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Abstract. In this paper, we discuss the difference between probabilistic
and fuzzy techniques used in time series analysis. First, we focus on the
fundamental difference between vaguenes and uncertainty phenomena.
Then we briefly describe probabilistic view of time series. In the main
part, we demonstrate how special fuzzy techniques, namely the fuzzy
natural logic and fuzzy transform can be applied in the analysis of time
series and what is their outcome in comparison with the probabilistic
approach. We argue that fuzzy techniques enable to obtain knowledge
that is either more difficult or impossible to obtain using probabilistic
techniques.
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1 Introduction

In this section, we will demonstrate that probabilistic and fuzzy techniques are
based on modeling of different phenomena, namely vagueness and uncertainty.
Both phenomena are usually present and require different mathematical
principles. Hence, in the reality both kinds of techniques are complementary
rather than competitive.

2 Uncertainty and Vagueness

Two phenomena whose importance in science raised especially in 20th century
are uncertainty and vagueness (cf. [2,28]). Both of them characterize situations
in which the amount, character and extent of knowledge we have at disposal is
essential. It is important to stress that both uncertainty as well as vagueness form
two complementary facets of a more general phenomenon called indeterminacy1.
In the reality, we often meet indeterminacy with both its facets present, i.e., vague
phenomena can be at the same time also uncertain.

1 This phenomenon is sometimes called “uncertainty in wider sense”.
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2.1 Potentiality and Uncertainty

When observing the surrounding world, we encounter events of two kinds: those
that already occurred and potential ones that can, but need not, occur. For
example, consider a company producing tires. We know that today it produced,
say 300 of them. But the number of tires produced the next day is not known. We
may expect production of, e.g., 350 tires but the concrete number is uncertain
because, for example, technical or personal problems on the production line may
appear. From it follows that the uncertainty phenomenon emerges when there
is a lack of knowledge about occurrence of some event (e.g., the production of
tires). In general, we may state that uncertainty is encountered when a certain
kind of experiment (process, test, etc.) is to proceed, the result of which is not
known to us. It may refer to variety of potential outcomes, ways of solution,
choices, etc.

Specific form of uncertainty is randomness which is uncertainty raising in
connection with time. There is no randomness (uncertainty) after the experiment
was realized (the event has occurred) and the result is known to us. Note that
it is connected with the question whether a given event may be regarded within
some time period, or not. This becomes apparent on the typical example with
tossing a player’s cube. The phenomenon to occur is the number of dots on the
cube and it occurs after the experiment (i.e. tossing the cube one times) has
been realized. Thus, we refer here to the future, to events that are potential ; not
yet existing.

Let us remark, however, that the variety of potential events may raise even a
more abstract uncertainty that is less dependent on time. We may, for example,
analyze uncertainty in potentiality (that is, lack of knowledge) without necessary
reference to time, or with reference to the past (such as a posterior Bayesian
probability).

The mathematical model (i.e. quantified characterization) of the uncertainty
phenomenon is provided especially by the probability theory. In everyday termi-
nology, probability can be thought of as a numerical measure of the likelihood
that a particular event will occur. There are also other mathematical theories
addressing the mentioned abstract uncertainty, for example possibility theory,
belief measures and others.

2.2 Vagueness and Actuality

The vagueness phenomenon raises when we try to group together all objects that
have a certain property ϕ. The result is a grouping of objects

X = {o | o is an object having the property ϕ}. (1)

We see the grouping X as one object consisting of objects o that all are at our
disposal at once because we have already grouped them together. We say that
X is actualized.

In general, however, X cannot be taken as a set since the property ϕ may be
of such a character that when checking that a given object ô has the property ϕ,
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we hardly obtain a definite answer. For example, consider the property ϕ = ‘to
be expensive’ and let the total amount of money we have at disposal for all
our expenses be 50,000 $. Let o1 be a car for 20, 000 $, o2 a car for 48, 000 $,
and o3 a car for 35, 000 $. Then o1 is not expensive at all, i.e., ϕ(o1) is false
and ϕ(o2) is true. But what about ϕ(o3)? This car is not really expensive but
also not too cheap. Hence, we cannot say that the grouping X in (1) is a set
because a set is formed only of objects that we unambiguously know that they
have the property ϕ. Hence, we say that ϕ is vague. There can exist borderline
elements o for which it is unclear whether they have the property ϕ (and thus,
whether they belong to X), or not. On the other hand, it is always possible
to characterize, at least some typical objects (prototypes), i.e. objects having
typically the property in concern. For example, everybody can show a “blue
sweater” or “huge building”, “expensive car” but it is impossible to show “all
expensive cars”.

Vagueness is opposite to exactness and we argue that it cannot be avoided
in the human way of regarding the world. Any attempt to explain an exten-
sive detailed description necessarily leads to using vague concepts since precise
description can contain such abundant number of details that we will be lost
when learning all of them. To understand it, we must group them together —
and this can hardly be done precisely. This idea was formulated by Zadeh in [30]
as the incompatibility principle. The problem consists in the way how people
regard the phenomena around them. This would be impossible without presence
of vagueness.

The (so far) best mathematical concept that can be used to model vague
groupings is that of a fuzzy set. Formally, a fuzzy set A is a function

A : U −→ L

where U is some universal set containing all the elements (objects) that may be
considered to fall into the considered vague grouping and L is a set of membership
degrees which is a special lattice. The function A is also called the membership
function. Note that the fuzzy set is identified with its membership function.
Sometimes we use the symbol A ⊂∼ U to emphasize that A is a fuzzy set in the
universe U . The value A(x) ∈ �L for any x ∈ U is called the membership degree
of the element x in A.

