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Abstract. We elaborate on the possibility to considering quantum prob-
ability calculus to improve statistical methods in economics in general,
and in quantitative finance, in particular. A tutorial on the analogy
between quantum mechanics and models in econometrics, using Kol-
mogorov probability theory, is given. Several research issues are men-
tioned.
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1 Introduction

This invitation aims mainly at calling your attention to an emerging effort to
possibly improve the way we do econometrics. In fact, it has started at the dawn
of econometrics by the man who created it (as a synthesis of mathematics, eco-
nomic theory and statistics), Jan Tinbergen (obtaining the first Nobel Memorial
Prize in Economics in 1969). He was a physicist turned economist. He proposed
the gravity model of international trade by a formula similar to Newton’s law of
gravity in which mass is replaced by GDP. This connection with physics, or more
precisely with mechanics, seems natural as both mechanics and econometrics,
especially finance, are concerned about models and predictions of (uncertain)
dynamical systems. Earlier, to “capture” (explain) the observed fluctuations of
stock returns, Louis Bachelier in his Ph.D. thesis (1900) proposed a continuous
time model based on the Brownian motion which later forms the foundations
for financial mathematics (through works of Black, Scholes and Merton, 1973,
where diffusion models are based on Brownian motion). But Brownian motion,
as explained by Albert Einstein, in 1905, is a motion of minuscule pollen parti-
cles suspended in water (which can be seen to wiggle and wander when examined
under a strong microscope), i.e., in the realm of quantum mechanics! (laws of
motion of extremely “small” objects). Thus, a shift from Newtonian mechanics
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to quantum mechanics seems obvious in this context? More specifically, a shift
from Kolmogorov probability to quantum probability seems desirable?

Remark. In fact, Brownian motion is modeled probabilistically as “limits” of
random walks within Kolmogorov’s probability theory. The same situation hap-
pened with Statistical Mechanics (see e.g., Sethna [12]. Surrounding the famous
Black-Scholes option pricing formula are stuff such as PDE, Ito stochastic cal-
culus, martingale method, and various extended models related to volatility. If
quantum probability is to replace Kolmogorov probability, then we should turn
to Quantum Stochastic Calculus (see, e.g., [10]).

It is well known that Kolmogorov probability theory is not appropriate to
use in quantum mechanics (as exemplified by the two-slit experiment), especially
the failure of the additivity property of probability measures. In fact, a radically
different formalism for probability has been developed to calculating probabilities
in quantum mechanics, with great successes (i.e., confirmed by experiments).

This is essentially a lesson learned from physics. It is not just importing stuff
from physics to economics (in particular) but looking as physics as an evolu-
tive science with great successes (as testified by what we got from engineering
in our daily life!). When we are uncertain (epistemic or random) about some
phenomenon, e.g. in “classical” mechanics (Newtonian and Einstein’s relativ-
ity theories) or quantum mechanics, we propose models, based, of course, on
“evidence” from observations, measurements, and “imagination”. This is com-
mon in physics and statistics (used in, say, econometrics). Since physics has
an advantage in natural science over social sciences (such as economics) as we
can perform experiments to predict phenomena by our models and see if the
predictions match the observations, the evolution of physics (from one model
to another) proceeded peacefully, as opposed to statistical debates on modern
methodologies! Let’s give a striking example:

For the purpose of “improving” statistical methods (which are used in various
applied fields), at least three things surfaced recently:

(i) The questionable use of P-values in hypothesis testing,
(ii) The seemingly realistic prediction methodology based on calibration vs esti-

mation (especially when big data are available),
(iii) The possible used of quantum probability calculus in applied statistics.

Let’s “compare” reactions of statisticians (to the above 3 proposed “inno-
vative” things) with three models in quantum physics: It was discovered that a
hydrogen atom consists of a single proton at the center, and a single electron
orbiting around the proton. The problem is: How the electron moves around the
proton? Since we cannot “see” the electron movement, we must propose models
(then verifying if such models reflect “reality”, or compatible with “observa-
tions”/some possible measurements).

(1) First model (Ernest Rutherford): Just like the earth rotating around
the sun, the electron could just follow the “solar system”. The “reality” is
this. The solar system is stable (that’s why we are still alive today! the earth
does not collapse by falling to the sun, despite the existence of gravitational
force between the earth and the sun), and so is the electron-proton system.
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But, unlike the solar system, subatomic particles have electric charges (of oppo-
site signs), and as such, the Rutherford model is unstable: the electron spiraling
into the proton in the center, hence this model does not correspond to reality.

(2) Bohr’s model: Thus the first model has to be replaced. To explain the
stability of hydrogen atoms, Bohr proposed the following model. The electron
rotates around the proton, not in a continuous fashion, but in “discrete” levels,
i.e., there are countable numbers of orbits that the electron can travel, between
which it can jump, so that the atom does not collapse. However, this model is
only good for the hydrogen atom, and not for other particles.

(3) Schrodinger’s model: Not only to modeling dynamics of all particles, but
also to explain Bohr’s model for hydrogen atom, Schrodinger proposed that the
electron is in many places at once, in an “electron cloud” whose shape is given
by a wave function (in Schrodinger’s fundamental equation).

This evolving understanding of hydrogen atom dynamics is a “peaceful” and
productive phenomenon! New proposed models were received with open mind.
As Box has said, “all models are wrong, but some are useful”, an open-minded
attitude is helpful in sciences. Tradition should not be an obstacle to scientific
progress.

Now, with respect to the main theme of this paper, namely, the proposal
to see if quantum probability (a generalization of Kolmogorov probability cal-
culus), viewing as a “new model for probability calculus” (not the meaning of
probability per se) could be used in social sciences (e.g. economics), of course,
when appropriate, the situation is this. Again, by “tradition” (like the issues
(i), (ii) listed above), it’s a slow motion, as usual! Perhaps, only a handful of
statisticians is aware of the proposal, let alone taking a closer look at it.

Let’s quote a recent opinion of some prominent statisticians on this proposal,
namely Andrew Gelman and Michael Betancourt [5]:

“Does quantum uncertainty have a place in everyday applied statistics?”

(a) Open mind: “We are sympathetic to the proposal of modeling joint prob-
abilities using a framework more general than standard model by relaxing the
law of conditional probability”.

