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Abstract. This paper presents a skew-t option pricing model. It is con-
structed analogously to the variance gamma option pricing model pro-
posed by [14]. This proposed skew-t model inherits the variance gamma
model’s three parameters and their respective interpretations. In addi-
tion, it also has a fat-tailed, skewed distribution and infinite-activity
(pure jump) stock dynamics, which is achieved through modelling the
length of time intervals as stochastic. This paper has three main insights.
From a theoretical perspective, a result is obtained for the correlation
between the variance gamma model’s logarithm returns and its gamma
stochastic variance. This result holds for the skew-t model as well, which
has reciprocal gamma variance, and it provides a new way to quantify
the leverage effect under each model. The focus then shifts to the numer-
ical procedures required for estimating the skew-t model’s parameters.
Finally, an empirical comparison between the skew-t, variance gamma
and Black-Scholes models is conducted. The discussion links four pieces
of analysis - pricing errors, pricing biases, the higher moments of the
distributions and the market’s implied volatility.

Keywords: Black-Scholes · Mean-variance mixture
Variance gamma · Reciprocal gamma

1 Introduction

For almost twenty years, the variance gamma (VG) option pricing model [14] has
risen to prominence as the pure-jump, skewed and fat-tailed alternative to the
Black-Scholes option pricing model [3]. While the Black-Scholes model assumes
normality on the underlying stock’s logarithm returns, the VG model assumes
them to be skew-VG distributed. In this paper, the VG option pricing model
is referred to as the skew-VG model to remain cognisant of this definition. The
merits of the skew-VG model lie in its enhanced ability to model extreme returns
in the market and to capture shocks around announcement periods. In 2007, it
achieved the milestone of becoming a built-in pricing function on Bloomberg
terminals [4] for traders’ everyday use.

And yet, for most practitioners, students and academics, the most well-known
fat-tailed alternative to the normal distribution is the Student-t distribution. It
might reasonably be expected then that an option pricing model based on a
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skewed t-distribution would also be an available alternative to the skew-VG
option pricing model in the extant literature. This was not found to be the case.

This paper fills the gap in the literature for a skew-t option pricing model that
is comparable to the skew-VG option pricing model. Along side the contribution
of the new, stand alone option pricing model, comes fresh empirical insights
into whether the skew-VG’s documented pricing accuracy improvements over
Black-Scholes is attributable to the option market’s particular preference for the
skew-VG distribution or rather a more generic preference for a skewed, fat-tailed
distribution.

The theoretical conduit for developing the skew-t model has been the skew-t
and skew-VG distributions’ location and scale mixture of normals representation,
as it unveils a striking parallel between the two distributions. Where the skew-
VG uses a gamma mixing density, the skew-t uses a reciprocal (or more commonly
known as inverse) gamma mixing density. It is due to this ability to reduce the two
distributions’ differences to a singular theoretical point, that after switching the
mixing densities, we can use all other techniques implemented by Madan et al. [14]
and the result is an original skew-t model.

The skew-t model inherits all the same properties as the skew-VG model,
including being a pure-jump model, having a time-deformed Geometric Brow-
nian motion interpretation, as well as the skew-VG’s three parameters with
exactly the same interpretation. The skew-VG’s three parameters are the Brow-
nian motion diffusion parameters, σ (which is comparable to Black-Scholes’ sole
parameter of volatility), a skewness parameter, θ, that governs how much the
latent mixing variable impacts the drift, and ν, the variance of the mixing den-
sity, which drives the kurtosis of the mixture distributions.

After the model is specified, this paper has three further sections. The first is
the comparison of the skew-t model to other option pricing models. This paper
offers a quantifiable relationship via moments matching to the skew-VG model
and parameter matching to Heston’s stochastic volatility model [10]. The second
section concerns numerical strategies for estimating the parameters of the skew-
t model using options data, that is under the risk-neutral measure. Gradient-
free algorithms were employed and the surface of the objective function and
convergence are portrayed in this section in preparation for the empirical test
that follows. The third part is an empirical test that examines three years of
data commencing with the Global Financial Crisis. Both a cross-sectional and
time-series treatment of the pricing results are provided, and we investigate the
predictability of the pricing errors to measure model misspecification.

In pursuit of a closed-form solution, the proposed option pricing model is
applicable to European call and put options. The resulting model is semi-analytic
one. For pricing American options using this model we would need to appeal to
simulation methods. Using the S&P500 index as the underlying asset of the data
set, there was no shortage of European options data available. Over three years,
39,667 data points are accounted for, each for puts and calls.
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Section 2 specifies the properties of the skew-t option pricing model. Section 3
covers parameter estimation. Section 4 encompasses the empirical results.
Section 5 concludes this paper.

2 The Skew-t Option Pricing Model

The skew-t option pricing model is the central contribution of this paper. It
has been derived using the same principles as Madan, Carr and Chang’s skew-
VG option pricing model. This section shows the steps used to derive the skew-t
model. Once the model has been defined, we investigate how the proposed model
compares to other option pricing models. In particular we compare it with other
t-distributions, the skew-VG model and Heston’s stochastic volatility model.