2.3 Actuality vs. Potentiality

In the discussion above we touched two phenomena: actuality and potentiality.
A classical set is always understood as being actual2, i.e. we take all its elements
as already existing and at our disposal in one moment. Therefore, our reasoning
about any set stems from the assumption that it is at our disposal as a whole.
Of course, when a set is infinite then only God is able to see it as a whole while
we can see only a part of it. It should be emphasized that the set theory (and
so, the modern mathematics) can deal with actualized sets only!
2 Cf. the analysis by Vopěnka in [29].
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On the other hand, most events around us are only potential, i.e. they may,
but need not, occur or happen. Thus, to create a grouping of objects, we may
have only a method how a new element can be created but all of them will never
exist together. For example, if a machine has on its input one piece of metal,
then it can produce various products of it but only one will actually be finished.
It is even impossible to imagine all products produced by the machine from one
piece of metal. Note that the same we observe at the company producing tires
considered above. In one day it produces from the given amount of material only
one number of tires.

As already mentioned, there are two kinds of events: those that already hap-
pened and those that have not yet happened. We know the first ones because
they are at our disposal and we know that they have a given property ϕ. How-
ever, we do not know the second ones and we even do not know whether some
new events having the property ϕ will occur or not. We encounter uncertainty;
we speculate about the whole X (1), but only part of it indeed exists. But as
noted, mathematical description of X is possible only if it is actualized. The
only solution thus is to imagine all (or, at least some) still not existing elements
of X as existing. The “added” part may be, or may be not, possible to happen
but we search for methods providing us with the estimation of the information
about their possible occurrence.

For example, we can imagine all dots on a dice that can be tossed, i.e., we
imagine the tossed numbers X = {1, . . . , 6} as already existing (though they
cannot be tossed all of them together). For example, let the numbers {1, 3, 5} be
already tossed. Then they already exist (this is the actualized part of X) and
now we may try to guess whether another number will indeed be tossed (i.e.,
whether the given element of X will indeed occur). The measure of information
about such possibility is modeled using the probability theory. As a mathematical
theory, however, it works with the whole X, i.e., the problem that X is not yet
created is disregarded.

Note that the vagueness phenomenon is not related to occurrence of whatever
event. It concerns the question how is the given grouping X formed, i.e., what
is the character of the property ϕ in (1) determining it. If for any object, either
ϕ(o) holds or not then ϕ is sharp. If it allows borderline cases then it is vague.
Vagueness applies to an actualized non-sharply delineated grouping. Once an
actualized (i.e. already existing) grouping of objects X is at our disposal, we
may speak about truth of the fact that an object o has the property ϕ; that is,
we know the truth of o ∈ X.

In probability theory we introduce the concept of a probabilistic space
〈Ω,A , P 〉, where Ω is a set of elementary random events, A is a σ-algebra
of subsets of Ω and P : A −→ [0, 1] is a probabilistic measure. With respect to
the discussion above, Ω is a sharp grouping of objects that is actualized. More-
over, we deal with the actualized set (σ-algebra) A of subsets of Ω. Any element
Y ∈ A is a mathematical model of an event that may, or may not occur. From
the mathematical point of view, in fact, Y already exists but we pretend that
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A it is only potential and take P as the measure of information about possible
occurrence of Y .

3 Probabilistic View on Time Series

The mathematical model of time series is based on the assumption that a prob-
abilistic space 〈Ω,A , P 〉 is given. A time series is then a stochastic process (see
[1,7])

X : T × Ω −→ R (2)

where T is a set of time moments. In general, it can be T = [a, b] ⊂ R but in
economy and elsewhere we usually take T = {1, . . . , p} ⊂ N being a finite set of
natural numbers. These are usually construed as hours, days, weeks, months, or
years. Instead of the general form (2) we usually write time series as a system
of random variables

{X(t) | t ∈ T} (3)

where each X(t) is a random variable X(t) : Ω −→ R, t ∈ T, i.e., it is a
measurable function w.r.t. Borel sets on R and A . This enables us to define a
function

Ft(x) = P{ω ∈ Ω | X(t)(ω) < x}.

called the distribution function, which characterizes the probability distribution
of values of the random variable X(t). More generally, we may consider a mul-
tidimensional distribution function

Ft1,...,tn(x1, . . . , xn) = P{ω ∈ Ω | X(t1)(ω) < x1, . . . , X(tn)(ω) < xn}, (4)

where t1, . . . , tn ∈ T. When speaking about time series, we will usually write it
simply as X without marking the time variable t.

This model assumes existence of a distribution function of each X(t), t ∈ T,
or a joint distribution function (4) of a finite set of them. Let us realize that
by this model, the time series is considered to be a sequence of values being
measurements of outcomes of some real process that proceeds in time. We do
not know which outcome really occurs but we assume to have information about
probability of its occurrence. Such information, however, is very rough and does
not enable us to penetrate into the substance of the considered process.

Something more we can learn from the following characteristics.

(a) Mean value of the time series:

E(X(t)) =
∫
R

x dFt(x). (5)

(b) Covariance function of the time series:

R(s, t) = E((X(s) − E(X(s)))(X(t) − E(X(t)))). (6)
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Additional used characteristics is variance

D(X(t)) =
∫
R

[x − E(X(t))]2 dFt(x).

