is difficult to get clear information about the
prevalence of twice exceptionality. Nielsen (2002) points out that estimates about
its prevalence should be handled with caution. About learning disabilities, Nielsen
(2002) writes that “empirical data regarding the actual incidence of gifted children
with LDs, however, are virtually nonexistent” (p. 94). In order to learn more about
the masking effect, in our case studies we compared the school reports of the
students (Justin, Lars, and Leon) to their test results, to observations during the
fostering program, and with information given by the parents (Nolte 2013).

Justin’s teacher did not recognize the high discrepancy between his reading
capabilities and his mathematical potential. This is understandable because in
school Justin participated successfully in reading competitions. In addition, at
school he learned Italian. In these lessons, his teacher recognized problems in
reading and informed the mother. When we tested Justin, in addition to a stan-
dardized test with average results, we used a text about science written for primary
grade students. With these conditions, it was hard for him to grasp the information.
Because the text was more difficult than the usual texts in school, it became obvious
that his speed of reading was rather slow.

Lars’s teacher did not recognize his auditory perception weaknesses. She
observed behavioral problems such as an inappropriate control of anger. She and a
psychologist proposed an intervention and suggested therapeutic treatment for his
behavior. His school reports described his achievement as very high. A small hint of
his difficulties was the report that stated that his spelling was graded as good instead
of very good in the other school subjects. Although his teacher was not informed
about his high IQ (PR 99.9), she could have recognized his weakness in grammar
and spelling. Here, his performance was not in line with a child in third grade, even
with abilities at an average level. There may be different reasons for a teacher not to
identify a weakness in a child. One may be the level of potential and achievement of
other students in the class: Perhaps compared with other children, Lars’s
achievement was high enough.

Timo is an example of a child who shows various difficulties. Timo’s teacher did
recognize neither his attention deficit disorders, his hyperacusis, nor his impressive
mathematical potential. Because he overlooked some of the tasks given in tests and
adapted his performance to the level of most of his classmates, his performance in
school was at an average level (Nolte 2016).

In general, knowledge about the existence of the masking effect enables teachers
to detect inconsistency in the learning behavior of a student. But matching the
learning environment to students’ needs requires knowledge of their learning
preconditions.
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8.6.1 Further Considerations About the Masking Effect

The masking effect is based on the ability of students to compensate for their
learning disabilities or disorders. At the same time, these can be a hindrance to
showing high potential. Like the above examples show, average achievement can
be at a level lower than potential. Students who do not attract attention sometimes
adapt their achievement to what they think is expected from them. Similarly, they
do not attract attention if they hide their barriers or if the achievement of others is
also at a low level. In such cases, parents who ask for support for the development
of the high potential often are misunderstood as being too ambitious.

Twice-exceptional students need both support and challenges. A way to suc-
cessfully recognize strengths and weaknesses in a twice-exceptional child may be to
offer challenging tasks (as we observed with our students). Confronted with rather
difficult, thought-provoking mathematical problems, perhaps the students can show
their high potential. Furthermore, difficult tasks may be a hindrance to compen-
sating for weaknesses, which can help uncover disorders.

Besides the cognitive aspects, the emotional situation of the child should also be
taken into account. Compensation strategies are not always successful. Efforts to
overcome barriers may be exhausting. Due to their high cognitive potential,
twice-exceptional students are normally conscious about the fact that “there is
something wrong.” That is why they are at risk for emotional problems (Bachmann
2008). Justin and Timo lost their motivation, Lars got angry in such a way that it
was mentioned in his school report and, furthermore, some of the students we
worked with seem to work under high pressure to overcome a barrier. Therefore, on
the behavioral side, intrapersonal variables (see Fig. 8.1) that support the devel-
opment of high mathematical potential are not visible.

These examples also show that the emotional reactions of the students can mask
a problem that is not visible at first.

Emotional and behavioral problems may occur

1. With learning disabilities

– when children are aware of the discrepancy between their potential in dif-
ferent areas
e.g., weakness in reading competencies compared with high mathematical
potential

– when children experience repeated situations of misunderstanding
e.g., weakness in auditory perception combined with high mathematical
potential

2. With ADHD/ADD

– when children are excluded from activities with others due to their behavior
– when students cannot control their impulsiveness and/or forget objects or

appointments
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3. With ASD

– when children are isolated due to their social problems.

8.7 What Should Be Done?

Going back to Fig. 8.1, on the side of student learning disabilities, special educa-
tional needs such as disorders or learning disabilities are risk factors for under-
achievement and for emotional problems. There are also several risk factors on the
side of the environment. At the behavioral level, a teacher may notice the activities
of a student or a withdrawal from activities. How to interpret the behavior depends
on the knowledge about possible reasons for that behavior. Due to the intercon-
nectedness of environmental and intrapersonal variables, analyzing the challenges
of the learning environment and, in some cases, a differential diagnosis are pre-
conditions for interventions.

For Justin, it was helpful for him to be aware of the discrepancy between his
reading and his mathematical abilities. He learned to compensate for his disability
by asking his tutors or peers to reread the texts if necessary. His tutors also changed
their behavior. Lars needed a confirmation in communication processes to avoid
misunderstandings. He also learned to ask questions. His tutors no longer inter-
preted repeated questions as inattention. Because we knew about Leon being
autistic, we did not interpret his need to dominate conversations as impolite and
developed methods to work with him in a way that the other students also got the
necessary attention. As Timo was not challenged in school he needed problems of a
higher difficulty.

Although these are only four cases, they allow some general remarks. If we go
back to Fig. 8.1, it is possible to describe every child far more extensively. In
everyday work with students, their situations in the classroom and relations with
teachers, therapists, parents, and siblings influence developmental and learning
processes, as does the type of disorder they have. Nevertheless, students have in
common a barrier they must overcome, and teachers should support their students
to develop compensation strategies.

Fostering a twice-exceptional student cannot wait until therapeutic interventions
are successful. Therefore, in all cases a distinction between situational and
long-term interventions is helpful (Nolte 2000, 2004). In learning processes, a
situational intervention matching the students’ needs with their learning setting
allows students to participate in lessons in school and in fostering programs.
A situational intervention is based upon the use of materials and methods that
support a student in a way that the disability or the disorder does not hinder a
student’s work on a problem. To develop such interventions is the responsibility of
the teacher, perhaps together with the student. These interventions are orientated on
the phenomena: Students who cannot read texts get help by having the text read to
them. Students who have weaknesses in motor skills need perhaps larger material
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that they can handle. Students who cannot focus in communication processes need
different support. In many cases, situational interventions help to immediately
overcome a barrier. However, long-term interventions and/or therapeutic inter-
ventions or treatments are often needed to support the development of the student
(Nolte 2016).

For therapeutic interventions, specialists for different kinds of disorder are
needed. Even though there are many forms of treatment known for disorders, how
to overcome disorders in the field of giftedness remains an unanswered question.
Traits of students with high abilities allow affected students to better develop
self-regulating methods and to grasp new ideas more easily than other students.
Some training is based on this (e.g., Fischer-Ontrup and Fischer 2016).
Nevertheless, it may be hard to train students’ capabilities “step by step” if they are
used to grasping ideas (in mathematics) immediately.

On one hand, recognizing strengths and weaknesses is a precondition for
teachers to foster a promising student and to support a student to overcome barriers
or to develop compensation strategies. On the other hand, disabilities and disorders
as well as potentials are located on a continuum. It is a challenge for teachers to
keep the balance between noticing a barrier and carefully observing a student’s
development: Do the developed methods match the student’s needs or is it nec-
essary make a different psychological or medical diagnosis? Working with students
requires balanced and individual support. Besnoy et al. (2015) point out that,
“unfortunately, the multifaceted characteristics and varying needs of each
twice-exceptional child prevents implementing uniform instructional approaches
across the entire population” (p. 108).

Nevertheless, exposing children to challenging problems that can be solved on
different levels may be helpful for a variety of reasons:

1. Mathematically gifted students normally enjoy working on harder problems.
Offering problems that can be solved in different ways and on several levels
gives them a chance to demonstrate high potential (Nolte and Pamperien 2017).

2. Working on challenging tasks may uncover masked disabilities and disorders.
3. For students with ASD, Foley Nicpon et al. (2011) point out that “the social

skills issues of some intellectually gifted children dissipate when they are
challenged and placed in appropriate classes” (p. 12). In general, for gifted
students, challenging problems help avoid boredom and, thereby, a variety of
emotional and behavioral problems.

These results suggest that educational programs that are designed specifically to address the
academic and social needs of gifted students can be successful in reversing many under-
achievement behaviors, particularly those that are due to a mismatch between students’
needs and the school setting. (Matthews and McBee 2007, p. 167)

For teachers with high mathematical and pedagogical content knowledge,
challenging problems are an adequate tool to identify high mathematical potential:
This is part of the professional knowledge of a mathematics teacher. However, this
addresses only one side of twice exceptionality. The diagnoses of disabilities and
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disorders must be in the hands of specialists. “School personnel almost always
determine if a student is gifted and talented, but it takes a psychologist, psychiatrist,
or another trained mental health professional to complete the twice-exceptional
classification by appropriately diagnosing an ASD” (Foley Nicpon et al. 2011,
p. 11). This can be generalized for ADD, ADHD and other developmental
disorders.

The masking effect is not only observed in relation to achievement. Phenomena
on the behavioral level such as inattention may be caused by ADD, ADHD, dia-
betes, lack of sleep, lack of interest and sorrow because of the death of a pet, and so
on. In order to identify twice exceptionality and the different reasons for students’
attributions, behaviors, and levels of achievement, a team of various specialists is
needed for children’s development of mathematical giftedness. Although, today the
existence of twice exceptionality has been confirmed by many researchers, most of
the approaches to support students focus only on one of the two parts: giftedness or
disorder. Therefore, identification and support is still a challenge for students as
well as parents, teachers, and specialists.
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Part III
Teaching Strategies to Foster Creative

Learning



Chapter 9
Flexibility of Pre-services Teachers
in Problem Posing in Different
Environments

Wajeeh Daher and Ahlam Anabousy

Abstract Previous studies showed that problem posing tasks encourage students’
creativity that includes three components: fluency, flexibility and originality. The
present research intends to examine mathematics pre-service teachers’ flexibility in
problem posing, when they pose problems on a specific mathematical situation
called the Paper Pool. The pre-service teachers worked in four environments: with
technology and with what-if-not strategy, with technology but without what-if-not
strategy, without technology but with what-if-not strategy, and without technology
and without what-if-not strategy. Seventy-nine pre-service teachers participated in
the research, where 19–21 of them worked in each environment. Qualitative
methods (deductive and inductive constant comparison methods), as well as
quantitative methods (Means, standard deviations, ANOVA, effect size and
Scheffe’s post hoc test) were used to verify the participants’ flexibility in the four
environments. The research findings showed that the participants used three posing
approaches that included six strategies. At the same time, the participants posed ten
problem types. The group, who used technology and what-if-not strategy, used all
the six strategies and raised all the types of problems. It can be concluded that
technology, as well as what-if-not strategy, affected positively students’ problem
posing. At the same time, the combination between technology and what-if-not
strategy affected positively the participants’ flexibility in problem posing more than
any one of the two tools alone. These results were affirmed qualitatively as well as
quantitatively.
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9.1 Introduction and Literature Review

9.1.1 Introduction

The present chapter examines pre-service teachers’ flexibility in problem posing,
when they pose problems in four different environments about a specific mathe-
matical situation called the Paper Pool. According to the NCTM Illuminations site,1

students are asked, through the Paper Pool investigation, to play a game called
Paper Pool. It is played on rectangular grids made of congruent
squares. Furthermore, this game is played by hitting a ball from the left bottom
corner of a table (a rectangle), so that it travels at a 45° diagonal across the grid. If
the ball hits a side of the table, it bounces off at a 45° angle and continues its travel
until it hits a pocket. Students continue the investigation of the Paper Pool situation
by exploring different and numerous tables and organizing the results. Using the
collected data, they attempt to find a relationship between the size of the table, the
number of hits, and the pocket in which the ball lands. The game provides an
opportunity for students to develop their understanding of different mathematical
concepts as ratio, proportion, greatest common factor and least common multiple.

In the current research, seventy nine pre-service teachers from two education
colleges were asked to pose problems concerning the Paper Pool situation. The
pre-service teachers worked in four environments that differed in their use of tools;
specifically a technological tool—An applet, and a problem posing tool—the
what-if-not strategy. In the first environment, the pre-service teachers worked
without technology and without what-if-not strategy. In the second environment,
the pre-service teachers worked with technology, but without what-if-not strategy.
In the third environment, the pre-service teachers worked without technology, but
with what-if-not strategy. In the fourth environment, the pre-service teachers
worked with technology and with what-if-not strategy. The participating pre-service
teachers were encouraged to pose as many problems as they wanted regarding the
mathematical situation. This activity had many potentialities for the pre-service
teachers, as introducing them to mathematical creativity (where they are involved
with an activity in which they ask different and new questions), mathematical
problem posing (posing problems instead of solving problems) and tool use in
problem solving (in our case problem posing). These three aspects are major aspects
in mathematics education, which makes it necessary that mathematics pre-service
teachers are prepared to work with them, so that they take care of them in their
future teaching of mathematics.

Thus, the present chapter is considering three important aspects of mathematics
learning and teaching, namely problem posing, creativity and tool use.

1At http://illuminations.nctm.org/unit.aspx?id=6526.
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9.1.2 Literature Review

9.1.2.1 Problem Posing

Problem solving is one of the cornerstones of mathematical activity (e.g., NCTM
2000). Problem posing and problem solving are connected and natural companions
(Bonotto 2013; Kilpatrick 1987; Koichu and Kontorovich 2013; Silver et al. 1996;
Singer and Voica 2012). Stoyanova and Ellerton (1996) describe mathematical
problem posing in detail as “the process by which, on the basis of mathematical
experience, students construct personal interpretations of concrete situations and
formulate them as meaningful mathematical problems” (p. 518). Problem posing
involves processes of generation of new problems, as well as processes of refor-
mulation of given problems (Duncker 1945; English 2003; Silver 1994; Whitin
2006). Moreover, problem posing, as Cai et al. (2015) argue, is a critical aspect of
the work of teachers, both in posing problems for their students and in helping their
students pose interesting problems in the mathematics classroom. Furthermore,
Cunningham (2004) showed that providing students with opportunities to pose
problems enhanced their reasoning and reflection. Silver (1995) identified three
types of students’ experiences in problem-posing that provide opportunities for
them to engage in mathematical investigation: problem posing prior to problem
solving when problems arise from a particular situation, problem posing during
problem solving when the student intentionally changes a problem’s conditions, or
problem posing after solving a problem when the student modifies his/her experi-
ence in a problem-solving context or applies it to new situations. At the same time,
there are three categories of problem-posing experiences: free, semi-structured, and
structured. In the free situations students pose problems without any restrictions.
Semi-structured problem posing occur in situations where students are asked to
write problems, which are similar to given problems or to write problems related to
specific pictures and diagrams. Structured problem posing occurs in situations
where students pose problems by reformulating already solved problems or by
varying the conditions of a given problem.

Researchers were interested to investigate students’ problem posing in the Paper
Pool situation. Two studies that investigated students’ problem posing in the Paper
Pool situation, are those of Silver et al. (1996) and of Kontorovich et al. (2011). The
results of the first study showed that the participating pre-service and in-service
teachers posed problems in two manners: keeping problem givens fixed and varying
the givens. Moreover, most of the posed problems dealt with the relationships
between and among the table dimensions (length and width), the number of times
the ball hits the sides on its path to its final destination, and the final pocket the ball
enters. The second study results related to flexibility showed that the participating
high-achieving secondary school students, working in groups, used three problem
posing strategies: (1) Accepting the givens; (2) varying the givens; and (3) intro-
ducing new types of givens. At the same time, the participants raised three types of
problems: (1) Analyzing the ball path; (2) finding the ball path(s) under given
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constraints; and (3) “static” geometrical problems. In the present study, we intended
to study pre-service teachers’ flexibility when posing problems in the Paper Pool
activity. What distinguishes the present research is the four environments in which
the participants worked: with technology and with what-if-not strategy, with
technology but without what-if-not strategy, without technology but with
what-if-not strategy, and without technology and without what-if-not strategy. Here
flexibility is associated with the number of questions’ types on a problem, or with
the number of implemented posing strategies (Leikin et al. 2009).

Problem posing has the potentiality to affect positively the problem solving
capacities of students, as well as other aspects of students’ learning; for example
their critical and creative thinking (e.g., Bonotto 2013; Stoyanova and Ellerton
1996). Several researchers studied the relationship of students’ problem posing and
their creativity (e.g., Silver 1997; Silver and Cai 2005; Singer et al. 2015; Voica and
Singer 2013; Van Harpen and Sriraman 2013; Yuan and Sriraman 2010), where
creativity is one aspect of mathematics learning that mathematics education
researchers have been paying attention to in the recent two decades.

Previous research on the relationship of creativity and problem posing has
pointed at the relationship between these two constructs. Hadamard (1945), as
reported by Silver (1994), identified the ability to find key research questions as an
indicator of exceptional mathematical talent. Silver (1994) adds that the apparent
link between problem posing and creativity is represented in the fact that posing
tasks have been included in tests designed to identify creative behavior. Moreover,
Yuan and Sriraman (2010) argue that any relationship between creativity and
problem posing is probably the product of previous instructional patterns.
Furthermore, Voica and Singer (2013) found evidence of links between problem
posing and cognitive flexibility, where cognitive flexibility is represented by vari-
ety, novelty, and changes in framing.

In addition to the above, researchers pointed to the difficulty of students to pose
creatively mathematical problems. Van Harpen and Sriraman (2013) found that
even mathematically advanced high school students had trouble posing good
quality and/or novel mathematical problems. Moreover, Singer et al. (2015) found
that fourth to sixth graders with above-average mathematical abilities, when they
modified a given problem, had difficulty in posing problems that showed under-
standing the deep structure of mathematical concepts and strategies.

The relationship of creativity and problem posing in mathematics education is
but one of the essential issues studied in the context of students’ creativity in
mathematics.

9.1.2.2 Students’ Creativity in Mathematics

Mathematics in general (e.g., Matsko and Thomas 2015; Sriraman 2009) or some
aspects of it (Tabach and Friedlander 2013) have been associated with creativity, so
it is only natural to encourage students’ creativity in mathematics learning, problem
solving and problem posing. Keeping this in mind, mathematical creativity has
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recently come to be considered a major component of education (Van Harpen and
Sriraman 2013) and an essential skill that teachers should enhance in all students
(Kattou et al. 2013; Mann 2005). Researchers in mathematics education have
attempted to define the characteristics of and the meanings associated with math-
ematical creativity (Voica and Singer 2013), where researchers’ views on creativity
have changed over time (Leikin and Pitta-Pantazi 2013). No accepted definition of
creativity has been achieved (Mann 2006; Sriraman et al. 2013), where some of the
existing definitions of creativity are vague or elusive (Sriraman 2005), which
indicates the complexity of the creativity construct. Creativity definitions given by
the various researchers could be categorized into four types according to the object
of their focus (Leikin and Pitta-Pantazi 2013; Runco 2004). The focus is either on
the creative person, the creative processes, the creative product or the creative
environment. Some researchers are concerned with just two types: the final product
and the process (James et al. 2010). Defining creativity as process, researchers
describe it as the ability to think conceptually. One of the definitions of creativity as
a process includes describing its three components: fluency, flexibility and origi-
nality (Guilford 1975; Leikin et al. 2009; Torrance 1974). Flexibility, which is
examined in the present chapter, is associated with the number of answers’/ques-
tions’ types on a problem, or with the number of implemented problem solving or
posing strategies (Leikin et al. 2009; Torrance 1974).

Researchers in mathematics education have studied different issues of mathe-
matical creativity, as its manifestation in learning and teaching, including using
different theoretical frameworks to study creativity and the relationship of creativity
with other educational constructs. One such issue is the characteristics of students’
creativity. Kiymaz et al. (2011) found that pre-service teachers developed different
problem-solving behaviors in different problem situations, encountering various
difficulties due to their algorithmic strategies. They also found that the pre-service
creative thinking skills mainly depended on personal and extra cognitive factors.
Another such issue is how to nurture students’ creativity (Leikin et al. 2011;
Mihajlović and Dejić 2015; Prusak 2015). For example, Prusak (2015) found that
telling mathematical stories and sharing these stories in the classroom nurtures
eleventh and twelfth-grade students’ creativity. Furthermore, Mihajlović and Dejić
(2015) found that open-ended problems promote the creativity of elementary school
students. An additional creativity issue that researchers considered is the collectivity
of the mathematical creativity. For example, Levenson (2011) argued that collective
flexibility could be used to describe a process as well as a product. Moreover, she
claimed, based on her findings, that it seems farfetched to talk about collective
originality.

Regarding the relationship of creativity with other educational constructs,
researchers especially studied its relationship with problem posing (see above), with
giftedness (e.g., Sriraman et al. 2013; Sriraman and Haavold, in press), with ability
(Kattou et al. 2013; Lave and Leikin 2013), with expertize (Leikin and Elgrabli
2015) and with students’ previous knowledge represented in different grades (e.g.,
Leikin and Kloss 2011; Tabach and Friedlander 2013). For example, Leikin and
Elgrabli (2015) argue that students’ creativity represented in their discovery skills
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can be developed along different levels of problem solving expertise, but the range
of this development depends on the expertise. Moreover, students’ creativity rep-
resented in the discovery process is rooted in the problem solving expertise of a
student. In addition, Kattou et al. (2013) found a positive correlation between
mathematical creativity and mathematical ability. Furthermore, they found that
mathematical creativity is a subcomponent of mathematical ability.

Researchers also studied students’ creativity in different contexts and when using
different tools (e.g., Lavigne and Mouza 2012).

9.1.2.3 Using Tools to Promote Creativity

Tools have been present in mathematics learning (Kidwell et al. 2008), teaching
(Goos and Soury-Lavergne 2010) and teacher education (Mousley et al. 2003) for a
long time. Moreover, tools can be used to encourage students’ creativity (Kynigos
and Moustaki 2014). Solomon and Schrum (2010) says that web tools support
students in learning different skills; some of which are communication, collabora-
tion, and creativity. Moreover, these tools help overcome environmental and cul-
tural barriers to creativity (Victor and Vidal 2009).

The what-if-not strategy, as a tool that supports learners in their problem posing,
was suggested by Brown and Walter (1990). This strategy is based on the
assumption that modifying the components of a given problem can yield new and
intriguing problems. To apply this strategy, students are encouraged to traverse
three levels, beginning with the re-examination of the given problem, in order to
derive closely related, new ones. At the first level, students are asked to produce a
list of the attributes of the problem. At the second level, for each attribute, they must
ask the what-if-not question and suggest alternatives to the given problem. At the
third level they formulate new problems and questions, inspired by the alternatives.
Shriki (2013) says that what-if-not strategy, as a tool for problem posing, can yield
new and stimulating problems that ultimately may result in some interesting
investigations. Lavy and Bershadsky (2003) say that the what-if-not strategy could
make the learners rethink the geometrical concepts they use while creating new
problems, as well as helping them make connections between the given and the new
concepts and as a result deepen their understanding of these new concepts.
Moreover, Lavy and Shriki (2007) say that the usage of the problem posing strategy
assists students in the activity of discussing a wide range of ideas, and in consid-
ering the meanings associated with a mathematical problem rather than merely
focusing on finding its solution. The previous findings indicate the need for
strategies as what-if-not strategy, which encourage the deep learning of students
and which are not used enough by them (Mishra and Iyer 2015). This deep learning
could result in more creativity of students when posing mathematical problems. The
present chapter examines whether the what-if-not strategy indeed contributes to
pre-service teachers’ creativity in problem posing.

As to the use of technology, as a tool, in problem posing, researchers noted that
problem-posing and conjecturing activities can become richer and more profound
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when technology is involved, because the software can rapidly and efficiently take
care of the technical work, such as computing and graphing (Lavy and Shriki 2010).
In particular, problem posing using dynamic geometry software involves various
effects of the interface of the tool on the procedures used by the students and on
their understanding (Christou et al. 2005). Moreover, technology provides dragging
functionality that gives students the opportunity to use visual reasoning and to
generalize problems and relationships (Sinclair 2004). In other cases, it helps them
check the validity of new mathematical situations (Lavy and Shriki 2010).
Examining the use of digital technology for mathematical problem posing,
Abramovich and Cho (2015) found that the use of graphing software as a medium
for problem posing is conducive for developing sophisticated questions about
algebraic equations with parameters.

In addition to studying the use of technology in problem posing, researchers in
mathematics education studied the use of technology to encourage students’ cre-
ativity (Lavigne and Mouza 2012). Lavigne and Mouza (2012) pointed at the virtual
open environments that have little structure as providing opportunities for auton-
omy and creative expression. Moreover, Hong and Ditzler (2013) argue that the
space for creative activities is virtually unlimited and creative processes and
activities are enriched from working in virtual space and in collaboration with
others, especially peers.

Furthermore, Leikin (2011) concludes that it is necessary to involve techno-
logical tools that promote mathematical creativity in students and support teachers’
attempts to scaffold students’ mathematical inquiry. Specifically, researchers sug-
gest that technology-based activities open opportunities for promoting students’
mathematical creativity (e.g., Hoyles 2001; Yerushalmy 2009). Yerushalmy (2009)
argues that technology supports students’ questioning, conjecturing and discovery,
which promotes their mathematical creativity.

Researchers also studied teachers’ views regarding using technology in activities
that promote students’ creativity. They found that in-service and pre-service
teachers vary in their views of using technology to promote students’ creativity
(Bolden et al. 2010; Panaoura and Panaoura 2014). Panaoura and Panaoura (2014)
found that few pre-service teachers associated creativity with technology, while
Bolden et al. (2010) found that most of the participants associated creativity with
the use of resources and technology. These findings further emphasize the need for
tools to support students’ creativity in problem solving and problem posing.

9.2 Research Rationale, Goals and Questions

9.2.1 Research Rationale and Goals

Pre-service teachers should be exposed to problem posing (Chapman 2012) and
creativity (Bolden et al. 2010) to encourage them to integrate problem posing and
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creativity tasks in their future teaching of mathematics. This exposition needs to be
accompanied by research that examines the product of the participating pre-service
teachers’ creativity, in our case their flexibility in problem posing in a specific
situation called the Paper Pool. On the other hand, researchers in mathematics
education tried to examine the contribution of tools to students’ problem posing
(Abramovich and Cho 2015; Christou et al. 2005; Lavy and Shriki 2010) and
mathematical creativity (Kynigos and Moustaki 2014; Solomon and Schrum 2010;
Victor and Vidal 2009). These attempts are still limited, which points at the need of
further research that verifies the effect of tools on students’ creativity, problem
posing and creativity in problem posing.

To elaborate more, the present chapter attempts to contribute to the research
related to the use of tools to promote learners’ creativity in problem posing, by
examining the effect of using two tools by pre-service teachers to pose problems
about a specific mathematical situation called the Paper Pool. These tools are
similar in some properties, while they are different in other properties. Their sim-
ilarity lies in their being cognitive tools for exploration in mathematics learning
(Pea 1987), while their difference lies in that what-if-not strategy is more structural
than the applet. Furthermore, the applet is more representational than what-if-not
strategy, where we can change the dimensions of the table in the applet and watch
the change in the number of hits of the ball, as well as the pocket in which the ball
lands. Comparing the contributions of the two different-structuring and
different-functioning tools is one issue that needs further studying. We attempt, in
the present chapter, to contribute to this issue.

Moreover, the present chapter verifies the effect of tools on pre-service teachers’
flexibility combining between qualitative and quantitative methods. This combi-
nation adds to the validity of the results. It also takes care of different aspects of the
pre-service teachers’ flexibility, as categories of this flexibility (taken care of by the
qualitative methodology), as well as the significance of the difference between the
flexibility scores of the four research groups (taken care of by the quantitative
methodology).

9.2.2 Research Questions

The present study intends to study pre-service teachers’ flexibility in problem
posing related to the Paper Pool activity. This flexibility is associated with the
pre-service teachers’ strategies in posing problems, as well the types of problems
they posed. The research context includes four environments that differ in using
technology, on one hand and what-if-not strategy, on the other hand. The research
questions are:

1. What are the pre-service teachers’ strategies in posing problems about the Paper
Pool activity with/without technology and with/without what-if-not strategy?
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2. Do the pre-service teachers’ scores in strategies for problem posing differ sig-
nificantly according to the use of what-if-not strategy or technology?

3. What are the types of pre-service teachers’ posed problems about the Paper Pool
activity with/without technology and with/without what-if-not strategy?

4. Do the pre-service teachers’ scores in the types of posed problems differ sig-
nificantly according to the use of what-if-not strategy or technology?

9.3 Method

It is the goal of the present chapter to study the effect of tools on pre-service
teachers’ flexibility in problem posing, where they pose problems on a specific
mathematics situation called the Paper Pool. This makes the context of pre-service
teachers’ work of special importance for its influence on their learning, in our case
problem posing.

9.3.1 Research Context and Participants

The participants in this research were pre-service teachers who specialized in
mathematics teaching. The research was conducted in the academic year 2013–
2014. The participants were majoring as mathematics teachers in the middle school.
The participants were in their second year of preparation as mathematics teachers,
where this preparation takes four years. The participants had previous knowledge of
technology through a course called “Technology for education”, in their first year
and another course called “technology for the discipline” in their second year. In the
course “Technology for education”, the pre-service teachers were introduced to the
use of open software, as Microsoft Office, in education, while in the course
“technology for the discipline”, the pre-service teachers were introduced to the use
of specific software, as Excel, applets (not the Paper Pool applet) and GeoGebra, in
mathematics education. This introduction of the mathematical software was done
through the instructor’s presentation, as well as through the pre-service teachers’
work with them to practice them and to solve mathematical problems with them. All
the participants were introduced to what-if-not strategy in their second year of study
through the course “Didactics of teaching mathematics”. At the same time, all the
participants were introduced to creativity in the same previous course, where this
introduction was limited to working with three problem-solving activities. Before
the experiment reported in the present chapter, the participants had not been
introduced to problem posing. In the frame of the current experiment, a part of the
participants were introduced to the Paper Pool applet through letting them work
with it to solve the mathematical problem. Another part of the participants were
introduced to problem posing and what-if-not strategy in one lesson lasting for one
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and a half hour. During this lesson, the participants posed questions on two
mathematical situations which the Paper Pool was not one of them. The average age
of the participants was 21.23 years.

The participants were divided into four groups randomly. The groups differed in
their use of technology and their use of “what-if-not?” strategy. Each group
included 19–21 participants. In more detail, two groups were introduced to the
what-if-not strategy and were requested to work with the Paper Pool activity using
this strategy. One of these two groups was also introduced to technology, so the
group members could work on the task using both what-if-not strategy and tech-
nology. One of the other two groups was introduced only to technology, in our case
a Java applet, and group members worked on the task using the applet. The fourth
group was not introduced to either technology or what-if-not strategy. Table 9.1
shows the number of the participants in each group.

The participants in each group were given one hour to carry out the task indi-
vidually. Moreover, the participants in the two groups who worked with technology
used an applet called “the Paper Pool Applet”.

9.3.2 Data Collecting Tools

The data we used were the problems that the pre-service teachers posed for the
Paper Pool activity. We worked out these data in order to arrive at categories of the
problems that the participating pre-service teachers posed. This was done in order to
find the actual problem types’ space of the problem situation. It was also done to
find the actual problem strategies’ space of the problem situation. Afterwards, the
two types of flexibility for each participant were computed. Thus the data of the
present research could be described as textual, which we analyzed for qualitative
analysis, and numeric, which we analyzed for quantitative analysis.

9.3.3 Data Analysis Tools

To analyze the data, we first excluded problems that were not mathematical or were
unsolvable. For example, the problem “what happens if we change the table’s
color?” was not considered mathematical.

We considered two types of flexibility for a participant: the number of different
problem types posed by a participant, and the number of different posing strategies
that she/he used. This analysis method follows Kontorovich et al. (2011) who
analyzed secondary school students’ creativity in problem posing. Moreover, it
follows studies that examined students’ flexibility in using strategies (e.g., Elia et al.
2009) and, at the same time, those who examined students’ flexibility by looking at
solution types rather than strategies (e.g., Leikin and Lev 2007). In addition, this
analysis of two types of flexibility follows Silver (1997) who described students’
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strategies and problem types when posing problems in the frame of the Paper Pool
activity. We are aware of the different analysis methods of students’ creative
activity, whether this activity was individual (Leikin and Lev 2007; Shriki 2013;
Singer and Voica 2015) or collective (Levenson 2011, 2014), but examining the
same mathematical situation, as well as the same educational construct (specifically
students’ flexibility), we followed Kontorovich et al. (2011) in examining
pre-service teachers’ flexibility.

It should be noted that our consideration of the solution types differs from
researchers’ consideration of fluency, because here we looked at types rather than
answers. For example, the pre-service teacher who gave the two problems (In which
pocket does a ball fall in a table whose length is twice its width?; In which pocket
does a ball fall in a table whose dimensions are 8 � 16) got just one point because
both of the problems belong to the same type (Asking about the pocket in which the
ball falls). In the case of fluency we would have given the pre-service teacher two
points.

Analyzing the collected data qualitatively, we used primarily deductive content
analysis, keeping in mind the inductive content analysis to arrive at new categories
of problem types and problem strategies. In more detail, we performed constant
comparisons between the units of the gathered data (the posed problem) in order to
categorize them into problem types or strategies. This deductive content analysis
explains partially the categories and situations of problem types and problem posing
strategies at which we arrived, as part of them was reported in previous literature
(Silver et al. 1996; Kontorovich et al. 2011). The inductive content analysis gave us
new categories as specific/general and object/relation. Each one of the authors
coded the participants’ posed problems. Cohen’s kappa (Cohen 1960) was used as a
measure of agreement between the two raters. The inter-rater reliability for flexi-
bility of questions’ types was 89.1%, and for flexibility of posing strategies
was 88.8%. These high percentages suggest a good agreement between the two
raters and therefore a satisfactory reliability for each component of creativity.

To analyze the data quantitatively, we used the SPSS 21 package. Means,
standard deviations, ANOVA and effect size were performed to examine whether
there are significant differences between pre-service teachers’ flexibility scores in
problem types and posing strategy types of the participating pre-service teachers in
the four environments. When ANOVA gave significant results, Scheffe’s post hoc
test was performed to decide which environment contributes more to the flexibility
of the participating pre-service teachers.

Table 9.1 Participants’ distribution in the four research groups

What-if-not strategy Total

With what-if-not Without what-if-not

Technology With technology 19 19 38

Without technology 20 21 41

Total 39 40 79
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We combined between qualitative and quantitative methods of analysis, so that
we can advance our understanding about the phenomenon under the investigation
(Niglas 2000), in our case pre-service flexibility in problem posing, in
tools-environments. In addition, this combination would constitute triangulation of
methodologies (Denzin 1978). The qualitative methodology provides us with cat-
egories of flexibility types and strategies, as well as the content of each of the
types and strategies, while the quantitative data enables us to verify the significance
of using tools in problem posing.

9.3.4 The Task

The task was adapted from Silver et al.’s (1996). It was chosen for it is rich enough
to stimulate the generation of interesting problems and conjectures and, at the same
time, it is accessible for learners as it requires only knowledge of rather basic
mathematical concepts (Silver et al. 1996).

In addition, this task fits working with, using traditional means, as well as tech-
nological means. Following is the task text. Figure 9.1 shows the text of this task.

9.3.5 The Software

Two of the groups used an applet called the Paper Pool Applet2 (see Fig. 9.2). The
Paper Pool applet enables the user to change the dimensions of the table (its length
and width), and to change the speed of the ball. It also enables the user to show or hide
the track of the ball path, the grid of the table, the table itself, and the count of hits.

9.4 Findings

9.4.1 Strategies of Problem Posing

One goal of the research was to categorize the strategies that the pre-service
teachers used to pose problems. This was the goal behind the first research question.
To answer this question, we examined the different strategies that the participants
used, keeping in mind the categories of strategies reported by previous research as
Silver et al. (1996) and as Kontorovich et al. (2011). We also carried out inductive
content analysis to arrive at additional categories not reported in the literature. The
analysis resulted in three approaches. The first relates to the object of the problem: a

2At http://illuminations.nctm.org/Activity.aspx?id=4219.
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mathematical object or a mathematical relation. The second relates to the givens of
the problem: keeping the givens, or varying the givens. The third approach relates
to generality of the problem: asking about a specific object, or asking about a
general object. We present examples on the different types of problems in the three
approaches in Tables 9.2 and 9.3. Table 9.2 presents examples from problems
posed on specific object/relation, while Table 9.3 presents problems posed on
general objects/relation. Table 9.2 differentiates between ‘keeping the givens’ and
‘varying the givens’, while Table 9.3 deals only with ‘varying the givens’, for
generality, by its nature, needs varying the givens of a problem.

The four groups of pre-service teachers differed in their use of strategies in
problem posing. Both of the groups who did not use technology used mostly two
strategies: keeping the givens or varying the givens, while asking about a specific
mathematical object. The group who used technology but not what-if-not strategy

Imagine billiard tables like the one shown below. Suppose a ball is shot at 45ο angle from the lower left 
corner A of the table. When the ball hits a side of the table, it becomes off at a 45ο angle. In Table 1, the ball 
travels on a 4x6 table and ends up in pocket B, after 3 hits on the sides. In Table 2, the ball travels on a 2x4 
table and ends up in pocket B, after 1 hit on the side. In each of the figures shown below, the ball hits the 
sides several times and then eventually lands on a corner pocket.

Based on this situation, pose and write down as many interesting mathematical problems as you can. 

Fig. 9.1 The Paper Pool task

Fig. 9.2 The interface of the
Paper Pool Applet
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used mostly four strategies: varying the givens and asking about a general math-
ematical object or relation, or varying the givens and asking about specific math-
ematical object or relation. The fourth group, who used technology and what-if-not
strategy, used all the six strategies.

9.4.2 Differences in Scores of Flexibility of Strategies
in the Four Environment

A second goal of the research was to examine whether the differences between the
scores of the flexibility of strategies in the four environments were significant. This
goal was behind the second research question. To answer this question, we com-
puted the means and standard deviations of pre-service teachers’ flexibility related
to the different strategies, in the four groups (see Table 9.4).

The results of the ANOVA test showed that the mean score of flexibility related
to problems’ strategies is significantly different among the four research groups,
with F(3.75) = 16.36, p < 0.001, η2 = 0.396. Based on Cohen’s standard, we have
large effect size here. Moreover, the results of Scheffe’s test showed that the mean
score of flexibility related to strategies in the presence of technology and what-if-not
strategy was significantly higher than in the case of the other three groups
(p < 0.05). At the same time, no significant difference was found between the mean
scores of flexibility related to problems’ strategies among the three groups who did
not use technology or/and did not use what-if-not strategy.

Table 9.2 Problems posed on a specific mathematical object/relation

Topic Givens

Keeping the givens Varying the givens

Mathematical
object

What is the length of the path
resulting from a ball hitting the
sides of the 2 � 4 table?

What is the angle that we should use
in throwing the ball in order to get
equal number of hits in the two given
tables?

Mathematical
relation

How do the dimensions of the
Table 2 � 4 determine the number
of ball hits?

What happens to the relation between
the number of ball hits and table
dimensions on a table with 6 pockets?

Table 9.3 Problems posed on a general mathematical object/relation

Topic Givens

Varying the givens

Mathematical
object

What are the table’s dimensions that guarantee no intersections of the ball
path until it hits a pocket?

Mathematical
relation

What is the relationship between the table’s dimensions and the number of
ball hits?
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9.4.3 Types of Posed Problems

A third goal of the research was to categorize the types of problems that the
pre-service teachers posed. This was the goal behind the third research question
Here, we also used deductive content analysis, keeping in mind the types of
problems reported by previous research as Silver et al. (1996) and as Kontorovich
et al. (2011). We also carried out inductive content analysis to arrive at additional
problem types not reported in the literature. Doing so, we arrived at ten problem
types: problems about the pocket in which the ball falls, problems about table’s
dimensions, problems about the ball path, problems about the number of ball hits,
problems about the number of thrown balls, problem about the pockets’ number,
problems about the angle of throwing the ball, problems about the ball speed,
geometric problems related to the ball path, and problems engaging two or more of
the previous issues. Table 9.5 shows an example on each of the problem types
posed by students in the fourth group. We chose the fourth group because all the
problem types were posed by its members.

Only participants who used technology and what-if-not strategy raised all types
of problems. Moreover, only participants who worked with technology posed
problems about the speed of the ball, while only participants who worked with
what-if-not strategy posed problems about the number of balls.

9.4.4 Differences in Scores of Flexibility of Strategies
in the Four Environment

A fourth goal of the research was to examine whether the differences between the
scores of the flexibility of problem types in the four environments were significant.
This goal was behind the fourth research question. To answer this question, we
computed the means and standard deviations of pre-service teachers’ flexibility
related to the different types, in the four groups. Table 9.6 shows the results.

The results of the ANOVA test showed that the mean score of flexibility related
to problems’ types is significantly different among the four research groups, with F
(3.75) = 78.5, p < 0.001, η2 = 0.758. Based on Cohen’s standard, we have large
effect size here. Moreover, the results of the Scheffe’s test showed that the mean

Table 9.4 Mean and standard deviation of students’ flexibility related to strategies in the four
groups

Group N Mean SD Range

Without technology and without what-if-not 21 1.95 0.59 1–3

Without technology and with what-if-not 20 2.00 0.46 1–3

With technology and without what-if-not 19 2.32 0.48 2–3

With technology and with what-if-not 19 2.89 0.32 2–3
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score of flexibility related to problems’ types in the presence of technology and
what-if-not strategy was significantly higher than the other three groups, while the
mean score of flexibility related to problems’ types without technology and without
what-if-not strategy was significantly lower than mean score of each of the other
mean groups (p < 0.05). At the same time, the mean score of flexibility related to
problems’ types with technology and without what-if-not strategy was not signif-
icantly different from that without technology and with what-if-not strategy
(p = 0.990).

