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Abstract. This paper presents new confidence intervals for the common
mean of lognormal distributions by transforming the lognormal data.
Three approaches were based on generalized confidence intervals (GCI)
and adjusted method of variance estimates recovery (adjusted MOVER).
A Monte Carlo simulation was used to assess the coverage probability and
average length. The simulation study found that the adjusted MOVER
approach based on Angus’s conservative method (AM2) is appropriate
and had the smallest coverage error in all of the scenarios. The general-
ized confidence interval approach (GCI) had the second smallest coverage
error and had the smallest average lengths among the three approaches
when the coverage probabilities were close to nominal level 0.95. Real
data examples illustrate this approach.

1 Introduction

One of the important right skewed distributions with a long tail is lognormal dis-
tribution. It is widely used in many fields, such as environmental study, survival
analysis, biostatistics and other statistical fields. The lognormal distribution has
closely resembled a normal distribution. Simple to implement and easy to under-
stand, by taking the natural logarithm of a random variable, the random variable
will have a normal distribution.

Interval estimation of lognormal means for one, two and several populations
have received widespread attention in papers of science and statistical literature.
Statistical methods for interval estimation involving common mean for several
lognormal distributions have also appeared frequently in many journals, such
as biometrical journal by Tian and Wu [1] defined the concept of generalized
variable and the large sample criteria to provide approach for the confidence
interval estimation and hypothesis testing of the common mean of several log-
normal populations. Lin and Wang [2] in a journal of applied statistics focused
on making inferences on several log-normal means based on the modification of
the quadratic method. There are also many other journals such as journal of sta-
tistical research by Ahmed et al. [3], journal of probability and statistical science
by Baklizi and Ebrahem [4] and measurement science review by Cimermanová
[5] interested in construction of the confidence intervals for common mean of
several lognormal distributions.
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In this paper, the interest is to construct confidence intervals for common
mean of lognormal distributions. A simple approach to construct the confidence
intervals for lognormal mean by transform the lognormal data would be to log-
transfer data prior to analyzing statistical. There have been several researchers
used the log-transformed data to construct confidence intervals for mean of log-
normal distribution. For example, the paper by Krishnamoorthy and Mathew
[6] and Olsson [7]. It seems evident that the results for interval estimation of
the common mean of several lognormal populations by taking the natural log-
arithm have not been studied. Furthermore, there has not been much discus-
sion on methods for interval estimation of common lognormal means by tak-
ing the natural logarithm of data. Therefore, researchers have proposed new
simple approaches to construct the confidence intervals for the common lognor-
mal mean. The first approach is generalized confidence intervals (GCI) which is
based on the concepts of generalized confidence interval and was introduced by
Weerahandi [8]. The second and the third approaches are adjusted method of
variance estimates recovery approach (adjusted MOVER) based on cox’s method
(AM1) and Angus’s conservative method (AM2) which are based on the con-
cepts of the method of variance of estimates recovery (MOVER) introduced
by Zou and Donner [9]. The GCI approach, the MOVER approach and the
adjusted MOVER approach have been successfully used to construct the confi-
dence interval for many common parameters. As reviewed in Tian [10], Tian and
Wu [1], Krishnamoorthy and Lu [11], Ye et al. [12], Donner and Zou [13], Suwan
and Niwitpong [14], Li et al. [15], Wongkhao [16] and Thangjai and Niwitpong
[17]. Therefore, the focus is to develop interval estimation procedures with three
approaches for the common mean of lognormal distributions and then compare
them to each of the situation in terms of coverage probability and average length.

This paper is organized as follows. The properties of lognormal distribution
and the parameter of interest will be briefly introduced in Sect. 2. The three
approaches developed and descriptions of computational procedures are pre-
sented in Sect. 3. Section 4 presents simulation results to evaluate performances
of the three approaches on coverage probabilities and average lengths. Section 5
illustrates the proposed approaches with real examples. Finally, conclusions are
given in Sect. 6.