“The generalized probability theory suggested by quantum physics might
very well be relevant in the social sciences”.

Remark. An obvious research issue arises right here: Beyond copulas? Inter-
ference vs correlation.

(b) A closer look at a new proposal: “Some of our own applied work involves
political science and policy, often with analysis of data from opinion polls, where
there are clear issues of the measurement affecting the outcome”.

Remark. “Measurement affecting the outcome” is the main real phenomenon
in quantum physics, as expressed by Heisenberg’s uncertainty principle (respon-
sible to the lack of a phase space in quantum mechanics). The point is this. It’s
all about data (observations): the data dictate the methods to use for analyzing
them, and not the other way around.
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(c) Some possible gains: “Just as psychologists have found subadditivity and
superadditivity of probability in many contexts, we see the potential gain of
thinking about violating of the conditional probability law”.

Remark. To apply quantum probability calculus to social science problems,
one needs to have clear evidence of the failure of classical probability theory.
Remember “The ultimate challenge in statistics is to solve applied problems”.

Finally, and this is important (!), to say loud and clear: If quantum prob-
ability calculus seems to be useful for applied statistics, it does not mean that
we have to “ignore” standard probability theory, i.e., replace the latter by the
former. This is important for two reasons:

(i) “Traditional” researchers should not be worry about abandoning what
they used to work with until now! since Kolmogorov probability theory could
remain appropriate for many situations,

(ii) Quantum probability calculus may be only suitable for some situations,
but not all.

This is completely similar to the situation in mechanics: The discovery of
quantum mechanics did not ignore Newton’s mechanics: Newtonian mechanics
is still valid in macrophysics.

So, assuming that we have an open mind, so that we love to understand the
new proposal before making our own judgement of whether it could be used in,
say, financial econometrics. Thus, tradition aside, let’s find out why in quantum
physics the calculus of probabilities is different than classical Kolmogorov’s one.

Again, mathematical finance was founded on the Black-Scholes option pric-
ing PDE which was based upon the modeling of financial returns as diffusion
processes in the context of probability theory. In this modeling approach, the
return distributions are classical probability distributions. The basic question of
“econophysicists” is this:

“Should we model return distributions with distributions which reflect the data
in a much closer way?”

Clearly, predictions would be improved if the models are better! In fact,
research reported in the literature showed that this quantum approach can be
of potential benefit.

By the very nature of Brownian motion, should we study finance in the
context of quantum mechanics, instead? with the hope that “quantum proba-
bility distributions” will supply a reasonable answer to the above question. The
attempt to put the Black-Scholes pricing formula in the quantum context was
discussed by [11] who rationalized the use of quantum principles in option pricing
context:

“A natural explanation of extreme irregularities in the evolution of prices in
financial markets is provided by quantum effects”.

See also [7].
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At a technical level, the difference between classical modeling approach (i.e.,
based on Kolmororov’s probability theory) and the “quantum approach” can be
explained as follows.

(i) Kolmogorov probability formalism includes both objective and subjective
probabilities which are man-made uncertainty (i.e. imposed uncertainty by men),
e.g., in Von Neumann’s game theory for economics/mixed strategies; and Savage
expected utility theory, whereas uncertainty in quantum physics is due to the
nature itself,

(ii) While we still have the same interpretation of the concept of probability
(“chance”), the calculus of these types of probabilities is different. For example,
quantum probability measures are not additive (due to quantum interference
of waves of particles). This is clearly affecting our attempt on making financial
predictions!

In any case, the quantum approach to finance in particular, and to economet-
rics in general, is an ongoing research direction. For an introduction to Quantum
Finance, see [1].

In this introductory lecture to quantum econometrics, we will only focus on
the main ingredient, namely the concept of quantum probability (and the context
giving rise to it) which plays a crucial role in uncertainty analysis of quantum
mechanics and possibly in social sciences. While Feynman path integral is useful
for solving the initial value problem for the Schrodinger equation, it will not
be discussed in this introductory lecture. Curious readers could read Keller and
McLaughlin [6].

As such, in Sect. 2, a bit of quantum mechanics is given. Section 3 presents
the uncertainty analysis in quantum context. Section 4 presents a mathemat-
ical formulation for quantum probability together with a comparison with
Kolmogorov probability theory. Section 5 concludes the paper by discussing
econometrics issues. Along the way, research issues will be mentioned.

2 A Bit of Quantum Mechanics

Unlike statistical mechanics, quantum mechanics reveals the randomness
believed to be caused by nature itself. As we are going to examine whether
economic fluctuations can be modeled by quantum uncertainty, we need to take
a quick look at quantum mechanics. For a good and enjoyable reading on quan-
tum mechanics, consult Feynman [3,4].

The big picture of quantum mechanics is this. A particle with mass m, and
potential energy V (xo) at a position xo ∈ R

3, at time t = 0, will move to
a position x at a later time t > 0. But unlike Newtonian mechanics (where
moving objects obey a law of motion and their time evolutions are deterministic
trajectories, with a state being a point in R

6/position and velocity), the motion
of a particle is not deterministic, so that at most we can only look for the
probability that it could be in a small neighborhood of x, at time t. Thus, the
problem is: How to obtain such a probability? According to quantum mechanics,
the relevant probability density ft(x) is of the form |ψ(x, t)|2 where the (complex)
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“probability amplitude” ψ(x, t) satisfies the Schrodinger equation (playing the
role of Newton’s law of motion in macrophysics)

ih
∂ψ(x, t)

∂t
= − h2

2m
Δxψ(x, t) + V (x)ψ(x, t)

where h is the Planck’s constant, i =
√−1, and Δx is the Laplacian Δxψ =

∂2ψ
∂x2

1
+ ∂2ψ

∂x2
2

+ ∂2ψ
∂x2

3
, x = (x1, x2, x3) ∈ R

3.
Solutions of the Schrodinger equation are “wave-like”, and hence are called

wave functions of the particle (the equation itself is called the wave equation). Of
course, solving this PDE equation, in each specific situation, is crucial. Richard
Feynman [2] introduced the concept of path integral to solve it.