2.1 Skew-t Model Specification

In parallel with the skew-VG option pricing model, we disaggregate the deriva-
tion of the skew-t model into three tiers: the distribution of the stationary incre-
ment, the dynamic process for log stock price and the option pricing model.

2.1.1 Step 1: The Skew-t Distribution
The skew-t distribution that we use in this paper is constructed via the nor-
mal mean-variance mixture representation. Introducing the latent scale mixture
variable λ, the probability density function (pdf) of the skew-t distribution with
location μ, scale σ, skewness θ and degrees of freedom ν is given by

f(x) =
∫ ∞

0

N

(
x | μ + θλ, σ2λ

)
RΓ

(
λ

∣∣∣∣α, β

)
dλ (1)

where RΓ is the reciprocal gamma distribution with pdf given by

RΓ
(
λ | α, β

)
=

βα

Γ (α)
λ−(α+1) exp

(
− β

λ

)
, λ, α, β > 0. (2)

The objective of our skew-t option pricing model is to be able to compare it
against the skew-VG option pricing model. As such we select parameters of the
mixing density so that our model’s parameters have the exact same interpreta-
tion as skew-VG’s parameters. We set the mean of the reciprocal gamma density
to be 1 (so that the σ still remains comparable with the Brownian motion diffu-
sion parameter as the standard deviation of log returns over a time unit), and
then we further choose the parameters so that the variance of the time change
density is ν, for ν > 0. Based on the mean and variance for the reciprocal gamma
density, the resulting parameters to use are

For RΓ (α, β) : E[λ] =
β

α − 1
= 1 and V [λ] =

β2

(α − 1)2(α − 2)
= ν.
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The solution is
α =

1
ν

+ 2 and β =
1
ν

+ 1.

Finlay and Seneta [8] also parameterise their skew-t distribution as a normal
mean-variance mixture form with the reciprocal gamma distribution having the
unit mean. In addition, it has the degrees of freedom equal to 2α or 2

ν + 4. In this
paper, the skew-t distribution is reparameterised to have variance equal to ν.

Substituting the parameters into the reciprocal gamma density provided
above, and taking the normal density function, the resulting conditional den-
sity for the proposed skew-t distribution is:

f(x) =
∫ ∞

0

N

(
x | μ + θλ, σ2λ

)
RΓ

(
λ

∣∣∣∣ 1
ν

+ 2,
1
ν

+ 1
)

dλ

=
∫ ∞

0

1√
2πσ2λ

exp
(

− (x − (μ + θλ))2

2σ2λ

)

(1 + ν)(
1
ν +2)λ− 1

ν −3 exp
(−(1+ν)

νλ

)
ν( 1

ν +2)Γ ( 1
ν + 2)

dλ.

(3)

Finlay and Seneta [8] provide the marginal density for the skew-t distribution.
After reparameterising with RΓ ( 1

ν +2, 1
ν +1), we obtain the marginal pdf of the

skew-t distribution as

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Γ ( 1
ν + 5

2 )
√

ν√
2σ2(1+ν)

√
πΓ ( 1

ν +2)

(
1 +
(

(x−μ)
√

ν√
2σ2(1+ν)

)2)−( 1
ν + 5

2 )

, for θ = 0

√
2
π

(1+ν)(
1
ν

+2) exp
(

(x−μ)θ

σ2

)
ν( 1

ν
+2)σΓ ( 1

ν +2)

(
θ2ν

2σ2(1+ν)+(x−μ)2ν

) 1
2 (

1
ν + 5

2 )

, for θ �= 0

K 1
ν + 5

2

(
|θ|

√
2σ2(1+ν)+(x−μ)2ν

σ2
√

ν

)

(4)
where K(·) is a modified Bessel function of the second kind.

2.1.2 Step 2: The Skew-t Process for Log Stock Prices
The second step is to verify whether we can apply the Lévy process theory to
make a continuous, dynamic process out of the skew-t distribution. We saw above
that Lévy processes require the distribution to be infinitely divisible. Since the t-
distribution is a special case of the GH distribution and the GH distribution and
all its special cases are infinitely divisible (Barndorff-Nielsen and Shephard [2]),
we can invoke Lévy process theory here, the sum of independent and identically
distributed increments. Using Xτ to denote the log returns over period, τ , the
skew-t process is defined as follows.

X1 = Cj

Cj ∼ skew-t

Xτ =
τ∑

j=1

Cj .

(5)
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2.1.3 Step 3: Risk-Neutral Pricing and the Skew-t Option Pricing
Model

The third step is to extend the log stock process into an option pricing context
by first fixing the drift μ to enforce the martingale condition. By deriving the
characteristic functions for a normal and a reciprocal gamma distributions, it
can be shown that μ is given by

μ = (r − q) − ln

⎛
⎜⎜⎜⎝

2
(
− 1+ν

ν (θ + σ2

2 )
)( 1

ν
+2)
2

Γ ( 1
ν + 2)

K 1
ν +2

(√
−4

1 + ν

ν
(θ +

σ2

2
)

)
⎞
⎟⎟⎟⎠ . (6)

Since ν > 0, the real drift constraint for the skew-t model is

θ +
σ2

2
< 0. (7)

Moreover, the constraint that σ > 0 forces θ to be negative. However under
the risk-neutral pricing framework, we expect any skewness parameter to be
negative as it corresponds to investors’ risk-averse behaviour anyway. This is
also supported empirically, by the work of Konikov and Madan [13] on the skew-
VG option pricing model for S&P500 index options (which is the data used in
this paper), all estimates for θ were negative.

