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Preface

Econometrics is a branch of economics that uses mathematical (especially statis-
tical) methods to analyze economic systems, to forecast economic and financial
dynamics, and to develop strategies for achieving desirable economic performance.

An extremely important part of economics is finances: A financial crisis can
bring the whole economy to a standstill and, vice versa, a smart financial policy can
drastically boost economic development. It is therefore crucial to be able to apply
mathematical techniques of econometrics to financial problems. Such applications
are a growing field, with many interesting results—and with an even larger number
of challenges and open problems.

This book contains both related theoretical developments and practical appli-
cations of econometric techniques to finance-related problems. The main objective
of econometric analysis is to predict the effect of different financial strategies on the
economics. To be able to make successful predictions, we need to understand the
causal structure of economic and financial phenomena, develop quantitative models
of these phenomena, and test these models—by making sure that they provide
correct predictions of observed phenomena. In solving all these problems, addi-
tional challenges emerge from the need to take into account the data-rich character
of the current information environment. The resulted issues of testing, prediction,
and cause are handled in several chapters of this book.

In many situations, it is possible to design adequate models by using existing
mathematical techniques—usually techniques from mathematical statistics.
However, often, models constructed by using the traditional techniques do not
allow accurate predictions. In such situations, new techniques are needed. A similar
situation happened in physics in the early twentieth century, when the traditional
statistical techniques turned out to be not very adequate for describing microscale
phenomena. To adequately describe these phenomena, physicists came up with
techniques of quantum mechanics. Recently, it has been shown that ideas motivated
by quantum physics can also help in the description of economic phenomena;
several related chapters are also included in this book.

While physics-motivated ideas can be very helpful, these ideas can rarely be
directly applied to economic phenomena, because our objectives in physics and
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economics applications are usually very different: While in physics applications, we
aim for revolutionary changes—such as transistors, space exploration—in eco-
nomics, we usually want to avoid drastic changes and oscillations, we want to
achieve a solid robust sustainable growth. We want to reach a dynamic state of
economics in which external influences should not lead to drastic changes. In
mathematics, a state that does not change under a certain operation is known as a
fixed point. Thus, the study of fixed points is an important part of econometrics.
Several related chapters form a special section of this book.

This book also contains applications of both traditional and novel econometric
techniques to real-life economic problems, with a special emphasis on financial and
finance-related problems.

We hope that this volume will help practitioners to learn how to apply various
state-of-the-art econometric techniques to finance-related problems, and help
researchers to further improve the existing econometric techniques and to come up
with new techniques for financial econometrics.

We want to thank all the authors for their contributions and all anonymous
referees for their thorough analysis and helpful comments.

The publication of this volume is partly supported by the Banking University of
Ho Chi Minh City, Vietnam. Our thanks go to the leadership and staff of the
Banking University, for providing crucial support. Our special thanks go to Prof.
Hung T. Nguyen for his valuable advice and constant support.

We would also like to thank Prof. Janusz Kacprzyk (Series Editor) and
Dr. Thomas Ditzinger (Senior Editor, Engineering/Applied Sciences) for their
support and cooperation in this publication.

January 2018 Ly H. Anh
Le Si Dong

Vladik Kreinovich

Nguyen Ngoc Thach
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Testing, Prediction, and Cause
in Econometric Models

William M. Briggs®™

340 E 64 St. Apt. 9A, New York, NY 10065, USA
mattQwmbriggs.com

Abstract. Classical statistical approaches used widely in econometrics
centering around parameter estimation, hypothesis testing, and p-values
should be abandoned. In their place, predictive modeling should be used.
A predictive model answer the question all users of statistics have: if T
change x, or leave it out of my model, what does this do to the uncertainty
in y? Classical methods never answer that question directly. The reason
why this is so, and why the predictive approach does, is shown.

Keywords: Cause - Decision + Hypothesis testing + Models
P-values - Priors - Prediction - Model verification

1 Introduction

This paper will use language about probability unfamiliar to most, who may
be used to thinking of probability solely in mathematical terms, as functions of
measure spaces, say. There is, of course, nothing wrong with the mathematical
theory of probability; its lemmas and theorems remain as strong as ever. The
difficulty comes in applying these constructs to the real world, and even to
other-world, events. There, the mathematics does not so much break down as
become misapplied. We begin to expect that nature behaves along the same
strict, rigorous quantitative lines as our theories, but this is not so; and it is
especially not so in complex systems. And there is nothing more complex than
human interactions, the subject matter of econometrics.

A century and more earlier, scholars of probability such as Laplace [15] and
Keynes [14] took a broader view. Probability was the specification of the uncer-
tainty of propositions given assumptions. The modern mathematical view of
probability fits into this as a subset, but its insistence on quantification limits it.

For instance, in logic, everybody knows the proposition S = “George wears
a hat” is true given it is accepted that “All Martians wear hats and George is a
Martian.” We know S is a local, i.e. conditional, truth, just as we know there are
no Martians and thus no hat-wearing Martians. The status of the proposition
given the assumptions is true. Given different assumptions, the propositions can
take different statuses.

For example, given “My brother always wears a hat and George is my
brother” then S is still true. But given “A lot of Martians wear hats and George

© Springer International Publishing AG 2018
L. H. Anh et al. (eds.), Econometrics for Financial Applications, Studies in Computational
Intelligence 760, https://doi.org/10.1007/978-3-319-73150-6_1
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is a Martian” then S is only likely. There is no number for this “likely”, because
there is in the premises no indication of how to map “a lot” to any number.
Of course, premises can be added (as subjectivists do), but this is in a sense
cheating. Just as in logic, with probability, we must always deduce the qualities
of S with only the given information.

As should be clear, there is no truth or falseness or probability of the
unadorned, unconditional proposition S. “George wears a hat” has no epistemic
status without conditions, without presumptions or observations or assumptions.
This is the same in math, where the symbol “x” has no value without presup-
positions (say, y = x and y = 7, etc.). This is a long-winded way of saying, as in
math and logic, all probability is conditional: no probability is unconditional.

And that is a round-about way of saying what Bruno de Finetti said so many
years ago, and in all caps, “PROBABILITY DOES NOT EXIST”, [17].

The reason for the emphasis on these matters is that they have profound
consequences for the creation, interpretation, and use of probability models, the
lifeblood of econometrics.

2 Probability Models

Everybody knows that correlation is not causation. Just as everybody knows
that hypothesis testing proves correlations are causes—or something like causes,
causes in all but name. Everybody is a little mixed up.

Consider the simple “time series”

Yt = Yp—1 T €. (1)

This model says that the value of y; will be equal to the value of y;_1, the time
point before, with the addition of €. Specifics about € are not known. The best
that can be said is the value e takes can be ascribed by some parameterized
probability distribution. This probability distribution is almost always ad hoc,
and its parameters are also unknown.

The interpretation of the model is this. Given we are at time ¢, the uncertainty
we have in values of y; are specified by a certain parameterized probability
distribution which is a function of y;_1 and the probability distribution of e.
There is no notion whatsoever that y;_1 is the efficient cause of the value of
y¢; nor is any € the efficient cause of y,. It should be clear that if we knew the
efficient cause of y;, the model would not be probabilistic but a simple statement,
“y, will equal a because it will be caused to be a.”

It is helpful to have an example in mind, so think of stock prices. The value
of y;_1 does not cause y;, even in those cases when y; 1 = y;. Many, many
things cause the price of the stock: the rules of the exchange, the mind sets of
innumerable people who buy or sell the stock directly or indirectly, the state
of their finances and finances of others. There is no one cause, but a myriad of
them, with most or (usually) all unknown. Those that might be known are the
rules of the exchange, which might limit prices in certain ways. Whether these
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(limited) causes are put in the eventual probability model is an open question;
typically they are not.

Model (1) is purely correlational. It only says we know this-and-such about
the uncertainty in y; given some other assumptions. The model itself is an
assumption, and a major one. Let that pass for the moment and concentrate
on the second set of assumptions about e.

In shorthand, people will say something akin to “e is normal”, when what
they mean is the uncertainty in this additive value is characterized by a normal
distribution, specified with some central and spread parameter.

But it is here that reification—the substitution of fiction for reality—enters
the first time. It is almost impossible to resist the temptation to say that our
models describe the genuine underlying reality. Some will say “e is normal”’ as
if this mysterious parameter has physical existence and possess characteristics
unique to a “normal.” Yet nothing in the world “is” normal. Nothing in the
world is any probability. Probability is purely a matter of epistemology; it is
a measure, not necessarily quantitative, of uncertainty of a proposition given
certain assumptions. These assumptions must always be there: as above, this is
another way of saying there is no such thing as unconditional probability: all
probability is conditional. This is proved and expanded upon in [4].

What the model itself says is that the uncertainty in y; can be characterized
by some distribution, such as a normal, with central parameter a function of
yt—1 and the central parameter of €, and a spread parameter a function of ¢ and
the spread parameter of e.

This is the epistemological, and thus correct, interpretation. There is no
notion of cause in the model, and none is needed. The model make may rea-
sonable, but approximate, predictions, but the model itself offers no explanation
why anything happens. The predictions, incidentally, are always approximations
because the distribution for € lives on the continuum, which forces the proba-
bility of any value of y; to be infinitesimal, and (depending on the distribution)
to have values tailing off to infinity. Real-world values of y; will, of course, take
specific values with non-vanishing probability.

About this specific model (1), there is great concern. It is said to be a “random
walk” | and the series itself is said to contain a “unit root” and is non-stationary,
which means that the uncertainty in y; depends (in some way) on ¢. These facts
do not make the series un-predictable, nor is the epistemological interpretation
invalid. The concern arises because of the approximation of €, which gives non-
zero probabilities to values which are very large, and therefore impossible in
practice, and which causes the uncertainty in y; to become great. There are
various “fixes” for this situation (e.g. differencing), none of which involve aban-
doning the impossibilities of continuum-based models. Another is to propose a
more complicated model, such as this:

Yt = BYi—1 + €, (2)

where a § # 1, and usually || < 1, indicates an auto-regressive (the term
is borrowed from regression, which is explored next). The question becomes
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whether 8 = 1; if so, the model reverts to (1); if not, the uncertainty in y; is
considered tame enough for use.

There is no information in the ad hoc model on the value of 3, and therefore
its value must be forever unknown. This is key. To discover something about
(B, the model itself must be augmented by premises which allow inference of
B. It should be clear by now that § does not exist in any real or ontic sense;
no parameter exists, because probability does not exist. This parameter is only
part of the mathematical apparatus, and therefore a specific value is not per se
needed. This is examined later in the predictive approach for modeling. For now,
the belief that § has a value, in real life, leads to the idea of hypothesis testing,
which is discussed in full below. There is also the sense, in simulations, that a G
with a fixed value can “exist”. This is so, in a certain sense, but not in the sense
hoped for, which is also explained below.

First, beside time series, regression is the most-used probability model in
econometrics. Models for regression look like this:

Y= t7x1+ - +Pprp te (3)

where the y is the quantifiable observable of interest, the x also quantifiable
observables, the gamma parameters relating the x to the uncertainty in y, and
not in y itself, and € is as above.

As with time series, most know the actual interpretation of (3), which is why
is so odd that in practice this interpretation is dropped in preference for a glaring
error. What the model says, of course, is that the uncertainty in y is conditional
on the values of z, v, and the parameters of . The model is silent as the tomb
on the cause or causes of y. Yet people cannot help themselves but to interpret
the s as sort of causes. This error is found almost every time hypothesis testing
is used.

3 The Predictive Approach

Before we discuss hypothesis testing, we need to decide just models are, and what
to do about them. In this section is the proposed replacement for hypothesis
testing, and indeed for all parameter-centric methods of classical statistics, both
Bayesian and frequentist.

Suppose there are two rival models for y;:

Y = B1Ys—1 + BoYi—2 + €, (4)

Yt = Pryi—1 + €. (5)

Both will give ceteris paribus different probabilities for ;. Which of these models
is correct?

Both. Unless one has specific evidence or assumptions that say one or the
other is false or necessary, then because all probability is conditional on the
information assumed, both of these models are correct given our assumptions.
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These assumptions must, of course, exist. If they did not, then these model forms
would not exist. They have to be suggested by some evidence, however loose or
tacit. It is these assumptions that are the true model; the mathematical form is
deduced via these assumptions.

One popular assumption has this form: M = “People before me used auto-
regressive models on data like this, and I too will try a lag-1 and lag-2 model.”
M is loose and not well justified, but it (and ones like it) is surely the most
common of all assumptions. From M, we deduce (4) and (5).

We know from above that there is no notion of cause in M, or therefore
none in (4) and (5). These models, like all probability models, are correlational.
The probabilities deduced via (4) and (5), given M, are therefore conditionally
correct and true (assuming no errors in calculation). Now suppose that we do
these calculations and arrive at:

Pr(y: € s|M, lagl) = a
Pr(y: € s|]M, lag2) = a+ 4§

where s is some set of values of y of interest and a,d > 0. Since § > 0 (or 6 < 0,
with the obvious bounds respected), the two sub-models (both are children of
the parent M), are different. There is, at this point anyway, no sense in which
one model is superior to another. The two probabilities are, it is emphasized,
correct, because each is produced given different assumption. There is nothing
to choose between them save §.

To get the formulas to work, we have to supply at least y;_1 and y;_o. Any
assumed or observed values will do. Properly, then, the correct way to write the
probabilities is this:

Pr(yt S $|yt—17M7 lagl) =a
Pr(y; € slyi—1,91—2, M, lag2) = a + 0

where the lagged values of y either assumed or observed. This can represent data
in the usual sense of observations, but it need not. No data is needed to make
these models work; only assumptions.

Knowing a and 6 implies we know the values of all parameters, 3; etc. Sup-
posing this is true (this assumption is loosened below) if one wants to decide
between models, how do we decide between models? There is only one way. It is
if the value of §, for a given s of importance, is sufficiently large that we would
change a decision we would make about the value of y;. If the probability y; is in
s is a we would act one way, and if it equalled a + § we would act another way,
then we must select the lag-2 model, there being no other information about
which version to prefer in the assumption M. Remember: probability, like math
and logic, is only calculated on the information assumed, and none other.

Now since men different decisions, given s, a 0 that is important to one
man might be ignorable or trivial to another. Therefore, based on the same
evidence, one man might opt for the lag-1 model, and the second for the lag-2.
M says nothing about which version is preferred, therefore the only distinguishing
characteristic are the different predictions.
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Of course, since s can vary, and therefore a and § will differ, the same man
could at times prefer the lag-1 version and at other times the lag-2 version. And
so on for all model users. Keep in mind that, at this point, the only information
we have is that assumed in M. There are, as yet, no past observations to which
we can compare the model.

One does not have to choose between model versions. The evidence in M—the
sole evidence—is that either lag-1 or lag-2 better represents the uncertainty in y;.
This is not to say that either lag-1 or lag-2 is true: they are both conditionally or
locally true given M. For a model to be true in the absolute sense, it must rep-
resent the efficient causes of y;. Only (correct, of course) causal models are true.
Correlational models are not false, however. To be false means we have proof, in
the strict rigorous mathematical sense that one or more of the model premises is
false. We obviously do not have that information in M, which is a bald assumption.

Recognizing this, we can say that, given only M, either lag-1 or lag-2 better
describes the uncertainty in y;, and that only one of these is best, then via the
statistical syllogism (a means of deducing probabilities) there is a probability of
0.5 the lag-1 model is best, and a corresponding probability of 0.5 lag-2 is best.
Then via the obvious calculation the probability, given M etc., y; € s = a+0.54.

The idea that either lag-1 or lag-2 is best, or that only one can be chosen, is
not in M itself. Both are external assumptions. Which is right? Again, both. M is
already ad hoc, and so are both of these assumptions. There is nothing to judge
between them, save what we bring to the problem. The probability for y; € s
is not unique because the assumptions are not unique; and there is certainly
nothing unique in M. There are various ad hoc criteria, such as AIC, that people
sometimes use to picking models, and this is fine, but these criteria are nothing
but (ad hoc) assumptions added to M: any assumptions may be added to M!

To recapitulate: a set of assumptions are given, and given these assumptions
the probabilities y; € s are calculated. This s is chosen because it is important
to some decision maker. Not all s are interesting. For instance, for a stock price,
s < —le6 would give, for almost any time series model in current use, nearly
identical (in any useful sense) probabilities; therefore, there would be nothing to
distinguish between these models. And it really is true that there is no practical
difference for s like this! The models are practically the same. The s chosen,
then, must be important for decision makers. Different s lead to different model
preferences. Probability is not decision.

As it might not be obvious, this is the predictive approach. Below, the same
method is expanded for those times when we make assumptions about the param-
eters other than asserting their values, as was done here (“priors” and estimates).
We bring in the observations and clarify their role. The idea of model verification
is also introduced, which allows us to a posteriori assess model usefulness.

These concepts do not change the “guts” of the predictive approach. If we have
a set of assumptions, observations, presuppositions or whatever, that lead to only
one model form, then we are done. We make the predictions and act on them. This
is, after all, what civil engineers and physicists do. But if the assumptions allow for
model choice, as in this current example, then we either have to assume we want
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to combine the assumptions, leading to a melded prediction, weighted according
to the probabilities of each model version deduced from M, or we pick “the best”
model, where best is in reference to a living decision we make. Different decisions
will lead to different best models.

There is no contradiction. Different assumptions lead to different conclusions
in logic and math, just as they lead to different probabilities. Since probability
is not decision, and that decision is prior to or above probability, it should be
no surprise that different decisions lead to differing model choice.

Since choice and decision are so varying, it would be impossible to specify
in advance a value of § that should be universally adopted, as people have done
with the magic number with p-values. That arbitrary choice has led to a world
of grief, as all know, and p-values are in any case the wrong thing to use.

What is most beautiful about the predictive approach is the concentration on
observables. We do not speak about obscure test statistics, or on unobservable
non-causal parameters, but about probabilities of real things, things we can
measure.

Customer walks in the door and asks, “If I change x in my model, what is
the probability that y does this?” The predictive modeler says, “It’s p.” And
we’re done. Everybody is happy.

The classical statistician fixated on parameters says, “Well, the confidence
interval on the third v in your model associated with that x widens a tad”.
The hypothesis tester says, “Your p-value is wee: officially wee.” Either way, the
customer leaves scratching his head. His question has not been answered. He
asked for a probability so that he could make a rational decision and he was
given persiflage. Worse, he goes away more certain than he should be.

The example above focused on the time series model, but it works equally
well on the regression; and indeed works on any probability model. As a quick
example, compare the two models

Yy=v%+mx1+ -+ Vp-1Tp-1tE,

and
y=70+71x1+-~-+'ypxp+e,

where the comparison is between a “reduced” and “full” model (the order of lin-
ear regressors of course do not matter). Again, the probabilities of some relevant
set s can be calculated:

Pr(y € s|]M, reduced) = a
Pr(y € s|M, full) =a+4¢

and the comparison goes on as before. Whether to include z, in the model
depends on the decision one makes, and on whether one wants “the best” model
or a weighted average of models, both of which as before are additional ad hoc
assumptions.

One need not progress through M z by x, or lag by lag, including those
parameters associated with moving averages, or “garch” parameters. One can
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examine the probabilities in “batches”, examining various collections of parame-
ters depending on what decisions are important. Decision is king in the predictive
approach.

For instance, it may be a matter of controversy whether sex is important;
rather, there is public concern over how sex relates to some y, say income. Models
with and without sex are used to compute the probability y is in various s. These
probabilities can be plotted along the x-axis, the probabilities along the y-axis, or,
the human eye being flawed in perceiving differences, the differences between the
probabilities themselves may be plotted. Experience shows that these differences
vary by s and are not constant; but that depends on the actual observations. Then,
no single decision must be made, and all can view the importance of conditioning
on sex.

The predictive approach is no panacea. Using it does not save one from
the usual mistakes, such as bad or misapplied data, Simpson’s paradox, and all
that. But, as we shall see when it comes to hypothesis testing and parameter
estimation, it is a much fairer approach, and one which gives the best sense of
uncertainty given the assumptions. Usually this uncertainty is much wider than
in the other classical approaches, which is also a recommendation in its favor, the
other methods producing over-certainty of pandemic proportion, as lamented by
such authors as [16,20].

4 Model Parameters

Last section, it was assumed the model parameters were known. Here, as is more
usual, it is assumed they are unknown.

We learned above that the data do not possess the characteristics implied
by the model. M is not ontic; its parameters are not ontic. There is no “true”
probability value unconditional of the assumptions M. There is therefore only
that which we can calculate given M.

The wrinkle, or rather seeming wrinkle, is the values of the parameters, 3;
and so on. If these are known, i.e. deducible from M, then there is no difficulty
finding a and § in the above examples. If not, then we are stuck: a and J cannot be
discovered. In these cases, M must be augmented in some way, usually depending
on whether one follows frequentist or Bayesian theory.

Before that, it is well to highlight that parameters are not needed. To whit:
in this box are mg black balls and m; white. Knowing only this, and nothing
more, the probability that a white is selected (where we do not have information
on the selection mechanism) is deduced as my/(mg 4+ my). Similar deductions
can be made assuming only the possibility of black and white; predictions can be
made how many of each will be seen, conditioning on whether no observations
have thus been made, and so on.

All is discrete and finite here, as all actual observations and measurements in
real life are. Taken to the limit, these simple, even bare, assumptions lead directly
to the binomial model; and its predictive sense, the beta-binomial. No parame-
ters ever appear, except in the limit, where, naturally, interesting mathematical
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things can be said. This kind of thing can be done for any set of assumptions
and measurements, though it almost never is.

The usual recourse, because of a strong sense of custom, is to embrace models
parameterized on the continuum. In order to guess values of these parameters,
or at least incorporate into predictions, additional assumptions to M must be
made.

The Bayesian way to do this is to assume a probability distribution for the
parameters, in the exact same way an assumption was made for €. These distri-
butions are called, as we all know, “priors.” For a reason that will become clear,
there is great angst conveyed in doing this. It is discovered that prior A leads
to one result, but that prior B leads to another. This is seen a bug, when, as
we now know, it is a feature of probability models. Probability is calculated on
given assumptions: change the assumptions, change the probability.

An unfortunate terminology has arisen in the search for priors. People want
to find “non-informative” or “ignorance” priors. This is impossible: it is not
unlikely: it is impossible. Any assumption added to M is informative if it is
not irrelevant. If irrelevant information about the parameters is added to M,
then this information gives no insight into the probability the parameters take
any values, and therefore it is useless information. This is a general statement,
incidentally. Information added to M that does not change the probability of y
is irrelevant by definition. Whether any piece of information is relevant depends
on what is already in M, of course.

The terminology is also flawed because the greatest source of information
about y has already been given, and that is M itself, which is almost always ad
hoc. Add to that the ad hoc nature of €, we're already two levels deep in (if I
may) ad hociness. Why quail about an additional layer for priors?

The answer to this question is that people mistakenly believe the data “have”
a probability, a true probability that can be discovered, if only the search is
carried on with sufficient assiduity. This is false: probability doesn’t exist. We
might discover the cause of y, as is ever the goal in science, but once we have
it, we no longer have need of probability. This is why quantum mechanics are
“stuck” with probability: we know that we cannot discern the cause of individual
events. (In QM, M is usually deduced given simpler assumptions).

Very well, we have posited a prior for our parameters. This can be used, as
above, to make initial predictions of y, or the uncertainty in the values of the
parameters themselves may be discovered once observations have been taken.
This produces the “posteriors”, around which great interest centers. It shouldn’t.

Knowing that it’s likely a parameters lies in some range is of little use, though
that it what current practice focuses on. Instead, what should happen is that the
uncertainty in these parameters be “integrated out”, so that predictions about
the observable can be made. We want this:

Pr(y € sz, M, D), (6)

where z are assumed, or new, values for all those 2 we have in the model (the
2 may be lagged values of y, etc.), M is understood to be augmented with the
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assumptions about the prior, and D the past observations of y and x. This schema
is for all probability models, time series, regression, or whatever. Equation (6)
is called the “predictive-posterior” which, if we do not know cause, is the goal
of modeling.

As above, if we are positing two different priors for the parameters, say a
maximum entropy (maxent) or a Jeffreys, then we can calculate:

Pr(y € s|z,M, D, maxent) = a

and
Pr(y € s|z,M, D, Jefferys) = a + 4.

We are in the same situation as above. Given s, is § interesting? Would we make
different decisions based on its size? Do we want the “best” single model or an
average? And so on.

Contrast this with the frequentist approach. Frequentist theory is deeply
flawed, as best argued by the philosopher Héjek, [11,12], in which he presents
30 different counter-arguments. Most of these counter-arguments are unknown
to econometricians, and they are worth investigating. For our purposes, we will
mention only one, a fatal flaw. Frequentist theory assumes probability exists,
and that no probability can be known with certainty until after an infinity of
observations are taken. We now see that this is false. Probability is not unique;
it is always conditional and never unconditional (the goal of all frequentist anal-
ysis), and probability can be deduced given any set of assumptions, though this
deduction may not give a quantitative values.

But, ignoring that, or at least brushing aside these objections, what happens
in a frequentist analysis? Either a hypothesis test, which is discussed next, or an
estimate of the parameter, in the presence of data, is made. Frequentist theory
does not allow predictions to be made pre-data, as it were.

The estimate of the parameter is made via routine calculations, and then
perhaps a confidence interval around that parameter is given. There are sim-
ilarities, and even exact equivalences in some cases, with Bayesian parameter
posterior distributions. The meaning of the confidence interval is nearly always
wrong. All we can say, following frequentist theory, is that the “true” value of
parameter lies in the given interval or it does not. A probabilistic interpretation
of the interval is forbidden; indeed, the interval itself only says things about what
would happen were the “experiment” which gave rise to the calculated interval
were repeated an infinite number of times.

Since that it too confusing, everybody lapses into a semi-Bayesian interpre-
tation. If the interval is narrow, in some relative sense, in practice this is taken to
convey large probability the parameter really is in that interval. The converse is
also believed: wide intervals are taken to mean there is only a small probability
the parameter lies in the interval.

Whether this is true or false (and it is false, given the theory’s actual definition
of confidence intervals), we have stopped short of our goal. When we give an esti-
mate of an unobservable parameter, we have not done much. We have not learned
how changes in any observable z changes the uncertainty in the observable y.
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We just have an interval. Worse, the confidence people have in the value of the
parameter is taken to be the confidence we have in the relation between the x and
y, when this is not at all the case. We can be certain, absolutely certain, in the
value of a parameter (we might have supposed it, or that it was given to us as
an assumption, or even via deduction as in QM), but that does not translate into
uncertainty in y. To discover that uncertainty, the predictive approach is neces-
sary.
This will become clearer when hypothesis testing is discussed.

5 Hypothesis Testing

Let’s now contrast the predictive, decision-based approach with hypothesis test-
ing. All are familiar with the ritual, but it’s as well to spell it out once more.
Hypothesis testing, whether it be done in accordance with Neyman-Person rules
or via Fisherian p-values, always involves a fallacy. It is always a confusion
between probability and decision. Here is the proof of that contention.

A non-unique ad hoc function of the observations, i.e. a test statistic, is cal-
culated. Then the probability of larger (in absolute value) values of this statistic
are calculated given M and D and assuming one or more parameters of the
expanded model are set equal to some value, usually 0. The reduced model with
fixed parameters is called “the null.” It is, as all know, usually, but of course not
always, a straw man, a model that is not believed, but which the model author
cannot bear to dismiss out of hand.

There are, of course, an infinite number of models for any y that can be con-
sidered. The number of possible = that could say something about y is unlimited.
In M, almost all of them are dismissed at the beginning. According to frequentist
theory, these dismissals must have taken place, because an unconditional proba-
bility for all “events”, i.e. all possible x, must exist. This is no small point and it
is everywhere unappreciated. If there really is an unconditional probability of ,
then every possibility for y that exists must be examined or otherwise accounted
for. What this means is that, at the start, an infinite number of hypothesis
tests must have been done. What’s left for us are only a handful of xs. This is
obviously absurd.