For a solution of the form ψ(x, t) = ϕ(x)eitθ, |ψ(x, t)|2 = |ϕ(x)|2 with ϕ ∈
L2(R3,B(R3), dx), in fact ||ϕ|| = 1. Now, since the particle can take any path
from (xo, 0) to (x, t), its “state” has to be described probabilistically. Roughly
speaking, each ϕ (viewed as a “vector” in the complex, infinitely dimensional
Hilbert space L2(R3,B(R3), dx)) represents a state of the moving particle. Now
L2(R3,B(R3), dx) is separable so that it has a countable orthonormal basis, ϕn,
say, and hence

ϕ =
∑

n

< ϕ,ϕn > ϕn =
∑

n

cnϕn =< ϕn|ϕ|ϕn >

where < ., . > denotes the inner product in L2(R3,B(R3), dx), and the last
notation on the right is written in popular Dirac’s notation, noting that ||ϕ||2 =
1 =

∑
n |cn|2, and

∑

n

|ϕn >< ϕn| = I (identity operator on L2(R3,B(R3), dx))

where |ϕ >< ψ| is the operator: f ∈ L2(R3,B(R3), dx) →< ϕ, f >< ψ| ∈
L2(R3,B(R3), dx).

From the solution ϕ(x) of Schrodinger equation, the operator

ρ =
∑

n

cn|ϕn >< ϕn|

is positive definite with unit trace (tr(ρ) =
∑

n < ϕn|ρ|ϕn >= 1).
Thus it plays the role of the classical probability density function. By sep-

arability of L2(R3,B(R3), dx), we are simply in a natural extension of finitely
dimensional euclidean space setting, and as such, the operator ρ is called a den-
sity matrix which represents the “state” of a quantum system.

This “concrete setting” brings out a general setting (which generalizes
Kolmogorow probability theory), namely, a complex, infinitely dimensional, sep-
arable, Hilbert space H = L2(R3,B(R3), dx), and a density matrix ρ which is
a (linear) positive definite operator on H (i.e., < f, ρf > ≥ 0 for any f ∈ H,
implying that it is self adjoint), and of unit trace. A quantum probability space
is simply a pair (H, ρ).
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Remark. At a given time t, it is the entire function x → ψ(x, t) which
describes the state of the quantum system, and not just one point! The wave
function ψ(x, t) has a probabilistic interpretation: its amplitude gives the prob-
ability distribution for the position, a physical quantity of the system, namely,
|ψ(x, t)|2.

Now, observe that for ϕ(p) arbitrary, where p = mv is the particle momen-
tum, a solution of Schrodinger’s equation is

ψ(x, t) =
∫

R3
ϕ(p)e− i

h (Et−<p,x>dp/(2πh)
3
2

(where E = ||p||2
2m ), i.e., ψ is the Fourier transform of the function ϕ(p)e− i

h (Et),
and hence, by Parseval-Plancherel,

∫

R3
|ψ(x, t)|2dx =

∫

R3
|ϕ(p)|2dp

Thus, it suffices to choose ϕ(.) such that
∫
R3 |ϕ(p)|2dp = 1 (to have all wave

functions in L2(R3,B(R3), dx), as well as
∫
R3 |ψ(x, t)|2dx = 1. In particular, for

stationary solutions of Schrodinger’ equation ψ(x)e−iEt/h, describing the same
stationary state. Here, note that ||ψ|| = 1.

Three things come up:

(i) With addition of waves and square integrability, the state space in quantum
mechanics is a complex, infinitely dimensional Hilbert space,

(ii) Unlike Newtonian mechanics, the dynamics of particles are random in
nature (in the sense that, under the same “state” (initial conditions), results
are different), thus we cannot talk about “the trajectory” of a moving par-
ticle,

(iii) We need to be able to find the probability distribution of possible “tra-
jectories”. A plausible suggestion is |ψ(x, t)|2 for probability density of the
position. But then, while the meaning of probability remains the usual one
(e.g. as a frequency interpretation), its calculus based on this formalism is
different than Kolmogorov’s probability calculus, e.g., additivity property
breaks down (in, say, interference of waves).

Remark. Note that when dealing with uncertainty (ordinary or quantum), it
is necessary to evoke its underlying logic, for purpose of “reasoning” (inference
which is based on logic, and not on mathematical theorems, like the way to
carry out statistical hypothesis testing problems using p-values!). It turns out
that quantum logic is non Boolean, but seems to have a pleasant connection with
the so-called Conditional Event Algebra. See the recent paper by Nguyen [9].

In summary, quantum mechanics concerns motions of particles. Particles
moves like waves with a random behavior. The law of quantum mechanics is
given by the Schrodinger’s equation whose solution is the wave function describ-
ing the motion of a particle States of quantum systems are determined by quan-
tum probabilities. Quantum mechanics does not predict a single definite outcome
(observed), it predicts a number of different possible outcomes and tells us how
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likely each of these is (somewhat similar to coarse data in classical statistics).
Interference occurs with particles by duality wave/particle.

3 Measuring Physical Quantities

Physical quantities are numerical values associated to a quantum system, such
as position, momentum, velocity, and functions of these, such as energy.

In classical mechanics, the result on the measurement of a physical quantity
is just a number at each instant of time. In quantum mechanics, at a given time,
repeated measurements under the same state of the system give different values
of a physical quantity A: There should exist a probability distribution on its
possible values, and we could use its expected (mean) value.

For some simple quantities, it is not hard to figure out their probability
distributions, such as position x and momentum p (use Fourier transform to
find the probability distribution of p) from which we can carry out computations
for expected values of functions of then, such as potential energy V (x), kinetic
energy (function of p alone). But how about, say, the mechanical energy V (x) +
p2

2m , which is a function of both position x and momentum p? Well, its expected
value is not a problem, as you can take E(V (x) + p2

2m ) = EV (x) + E( p2

2m ), but
how to get its distribution when we need it? Also, if the quantity of interest is
not of the form of a sum where the knowledge of E(x), E(p) is not sufficient to
compute its expectation?

If you think about classical probability, then you would say this. We know
the marginal distributions of the random variables x, p. To find the distribution
of V (x)+ p2

2m , we need the joint distribution of (x, p). How? Copulas could help?
But are we in the context of classical probability!?

We need a general way to come up with necessary probability distributions
for all physical quantities, from the knowledge of the wave function ψ(x, t) in the
Schrodinger’s equation. It is right here that we need mathematics for physics!