The final step is to provide the option pricing model itself. The t-distribution
is not closed in convolution density and so we use the semi-analytic option pric-
ing model from Carr and Madan [5]. Now the skew-t option pricing model is
presented as follows.

C0 = eqτS0Π1 − e−rτXΠ2

P0 = e−rτX(1 − Π2) − eqτS0(1 − Π1)

Π1 =
1
2

+
1
π

∫ ∞

0

Re

(
e−iuxφsτ

(u − i)
iuφsτ

(−i)

)
du

Π2 =
1
2

+
1
π

∫ ∞

0

Re

(
e−iuxφsτ

(u)
iu

)
du

φsτ
(u) = Characteristic function of the log stock price at time, τ

(8)

For skew-t 2
ν +4:

φsτ
(u){T} = eiu(s0+μτ)

⎡
⎢⎢⎢⎣

2
(
− 1+ν

ν

(
iuθ − σ2u2

2

)) 1
ν

+2
2

Γ
(
1
ν + 2

) K 1
ν +2

(√
−4

1 + ν

ν

(
iuθ − σ2u2

2

))
⎤
⎥⎥⎥⎦

τ

(9)

where X is the strike price not the log returns, C0 is the current call price,
P0 is the current put price, the relationship between the call and put price is
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defined by Put-Call parity. τ is the time to maturity in years, r is the annual
risk-free rate of return, q is the annual dividend yield, Π1 and Π2 are risk-neutral
probabilities, sτ = lnSτ , the log of the spot price, x = lnX, the log of the strike
price and i =

√−1. μ is the martingale corrected mean given in equation (6).
The degrees of freedom is 2

ν + 4. σ > 0, ν > 0, and θ + σ2

2 < 0.

2.1.4 The Skew-t, Skew-VG and Comparison with Heston’s
Stochastic Volatility Model

From the literature review, we saw that an unresolved rivalry exists between the
skew-VG and Heston’s models (Kim and Kim [12]). It is interesting therefore to
directly compare these two models and the new skew-t model theoretically. This
section provides new insights into how we can match the parameters of Heston’s
model with skew-VG and skew-t.

Under Heston’s model [10], we model the log returns to be normally dis-
tributed with a fixed drift but a stochastic variance. The pair of formulas is
provided below. That variance process, Vt, is mean-reverting by rate, κ, to the
long run mean variance, μV , and with a Gaussian innovation term and volatility
of stochastic variance parameter, σ.

As a result of the time varying variance, the initial V0 becomes another
parameter to estimate for Heston’s model. It then has a fifth parameter for
the correlation between its two processes, the log returns process and variance
process to be estimated through ρ. In the expression below, log returns are
denoted with Xt (τ notation is done away with in this section as it was used
previously to be consistent with the option time to maturity, τ but the insights
offered here are on a stock dynamics level).

Heston’s model: Xt = μ +
√

Vtz
(1)
t

Vt = Vt−1 + κ(μV − Vt−1) + σ
√

Vt−1z
(2)
t

z
(1)
t ∼ N(0, 1), z

(2)
t ∼ N(0, 1)

(10)

For the skew-VG and skew-t models, through the random time change inter-
pretation to the mixing variable, λ, the interpretation described so far has been
that log returns are distributed normally, with fixed mean and variance, condi-
tional upon a random length of the time increment. Another way to interpret
this is that, modelling the process over fixed time intervals, the mean and the
variance of the log returns are changing each period, as controlled by the λ. The
interpretation of changing drift and variance for skew-VG and skew-t is more
conducive to comparison with Heston’s model.

We can subscript λ as λt without loss of generality, where it can be interpreted
as the latent variable’s disturbance to the average drift (μ + θ) and variance (σ2) of
the skew-VG process. The result is that, where Heston’s model has two processes,
the log returns and stochastic variance, the skew-VG and skew-t both have three
processes, with the addition of stochastic behaviour in the drift (rt = μ + θλt).
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The skew-VG and skew-t model can be written in terms of the three processes as
such:

Xt = μ + θλt + σ
√

λtzt

rt = μ + θλt

Vt = σ2λt

zt ∼ N(0, 1)
λt ∼ Reciprocal gamma for skew-t,

Gamma for skew-VG, mean = 1 and variance = ν

(11)

Table 1 provides a side-by-side comparison between Heston and the skew-t
(and VG) models. It also expresses the processes as distributions to aid further
comparison of the means and variances. This analysis reveals to us a close-knit
relationship between the skew-t (and VG) and Heston models. Specifically, we
are able to retrieve the skew-t (VG) model from Heston’s model by:

1. Setting Heston’s mean reversion parameter, κ = 0, such that the expected
variance is constant over time. Under Heston’s model, as a result, μV = V0,
the long run mean variance is the same as the initial variance,

2. Instead of the stochastic variance following a normal distribution, we ascribe
it a gamma distribution,

3. We then introduce a stochastic component to the drift of the returns process
which is driven by the same gamma innovation in the stochastic variance
process from (2) and scaled by a parameter, θ,

4. We do not directly estimate the correlation ρ between the log returns and
variance process.

In net, the VG process sets a restriction on two of Heston’s give parameters,
κ = 0 and V0 = μV , does not estimate another of its parameters, the correlation,
ρ and introduces its own drift skewness parameter, θ, to come to its total of
three parameters. κ = 0 for skew-t and skew-VG means that the models will
likely perform poorly during times of volatility clustering such as crisis periods.

Two further remarks on the comparison—Heston’s stochastic variance is nor-
mally distributed and so requires a further condition to make it positive, but the
skew-t (VG)’s stochastic variance will always be positive as it is driven by non-
negative distributions, the gamma or reciprocal gamma. Indeed this would be
the case for any time subordinator model (time cannot be negative). Another
note, is that Heston’s σ is comparable to skew-t (VG)’s ν in that they both drive
the volatility of the stochastic variance, and in turn kurtosis.

From this section, the similarities that have been formalised between the
skew-t (VG) and Heston model shed light on why there is the rivalry between
the skew-VG and Heston model in the literature to date—both models have
stochastic variance processes and can model the leverage effect. The deficiency
however of the skew-VG and skew-t model is that restricts Heston’s κ = 0.
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Table 1. Comparison between Heston’s model and the skew-t and skew-VG models.
Conditional drifts and variances are shown.

3 Parameter Estimation Procedures

This section discusses how the parameters of the option pricing models were
calibrated. It has two focuses. First, I formulate the optimisation problem and
then test the calibration methods on a simulated data set without noise and
then with noise introduced. The purpose of this section is to verify that we are
able to recover estimates close to the true parameter values in preparation for
the empirical section that follows.
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3.1 Formulating the Optimisation Problem

3.1.1 The Objective Function
The objective function is the root mean square percentage pricing errors
(RMSPE), where the percentage errors are found through taking the log dif-
ference. This was used by Madan et al. [14], the percentage errors used due to
the range of call prices across different strikes and maturities. The authors also
give the result that the optimisation problem is asymptotically equivalent to the
maximum likelihood method.

The minimisation of square percentage errors has since been adopted in other
empirical tests on the skew-VG model (see Kim and Kim [12] where instead
of using log difference for percentage errors, a discrete percentage error mea-
sure was used, ([C − C∗]/C) where C∗ is the call price estimated by the model
and C is the observed call price. In this paper, with the chosen optimisation
algorithm, outlined below, it was found that the log-difference aided the calibra-
tion compared to using the discrete measure from Kim and Kim [12]. As such
the objective function used in this paper, from Madan, Carr and Chang (their
Equation (30)) is:

Objective function =

√√√√ 1
n

n∑
i=1

(ln(C∗) ln(C))2. (12)

where n is the number of call prices, and ln is the natural logarithm.

3.1.2 Constraints
We impose the positivity constraints on the Black-Scholes σ and the skew-VG
and skew-t’s, ν and σ through log transformations. For the constraints required
to ensure that the drift, μ is real in the skew-VG and skew-t model, we use
a penalty function that adds an arbitrarily large quantity to the minimisation
objective value in the case of violation.

Recalling from above these constraints, for skew-VG: ν
(
θ + σ2

2

)
< 1 and

for skew-t: θ + σ2

2 < 0, skew-t’s θ is restricted to negative values but skew-
VG’s θ is not. For our optimisation, this restricted domain on skew-t’s θ was an
advantage for obtaining more accurate estimates compared to the skew-VG. It
was therefore decided that a negativity constraint would be imposed on skew-
VG’s θ as well. This firstly, makes for a fairer competition between the models
but also is theoretically sound based on the arguments raised above, namely
investors’ risk-aversion and previous empirical studies on the skew-VG model
estimating all negative θs.

To ensure the negativity of skew-VG and skew-t’s θs, where we directly esti-
mate the − log(θ) and retrieve θ through taking the exponential and then nega-
tive of that value. Together, the log transformations and penalty functions allow
us to then use an unconstrained optimisation procedure.
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3.1.3 The Optimisation Algorithm
The optimisation algorithm used is the Nelder-mead simplex algorithm,
instructed by Matlab’s fminsearch function. fminsearch is Matlab’s uncon-
strained, non-linear optimiser where a simplex (a 2-dimensional line for the
Black-Scholes with only one parameter and tetrahedron (a simplex with 3 + 1
faces) for the skew-VG and skew-t models each with three parameters) descends
the surface of the objective function. At each step, the simplex can be reflected,
expanded, contracted or shrunk. Its changing step size makes it a preferred
algorithm for noisy objectives, such as that for the option pricing models with
numerical integration (Gilli and Schumann [9]).