The behavior of these characteristics gives rise to specific kinds of time series.
We say that the time series is strictly stationary if

Ft1+h,...,tn+h(x1, . . . , xn) = Ft1,...,tn(x1, . . . , xn) (7)

holds for all t1, . . . , tn ∈ T and h ∈ R such that t1+h, . . . , tn+h ∈ T. This means
that the joint probability distribution does not depend on time. Such time series
behaves in a dully uniform way.

We say that the time series is weak-sense stationary if the following holds for
all t, s ∈ T:

(i) E(X(t)) = μ,
(ii) R(s, t) = R(t − s).

This means that the mean value remains the same independently on time and
the covariance function is determined by the distance between time moments
but not on the position in time.

It is important to emphasize that if we fix ω ∈ Ω then the time series (1)
becomes an ordinary function X : T −→ R. We call it realization of the time
series. Note that in practice, we always have one realization at disposal only.
This fact, however, makes the assumption (3) not fully sound. In extreme case
it means that we derive conclusions about time series in a given time moment
on one measurement only. But this contradicts the basic assumptions of the
probability theory, especially the mass scale, i.e., that its predictions are the more
reliable the more measurements of a given random variable are at disposal. We
are thus implicitly forced to assume that the real process does not (significantly)
change during the time, i.e., whenever we measure its outcome, we measure the
same random variable more or less independently on time.

Probabilistic methods, however, led to amazingly well working methods for
analysis and prediction of time series. The best known is the autoregressive
moving-average model ARMA(p, q) (also referred to as Box-Jenkins model)
whose general formula is the following:

X(t) = α1X(t−1)+ · · ·+αpX(t−p)+Z(t)+β1Z(t−1)+ · · ·+βqZ(t− q) (8)

where {Z(t) | t ∈ T} is a simple strictly stationary time series with zero mean
value and bounded variance. The αi are autoregressive coefficients and βj are
moving-average coefficients. This model, however, assumes that the time series
is stationary, which is rarely the case. In practice, trends and periodicity exists
in many datasets, so there is a need to remove these effects before applying
such models. This is the fertile ground for application of fuzzy techniques to the
analysis of time series.
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Let us mention one more important concept, namely the periodogram. This
is a function of frequencies

I(λ) =
1

2πN

∣∣∣∣∣
N∑

t=1

X(t)e−itλ

∣∣∣∣∣
2

, −π ≤ λ ≤ π. (9)

This function makes it possible to identify distinguished frequencies contained
in the time series X. Using the well known formula T = 2π

λ we can compute
characteristic periodicities in X.

4 Fuzzy Techniques for Time Series Analysis

In this section we will describe basic techniques that are based on the concept of
a fuzzy set and that turned out to be very useful in the analysis and prediction
of time series. We will very briefly describe the main concepts. More details can
be found in the book [24] and the other cited literature.

4.1 Fuzzy Transform

The fuzzy (F-)transform is a universal technique introduced by Perfilieva in
[26,27] that has many kinds of applications. Its fundamental idea is to map a
bounded continuous function f : [a, b] −→ R to a finite vector of numbers and
then to transform it back. The former is called a direct F-transform and the
latter an inverse one. The result of the inverse F-transform is a function f̂ that
approximates the original function f . The advantage of this approach consists
in the possibility to set the parameters of the F-transform in such a way that
the approximating function f̂ has desired properties.

The power of the F-transform stems from its approximation abilities, from
its ability to filter out high frequencies and from the ability to reduce noise
[14,15,25]. Another outcome is the ability to estimate values of first and second
derivatives in an area given approximately (cf. [11]).

4.1.1 Fuzzy Partition
The first step of the F-transform procedure is to form a fuzzy partition of the
domain [a, b]. It consists of a finite set of fuzzy sets

A = {A0, . . . , An}, n ≥ 2, (10)

defined over nodes
a = c0, . . . , cn = b. (11)

The properties of the fuzzy sets from A are specified by five axioms, namely:
normality, locality, continuity, unimodality, and orthogonality that is formally
defined by

n∑
i=0

Ai(x) = 1, x ∈ [a, b.] (12)

(Equation (12) is sometimes called Ruspini condition).
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A fuzzy partition A is called h-uniform if the nodes c0, . . . , cn are
h-equidistant, i.e., for all k = 0, . . . , n − 1, ck+1 = ck + h, where h = (b − a)/n
and the fuzzy sets A1, . . . , An−1 are shifted copies of a generating function
A : [−1, 1] −→ [0, 1] such that for all k = 1, . . . , n − 1

Ak(x) = A

(
x − xk

h

)
, x ∈ [ck−1, ck+1]

(for k = 0 and k = n we consider only half of the function A, i.e. restricted to the
interval [0, 1] and [−1, 0], respectively). The membership functions A0, . . . , An

of fuzzy sets forming the fuzzy partition A are usually called basic functions.
Let us emphasize that the concept of fuzzy partition is crucial for the F-

transform. Moreover, it is a typical concept used in many fuzzy techniques. Its
main advantage for applications consists in the possibility that the neighboring
fuzzy sets can overlap, which is not the case of the classical partition of a set.