Table 9.5 Examples on each of the problem types that the fourth group posed

Problem type Examples

Asking about the pocket in which
the ball falls

In which pocket does a ball fall in a table whose length
is twice its width?

Asking about the table’s dimensions What are the table dimensions when the number of hits
is two?

Asking about the ball path What is the path of the ball in a Table 6 � 4, when it
starts from pocket C?

Asking about the number of ball hits What is the greatest number of hits in a table m � n
that the ball makes before falling into a pocket?

Asking about a situation when more
than one ball are thrown

What happens when a ball is thrown from A and a
second one from C? Will they collide?

Asking about a situation when the
number of pockets changes

What happens if the number of pockets is 6? 2?

Asking about the angle of throwing
the ball

What is the angle that we should use to throw the ball
in order to fall into pocket A?

Asking about the ball speed What happens when the speed of the ball increases?

Asking a geometry question related
to the path

Would the ball path in a table m � n make a
parallelogram?

Asking about two or more of the
previous issues

What is the relationship between the angle of the table
and the pocket in which it falls?

Table 9.6 Mean and standard deviation of students’ flexibility related to types of problems in the
four groups

Group N Mean SD Range

Without technology and without what-if-not 21 2.33 0.48 2–3

Without technology and with what-if-not 20 4.05 1.19 2–6

With technology and without what-if-not 19 4.16 1.30 2–7

With technology and with what-if-not 19 7.11 0.81 5–8
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9.5 Discussion

It was the goal of the present chapter to examine mathematics pre-service teachers’
flexibility in problem posing in four environments differing in the use of technology
and what-if-not strategy. The research findings showed that each of the tools used
by the participating pre-service teachers (technology and what-if-not strategy)
affected positively their flexibility. Here the what-if-not strategy supported the
mathematics learners in their varying of task givens (Brown and Walter 1990).
Moreover, asking what-if-not leads students to ask deep questions (Mishra and Iyer
2015) through organizing their problem posing activity. As to technology, it sup-
ported the participating students in their generalizing activity (Tabach 2011). This
support is due to the technology potentialities and its varied modes of use, as data
collection and analysis, visualization, and checking (Doerr and Zangor 2000).
These potentialities helped students that used technology to understand the math-
ematical situation, and therefore have more means to vary their posed problems.
This facilitation of the learning process is described by researchers who pointed at
the increasing opportunities for students that technologies provide, so that they
become more able to explore the mathematical situation (Crespo and Sinclair 2008).
This enables them to modify given problems into higher quality problems (Cai et al.
2015).

Furthermore, it could be argued that the Paper Pool activity is a rich context that
encourages students’ mathematical activity, including their creativity. This is so
because the Paper Pool as a mathematics situation is accessible to learners as it
requires only knowledge of basic mathematical concepts and, at the same time, can
stimulate the generation of interesting problems (Koichu and Kontorovich 2013;
Silver et al. 1996). This rich context was essential in realizing the potential of the
technology used (Clements 1995).

The research findings also show that the group, who combined between tech-
nology and what-if-not strategy, used three approaches in problem posing, where
these approaches included six strategies, and raised, at the same time, ten problem
types. The other three groups of pre-service teachers’ used only part of the
strategies and types. This implies that combining between these two tools makes
mathematical problem posers aware of more posing strategies and problem types.
The findings also showed that the numbers of strategies and problem types, used by
the group that combined between technology and what-if-not strategy, are greater
than those reported in Kontorovich et al. (2011) and Silver et al. (1996). This could
be due to the potentialities of the two tools that directed the participating mathe-
matics learners in their problem posing activity. Bonotto (2013) argues that suitable
cultural artifacts can become a meaningful source for problem-posing activities. In
our research, the combination of two cultural artifacts contributed to the flexibility
of pre-service teachers in a cultural authentic activity, namely the Paper Pool
activity.

The influence of each of the tools and their combination could be explained as
contributing to the problem solving/posing processes described by Polya (1945). In
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more detail, the tools contributed to understanding the mathematical situation
through emphasizing the different components of this situation, as well as the
relation between these components. The applet interface shows the different com-
ponents of the situation, while the first step of what-if-not strategy shows these
components too. Manipulating the applet interface, as well as posing problems
according to the second step of what-if-not strategy, facilitates seeing relations
between the situation components. Moreover, the both tools support the learning in
the second process described by Polya; i.e. devising a plan. Technology does this
through helping the learning in actions as checking, looking for a pattern, and
drawing a picture. On the other hand, what-if-not strategy does that through helping
the learner in actions as making an orderly list, eliminating possibilities and
working backwards. Devising the plan, generally it is not difficult to carry it out. It
could be argued that technology supports the learner more than what-if-not strategy
in the fourth process of problem posing. This is so because technology, due to its
potential to facilitate reworking with the same process or example, helps looking
back at what we have done, what worked for us or did not work. This will enable
the learner to decide what strategy to use to pose future problems.

In addition to the argument above, the difference between the flexibility of the
participants from the four groups occurred as a result of the different environments’
characteristics; i.e. the different contexts. This is present in the findings that only
students who used technology asked about the speed of the ball, which could be due
to the presence of this factor in the applet interface. On the other hand, the number
of balls is not present in the applet interface, so students who worked with tech-
nology and without what-if-not strategy did not pose problems about this variable,
while students who worked with what-if-not strategy did. So, task contexts are of
great implications regarding the type of activity and learning with which mathe-
matics learners are engaged (Joubert 2013). In addition, the task contexts are part of
the teaching contexts which impact students’ learning (Sarrazy 2002). Sarrazy
(2002) asks what affects students’ responsiveness to a problem, aside from
inter-individual differences. He answers this question by saying that the inter-class
variations could explain the variability of students’ responsiveness to a problem. In
our case this interclass variability was represented in the pre-service teachers’ use of
tools.

As to the quantitative results, using Scheffe’s test showed that the mean score of
flexibility related to strategies, as well as problem types, in the presence of tech-
nology and what-if-not strategy was significantly higher than in the case of the other
three groups. At the same time, no significant difference was found between the
mean scores of flexibility related to problems’ strategies among the three groups
who did not use technology or/and did not use what-if-not strategy. These results
show the effectiveness of combining between tools to encourage students’ problem
posing and their flexibility in the activity of problem posing. Researchers in
mathematics education pointed to the effect of tools on students’ creativity (Lavigne
and Mouza 2012; Solomon and Schrum 2010; Victor and Vidal 2009). Our
experiment reported in the present chapter emphasizes the potentials for students’
creativity when providing them with tools.
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Moreover, the mean score of flexibility related to problems’ types without
technology and without what-if-not strategy was significantly lower than mean
score of each of the other mean groups. Furthermore, the two groups who used one
tool only did not differ significantly in problem types. These results once again
show the effectiveness of combining between tools in the mathematics classroom.
Previous attempts have been done to combine tools and resources in the mathe-
matics classroom in order to influence positively students’ learning of mathematics.
Cross (2009) reports the combining between argumentation and writing in the
mathematics classroom to enhance students’ achievement, where the results
revealed significant differences between the groups; specifically the students who
engaged in both argumentation and writing had greater knowledge gains than
students who engaged in argumentation alone or neither activity.

9.6 Conclusions and Implications

Ellerton (2013) described his research as “a first step in understanding pre-service
students’ responses to being confronted with problem-posing activities directly
linked to the curriculum” (p. 88). The research reported in the present chapter could
be described as trying to verify and to understand the effect of tools, specifically
technology and what-if-not strategy in pre-service teachers’ flexibility in problem
posing. Moreover, the present chapter shows that combining between tools is
effective for students’ learning of mathematics, especially their flexibility.

Examining the use of technology and what-if-not strategy by pre-service
teachers, it was found that each tool affected positively the pre-service teachers’
problem posing activity. Moreover, combining the two tools affected positively the
pre-service teachers’ activity more than any one of the two tools alone. These
findings indicate the need for different tools in the mathematics classroom (Bonotto
2013; Brown and Walter 1990; Maschietto and Trouche 2010; Yerushalmy 2009),
as well as their combination. It is claimed that combining between tools and
strategies could be more effective on students’ learning of mathematics than one
tool/strategy (Cross 2009). This is especially true when each tool/strategy serves
different function. In our case, technology serves visualization of mathematical
relations (Doerr and Zangor 2000) and generalization (Leung et al. 2006), while
what-if-not strategy serves organization of students’ thinking and behavior (Brown
and Walter 1993).

The present chapter examines how the use of tools affects students’ creativity in
problem posing. More studies are needed to verify the effect of this use on students’
creativity in mathematical problem posing, as well as problem solving, especially
when these tools are combined. Moreover, the chapter examines this issue of tools’
use in a specific mathematical situation that could be described as a game (Math
Forum at NCTM 2016). Studies are needed that verify the issue in regular math-
ematical lessons.
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Chapter 10
Ornaments and Tessellations:
Encouraging Creativity
in the Mathematics Classroom

Hana Moraová, Jarmila Novotná and Franco Favilli

Abstract The presented paper focuses on encouraging creativity in mathematics
lessons in heterogeneous mathematics classrooms. It is an extended version of a
paper presented at ICME 2016 in Hamburg. It describes teaching experiments
conducted within the frame of the project M3EaL: Multiculturalism, Migration,
Mathematics Education and Language (526333-LLP-1-2012-1-IT-COMENIUS-
CMP), a multilateral project whose aim was development of teaching units to
support immigrant pupils and pupils from different socio-cultural backgrounds
(m3eal.dm.unipi.it). The paper shows that if pre-service and in-service teachers face
a situation in which they cannot rely on traditional textbooks and ways of doing
mathematics—in this case a culturally heterogeneous classroom—they tend to be
very creative in planning their lesson and at the same time encourage their pupils’
creativity. Thus cultural heterogeneity may be perceived as advantage as it may
result in breaking down stereotypes in mathematics classrooms.
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10.1 Introduction

The world is becoming a global village, and it no longer holds that a teacher can
expect to be teaching a more or less homogeneous class with pupils with more or
less similar socio-cultural and linguistic backgrounds. Migration to EU countries
results in the need to introduce practices into mathematics classrooms that will
allow pupils from various socio-linguistic and cultural backgrounds to be suc-
cessful, follow the instruction and curriculum, and build on their identity. This
corresponds to the principles of inclusive education, which means that all pupils
and students are welcome to attend their neighbourhood schools in age-appropriate,
regular classes and are supported to learn, contribute and participate in all aspects of
the life of the school (UNICEF). The premise is that a more inclusive education will
promote a more inclusive society that respects diversity. Inclusive schools should
include everybody, celebrate differences, support learning and respond to individual
needs, including the needs of learners from various cultural and linguistic
backgrounds.

This concept has caused educators and researchers to look for teaching units and
learning environments that are able to support the needs of all the students at their
schools and that will help teachers who deal with complex situations involving
teaching a heterogeneous group of pupils with very diverse social, cultural and
educational backgrounds and very diverse needs.

A questionnaire survey conducted within the frame of the project M3EaL:
Multiculturalism, Migration, Mathematics Education and Language (co-funded by
the European Commission under its Longlife Learning Programme, project number:
526333-LLP-1-2012-1-IT-COMENIUS-CMP) clearly showed that teachers feel
that they feel the need to have materials developed especially for classrooms with
cultural heterogeneity. The situation becomes even more complicated if teachers are
expected not only to present the required mathematical content to their pupils but
also to develop their creativity regardless of their students’ cultural and linguistic
backgrounds. The goal of the presented research was to show that a teacher does not
need to look for new teaching units or new topics for each area of school mathe-
matics and each age group. Instead, they can creatively adapt and modify one
selected environment to suit the particular situation of the class they are teaching.
Another area of interest is the study of the impact of these changes on the creative
potential of the basic teaching unit.

The project research team developed and organized pilot implementation of
seven teaching units by in-service teachers from six European countries: Austria,
the Czech Republic, France, Greece, Italy and Norway. The teaching units were
designed to meet the needs of culturally and linguistically heterogeneous class-
rooms (Favilli 2015). The goal was to show that teachers can adapt basic teaching
units creatively in such a way that they help learners from different linguistic and
cultural backgrounds become involved in their classes without actually needing
detailed lesson plans and materials. In this chapter, we illustrate this on a teaching
unit developed by the Czech project team as a teaching unit for heterogeneous
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lower-secondary pupils. When piloted by in-service teachers from three countries, it
was adapted to meet the needs of each particular educational system and student age
group. The Czech teaching unit was based on ornaments from different cultures as a
source of mathematics to be taught. The developed unit combined mathematics, art
and creativity to boost pupils’ motivation and to allow pupils to excel regardless of
their cultural or linguistic backgrounds. The pilot implementation in three countries
(the Czech Republic, Italy and Austria) showed that creativity was needed not only
on the pupils’ but also on the teachers’ part. The participating teachers adapted the
original teaching unit with a lot of creativity and thus adapted it to the specific
situation of their own classroom and curricula.

The chapter comes out of the ressearch study presented at ICME 2016 (Moraová
and Novotná 2016).

10.2 Theoretical Background

10.2.1 Teaching Heterogeneous Classrooms

The results of the project entitled ‘Context problems as a key to the application and
understanding of mathematical concepts’ sponsored by the Grant Agency of the
Czech Republic (16-06134S) showed that most primary and lower-secondary classes
in the Czech Republic are heterogeneous. The situation in many other countries is
similar. However, not enough attention has been paid so far to teaching mathematics
in culturally heterogeneous classrooms. If researchers pay attention to teaching
mathematics in culturally heterogeneous classrooms, they usually focus on linguistic
issues (e.g., McDermott and Varenne 1995). But what we really have to ask is how
mathematics is specific and what the dangers of teaching it in culturally and lin-
guistically heterogeneous classrooms are. Mathematics educators (e.g., Barton et al.
2007; Bishop 1988; César and Favilli 2005) often speak of in-service teachers’ call for
teacher training that would provide them with the tools essential for work in lin-
guistically and culturally heterogeneous classrooms. Mathematics educators are fully
aware of the fact that a pupil whomust simultaneouslymaster both a new language and
mathematics content faces a very difficult situation (Moschkovich 2007, 2012;
Barwell et al. 2007; Norén 2008; Barwell 2015; Sibanda 2017).

Work in culturally and linguistically heterogeneous classrooms requires mate-
rials that do not block understanding of mathematics for any of pupils in the
classrooms. Arslan and Altun (2007) are aware of the importance of learning
environments. They use the term ‘socio-cultural learning environments’ that comes
out of the concept of ‘socio-cultural norms’ as it is used by Sullivan et al. (2003).
Arslan and Altun (2007) point out that the usually recommended learning envi-
ronments may be alien to certain groups of pupils, and teachers must take steps that
will decrease this alienation. These modifications affect several norms: mathemat-
ical norms among which Arslan and Altun place ‘principles, generalization, pro-
cedures and results that are the outcome of mathematics education as well as its
tool’ (p. 109). The teacher’s task is to work with such learning environments that
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are comprehensible for and accessible to all pupils in the particular group. This is
the only way to achieving equity in education and to preventing exclusion of some
groups of pupils from education.

At the same time, we can observe in mathematics education an increasing
interest in and stress on creativity, communication and interaction in mathematics
lessons, on careful and unequivocal formulation of ideas, on multimodality of
representations (e.g., Yackel and Cobb 1996; Kynigos and Theodosopoulou 2001).
This development in mathematics education will be beneficial for all pupils,
including pupils from different cultural and linguistic backgrounds. We are con-
vinced that creativity is also the way to teaching mathematics in culturally and
linguistically heterogeneous classrooms. The below presented research study looks
for confirmation of this conjecture.

10.2.2 Creativity in Mathematics Lessons

The paper presented here shows how pupils’ creativity and flexibility can be
awakened by pre- and in-service teachers’ efforts to develop teaching materials that
can be used in culturally heterogeneous classrooms by making use of the pupils’
different cultural backgrounds and experience and adapting an existing teaching
unit to the needs of particular groups of pupils. At the same time, the developed
teaching unit and all its modifications for different classrooms and age groups
works with pupils’ creativity, integrating elements from art and history, providing
space for inquiry and independent discovery of various concepts and properties, and
increasing pupils’ activity and motivation.

The teaching unit discussed is called ‘Ornaments’. The following section
describes the development of the teaching unit, the potential of this environment
and modifications to the teaching unit by in-service teachers in their pilot
implementations.

10.2.3 Definition of Mathematical Creativity

Mathematical creativity is a concept that raises much interest in mathematics
education research. There have been a variety of views of creativity and mathe-
matical creativity (e.g., Leikin 2009). There are a number of definitions of math-
ematical creativity in literature. Krutetskii (1976) characterized mathematical
creativity as independence and originality. Sriraman (2005) describes mathematical
creativity ‘as an orientation or disposition toward mathematical activity that can be
fostered broadly in the general school population’ (p. 75). Ervynck (1991) claims
that mathematical understanding, intuition and insight form the basis of mathe-
matical creation. Leikin (2009) states that
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creative products, therefore, help in the understanding of mathematical relationships
because they reference former results and often respond to current needs; they are original
because they can lead to unpredicted outcomes. . . . Mathematical creativity in school
students is evaluated with reference to their previous experiences and to the performance of
other students who have similar educational history. (pp. 130–131)

10.2.4 Ornaments

The original teaching unit developed by the Czech team within the frame of the
aforementioned project was based on the concept of substantial learning environ-
ments (SLE) developed by Wittmann (1995, p. 366), namely, on the concept that ‘a
good teaching material for teachers and pupils should be the one which has a simple
starting point and a lot of possible investigations or extensions’. It was also based
on Duval’s theory of registers of semiotic representations, i.e., on how students
perceive and apply different usages of representations for the same concept and
transformations between these representations. Since mathematical concepts and
relations are abstract, they cannot be seen and felt in daily life (Duval 1993, 2000).
It is important for students to recognize and use different representations of a
concept and to shift from one presentation to another. This can be managed by
using different representations for the same concept at the same time and in the
same context (Winslow 2003).

The simple starting point in this case was a number of ornaments whose origin
was in different cultures; they are used with the intention of allowing minority
pupils to be heard, to present ornaments typical for their culture or home and to
break the wall between home and school culture between the mathematics naturally
used at home and the mathematics used at school (Meany and Lange 2013).

An ornament represents ‘an artifact that can be exploited by the teacher as a tool
of semiotic mediation to develop genuine mathematical signs that are detached from
the use of the artifact but that nevertheless maintain with it a deep semiotic link’
(Mariotti 2009, p. 427). Ornaments can be considered also from Radford et al.’s
(2005, p. 120) perspective:

The apprehension of the object in its cultural dimension—i.e., the apprehension of the
cultural conceptual content and meaning of the object—requires students to engage in an
interpretative and imaginative process whose outcome is an alignment of subjective and
cultural meanings.

In a paper focusing on creativity, Csikszentmihalyi (1996) discusses the char-
acteristics of the creative process and the significance of environment on the
development of creativity. The creative process is divided into five stages: prepa-
ration (becoming immersed in a set of problematic issues that are interesting and
arouse curiosity), incubation (during this period, unusual connections are likely to
be made), insight (pieces of ideas fall together), evaluation (deciding whether the
insight is valuable and worth pursuing) and elaboration (validating the insight).
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Csikszentmihalyi (1996) lists major elements in the social milieu that can encourage
creativity: training, expectations, resources, recognition, hope, opportunity and
reward. Singer and Moscovici (2008) propose a frame for organizing classroom
interactions within a constructivist approach. Their model consists of three general
phases they refer to as immersion, structuring and applying, each with two
sub-phases that highlight specific roles for the teacher and the pupils.

One of the ways of helping learners that are not from the mainstream population
become involved in mathematics classes is to use various artefacts coming from
different cultures. Bishop (1988) analysed educational situations involving cultural
issues. He argues that up to early 1980s, mathematics knowledge was regarded as
‘culture-free’. This is currently not the case. Studies from mathematical history
demonstrate clearly that mathematics has a cultural history. Bishop (1988, p. 180)
supports it by citing several anthropological and cross-cultural studies focusing on
different cultures. He argues that

mathematics must now be understood as a kind of cultural knowledge, which all cultures
generate but which need not necessarily ‘look’ the same from one cultural group to another.
Just as all human cultures generate language, religious beliefs, rituals, food-producing
techniques, etc., so it seems do all human cultures generate mathematics.

The Czech project team used their own experience with methods supporting
creativity in lessons in addition to the experience of their colleagues abroad. Based
on their experience and expertise, they decided to develop a teaching unit entitled
Ornaments. Ornaments undoubtedly meet the criteria of an SLE. They offer a rich
source of mathematics (they can be used when teaching many different topics and
areas) and at the same time allow introduction of culturally heterogeneous contexts,
show that very different cultures have very different but equally elaborate and
intriguing ornaments and provide space for creativity—drawing ornaments, tiling,
making tessellations (tiling of a plane using one or more geometric shapes) and
bringing photographs and images from home and using them as a background to
mathematics and art activity.

10.3 Methodology

10.3.1 Ornaments in Pre-service and In-service
Mathematics Teacher Education

The background research questions of the reported research study were: Do
teachers need detailed lesson plans in order to be able to teach in culturally and
linguistically diverse classes? Or can inclusive mathematics education be suc-
cessfully conducted by creative teachers if they are given a learning environment
with an outline of its possible uses in mathematics education that they then adapt
and develop according to the needs of the curriculum and their specific group of
learners?
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To answer this question, several teaching units were developed by project
partners and piloted at schools by in-service teachers. The researchers studied how
the teachers coped with adapting and using the developed teaching unit.

In the process of developing the unit, the Czech project team decided to use the
Ornaments teaching unit as part of pre- and in-service teacher training targeted at
developing teachers’ skills in the area of work in culturally heterogeneous class-
rooms. The aim of the workshop was to show pre- and in-service teachers that
development of culturally heterogeneous materials and materials that enable pupils
bring their own culture into the classroom and thus make mathematics more
meaningful to them is not very difficult and that any teacher can do it with not that
much effort. Another goal was to find which activities pre- and in-service teachers
regarded as suitable for developing the creativity of different age groups of pupils
and which activities they would choose if they were asked to plan a teaching unit,
based on the environment of the Ornaments teaching unit, for a culturally hetero-
geneous classroom.

The workshop started with the introduction of issues of cultural heterogeneity in
contemporary Europe and proceeded to a problem-posing activity. The pre- and
in-service teachers were shown ornaments from different cultures and were invited
to pose as many problems using the content as possible. ‘In re mathematica ars
proponendi quaestionem pluris facienda est quam solvendi’ [In mathematics the art
of proposing a question must be held of higher value than solving it] (Cantor 1867
in Henrard (2006, p. 2). The irony in the derivatives discounting).

The formulation of the problem is often more essential than its solution, which may be
merely a matter of mathematical or experimental skill. To raise new questions, new pos-
sibilities, to regard old problems from a new angle requires creative imagination and marks
real advance in science. (Einstein and Infeld 1938 in https://www.colinvandenbroek.com/
design-problem-solving/, accessed 27 September 2017)

Problem posing is an important component of the mathematics curriculum and is
considered to be an essential part of doing mathematics (NCTM 2000; Tichá and
Hošpesová 2010). It is an activity mathematics teachers do almost every day when
they need to supplement problems from the textbook. It is also a very creative
activity in which much is revealed about understanding of mathematics and dif-
ferent concepts and topics. Problem posing, moreover, can be used both as a part of
teacher training and in regular mathematics lessons to see how well pupils have
grasped a particular concept, procedure or topic.

The participants were then shown ornaments from different cultures and asked to
think of as many mathematical areas, concepts and topics as possible that could be
developed in this environment. The ornaments at this stage were selected at ran-
dom. In this teacher training seminar, the objective was to show to pre- and
in-service teachers the potential of the environment and the scope of their own
creativity and resourcefulness. The participants themselves were not culturally
heterogeneous. But all of them were likely to be teaching in culturally heteroge-
neous classrooms in the future and thus would have to be able to plan lessons that
come from cultural settings familiar to all pupils in the class. Thus ornaments from
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all parts of the world were selected (Native American, Indian, Polynesian, Arabic,
Celtic, Aboriginal, Roma, Scottish, Moravian etc.). It was up to the participants
which ornament they would choose and how they would use it in their mathematics
classroom.

The participants brainstormed the following topics:

• The Pythagorean theorem: Measure and calculate with the triangles in the
presented ornaments.

• Compare line symmetry, rotation and translation. What is typical for which
ornaments?

• Find all the different geometrical shapes you can find in one ornament; name
them and describe them.

• Study the concept of tessellation; find which ornament can make tessellation.
• Copy the ornaments on a square grid, look at their area. Use square grids of

different scale to study proportionality.
• Calculate the proportion of area of one colour.
• How much fabric (tartan) with this ornament would you need to make, for

instance, one kilt?
• Find the generating element.
• How many lines of symmetry are there in a specific ornament?
• The least common multiple (in case of Indian line ornaments).
• How many beads are needed to make one segment of Native American

ornament?
• How much tape is needed to decorate a wall of certain dimensions?
• Patchwork and ornaments: What geometrical shapes are possible for production

of patchwork?
• How many threads of each colour do we need to make one segment of tartan?
• Draw symmetrical ornaments, copy them from the original or have pupils create

their own ornaments.

The outcomes of the workshop were used to construct a lesson plan in which
ornaments were used to teach line symmetry. The lesson plan focused on the
development of pupils’ creativity. The proposed teaching unit was piloted in three
different settings and with pupils of different ages. The findings from the pilot
implementation were analysed with respect to modifications done in the different
settings as well as with respect to the results achieved in the implementation.

The methodology adopted was a workshop. The workshop is intended not just as
a physical place, but as a classroom activity where doing and thinking are closely
related and a teaching situation where the meaning of mathematical objects are
constructed through experiences that are rich and motivating for pupils.

Based on observations and materials collected in the workshop, a primary
teaching unit for Ornaments was developed. This primary teaching unit was then
piloted in three different environments (in different countries and with different ages
of pupils).
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10.3.2 The Teaching Unit Developed

Lesson 1

• Title of the lesson: Ornaments
• Revision of symmetry: look for lines of symmetry in different types of letters

(http://m3eal.dm.unipi.it/images/doc/07.teaching_materials/02/CZ_
TeachingUnit_EN_web.pdf; 10 min)

• Lead-in: Presentation on types of ornaments in different cultures (10 min)
• Main activity: Linking school knowledge to real objects pupils come across in

their everyday lives, active search for mathematical relations (also outside the
context of school mathematics) and development of flexibility (beyond appli-
cation of learned algorithms)

– Show ornaments from different cultures
– For one or two show ornaments, show the different types of symmetry and

transformations
– Give each student one ornament and ask them to find all lines of symmetry
– Ask students to name and copy all symmetrical geometrical figures in the

ornament
– Ask students to formulate a conclusion about the typical ornaments of a

particular culture

• Homework: Bring an ornamental decorated object from your home and bring
pictures of various ornaments from your holidays. (Active search for informa-
tion from other sources.)

Lesson 2

• Lead in: Present your ornaments; what types of ornaments are they and what
line symmetries did you find? (Presentation of individual discoveries)

• Main activity: Creative use of prior knowledge in new situations

– Give each student one of the three ornaments (Celtic, Native American,
Arabic rosette) and a square grid with different scales

– Ask students to find all lines of symmetry in their ornament
– Ask students to copy the ornament onto a square grid
– Ask students to count the number of at least partially coloured squares
– Ask students to calculate the area of the ornament (taking partially coloured

squares as covered squares)

• Follow-up: Copy the following chart on the whiteboard

Scale 0.5 cm 0.75 cm 1 cm 1.25 cm 1.5 cm 2 cm

Area
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What proportionality is there between the scale and area? (Generalization based
on discovered partial results, institutionalization.)

Creativity here was expected in the first lesson of this plan of a teaching unit where
pupils were expected to create ornaments with line symmetry and especially in the
assignment for homework where pupils would copy ornaments from their everyday
life and from their homes and cultures (or other cultures should they wish to).

The teaching unit was then sent to the project partners (in Vienna, Austria and
Pisa, Italy) for piloting to see its potential for use in a culturally heterogeneous
environment. In all the three pilot implementations, attention was paid to keeping
all aspects of the teaching unit that encourage the development of creativity,
especially allowing the search for individual approaches to solving the problems
and making conclusions from the findings.

10.4 Modifications in Different Countries

The developed teaching unit was then distributed to in-service teachers in three
countries (Austria, Italy, the Czech Republic) who had agreed on piloting it in their
own classroom. Although the initial plan for the first and second pilot implemen-
tations was to implement the teaching unit as the project partners developed it and
leave modifications for the third pilot implementation, the reality of different
classrooms, age levels and conditions caused the pilot teachers to adapt the lesson
plans in creative ways in order to meet the needs of their particular classrooms. The
conditions in the three countries varied not only in the age of pupils but also the
curricula, the number of lessons available, the number of migrants in the classroom
and the motivation and attitude of the pupils, thus providing wider and deeper
feedback as to the educational consistency and the didactical effectiveness of the
proposed teaching unit.

10.4.1 Implementation in the Czech Republic

In the Czech Republic, the activity was piloted in the fifth grade at ZŠ Fr.
Plamínkové s RVJ in Prague by the teacher with 24 years of practice. The group
was culturally homogeneous, which made the selection of ornaments arbitrary in
the sense that any ornaments could be chosen and only with respect to the math-
ematical content. The cultural background of pupils did not have to be taken into
account. The research team started by closely analysing the Framework Education
Programme for Primary School Education in the Czech Republic (MŠMT 2013)
and School Education Programmes for Primary School Education in the Czech
Republic (http://www.plaminkova.cz/skolni-vzdelavaci-program) to see which of
the topics listed in the above described proposal were suitable for this age group.
Czech fifth graders do not yet have knowledge of symmetries and do not work with
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them explicitly, but are likely to have intuitive knowledge of them. In the fifth grade
they learn to work in a square grid and can build their pre-concepts of plane
geometry (area and perimeter). They have not been introduced to the concept of
proportionality yet.

10.4.1.1 Classroom Piloting

Thus the decision was made by the team to adapt the teaching unit and to pilot the
teaching unit in two lessons in the following way: Lesson one would be based on
introduction to ornaments, discussion of ornaments, their types, shapes, differences
in cultures, basic elements of elements and namely discussion of Native American
ornaments (made of beads). Children were given a square grid (0.5 cm) and a
Native American ornament (Fig. 10.1) and were asked to copy it accurately square
by square. They were then asked to calculate the number of squares in one colour,
which was an introduction to area because of the scale.

Children were then given 1 cm square grid and another example of a Native
American ornament that had been embroidered rather than made of beads, i.e., it
was made of rectangular, not square elements (Fig. 10.2). Two parts of the orna-
ment had been copied on a square grid (one rectangle made of three times three

Fig. 10.1 Native American
ornament

Fig. 10.2 Rectangular
elements
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squares). The children were asked to copy these figures into a 1 cm square grid. As
each square was 1 cm square, the pupils could then easily state the area of different
geometrical figures they had drawn (rectangle, two rectangles, cross, pyramid etc.).
The same was done with perimeter.

Lesson 2 gave children more space for creativity. The lesson combined elements
of both maths and an art lesson. Children were shown two original Native American
ornaments (Figs. 10.3 and 10.4). They spoke about the figures they could see in
them (revision of mathematical language).

Fig. 10.3 Native American
ornaments

Fig. 10.4 Native American
ornaments
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Then they were given a model of an ornament with lines of symmetry indicated
and asked to finish the ornament (Fig. 10.5).

Having finished this, they were offered beads and square grids and asked to
model their own ornaments that would resemble Native American ornaments (e.g.,
would be based on similar geometrical figures).

For homework they were asked to look for ornaments they have at home and
copy them onto a grid to be brought to school.

Having concluded the teaching unit, the research team interviewed the teacher
and two of the children. The teacher in general evaluated the teaching unit as
motivating for her pupils. Pupils were occupied and working hard for most of the
two lessons. The materials allowed differentiation in the lesson (selection of figures
that were more or less difficult, number of figures assigned to pupils in which they
were to state area and perimeter). The teacher suggested that with this age group,
only a 1 cm square grid be used in all activities as it makes counting different
squares more meaningful from the very beginning. The pupils spoke in the inter-
view about enjoying the possibility of having art and mathematics combined and
having the chance to work with the new structures from a mathematics lesson to
create ornaments of their own.

10.4.1.2 Conclusions from Piloting in the Czech Republic

The piloting of the lesson showed that a teaching unit based on Native American
ornaments was very interesting and motivating for the pupils. The parts where the
pupils actively worked with the square grid and coloured pens and pencil, drew and
completed the symmetrical figure and created a figure of their own made them very
much involved; through these activities they learned a great deal of mathematics
without being fully aware they were doing more than just moving in the world of
Native American ornaments. At the same time, they were introduced into the world

Fig. 10.5 Model of an ornament with lines of symmetry

10 Ornaments and Tessellations: Encouraging Creativity … 265



of the concepts of area and perimeter as well as given a chance to activate their
knowledge of shapes and geometrical figures. There are many possible ways to
introduce area and perimeter, but this one seemed to be very motivating. It com-
bined creativity, fun, culture and mathematics. The teacher doing the pilot imple-
mentation, although she recommended some changes, e.g., use of 1 cm square grids
as a more direct way to the concept of perimeter and area, found the unit very
interesting and easily usable in her teaching. The whole lesson supported pupils’
individual creative discovery. The creative potential of the teaching unit was fully
used. The activity meets the criteria for SLE.

10.4.2 Implementation in Italy

The activity in Italy was designed for and developed by a group of students from
two different classes at the Istituto Comprensivo 1 of Poggibonsi (Province of
Siena) during the weeks of flexible teaching. In these weeks, the classes are open to
carry out various disciplinary or interdisciplinary activities and develop projects
outside the school. The group consisted of 15–18 students in the second classes of
lower secondary school who voluntarily worked on this project. The length of
practice of the two piloting female teachers was 30 and 37 years.

The topics dealt with in the teaching unit allowed retrieval of previous pieces of
knowledge but also allowed them to be seen in a different, more creative way.
Significant added value was represented by the affectivity, since the activity urged
reference to cultural aspects characteristic of the country of birth of the students.
The teaching unit topics allowed the introduction of teaching methods such as
problem posing that had not yet been used for the development of certain mathe-
matical skills.

There were four basic reasons for choosing to develop the teaching unit designed
by the Czech team of the M3EaL project, even though some relevant changes were
made, due mainly to the students’ higher age and mathematical knowledge:

• To look at reality with mathematical eyes
• To develop intercultural education, accompanied by the desire to let students

know about other cultural roots (in accordance to the educational model
described by the Italian Ministry of Public Instruction, MPI 2007)

• To develop a positive attitude to mathematics through meaningful experiences
(as suggested by the Italian National Guidelines, MIUR 2012)

• To describe, name and classify geometric figures, identifying their relevant
elements and symmetries and in order to make all students able to reproduce
these figures (as prescribed by the Italian National Guidelines, MIUR 2012).

All activities of the teaching unit were designed with reference to isometric
transformations, a topic only partly introduced in the previous school year. The
topic was addressed using a mirror: By putting a drawing or an object in front of the
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mirror and observing the reflected image, the students were able to discover the key
features of the axial symmetry (Figs. 10.6 and 10.7).

The next step was to build, as compositions of symmetries with parallel or
perpendicular axes, the other isometric transformations—translations and rotations
—and identify their basic features (Fig. 10.8 and 10.9). Afterwards all students
built some dynamic models that allowed them to represent the abovementioned
geometric transformations.

The object-action connection makes the student free to design and to interpret,
and it is for this reason that it becomes important to see, observe and interact with a
dynamic, non-static object.

Static environments in the classroom limit the students, forcing them to consider
one aspect only of the didactical scenario and do not help them to analyse it from
different points of view. Furthermore, such static environments do not stimulate and
foster students’ curiosity and creativity. Above all, neither allows them to speculate
or even less to argue, thus excluding a substantial part of those relevant educational
processes that are fundamental in the start and development of mathematical

Fig. 10.6 Discovering
features of line symmetry
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thinking. Therefore, in the design and the implementation of the teaching unit,
besides the use of the dynamic models already known by students, the plan was to
develop the activity with the use of a ‘room of mirrors’, a new experience for the
students. The pilot implementation was planned to cover four lessons. The
implementation is described below.

Fig. 10.7 Discovering
features of line symmetry

Fig. 10.8 Identification of
basic elements
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10.4.2.1 Classroom Piloting

Lesson 1

In the first lesson, two ornaments, a decoration and a rosette, were delivered to the
students, who had been divided into four groups of four or five students each.
Students were then asked to analyse the ornaments using a flat mirror in order to
identify what kind of isometric transformations had allowed the creation of the
ornaments. The didactical purpose of this activity was to rethink students’ prior
knowledge and to compare the results of the activities carried out in the different
groups, with the main objective being to investigate students’ conjecturing and their
ability to support their own arguments and confront possible arguments from other
classmates.

Decoration group

Students held a mirror vertically on the drawing (Figs. 10.6 and 10.7) and observed
that there is an axial symmetry with Square a as its module. When considering
Squares a, b and c (Fig. 10.8), double axial symmetry with parallel axes can clearly
be seen. Then, looking more closely, if we take the Figures a and b as a whole, a
translation to the right can also be detected.

At this point students asked themselves the question, ‘How long is the transla-
tion vector?’ Using the dynamic model, they verified that the length of the trans-
lation vector is exactly twice the distance between the two parallel axes that give
rise to the movement.

Rosette group

This is the description by the group working on the rosette of its own activity: ‘In
this pattern we saw immediately that there is axial symmetry with incident axes

Fig. 10.9 Identification of basic elements

10 Ornaments and Tessellations: Encouraging Creativity … 269



(Fig. 10.10). Then A pointed out to all of us that there is also a rotation, because it
is produced by the composition of two symmetries with incident axes. We then
decided to draw the axes of symmetry and we were able to find the centre of the
rotation. To check the rotation we took the transparency and had our dynamic
model (Fig. 10.11)’.

It is very interesting to realize that the students showed the module on the
decoration and the axes of symmetry in order to explain their reasoning and referred
again to the dynamic model in order to remove any possible doubts.

In this first lesson, to get confirmation of what had been observed, it was very
helpful to use a mirror and the dynamic models that the students had built.

Once reviewing the different isometric transformations was finished, students
were given individual homework assignments to write a summary of the work done
in the class (log book) and search for and bring, on the day of the next lesson,
objects and/or fabric available in the house that contained decorations and were
from their country of origin or obtained in countries they had visited.

Lesson 2

Both the objects and the fabrics were made available to students. Each group
selected an item of their own choice: a piece of fabric from Senegal and two other
pieces of fabric that a student uses at home to cover sofas. The three pieces of fabric
had different patterns, thus allowing each group to make different choices for
different reasons.

The following task was assigned to each group:

1. Give a motivation for the choice of the object/fabric
2. Identify the isometric transformations with the help of a mirror plane
3. Reproduce the chosen ornament on the two sheets with squared grids that have

been given
4. Identify the pattern generated on the fabric
5. Present other groups the chosen decoration, providing each of them with the

pattern generated and the instructions to create it.

Fig. 10.10 Rosette
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Clover group

The members of the group that had chosen the ornament with a clover pattern
(Fig. 10.12) gave themotivation their choice as the fact that it was ‘easy and pretty’. In
fact, as they wrote in their report, they were initially mistaken: ‘We thought only of
simple symmetries in both the petals and the pattern from square to square, but then
looking more closely with the mirror, we realized that there was a small flower stem
and that it was not an axial symmetry, then, but a central symmetry…. For this we used
the transparency with a snap fastener with the popper, to better understand it’.

The work done (Fig. 10.13) provides clear evidence of their research. From the
base pattern, with successive rotations of 90°, they came to represent the decoration
of the fabric. The discussion in the group clearly showed how the different colours
(black and red) of the flowers helped students’ development of their thought.

Small frame group

The group that chose the decoration with small frames (Fig. 10.14) stated that they
did it because ‘it looked like one of the small frames that were made during the
elementary school years’. Students easily reproduced the pattern, immediately

Fig. 10.11 Checking rotation

Fig. 10.12 Ornament with
clovers
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identifying and highlighting the translation (Fig. 10.15) which allowed them to
reconstruct the entire decoration. Also on this occasion, after the moment of
euphoria they felt about the speed of their execution, students paid attention to the
central decoration that was ‘made of small rectangles’. The students realized that
there were other symmetries: in particular, a pair of central symmetries that con-
sisted of a series of four 90° rotations (Fig. 10.16).

Lozenge group

This group chose a very colourful decoration that had curves and straight lines and
two different ways of decorating (Fig. 10.17). The rather complicated structure of
the ornament made it difficult for the group to represent the fabric design on paper,
and a little help from the teacher was necessary. The students then realized that only
four rotations of 90° were needed to recreate the ornament and then easily identified
and composed the basic pattern.

Fig. 10.13 Representation of the decoration

Fig. 10.14 Decoration with small frames

Fig. 10.15 Highlighting the translation
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Rosette group

The rosette (Fig. 10.18) undermined the students: They failed to identify the
starting pattern, could see some symmetries, but only in two pairs of the ornament
elements and recognized the rotations but could not explain how to make use of
them. Therefore, the group decided to give up for the moment and agreed with the
two teachers to work more on this ornament in the next lesson.

Lesson 3

From the ‘room of mirrors’ to proportionality

The lesson started with the teachers taking a few mirrors into the classroom and
assigning the students the following task.

Consider the patterns you made in the previous lesson that originated from the
rosette ornament (Fig. 10.19). Place the patterns one at a time in the ‘mirror room’

Fig. 10.16 Central symmetries

Fig. 10.17 Example of decoration chosen by Lozenge group
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(the new setting obtained through the introduction of the mirrors) and tell how
many of them are needed to complete the ornament (Fig. 10.20a–c).