In other papers on the calibration of such option pricing models using Matlab,
the lsqnonlin function (non-linear least squares) has also been implemented
(Moodley [15]). However lsqnonlin, fminunc and fmincon performed poorly on
calibrating our models. It was observed that the global optimiser, patternsearch,
could recover the true parameter values as well as fminsearch, but it took an
unworkable about of time. fminsearch on the other hand took only eight hours
to estimate the parameters for all 161 weeks (close to 40,000 prices) using parallel
computing and four workers.

3.1.4 Initial Values, Stopping Criterion and Convergence
The initial values were set based on the average parameter values estimated in
Madan, Carr and Chang’s empirical testing of the skew-VG model [14]. The
initial values for the skew-VG and skew-t model were selected to be the same.
Respectively, for θ, ν and σ, they are −0.2, 0.2 and 0.15. For Black-Scholes the
initial value for σ is 0.2, set higher than the initial σ in the other two models
because it does not have the availability of the extra parameters to further
increase the variance of the distribution.

There are two operative stopping criteria in our algorithm. The first is a
minimum tolerance on gains made on the objective value, 1e−04, and the second
is a minimum tolerance on movement in the variables, 1e−04. These criteria are
adequate to reach objective values that are small enough to allow us to observe
convergence in the parameters estimated in the empirical study.

3.1.5 Obtaining Standard Errors
We encountered the issue that, unlike the gradient-based optimisation functions
in Matlab, the fminsearch function does not output the Jacobian or Hessian
from which we can calculate the standard errors. In their calibration study, Gilli
and Schumann [9] did not provide standard errors.

Calculating the standard errors required first obtaining the Jacobian matrix
(n × p, where p is the number of parameters), which was found through eval-
uating the slope of the objective function for each individual call price and for
each parameter. The interval over which the slope was evaluated was set to
a small value, 1e−03. Then it was also required that we convert the standard
errors obtained on the log-transformed parameters to the standard errors for the
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parameters in their original form, the exponential of the log-transformed param-
eters. To so this, we invoked the Delta method and so multiplied the standard
errors by the absolute value of the first derivative of the exponential (or negative
exponential for θ) function of the log-parameters.

4 Empirical Study

We cast the following empirical hypotheses. Given how different the skew-VG
and skew-t distributions are with the same parameter values, it is likely that
in their attempt to fit a mutual distribution they will return rather differing
parameter estimates. Another empirical observation we are likely to see is that
during times of volatility clustering or financial crisis, the skew-VG and skew-t
may perform worst.

It should be noted that one of the key advantages of focusing on the com-
parison between two models with the same number of parameters is that no
advantage is given to one of them in in-sample fitting. Black-Scholes however,
with only one parameter will be at a disadvantage for the in-sample fitting,
which along with the practicality of being interested forecasting prices, is the
motivation for conducting out-of-sample tests as well.

This empirical section is based on the methodology employed by Bakshi et al.
[1] for comparing option pricing models based on two main criteria: minimising
pricing error and minimising the predictability of the pricing errors by money-
ness (strike:spot ratio) and maturity. Subsequent empirical tests such as Madan
et al. [14], Kim and Kim [12] and Eberlein et al. [6] use similar test designs.
Unlike the aforementioned tests, this paper has a distributional focus and pro-
vides additional analysis of the higher moments, tail-fitting and quantile plots.

4.1 The Data

The data used are the daily prices of European call and put options on the
S&P500 index. In order to cull highly illiquid options data we restrict the data to
options with moneyness between 0.97 and 1.03 and maturities between 1 month
away and 1 year away (Kim and Kim [12]). All option data was obtained from
Option Metrics. The risk-free rate is the rate of return on a one month US
treasury bill and the dividend is that on the S&P500 index.

In order to account for frequently changing parameter values over time, the
training period was only one week long. The size of the data available caters
for the use of short training samples. There are 245 data points per week on
average. For out-of-sample we tested the model on the data one day out of the
sample.

Table 2 summarises the data used. There are 39,667 data points each for calls
and puts, spanning 162 weeks (1 to 161 for training and 2 to 162 for testing)
starting on the 23 February 2009. It was desired that the three years encompassed
bust, boom and quiet periods but otherwise the particular start date for the
sample is arbitrary. This period captures part of the GFC, the Euro-debt crisis,
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Table 2. Sample properties of the S&P500 Index European call options and put option
in parenthesis. Categorisation is in terms of moneyness (strike to spot price ratio) and
time to maturity. Dates span from 23 February 2009 29 March 2012, 162 weeks (161
training samples).