4.1.2 Zero Degree F-transform
Once the fuzzy partition A0, . . . , An ∈ A is determined, we define a direct
F-transform of a continuous function f as a vector F[f ] = (F0[f ], . . . , Fn[f ]),
where each k-th component Fk[f ] is equal to

Fk[f ] =

∫ b

a
f(x)Ak(x) dx∫ b

a
Ak(x) dx

, k = 0, . . . , n. (13)

Clearly, the Fk[f ] component is a weighted average of the functional values f(x)
where weights are the membership degrees Ak(x). The inverse F-transform of f

with respect to F[f ] is a continuous function3 f̂ : [a, b] −→ R such that

f̂(x) =
n∑

k=0

Fk[f ] · Ak(x), x ∈ [a, b].

Theorem 1. The inverse F-transform f̂ has the following properties:

(a) The sequence of inverse F-transforms {f̂n} determined by a sequence of uni-
form fuzzy partitions based on uniformly distributed nodes with h = (b−a)/n
uniformly converges to f for n → ∞.

(b) The F-transform is linear, i.e., if f(x) = αu(x)+βv(x) then f̂(x) = αû(x)+
βv̂(x) for all x ∈ [a, b].

All the details and full proofs can be found in [26,27].

3 By abuse of language, we call by direct as well as inverse F-transform both the
procedure as well as its respective results F[f ] = (F0[f ], . . . , Fn[f ]) and f̂ .
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4.1.3 Higher Degree F-transform
The F-transform introduced above is F0-transform (i.e., zero-degree
F-transform). Its components are real numbers. If we replace them by poly-
nomials of arbitrary degree m ≥ 0, we arrive at the higher degree Fm transform.
This generalization has been in detail described in [27]. Let us remark that the
F1 transform enables to estimate also derivatives of the given function f as
weighted average values over a vaguely specified area.

The direct F 1-transform of f with respect to A1, . . . , An−1 is a vector F 1[f ] =
(F 1

1 [f ], . . . , F 1
n−1[f ]) where the components F 1

k [f ], k = 1, . . . , n − 1 are linear
functions

F 1
k [f ](x) = β0

k + β1
k(x − ck) (14)

with the coefficients β0
k, β1

k given by

β0
k =

∫ ck+1

ck−1
f(x)Ak(x)dx∫ ck+1

ck−1
Ak(x)dx

, (15)

β1
k =

∫ xk+1

xk−1
f(x)(x − ck)Ak(x)dx∫ ck+1

ck−1
(x − ck)2Ak(x)dx

. (16)

Note that β0
k = Fk[f ], i.e. the coefficients β0

k are just the components of the
F0 transform given in (13). The F1 transform has also the properties stated in
Theorem 1 (see [27]).

We will also use the F2 transform. Its components are the functions

F 2
k [f ](x) = β0

k + β1
k(x − ck) +

(
β2

k(x − ck)2 − h2

6

)

(provided that the basic functions are triangles).

Theorem 2 ([11]). If f is four-times continuously differentiable on [a, b] then
for each k = 1, . . . , n − 1,

β0
k = f(ck) + O(h2), (17)

β1
k = f ′(ck) + O(h2). (18)

β2
k =

f ′′(ck)
2

+ O(h2). (19)

Thus, the F-transform components provide a weighted average of values of the
function f in the area around the node ck (17), and also a weighted average of
slopes (27) of f and that of its second derivatives (19) in the same area.

Remark 1 (important). It should be noted that only the nodes c1, . . . , cn−1

should be considered when dealing with the F-transform and the edge nodes
c0, cn should be omitted. The reason is that the areas [c0, c1] and [cn−1, cn] are
covered by halves of the basic functions A0, An, respectively and so, the approxi-
mation of f in these areas is subject to too large error. Hence, we should consider
the function f̂ on the interval [c1, cn−1] only.
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4.2 Fuzzy Natural Logic

This is a special formal logical theory whose goal is to model the reasoning of
people for which it is specific to use natural language. So far, it is not a unified
theory but a bunch of the following theories:

(a) A formal theory of evaluative linguistic expressions explained in detail in
[18] (see also [17,24]).

(b) A formal theory of fuzzy IF-THEN rules and approximate reasoning
[16,22–24].

(c) A formal theory of intermediate and generalized fuzzy quantifiers [5,13,19]
and elsewhere.

4.2.1 Evaluative Linguistic Expressions
The central role in all these theories is played by the theory of evaluative lin-
guistic expressions. These are expressions with the general form

〈linguistic modifier〉〈TE-adjective〉 (20)

where 〈TE-adjective〉4 is one of the adjectives “small, medium, big” (and possibly
other specific adjectives, especially the so called gradable or evaluative ones), or
“zero” as well as arbitrary symmetric fuzzy number. The 〈linguistic modifier〉 is
a special expression that belongs to a wider linguistic phenomenon called hedging
and that specifies more closely the topic of utterance. In our case, the linguistic
modifier makes the meaning of the 〈TE-adjective〉 more specific. Quite often it
is represented by an intensifying adverb such as “very, roughly, approximately,
significantly”, etc. The linguistic modifiers can have narrowing (“extremely, sig-
nificantly, very, typically”) and widening effect (“more or less, roughly, quite
roughly, very roughly”) on the meaning of the 〈TE-adjective〉.

If 〈linguistic hedge〉 is not present (expressions such as “weak, large”, etc.)
then we take it as presence of empty linguistic hedge. Thus, all the simple evalu-
ative expressions have the same form (20). Since they characterize values on an
ordered scale, we may consider also scales divided into two parts that are usually
interpreted as positive and negative. Hence, the evaluative expressions may have
also a sign, namely “positive” or “negative”.