In the predictive approach, which assumes all probability is conditional on
just the assumptions we have made and none other, there is no paradox. Change
the assumptions, change the probability. Whether to include an x depends on
whether decisions would be different.

At any rate, in hypothesis test, a p-value for some z is at hand. It will be
wee (less than the magic number) or not wee. If the p-value is not wee, the
null has “failed to be rejected”, i.e. the x is tossed from the model regardless of
what changes this x makes to the predictions of y € s, whether these predictions
are important in any decision or not. If the p-value is wee, the z is kept, again
regardless what this « does to the probability and decisions. P-values thus make
one-size-fits-all decisions.

There are other problems. The next three paragraphs are a paraphrase of
what I have written elsewhere [5].
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Fisher [7] said: “Belief in null hypothesis as an accurate representation of the
population sampled is confronted by a logical disjunction: Either the null is false,
or the p-value has attained by chance an exceptionally low value.” Something
like this is repeated in every elementary textbook.

Yet Fisher’s “logical disjunction” is evidently not one, since his either-or
describes different propositions, i.e. the null and p-values. A real disjunction can
however be found. Re-writing Fisher gives: Fither the null is false and we see
a small p-value, or the null is true and we see a small p-value. Or just: Either
the null is true or it is false and we see a small p-value. Since “Fither the null
is true or it is false” is a tautology, and is therefore necessarily true no matter
what, and because prefixing any argument with a tautology does not change
that argument’s logical status, we are left with, “We see a small p-value.” The
p-value thus casts no light on the truth or falsity of the null. Everybody know
this, but this is the formal proof of it.

Frequentist theory claims, assuming the truth of the null, we can equally
likely see any p-value whatsoever, i.e. the p-value under the null is uniformly
distributed. To emphasize: assuming the truth of the null, we deduce we can see
any p-value between 0 and 1. And since we always do see any value, all p-values
are logically evidence for the null and not against it. Yet practice insists small
p-value are evidence the null is (likely) false. That is because people argue: For
most small p-values I have seen in the past, I believe the null has been false;
I now see a new small p-value, therefore the null hypothesis in this new problem is
likely false. That argument works, but it has no place in frequentist theory (which
anyway has innumerable other difficulties). It is the Bayesian-like interpretation.

The decisions made using p-values are thus an “act of will”, as Neyman
criticized [18], not realizing his own method of not-rejecting and rejecting nulls
had the same flaw.

There isn’t the space here to detail all the arguments against p-values. That
they are logically un-equipped to do the job asked of them is sufficient evidence
to abandon their use. Nevertheless, a few more words on their weaknesses are in
order.

Given a fixed M, p-values are not unique, because of the possibility of different
statistics and different methods of calculating the distribution of those statistics
assuming the null’s truth. That means different decisions can be made with the
same model. It is also too easy to pass the p-value’s test. If an author has not
discovered a wee p-value, it means he has not tried hard enough.

P-values encourage ritualized, even magical, thinking, [8]. If a p-value is wee,
it is as if for many a spell has been successful. We must remember that the vast
number of users of statistical methods are not cautious academics, but people
wanting quick answers; p-values are too ready to supply these.

A colleague of mine (Roy Spencer), once did an informal “analysis” which
showed (something like) the number of annual UFO reports correlated with
the global average temperature anomaly. This analysis passed all the classical
statistical tests he could think of. Wee p-values etc. Conclusion? UFOs cause
global warming.
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There was nothing wrong with his analysis. Spencer followed all the classical
rules. It must then be the case that we are forced to say, at the least, that
UFOs are “linked to” global warming, which is what the more cautious users of
p-values say. But what does “linked to” mean? Tautologically, it means a wee
p-value was seen. But everybody takes it as proving cause. How? Perhaps UFOs
did not directly cause global temperatures to rise, but something the UFOs did
caused something else to cause a rise in temperatures.

Wee p-values are far too seductive, and the temptation to say that one has
shown a cause, or something vaguely like a cause (i.e. “linked t0”), is scarcely
resisted. Probability models simply cannot show cause, not ever (this is proved
in [4]). The predictive approach is not immune to this temptation. A § of suffi-
cient size is bound to lead some to conclude that cause has been discovered. But
since evidence in the predictive model for or against a “null” is guaranteed to be
weaker, since knowledge in the observables is always weaker than knowledge in
the parameters, there will fewer misascriptions of cause.

The problem of p-values is again a topic of lively debate. A collection of
authors, [1], made a recent splash by saying p-values should be kept but that
the magic number should be reduced tenfold to 0.005. This fixes none of the
aforementioned problems. It will still be a logical fallacy to conclude—to decide,
that is—the null is true or false based on a p-value. P-values conflate decision and
probability. One universal number is picked, such that all nulls are considered
true (rather, not proven false, because of Fisher’s insistence on using Popper’s
curious doctrine of falsifiability) if the p-value is greater than this number, and
all nulls are false if the p-value is less than this number.

In the predictive approach, the null is not decided to be true or false per se.
All available evidence is used and whether to accept the evidence about the null
either way depends on the decision that will be made. If there are no immediate
decisions to be made, if for instance the results of the probability model are
for the general public where a range of decisions are possible, the (conditional)
probability of y € s is given with and without the null.

Why is this is important? It is common knowledge that weer p-values can be
had by increasing the sample size. This is one reason why the size of p-value does
not correlate (in the plain-English sense) with the value of §. As the sample size
increases, changes to d become less likely, whereas the p-value can shrink indefi-
nitely. Wee p-values therefore do not imply large values of §, just as large p-values
do not imply small values of §. P-values are misleading, while the predictive app-
roach gives the direct, desired probability based on the agreed upon assumptions
(M, D, and so on).

6 Example

Annual income (in thousands) was measured for some 1,000 persons (from $0K to
$563K), along with Sex, Age, Marriage status, Hours Worked, Race, USA Citizen
status, presence of Health Insurance, and whether English was spoken, [6]. No other
details are present, such as when the data was taken. Only those 18 years-old and
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older were analyzed, leavingn = 787. A simple linear regression with y = “Income”
on the remaining measurements was calculated. I make no claims for the value of
this model except that its form is common and that analyses like this comprise the
bulk of actual statistical practice. Reminder: there is no true model to be sought
here, because a true model would identify the exact causes of each of the incomes
of the 787 individuals. The ad hoc model here is not weak on that front, because all
probability models would share this same weakness.

The estimated coefficient for male Sex was $10.4K, with a 95% confidence
interval of ($2.1K, $18.7K); the p-value was 0.015. Almost everywhere it would
be announced that this was “statistically significant”, which is only another way
of saying the p-value was wee. But it would be taken by many that it has been
proved “Men make more than women”. Indeed, it would be a strong man who
could resist announcing “Women make less than men.” This is, of course, not
so. In this data, some women made more than some men (and we do not know
why either way). But, having made the initial error, it would be irresistible to
think that some women made less than some men because they were women.

If women made less than men because they were women, then, at least in
some instances, it must be that the hiring manager, or whomever, looked at
the woman and said, at least tacitly, “If you were a man, I would pay you ten
thousand four hundred dollars more, but because you are woman, I will not.”
Of course, that is precisely the claim that will be made; that the wee p-value
proves this “bias.”

Let’s not become distracted by the politics, except to note that this data
says only what happened, not why anything happened. This is proved, if it is
not already clear, by noting that the estimated coefficient for Health Insurance
was $20.4K, with a p-value of 0.0006. If p-values prove cause, then it must be,
as it was for women vs. men, that awarding somebody Health Insurance would
cause a hefty increase in salary!

Contrast this with the predictive approach, illustrated in part in Fig. 1. These
are probabilistic predictions: the marks in the figure represent the difference
between men and women in actual probabilities for each value, a window of
$1K centered on each mark. These are deduced from the predictive posterior
distribution of the model, which used a “flat” prior, which for the special case
of normals makes the results of the classical and predictive analyses the same,
see [2].

The probabilities were calculated assuming values for each of the measure-
ments, as is necessary in the predictive approach. M said each of these mea-
surements were important, after all, so each must always be included in every
prediction. If we do not care about the influence of, say, English language on the
uncertainty of Income, then we should not have put it in the model. It is there,
so we have to specify a value. The values were chosen were the observed medi-
ans, i.e. Age = 49, Married, Hours Worked = 40, USA Citizen, Health Insurance
present, English spoken. Race and sex were separately specified for the plot with
the other measurements held fixed.
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Fig. 1. The difference in probability that a man with the given characteristics will earn
more than a woman with the same characteristics, at each of several income windows
(each $1k), and for whites (dots) and blacks (open circles).

The first thing to note (not shown on the figure), is that, given M and values
of the measurements, the probability of Income less than $0 for men, white or
black, is about 13%, and for women about 19% (again, about the same for white
and black).

This is a glaring error—and an exceedingly common one which I have else-
where called probability leakage, [3]. This error is never noticed because in the
classical approach the concern is on the parameters and p-values, and not the
implied predictions. This model really does give substantial probability to val-
ues which we know to be impossible. The problem begins in not including these
impossibilities in M. This can, of course, be done, and careful modelers will do
S0, but carefulness is not a property of most analyses; worse, the possibility of
this error is rarely taught. And, again, it cannot be seen using parameter-centric
and hypothesis testing methods.

Passing by the leakage, the next thing to note is that, for whites or blacks,
the probability difference for sex is near 0 for Incomes around $50K—for Hours
Worked 40, etc. The probability (for the given measurements) white men make
between $40-$60K is 0.183, and for women 0.180. For blacks, the probabilities
are 0.181 and 0.178. These are differences of only 0.003. Are we do bold as to say
we can predict probabilities to the nearest thousandth place? Well, obviously we
are, since these types of models are ubiquitous.

The window $40-$60K is chosen because I thought it important; others, as
emphasized above, might find other windows of greater relevancy. In the data,
for those who worked 40h a week, and regardless of the other measurements,
the observed median Income was $36K, with a mean of $41K, and an inner-
quartile range of $19K-$55K. So the window of $40-$60K represents roughly
typical data.
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Do men and women make different incomes? Yes. But we knew that before we
started, by glancing at the data. The probability white men not in the sample
with the given characteristics will make the most common salaries is 18.3%,
and for white women 18.0%. Is this difference important? Statistics cannot tell
us. Only the decision somebody would make on this can. There is also a 0.005
probability white men will make greater than $100K, and for white women 0.004.
Is that difference important? We do not know; not from the data, at any rate.

It should be clear that the pleasing certainty that came with the classical
parameter estimate and p-value has been greatly tempered in the predictive
approach. This will always be the case; it is mathematically guaranteed. Cer-
tainty in the parameters does not translate into certainty in the predictions.

P-values and values of § do not track, as promised above. For white women who
are married and have the other fixed measurements, the probability of Incomes in
$40-$60K is 0.180, while for unmarried women it is 0.176. This difference is greater
than it was for Sex. The p-value for Marriage status was not however wee; it was
0.28. Yet marriage, for women, was of greater predictive value than Sex. The same
is true for English spoken. There, married white women (etc.) have a probability
of 0.182 of Incomes in $40-$60K, while for non-English speakers it is 0.180. The p-
value for English was 0.32. The difference is even greater for US Citizens: married
white women who speak English have a probability of 0.182 for Incomes in $40-
$60K, while for non-Citizens it is 0.176. The p-value for Citizen status was 0.37.
P-values do not translate to direct evidence.

There is, as is obvious, much more than can be done with this data, and that
is in part the problem. The predictive approach is more work than the classical
approach, sometimes much more. One cannot just glance at p-values and be
done with it. One must take the model one assumed quite seriously, and then
examine in detail the predictions made from that model. The decisions one wants
to make must be made clear and be at the forefront of any analysis. The benefit,
or payoff for this extra labor, is that the end result is much fairer, simpler, and
usable than the classical approach.

One last word about model verification; see [4,9,10] for details on proper
scores, calibration, and all that. The model makes Income probability predictions
for those who have the specified measurements. That means we can directly check
the predictions against new observations. We could also verify the model on the
past observations, but since these past observations built the model, so to speak,
we would be running in circles. It is always possible to, as all know, find a model
which predicts past observations to any degree of accuracy one likes. The true
test is performance on data never before seen or used in any way. This means
it is difficult to trust any researcher who says he has fit his model on a portion
of his data and verified it on the rest. The temptation to reuse “the rest” to
improve the model on the initial portion is far too great: nobody can resist it.

That there is a difference between the sexes and so forth in prediction
probabilities does mot mean that these differences will manifest in new data.
The only, the sole, the lone way to know is to apply the model to brand-new
data. Nothing else suffices. This is, after all, the way civil engineers verify their
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models: if the bridge does not fall, their model is verified. In this way, all statis-
tical analysis, as they are usually presented in scientific journals, must be seen a
preliminary, as highly speculative, even. That these initial results are taken too
seriously accounts for the so-called replication crisis, see e.g. [19]. The predictive
approach allows models to be published as actual, verifiable predictions. The
predictions are there and can be verified without recourse to any sophisticated
apparatus. It is a very open approach.

Fitting models with the classical approach is far too easy. Anybody can do
it; and anybody does.
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Abstract. Due to the dramatic development of measuring instruments
in recent years, a huge amount of large-scale data has been acquired in all
research areas. Along with this, research method has changed, and data-
driven methods are becoming important as the fourth scientific method-
ology. In the data-driven approach, the model is built according to the
theory, knowledge, data, and further the purpose of the analysis. Once a
model is built, useful information can be extracted from the data through
the fitted model. In this data-driven method, it is crucial to use a good
model and thud the evaluation of the model is essential in the success of
the data-driven approach. This paper outlines the model evaluation cri-
teria such as AIC, GIC, EIC, and so on, focusing on information criteria
for evaluating prediction accuracy based on statistical models. Since L
regularization is important in recent data analysis, the evaluation of the
regularized model is also outlined.

1 Introduction

Due to recent development of information and communication technologies,
human society is changing very rapidly. Actually, by the development of sensor
devices, huge amount of data are now accumulating in various fields of scien-
tific research, such as in life science, marketing, finance, environmental science,
seismology, meteorology, astronomy and high-energy physics, etc.

Various changes occurred in this background. Firstly, the objects of scientific
research were expanded (Fig.1). Until the 19th century, the main target of the
research was the static physical world. However, by the impact of Darwinism,
evolutionary and changing world such as the life, economy becomes important
objects in the 20th century. Further in this 21st century, owing to the devel-
opment of ICT, we are facing to the so-called cyber-physical world. Secondly,
objective of the research changed from the “quest for the truth” to the “predic-
tion, simulation, knowledge creation or decision making.” Thirdly, model itself
was changed from physical model derived from the first principle to the modeling
to achieve the objective of the research.

In parallel to the academic area, big data also appear in various aspects of
our society. Actually it emerged from internet communications, sensor, drone,
transaction, multi-media and various logs. And the emergence of the big data
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Cyber-Physical Society

Evolutionary world Evolutionary world
P‘l;f)sr'lfial ‘ Physical » :
world Physical
world

Fig. 1. Expansion of the objects of scientific research

is quickly changing our society. As examples, we can consider personalized
medicine, marketing, recommendation system, data-driven industry and smar-
tification of social infrastructure, and more recently, brilliant achievements of
artificial intelligence in games, image analysis, automatic driving and so on.

In the book entitled “post-capitalist society,” Drucker (1993) wrote

Every few hundred years in Western history there occurs a sharp trans-
formation. We cross what I called a “divide.” Within a few short decades,
society rearranges itself, its worldview, its basic values, its social and polit-
ical structure, its arts; its key institutions. Fifty years later, there is a new
world. And the people born then cannot even imagine the world in which
their grandparents lived and into which their own parents were born. We
are currently living through just such a transformation.

In the past history, the science has changed the society by expanding its
fields of applications and many area that used to be treated by the intuition and
experience of experts at one time became the objects of scientific approach. As
such examples, we may imagine the astrology, navigation, alchemy, production
process, management, marketing, finance, risk management. Further, in recent
years, service and policy making, even the scientific discovery became the object
of scientific research.

One typical transition is the emergence of data-driven society. In the book
entitled “Super Crunchers,” Ayres (2007) asserts that the “big data analysis”
surpasses the “experience and intuition” of experts in many area of decision mak-
ing, and showed many examples such as the evaluation of wine quality, recruit-
ing baseball players, airline customer service, individual pricing of premium and
online sales and so on.

This shows that cyber intelligence comes close to a human being in the intel-
lectual labor and it reminds us of the historic moment of the match between
horsecar and steam locomotive held at Baltimore & Ohio Railroad in 1830,
when the machine has caught up with an animal’s physical labor. We may say
that a data-centric society will appear before long and also that all research will
become data science.

From the viewpoint of the inductive inference, in the 20th century, the main
objective used be the exact reasoning based on well designed small number of
experimental data. Now, by the advent of the big data, an important problem
is the knowledge discovery or information extraction based on big data.
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However, although the big data may contain enormous knowledge and value,
it is usually difficult to extract them by the current methods and technologies
because it is mostly unstructured, has low value density, large scale, sparse and
further it is heterogeneous in terms of precision, form, observation frequency.

4 Human ) 4 I
inspiration Cyber-enabled
dependent

Model-driven | Theoretical COm.puting
( Deductive) Science Science
( Simulation )
Data-driven Experimental Data Science
(Inductive) Science (Fourth Paradigm )
\ J g J

Fig. 2. Fourth Science: Data Science

To fully utilize the information contained in the big data, it is necessary to
develop the fourth scientific methodology (Fig. 2). Until the 20th century, science
was driven by two scientific methodologies, namely, the experimental science
and the theoretical science. However, in the latter half of the 20th century, the
computing science was developed for understanding or prediction of complex
nonlinear systems. Now by the advent of big data, it is necessary to develop the
fourth scientific methodology, namely the data science.

The basic technologies for the data science are big data processing, visu-
alization and data analysis (Manyika et al. 2011). Big data processing is the
techniques to handle scattered big data and consists of various information pro-
cessing technologies such as distributed processing, parallel computation, etc.
Visualization is the technologies to grasp high-dimensional data and comput-
ing results such as dimension reduction, feature extraction, pattern recognition,
image processing. Data analysis is the method for obtaining deep knowledge
from big data and is related to statistical modeling, Bayes inference, machine
leaning, data mining, web information analysis, natural language processing and
optimization.

In the data-driven approach, the model is built according to the theory,
knowledge, data, and further the purpose of the analysis. Once a model is built,
useful information can be extracted from the data through the fitted model.
In this data-driven method, it is crucial to use a good model. Therefore, the
problem of developing good model evaluation criteria is a very important.

This paper is organized as follows. In Sect.2, we will consider the role of
statistical modeling and viewpoint of predictive ability. Section 3 outlines the
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information criteria AIC, TIC and AIC, which are obtained as the approximately
unbiased estimates of the expected log-likelihood of the model whose parameters
are estimated by the maximum likelihood method. Section 4 outlines the GIC for
the evaluation of any types of estimators defined by statistical functional, such
as M-estimator and Bayes model. In Sect. 5, the bootstrap information criterion
EIC is outlined which can be applied to wide class of models and situation. In
Sect. 6, evaluation criteria for the models obtained by regularization methods
are considered. Finally, Sect. 7 summarized the paper.

2 Statistical Modeling and Predictive Model Evaluation

In statistical modeling, model is built by properly combining the information
from the theory, empirical knowledge and data and even the objective of the
problem (Fig. 3). In general context, it can be formulated by using Bayes model.
Once the model is obtained, we can extract useful information from data, do
prediction and simulation, and decision making based on the model. So the
knowledge is provided through the model and the knowledge improves the model.
And thus it constitutes the spiral of knowledge development.

 SE— S
Knowledge Objective
—
' W VA
Various ::> Statistical
Information Model
— @ -—
— 3z
Data
\ ) <:> Evaluation

———

Fig. 3. Statistical modeling.

In statistical modeling, it is not necessarily assumed that the model is true
or a close replica of the truth and we rather use it as a tool to extract useful
information from data. Therefore, it is important to build a model by prop-
erly combining the information from the data and the prior information and
knowledge on the subject and objective of the problem (Fig. 3).

In this situation, it is obvious that if we use a good model, then we can get
good results but if we use a poor model, we will not be able to get meaningful
results. Therefore, the use of good model is essential in statistical modeling and
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statistical knowledge extraction, and the evaluation of the estimated model is
one of the most important problems in the data-driven approach. To achieve
this, development of criteria for evaluating the goodness of statistical model is
indispensable.

In developing a model evaluation criterion, Akaike advocated the predictive
point of view. In the conventional statistical procedure, the objective of model
fitting and parameter estimation is to obtain a good model that can reasonably
reproduce the true model as precise as possible (Fig.4). In contrast to this, in
the predictive point of view, the estimated model is evaluated by the prediction
ability. Akaike (1973, 1974) measured this ability by the Kullback-Leibler infor-
mation between the predictive distribution and future data distribution. The
AIC is obtained as an estimate of (the essential part of) the Kullback-Leibler
information.

True aluation True
Distributi Distribution

’ Prediction

Present | Fstimation Present E,%‘gm Model I:> Future
Data Data <: Data

Evaluation

Fig. 4. Conventional statistical modeling (left) and predictive modeling (right).

Akaike’s (1973, 1974) information criterion provides a useful tool for eval-
uating models estimated by the method of maximum likelihood and a number
of successful applications of AIC in statistical modeling and data analysis have
been reported (Bozdogan 1994; Kitagawa and Gersch 1996; Akaike and Kita-
gawa 1998). By extending Akaike’s basic idea, several attempts have been made
to relax the assumptions imposed in the derivation of AIC and obtained infor-
mation theoretic criteria which may be applied to the various types of statistical
models.

In recent years advances in the performance of computers enables us to con-
struct models for analyzing data with complex structure, and consequently more
flexible criteria are required for model evaluation and selection problems. The
purpose of the present paper is to overview information criteria which yield more
refined results than previously proposed criteria and may be applied to a variety
of statistical models. The use of the bootstrap in model evaluation problems is
also investigated from theoretical and practical points of view.
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3 Information Criteria for ML Models

3.1 Estimation of Kullback-Leibler Information

Assume that the observations are generated from an unknown “true” distribution
function G(z) and the model is characterized by a density function f(x). In the
derivation of AIC (Akaike 1973, 1974; Konishi and Kitagawa 2008), the expected
log-likelihood Ey log f(Y) = [log f(y)dG(y) is used as the basic criterion to
evaluate the closeness of a model to the true model, which is equivalent to
the Kullback-Leibler information (1951). Here Ey denotes the expectation with
respect to the true distribution G(y).

In actual statistical problems, the true distribution G(z) is unknown and only
a sample X = {Xy,...,X,,} drawn from G(z) is given. We then use the log-
likelihood n ¢ = [log f(z)dG(x) =n~ " 31" log f(X;) as a natural estimator
of the expected log-likelihood. Here én(aj) is the empirical distribution function,
having mass 1/n on each observation.

For a parametric model f(z|f) with a parameter 6 = (61,...,60,,)7, it natu-
rally leads to the maximum likelihood estimator, 6 = é(X ), which is the maxi-
mizor of the log-likelihood function

00) =Y log f(Xil6) =log £(X|6). (1)
i=1

Interestingly, although the log-likelihood is a good estimate of the expected
log-likelihood, Ey log f(Y|#), the maximum log-liklihood log f(X|0) is NOT an
unbiased estimate of Ey log f(Y|d). Namely, (n~! times of) the maximum log-
likelihood, n~'4((X)), has a positive bias as an estimator of the expected log-
likelihood, Ey log f(Y]0(X)), and it cannot be directly used for model selection.
This bias occurs because the same data set X was used twice for the estima-

tion of the parameter and the expected log-likelihood. By correcting the bias

H(G) = nbx { % 1og FXIO(X)) ~ By log SV HCX) | @

an unbiased estimator of the expected log-likelihood is obtained by
n~Hlog f(X|0(X)) — b(G)}. Therefore, considering the definition of AIC,
generic information criteria is defined by

—2log f(X|0(X)) + 2b(G), (3)

where b(G) is a properly defined approximation to b(G).

3.2 Information Criteria: AIC, TIC and AIC,

In a general setting, it is difficult to obtain the bias b(G) in a closed form. Under
some setting, Akaike evaluated an asymptotic bias as b(G) = m, and advocated
the information criterion

AIC = —2log f(X|0n1) + 2m, (4)
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where m is the number of estimated parameters (Akaike 1973, 1974; Konishi
and Kitagawa 2008). Numerous successful application of the statistical modeling
based on AIC have been reported (Bozdogan 1994; Kitagawa and Gersch 1996;
Akaike and Kitagawa 1998).

Using the properties of the maximum likelihood estimators Orr L, for incor-
rectly specified models (Huber 1976), the asymptotic bias can be evaluated as
(Takeuchi 1976)

br(G) = tr{I(G)J(G)™'}, (5)

where I(G) and J(G) are respectively the Fisher information matrix and the
expected Hessian defined by

Olog f(Y'|0) Olog f(Y|0
16) - by [ L8010 s 010)]
36) =By | ot (©

By correcting the asymptotic bias of the log likelihood, TIC is defined by
Takeuchi (1976)

TIC = —2log f(X |0arz) + 2tr{J(G) LI (G)}, (7)

where J(G) and I(G) are consistent estimates of J(G) and I(QG), respectively.
If the model contains the true distribution such that g(z) = f(z|6) for some
0, it holds that I(G) = J(G), and the asymptotic bias becomes by (G) = m,
where m is the dimension of the parameter vector . Thus we obtain the Akaike
information criterion, AIC (Fig.5).
Further, for some specific models, it is possible to evaluate the bias directly
and obtain a more precise bias correction term without resorting to asymptotic

log f(x,|0)

n E[log f(X|0)]

é(xn ) 8

Fig.5. Bias of the maximum log-likelihood as an estimator of the expected log-
likelihood. (Konishi and Kitagawa 2008)
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theory. As the simplest example, consider the normal distribution model, y,, ~
N(u,0?). Then the log-likelihood of the model based on the data, {y1,..., yn},
is given by

1 n
U, 0%) = —= log (2mo?) — 257 Z

By substituting the maximum likelihood estimators d; and 02 into this expres—

sion, we obtain the maximum log-likelihood ¢(d;,5?) = —%log(2m6?) — %. If
the data set is obtained from the same normal distribution N(u,o?), then
the expected log-likelihood is given by Eg [log f(Z|,6?)] = —3log(2m6?) —

52z {02+ (u—p)*}, where G(z) is the distribution function of the nor-
mal distribution N (p,0?). Therefore, the difference between the two quan-
tity is £(7,02) — nEg [logf(Zm, 52)} = 5% {02+ (u—p)?} — 2. By tak-
ing the expectation with respect to the joint distribution of n observations
distributed as the normal distribution N(u,0?), and using Eg [#;n)]

o B [{p— plzn)}?] = %2, we obtain the bias correction term for the
finite sample as

2
_n_n (e, 07\ _n_ 2n
beal@) = 2 (n — 3)0? (0 * n> 2 n-3 ®)

Here, we used the fact that for a x? random variable with degrees of freedom r,
X2, we have E[1/x2] = 1/(r — 2). Therefore, an information criterion (corrected
AIC) for the normal distribution model is given by
an
n—3

AIC, = —20(j1,6%) + (9)

Similarly, for a linear regression model y,, = Z;”:l AjTnj + En, € ~ N(0,0?),
where y, and z,;,7 = 1,...,m are the objective variable and the regressors,
respectively, the bias is evaluated as

(m+1)n
n—m-—2

bea(G) = (10)

4 Information Criteria for Wider Class of Models

4.1 Generalized Information Criterion GIC

This method of bias correction for the log-likelihood can be extended to a more
general estimator defined by a statistical functional such as 6 = T(G,,), where
T() = (T1(-),...,Tn(-))T is a functional on the space of distribution func-
tions. For such a general estimator, the asymptotic bias is given by Konishi and
Kitagawa (1996, 2008)

n(©) = { [ 10060 BT a6} (1)
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where TO(Y;G) = (T{(Y;G), ..., T (Y:G)T and TV (Y G) is the influ-
ence function defined by

T(X;G) = lim {Ti((1 - €)G + ¢d4) — T;(G)} /e (12)

E— 00

with J, being a point mass at X,. By subtracting the asymptotic bias estimate
from the log-likelihood, we have (Fig. 6)

GIC = —2log f(X|0) + 2b1(G). (13)

D, /. log f(x,0)

~

n Ey[log f(X|0)]

(G TG)

Fig. 6. Bias correction by GIC. (Konishi and Kitagawa 2008)

Example: GIC for the normal distribution model. Consider a simple
normal distribution model with unknown mean g and the variance o2

1 (y — p)?
o — . 14
s o { -] (14)
The maximum likelihood estimators of 1 and o2 are given by statistical func-
tionals,

f(y‘/uvoz) =

T,.(G) = /:ch(ac), T,2(G) = /(:13 —T,(G))*dG(z), (15)
respectively. For these estimators, the derivatives of the functionals are given by
TF(LI)(:B; G)=z—p, T(S)(LL'; G) = (x —p)? - o> (16)
Using these results, the bias correction term (11) is explicitly obtained by
1 Ha
b(@) =5 (1+5), (17)

where p4 denotes the fourth central moments of the true distribution G. In partic-
ular, when the true distributions are standard normal distribution (s = 3) and
Laplace distribution (u4 = 6), they are given by b1 (G) = 2 and 3.5, respectively.