Call (Put) Time to maturity {Sample size}
Moneyness <3 months 3–6 months >6 months Subtotal

In (Out of)
0.97–0.99

$50.68 ($30.59)
{7226}

$68.60 ($52.15)
{3197}

$96.65 ($88.12)
{2684}

$64.47 ($47.63)
{13107}

At
0.99–1.01

$36.00 ($39.48)
{7340}

$54.59 ($61.52)
{3300}

$82.92 ($97.70)
{2760}

$50.24 ($56.90)
{13400}

Out of (In)
1.01–1.03

$24.04 ($51.08)
{7344}

$41.98 ($72.42)
{3314}

$71.02 ($109.40)
{2502}

$37.49 ($67.54)
{13160}

Subtotal $36.83 ($40.44)
{21910}

$54.90 ($62.15)
{9811}

$83.81 ($98.15)
{7946}

$50.71 ($57.37)
{39667}

Number of weeks 162

Average number of data points in a training period (a week) 245

the US debt-ceiling crisis and some recovery periods in between. As expected,
we can see that for calls, the price of the options increases with the time left
until maturity and the deeper the option is in-the-money.

Table 2 is also useful for highlighting how differing the option prices are within
our data set. The range on the averages for each category is from $36.83 to
$96.65. This motivates the use of percentage pricing errors rather than pricing
errors in dollar terms. The main body of this paper therefore will only include the
percentage pricing errors (mean, mean absolute and root mean square percentage
errors).

4.2 Empirical Parameter Estimation and In-Sample Fitting

There are a few notes to make regarding the summary of parameters given in
Table 3. The skew-VG and skew-t use different parameter values to fit a common
distribution. For θ, on average, the skew-VG will fit a more negative skewness
parameter than skew-t and in turn, skew-t appears to model a higher σ over
skew-VG. For ν, looking just at the average value estimated, there is not much
between the two models, skew-VG at 0.234 and skew-t at 0.238. In the context of
the skew-t distribution, this is on average 12.4 degrees of freedom (d.f. = 2

ν + 4
from above).

Although the average ν’s are similar, it is noticeable that skew-t’s maximum
value for ν is extremely high. Specifically we observed four kurtoses for skew-t
that exceeded 10 (11.06, 40.30, 324.67 and 733.52). This means that the distribu-
tion has very fat tails and is very peaked at these points. Theoretically, the kur-
tosis is able to be infinite. While the skew-t can have very large values for ν, we
notice that that the skew-VG can take on very large (negative) values of θ, −2.781.
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Table 3. The parameters of the risk-neutral densities of log annual S&P500 Index
returns based on the Black-Scholes option pricing model, skew-VG and skew-t option
pricing models. There are 161 training samples. Standard errors have been omitted for
neatness and because, just as was seen in the simulation, they were generally close to
zero. The objective function is the root mean square percentage pricing error (RMSPE).
Results are for calls. Puts results were similar and so are not provided to save space.

Model BSM Skew VG Skew t

Parameter σ θ ν σ θ ν σ

Mean 0.220 −0.397 0.234 0.206 −0.174 0.238 0.239

Standard deviation 0.059 0.463 0.143 0.072 0.067 0.587 0.058

Minimum 0.134 −2.781 0.000 0.025 −0.697 0.025 0.152

Maximum 0.412 0.000 0.558 0.412 −0.064 5.520 0.434

Optimised objective value 0.114 0.0547 0.0695

This is further evidence of differing behaviour across skew-VG and skew-t when
it comes to data fitting. (By way of reference for the values on skew-VG’s θ, given
the length of our sample (161 weeks) our estimates seem reasonable compared
to previous empirical tests. Konikov and Madan’s ([13] empirical fitting of the
skew-VG model to S&P500 data using only five training periods had a minimum
θ = −1.789).

The objective value (root mean square percentage pricing error) is used as
an yardstick for in-sample fitting (Bakshi et al. [1]). On average, we can see that
the skew-VG achieved the best fit of 5.47%, skew-t of 6.95% and both are vast
improvements on Black-Scholes at 11.39%.

4.2.1 Moments of the Fitted Distributions
Following on from the parameter values, the moments for underlying log stock
returns distribution are next provided (Table 4). For Black-Scholes, the variance
is just the square of the σ parameter. For skew-VG and skew-t, all three param-
eters contribute to all three of the moments, that is, it is not the case that the
skewness is solely determined by, but increases in magnitude with, the skewness
parameter, θ for example. The moments were obtained through simulating the
distributions based on the parameter values (1,000,000 simulations) instead of
relying on the closed-form expressions for the moments as they cannot be used
around ν = 0.5 or 1 for the skew-t model.

As we would expect from the larger θ for skew-VG, on average the distribution
fit under the skew-VG model has greater skewness (−0.596) compared to the
skew-t (−0.494). Due to the outlying kurtoses (such as the two > 300), we also
provide the median kurtosis (in addition to the mean kurtosis). It is interesting to
note that while the skew-t’s maximum value for ν and largest kurtosis estimated
is a lot higher than for skew-VG, the median kurtosis fit by the skew-t is lower
than the median kurtosis for the skew-VG. This suggests that the skew-VG’s
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Table 4. The average moments for the underlying log returns distributions for calls.
Puts were similar and so not displayed in the interest of space.

Model BSM Skew-VG Skew-t

Mean −0.047 −0.054 −0.053

Variance 0.052 0.068 0.066

Skewness 0 −0.596 −0.494

Kurtosis 3 3.989 10.778

Median kurtosis 3 3.930 3.898

parameter values together, very likely driven by its higher θ, are overall fitting
just as fat-tailed distributions as the skew-t.