For a spacial quantity like position X (of the particle), or V (X) (potential
energy), we know its probability distribution x → |ψ(x, t)|2, so that its expected
valued is given by

EV (X) =
∫

R3
V (x)|ψ(x, t)|2dx =

∫

R3
ψ∗(x, t)V (x)ψ(x, t)dx

If we group the term V (x)ψ(x, t), it looks like we apply the “operator” V
to the function ψ(., t) ∈ L2(R3), to produce another function of L2(R3). That
operator is precisely the multiplication AV (.) : L2(R3) → L2(R3) : ψ → V ψ. It
is a bounded, linear map from a (complex) Hilbert space H to itself, which we
call, for simplicity, an operator on H.

We observe also that EV (X) is a real value (!) since

EV (X) =
∫

R3
V (x)|ψ(x, t)|2dx
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with V (.) being real-valued. Now,
∫

R3
ψ∗(x, t)V (x)ψ(x, t)dx =< ψ,AV ψ >

is the inner product on H = L2(R3). We see that, for any ψ,ϕ ∈ H, < ψ,AV ϕ >
=< AV ψ,ϕ >, since V is real-valued, meaning that the operator AV (.) : ψ →
V ψ is self adjoint.

For the position X = (X1,X2,X3), we compute the vector mean EX =
(EX1, EX2, EX3), where we can derive, for example, EX1 directly by the
observables of Q = X1 as AX1 : ψ → x1ψ (multiplication by x1), Ax1(ψ)(x, t) =
x1ψ(x, t).

Remark. The inner product in the (complex) Hilbert space H = L2(R3)
(complex-valued functions on R

3, squared integrable wrt to Lebesgue measure
dx on B(R3)) is defined as

< ψ,ϕ >=
∫

R3
ψ∗(x, t)ϕ(x, t)dx

where ψ∗(x, t) is the complex conjugate of ψ(x, t). The adjoint operator of
the (bounded) operator AV is the unique operator, denoted as A∗

V , such that
< A∗

V (f), g >=< f,AV (g) >, for all f, g ∈ H (its existence is guaranteed by
Riesz theorem in functional analysis). It can be check that A∗

V = AV ∗ , so that
if V = V ∗ (i.e., V is real-valued), then A∗

V = AV , meaning that AV is self
adjoint. Self adjoint operators are also called Hermitian (complex symmetry)
operators, just like for complex matrices. The property of self adjoint for oper-
ators is important since eigenvalues of such operators are real values, and as
we will see later, which correspond to possible values of the physical quantities
under investigation, which are real valued.

As another example, let’s proceed directly to find the probability distribution
of the momentum p = mv of a particle, at time t, in the state ψ(x, t), x ∈ R

3,
and from it,.compute, for example, expected values of functions of momentum,
such as Q = ||p||2

2m .
The Fourier transform of ψ(x, t) is

ϕ(p, t) = (2πh)− 3
2

∫

R3
ψ(x, t)e− i

h<p,x>dx

so that, by Parseval-Plancherel, |ϕ(p, t)|2 is the probability density for p, so that

E(
||p||2
2m

) =
∫

R3

||p||2
2m

|ϕ(p, t)|2dp

But we can obtain this expectation via an appropriate operator Ap as follows.
Since

ψ(x, t) = (2πh)− 3
2

∫

R3
ϕ(p, t)e

i
h<p,x>dp
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with x = (x1, x2, x3), we have

h

i

∂

∂x1
ψ(x, t) = (2πh)− 3

2

∫

R3
p1ϕ(p, t)e

i
h<p,x>dp

i.e., h
i

∂
∂x1

ψ(x, t) is the Fourier transform of p1ϕ(p, t), and since ψ is the Fourier
transform of ϕ, Parveval-Plancherel implies

E(p1) =
∫

R3
ϕ∗(p, t)p1ϕ(p, t)dp =

∫

R3
ψ∗(p, t)[

h

i

∂

∂x1
](ψ(x, t)dx

we see that the operator Ap = h
i

∂
∂x1

(.) on H extracts information from the
wave function ψ to provide a direct way to compute the expected value of the
component p1 of the momentum vector p = (p1, p2, p3) (note p = mv, with
v = (v1, v2, v3)) on one axis of R

3. For the vector p (three components), the
operator Ap = h

i ∇, where ∇ = ( ∂
∂p1

, ∂
∂p2

, ∂
∂p3

).

As for Q = ||p||2
2m , we have

EQ =
∫

R3
ψ∗(x, t)[(

−h2

2m
)Δ](ψ(x, t)dx

where Δ is the Laplacian. The corresponding operator is AQ = (−h2

2m )Δ.
Examples, as the above, suggest that, for each physical quantity of interest Q

(associated to the state ψ of a particle) we could look for a self adjoint operator
AQ on H so that

EQ =< ψ,AQψ >

A such operator extracts information from the state (wave function) ψ for
computations on Q. This operator AQ is referred to as the observable for Q.

Remark. If we just want to compute the expectation of the random variable
Q, without knowledge of its probability distribution, we look for the operator AQ.
On the surface, it looks like we only need a weaker information than the complete
information provided by the probability distribution of Q. This is somewhat
similar to a situation in statistics, where getting the probability distribution of
a random set S, say on R

3 is difficult, but a weaker and easier information
about S can be obtained, namely it coverage function πS(x) = P (S � x), x ∈
R

3, from which the expected value of the measure μ(S) can be computed, as
Eμ(S) =

∫
R3 πS(x)dμ(x), where μ is the Lebesgue measure on B(R3). See e.g.,

Nguyen [8].
But how to find AQ for Q in general? Well, a “principle” used in quan-

tum measurement is this. Just like in classical mechanics, all physical quantities
associated to a dynamical systems are functions of the system state, i.e., posi-
tion and momentum (x, p), i.e., Q(x, p), such as Q(x, p) = ||p||2

2m + V (x). Thus,
the observable corresponding to Q(x, p) should be Q(Ax, Ap), where Ax, Ap are
observables corresponding to x and p which we already know in the above anal-
ysis. For example, if the observable of Q is AQ, then the observable of Q2 is A2

Q.
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An interesting example. What is the observable AE corresponding to the
energy E = ||p||2

2m + V ?
We have AV = V (QV (f) = V f , i.e., multiplication by the function V :

(AV (f)(x) = V (x)f(x)).