Simple evaluative expressions of the form (20) can also be combined using
logical connectives (usually “and” and “or”) to obtain compound ones. A limited
usage of the particle “not” is also possible. Let us emphasize, however, that
syntactic and semantic limitations of natural language prevent the compound
evaluative expressions to form a boolean algebra!

We distinguish abstract evaluative expressions from more specific evaluative
predications. The latter are expressions of natural language of the form ‘X is A ’
where A is an evaluative expression and X is a variable which stands for objects,
for example “degrees of temperature, height, length, speed”, etc. Examples are
“temperature is high”, “speed is extremely low”, “quality is very high”, etc.
4 The “TE” is a short for “trichotomic evaluative”.
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In general, the variable X represents certain features of objects such as “size,
volume, force, strength,” etc. and so, its values are often real numbers (Fig. 1).

Important notion is that of linguistic context. In our theory it is an interval
w = [vL, vS ] ∪ [vS , vR] determined by a triple of (real) numbers w = 〈vL, vS , vR〉
where vL is the leftmost typically small value, vS is typically medium value
and vR is the rightmost typically big value. For example, when speaking about
temperature of water, we may set vL = 15 ◦C, vS = 50 ◦C and vR = 100 ◦C. In
the sequel, we will consider a set of all linguistic contexts

W = {w = 〈vL, vS , vR〉 | vL, vS , vR ∈ R, vL < vS < vR}. (21)

The element x belongs to a context w ∈ W if x ∈ [vL, vR]. Then we write x ∈ w.

Fig. 1. Shapes of extensions of some evaluative expressions in the context 〈0, 0.5, 1〉.
The hedges are {Extremely, Significantly, Very, empty hedge} for “small” and “big”
and {More-or-Less, Roughly, Quite Roughly, Very Roughly} for “small”, “medium”,
and “big”.

The meaning of an evaluative linguistic expression A (as well as of a predi-
cation) is represented by its intension

Int(X is A ) : W −→ F (R) (22)

where F (R) is a set of all fuzzy sets on R. For each context w ∈ W , the extension
Extw(X is A ) is a specific fuzzy set on R. Example of extensions of several
evaluative linguistic expressions is in Fig. 7. Let us emphasize that their shapes
have been established on the basis of logical analysis of the meaning of the
corresponding evaluative expressions (for the details, see [18]).

4.2.2 Linguistic Description
The evaluative linguistic predications are basic constituents of fuzzy/linguistic
IF-THEN rules that are special conditional clauses of natural language. A set of



224 V. Novák

such rules is called a linguistic description, that is, a finite set of fuzzy/linguistic
IF-THEN rules

R1 = IF X is A1 THEN Y is B1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23)
Rm = IF X is Am THEN Y is Bm

where “X is Aj”, “Y is Bj”, j = 1, . . . ,m are evaluative linguistic predications.
The linguistic description can be understood as a specific kind of a (structured)
text that can be used for description of various situations and processes.

4.2.3 Perception-Based Logical Deduction
Linguistic description taken as a special text requires a special inference method,
namely the Perception-based Logical Deduction (PbLD). This inference method
works with genuine evaluative linguistic expressions and it is based on formal
properties of mathematical fuzzy logic (see [16,17,23]). The method is based on
local properties of the linguistic description, so that we distinguish the rules as
such but at the same time deal with them as vague expressions of natural lan-
guage. The PbLD has nothing in common with the classical Mamdani’s inference
( cf., e.g., [10]) (Fig. 2).

(a)

(b)

(c)

(d)

Fig. 2. (a) A function obtained from the simple linguistic description (24) using the
PbLD method with smooth DEE defuzzification. (b) Extensions of the used evaluative
expressions “small–medium–big” in the context 〈0, 0.4, 1〉. (c) A function obtained using
Mamdani’s-COG method from linguistic description of the form (24) interpreted as
fuzzy relation constructed using triangular membership functions depicted in (d).
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The PbLD requires a defuzzification method called DEE (Defuzzification
of Evaluative Expressions). Its variant realized using the F-transform is called
smooth DEE (see [23]).

To demonstrate PbLD, let us consider the following linguistic description:

R1 = IF X is small THEN Y is small,

R2 = IF X is medium THEN Y is big, (24)
R3 = IF X is big THEN Y is small.

This description characterizes linguistically a function that has small functional
values on the left and right side of the graphs and big ones in the middle. The
result using PbLD method is depicted in part (a) of Fig. 3. In part (b) are
extensions of the used evaluative expressions in the context 〈0, 0.4, 1〉.

To see that PbLD method cannot be replaced by the Mamdani’s method that
is often used in various kinds of applications, we depicted in Fig. 3(c) and (d)
the result obtained from (24) using it the basis of triangular fuzzy sets often
(incorrectly) considered in literature as extensions of evaluative expressions. The
reason why Mamdani‘s method does not work in this case is the fact that it
provides very good approximation of a function, but it is not logical inference
suitable for manipulation with linguistic expressions.

4.2.4 Learning of Linguistic Description
In applications of the methods describe above, very important is the possibility
to use a learning procedure developed in FNL (cf. [24]). If the data and a context
w are given, we can learn linguistic description of the form (23) that linguistically
characterizes the data. Using the PbLD inference method, we can obtain various
kinds of specific information.