4.3 Out-of-Sample Pricing Performance

This section presents three different perspectives on pricing performance. The
first is cross-sectionally, that is how to the different models perform for options of
varying moneyness ratios and maturities, second time-series analysis is provided
and a comparison made between above average market volatility levels and below
average. Third, we return to a more in depth understanding of the moments
under high and low volatility to understand how the two distributions respond
to the different financial climates.

4.3.1 Cross-Sectional Analysis and Tail-Fitting
In relation to Table 5, as a measure of overall fit, we can compare the root mean
squared percentage errors (RMSPE) for all option types (bottom right corner of
table), to those in the in-sample fitting. It appears that the out-of-sample fitting
(7.39%, 4.10% and 4.86% for Black-Scholes, skew-VG and skew-t) is better than
the in-sample fitting (11.39%, 5.47% and 6.95% respectively). However, this is
a misleading comparison since the out-of-sample fit is on data only for one day
(49 data points on average), where as the in-sampling fitting tried to fit one set
of parameters to a whole week of data (245 data points on average). The results
would therefore, instead, show signs of the variation that exists within a week.

Turning to the cross-sectional analysis and MPEs, (log predicted - log
observed). Across moneyness, all models overprice OTM calls and underprice
ITM calls. Black-Scholes has the greatest error differential between the money-
ness categories and skew-VG has the least. Across maturities, the MPEs indicate
a lower average error for short-term contracts compared to long-term, but check-
ing the MAPE and RSMPE, we can see that the short term contracts (less than
3 months) actually have the highest absolute and root squared errors, especially
OTM calls. We can also note that while for Black-Scholes the most accurately
priced maturities are mid-term (3–6 months), for skew-VG and skew-t, the fit is
best in the long-term contracts (6–12 months).
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Table 5. 1 day out-of-sample percentage pricing errors using a week long training
period and parameters estimated on option data for all maturities and moneyness
(strike to spot price) levels. The percentage error is found by taking the log difference.
A corresponding table of results for non-percentage errors is provided in the appendix.
161 training samples.

Calls Months to maturity

<3 3–6 >6 All

Strike/Spot A. Mean percentage errors (%)

Black-Scholes ITM 0.97–0.99 −1.51 −4.62 −7.71 −3.53

ATM 0.99–1.01 1.99 −3.00 −7.10 −1.12

OTM 1.01–1.03 8.45 −0.18 −5.87 3.61

All 2.99 −2.59 −7.00 −0.44

Skew-VG ITM 0.97–0.99 0.97 −0.25 −1.73 0.12

ATM 0.99–1.01 0.82 0.54 −0.88 0.38

OTM 1.01–1.03 1.01 1.72 0.27 1.11

All 0.92 0.68 −0.82 0.50

Skew-t ITM 0.97–0.99 −1.33 −1.03 −2.42 −1.46

ATM 0.99–1.01 −1.40 0.64 −1.22 −0.89

OTM 1.01–1.03 2.92 3.62 0.51 2.68

All 0.07 1.08 −1.10 0.07

Strike/Spot B. Mean absolute percentage errors (%)

Black-Scholes ITM 0.97–0.99 3.16 4.95 8.03 4.56

ATM 0.99–1.01 4.83 4.20 7.72 5.23

OTM 1.01–1.03 10.19 4.20 7.05 8.03

All 6.07 4.42 7.69 5.92

Skew-VG ITM 0.97–0.99 3.19 2.22 2.51 2.78

ATM 0.99–1.01 3.97 2.80 2.50 3.36

OTM 1.01–1.03 5.54 3.75 2.73 4.55

All 4.22 2.92 2.59 3.53

Skew-t ITM 0.97–0.99 2.89 2.43 3.26 2.81

ATM 0.99–1.01 4.26 2.99 2.86 3.63

OTM 1.01–1.03 6.64 4.99 2.92 5.51

All 4.59 3.46 3.06 3.95

Strike/Spot C. Root mean squared percentage errors (%)

Black-Scholes ITM 0.97–0.99 3.42 5.06 8.08 5.33

ATM 0.99–1.01 5.39 4.40 7.78 6.14

OTM 1.01–1.03 11.15 4.53 7.16 9.47

All 7.73 4.87 7.85 7.39

Skew-VG ITM 0.97–0.99 3.27 2.30 2.57 3.08

ATM 0.99–1.01 4.15 2.86 2.57 3.68

OTM 1.01–1.03 6.03 3.83 2.81 5.15

All 4.72 3.16 2.80 4.10

Skew-t ITM 0.97–0.99 3.07 2.50 3.33 3.11

ATM 0.99–1.01 4.68 3.09 2.98 4.16

OTM 1.01–1.03 7.25 5.18 3.07 6.26

All 5.55 4.02 3.34 4.86
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There is one category where skew-t offers the best model by MAPE and
RSMPE: in-the-money, short-term. However, this is not a compelling result,
rather it seems an anomaly cross-sectionally. Indeed for puts - skew-VG is supe-
rior in all categories. Further, it is the OTM rather than the ITM options fit-
ting that yields the most direct interpretation. Due to the limited downside for
options, their pricing performance only reveals information about the fit of the
stock price distribution to the right (left) of the strike price for calls (puts).
Therefore, in-the-money options show more of a general fitting of the distribu-
tion (all but one tail), where as OTM options carry only the tail information.
Table 6 gives the results for OTM puts and OTM calls to compare the left and
right tail fitting of the skew-VG and skew-t distributions.