2 Lognormal Distribution and the Parameter of Interest

Let Y1, Y2, ..., Yn be a random variable having lognormal distribution with two
parameters. This means that the log-transformed variables X1 = log Y1,X2 =
log Y2, ...,Xn = log Yn are normally distributed, that has mean value E (X) = μ

and variance var (X) = σ2. The mean of Y is E (Y ) = exp
(
μ + σ2

2

)
, by taking

the natural logarithm of a random variable we get log (E (Y )) = μ + σ2

2 .
According to Olsson [7], An estimator of log (E (Y )) can be calculated from

sample data as log
(
E(Ŷ )

)
= X + S2

2 and an estimator of the variance of

log
(
E(Ŷ )

)
is given by var

[
log

(
E(Ŷ )

)]
= S2

2 + S4

2(n−1) .
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Consider k independent lognormal populations with a common mean α.
Let Yi1, Yi2, ..., Yini

be a random sample from the i-th lognormal population
as follows:

Xij = log Yij ∼ (
μi, σ

2
i

)
, for i = 1, 2, ..., k, j = 1, 2, ..., ni.

Thus, the common mean is α = exp
(
μi + σ2

i

2

)
, log α =

(
μi + σ2

i

2

)
.

3 The Approaches of Confidence Interval Estimation

3.1 The Generalized Confidence Interval Approach

Weerahandi [8] introduced the concept of generalized confidence intervals (GCI)
which is based on the generalized pivotal quantity (GPQ) for a parameter
of interest θ and ν is a vector of nuisance parameters. A generalized pivot
R (X,x, θ, ν) for interval estimation, where x is an observed value of X, as a
random variable having the following two properties:

1. R (X,x, θ, ν) has a distribution free of the vector of nuisance parameters ν.
2. The value of R (X,x, θ, ν) is θ.

Let Rα be the 100α-th percentile of R. Then Rα becomes the 100 (1 − α)%
lower bound for θ and

(
Rα/2, R1−α/2

)
becomes a 100 (1 − α)% two-side gener-

alized confidence interval for θ.
Consider k independent lognormal populations with a common mean α.
Thus, we have α = exp

(
μi + σ2

i

2

)
.

The common log-mean, θ = log α =
(
μi + σ2

i

2

)
.

Let Xi and S2
i denote the sample mean and variance for data Xij for the

i-th sample and let xi and s2i denote the observed sample mean and variance
respectively.

Thus σ2
i = (ni−1)S2

i

Vi
where Vi ∼ χ2

ni−1.
where Vi is χ2 variates with degrees of freedom and ni−1, we have the generalized
pivot

Rσ2
i

=
(ni − 1) s2i

Vi
∼ (ni − 1) s2i

χ2
ni−1

. (1)

The generalized pivotal quantity to estimate μi based on the i-th sample can be
defined as

Rμi
= xi − Zi√

Ui

√
(ni − 1)s2i

ni
, (2)

where Zi and Ui denote standard normal variate and χ2 variate with degree of
freedom ni − 1 respectively.

The generalized pivotal quantity for estimating θ based on the i-th sample is

R
(i)
θ = Rμi

+
Rσ2

i

2
. (3)
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From the i-th sample, the maximum likelihood estimator of θ is

θ̂(i) = μ̂i +
σ̂2

i

2
, where μ̂i = Xi, σ̂

2
i = S2

i . (4)

The variance for θ̂(i) is

var
(
θ̂(i)

)
=

σ2
i

ni
+

σ4
i

2(ni − 1)
, see Olsson [7]. (5)

According to Ye et al. [12], the generalized pivotal quantity proposed for the
common log-mean θ = log α is a weighted average of the generalized pivot R

(i)
θ

based on k individual samples defined as

Rθ =

k∑
i=1

RwR
(i)
θ

k∑
i=1

Rwi

, (6)

where
Rwi

=
1

Rvar(̂θ(i))
, (7)

Rvar(θ̂(i)) =
Rσ2

i

ni
+

Rσ4
i

2(ni − 1)
. (8)

That is, Rvar(̂θ(i)) is var
(
θ̂(i)

)
with σ2

i replaced by Rσ2
i
.[

LGci, UGci

]
=

(
Rα/2, R1−α/2

)
is the 100 (1 − α)% two-side generalized con-

fidence interval of the common log-mean θ = log α.[
exp (LGci) , exp (UGci)

]
=

(
exp

(
Rα/2

)
, exp

(
R1−α/2

))
is the 100 (1 − α)%

two-side generalized confidence interval of the common mean θ.

Computing algorithms
For a given data set Xij for i = 1, 2, ..., k, j = 1, 2, ..., ni, the generalized

confidence intervals for θ can be computed by the following steps.