The learning procedure is realized by implementing a function of local per-
ception

LPerc(x,w) = A (25)

where w ∈ W is a given context and x ∈ w is a given value. The evaluative
linguistic expression A characterizes the value x in the given context w. For
example, the value x = 0.15 in a context w = 〈0, 4, 10〉 is evaluated by the
evaluative expression “very small”.

Using this simple idea, we can transform data in the form
⎡
⎢⎢⎢⎣

u11 u12 . . . u1c v1
u21 u22 . . . u2c v2
...

...
...

...
...

um1 um2 . . . umc vm

⎤
⎥⎥⎥⎦

into a linguistic description consisting of m fuzzy/linguistic IF-THEN rules of
the form IF X1 is A1 AND · · · AND Xc is Ac THEN Y is B.
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The outcome of this procedure is twofold: first, it provides us with the suc-
cinct information understandable to people about the content of the data. Sec-
ond, we can obtain answers to many “what if” questions and, on the basis of
that, make proper decisions.

5 Analysis and Forecasting of Time Series Using Fuzzy
Techniques

As discussed above, the fuzzy set theory (and fuzzy logic) is the mathematical
model of vaguely determined actualized groupings of objects. No occurrence of
any event is considered. In this section we will describe how fuzzy techniques
can be applied when dealing with time series. This requires a slightly different
view of time series. We will show that these techniques are able to compete
with the probabilistic ones in forecasting not only future values of time series,
but also to fit well the idea of their trend or trend cycle. But even more, the
fuzzy models have the potential to bring new hints for analysis of time series
that are not possible in the probabilistic approach. We have in mind especially
applications of the model of the semantics of natural language using which we
can obtain additional information about the behavior of time series which is,
moreover, well understandable to people.

5.1 Decomposition of Time Series

In the probabilistic model, a time series is a sequence of random variables
{X(t), t ∈ T} without considering their structure. A more apt model is the
following: the time series is decomposed into several components

X(t) = Tr(t) + C(t) + S(t) + R(t), t ∈ T, (26)

where Tr is the trend, C is a cyclic component, S is a seasonal component that
is a mixture of periodic functions and R is a random noise, i.e., a sequence of
independent random variables R(t) such that for each t ∈ T, the R(t) has zero
mean and finite variance.

The seasonal component S in (26) is assumed to be a sum of periodic func-
tions

S(t) =
r∑

j=1

Pj sin(λjt + ϕj), t ∈ T, (27)

for some finite r where λj are frequencies, ϕj are phase shifts and Pj are ampli-
tudes5.

In the practice, it is often difficult to distinguish trend and cycle. Therefore,
these two components are often joined into one component called trend-cycle

TC (t) = Tr(t) + C(t), t ∈ T.

5 Because cos x = sin(x + π/2), it is sufficient to consider only sin.
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Hence, we will replace the decomposition (26) by the simpler one

X(t) = TC (t) + S(t) + R(t), t ∈ T.

The difference between trend and trend-cycle was informally summarized by the
following OECD definitions.

The trend is a component of a time series that represents variations of low
frequency in a time series, the high and medium frequency fluctuations having
been filtered out.

The trend-cycle is a component that represents variations of low and medium
frequency in a time series, the high frequency fluctuations having been filtered
out. This component can be viewed as those variations with a period longer
than a chosen threshold (usually 1 year is considered as the minimum length of
the business cycle). Form the mathematical point of view, we assume that both
trend as well as trend-cycle are (continuous) functions with small modulus of
continuity6.

Note that the decomposition model keeps the idea that the time series is a
sequence of random variables but randomness is present only at the noise which
is an unpredictable random component with specific properties. The rest are non-
random components with clear interpretation. We argue, that fuzzy techniques
provide more powerful means for extracting these components and, moreover,
they make it possible to extract also additional information about time series.
This information is usually vaguely specified, provided often in natural language
and, therefore, it that cannot be obtained using the probabilistic methods.

The following theorem assures us that we can find a fuzzy partition enabling
us to estimate either the trend Tr or the trend cycle TC with high fidelity.

Theorem 3. Let {X(t) | t ∈ T} be a continuous realization of the stochastic
process

X(t) = Tr(t) +
r∑

j=1

Pj sin(λjt + ϕj) + R(t), t ∈ T

where T = [0, b], Tr : T −→ R is a function with small modulus of continuity,
λ1 ≤ . . . ≤ λr are frequencies and R is the noise from (26).

Let us construct an h-uniform fuzzy partition P over nodes c0, . . . , cn with
h = d T̄1, where T̄1 = 2π

λ1
and d ≥ 1 is a real number. Let us compute the direct

F-transform F [X]. Then there exists a number D(d) such that D(d) = 0 for
d → ∞ and

|X̂(t) − Tr(t)| ≤ D(d), t ∈ [c1, cn−1]

where X̂ is the corresponding inverse F-transform of X.

This theorem holds both for triangular as well as raised cosine fuzzy partition.
The precise expressions for D in both cases and the proof of this theorem can
be found in [14,25]. It can also be proved that D(d) is minimal if d ∈ N.
6 Let f : [a, b] −→ R be a continuous function. Then ω(h, f) = max |x−y|<h

x,y∈[a,b]
|f(x) −

f(y)| is the modulus of continuity of f .
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Fig. 3. Real trend and trend-cycle of the artificial time series.