Table 6. Relative fit of the tails by the skew-VG and skew-t distributions

Left tail fitting of the stock price
distribution (Reflects the
probability that the spot price will
fall below a strike price that is less
than 99% of the current spot price)

Right tail fitting of the stock price
distribution (Reflects the probability
that the spot price will rise above a
strike price that is more than 101%
of the current spot price)

Out-of-the-money puts Out-of-the-money calls

Mean absolute percentage error

Skew-VG 3.62% 4.55%

Skew-t 3.77% 5.51%

Root mean square percentage error

Skew-VG 4.06% 5.15%

Skew-t 4.27% 6.26%

From the out-of-the-money options fitting, it is evident that both models fit
the left tail of the stock price distribution better than the right tail and that
the skew-t’s performance is more competitive with skew-VG’s performance in
the left tail fitting as well (0.15% greater MAPE for OTM puts, where as 0.96%
greater MAPE for OTM calls).

We hypothesised in Sect. 2.1.4 that during crisis periods, the skew-t and skew-
VG models would perform the worst. Based on the instances when neither the
skew-VG or skew-t are able to improve upon the Black-Scholes model, these
indeed occur when the volatility is at its highest. Particularly, these periods are
at the start of our sample, 23 February 2009 during the Global Financial Crisis,
and from the 25th July 2011, coinciding with the US debt-ceiling crisis. It is
found that 4% of the time (161 weeks), neither the skew-VG or the skew-t could
improve upon Black-Scholes. Outside this 4%, we are interested in the specific
comparison between skew-t and skew-VG. Overall, the skew-VG outperforms
skew-t more often than not and this is consistent with the cross-sectional results.
The break-down between the percentage of times the skew-VG versus the skew-t
outperforms is shown in Table 7.
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Table 7. The percentage of weeks each model is the best performer across low versus
high volatility for call options. The data sample begins on the 23 February 2009 (during
the Global Financial Crisis) to 29 March 2012

Superior model Skew-VG Skew-t Black-Scholes Total

All levels of volatility 65% 30% 4% 161

Above average volatility 57% 34% 9% 70

Below average volatility 71% 27% 1% 91

To conclude on the pricing analysis for calls, we see that the skew-VG out-
performs skew-t in almost all cross-sectional categories when the results are
averaged across time. But to look at the results from a time-series perspective,
it is apparent that while in below average volatility, the skew-VG is the supe-
rior model, in above average volatility we observe skew-t’s performance becomes
more competitive with the skew-VGs.

5 Conclusion

The resounding conclusion is that without any information about the market
volatility, the skew-VG option pricing model is more likely to outperform the
skew-t than otherwise. However, if we use the S&P500 volatility index (VIX) or
Black-Scholes implied volatility, then under more volatile conditions, the skew-
VG’s performance starts to deteriorate and the skew-t model becomes more
competitive with the skew-VG. A core contribution of this paper has therefore
been that, for the skew-VG, we now have evidence that its superior performance
in past empirical studies showed a more powerful result than merely the option
market’s preference for a fat-tailed, skewed distribution and/or infinite activity,
pure jump model. Now that we can compare it against another model that bears
all these traits as well, (and with the same few number of parameters,) we can
confirm that empirically the skew-VG distribution performs well due to some
its idiosyncracies that distinguish it from the skew-t. Considering the variability
in the relatively performance of the skew-VG and skew-t models, a generalised
model which nests both as special cases, enables pricing fitting and predicting
that is at least as good as the superior model of the skew-VG or skew-t. Such a
generalised model is proposed in Yeap et al. [7], and assumes the underlying log
return distribution is generalised hyperbolic.

The final model that we gained deeper insight into, only in the theory section,
was Heston’s Stochastic Volatility model. The five parameters of Heston’s model
were matched to skew-VG and skew-t who each only have three. The result was
that we can obtain the symmetric VG and symmetric t from Heston’s model
through setting the rate of mean reversion, κ, to 0, and by having a gamma
stochastic variance process rather than normal. This paper also provided the skew-
t and skew-VG models’ equivalent values for Heston’s correlation coefficient, ρ,
such that the leverage effect can now be quantified within their framework as well.
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Further research would be aimed at conducting empirical tests between the
skew-t and skew-VG with models that can model time-dependency. This paper
nominated three such models: Heston’s model, Heyde and Gay’s dependent t-
option pricing model [11] and a two-state Markov model such as Konikov and
Madan’s [13]. The motivations for these extensions were discussed as each arose.
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