1. Compute xi and s2i for i = 1, 2, ..., k.
2. Generate Vi ∼ χ2

ni−1 and then calculate Rσ2
i

from (1) for i = 1, 2, ..., k.
4. Generate Zi ∼ N(0, 1) and Ui ∼ χ2

ni−1 then calculate Rμi
from (2) for

i = 1, 2, ..., k.
4. Calculate R

(i)
θ from (3) for i = 1, 2, ..., k.

5. Repeat steps 2–3, calculate Rwi
from (7) and (8) for i = 1, 2, ..., k .

6. Compute Rθ following (6).
7. Repeat step 2–6 a total m times and obtain an array of Rθ’s.
8. Rank this array of Rθ’s from small to large. The 100α-th percentile of Rθ’s,

Rθ (α), is an estimate of the lower bound of the one-sided 100 (1 − α)%
confidence interval and (Rθ (α/2) , Rθ (1 − α/2)) is a two-sided 100 (1 − α)%
confidence interval.

9. Calculate the interval length.
10. Count the number of successes in 5,000 independent generated datasets.
11. Calculate coverage probability and average length.
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3.2 The Adjusted Method of Variance Estimates Recovery
Approach

The concepts of the method of variance estimates recovery (the Mover approach)
and the large sample method are used to create the adjusted method of variance
estimates recovery (The adjusted MOVER approach).

The Mover approach was introduced by Zou and Donner [9] which considers
two parameters θ1 + θ2 which have 100 (1 − α)% confidence limits (l1, u1) and
(l2, u2), respectively. Under the assumption of the point estimates θ̂1 and θ̂2 are
independence, the lower limit L and the upper limit U are given by

[
L1, U1

]
=

(
θ̂1 + θ̂2

)
± zα/2

√
v̂ar

(
θ̂1

)
+ v̂ar

(
θ̂2

)
, (9)

where v̂ar
(
θ̂i

)
= (̂θi−li)2

z2
α/2

, v̂ar
(
θ̂i

)
= (ui− ̂θi)2

z2
α/2

.

For i = 1, 2. Using these estimates with from (9), two-side 100 (1 − α)%
confidence limits for θ1 + θ2 given as

L =
(
θ̂1 + θ̂2

)
−

√(
θ̂1 − l1

)2

+
(
θ̂2 − l2

)2

U =
(
θ̂1 + θ̂2

)
+

√(
U1 + θ̂1

)2

+
(
U2 + θ̂2

)2

.

Let θ(1), θ(2), ..., θ(k) be k parameters of interest, where the estimates
θ̂(1), θ̂(2), ..., θ̂(k) are independent. Use concept of Donner and Zou [13] to con-
struct of a 100 (1 − α)% two-sided confidence interval (L, U) for θ(1), θ(2), ..., θ(k).

Thus
[
L,U

]
=

(
θ̂(1) + θ̂(2) + ... + θ̂(k)

)
±zα/2

√
v̂ar

(
θ̂(1)

)
+ ... + v̂ar

(
θ̂(k)

)
.

Where the variance estimate for θ̂(i) at θ(i) = li is v̂ar
(
θ̂(i)

)
= (̂θ(i)−li)2

z2
α/2

.

And the variance estimate at θ(i) = ui is v̂ar
(
θ̂(i)

)
= (ui−̂θ(i))2

z2
α/2

.

Therefore, the lower limit L and upper limit U for θ(1), θ(2), ..., θ(k) is given by

L =
(
θ̂(1) + θ̂(2) + ... + θ̂(k)

)
−

√(
θ̂(1) − l1

)2

+ ... +
(
θ̂(k) − lk

)2

,

U =
(
θ̂(1) + θ̂(2) + ... + θ̂(k)

)
+

√(
u1 − θ̂(1)

)2

+ ... +
(
uk − θ̂(k)

)2

.

The next step uses concept of the method of the large sample by Tain and
Wu [1] for parameter with pooled estimate of the common parameter from k
populations. It is defined as

θ̂ =

k∑
i=1

̂θ(i)

var(̂θ(i))
k∑

i=1

1

var(̂θ(i))

, (10)
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which gives a variance estimate for θ̂(i) at θ(i) = li and θ(i) = ui of

var
(
θ̂(i)

)
=

1
2

⎛
⎜⎝

(
θ̂(i) − li

)2

z2α/2

+

(
ui − θ̂(i)

)2

z2α/2

⎞
⎟⎠ . (11)