Ap =
h

i
∇ =

h

i

⎛

⎜⎜⎝

∂
∂x1

∂
∂x2

∂
∂x3

⎞

⎟⎟⎠

so that

A2
p(f) = (Ap ◦ Ap)(f) = Ap(Ap(f)) = Ap

⎡

⎢⎢⎣
h

i

∂f
∂x1

∂f
∂x2

∂f
∂x3

⎤

⎥⎥⎦

= (
h

i
)2

⎡

⎢⎢⎢⎣

∂f2

∂x2
1

∂f2

∂x2
2

∂f2

∂x2
3

⎤

⎥⎥⎥⎦ = −h2

⎡

⎢⎢⎢⎣

∂f2

∂x2
1

∂f2

∂x2
2

∂f2

∂x2
3

⎤

⎥⎥⎥⎦

Thus, the observable of ||p||2
2m is −h2

2m Δ, and that of E = ||p||2
2m + V is AE =

−h2

2m Δ + V , which is an operator on H = L2(R3).
By historic reason, this observable of the energy (of the quantum system)

is called the Hamiltonian of the system (in honor of Hamilton, 1805–1865) and
denoted as

H =
−h2

2m
Δ + V

Remark. Since

E(V ) =
∫

R3
ψ∗(x, t)V (x)ψ(x, t)dx =

∫

R3
ψ∗(x, t)(MV ψ)(x, t)dx

it follows that AV = V .
The Laplacian operator is

Δf(x) =
∂f2

∂x2
1

+
∂f2

∂x2
2

+
∂f2

∂x2
3

where x = (x1, x2, x3) ∈ R
3.

Now, if we look back at Schrodinger’s equation

ih
∂

∂t
ψ(x, t) = − h2

2m
Δψ(x, t) + V (x)ψ(x, t)

with (stationary) solutions of the form ψ(x, t) = ϕ(x)e−iωt, then it becomes

(−i2)hωϕ(x)e−iωt = − h2

2m
Δϕ(x)e−iωt + V (x)ϕ(x)e−iωt
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or

hωϕ(x) = − h2

2m
Δϕ(x) + V (x)ϕ(x)

With E = hω, this is

− h2

2m
Δϕ(x) + V (x)ψ(x) = Eϕ(x)

or simple, in terms of the Hamiltonian,

H ϕ =Eϕ

Putting back the term e−iωt, the Schrodinger’s equation is written as

H ψ =Eψ

i.e., the state ψ (solution of Schrodinger’s equation) is precisely the eigenfunction
of the Hamiltonian H of the system, with corresponding eigenvalue E. In other
words, the wave function of a quantum system (as described by Schrodinger’s
equation) is an eigenfunction of the observable of the system energy.

In fact, the Schrodinger equation is

ih
∂

∂t
ψ(x, t) = H ψ(x, t)

with H as an operator on a complex Hilbert space H in a general formalism,
where the wave function is an element of H: The Schrodinger’s equation is an
“equation” in this “Operators on Complex Hilbert spaces” formalism. This equa-
tion tells us clearly: It is precisely the observable of the energy that determines
the time evolution of states of a quantum system. On the other hand, being an
element in a separable Hilbert space, a wave function ψ can be decomposed as a
linear superposition of stationary states, corresponding to the fact that energy
is quantified (i.e., having discrete levels of energy, corresponding to stationary
states). Specifically, the states (wave functions in the Schrodinger’s equation)
of the form ψ(x, t) = ϕ(x)e−iωt are stationary states since |ψ(x, t)| = |ϕ(x)|,
independent of t, so that the probability density |ϕ(x)|2 (of finding the particle
in a neighborhood of x) does not depend on time, resulting in letting anything
in the system unchanged (not evoluting in time). That is the meaning of sta-
tionarity of a dynamical system (the system does not move). To have motion,
the wave function has to be a linear superposition of stationary states in inter-
ference (as waves). And this can be formulated “nicely” in Hilbert space theory!
Indeed, let ϕn be eigenfunctions of the Hamiltonian, then (elements of a separa-
ble Hilbert space have representations with respect to some orthonormal basis)
ψ(x, t) =

∑
n cnϕn(x)e−iEnt/h, where En = hωn (energy level). Note that, as

seen above, for stationary states ϕn(x)e−iEnt/h, we have H ϕn = Enϕ, i.e.,
ϕn is an eigenfunction of H . Finally, note that, from the knowledge of quan-
tum physics where energy is quantified, the search for (discrete) energy levels
En = hωn corresponds well to this formalism.
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We can say that Hilbert spaces and linear operators on them form the lan-
guage of quantum mechanics.

Thus, before continuing, let’s put down an abstract definition: An observable
is a bounded, linear, and self adjoint operator on a Hilbert space.

We have seen that multiplication operator Mf : g ∈ H = L2(R3) → Mf (g) =
fg is self adjoint when f is real-valued. In particular, for f = 1B , B ∈ B(R3),
M1B is a (orthogonal) projection on H, i.e., satisfying M1B = (M1B )2 (idempo-
tent) = (M1B )∗, which is a special self adjoint operator. This will motive the
space P(H) of all projections on H as the set of “events”.

Each observable A is supposed to represent an underlying physical quantity.
So, given a self adjoint operator A on H, what is the value that we are interested
in, in a given state ψ? Well, it is < ψ,Aψ > (e.g.,

∫
R3 ψ∗(x, t)A(ψ)(x, t)dx), with,

by abuse of language, is denoted as < A >ψ. Note that < ψ,Aψ >∈ R, for any
ψ ∈ H, since A is self adjoint, which is “consistent” with the fact that physical
quantities are real-valued.

Remark. If we view the observable A as a random variable, and the state
ψ as a probability measure on its “sampling space” H, in the classical setting
of probability theory, then < A >ψ plays the role of expectation of A wrt the
probability measure ψ. But here is the fundamental difference with classical
probability theory: as operators, the “quantum random variables” do not neces-
sarily commute, so that we are facing a noncommutative probability theory. This
is compatible with the “matrix” viewpoint of quantum mechanics, suggested by
Heisenberg, namely that numerical measurements in quantum mechanics should
be matrices which form a noncommutative algebra.