Corollary 1. Let {X(t) | t ∈ T} be a continuous realization of the stochastic
process (26), Tr its trend and TC its trend-cycle. Then there exist numbers
D1(d),D2(d) such that Dk(d) = 0 for d → ∞, k = 1, 2 and

(a) |X̂(t) − Tr(t)| ≤ D1(d),
(b) |X̂(t) − TC (t)| ≤ D2(d)

for corresponding inverse F-transform X̂ of X and all t ∈ [c1, cn−1].

It follows from this corollary that we can form the h-uniform fuzzy partition
P with h corresponding to the largest periodicity of a periodic constituent
occurring either in the cyclic or the seasonal component of S(t). Then all the
subcomponents with shorter periodicities (i.e., higher frequencies) are almost
“wiped down”, and also, the noise is significantly reduced. In other words, either
the components C,S and R in (26) are almost completely removed and we obtain
estimation of the trend

Tr(t) ≈ X̂(t), (28)

or the components S and R are removed and we obtain estimation of the trend-
cycle

TC (t) ≈ X̂(t), (29)

t ∈ [c1, cn−1].
To demonstrate the above outlined theory for estimation of trend Tr and

trend-cycle TC of a time series, we constructed an artificial time series using the
following formula:

Fig. 4. Real trend (dotted line) of the artificial time series and its estimation (crossed
line) using the F-transform with h = 40.
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X(t) = Tr(t) + sin(0.157t + 1.5)︸ ︷︷ ︸
TC

+ sin(0.283t + 0.34) + sin(0.628t + 1.12)

+ sin(1.57t + 0.79) + R(t) (30)

where R is a random noise. The frequencies ω in this time series correspond to
the following periodicities T , respectively: 40, 22.2, 10, 4. The trend Tr(t) is
determined explicitly by data and has no predefined shape (Fig. 4).

Using Periodogram, we found in the artificial time series (30) the following
periodicities T : 36.9, 22.7, 16.6, 14.2, 9.9, 4. Note that Periodogram found two
more not existing periodicities and also, that estimation of the periodicity T = 40
is not too precise (Fig. 5).

Fig. 5. Real trend-cycle (dotted line) of the artificial time series and its estimation
(crossed line) using the F-transform with h = 22.

Finally, let us remark that the method is very robust towards missing values
and outliers, i.e., there is no visible change of the trend or trend-cycle if omit
some values of the time series.

5.2 Forecasting Future Course of Time Series

The linguistic description and PbLD inference method mentioned in Sect. 4.2.2
can be applied to forecasting of the trend Tr or trend-cycle TC . The method was
described in detail in [24], and so, we will only briefly review its main ideas. Let
T̄ ⊂ T. Then by X|T̄′ we denote the restriction of X to T̄. For the consistency
of notation, we will write the time series (26) as X|T.

Let T
′ ⊃ T be a new time domain. Our task is to extrapolate values of X

to X|(T′ \ T) on the basis of the known values of X|T. The method for finding
the former is called forecasting. As noted above, there are many forecasting
methods mostly formulated using probability theory (cf. [3,7,9]). In this section,
we present methods based on fuzzy techniques.

Recall that trend or trend-cycle are obtained using the F-transform on the
basis of an h-uniform fuzzy partition P. The result of the direct F-transform is
a vector of F-transform components

F[X] = (F1[X], . . . , Fn−1[X]), (31)
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where each component Fi[X] represents a weighted average of values of X(t) in
the area of width 2h. The components (31) can be used as data for learning of
a linguistic description. Then, using it and the PbLD method, we can forecast
future F-transform components

Fn[X], . . . , Fn+l[X] (32)

and from them, we can compute estimation of the future development either of
trend or trend cycle using the inverse F-transform X̂.

The learned linguistic description consists of fuzzy/linguistic rules of the
form, for example,

IF Δ2Xi−1 is AΔ2i−1 AND ΔXi−1 is AΔi−1 AND Xi is Ai THEN Xi+1 is Bi+1. (33)

where

ΔFi[X] = Fi[X] − Fi−1[X], i = 1, . . . , n − 1 (34)

Δ2Fi[X] = ΔFi[X] − ΔFi−1[X], i = 2, . . . , n − 1 (35)

are the first and second differences, respectively. Let us remark that in practice,
all kinds of combinations of the F-transform components and their first and
second differences can occur both in the antecedent as well as in the consequent
of (33). Example of such description is the following:

Rule Fi[X] ΔFi[X] ⇒ Fi+1[X]
1 ex bi ra me qr bi
2 ro bi -ml me qr bi
3 ro bi -ex sm vr sm
4 ze -ex bi vr sm
5 si sm si sm ra me
...

(the used shorts: ze-zero, sm-small, me-medium, bi-big, ex-extremely, ro-roughly,
qr-quite roughly, vr-very roughly, ra-rather, si-significantly, ml-more or less).

Note that forecasting of the future values, the learned linguistic descrip-
tion provides us also with information in linguistic form (i.e., understandable
to people) explaining how the forecast was obtained, i.e., what are the inner
characteristics of the time series that led to the forecast. The differences (34)
and (35) characterize dynamics of the time series as well as logical dependencies
of the trend-cycle changes (hidden cycle influences).