Information Criteria 29

4.2 Maximum Likelihood Method: Relationship Among AIC, TIC
and GIC

Assume that the maximum likelihood method is used for the estimation of a
model f(z|@) based on the observed data from G(z). The maximum likelihood
estimator, @/, is defined as a solution of the equation

— dlog f(x4|0)

— 1

> 5% 0, (18)
a=1

which can be expressed as ] v =T L(G) using the p-dimensional functional

T (G) implicitly defined by

ol 0
/ Ogﬂx)‘ dG(z) = 0. (19)
89 HITJWL(G)
The influence function for the maximum likelihood estimator can be obtain
as follows: By replacing the distribution function G in (19) with (1 —¢)G + &4,
we have

/ Olog Y Tare (1= €)GH200)) yoiy  yGi(y) + 26u(w)} = 0. (20)

00
Differentiating both sides with respect to € and setting ¢ = 0 yield
[ Rty 5, ) - o)) (21)
+/ 92 log g(;/giyL(G))dG(y) : % {Trur((1—¢)G+edy)} L =0,
Noting that
/ dlog f(yaIZOFML(G)) d5, (y) = 2108 f(wgingL(G)) (22)

and using (19), from (21), we obtain the influence function for the maximum
likelihood estimator OIWL = TA{L(G)

W ey = 2 _ _ —10log f(x|0)
Tin (@@ = g (Tan(=aG+eb)}| =@ =—=p== | (23)
where J(G) is a p X p matrix given by
21
J(G) =~ / aogﬂﬁ"”’ dG(z). (24)
8080 0:TML(G)

By replacing the influence function TW (z;G) in (11) with (23), we obtain
the asymptotic bias of the log-likelihood for the estimated model f(z|@a1)

el o]

= tr {J(G)"1(G)} (25)
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where the p x p matrix I(G) is given by

dlog f(x]0) Olog f((6)
Ie) = / 26 067
0=T/.(G)

dG (). (26)

Therefore, for the model f(x]@y1) estimated by the maximum likelihood
method, GIC in (13) is reduced to

TIC = —2 zn: log f(24|@n1) + 2tr {J(é)—lf(é)} : (27)

a=1

4.3 GIC for the Models Estimated by M-estimators

In this subsection we derive an information criterion for evaluating a statistical
model estimated by M-estimators, using the generalized information criterion
GIC in (13).

Suppose that f(x|@7) is the model of the true distribution G(x), where 8
is a p-dimensional M-estimator defined as the solution of the system of implicit
equations

n

Z (2, 011) = 0. (28)

Here, ¥ = (¢1,v2, - ,1p)" and v;(x,0) is a real-valued function defined on
the product space of the sample and parameter spaces. The M-estimator 01 is
given by 8y = Ty (G) for the p-dimensional functional Ty, (G) defined as the
solution of the implicit equations

/ W (y, Tar(G))dG(y) = 0. (29)

Then the influence function for the M-estimator is obtained by the same
method as for the MLE as

T (2:G) = % (Tar(1— £)G +£8,)}o_y = R(w, )bz, Tor(G)), (30)

where R(t), G) is a p X p matrix whose (i, j)-components is given by

R0 =~ [ PGRO] e, =t 6y

(1)

Substituting this influence function T}/ (x; G) into (11), we have the asymp-

totic bias of the log-likelihood of the model f(x|@y) in estimating the expected
log-likelihood in the form

c’)logf(ﬂc\G)
bu(G) = { .6 /1’b 00T ‘ezTM(G)dG(x)}

=tr{R(,G)"'Q(v,G)}, (32)
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where Q (v, G) is a p X p matrix defined by

0log f(x|0)

dG(z). (33)
00" ‘O_TM(G)

Q. G) = / (@, Tr ()

Then, GIC for evaluating the statistical model f(z|6) with the M-estimator
0, is given by

GICy = =2} log f(waldns) + 20 { R, C) Q. C) ), (34)
a=1

where R(, @) and Q(v, G) are p X p matrices given by

R(’l/l,é) _ _72 8'¢ xa»

)

0=0

Q. G) = Z¢ ro, )L 0)

0-0

4.4 GIC for Bayes Models

The basic predictive distribution model based on Bayesian approach is defined
by the parametric model {f(z]0);6 € ©} and the prior distribution 7(#) of the
parameter 6 as follows

X,) = / F(210)m (0] X )b, (36)

where (60| X ,,) is the posterior distribution of the 6 based on the sample X,
and the prior distribution 7(6) and is given by

(0] X)) H Xa|9)7r(0)//Hf(Xa|9)7r(9)d9. (37)

By substituting the posterior distribution (37), the predictive distribution is
obtained by

h(z| X ) = /exp [n{q(0|Xn)+%logf(z|9)}] d0//exp{nq(9|Xn)}d6’. (38)

Here, g(0]| X ,,) is given by

q(01X ) Zlogf Xa.0) + logﬂ(e). (39)
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For this density function, by obtaining the asymptotic expansion with respect
to the sample size n based on the Laplace approximation of integrals (Tierney
and Kadane 1986; Davison 1986), it becomes possible to apply information cri-
terion GIC.

Assume that 6, and 6,(z) are the modes of q(8]X,) and q(8|X,) +
n~1log f(z|0), respectively.

In the Laplace’s method of integrals, the integrand is Taylor expansion
around the mode, and obtain an approximation formula. For example, by apply-
ing the Laplace’s approximation to the denominator of Eq. (38), we obtain

(QW)p/2

/ exp {ng(6] X )} do =
nP/2 | J,(64)

173 €XP {nq(éq\Xn)} {1+ Op(n_l)} . (40)

Here, J,(6,) = —0*{q(0,]X ,,)}/8096T . Similarly, by the Laplace approximation
of the integrals in the numerator of (38), we obtain the approximation of the
predictive distribution

X = (011 @D exp | { aB0()1 X ) = (@l ) + 7 10w F(e100(2) } |

x {1+ 0p(n~2)},

where Jq(z)(éq(z)) = —02{q(0,(2)| X ) +n"log f(2]6,(2))}/9696T . From this
Laplace approximation, we obtain the following asymptotic expansion of the
Bayesian predictive distribution model

h(z|X,) = f(z|é) {1 + %a(zh@) + Op(n_Q)} . (41)

The estimator of the model 6 depends on whether the prior distribution
7(0) depends on the sample size n or not. Here, we consider the following two
cases for the prior distribution (i) logw(#) = O(1), and (ii) log7(8) = O(n). In
the case of (i), 0 becomes the maximum likelihood estimator f;7. On the other
hand, for the case (ii), it becomes the mode of the posterior distribution 0. The
statistical functionals corresponding to these estimators are respectively given
as the solutions to

55 08 F @l T (@)dGw) =0, [ log {f(al To(G))m(To(G))}) dG(z) =

Therefore, in (34), by putting ¢ (x,8) = dlog f(x|0r)80 and ¥(x,0) =
0 {log f(z|Tp(@) +logn(Tg(G ))} 00, we obtain the following evaluation cri-
terion for the Bayes predictive distribution model h(z| X )

GICg = —2 Xn: log h(Xo| X ,,) + 2tr {J(w, G) (v, é)} : (42)
a=1
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4.5 Higher Order Bias Correction

The information criteria proposed previously are based on large-sample theory
to obtain approximately unbiased estimators for the expected log-likelihood or
equivalently the Kullback-Leibler information number.

We consider the statistical model f(y|), where 6 is defined by 6 = T(G,,)
with T'(-) being a suitably defined m-dimensional functional. Hence by taking
the expectation of Ey log f(Y|A(X)) over the sampling distribution G of X, we
have an expectation of the form

Ex By log /(YI0(X)) = [ a(u)1og 4 T(6)dy + ~a1(G) + —02(G) + O(n ™). (43)

Information criteria based on the asymptotic bias-corrected log-likelihood is
second order correct for Ey log f(Y|#) in the sense that the expectations

of n-1 {logf(X|é) —bl(G')} and Ey logf(Y|é) are in agreement up to and

including the term of order n~!, while the expectations of n~!log f(X|é) and
Ey log f(Y|0) differ in term of order n™!.

We consider the bias of log f(X|0) — by (), as the estimator of the expected
log-likelihood, defined by

Ex [log f(X18) = b1(C) — nEy log f(V]0)]
= Ex [log f(X16) — nBy log f(Y10)| — Ex [b1(G)]. (44)
The first term in the right-hand side of the above equation can be expanded as
b(G) = Ex [log f(X|8) — nEy log f(V18)| = b:(G) + %%(G) +0(n"?), (45)
where b1 (G) is the first order bias correction term given in (11) and bo(G) is the

second order bias correction term. R
The expectation of the asymptotic bias estimate by (G) is given by

Bx [(@)] = hi(@) + %Abl(G) +O(n-2). (46)
Hence noting that the bias of log f(X|0) — by (G) is
Ex [log f(X|G) = b:(G) — nBy log f(V10)] = = {b2(G) — Ab1(G)} + O(n ™), (47)
we have the second order bias corrected information criterion in the form
GICs(G) = —20(G) + 2 {bl(@) + % (b2(G) = A0 (G)) } T
It might be noted that GICs is third-order correct for the expected log-likelihood.

However, analytic expression of bo(G) and Abi(G) are very complicated
(Kitagawa and Konishi 2010).
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Example: Second order bias correction for the normal distribution
model. For normal distribution model, these correction terms are explicitly
given by

1
ba(G) — Abi(G) = 5 (55 + E2). (49)
1 1 1 I 1 e | pe
h(G) — ~An(@) + - ha(G) =5 (1+5) + o (L +52). (0)

where p; is the j-th cumulant of the true distribution.
These show that the estimated bias correction term b;(G,,) is biased as an
estimator of b (G), and the difference may not be negligible for small n. One of

the merit of AIC is that the bias correction term does not depend on G and thus

Aba(Gy) = 0.

5 Bootstrap Information Criterion EIC

The bootstrap method provides an alternative method for the evaluation of the
bias of the log-likelihood (Cavanaugh and Shumway 1997; Ishiguro et al. 1997;
Konishi and Kitagawa 1996; Shibata 1997). The advantage of the method is
that the calculation does not require the exact form of bias correction term.
In the bootstrapping, the true distribution function G(z) is replaced by the
empirical distribution function Gy, (z) defined from the observations. Therefore,
in the bias term in (2), the samples X and Y from G(z) are replaced by X*
and Y* from bootstrap sample G, (z), and the expectation Ey log f(Y|-) by
Ey-log f(Y*|-). Here Ey~ denotes the expectation with respect to the empir-
ical distribution function G,,(y). The bootstrap estimate of the bias bp(G,,) is
obtained by (Fig. 7).

b0(G) = - { 2low X)) ~ By Tog X BX) | (51)

where (-) is an arbitrarily defined estimator of f. In the simple i.i.d. case, we
have

By~ log f(Y*0(X")) = / tog £ (" A(X )G (y) =+ log f(X|B(X"),(52)
and the bootstrap estimate of the bias becomes simply
bi(Ga) = Ex- {log (X|0(X")) — log f(X|6(X ")) }. (53)

In actual computation, the bootstrap bias correction term bB(én) is esti-
mated by

M
b (G) = > {low (X (X)) — log FXIB(XE )}, (54)

i=1
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sas nEgllog f(X]0)]

; TN nEllog /(X))

nEy[log f(X]0)]

é(x:) é(xn) 6,

Fig. 7. Bias correction by EIC. nEx[log f(X|0), log f(x,|0) and log f(z|6 ) are the
expected log-likelihood, log-likelihood and the bootstrap log-likelihood, respectively.
The expectation of D is the bias and that of D* is the bootstrap bias. The expectation
of D; is known to be 0 (Konishi and Kitagawa 2008).

where M is the number of bootstrap replication, X’(kl)7 e ,X?‘M) are M inde-

pendent bootstrap resamples of size n from Gn(X ). The bootstrap information
criterion EIC then is defined by Ishiguro et al. (1997)

EIC = —2log f(X|0(X)) + 2b%5(G). (55)

This method of bootstrap bias correction can be easily extended to a predic-
tive distribution of a Bayesian model defined by p(y|X) = [ p(y|0)w(8|X)do
where 7(6|X) is the posterior distribution of # given data X (Konishi and
Kitagawa 2008).

5.1 Decomposition of the Bias Term and the Reduction
of the Variance in Bootstrapping

A practically important problem with the bootstrap method for the model selec-
tion is the reduction of the variance of the bias estimate. If the variance in the
bootstrap simulation is large, a large M in (54) is necessary to obtain precise
bootstrap estimate bj (én) requiring long computing time especially when the
model is very complicated. The variance of the bootstrap estimate of the bias
defined in (54) can be reduced by the decomposition of the bias term D(X;G)
into three terms as follows (Fig.7, Konishi and Kitagawa 1996, 2008; Ishiguro
et al. 1997):

D(X;G) = Di(X;G) + Do(X;G) + D3(X; G) (56)
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where

Di(X;G) =) log f(X;|T(Gn)) — > log f(Xi| T(G))

i=1 i=1
Dy(X5G) = 3 log f(X|T(G)) ~ n [ log f(y| T(G))dGw) (57)

Dy(X:G) =n / log /(4| T(G))dG(y) — / log £ (4] T(Cn))AG(y).

Note that if 6 is the MLE, then T(G) and T(Gn) are the maximizer of
Jlog f(y|T(G))dG(y) and >_."_, log f(X;] T(G,)), respectively.

For a general estimator defined by a statistical functional 6 = T(@n), each
term can be evaluated. See Kitagawa and Konishi (2010) for details.

Further, it can be seen that Var{D} = O(n) and Var{D; + D3} = O(1).
Therefore by estimating the bias by

b*(Gy) = Ex-[D1 + Ds), (58)

a significant reduction of the variance can be achieved for any estimators defined
by statistical functional especially for large n.

5.2 Second Order Bootstrap Bias Correction
The bias of the log-likelihood shown in (2) can be expressed as

%b(G) - %bl(G) + %bz(G) + %bS(G) TR (59)

where b;(G) is the jth order bias correction term. Therefore, the expected value
of the bootstrap estimate of the bias term is given by

Ex[bp(Gy)] = Ex bl(én)+%b2(én) +o(n™Y)

= 51(G) + - Ab(G) + ~b2(G) +o(n ™), (60)

where Ab; (G) is the bias of the first order bias correction term by (G). This means
that if Aby(G) = 0, the bootstrap estimate automatically yields the second order
correction, namely it is the third order correct for the expected log-likelihood.

It is interesting to note that, in contrast to the above, the expected value of
(11) in the GIC and (5) in TIC for the MLE are given by

Ex[bi(G)] = b1(G) + %Abl(G) +o(n ). (61)

In actual situations for which unbiasedness Ab;(G) is not assumed, we can
estimate the second order correction term by bootstrapping. If an analytic
expression for by (G) is available, it is given by

b3(G) = Bx- [log f(X* | T(Ca)) ~ ba(Ga)— nBy- log SV T(Gu)] (62)
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On the other hand, if an analytic expression is difficult to compute, then we
can obtain the second order correction by double bootstrapping (Kitagawa and
Konishi 2010),

15" (Gu) = Ex- [log f(X7|T(Gn) = Vi (G) — nBylog f(Y* | T(Ga))] . (63)

where b%;(G) is the bootstrap estimate of the first order correction term given
by (19).

6 Regularization, L; Sparse Modeling and Bridge
Regression

In recent years, the regularization method is used for the modeling of big data in
many fields. In this section, we first consider application of GIC for the penalized
log-likelihood method or the Lo regularization problem. We then consider the
generalization of the Bayesian information criterion BIC for the application to
L, regularization and the bridge regression which involves a more general L,
regularization.

6.1 GIC for Penalized Log-Likelihood Method

The method based on maximizing the penalized log-likelihood function was orig-

inally introduced by Good and Gaskins (1971) in the context of density esti-

mation. The Bayesian justification of the method and application to Bayesian

modeling have been investigated by many authors such as Wahba (1978), Akaike

(1980), Kitagawa and Gersch (1984), Silverman (1985) and Shibata (1989).
Here, we consider a penalized log-likelihood of the form

- n
0,(0) = Z log f(zaly,0) — 5)\7’1(7, (64)
a=1

where § = (v,0) and K is a non-negative definite matrix. If we put K = I,,,
k x k identity matrix, we obtained the simple Lo regularization term.

Given the data x1,...,x,, the maximum penalized log-likelihood estimates
6 is obtained as the solution to the implicit function

> 9(Xa,0) =0, (65)

where ) = (¢q,- - ,z/Jp)T. Note that the penalized maximum likelihood estimator
Opy, is obtained by putting

0Xar) = 5 {low F(Xaldrn) - 53757}, (60
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In the framework of the generalized information criterion GIC, the informa-
tion criterion for the model f(z|f) with the estimator 6 obtained as the solution
of the (65) is given by

GICy = =2 3" log f(Xald) + 2tr { (1, G) (4, ) }, (67)
a=1
where
I, Gy = L3 WO gy Gy = Ly a0 28I 6y

6.2 Generalized BIC for Regularization Method

The BIC (Bayesian Information Criterion) proposed by Schwarz (1978)
BIC = —2log f(x|0) + klogn (69)
~ ~2logp(an) = ~2lox{ [ f(@l0)r(60)ds

is a model evaluation criterion based on the posterior probability of a model.
Here, 0, is the maximum likelihood estimator of the k-dimensional parameter
vector 6 of the model f(xz|@). Consequently, from the r models that are estimated
using the maximum likelihood method, the model that minimizes the value of
BIC can be selected as the optimal model.

Konishi et al. (2004) developed generalized Bayesian information criterion,
GBIC, for the evaluation of the models obtained by the maximum penalized like-
lihood method. In this subsection, a simplified version of GBIC is shown briefly.
Let f(z|@p) be a statistical model estimated by the regularization method for
the parametric model f(x|0), and 0p is obtained by maximizing the penalized
log-likelihood function

£3(60) = log f(,]0) ~ " 07 K0, (70)

where K is a p X p matrix. The penalized log-likelihood function can be rewritten
as

05(0) = log { f(x,]0) exp (-”;(ﬂm) } : (71)

Then, exp(—n)/207 K6) in the above equation can be thought of as a prior
distribution in which the smoothing parameter A is a hyper-parameter,

n\)P/2 1/2 n
m(0|\) = W exp (—;GTK9> ) (72)
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Given the data distribution f(x,|@), and the prior distribution 7(8|\) with
hyper-parameter A\, the marginal likelihood of the model can be rewritten as

p(@al) = / f(.]0)7(0]\)d6
- / exp {ng(6]))} b, (73)

where

a(B1%) = log {(2,10)7(BIN)} = ~ {log f(:/6) +log (6]} (74)

A
{log f(x,|0) — n—GTKG} — %{plog(Zﬁ) — plog(nA) — log |K|}

We note here that the mode, 8p, of ¢(8]\) coincides with a solution obtained
by maximizing the penalized log-likelihood function (70). By approximating it
using Laplace’s method for integrals, we have

(2m)P/?

/exp{nqw)}de W

xp {ng(@p) } . (75)

where

I\(0p) = _19%q6|N)|  _ 19%log f(xn|0)
M T 0000 g, n 00067

P

K (76)
br

Taking the logarithm of this expression and multiplying it by —2, we obtain the
generalized Bayesian information criterion GBIC (Konishi et al. 2004; Konishi
and Kitagwa 2008),

GBIC = —2log f(2,|0p) + nAOpKOp + log|Jx(0p)| — plog A — log |K]. (77)

In the modeling by regularization method, the selection of the smoothing param-
eter A is crucial and we select the A that minimizes the GBIC as the optimal
smoothing parameter.

By interpreting the regularization method based on the above argument from
a Bayesian point of view, it can be understood that the regularized estimator
agrees with the estimate that is obtained through the maximization (mode)
of the following posterior probability depending on the value of the smoothing
parameter;

f(x,]0)m(0)N)

/f 0)r( )0,

where 7(60|)) is the density function resulting from (72) as a prior probability
of the p-dimensional parameter 6 for the model f(x,|0). For the Bayesian jus-
tification of the maximum penalized likelihood approach, we refer to Silverman
(1985) and Wahba (1990).

T(0]zn; A) (78)
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Example: Regularization for the regression models. Suppose that n obser-
vations {(®a,¥a); «= 1,2,--- n} are observed in terms of a p-dimensional
explanatory variable  and a response variable Y, and consider a simple regres-
sion model

p
Yo = Zﬂjxaj +ea, €a ™~ N(0,02), (79)

j=1

where 87 = (B1,...,0m), 0 = (87,027 and (Yo, Tar, - . - ‘Tap),a=1...,nIf
we estimate the parameter vector @ by maximizing the penalized log-likelihood
function (70), the estimators for B and o2 are respectively given by
A 1 A N
B=XTX+m’K) X1y, 6% =—(y-XB)"(y-XB),  (80)

where X is an n x m matrix given by X = (z1, ®2, -, x,)’ and z, =
(.I‘al, ey Z‘ap).

By applying GBIC in (77), the evaluation criterion for the regularized regres-
sion model f(ya|Tq;0p) estimated by the regularization method is given by

GBIC = nlogé? + n)\BTKB +n 4 nlog(27) + log |Jx(0p)| — log |K| —mlog), (81)
where Jy(0p) is the (m + 1) x (m + 1) matrix

1
. 1 | XTX+n)’K  SXTe

JA(GP) né_z 1 e/X i (8 )
62 262’
AT AT
with the mn-dimensional residual vector e = <y1 -8 x1,y2— B x2,- -,

~T T
yn_ﬂ xn) .

6.3 L, Regularization and Bridge Regression

In recent years, with the advent of big data, modeling based on the L, regular-
ization method has been widely used in many fields of science and technologies.
The feature of the L; regularization method is that parameter estimation and
variable selection can be performed at the same time and it is important as a
method of extracting essential information from high dimensional data.

In this subsection, we will consider the evaluation of the bridge regression
model. The bridge regression model (Frank and Frieman 1993; Fu 1998) has an
L, regularization term

Op(8,0%) = 0B, 0%) = == > 18,1, (83)

j=1
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and it becomes the ridge regression for p = 2 and Lasso for p = 1. For 0 < p < 1,
bridge regression method can perform the selection of variable and parameter
estimation simultaneously. Therefore, the bridge regression can be considered as
an estimation method that encompasses many estimation methods.

Kawano (2014) presents the GBIC for the bridge regression model

GBIC = nlogé? + n)\z 357 4+ n + nlog(2r) + log |Jx| — 2|A|logp
JEA
2|4]

1 1
+ 2|4|(1+ ;)) log2 — e log(n\) + 2|Allog I (p) , (84)

where A = {j;3; # 0}, and J is the (JA| + 1) x (JA| + 1) matrix given by

1
T ~2 T
. 1 [ X" X+nAé"p(p— 1)K —=SX'e
Jr(0p) = 1 a2 (85)
727 267

no2

For p < 1, the influence function cannot differentiate, so GIC can not be
directly applied. Matsui and Konishi (2011) use the SCAD penalty function to
derive GIC and BIC. In addition, Umezu et al. (2015) derived AIC for the bridge
regularization for 1 > p < 1.

7 Summary

Due to the dramatic development of measuring instruments in recent years, a
huge amount of large-scale data has been acquired in all research areas. Along
with this, research method has changed, and data-driven methods are becoming
important as the fourth scientific methodology. In the data-driven approach, the
model is built according to the theory, knowledge, data, and further the purpose
of the analysis. Once a model is built, useful information can be extracted from
the data through the fitted model. In this data-driven method, it is crucial to
use a good model. Therefore, the problem of developing good model evaluation
criteria is a very important.

This paper outlined the model evaluation criteria such as AIC, GIC, EIC.
Which are obtained by bias-correction of the log-likelihood of an estimated
model. In particular, GIC can be applied to wide class of estimation proce-
dures such as M-estimators, Bayes models and penalized likelihood methods.
Bootstrap based information criterion EIC can be applied to various situation
for which analytic methods are difficult to apply. Since L; regularization is
important in recent data analysis, the evaluation of regularization model is also
outlined.
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Abstract. We elaborate on the possibility to considering quantum prob-
ability calculus to improve statistical methods in economics in general,
and in quantitative finance, in particular. A tutorial on the analogy
between quantum mechanics and models in econometrics, using Kol-
mogorov probability theory, is given. Several research issues are men-
tioned.
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1 Introduction

This invitation aims mainly at calling your attention to an emerging effort to
possibly improve the way we do econometrics. In fact, it has started at the dawn
of econometrics by the man who created it (as a synthesis of mathematics, eco-
nomic theory and statistics), Jan Tinbergen (obtaining the first Nobel Memorial
Prize in Economics in 1969). He was a physicist turned economist. He proposed
the gravity model of international trade by a formula similar to Newton’s law of
gravity in which mass is replaced by GDP. This connection with physics, or more
precisely with mechanics, seems natural as both mechanics and econometrics,
especially finance, are concerned about models and predictions of (uncertain)
dynamical systems. Earlier, to “capture” (explain) the observed fluctuations of
stock returns, Louis Bachelier in his Ph.D. thesis (1900) proposed a continuous
time model based on the Brownian motion which later forms the foundations
for financial mathematics (through works of Black, Scholes and Merton, 1973,
where diffusion models are based on Brownian motion). But Brownian motion,
as explained by Albert Einstein, in 1905, is a motion of minuscule pollen parti-
cles suspended in water (which can be seen to wiggle and wander when examined
under a strong microscope), i.e., in the realm of quantum mechanics! (laws of
motion of extremely “small” objects). Thus, a shift from Newtonian mechanics
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to quantum mechanics seems obvious in this context? More specifically, a shift
from Kolmogorov probability to quantum probability seems desirable?