4 Distributions of Observables

Let’s look back at the finitely dimensional case. This is in fact the origin of the
so-called spectral theory (of operators).

For simplicity, and for concreteness, consider the euclidean space R
n. This is

a vector space over the scalar field R. Moreover, it has an binary form which is
called an inner product: < x, y >=

∑n
j=1 xjyj , where x′

js are the coordinates
of x ∈ R

n with respect to an orthonormal (canonical) basis of R
2. When we

consider infinitely dimensional spaces with similar properties, we will call them
Hilbert spaces. Thus euclidean spaces Rn are finitely dimensional Hilbert spaces.

A (real) n × n matrix A = [ajk] is a linear transformation (we will call it
an operator) on R

n (i.e., A : R
n → R

n). If the matrix A is symmetric, i.e.,
A = At (the transpose of A, i.e., ajk = akj), then by changing coordinate
systems (principal axes theorem in analytical geometry), we represent A in a
“nice” form, namely diagonal, where the nonzero diagonal entries are roots of
the characteristic polynomial det(A − λI) = 0, called the eigenvalues of A. If we
let σ(A) be the set of all eigenvalues of A, called the spectrum of A, then A is
written as A =

∑
λ∈σ(A) λPλ, where Pλ is the (orthogonal) projections on R

n

onto the eigensubspace S(λ) = {x ∈ R
n : Ax = λx}, i.e., the set of eigenvectors
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associated with the eigenvalue λ. This is referred to as the spectral decomposition
of the matrix (operator) A.

Remark. The term “spectrum” (or spectral) is used possibly in relation of
spectra of atoms in physics. Spectral theory was named after D. Hilbert (1910).
But of course, “Hilbert space” was not named by Hilbert!

When we need to consider matrices with complex entries, e.g., linear opera-
tors on C

n, symmetry is extended to Hermitian (or self adjoint) property, i.e.,
A = A∗ (transpose of complex conjugate matrix). Even in this case, the remark-
able fact is that eigenvalues of self adjoint operators are real: σ(A) ⊆ R. In
particular, when σ(A) ⊆ R

+, A is said to be a positive operator, which is equiv-
alent to < x,Ax > is positive for all x ∈ C

n.
Look at the spectral decomposition A =

∑
λ∈σ(A) λPλ of the symmetric

matrix A. Since σ(A) ⊆ R, we can define a a map ξA : B(R) ∈ P(Rn) (space of
projections on R

n) by ξA(B) =
∑

λ∈B Pλ. Then, ξA(R) =
∑

λ∈R
Pλ = I (when

tr(A) = 1), and for any pairwise disjoint Bj ∈ B(R), ξA(∪jBj) =
∑

j ξA(Bj).
The set function ξA(.) looks like a probability measure, but with P(Rn)− valued,
instead of [0, 1]. Such a set function is called a spectral measure, and ξA(.) is the
(discrete) spectral measure of the matrix A. In fancy notation (but useful when
considering infinitely dimensional setting), we write A =

∫
σ(A)

λdξA(λ).
We see that the study of (random) physical quantities Q on a quantum

system, in a state ψ, is via its observable AQ. Observables (in quantum context)
play the role of random variables in Kolmogorov’s probability theory.

For simplicity, let’s elaborate on this in the finitely dimension case where, for
“concreteness”, observables are taken as n × n matrices with complex entries.
These are linear, Hermitian operators on C

n.
Recall that a matrix A = [ajk], as an operator on R

n, gives rise to a quadratic
form < Ax, x >=

∑
ajkxjxk. If A is symmetric, i.e., ajk = akj , then, using

an orthogonal transformation (leaving invariant Euclidean metric on R
n), in

analytic geometry, it can be rewritten in a normal form < Ax, x >=
∑

λjx
2
j .

Sylvester, in 1852, showed that the λ′
js are roots of the characteristic polynomial

det(λI − A), i.e., eigenvalues of the matrix (operator) A. This form reduction
corresponds to a diagonalization process on the matrix A: for some orthogonal
matrix B, the matrix D = B−1AB is in diagonal form. The diagonal entries of D
are eigenvalues of A. The set of eigenvalues of A is called the spectrum of A, and
is denoted as σ(A). Thus, there exists an orthonormal basis of Rn, {e1, e2, ..., en},
with respect to it, A is diagonal with diagonal entries being eigenvalues of A.
In other words, A =

∑
λ∈σ(A) λPλ, where Pλ is the (orthogonal) projection onto

the eigensubspaces Sλ = {x : Ax = λx}. This is referred to as the spectral
decomposition of the symmetric matrix A.

Remark. In quantum mechanics, certain physical quantities cannot be mea-
sured simultaneously. This fact is interpreted as their observables (e.g. Hermitian
matrices) do not commute (since the algebra of matrices is noncommutative).
The set of possible values of a quantity Q is the spectrum of AQ. Thus, the
spectrum of the Hamiltonian of energy (energy levels, recalling that energy is
quantified) of an atom is precisely the spectrum of the atom.
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With this spectral decomposition of an observable (i.e., a self adjoint opera-
tor) in the finite case, let’s point out right away that observables play the role
of random variables in Kolmogorov’s setting. First, observe that a projection
operator is an “event” in quantum setting: for example Pλ is the event that the
underlying physical quantity, represented by A, takes the value λ.

In Kolmogorov’s setting, given a measurable space (Ω,A ), an event is an
element of the σ− algebra A of subsets of Ω. We identify B ∈ A with its indi-
cator function 1B : Ω → [0, 1] which, in turn, is identified with the multiplication
operator on the Hilbert space L2(Ω,A , P ); f → 1Bf : (1Bf)(ω) = 1B(ω)f(ω)
(so that if B happens, i.e., ω ∈ B, then (1Bf)(ω) = f(ω), otherwise, it’s 0). This
operator on L2(Ω,A , P ) is an orthogonal projection, and hence self adjoint. In
other words, in quantum setting, projections correspond to events. Note also
that, two quantum events (projections) p, q are compatible when pq is also an
event (a projection): in this case, pq = (pq)∗ = q∗p∗ = qp, i.e., p and q commute.
The counterpart of A is the set P(Rn) of all projections on R

n.
Now the spectral decomposition A =

∑
λ∈σ(A) λPλ is similar to a “simple

random variable” in classical probability. A simple random variable X is of the
form X(ω) =

∑
xj1Bj

(ω), where Bj = {ω : X(ω) = xj}, so that when the event
Bj occurs, X = xj . The probability density of X is P (X = xj) = P (Bj) =
P [X−1({xj})].