The teachers’ intention was to promote and encourage students’ creativity and
elicit their ability to abstract and conjecture.

Students began to put the mirrors over the pattern at an angle of 90°. When they
did this, they saw four images (three are reflected and one is the real one) forming a
flooring, that is, an entire decoration. Having then put the mirrors to another pattern,
they realised that ‘with the 45° angle, however, we get 8 images, so they doubled.
Yet the angle is decreased; more precisely, it’s halved!’ This remark stimulated the
curiosity of the students, who began to try other pieces of the ornament. Then,
without any hint from the teachers, they came to say that if the angle of the mirror

Fig. 10.18 Rosette

Fig. 10.19 Pattern originating from the rosette ornament
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room decreases, the number of images that are necessary to complete a rosette
increases.

The teachers wanted to get deeper into the topic and suggested that students use the
protractor to find the angle between the mirrors and place a thin object such as a pencil
in the ‘room of mirrors’. They also suggested building a table with the angle between
the mirrors and the corresponding number of images obtained. The angle will have a
measure equal to a sub-multiple of the full angle. In the table, then, there are going to
be not only the pairs (90, 4), (180, 2) and (45, 8) but also, for example, (30, 12), (40, 9).
The table will clearly show the relationship angle width ←!number of images
because it is easy to see that if the angle halves, becomes a third and so on, the number
of images doubles, triples and so on. Students could, therefore, observe that the
product of the angle width by the number of images is constant and equal to 360°, the
full angle. In this way the students discovered intuitively, but at the same time rig-
orously, the law of inverse proportionality!

Afterwards, the teachers decided to ask students to represent the data in the table
by points on a Cartesian plane and connect them. In this way, students were able to
realise that the points can be seen as elements of a curve that they did not know yet:
a branch of hyperbole.

It is here that the student B asked: ‘Why does this graph start at 10°? If I close
the room, that is if the angle is zero, what happens? I do not see anything so I don’t
get any figure; the images are zero… but then it does not work… there’s something
wrong.’ This student’s doubt became a resource for everyone! The teachers sug-
gested then that students put a piece of string in the room of mirrors and look
attentively what happens when closing mirrors slowly. The closure action enabled

Fig. 10.20 Completing the rosette

10 Ornaments and Tessellations: Encouraging Creativity … 275



students to understand that the images are not zero but infinite: ‘In fact, we do not
see them because they are inside!’ Once again the dynamism of an object led to
examination of an important limit case that would not be easy to deal with and
understand using only arithmetic, since division by zero is impossible. In this way,
the students, through an operation that they verified to be impossible, were able to
grasp the idea of infinity.

Lesson 4

Art tessellations

The students had already worked on the tessellation of the plan and knew what
the regular polygons (equilateral triangles, squares, hexagons) were that make it
possible and the reason why. A slightly modified version of this activity—which
had already been carried out—was proposed to the students, with the aim of
unleashing their ‘artistic creativity’.

Students were asked to cut out a part of a square and place it on the opposite
side. In this way they produced a pattern that, by subsequent translations, created a
tessellation. The same activity could be proposed using other regular polygons,
such as an equilateral triangle. The creativity of the students transformed the pat-
terns they created into subjects that became the ‘heroes’ of these new and very
personal tessellations (Fig. 10.21).

The activity was very much enjoyed by the students who, after some temporary
confusion due to the actual construction of the pattern, had fun creating beautiful
floors while showing imagination and artistic sense.

Unlike what happened with the square and the parallelogram, the use of the
triangle as the polygon to start from proved to be difficult. Where should the cut part
be placed in order to obtain a tessellation? Is it OK to put it on any of the other two
sides? Or is it necessary to place it on the same side that it was cut from? This
question arose spontaneously and led to a good discussion that was developed with
good arguments. Once again, the hand, in a context that was emotional and

Fig. 10.21 Example of a
personal tessellation
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meaningful, encouraged the spontaneous birth of interesting questions that, prop-
erly managed by the teacher, gave the opportunity to break new ground or retrace
paths already experienced, but with a different perspective, developing a continuous
reconstruction of knowledge.

10.4.2.2 Conclusions from Piloting in Italy

The Italian research team and the teachers doing the pilot implementation were
firmly convinced that more than just having students accumulate knowledge by
merely passing on to them notions and information that are often not interlinked or
interrelated, teachers should try to stimulate students’ aptitude to pose problems that
can increase their motivation and foster discoveries. The teaching unit described
above falls within this framework, making use of workshop activities in such a way
that learning is really centred on the student’s needs and characteristics. The student
is the investigator and, as such, acquires the ability to identify, accept, confront and
solve new problems, both individually and in groups.

The development of the teaching unit is rooted on three methodological
cornerstones:

1. Setting context problems
2. Fostering the asking of questions
3. Working in groups so that the heterogeneity of the students is a resource for the

entire class, with a view to getting more and more inclusive learning.

With respect to development of creativity, all stages of the teaching unit were
based on students’ creative approaches to problem solving, discovery of patterns,
rules and regularities, generalization and active search for needed information. In
this case, the activity also meets the criteria for SLE.

10.4.3 Implementation in Austria

The teaching unit was piloted by a mathematics teacher with five years teaching
experience working in an upper secondary school near Vienna. The teacher chose to
conduct the pilot implementation of Lesson 1 during a regular mathematics class
(50 min) in the sixth grade and of Lesson 2 during a 50-min class using fieldwork
(i.e., collecting information outside the classroom, laboratory etc.) as a teaching
method. Eight students (aged 17–18), three of whom were migrant students,
attended the class.

The original teaching unit, designed by the M3EaL project Czech team, was
implemented with a completely different age group with very different skills and
motivation. While primary school children tend to be very eager to be creative and
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draw and work with beads, upper secondary school students need not only different
content but also different methods and motivation.

10.4.3.1 Classroom Piloting

The teacher introduced the topic for Lesson 1 by bringing to the classroom several
objects with Japanese, South African and US motives (Fig. 10.22) from her private
possession. The students formed groups of two and were asked to look for sym-
metries and different geometrical figures and then compare the different kinds of
figures and symmetries in each of the different cultures that they found in the
objects. Each group then briefly presented their findings in front of the whole class,
and the other groups wrote them down in their notebooks. At the end of the lesson,
the teacher asked the students to bring actual examples of ornaments or pictures of
ornaments from different cultures to the next lesson, as suggested in the original
proposal by the Czech research team. The students argued, however, that only very
few of them (or their families) actually had suitable ornaments or pictures at home.
Repeating the lesson with more objects from the teachers’ collection was seen as
not very interesting by both the teacher and the students. The students then came up
with the idea to go out into nature and bring pictures of symmetries or geometric
figures that are found in flowers or plants instead. The teacher argued that if
symmetry in nature would be interesting for the students, it would be better to
actually make a field work session out of Lesson 2 instead of just looking at the
pictures. It therefore was decided that Lesson 2 would be modified, and students
would go out together with the teacher, look for symmetries in nature and take
photos for later discussion of symmetry and scale in class (the last part that occurred
back in classroom was not part of the pilot implementation).

Lesson 2 started with the teacher reminding the students of the different kinds of
symmetries and figures as well as special angles (e.g., from Fibonacci numbers).
Then the teacher and the students went out into a field near the school to look for
the occurrence of symmetries and geometric figures in both natural and artificial

Fig. 10.22 Japanese, South African and US motives
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objects. Students first looked for the occurrence of certain angles on plants. Very
soon they realized that 137.5° was a very frequent angle on a number of species of
plants, a fact that impressed the students very much. Students took pictures of the
objects to use in the next lesson.

The unit continued with the students looking for symmetries, particularly for
mirror symmetry (Fig. 10.23). The students were mostly able to state that the object
did actually show some kind of symmetry but were not always able to name the
kind of symmetry concerned. As a result, the students fairly often pointed out
symmetries and the teacher explained the particular symmetry of the object.

Students then started a discussion about how exact these symmetries actually
were. The teacher used this opportunity to point out that real objects (regardless of
whether they were artificial objects such as the ones she brought into the classroom
in Lesson 1 or natural objects such as grass) are never exactly symmetric in a
mathematical way and that this is where modelling comes into play.

At the end of the lesson, artificial objects (e.g., advertising pillars and patterns on
t-shirts) were also checked out, and the students and the teacher discussed whether
the patterns and/or the form of the pillar have cultural and/or practical reasons.
Several of the shirt patterns were photographed; the patterns came from different
cultural backgrounds that the students (according to their own statements) did not
know when they bought the shirts. The teacher’s homework was to determine the
cultural backgrounds and cultural relevance of the photographed patterns.

The lesson ended back in the school building, where the homework assignment
was repeated.

10.4.3.2 Conclusions from Piloting in Austria

This pilot implementation showed that even if the unit is modified and—at least
superficially—moves away from the intercultural aspects, these aspects can easily

Fig. 10.23 Students looking
for symmetries
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be brought back into the minds of the students by referring to everyday objects and
their cultural connections.

In the following interview with the research team, the teacher spoke very highly
of the students’ involvement in the field work and their creativity when looking for
patterns and describing patterns on everyday objects. The possibility of being active
and creative in this implementation again helped the students discover enthusias-
tically. Although the cultural focus disappeared in the second lesson and the
attention was shifted to natural objects, the unit retained its active and creative drive
and was appreciated both by the teacher and the students. Even if the teaching unit
is designed in this way, the creative potential of the primary teaching unit is not lost.
Furthermore, the criteria for SLE are fully met.

10.4.4 Conclusions from the Three Pilot Implementations

It can thus be concluded that all three adaptations of the original teaching unit were
creative and triggered pupils’ creativity. Teachers used elements of fieldwork, arts
and crafts to make the lessons more creative and motivate their pupils. While in
Austria the lesson was changed to going out of the classroom to look for ‘orna-
ments’ in wildlife, Italian and Czech pupils used drawing to discover properties
such as line symmetries, rotations and translations, and area and perimeter.

Creativity was an essential element both at the stages of lesson planning and
conducting the lessons. Only creative teachers are able to adapt a teaching unit
designed as an SLE and use the potential of the suggested setting to teach the
mathematics they need in the particular group and at the particular level of their
pupils. And pupils, if engaged in creative activities, are more likely to have positive
attitudes to mathematics and learn it without actually being aware of doing ‘diffi-
cult’ mathematics. In line with the principles of inquiry-based education, where
pupils discover mathematical concepts and procedures by making conjectures by
testing and through independent discovery, creative activities give pupils the space
needed for discovery of many important concepts and procedures. Creativity brings
fun and is challenging but also supports discovery. Its place in mathematics lessons
is crucial.

This teaching unit allows teachers to meet today’s students’ needs without
sacrificing the teaching of the basic concepts of the discipline. Even the realization
of ornaments, an activity that makes the student free to experiment and indulge in
fantasy, offers an emotional dimension that is important, because learning is diffi-
cult if the sphere of emotions is not positively affected. On the other hand, team-
work allows students to learn how to defend their conjectures and at the same time
accept change when others’ arguments are clear and justified.

The whole activity, therefore, is based on fundamental aspects of the learning; in
fact, it requires students to be active, constructive, collaborative, contextual and
thoughtful. This way it provides excellent opportunities to build skills.
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10.5 Conclusions

There are many problems mathematics teachers face nowadays: They work with
unmotivated students and in socially heterogeneous cultures. This makes it crucial
for a teacher to be able to design teaching units that allow students to see reality
from different perspectives and also to develop greater self-knowledge. The three
pilot implementations of the teaching unit described above show that it has the
potential of meeting today’s students’ needs without sacrificing the teaching of the
basic concepts of the discipline. Even though mathematics is often seen as an
abstract matter, it can instead become somewhat closer to them and to their reality.
The use of everyday objects such as ornaments gives the subject an affective aspect
that is not to be neglected. Creation of ornaments helps the students become free to
experiment and indulge their imagination and offers an emotional dimension that is
important.

The paper presented here shows that SLEs, as defined and developed by
Wittman, support creativity in mathematics lessons—both on the teachers’ and the
pupils’ part. If given the cultural background and the environment, teachers are
naturally motivated to use their creative potential to look for the mathematics that
can be discovered and taught in that particular environment.
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Chapter 11
Instances of Promoting Creativity
with Procedural Tasks

Michal Tabach and Alex Friedlander

Abstract The learning of algebraic procedures in middle-school algebra is usually
perceived as an algorithmic activity, achieved by performing sequences of short
drill-and-practice tasks, which have little to do with conceptual learning or with
creative mathematical thinking. The goal of this chapter is to explore possible ways
by which all middle-grade students can be encouraged to apply higher-order
thinking in the context of tasks that integrate procedural work, conceptual under-
standing and creative thinking. Each of the five instances presented in this chapter
was intended to promote creative thinking in the context of procedural tasks. An
a-priori task analysis and data collected in some of our previous studies indicate the
presence of many learning competencies and high levels of mathematical creativity
in the participating students’ work. Thus, we conclude that certain procedural tasks
have a strong potential to promote higher-order, and creative thinking.

Keywords Procedural tasks � Creative thinking � Drill-and-practice tasks

11.1 Introduction

The learning of algebraic procedures in middle-school algebra is usually perceived
as an algorithmic activity, achieved by performing sequences of short
drill-and-practice tasks, which have little to do with conceptual learning or with
creative mathematical thinking. Traditionally, both research and classroom teaching
distinguished between procedural and conceptual tasks (e.g., Rittle-Johnson and
Alibali 1999), and as a result, a considerable part of teaching and learning algebra
has focused on routine practice and the application of rules, procedures, and
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techniques. More recently, an integrated approach between learning of rules and
procedures on one side, and a deeper understanding of their meaning and a flexible
choice of solution methods on the other side were recommended (Kieran 2004; Star
2007; NCTM 2000; Friedlander and Arcavi 2012; 2017).
The aim of this chapter is to explore the potential of integrated procedural tasks—
i.e., tasks that add a conceptual dimension to the learning of algebraic procedures,
to promote mathematical creativity for all middle-grade students. In the following
sections, we present and analyze five exemplary tasks. In this chapter, we review
our current research on the potential of some middle-school algebra tasks that
address both domains of procedural and conceptual learning, with a focus on
aspects related to students’ creativity. Our analysis will focus on aspects of stu-
dents’ creative thinking, and will be based on (a) a task analysis according to a set
of cognitive skills (sometimes referred to as students’ learning competencies)
required by each activity—as proposed in Friedlander and Arcavi (2012; 2017), and
(b) an analysis of findings on students’ work on each of the five exemplary tasks—
as reported in our previous research or in our unpublished experimentations.

11.1.1 Students’ Learning Competencies

Student competencies are referred in literature in a wide variety of contexts—for
example, as structured sets of knowledge, skills or attitudes. Some of them are also
listed in the literature as being traits of gifted students. In our context, we refer to
students’ learning competencies as defined by Friedlander and Arcavi (2017). In
their book, student competencies are viewed as a set of categories of generic skills
required in students’ attempt to solve a task. Friedlander and Arcavi analyze their
collection of about fifty algebraic tasks according to eight student competencies—
the following six of which are relevant to the goals of this chapter:

• Representing, modeling, and interpreting: Algebraic expressions, equations, and
functions represent quantities, patterns of, and relationships between quantities.
As such, they can be used as mathematical models of real or mathematical
situations, relationships, or properties. Students should be required to analyze
and operate on these models, interpret the results, and on that basis, derive new
knowledge about the situations they represent.

• Reverse thinking: Some tasks require students to reverse the ‘direction’ of an
activity by resorting to backward thinking, or reconstructing a procedure already
performed but missing. Thus, students should be able to reconstruct expressions
or equations based on partial information or on the given final result.

• Generating examples: Students should be required to explore, try, create, and
review their understandings by generating examples or counterexamples to a
given assertion. Providing a variety of examples or counterexamples, and
comparing them with those provided by others also stimulates divergent
thinking.
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• Generalizing: Students should experience a main activity in algebra consisting
of identifying patterns, relations, properties, and processes of variation, and
expressing them in symbolical, graphical, numerical, or verbal representations.

• Justifying and proving: Students should also experience algebra (and not only
geometry) as a domain that allows them to engage in proofs of statements/
properties either provided by the teacher or conjectured by themselves.

• Divergent thinking: students should encounter tasks that involve and promote
multiple-solution methods, a wide variety of answers, meaningful mathematical
discussions, and opportunities for creative solutions. Divergent thinking
involves the creative generation of multiple answers to a particular problem (in
contrast to convergent thinking, which aims for a single, correct solution).

In the following sections, we will attempt to establish which of these learning
competencies are required by our integrative procedural tasks.

11.1.2 Students’ Mathematical Creativity

There is no one acceptable definition of creative mathematical thinking in general,
or of creative mathematical thinking in the context of school mathematics, in
particular (Leikin and Sriraman 2017). Nevertheless, there are some accepted
characteristics for creative mathematical thinking. For example, Guilford (1967)
linked creative thinking with divergent thinking (or production). Divergent thinking
in mathematics involves the creative generation of multiple solution paths and/or
multiple answers to a particular problem. Torrance (1974) identified creativity in
general by specifying three components: fluency refers to the number of ideas
generated in response to a prompt, flexibility is assessed by the number of apparent
shifts in approaches taken when generating responses to a prompt, and novelty
considers the originality of the ideas generated in response to a prompt.

In our view, creative thinking in mathematics involves thinking on a problem
from different perspectives and points of view, and is characterized by fluency,
flexibility and originality. In the following sections, we will attempt to analyze data
on students’ work on our integrative procedural tasks according to these three
characteristics of creative thinking. Also, we would like to note that manifestations
of creativity and higher-order thinking in procedural tasks will be considered in the
context of two different kinds of tasks:

• procedural tasks that allow or require students or groups of students to produce
multiple solutions according to their mathematical knowledge, ability and cre-
ativity (i.e., fluency/flexibility/originality)

• procedural tasks that allow or require students or groups of students to employ
multiple solution methods, and to choose a method or to solve the task at hand in
a variety of ways according to their mathematical knowledge, ability, cognitive
preference and creativity.
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As mentioned above, in the following sections we examine the potential of five
different instances to provide students opportunities to employ creative thinking
related to understanding and practicing algebraic procedures—such as symbolic
manipulations of algebraic expressions and solving equations. In two of the pre-
sented instances we also examine the potential of using technological tools in
achieving this purpose.

11.2 Five Instances of Procedural Tasks

11.2.1 Employing Creative Thinking to Understand
Distribution

The Identical Columns activity

Rationale. Spreadsheets can serve as a bridge between arithmetic and algebra
(Haspekian 2005; Wilson et al. 2005). Moreover, they have the potential to provide
a natural need for using a rich variety of symbolic expressions (“formulas”) to
create a large number of numerical tables.
We describe here briefly a study (Tabach and Friedlander 2008) that involved a
spreadsheet-based activity called Identical Columns (Fig. 11.1). The purpose of the
activity was to allow students to consider the conceptual aspects of learning the
transformational skill of using the distributive law to produce equivalent algebraic
expressions.

In the first task, the students were required to perform the following operations:

– fill in each of the two speadsheet Columns A and B a given set of numbers, that
form an arithmetical sequence. [Note: The choice of arithmetical sequences,
rather than discrete numbers, was not inherent to the task, but it allowed students
to fill in these columns by using formulas.]

– construct in Column C, the sum of the corresponding numbers given in
Columns A and B (A + B)

– construct in Column D the sum 2A + 2B
– use Columns A, B, or C in order to create two other columns that are identical to

Column D.

The purpose of this task was to stress the symbolic equivalence between the
expressions 2A + 2B and 2(A + B)—i.e., the symbolic representation of the dis-
tributive law. The expected spreadsheet formulas were 2(A + B),

A + A + B + B, A + B + C, or 2C. The request to create two (rather than just
one) corresponding columns was intended to encourage students to think creatively
about general relationships, rather than look for idiosyncratic numerical
connections.
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In the second part of this activity, students were asked to write in Column G the
formula 10(A + B) and again, to use Columns A and B in order to create two
columns of their own that are identical to G. The expected spreadsheet formulas for
this task were 10A + 10B, or (A + B)10.

Note that the two tasks required the consideration of the distributive law, in two
different directions and meanings—by factoring out and by expanding a symbolic
expression.

The use of spreadsheets in this activity was intended to provide students with
numerical support for symbolic transformations, to enable them to produce their

Copy the following pairs of numbers to your spreadsheet:

1. a) Write in Column C the sum of the numbers from Columns A and B ( =A+B).

b) Write in Column D the sum =2∙A + 2∙B

c) Use Columns A, B, or C in different ways, to create additional columns that are 
identical to Column D.

Write down the Excel formulas that you used to obtain the identical columns: 

Your first formula     __________________ 

Your second formula __________________ 

d) Use symbolic language to write the relations between the formula 2∙A + 2∙B and your 
formulas for identical columns. 

2∙A + 2∙B = ________________

2∙A + 2∙B = ________________

2. a) Write in Column G the product =10·(A + B).

b) Use only Columns A and B in different ways to create other columns that are 
identical to Column G.

c) Use symbolic language to write the relations between the formula 10∙(A + B) and 
your formulas for identical columns. 

10∙(A + B) = _____________

10∙(A + B) = _____________

Fig. 11.1 Identical Columns—a spreadsheet-based activity (Tabach and Friedlander 2008)
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own expressions, and to test their hypotheses using the resulting numbers. In these
tasks, obtaining identical number columns indicates the equivalence of symbolic
expressions, whereas a mismatch indicates the need for additional adaptations of the
employed formula.

Learning Competencies. Our task analysis led us to link this activity to the fol-
lowing competencies listed in the introductory section as having a potential to elicit
mathematical creativity:

• Representing, modeling, and interpreting: Students are required to look for
relationships between symbolicaly represented numbers or quantities, to analyze
and operate on these representations, interpret the results, and on that basis,
derive new knowledge about the relationships they represent.

• Reverse thinking: The activity requires students to employ the distributive law in
both directions—expanding expressions of the form k(A + B) and factoring out
expressions of the form kA + kB.

• Generating examples: Students are expected to analyze the given numbers, and
to generate examples of algebraic expressions (formulas in spreadsheet termi-
nology) that create a required result.

• Generalizing: The activity requires students to identify relations and properties,
and express them in numerical and symbolic representations.

• Divergent thinking: Students encounter an activity that involves both multiple
solution methods (for example, examining the given numbers and generalizing,
or identifying and applying a general rule), and a wide variety of possible
solutions (i.e., a wide variety of equivalent expressions).

Method. The activity was presented to three classes of seventh grade students,
around the middle of the first year of a beginning algebra course, conducted in a
learning environment composed of both spreadsheets and paper-and-pencil activi-
ties. The work on this activity (Fig. 11.1) was conducted with 41 pairs of students
in a computer laboratory. The data of this study was based on 41 Excel files
produced as part of their regular work, and as such, they reflect final results, rather
than solution processes. In the analysis of student responses to the two
spreadsheet-based parts, we considered both the final results and the strategies used.

Findings. Table 11.1 presents the expressions produced by the participating stu-
dents, categorized by the employed strategies deduced from the data. We would like
to note that all the expressions are indeed equivalent, a fact that can be attributed to
the use of spreadsheet.
The students’ work contained 22 and 31 different expressions for the first and the
second tasks, respectively. This richness of expressions was not expected, and we
see it as an indication of students’ ability to employ original thinking.
In the first part of the activity, we categorized 58% of the expressions as based on
symbolic reasoning (i.e., applying symbolic procedures), whereas 42% of the
expressions were considered the result of a generalization activity (i.e., applying
numerical considerations). In the second task, a total of 92% of the employed
solution methods suggested applying symbolic procedures, and only 8% of the
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expressions were considered to be based on numerical considerations. This dif-
ference between the two tasks can be attributed to the numbers involved (a factor of
10 as compared to a factor of 2), to the students’ realizing the advantages of using
symbolic considerations for this particular task, or to the fact that the operation of
expanding is intrinsically easier than that of factoring out.

The Creativity Perspective. The main purpose of this study was to investigate
possibilities to promote the understanding and learning of algebraic procedures. The
variety of strategies employed and the resulting equivalent symbolic expressions
indicate yet another way of promoting creative thinking with a procedural task.

Table 11.1 Expressions and strategies in the Identical Columns activity (N = 41 Excel files,
Tabach and Friedlander 2008)

Strategy Sample of expressions

Task 1
N = 87 Expressions (frequency
%)

Task 2
N = 71 Expressions (frequency
%)

Numerical
considerations

C + C (42%)
C � 4/2
2C
A + B + C

10C (8%)

Distributive law 2(A + B) (24%)
(A + B) � 2

10A + 10B (57%)
10B + 10A
(A � 5 + B � 5)2
5((A � 2) + (B � 2))
(A � 2 + B � 2) � 5
(A + B) � 5 + (A + B) � 5
(A + A + B + B) � 5
(A + B + A + B) � 5
5 � (A + B) + 5 � (A + B)
(A � 6 + B � 6) + (A + B) � 4

Additive A + A + B + B (20%)
(A + B) + (A + B)
B + B + A + A

A + A + ⋯ + B + B⋯ (10%)
A + B + A + B⋯
A + A + 8A + B + B + 8B

Commutative A � 2 + B � 2 (5%)
2B + 2A
B � 2 + A � 2

(A + B) � 10 (6%)
10(B + A)

Other symbolic
strategies

(A + 2) � 2 + (B − 2) � 2 (9%)
A/0.5 + B/0.5
((A � 4) + (B � 4))/2
C − A + B + A � 2
A�4�4/8 + B�10−4/20
2A + 2B + C − C

(A + B)2 � 5 (19%)
5 � 2 � (A + B)
(A + B) � 5 � 2
(A + B) � 2.5 � 4
(A + B)/0.1
10(A + B + A − A)
(A + B) � 20/2
5 � 2 � (A + B)
(5 + 5)(A + B)
(15 − 5)(A + B)
−10(−A + −B)
(A + B)4 � 4 � 10/16 � 75/300
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The students as a group exhibited fluency in terms of the number of solutions
produced for each task, and in terms of the number of solution strategies employed.
As mentioned in Table 11.1, 22 and 31 different expressions were created for the
first and the second task respectively—as compared to our expectation of at most
four expressions for each task. As shown in the last row of Table 11.1, the students
also demonstrated a high degree of fluency of solution methods—besides the four
main strategies of employing numerical considerations, the distributive law, addi-
tive and commutative reasoning.
The participating students displayed flexibility by producing in most cases two
solutions (i.e., two equivalent expressions) that were considerably different one
from the other, and were obtained by employing different solution strategies.
A low percentage of students’ employing a certain strategy was considered an
indicator of a high degree of group originality. Thus, in the first task less than 10%
of the students employed a commutative, or another symbolic strategy, and as a
result they were considered original solution methods. Likewise, in the second task,
less than 10% of the students applied numerical considerations, additive, or com-
mutative strategies, and as a result they were considered original solution methods.

11.2.2 Students as Designers of Procedural Tasks

The Make-a-Quiz activity

Rationale. Algebraic expressions produced in a process of algebraic simplification
are equivalent. Consequently, the concept of equivalent expressions is traditionally
linked with the algebraic procedures related to simplifying expressions. In one of
our studies (Tabach and Friedlander 2017) we explored the potential of some
problem posing tasks related to the topic of equivalent expressions, to promote
conceptual understanding, procedural fluency and creative mathematical thinking.

Method. The Make-a-Quiz activity presented in this instance required 56
ninth-grade students learning in three heterogeneous mathematics classes of one
urban middle-grade school, to design a multiple-choice questionnaire on the topic
of equivalent algebraic expressions. In each of the six test items, students were
given an algebraic expression (the stem), and were asked to provide several correct
answers (equivalent to the given expression), and several incorrect distractors
(non-equivalent to the given expression).
The instructions of this activity were: “Write four distractors for each quiz item. Try
to give more than one correct answer and some good distractors”. The following
expressions were given to the participating students as the stems of the six test
items: (a) 7� 2 � ðx� 3Þ ¼; (b) 5x� 2x � ðx� 3Þ ¼; (c) x

2 þ 2x ¼;
(d) 10� 1

4 xþ x
2 ¼; (e) 1� x�7

2 ¼; and (f) ð5� xÞ � ð6þ xÞ ¼.
In order to provide examples of correct answers, students were expected to be
familiar and creative with regard to accepted ways of simplifying expressions,
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whereas the construction of “good distractors”, required creativity based on
awareness of misconceptions and errors in performing operations on algebraic
expressions.
Student work on the Make-a-Quiz activity requires both procedural skills (profi-
ciency in creating equivalent expressions), and a deeper understanding of proce-
dures of simplifying algebraic expressions.

Learning Competencies. We assumed that work on this type of activities requires
several learning competencies that we would like to relate to creative thinking—
such as

• Representing and interpreting: Students are expected to realize that the set of
expressions that are equivalent to a given one is diverse and includes a wide
varity besides the simplified form of the given expression. Students are also
expected to be aware of common misconceptions and errors related to the
mathematical concept of equivalent expressions by creating “good” distractors
for non-equivalent expressions.

• Reverse thinking: Rather than simplifying expressions in an algorithmic process,
students construct complex expressions that are equivalent to a given relatively
simpler one.

• Generating examples: Students are encouraged to explore, try, create, and
review their understandings by generating examples and counterexamples of
equivalent expressions.

• Divergent thinking: Students are expected to provide a wide variety of equiv-
alent expression and “good” distractors for a given expression.

Method. A total of 56 ninth-grade students learning in three heterogeneous math-
ematics classes of one urban middle-grade school participated in the study. Their
background in algebra consisted of a two-year beginning algebra course that
included the basic procedures related to simplifying algebraic expressions and
solving linear equations. Before theMake-a-Quiz activity, the students were given a
regular multiple choice questionnaire on the same topic, in order to get acquainted
with the structure of multiple-choice items, with thinking processes involved in
answering this type of items, and with principles involved in their design.

Findings. Table 11.2 presents some of the more frequent types of responses pro-
vided as equivalent expressions (i.e., correct answers) analyzed with regard to their
level of originality, whereas Table 11.3 presents the more frequently found
responses of non-equivalent expressions (i.e., distractors) categorized by levels of
awareness of errors, for four of the six quiz items.

The Creativity Perspective. As stated in our task analysis above, we assumed that
work on this kind of activities requires and promotes creative mathematical
thinking. The findings indicate that the students produced for each stem: between
11 and 32 different equivalent expressions, and between 66 and 102 different
non-equivalent expressions. Thus, as a group, the students exhibited a high degree
of fluency in terms of the number of solutions.
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As for originality, our findings indicate that (1) about a third of the 56 participating
students were able to display a medium or high level of originality in the con-
struction of equivalent expressions, and (2) about 80% of the students demonstrated
medium to high level of awareness of errors—i.e., provided distractors based on
commonly encountered errors.

Table 11.2 Frequent responses for equivalent expressions by level of originality (Tabach and
Friedlander 2017)

Level Item

7 − 2(x − 3) = 5x − 2x(x − 3) = x
2
þ 2x ¼ (5 − x)(6 + x) =

Lowa 7 − 2x + 6;
13 − 2x

5x − 2x2 + 6x;
11x − 2x2

2.5x;
5x
2

30 − x − x2;
30 + 5x − 6x − x2

Mediumb
–2x + 13;
7
1
� 2 � x

1
� 3

� � (20x − 9x) − 2x2;
5x + 6x − 2x2

5x
10

þ 30x
15

2x
4

þ 2x
1

–x2 − x + 30; 30 − x2 − x

Highc 7 + 2(3 − x);
2(–x + 3) + 7

5x + 2x(3 − x);
5x + 2x(–x + 3)

10x
4
;

3x
2

þ x

(5 � 6 + 5x) − (x � 6 + x � x);
(5 − x)6 + (5 − x)x

aMinor change by direct derivation of the given expression
bSlight change in addition to direct derivation
cNon-routine change

Table 11.3 Frequent responses for non-equivalent expressions, by level of awareness of errors
(Tabach and Friedlander 2017)

Level Item

7 − 2(x − 3) = 5x − 2x(x − 3) = x
2
þ 2x ¼ (5 − x)(6 + x) =

Lowa 2x + 6 + 7;
15x

3x(x − 3);
5x − 2x2−6x

x
2
� 2x
1

4x
2

(5 − x)(6x);
(5–6)(x + x)

Mediumb 2x + 1;
5x + 15

5x + 2x(x − 3);
5x − 2x(3 − x)

xþ 2x
2þ 1
x + 4x

(6 − x)(5 + x);
30 + x − x2

Highc 1–2x;
5(x − 3)

−3x(x − 3);
5x − 2x2−6

3x
2
xþ 2x
2

(5 + x)(6 − x);
30 − x2

aprovided by one or two students
bprovided by 3–7 students
cprovided by eight or more students
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11.2.3 Solving Equations in Multiple Ways

The Solve It in Many Ways activity

Rationale. Equations can be solved by different methods, having thus the potential
to promote mathematical creativity in the context of procedural learning. Research
on students’ ability to choose, employ and integrate various tools in the solution of
algebraic tasks in general and of algebraic procedural tasks in particular, is scant.
The limited knowledge on this issue is also related to the fact that regular classroom
tasks in algebra frequently recommend explicitly the representations and tools that
should be employed.
The goal of a study conducted by one of the authors and his colleague (Friedlander
and Stein 2001) was to investigate (a) students’ ability to solve algebraic equations
in an environment that provides a variety of tools, (b) students’ ability to choose,
employ and integrate various representations and tools in their solution process, and
(c) students’ view of their solution tools.
In the present chapter the focus will be on the perspective of promoting creative
mathematical thinking.
The Solve It in Many Ways activity provides students a linear equation, a quadratic
equation, a system of two linear equations, and a system of a linear and a quadratic
equation. Two out of the four equations are presented in the leftmost column of
Table 11.4. The students are required to solve the given equations in as many
different ways as they can, and express and to justify a personally preferred solution
method. At the beginning, the activity also provides four tools for solving equa-
tions: paper and pencil, and three computerized tools—graph plotter, algebraic
symbol manipulator and spreadsheets.

Learning Competencies. We would like to express here the assumed potential of
such an activity in terms of the required learning competencies as stated by
Friedlander and Arcavi (2017).

• Representing and interpreting: For each equation, students make frequent tran-
sitions between its representation as an equality between two expressions that can
undergo the same operation on both its sides (when using an algorithmic
paper-and-pencil solution method), its representation as an equality between two
graphically represented functions (when using a graph-plotter), its representation
as a sequence of (some true and some false) numerical equalities (when using
spreadsheets), and its representation as a “black box” that produces answers
without an interpretation (when using an algebraic symbol manipulator).

• Reverse thinking: In some cases (for example, when employing trial-and-error
substitutions for solving quadratic equations, or verifying numerical sequences
with spreadsheets) students are expected to solve equations by starting from
assumed solutions, rather than proceeding from the given equation towards a
desired solution.

• Justifying and proving: In this activity, solution methods become objects that are
compared, their properties are discussed, and personal preferences of some of
them are expressed and justifyed.
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• Divergent thinking: The activity provides four tools for solving equations.
However within these constraints there are many degrees of freedom in choosing
a sequence among the given tools (possibly omitting some of them), and in
following a different solution path for each chosen tool.

Method. The study was conducted within the learning environment of a junior-high
school mathematics curriculum, integrating an interactive computerized learning
environment. However, the students had no previous experience with parallel work
with several computer tools, and with the need to choose a tool according to their
considerations. Task-based interviews were conducted with six pairs of 13–
14 year-old higher, and average ability students.
At this stage of learning, the interviewed students were not acquainted with the
algorithmic solution of a quadratic equation. During their work, the students received
no instructions or hints with regard to their choice of tools or solution methods.

Findings. Although in their actual work, all six pairs chose to start each of the four
solutions on paper, the students were less committed to this tool in their comments
made at the end of each task. In the case of the linear equation, most students
expressed a preference to a solution on paper. In the other three tasks, however,
most students chose one of the two computerized tools as their first explicitly
expressed preference.
With regard to their choice of a preferred tool, the students displayed in their actual
work a preference for manual, algebraic algorithms. In their comments, however,
they frequently expressed a preference for a technological tool, and could provide
an explanation for their opinion. The main criteria that influenced the students’
choice of tools were its potential to display the solution process, its potential to
allow a higher extent of student involvement in the solution process, and its
compliance with accepted norms of work.

The Creativity Perspective. In this task creativity can be expressed by the variety of
solution methods—rather than by a variety of solutions.
With regard to the group’s fluency, the students employed 26 solution methods for
the first equation and 24 methods for the second—an average, of four different
solution methods for each equation for each pair (see Table 11.4).
Flexibility in this task expressed itself both by the students’ ability to make tran-
sitions between four different tools and by their ability to produce as a group
various solution strategies for each tool.
Although the students were not acquainted with the formal algorithmic solution
method of quadratic equations, some of them were able to solve the quadratic
equations given in this task in a non-algorithmic way. We considered these cases as
instances of original thinking.
Thus, with regard to the issue of creative thinking, the study indicated that the
interviewed students were able to employ creative thinking. They were able to
employ a variety of solution methods, representations and tools, and to make
connections between various meanings of the equation concept.
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11.2.4 Creative Visualization of Equivalent Expressions

The Crossed Squares activity

Rationale. A context-based task should be experientially real for the student, and
should serve as a basis upon which a mathematical concept can be built. Among its
many cognitive and affective advantages, a context-based approach emphasizes the
potential of using algebraic models and skills in other fields, and allows students to
be flexible in their thinking, as the learning is not focused around mastering
algorithms or procedures. Mason et al. (1985) state that “In order to have clear,
confident and automatic mastery of any skill, it is necessary to practice, but the wish
to practice will arise naturally from stimulating contexts” (p. 36).
However, the finding of context-based activities that promote both creative math-
ematical thinking and understanding of algebraic procedures is not an easy task.
Mason et al. (1985) also indicate that sequences of figures may be used as an
appropriate context to represent the concepts of variables and equivalence of
algebraic expressions. By working in a contextual situation, the concept of
equivalence is raised by an authentic need to compare different ways of counting
that are designed by students to describe the same sequence—and not by an arbi-
trary requirement to simplify abstract expressions presented by the teacher. Such a
comparison requires flexible thinking by the students. We claim here that in
addition to promoting conceptual learning and creative mathematical thinking,
work on this kind of activities facilitates processes related to understanding and
performing the algebraic procedure of simplifying algebraic expressions.
We present and discuss here the Crossed Squares activity (Fig. 11.2) as an illus-
trative example of such a context-based task.

Learning Competencies. As in the case of the previous instances, we analyze here
the assumed potential of the Crossed Squares activity in terms of the learning
competencies that we would like to relate to creative thinking.

• Representing, modeling, and interpreting: In figure sequences, algebraic
expressions represent patterns and relationships between the place of a figure in
the given sequence and the number of components contained in that figure. As a
result, the expression is a mathematical model of a concrete situation, based on
the properties of the figures. Students should be able to analyze and compare
alternative models that correspond to the same sequence, interpret the results,
and on that basis, derive new knowledge about the meaning of algebraic gen-
eralizations, equivalent expressions, and processes of simplifying expressions.

• Reverse thinking: The connection between an expression and a counting method
is a two-way relationship A counting method determines a generalized
expression and on the other side, a given expression allows us to identify the
corresponding counting method. We also note that most activities based on
figure sequences (even though not this particular one) require “backward
thinking” in terms of finding the place value in the sequence of a figure made of
a given number of elements.
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• Generating examples: Students are encouraged to provide examples of counting
methods and their corresponding algebraic expressions and compare them with
those provided by others.

• Generalizing: Students identify patterns, relations, properties, and processes of
variation, and express them in numerical, symbolical or verbal representations.

• Justifying and proving: If working in groups, students explain and justify the
relation between their counting methods and the resulting algebraic expressions.

• Divergent thinking: The activity requires multiple solution methods, a wide
variety of answers, meaningful mathematical discussions, and opportunities for
creative solutions.

Method. The Crossed Squares activity was not employed as a tool in a formal
research study. However, the activity was presented as a paper-and pencil task
towards the end of the first year of a beginning algebra course, conducted in a
learning environment composed of both spreadsheets and paper-and-pencil activi-
ties. The activity was a part of the students’ regular classwork, and recommended to
be conducted in groups. The findings are based on teacher observations conducted
in several experimental classes.

The two crossed squares below are the fourth and the sixth in a sequence of crossed 
squares that increase at a fixed rate.

a) How many dots make up these two shapes?

b) Check your answer to a) by counting in a different way. 

c) Use your two ways of counting to determine how many dots you will have in the 
eighth crossed square. 

d) Find other methods of counting these dots. Discuss your methods of counting and 
write the corresponding expressions

Fig. 11.2 The crossed squares activity
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Findings. The participating students used a variety of ways to count the number of
dots in the given figures, and as a result produced a variety of corresponding
algebraic expressions for the n-th shape in the sequence—each of them being
equivalent to 8n—3 (Fig. 11.3).

The Creativity Perspective. We claim that the task of producing and discussing
various expressions by employing a variety of counting methods is a manifestation
of flexible thinking. With regard to the issue of creativity, in this context-based
approach, the expressions produced by students during the activity represent dif-
ferent and creative ways of modeling the same phenomenon. Students were
working in pairs, and in many cases each of them employed initially a different
counting method. As a result, they had to switch roles between presenting and
justifying their counting method and corresponding generalization, and listening
and understanding the solution presented by their peer. In some cases, the pair
worked together to “decipher” the link between an expression and a counting
method.