Remark. In fact, Brownian motion is modeled probabilistically as “limits” of
random walks within Kolmogorov’s probability theory. The same situation hap-
pened with Statistical Mechanics (see e.g., Sethna [12]. Surrounding the famous
Black-Scholes option pricing formula are stuff such as PDE, Ito stochastic cal-
culus, martingale method, and various extended models related to volatility. If
quantum probability is to replace Kolmogorov probability, then we should turn
to Quantum Stochastic Calculus (see, e.g., [10]).

It is well known that Kolmogorov probability theory is not appropriate to
use in quantum mechanics (as exemplified by the two-slit experiment), especially
the failure of the additivity property of probability measures. In fact, a radically
different formalism for probability has been developed to calculating probabilities
in quantum mechanics, with great successes (i.e., confirmed by experiments).

This is essentially a lesson learned from physics. It is not just importing stuff
from physics to economics (in particular) but looking as physics as an evolu-
tive science with great successes (as testified by what we got from engineering
in our daily life!). When we are uncertain (epistemic or random) about some
phenomenon, e.g. in “classical” mechanics (Newtonian and Einstein’s relativ-
ity theories) or quantum mechanics, we propose models, based, of course, on
“evidence” from observations, measurements, and “imagination”. This is com-
mon in physics and statistics (used in, say, econometrics). Since physics has
an advantage in natural science over social sciences (such as economics) as we
can perform experiments to predict phenomena by our models and see if the
predictions match the observations, the evolution of physics (from one model
to another) proceeded peacefully, as opposed to statistical debates on modern
methodologies! Let’s give a striking example:

For the purpose of “improving” statistical methods (which are used in various
applied fields), at least three things surfaced recently:

(i) The questionable use of P-values in hypothesis testing,
(ii) The seemingly realistic prediction methodology based on calibration vs esti-
mation (especially when big data are available),
(iii) The possible used of quantum probability calculus in applied statistics.

Let’s “compare” reactions of statisticians (to the above 3 proposed “inno-
vative” things) with three models in quantum physics: It was discovered that a
hydrogen atom consists of a single proton at the center, and a single electron
orbiting around the proton. The problem is: How the electron moves around the
proton? Since we cannot “see” the electron movement, we must propose models
(then verifying if such models reflect “reality”, or compatible with “observa-
tions” /some possible measurements).

(1) First model (Ernest Rutherford): Just like the earth rotating around
the sun, the electron could just follow the “solar system”. The “reality” is
this. The solar system is stable (that’s why we are still alive today! the earth
does not collapse by falling to the sun, despite the existence of gravitational
force between the earth and the sun), and so is the electron-proton system.
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But, unlike the solar system, subatomic particles have electric charges (of oppo-
site signs), and as such, the Rutherford model is unstable: the electron spiraling
into the proton in the center, hence this model does not correspond to reality.

(2) Bohr’s model: Thus the first model has to be replaced. To explain the
stability of hydrogen atoms, Bohr proposed the following model. The electron
rotates around the proton, not in a continuous fashion, but in “discrete” levels,
i.e., there are countable numbers of orbits that the electron can travel, between
which it can jump, so that the atom does not collapse. However, this model is
only good for the hydrogen atom, and not for other particles.

(3) Schrodinger’s model: Not only to modeling dynamics of all particles, but
also to explain Bohr’s model for hydrogen atom, Schrodinger proposed that the
electron is in many places at once, in an “electron cloud” whose shape is given
by a wave function (in Schrodinger’s fundamental equation).

This evolving understanding of hydrogen atom dynamics is a “peaceful” and
productive phenomenon! New proposed models were received with open mind.
As Box has said, “all models are wrong, but some are useful”, an open-minded
attitude is helpful in sciences. Tradition should not be an obstacle to scientific
progress.

Now, with respect to the main theme of this paper, namely, the proposal
to see if quantum probability (a generalization of Kolmogorov probability cal-
culus), viewing as a “new model for probability calculus” (not the meaning of
probability per se) could be used in social sciences (e.g. economics), of course,
when appropriate, the situation is this. Again, by “tradition” (like the issues
(i), (ii) listed above), it’s a slow motion, as usual! Perhaps, only a handful of
statisticians is aware of the proposal, let alone taking a closer look at it.

Let’s quote a recent opinion of some prominent statisticians on this proposal,
namely Andrew Gelman and Michael Betancourt [5]:

“Does quantum uncertainty have a place in everyday applied statistics?”

(a) Open mind: “We are sympathetic to the proposal of modeling joint prob-
abilities using a framework more general than standard model by relaxing the
law of conditional probability”.

“The generalized probability theory suggested by quantum physics might
very well be relevant in the social sciences”.

Remark. An obvious research issue arises right here: Beyond copulas? Inter-
ference vs correlation.

(b) A closer look at a new proposal: “Some of our own applied work involves
political science and policy, often with analysis of data from opinion polls, where
there are clear issues of the measurement affecting the outcome”.

Remark. “Measurement affecting the outcome” is the main real phenomenon
in quantum physics, as expressed by Heisenberg’s uncertainty principle (respon-
sible to the lack of a phase space in quantum mechanics). The point is this. It’s
all about data (observations): the data dictate the methods to use for analyzing
them, and not the other way around.
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(¢) Some possible gains: “Just as psychologists have found subadditivity and
superadditivity of probability in many contexts, we see the potential gain of
thinking about violating of the conditional probability law”.

Remark. To apply quantum probability calculus to social science problems,
one needs to have clear evidence of the failure of classical probability theory.
Remember “The ultimate challenge in statistics is to solve applied problems”.

Finally, and this is important (!), to say loud and clear: If quantum prob-
ability calculus seems to be useful for applied statistics, it does not mean that
we have to “ignore” standard probability theory, i.e., replace the latter by the
former. This is important for two reasons:

(i) “Traditional” researchers should not be worry about abandoning what
they used to work with until now! since Kolmogorov probability theory could
remain appropriate for many situations,

(ii) Quantum probability calculus may be only suitable for some situations,
but not all.

This is completely similar to the situation in mechanics: The discovery of
quantum mechanics did not ignore Newton’s mechanics: Newtonian mechanics
is still valid in macrophysics.

So, assuming that we have an open mind, so that we love to understand the
new proposal before making our own judgement of whether it could be used in,
say, financial econometrics. Thus, tradition aside, let’s find out why in quantum
physics the calculus of probabilities is different than classical Kolmogorov’s one.

Again, mathematical finance was founded on the Black-Scholes option pric-
ing PDE which was based upon the modeling of financial returns as diffusion
processes in the context of probability theory. In this modeling approach, the
return distributions are classical probability distributions. The basic question of
“econophysicists” is this:

“Should we model return distributions with distributions which reflect the data
in a much closer way?”

Clearly, predictions would be improved if the models are better! In fact,
research reported in the literature showed that this quantum approach can be
of potential benefit.

By the very nature of Brownian motion, should we study finance in the
context of quantum mechanics, instead? with the hope that “quantum proba-
bility distributions” will supply a reasonable answer to the above question. The
attempt to put the Black-Scholes pricing formula in the quantum context was
discussed by [11] who rationalized the use of quantum principles in option pricing
context:

“A natural explanation of extreme irregularities in the evolution of prices in
financial markets is provided by quantum effects”.

See also [7].
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At a technical level, the difference between classical modeling approach (i.e.,
based on Kolmororov’s probability theory) and the “quantum approach” can be
explained as follows.

(i) Kolmogorov probability formalism includes both objective and subjective
probabilities which are man-made uncertainty (i.e. imposed uncertainty by men),
e.g., in Von Neumann’s game theory for economics/mixed strategies; and Savage
expected utility theory, whereas uncertainty in quantum physics is due to the
nature itself,

(ii) While we still have the same interpretation of the concept of probability
(“chance”), the calculus of these types of probabilities is different. For example,
quantum probability measures are not additive (due to quantum interference
of waves of particles). This is clearly affecting our attempt on making financial
predictions!

In any case, the quantum approach to finance in particular, and to economet-
rics in general, is an ongoing research direction. For an introduction to Quantum
Finance, see [1].

In this introductory lecture to quantum econometrics, we will only focus on
the main ingredient, namely the concept of quantum probability (and the context
giving rise to it) which plays a crucial role in uncertainty analysis of quantum
mechanics and possibly in social sciences. While Feynman path integral is useful
for solving the initial value problem for the Schrodinger equation, it will not
be discussed in this introductory lecture. Curious readers could read Keller and
McLaughlin [6].

As such, in Sect. 2, a bit of quantum mechanics is given. Section 3 presents
the uncertainty analysis in quantum context. Section4 presents a mathemat-
ical formulation for quantum probability together with a comparison with
Kolmogorov probability theory. Section5 concludes the paper by discussing
econometrics issues. Along the way, research issues will be mentioned.

2 A Bit of Quantum Mechanics

Unlike statistical mechanics, quantum mechanics reveals the randomness
believed to be caused by nature itself. As we are going to examine whether
economic fluctuations can be modeled by quantum uncertainty, we need to take
a quick look at quantum mechanics. For a good and enjoyable reading on quan-
tum mechanics, consult Feynman [3,4].

The big picture of quantum mechanics is this. A particle with mass m, and
potential energy V(w,) at a position x, € R?, at time ¢t = 0, will move to
a position z at a later time ¢t > 0. But unlike Newtonian mechanics (where
moving objects obey a law of motion and their time evolutions are deterministic
trajectories, with a state being a point in R® /position and velocity), the motion
of a particle is not deterministic, so that at most we can only look for the
probability that it could be in a small neighborhood of z, at time ¢t. Thus, the
problem is: How to obtain such a probability? According to quantum mechanics,
the relevant probability density f;(x) is of the form |1 (z, t)|? where the (complex)
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“probability amplitude” o (x,t) satisfies the Schrodinger equation (playing the
role of Newton’s law of motion in macrophysics)

2
2P A1) V(@i

where h is the Planck’s constant, i = /=1, and A, is the Laplacian Ay¢ =

8%y + 824 + 8%y

Ox? Ox3 ox2’

Solutions of the Schrodinger equation are “wave-like”, and hence are called
wave functions of the particle (the equation itself is called the wave equation). Of
course, solving this PDE equation, in each specific situation, is crucial. Richard
Feynman [2] introduced the concept of path integral to solve it.

For a solution of the form v (z,t) = @(x)e®?, |[¢(z,t)? = |p(z)|* with ¢ €
L?(R3, B(R?),dz), in fact ||p|| = 1. Now, since the particle can take any path
from (z,,0) to (z,t), its “state” has to be described probabilistically. Roughly
speaking, each ¢ (viewed as a “vector” in the complex, infinitely dimensional
Hilbert space L?(R3, Z(R?), dz)) represents a state of the moving particle. Now
L?(R3, B(R?), dz) is separable so that it has a countable orthonormal basis, ¢,
say, and hence

x = (z1,22,73) € R3.

¢:Z<4p7@n>¢nzzcn§0n:< @n|<p|@n>
n n

where < .,. > denotes the inner product in L?(R3, Z(R3),dz), and the last
notation on the right is written in popular Dirac’s notation, noting that ||¢||? =
1= |cn|? and

Z lon >< @n| = I (identity operator on L*(R* Z(R?),dx))

where |p >< 1| is the operator: f € L?(R3, B(R3),dr) —< ¢, f >< 1| €
L2(R3, B(R?), dx).
From the solution ¢(z) of Schrodinger equation, the operator

p= chWn >< on|
n
is positive definite with unit trace (tr(p) =, < @nlplen >=1).

Thus it plays the role of the classical probability density function. By sep-
arability of L?(R3, Z(R3?),dx), we are simply in a natural extension of finitely
dimensional euclidean space setting, and as such, the operator p is called a den-
sity matriz which represents the “state” of a quantum system.

This “concrete setting” brings out a general setting (which generalizes
Kolmogorow probability theory), namely, a complex, infinitely dimensional, sep-
arable, Hilbert space H = L%(R3, #(R3),dxz), and a density matrix p which is
a (linear) positive definite operator on H (i.e., < f,pf > > 0 for any f € H,
implying that it is self adjoint), and of unit trace. A quantum probability space
is simply a pair (H, p).
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Remark. At a given time ¢, it is the entire function * — (x,t) which
describes the state of the quantum system, and not just one point! The wave
function ¥ (x,t) has a probabilistic interpretation: its amplitude gives the prob-
ability distribution for the position, a physical quantity of the system, namely,
W (=, 1)]%.

Now, observe that for ¢(p) arbitrary, where p = muv is the particle momen-
tum, a solution of Schrodinger’s equation is

3
2

wie,t) = [ plp)e PPy o)

2 i
(where E = %), i.e., ¢ is the Fourier transform of the function o(p)e=#(FY),

and hence, by Parseval-Plancherel,

[ topds= [ el
R3 R3

Thus, it suffices to choose ¢(.) such that [gs [¢(p)|*dp =1 (to have all wave
functions in L?(R?, Z(R3), dx), as well as [, [¢(2,t)[*dz = 1. In particular, for
stationary solutions of Schrodinger’ equation w(x)e*iEt/ h describing the same
stationary state. Here, note that ||¢|| = 1.

Three things come up:

(i) With addition of waves and square integrability, the state space in quantum
mechanics is a complex, infinitely dimensional Hilbert space,

(ii) Unlike Newtonian mechanics, the dynamics of particles are random in
nature (in the sense that, under the same “state” (initial conditions), results
are different), thus we cannot talk about “the trajectory” of a moving par-
ticle,

(iii) We need to be able to find the probability distribution of possible “tra-
jectories”. A plausible suggestion is |¢(x,t)|? for probability density of the
position. But then, while the meaning of probability remains the usual one
(e.g. as a frequency interpretation), its calculus based on this formalism is
different than Kolmogorov’s probability calculus, e.g., additivity property
breaks down (in, say, interference of waves).

Remark. Note that when dealing with uncertainty (ordinary or quantum), it
is necessary to evoke its underlying logic, for purpose of “reasoning” (inference
which is based on logic, and not on mathematical theorems, like the way to
carry out statistical hypothesis testing problems using p-values!). It turns out
that quantum logic is non Boolean, but seems to have a pleasant connection with
the so-called Conditional Event Algebra. See the recent paper by Nguyen [9].

In summary, quantum mechanics concerns motions of particles. Particles
moves like waves with a random behavior. The law of quantum mechanics is
given by the Schrodinger’s equation whose solution is the wave function describ-
ing the motion of a particle States of quantum systems are determined by quan-
tum probabilities. Quantum mechanics does not predict a single definite outcome
(observed), it predicts a number of different possible outcomes and tells us how
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likely each of these is (somewhat similar to coarse data in classical statistics).
Interference occurs with particles by duality wave/particle.

3 Measuring Physical Quantities

Physical quantities are numerical values associated to a quantum system, such
as position, momentum, velocity, and functions of these, such as energy.

In classical mechanics, the result on the measurement of a physical quantity
is just a number at each instant of time. In quantum mechanics, at a given time,
repeated measurements under the same state of the system give different values
of a physical quantity A: There should exist a probability distribution on its
possible values, and we could use its expected (mean) value.

For some simple quantities, it is not hard to figure out their probability
distributions, such as position z and momentum p (use Fourier transform to
find the probability distribution of p) from which we can carry out computations
for expected values of functions of then, such as potential energy V' (z), kinetic
energy (function of p alone). But how about, say, the mechanical energy V(x) 4+

2, which is a function of both position 2 and momentum p? Well, its expected

value is not a problem, as you can take E(V (x) + %) = EV(x) 4+ E(%), but
how to get its distribution when we need it? Also, if the quantity of interest is
not of the form of a sum where the knowledge of E(z), E(p) is not sufficient to
compute its expectation?

If you think about classical probability, then you would say this. We know
the marginal distributions of the random variables x,p. To find the distribution
of V(z)+ %, we need the joint distribution of (z,p). How? Copulas could help?
But are we in the context of classical probability!?

We need a general way to come up with necessary probability distributions
for all physical quantities, from the knowledge of the wave function ¢ (z, t) in the
Schrodinger’s equation. It is right here that we need mathematics for physics!

For a spacial quantity like position X (of the particle), or V(X) (potential
energy), we know its probability distribution x — |1 (z,t)|?, so that its expected
valued is given by

EV(X):/RS V(J;)W(m,t)\zda::/RS W (2, )V (2)0(x, t)do

If we group the term V(x)¢(z,t), it looks like we apply the “operator” V
to the function ¥ (.,t) € L*(R?), to produce another function of L?(R3). That
operator is precisely the multiplication Ay (.) : L2(R?) — L2(R3) : ¢ — V. Tt
is a bounded, linear map from a (complex) Hilbert space H to itself, which we
call, for simplicity, an operator on H.

We observe also that EV(X) is a real value (1) since

EV(X):/ V(2)|y(z,t)|Pdx

R3
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with V(.) being real-valued. Now,

Y (z, )V (x)(x, t)de = < 9, Ay >
R3

is the inner product on H = L?(R?). We see that, for any v, o € H, < ¢, Ayp >
=< Ay, p >, since V is real-valued, meaning that the operator Ay (.) : ¥ —
Vi is self adjoint.

For the position X = (X;, X2, X3), we compute the vector mean EX =
(EX1,EX9, EX3), where we can derive, for example, EX; directly by the
observables of Q = X3 as Ax, : ¥ — x1¢ (multiplication by x1), Az, (¥)(z,t) =
219 (, ).

Remark. The inner product in the (complex) Hilbert space H = L?(R3)
(complex-valued functions on R?, squared integrable wrt to Lebesgue measure
dx on B(R?)) is defined as

<P,p>= /R3 V¥ (x, t)(x, t)dx

where ¢*(x,t) is the complex conjugate of ¢ (z,t). The adjoint operator of
the (bounded) operator Ay is the unique operator, denoted as Aj,, such that
< Ay (f),g >=< f,Av(g) >, for all f,g € H (its existence is guaranteed by
Riesz theorem in functional analysis). It can be check that A}, = Ay, so that
if V.= V* (ie., V is real-valued), then A}, = Ay, meaning that Ay is self
adjoint. Self adjoint operators are also called Hermitian (complex symmetry)
operators, just like for complex matrices. The property of self adjoint for oper-
ators is important since eigenvalues of such operators are real values, and as
we will see later, which correspond to possible values of the physical quantities
under investigation, which are real valued.

As another example, let’s proceed directly to find the probability distribution
of the momentum p = mv of a particle, at time ¢, in the state ¢ (z,t), z € R3,
and from it,.compute, for example, expected values of functions of momentum,
such as ) = %.

The Fourier transform of ¢ (x,t) is

o(p,t) = (27Th)_% 1/J(l‘,t)e_%<pvx>d$
]R3

so that, by Parseval-Plancherel, |o(p, t)|?

2 2
(2 = [ W0 0o,

is the probability density for p, so that

2m 2m

But we can obtain this expectation via an appropriate operator A, as follows.
Since

1/1(%15) = (27Th)7%/ @(p,t)e%<p@>dp
R3
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with © = (x1, z2, 23), we have

h 0
= (1) = (2wh) 2 / pip(p,t)en =" dp
1 31'1 R3
ie., %%¢($, t) is the Fourier transform of p1¢(p,t), and since 1) is the Fourier

transform of ¢, Parveval-Plancherel implies

B = [ ' metntidp = [ 6000 510 s
R3 R3 1 8$1

we see that the operator A, = %a%l() on H extracts information from the

wave function ¥ to provide a direct way to compute the expected value of the

component p; of the momentum vector p = (p1,p2,p3) (note p = muo, with

v = (v1,v2,v3)) on one axis of R3. For the vector p (three components), the

operator A, = 2V, where V = (52, 52—, 52-).

. Op1’ Op2’ Ops
As for Q = %, we have
2

BQ= [ 0[5 Al )
R3 m

where A is the Laplacian. The corresponding operator is Ag = (gfj )A.
Examples, as the above, suggest that, for each physical quantity of interest @
(associated to the state ¢ of a particle) we could look for a self adjoint operator

Ag on H so that

EQ=<v,Aqy >

A such operator extracts information from the state (wave function) ¢ for
computations on ). This operator Ay is referred to as the observable for Q.

Remark. If we just want to compute the expectation of the random variable
Q, without knowledge of its probability distribution, we look for the operator Ag.
On the surface, it looks like we only need a weaker information than the complete
information provided by the probability distribution of ). This is somewhat
similar to a situation in statistics, where getting the probability distribution of
a random set S, say on R3 is difficult, but a weaker and easier information
about S can be obtained, namely it coverage function wg(x) = P(S 3 z), « €
R3, from which the expected value of the measure pu(S) can be computed, as
Eu(S) = [gs ms(x)dp(x), where p is the Lebesgue measure on Z(R?). See e.g.,
Nguyen [8].

But how to find Ag for @ in general? Well, a “principle” used in quan-
tum measurement is this. Just like in classical mechanics, all physical quantities
associated to a dynamical systems are functions of the system state, i.e., posi-
tion and momentum (z,p), i.e., Q(x,p), such as Q(x,p) = % + V(). Thus,
the observable corresponding to Q(z,p) should be Q(A;, A,), where A,, A, are
observables corresponding to = and p which we already know in the above anal-
ysis. For example, if the observable of Q is A, then the observable of Q? is AQQ.
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An mterestmg ezample. What is the observable Ag corresponding to the
energy E = ”p” + V7

We have AV =V (Qv(f) = Vf, i.e, multiplication by the function V:
(Av (f)(z) =V (2)f(x)).

0
he ol
A ="vV=_]|2
P i \Y i Oxo
0
Ox3
so that
of
h a.Ll
A1) = (Ap 0 A)(f) = Ap(Ap(F) = 4y | = 5L
of
813
ar? ar?
b 61? 6w?
2 2
-y ag | - |2
ar? ar?
61% 8w§
Thus, the observable of Hp“ _h A, and that of £ = HPH +Vis Ag =

Efn A4V, which is an operator on H = L3(R3).

By historic reason, this observable of the energy (of the quantum system)
is called the Hamiltonian of the system (in honor of Hamilton, 1805-1865) and
denoted as

—_h2
H=—A+V
2m

Remark. Since
E(V) = - 7/]* (’JJ, f)V(l’W(% t)d‘r = s w*(% t)(lel))(% t)d:l?

it follows that Ay =V
The Laplacian operator is

R

Af (@) = ox3 Oz 0%

where z = (21,29, 73) € R3.
Now, if we look back at Schrodinger’s equation

2

0 h
with (stationary) solutions of the form v(x,t) = p(x)e™*?, then it becomes

2
I pp(@)e V(@) pla)e

2m

(~2)hwp(a)e ! =
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or
h2
=——A
hpl) = — 5 Ap(e) + V(@)p()
With E = hw, this is

I Ap(a) + V(@)la) = Eola)

or simple, in terms of the Hamiltonian,

Hp=Ep

Putting back the term e~*?, the Schrodinger’s equation is written as

A = Ev

i.e., the state ¢ (solution of Schrodinger’s equation) is precisely the eigenfunction
of the Hamiltonian .7 of the system, with corresponding eigenvalue E. In other
words, the wave function of a quantum system (as described by Schrodinger’s
equation) is an eigenfunction of the observable of the system energy.

In fact, the Schrodinger equation is

iho () = A (.1

with S as an operator on a complex Hilbert space H in a general formalism,
where the wave function is an element of H: The Schrodinger’s equation is an
“equation” in this “Operators on Complex Hilbert spaces” formalism. This equa-
tion tells us clearly: It is precisely the observable of the energy that determines
the time evolution of states of a quantum system. On the other hand, being an
element in a separable Hilbert space, a wave function 1 can be decomposed as a
linear superposition of stationary states, corresponding to the fact that energy
is quantified (i.e., having discrete levels of energy, corresponding to stationary
states). Specifically, the states (wave functions in the Schrodinger’s equation)
of the form v(x,t) = p(x)e” ™ are stationary states since |[(x,t)] = |p(x)],
independent of ¢, so that the probability density |¢(x)|? (of finding the particle
in a neighborhood of =) does not depend on time, resulting in letting anything
in the system unchanged (not evoluting in time). That is the meaning of sta-
tionarity of a dynamical system (the system does not move). To have motion,
the wave function has to be a linear superposition of stationary states in inter-
ference (as waves). And this can be formulated “nicely” in Hilbert space theory!
Indeed, let ¢, be eigenfunctions of the Hamiltonian, then (elements of a separa-
ble Hilbert space have representations with respect to some orthonormal basis)
Y(x,t) = 3, capn(r)e Ent/h where E,, = hw, (energy level). Note that, as
seen above, for stationary states gon(;v)e’iE"t/h, we have ¢, = E,p, ie.,
pn is an eigenfunction of 7. Finally, note that, from the knowledge of quan-
tum physics where energy is quantified, the search for (discrete) energy levels
FE,, = hw,, corresponds well to this formalism.
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We can say that Hilbert spaces and linear operators on them form the lan-
guage of quantum mechanics.

Thus, before continuing, let’s put down an abstract definition: An observable
s a bounded, linear, and self adjoint operator on a Hilbert space.

We have seen that multiplication operator My : g € H = L?*(R3) — M¢(g) =
fg is self adjoint when f is real-valued. In particular, for f = 1, B € Z(R?),
M, , is a (orthogonal) projection on H, i.e., satisfying My, = (M;,)? (idempo-
tent) = (Mj,)*, which is a special self adjoint operator. This will motive the
space Z(H) of all projections on H as the set of “events”.

Each observable A is supposed to represent an underlying physical quantity.
So, given a self adjoint operator A on H, what is the value that we are interested
in, in a given state 1)? Well, it is < ¢, A1) > (e.g., [ps ¥* (2, 1) A(1))(z, t)dx), with,
by abuse of language, is denoted as < A >. Note that < ¢, Ay > € R, for any
1 € H, since A is self adjoint, which is “consistent” with the fact that physical
quantities are real-valued.

Remark. If we view the observable A as a random variable, and the state
1) as a probability measure on its “sampling space” H, in the classical setting
of probability theory, then < A >, plays the role of expectation of A wrt the
probability measure . But here is the fundamental difference with classical
probability theory: as operators, the “quantum random variables” do not neces-
sarily commute, so that we are facing a noncommutative probability theory. This
is compatible with the “matrix” viewpoint of quantum mechanics, suggested by
Heisenberg, namely that numerical measurements in quantum mechanics should
be matrices which form a noncommutative algebra.

4 Distributions of Observables

Let’s look back at the finitely dimensional case. This is in fact the origin of the
so-called spectral theory (of operators).

For simplicity, and for concreteness, consider the euclidean space R™. This is
a vector space over the scalar field R. Moreover, it has an binary form which is
called an inner product: < z,y >= 2?21 x;Y;, where x;s are the coordinates
of z € R™ with respect to an orthonormal (canonical) basis of R?. When we
consider infinitely dimensional spaces with similar properties, we will call them
Hilbert spaces. Thus euclidean spaces R™ are finitely dimensional Hilbert spaces.

A (real) n x n matrix A = [a;)] is a linear transformation (we will call it
an operator) on R™ (i.e., A : R* — R"). If the matrix A is symmetric, i.e.,
A = A" (the transpose of A, i.e., ajx = ag;), then by changing coordinate
systems (principal axes theorem in analytical geometry), we represent A in a
“nice” form, namely diagonal, where the nonzero diagonal entries are roots of
the characteristic polynomial det(A — AI) = 0, called the eigenvalues of A. If we
let o(A) be the set of all eigenvalues of A, called the spectrum of A, then A is
written as A = ZAEU(A) APy, where Py is the (orthogonal) projections on R™
onto the eigensubspace S(A\) = {x € R” : Az = Az}, i.e., the set of eigenvectors
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associated with the eigenvalue A. This is referred to as the spectral decomposition
of the matrix (operator) A.

Remark. The term “spectrum” (or spectral) is used possibly in relation of
spectra of atoms in physics. Spectral theory was named after D. Hilbert (1910).
But of course, “Hilbert space” was not named by Hilbert!