5.3 Mining Knowledge on Time Series

5.3.1 Linguistic Evaluation of the Local Trend
If a certain time interval is given, it may be interesting to learn what trend
(tendency) of the time series can be recognized in it. Surprisingly, recognition
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of trend in by no means is a trivial task even when watching the graph. Recall
that by Theorem 23, the F1-transform provides estimation of the average slope
(tangent). Therefore, it is a convenient tool for estimation of the course of trend
of the given time series. Such estimation can be, moreover, expressed in nat-
ural language. For example, we can say “fairly large decrease (huge increase)
of trend”, “the trend is stagnating (negligibly increasing)”, etc. These expres-
sions characterize trend (tendency) of the time series in an area specified by the
user. It is quite important achievement of the fuzzy techniques that it provides
algorithms using which it is possible to generate automatically this kinds of lin-
guistic evaluations. The method is based on the theoretical results in fuzzy nat-
ural logic and was described in more detail in [20,21]. Its idea is outlined below.

Fig. 6. The principle of linguistic of
evaluation of direction of trend: clear
decrease. The necessary parameter is
the context wtg specifying the low-
est, typically medium and the largest
value of the tangent. The triangle
above the x-axis is the basic function
of the F1-transform.

First, we must specify, what does it
mean “extreme increase (decrease)”. In
practice, it can be determined as the largest
acceptable difference of time series values
with respect to a given (basic) time interval
(for example 12 months, 31 days) that is, a
minimal and maximal tangent. In practice,
we set only the largest tangent vR while the
smallest one is usually vL = 0. The typi-
cally medium value vS is determined anal-
ogously as vR. The result is the context
wtg = 〈vL, vS , vR〉. Furthermore, we must
specify the time interval I ⊂ T interesting
for the inspection. The next step is to com-
pute a basic function A with the support I
(cf. Subsect. 4.1.1) and compute the coeffi-
cient β1 using formula (16).

Finally, we generate a linguistic evalu-
ation of the trend of the time series X in
the area characterized by A with respect
to the context wtg. The required evaluative
expression A is obtained using the function
of local perception

A = LPerc(β1, wtg). (36)

Demonstration of the principle of evaluation is in Fig. 67.

5.3.2 Mining More Kinds of Knowledge
Fuzzy techniques suggest more methods for mining knowledge from time series.
One of them is finding perceptionally important points (PIP). According to [6],
these are points where the time series essentially changes its course. Because

7 The results were obtained using the experimental software LFL Forecaster
(see http://irafm.osu.cz/en/c110 lfl-forecaster/) which implements the described
method. Its author is Viktor Pavliska.

http://irafm.osu.cz/en/c110_lfl-forecaster/
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of the complicated character following from the presence of various frequencies
and noise, we cannot expect that this is just one isolated time point but better
a certain area that cannot be precisely determined. Therefore, a very suitable
method is based on the higher-degree F-transform because it makes it possible
to estimate the first and second derivatives of a function with complicated course
in a vaguely specified area. Namely, this can be done by looking for small values
of the β1 coefficient (27).

Fig. 7. Time series with marked perceptionally important points and F1-approximation
of its course. Along the x-axis is also depicted the fuzzy partition.

Demonstration of the result of searching PIP in a part of the Monthly Closing
of Dow-Jones index is in Fig. 78. The points are found in areas covered by the
corresponding basic functions of the fuzzy partition. They correspond to values
of β1 close to zero9. To find the points we must shift the fuzzy partition to
localize β1 with minimal values. Note that it can be equal to zero only in case
of ideal line parallel with x-axis.

Other interesting possibility is to find time intervals in which the trend of the
time series X exhibits monotonous behavior which is also characterized linguis-
tically. This means that we must decompose the time domain T into a set of time
intervals Ti ⊆ T, i = 1, . . . , s, with monotonous trend of X (increasing, decreas-
ing, stagnating). Each interval Ti is a union of one or more adjacent intervals
T̄j . As a final result, direction of the trend of X|Ti is linguistically evaluated
similarly as is outlined above. The detailed algorithm can be found in [20].

An area that is becoming still more attractive is automatic summarization
of knowledge about time series. This task is addressed by several authors (see,
8 The points were obtained using the experimental software FT-Studio whose author

is Radek Valášek.
9 The actual values range between 0.07 and 1.4.
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e.g., [4,8]). The fuzzy natural logic suggests sophisticated formal theory of inter-
mediate quantifiers. The summarized information may address either one time
series or a set of time series. The theory includes a formalism on the basis of
which we can develop a model of the meaning of linguistic statements contain-
ing quantified information, as is usual in natural language, but also human-like
syllogistic reasoning that is based on the formal model of generalized Aristotle’s
syllogisms. For more details, see [12,20].

6 Conclusion

In this paper, we discussed the difference between vagueness and uncertainty
phenomena and their role in the fuzzy and probabilistic techniques applied to
time series analysis. While probabilistic techniques assume that the time series is
a stochastic process consisting of random variables, fuzzy techniques stem from
the decomposition of the time series into deterministic components, assuming
that only noise is random. We argue that, because both techniques have at
disposal one realization of the time series only, statistically relevant processing
is possible only under quite strong assumptions on the origins of the time series.
While such assumptions are in the case of noise natural, for the whole time series
they are too strong.

As fuzzy techniques are based on the model of the vagueness phenomenon,
they are robust which means that they are little sensitive to changes of the
data. Moreover, they enable to obtain information that cannot be obtained using
probabilistic techniques. This concerns especially the area of mining knowledge
from time series. On one hand, this knowledge can be obtained in an easier and
straightforward way than classical methods (e.g., finding perceptionally impor-
tant points). On the other hand, the knowledge can be often obtained directly
in expressions or even sentences of natural language, which is the form well
understandable to people.
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