4n + 4(n – 1) + 1 8(n – 1) + 5 4n + 4n – 3

4(n + 1) + 4(n – 1) + 1 – 4 4(n – 1) + 2(2n + 1) – 1 2n + 1 + 2n + 4(n – 1)

Fig. 11.3 Counting methods and their symbolic representation
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11.2.5 Thinking Divergently in Reversed Procedural Tasks

The Express Yourself activity

Rationale. Divergent thinking is frequently involved in mathematical tasks aimed
to promote multiple solution methods, a wide variety of answers, meaningful
mathematical discussions, and opportunities for creative solutions. However, these
characteristics are less frequently encountered in procedural algebraic tasks.
The search for an expression that is equivalent to a given one involves several
procedures: expansion, simplification, rearrangement of terms and sometimes,
replacing one symbol by another with related meanings (for example, replacing the
division sign by a fraction bar). These procedures are needed for solving many
mathematical exercises and problems in school algebra and calculus. Classroom
experience and research (for example, Matz 1982) show that learning these pro-
cedures as an arbitrary set of rules frequently leads to short-term retention and
misconceptions, and as a result, to an erroneous performance.
One of the pedagogical strategies with potential to support such meaningful
learning is to require students to create expressions under given constraints.
In contrast with “direct” algorithmic procedural tasks, reversed procedural tasks
require reversed thinking—i.e., reversing the “direction” of an activity, and
reconstructing expressions or equations according to given parts, or the final result
of an exercise.
The activity presented and discussed in this section (Fig. 11.4) is taken from a study
by Friedlander and Arcavi (2012) and from a book by the same authors (Friedlander

1. Complete the blanks to obtain expressions that are equivalent to 15x

a) 30x – b) 30x + c) – 30x

d) 30x ⋅ e) 30x ÷ f) ÷ 30x

Find another solution for each case. 

2. Write two expressions in each slot.

Expression as a 

sum 

as a 
difference

as a product as a quotient

x

–x

x2

–x2

Fig. 11.4 Two reversed procedural tasks (Friedlander and Arcavi 2017)
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and Arcavi 2017) on the potential of integrating procedural and conceptual
knowledge. We claim that this kind of tasks has the potential to promote both
procedural skills and divergent thinking.
The main activity in these tasks is to construct examples of more complex
expressions that are equivalent to the given simple results. This activity requires
experimentation, trial and error, and monitoring of results. In the process, students
are expected to solve many exercises posed by themselves as intermediate steps
towards pursuing the goal.
We assume that certain tasks set in a procedural context have the potential of
promoting students’ symbol sense (as defined by Arcavi 2005) and mathematical
creativity—in addition to promoting their procedural knowledge.
Besides the requirement of “going backwards” from simple to more complex
equivalent expressions (which is in a sense the reverse of simplifying), reversed
procedural tasks require elevating the level of ingenuity and inventiveness. The two
reversed procedural tasks presented here require students to produce multiple
solutions, and as a result, allow them to suggest (and later discuss) solutions
according to their level of mathematical knowledge and creativity.

Learning Competencies. A task analysis of the assumed potential of this activity
led us to the following list of required learning competencies.

• Representing and interpreting: Students are required to construct equivalent
expressions in a non-algorithmic way and apply numerical and operational
properties. Thus, they are encouraged to consider the similarities and differences
between arithmetic and algebra, to understand the meaning of the equivalence of
algebraic expressions, and to apply properties of operations (associativity,
commutativity, and distributivity). These tasks aim to confront students with the
need to reflect, compare, check, and discuss procedures as well as concepts (e.g.,
equivalence).

• Reverse thinking: The main activity in this task is to construct examples of more
complex expressions that are equivalent to the given simple results—i.e., “going
backwards” from simple to more complex equivalent expressions (which is in a
sense the reverse of simplifying).

• Generating examples: Students are expected to construct two examples (in the
first task) and eight examples (in the second task) of expressions that are
equivalent to each of the given results.

• Divergent thinking: The activity requires students to construct a wide variety of
answers, it encourages meaningful mathematical discussions, and provides
opportunities for creative solutions.

Method. The activity was administered as a questionnaire to 56 students from three
ninth-grade classes, and their work was collected and analyzed. The classes were a
part of the experimental design process of the Integrated Mathematics (2015)
middle-grades mathematics program.

Findings. The responses presented in Table 11.5 below show that students were
able to employ divergent thinking, and to provide a wide variability of answers.
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The Creativity Perspective. In this case, we had to consider the students’ final
answers, rather than their solution methods, as evidence of creative thinking. The
first notable fact in Table 11.5 is the high number of expressions produced by the
participating students—a total of about 110 symbolic expressions for each exercise.
In each case, the distribution of correct and incorrect responses is slightly different
—but in all cases, more than half of the expressions were correct. However, in spite
of the large number of incorrect answers, we can claim that the task elicited a high
level of fluency.
We claim that the participating students displayed a high level of flexibility—even
though they seemed to focus on varying the arithmetical operations involved in the
numerical coefficients.

11.3 Summary

The need to foster creative mathematical thinking in school mathematics nowadays
is acknowledged by the mathematical research community (e.g., Leikin and
Pitta-Pantazi 2013) and to some extent, by some educational policy documents. As
noted by Tabach and Friedlander (2013), there is an inherent tension between two
seemingly opposing curricular goals: learning procedures and applying them in
routine tasks, on the one hand, and learning concepts and employing more
advanced thinking strategies in solving non-routine problems, on the other hand.

In this chapter we presented five examples of tasks that address both domains of
procedural and conceptual learning, and examined methods of assessing their
potential to induce creative thinking in all students.

Table 11.6 summarizes the learning competencies and components of creative
thinking found in each of the five tasks presented here.

The check-list presented in Table 11.6 shows (a) the presence of many learning
competencies required by each of our five instances, as found by an a-priori task
analysis based on Friedlander and Arcavi (2017), and (b) considerably high levels
of creativity in the solutions of the participating students, as defined by Torrance
(1974), and indicated by data found in some of our previous studies.

There are some obvious connections between the set of learning competencies
employed in our task analyses, and that of the three components of creative thinking
deduced from our empirical data. Thus for example, a task that requires students to
generate examples, is likely to promote fluency, a task that requires divergent
thinking is likely to induce flexible thinking.

Table 11.6 also indicates that tasks that address a wide range of learning com-
petencies have the potential of promoting students’ mathematical creativity as well.
The learning competencies required by a task can be deduced from an a-priory
analysis, whereas its potential to elicit creativity can be established by conducting a
carefully structured empirical study. Our findings indicate that task analysis may be
a reliable first indicator of its potential to promote mathematical creativity as well.
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The occurrence of original thinking seems to be a function of individual students
or of class norms, rather than of certain task characteristics. However, we assume
that tasks that do not require some of the learning competencies described and
discussed above, are most likely closed tasks that will not allow for creative
thinking.

To conclude, we claim that open-ended procedural tasks that require students to
employ reversed thinking, to provide multiple examples, and to choose their
solution tools and solution methods, have the potential to promote a higher degree
of conceptual understanding and mathematical creativity.

We note that in order to establish the nature of the learning processes and the
quality of the learning outcomes, more classroom implementation and research is
needed to accompany the teaching and learning of this type of tasks.
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Chapter 12
Gifted Students Approaches
When Solving Challenging
Mathematical Problems

Andreas Poulos and Joanna Mamona-Downs

Abstract This study explores the different solving approaches of three mathe-
matically gifted students attempting to solve a primarily Euclidean geometry
problem, specifically a geometric characterization problem. We are comparing the
various methods, steps and tactical maneuvers of the individuals as they transition
between using geometric and algebraic tools. The posed problem proved to be very
challenging without a computational approach. We present and analyze all the
efforts and attempts with special interest in the combination of analytical thinking
and experimentation using software. The analysis reveals the students’ individual
ability towards mathematical problem solving in general.

Keywords Gifted � Problem solving � Analytical/experimental approaches

12.1 Introduction

This study focuses on the steps that gifted solvers of mathematical problems follow.
We are particularly interested in examining the solvers’ lines of thought when they
are confronted with problems of characterization, i.e. when they are asked to
determine which mathematical objects satisfy given properties (instead of finding
the properties of an object). This theme is rarely taken into account in the
problem-solving literature. We regard it analogous to the framework of ‘example
generation’, (e.g. Watson and Mason 2005) and ‘heuristic refutation’ (De Villiers
2000) where the appearance of counterexamples leads to the reframing of the task
environment. The problems under consideration require a level of knowledge of
mathematical concepts and theoretical constructs up to the last year of High School.
We present the fieldwork material built on a problem that was constructed for this
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particular level of mathematical attainment; as a result of the data processing, we
obtained interesting solution approaches as well as other relative problems posed.
We compare our findings with the findings of other related studies on the skills and
behaviours of gifted students. The following problem is the one used in the
fieldwork:

Count the number of equilateral pentagons of length 1 with integer size angles in degrees.

This problem is a partial generalization of the simpler problem “Count the
number of equilateral quadrilaterals (rhombuses) of length 1 with integer size
angles in degrees”. It is easy to calculate that there are 90 solutions to this problem.
One of these solutions is the square, and the remaining solutions are rhombuses
whose two different angles vary from 1° to 179°. The solutions are reduced to 89
since we get pairs of congruent solutions. The given problem is also a specific case
of the following general problem “Count the number of equilateral polygons of
length 1 with integer size angles in degrees”.

It is a general consensus that the main sources of mathematical problems are:

(a) Mathematical research and research in other domains of science,
(b) Problem-posing for examination purposes, from high school exams up to the

level of mathematical competitions,
(c) Problem-posing targeted to specific cases, such as research on the detection of

special knowledge and skills (Mamona-Downs and Downs 2005).

The specific problem used in this study does not belong to the first category,
since it is not an open problem in mathematical research. One could possibly think
that this problem could be set as a problem at mathematical competitions. This,
however, will prove not to be the case, since the time required to solve this problem,
especially without the use of a software, greatly exceeds the time limits of a
competition. This problem was posed as an instrument in a research program in
Mathematics Education, in order to observe the problem-solving approaches that
gifted solvers employ, and the specific mathematical domains, which they draw in
their work for the resolution of the problem (Poulos 2016).

According to Singer and Voica (2013, p. 13) “we use the term “expert” in
problem-solving in a broad sense, referring to three types of persons:

(1) the mathematician who runs research activity,
(2) the teacher who trains students for math competitions, and
(3) the high achiever student validated by the results obtained in math

competitions”.

We carefully selected the participants of this study to fall into the third category.
Research on this type of solvers is rather limited, although in the past decade, there
has been an increase of interest in this subject, Cai et al. (2005), Koichu (2010).
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12.2 The Theoretical Background of the Research

12.2.1 The Tradition of Polya

It is widely accepted that the main core of issues in advancing the solving of
mathematical problems lie in Polya’s tradition. The fundamental ideas appearing in
his book “Mathematical Discovery” inspired us to conduct the part of our research
presented here. In this book he mentions: “In fact, what is presented here are not
merely solutions but case histories of solutions. Such a case history describes the
sequence of essential steps by which the solution has been eventually discovered,
and tries to disclose the motives and attitudes prompting these steps. The aim of
such a careful description of a particular case is to suggest some general advice, or
pattern, which may guide the reader in similar situations”, Polya (1981, p. x).

From this passage, we can see that Polya prompts us to observe carefully the
sequence of steps that solvers follow when they approach a mathematical problem.
In fact, the close examination of the unfolding of the solution offered by a solver
constitutes not only a crucial aspect of research in mathematical problem-solving,
but even more generally, of research in Cognitive Science.

Schoenfeld (1985) suggests the following four factors that affect
problem-solving performance:

(i) the problem solver’s mathematical knowledge;
(ii) knowledge of heuristics;
(iii) affective factors which influence the way the individual views problem-

solving and
(iv) the managerial skills associated with selecting and implementing appropriate

strategies.

As far as the process of problem-solving as a personal endeavor is concerned, we
believe that the following extract from Polya’s writings is of significant importance:
“The reader who has spent serious effort on a problem may benefit from the effort
even if he does not succeed in solving the problem. For example, he may look at
some part of the solution, try to extract some helpful information, and then put the
book aside and try to work out the rest of the solution by himself. The best time to
think about methods may be when the reader has finished solving a problem, or
reading its solution, or reading a case history. With his task accomplished and his
experience still fresh in mind, the reader, in looking back at his effort, can profitably
explore the nature of the difficulty he has just overcome” (Polya 1981, pp. xvii–
xviii). The above describes an ideal behaviour of individuals working in solving a
problem, which was either set in a mathematics class, or chosen by them out of
personal interest, or given to them as a research item.
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12.2.2 Recent Developments on the Multiple Facets
of Problem Solving

Lester (2009) analysed the ‘state of art’ in early 90s by conducting a large survey on
the studies on problem solving. His first conclusion was that between 1990 and
1994, the research on problem solving was not the most popular subject in the field
of mathematical education. The accuracy of this statement can be verified easily by
searching the published studies in journals of Didactics of Mathematics, and the
proceedings of International Conferences such as I.C.M.E., (International Congress
on Mathematical Education). Therefore, the following question arises “which are
the reasons for this change of interest of the researchers”? Lester suggested the
following three reasons:

(a) The first and obvious reason is that the research community was interested in
other issues. Even though problem solving was one of the four pillars of the
Curriculum that the National Council of Teachers of Mathematics (N.C.T.M.)
in U.S.A. had suggested, new issues had attracted the researchers’ attention
internationally, many of which had not immediate relation with problem
solving. Such topics include students’ and teachers’ perceptions of the nature of
Mathematics, the study of social and cultural factors that affect the ways of
learning Mathematics, the applications of Mathematics, etc.

(b) Many researchers and teachers believe that the questions concerning problem
solving have been answered, or as Lester mentioned, “We believe that we know
everything around mathematical problem-solving”. In fact, a vast majority of
the researchers on the Didactics of Mathematics and mathematics teachers in
the United States had the opinion that the positions described by the
“Standards” constitute a complete set of guidelines on problem solving; con-
sequently, there was no need to either alter or improve them. Lester challenged
these views directly and emphatically, since he believed that even the
“Standards” had not been written under a complete research program targeted
directly on efficient problem solving.

(c) Finally, he emphasized the fact that problem solving is a highly complex and
multifaceted form of human activity that includes procedures far more com-
plicated than simple recollection of methods. In addition, psychological, social,
and other factors complicate problem solving even more.

With regard to the nature of problem-solving Mamona-Downs and Downs
(2005) pointed out special aspects that constitute its ‘identity’. They analysed how
problem-solving impinges on other aspects of the mathematical work, such as the
conceptualization of new concepts and assimilation of new theories, the handling of
different representations of mathematical constructs, the realization of the mathe-
matical structure embedded in a given task and the subtle differences and overlays
between problem-solving and proof.

With respect to the means developed in order to identify the mental processes of the
solvers during solving mathematical tasks, English et al. (2008, p. 6) emphasize that
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“the researchers have developed very few new tools that allow us to observe, sub-
stantiate and measure the skills which are believed to contribute in problem-solving”.

Berzsenyi (1999, p. 186) notes that “to solve a problem, one usually needs at least
one bright idea or a non-routine application of some method”. Therefore our research
goal is to detect possible bright ideas appearing in solvers’ efforts and to analyze them.

12.2.3 Krutetskii’s Cognitive Approach

Krutetskii (1976), in his quest for realizing the subjects’ cognition when solving
problems, underlined that one should distinguish between the processes of “solving a
problem for myself” and that of “solving a problem for others”. How did he over-
come this dichotomy? During his experiments, he explained to the students involved
exactly what he required of them. He did not ask them to explain their steps, only to
talk out loud during the process of solving a problem. He stressed the fact that he was
not interested in the actual solution of the problem, but rather in the procedure of
getting there (or up to whichever point they reached). He encouraged them to think
out loud, as they would have done if they had solved the problem on their own. Also,
he did not interrupt and did not make any comments or remarks during the experi-
ments. Krutetskii was especially interested in the time required to solve a problem, as
a criterion of skill and talent. This criterion is not encountered in most of the studies
of similar context. In some problems, the students sketched figures. These figures not
only played an essential role towards the solution of the problem, but also were of
significance for the interpretation by the researcher of the students’ way of thinking.
In addition, erroneous paths of solution and unhelpful actions employed by students
were extremely informative and provided additional insight to him.

Krutetskii emphasized that “we know that during the process of problem solving
many complex factors are in play, such as prior experience, assimilated knowledge,
skills already acquired, etc. Therefore, the big question is to choose problems
whose solutions do not depend directly only on one of these factors”. For this
reason, he avoided problems that required very narrow and specific knowledge or
skills. He believed that some individuals’ mind could be classified under what he
refers to as a “mathematical cast of mind” i.e. a tendency to conceive the world in a
mathematical way, something that is apparent in the cases of a gifted student in
Mathematics. He assumed that such a tendency might have a biological basis.

He identified three such types of “mathematical casts of mind”.

1. The analytic type, who tends to think with lectical-logical terms.
2. The geometric type, who tends to think with optical-figurative terms.
3. The harmonic type, who combines characteristics of both of the two previous types.

We were interested in determining which kind of ‘mathematical cast of mind’
the subjects of our research largely adhered to, and in fact, if this broad catego-
rization is helpful to our understanding of the argumentation paths that they follow
during problem solving.
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12.2.4 Studies Targeted at Gifted Students

In relation to the mathematically gifted performance in problem solving, Saul
(1999, p. 83) points out that “the thoughts of the mathematically talented do not
differ greatly from those of the other students, except that they are more efficient”.
However, as there is no adequate research evidence in order to verify, or refute
Saul’s conclusions, we relate his statement to the question.

“In what exactly do “strong” solvers of mathematical problems differ from the
“weak” ones?”.

Research on this question is focused on the study of individual cases of solvers,
who had either great ease or unusual difficulties in solving the same problem. The
tendency of conducting individual studies was dominant during the 1970s–1980s,
and only during the ‘90s research started systematically examining larger groups of
people with regard to issues arising from the differences between “strong” solvers
and “novice” ones. The development of Cognitive Science and of Artificial
Intelligence affected not only the research questions that the community was
interested in putting forward, but also the terminology used to describe differences,
such as the ones mentioned above. Therefore, we come across less on the duality
“strong” and “weak”, and more on the pairing “successful” and “unsuccessful”,
“experienced” and “beginner” solver, etc.

We believe that the research on how gifted students solve problems has a long
way yet to go before can be deduced concrete profiles. This subject resembles the
tip of the iceberg, whose greatest part is hidden under water.

It is also interesting to investigate how experts in general, in addition to the
gifted students, solve mathematical problems. Expert mathematicians for example
are, by profession, strong problem solvers, without necessarily being gifted, and
they are usually extremely competent in problem solving. This issue is raised in the
research work of Schoenfeld and Herrmann (1982), and Silver and Marsall (1989).

Levav’s and Leikin’s research (2010) which is based on Polya’s, Schoenfeld’s
and Kruteskii’s ideas is also relevant to our theme. They conducted a wide scale
research on the role of multiple solutions on mathematical problems as a criterion of
the quality and the level of mathematical thinking. Levav and Leikin categorize the
solver’s multiple approaches to a problem with respect to the following criteria:

(a) Different representations of a mathematical concept;
(b) Different properties (definitions or theorems) of mathematical concepts from a

particular mathematical topic; or
(c) Different mathematical tools and theorems from different branches of mathe-

matics (Levav-Waynberg and Leikin 2010, p. 766).

Mamona-Downs (2008) goes further on the significance of multiple solutions to
a task provided by a solver. She claims that this is indicative of a successful
‘structural appraisement’ of the task environment; something that leads the solver to
change the focus of his efforts and encourages him to produce different solutions.
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12.2.5 The Use of Technology in Problem Solving

The question to what degree the use of software contributes to problem solving is of
particular interest to the present part of our research. Sanchez and Sacristan (2003,
p. 116), point out that “There is a fundamental difference in the construction of the
geometrical figure between doing it with paper-and-pencil and doing it in a dynamic
geometry environment: whereas in the first one it is the construction of a particular
case, in the latter one it is actually the construction of a general case”.

In Yevdokimov’s paper on the relation between problem-solving and
problem-posing, it is stated that “…, a very important factor [for succeeding in
problem-solving/posing] is the development of students’ skills for multiple flexible
transitions from visual thinking to analytic one and vice versa” (2005, pp. 263–264).

Concerning the use of technology in problem solving Santos-Trigo’s statement
is interesting: “The coordinated use of digital technologies allows for diverse ways
to identify, formulate, represent, explore, and solve problems situated in different
fields or contexts. Consequently, new routes can emerge for learners to construct
and comprehend disciplinary knowledge” (Santos-Trigo and Moreno-Armella
2016, p. 191).

Regarding the use of software at problem-solving, Dick (2007, p. 338) intro-
duced the term “mathematical fidelity” and identified three reasons why we have
limited fidelity.

(1) The non-correct syntax of code,
(2) Under-specifications of the mathematical structures, and
(3) Limitations on the representation of continuous phenomena based on discrete

structures and finite arithmetical calculations.

Last but not least, reference needs to be made to Terence Tao’s views on
problem-solving, which are apparently very similar to Polya’s views. Tao, himself
an outstanding problem solver, underlines the significance of modifying the task
environment, following in fact Polya’s tradition. He considers it to be an ‘aggres-
sive type of strategy’ that “… helps in getting an instructive feel of what strategies
are likely to work, and which ones are likely to fail” (Tao 2006, p. 5).

12.3 The Framework of the Research

This paper is a case study, “a case history” in Polya’s words, which portrays the
solution paths of competent young mathematicians when solving a given problem.
The participants provided extensive scripts that expounded their thought processes
during the solution. Also, we asked them to loudly expose their mental arguments as
much as possible; their utterings were taped. The scripts, the thinking aloud protocols,
together with the first researcher’s observations during the initial phase of tackling the
problem and detailed questioning a posteriori on the lines of argumentation written
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down by the subjects constituted the core material for the analysis. The method of
analysis was purely qualitative. The main research questions were:

1. Which factors determine the various approaches of young mathematicians when
they attempt challenging problems? What matters mostly for the resolution of
the problems of characterization?

2. Do the solvers agree with communicating and exemplifying their results with the
researchers in detail?

3. Could we identify the ‘turning points’ in their solution path as “Eureka” or
“Aha!” moments?

4. What are the relative merits that our subjects ascribed to an analytical and an
experimental solution of the same problem in a computer environment?

12.4 Method

We conducted our research following the ethnographic method, see Eisenhart
(1988).

12.4.1 Profile of Participants

The participants in our research program were three strong problem solvers aged
18–22 year old. We were very well informed about their mathematical background,
we knew their scores in difficult mathematical competitions, their projects relevant
to problem-solving, their mathematical ‘hang-ups’ and overall achievements.

At the beginning of the program the first author explained to the three partici-
pants the purpose of the study and the fact that we were interested in the different
approaches they would employ to tackle the problem. He informed them that he
was going to record their arguments in each stage of the problem-solving process,
the way they expressed themselves, the explanations they gave to questions after
the solving phase.

The profile of the three solvers is the following: The first solver was 18 years old
at the time and he currently studies mathematics; he was a member of the Greek,
Balkan and Olympic teams and excelled in all these competitions. The second
solver was 22 years old, a magna cum laude graduate of one of the Departments of
Mathematics of a Greek University; he also had a Master’s degree. The third solver
was 19 years old, an undergraduate student of an Engineering School, and had
participated in mathematical competitions. All three solvers had experience in
tackling complex problems and they were also comfortable in using various kinds
of computer software.

The fieldwork took place during the 8th Summer School of Mathematics,
organized by the Greek Mathematical Society in July 2014. The solvers did not
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meet with each other, and none of them knew that two other students were
attempting the same problem. The first author met with each student on different
days. He informed them that he posted a problem online (about 20 days prior to the
meetings), on a ‘Forum of mathematical discussions’ and nobody had offered a
solution so far. All three solvers seemed enthusiastic to tackle the proposed prob-
lem, and agreed readily to participate in this research program. The subjects gave
their permission to the researchers to publish the main parts of their scripts and
transcription documents of their thinking aloud protocols during the problem
solving process. All sessions with every individual student lasted over 2 h divided
in two periods, including the time spent on explanatory questions on their
approaches. It was agreed that they would continue to work on the problem on their
own and keep informing the researchers of possible different methods and ideas that
they might exploit. It was made clear to them that, while continuing working on the
problem at their own homes, they were free to consult books and, in general, any
source of information they thought would lead to the solution.

In the following subsections, we outline the attempts of the first and the second
solver, and we present the entire archive of the sequence of steps of the third one,
who was especially expressive.

12.4.2 The Participants’ Interviews

In this subsection we provide a detailed account of what the three students wrote
down, together with parts of their thinking aloud protocols. We also provide the
explanations they gave to the first researcher (who was present at the time), on their
specific solution paths.

12.4.2.1 What the First Solver Tried

The first approach was purely geometrical. He realized that certain basic figures
would constitute part of the solution, but from his actions in this step, he didn’t
obtain a substantial result.

His second approach was geometrical at the beginning, and shifted gradually to
elementary Number Theory using formulae of Combinatorial Enumeration. His
insistence, for a considerable amount of time, in using Combinatorial Enumeration
results did not prove fruitful.

In his third attempt, the student eliminated some of the conditions of the
problem, in order to facilitate his solving. In this attempt, as it was recorded, he was
initially inclined to believe that the number of possible solutions was very large.
Actually, this was the reason that he tried to reduce the problem to a problem of
Combinatorics. In particular, he recalled that in the book by Herman et al. (2003),
which he had studied while preparing for the International Mathematical Olympiad
(I.M.O.), there was a theoretical topic that could prove useful to him in this

12 Gifted Students Approaches When Solving Challenging … 317



problem. He mainly recollected Polya’s theory on Enumeration, and a proposition
called Burnside’s Lemma, that is a result in group theory that gives a formula to
count objects, where two objects that are related by symmetry are not to be counted
as distinct. This Lemma refers to the number of partitions of a set. First, the student
focused on a quadrilateral instead of working on a pentagon. He represented by U
the set of permutations of the tuple with components the four angles of the
quadrilateral, denoted by a = (a1, a2, a3, a4). His main idea was to apply a per-
mutation u 2 U on a. This particular permutation u applied to the tuple ‘a’ gave:

uða1; a2; a3; a4) ¼ ða2; a3; a4; a1Þ

and so a1 ¼ a2; a2 ¼ a3; a3 ¼ a4; a4 ¼ a1:
The iterations of the application of u gave the following results:

1. uða) ¼ a; this results in the quadrilateral being a square, as shown above.
2. uouða) ¼ a; this results in the quadrilateral being a parallelogram and not a

square, i.e. uouða1; a2; a3; a4) ¼ ða3; a4; a1; a2Þ:
3. uououða) ¼ a; this results in the quadrilateral being a square again, i.e.

uououða1; a2; a3; a4) ¼ ða4; a1; a2; a3Þ and finally,
4. uouououða) ¼ uð4ÞðaÞ ¼ a:

The student was puzzled by the result of this iteration, which he employed in the
hope that Burnside’s Lemma would give the known answer for the case of
quadrilaterals and so he would use it in the case of the pentagon. As this was not the
case, the student abandoned this approach.

On the next day, during his fourth attempt, the student was interested in gen-
eralizing the problem in the case of a polygon with n sides, and integer size angles
in degrees; he found it very difficult to proceed and in the end dropped also this line
of argumentation. Finally, he thought of constructing equilateral triangles situated
on top of rhombuses. From his gesticulations we perceived it as an “Aha!” moment.
He consequently drew the Fig. 12.1b, c. Figure 12.1b consists of an equilateral
triangle situated on top of a rhombus, and this provides 89 different solutions, with
angles ranging from 1° to 89°. We note that the solution (90°, 150°, 60°, 150°, 90°)
corresponds to Fig. 12.1a.

In the end, the first solver found 90 different solutions as a result of the
above-described approach and indeed without the aid of any computer software.

Fig. 12.1 .
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12.4.2.2 What the Second Solver Tried

His first approach was also purely geometrical; he described cases of symmetrical
solutions, and he highlighted this fact by saying “I notice that the symmetry of a
vertex with respect to the corresponding diagonal forms a new non-convex shape”.
This idea led him to come up with “pairs” of solutions as in the group of Fig. 12.2.

The first author, who was present, observed that later on, the student realized that
this kind of symmetry was not “reliable”, in the sense that in some cases, either the
convex or the non-convex shape of the pair did not have the desired properties; for
example, the size of the angles for the non-convex pentagon of the pair were not
integers in degrees. It is equally interesting that in this case, the student himself
realized his mistake regarding the “symmetry” and reported it. Towards the end of
this first attempt, he decided that an algebraic approach would be preferable to a
geometric one.

His algebraic approach was essentially a further exploitation of the previous
geometric one. He used trigonometric equations. Soon he realized that solving these
equations by hand was an extremely tedious and time-consuming task, even more
so since the number of cases was large. At this point, he started entertaining the idea
of writing a computer program to solve the problem. However, during this attempt,
he was using only pen and paper.

The next day he exploited the geometrical properties and relations of the task
environment, being well acquainted with the management of geometrical figures.
He used coordinates to describe the vertices of the pentagons, resorting in Analytic
and elementary Vector Geometry. He initiated, as the first solver did, the notion of
“hats”, i.e. name a pentagon ABCDE, and without loss of generality, choose the
diagonal AC. The triangle ABC is a “hat” and has two orientations “upwards” and
“downwards” with respect to the diagonal AC. The orientation of the “hat”
determines whether the pentagon is convex or non-convex. He realized via the use
of “hats” the existence of 2 � 89 + 2 = 180 solutions of convex and non-convex
pentagons, though a lot of these solutions turned out to be symmetrical. A concise
description of the sequence of steps he followed in order to solve the problem
follows in the next paragraph.

The following idea occurred to him: “each time, choose the measure of two
consecutive angles, e.g. h1, h2, in integer degrees, then the position of the four out
of the five vertices of the pentagon are controlled”. What remains to be described, is

Fig. 12.2 .
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the compatible hat, namely, the fifth vertex that will be determined by two sides.
The corresponding angle to this vertex is defined by the trigonometric equation:

h ¼ 2 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2½cosðh1 þ h2Þ � cos h1 � cos h2�

4

r

ð12:1Þ

Therefore, Eq. (12.1) must be solved for all possible pairs h1, h2, as in Fig. 12.3,
where h1 ¼ B̂ and h2 ¼ Ĉ. To begin with, he noticed that he must have h1 � h2,
otherwise he would have to check the pairs of angles twice. Also, the two sides AB
and DC will intersect if h2 � 90° – h1.

Finally, he concluded that it was sufficient to check for 1° � h1 � h2 < 180°,
since two consecutive angles of every pentagon have to be convex, otherwise the
pentagon would have at least three non-convex angles, that is, it would have at least
3 � 180° = 540° which is a contradiction. Therefore, (12.1) should be solved
179 + 178 + ⋯ + 1 = 16,110 times and one should also check that Ê is an-angle of
integer degrees, see Fig. 12.3.

Even in this case, it is possible that the angles dEAD and dEDA are not of integer
degrees. Also, as we mentioned earlier, the hat, in this case AED has two orien-
tations, “upwards” and “downwards”.

What remains is to calculate the angles Â, D̂ and to check that the corresponding
figure is an acceptable solution.

He first calculated the coordinates of the vertex E. The coordinates of the
midpoint M of the diagonal AD are

M ¼ cos h1 þ 1� cos h2
2

;
sin h1 þ sin h2

2

� �
:

Fig. 12.3 .
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Since AED is an isosceles triangle, ME will be also the corresponding height
from the vertex E of the triangle. The line passing through the points A and D has
slope sin h2�sin h1

1�cos h2�cos h1
. The equation of the line passing through ME will be

y� sin h1 þ sin h2
2

¼ 1� cos h2 � cos h1
sin h1 � sin h2

� �
x� cos h1 þ 1� cos h2

2

� �
:

The line segment ME has length MEk k ¼ cos h
2

� �
. The resulting two E points

will correspond to the two orientations of the hat. If we adjust the “hat” to Fig. 12.4,
this will define a pentagon.

Let L, M, N and K be the midpoints of the sides of the quadrilateral ABCD.

Then LBK is an isosceles triangle, so we can deduce for the dBKL ¼ 180��h1
2 . The

triangle KCN is also an isosceles triangle, so again we can deduce that
dCKN ¼ 180��h2

2 ¼ dCNK . The outcome is that dLNK ¼ h1 þ h2
2 . The quadrilateral

LKNM is a parallelogram, since its vertices are the midpoints of a quadrilateral,

hence dKNM ¼ 180�� dLKN . Therefore, we will have that
dMND ¼ 180�� dMNC ¼ h2

2 � 90�. The coordinates of the point N are
2�cos h2

2 ; sin h22

� �
. He also calculated the lengths of the sides MD and MN of the

triangle MND.
Using the sine rule, he obtained sinMND

MD ¼ sinMDN
MN ) D ¼ arcsin sinMND

MD �MN
� �

,

and dMAL ¼ 360��h1�h2� dMDN , where dEDM ¼ 180��h
2 for the hat pointing

upwards. For the hat pointing downwards, he obtained that dEDN ¼ dMDN � 180��h
2

and dEAL ¼ dMAL � 180��h
2 .

He considered ‘translating’ all of the above steps into a program using
Mathematica 7.0, software with which he was very familiar. He wrote down the
necessary algebraic relations and equations, and carried out all of the calculations

Fig. 12.4 .
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meticulously, in order to simplify algebraic relations as much as possible. He
expected that the program would help him crosscheck the solutions found before, as
it outputs shapes of the possible solutions.

After all these calculations executed by the program, the final output were the
figures of the pentagons with the string of the five angles printed underneath each
figure. He verified the resulting arguments from Eq. (12.1) in order to exclude the
ones with non-integer size and he additionally rejected the self-intersecting pen-
tagons. Overall he came up with a total of 121 different solutions.

Figure 12.5 shows some of the output results of the program.

12.4.2.3 What the Third Solver Tried

We include the complete record of the attempts of the third solver, written and
transcribed, in order to portray as accurately as possible the way he worked
throughout the entire process.

“The problem asks us to count the different equilateral pentagons, with integer
angles in degrees. When I first thought of this problem I had the impression that it
was a geometrical problem, however, I thought later it is probably a Number
Theory problem, since it asks for integer arguments. The requirement about the
integer arguments created many difficulties in the trigonometrical equations I had to
solve. The equations involved in this problem are defined on the reals, yet I am
restricted to natural numbers. Therefore, I didn’t manage to solve the problem
analytically, whatever “analytically” is supposed to mean in a Number Theory
problem, where integer values are sometimes required as solutions. What I tried to
do was to check what values had to be excluded, handling the problem with pen and
paper. Finally, when I realized that I had run out of ideas for an analytical solution, I
ended up writing a program to calculate all the solutions. The program was based
on a plan devised while trying to solve the problem geometrically. While analysing
the problem, I will write in the first and the second person, as this is the way I think
and explain things to myself”.

Let me analyze the problem:

– This problem looks interesting. What exactly does it asks for, pentagons with
integer angles in degrees? I just noticed the fact that the measure of the angles
must be integers.

– A! I have the regular pentagon. What other pentagons could satisfy these
conditions? Is the regular pentagon the only such pentagon?

– This isn’t necessarily true. I imagine that the vertices of the pentagons have
“joints”, that is, I could move these joints and preserve the length of the sides.
Then the angles would change, and we would obtain a lot of such figures.

– Maybe this problem isn’t so simple after all. These pentagons cannot be random.
We must have some constraints imposed on the angles, by the condition of
equality of all the sides.
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– Yes, that is probably the case. I rather not focus on the pentagon as yet. Maybe
there is a faster way.

– Why is the problem asking only about pentagons? Would it be easier about
n-agons, with less than five sides? Let’s start from there.

– It is trivial in the case of triangles. There exists only the unique solution of the
equilateral triangle, with angles (60°, 60°, 60°). No doubt about that.

– What about quadrilaterals? The sides of the quadrilateral could move just as in
the case of the pentagon. I suspect that in this case there isn’t a unique solution,
although I’m thinking of the square. Of course, the equilateral quadrilaterals are
special, and are referred to as rhombuses.

(300ο, 1ο, 119ο, 61ο, 59ο)                          (239ο, 1ο, 179ο, 61ο, 60ο) 

(300ο, 15ο, 105ο, 75ο, 45ο)                           (225ο, 15ο, 165ο, 75ο, 60ο) 

 (300ο, 30ο, 90ο, 90ο, 30ο)                          (225ο, 60ο, 75ο, 165ο, 15ο) 

(165ο, 60ο, 135ο, 105ο, 75ο)               (130ο, 60ο, 170ο, 70ο, 110ο) 

 (36ο, 108ο, 108ο, 36ο, 252ο)             (108ο, 108ο, 108ο, 108ο, 108ο) 

Fig. 12.5 .
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– What are the properties of the rhombus that make it so special?
– A rhombus must be a parallelogram.
– This means that its opposite angles are equal. Let x and y be the measure of the

non-equal angles, then I will have 2 � x + 2 � y = 360°, that is: x + y = 180°.
– And now?
– Now we have the pairs of integers (x, y) and both x and y can vary from 1° to

179°, therefore, I will try possible pairs. Obviously I do not have to check all
pairs, for example the pair (1, 1) is not such a pair.

– Good, then I will fix x and check if y = 180° − x is a positive integer.
– Good! So I have 90 different solutions, while x varies from 1° to 90° and while y

varies from 179° to 90° respectively. There is no need to check for x varying
from 90° to 179°, this will give me congruent solutions. This is a good method.
Can I apply this method to a pentagon as well?

– Probably yes, but it won’t be enough to fix only one angle in order to determine
the equilateral pentagon completely. I didn’t have to fix an angle in the triangle
case. In the quadrilateral case I had to fix one angle. I think that in the pentagon
case I will have to fix two angles.

– It is not smart to fix all five angles. Fixing four of the five angles, determines the
fifth angle, since the sum of the measure of all the five angles has to be 540°.
This isn’t very useful, I have not so far used the fact that all sides are equal in
any of the solutions. If I fix three of the five angles, the fact that all sides must be
equal will determine uniquely the other two angles. Therefore, I conclude that if
I fix two consecutive angles, the equality of the sides will somehow affect the
other three angles.

– Good. So what shall I do? Without loss of generality I will fix two consecutive
angles x, y, whose arguments are integer numbers in degrees, and I will cal-
culate the three remaining angles, call them z, w, u, and I will check if their
measures are also integer numbers in degrees.

– Yes, this sounds good! Now let’s see, why is this in fact true? If I fix two
consecutive angles x, y, I fix the placement/position of three consecutive sides
of the pentagon, namely, AB, BC and CD and what remains to find is the
position of the other two sides AE and ED. The other two sides will be unique
(for convex pentagons), since the sides have to be equal, and the vertex E that
connects them will be on the perpendicular bisector of the line segment AD (see
Fig. 12.6).

– This means that I can determine the angles trigonometrically, and I can find
constraints in my choices. The sum of the measure of the two angles x and y1
have to be less than 180°. The triangular inequality on the triangle ABC must
hold true, even after I fix the two consecutive angles.

– At this point I note that I do not want to deal with non-convex pentagons, I will
solve this later. Also, the constraints that follow from the triangular inequality
aren’t a problem. In the final program I wrote, I only excluded the choices of the
angles x and y that did not result to a pentagon.

– So what should I do now? Find the relation that describes z, w and u, in terms of
x and y?
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– Exactly! Denote by ‘a’ the length of the sides. Using the cosine rule, I can find
the length of the diagonal b that divides the angle y into two angles:
b2 ¼ 2a2�2a2 cos x:

– Now, I will try to find the diagonal c.
– In order to do this, I need to calculate y2. Since y2 ¼ y� y1, I need first to

calculate the angle y1. This is easy, since ABC is an isosceles triangle, so I can
write: y1 ¼ ð180� � xÞ=2 ¼ 90� � x=2 so it follows that y2 ¼ yþ x=2�90�.
Now using the cosine rule again on the triangle ACD, I get the following result:
c2 ¼ b2 þ a2�2ab cosðy2Þ ¼ b2 þ a2�2ab sinðyþ x=2Þ:

– If I rearrange this, I will obtain an expression of c in terms of a, b, x and y.
However, c has another expression as well. The one that follows if we apply the
rule of cosines in the triangle AED: c2 ¼ 2a2�2a2 cosðwÞ. Therefore, I have:
2a2�2a2 cosðwÞ ¼ b2 þ a2�2ab cosðyþ x=2Þ. Using b2 ¼ 2a2�2a2 cos x, sim-
plifying by the common factor a2 from all the terms, then using the trigono-
metric identities cos(2x) ¼ 1� 2 sin2ðxÞ and sin2ðx=2Þ ¼ ð1� cosðxÞÞ=2 and
finally, using the addition formulae for the cosines, I obtain the “beautiful”
relation: cos(w)þ 1=2 ¼ cosðxÞþ cosðyÞ � cosðxþ yÞ.

– Good, but I still haven’t calculated u and z, how can I do this? It seems to me it
would be difficult to calculate them directly, because these angles are divided
into by the diagonals b and c (see Fig. 12.6). Is there a smarter way to do this?

– Yes, without loss of generality the same line of thought applies if instead of x
and y, I start with y and z. It doesn’t matter which pair of consecutive angles
within the pentagon I start with. In a sense, I will apply cyclic permutation to my
“beautiful” relation, and I will get to the following five relations. These five

Fig. 12.6 .
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relations, together with the total sum of the angles xþ yþ zþwþ u ¼ 540�,
turn the problem into the following system of equations:

cosðwÞþ 1=2 ¼ cosðxÞþ cosðyÞ � cosðxþ yÞ
cos(u)þ 1=2 ¼ cosðyÞþ cosðzÞ � cosðyþ zÞ
cosðxÞþ 1=2 ¼ cosðzÞþ cosðwÞ � cosðzþwÞ
cosðyÞþ 1=2 ¼ cosðwÞþ cosðuÞ � cosðwþ uÞ
cosðzÞþ 1=2 ¼ cosðuÞþ cosðxÞ � cosðuþ xÞ
xþ yþ zþwþ u ¼ 540�:

– Now things are getting harder. How can I solve these equations only for integer
values? Can I exclude any pairs (x, y) by further exploring these equations?