When we need to consider matrices with complex entries, e.g., linear opera-
tors on C™, symmetry is extended to Hermitian (or self adjoint) property, i.e.,
A = A* (transpose of complex conjugate matrix). Even in this case, the remark-
able fact is that eigenvalues of self adjoint operators are real: o(A) C R. In
particular, when o(A) C RT, A is said to be a positive operator, which is equiv-
alent to < z, Ax > is positive for all z € C™.

Look at the spectral decomposition A = Z/\EU( A) AP, of the symmetric
matrix A. Since 0(A) C R, we can define a a map £4 : B(R) € #(R"™) (space of
projections on R™) by £4(B) = > \cp Pr. Then, {4(R) = > g P = I (when
tr(A) = 1), and for any pairwise disjoint B; € Z(R), {a(U;B;) = >, €a(B;)).
The set function € 4(.) looks like a probability measure, but with &2(R™)— valued,
instead of [0, 1]. Such a set function is called a spectral measure, and £4(.) is the
(discrete) spectral measure of the matrix A. In fancy notation (but useful when
considering infinitely dimensional setting), we write A = fa( A) AdEA(N).

We see that the study of (random) physical quantities @ on a quantum
system, in a state v, is via its observable Ag. Observables (in quantum context)
play the role of random variables in Kolmogorov’s probability theory.

For simplicity, let’s elaborate on this in the finitely dimension case where, for
“concreteness”, observables are taken as m X n matrices with complex entries.
These are linear, Hermitian operators on C™.

Recall that a matrix A = [a;x], as an operator on R, gives rise to a quadratic
form < Az,xz >= > ajpz;zi. If A is symmetric, ie., ajz = axj, then, using
an orthogonal transformation (leaving invariant Euclidean metric on R™), in
analytic geometry, it can be rewritten in a normal form < Az,z >= 3 )\jxf.
Sylvester, in 1852, showed that the )\98 are roots of the characteristic polynomial
det(AI — A), i.e., eigenvalues of the matrix (operator) A. This form reduction
corresponds to a diagonalization process on the matrix A: for some orthogonal
matrix B, the matrix D = B! AB is in diagonal form. The diagonal entries of D
are eigenvalues of A. The set of eigenvalues of A is called the spectrum of A, and
is denoted as o(A). Thus, there exists an orthonormal basis of R™, {ej, es, ..., €, },
with respect to it, A is diagonal with diagonal entries being eigenvalues of A.
In other words, A = Z/\EU(A) APy, where Py is the (orthogonal) projection onto
the eigensubspaces Sy = {z : Az = Az}. This is referred to as the spectral
decomposition of the symmetric matrix A.

Remark. In quantum mechanics, certain physical quantities cannot be mea-
sured simultaneously. This fact is interpreted as their observables (e.g. Hermitian
matrices) do not commute (since the algebra of matrices is noncommutative).
The set of possible values of a quantity @ is the spectrum of Ag. Thus, the
spectrum of the Hamiltonian of energy (energy levels, recalling that energy is
quantified) of an atom is precisely the spectrum of the atom.
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With this spectral decomposition of an observable (i.e., a self adjoint opera-
tor) in the finite case, let’s point out right away that observables play the role
of random variables in Kolmogorov’s setting. First, observe that a projection
operator is an “event” in quantum setting: for example P, is the event that the
underlying physical quantity, represented by A, takes the value A.

In Kolmogorov’s setting, given a measurable space ({2, 47), an event is an
element of the o— algebra &7 of subsets of {2. We identify B € o/ with its indi-
cator function 15 : 2 — [0, 1] which, in turn, is identified with the multiplication
operator on the Hilbert space L2(£2,.%7, P); f — 1pf : (1pf)(w) = 15(w)f(w)
(so that if B happens, i.e., w € B, then (1gf)(w) = f(w), otherwise, it’s 0). This
operator on L?(§2, </, P) is an orthogonal projection, and hence self adjoint. In
other words, in quantum setting, projections correspond to events. Note also
that, two quantum events (projections) p,q are compatible when pq is also an
event (a projection): in this case, pg = (pq)* = ¢*p* = ¢p, i.e., p and ¢ commute.
The counterpart of &7 is the set Z(R™) of all projections on R".

Now the spectral decomposition A = > AEo(A) APy is similar to a “simple
random variable” in classical probability. A simple random variable X is of the
form X (w) = > 2;1p,(w), where Bj = {w: X(w) = x;}, so that when the event
Bj occurs, X = z;. The probability density of X is P(X = z;) = P(B;) =
PIX 1 ({a, )]

What is the probability density of the observable A? i.e., P(Py) in quantum
formalism? The counterpart of the probability measure P on ({2, %), is the state
1) of the Schrodinger equation. Let p be a positive operator on R™ with unit trace
(ie., tr(p) = 22;1 < ej,pe;j >=1). Note that a positive operator is necessarily
self adjoint. The triple (R™, Z(R"), p) is called a (finite dimentional) quantum
probability space, the “state” p is called a “density matrix”.

For B € Z(R"), we have tr(pB) = >_7_, < uj, puj >, where the u/s is an
orthogonal basis for the range of the projection B, so that tr(pB) € [0, 1], and for
B, ..., By, pairwise orthogonal (for j # m, B; B, = 0), so that By +...+ By, is the
event that at least one of the B’s occurs, and tr(B; + ... + By) = Z?:l tr(pB;).
Thus the map ¢r(p- (.)) : Z(R™) — [0,1] acts like a probability distribution,
with tr(pB) being the probability of the event B under the state p.

For A =3}, c,(a) APx, Pr(A takes the values A) = tr(pPy). Thus, the observ-
able A on R"™ is a discrete (finite) random variable with a probability mass
function.

In summary, let H be a (finite dimensional) complex Hilbert space. repre-
senting states of a quantum system. Let & (H) denote the set of all projections
on H (playing the role of events), and p a positive operator of H with unit trace.
The Triple (H, Z(H), p) is a quantum probability space.

In such a quantum probability space, under the state p, an observable A,
with spectral decomposition A = Ao (A) APy, has a probability distribution
given by Pr(Py) = tr(pPy). The converse to this construction from a given p is
Gleason’s theorem, which says that any probability distribution p : Z(H) —
[0, 1] is of this form, i.e., has a density p.
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Remark. There are several different definitions of quantum probability space
in the literature, depending of levels of generality, e.g., in terms of C*—algebra.
Here we consider a low level in terms of Hilbert spaces.

Let Ag the observable of the quantity ). What are the possible values of Q7
In fact, what are the values of ) that we can actually measure? And what is the
probability distribution of Ag?

To answer this, observe that if the state ¢ € H is an eigenfunction of Ag,
i.e., there is some scalar a (corresponding eigenvalue), here real since Ag is self
adjoint, such that Ag(¢) = a1, then

BQ = [ v on)(e.0ds = [ v au(s, s
_ a/‘ (e, ) 2da = a
R3

B(Q*)

¥ (2,1)(AQ) ) (x, t)do = /W P (2, 1)(Ag)(ap(x, t))dx

R3

a2/ |¢(z,t)|*dz = a?
]R3

so that Var(Q) = EQ? — (EQ)? = 0. i.e., for sure, @ will take the value a
(no uncertainty involved). Thus, measurements of a quantity @ are precisely the
eigenvalues of its observables, i.e., the spectrum of the observable representing
it, denoting as o(Ag). Note that, since every Ag is self adjoint, o(Ag) C R,
consistent with the fact that measured values of physical quantities have to be
real (not complex numbers!).

Here, again, is a theory extending what we known from matrix theory.

With the interests in transforming symmetric quadratic forms ((Az,z) =
> ik QkTjTk, the matrix A is symmetric) to normal form (3, ﬁjx?) via an
orthogonal transformation T : R — R”™ (||T'z|| = ||z||, for any z € R™, norm
invariant), back to the times of Descartes (1637), it was known that any sym-
metric matrix A (Tx = Az) is orthogonally equivalent to a diagonal matrix
D.ie., D = B71AB, for some orthogonal matrix B (||Bz|| = ||z||). Note that
B is orthogonal iff its columns form an orthonormal basis for R™.The diago-
nal entries of D are the eigenvalues of A, i.e., roots of the polynomial equation
det(A—AI) = 0. The set o(A) of eigenvalues of a matrix A is called the spectrum
of the operator (matrix) A. It x is a non zero vector such that Az = Az, then
x is called an eigenvector (with associated eigenvalue \). Thus, a symmetric
matrix A can be written as ) Aju;.

As we will see, when we generalize matrix A on R" is to an “nice” bounded
operator (e.g. compact) on a “nice” Hilbert space H (separable), we will have
countable eigenvalues and vectors, the latter form an orthonormal basis for H,
so that each h € H can be written as an infinite series, and hence any operator
on H can be represented as an “infinite matrix”.
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Let’s start with matrices to bring out things we wish to generalize. For
n X n matrices with complex entries (i.e., operators on C", a finitely dimen-
sional Hilbert space), it known from matrix algebra that, a self adjoint matrix
A has real eigenvalues A;,j = 1,2,...,n (i.e., A — X\;I are not invertible). The
set 0(A) of eigenvalues is called the spectrum of A. The eigenspaces associated
with eigenvalues A; ( ie., S(\;) = (x € C" : Ax = Ajz}) are orthogonal (for
Aj # M, S(Aj) L S(Ak)). Moreover, A =37\ 4y APx, where Py is the projec-
tion onto S(A). This is referred to as the spectral decomposition of A.

Remark. If A is an operator on an Hilbert space H, then its spectrum o(A) C
C is, by definition, the set complements of its “resolvent” {\ € C: (A — A\I)~!
exists}. In general, the spectrum could be uncountable. The spectral decompo-
sition of a self adjoint operator will be defined as an “integral wrt a spectral
measure on #(C)”. In Quantum mechanics, quantities which are measured are
matrices (more generally, operators) rather than real numbers. Also, “observ-
ables” may be functions of other observables, such as f(A) where f : R — R.
As such, we need to make sense of f(A) as an operator: this is the problem
of functional Calculus. If Au = Au, then we could set f(A)u = f(MN)u, so
that clearly there is a connection between spectral theory and functional cal-
culus. Both are related to quantum mechanics. When A = 37, \;P;, we set
flA) = Zj f(A;)P;. For Hilbert space H, an observable (i.e., a self adjoint oper-
ator A on H), has its spectral measure £4 on Z(C), such that A = fU(A) AdEa(N),
we set f(A) = fU(A) FN)dEA(N).

The spectral decomposition of a self adjoint operator A in the finitely dimen-
sional case is obtained from a “resolution of identity” {Px; A € o(A)}. The map
A€o(A) CC — Py, € #(H), space of projections on H, acts like a finite prob-
ability density where probability values are projections! Note that, like [0, 1],
P(H) is not a Boolean lattice. For a “random variable X” taking values in
o(A), formally, Pr(X = \) = Py. When H is of infinite dimensions, this “den-
sity” should be replaced by a measure on Z(C). Thus, a spectral measure is
defined as &(.) : B(C) — Z(H) having analogous properties of a numerical
measure, namely, {(C) = I, {(U,By) = Y, &(B,) for any sequence of pairwise
disjoint B,, € #(C), where the infinite sum is taken in the sense of convergence
wrt to the norm. This is a projection-valued probability measure.

The upshot is that any (bounded) self adjoint operator A on a Hilbert space
H admits a unique spectral measure &4 such that it has the spectral decom-
position (in the infinite case) as A = fU(A) A€ (X) (von Neumann’s spectral
theorem) which is the extension of A = >y, 4 APx, in the finite case. The
spectral integral is defined as a Lebesgue-Stieltjes integral, here, of the function
FO) = A, wrt €4.

Now, &(H) is the set of events, i.e., special {0,1}— valued random variables,
general random variables (observables) are represented by (bounded) self adjoint
operators on H. The spectral measure of a self adjoint operator thus plays the
role of the probability law of a random variable in the quantum context, its
existence and uniqueness are guaranteed by von Neumann’s spectral theorem.



An Invitation to Quantum Econometrics 61

Remark. Why the spectral integral representing A is over its spectrum o (A4)?
First, note that o(A) needs not be discrete, as it is {\ € C; A — AI is not
invertible}.

The “support” of the spectral measure {4 is A(£4) = C\ Uy B where the
union is over all open set Byin C for which £4(By) = 0. The measure {4 is said
to be compact if, by definition, its support A(£4) is compact in C. It turns out
that for compact spectral measures, o(A) = A(£4). That answers our question.

We close this technical discussions with the concept of distribution of observ-
ables.

Let A be an observable, i.e., a self adjoint operator on a Hilbert space H.
Let p be a density matriz, i.e., a positive operator on H with unit trace. Let &
be the spectral measure of A. Let p: B(R) — [0,1] be u(B) = tr(p&(B)). Then
u(.) is a probability measure, and it is called the “law” or probability distribution
of the observable A, under the state p.

The interpretation is this. The distribution of A in the quantum frame-
work is the same as the usual probability distribution of a random variable
on (R, B(R), p).

Kolmogorov’s theory of probability is a special case of quantum probability:
a commutative theory within an arbitrary (commutative or not) theory: Each
random variable X : (£2, 4/, P) —R is identified with the multiplication by it,
acting on L2(£2,.47, P), i.e., a special self adjoint operator, where multiplica-
tion operators commute; whereas in quantum uncertainty analysis, observables
are arbitrary self adjoint operators which might not commute. Among other
things, noncommutativity of observables (meaning that they cannot be observed
simultaneously) is characteristic for quantum modeling in applications, such as
finance.

5 Quantum Modeling and Probability Calculus
for Econometrics

Like the attempt of econophysicists to use statistical physics to model and ana-
lyze financial time series, an obvious rationale for using quantum mechanic for-
malisim is in the force driving their fluctuations. Specifically, the Hamiltonian
of a quantum dynamical system (the observable total energy) controls the time
evolution of the system. The Black-Scholes’ equation in option pricing can be
converted into a quantum system with a given Hamiltonian (see, e.g., [1]). It is
about modeling, say, financial time series as quantum dynamical systems to gain
new insights into the behavior of financial markets, for predictions among other
purposes.

The heart of statistical analysis of time series data is models. Usually, having
in mind just one theory of probability, namely Kolmogorov (in fact, one calculus
of probabilities), all models are based on it. In particular, joint or conditional
distributions, and correlations among variables are derived, including the use of
copulas. It is perhaps time to ask “Are we using the right calculus of probabilities
so far in financial data analysis?”. Note that, Kolmogorov probability theory has
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no problem at all in games of chance! “All models are wrong, but some are useful”
(G. Box) has a neat interpretation in quantum mechanics! Schrodinger equation
is just our best guess of how nature behaves (as verified by experiments). But
how to find the “useful models”? Of course, that is the main task of statisticians
using all their statistical tools, such as model fitting on data, cross validation
methods, etc.

Now with the knowledge of quantum mechanics which not only provides us
with a sense of dynamics (what causes the financial data to fluctuate?), but also
a way to conduct uncertainty analysis based on a new calculus of probabilities
(nonadditive and noncommutative), we could reexamine, where appropriate, the
ways to do econometrics so far. For example, in analyzing the factors which affect
the fluctuations of a financial time series, we could discover a Hamiltonian driving
these fluctuations and then examine whether we are in a quantum context. When
it seems to be the case, we have found a “useful” model! A quantum model for a
financial data set. And the familiar follow up tasks involve the use of quantum
probability calculus.
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Abstract. Regression analysis for which the dependent variable is
binary has typically been modelled by the Logit and the Probit mod-
els. We propose two new regression models GLT and GL™ regressions
based on the function of [5,6] and the function of [4] for binary dependent
variables. These models allow for possible asymmetries in the underlying
mechanisms governing the binary output variable and make allowance
for the independent variables to determine its shape. Our simulation
results of the univariate regression indicate that the expected average
mean square error is smallest for the GL™ model than the Logit or the
Probit models. On the other hand, the expected correlation between the
outcome and the predicted probabilities is greatest for the GL™ model
than the Logit and Probit models. Therefore, the GL™ having higher
predictive power over the Logit and Probit, should be more useful to
researchers, economists and scientists that rely on the Logit and Probit
models for their work.

1 Introduction

The outcomes of most real-life occurrences are usually discrete/qualitative in
nature rather than being continuous/quantitative [12,16]. For instance, a cus-
tomer either defaults or honours a contractual obligation, a presidential candi-
date wins or loses an election, a football team either wins or loses a game, it will
rain on Christmas day or it does not, among others. In these cases, it is scientifi-
cally prudent to employ models whose dependent variables are discrete. Against
this background, the Logit and Probit models have been employed extensively
in various fields [1,10-12,15,18,21-24, among others]. Specifically, [10] assessed
reasons why 980 respondents living in Xian, China did not wish to buy a car.
They used the probit model to identify households who did not have the inten-
tion to buy a car based on their socio-demographic profile and living conditions
and then used the multinomial Logit model to estimate the probability of a
particular reason for not buying a car mentioned. The results indicated that,
socio-demographic variables, type and size of the house and non-availability of
parking space have significant effects on car purchase decisions. However, the
main reasons for not buying a car are related to costs considerations, parking
difficulties and congestion. [15] also examined the relationship between partici-
pating in the Chicago Child-Parent Centre (CPC) Preschool Program and higher
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educational attainment (high school completion, highest grade completed, and
college attendance) at age 22. This was done by using the probit regression to
examine the group differences in educational attainment controlling for child and
family characteristics, including gender, race/ethnicity, and family risk status.
Results found showed a significant positive association between CPC preschool
participation and higher education attainment. [17] adopted the discrete choice
models to predict the winners of entertainment awards. Their analysis reveals
how some of the earlier results might be considered truly surprising, thus nom-
inees with low probability of winning who have overcome nominees who were
strongly favored. [19] studied residential mobility, quality of neighborhood and
life course events using limited dependent variable models and find that not all
life course events that are associated with moves leads to neighborhood quality
adjustment.

From the above studies, the shape and the skewness of the data set were
implicitly imposed and these could lead to suboptimal decisions. Because real
life data set rarely emanate from elliptic distribution (i.e. class of all symmetric
distributions with support on the entire real line [13], the GLT and the GL~
models that give allowance for possible asymmetries and allows the independent
variables determine its shape should be favored. [4] used these distributions in
combination with artificial neural networks to overcome the estimation difficulty
in stochastic variance models for discrete financial time series. In addition, when
studying the distribution among competing distributions (namely, normal and
the heavier-tailed distributions, GG, GG, Student-t, Normal Inverse Gaus-
sian, GL™ and GL™, these distributions were employed in the estimation of the
value-at-risk for some German stocks [3]. His findings were that among these
competing distributions, the GL* and GL™ gave best estimate of the value-at-
risk for a properly chosen skewness parameter.

Further, the Probit and Logit models assume that the processes that govern
the binary (multinomial) outcome follow the elliptical distribution. These imply
that the above models tend to impose a given symmetry and shape irrespec-
tive of the actual data structure. However, many social phenomena rarely follow
the elliptical distribution (see for example [9]). Therefore, the imposition of the
assumption of Logit and Probit models being symmetry may lead to biased
parameter estimates. For instance, in corporate finance, firm fundamentals dur-
ing distressed market periods are typically skewed; as such, imposing a different
data structure may likely produce misleading results. In this regard, the paper
makes some contributions to the literature of discrete outcome models. First,
we propose and derive the maximum likelihood of two novel models, GL* and
GL™ regressions, which are based on the GL™T distribution of [5,6], and GL~
distribution of [4]. Second, we empirically show that the GL* and GL~ mod-
els are likely to produce more accurate estimates as compared to those of logit
and probit models. This stems from the fact that the GL* and GL™ regres-
sion models are more general and do not impose any structure but extract the
shape and symmetry from the data set. The Logit model is a special case of
GL* and GL~ if the symmetry and shape parameters in these functions are set
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to 1 and e = 2.7183, respectively. Specifically, we explore the forging argument
by comparing the performance of our models with the benchmark models using
their goodness of fit measures such as average mean square error (AMSE, here-
after), expected mean square error, the correlation between the outcome and
the predicted probabilities and the expected correlations. Following [2,7,20], we
compute the above measures for GLT and GL~, Logit and Probit using sim-
ulated data from a random sample emanating from a mixture of ten different
distributions.

For the empirical analysis, we proceed as follows. First, we simulate a data
set of size 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 and 750
each of length 1000 from a random sample from a mixture of ten distributions.
Further, we estimate the parameters of the four models for each of these data
sizes. Second, we compute the AMSE for each path, and the expected AMSE
(E(AMSE)) for each of data size for each model. Finally, we evaluate the predic-
tion power of the four models using the loss function (E(AMSE)) for each path
and over all the data sizes. Next, we compute the expected correlation between
the outcome and the predicted probabilities for each data size for each model.
We performed similar exercise by computing the Akaike Information Criteria
(AIC), Bayesian Information Criteria (BIC) for each path and the expected AIC
and the expected BIC for each data size and each model. In all cases, we evaluate
the predictive power of the four models using expected AIC, expected BIC for
each path and over all the data sizes.

The results show that, on the average, GLT produce smaller F(AMSE) as
compared to those of the Logit and Probit models. On the hand, GL™ produced
the greatest expected correlation between the outcome and the predicted proba-
bilities than the Logit and the Probit. The probit produced the smallest expected
BIC compared with the competing models. This imply that when studying any
phenomenon whose outcome is binary (multinomial), it is more appropriate to
use the GL™T since this model do not impose any structure on the data set as
compared with their counterparts: the Logit and Probit models.

Thus the objectives of the study are to determine whether asymmetries and
the shape of the independent variables do matter in the modeling of regression
analysis for which the dependent is binary.

The rest of the study is organized as follows. Section 2 is the methodology
where the main results of the paper are presented. This section discusses the
odds ratio version of the GL™ and GL™ models, the log-likelihood functions and
the marginal effects of these models. Section 3 presents the simulation results
whereas Sect. 4 concludes the study.

2 Methodology

This section presents generic binary outcome maximum likelihood, the GL™
and GL~ regressions and their corresponding maximum likelihood functions.
We proceed as follows. First, we present the generic maximum likelihoods for
models whose outcome are binary. Second, we derive the GLT and GL™ models
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using the GLT and GL~ functions and construct their respective maximum
likelihoods. Finally, we deduce the marginal effects of our models.

2.1 Generic Maximum Likelihood Function for Binary Output
Variables

Define the conditional probability of a binary output variable Y as follows:
PY =1X = 21,X = 23,....,X = 1) as a function of X = (z1,9,...,2)
incorporating possible asymmetries in the data of interest X. Assume that

PY=1X=21,X =a9,...X =a1) = F(X,0) (1)
for some function F' parameterized by ©. Let the observations x;s be independent

of each other. Then the conditional likelihood function, L is given by

LOX)=||PY =1X=21,X =x2,...X = x})

=

.
Il
_

F(‘Tiv@)yi)(l - F(xi7 @))l_yi (2)

|

Il
s

7

where the observed y; is either 0 or 1.
In a sequence of Bernoulli trials 1,2, ..., y, with a constant probability of
success p, the likelihood function is defined by

n

Lply) =[] Q-p' ™ (3)
i=1

where Y = y1,¥a, ..., yn. The log-likelihood function is

n

U(plY) = logL(p|Y') = > _[yilogp + (1 — yi)log(1 — p)] (4)

i=1

" o
which is maximized when p = # =Y.

2.2 Our Models: GLT and GL~
We derive the GLT and GL~ regressions by presenting the following definitions.

Definition 1: A random variable X follows the GL™T distribution with param-
eters u, 2, a and b (for short GLT (u,v?, a,b) if its density function is given by

_ bloga a”5H)

o o)

f@) v [1 +a (5

where —0c0 < 2 < 400, p € (=00, +0), 2,4 € RT, and b > 0. The distribution
is negatively skewed if b € (0,1), positively skewed if b € (1,400), and the
distribution is symmetric when b = 1. The logistic distribution is just a special
case of this distribution with b =1 and a =e.
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Definition 2: A random variable X follows the GL~ distribution with param-
eters u, 2, a and b (for short GL™ (u,v?, a,b) if its density function is given by

_ bloga a7

f(@) v 14 a<m;“>]b+1 ©)

where —0c0 < 2 < 400, p € (—00,+0), 2,4 € RT, and b > 0. The distribution
is negatively skewed if b € (0,1), positively skewed if b € (1,4+00), and the
distribution is symmetric when b = 1. The logistic distribution is just a special
case of this distribution with b =1 and a = e.

The GL™ is the Type I Generalized logistic distribution of [5,6]. On the other
hand, GL~ is the distribution of [4].

The cumulative distribution functions of GL* and GL~ distributions are
respectively

—b

Fi(z) = [14+a Y] (7)

and -
Fo(2) = [1+al59] 7" (8)

When Y is defined by X and if we let Y follow the GL™T distribution, we can
write

1

(1 + d—fif’)

where ¢ = 1,...,n, 2; = BO + 31961 + ngg + .+ kak, €; = z; — %2; and k the
number of independent variables. From Eq. (9), we see that

L
Z = o &log — (10)

1
Call the quantity - log( ﬁib1>7 the GL* of p with skewness parameter b

pi = F(%;) = 9)

loga L
1-pp

(compare with [14, p. 26] for the case when b = 1). It reports the ratio of the
probability of success to the probability of failure for an included regressor. If
this quantity is less than one, then there is less likelihood of the independent
variable causing a success outcome, all other factors being held at a constant. If
it is greater than one, then there is greater likelihood of the independent variable
causing a success outcome when all the other variables are held constant. Hence
the GL™ regression model is

1
s _ 1 %+ By + 6 3
= Alog( P 1) = fBo + Brx1 + Paza + ... + Bk (11)
oga 1 713;

Solving for p, we have

pi = F(%;; é) = [1 + d‘(ﬁo*"ﬁlzl+Bzr2+...+§kzk)}—5 (12)
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On the other hand, if Y is defined by X and if we let Y follow the GL™ distri-
bution, we can write
1
=F(%)=1— ——— 13
Di (Zz) 1+ a0 ( )
where 1 = 1,...,n, 2; = Bo + lel + BQLEQ + ...+ kak, € = z; — %; and k the
number of independent variables. Hence from Eq. (13), we can write

1_ b

. 1 1 R . R .
=, lo ( ; —1> = Bo + frx1 + Box2 + ... + BrTi (14)
oga

1-p}
Hence the GL~ regression model is

Call the quantity lolgdlog< — 1> , the GL~ of p with skewness parameter b.

- 1) = Bo + Prx1 + Bawa + .. 4 Br (15)

.

N 1 1
= ~log
loga <<1 - )

where é; = z; — 2; and k is number of independent variables. From (15), we can
write

K2

log (1 - — ]_> = logdé0+31I1+é2$2+...+ﬁkﬂik (16)
—Di)b
Solving for p, we get

pi = ].7‘(;217 é) — [1 +a = (Bo+B1z1+B2za+.. +5k$k)] (17)

2.3 Log-Likelihood Function for GLT and GL~ Regressions

We first consider the GL* distribution.! Given an independent observational
data X = (21,2, ...,x) and an observed binary output variable y;, the condi-
tional log-likelihood function, [(©]X), from Eq. (2) is

n

UO1X) =Y [yilogF (x4 0) + (1 — yi)log(1 — F(xs;0)] (18)
i=1

where © = (a,b, 5o, 51, ..., Ok is the parameter space. The term {(O]|X) can be
written as

(X)) = i [log (1—-F(z;0)) + yilog(%)} (19)

! For parsimony, the log-likelihood functions and marginal effects of the logit and
probit models are not presented here. Interested readers can refer to [20], and [7]
for better treatment on the likelihoods and the marginal effects of these benchmark
models.
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It should be noted from Eq.(13) that F(z;;0) = 14+
a=(BotPrzitPewat  +6k2k)]=b and the parameters of interest have to be
solved numerically by solving max,;gco [(©|X). Equivalently, we can solve
—ming s g9co l(O|X) to obtain the parameter of interest. For the case of the
G L~ distribution, the conditional log-likelihood function is

1(6]X) = zn: [log (1— F(z;;0)) +yizog(%)] (20)
i=1 v

where F(z;0) = 1 — [1 4 glothrzitfezat+6kzi)]=b from Eq.(18) and 6O =
(a,b, Bo, B1, -, Br). The parameters can be obtained by solving the optimization
problem — ming ; geo (O] X).