Therefore, the lower limit L for the common parameter θ is given by

L = θ̂ − z1−α/2

√√√√√√√

1
k∑

i=1

1
(̂θ(i)−li)2

z2
α/2

. (12)

Similarly, the upper limit U for the common parameter θ is given by

U = θ̂ + z1−α/2

√√√√√√√

1
k∑

i=1

1
(ui−̂θ(i))2

z2
α/2

. (13)

Hence, the adjusted MOVER solution for confidence interval estimation is
⎛
⎜⎝θ̂ − z1−α/2

√√√√√1/
k∑

i=1

z2α/2(
θ̂(i) − li

)2 , θ̂ + z1−α/2

√√√√√1/
k∑

i=1

z2α/2(
ui − θ̂(i)

)2

⎞
⎟⎠ .

From the i-th sample, where i = 1, 2, ..., k. The common log-mean θ is

θ = log α =
(

μi +
σ2

i

2

)
.

The maximum likelihood estimator of common log-mean θ is

θ̂(i) = μ̂i +
σ̂2

i

2
, where μ̂i = Xi, σ̂

2
i = S2

i .

Chami et al. [18] have presented Cox’s method and Angus’s conservative
method for constructing confidence interval for log-mean of lognormal.

According to Cox’s method, the confidence interval (CIC) for θ̂(i) is

li1 = Xi +
S2

i

2
− Z1−α/2

√
S2

i

ni
+

S4
i

2(ni − 1)
, (14)

ui1 = Xi +
S2

i

2
+ Z1−α/2

√
S2

i

ni
+

S4
i

2(ni − 1)
, (15)
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According to Angus’s conservative method, the confidence interval (CIA) for
θ̂(i) is

li2 = Xi +
S2

i

2
− t1−α/2√

ni

√
S2

i

(
1 +

S2
i

2

)
, (16)

ui2 = Xi +
S2

i

2
+

qα/2√
ni

√
S2

i

(
1 +

S2
i

2

)
, (17)

Which t1−α/2 be 1−α percentile of a t-distribution with ni−1 degrees of freedom,

and let qα/2 =
√

n
2

(
n−1
χ2

α
− 1

)
where χ2

α is the α- percentile of the chi-square

distributions with ni − 1 degrees of freedom.
Researchers use the method of the large sample for log-mean with pooled

estimate. It is defined in Eq. (10) and variance estimate for θ̂(i) in Eq. (11).
Consequently, L and U are defined in Eqs. (12) and (13). One gains these two
groups of confidence intervals (CIC) for θ̂(i) in Eqs. (14), (15) and (CIA) for θ̂(i)

in Eqs. (16) and (17) defines AM1 and AM2.
Hence, the adjusted MOVER approach based on cox’s method (AM1) for

confidence interval estimation of common log-mean θ = log α is
[
LAM1, UAM1

]

=

⎛
⎜⎝θ̂ − z1−α/2

√√√√√1/

k∑
i=1

z2α/2(
θ̂(i) − li1

)2
, θ̂ + z1−α/2

√√√√√1/

k∑
i=1

z2α/2(
ui1 − θ̂(i)

)2

⎞
⎟⎠ . (18)

or the confidence interval for common mean α is
[
exp (LAM1) , exp (UAM1)

]
.

The adjusted MOVER approach based on Angus’s conservative method
(AM2) for confidence interval estimation of common log-mean θ = log α is[
LAM2, UAM2

]

=

⎛
⎜⎝θ̂ − z1−α/2

√√√√√1/

k∑
i=1

z2α/2(
θ̂(i) − li1

)2
, θ̂ + z1−α/2

√√√√√1/

k∑
i=1

z2α/2(
ui1 − θ̂(i)

)2

⎞
⎟⎠ . (19)

or the confidence interval for common mean α is
[
exp (LAM2) , exp (UAM2)

]
.

Computing algorithms
For a given data set Xij for i = 1, 2, ..., k, j = 1, 2, ..., ni, the adjusted method of
variance estimates recovery for θ can be computed by the following steps.