– I think of using complex numbers to express cosines, so that the operations are
easier to handle, and to get simpler expressions for z, w and u. For example, I
will denote by x0 ¼ eix�1, so x ¼ Reðx0 þ 1Þ. This gives me the “beautiful”
relation x0 � y0 ¼ w0 � 1=2: This idea didn’t help at all in the end, because it
leads to wrong conclusions, due to the fact that the real part of the product of
complex numbers is not equal to the product of the real parts of the two complex
numbers. So I can’t write that w ¼ Reðw0 þ 1Þ ¼ Reðx0y0 þ 1=2Þ.

– What else? Perhaps I could expand the sine as a Taylor series, yet I don’t see
how this could help.

– I’ll use the computer program I wrote to find solutions for now, and we’ll see.

A final comment on the program I wrote. I used Python, and asked the program
to find all convex and non-convex solutions. For the non-convex solutions, it
suffices to notice that a non-convex solution has a unique corresponding convex. In
every convex pentagon, I tested each angle, (trying to find its symmetric vertex with
respect to the corresponding diagonal), to get a possible non-convex solution. Every
such possible solution of course needs to be verified to see if it is acceptable. I have
attached my solutions.”

The third solver later sent us an additional clarifying note on the role that his
program played on the overall solution of the problem.

“The program I wrote on Python uses the formulae I discovered. I have been
careful to check if the choice of two consecutive angles in degrees results in an
acceptable solution. In other words, every ordered pair (x, y) varying from 1° to
179° produces the rest of the angles, starting from the angle w and checking the
constraints. The next step is the calculation of the other two angles z and u, and it
checks if z, u and w are integers, and if they correspond to a convex pentagon. If
these are true, we obtain a string of five numbers (x, y, z, w, u) that corresponds to a
convex pentagon. A final verification is whether the sum of these five numbers is
540°, and it examines cyclic permutations of these angles, clockwise and
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counter-clockwise, in order to discard congruent pentagons. Finally, it asks of each
convex pentagon to find its corresponding non-convex one. Also, we can ask the
program to check if a corresponding solution exists for each specific choice of
angles x and y”.

As we can see from our analysis above, the third subject gave a very detailed
description of his attempts to find the number of the equilateral pentagons with
integer angles in degrees. This is indicative of the degree of his involvement with
the problem, his mature exercise of metacognitive skills, and also of the fact that he
was willing to unfold the path of his reasoning for the sake of the research.

The list of the solutions used is set out below in order to enable the reader to
follow the number and the type of solutions (Table 12.1).

12.5 Analysis of the Students’ Efforts Vis-à-Vis Our
Research Questions

First question: Which factors determine the various approaches of young mathe-
maticians when they attempt challenging problems? What matters mostly for the
resolution of characterization problems?

If we analyse the “history” of the solutions of a problem, as proposed by Polya
(1981), we can be led to interesting deductions about the sequence of the essential
steps the gifted students follow and the strategies they use in order to find a solution
to a problem.

The effect of the solver’s formally acquired mathematical knowledge cannot be
easily assessed. The imprint of that knowledge can be observed, the similarities and
the differences between different trajectories of the background knowledge of
solvers can be compared, yet the ‘engineering’ of how this knowledge is evoked in
the process of solving is difficult to gauge. First, there are certain important factors
towards building up the background knowledge: for example there are factors such
as conceiving and comprehending important mathematical concepts, theoretical
constructs and more generally theories from different mathematical fields. For
problem-solving purposes it is important to succeed in bringing to the surface this
knowledge, which otherwise remains ‘inert’. Besides, on top of the acquired
knowledge, another important aspect for working effectively in problem solving is
exercising the managerial aspects, i.e. the executive control. Last but not least, one
has to realize the structure of the task environment at hand (Mamona-Downs and
Downs 2005). On a more practical level, preparing for and participating in math-
ematical competitions does boost strengthening of solving abilities. However, it is
not easy to estimate the relative merit of any of these factors in every individual
solver, and how each of these factors reinforces the others.

Krutetskii (1976) proposed a number of mathematical casts of mind for the
mathematically gifted that influence the solving approaches. We cannot determine
accurately which of these casts the problem solvers in this study belong to. They
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Table 12.1 The list of
solutions

Number Angle Angle Angle Angle Angle

Solution A B C D E

1 300 1 119 61 59

2 300 2 118 62 58

3 300 3 117 63 57

4 300 4 116 64 56

5 300 5 115 65 55

6 300 6 114 66 54

7 300 7 113 67 53

8 300 8 112 68 52

9 300 9 111 69 51

10 300 10 110 70 50

11 300 11 109 71 49

12 300 12 108 72 48

13 300 13 107 73 47

14 300 14 106 74 46

15 300 15 105 75 45

16 300 16 104 76 44

17 300 17 103 77 43

18 300 18 102 78 42

19 300 19 101 79 41

20 300 20 100 80 40

21 300 21 99 81 39

22 300 22 98 82 38

23 300 23 97 83 37

24 300 24 96 84 36

25 300 25 95 85 35

26 300 26 94 86 34

27 300 27 93 87 33

28 300 28 92 88 32

29 300 29 91 89 31

30 300 30 90 90 30

31 252 36 108 108 36

32 239 1 179 61 60

33 238 2 178 62 60

34 237 3 177 63 60

35 236 4 176 64 60

36 235 5 175 65 60

37 234 6 174 66 60

38 233 7 173 67 60

39 232 8 172 68 60

40 231 9 171 69 60
(continued)
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Table 12.1 (continued) Number Angle Angle Angle Angle Angle

Solution A B C D E

41 230 10 170 70 60

42 229 11 169 71 60

43 228 12 168 72 60

44 227 13 167 73 60

45 226 14 166 74 60

46 225 15 165 75 60

47 224 16 164 76 60

48 223 17 163 77 60

49 222 18 162 78 60

50 221 19 161 79 60

51 220 20 160 80 60

52 219 21 159 81 60

53 218 22 158 82 60

54 217 23 157 83 60

55 216 24 156 84 60

56 215 25 155 85 60

57 214 26 154 86 60

58 213 27 153 87 60

59 212 28 152 88 60

60 211 29 151 89 60

61 210 30 150 90 60

62 209 31 149 91 60

63 208 32 148 92 60

64 207 33 147 93 60

65 206 34 146 94 60

66 205 35 145 95 60

67 204 36 144 96 60

68 203 37 143 97 60

69 202 38 142 98 60

70 201 39 141 99 60

71 200 40 140 100 60

72 199 41 139 101 60

73 198 42 138 102 60

74 197 43 137 103 60

75 196 44 136 104 60

76 195 45 135 105 60

77 194 46 134 106 60

78 193 47 133 107 60

79 192 48 132 108 60

80 191 49 131 109 60
(continued)
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Table 12.1 (continued) Number Angle Angle Angle Angle Angle

Solution A B C D E

81 190 50 130 110 60

82 189 51 129 111 60

83 188 52 128 112 60

84 187 53 127 113 60

85 186 54 126 114 60

86 185 55 125 115 60

87 184 56 124 116 60

88 183 57 123 117 60

89 182 58 122 118 60

90 181 59 121 119 60

91 179 60 121 119 61

92 178 60 122 118 62

93 177 60 123 117 63

94 176 60 124 116 64

95 175 60 125 115 65

96 174 60 126 114 66

97 173 60 127 113 67

98 172 60 128 112 68

99 171 60 129 111 69

100 170 60 130 110 70

101 169 60 131 109 71

102 168 60 132 108 72

103 167 60 133 107 73

104 166 60 134 106 74

105 165 60 135 105 75

106 164 60 136 104 76

107 163 60 137 103 77

108 162 60 138 102 78

109 161 60 139 101 79

110 160 60 140 100 80

111 159 60 141 99 81

112 158 60 142 98 82

113 157 60 143 97 83

114 156 60 144 96 84

115 155 60 145 95 85

116 154 60 146 94 86

117 153 60 147 93 87

118 152 60 148 92 88

119 151 60 149 91 89

120 150 60 150 90 90

121 108 108 108 108 108
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appeared to think in lectical-logical and optical-figurative terms; however, only on
the bases of the results of the present study, we refrain from explicitly identifying
them as being of the harmonic, the analytic or the geometric type.

The students also posed the more generalized case of the equilateral polygon.
We think that they did it, firstly, out of pure curiosity about the general case and
secondly, because they tacitly hoped that the solution of the generalized polygon
would lead to the solution of the specific pentagon problem in a more simplified
way, in the spirit of Tao (2006). For characterization problems, in particular, the
demarcation of the general case reveals the core of the structure of the mathematical
objects in question. This, in turn, facilitates the building up of the list of exemplars
for the object, i.e. when we are dealing with classification issues. On the topic of
generalization, Krutetskii (1976, p. 335) wrote: “A generalized solution of problems
(a tendency to solve each specific problem in a general form) is typical of capable
adolescents generally”.

Overall, all solvers displayed a progressive heuristic behaviour. Even though
they gave the impression that they abandoned a solving path that did not advance
the process towards the solution, this path emerged in many instances in a subse-
quent approach. (Koichu 2010).

Second question: Did the solvers comply with communicating and exemplifying
their solution paths with the researchers in detail?

The experiment was conducted in a relaxed atmosphere. We were well
acquainted with the participants, who understood the purpose of this research well,
and showed a great interest in the problem. All these factors played an essential role
to the execution of the experiment in a proper way.

Our experience in this research project was that the personal relationship
between the researcher and the talented students plays a very important role in
enabling them to articulate their thought processes. Also, it must be clear from the
beginning what is expected of the student. If a student has to solve a problem in a
very limited time frame, then obviously, he/she won’t be willing to spend con-
siderable time in explaining the steps he has taken in order to solve the problem.
However, if the student understands that it is important for the sake of the research
requirements to explain each and every step taken, then the student complies with
the research protocol.

Krutetskii (1976) observed a qualitative difference between the approach of
“solving a problem for myself” and of “solving a problem for others”. This is a key
issue for the interpretation of our subjects’ behaviour. In addition, we conclude that
they were focused on what the problem asked for, ascertaining that they were fully
conscious of the characterization aspect of the problem; in this way they did not feel
the need to pose questions on possible other properties of these kind of pentagons.

Third question: Could we identify the ‘turning points’ in their solution path as
Eureka” or “Aha!” moments?

We were interested in seeing whether our subjects were aware of the ‘turning
points’ in their solution process, and to what extent they expressed these vividly at
the time, or whether they comprehended these as such after revising their solution.
In fact, we did not detect instances where the students expressed explicitly any real
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excitement while working on the problem, i.e. a kind of “Eureka /Aha!” moments.
However, from their expressions and gestures it was evident that a crucial idea had
occurred to them during the progress of the solution, such as for the first solver the
realization of the significance of constructing a ‘hat’, or for the second and the third
solver the fact that the sizes of the first two consecutive angles determine the
location of the vertices of the next two angles. What seems to be true, and we say
this from our own experience, is that usually, after solving the problem completely,
the solver is in a position to point at these moments. This indicates the exercise of
metacognitive acts in problem solving and therefore requires a degree of mathe-
matical maturity.

Fourth question: What are the relative merits that our subjects ascribed to an
analytical and an experimental solution of the same problem in a computer
environment?

There are many difficulties regarding to the analytical approach to this problem,
and there are some conjectures that have to be tested; for example, are there
solutions of the type (a, b, c, b, a) or of the type (a, b, a, c, c) in which there is
symmetry (beyond the regular pentagon). In fact there are only three solutions of
this type i.e. the (108°, 36°, 252°, 36°, 108°), (300°, 30°, 90°, 90°, 30°), and (60°,
150°, 90°, 90°, 150°).

Testing a conjecture with computer programs offers the advantage of visual
apprehension and of a very rapid experimentation, which helps the location of
counterexamples. As Butler et al (2010, p. 425) put it: “With new computer based
tools, geometrical thinking can become again a central source of insights when
exploring new domains of knowledge and modeling”. We conclude that this par-
ticular problem highlights the solvers’ capabilities both in analytical and experi-
mental solving, by using software. For example, when experimenting with software
the students found out that a small change to the measure of an angle makes a big
difference.

We would like to note that, along with the list of the solutions they obtained
from their software programs, our subjects desired to actually see the geometric
shapes corresponding to these solutions. This way, they confirmed by themselves
the correctness of the solutions they obtained.

It was clear from the analysis of their written solution documents and their
answers in the consequent interviews, that the solvers had developed the ability of
frequent and successful transitions between visual apprehension and analytical
thinking. In addition, the problem solvers had increased mathematical fidelity
during problem solving with the use of software, according to the terms and the
conditions described by Dick (2007).

As far as the question of this research is concerned, the solvers agreed that the
use of a software program helped them in the monitoring of the environment of the
problem, in creating simulations, and in checking the results. More importantly,
software use provided a substantial verification of their acts and reasoning. Overall,
whether the use of software is ‘legitimate’ in solving mathematical problems
constitutes a topic of concern not only for the researchers in Mathematics, and in
Mathematics education, but also for the teachers of Mathematics.
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12.6 Open Questions and Conjectures Regarding the List
of Solutions

Solving this problem traditionally with pen and paper, without the use of software,
is not easy at all. At first, we were especially interested to see which part of their
mathematical knowledge the subjects accessed. They brought into play different
areas of Mathematics that they had at their disposal, such as theorems of
Combinatorial Enumeration (Burnside Lemma), Complex Numbers, Elementary
Vector Calculus, Analytic Geometry, theorems of Trigonometry, and basic geo-
metric tactics. The efforts that depended solely on analytical treatments, involving
their mathematical background from the above-mentioned areas, did not prove
effective in providing the solutions.

We must underline that all three subjects implemented executive control in the
process of solving, as we observed during their individual accounts, spoken or
written. They posed very pointed questions, for example whether axial symmetry
possibly played a role in the solution of the problem. This conjecture was brought
up by their observation of cases like the ones shown in Figs. 12.7 and 12.8, which
seem to be possible solutions of the problem, albeit that they were proved wrong.

In Fig. 12.7 ABC is an isosceles triangle and BDEC is an isosceles trapezoid
with AB = BD = DE = EC = CA. However, these figures soon proved to be
pseudo-solutions. Actually, the only figures with an axial symmetry that constitute
solutions are shown in Fig. 12.9 (108°, 108°, 108°, 108°, 108°), in Fig. 12.10 (60°,
150°, 90°, 90°, 150°), in Fig. 12.11 (30°, 90°, 90°, 30°, 300°), and in Fig. 12.12
(252o, 36o, 108o, 108o, 36o)

Of a similar nature was their following question: “By looking at the complete list
of the solutions to the problem, that is, at all the tuples (a, b, c, d, e), how could we
detect solutions that have axial symmetry?” Moreover, “do tuples of the form (a, b,
c, c, b) indicate axial symmetry?”

All problem solvers applied the method of triangulating the pentagon, resulting
in two isosceles triangles ABC and AED, and a third triangle ADC, whose two
sides were equal to the bases of the isosceles triangles, as shown in Fig. 12.13.

Applying the method of triangulation led them to the following concern: “How
difficult it is to create and solve a system of parametric equations using the cosine
rule, in which the angles of the pentagon have integer size angles in degrees” The

Fig. 12.7 .
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first observation, which gives a partial answer to this question, is that the angles of
the triangles could have non-integer measures, whereas the angles of the corre-
sponding pentagon could have integer measures. This observation definitely com-
plicates this kind of approach. In addition, in practice the subjects found that such a
system of equations was almost impossible to solve only “manually”.

It is apparent from Figs. 12.9, 12.10, 12.11 and 12.12 that both a convex and the
corresponding non-convex pentagon constitute solutions to the problem. The fol-
lowing question emerged: “Does every convex solution correspond to a non-convex
solution?”. They pinpointed, as an example, the two non-convex solutions of the
problem shown in Fig. 12.14 (300°, 15°, 105°, 75°, 45°) and Fig. 12.15 (225°, 15°,
165°, 75°, 60°). They also observed that some vertex of the non-convex angle of the
pentagon has a symmetric vertex with respect to a corresponding diagonal as axis of
symmetry. The corresponding convex pentagons of Figs. 12.14 and 12.15 also
constitute solutions to the problem, namely (60°, 135°, 105°, 75°, 165°) and (135°,
60°, 165°, 75°, 105°).

Another concern was put forward: “Each pentagon has five different diagonals.
Does each convex solution correspond to five non-convex solutions?” The students
did not elaborate on this issue.

The first solver also suggested that “it might be useful to work on specific cases
of pentagons made by compounding geometrical figures having sides of equal
length, which could convince us that there exist “enough” solutions to the problem,

Fig. 12.8 .

Fig. 12.9 .
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Fig. 12.10 .

Fig. 12.11 .

Fig. 12.12 .

Fig. 12.13 .

Fig. 12.14 .
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Fig. 12.15 .

Fig. 12.16 .

Fig. 12.17 .

Fig. 12.18 .
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and from these solutions some ideas might arise, which can help us confront the
problem in a more global way”. For this reason he constructed the group of pen-
tagons shown in Figs. 12.16, 12.17 and 12.18.

Figure 12.15 corresponds to a compound shape, that of an equilateral triangle on
top of a square, and has equal sides and angles (60°, 150°, 90°, 90°, 150°). It is a
special case of the pentagon shown in Fig. 12.17. Figure 12.18 shows a pentagon
formed by putting together an isosceles triangle to an isosceles trapezoid and it does
not belong to the list of solutions of our problem, no matter how plausible it may
seem.

It is interesting that the solvers were not concerned with self-intersecting pen-
tagons such as these shown in Figs. 12.19 and 12.20 [Fig. 12.20 shows the
so-called pentalpha (36°, 36°, 36°, 36°, 36°)]. The self-intersecting polygons are not
part of the school curriculum of Mathematics in Greece. It is also noteworthy that
while using software programs, this kind of polygons appeared, yet the students
rejected these solutions, as if they did not accept them as ‘legitimate’ ones.

After all these meticulous attempts to solve this problem an unavoidable ques-
tion comes up: “Does the list of solutions contain any hidden information?” The
answer to this question is positive and nothing short of stunning and surprising. The

Fig. 12.19 .

Fig. 12.20 .
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solutions to the problem are the regular pentagon and 120 other pentagons,
that correspond to compound shapes, namely, to rhombuses with an equilat-
eral triangle attached to one of their sides! Only two of our problem solvers
observed the appearance of the angles of 60° or 300° in every solution, but none of
them expressed it as an undoubted outcome.

On the whole, any mathematician, who resorts to a computer program for finding
the solutions to a problem similar in character to the one we encounter in this paper
wonders whether the list of solutions given by the program is indeed correct and
complete. Actually our problem solvers were concerned by this same question “are
the solutions in the list correct, do they correspond to actual solutions?” as it was
evident from the interviews with them. And for that reason, they made sure that
they checked all 121 solutions either “by hand”, i.e. printing the results of the
program and rejecting the self-intersecting pentagons, or by inserting a subroutine
in the program in order to do this automatically. An example of accepted pentagon
with angles (156°, 60°, 144°, 96°, 84°) is shown in Fig. 12.21.

It is apparent that the whole procedure is time-consuming and beyond our
“agreement” with the participants about the time-span of the fieldwork. Every
solver’s goal was to tackle the problem within certain time limits. However, it was
proved that for this kind of problems recourse to software aid is unavoidable and
consequently brings up the question to what extent we can rely on its outcome. This
general issue we could say is to some degree a philosophical one, and depends very
much on the general culture of Mathematics of our era.

In our time, the use of software programs has “infiltrated” the process of
problem-solving and their use in mathematics classrooms at school should be
seriously considered, as Santos-Trigo and Moreno-Armella (2016) suggests.

Fig. 12.21 .
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12.7 Final Remarks

The analysis of the way in which these achieved solvers approached the problem,
proved very rewarding. Naturally, our starting point was the assumption that we can
study the abilities of gifted students in Mathematics using “unusual” and chal-
lenging mathematical problems.

How can we be certain that the information we gathered on the solution paths
followed by the three gifted students, represent the maximum of their strength as
solvers? We tried to achieve this by meticulously recording their writings “in vivo”,
and by additional questioning following a successful or an unsuccessful try. We
believe that this study provides a faithful representation of their work. Furthermore,
their understanding of the purpose of the research assures us that we ‘extracted the
most’ they could do at the time of the fieldwork.

The transition from one form of approach to a different one is a characteristic of
the mathematically gifted, which is a fact well known in bibliography, “they are
flexible in thought, and can move easily from one line of thought to another, even if
these are completely different” (Assouline and Lupkovich 2011, pp. 162–163).

Another very important issue that concerns our research is to what extent gifted
students conceptualize the subtle differences and interconnections between
problem-solving and proving (Mamona-Downs and Downs 2013). This touches
both the analytical and the experimental approaches. Our subjects explicitly said
that they did not feel that they ‘proved’ the existence of all possible solutions. One
of the reasons for this is that they were dependent on the program they wrote. The
list of solutions proves that certain anticipated solutions exist, while other antici-
pated solutions do not! The program also printed shapes that were unexpected.

Our final comment relates to the issue whether the problem we used in this study
is ‘appropriate’ to evaluate the abilities of the gifted students, given that (to the best
of our knowledge) it requires the use of software for its solution. The answer to this
question is affirmative, taking under consideration the fact that the students them-
selves developed the program that gave the list of the solutions. Moreover, the use
of such type of problems has the following advantage: it poses the dilemma of
whether a solution or a list of solutions achieved in this way is complete. Therefore,
observing the solvers’ efforts and recording their conjectures while trying to remove
all their uncertainty on this, led to a number of useful accounts of their solving
behaviour; accounts which not only reveal the solving strategies of these gifted
students, but enrich our understanding of their attitudes towards ‘doing
Mathematics’ in general.
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Chapter 13
Repeated Participation
at the Mathematical Olympiads:
A Comparative Study of the Solutions
of Selected Problems

Ingrida Veilande, Liga Ramana and Sandra Krauze

Abstract The paper analyzes the works of students who have participated in at
least three Open Mathematical Olympiads of Latvia (LOMO) in the 6th, 8th and 9th
grade. The question of the research discussed in the paper is: What knowledge and
problem-solving skills do students demonstrate in the solutions of algebra and
number theory problems? Six algebra and number theory problems were selected
for the research, as solving them requires sufficiently high levels of abstract
thinking, algebraic reasoning, and an accurate use of the mathematical language.
The authors developed a special coding system for students’ works and elaborated
an assessment tool for assessing each individual student’s levels of problem-solving
competence. The implementation of this tool enables comparing the student’s
problem-solving success in different grades, and it enables comparing the specific
properties of the solutions presented by the group of students as well. While
showing that a few students were good problem solvers, the data collected revealed
deficiencies of algebra knowledge in a significant part of students’ works.
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13.1 Introduction

13.1.1 Open Mathematical Olympiad

Students’ mathematical competitions have become popular globally. They are of
different types and forms: there are both in-person and remote competitions; the
problems must be solved either in the classical way—by writing down a full solution
for each task, or asmultiple-choice tasks. The competitions also differ in their content:
some Olympiad problems are entertaining by their nature, while some other mathe-
matical competitions motivate school students for in-depth studies of mathematics
and serious preparatory work (Singer et al. 2016). The competitions are organized for
students of different age and are based on different principles of participant selection.
They can be characterized as the inclusive-type, appropriate for students with average
knowledge, and the exclusive-type, where only the most capable students are invited.
For instance, the most prestigious competition—the International Mathematical
Olympiad, is attended by students with outstanding skills from many countries
(Kenderov 2009). The role of the Olympiads is highly valued, as they enrich the
mathematical curricula of schools, promote students’ interest and activity, help
identify the gifted students and reinforce their education (Thrasher 2008).

In 1974, as an alternative to the State Mathematical Olympiad, the Latvian Open
Mathematical Olympiad (LOMO) was started as an “inclusive” event, giving the
opportunity to every Latvian school student to test their mathematical skills,
regardless of their school grades or of the teachers’ opinion on the preparedness of
the given student. The problem sets for each grade include five tasks from algebra,
geometry, combinatorics, and number theory, which every contestant has to solve
within 5 hours. Both parts of a student’s written work—the fair copy and the draft
—must be submitted to the jury.

While LOMO is the most popular students’Olympiad, which in the past years has
gathered a record number of participants—over 3000, the statistics shows a trend that
the scores of the younger contestants are higher than those of senior grade students.
One of the reasons is that the tasks given to the younger grades are more entertaining
and can be solved with calculations, logical reasoning, and simple combinatorial
methods. Apart from the skills defined in the school curriculum, solving high-school
level problems requires a greater problem-solving experience. This could be one of
the reasons for the lower number of participants in senior grades.

13.1.2 Assessment of Olympic Works

The assessment of the Olympiad works is not an easy task. There are different
systems of assessment, such as the one used at the Moscow Mathematical
Olympiad, consisting of plus-minus signs specifying the correctness of the solution
(Galperin and Tolpigo 1986). Szetela and Nicol (1992) focused on students’ use of
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different strategies in problem solutions and proposed to categorize the responses in
the solutions. The experts of the Trends in International Mathematics and Science
Study (TIMSS) emphasize the importance of cognitive skills—knowing, applying
the knowledge, and reasoning—in assessing students’ achievements and describe
the main components of these skills (Mullis et al. 2009).

In Latvian Open Mathematical Olympiads, the works are assessed using a
10-point grading scale and the solution of each problem is assessed by experts, who
develop individual criteria relevant to the problem, based on the general guidelines
developed by the jury. Evaluators examine solutions of the problems presented in
the fair copy; and they occasionally check the notes in the draft, when some doubt
arises. The number of works in each class constitutes several hundred, while the
time devoted their evaluation is rather limited in order to ensure a timely
announcement of results. To help ensure the quality of assessment, it would be
useful to provide recommendations obtained from a more profound study of the
solutions submitted by students.

13.2 Possible Conclusions from Students’ Works

Most Latvian mathematics textbooks include a rather low proportion of proof
problems. For instance, when reviewing a grade 8 mathematics textbook (France
et al. 2010), which corresponds to the newest curriculum, only 8.5% of the prob-
lems included in the algebra section require justifying statements or making proofs,
while 15% of the problems are of an analytical nature aiming to assess, compare, or
put forward a hypothesis. The teachers have to provide the classes with additional
materials so that students can acquire relevant problem-solving skills. Such
preparation for classes requires additional work of the teachers. Sweller et al. (2010)
discuss the difficulties of teaching and learning problem-solving skills. They note
that problem solvers have to be taught by emphasizing working examples of
problem solution strategies that are domain-specific. However, Singaporean
researchers recognized problem-solving as one of the fundamental goals of teaching
mathematics and they elaborated a special program as a support material for
teachers (Dindyal et al. 2012).

The Olympic problem set differs significantly from the tasks of school mathe-
matics. Therefore, the students who have succeeded at the Olympiad demonstrate
mathematical abilities that are considered as significant components of giftedness
by several researchers (Sriraman 2008; Kontoyianni et al. 2013). For example, the
ability to abstract, generalize and discern mathematical structures, the ability to
master the principles of logical thinking, the flexibility of mathematical operations,
and an intuitive awareness of mathematical proof are considered by Sriraman
(2008, p. 94) as components of mathematical giftedness. The best LOMO students’
works are a manifestation of the above-mentioned skills and original solutions.

However, a large proportion of Olympiad participants do not achieve sufficiently
good results. In 2012, when correcting the works of 6th grade students, we noticed
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that the drafts of students’ Olympic works provided useful and interesting ideas that
had been left unimplemented in problem solutions presented in the fair copies. The
question arises what is considered by students to be a complete problem solution?
We had the opportunity to review the works of the same students as they repeatedly
participated in the Olympiad in grades 8 and 9. Taking into consideration that
applications of algebra and number theory results are the basis of the solutions of
many Olympiad problems, we analyzed the students’ works in detail and sought
answers to the following question:

– What knowledge and problem-solving skills do the students demonstrate in the
solutions of algebra and number theory problems?

13.3 Components of Problem-Solving Process

Problem solving is the essence of mathematics. Different models are elaborated by
researchers to interpret the sequencing stages of the problem-solving process. These
studies were originally addressed to teachers in order to enhance students’
problem-solving skills. One of the most popular studies is Polya’s four-step method
(1945) that incorporates the principles: Understand the problem, Devise a plan,
Carry out the plan, Look back. Through the years, researchers have analyzed the
process of problem solving and developed various specialized study frameworks,
according to the postulated objectives of the studies. An important aspect is the
evaluation of students’ knowledge, skills, abilities and creativity (Organization for
Economic Cooperation and Development 2013; Szetela and Nicol 1992; Rott
2013). With the intention of describing the cooperation of teachers and students
when learning inquiry-based problem-solving methods Singer and Moskovici
(2008) created the IMSTRA model (Immersion, Structuring, Applying).
Recognizing the significance of problem posing in the teaching-learning process, as
a result of empirical studies, Singer and Voica (2012) have developed a conceptual
problem-solving model describing the phases which are sequentially performed by
the solver. They defined four operational categories—decoding, representing,
processing, and implementing, where each of the categories contains a set of
complex operations. Their introspective approach allowed the authors to emphasize
the importance of cognitive processes so that the problem solver would create a
mental model according to the given problem (representing phase), which they
would then transform into a mathematical model (processing phase), sequentially
using this model in solving the problem (implementing phase).

In our study we were using only the written Olympiad works submitted by
students, where the problem-solving process was implicitly reflected in the draft
copy. When applying Polya’s problem-solving principles (1945) to students’ drafts,
it is possible to determine whether the student has understood the problem, while
completed operations do not indicate whether the student has had a problem-solving
plan, as oftentimes the drafts are rather chaotic.
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As a result of having studied students’ problem solutions, we consider the
problem-solving process includes the following sequential stages:

– Conceptual understanding of the given task
– Implementation of the basic knowledge for solving the task
– Experimentation and investigation
– Formulation of regularities
– Estimation of discerned regularities
– Hypothesizing
– Justification of proposed statements.

Starting with exploration of the problem solution in draft copy and proceeding
with evaluation of the problem solution in fair copy, we can observe what
problem-solving stages the student has completed, what their quality is, and what
are the student’s problem-solving skills as a whole. Problem-solving skills include
the knowledge of mathematical facts, the precision of doing mathematical opera-
tions, the mastery of reasoning methods and problem-solving strategies or heuris-
tics, hypothesizing and justification, as well as a correct use of the mathematical
language. Thus, by empirically analyzing different models expressing the rela-
tionship between mathematical abilities and mathematical creativity, Kattou et al.
(2013) discovered that the components of creativity—fluency, flexibility, and
originality—may be considered as sub-components of mathematical abilities.

The solution significantly depends on the student’s beliefs of what a complete
problem solution should be. Szetela and Nicol (1992) emphasize the importance of
understanding a student’s thought process in order to assess the solution; however:

Students are prone to make calculations without explanations and calculations alone often
fail to sufficiently reveal the nature of the solver’s work. (p. 42)

Given that grade 6 problems are not overly complicated, along with the
above-mentioned observation (Szetela and Nicol 1992), a part of the LOMO grade
6 participants decided that instead of a complete proof it is enough to give the
answer “yes” or “no”, or “is/not possible”. All in all, the solution paths of
junior-grade problems were rather uniform compared to the various problem
solving strategies chosen by grade 9 students.

We chose a unified method for classifying problem solutions—we divided the
solutions of each problem into general stages naming them solution steps. We
classified these stages to determine what level of problem-solving competence the
student has achieved. We based this classification on the original Bloom’s
Taxonomy, which comprises six major categories in the cognitive domain:
Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation [the
original Bloom’s Taxonomy is described in Anderson et al. (2001)]. Over time this
model was transformed by proposing that the category Knowledge be regarded as a
separate taxonomic dimension to avoid its dual nature, and by changing the sequence
and naming of some categories (Anderson et al. 2001). In our opinion, the hierar-
chical model of the original Bloom’s Taxonomy (from the simple to the complex,
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from the concrete to the abstract) is well-suited for the systematization of problem
solution steps seen in students’ solutions. Table 13.1 gives five general
problem-solving phases which correspond to particular categories of Bloom’s
Taxonomy. Each of these phases fits a certain level of the student’s problem-solving
competence (further referred to as level of competence). An example of the classi-
fication and coding of a problem solution steps is presented in Appendix 3.

For describing studies of the problem-solving process, Rott reviewed a broad
literature, from both psychological and pedagogical perspectives (Rott 2013). The
Schoenfeld’s structured stepping-stones model, which Rott refers to and which
describes the solution as a path through problem space, corresponds to the
framework of our study. Students’ Olympic works are like a mosaic composed of
various operations or activities. The type and complexity of these activities can be
very different for various age groups. Thus, for instance, junior grade problems can
be solved by applying rather simple heuristic strategies, such as the trial and error
method or enumeration method, whereas problems for senior graders cannot be
solved by such methods (see, for example, the solution of Problem 9.3 in Appendix
1). Therefore, the classification of solutions by defining the problem solution steps
and the corresponding level of competence, in our opinion, is the most appropriate
choice to compare students’ achievements in solving problems of various degrees
of complexity.

13.4 Method

13.4.1 Problem Set

The principles of assembling an Open Mathematical Olympiad problem set are
traditionally based on the increasing role of discrete branches of mathematics versus
continuous branches in the school mathematics curriculum (Andzans et al. 2006).

Table 13.1 Description of levels of competencies used in the research on students works

Principles by
Bloom’s taxonomy

Explanation Levels of
competencies

Conceptual
understanding
pre-processing of
data

Demonstration of knowledge and comprehension
Application of facts, concepts and procedures to the
given data

Level 1
(L1)

Analysis Investigation of the properties of given objects and
operational processing implementing different methods

Level 2
(L2)

Synthesis Posing of the hypothesis, construction of algebraic
formulas, generalization

Level 3
(L3)

Evaluation Reasoning, estimation, explanation, justification Level 4
(L4)
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A problem set includes combinatorial, algorithmic and number theory problems
(altogether constituting 50%). Especially in junior grades, considering the fact that
students do not have sufficient knowledge of algebra and elementary geometry yet,
the proportion of combinatorial problems is higher.

The problem topics correspond to the curriculum. Every problem can be solved
by applying the knowledge of school mathematics in addition to logical thinking.
Talented students with sharp logical thinking theoretically would not need to pre-
pare for the Olympiad. However, training in problem solving significantly increases
the possibility of qualitatively solving a yet-unfamiliar problem. In addition to that,
the school curriculum practically does not require to justify one’s statements, while
for Olympic problem solutions it is the argumentation that largely counts.

For the purpose of this research project we selected problems of algebra and
number theory. Such problems are traditionally included in the problem sets of
Mathematical Olympiads (see, for example, the collections of Olympiad problems
Djukić et al. 2011; Andreescu and Enescu 2011). Solving these problems requires
quite high levels of abstract thinking and algebraic reasoning. These abilities, as
well as an accurate use of the mathematical language, play a significant role in the
presentation of a problem solution, as mentioned by Windsor (2010). A student’s
ability to describe numerical quantities and to transform their interconnection
algebraically is a characteristic trait of abstract thinking in mathematics. The
problems selected are rather different; nevertheless, solving them requires some-
what similar technical and also argumentation skills. Upon reviewing the students’
solutions, we researched the algebraic models they had created, as well as the
students’ knowledge of number theory, problem solving methods, and their tech-
nical skills.

We selected two problems from the problem sets of each grade:

Problem 6.1. (LOMO 39, 2012) The numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are on the
board. Erase any two of them (e.g. a and b) and write the number a + b + 2 instead.
The process is repeated until only one number is left. Prove that irrespective of the
sequence of operations the same number will be left at the end. Determine this
number!

Problem 6.4. (LOMO 39, 2012) Is it possible to write (a) six; (b) seven different
natural numbers around the circle so that the sum of any two adjacent numbers were
a prime number and that all prime numbers produced through summation were
different?

Problem 8.2. (LOMO 41, 2014) Find all natural numbers that do not exceed
1,000,000 and that are diminished 15 times when their first digit is erased!

Problem 8.5. (LOMO 41, 2014) The cells of a 3 � 3 size square have to be filled
with such natural numbers the sums of which in all rows, columns, and in both
diagonals, are equal. Number 24 is given in the middle of the upper row. Is it
possible that the lower left corner contains the number (a) 7; (b) 17?
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Problem 9.1. (LOMO 42) Find two numbers whose difference is 2015 and whose
product is a minimum.

Problem 9.3. (LOMO 42, 2015). Prove that expression x5 � 5x3 þ 4x is divisible
by 120 for any integer x.

The jury of LOMO always later publishes the experts’ solutions for every
problem offered at the Olympiad (see Appendix 1). It has given us the possibility to
compare students’ solutions with the experts’ view. In most cases students started
solving problems in a similar way as experts, but often lost the path failing to solve
it.

According to the mathematics curriculum for grade 6, students have to learn
operations with rational numbers and are introduced to solving simple linear
equations. Therefore, grade 6 LOMO problems mainly are of a combinatorial
nature. Problem 6.1 is a combinatory problem with some algebra elements.
Algebraically presented givens implicitly point to the implementation of algebra to
discover a general solution. The problem can be solved numerically, too. Number
theory Problem 6.4 is of a combinatorial nature and comprises two parts. To solve
one case of the problem the contestant has to present just one example, while to
solve the other part it is necessary to prove the impossibility of the requested
arrangement.

The students of grades 8 and 9 could have the knowledge about the algebraic
notation, transformations of expressions, and solving of equations. To qualitatively
solve number theory Problem 8.2 it is necessary to implement a decimal notation
for numbers and to create and solve an algebraic equation. Problem 8.5 is a
combinatory one where case (a) is not possible to solve without introducing
symbolic variables and solving equations. Those students who tried to solve this
problem just numerically failed to reach a result. Problem 9.1 is an algebra problem
that has a short solution by the analytic investigation of the created function.
A relevant part of the contestants considered this as a number theory problem and
found the answer in whole numbers. Some students demonstrated original solutions
with well-grounded reasoning. Problem 9.3 is a number theory problem, where the
shortest solution can be reached by factoring of given expression. For this reason,
appropriate algebraic skills are needed, demonstrated by only a few students. The
application of modular arithmetic is another way of solving the problem; however
this requires some algebra knowledge, as well, to shorten the enumeration of cases.

In solving the selected problems, along with arithmetic and algebraic calcula-
tions and transformation, an important role is played by the justification and proof
of the results obtained. Students must demonstrate understanding of mathematical
terminology, the characteristics of whole and prime numbers; they need to be able
to generalize, to build algebraic formulas and equations, as well as to justify the
results and prove the statements. In the solutions proposed by students, we
examined their argumentation skills, calculation and algebraic skills, as well as the
application of number theory results.
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13.4.2 Selection of Participants

We determined that 87 students of grade 6, 8 and 9 had repeatedly participated at
Open Mathematical Olympiads in 2012, 2014, and 2015. Because of their regular
participation in the Olympiad, we called them students who are interested in
mathematics. Among them there were several contestants who scored high in all
mentioned Olympiads, while others had varying degrees of success. The best
solutions of Olympic problems certainly demonstrate the traits of mathematically
gifted students, such as the ability to create abstract models and use different
problem-solving methods and heuristics, as well as the ability of reasoning and
justifying.

In this study, we analyzed the students’ problem-solving skills in the fields of
algebra and number theory. Out of five problems in each grade we chose two
relevant ones as described above. We divided all students into three groups based
on the evaluation by the jury. Subgroup A included students with the top scores—
between 13 and 20 points in total for both problems. Subgroup B included students
with average scores—between 7 and 12 points in total for both problems.
Subgroup C included students with scores below 7 points. Each student, depending
on his or her achievements, was included in one of these subgroups for each grade.
The combination of these subgroups formed 18 different groups. Table 13.2 shows
the number of students per group.

The data summarized in Table 13.2 demonstrate that there were no students who
would have solved grade 9 problems much better than similar-themed problems in
previous years; that is, the table does not have groups CBA or BBA. The 41
students who had at least once achieved the rating of group A were selected as a
focus group of our research. The works of the remaining students failed to provide a
sufficient amount of useful information for this study.

13.4.3 Method of Coding Students’ Solutions of Selected
Problems

When systematizing students’ works, we noted all the activities performed in the
solution of each particular problem both in the draft and the fair copy—a study of

Table 13.2 Division of students by assessment group

Assessment groups AAA AAB AAC ABB ABC ACB ACC

Number of students 4 5 5 5 8 2 5

Assessment groups BAB BAC BBB BBC BCB BCC

Number of students 2 4 3 11 1 14

Assessment groups CAC CBB CBC CCB CCC

Number of students 1 2 2 2 11
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examples, calculations, formulas, algebraic transformations, graphic drawings,
tables, and texts. These activities were classified according to their relation to the
respective solution step implicitly showing the decision “How to solve the given
task” made by the student.

To better characterize each step, we related them to some special mathematical
competencies that OECD (Organization for Economic Cooperation and
Development 1999) expert panels have defined as general mathematical skills. In
our research we examined how the solutions of each problem reveal each student’s
modelling, technical, problem solving, and argumentation skills (the details are
presented in Table 13.3). Written activities within one step indicated mathematical
skills applied by each student. By examining the presentation of a solution in the
fair copy, we saw how contestants evaluated themselves—whether they wrote
down the solution of the selected task, only presented the answer, or omitted it. We
evaluated each step in students’ solutions by the quality of their performance: high,
average, or low. The elaboration and evaluation of separate solution steps by our
experts’ team is presented in Fig. 13.1. Students’ decisions on solving the problem
as well as their self-evaluation can only be determined from the context.

Fig. 13.1 Construction of solution step and method of description
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Every step of students’ solutions was measured by 3 parameters: the application
of mathematical skills (see Table 13.3), an appropriate level of competencies (see
Table 13.1), and the quality of performance. We determined and numbered all steps
performed by students in their solutions for every separate problem. Every step was
associated with a respective level of competencies and coded corresponding to
applied mathematical skills.