2.4 Marginal Effects for the GLT and GL~ Distributions

In the GL' model, we hypothesize that the probability of the occurrence of an
event is determined by the function

1
i = F(zi) = ———3 21
p (Z ) (1 n a—zi>b ( )
The marginal effect of z is given by
dp F(z) a”*
5 i f(2) e (22)
The marginal effect of the x;s is given by
dp  Op Oz a *
= = f(x)B; = Bibloga (23)

dr; 0z Ox; (1+a—#)0H+1

Compare [7, pp. 300-301].
In the GL™ model, we hypothesize that the probability of the occurrence of
the event is determined by the function

1
i =Flz)= ——— 24
P () AT a )t (24)
The marginal effect of z is given by

dp F(z) a®

o P f(z) Oga(1+a2)b+1 (25)
and the corresponding marginal effect of the x;s is given by

0 a”*?

P f(2)B: = Bibloga (26)

oz, (1+a—=)btt
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g—i in Egs.(24) and (27), explain the positive parameter as ‘a unit increase

in the related variable would lead to an absolute value 3 probability increase
in the dependent variable’. The negative 3 is the opposite of the positive, in
that it reports the reduction in the probability of the occurrence of the depen-
dent variable with the absolute variable of the 3. The marginal effect measures
the expected instantaneous change of the dependent variable as a function of a
change of an independent variable while all other independent variables are held
constant.

3 Simulation Results

The simulation part of the study answers how well do GLT and GL~ models
fit any data as compared with the logit and their probit models. We use only
one independent variable emanating from a random sample of a mixture of ten
distributions of size n.

Remark: It should be noted that the random sample could have been chosen
from any reasonable number of mixture of distributions, not necessarily ten.
We wanted to ensure that the independent variable X is not biased toward any
particular distribution.

For our binary output variable Y, we generate random variables from
the Bernoulli distribution of size n. Next, we generate M paths as follows:
(X v ), (x@, vy, L (x v MY m = 1,..., M. For each path, we
estimate the parameters ©® = (a,b,[p,1) and the predicted probabilities
pi(i = 1,...,n) for GL*, GL™, logit models and also for the probit model. We
compute the loss function, average mean square error of path m (AMSE,,), for

each model as
n

1
AMSE,, = =Y (Y; —p;)° 27
PIED (1)
Compare with [7], and [3, p. 35]. For M paths, we obtain AMSE;,
AMSE,,...,AMSE); for each model and derive the expected AMSE
(E(AMSE)) approximated by

1 n
E(AMSFE) = — AMSE; 28
(AMSE) = 57 3 (28)
as M — oo. Compare with [3, p. 38]. The model that produces the smallest
E(AMSE) should be preferred.

Next, in the spirit of [2,20], we compute the sample correlation coefficient
between Y; and p;, ry;p, for each path given by

Y5 = Z?:l(Y;j Y)(pi — p)
L) G- D)

(29)
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for each model. The ry;, is a consistent estimator of the correlation between Y;
and p;, Corr(Y;, p;). Then the expected rv,5,, E(ry;3,), can be approximated by

M
1
Elryip) = 37 > (rvip)i (30)
i=1
The model that gives the greatest E(ry;p,) is superior in terms of prediction as
compared to the other competing models (see [2]) on the measures for assessing
the goodness of fit of Logit models.

Table 1. The expected mean square errors (E(AMSE)) for 1000 paths for various
sample sizes

Sample | E(AMSE)
s1ae GLT model | GL' model | Logit model | Probit model
50 0.2388 0.4843 0.2394 0.3043
100 0.2450 0.4664 0.2453 0.3001
150 0.2466 0.4620 0.2468 0.2939
200 0.2473 0.4562 0.2474 0.2835
250 0.2479 0.4456 0.2480 0.2480
300 0.2482 0.4452 0.2483 0.2659
350 0.2485 0.4461 0.2486 0.2577
400 0.2487 0.4411 0.2488 0.2617
450 0.2489 0.4377 0.2489 0.2539
500 0.2490 0.4306 0.2491 0.2491
550 0.2490 0.4235 0.2490 0.2540
600 0.2491 0.4276 0.2492 0.2688
650 0.2492 0.4226 0.2492 0.2585
700 0.2493 0.4219 0.2493 0.2653
750 0.2493 0.4181 0.2493 0.2493

Notes: Some initial values chosen for the optimization routine
resulted in objective function values undefined at the initial
value. These are caused by outliers in the data generated. One
way to handle this problem is to repeatedly change the initial val-
ues for that data set. Alternatively, the outlier can be removed
and there would be no problem with the estimating of parameters
of interest. For our data set, when we generate about 1000 paths,
we get about 10% of the paths generated having extreme values.
These paths we removed and the optimization routine proceeded
without problem. [8, pp. 43—44] raised a similar problem in the
estimation of conditional volatility.

For the simulations exercise, we choose 1000 paths (M = 1000) for the sam-
ple sizes: n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, and 700.
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The expected AMSE and expected correlations estimates are presented in
Tables 1 and 2, respectively. Figurel depicts the E(AMSE) against the sam-
ple size for different combinations of the four models, whereas Fig. 2 shows the
enlarged plot of the lower left plot of Fig. 1 (i.e. EAMSE for GL™ (solid line) and
logit (dashed line)). Figure 3 shows the E(ry,;,) for different combinations of all
four models.

0.5 0.35 -
—GL
~ - - - -Logit
4 o 03 Probit
3 3
mos3 025 et
0.2 0.2
0 200 400 600 800 0 200 400 600 800
Sample size Sample size
0.25 i 0.35
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w 7 n Y sl
Doas o 2 . )
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< / e
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0.235 )
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Fig.1. E(AMSE) for different combinations of all four models. Upper left: E(AMSE)
for GL* (solid line), GL~ (dashed line), Logit (dash-dot line) and Probit (dotted line).
Upper right: E(AMSE) for GL™ (solid line), Logit (dashed line), and Probit (dotted
line). Lower left: E(AMSE) for GL' (solid line), Logit (dashed line). Lower right:
E(AMSE) for Logit (solid line), and Probit (dashed line).

It is clear from Table 1 that with data of size 50, 100, 150, 200, 250, 300, 350,
400, 500 and 600, the smallest F(AMSE) was obtained with the GL* model.
Observe that when the data size is 450, 550, 650, 700 and 750, the logit and the
GL™ models gave the same value. There is no case for which the E(AMSFE) of
the Logit or was smaller than the GLT. This can be seen in Fig.2 where the
Logit (dashed line) dominates the GLT (solid line). The GL™ model was worse
among the four models comparing their E(AMSE).

On the other hand, surprisingly, E(ry,;,) is greatest for the GL™ model for
data size 150, 200, 200, 300, 350, 400, 500, 550, 600, 650 and 700. This outcome
suggests that, although the GL™ produce worse in-sample estimates, it is more
likely to produce superior out-sample estimates as compared to the Logit and
Probit models. For data size 750, the two models and are indistinguishable in
terms of the E(ry,p,). The Probit and Logit gave the same value of E(ry,;,) for
all data size except 150, 300, 350 and 450 for which the Probit was higher. For
consistency in the estimation of the E(AMSE) and E(ry,;,), the GLT model is
to be preferred among the four competing models.
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Fig. 2. E(AMSE) for GL" (solid line) and Logit (dashed line) enlarged.
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Fig.3. E(ry,) for different combinations of all four models. Upper left: E(ry,) for
GL™" (dotted line), GL™ (dashed line), Logit (solid line), Probit (dotted line). Upper
right: E(ry,) for Logit (dashed line), Probit (dashed line). Lower left: E(ry,) for GL*
(solid line) and GL~ (dashed line). Lower right: E(ry,) for GL" (dotted line), Logit
(solid line), Probit (dashed line)

Finally, we verify how in the information criteria, namely Akaike Information
Criteria (AIC) and the Bayesian Information Criteria (BIC) perform under each
of these models. For each path m, we compute the AIC as follows:

AIC,(K) = log(S’S}z(K)> + %K (31)

where K is the number of coefficients in the regression model including the
constant term that has to be estimated and SSR(K) is the sum of squares
residuals of the regression model with K coeflicients. See [20, p. 554], The BIC
for path m is estimated in a similar fashion by
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Table 2. The expected correlation between the predicted probabilities and the binary
outcome variable for paths for various sample sizes

Sample | E(AMSE)
size GLT model | GL' model | Logit model | Probit model

50 0.1307 0.1273 0.1203 0.1203
100 0.0880 0.0872 0.0814 0.0814
150 0.0697 0.0699 0.0650 0.0651
200 0.0628 0.0630 0.0591 0.0591
250 0.0549 0.0533 0.0518 0.0518
300 0.0499 0.0500 0.0471 0.0472
350 0.0474 0.0480 0.0447 0.0448
400 0.0436 0.0438 0.0413 0.0413
450 0.0416 0.0415 0.0393 0.0394
500 0.0368 0.0382 0.0350 0.0350
550 0.0362 0.0364 0.0344 0.0344
600 0.0351 0.0358 0.0334 0.0334
650 0.0333 0.0337 0.0316 0.0316
700 0.0327 0.0331 0.0310 0.0310
750 0.0323 0.0323 0.0306 0.0306
Notes: Refer to Table 1 for notes.

BIC,(K) = log <S Si (K)> + logn(") K

The expected AIC can be estimated by and

E(AIC) =

Z AIC;

Similarly, the expected BIC can also be estimated by

E(BIC)

Z BIC,

(34)

The results are given in Tables 3 and 4. It can be seen from the Table 3 that
GL™ model is superior for the AIC for all the competing models. AIC is unable
to distinguish any difference between the Logit and the Probit models. However,
BIC elect the Probit as the superior model among the competing models with
GL™ in the second place.



Table 3. The expected AIC (E(AIC)) for 1000 paths for various sample sizes

GL* and GL™ Regressions

Sample | E(AIC)
size GL™' model | GL™ model | Logit model | Probit model
50 —1.3532 —0.6635 —1.3506 —1.3506
100 —1.3667 —0.7419 —1.3655 —1.3655
150 —1.3734 —0.7661 —1.3727 —1.3727
200 —1.3773 —0.7854 —1.3768 —1.3768
250 —1.3788 —0.8194 —1.3784 —1.3784
300 —1.3801 —0.8197 —1.3798 —1.3798
350 —1.3810 —0.8176 —1.3807 —1.3807
400 —1.3815 —0.8330 —1.3813 —1.3813
450 —1.3819 —0.8425 —1.3817 —1.3817
500 —1.3822 —0.8653 —1.3821 —1.3821
550 —1.3830 —0.8795 —1.3828 —1.3828
600 —1.3831 —0.8700 —1.3830 —1.3830
650 —1.3833 —0.8840 —1.3832 —1.3832
700 —1.3835 —0.8865 —1.3834 —1.3834
750 —1.3838 —0.8977 —1.3836 —1.3836

Table 4. The expected BIC (E(BIC)) for 1000 paths for various sample sizes

Sample | E(BIC)
se GL™ model | GL™ model | Logit model | Probit model
50 —1.2767 —0.5870 —1.2741 —1.6170
100 —1.3146 —0.6898 —1.3134 —1.6082
150 —1.3332 —0.7259 —1.3325 —1.5870
200 —1.3443 —0.7524 —1.3438 —1.5400
250 —1.3506 —0.7912 —1.3502 —1.4946
300 —1.3554 —0.7950 —1.3551 —1.4513
350 —1.3589 —0.7955 —1.3586 —1.4090
400 —1.3616 —0.8130 —1.3613 —1.4321
450 —1.3636 —0.8242 —1.3634 —1.3907
500 —1.3654 —0.8484 —1.3652 —1.7830
550 —1.3673 —0.8638 —1.3672 —1.3945
600 —1.3685 —0.8554 —1.3683 —1.4764
650 —1.3696 —0.8702 —1.3694 —1.4201
700 —1.3705 —0.8735 —1.3704 —1.4581
750 —1.3714 —0.8854 —1.3713 —2.0596

75
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4 Summary, Conclusion and Recommendations

The paper proposes two novel regressions, GLT and GL~ models, using the GLT
function by [5,6], and GL~ function by [4]. The logit and probit models are used
as benchmark models, where the GLT and GL™ models are compared using the
following goodness of fit measures: average mean square errors, expected average
mean square errors, the correlation between the predicted probabilities and the
outcome variable, the expected correlations, the Akaike Information Criteria, the
expected Akaike Information Criteria, the Bayesian Information Criteria and the
expected Bayesian Information Criteria.

In the estimation exercise, we simulate 1000 paths with lengths 50, 100, 150,
200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 and 750 for the binary out-
come variable from a Bernoulli distribution and the independent variable from
a mixture of ten distributions. For each of the four models, the parameters are
estimated for all the 1000 paths for each of the above sample sizes. The average
mean square error and the correlation measures are computed for each path.
Further, the expected average mean square error and the expected correlation
metrics are approximated by averaging the average mean square error and the
correlation between the outcome variable and the predicted probabilities over the
1000 paths for each model. Similarly the expected Akaike Information Criteria
and the expected Bayesian Information Criteria are approximated by averag-
ing the Akaike Information Criteria and Bayesian Information Criteria over the
1000 paths for each model. The results are as follows. The expected average
mean square error is smallest for the GL™ model and the expected correlation
between the outcome and the predicted probabilities is greatest for the GL~
model. Akaike Information Criteria is smallest for the GL™ distribution than
the all four models and place second among the four models with the Bayesian
Information Criteria. Hence, allowing the data to determine its shape and skew-
ness cannot be ignored in the data generating process of binary output variable.
Thus asymmetries in the independent variable do matter in the modelling of
regression models for which the dependent variable is binary. As the data size
increases from 750 and beyond, the probit, logit and GL™ are indistinguishable
in its expected average mean square estimation.

The GLt and GL~ models are motivated relative to Probit and Logit regres-
sion, but there are variety of alternative link functions including methods for
estimating the link function non-parametrically. It is unclear how these models
competes with these alternative link functions and will be an interesting area to
do further research.
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Abstract. It is well know how to estimate the uncertainty of the result
y of data processing if we know the correlations between all the inputs.
Sometimes, however, we have no information about the correlations. In
this case, instead of a single value o of the standard deviation of the
result, we get a range [o,d] of possible values. In this paper, we show
how to compute this range.

1 Formulation of the Problem

Need for data processing. In many real-life situations, we are interesting
in quantities y which are difficult (or even impossible) to measure directly. For
example, we may be interested in the distance to a faraway star or in the amount
of oil in a given oil field. Since we cannot measure y directly, a natural idea is to

measure it indirectly, i.e., to find easier-to-measure quantities 1, ..., x, which
are connected to y by a known algorithm y = f(z1,...,2,), and use the results
Z; of measuring z; to estimate y as y = f(Z1,...,T,); see, e.g., [4].

What is the accuracy of the resulting estimate? The results z; of measur-

ing x; are, in general, different from the actual values of the measured quantities.

. def ~
In other words, there is a usually a measurement error Azx; = x; — x;, so that

T = %z — Al‘l
As a result, the estimate §y = f(Z1,...,%,) is also, in general, different from
the actual value y = f(x1,...,2,) = f(T1 — Axy,..., T, — Ax,). It is therefore

desirable to estimate the error Ay def y — y of the indirect measurement.

© Springer International Publishing AG 2018
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Measurement errors are usually relatively small. In most real-life situ-

ations, the measurement errors are relatively small. As a result, we can safely

ignore terms which are quadratic (or of higher order) with respect to Ax;. For

example, if the measurement error is 10%, its square is 1%, which is much smaller.
So, we can expand the expression

Ay=y—y= f(@1,...,Z,) — f(T1 — Ax1,..., 2, — Axy,)

in Taylor series in Azx; and keep only linear terms in this expansion. As a result,
we get a formula

Ay = ici - Ay, (1)

i=1

8x¢

(&1, sFn)

What do we know about Az;. In the ideal case, for each measuring instru-
ment, we know the first two moments of the measurement errors, i.e., equiva-
lently, we know the mean value p; of the corresponding measurement error Ax;,
and we know the standard deviation o;.

If we know the exact mean, then we can re-calibrate the i-th measuring
instrument by subtracting p; from all the measurement results. In this case, we
get the mean value equal to 0.

Sometimes, we only know the mean and the standard deviation with some
uncertainty, i.e., we only know the bounds B, < p; <m; and g; < o; <0y; see,
e.g., [1-3].

Based on this information, we can estimate the mean value u of Ay.
Based on this information, we can estimate the mean p of the desired measure-
ment error. Namely, from (1), it follows that

p=ci i (2)
i=1

So, if we know the exact values of means p;, we can use the formula (2) to find p.

If p; are only known with interval uncertainty, then we can represent the
. . ~ ~ ~ B, +
interval [p , 7z;] in the centered form [; — A;, fi; + A;], where 7i; e *’TZ

i — K, _ _
A 5 =t In this representation, each value y; € [y, 7i;] = [fi; — Ay, fii + A;]

and

can be represented as [; + Au;, where Ap; def ;i — 1; takes values from the
interval [—A4;, 4;]. Substituting the expression u; = i; + Ap; into the formula
(2), we conclude that u = i+ Ap, where

= > cifi (3)
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and

n
def
A,U, = Zci . A,U,z
i=1

The largest value of Ay is attained when each of the terms ¢; - Ay, is the largest.
For ¢; > 0, this happens when Ay, is the largest, i.e., when Ap; = A;. For
¢; < 0, this happens when Ap; is the smallest, i.e., when Ay; = —A;. In both
cases, the largest value of ¢; - Ay, is equal to |¢;| - 4A;. Similarly, the smallest
possible value of ¢; - Ay, is equal to —|¢;| - A;. Thus, we conclude that

ﬂe[ﬁ_Avﬁ"'_A]a (4)

where .
ALY el A (5)

i=1

What is the standard deviation o of Ay: case when we know the
correlations. To complete our description of the uncertainty Ay, we need to
also estimate its standard deviation o, i.e., equivalently, the variance V = 02 =

E|(6y)?], where we denoted
def
oy = Ay — E[Ay] = Ay — p.

Subtracting (2) from (1), we conclude that
dy = Z ¢i - 0%, (6)
i=1

where we denoted dx; def Ax; — E[Ax;] = Ax; — p;. Substituting the expression
(6) into the formula for the variance 02 = E[(dy)?] and taking into account that
the mean of the linear combination is equal to the linear combination of the
means, we conclude that

E[(6y)?] = Z Z ¢ - ¢j - Eldx; - dxj). (7)

i=1 j=1

For i = j, we get E[(6x;)%] = o2. For i # j, by definition of the correlation

Eléz; - 6z,

pij, we have p;; = J , thus E[dz; - 0z;] = p;j - 05 - 0, and the formula

gi-0j
(7) takes the form

n

02:Zcf-0?+Zpij-ci-cj~ai-aj. (8)

i=1 i#]

So, if we know all the correlations p;;, we can use the formula (8) to estimate
the desired standard deviation o of the result y of data processing [4,5].
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But what if we do not know the correlations? In some practical situations,
however, we do not know the correlations. In this case, depending on the actual
values of the correlations, we get different values 0. What is the range of possible
values o7 This is the question that we answer in this paper.

2 Main Result: Formulation and Proofs

First result. Our first result is that if we know the exact values of the standard
deviations ;, but we have no information about the correlations, then the range
of possible values of ¢ is equal to [o, 7], where

n

E:ZM\'CH, (9)

i=1

and

n
0 = Inax 0) |Ci0| * 049 — Z |cl| "0 | (10)
i#io

where iy is the index for which

|Ci0| 04y = m?,x |Ci| 0.

Comment. It should be noticed that the formula (9) for the upper bound & of
the standard deviation is, somewhat surprisingly, very similar to the formula (5)
for the upper bound on the mean pu.

Proof
1°. It is well known that for every two random variables a and b, we have

o?la+ b = o*[a] + o2 [b] + pap - ola] - o[b].
Since the correlation coefficient pg; is always bounded by 1, we conclude that
o?la+b) < o?[a] + o*[b] + 20(a] - o[b)].
The right-hand side of this inequality is (o[a] + o[b])?, thus we conclude that
ola+b) <ola] + o[b)].
In particular, for a — b and b, we thus get ola] < ola — b] + o[b], hence
ola —b] > ola] — ob].

Let us apply these inequalities to our case.

2°. The overall random component dy = Ay — E[Ay] of the measurement error
Ay is the sum of n terms ¢; - dx;. For each term ¢; - dx;, the standard deviation
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is |¢;] - 0. Thus, we can conclude that the standard deviation o of the sum
oy of these terms does not exceed the sum of standard deviations, i.e., that
n

o< Y el o
i=1
Alternatively, we can represent dy as the difference dy = ¢;, - dx;, — s, where
s > (=¢;) - dx;. Thus, by using the formula for the standard deviation of the
iio
difference, we get o > |¢;, |- o[s]. By using the formula for the standard deviation

of the sum, we conclude that o[s] < > |¢;| - ;. Thus, we have
i#io

o > |ciy| - oy — Z |ci - o

Clearly also ¢ > 0, so

o > max | |¢i,| - 04y — Z ci| - o
iio

So, we proved that for the above expressions (9) and (10) for ¢ and &, we
always have
c<o<o.

To complete our proof, it is now sufficient to prove that the values o and @
(described by the formulas (1) and (9)) are attainable for some random variables
with given values ;.

3°. Let us first prove that the upper bound 7 is attainable. Indeed, let 1 be
a standard normally distributed random variable, with 0 mean and standard

deviation 1. Then, we can take dx; = sign(c¢;) - o; -, where sign(x) 1 for x>0

and sign(x) 4 _1 for 2 < 0. Due to this definition, we have sign(x) - & = |z for

all x.
For this selection, we have

5y:zci'5¢:Zci'SigH(Ci)’Uz"U:ZM\'Uz"ﬁ: <Z|Cz|01> - 7).

i1 i=1 i=1 i=1
n
This sum has the desired standard deviation > |¢;] - 0.
i=1

4°. Let us now prove that the lower bound is also attainable. We will first prove

it for the case when the difference d % |Cio| - Tip — D |ci| - 0 is positive. In this
i#i
case, ’
o=d.

To find a sum with this standard deviation, let us take dz;, = sign(c;,) 04,1
and dx; = —sign(¢;) - o; - n for all i # ig. In this case,
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0y = ¢iy '5$i0+zci'5$i= |Cig| - Ty "’7_2|Ci|'0'i'77
iio iio

il - aign = leil o0 | -n=d-n.
iio

Since d > 0, this sum has standard deviation d = ¢.

5°. To finalize the proof, we need to show that when d < 0, the sum Ay can
have zero standard deviation.

5.1°. To prove this fact, let us prove, by induction over m, the following auxiliary

m—1
result: when a; < ... < a,y, then for every number a from max (O, A — Y ai)
t
m 3
A;

=1

= a.

m
and Y a;, there exist planar vectors A; for which | A;| = a; for alliand
i=1

i=

The base case m = 2 is straightforward. Indeed, in this case, the desired
inequality takes the form as — a1 < a < as + a1. To get a vector A with |A4| =
a1 + ao, we simply take A; and Ay parallel and going in the same direction.
To get a vector A with |A| = ag — a1, we take A; and As parallel but going
in different directions. By a continuous transformation of one configuration into
another, we get cases with all intermediate values a.

Let us now describe the induction step. Suppose that we have already proved
this result for m, we want to prove it for m+1. The value a = a1+. . .+ay +am41
is easy to obtain: it is sufficient to take vectors A; all parallel and all going in the

m
same direction. If a1 > a1 +...4 am, then the value a = a1 — Y a; is also
easy to obtain: we take all the vector parallel, the first m vectors All, .1. ., Ay, go
in one direction, and the vector A,,+1 goes in the opposite direction.

To complete the proof of induction step, we need to consider the case when
Gm+1 < a1 + ...+ ap,. In this case, we want to find the vectors for which the
sum is 0. By induction assumption, for the sum A; + ...+ A,,, any length from

max(0,am — (a1 + ... + am—1))
to ai +...4+a,, is possible. Here, a,,+1 < a1 +. ..+ ayn,, since this is the case that
m—1
we are considering. Also, a;,+1 > 0 and a1 > ay, hence a1 > am — Y. @y
i=1
m—1 ‘
and thus a,,+1 > max (O,am — > a; | . So, by induction assumption, there
i=1
exist vectors Ay, ..., Ay, for which |A; 4+ ...+ Ap| = am+1- Now, if we take
Apy1=—(A1+ ...+ Ap),

we get |Am+1| = ame1 and A1 + ...+ Ay, + A1 = 0. The auxiliary statement
is proven.
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5.2°. The above statement implies that when qa;, is larger than or equal to all the
values a; and a;, < > a;, then there exist planar vectors A; of lengths |4;| = a;
iig
for which > A; = 0.
i

Let us take such vectors A; corresponding to a; = |¢;| - 0;. Let us select
two independent standard normally distributed random variables n’ and 7",
with 0 mean and standard deviation 1, and assign, to each planar vector A

with coordinates A = (A’; A”), a random variable 14 def 4. n + A” -n". One
can easily check that the variance of the resulting random variable is equal to
(A")2 4+ (A2 i.e., to the square of the length of the original vector A. Thus, the
standard deviation of the random variable 74 is equal to the length |A| of the
vector A.

It is also easy to check that the transformation A — n4 from vectors to
random variables is linear: c,.a+...4¢c5.B = Ca-Na + ...+ cp - np for all vectors
A, ..., B and for all values cg4,...,cpg.

We can then take for each i, as dx;, the random variable corresponding to

[Ail _ el - oi

7

A,
the vector —. This variable has standard deviation
C;

7.

al| el el

Here, ¢; - 0x; = na,. Thus, for the sum dy = > ¢; - dz;, we have

i=1

6?/:201'-(5%1‘:277147;:77%14' =19 =0.
i=1 i=1 —

i

The statement is proven, and so is our first result.

Second result. If we only know the bounds g, and &; on the standard devia-
tions, then the range of possible values of o is equal to [0, 7], where

n
7= lail - (1)
i=1
and
o =max | 0,]c;,| -0 — Y el -7 | (12)
i#io
where i is the index for which the product |c;,| - o;, is the largest; if there are

several such indices ig, then we select the one for which the product |¢;,| - 74, is
the smallest.

Proof is straightforward: e.g., for the upper bound, from the fact that for all

possible values o;, we get 0 < > |¢;| - 0; and that o; < 7;, we conclude that
i=1

n
o < > |ei| - 7. Vice versa, by taking o; = 7; in the example from the proof
i=1
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of the previous result, we get an example when o is equal to the upper bound
n
Z |Ci| 0.
i=1

To get a similar example for the lower bound, we should take o;, = g; and
0; =0 for all 4 # io.
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Abstract. In this paper, we show that, similarly to the fact that dis-
tributing the investment between several independent financial instru-
ments decreases the investment risk, using a combination of several
medicines can decrease the medicines’ side effects. Moreover, the formu-
las for optimal combinations of medicine are the same as the formulas for
the optimal portfolio, formulas first derived by the Nobel-prize winning
economist H. M. Markowitz. A similar application to machine learning
explains a recent success of a modified neural network in which the input
neurons are also directly connected to the output ones.