1. Compute xi and s2i for i = 1, 2, ..., k.
2. Compute li1, ui1, li2, ui2 from (14), (15), (16), (17) for i = 1, 2, ..., k.
3. Calculate var((θ̂(i)) from (11) for i = 1, 2, ..., k.
4. Compute θ̂ following (10).
5. Calculate confidence interval estimation from (18), (19) for i = 1, 2, ..., k.
6. Calculate the interval length.
7. Count the number of successes in 5,000 independent generated datasets.
8. Calculate coverage probability and average length.
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4 Simulation Studies

A simulation study was performed with the coverage probabilities and average
lengths of the common mean of the lognormal distributions for various combina-
tions of the number of samples k = 2, 3 and 10, the sample sizes n = (n1, , ..., nk)
and the population variance σ2 =

(
σ2
1 , , ..., σ

2
k

)
, the values were different and the

common θ = log α take 0 and 10. In this simulation study, 95% confidence inter-
vals from three approaches were compared, comprising of the proposed procedure
generalized confidence interval approach (GCI), the adjusted MOVER approach
based on cox’s method (AM1) and based on Angus’s conservative method (AM2).
For each parameter setting, 5000 random samples were generated, 2500 Rθ’s were
obtained for each of the random samples.

In Tables 1, 2 and 3, the following notation applies n = (n1, , ..., nk) and σ2 =(
σ2
1 , , ..., σ

2
k

)
. For k = 2, we have n

(2)
1 = (15, 15), n(2)

2 = (10, 20), n(2)
3 = (20, 10),

n
(2)
4 = (50, 50), n(2)

5 = (50, 100) and σ
2(2)
1 = (1, 1), σ2(2)

2 = (1, 9), σ2(2)
3 = (1, 25),

σ
2(2)
4 = (1, 100). For k = 3, we have n

(3)
1 = (15, 15, 15), n(3)

2 = (10, 15, 20), n(3)
3 =

(20, 15, 10), n(3)
4 = (30, 50, 100) and σ

2(3)
1 = (0.02, 0.2, 2), σ2(3)

2 = (1, 1, 1), σ2(3)
3 =

(1, 4, 9), σ2(3)
4 = (1, 9, 100). For k = 10, we have n

(10)
1 = (15, 15, 15, 15, 15, 15, 15,

15, 15, 15), n(10)
2 = (15, 15, 1515, 15, 10, 10, 10, 10, 10), n

(10)
3 = (30, 30, 30, 30, 30,

30, 30, 30, 30, 30), n(10)
4 = (50, 50, 80, 100, 100, 50, 50, 80, 100, 100) and σ

2(10)
1 =

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), σ
2(10)
2 = (1, 1, 9, 9, 25, 25, 49, 49, 81, 81), σ2(10)

3 = (0.01,
0.01, 0.1, 0.1, 1, 1, 10, 10, 100, 100).

Tables 1, 2, and 3 presents the coverage probabilities and average lengths
for 2, 3 and 10 sample cases respectively. In sample case 2, the GCI approach
overestimated the coverage probabilities for all of the scenarios. In other sample
cases, the GCI approach tended to overestimate the coverage probabilities for all
of the scenarios but this depends on ni and σ2

i , especially when the ni is small
and σ2

i are similar values. It is also shown that the GCI approach tends to be drop
from the nominal level 0.95. In all sample cases, The AM1 approach provides the
underestimate coverage probabilities and has the coverage probabilities close to
the nominal level 0.95 when the number of samples went up. The AM2 approach
performs very well for all of the scenarios, although it tends to produce a wider
average lengths more than the GCI approach, but the average length is slightly
higher than the GCI approach.

In this paper, the average lengths of all intervals are considered since the
approaches provide the coverage probability above the nominal level of 0.95
for all cases. Finally, it was discovered that the AM2 approach provided much
better results over the another approaches in terms of average lengths for all
cases. However, the average lengths of the GCI approach were the shortest when
the coverage probabilities were close to the nominal level of 0.95.

5 An Empirical Application

In this section, two real data examples are exhibited to illustrate the generalized
confidence interval approach (GCI), the adjusted MOVER approach based on
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Table 1. Coverage probabilities (CP) and average length (AL) of approximate 95%
two – side confidence bounds for common mean α of lognormal distributions, μi =
log α − (

σ2
i /2

)
(based on 5000 simulations, m of gci = 2500): 2 sample cases.