One step can be coded with more than one code: for instance, the factorization of
expression (see Problem 9.3 LOMO 42) was coded both as a way of a solving
problems—the application of problem-solving skills and the application of tech-
nical algebra skills. The number of the step was added to the code. An example of
the solution of problem 6.1 (see Appendix 2, Solution of Problem 6.1, presented by
student Emils) and an example of coding of Emil’s work is given in Appendix 3.

We created the General Map of Competencies (GMC) and the Expanded Map of
Competencies (EMC) as tool for assessing the quality of solutions. The Expanded
Map of Competencies is a table of codes related to respective mathematical skills
and quality (as an example, see Table 13.6 in the Appendix 3). The General Map of
Competencies is a sequence of 12 digits, where every three sequential digits
characterize a respective level of competencies. All steps of level 1, level 2, level 3,
and level 4 were counted and were distributed according to the quality of perfor-
mance. We found that the decimal-basis coding system of elements, which is
described by Leikin as a tool for evaluating the flexibility component of students’
creativity (Leikin 2013), obviously presents the quality of a problem solution and
the contestant’s competence. Taking into account that the number of steps in every
solution is fewer than 10 on each level of competencies, we added the number of
steps at each separate level of competencies, multiplying the number of high quality
steps by 100 and that of average quality steps—by 10. For example, if a contestant
had made 9 steps solving one problem and got the following map of quality: 100
211 210 010, we could see that there was one high-quality step of the first level; 2
high-quality steps, an average one and an unsuccessful step of the second level of
competencies; two high-quality and one average step of level 3, and an average step
of level 4. We created the GMC and the EMC maps for solutions of every selected
problem for every student’s work.

Comparing the General Maps of Competencies, we can see whether students
have managed to reach the highest level of problem solving, as well as the quality
of their presentation. The Expanded Maps of Competencies helped us investigate
some specific aspects—such as, the use of algebra.

13.5 Analysis of Results

The data collected in the General Maps and in the Extended Maps of Competencies
let us analyze the achievements of each individual student, as well as compare the
results of the entire focus group. The GMC generally characterizes student’s suc-
cess in problem solving, whereas the EMC shows the specific prevalence of applied
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mathematical skills. Table 13.4 presents GMC maps for some students, whose
results at the Olympiads were different. The right side of every GMC presents the
score achieved.

The table shows that the best score was achieved by Emils. He used a variety of
methods to elaborate and justify the hypotheses set, as represented by the number of
solution steps of levels 3 and 4. Emils has increased his expertise in solving
problems with algebra elements. He invested a considerable effort in solving grade
9 problems, which fruitfully resulted in the discovery of various regularities and
defining of hypotheses, as we see on level 2 and level 3. This student persistently
studied the given problems in depth. Other students did not complete as many steps
of the highest levels. For example, Anna’s GMC maps imply that she has to
improve her algebraic skills required for solving the last three problems. We may
see that Anna did well in some steps of level 3 and level 4 to solve Problem 8.5.
Nevertheless, the steps made failed to lead to a complete solution of the problem, as
one may conclude looking at the score obtained at the Olympiad. Different con-
clusions can be drawn when looking at Matiss’ maps, which demonstrate a sig-
nificant decline in the student’s mathematical abilities. The average quality of
solution has decreased. Rebeka’s maps show that she produced useful statements,
but failed to present an appropriate reasoning in the solutions of grade 6 and 8
problems. Additionally, looking in the Expanded Maps of Competencies, we found
that several steps in Emils’ solutions presented argumentation skills and the use of
algebra. Anna used algebraic notations but lacked technical skills to solve equations
or to make algebraic transformations. In the Olympiad works of grades 6 and 8, she
provided exhaustive explanations and justified the hypotheses, but in the work of
grade 9, Anna failed to do the reasoning because of insufficient algebra skills. The
Expanded Maps of Competencies of Matiss and Rebeka demonstrate that they used
the numerical calculations in most of the solutions. Matiss presented his solutions
mainly in a descriptive form, and both Matiss and Rebeka made statements without
providing any proof.

By evaluating the data obtained, we concluded that the quality assessment of the
third competence level—synthesis level—characterizes such creativity components
of students’ solutions as fluency and flexibility (Leikin 2013). We noticed that the
quality of the third level steps strongly depends on the useful outcome of solution
steps of analytical and technical competencies. The elaboration of these steps
demonstrated students’ mathematical knowledge which is of great importance in the
creative process, as noted by Leikin (2013). The number and variety of selected
solution steps do not always guarantee that the student will fully solve the problem.
And vice versa—a minimal number of solution steps does not always mean that the
problem is not being solved. Some students considered certain problems to be so
easy that they correctly described the problem solution directly in the fair copy.

When evaluating data of the entire focus group, we concluded that Olympiad
achievements of the 11 students had increased. For 10 students, we determined a
constantly low quality of works and the remaining 20 students demonstrated a more
or less rapid decline of problem-solving skills.
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We conducted a special analysis of the quality of solution steps of the third and
fourth levels using codes from the General Maps of Competencies. We added
numbers that represent the quality of steps at level L3 and separately at level L4 for
each grade and divided them by 10. Compared to the results demonstrated by grade
9, the problem-solving skills have decreased (see Figs. 13.2 and 13.3).

When solving grade 9 problems most students failed to obtain or see the required
regularities, which the proved statements had to be deduced from. They could not
write the necessary explanations and reasoning. (See, for example, the solution of
Problem 9.1, presented by student Arvis in Appendix 2. He found the correct
answer but did not justify it.) As a result the students applied a small number of the
fourth level steps in total.

We tried to determine an apparent reason for students’ diminishing
problem-solving skills in the Expanded Maps of Competencies. Taking into

Fig. 13.3 Comparison of evaluation competence at level L4 for each student

Fig. 13.2 Comparison of synthesis competence at level L3 for each student
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account that solving the selected grade 9 problems requires algebra knowledge and
techniques, we created sub-maps from the GMC representing only the steps
requiring algebra skills. Grade 6 problems can be solved with numerical calcula-
tions and logical reasoning. Only some students used algebra in their solutions.
Therefore, we created sub-maps only for grades 8 and 9. Figure 13.4 depicts the
sum of both sub-maps for grade 8 and grade 9.

Figure 13.4 depicts a decrease in the number of algebraic solution steps and the
quality of respective technical performance. Some students misunderstood the
givens, considering Problem 9.1 as a number theory problem, while some other
students tried to solve Problem 9.3 as an algebra task. For example, Diana decided
that only whole numbers must be researched in the solution of Problem 9.1. She
started to list the pairs of numbers (see Fig. 13.5) and then she calculated the
products of these whole numbers (see Fig. 13.6).

Only five students chose similar approach as shown in the solution suggested by
the experts (see Appendix 1, Solution of Problem 9.1)—they constructed the
quadratic function.

Most students in the selected focus group had quite a correct conception of how
to solve the Problem 9.3—they understood that the expression must be initially
factorized to find the prime divisors of the given expression. Unfortunately, not all

Fig. 13.5 Selection of the pairs of numbers in Diana’s solution of problem 9.1

Fig. 13.4 Comparison of students’ algebra skills solving 8th and 9th grade problems
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of them had a sufficient level of mathematical skills to complete the solution and
they failed to reach a sufficiently high level of abstraction. Figure 13.7 shows an
example of how Martins tried to factorize the given expression. However, he did
not get the completely factored form. This indicates that the student had quite a
good understanding of problem solving and of what was required from him.
However, Martin’s average level of competency was low.

Fig. 13.6 The search of the minimal product in Diana’s solution of problem 9.1

Fig. 13.7 Factoring of the
expression in Martin’s
solution of problem 9.3
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13.6 Conclusion

The assessment tools presented here—the General Map of Competencies
(GMC) and the Expanded Map of Competencies (EMC) for evaluation of students’
solutions—can be applied for analyzing the achievements of each individual stu-
dent or a group of students. The GMC is useful to produce overall statistics of the
work performed by a contestant. When comparing the GMC with the score obtained
in the Olympiad one may see to what extent the solution is not complete. To get
more comprehensive statistics, the student’s solution can be compared to an
expert’s solution, offered by the jury, to determine which of the selected tasks in the
student’s solution leads to a successful result. A more detailed overview of the
activities is incorporated in the EMC, where every solution step has been catego-
rized by the mathematical skills applied. Such EMC maps are extensive (see
example Table 13.6 in the Appendix 3); however, they allow investigating
sequences of similarly categorized steps.

When searching for original solutions, we found that the students’ solutions of
Problems 6.1, 6.4 and 8.2 were similar to the solutions offered by the experts (see
Appendix 1). The students’ works differed only by the quality of argumentation.
The students of the focus group had chosen diverse solution methods for Problem
8.5: they either used the arithmetical approach or introduced one or more variables
to create equations and even tried to solve a system of equations with 8 variables
that made the process of solving very complicated (see Fig. 13.8). Some contestants
were close to the perfect solution of the problem, but they were lacking experience

Fig. 13.8 Selection of 8 variables to solve problem 8.5
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in the solving of Diophantine equations. Figure 13.9 shows an example of Sandra’s
work where she argued that the number m cannot equal to 14þ x and to 17� xþ y
at the same time, and she called this result as contradiction (see Fig. 13.9). An
original approach was used by student Janis (see Solution of Problem 8.5, presented
by student Janis in the Appendix 2). He researched the last digits of the numbers to
find valid examples. Still case (a) was not completed because the demonstration of
the example is not the correct proof of the task.

We found only a few original solutions in the Olympic works of grade 9—they
differed from the problem solutions offered by the experts as well as from most
solutions presented by other contestants. For example, Alex researched problem 9.1
applying the inequality between the arithmetical mean and geometrical mean. He
wrote some sparse notes in the draft. He assigned the sum of two numbers a and
b by 2c (see the Fig. 13.10). Alex drew a picture to visualize the inequality and tried
to prove it using variables x and y, where x could be the half-perimeter of an

Fig. 13.10 Problem 9.1. The reconstruction of the inequality between the arithmetical mean and
geometrical mean in the draft of Alex’s work

Fig. 13.9 “Contradictory result” in Sandra’s solution of problem 8.5
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arbitrary rectangle, and y could be the length of one of its sides. Then the half of
x expresses the side lengths of the appropriate square. The algebraic transformations
used by him were not correct. Nevertheless the solution of the problem is well
presented in his fair copy. This solution is translated and included in the Appendix
2 (see Appendix 2. Solution of Problem 9.1, presented by student Alex).

Several students had tried to solve Problem 9.3 by implementing modular
arithmetic. Elena researched the properties of the separate terms. She proved the
expression’s divisibility by 5, noted that the last digit of the given expression is 0,
and declared that the expression was divisible by 8 and by 3 without the proof (see
Elena’s solution of Problem 9.3 in Appendix 2). Dmitirij proved the divisibility of
the expression step by step. He used an algebraic approach to show the divisibility
by 2, 3, and 5 (see the example of the expression’s divisibility by 3 in Fig. 13.11).
Unfortunately the divisibility by 8 was not proved.

We have to remark that we cannot consider the examples of problem solutions
by students Alex and Dmitrij as creative; these examples rather indicate broader
experience and deeper knowledge of problem solving.

If looking at the total results obtained by the 351 participants of LOMO 42 in
grade 9, we can compare the score of those 87 students who repeatedly participated
in the Olympiads with the score of the other 254 contestants. Figure 13.12 com-
pares the share of students in the respective groups of scored points (the maximum
score of a student’s solutions of LOMO problems is 50). Even though a significant
part of the selected 87 students failed to demonstrate good mathematical skills in
the solutions of Problems 9.1 and 9.3, they had better scores in the solution of other
grade 9 problems and achieved better results than the other 254 contestants. Such a
comparison implies that the contestants who repeatedly participate in the Olympiad
have better problem-solving skills on the average.

The data collected on the reasons explaining why students demonstrated a low
level of algebra competencies in their works does not provide an answer. However,
it raises some open questions:

Fig. 13.11 Problem 9.3. Dmitrij’s proof of the expression’s divisibility by 3
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– How do students acquire school mathematics, do they have an experienced
teacher?

Students need mentors who would help them acquire various algebra skills, gain
new knowledge, and broaden their problem-solving competencies. Teachers’ pro-
fessionalism is a key prerequisite for developing students’ argumentation and jus-
tification skills, as indicated by Kattou et al. (2013).

– Do students have the opportunity to prepare for the mathematical contests? Are
they motivated by their teachers, peers, parents, or themselves? Can they attend
the extracurricular activities in mathematics?

Research of participation in International Mathematical Olympiads Subotnik
et al. (1996) highlights the significance of special programs for gifted youth, student
attendance in interest groups and in clubs, parental support for talent development
and collaboration between parents and school, which are crucial to develop the
mathematical abilities of gifted students. At present, a variety of programs for
training gifted students are being implemented, however, their efficiency requires a
more profound examination (Singer et al. 2016). Therefore, more systematic
empirical studies are required to answer the open questions concerning the
opportunities for gifted students and for the students who are interested in
mathematics.

Appendix 1

Solutions of LOMO Problems Offered by Experts

Solution of Problem 6.1. (LOMO 39, 2012)

Two numbers are erased and their sum plus 2 is written instead. As the other
numbers do not change, their sum stays the same. The common sum of the given
numbers increases by 2 after every operation. Finally, the last number equals Sþ 2 � n

Fig. 13.12 Comparison of 9-graders’ results in LOMO 42 (2015)

13 Repeated Participation at the Mathematical Olympiads … 363



where S is the total sum of all given numbers, but n is the number of the executed
operations. There were 10 numbers on the board at the beginning, but after each
operation the amount of the numbers diminishes by one. Therefore n ¼ 9. The
number left on the board is:

Sþ 2 � n ¼ ð1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10Þþ 2 � 9 ¼ ð1þ 10Þ � 10
2

þ 18

¼ 55þ 18 ¼ 73

Solution of Problem 6.4. (LOMO 39, 2012)

Case (a) It is possible to write six numbers around the circle as required. See the
example in Figure 13.13.
Case (b) It is not possible. The sum of two different natural numbers is at least
1 + 2 = 3. All prime numbers except the number 2 are odd. Accordingly, the sum
of two adjacent numbers must be an odd number, that is, the parities of any two
adjacent numbers must differ. Whatever is the layout of the seven numbers around
the circle, there is going to be one spot where two numbers of the same parity with a
total sum of an even number bigger than 2 (it is not a prime number) will be next to
each other.

Solution of Problem 8.2. (LOMO 41, 2014)

Express the number in expanded form x � 10k þ Y where x is the first digit, but
Y is the k–digit number (1� k� 5). Then x � 10k þ Y ¼ 15 � Y ) x � 10k ¼ 14 �
Y ) x � 2k � 5k ¼ 2 � 7 � Y .

We conclude that x is divisible by 7. Taking into account that x is a one-digit
number x ¼ 7 and Y ¼ 2k�1 � 5k ¼ 5 � 10k�1, 1� k� 5. There are five natural
numbers that satisfy the solution—75, 750, 7500, 75,000, 750,000.

Solution of Problem 8.5 (LOMO 41, 2014)

The variable x represents the number in the central cell of the given square. The
variable y represents the number in the middle cell of the lower row. Then the sum
of numbers in every row, column or diagonal is 24þ xþ y. The cells can be filled
step by step (see Figs. 13.14 and 13.15).

Case (a)
We determine that the middle number in the last column must be −10, which is

not a natural number. Consequently, the lower left corner cannot contain the
number 7.

1
2

3
4

9

10

Fig. 13.13 Arrangement of
six numbers around the circle
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Case (b) Similarly the cells can be filled in the case (b):
The sum of numbers in the diagonal is 3x. Then y ¼ 2x� 24. Choosing x ¼ 13

we determine one of the answers (see Fig. 13.16.).

Solution of Problem 9.1. (LOMO 42, 2015)

The letter x and the expression xþ 2015 are used to represent the given numbers.
The function representing their product is f ðxÞ ¼ x � ðxþ 2015Þ ¼ x2 þ 2015x. The
graph of this function is a parabola that opens upward. The x-coordinate of their
vertex is x0 ¼ �2015

2 ¼ �1007:5. The function has the minimal value at this point.
Consequently, the two numbers are 1007.5 and −1007.5.

Solution of Problem 9.3 (LOMO 42, 2015)

The factoring of the expression is

x5 � 5x3 þ 4x ¼ x � ðx4 � 5x2 þ 4Þ
¼ x � ðx4 � x2 � 4x2 þ 4Þ ¼ x � ðx2ðx2 � 1Þ � 4ðx2 � 1ÞÞ
¼ x � ðx2 � 1Þ � ðx2 � 4Þ ¼ x � ðx� 1Þ � ðxþ 1Þ � ðx� 2Þ � ðxþ 2Þ
¼ ðx� 2Þ � ðx� 1Þ � x � ðxþ 1Þ � ðxþ 2Þ:

Case (b) Similarly the cells can be filled in the case (b):

24 24 7+y 24 7+y 24 7+y
x → x → x → x 10 →

17 y 17 y 17 y 7+x 17 y 7+x

24 7+y x–7 24 7+y
→ 14+y x 10 → 14+y x 10

17 y 7+x 17 y 7+x

Fig. 13.15 Filling of the square in the case (b)

6 24 9
16 13 10
17 2 20

Fig. 13.16 One of the
possible answers in the case
(b)

Case (a) 

24 24 17+y 24 17+y 24 17+y
x → x → x → x –10

7 y 7 y 7 y 17+x 7 y 17+x

Fig. 13.14 Filling of the square in case (a)

13 Repeated Participation at the Mathematical Olympiads … 365



We determined that the given expression is a product of five consecutive whole
numbers. At least two of the numbers are divisible by 2, while one of them is also
divisible by 4. At least one number is divisible by 3, and at least one number is
divisible by 5. Consequently, the product is divisible by 2 � 3 � 4 � 5 ¼ 120.

Appendix 2

Solutions of Problems, Presented by Students

Comment. We tried to keep in translation the writing style presented by students.
Usually students did not use correct mathematical language and failed to construct
grammatically correct sentences. Sometimes they omitted the subject or the verb.

Solution of Problem 6.1, presented by student Emils

Taking into account that we reach every next number in the equation
aþ bþ 2 ¼ c, we can predict:

d = the number that left the last,
there are 10 numbers, therefore 5 of them will be A, but others 5—will be b.
In one’s turn d ¼ a1 þ a2 þ a3 þ a4 þ a5 þ b1 þ b2 þ b3 þ b4 þ b5 þðn � 2Þ
n = the number of attempts of the operation aþ bþ 2 ¼ c
n = 9 because after every attempt left per 1 number less on the blackboard, so

only one number left after 9 attempts.
Not important, which number is a1, which number is a2, etc., because all given

numbers will be used sooner or later. The common sum of given numbers is
1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10 ¼ 55, therefore
d ¼ 55þð9 � 2Þ ¼ 55þ 18 ¼ 73.

Solution of Problem 8.5, presented by student Janis

Problem 5, version (a). If we insert number 7 in the left lower corner, the square
is impossible to complete. The square in the picture is almost completed (see
Fig. 13.17). However, number 7 does not allow the highlighted diagonal (all sums
are 35). If number 7 could be turned into number 17 at least, the square would be
completed as I am going to demonstrate in version (b).

Fig. 13.17 Filling of the
square in case (a)
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The square in Problem 5 version (b) will be possible to complete because of the
lack of a small number that disturbs completion. At the beginning the square is
drawn up so that the last digit of the sum in each row, column and diagonal is 7.
Then a number of tens is added so that the sums would be 57 (see Fig. 13.18).

Answer: it is impossible to complete the square in version (a), but it is possible
to complete it in version (b).

Solution of Problem 9.1, presented by student Arvis

Numbers where the difference is 2015 will have the smallest product when the
second number is negative, because if a negative number is subtracted, it is added.
For example, 2� ð�4Þ ¼ 2þ 4 ¼ 6. Therefore the smallest product for whole
numbers is 1008 and −1007. But it can be slightly increased if we take numbers
1007.5 and −1007.5.

Solution of Problem 9.1, presented by student Alex

We assume that 2015 and 0 are such numbers. If it is not true, then one of the
numbers is less than 0 (for the product of two numbers to be less than 0, one

Fig. 13.18. Solution of case (b), presented by Janis
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number is <0, but the other is bigger). We assume that the positive (P1) is subtracted
from the negative (−P2):

�P2 � P1\0\2015 is not good.
Second version:
P1 � ð�P2Þ ¼ P1 þP2—can be completely equal to 2015.
As we have to determine the smallest P1 � ð�P2Þ, let’s determine the biggest

P1 � P2, so that P1 þP2 ¼ 2015.
According to the rule of the square where the perimeter is equal to the perimeter

of other rectangles (not squares), a square will always have the biggest area.
That is, P1 � P2 is going to be the biggest if P1 ¼ P2.
As P1 þP2 ¼ 2015, P1 ¼ P2 ¼ 1007:5.
Consequently, the smallest product is going to be �ð1007:52Þ. Truly:
1007:5� ð�1007:5Þ ¼ 2015, so these are the numbers we need. Answer 1007.5

and −1007.5.

Solution of Problem 9.3, presented by student Elena

If this number is divisible by 120, it contains prime factors 2, 2, 3, 2, 5. This
number is divisible by 5, because subtrahend ð�5x3Þ is divisible by 5, and the
transformed expression xðx4 þ 4Þ is also divisible by 5. In order to prove it, let’s
determine how many different numbers can be obtained in the case of each digit
(see Fig. 13.19).

If the last digit of number x4 is 1, then, if we add 4, it is divisible by 5.
Accordingly, every product is divisible by 5. It is likewise with the digit 6 at the end
of a number. If the last digit of number x4 is 5, then x contains 5. But all addends

contain 5, therefore ..
.
5.

We see that the sum of the last digits is 0 (see Fig. 13.20). 0 is divisible by
2 � 2 � 2 ¼ 8 therefore the given expression is divisible by 8. The expression is
divisible by 3 too if x is a whole number. The expression x5 � 5x3 þ 4x is divisible
by 120 if x is a whole number.

Fig. 13.19 Last digits of the terms x and x4
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Appendix 3

Example of Coding System for Problem 6.1 (LOMO 39)

We selected all solution steps contained in the works of the students of the selected
focus group. They are as follows:

1. Try one or some examples to see how the given algorithm works.
2. Describe one step of the process algebraically.
3. Systematically investigate several examples to detect common properties of the

given numbers during the process.
4. Visualize the algorithm—construct the tree, draw the arcs, or use colored pencils

—to visualize the calculation of an example.
5. Calculate the sum of the given numbers (S = 55).
6. Express the sum of the given numbers S algebraically.

Consider and explain what happens at every step of the process:

7. the sum of the given numbers does not change,
8. the total sum of the numbers on the black-board increases by 2,
9. the amount of the numbers on the black-board diminishes by 1.

Calculate the number of steps in the process:

10. the use of an algebraic formula (10 – n = 1),
11. calculate (10–1 = 9).

Calculate the increase of the sum S:

12. the use of an algebraic formula (2n),

Fig. 13.20 Research on the last digits of given terms
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13. numerically (2�9).
Write the calculation formula:

14. algebraically (S + 2n),
15. numerically ((1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) + 2�9).
16. Calculate the result (73).
17. Justify the invariance of the result obtained.

It is not necessary to execute all of these steps to complete the solution of the
given problem. The best students’ solutions were similar to the expert solving path,
which contains the following steps: 5, 7, 8, 9, 10, 12, 14, 16, and 17.

All the steps mentioned were coded corresponding to the competencies needed
for problem solving. Some of the steps are attributed to different groups of com-
petencies. For example, the creation of an algebraic formula to describe the whole
process corresponds to modelling skills, technical skills, and problem-solving skills.
Problem-solving skills applied in the solutions represent such heuristic strategies as
the method of trial and error (step 1), the visualization of the process (step 4),
systematic investigation (step 3), the detection of relevant properties of the process
(steps 7–13)—here explanations and reasoning are coded as argumentation skills;
the creation of algebraic formula (step 14), justifying the invariance of the process
(step 17). Students’ decisions to complete calculations or to apply some algebraic
terms are coded as technical skills. If a student additionally formulated the estab-
lished definitions and described the applied operations, we coded these argumen-
tation skills as knowledge reproduction and description (see Table 13.3).

Table 13.5 contains codes for each solution step of Problem 6.1. We added the
number of the step to the code. In the case of Problem solving some steps are coded
by the same code because the meaning of these steps is the same. For example, step

Table 13.5. Coding system of solution steps for Problem 6.1 LOMO 39

Level of
competence

Modelling
skills

Technical
skills

Problem-solving
skills

Argumentation
skills

Step: code Step: code Step: code Step: code

Level 1 Step 2: a2 Step 1: c1
Step 5: c5

Step 1: e1 Step 8: r8

Level 2 Step 6: a6 Step 3: c3
Step 11: c11

Step 3: e3
Step 10 or 11: ap10

Step 10: r10
Step 11: r11

Level 3 Step 4: vm4
Step 10: am10
Step 12: am12
Step 14: am14

Step 12: a12
Step 13: c13
Step 14: at14
Step 15: a15
Step 16: c16

Step 4: vp4
Step 12 or 13: ap12
Step 14 or 15: ap14

Step 7: r7
Step 9: r9

Level 4 Step 17: h17 Step 12: r12
Step 13: r13
Step 14: r14
Step 15: r15
Step 17: j17
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12 and step 13 are coded by ap12, where the second letter is used to differentiate it
from the code am12 used for coding the same step as a case of modelling.

Student Emils used 10 steps in the draft and fair copy for solving this problem.
He tried to calculate the example (step 1) and made one mistake (this step was
evaluated with average quality). Then he systematically investigated the examples
(step 3) in the draft (he scored average quality because he called an example
“proof ”). He calculated the sum S (step 5) and the increase of the sum (step 13). In
the fair copy, Emils used an algebraic description (step 2), created and explained the
formula (step 14), transferred this into a numerical form (step 15) and calculated the
result (step 16). He calculated and reasoned the number of steps in the process (step
11) and justified the invariance of the process (step 17). All the steps completed
were of a high quality, except two. The quality map GMC of the steps completed is
as follows: 210 110 400 100.

Emils made 3 steps of the first level of competencies and two of the second level,
where two of these steps were considered to be of an average quality. Other five
steps were completed very well. Emils presented exhaustive explanations and a
correct justification, as demonstrated in the argumentation section in Table 13.6 that
characterized Emils work in details. His solution obtained the highest score.
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Chapter 14
Complex and Open-Ended Tasks
to Enrich Mathematical Experiences
of Kindergarten Students

Viktor Freiman

Abstract At a very young age, some children already manifest unusually strong
mathematical abilities that need to be fully developed and nurtured in school. The
chapter investigates in what way a kindergarten curriculum can offer all students a
richer mathematical experience by means of open-ended and complex tasks. Hence,
I developed and implemented challenging activities for kindergarten students. The
data collected during the experiment helped us examine learning opportunities
within challenging situations in terms of the mathematics structures the kinder-
garten students create during such activities and the strategies they use. The chapter
analyses how kindergarten students approach three challenging situations, showing
a great variety in students’ authentic strategies and mathematical approaches. While
some students struggle with increasing complexity of tasks but still remain engaged
and try to overcome obstacles, others seem to exhibit more structured (in terms of
mathematical relationships), systematic (in terms of problem-solving strategies),
and abstract (in terms of mathematical symbolism) approaches. In addition, all
students, even at a very young age, can benefit from a classroom culture of ques-
tioning, investigating, communicating, and reflecting on more advanced and
meaningful mathematics that can help develop their mathematical mind.

Keywords Mathematical giftedness � Precocious abilities
Kindergarten curriculum � Open-ended and complex tasks

14.1 Introduction: Context and Background

The benefits of complex and open-ended tasks in enriching the mathematical
experiences of all learners in a regular classroom, including those with potentially
high abilities, have been well documented in the literature (Leikin 2006; Rotigel
and Fello 2004; Singer et al. 2016; Sheffield 1999; Taylor 2008). These benefits can
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be observed as early as in pre-school and kindergarten. For example, Leeson (1995)
investigated kindergarten students’ spatial constructions by describing students’
advances in problem solving under adult guidance. Leeson shows that a child
presented with task of counting “hidden” cubes in a 2-D representation of a 3-D
construction can be able to “see” hidden parts; a discussion with the interviewer
allowed the child to reflect upon her reasoning and in so doing, she was able to
re-organise her understanding of the situation (Leeson 1995). The results of this
study, according to the author, support the view that many students in early school
years are under-challenged (Leeson 1995). Wadlington and Burns (1993) studied
teachers’ views of activities for gifted pre-schoolers and kindergartners; some
teachers mentioned a “need for greater challenges and additional enrichment in the
regular classroom” (p. 50). Several teachers from this study used activities that were
open-ended and could be extended to match children’s personal interests and skills
while keeping the experiential and exploratory character (Wadlington and Burns
1993).

At the same time, researchers expressed concerns that kindergarten curriculum
focuses too often on “readiness” exercises while overlooking the potential of
nurturing children’s curiosity and ability to reason mathematically about their world
(Pletan et al. 1995). More recent studies have shown that some teachers still keep
beliefs that solid “basic skills” must be given a priority to ensure academic success,
especially for students coming from economically and ethnically disadvantaged
regions, thus overlooking add-on value of problem-solving, inquiry-oriented
learning activities (Stipek 2004).

By addressing the need to support teachers in changing their practices, Tirosh
and Graeber (2003) emphasise three key elements of changing teaching practices by
“(1) providing opportunities for children to solve mathematical problems in their
own ways, (2) listening to children’s mathematical thinking, and (3) using chil-
dren’s mathematical thinking to make instructional decisions” (p. 648). In the study
mentioned above (Leeson 1995), revealing a student’s ability to deal with spatial
construction became possible in a one-to-one conversation with the child. How can
teachers do so in a whole-group teaching situation? By investigating this question,
it would be possible to get more insight into the interplay of abilities, commitment,
affect, and opportunities that constitute, according to Leikin (2009), key compo-
nents of mathematical potential.

Imagine a kindergarten classroom with 36 5- to 6-year-old children and two
classroom teachers presenting a fashion show. In fact, six pairs of winter clothes,
each pair consisting of a coat and a hat, were brought out to let children try them out
in different combinations. Three pairs were for boys and three others for girls. At
each round of the show, one child was called out by the teacher and was asked to
choose a set of clothes and try them on in the front of their peers. While making
their choice, the children had to respect one more condition: Each time the chosen
pair should be different from ones shown before. Initially perceived as a game, the
activity drew a lot of enthusiasm in students: All children were excited with the task
and everyone wanted to have a turn to participate in the show. Not surprisingly,
since many choices are available at the beginning, children can easily find an
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appropriate solution according to their preferences: Boys preferred to choose
clothes for boys, and girls chose clothes for girls.

At some point, one boy appeared to be puzzled: There were no more boys’
clothes left to make up a pair that would be different. The teacher discussed the
situation with the class to remind them of the condition: The pair should be different
and has to include one hat (for boys or for girls) and one coat (for boys or for girls).
However, this does not necessary imply that boys must wear only clothes for boys
and girls only clothes for girls. Eventually, the children conclude from this defi-
nition of a pair that a pair can also be mixed—one item for boys and another for
girls. The activity becomes even more entertaining and more laughs can be heard in
the classroom. More children raised their hands to be called on. Now was the time
to ask a “serious” question: If the show continues, will we have enough choices for
everyone to participate? Children started making suggestions and trying to give
some arguments for yes or no answers. The search for all possible combinations
continued in paper-and-pencil mode, an important part of the activity, in which
some children, while reflecting on their experience, demonstrated a more systematic
way to look for different combinations, noticing patterns, and eventually coming to
some generalizations, thus entering into higher levels of mathematical thinking
(Clements and Sarama 2009).

The described activity was a part of a set of challenging mathematics activities in
the form of complex and open-ended tasks I developed in parallel with the regular
kindergarten curriculum and experimented with during a school year on a weekly
basis (one hour per week). The idea was to prepare students for the enriched
curriculum all of them had to follow in Grades 1–6. The detailed report about
experimentation in this curriculum and its use for identification and fostering of
mathematical giftedness in early grades was described in our previous publications
(Freiman 2006, 2010). In this chapter, I present theoretical foundations and data
from an exploratory small-scale study of mathematical enrichment for young
children (5 years old) whose goal was to (1) design challenging situations using
open-ended and complex mathematical tasks and (2) experiment with these situa-
tions in a classroom to reveal patterns of students’ mathematical thinking. In terms
of research questions, I aimed to investigate:

• What are the learning opportunities within challenging situations in terms of
mathematics structures created by the kindergarten students?

• What are the strategies students use within the open-ended task and what are
mathematical abilities they demonstrate while solving challenging problems?

The topic of the study is particularly relevant for the current context of early
school years in Canadian schools, which have recently been implementing more
systematic early childhood and kindergarten curricula. For example the New
Brunswick Provincial Department of Education and Early Child Development
(DEECD 2012) requires teachers to introduce mathematical concepts through
specially designed activities that foster reflection, reasoning, and problem-solving
using manipulations, exploration, and experimentation with concrete material.
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In this respect, without specifically targeting mathematically gifted students, the
study I describe in this chapter seeks to provide with some insight into young
children’s capacities to work with more complex mathematical structures and
develop a taste for deeper questioning and investigation of advanced mathematical
topics. In following sections, I will outline the theoretical background of our
activities and analyse three examples of open-ended and complex tasks that help to
reveal different types of mathematical representations that may point out higher
abilities in task commitment, self-regulation, and self-efficacy and be interpreted as
precursors of mathematical giftedness in some of our participants.

14.2 Some Initial Observations from History and Modern
Pre-school Practice

The story of 9- or 10-year-old Gauss solving the routine problem of calculating the
sum of the first hundred natural numbers is one of the well-known examples of this
kind. While all other children of his class were desperately trying to add the terms
one by one, Gauss impressed the teacher by finding a quick and easy way to do it by
regrouping the terms in a special way (see, for example, Dunham 1990,
pp. 236–237). This unusual insight into mathematical structure at such a young age
is described in the literature as an example of a precocious mathematical mind that
needs to be further developed and nurtured.

Another example of a very early insight into mathematical structures that comes
from a more recent time was given by the Russian mathematician Kolmogorov
(1988), who recalled that at the age of 5 or 6 he was pleased with his discovery of
the regularity of the sum of consecutive odd numbers resulting in a full square
1 = 12, 1 + 3 = 22, 1 + 3 + 5 = 32, etc.

I became interested in the study of mathematically precocious children when
reflecting on our classroom experience with 4- to 5-year-old children using edu-
cational software with some mathematical tasks while attending computer classes at
a private pre-school and kindergarten in the Montréal area in Québec, Canada.

I noticed that some students always chose more challenging activities; went
through all the levels up to the highest ones; understood each activity almost
without any explanation from the teacher; demonstrated very systematic approaches
to the problem; had very sharp selective memory of important facts, details, and
methods; were very creative in their work with open-ended problems (such as
creating puzzles and patterns); and often proudly shared their discoveries with their
peers.

For example, working with counting tasks such as finding a domino piece with a
number of dots corresponding to a number from 6 to 9 that they have been shown,
some children counted all the dots on almost every card using their fingers; others
first chose one that contained more than 5 dots; and most counted the dots, and if
they did not get the right result, they jumped randomly to another with a similar
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number of dots. There was also a small group of children who tried to spot a card
with less than 8 dots on it. Finally, one child clicked immediately on a card with 7
dots, saying “I know it’s this one because 5 and 2 make 7.”

Analysing children’s strategies, I could notice their different approaches to
numbers. Some children see cards as pictures with objects to count and they use the
same strategies they would with manipulative objects (such as toys). Other children
try to use a different, more complex approach: thinking more globally (“I see it’s 5
here; I know that 7 is less than 8”) and abstractly (number as an abstract charac-
teristic of a set of dots) along with using a number of shortcuts that help them to
increase the efficiency of their mathematical thinking based on grasping patterns
and relationships.

Our next example was a comparison task with two cards shown to the child: one
with a certain number of dots arranged within a 3 � 4 array (12 dots maximum)
and another one with a number from 1 to 12 written on it. The child had to decide
whether two cards present the same number or not. For most 5-year-old children,
this is a relatively simple task, but within a time limit (introduced in the game) it
becomes an extremely challenging activity for children whose strategy of counting
is limited to “finger pointing.” The best winning strategy was found by children
who used estimation (I know that I have many more dots here than the number 3 on
the other side) and counting with eyes (i.e., without fingers). Some children gave
surprisingly deep comments such as “I know this number of dots is 12 because I see
4 rows of 3 dots, which make 12,” which demonstrates precocious insight into
numbers and number relationships.

Some other tasks gave children opportunities to create patterns, for example, by
constructing a character for which they had to choose a particular feature (like a
blue hut) or of they could build their own character following some pattern they
would define by themselves. This second option was seen by many children as an
art activity, although our observation shows that some 4-year-old children created
characters based on more complex patterns of a mathematical nature (such as
colours, backgrounds, and pieces of clothing). One activity presented a 6 � 6 grid
with a set of different puzzles to reproduce (pictures were given as a model), and
another involved creating your own puzzle, where many young children (4–5 years
old) tried to “draw another picture.” Again, there were few children who sponta-
neously built more mathematically abstract tessellations using complex, sometimes
symmetrical configurations of shapes, which is something that is more likely to
occur with older children already familiar with geometric transformations such as
reflection or translation. Another activity presented a factory for making chocolate
chip cookies. One mode of this activity asked children to put a number of chips in a
cookie corresponding to a randomly given number (1–10). Another mode prompted
them to create a cookie with an arbitrary chosen number of chips. However, this
free choice gave us a chance to observe certain children making cookies with
consecutively chosen numbers from 1 to 10 repeated in two rows. And even more,
they were so fascinated with their result that they started to repeat the same pattern
more and more without any visible fatigue, although it was a routine repetition of
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the same procedure. This appears to be an example of mathematical creativity of a
particular kind: seeing the beauty of mathematics in repeating a pattern.

Equalizing tasks are complex for very young children. For example on activity
involving feeding rabbits with carrots shows rabbits “waiting for food”; another
shows an empty field in which a child has to put out carrots, keeping in mind that
each rabbit should get one carrot. In fact, the child has to control two conditions at
the same time to ensure that the number of rabbits is equal to the number of carrots.
Our observation shows that some children decide to arrange carrots in a certain
geometric pattern (row, stair, or array), which helps them keep control of condi-
tions, this showing a more complex way of thinking.

Finally, working on ordering tasks such as ordering seven matryoshka dolls by
increasing or decreasing size, some children proceeded by trial and error, while
others did it more systematically (looking at neighbours and changing the order if
necessary). A few did it in a very systematic way, by starting with putting the
smallest or biggest one first, then going to the next smallest or biggest and so on.
This strategy allowed them to simplify the process of problem solving, and at the
same time, showed their ability to apply more complex thinking.

In these examples taken from the childhood of historical mathematical prodigies
such as Gauss and Kolmogorov or from current explorations of pre-schoolers in
computer-based environments, the exceptional abilities of precocious children
become apparent during activities that are rather spontaneous. The question then
arises whether such abilities could be developed in a more systematic way. Hence,
the study is based on the belief that all young children deserve a richer learning
environment, and it is driven by the quest to develop children’s highest intellectual
potential in mathematical abilities by implementing a more challenging curriculum
for four- to five-year-old students enrolled in kindergarten classes. It is worth
mentioning that in Québec, Canada, as in other provinces and territories, kinder-
garten attendance is mandatory for all children from the age of five. In the next
section, I will review the literature on mathematical abilities in general, their
development during early years, and teaching strategies that can foster such
development.

14.3 Literature Review

According to Krutetskii (1962), the abilities involved in doing mathematics are
composed of general abilities (diligence, persistence, productivity, active memory,
concentration, and motivation), general mathematical abilities (flexibility and
dynamic thinking), and specific mathematics abilities. Many researchers relate
mathematical ability to intelligence. Young and Tyre (1992) give some practical
characteristics of intelligence as the ability to deal with new situations; see rela-
tionships, including complex and abstract ones; learn and apply what has been
learnt to new situations; inhibit instinctive behaviour; handle complex stimuli; and
respond quickly to information. It also includes a group of mental processes
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involving perception, association, memory, reasoning, and imagination (Young and
Tyre 1992).

Other researchers consider giftedness as an intersection of different factors. For
instance, Mingus and Grassl (1999) focused their study on students who displayed a
combination of willingness to work hard, natural mathematical ability, and cre-
ativity. In their model, besides natural mathematical ability, they look into some
non-mathematical abilities such as willingness to work hard (i.e., being focused,
committed, energetic, persistent, confident, and able to withstand stress and dis-
traction) or high creativity (i.e., capacity for divergent thinking and for combining
the experience and skills from seemingly disparate domains to synthesise new
products or ideas). As results of the identification process, the authors labelled
students possessing a high degree of mathematical ability, creativity, and willing-
ness to work hard as “truly gifted.” (Mingus and Grassl 1999).

Ridge and Renzulli (1981) define giftedness as an interaction among three basic
clusters of human traits: above average general abilities, high levels of task com-
mitment, and high levels of creativity. By their definition, gifted and talented
children are those possessing or capable of developing this composite set of traits
and applying them to any potentially valuable area of human performance. Greenes
(1981) analyses various strategies used by children working on mathematical
problems. She points out seven attributes that characterise the gifted student in
mathematics: spontaneous formulation of problems, flexibility in handling data,
data organisation ability, mental agility or fluency of ideas, originality of inter-
pretation, ability to transfer ideas, and ability to generalise. Many of these char-
acteristics can already be detected during the early years (pre-school and primary
grades). Krutetskii (1976) noticed in his study that although precocity is not a
necessary feature of giftedness, some highly precocious children did demonstrate a
clear interest in mathematics, worked with mathematics with pleasure and without
compulsion, mastered different mathematical skills and habits faster, and attained a
comparatively high level of mathematical development compared to other children
of the same age.