1 Markowitz Portfolio Theory: A Brief Reminder

The main idea behind Markowitz portfolio theory. In his Nobel-prize win-
ning paper [5], Markowitz proposed a method for selecting an optimal portfolio
of financial investments.

To be explain the main ideas behind his method, let us start with a sim-
ple case when we have n independent financial instrument, each with a known
expected return-on-investment u; and a known standard deviation o;. In princi-
ple, we can combine these portfolios, by allocating the part w; of our investment

n
amount to the i-th instrument. Here, we have w; > 0 and > w; = 1.
i=1

For each of these portfolios, we can determine the expected return on invest-
ment p and the standard deviation ¢ from the formulas

n n
,u:E wi-mando2zg w? - o2,
i=1 i=1

Some of such portfolios are less risky — i.e., have smaller standard deviation —
but have a smaller expected return on investment. Other portfolios have a larger
expected return on investment but are more risky.

We can therefore formulate two possible problems:

© Springer International Publishing AG 2018
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e The first problem is when we want to achieve a certain expected return on
investment p. Out of all possible portfolios that provide such expected return
on investment, we want to find the portfolio for which the risk o is the smallest
possible.

e The second problem is when we know the maximum amount of risk o that we
can tolerate. There are several different portfolios that provide the allowed of
risk. Out of all such portfolios, we would like to select the one that provides
the largest possible return on investment.

Example. Let us consider the simplest case, when all n instruments have the
same expected return on investment u; = ... = p, and the same standard
deviation o1 = ... = g,,. In this case, the problem is completely symmetric with

respect to permutations, and thus, the optimal portfolio should be symmetric
n

too. Therefore, all the parts must be the same: w; = ... = w,. Since > w; =1,
i=1

1
this implies that wy = ... = w,, = —. For these values w;, the expected return
n

on investment is equal to the same value as for each instrument p = pp, but the

risk decreases:
1 o 1 5
1

n
022 E w?-afzn-—2~o
n n
i=1

01
hence 0 = —=.

Vvn
What we can conclude from this example. A natural conclusion is that
if we diversify our portfolio, i.e., if we divide our investment amount between
different independent financial instruments, then we can drastically decrease the
corresponding risk.

A similar idea works well in measurement. If we have n results z1,...,x,
of measuring the same quantity x, with measurement error z; — x with mean
0 and standard deviation o;, and if the measurement errors corresponding to
different measurements are independent, then we can decrease the estimation
error if,

e instead of the original estimates x; for the quantity =,

n
e we use their weighted average & = Y. w; - x;, for some weights w; > 0 for
i=1
which

n
E w; = 1;
i=1

see, e.g., [6].
In this case, the standard deviation of the estimate Z is equal to

n
2 _ 2, 2
o= E wj - o;.
i=1
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We want to find the weights w; that minimize o2 under the given constraint
n
> w; = 1. By using the Lagrange multiplier method, we can reduce this
i=1

constraint optimization problem to the following unconstrained optimization

problem:
n n
2. 2 .
Zwi co; + A (Zwi - 1) — min.
i=1 i=1
Differentiating the resulting objective function with respect to w; and equating

the derivative to 0, we conclude that 2w; - 02 + A = 0, thus, w; = ¢ - 0;1, for

A
some constant ¢ def —5 This constant ¢ can be found from the condition that

n 1
> w; = 1: we get ¢ = ———— and thus,

n
=1 Z 0.;2
Jj=1

3

Il 3

|

. =
Q
Il

3

|

no

n
The sum > 0172 is larger than each of its terms 052, and thus, the inverse o
j=1

2

of this sum is smaller than each of the inverses 0]2. So, combining measurement
results indeed decreases the approximation error.
In particular, when all measurements are equally accurate, i.e., when o1 =

...:Jn,wegetJ:%.

Optimal portfolio when different instruments are independent. In the
previous text, we considered the case when different financial instruments are
independent and identical. Let us now consider a more general case, when we still
assume that the financial instruments are independent, but we take into account
that these instrument are, in general, different, i.e., they have individual values
w; and o;.
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In this case, the first portfolio optimization problem takes the following form:
minimize
n
> wi-of
i=1
under the constraints

n n
Zwi-ui:uand Zwizl.
i=1 i=1

For this problem, Lagrange multiplier methods leads to minimizing the
expression

Zn:w?'0i2+)\' (iwi'm—u> + - <zn:wi—1>,
=1 i=1 i=1

Differentiating this expression with respect to w; and equating the derivative to
0, we conclude that
2w; - oF + A p + N =0,

i.e., that
wi =a- (-0, 2)+b-0; 2,
A N n
where a def —3 and b def 5 For these values w;, the constraints Y w; - p; = u

=1

n
and Y w; = 1 take the form
i=1

a-Xo+b-Xi=p anda-X;+b-Xy=1,

where we denoted X %' S (i)* - 0,72 Thus,

=1
Zl—u-Eo u'21—22
“ E%—E(]'EZ an 212_2()'22

General case. In general, we may have correlations p;; between different finan-
cial instruments. In this case, the standard deviation of the weighted combination

has the form .

Zw?-a?+2pij~wi-wj-ai-aj.

i=1 i#j
This is a quadratic function, thus the Lagrange multiplier form is also quadratic,
and after differentiating it and equating the derivatives to 0 we get an easy-to-
solve system of linear equations.
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2 How Markowitz Portfolio Theory Can Be Applied
To Medicine

Formulation of the problem in informal terms. In medicine, usually, for
each disease, we have several possible medicines. All these medicines are usually
reasonable effective — otherwise they would not have been approved by the cor-
responding regulatory agency — but all of them usually have some undesirable
side effects. How can we decrease these side effects?

A natural idea. The example of portfolio optimization prompts a natural idea:
instead of applying individual medicines, try a combination of several medicines.

To see whether this approach will indeed work, let us reformulate our problem
in precise terms.

Let us reformulate this problem in precise terms. We want to change the
state of the patient: to bring the patient from a sick state to the healthy state.
Each state can be described by the values of all the parameters that characterize
this state: body temperature, blood pressure, etc.

We want to move the patient from the current sick state s = (s1,...,$4) to
the desired healthy state h = (hy,...,hq).

We want to describe the joint effect of taking several medicines. Let us
measure the dose w; of each medicine ¢ by considering the proportion to the
actual dose to usually prescribed dose. In these units, the usually prescribed
dose is w; = 1. Let us describe the state of a patient after taking the doses
w = (wi,...,wy,) of different medicines by f(w).

When no medicines are applied, i.e., when w; = 0 for all 4, then the patient
remains sick, in the state s: f(0) = s. Doses of medicine are usually reasonable
small, to avoid harmful side effects — we are not talking about life-and-death
situations where strong measures are applied and side effects (like crushed ribs
during the heart massage) are a price everyone is willing to pay to stay alive.
Since the doses are small, we can expand the dependence f(w) of the state on the
doses w; in Taylor series and keep only linear terms in this dependence; taking
into account that f(0) = s, we conclude that

f(w) :s—l—Zwi - a;
i=1

for some vectors a;.

We can use this formula to find the resulting state in situation when we
apply the full usual dose of the i-th medicine, i.e., when we take w; = 1 for
this 7 and w;; = 0 for all ¥/ = 7. In this situation, the resulting state is equal
to s 4+ a;. In the ideal world, we should get the state h, i.e., we should have

a; = h — s, but in reality, we have side effects, i.e., deviations from this state:

Aaidéfai—(h—s)#().

Let 07 denote the mean square values of this deviation Aa;. Substituting
the expression a; = (h — s) + Aa; into the formula for the resulting state f(w),
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we conclude that the joint effect of several medicine is equal to
flw) = s—i—Zwi <(h—29) +Zwi~Aai.
i=1 i=1

We want to make sure that, modulo side effects, we get into the healthy state h,
n n
i.e., that s+ (h —s) - > w; = h. This condition is equivalent to > w; = 1.
i=1 i=1
Under this condition, we want to minimize the overall side effect, i.e., we
want to minimize its mean squared value. When all medicines are different, side
effects are independent, and thus, for the mean square error o of the overall side
2

i

n

effect, we have the formula Y w? - o
i=1

Thus, to get the optimal combination of medicines, we must find, among all

n
the values w; for which Y w; = 1, the combination that minimizes the sum

i=1
N9 9

> wi o

i=1

This is exactly Markowitz formula. The above optimization problem is

exactly the Markowitz problem — with pu; = 1. This is also the exact same
problem as we encountered when combining different independent measurement
-2
o-
results. Thus, we conclude that we should take w; = ————. This will enable
-2
o
=1’
1
us to decrease the side effects to the level 02 = -
> o5
j=1
In particular, in situations when all the medicines are of approximate the
same quality, i.e., when all side effects are of the same strength o1 = ... = o,
we should take all the medicines with equal weight w; = ... = w, = —. This
n
o
will enable us to decrease the side effects to the level o = —.
n

What if side effects are correlated. The above analysis assumes that all side
effects are independent. In reality, side effects may be correlated. It is therefore
desirable to take this correlation into account.

In the symmetric case, when o1 = ... = g, even if we allow the possibility of
correlations - but assume that correlation is approximately the same for all pairs
of medicines p;; = p — due to symmetry, we will still get the optimal combination

1
in which each medicine is taken in the same dose w; = ... = w, = —. The only
n

difference is that if there is a correlation, the decrease in side effects will be not
as drastic as in the independent case. Namely, we will have
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n
02Zzwf'afﬂLZpu'wi'wﬂi-%
i=1 i#£]
1 1 1-—-

n n n

This decrease in side effects has actually been experimentally
observed. Recent analysis of experimental data shows that for hypertension,
a combination of quarter-doses of four different medicines indeed drastically
decreases the corresponding side effect [1,4] — so this is real!

3 Applications to Machine Learning

Description of the problem. In many cases, when the inputs are small, we
can use linear models — just as we did in medical applications. When the inputs
are large, linear models often no longer work, and we often do not know what
type of non-linear dependence we have. To describe such dependencies, we can
use machine learning techniques that allow us to approximate any possible non-
linear dependencies; see, e.g., [2].

In the intermediate case, we can use both models:

e we can use a linear model, and
e we can also use machine learning techniques — such as neural networks.

Both models are not perfect: linear models are not very accurate while machine
learning models are much more accurate but require a lot of time to train. Can
we combine the advantages of these models?

Markowitz-motivated idea. Instead of considering the estimate fxn(z) gen-
n
erated by a neural network and a linear model fin(z) = ag + Y a; - x4, let us

i=1
consider the weighted combinations of these models, i.e., functions of the type

f(x) = wnN - fan () 4+ bo + Zbi - Ty,

i=1
where we denoted b; = wyy, - a; = (1 — wNN) - a;.

This idea also works! It turns out that this idea can indeed drastically speed
up the neural networks, see [3].

Interestingly, the addition of linear terms did not even require big changes
in the training algorithm. Indeed, usually, neural networks have:

e an intermediate layer, where the input signals z1, ..., z, undergo some non-
linear transformations into values z, = fi(z1,...,zk), followed by
e the output layer, where linear neurons transforms the values z; coming from
the intermediate layer into the final outputs y = fyn(z) = > Wi - 2z — Wh.
k
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To incorporate additional linear terms b; - x;, all we need to do is to add
direct connections from the input layer to the output layer. This way, the signal
produced by the output neuron is a linear combination of the signals z; from
the intermediate layer and the inputs z; and thus, has the form

y:ZWk'Zk*WoJeri'Iu
ko i—1

n
i.e., the desired form y = fxn(z) + > b; - ;, where we denoted

i=1

fan(z) dﬁfZWk'Zk - Wy = ZWk'fk(SC17~-~,$n) - Wo.
e e

This minor change in the structure of a neural network still allows us to
use practically the same standard computationally backpropagation algorithm
(see, e.g., [2]) for training — after a very small and computationally insignificant
modification.
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Abstract. In this work, we introduce the method for solving intuitionis-
tic fuzzy transportation problem (IFTP) in which supplies and availabil-
ity are crisp numbers and cost is intuitionistic fuzzy number (IFN). We
are using centroid of IFN for the representative value of the intuitionistic
fuzzy cost. In addition we are using allocation table method (ATM) to
find an initial basic feasible solution (IBFS) for the IFTP. Moreover, this
method is also good optimal solution in the literature and illustrated
with numerical examples.

Keywords: Transportation problem - Intuitionistic fuzzy number
Centroid

1 Introduction

The intutionistic fuzzy set (IFS) was suggested first by Atanssov [1], which is
a generalization of an ordinary Zadeh’s fuzzy set [2]. In the intuitionistic fuzzy
set the degree of membership and the degree of non-membership are defined
simultaneously such that sum of both values is less than or equal to one. The
intuitionistic fuzzy set had more abundant and flexible than the fuzzy set with
uncertain information. Many researchers have also used fuzzy and intuitionis-
tic fuzzy set for solving real word optimization problems such as scheduling,
planning, transportation problems, etc. (see e.g., [3-9]).

The transportation problem is a special kind of optimization problem. The
basic transportation model was first developed by Hitchcock in 1941 [10].
© Springer International Publishing AG 2018
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In 1951, Dantzig [13] applied linear programming to solve the transportation
problem. Several authors have carried out an examination about IFTP. Dinagar
and Palanivel [14] investigated the transportation problem in fuzzy environment.
In 2010, Pandian and Natarajan [15] introduced a new algorithm to find a fuzzy
optimal solution for FTP. Hussain and Kumar [6] investigate the transporta-
tion problem with the aid of triangular intuitionistic fuzzy numbers (TIFN). In
2013, Shanmugasundari and Ganesan [16] studied a novel approach for the fuzzy
optimal solution of FTP. Kaur and Kumar [17] presented a new approach for
solving FTP using generalized trapezoidal fuzzy numbers. Srinivas and Ganesan
[18] obtained the optimal solution for intuitionistic fuzzy transportation problem
via revised distribution method. Antony et al. [8] developed method for solving
intuitionistic fuzzy transportation problem of type-2. Singh and Yadav [19] sug-
gested a new approach for solving intuitionistic fuzzy transportation problem
of type-2. Ahmed et al. [20] introduced the allocation table method to finding
an IBFS for the transpotation problem. Hunwisai and Kumam [9] presented a
method for solving a FTP via robust ranking technique and allocation table
method (ATM).

In this paper, we introduce the method for solving IFTP in which supplies
and availability are crisp numbers and cost is intuitionistic fuzzy number (IFN).
We are using centroid of IFN for the representative value of the intuitionistic
fuzzy cost. In addition we are using ATM by Ahmed et al. [20] to find an IBFS
for the IFTP and improve basic feasible solution (BFS) by modified distribution
method (MODIM) to find optimal solution. Moreover, this method is also good
optimal solution in the literature and illustrated with numerical examples.

The rest of this paper is organized as follows: In Sect. 2, deals with some def-
initions and operations IFN from literature. In Sect. 3, a method to find IBFS
and optimal solution for IFTP. In Sect. 4, we give examples to illustrate to find-
ing IBFS and the optimal solution for the IFTP. Finally, Sect.5 contains the
conclusion.

2 Preliminaries

In this section, we summarize some basic concepts of fuzzy set, intuitionistic
fuzzy set, notation, definitions and operations of triangular intuitionistic fuzzy
number (TIFN) which are used throughout the paper.

2.1 The Definitions and Operations of Intuitionistic Fuzzy Number

Definition 1 [2]. Let X be an arbitrary nonempty set of the universe. A fuzzy
set A in X denoted by a set A = {(z,pz(z))|r € X}, where pz : X — [0,1]
called 41 7(x) is the degree of membership of element z in fuzzy set A.

Definition 2. A fuzzy set A is called a fuzzy number if the following hold:

(1) subset of the real line.
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(i) normal, that is there exist at least one x € R such that pz(z) =1
(iii) convex, that is for any x,y € R and X € [0,1]

pz Az + (1= XN)y) = min (uz(2), nz(y)) -

(iv) pz:R —[0,1] is piecewise continuous function, where

I(x) ; ¢ € (—o0,0),
px@) =1 =g
r(z) 5 (¢,00),

here, [ is a picewise continuous and strictly increasing function in (—oo,c); r is
a picewise continuous and strictly decreasing function in (¢, 00).

Definition 3 [1]. Let X be a arbitrary nonempty set of the universe. An intu-
itionistic fuzzy set (IFS) A in X denoted by a set A* = {(z; 7. (), V5. (x))|x €
X}, where

Hgs - X — [07 1}
and

vi.: X —[0,1]
the p13.(x) and vz, (z) are called the membership and non-membership degree

of an element = belonging to A*C X , respectively. And for every x € X, where
0<pz(@)+vz(r) <1

Definition 4. Let A* = ((a;, ac, ar); (aj,ac,al)) be a TIFN in R, whose mem-
bership and non-membership function are defined as follow:

Tr — Qq

;o Sz < ae
Qe — Qp
1 ;T = Q¢
pa(2) =9 a, — 2 (1)
jac <z < ay
Gy — Q¢
0 ; otherwise
and
Qe — X ,
7 pap ST < ac
a. — a
0 ;X = G
Vi« (.’13) = T — a. , (2)
_ ;ac <z <a,
al. —a.
1 ; otherwise

respectively, where a] < a; < a. < a, < al.

Remark. From Definition4 A TIFN A* = ((a;, ac, a,); (a},ac,al))ifa = aj,a, =
a,. then A* = (a;, ac, a,) is a triangular fuzzy number (TFN), which is particular
case of TIFN (Fig.1).
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e (X)

v

7
0 a; a dc ay aﬁ.

Fig.1. A TIFN A* = ((ar, ac,ar); (ay, ac, ar.))

Likewise to algebraic operation of TFN and TIFN are defined as follows.

Definition 5. Let A* = ((ar, ac, ar); (a7, ac, al)) and B* = {((b,be,b,);
(b}, be,0!)) be two TIFNs with v # 0 be any real number. Then, the arith-
metic operations of TIFNs are defined as follows:

Addition:  A*@® B* = ((a; 4 by, ac + be, ar + b,); (a] +b], ac + be, al. + b)),

Subtraction: A*6B* = ((aj—by, ac—be, a, —by); (a; =0, ac—b¢,al.—b))),

Multiplication: A* @ B* = ((my, me,m,.); (m}, ml,m.)), where
my = min{a;b;, a;b,, a,by, a.b.} m; = min{a;b;, a;b!., alb, alb.}
m, = max{a;b;, a;b, a.by, a;b,} m,. = max{a;b, ajbl., a,.b}, alb.}
me = acbe

and

((vai, vac, var); (vay, vae,va,) ;v >0

Scalar multiplication: 'yg* = ! i
<(rya7‘a Y, ’Yal); (’Yara YQc, ’Yal) Y < 0

Definition 6. The (a, A)-cut set of TIFN A* = ((a1,ac,ar); (a}, ac,al)) is a
crisp subset of R, which is defined as follow:
AP ={w e X|pz.(z) > a,vg.(x) < A},

where o, A € [0, 1].
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2.2 Centroid of Intuitionistic Fuzzy Number

Definition 7 [11]. Let m : R — [0, 1] be defined by

() —v(z)) +1
2

m(z) =

where p and v are the membership and non-membership function of IFN A,

Lemma. m is a fuzzy number.

Proof. From Definition 7 m(x) = (n(z) —v(z)) +1

Range of u(z) — v(z) € [-1,1].
Let g : R —[0,1],h: R —[0,1],f : R — [0,1] and k : R — [0, 1], where f and g
are strictly increasing and h and k are strictly decreasing,

we get
0 ;T < a
— 1
f(:;)+ o<z <aq
— 1
" g(x) J;(J/‘)Jr Cw<w<a,
m(z) =
h(z) — k 1
(z) 2(I)+ e <z<a,
—k 1
(302)—1— ;ap <z <al
0 ;x> al
f(a.) = 1. Therefore
0 ;T <a
— 1
7f(372)+ o <z<aq
— 1
IO,
m(z) =<1 ;X =ac

; ae <z < ap

—s ;ar <x<al
0 ;x> al

functions f and ¢ are piecewise continuous and strictly increasing. Function
h and k are piecewise continuous and strictly decreasing. Hence m is a fuzzy
number.

Next, we will find the centroid of fuzzy number.
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Centroid of fuzzy number A is its geometric center and is given by the for-

A >dx

f Alx
W —fx)+1 % g(x) — flz)+1 o h(z) —k(z)+1
D = /a, fxdx +/ gf:ﬂdm —|—/a ———adx

2
@ _k 1
a, 2
and

N / Sy [ S L, [ M) K 1,

+/a " —k’(ﬂ;)

r

D
[12]. Centroid of fuzzy number m is N’ where

ap c

Definition 8. Let A* be an IFN the centroid of an IFN A* is %, where

Do [ A gy [ [ K
+ /a %xdm

and
wo [ [ e [ K 21,

+/a ’ —k‘(f;)

"

Remark. From Definition8 let A* = ((a, ac, ar); (a}, ac,a’.)) be a TIFN. By

substituting the values in N the centroid of A* is

; [(a; —aj)(ac — 2a; — 2a}) + (ay — ar)(a; + ac + ay) + 3(a’ _ aiz)l . (3)

9 / 7
a. —a; +ar, —a

Remark. From a TIFN A* = ((ag, ac, ar); (al,ac,ar» if aj = a) and a, = a.
Then a TIFN A* will become to the TFN. That is A = (ar,ac,a.). By substl—

tuting the values in Eq. (3) the centroid of a TFN A is W.
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In this paper, centroid denoted by R(E*) And R(A*) to be the representative
value of the IFN (A*). We give index R(c};) to be the representative value of
the intutionistic fuzzy cost (cj;).

3 Intuitionistic Fuzzy Transportation Problem

The formulation of the IFTP is of the following form:

(IFTP)  Minimize ) = » > &5

i=1j=1

n
subject to inj <a ,i=12,....m
j=1

Zl’iijj ,j:1,2,...,n
i=1
x5 >0 for all 7 and j,

where

° E;‘j
from " source to the j* destination.

e 1;; is the quantity of transportation from ¢*"* source to the 4t destination.

e q; is the total availability of the goods at i*" source.

e b; is the total demand of the goods at 4t destination.
m n

is the intuitionistic fuzzy cost of transportation of one unit of the goods
th

th

) ZZ?{jxlj, is the total fuzzy transportation cost.

i=1j=1
m n

o If Z a; = Z bj, then IFTP is said to be balanced.
i=1 j=1

o If Z a; # Z b;, then IFTP is said to be unbalanced.
i=1 j=1

A balanced transportation problem has total supply equal to total demand
which can be expressed as

;ai = Z;bj (4)

A consequence of this is that the problem is defined by n + m — 1 availability
and demand variables since, if a;,7 = 2,3,4,...,m and b;,j = 1,2,3,...,n
are specified, then a; can be found from Eq.(4). This means that one of the
constraint equations is not required. Thus, a balanced transportation model has
n 4+ m — 1 independent constraint equations (Table1).
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Table 1. The intuitionistic fuzzy transportation table

1 2 N a;
~% ~% ~%
1 |c1p|cre Cip | Q1
%k ~k %k
2 ¢ | Ca2 Cop | G2
m n
bj b1 |ba |... |bn E ai:g bj
i=1 j=1

Since the number of basic variables in a basic solution is the same as the
number of constraints, solutions of this problem should have n + m — 1 basic
variables which are non-zero and all the remaining variables will be non-basic
and thus have the value zero.

3.1 Algorithm to Find an Initial Basic Feasible Solution (IBFS)

In this section, we use an allocation table set up to find the solution for IFTP.
This method is called allocation table method (ATM) and the algorithm is illus-
trated as follows:

Step-1: Establish the formulated fuzzy linear programming problem into the
tabular form known as intuitionistic fuzzy transportation table (IFTT). Calcu-
late R(cj;) for all the intuitionistic fuzzy cost of transportation to be put on the
table allocation.

Step-2: Examine that the IFTP is balanced or unbalanced.

case (i). If the problem is balanced i.e., Z a; = Z b;, then go to Step-3.

i=1 j=1

case (ii). If Z a; # Z bj, then convert the unbalanced problem into balanced
i=1 j=1
problem as follows:

m n
case (tia). If Zai < ij then introduce a dummy source (row) with avail-
i=1 j=1
ability. Assume the fuzzy cost for transporting one unit quantity of the product
from the introduced dummy source to all destinations as zero fuzzy number. Go
to Step-3.

m n
case (iib). If Z a; > Z b; then introduce a dummy destination (column) with
i=1 j=1
demand. Assume the fjuzzy cost for transporting one unit quantity of the product
from all sources to the introduced dummy destination as zero fuzzy number. Go
to Step-3.
Step-3: Choose minimum odd cost (cost for transporting one unit quantity of
the product which is an odd number) from every cost cells of IFTT. If there is
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no odd cost in cost cells of the IFTT, continue by dividing every cost cells by 2
until get at least an odd value in cost cells.

Step-4: Form a new table which revises is to be known as allocation table by
keeping the minimum odd cost in the respective cost cell/cells as it was/were,
and subtract selected minimum odd cost only from each of the odd cost valued
cells of the IFTT. Now every the cell values are to be called as allocation cell
value in allocation table.

Step-5: At first start with selected minimum odd cost in allocation table in
Step-4. Delete the row (availability) or column (demand) that has been allo-
cated to complete.

Step-6: Now specify the minimum allocation cell value and allocate minimum of
availability /demand at the place of selected allocation cell value in the allocation
table. In the event of same allocation cell values, select the allocation cell value
where minimum allocation can be made. Afresh in the event of same allocation
in the allocation cell values, choose the minimum cost cell which is correspond-
ing to the cost cells of IFTT formed in Step-1. Afresh if the allocations and
the cost cells are equal, in such case choose the nearer cell to the minimum of
demand/availability which is to be allocated. Now Delete the row(availability)
or column(demand) that has been allocated to complete.

Step-7: Repeat Step-6 as far as the demand and availability are depleted.
Step-8: Finally, from the IFTT, we compute the total fuzzy transportation cost.

3.2 Modified Distribution Method (MODIM) for Finding Optimal
Solution

In this section, we find the best solution for IFTP by using a modified method of
distribution. Algorithm of modified distribution method is illustrated as follow:

Step-1: Find IBFS by proposed ATM.
Step-2: Let

e R; is the value assigned to row ¢
e K is the value assigned to column j
e C;; is the cost in square ij (cost of shipping from source i to destination j).

Compute the values for each row R; and column Kj, set R; + K; = Cj;. For
example, if the square at the intersection of row 3 and column 2 is occupied,
we set Rz + Ko = C3y. After all equations have been written, set K; = 0 (or
Ry =0).

Step-3: Calculate the improvement index value for unoccupied cells by the
equation Eij = Cij - Rl - Kj.

Considering only these dispatch and reception costs, it would cost R; + Kj
to send 1 unit from source i to destination j. For (4,j) not corresponding to
a basic variable (whenever x;; is a basic variable), it will often be the case
that R; + K; # Cj;. In particular, if R; + K; > C; for a particular (Z,j) not
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corresponding to a basic variable, then there would be a benefit from sending
more goods that way.

So let E;; = Ci; — R; — K. The E;; values are entered in the top right of
the cells. Then E;; is the change in cost due to allocating 1 extra unit to cell
(t,7). If any E;; is negative (so that R; + K; > Cj;), then the total cost can be
reduced by allocating as many units as possible to cell (4, ). However, if all the
E;; are positive then it will be more expensive to change any of the allocations
and so we have found a minimum cost.

Step-4: Consider valued of Ej;.

case (i). IBFS is intutionistic fuzzy optimal solution, if E;; > 0 for every unoc-
cupied cells.

case (4). IBFS is not intutionistic fuzzy optimal solution, for at least one E;; < 0.
Go to step 5.