n σ2 θ GCI AM1 AM2

CP AL CP AL CP AL

n
(2)
1 σ

2(2)
1 0 0.9578 1.0027 0.9076 0.8422 0.9804 1.1652

10 0.9546 1.0033 0.8968 0.8423 0.9796 1.1654

σ
2(2)
2 0 0.9558 1.4735 0.9144 1.2177 0.9812 1.6822

10 0.9514 1.4784 0.9166 1.2204 0.9820 1.6859

σ
2(2)
3 0 0.9586 1.4822 0.9224 1.2424 0.9856 1.7172

10 0.9586 1.4795 0.9286 1.2381 0.9834 1.7113

σ
2(2)
4 0 0.9600 1.4808 0.9260 1.2457 0.9866 1.7219

10 0.9540 1.4831 0.9236 1.2468 0.9814 1.7233

n
(2)
2 σ

2(2)
1 0 0.9502 1.0042 0.8968 0.8361 0.9790 1.1672

10 0.9532 1.0042 0.8990 0.8356 0.9752 1.1664

σ
2(2)
2 0 0.9540 1.9166 0.8954 1.4605 0.9744 2.0687

10 0.9550 1.9141 0.8956 1.4592 0.9770 2.0669

σ
2(2)
3 0 0.9574 1.9796 0.9064 1.5040 0.9770 2.1362

10 0.9584 1.9909 0.9144 1.5111 0.9802 2.1461

σ
2(2)
4 0 0.9616 2.0357 0.9172 1.5351 0.9806 2.1811

10 0.9642 2.0363 0.9142 1.5376 0.9830 2.1848

n
(2)
3 σ

2(2)
1 0 0.9532 1.0051 0.8976 0.8368 0.9770 1.1683

10 0.9514 1.0022 0.8942 0.8342 0.9748 1.1647

σ
2(2)
2 0 0.9502 1.2441 0.9112 1.0588 0.9828 1.4620

10 0.9552 1.2474 0.9142 1.0603 0.9814 1.4641

σ
2(2)
3 0 0.9524 1.2442 0.9236 1.0769 0.9838 1.4866

10 0.9510 1.2422 0.9240 1.0777 0.9828 1.4877

σ
2(2)
4 0 0.9524 1.2339 0.9346 1.0842 0.9852 1.4965

10 0.9538 1.2276 0.9308 1.0800 0.9860 1.4908

n
(2)
4 σ

2(2)
1 0 0.9524 0.5026 0.9388 0.4757 0.9854 0.6928

10 0.9504 0.5014 0.9316 0.4747 0.9866 0.6913

σ
2(2)
2 0 0.9524 0.6985 0.9428 0.6678 0.9854 0.9722

10 0.9528 0.6993 0.9380 0.6691 0.9874 0.9741

σ
2(2)
3 0 0.9534 0.7089 0.9420 0.6791 0.9864 0.9889

10 0.9538 0.7086 0.9416 0.6786 0.9892 0.9881

σ
2(2)
4 0 0.9540 0.7119 0.9450 0.6798 0.9894 0.9898

10 0.9522 0.7122 0.9418 0.6804 0.9904 0.9907

n
(2)
5 σ

2(2)
1 0 0.9514 0.4037 0.9408 0.3887 0.9860 0.5935

10 0.9544 0.4038 0.9438 0.3888 0.9862 0.5934

σ
2(2)
2 0 0.9558 0.6884 0.9464 0.6597 0.9866 0.9643

10 0.9512 0.6857 0.9386 0.6577 0.9886 0.9614

σ
2(2)
3 0 0.9540 0.7080 0.9452 0.6782 0.9876 0.9882

10 0.9482 0.7058 0.9424 0.6768 0.9868 0.9861

σ
2(2)
4 0 0.9508 0.7123 0.9458 0.6801 0.9880 0.9903

10 0.9528 0.7113 0.9454 0.6791 0.9862 0.9889
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Table 2. Coverage probabilities (CP) and average length (AL) of approximate 95%
two – side confidence bounds for common mean α of lognormal distributions, μi =
log α − (

σ2
i /2

)
(based on 5000 simulations, m of gci = 2500): 3 sample cases.