From the developmental point of view, cognitive and meta-cognitive patterns of
young children’s mathematical development were studied in depth within different
psychological theories in the 70s and 80s, for example, Piagetian studies (Rosskopf
1975), Gelman’s study of children’s understanding of numbers (Gelman and
Gallistel 1978), and Resnick’s developmental theory of number understanding
(Resnick 1983). The last two decades have brought additional dimensions to
teaching and learning mathematics, such as creativity.

Hershkovitz et al. (2009) analysed characteristics of tasks that are effective in
helping all students to become more creative. By focussing on giving opportunities
to all, the authors argue for putting a great deal of care and delicateness into
choosing such tasks in terms of level of challenge or difficulty (Hershkovitz et al.
2009). According to them, “on the one hand, the task should be challenging enough
to encourage interesting solutions, and on the other hand, it should also enable
weaker students to reach some solutions, perhaps less elegant” (p. 258); thus, open
tasks can be appropriate to create such opportunities.
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Kulm (1990) remarked that since so much of school mathematics in the past has
been focused on practising skills, the completion of a large number of exercises in a
limited time period has been accepted not only as a measure of mastery but as an
indication of giftedness and potential for doing advanced work. On the other hand,
higher order thinking in mathematics is by its very nature complex and multi-
faceted, requiring reflection, planning, and consideration of alternative strategies.
Only the broadest limits on time for completion make sense on a test purposing to
assess this type of thinking.

Similar observations were made by Greenes (1981), who argued that the bulk of
our mathematics program has been devoted to the development of computational
skills, and we tend to assess students’ ability or capability based on successful
performance of these computational algorithms (so-called good exercise doers) and
have little opportunity to observe students’ high order reasoning skills. According
to the author, sometimes even a very banal math problem might deliver a clear
message about distinguishing the gifted student from the good student. Greenes
(1981) analyses a very simple word problem (given to fifth grade children): Mrs.
Johnson travelled 360 km in 6 h. How many kilometres did she travel each hour?
One bright student surprised the teacher by having difficulty in solving this easy
problem. Finally, the teacher realised that the student had discovered that nothing
was said about whether the same number of kilometres had been travelled each
hour. This example demonstrates the child’s ability to detect ambiguities in the
problem, which may be a sign of mathematical giftedness.

Summarizing these observations, I could say that using routine drill tasks
involving numerous standard algorithms do not, in general, offer a good opportu-
nity to identify and nurture mathematical talents. Sheffield (1999) calls such routine
tasks “one dimensional.” As an example, she cites a class of third and fourth graders
reviewing addition of two-digit numbers with regrouping. Children were asked to
complete a page of exercises such as 57 + 45, 48 + 68, and 59 + 37. As it usually
happens with brighter and faster students, they finished all the exercises before their
classmates. So the teacher “challenged” them with three- or four-digit addition.
Although the calculations become longer and more time consuming, the tasks
themselves were not more complex or more mathematically interesting. As a better
didactical solution for these children, Sheffield suggests the use of meaningful and
more challenging tasks such as the following:

Find three consecutive integers with a sum of 162.

Working on this task, students can continue to get practice in adding two-digit
numbers with regrouping, but they also have the opportunity to make interesting dis-
coveries. Students who are challenged to find the answer in as many ways as possible;
pose related questions; investigate interesting patterns; make and evaluate hypotheses
about their observations; and communicate their findings to their peers, teachers, and
others will get plenty of practice adding two-digit numbers, but they will also have the
chance to do some real mathematics (Sheffield 1999, p. 47). She claims that by using an
open-ended heuristic model that connects five elements of problem-solving process,
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namely, ‘relating’, ‘investigating’, ‘creating’, ‘communicating’, and ‘evaluating’, with
each other forming “a star inside of the pentagon,” we can contribute to a student’s
creative development of mathematical abilities (Sheffield 1999).

I also find useful Burjan’s (1991) recommendations to use open-ended investi-
gations and open-response problems rather than multiple-choice short questions,
problems allowing several different approaches, non-standard tasks rather than
standard ones, tasks focusing on high-order abilities rather than lower-level skills,
complex tasks requiring the use of several “pieces of mathematical knowledge”
from different topics rather than specific ones based on one particular fact or
technique, and knowledge-independent rather than knowledge-based tasks.

Another aspect of choosing appropriate problems for the identification of
mathematically bright children has been analysed by Greenes (1997), who has
underlined the importance of the use of rich problems and projects in which stu-
dents can demonstrate their talents. The author mentions that such problems

• allow integration of the disciplines (application of concepts, skills, and strategies
from the various sub-disciplines of mathematics or from other content areas,
including non-academic ones);

• are open to interpretation or solution (open-beginning and open-ended prob-
lems); require the formation of generalisations (recognition of common struc-
tures as basic to analogue reasoning);

• demand the use of multiple reasoning methods (inductive, deductive, spatial,
proportional, probabilistic, and analogue);

• stimulate the formulation of extension questions; offer opportunities for
first-hand inquiry (explore real-word problems, perform experiments, and con-
duct investigations and surveys);

• have a social impact (well-being or safety of members of the community); and
necessitate interaction with others.

14.4 Theories that Guided the Design of Our Activities

Based on the available literature, I started to look at didactical tools that could help
teachers create a meaningful learning environment in which richer (in my study,
this means complex and open-ended) tasks give young students a chance to enhance
and deepen their mathematical experiences as early as kindergarten.

Although some authors point to the fact that solving mathematically demanding
problems requires rich knowledge about numbers and number relationships that is
not normally available to elementary school students (see, for example, Lorenz
1994), others (e.g., Krutetskii 1976) affirm that at the age of 7 or 8, gifted children
already begin to “mathematize” their environment, giving particular attention to the
mathematical aspects of the phenomena they perceive. They realise spatial and
quantitative relationships and functional dependencies in a variety of situations:
They see the world through mathematical eyes.
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These children are eager to learn mathematics, they enjoy it, and teachers should
use every opportunity to nurture their fresh young minds. Thus, a special envi-
ronment has to be created in order to maintain their genuine interest. I shall call this
environment challenging, as it is composed of a variety of situations that provoke
mathematical questioning, investigations, and use of different strategies; reasoning
about problems; and reasoning about reasoning. These situations also require
special abilities to organise and re-organise mathematical knowledge to solve new
problems by developing and using different strategies.

The theoretical framework draws on the work of Krutetskii (1976), who pos-
tulated that a mathematically able child can, at a young age:

– formalize a problem situation by linking logically related data,
– generalize particular cases by combining separate data into more general

structures,
– curtail mathematical operations keeping in mind all intermediate steps,
– demonstrate a flexible way of thinking switching easily from one idea to

another, and
– rationalize their thinking by critically evaluating different ways to solve a

problem.

Krutetskii claimed that these components of mathematical activity are integrated
into a specific mental structure called the “mathematical cast of mind.” Moreover,
drawing on these principles, I assume that mathematically able children, even at a
very young age, are inclined to more abstract (theoretical) thinking in their
approach to reality and mathematical problem solving; that is, they are likely to
engage in thinking for the sake of thinking and not only for the sake of getting
things done (reflective thinking), to be concerned with the structure of relations
between concepts and not only with concrete objects or actions on them; to be
critical with respect to the validity of their own and others’ claims; to view
mathematical statements as conditional and hypothetical (systemic thinking); and to
be aware of the arbitrary and conventional character of representations of concepts
(analytic thinking).

I was aware that very young learners may not exhibit all these features of
theoretical thinking. However, in a specially constructed learning and teaching
situation, children’s behaviour can hint at the potential for the development of these
features in further advanced mathematical learning.

In his theory of didactical situations, Brousseau (2002) describes the so-called
paradox of devolution of situations. He states that in a situation where the teacher

is induced to tell the student how to solve the given problem or what answer to give, the
student, having had neither to make a choice nor to try out any methods nor to modify her
own knowledge or beliefs, will not give the expected evidence of the desired acquisition.
(p. 41)

But at the same time, the teacher has a social obligation to “teach everything that
is necessary about the knowledge. The student—especially when she has failed—
asks her for it” (p. 41). This situation is obviously paradoxical:
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The more the teacher gives into her demands and reveals whatever the student wants, and
the more she tells her precisely what she must do, the more she risks losing her chance of
obtaining the learning which she is in fact aiming for. (p. 41)

Brousseau (2002) thus claims that everything the teacher undertakes in order to
make the student produce the behaviours that she expects tends to deprive this
student of the necessary conditions for the understanding and the learning of the
target notion. Questioning further the nature of the ability to reflect on a mathe-
matical task, I find interesting links between Brousseau’s theory and the works of
the Russian methodologist Shchedrovitskii (1993) and his colleagues from the
Moscow Methodological Circle, which are probably less known to Western
educators.

Shchedrovitskii (1993) illustrates his logical analysis of teaching and learning
with a similar paradoxical phenomenon. He remarks that when we as educators
want our children to master some kind of action, we often tend to teach it directly
by giving children tasks which are identical with this action. But classroom practice
shows that the children not only do not learn actions that go beyond the tasks, they
do not even learn the actions that we teach them within the tasks. The author shows
that in direct instruction, the “inputs” (what we teach) and the “outputs” (what
children learn) are the same identical actions. He demonstrates that since all ele-
ments of this schema are identical, there is no need for the development of “ability,”
that is, of the possibility of constructing a similar action in different circumstances.

For example, in some textbooks, the teacher can find the task of constructing a
square-like shaped surface out of four identical cubic blocks. This activity would
present little challenge for children. It does not require any construction of a process
of learning as a movement from the known to the unknown. It is, instead, a move
from the known (a shape of the square as an image in a child’s mind) to the known
(reproduction of the shape by means of cubes), but in a different form. In this
situation, many children succeed with little effort and few mistakes. In my exper-
iment, I asked my students to produce a square with no given number of cubes, and
some of them have not only produced squares of different size but also could make
rectangles instead of squares. They might reveal either a lack of understanding of
the notion of a square or an inability to keep under control the condition of the
“square-ness”. According to Shchedrovitskii (1993) this situation has more
potential in terms of learning where the need to learn something new would arise
from some obstacle students face when create their own solutions.

Shchedrovitskii’s logical analysis of the learning of some action is based on the
principle that the subjective conditions of activity, or “abilities,” are just “copies” of
actions mastered by the individual and then appearing in specific new situations.
So, the abilities are the same actions but in potentio and need to be developed by
engaging children in a process of construction of actions that are “new” to them,
often in a situation of rupture (for example, facing an obstacle), thus making an
active use of their abilities.

The third aspect of nurturing early mathematical ability is related to the idea that,
in order to access a higher level of knowledge or understanding, a person has to be
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able to proceed at once with an integration and reorganisation of previous
knowledge. Sieprinska (1994) illustrates it with references to the Piaget’s theory of
equilibration of cognitive structures as well as to the Bachelard’s notion of epis-
temological obstacle (Piaget 1985; Bachelard 1967). According to this views, a
passage, for example, from arithmetic to algebra via whole numbers requires a
perception that natural numbers are no longer collections of objects (e.g., pizzas,
cakes, or apples) but a structure with operations that can be a base for further
generalisations.

Sierpinska (1994) sees the need for “reorganisations” as one of the most serious
problems in education. In teaching, we do not follow the students’ “natural
development” but rather precede it, trying as much as possible, of course, to find
ourselves within our students’ “zones of proximal development.” But we cannot
just tell the students “how to reorganise” their previous understanding: We cannot
tell them what to change and how to make shifts in focus or generality because we
would have to do this in terms of a knowledge they have not acquired yet. So, we
must involve students in new problem situations and expect all kind of difficulties,
misunderstandings, and obstacles to emerge, and it is our main task as teachers to
help the students to overcome these and become aware of differences, in the hope
that then the students will be able to make the necessary reorganisation.

All three researchers suggest models of teaching that give the teacher efficient
tools for dealing with before mentioned didactical paradox: meaningful didactic
situations (Brousseau 2002), construction of new means by means of reflective
actions (Shchedrovitskii 1993), and stimulating of “good understanding”
(Sierpinska 1994). These ideas guided me in designing the teaching approach I call
the challenging situation approach (Freiman 2006).

14.5 Challenging Situation Approach to Foster
Mathematical Giftedness in Early Grades

The existing literature has shown that challenging problems are seen as suitable for
identification of mathematically gifted students, as they reveal strategies and pro-
cesses of thought (Heinze 2005). Many authors analyse the teacher’s role in the
process of identification of mathematically able children. Kennard (1998) affirms
that the nature of the teacher’s role is critical in terms of facilitating pupils’
exploration of challenging material. Hence, the identification of very able pupils
becomes inextricably linked with both the provision of challenging material and the
forms of teacher-pupil interaction capable of revealing key mathematical abilities.

The author supports an interactive and continuous model for providing identi-
fication through challenge that integrates the following strands: an interpretative
framework employed by classroom teachers to identify mathematically able pupils;
selection of appropriately challenging mathematical material; forms of interaction
between teachers and pupils that provide opportunities for mathematical
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characteristics to be recognised and promoted, and continuous provision of
opportunities for mathematically able children to respond to challenging material.
Hence, the author stresses the need to search for different ways of interacting with
pupils that “maximise the opportunities for simultaneously recognising and pro-
moting mathematical abilities” (Kennard 1998). In Kennard’s case study based on
this model, the identification was conducted by the so-called teacher-researcher in
the classroom environment where the pupils were being taught as well as observed.
The questioning approach was used in order to reveal aspects of pupils’ mathe-
matical approaches and understanding.

In our study, I used a similar methodology. Based on the work of Krutetskii
(1976), Sheffield (1999), Shchedrovitskii (1993), Brousseau (2002), and Sierpinska
(1994), we designed challenging situations that could stimulate mathematical
questioning and investigation along with reflective thinking in young students
(Freiman 2010).

We postulated that the use of teaching approaches based on challenging situa-
tions would help to engage all students in meaningful learning through early
beginning of work on challenging mathematical tasks in 3- to 5-year-olds (fostering
precocious minds), stimulating questioning (fostering the critical/reflective mind)
encouraging searching for new original ideas by means of open-ended tasks (fos-
tering the creative/investigative mind), promoting full and correct explanations
(fostering the logical/systematic mind), introducing children to the complexity and
variety of mathematical concepts and methods (fostering looking at the world with
mathematical eyes), and providing children with tasks that require complex data
organisation and reorganisation (fostering selective/reversible/analytical/structural
mind).

Actually, any textbook problem can be turned into either a challenging learning
situation or a dull exercise. Challenging situations cannot be used only on excep-
tional occasions in a teaching approach. Some of them must, of course, be carefully
prepared, but, for the approach to work, it must become a style pervading all
teaching all the time at all levels of education. The teacher must be ready to use any
opportunity that presents itself in class (e.g., a puzzling question posed by a student,
an interesting error, or an unusual solution) to interrupt the routine and engage in
reflective and investigative activities on the spot or suggest that students think about
the problem at home. Thus, in fact, what is needed is not occasional challenging
situations, but a “challenging learning environment.”

In the challenging situations used in my own teaching, I favour open-ended
problems that are situated in conceptual domains that are familiar enough to chil-
dren that they can appropriate the situations as their own and engage in an interplay
of trials and conjectures, examples and counter-examples, and organisations and
reorganisations (as stated by Arsac et al. 1988, p. 7). In each situation, I observe
various elements of children’s mathematical behaviour: how children enter into the
situation (introductory stage and pre-organisation) and how different ways of pre-
senting the problem affects the children’s work (Brousseau 2002); how children
construct their processes of problem solving (choice of strategy, use of manipula-
tive, systematic search, autonomy, self-control, and mathematical components);
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how children act in cases of an errors (destroy their previous work and start from
scratch or try to modify/correct certain actions); how children modify their strate-
gies when the conditions are slightly or completely changed; how children present
their results (orally or in writing, clearly or not, communicating with other par-
ticipants or not [children or adults], symbolism used by children, and organisation
of results [on paper]).

Moreover, the context of the challenging situation allows children to move more
quickly beyond the level established by a regular curriculum without losing their
interest and motivation to learn more. In fact, our practice demonstrates that within
a challenging environment, very young children actively demonstrate their will-
ingness to learn more advanced and abstract topics such as big numbers, zero,
infinity, negative numbers, fractions and proportional reasoning, logical inference,
variables and functions, shapes and their properties (definitions and proofs), geo-
metric transformations, and equations with missing terms, among many others, by
means of the complex and open-ended tasks I describe in the next section.

14.6 Methods: Teaching Experiment in Kindergarten
Using Complex and Open-Ended Tasks

The paper uses data collected for a larger study on identification and fostering of
mathematically gifted elementary students (Freiman 2006, 2010). The former was
conducted at a private school (1–6) in the Montréal area in Québec, Canada, with
most students coming from immigrant families, often having neither French nor
English as mother tongue. While the school offered an enriched mathematics cur-
riculum for all its students starting from Grade 1, and many students it enrolled
were coming for the kindergarten, we (together with the school principal and
teachers) decided to enrich the kindergarten curriculum, as well. The need for
enriched activities for kindergarten students had become apparent over the years, as
the regular curriculum did not provide them with the material necessary for fos-
tering their mathematical development, especially in regard to the requirements of
the challenging curriculum that I used starting from Grade 1 (the Défi mathématique
collection; Lyons and Lyons 1989, 2001–2002). This curriculum was based on the
ideas of discovery-based learning, focused on developing of deeper reasoning and
understanding. The use of tasks that were complex and open-ended was a regular
part of the teaching and learning practice for which kindergarten was not suffi-
ciently preparing the students. The instruction in the kindergarten was bilingual,
with a half day in French and a half day in English. The experimental activities
were developed and implemented by the author within the French curriculum.

In order to fill the gap, I developed an enriched course offered to all kindergarten
students on a weekly basis (one hour per week). In selecting and designing the
tasks, I used a challenging situations teaching approach, developing activities that
stimulate mathematical questioning and investigations along with reflective
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thinking. Some of the activities were adapted from the Grade 1 textbook. Others
were created by the author. In this paper I present data based on these tasks. During
the school year our experiment was conducted, 36 students (27 girls, 9 boys) took
part in the activities. My role in the study was as a teacher-researcher (Lesh and
Kelly 2000).

Each class started with some general questions referring to students’ previous
experience such as What did we do last time? What problem did we have to solve?
What was our way of dealing with the problem? What strategies did we use? This
questioning aimed at provoking reflection on the problems that the children solved
as well as on the methods that they used. Without this reflection, a rupture situation
(in Shchedrovitskii’s (1993) sense) would never arise, because a rupture is a break
with previous knowledge, which needs to be brought to mind.

At the same time, I asked questions aimed at demonstrating the level of the
children’s understanding of the underlying mathematical concepts or methods that I
was introducing (using appropriate vocabulary and/or symbolism). During this
initial discussion I usually tried to bring in a new aspect that would provide children
with an opportunity to ask new questions and look at the problem in a different way.
Sometimes I could simply ask them what they thought we should do that day.

Thus, I was able to pass to the new situation/new problem/new aspect of the old
problem. To do so, I used provoking questions, interesting stories, or introductory
games. Following Shchedrovitskii (1993) and Brousseau (2002), we tried to avoid
the teaching paradox by not providing children with direct descriptions of the tasks
or methods of solutions while keeping them open and with increased levels of
complexity. I also tried to keep their attention and motivate them to investigate
these tasks with more depth and better understanding of underlying mathematical
structures and relationships [in the sense of Sheffield (1999) and Sierpinska (1994)]
and eventually to develop their mathematical abilities [following Krutetskii’s work
(1976)].

After the introductory stage of an activity, children began investigating a
problem using different manipulatives: cubes, geometrical blocks, pebbles, etc.
They worked alone or in small groups. During this phase of investigation, the role
of the teacher became more modest: we gave children a certain amount of auton-
omy so that they could familiarize themselves with the problem, choose necessary
materials, organise their work environment, and choose an appropriate strategy.

However, some work had to be done by the teacher to guide children through
their actions. I had to make sure that the child understood the problem, the con-
ditions that were given (rules of the game), and the goal of the activity. As the
children moved ahead, I tried to verify their levels of control of the situation, i.e.,
what they were doing at any given time and what the purposes of their actions
(activating reflective action) were. I had to keep in mind that exploration is used not
only as a way to direct children towards performing certain actions, but also it is
primarily an introduction to mathematical concepts or methods.

Therefore, the teacher needed to be prepared to introduce the necessary math-
ematical vocabulary along with its mathematical meaning as well as mathematical
methods of reasoning about the concepts and about the reasoning. In this
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experiment, I tried to choose those mathematical aspects that are considered difficult
and are not normally included in the kindergarten curriculum.

For example, when I wanted to introduce an activity with patterns, I would
organise a game involving some physical activity. I would start putting students in a
line with the order “boy, girl, boy, girl,” etc., asking them who should be the next
person in the line. Many children were actively involved in the task of building the
line and were happy to discover a pattern. As the game goes on, children get used to
looking for familiar patterns. This was the time to challenge them more. For
example, we would ask them how many children would be in a line with the pattern
“boy, girl, boy, girl,” etc. Since there were only eight boys in the classroom, one
child made the hypothesis that there would be 8 + 8 children in the line. After such
a line had been completed, the teacher’s silence was broken by a child’s voice: “we
can add one more child to the line—a girl in the beginning.” Then I started a new
“pattern”: “boy, girl, boy, girl, boy, boy.” Many children protested, saying that the
pattern was wrong. Some of them, however, started thinking of a different pattern,
such as “glasses, no glasses, glasses, no glasses,” etc.

The situations were designed to give children an opportunity to take a different
look at the mathematical activities that they usually do; question their knowledge
about mathematics, trying to discover hidden links between different objects; dis-
cover structures and relationships between data; and learn to reason mathematically
based on logical inference, while at the same leaving some space for the children’s
mathematical creativity. I used different didactical variables (in Brousseau’s sense)
in order to create obstacles that would make the children reorganise their knowl-
edge and create new means in order to overcome the obstacle [with reference to the
work of Schedrovitskii (1993) and Sierpinska (1994)].

The data of this study were collected over the period of 3 months (from March to
May) and included video-recording and samples of students’ work. The analysis I
present in this paper is based on the samples of students’ work (reports written by
each student after each activity where she was asked to explain her strategy and her
solution); the researcher also asked students questions about what they were doing
and why and how they were doing it; these conversations were video-recorded to
capture students’ oral explanations (which were transcribed). Finally, field notes
were used to mark observations of students’ work during the activity (what they
were doing and how).

I will now analyse three examples of challenging situations for which the data
were collected. While focusing mainly on students’ authentic work within a com-
plex and open-ended task, the focus of the analysis was on a multitude of solutions
in terms of the variety of mathematical structures they created and the diversity of
their problem-solving strategies. The data analysis included classification of stu-
dents’ work according to the type of strategies they were using during the inves-
tigation of an open-ended task (systematic or non-systematic, see Situations 1 and
2), type of mathematical representation in students’ drawing (more concrete forms,
illustrating real animals, or more abstract forms, illustrating models they used; use
of numbers to express solution, disposition of the objects, type of mathematical
structure—like 1 to 1 correspondence, see Situation 3). According to the theoretical
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framework and the study design, I attribute this variety to the openness of the task
as well as to its complexity, which also allowed students to demonstrate their (in
some cases precocious) mathematical abilities.

14.7 Analysis of Challenging Situations and Students’
Mathematical Behaviour

Situation 1. Breaking down numbers into different sums

The task given to the students arises from an activity suggested in the Challenging
Mathematics Grade 1 textbook (Lyons and Lyons 1989, 2001–2002) that is for-
mulated in the following way: Find all possibilities for dividing five counters into
two groups. The textbook presents empty boxes in which right and left hands are
drawn. For each pair of hands, children are asked to draw a total of five buttons in
each hand with a different combination for each pair (like 2 buttons drawn in the left
hand and 3 buttons drawn in the right hand).

As shown in many studies in mathematics education and psychology, children
have difficulty learning numbers because of their limited conceptual understanding.
For instance, children may see addition as a “counting on” with the necessity of
getting a final result: the sum. Therefore, they do not understand that the expres-
sion 2 + 3 = 1 + 4 makes sense. They think that 2 + 3 can only be equal to 5. Thus,
the operational structure of numbers might be inaccessible to young learners. This
type of obstacle, which is related to making sense of the equal sign in such equations
such as 8 + 4 = ��� + 5, has been analysed by a number of authors (e.g., Carpenter
et al. 2003; Knuth et al. 2006). In our study of the topic with kindergarten, Grade 3,
and Grade 6 children, we found consistent difficulties with equations c = a + ��� and
a + b = c + ��� and even more surprisingly, we found children’s misconceptions
appeared more often in higher grades (Freiman and Lee 2004).

Based on this research, we found it useful to start incorporating structural aspects
of numbers in mathematics teaching from a young age and pursue the work later on.
By asking kindergarten students to find different ways of breaking 5 down into a
sum of two numbers, I aimed to introduce different properties of numbers (such as
“five-ness”) and operations (such as the commutative law and the neutral element),
thus bringing more complexity to mathematical experiences of young children.

The situation was presented in a following way: The teacher shows the children
5 counters (all are blue circles 3 cm in diameter) and asks them what one could do
with them. The students make their guesses. The teacher does not make any
comments while starting to play with counters, putting some of them in one hand
and some in the other.

During the teacher’s demonstration with hands, a new didactic variable (variable
didactique, Brousseau 2002) is introduced to try to direct the children’s search
towards a pre-planned activity. The students commented on these actions in
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attempts to guess what this could mean in terms of mathematical tasks (the children
knew that since this was a math class, the activity must be mathematical). So, they
proposed counting counters, ordering them, and using them as instrument to draw
circles following the border of the button. Here was an emergence of spontaneous
brain-storming thinking processes: They tried to predict the possible nature of a
mathematical activity yet unknown to them.

They could use their previous experience in order to build links between dif-
ferent activities. Thus, they had an opportunity to ask questions, make hypotheses,
and learn about the rules of the “game” (instructions to follow and conditions to
respect). Finally, they approached the formulation of the problem. In this very
beginning stage of activity, I could already identify children who participated more
actively in the discussion and manifested their interest, understanding, and insight
more explicitly than others.

I observed that some children looked a bit confused as they saw that neither
counting nor drawing happened. They had to adjust their guesses to the new sit-
uation. At one point, a child noted: “you are always changing the number of
counters in each hand”; thus the word partition was used by the teacher. This made
it possible to talk about different ways to divide counters. At the same time, I did
not tell the children how to do this or how to validate a solution; thus, I let the
children organise the process of solution, construct necessary tools, and try different
strategies. Allowing children to have this openness and autonomy is very important
for any learning to occur (Brousseau 2002; Shchedrovitskii 1993).

Finally, all students understood that the goal of the task was finding all the ways
to do partitioning of counters into two groups. Still nothing had been said about the
possibility of using the number 0 as an option, permission to commute terms such
as 2 + 3 and 3 + 2, or what one can call two different partitions. The students
worked on the problem in the following setting: Children sat around six tables with
five to six children per table. They had to communicate their solutions by drawing
them in the Défi-1 workbook (Lyons and Lyons 2001). The researcher and two
teachers moved from one table to another checking on the children’s work and
giving them some neutral hints (such as “look, you already found this solution;
would you try to find another one?”).

Our observations during the activity showed that there was variation in the way
the children organised their work. The children put the counters on the table in a
variety of different configurations: lines, squares, circles, and towers. I interpret this
spontaneous organisation of material as an important indicator of mathematical
ability (thinking in terms of structures). This could be a sign of a high level of
thinking discipline. It is also plausible to suggest that the partition is being made in
the child’s head at this moment. It could also indicate that a child grasps the general
mathematical structure of the task. Other children start immediately to move the
counters from one hand to the other, imitating the teacher’s demonstration. There
could be two kinds of explanations of this phenomenon: They are trying to
understand the problem or they have the need to simply touch the counters.

However, I could already evaluate the children’s readiness to solve the problem:
some of them seemed to know how to proceed, while others showed signs of
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confusion. While looking for solutions, some children formed two groups of
counters on the table; others kept the counters in their hands. In their work
organisation, I saw very different approaches: Some children were very systematic
and orderly and others were chaotic and messy. While several children understood
the need to verify the solutions (respecting the conditions of five counters and
different partitions) and were able to do it, some children could not do it even with
help of the teachers.

It is interesting to note that I did not explicitly ask children to use any ordered
disposition of counters in their drawings. However, I observed some particular
dispositions of circles (domino, rows, circle, and triangle); in challenging situations,
some children give themselves new tasks or new interpretations of the task, thus
moving beyond pre-planned activity.

Figures 14.1 and 14.2 schematically reproduce examples of the children’s
written work, with two schemas representing the more systematic approaches in
Annie’s and Fannie’s work (Fig. 14.1) and one (Yvan’s work) representing a
non-systematic approach where the child loses control of some of conditions (e.g.,
one repartition appears twice with more than 5 buttons; Fig. 14.2).

One more observation: While some children could keep the entire process under
control, others lost control when passing from the manipulation to the communi-
cation on paper. They considered it a different task: focusing on particular aspects
of drawing instead of on the mathematical “parameters” of the task. They could
even draw a completely different partition from the one found with the counters.

Our particular attention was drawn to the few students who proceeded system-
atically in their search of all the possibilities (e.g., 5 and 0, 4 and 1, 3 and 2),
considered zero a significant element in their partition (neutral element property),
made a distinction between a + b and b + a cases (commutative property), and kept
the total number of counters constant (addition as operation). These students not
only succeeded in this partition problem but were also able to solve the similar
problem that came next (three counters) without any reference to using manipu-
latives; they just wrote all solutions and seemed to have grasped a general math-
ematical structure in a more abstract form, unlike other children, who started to
solve the problem of partitioning the set of three counters in the same way that they
approached the previous one: placing counters in their hands and trial and error
partitions.

Situation 2. Discovering square numbers

Including complex concepts at lower levels of schooling than required in the cur-
ricula is known as potentially enriching for mathematically gifted learners. An
example is Diezmann and English’s (2001) study, where they describe young
children fascination with multi-digit numbers and the challenges they encounter
while working with them earlier than prescribed in the curriculum, starting at
5 years old.

Discovering and investigating square numbers is another example of a task that
is not typical for kindergarten students; most curricula introduce them later in
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elementary school in Grades 4 or 5, along with even, odd, and prime numbers. In
our experiment, I asked students to build squares with small cubes (centicubes).
Each child had about 30 cubes to work with.

The whole-class discussion started with some general questions about geometric
shapes children were familiar with: Children were asked to compare different
shapes, explain how they recognized a particular type of shape, and describe the

Annie’s work (5)

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

Left hand Right hand Left hand Right hand

Left hand Right hand Left hand Right hand

Left hand Right hand Left hand Right hand

Fannie’s work (5)

Left hand Right hand Left hand Right hand

Left hand Right hand Left hand Right hand

Left hand Right hand Left hand Right hand

Fig. 14.1 Kindergarten children’s systematic approach to breaking down the number 5
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important characteristics of these shapes. I was trying to focus children’s attention
on the notion of “square” without asking how to construct one. By giving as few
instructions on how to proceed in building squares as possible, I was trying to keep
the task as open as possible, thus leaving children on their own. I asked only that
they make a protocol of their investigation by drawing their constructions and
writing down the number of cubes used in each construction. The work was done
individually by each child.

In our observation of students’ work, I focused on the structures they were
building and the organization of their work. During the activity, the teacher’s role
was limited to pointing out errors in construction, e.g.: Why do you think it is a
square? Are you sure it is a square? No indications were given about where exactly
the error was or how to correct it. Sometimes we saw children building the contour
of a square (using only the perimeter). In such cases, I asked students to continue
“filling in” the whole square (leaving no “holes” inside it).

Some students started to build a “big” square using all their cubes. This strategy
led them immediately to the quite complicated task of keeping “square-ness” and
counting shapes. Other students started with a small number of cubes, making
2 � 2 or 3 � 3 constructions. Some of the children who had built their first square
(such as 2 � 2) continued adding new blocks to their constructions to get new
squares (such as 3 � 3, 4 � 4, and so on). Others started from scratch; using this
strategy, they often lost control of the square-ness of their shapes. I observed the
difficulties these children had in organizing and, if necessary, re-organizing their
work. One child was able to construct a “pyramid” with base of 6 � 6 and each
square level decreasing by 1 until 2 � 2. No child thought of one cube as a
“square” number.

Yvan’s work (5)

(a) (d)

(b) (e)

(c) (f)

Left hand Right 
hand 

Left hand Right hand

Left hand Right 
hand 

Left hand Right hand

Left hand Right 
hand 

Left hand Right hand

Fig. 14.2 Kindergarten children’s non-systematic approach to breaking down the number 5
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Figure 14.3, presents the students’ reported representations of their constructions.
Some children show very systematic work with a high level of metacognitive control
of the task conditions (Fig. 14.3), while others showed rather messy work with
several errors, although some presented some correct solutions (Figs. 14.4 and 14.5).

Situation 3. Rabbits and Carrots

This situation consisted of three different parts. It started in the approach to Easter,
which in the local culture involves children visiting animal farms. Our initial
conversation with children was therefore very open: I only asked students about
their experiences visiting farms and asked for their observations. When rabbits were
mentioned, I asked about the food they are given and then presented the children
with counters and coffee sticks. At the same time, I asked them for ideas for a

Fig. 14.3 Investigations with systematic search

Fig. 14.4 Investigations with less systematic search
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mathematical activity related to this context. Students suggested several things
showing much creativity, for example, counting (adding) rabbits and building
rabbits using a counter for the nose, two sticks for ears, and four counters for the
legs.

Having in mind the importance of developing more efficient and advanced
strategies in counting, three tasks I elaborated included (1) using manipulatives to
compare two sets of physical objects in a task involving having enough carrots for
each rabbit, (2) doing the same task but with pictures representing carrots and
rabbits so that it would be necessary for students to develop a strategy of com-
parison without manipulation of physical objects (changing of the didactical vari-
able), and (3) having rabbits of different sizes, which would add complexity in that
the rule for carrot distribution would be based on the size of the rabbit: bigger
rabbits get more carrots and smaller rabbits get fewer.

When presenting the first task to the students, I suggested that a counter should
represent a rabbit and a stick represent a carrot. Each child had a plastic glass with a
certain number of sticks (varying from 5 to 20) and a certain number of counters
(varying from 5 to 20) on a plastic plate. The task was to feed each rabbit the same
number of carrots. The task was formulated by the students. No explanations on
how to approach the task were given. Students were able to choose their own ways
to represent the problem.

Unsurprisingly, all students tried to produce a 1 to 1 correspondence on the table,
but their representations were different. For instance, when placing the counter with
the stick, the three most common structures were a counter at the end of a stick, a
counter in the middle of a stick, and a counter beside a stick. The five most common
ways the students placed these combinations (or pairs) of sticks and counters were
in line, in a chain, in several rows, no particular order, and following the border of
the table. The three possible cases that students had to deal with were not enough
rabbits (more carrots than rabbits; in this case, students had to investigate if it was
possible to give two carrots per rabbit), not enough carrots (students had to explain
how to fix the issue, for example, tell how many carrots were missing), or the same
number of carrots and rabbits (which means there was exactly one carrot per rabbit).

Fig. 14.5 Investigations where students lost control of counting the blocks in the square (such as
12 and 9 on the left) or building an array (n � n, such as 16 and 5 on the right)
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Generally, all students succeeded the task in some way. In one case, a student
made the small mistake of giving two carrots to one of the rabbits, but then realized
the error and succeeded in correcting it. Another student was very concerned with a
lack of carrots: She was very stressed that some of her rabbits would not have food.
She was happy to get additional carrots from her peer who had more carrots than
rabbits, so the getting help from her peer allowing her to overcome this additional
challenge and find a solution she was satisfied with.

The students’ oral explanations included several interesting remarks. The
importance feeding each rabbit was a theme that came up often (see some examples
of students’ remarks):

I put one carrot for each rabbit: They will all have something to eat.

I gave one carrot to each rabbit. [indicates this with her finger while moving over the
construction]

Each rabbit has eaten one carrot.

I placed carrots and rabbits side-by-side [to make sure each rabbit has a carrot].

Some children showed their happiness in feeding each rabbit while making the
observation that there were more carrots than rabbits, so some carrots remained:

(remark) I have 5 carrots too many

(explanation) Each rabbit has one carrot, there is enough for everyone, but some other
carrots remain

One student shared a comment regarding the possibility to give two carrots per
rabbit:

Two carrots (are given) because rabbits like to eat a lot of carrots.

Having insufficient carrots for their rabbits was another example of students’
concerns:

[issue] One rabbit has been left [without a carrot].

I did not have enough carrots; I’ve added some.

In their final remarks in their oral explanations, I noticed that some children used
numbers in their explanations:

I have 42 rabbits and one carrot [for each of them].
I have 19 rabbits:

Teacher: How many carrots?
Student: 19.
Teacher: Do you think you have enough?
Student: Yes.
Teacher: Why do you think it is enough?
Student: There are no more left.
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However, it was obvious that some students were having difficulty explaining
their solutions; sometimes their explanations did not follow their constructions:

I do not know.

I counted with my hands [fingers].

One child remembers correcting her mistake on the teacher’s demand:

I added more carrots since I do not want to have two rabbits at a time [which means two
rabbits for one carrot].

On student mentioned that she was not able to give a second carrot to the rabbits:

I cannot give a second one since there will be not enough for every rabbit.

From the videos, I also learn that some students spent a great deal of time
constructing some particular configurations to represent the problem. Some also
made the decision to modify configuration during the activity.

After the hands-on activity (and making sure all students’ constructions were put
away), I asked students to reflect on the activity by explaining it in a written report
to a friend from another group who did not do the activity. This reflective activity
[in Shchdrovistskii’s sense (1968)] allowed the researcher to observe in greater
detail the mathematical structures created by the students representing the solution.

Dismantling the students’ initial constructions allowed us to see whether they
would reproduce their construction exactly the way they did it or the way to
represented the problem. Indeed, some of the students not only tried to exactly
reproduce their configuration, some even drew the shapes of the sticks and for the
counters. Regarding the mathematical structure, 24 of the 32 students produced

Fig. 14.6 A copy of a hands-on investigation reproduced on paper
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a 1 to 1 correspondence and 8 made an exact copy of their initial work from
memory (Fig. 14.6). One student who was very concerned with having five more
carrots took care to draw them on her report (Fig. 14.7). Eleven reports did not have
apparent links to their initial constructions. Thirteen students replaced the counters
and sticks with drawings of “real” rabbits and carrots. Ten reports used numbers to
illustrate the students’ solutions (Fig. 14.8).

As a final observation from this activity, I would mention yet another possible
extension. To the students who completed their task before their colleagues I gave
an additional task: I told them that each counter represented one leg of a rabbit. So
the task was the same but with increased complexity. Only a few students who tried
it managed to solve it correctly.

Fig. 14.7 Drawing representing “real” rabbits and carrots with five carrots missing but planted
behind

Fig. 14.8 Use of numbers in the report
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The second task, one week later, allowed the introduction of a different didac-
tical variable (in Brousseau’s sense): Students were given hand-outs (on paper) with
pictures of bags of carrots (represented first by a picture of the rabbit and then, in
more abstract way, by a tally) and rabbits sitting around the bag (represented first by
a picture of a carrot, then, in a more abstract way, by small circles). The task
remained the same: Feed each rabbit with the same number of carrots. But this time
objects were not given. Students had to reorganise their strategies (in Sierpinska’s
sense) in order to be able to verify the correspondence (carrot to rabbit) or to use
some way of counting.

Our observations showed that all students first tried to draw a line connecting a
rabbit to a carrot—often losing the path when the drawing became too messy. As a
strategy, they tried to connect the rabbit to the carrot closest to it. The tasks with
pictures that had smaller numbers of carrots and rabbits were easier for the students,
and the configurations that were more organised were more easily handled by the
students. In some cases, I saw students’ make an effort to group the carrots (by
twos). When the number of carrots did not match the number of rabbits, students
tried (unlike in the situation with objects) to give more carrots to one rabbit (when
there was a surplus) or divide carrots into two parts, giving a part to each rabbit
(fractioning).

The third part of the activity presented a different task. There were now families
of rabbits (father, mother, and baby), with each family member represented by a
counter of a different size: small, baby; medium, mother; large, father. Each child
had 12 carrots, each represented by a coffee stick. The task was to give all the
carrots to the rabbits in a way that the fathers got more carrots than the mothers and
the babies got fewer carrots than each of their parents. Having three conditions to
control (total number of rabbits, size of the rabbits, and the number of carrots
according to the size) many students faced important challenges and only a few (6
of the 24 students participating in the activity) could find the necessary distribution
of 3 to the baby, 4 to the mother, and 5 to the father. Several students were able to
follow the size and distribution according to the size conditions but got lost on the
total number of carrots, while others struggled with the first two conditions.

14.8 Discussion and Conclusion

Data collected during our exploratory study about learning opportunities provided
by open-ended mathematical tasks during enrichment activities in kindergarten
(Question 1) and the development of students’ mathematical abilities (Question 2)
have provided some insights about mathematical structures students discover and
explore as well as a variety of strategies they use while solving complex problems.
Situation 1 provides evidence of the use of the commutative property by some
students within a task involving breaking down a number (addition), which has also
been reported by a number of studies National Research Council (2009) that
mention young students’ informal use of the commutative property of addition. The
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possibility of discovering square numbers using manipulations with cubes by young
children in Situation 2 had already been noted at the end of the 19th century by
Massey (1895) in the context of the use in kindergarten of Froebel Gifts, which
allow young learners to explore complex mathematical structures involving num-
bers. Situation 3, which was even more complex in terms of didactical engineering
(referring to Brousseau 2002), showed a variety of mathematical structures con-
structed by our students and methods they used to determine whether there would
be enough food for the rabbits. The richness of such inquiry-based activities for
deeper conceptual understanding of mathematics confirms, among others, Garcia
and Ruiz-Higueras’s (2013) study, which investigated quantification skills and
number sense in pre-school children doing a population modelling task with silk-
worms, with numbers emerging naturally within a communicative situation (similar
to ones I designed in my study). It also corroborates the work by Skwarchuk et al.
(2016), who reviewed a number of studies revealing the importance of
inquiry-based guidance of 3- to 6-year-old children using open-ended questioning
(similar to method used in my approach), which seems to be helpful to facilitate
problem solving, reasoning, and learning by discovery (p. 141).