What is the probability density of the observable A? i.e., P (Pλ) in quantum
formalism? The counterpart of the probability measure P on (Ω,A ), is the state
ψ of the Schrodinger equation. Let ρ be a positive operator on R

n with unit trace
(i.e., tr(ρ) =

∑n
j=1 < ej , ρej >= 1). Note that a positive operator is necessarily

self adjoint. The triple (Rn, P(Rn), ρ) is called a (finite dimentional) quantum
probability space, the “state” ρ is called a “density matrix”.

For B ∈ P(Rn), we have tr(ρB) =
∑n

j=1 < uj , ρuj >, where the u′
js is an

orthogonal basis for the range of the projection B, so that tr(ρB) ∈ [0, 1], and for
B1, ..., Bk, pairwise orthogonal (for j �= m, BjBm = 0), so that B1+...+Bk is the
event that at least one of the B′

js occurs, and tr(B1 + ...+Bk) =
∑k

j=1 tr(ρBj).
Thus the map tr(ρ · (.)) : P(Rn) → [0, 1] acts like a probability distribution,
with tr(ρB) being the probability of the event B under the state ρ.

For A =
∑

λ∈σ(A) λPλ, Pr(A takes the values λ) = tr(ρPλ). Thus, the observ-
able A on R

n is a discrete (finite) random variable with a probability mass
function.

In summary, let H be a (finite dimensional) complex Hilbert space. repre-
senting states of a quantum system. Let P(H) denote the set of all projections
on H (playing the role of events), and ρ a positive operator of H with unit trace.
The Triple (H,P(H), ρ) is a quantum probability space.

In such a quantum probability space, under the state ρ, an observable A,
with spectral decomposition A =

∑
λ∈σ(A) λPλ, has a probability distribution

given by Pr(Pλ) = tr(ρPλ). The converse to this construction from a given ρ is
Gleason’s theorem, which says that any probability distribution μ : P(H) →
[0, 1] is of this form, i.e., has a density ρ.
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Remark. There are several different definitions of quantum probability space
in the literature, depending of levels of generality, e.g., in terms of C∗−algebra.
Here we consider a low level in terms of Hilbert spaces.

Let AQ the observable of the quantity Q. What are the possible values of Q?
In fact, what are the values of Q that we can actually measure? And what is the
probability distribution of AQ?

To answer this, observe that if the state ψ ∈ H is an eigenfunction of AQ,
i.e., there is some scalar a (corresponding eigenvalue), here real since AQ is self
adjoint, such that AQ(ψ) = aψ, then

EQ =
∫

R3
ψ∗(x, t)(AQψ)(x, t)dx =

∫

R3
ψ∗(x, t)aψ(x, t)dx

= a

∫

R3
|ψ(x, t)|2dx = a

E(Q2) =
∫

R3
ψ∗(x, t)(AQ)2ψ)(x, t)dx =

∫

R3
ψ∗(x, t)(AQ)(aψ(x, t))dx

= a2

∫

R3
|ψ(x, t)|2dx = a2

so that V ar(Q) = EQ2 − (EQ)2 = 0. i.e., for sure, Q will take the value a
(no uncertainty involved). Thus, measurements of a quantity Q are precisely the
eigenvalues of its observables, i.e., the spectrum of the observable representing
it, denoting as σ(AQ). Note that, since every AQ is self adjoint, σ(AQ) ⊆ R,
consistent with the fact that measured values of physical quantities have to be
real (not complex numbers!).

Here, again, is a theory extending what we known from matrix theory.
With the interests in transforming symmetric quadratic forms ((Ax, x) =∑

j,k αjkxjxk, the matrix A is symmetric) to normal form (
∑

j βjx
2
j ) via an

orthogonal transformation T : Rn → R
n (||Tx|| = ||x||, for any x ∈ R

n, norm
invariant), back to the times of Descartes (1637), it was known that any sym-
metric matrix A (Tx = Ax) is orthogonally equivalent to a diagonal matrix
D. i.e., D = B−1AB, for some orthogonal matrix B (||Bx|| = ||x||). Note that
B is orthogonal iff its columns form an orthonormal basis for R

n.The diago-
nal entries of D are the eigenvalues of A, i.e., roots of the polynomial equation
det(A−λI) = 0. The set σ(A) of eigenvalues of a matrix A is called the spectrum
of the operator (matrix) A. It x is a non zero vector such that Ax = λx, then
x is called an eigenvector (with associated eigenvalue λ). Thus, a symmetric
matrix A can be written as

∑
j λjuj .

As we will see, when we generalize matrix A on R
n is to an “nice” bounded

operator (e.g. compact) on a “nice” Hilbert space H (separable), we will have
countable eigenvalues and vectors, the latter form an orthonormal basis for H,
so that each h ∈ H can be written as an infinite series, and hence any operator
on H can be represented as an “infinite matrix”.
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Let’s start with matrices to bring out things we wish to generalize. For
n × n matrices with complex entries (i.e., operators on C

n, a finitely dimen-
sional Hilbert space), it known from matrix algebra that, a self adjoint matrix
A has real eigenvalues λj , j = 1, 2, ..., n (i.e., A − λjI are not invertible). The
set σ(A) of eigenvalues is called the spectrum of A. The eigenspaces associated
with eigenvalues λj ( i.e., S(λj) = (x ∈ C

n : Ax = λjx}) are orthogonal (for
λj �= λk, S(λj) ⊥ S(λk)). Moreover, A =

∑
λ∈σ(A) λPλ, where Pλ is the projec-

tion onto S(λ). This is referred to as the spectral decomposition of A.
Remark. If A is an operator on an Hilbert space H, then its spectrum σ(A) ⊆