ni σ2
i θ GCI AM1 AM2

CP AL CP AL CP AL

n
(3)
1 σ

2(3)
1 0 0.9542 0.1518 0.9248 0.1335 0.9786 0.1867

10 0.9516 0.1511 0.9256 0.1332 0.9762 0.1862

σ
2(3)
2 0 0.9512 0.8110 0.8876 0.6755 0.9774 0.9350

10 0.9486 0.8146 0.8856 0.6777 0.9746 0.9381

σ
2(3)
3 0 0.9380 1.3733 0.8818 1.1257 0.9736 1.5537

10 0.9380 1.3662 0.8802 1.1181 0.9710 1.5432

σ
2(3)
4 0 0.9562 1.4534 0.9136 1.2115 0.9814 1.6738

10 0.9528 1.4615 0.9134 1.2125 0.9800 1.6751

n
(3)
2 σ

2(3)
1 0 0.9540 0.1909 0.9158 0.1572 0.9776 0.2262

10 0.9514 0.1917 0.9100 0.1582 0.9728 0.2276

σ
2(3)
2 0 0.9468 0.8142 0.8774 0.6725 0.9756 0.9364

10 0.9440 0.8107 0.8806 0.6706 0.9746 0.9337

σ
2(3)
3 0 0.9382 1.6750 0.8744 1.3048 0.9656 1.8374

10 0.9352 1.6612 0.8628 1.2942 0.9674 1.8230

σ
2(3)
4 0 0.9524 1.9390 0.8898 1.4702 0.9738 2.0834

10 0.9564 1.9388 0.8986 1.4699 0.9758 2.0829

n
(3)
3 σ

2(3)
1 0 0.9544 0.1301 0.9384 0.1181 0.9804 0.1645

10 0.9552 0.1300 0.9362 0.1181 0.9798 0.1645

σ
2(3)
2 0 0.9460 0.8152 0.8796 0.6739 0.9724 0.9384

10 0.9448 0.8141 0.8844 0.6739 0.9730 0.9383

σ
2(3)
3 0 0.9346 1.1852 0.8876 0.9956 0.9750 1.3737

10 0.9422 1.1955 0.8902 1.0011 0.9768 1.3812

σ
2(3)
4 0 0.9536 1.2248 0.9220 1.0622 0.9848 1.4657

10 0.9510 1.2147 0.9212 1.0584 0.9842 1.4604

n
(3)
4 σ

2(3)
1 0 0.9514 0.0981 0.9398 0.0929 0.9800 0.1316

10 0.9534 0.0982 0.9404 0.0929 0.9812 0.1317

σ
2(3)
2 0 0.9516 0.3716 0.9372 0.3528 0.9844 0.5294

10 0.9518 0.3716 0.9376 0.3530 0.9886 0.5297

σ
2(3)
3 0 0.9508 0.8136 0.9274 0.7564 0.9918 1.0740

10 0.9516 0.8139 0.9280 0.7565 0.9902 1.0741

σ
2(3)
4 0 0.9504 0.9190 0.9308 0.8545 0.9878 1.1996

10 0.9542 0.9169 0.9342 0.8523 0.9892 1.1966
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Table 3. Coverage probabilities (CP) and average length (AL) of approximate 95%
two – side confidence bounds for common mean α of lognormal distributions, μi =
log α − (

σ2
i /2

)
(based on 5000 simulations, m of gci = 2500): 10 sample cases.