Regarding the second question of our study, it is no surprise that the multitude of
learning paths prompted by an open-ended task led to a multitude of strategies and
solutions, some correct and others not, that may indicate significant differences in
students’ abilities, as also noted by Skwarchuk et al. (2016). For instance, in the
first situation, I can detect some strategies that show the more systematic approach
used by some students when finding different ways of breaking down the number 5.
Some students already show that their grasp of number sense in terms of additive
structures, the commutative property, and the concept of zero goes beyond the
stages identified by Piaget (1972) for this age category.

The second situation presented particular difficulty in terms of the ability to
control several conditions of the task (such as the “square-ness” of the shape and the
number of cubes used). But what is more striking in this context is the fact that the
situation stimulated investigation in all students in the classroom, showing their
interest and engagement beyond concern with the immediate result (i.e., whether
the solution was correct or not). Along with Balfanz et al. (2003), I noticed some
inconsistency in students’ results over a long period of time (from one task to
another). A child may find an ingenious solution one day and fail on a similar task
the next day. What is more important, however, again in agreement with Balfanz
et al. (2003), is that students are ready for (in terms of the engagement) and excited
by a challenging, comprehensive, and developmentally appropriate mathematics
program (p. 267), which thus contributes to a rise in a precocious mathematical cast
of mind in some children as a precursor of mathematical talent (Krutetskii 1976).

The introduction of new pre-school and kindergarten curricula aimed at increasing
conceptual understanding, reasoning, problem-solving, and communication in many
countries, such as the example of New Brunswick, Canada, mentioned in the
Introduction, brings up the question of how open and complex tasks can enrich the
mathematical experiences of young children and thus foster the development of
mathematical thinking and creativity in all students (DEECD 2011).
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The findings presented in this chapter (which focuses specifically on kinder-
garten students) provide with the theoretical foundations and practical examples of
students’ mathematical investigations of open-ended tasks. The show young chil-
dren’s capacity to investigate situations that enable multiple solutions, have dif-
ferent answers, have solutions ranging from simple and immediate to less
immediate and more original, are challenging, and can be extended by further
questions such as “Why?” and “What if…?” These situations might further enable
students’ generalization and abstraction, encourage their investigation of a variety
of discussions and argumentations and their use of deep mathematical principles,
and use and extend students’ existing knowledge: These are the kinds of tasks that
Hershkovitz et al. (2009) mention as suitable to promote creativity.

The examples analysed in this paper illustrate how these tasks can be imple-
mented with kindergarten students in a cycle of whole-class discussion: individual
or small-group investigation (with different manipulative), communication of
results, reflection, and further questioning. By introducing these tasks, teachers can
create opportunities for more mathematically promising students (referring to
Sheffield 1999) to show their personal commitment, interest (affect), and higher
ability (Leikin 2009), while using more systematic and efficient strategies and
encouraging self-control and self-efficacy in young children can be viewed as
pre-cursors of high mathematics achievement in higher grades. The study represents
initial yet valuable steps in the research program which was pursued in different
educational contexts in 2005–2014 [including the use of virtual problem-solving
environments to enrich students’ mathematical experiences, Freiman (2009)] thus
helping to increase understanding of the potential of open and complex tasks to
enhance the development of mathematical high achievers from an early age.
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Commentary Paper: A Reflection on
Mathematical Creativity and Giftedness

Abstract This chapter is a commentary on the earlier chapters in this monograph,
which grew out of the 13th International Congress on Mathematical Education
(ICME) Topic Study Groups (TSGs) on Activities for, and Research on,
Mathematically Gifted Students (TSG 4) andMathematics and Creativity (TSG 29).
This chapter begins with a brief historical review of some of the research on
mathematically gifted, creative, talented and promising students and then focuses
on comparing and commenting on three main areas that are discussed in the earlier
chapters: (1) Perspectives on Mathematical Creativity and Giftedness,
(2) Connections between Creativity and Giftedness in Mathematics, and (3) The
Learning Environment. The chapter concludes with a discussion of implications for
educational policies and opportunities based on some of the findings in these
chapters and gives suggestions for further study.

Keywords Mathematical creativity � Mathematical giftedness � Exceptional
mathematical promise � Heuristics Problem solving � Problem posing

Introduction

Linda Jensen Sheffield

In July 2016, the 13th International Congress on Mathematical Education (ICME)
met in Hamburg, Germany. During the Congress, Topic Study Group 4 (TSG 4)
focused on Activities for, and Research on, Mathematically Gifted Students and
TSG 29 addressed Mathematics and Creativity. All ICMEs in the twenty-first
century had hosted Topic Study Groups, Working Groups and/or Discussion
Groups on mathematical creativity and giftedness, but this was the first to offer each
TSG the opportunity to have both a topical survey written before the Congress and
a monograph following the Congress. TSG 4 did publish a topical survey before the
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conference, and this current monograph is unique in that it combines the closely
related work of two topic study groups—those on mathematical creativity and
giftedness. It builds on work presented in both of those TSGs during the
conference.

This combination is backed by the ICME affiliated organization, the
International Group for Mathematical Creativity and Giftedness (MCG; www.
igmcg.org). MCG had its start with a conference in Muenster, Germany in 1999,
and officially affiliated with ICME in 2011. The purpose of the group is to bring
together mathematics educators, mathematicians, researchers, and others who are
interested in nurturing and supporting the development of mathematical creativity
and the realization of mathematical promise and mathematical giftedness. This
monograph is the latest publication in furtherance of that work.

As noted in several of the chapters in this monograph, research on mathematical
giftedness and creativity has gained steam around the world in the last twenty years.
As the world becomes more and more inter-connected, with a growing reliance on
technology, the nurturing of creative and talented math, science and technology
students becomes increasingly important. At the same time, we need to build on all
the research in this area that has gone before us. Virtually all the authors in this
monograph cite the work of researchers into general creativity and giftedness such
as Guilford, Hadamard, Polya, Torrance, and Wallas from the 1940s through the
1960s as well as the work of Krutetskii and others on specific mathematical apti-
tudes and abilities from the 1960s and 1970s.

In the United States, when Sputnik was launched in the 1950s, a national outcry
went up deploring the status of the country and its students in mathematics and
science. In the 1960s and 70s millions of dollars were poured into the National
Science Foundation and other programs to support the development of gifted and
talented mathematics and science students and their teachers, but that dropped off
by 1980 when the National Council of Teachers of Mathematics noted that, “The
student most neglected, in terms of realizing full potential, is the gifted student of
mathematics. Outstanding mathematical ability is a precious societal resource,
sorely needed to maintain leadership in a technological world” (NCTM 1980,
p. 18). The NCTM followed this with position statements on Vertical Acceleration
(NCTM 1983) and Provisions for Mathematically Talented and Gifted Students
(NCTM 1988), but by 1990, those were no longer official NCTM positions. NCTM
did not have another official position statement on this topic for nearly thirty years
until the NCTM Board approved a position on Providing Opportunities for Students
with Exceptional Mathematical Promise (NCTM 2016). This built on the
twenty-year-old Report of the NCTM Task Force on Mathematically Promising
Students, students who were defined as “those who have the potential to become the
leaders and problem solvers of the future” The Task Force called for a
multi-pronged strategy that increases the numbers and levels of mathematically
promising students by maximizing their abilities, motivation, beliefs, and
experiences/opportunities, all variables that could be changed from their present
state (Sheffield et al. 1995). The most recent NCTM position statement notes that
they “seek to broaden the range of students identified as “students with exceptional
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mathematical promise” while acknowledging that each and every student has
mathematical promise” (NCTM 2016).

This current monograph, as well as several recent international publications,
reflects this broad concept of mathematical creativity and giftedness. Recent works
on this topic include the book Creativity in Mathematics and the Education of
Gifted Students (Leikin et al. 2009), the special issue of ZDM, The International
Journal on Mathematics Education on Creativity and Mathematics Education
(Leikin and Pitta-Pantanzi 2013), the special issue of ZDM, The International
Journal on Mathematics Education on Mathematical Creativity and Giftedness in
Mathematics Education (Singer et al. 2017), and the topical survey, Research On
and Activities for Mathematically Gifted Students (Singer et al. 2016). Each of
these, as well as the proceedings from the conferences of the International Group
for Mathematical Creativity and Giftedness, and several other outstanding books
and articles that are cited in these chapters have added a great deal to the knowledge
base in the field. The stimulating chapters in this monograph continue that proud
tradition while adding important new research-based information to this very
important field of study.

Perspectives on Mathematical Creativity and Giftedness

The articles by Nolte (2018), Gutierrez et al. (2018), Veilande et al. (2018), Assmus
(2018) and Assmus and Fritzler (2018) all contain a discussion of just what is meant
by giftedness, and specifically by mathematical giftedness. Several of these address
the issue of whether there are links between general intellectual giftedness and
specific mathematical giftedness. Assmus (2018), for example, outlines three
models—mathematical giftedness as one component of general intellectual gift-
edness, mathematical giftedness as general intellectual giftedness in combination
with specific mathematical abilities, and mathematical giftedness that can occur
independently of general intellectual giftedness. Assmus cites a study by Benbow
and Minor (1990) of 300 mathematically gifted and 150 linguistically gifted
thirteen-year-old students as identified by scores in the top 0.01% on the SAT.
Since there were only 18 students in both groups, she infers that you cannot
conclude that mathematical giftedness is included in general intellectual giftedness.
Nolte (2018) cites Gagne’s Differentiated Model of Giftedness and Talent (2004) in
distinguishing between giftedness in at least one domain as untrained and sponta-
neous natural abilities and talent in at least one field as outstanding mastery of
systematically developed competencies. While there is no resolution in these
chapters as to whether mathematical giftedness is a subset of, intersecting or sep-
arate from general intellectual giftedness, the focus of the chapters is on specific
mathematical giftedness in students of different ages.

In discussing characteristics of mathematically gifted students, several authors
mention those described by Krutetskii (1976) and others. Gutierrez et al. (2018)
expound on the ability to see patterns and relationships, generalize and transfer
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ideas, quickly learn, understand and apply mathematical ideas, and move from one
problem solving strategy to another while Veilande et al. (2018) note the ability to
abstract, generalize and discern mathematical structures, think logically, and
operate flexibly. In a similar manner, Freiman’s study (2018) uses a framework that
draws on Krutetskii’s description of a mathematically able child who can link
logically related ideas, generalize cases, and flexibly switch from one idea to
another when solving problems. Note the common strand in these chapters of the
ability to generalize from patterns and relationships and move flexibly from one
problem solving method or solution path to another. These characteristics are
similar across all ages whether authors are describing students in kindergarten such
as those studied by Freiman, the nine-year-old described by Gutierrez and associ-
ates, or young teenagers such as those in the report of Veilande and colleagues. It is
not unusual for mathematicians to define mathematics as the study of patterns, and
therefore the ability to see and generalize from patterns is a logical trait of math-
ematically gifted students.

The commonly mentioned trait of flexibility in mathematically gifted students in
these chapters leads naturally to a discussion of mathematical creativity.
Pitta-Pantazi, Kattou and Christou have an excellent overview of the state-of-the-art
in mathematical creativity in their chapter (Pitta-Pantazi et al. 2018). They use the
4Ps theory from Rhodes (1961) to organize their chapter, describing the compo-
nents of creativity as:

• Product—the communication of a unique, novel and useful idea and concept
• Person—the cognitive abilities, traits and experiences of the individual
• Process—the methodology that produces a creative product, and
• Press—the relationship between the individual and the environment

Joklitschke et al. (2018) and Assmus (2018) also mention Rhodes 4Ps in the
discussions of their research. Even though the authors of the other chapters on
mathematical creativity don’t specifically mention Rhodes description of these four
components, they also discuss several of the same categories.

In analyzing creativity, in a similar manner to giftedness, most of the authors
discuss both domain-general creativity, and domain-specific mathematical creativ-
ity. As with the relationship of mathematical giftedness to general intellectual
giftedness, there seems to be no consensus among researchers of the relationship of
domain-general creativity and domain-specific creativity. Of course, in this
monograph, the emphasis is specifically on domain-specific mathematical creativity
rather than general creativity.

In terms of the product, when studying creativity in the work of school students,
an important distinction must be made between creative products that are unique
and have a major impact in the world (“Big-C”) and those that are unique and novel
to the students in their particular environments (“little-c”). Rhodes (1961)
acknowledged this when looking at the person and the press, noting that the
individual’s experiences and relationship to the environment had an effect on the
creativity. The chapters in this monograph appropriately most commonly address
“little-c” creativity.
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In addressing “little-c” creativity, another common theme that appears in the
majority of the chapters on creativity is the question of how to assess creativity.
Most of these have adopted some form of Guilford’s (1967) description of diver-
gent thinking in his Structure of the Intellect and Torrance’s (1974) Tests of
Creative Thinking that define four components of creativity—fluency, originality,
flexibility and elaboration (Pitta-Pantazi et al. 2018; Joklitschke et al. 2018; Tabach
and Friedlander 2018; Daher and Anabousy 2018; Assmus and Fritzlar 2018).
Fluency is generally measured by counting the number of responses to a given task
and is distinguished from flexibility, which is defined as the number of different
categories of responses to a task. Fluent thinkers generate many ideas and possi-
bilities while flexible thinkers break a preconceived solution path, transform rep-
resentations, reverse procedures, or transform the problem to find a new way of
thinking. Originality is defined as a solution or idea that is unique or different, often
measured against others who have been chosen as a comparison or experimental
group. Elaboration is based on details that have been added to a solution or idea.
This category generally is not addressed in the discussions of mathematical cre-
ativity in these chapters, but is occasionally included in discussions of mathematical
creativity, sometimes in the form of elegance of solutions rather than elaboration.

Assmus and Fritzler (2018) argue that if fluency is measured as a quick creation
of many answers to a mathematical stimulus, students may come up with a high
number of very similar solutions that are not creative, and that actually tend to use
convergent rather than divergent reasoning.

Voica and Singer (2018) use a slightly different framework based on cognitive
flexibility that is inspired by its use in studying organizational settings. They
analyze the validity and complexity of responses, in addition to what they term
topicality, which is composed of both thematic variability and mathematical vari-
ability. Complexity of responses is also a key component of the assessment used by
Gutierrez et al. (2018) as they analyze the cognitive effort a student uses in solving
problems.

In transferring the analysis of general creativity to mathematical creativity,
several of the authors had adopted an assessment similar to that described by Leikin
and her colleagues (for example, Leikin et al. 2009; Leikin and Pitta-Pantazi 2013)
to quantify mathematical creativity in what they term multiple solution tasks
(MSTs) where students are asked to solve a problem in as many ways as possible.
The multiple solutions are then assessed for fluency, flexibility, and originality.
Elaboration is not scored when using this adaptation of assessing mathematical
creativity. Joklitschke et al. (2018) analyze this method of assessing mathematical
creativity using two geometry problems and one algebra problem with approxi-
mately 20 high school students in a university-based supplemental mathematics
class. Solutions are scored two ways—one using a strict analysis where solutions
must be completely correct following the guidelines from Leikin and a second time
using a more forgiving method where incorrect solutions with relatively minor
errors are scored as well. As expected, creativity scores increase using the more
forgiving method, but it is unclear which method gives a more accurate picture of a
student’s mathematical creativity, although the more forgiving method does appear
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to give more insight into students’ approaches to problem solving. It is interesting
to note that there is no significant correlation among the scores on the three different
tasks or even between the two geometry tasks. If these MSTs are designed to
measure a single domain-specific concept of mathematical creativity, you would
expect them to be correlated.

In addition to MSTs, another popular method of assessing mathematical cre-
ativity is the use of problem posing where students pose meaningful mathematical
problems related to a given situation. (Voica and Singer 2018; Singer et al. 2016;
Daher and Anabousy 2018; Sheffield 2009; Pitta-Pantazi et al. 2018; Moraová et al.
2018). In analyzing the work of pre-service teachers, Daher and Anabousy (2018)
analyze their flexibility in posing problems related to a paper pool task. Flexibility
is also the focus for Voica and Singer (2018) who score problems posed based on
cognitive flexibility by analyzing students’ problems based on cognitive variety,
cognitive novelty and changes in cognitive framing. To further refine their analysis,
they also look at the variation in cognitive and procedural complexity. This further
refinement is important due to the seeming drop in flexibility as problems posed
become more complex. This look at the difficulty or complexity of solutions is also
apparent in the scoring schemes of Veilande et al. (2018) as they analyze students’
progress in problem solving with repeated participation in Mathematical
Olympiads. As solutions and problems posed become more complex, by necessity,
the numbers of responses often decrease. Therefore, it is not feasible to identify
mathematically creative or gifted students by simply counting different responses.

The multiple definitions of both mathematical giftedness and mathematical
creativity and the lack of a clear-cut correlation to general giftedness and creativity
point to the difficulty in measuring these constructs. There does seem to be some
consensus, however, on the inclusion of flexibility in a measure of mathematical
creativity and the inclusion of difficulty or complexity in a measure of mathematical
giftedness. It is also worth noting that speed of computation did not seem to be
included in any of the assessments, although many of the measures did include
tasks with a time limit, often simply due to the amount of time that students
attended a given class or program. Different tasks also indicated varied levels of
mathematical creativity or giftedness when students’ responses to more than one
task were analyzed, thus signifying that there is no single agreed-upon instrument to
identify gifted or creative mathematics students.

Connections Between Creativity and Giftedness
in Mathematics

Perhaps because of the lack of consensus on the definitions and identification
instruments for mathematical creativity and mathematical giftedness, it is difficult to
determine connections between them. As noted in the ICME-13 Topical Survey on
mathematically gifted students, some researchers define mathematical creativity as
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the highest level of mathematical achievement, and therefore mathematical exper-
tise is a prerequisite for mathematical creativity while others claim that mathe-
matical creativity is one subcomponent of mathematical ability and still others
assert that every student is capable of mathematical creativity regardless of the level
of mathematical ability or achievement (Singer et al. 2016). Therefore it is
important to define just what is meant by mathematical creativity as well as
mathematical giftedness in any given study.

Pitta-Pantanzi et al. (2018) expound further on this in a discussion of instruments
used to identify mathematically gifted students. They cite researchers who use
assessment of creativity as one component in assessing giftedness. This is true of
both general creativity and giftedness as well as domain-specific creativity and
giftedness in mathematics. In addition, they caution that some researchers warn that
emphasizing mastery of mathematical procedures can hinder students’ creativity
since students might have an over-reliance on memorized algorithms and
procedures.

Joklitschke et al. (2018) note that the methods used to evaluate mathematical
creativity in students is directly linked to the “little-c” concept of creativity. They
point out that solutions are generally scored for originality based upon how
uncommon ideas are in relation to the peer group under consideration and not in
reference to the larger body of knowledge. Thus even very young children might be
considered to be mathematically creative. Freiman (2018), therefore, describes a
program that allows kindergarten students to demonstrate their mathematical cre-
ativity in response to open-ended problems.

In addition to the responses to open-ended problems from primary students in
the study by Freiman (2018), responses from middle school students in Tabach and
Friedlander’s (2018) investigation, the nine-year-old in Gutierrez et al. (2018)
research, and second grade students in the study by Assmus (2018) all demonstrate
that young students are quite capable of constructing mathematical knowledge that
is new to them and unique in their school settings. Assmus and Fritzler (2018) sum
it up stating that there are many different perspectives on the relationship between
giftedness and creativity that are not necessarily contradictory but result from dif-
ferent understandings of giftedness and creativity. Their research uses a collection
of problems designed to inspire primary students to create mathematical objects and
relations, and they include several examples of inventions of arithmetic operations
and encryption methods from fourth, fifth and sixth grade students.

The Learning Environment

As noted in the recent NCTM position statement “Students with exceptional
mathematical promise must be provided with differentiated instruction in an
engaging mathematics learning environment that ignites and enhances their math-
ematical passions and challenges them to make continuing progress throughout
their K–16 schooling and beyond. They must have a variety of opportunities inside
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and outside of school to develop and expand their mathematical talents, creativity,
and passions” (NCTM 2016, p. 1).

Several of the chapters in this volume outline models, heuristics, strategies,
programs and tasks designed to do just that. There does not seem to be a significant
difference between the strategies and tasks recommended for developing mathe-
matical creativity and those recommended for the development of mathematical
giftedness. For example, Assmus and Fritzlar (2018) in their chapter on mathe-
matical giftedness and creativity describe “theory building processes” where the
initial problem becomes part of a circular process for problem solving and problem
posing. This process is echoed in several of the chapters that describe multiple
solution tasks, open-ended problems and problem posing.

Nearly forty years ago, I described a problem solving heuristic designed for this
same goal. Instead of using the straightforward, seemingly linear, four-step heuristic
that is based on (sometimes erroneously) Polya’s problem solving model that is
common in many U.S. mathematics textbooks of (1) Understand the problem;
(2) Devise a plan; (3) Carry out the plan; and (4) Check, this model shown in
Fig. 14.1 describes a process that is much more open and more closely reflects
problem solving and problem posing strategies of career mathematicians.

In solving and posing problems, students may start at any point on the diagram
and proceed in any order that makes sense, often repeating stages as the problem is
more clearly defined, new strategies and methods of solution arise, and additional
questions are examined. They might do the following:

• Relate the problem to other problems that they have solved.
• Investigate the problem using a variety of strategies and models. Think deeply

and ask questions.
• Evaluate their findings, not just at the end, but throughout the problem-solving

process.
• Communicate their results. Work with colleagues to refine solutions.
• Create other solutions and methods of solution as well as new questions to

explore (Jensen 1980).

Many of the tasks discussed in these chapters follow a similar process. A strict
adherence to any heuristic or strategy can be problematic, however, and not give

Relate

Create          Investigate 

CommunicateEvaluate

Fig. 14.1 Heuristic for
mathematical discovery
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students the freedom necessary to be creative and dig deeply into mathematical
concepts and relationships. For example, Nolte (2018) brings up several important
points related to the often-overlooked issue of twice-exceptional students. She notes
that students with autism spectrum disorders (ASD) often have deficits or delays in
the development of socialization and communication skills. These students may
become fixated on a single solution to a problem and have difficulty or lack desire
to find or understand other possible methods or solutions. They may monopolize a
class discussion of problem solutions and want everyone to solve problems as they
do rather than attempt to understand others. Students with attention deficit disorders
(ADD) may have trouble focusing on a problem long enough to work out
step-by-step procedures to arrive at a solution. Reading difficulties and auditory and
visual processing weaknesses also can contribute to mathematical deficiencies, but
as Nolte points out, these are often masked by students’ strong intellectual capa-
bilities, and therefore students might show average or above average performance
in a mathematics class, but be capable of much more without a teacher being aware
of it. Several of the strategies that Nolte recommends for these students are useful
strategies to incorporate for others, but are especially important for these
twice-exceptional students. This includes giving support as necessary, such as
helping students understand and focus on the solution that the problem is looking
for, reminding students to look for patterns and understand a pattern that another
student is describing, developing a supportive classroom atmosphere, and working
with specialists and families on long-term interventions as necessary. She concludes
by saying that it is important to expose these students to challenging problems that
can be solved in different ways and on several levels, pointing out that for some of
these students, especially those with ASD, that some of their social problems
dissipate when they are challenged appropriately and given the opportunity to
interact with others in the solution or creation of interesting problems. These rec-
ommendations are reflected in many of the other chapters as well, even though this
is the only chapter specifically focused on twice-exceptional students.

Assmus and Fritzlar (2018) also assert that the tasks they used to investigate
mathematical giftedness and creativity are suitable for almost all primary school
children. The circular process they describe of problem solving and problem posing
with variation, expansion and analysis utilizing novel strategies and tools to build
new mathematical objects and structures may be used with most students, even
though students’ responses may vary.

The majority of chapters that describe tasks used to investigate mathematical
creativity or mathematical giftedness discuss the use of open-ended/multiple
solution or problem-posing tasks, with several of these authors describing the use of
both of these in their programs. Some mathematics educators distinguish between
open-beginning, open-middle and open-ended problems or tasks, but that distinc-
tion does not appear in these chapters although the concepts, if not the terminology,
is used. In these chapters, the terms open-ended or multiple solution tasks are used
to describe similar types of challenges. Open beginning tasks start with a situation
that can be interpreted mathematically in different ways, and students are encour-
aged to define and explore according to their own interpretation. Open middle tasks
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are more well-defined, but a variety of methods or models might be used to solve
the problem. Open-ended tasks often have more than one correct answer. For
example, on a very simplistic level, instead of a closed task such as “What is the
sum of 18 + 25?”, an open beginning task might ask students to list attributes of the
expression 18 + 25 and explore patterns of these attributes, an open middle task
might ask students to find the sum of 18 + 25 in as many different ways as possible
and to compare their models and methods to those of classmates, and an
open-ended task might tell the students that the sum of two whole numbers is 43,
and ask them to make an organized, exhaustive list of all the possible ways to get
this sum using two whole number or two two-digit addends. Each of these might be
expanded to problem-posing tasks by asking students to pose and perhaps solve
their own related problems after solving the original problem. Teachers can find
several interesting tasks of this type designed to challenge students at all levels in
these chapters as well as on websites such as www.openmiddle.com. On this
website for K-12 students and their teachers, tasks often start with the directions
“Use the digits 1 to 9, at most one time each, to fill in the boxes to create a true
number sentence.” The equations suggested then range from those designed for
kindergarteners, such as “Create the largest possible sum for …”

+   = 

to those designed for high school students such as “Make a solution as close to
100 as possible for…”.

Another common theme in the chapters is programs outside of the regular school
day. Another Topic Study Group (TSG 30) focused on the related subject of
Mathematical Competitions during ICME 13 so that topic is not directly included in
this monograph, but several chapters include a discussion of students who have
taken part in competitions (for example, Poulos and Mamona-Downs 2018 and
Voica and Singer 2018), and Veilande et al. (2018) followed students with repeated
participation in Mathematical Olympiads. Competitions are an important means of
challenging not only gifted mathematics students but may be enjoyed by a wide
range of interested students. Competitions and other extra-curricular activities often
give students opportunities that may not be present in the regular mathematics
classroom such as the ability to abstract, generalize, discern mathematical struc-
tures, and think logically and creatively in solving challenging problems (Veilande
et al. 2018).
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Technology also played an important part in several of the programs described in
this monograph (Pitta-Pantazi et al. 2018; Tabach and Friedlander 2018; Daher and
Anabousy 2018; Gutierrez et al. 2018; Poulos and Mamona-Downs 2018). Tabach
and Friedlander (2018) discuss the use of spreadsheets as a bridge from arithmetic
to algebra with the potential to provide a natural need for using a variety of
symbolic expressions. Students displayed a high degree of fluency, flexibility and
originality as they wrote expressions to create equivalent columns in a spreadsheet.
Their final responses were always correct and did not have the issues of incorrect
responses that some of the tasks in studies in other chapters had, since the
spreadsheet always gave immediate feedback as to whether the expressions resulted
in equivalent numbers in the columns. Gutierrez et al. (2018) also used technology
in their work to help a nine-year-old begin to use algebra. They found that the use
of a balance applet was useful in helping the student learn to solve simple linear
equations.

An applet also was an integral part of the study by Daher and Anabousy (2018).
Pre-service teachers were found to be more flexible in their problem posing when
using a paper pool applet, especially when this was combined with specific
instruction on using a what-if-not strategy. Similarly, Poulos and Mamona-Downs
(2018) found that the subjects of their study had difficulty solving the problem they
posed without the use of technology (in this case, dynamic geometry software), and
their three mathematically gifted students were much more successful when they
used the software.

As technology capabilities grow by leaps and bounds every year, teachers and
students will be increasingly challenged to keep up, choosing the best means to
develop problem solving and problem posing techniques that make the best use of
these aides without becoming overly dependent upon them.

Implications for Educational Policies, Opportunities,
and Further Study

If we believe that all students have the right to be challenged and engaged in their
mathematics programs and to learn something new everyday, then it is important
that teachers, parents, students, researchers and other stakeholders learn as much as
possible about best practices in supporting and developing mathematical creativity
and giftedness. This is not only important to the students themselves, but also for
the future of our world that desperately needs leaders who understand and can solve
the challenges that we face.

As noted in the NCTM position statement, opportunities to pursue interests,
develop expertise, and maintain passion for mathematics must be available to a
wide range of students (NCTM 2016). We need to consider at least a dual purpose
in the creation and fostering of programs for these students. Students who are
currently performing at the highest levels of mathematics need to be challenged to
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continue to progress while maintaining their interest and passion for the subject. At
the same time, we need to increase the numbers, levels, and interests of students
who are capable of learning mathematics at a much deeper level.

The chapters in this monograph point to numerous ideas to accomplish these
dual goals. The authors of these chapters seemed to have reached consensus on the
importance of using open-ended problems, multiple solution tasks, and problem
posing activities that encourage depth of knowledge, flexibility and creativity. All
of these have the advantage of offering a relatively simple way to differentiate
mathematics instruction, using tasks that have a low floor so that nearly all students
can engage in solving the problem on some level and can extend this with new
questions or solutions that are personally interesting, thus raising the ceiling so
students challenge themselves to continually progress in their understanding and
mastery of mathematics.

One area of research that was discussed in the TSG 4 topical survey prior to
ICME 13 (Singer et al. 2016) that did not receive much attention in these chapters is
whether mathematical giftedness is a creation or a discovery. That is, is mathe-
matical giftedness something that students are born with that teachers and others
need to discover or is it something that can be “created” in a much larger segment
of our student population? If we accept the dual purpose of mathematics education
as ensuring that students who are already demonstrating mathematical expertise, as
well as those who are not there yet, have opportunities for continuous progress,
perhaps this is not a critical distinction. However, far too often in many schools,
students who are at the top of the class are bored as they are forced to wait for other
to catch up or to act as assistant teachers in helping other students master mathe-
matics concepts that they themselves understood years earlier. On the other hand,
students who are capable of far higher levels of mathematical creativity and
expertise may never be given the opportunity to express and develop these abilities.

I am reminded of a Javits grant that we received many years ago from the United
States Department of Education (USDoE) to nurture mathematical talent in elemen-
tary students, Project M3: Mentoring Mathematical Minds (www.projectm3.org).
When applying for the grant, I approached a local elementary school principal about
the possibility of this program for the gifted students in his school. His reply was that
there were no gifted students in the school, and he asked me if I just wanted him to
create some. Even though Iwas pretty sure hewas being sarcastic, after thinking about
it for a brief period, I replied, “Yes, let’s try that.” Somewhat surprisingly, he agreed,
and the teachers were willing, so we proceeded to identify twenty of the fifty second
grade students in his schools to take part in our “gifted” mathematics program the
following year. After selecting students that we deemed to be in the top 40% of their
cohort group, at the beginning of third grade, we gave them a well-respected stan-
dardized achievement test, themathematics section of the Iowa Test of Basic Skills, to
get a baseline on their basic mathematics skills in concepts, problem solving and
computation. Their overall mathematics scores had a mean at the 23rd percentile,
meaning that 77% of beginning third graders in the United States scored at a higher
level on this test. You can imagine the parents’ surprise when they were notified that
their children had been selected for a gifted mathematics program. By the end of the
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first year in the program, however, this mean had increased to the 71st percentile, by
far the highest growth scores of any of the schools in the program, where students in
other schools had beginningmeans above the 95th percentile.All experimental groups
in the study, including those with very high initial scores showed significant progress
in their mathematical understanding, especially on open response questions adapted
from released items from the National Assessment of Educational Progress (NAEP)
and the Trends in InternationalMathematics and Science Study (TIMSS) (Gavin et al.
2007, 2009; Sheffield and Gavin 2006).

Following the success of Project M3, we later received a grant from the National
Science Foundation (NSF) to extend the curriculum to the primary grades for five-
to eight-year-old students in randomly assigned heterogeneous classrooms, Project
M2: Mentoring Young Mathematicians (www.projectm2.org). One of the things we
looked for with this grant was whether a curriculum that incorporated problem
solving and problem posing with open-ended tasks utilizing oral and written dis-
course that asked students to investigate geometry and measurement concepts and
relationships could result in increased numbers of students as much as two standard
deviations above the mean on an open response assessment that incorporated
released items from NAEP and TIMSS. We found that as many as 7% of the
students in the Project M2 program scored more than two standard deviations above
the mean, while only 0.5% of students in the control group scored at this level. The
Cohen’s d effect size for students in the M2 program was as high as 2.68 compared
to students in the control group (Casa et al. 2017; Gavin et al. 2013a, b; Sheffield
et al. 2012). Success with these programs lends credence to the claim that gifted
mathematics students can be created, or at least that strong mathematics programs
that expect and support students to attain significantly higher mathematics
achievement can be successful.

This ability for students to progress mathematically to far higher levels supports
the Report of the Task Force on the Mathematically Promising that mathematical
promise is a function of ability, motivation, belief, and experiences and opportu-
nities, all variables that can be maximized (Sheffield et al. 1995). The fact that
ability can expand as the brain changes and grows depending on experiences is
important to understand. Over twenty years later, NCTM reiterated this in their
position statement on students with exceptional mathematical promise by asserting
“mathematical promise is not a fixed trait; rather it is fluid, dynamic, and can grow
and be developed” (NCTM 2016, pp. 1–2). The ability to be successful learning
mathematics is not something that is fixed at birth, and adults who claim that they or
their children do not have a mathematical mind can undermine students’ mathe-
matical accomplishments. As found by Dweck in her research on a growth mindset
vs. a fixed mindset, when students believe that their brains change and grow, they
are capable of changing their learning pathways and achieving at much higher
levels (Dweck 2006). Boaler has applied this growth mindset to mathematics,
noting that it is especially critical for mathematics students to understand that brains
grow and change more when making mistakes, and that brain activity after making
a mistake solving a math problem is greater in students with a growth mindset than
in students with a fixed mindset. It can be dangerous, however, to claim as Boaler
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does that it is a myth that some students are mathematically gifted and therefore to
infer that there should not be programs for mathematically gifted students (Boaler
2016, p. 94). Some might take that to mean that we do not need to differentiate
mathematics programs or offer challenging mathematical opportunities for our
highest achieving students.

We need to remember that there are students in each class who are performing at
much higher levels than their classmates, and that these students need to be given
experiences that allow them to engage in productive struggle and make mistakes
with increasingly difficult and complex mathematical problems. They also need
time to discuss findings and questions that arise with teachers, mentors, and peers
who are at a similar level of understanding. It is worth noting that Boaler’s first
recommendation for teaching heterogeneous groups is very similar to the recom-
mendations in these chapters for teaching mathematically gifted and creative stu-
dents. That is that students need the opportunity take mathematics to different levels
and not be given closed problems that are suitable for only a small subset of the
class, where some will fail and others will not be challenged. She claims that it is
“imperative that tasks are open-ended, with a low floor and a high ceiling” (Boaler
2016, p. 115). She makes a strong case for de-tracking mathematics programs in
schools where students are placed with classmates who are perceived to have
similar high, middle or low math abilities. This can be harmful to students who are
not placed in the higher tracks when they perceive themselves to be incapable of
and not given an opportunity to learn higher-level mathematics. It can also be
harmful to students in the highest level track if they perceive themselves to be
incorrectly placed and incapable of learning complex mathematical concepts the
first time they are given challenging work. Unfortunately, some schools that have
de-tracked have stopped offering opportunities to learn high-level, engaging,
complex mathematics. For elementary students, this might mean that they no longer
have an opportunity for a pull-out program where they are given time to engage
with peers to learn mathematics not taught in their regular classroom. At the sec-
ondary level, the school may stop offering college-level mathematics courses such
as Advanced Placement Calculus or Statistics, using the excuse that not all students
are ready for this, so no one is given the opportunity.

Traditionally in the United States, the first mathematics class that students take in
high school in ninth grade has been Algebra I. Geometry in tenth grade and
Algebra II in eleventh grade often follow this. For most students, this is the end of
their high school mathematics classes, while others take pre-calculus as seniors
(grade 12). For advanced students, this sequence may start in seventh or eighth
grade, allowing students to take college-level mathematics classes such as
Advanced Placement Calculus before graduating from high school. Students taking
high school classes early have not always been successful, however.

What the members of the mathematical community—especially those in the Mathematical
Association of America (MAA) and the National Council of Teachers of Mathematics
(NCTM)—have known for a long time is that the pump that is pushing more students into
more advanced mathematics ever earlier is not just ineffective: It is counter-productive. Too
many students are moving too fast through preliminary courses so that they can get calculus
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onto their high school transcripts. The result is that even if they are able to pass high school
calculus, they have established an inadequate foundation on which to build the mathe-
matical knowledge required for a STEM career. Nothing demonstrates this more eloquently
than the fact that from the high school class of 1992, one-third of those who took calculus
in high school then enrolled in precalculus when they got to college, and from the high
school class of 2004, one in six of those who passed calculus in high school then took
remedial mathematics in college. (Bressoud et al. 2012, p. 2)

This led to the following in the NCTM position statement on students with
exceptional mathematical promise:

When considering opportunities for acceleration in mathematics, care must be taken to
ensure that opportunities are available to each and every prepared student and that no
critical concepts are rushed or skipped, that students have multiple opportunities to
investigate topics of interest in depth, and that students continue to take mathematics
courses while still in high school and beyond. (NCTM 2016, p. 1)

In the United States, requirements and opportunities for high school mathematics
differ widely between states and between districts within each state. Some districts,
especially those with high populations of students from poverty or students of color,
offer no mathematics classes beyond Algebra II. In other districts, especially those
with high populations of wealthy, white or Asian students, students might begin
taking high school mathematics classes (that would normally begin in ninth grade)
as early as seventh or even sixth grade and high schools offer a variety of
college-level mathematics classes. Note that in most states in the US, students are
allowed to stop taking mathematics courses as soon as they have finished three
years of required high school mathematics. Thus, in those states, if students have
taken some of their high school mathematics courses while in middle school, they
may take no mathematics for the last year or two or more of high school, and thus
be at a disadvantage when entering college. Students can also get college credit for
passing courses such as Advanced Placement Calculus or Statistics while in high
school, and many then choose a college major that requires no additional mathe-
matics. For these students, some of whom are the most advanced mathematics
students in high school, acceleration simply means that they can stop learning
mathematics as soon as possible. Opportunities for advanced mathematics classes in
high school must be available and open to all interested students, but care must be
taken to ensure that these students are well-prepared, eager to take advantage of
these classes, and continue their engagement with high-level mathematics through
college and into careers.

In addition to possibilities to explore and pose mathematical problems in
innovative ways from kindergarten through college as part of the regular school
curricula and to take advanced mathematics courses in high school, students of all
ages need a variety of extra-curricular experiences with engaging,
thought-provoking, and creative mathematics that there might not be time for
during the regular school day. These might be open to a wide range of interested
students. This includes such things as the engaging technology, competitions and
special summer and after-school programs described in this monograph as well as
work with mentors and math clubs and circles.
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In order to provide students with the learning opportunities described in these
chapters, teachers must have preparation in their graduate and undergraduate col-
lege and university programs as well as ongoing professional development
throughout their careers. Problems such as the paper pool problem that Daher and
Anabousy (2018) used with their pre-service teachers should be used throughout
teacher preparation programs. Teachers need to experience creative problem solv-
ing and problem posing themselves, along with appropriate use of technology, in
order to be able to support and encourage their students in similar experiences.
Involving teachers in mentoring gifted students such as the nine-year-old described
by Gutierrez et al. (2018) is also an excellent way to give teachers insight into
students’ reasoning abilities and to support them in planning appropriate experi-
ences, whether this is in-person or online as in this chapter. Lesson study groups
where teachers jointly plan and observe each other’s lessons, paying special
attention to the variety and uniqueness of students’ questions and solutions are
another means of helping teachers recognize and nurture students’ talents and
creativity. Practicing and pre-service teachers who analyze students’ responses to
multiple solution tasks or open response questions from competitions or other
activities also gain greater awareness of the variety and depth of students’ thinking
processes and can use that to better plan problem solving and posing experiences
for their students.

Teachers also need easy access to print, electronic, and human resources and the
support of administrators, families, and other stakeholders. State and national laws
and regulations governing public education need to acknowledge the importance of
serving the needs of our most expert mathematics students, those who are already
achieving at the highest levels as well as those who could achieve at much higher
levels given the proper support and encouragement. Growing exceptional mathe-
matical promise is critical for society as well as the students themselves.

To better discover and promote exemplary practices in the recognition, support
and creation of these students with exceptional mathematical promise, we need to
continue and increase research into mathematical creativity and giftedness. This
monograph is one additional step in that direction, and hopefully is just the
beginning of growing research and collaboration across the world. Building on the
research reported here and in other recent publications mentioned earlier, future
research should continue to guide our practices by addressing these issues,
including:

• Studying the effects of various means of structuring school environments and
extra-curricular activities and the role of the teacher and the curriculum for the
long-term development of students’ mathematical creativity and giftedness and
their societal impact

• Investigating the best means of educating and supporting teachers in the
advancement of their students’ mathematical creativity and giftedness

• Examining effects of policies and procedures advocating for identification of
and services for mathematically gifted students.
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As scientific and technological innovation are increasingly important to the
growth of new industries and careers, and, in general, our quality of life and the
health of our planet, we need individuals with the knowledge, skills and passion for
defining and tackling some of the most difficult problems ever encountered, and
most of these will require mathematical expertise and creativity. There are students
with exceptional mathematical promise in every country and from every demo-
graphic, and we need to work together to find the best means to find, develop and
create them.
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