C is, by definition, the set complements of its “resolvent” {λ ∈ C : (A − λI)−1

exists}. In general, the spectrum could be uncountable. The spectral decompo-
sition of a self adjoint operator will be defined as an “integral wrt a spectral
measure on B(C)”. In Quantum mechanics, quantities which are measured are
matrices (more generally, operators) rather than real numbers. Also, “observ-
ables” may be functions of other observables, such as f(A) where f : R → R.
As such, we need to make sense of f(A) as an operator: this is the problem
of functional Calculus. If Au = λu, then we could set f(A)u = f(λ)u, so
that clearly there is a connection between spectral theory and functional cal-
culus. Both are related to quantum mechanics. When A =

∑
j λjPj , we set

f(A) =
∑

j f(λj)Pj . For Hilbert space H, an observable (i.e., a self adjoint oper-
ator A on H), has its spectral measure ξA on B(C), such that A =

∫
σ(A)

λdξA(λ),
we set f(A) =

∫
σ(A)

f(λ)dξA(λ).
The spectral decomposition of a self adjoint operator A in the finitely dimen-

sional case is obtained from a “resolution of identity” {Pλ;λ ∈ σ(A)}. The map
λ ∈ σ(A) ⊆ C → Pλ ∈ P(H), space of projections on H, acts like a finite prob-
ability density where probability values are projections! Note that, like [0, 1],
P(H) is not a Boolean lattice. For a “random variable X” taking values in
σ(A), formally, Pr(X = λ) = Pλ. When H is of infinite dimensions, this “den-
sity” should be replaced by a measure on B(C). Thus, a spectral measure is
defined as ξ(.) : B(C) → P(H) having analogous properties of a numerical
measure, namely, ξ(C) = I, ξ(∪nBn) =

∑
n ξ(Bn) for any sequence of pairwise

disjoint Bn ∈ B(C), where the infinite sum is taken in the sense of convergence
wrt to the norm. This is a projection-valued probability measure.

The upshot is that any (bounded) self adjoint operator A on a Hilbert space
H admits a unique spectral measure ξA such that it has the spectral decom-
position (in the infinite case) as A =

∫
σ(A)

λdξA(λ) (von Neumann’s spectral
theorem) which is the extension of A =

∑
λ∈σ(A) λPλ, in the finite case. The

spectral integral is defined as a Lebesgue-Stieltjes integral, here, of the function
f(λ) = λ, wrt ξA.

Now, P(H) is the set of events, i.e., special {0,1}− valued random variables,
general random variables (observables) are represented by (bounded) self adjoint
operators on H. The spectral measure of a self adjoint operator thus plays the
role of the probability law of a random variable in the quantum context, its
existence and uniqueness are guaranteed by von Neumann’s spectral theorem.
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Remark. Why the spectral integral representing A is over its spectrum σ(A)?
First, note that σ(A) needs not be discrete, as it is {λ ∈ C;A − λI is not
invertible}.

The “support” of the spectral measure ξA is Λ(ξA) = C\ ∪k Bk where the
union is over all open set Bkin C for which ξA(Bk) = 0. The measure ξA is said
to be compact if, by definition, its support Λ(ξA) is compact in C. It turns out
that for compact spectral measures, σ(A) = Λ(ξA). That answers our question.

We close this technical discussions with the concept of distribution of observ-
ables.

Let A be an observable, i.e., a self adjoint operator on a Hilbert space H.
Let ρ be a density matrix, i.e., a positive operator on H with unit trace. Let ξ
be the spectral measure of A. Let μ : B(R) → [0, 1] be μ(B) = tr(ρξ(B)). Then
μ(.) is a probability measure, and it is called the “law” or probability distribution
of the observable A, under the state ρ.

The interpretation is this. The distribution of A in the quantum frame-
work is the same as the usual probability distribution of a random variable
on (R,B(R), μ).

Kolmogorov’s theory of probability is a special case of quantum probability:
a commutative theory within an arbitrary (commutative or not) theory: Each
random variable X : (Ω,A , P ) →R is identified with the multiplication by it,
acting on L2(Ω,A , P ), i.e., a special self adjoint operator, where multiplica-
tion operators commute; whereas in quantum uncertainty analysis, observables
are arbitrary self adjoint operators which might not commute. Among other
things, noncommutativity of observables (meaning that they cannot be observed
simultaneously) is characteristic for quantum modeling in applications, such as
finance.

5 Quantum Modeling and Probability Calculus
for Econometrics

Like the attempt of econophysicists to use statistical physics to model and ana-
lyze financial time series, an obvious rationale for using quantum mechanic for-
malisim is in the force driving their fluctuations. Specifically, the Hamiltonian
of a quantum dynamical system (the observable total energy) controls the time
evolution of the system. The Black-Scholes’ equation in option pricing can be
converted into a quantum system with a given Hamiltonian (see, e.g., [1]). It is
about modeling, say, financial time series as quantum dynamical systems to gain
new insights into the behavior of financial markets, for predictions among other
purposes.

The heart of statistical analysis of time series data is models. Usually, having
in mind just one theory of probability, namely Kolmogorov (in fact, one calculus
of probabilities), all models are based on it. In particular, joint or conditional
distributions, and correlations among variables are derived, including the use of
copulas. It is perhaps time to ask “Are we using the right calculus of probabilities
so far in financial data analysis?”. Note that, Kolmogorov probability theory has
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no problem at all in games of chance! “All models are wrong, but some are useful”
(G. Box) has a neat interpretation in quantum mechanics! Schrodinger equation
is just our best guess of how nature behaves (as verified by experiments). But
how to find the “useful models”? Of course, that is the main task of statisticians
using all their statistical tools, such as model fitting on data, cross validation
methods, etc.

Now with the knowledge of quantum mechanics which not only provides us
with a sense of dynamics (what causes the financial data to fluctuate?), but also
a way to conduct uncertainty analysis based on a new calculus of probabilities
(nonadditive and noncommutative), we could reexamine, where appropriate, the
ways to do econometrics so far. For example, in analyzing the factors which affect
the fluctuations of a financial time series, we could discover a Hamiltonian driving
these fluctuations and then examine whether we are in a quantum context. When
it seems to be the case, we have found a “useful” model! A quantum model for a
financial data set. And the familiar follow up tasks involve the use of quantum
probability calculus.
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