ni σ2
i θ GCI AM1 AM2

CP AL CP AL CP AL

n
(10)
1 σ

2(10)
1 0 0.8806 0.4456 0.8020 0.3598 0.9586 0.4983

10 0.8724 0.4450 0.7896 0.3593 0.9566 0.4976

σ
2(10)
2 0 0.9248 0.9981 0.8730 0.8216 0.9694 1.1360

10 0.9308 0.9933 0.8704 0.8180 0.9722 1.1311

σ
2(10)
3 0 0.9600 0.0763 0.9226 0.0650 0.9734 0.0909

10 0.9548 0.0761 0.9178 0.0648 0.9738 0.0907

n
(10)
2 σ

2(10)
1 0 0.8648 0.5010 0.7488 0.3852 0.9412 0.5403

10 0.8674 0.5018 0.7624 0.3857 0.9444 0.5410

σ
2(10)
2 0 0.9182 1.0171 0.8598 0.8205 0.9660 1.1346

10 0.9274 1.0147 0.8730 0.8192 0.9706 1.1329

σ
2(10)
3 0 0.9566 0.0763 0.9204 0.0649 0.9690 0.0908

10 0.9576 0.0764 0.9178 0.0650 0.9692 0.0909

n
(10)
3 σ

2(10)
1 0 0.9052 0.2965 0.8744 0.2660 0.9874 0.3729

10 0.9086 0.2967 0.8736 0.2661 0.9886 0.3730

σ
2(10)
2 0 0.9482 0.6563 0.9202 0.5953 0.9848 0.8342

10 0.9444 0.6564 0.9182 0.5947 0.9830 0.8333

σ
2(10)
3 0 0.9532 0.0509 0.9318 0.0471 0.9702 0.0664

10 0.9522 0.0509 0.9318 0.0471 0.9712 0.0663

n
(10)
4 σ

2(10)
1 0 0.9202 0.1791 0.9118 0.1713 0.9896 0.2615

10 0.9304 0.1793 0.9216 0.1714 0.9890 0.2618

σ
2(10)
2 0 0.9510 0.4992 0.9312 0.4582 0.9714 0.6694

10 0.9526 0.5011 0.9316 0.4599 0.9680 0.6718

σ
2(10)
3 0 0.9524 0.0372 0.9424 0.0355 0.9658 0.0524

10 0.9502 0.0372 0.9390 0.0355 0.9618 0.0524

cox’s method (AM1) and Angus’s conservative method (AM2). All examples
have been studied and reported by Lin and Wang [2]. The first example (A) was
the medical charge data divided into two groups, 119 of them were an American
group and 106 of them were the white group. The second example (B) was
the pharmacokinetics data equally divided into three groups, 22 of them were
group 1, group 2 and group 3. The data sets are presented in Table 4 and the
results of confidence interval for two data sets are presented in Table 5. It can
be seen that the interval of the adjusted MOVER approach based on Angus’s
conservative method (AM2) has the confidence interval close to the sample mean
and wider lengths more than other approaches.
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Table 4. The summary statistics of the log-transformed data sets.

Data set ni Xi s2i θ̂i

(A) The medical charge data

American group 119 9.067 1.825 9.979

White group 106 8.693 2.693 10.039

(B) The pharmacokinetics data

Group 1 22 2.601 0.24 2.721

Group 2 22 2.596 0.20 2.696

Group 3 22 2.599 0.17 2.684

Table 5. The results of confidence interval for four data sets.

The approaches Confidence interval Length

Data set (A) the medical charge data

The generalized confidence interval approach (GCI) (9.724, 10.288) 0.564

The adjusted MOVER approach

Based on cox’s method (AM1) (9.723, 10.274) 0.551

Based on Angus’s conservative method (AM2) (9.722, 10.601) 0.879

Data set (B) the pharmacokinetics data

The generalized confidence interval approach (GCI) (2.582, 2.825) 0.243

The adjusted MOVER approach

Based on cox’s method (AM1) (2.585, 2.811) 0.226

Based on Angus’s conservative method (AM2) (2.578, 2.893) 0.315

6 Discussion and Conclusions

This paper has presented three simple approaches to construct confidence inter-
vals for common mean of lognormal distributions. The proposed confidence inter-
vals were constructed by the generalized confidence interval approach (GCI), the
adjusted MOVER approach based on cox’s method (AM1) and based on Angus’s
conservative method (AM2). By the simulation studies, coverage probabilities
form the generalized confidence interval approach (GCI) was always close to
the nominal confidence level at 0.95. But there were a few cases, it seems that
the generalized confidence interval approach (GCI) performed well only when
σ2

i were more various. The adjusted MOVER approach based on cox’s method
(AM1) provided underestimated coverage probabilities for all cases. The adjusted
MOVER approach based on Angus’s conservative method (AM2) yielded cover-
age probabilities which tended to be high compared with the nominal level of 0.95
for all almost cases and the average lengths were wide to a little bit as compared
with the GCI approach. Overall, the generalized confidence interval approach
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(GCI) provided coverage probabilities close to nominal level 0.95 and average
lengths is shorter than other approaches for k = 2. The adjusted MOVER app-
roach based on Angus’s conservative method (AM2) provides stable coverage
probabilities for all k. In conclusion, the adjusted MOVER approach based on
Angus’s conservative method (AM2) can be successfully used to estimate the
common mean of lognormal distributions.

The results of the generalized confidence interval approach (GCI) for com-
mon mean (k ≥ 2) are similar to the simulation of the generalized confidence
interval approach (GCI) for single mean of lognormal distribution which is stud-
ied by Olsson [7]. However, the coverage probabilities for k ≥ 2 is decrease when
k increased. In addition, this paper is constructing the confidence intervals for
common mean of lognormal distributions by transform the lognormal data prior
to use the generalized confidence interval approach (GCI). It is simple to con-
struct the confidence intervals for the common mean. The results show that, it
provided coverage probabilities close to nominal level 0.95. However, the results
are not good equal to results of Lin and Wang [2], but average lengths are shorter.
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