Step-5: Choose the unoccupied cell for the most negative value of E;;.
Step-6: We construct the closed loop below.

At first, start the closed loop with choose the empty cell and move vertically
and horizontally with corner cells occupied and come back to choose the empty
cell to complete the loop. Use sign “+” and “—” at the corners of the closed
loop, by assigning the “4” sign to the selected empty cell first.

Step-7: Look for the minimum allocation value from the cells which have
sign. After that, allocate this value to the choose empty cell and subtract it to
the other occupied cell having “—” sign and add it to the other occupied cells
having “+” sign.

Step-8: Allocation in step-7 will result an improved basic feasible solution
(BFS).

Step-9: Test the optimality condition for improved BFS. The process is com-
plete when E;; > 0 for all the empty cell.

w_»

4 Numerical Example

Example 1. Consider IFTP with three sources S1, 52,53 and three destinations
D1, Dy, D3. The cost of transporting one unit of the goods from " source to
the j*" destination given whose elements are TIFNs, shown in the Table 2. Find
out the minimum cost of total intuitionistic fuzzy transportation.

Table 2. Data of the Example 1

Source D Do D3 Availability
(ai)

S1 ((3,6,10); (2,6,11))|((6, 8,13); (4,8,15)) ((2,5,7); (1,5,11)) | 30

So ((3,5,9); (2,5,12)) |((4,6,10);(3,6,12))((5,7,9);(3,7,13)) | 45

Ss ((6, 8 9); (4,8,11)) [{(7,8,10); (5,8,14)){(7,9,12); (4,9,15))| 40

Demand (b;)|35 60 20 115
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3
Since Z a; = Z b;j = 115, the IFTP is balanced.
; =
From Table 2 the cost of transporting one unit of the goods from i*" source
to the j'* destination are TIFNs. We use Eq. (3) for calculating the value of

intuitionistic fuzzy cost.
Let us consider Table 2 where the element ((3, 6, 10); (4,6, 11)) is TIFN. From

Eq. (3)
1| (ap —ap)(ac — 2a; — 2a)) + (ar — a)(a + ac +ar) + 3(al” a{2)
3 al.—aj+ar —a ’

Therefore, we obtain

R(¢7) = R{(3,6,10); (2 6,11))
[ (11 —2)(6 — 2(11) — 2(2)) 4 (10 — 3)(3 + 6 + 10) + 3(11% — 22)]

1
-3 11-2+10-3
=6.3

Similarly, the value of the intuitionistic fuzzy costs ¢}, are calculated as:

R(¢t5) =9, R(¢55) = 5.33, R(¢5,) = 6.08, R(c3y) = 6.87, R(c34) = 7.48, R(¢3;) =
7.67, R(c5,) = 8.83, R(c33) = 9.33. We put all R(cj;) in Table 3.
From Table 3, it is found that the IFTP is balanced. Thus, move to step-3.
Step-3, minimum odd cost is 5.33 in cost cell (1,3) among all the cost cells
of Table 3.

Table 3. The IFTT after calculated R(c};)

Source D1 | Dy | D3 | Availability (as)
S1 6.33 |9 5.33| 30
So 6.08|6.87|7.48 | 45
Ss3 7.6718.8319.33| 40
Demand (b;) |35 |60 |20 |115

According to step-5, minimum of availability /demand is 20 that is allocation
in cell (1, 3). After allocating this value it is found that the demand is satisfied.
For which D3 column is to be exhausted.

After step-5, only Dy and Dy column are to be considered. Where 6.08 is
the lowest cell value in cells (1,1),(2,1) and (2,2). Among these three cells 10
is the lowest allocation can be made in cells (1,1). For which S; row is to be
exhausted.

Next, consider cells (2,1) and (3, 1) we found that 25 is the lowest allocation
of cost cells (2,1) and (3,1). Thus, select cell (2,1) because 6.08 is the lowest
cell value in cells (2,1) and (3,1). For which Dy column is to be exhausted.
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Now complete the allocation by allocating 20 and 40 to the cell (2,2) and
(3,2), respectively. All these allocations are made according to step-6 and step-7
of the proposed algorithm.

After that, transfer this allocation to the IFTT. The first allocation is shown
in Table4 and the final allocation is shown in Table 5.

Table 4. The first iteration of allocation cell

Source D1 Dy | D3 Availability (a;)
S 6.33/9 5.3 30
Sa 6.08 | 6.87|7.48 45
Ss3 7.678.8319.33 40
Demand (bj) |35 |60 |20 115

Table 5. Finally, allocation of various cells are in the allocation table

Source D Do Ds Availability (as;)
S 6.33 [10] 9 5.33 30
Sa 6.08 |25|/6.87 |20]|7.48 45
Ss3 7.67 8.83 |40] 9.33 40
Demand (b;) | 35 60 20 115

Therefore, IBFS is 11 = 10, 213 = 20, 297 = 25, 295 = 20, 30 = 40.
Finally, total intuitionistic fuzzy transportation cost is (6.33 x 10) + (5.33 x
20) + (6.08 x 25) + (6.87 x 20) + (8.83 x 40) = 812.5.
Now, we apply modified distribution method (MODIM) to compute the opti-
mal solution. Algorithm of modified distribution method as shown in Sect. 3.2.
Firstly, we compute dual variables R; and K; for each row and column respec-
tively, satisfying R; + K; = Cj; for each occupied cell. Therefor, let K; = 0.
For each occupied cell, C;; = R; + K, we have
Ci1=Ri+ Ky; Ri =6.33
Ci3 = R + Ks3; Kz =-1
Cs1 = Ry + Ki; Ky =6.08
Co = Ry + Ko K5 =10.79
C32 = R3 + Ko; R3 =8.04

Hence, we obtain

; =1.88

( )
( )
FE3 =C31 — (R3 + Kl); = —-0.37
E33 = C33 — (R3 + K3); =2.29
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From above, we found that the value of F3; is negative, therefor IBF'S is not
intuitionistic fuzzy optimal.

Construction of loop
In Table 6, use sign “+” in cells (3,1) and (2,2). And use sign “—” in cells (2, 1)
and (3,2).

Table 6. Construction of loop

Source D; Availability (a;)

D Ds
S 6.33 9 533 30

S |6.08 [25]36.87 7.48 45

¥
53 7.67—48.83 [40]| 933 40

Demand (b;) 35 60 20 115

Check FE;; again, if F;; > 0 for all unoccupied cells, then the solution is
intuitionistic fuzzy optimal solution. If E;; < 0, go to step 5.

Improved basic feasible solution (Table 7)
Let Kl =0
For each occupied cell, C;; = R; + K

C11 = R; + Ky; R; = 6.33.
Ci3 = R; + Ks; K3 =—1.

Cy = Rs + Ko; Ry =5.71.
C31 = R3 + Kq; Rs = 7.67.
C32 = R3 + Ko; Ky =1.16.

Table 7. Improved basic feasible solution

Source D1 Do D3 Availability (a;)
S 6.33 9 5.33 30
So 6.08 6.87 |45||7.48 45

|

Ss 7.67 8.83 [15] 9.33 40

Demand (b;) | 35 60 20 115

|
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Hence, we observe that

By = Cyy — Ry — Ky = 1.15.
FEs1 = Co1 — Ry — K1 = 0.37.
Eg3 = Co3 — Ry — K3 = 2.77.
Fas = Cas — Ry — K3 = 2.66.

From above, we found that the value of E;; > 0 for all unoccupied cells,
intuitionistic fuzzy optimal solution is z1; = 10,213 = 20,790 = 45,73,
25,30 = 15, and the minimum transportation intuitionistic fuzzy cost is ¥ =
(6.33 x 10) + (5.33 x 20) + (6.87 x 45) + (7.67 x 25) + (8.83 x 15) = 803.25.

Ezample 2. Consider FTP with three sources Sy, S5, .53 and four destinations
Dy, Dy, D3, Dy. The cost of transporting one unit of the goods from *" source to
the j*" destination given whose elements are trapezoidal fuzzy numbers, shown
in the Table8 below. Find out the minimum cost of total intuitionistic fuzzy
transportation.

3
Since E a;
i=1

From Table8 the cost of transporting one unit of the goods from i** source
to the j** destination are TIFNs. We use Eq.(3) for calculating the value of
intuitionistic fuzzy cost.

Let us consider the element in Table8 and from Eq. (3)

4
= b; = 250, the IFTP is balanced.

Jj=1
th

1| (a. —aj)(ac —2a. —2a)) + (ar — ar)(a; + ac + ar) + ?;(a’r2 — a;z)

9 ’
a, —a;+a, —aq

3

The value of the intuitionistic
14.4, R(&,) = 21.25, R(cts)
37.52, R(¢css) = 47.39, R(¢3,)
46.67, R(c%,) = 25.18. We put

fuzzy costs ¢j; are calculated as: R(cj;) =
— 38.07,R(&%,) = 40,R(G,) = 55, R(G,)
24.36, R(G,) = 23.85, R(ch,) = 50, R(Cs)
all R(cf;) in Table 9.

Table 8. Data of the Example 2

Source Dy Do D3 Dy Availability (a;)
S, ((10, 15, 20); (12, 20, 30): (30, 38, 45); (30, 40, 50); 80
(6,15,21)) (10,20,35)) (27,38,50)) (25,40, 55))
S ((50, 55, 60); ((30, 35, 47); (40, 45, 56); (10, 25, 37); 75
(47,55,63)) (28, 35,50)) (38, 45,60)) (9,25, 40))
Ss (12,24, 35); ((40, 50, 60); (35, 45, 60); (10, 25, 40); 95
(10,24,35)) (30,50,65)) (30,45,65)) (8,25,43))
Demand (b;)|50 90 60 50 250
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Table 9. The IFTT after calculated R(c};)

Source Dy Do D3 Dy Availability (a;)
S 14.4 |21.25|38.07 |40 80
Sa 55 37.52147.39 | 24.36 | 75
Sy 23.85 |50 46.67 | 25.18| 95
Demand (b;) |50 |90 |60 |50 | 250

From Table9, it is found that the IFTP is balanced. Thus, move to step-3.

Step-3, minimum odd cost is 21.25 in cost cell (2,2) among all the cost cells
of Table9.

According to step-5, minimum of availability /demand is 80 that is allocation
in cell (2,2). After allocating this value it is found that the demand is satisfied.
For which S; row is to be exhausted.

After step-5, only Sy and S3 column are to be considered. Where 23.85 is the
lowest cell value in cells (2,2), (2,4), (3,1) and (3,4). Among these four cells 10
is the lowest allocation can be made in cells (2,2). For which S; column Ds is
to be exhausted.

Next, consider cells (2,1) and (3,1) we found that 23.85 is the lowest alloca-
tion of cost cells (2,1) and (3,1). Thus, select cell (3,1). For which D; column
is to be exhausted

Consider cells (3, 3) and (3, 4) we found that minimum of availability /demand
is 45 and 25.18 is the lowest allocation of cost cells (3,3) and (3,4). Thus, select
cell (3,4). For which S5 row is to be exhausted.

Now complete the allocation by allocating 5 and 60 to the cell (2,4) and
(2,3), respectively. All these allocations are made according to step-6 and step-7
of the proposed algorithm.

After that, transfer this allocation to the IFTT. The first allocation is shown
in Table 10 and the final allocation is shown in Table 11.

Table 10. The first iteration of allocation cell

Source D1 Do Ds Dy Availability (a;)
S 14.4 | 21.25 38.07 40 | 80
Sa 55 37.52 47.39124.36| 75
Ss 23.85 |50 46.67 | 25.18 | 95
Demand(b;) | 50 90 60 50 250

Therefore, IBFS is x15 = 80, x92 = 10, 293 = 60, z94 = 5, x37 = 50, x34 = 45.
Finally, total intuitionistic fuzzy transportation cost is (21.25 x 80) + (37.52 x
10) + (47.39 x 60) + (24.36 x 5) + (23.85 x 50) + (25.18 x 45) = 7366.



A Method for Optimal Solution of IFTP via Centroid

109

Table 11. Finally, allocation of various cells are in the allocation table

Source | Dy Do Ds Dy Availability
Sy 14.4 21.25 |80 38.07 40 80
S 55 37.52 [10] 47.39 24.36 (5] 75
Ss 23.85 50 46.67 25.18 [45] 95
Demand | 50 90 60 50 250

Now, we apply MODIM to compute the optimal solution. Algorithm of
MODIM as shown in Sect. 3.2.

Firstly, we compute dual variables R; and K for each row and column respec-
tively, satisfying R; + K; = C}; for each occupied cell. Therefor, let R; = 0.

For each occupied cell, Cs; = R; + K; , we have

Ci2 = Ry + Ko;
Cy2 = Ry + Ko;
Co3 = Ry + K3;
Coy = Ry + Ky;
C31 = Rz + Ki;
C34 = Ry + Ky;

Hence, we obtain

Esp = C3 — (R3 + K3); =
Es3 = C33 — (R3 + K3); =

Ky, =21.25
Ry =16.27
K3 =31.12
K, =8.09
K, =6.76
R3 =17.09
; =7.64
=6.95
; =31.91
; = 3197
16.64
—1.54

From above, we found that the value of F33 is negative, therefor IBF'S is not
intuitionistic fuzzy optimal.

Construction of loop
In Table 12, use sign “+” in cells (3, 3) and (2,4). And use sign “~" in cells (3,4)

and (2,3).

Check E;; again, if E;; > 0 for all unoccupied cells, then the solution is

intuitionistic fuzzy optimal solution. If Eij < 0, go to step 5.
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Source D, D> D3 Dy Availability (a;)
S 144 (2125 [80]| 38.07 40 80
52 3 3752 47.39 [60 ]+ 24.36 75
s |85 [s0] 50 46.67 —1 25.18 95
Demand (b;) 50 90 60 50 250
Improved basic feasible solution (Table 13)
Let Ky = 0. For each occupied cell, C;; = R; + K
Ci2 = R + Ky; R, = 8.3.
Cos = Ry + Ko; Ky =12.95.
Co3 = Ry + Kj3; Ry = 24.57.
Coy = Ry + Ky; Ky, = —0.21.
Cs1 = R3 + Ki; R3 = 23.85.
C33 = R3 + Kj3; K3 = 22.82.
Hence, we observe that
Eiy1 =Ci — (R1+ Kq) =6.1.
Fi3=C13— (Rl + Kg) = 6.95.
Fi4=C14— (R1 + K4) = 31.91.
Eo1 = Oy — (R2 + Kl) 30.436.
FE35 = C39 — (R3 + K2) =13.2.
E3zy = C34 — (R3 + Ky) = 1.54

D. Hunwisai et al.

Table 12. Construction of loop

From above, we found that the value of E;; > 0 for all unoccupied cells,
intuitionistic fuzzy optimal solution is x15 = 80,z90 = 10,293 = 15,294
50,31 = 50, x33 = 45 and the minimum transportation intuitionistic fuzzy cost
(23.85 x 50) +

isy =

(21.25 x 80) +

(37.52 x 10) +

(46.67 x 45) = 7296.70.

(47.39 x 15) +

(24.36 x 50) +

Ezample 8 (Unbalanced intuitionistic fuzzy transportation problem). Consider

the following problem with three factories and four warehouses.
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Table 13. Improved basic feasible solution

Source Dy Do Ds Dy Availability (as)
Sy 14.4 21.25 |80 38.07 40 80
S 55 37.52 [10] 47.39 [15] 24.36 75
Ss 23.85 50 46.67 [45] 25.18 95
Demand (b;) | 50 90 60 50 250

Table 14. Data of the Example 3

Source Wi W Ws W, Supply (a:)

F ((2,7,15); | ((4,10,12); | ((3,7,14);  ((3,5,10); | 35
(0,7,18)) |(3,10,17)) |(2,7,18)) |(1,5,16))

s ((2,4,7); |((5,6,10); | ((6,7,12);((8,9,13); |40
(1,4,10)) |(2,6,13)) |(4,7,12)) |(8,9,18))

F3 ((5,8,10); | ((7,15,20); | {(3,9,15); | ((4,5,6); |45
(4,8,11)) | (7,15,24)) |(2,9,16)) | (3,5,9))

Deman (bj) | 30 25 60 35

4 4
From Table 14, Zai = 120, ij = 150, the IFTP is an unbalanced intu-

i=1 j=1

tionistic fuzzy transportation problem. To solve the problem, we introduce a
dummy source (F'4) which has a capacity of 30. The amount shipped from this
dummy source to a destination represents the shortage quantity at that desti-

nation.
4 4

From Table 15, Y "a; = Y _b; = 150, the IFTP is balanced.

i=1 j=1

Next, consider the element in Table15 and from Eq.(3) we calculate the
value of the intuitionistic fuzzy costs Ejj shown in the Table 16.

From Table 16, we are using ATM to find an IBFS for the IFTP, shown in
the Table 17.

From Table 17, we get IBFS is x13 = 35,295 = 15,293 = 25,231 = 10,34 =
35, T41 = 20, T4 = 10.

Finally, total fuzzy transportation cost is (8.59 x 35) 4+ (7 x 15) + (7.95 x 25) +
(7.67 x 10) + (5 x 35) + (0 x 20) + (0 x 10) = 856.1.

Now we apply MODIM to compute the optimal solution. Algorithm of
MODIM is shown in Sect. 3.2. We will show only the results of improved basic
feasible solution is shown in Table 18 and calculation minimum fuzzy transporta-
tion cost is given below.

Hence, optimal solution is x12 = 15,213 = 20,721 = 30,722 = 10,733 =
10,234 = 30,243 = 30 and minimum fuzzy transportation cost is ¥ = (9.52 x
15) 4+ (8.59 x 20) + (4.76 x 30) + (7 x 10) + (9 x 10) + (5 x 30) + (0 x 30) = 767.4
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Table 15. Adding a dummy source to Example 3

Source Wi W2 Ws Wy Supply (a:)

I ((2,7,15); | ((4,10,12); | ((3,7,14); | ((3,5,10); | 35
(0,7,18)) | (3,10,17)) |(2,7,18)) |(1,5,16))

Fy ((2,4,7); |((5,6,10); |{((6,7,12);]((8,9,13);| 40
(1,4,10)) |(2,6,13)) |(4,7,12)) |(8,9,18))

F3 ((5,8,10); | ((7,15,20); | ((3,9,15); | ((4,5,6); 45
(4,8,11)) | (7,15,24)) |(2,9,16)) | (3,5,9))

Fy ((0,0,0); |((0,0,0); ((0,0,0); |((0,0,0); 30
(0,0,0)) (0,0,0)) (0,0,0)) |(0,0,0))

Demand (b;) | 30 25 60 35 150

Table 16. The IFTT after calculated R(cj;)

Source Wi |Wa  |[Ws (Wi | Supply (a;)
FF 8.1919.52 |8.59/6.91 35
F> 4.76 | 7 7.9511.11| 40
F3 7.6714.76 |9 5 45
Fy 0 0 0 0 30
Demand (b;) |50 |90 60 |50 150

Table 17. Finally, allocation of various cells in the allocation table

Source Wi Wo Ws Wa Supply (a;)
F 8.19 952 859 |35] 6.91 35
Fy 4.76 7 7.95 |25 1111 | 40
F 7.67 14.76 |9 5 45
Fi 0 0 0 0 30
Demand (b;) | 50 90 60 50 150
Table 18. Improved basic feasible solution
Source Wi Wa W3 W, Supply (ai)
Py 8.19 9.52 8.59 6.91 35
P 4.76 7 7.95 1111 | 40
Fs 7.67 14.76 9 [10] |5 |30] 45
F 0 0 0 [30] o 30
Demand (b;) | 50 90 60 50 150
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Conclusion

In this work, the ATM is used to find an initial basic feasible solution. Using
centroid of TIFN for the representative value of the IFN based on the both
availability and demand are real numbers. Moreover the cost is TIFN. In addition
we improve the basic feasible solution by MODIM to find the optimal solution.
Finally, it can be claimed that the proposed method can be used to solve TP
and FTP which is TFN and TIFN. Therefore, this method can be applied to
solve the real life transportation problem.
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Abstract. In this paper, we study key exchange protocol which is simi-
lar to Diffie-Hellman key exchange protocol. This key exchange protocol
uses maximal abelian subgroup of automorphism of group. We give an
example group is used for key exchange protocol.
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1 Introduction

In cryptography, keys exchange is a method to send a key between a sender
and a recipient. The problems of the key exchange are how they send the mes-
sage so that nobody else can understand the message except for the sender
and the recipient. The procedure is one of the first public key cryptographic
protocols used to build up a secret key between each other over insecure chan-
nel. The protocol itself is constrained to exchange of the keys for example: we
are making a key together instead of sharing data while the key exchange. We
implement algorithm for exchanging information over a public channel so that
building up a mutual secret between two gatherings that can use for secret com-
munication. Diffie-Hellman is suitable to use in information communication and
less frequently use for information storage or archived over a long time period.
© Springer International Publishing AG 2018
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In cryptographic protocol has the key exchange is the first issue. For human
development, people try to hide the data from other people so that composing
structure. This is assumed that is the first and primitive type of encryption,
but it is just only half section of cryptography. The other half is the capacity
to reproduce the first message from its hidden structure. Cryptography is like a
normal message but nobody except for the exact recipient will understand the
message. By that time the huge majority of the cryptosystems were private of
symmetric key cryptosystems. In this two clients Alice and Bob select a key,
which is their private key then use the key in a private key cryptosystem to
convey information over people in public channel. We investigate a public key
cryptography regarding the Diffie-Hellman key Exchange Protocol, which is the
most primitive thought behind a public key cryptography. In the Diffie-Hellman
key exchange protocol, two clients unknown to one another can set up a private
however arbitrary key for their symmetric key cryptosystem. The Diffie-Hellman
key agreement protocol (1976) was the first practical method for setting up a
shared secret over an insecure communication channel.

In modern cryptography, we assume that key is a only secret. Therefore if
there are many keys, then the opponent hard break cryptosystem. We will gen-
eralized Diffie-Hellman key exchange protocol on groups. We choose key which
is automorphism group in maximal abelian subgroup of automorphism group.

2 Preliminaries

In this section, we will introduce Diffie-Hellman Key Exchange and group.

2.1 Diffie-Hellman Key Exchange

The simple and original key exchance protocol uses the module p and g €
{1,...,p— 1} where p is a prime in [1].

Ezxzample 1. Alice and Bob want to exchange key over an insecure channel.

1. Alice and Bob agree to use the module p and g € {1,...,p — 1} where p is a
prime.

2. Alice choose a secret a € {1,...,p — 1}. Then she sends A = g* mod p to

Bob.

Bob choose a secret b € {1,...,p—1}. Then he sends B = g” mod p to Alice.

Alice compute B* mod p.

Bob compute A® mod p.

Alice and Bob have common secret key A® = B® mod p.

Al ol

2.2 Groups

Definition 1. For a nonempty G, a function - : G x G — G is called a binary
operation. Image of (a,b) € G is denoted by ab. G with binary operation is a
group if it has properties
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1. Associativity, Va,b,c € G,(a-b)-c=a-(b-¢),
2. Identity de €,Va € G,a-e=a=¢-a,
3. Inverse Va e GIbe G,a-b=e=0b-a.

Definition 2. A group G is commutative if Va,b € G,ab = ba. A commutative
group is called abelian group.

Definition 3. Let G and H be groups. A homomorphism from G to H is a map
¢ : G — H which satisfy

Va,b € G, ¢(ab) = ¢p(a)p(b).

An isomorphism is a homomorphism which is injection and surjection. We write
G = H. An automorphism is a isomorphism from G to G. The automorphism
group of G is denoted by Aut(G).

Theorem 1 [2]. Let G be a finite abelian group. Then G is isomorphic to a
product of groups of the form

Hy, = Zpny X -+ X Lipnm,
i which p is a prime number and ny < --- < n,, are positive integers.
Theorem 2 [2]. Let H and K be finite groups with relatively prime orders. Then
Aut(H) x Aut(K) = Aut(H x K).

Theorem 3 [2]. Let H, = Zpr1 X -+ X Lpnm be a group which p is a prime
number and ny < --- < n,y, are positive integers. Setting dr, = max{{: ny, = ny}
and ¢, = min{f : ny = ny}. Then

" i (m—dj) . T (m—e; 1)
[He™ - HI[e~" “H[e="" ).
k=1 j=1

i=1

| Aut(Hp)|

Lemma 1. A abelian group G = Hy,, X --- x H,, which p; < --- < pi are prime
numbers, Hy, = Zypni X -+ X Lpnm and ny < --- < ny,, are positive integers has

k
Aut(G) = [ |Aut(Hy,)|.

i=1

Proof. 1t’s obvious by Theorems 2 and 3.

Theorem 4 [4]. Let n be a positive integer such that n > 3 and let k = 2n™~1.
Let G = <z,y, z,u> with defined by

1. 2=y =22 =u? =]

2. yxy = k1,
3. yuy = zu.

x7z]:[x,u]: kvu]: M7Z}='L

The Aut(G) is abelian group. It is isomorphic to Zas X Zgn—2. The order of G is
2n+3.
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3 Key Exchange Protocol

Alice and Bob want to exchange key over an insecure channel that is similar
in [3].

3.1 Key Exchange Protocol I

1.

=g

Alice and Bob choose group G and an element g € G in public information.
Note that G and ¢ are public information.

. Alice and Bob choose automorphism ¢4 and ¢p from maximal abelian sub-

group S of Aut(G), respectively. Note that ¢ 4 and ¢ are private information.
Alice and Bob compute ¢4(g) and ¢p(g) respectively and exchange them.
Note that ¢4(g) and ¢p(g) are public information.

Both of them compute ¢4(¢p(g9)) = ¢p(¢pa(g)) from their private informa-
tion, which is their common secret key.

In Example 1 is special case when ¢4(g9) = g%, ¢5(9) = ¢° and ¢a(d5(g))
ab

Remark. The opponent hard compute ¢4(¢pp(g)) from G,g,04(9), d5(g)-

Example 2. Alice and Bob want to exchange key over an insecure channel.

1.

©w

Alice and Bob agree to use group G = Zpn X Zgm where p,q are prime and
g=1(91,92) €G.

. Alice choose a = (a1,a2) where ged(a,n) = ged(az,m) = 1. Her automor-

phism is ¢a(¢') = (¢;",g5"). Bob choose b = (by,by) where ged(by,n) =
gcd(ba, m) = 1. His automorphism is ¢p(g') = (g’lbl,g’;2).

Alice and Bob compute ¢ 4(g) and ¢p(g) respectively and exchange them.
Both of them compute ¢4(d5(g9)) = ¢5(da(g)) from their private informa-

tion, which is their common secret key.

3.2 Key Exchange Protocol 11

Alice and Bob choose group G in public information.

Alice chooses automorphism ¢4 from maximal abelian subgroup S of Aut(G)
and she choose an element g € G. Then she sends ¢ 4(g) to Bob. Note that g
and ¢4 are private information but ¢4(g) is public information.

Bob chooses automorphism ¢z from maximal abelian subgroup S of Aut(G).
Then he send ¢p(¢a(g)) to Alice. Note that ¢p is private information but
¢5(da(g)) is public information.

Alice compute ¢, (¢5(0a(9))) = é5(g). Next Alice choose automorphism
¢p from maximal abelian subgroup S of Aut(G) and compute ¢ (g). Then
she sends ¢p(¢pp(g)) to Bob. Note that ¢y is private information but
o (¢p(g)) is public information.

Bob compute ¢ (¢#(¢5(9))) = ¢ (g), which is their common secret key.
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Remark. The opponent hard compute ¢4(pp(g)) from G,pa(g), p5(da(g)),
ou(o6(9))-

Example 3. Alice and Bob want to exchange key over an insecure channel.

1.
2.

Alice and Bob agree to use group G = Zyn X Zgm where p, g are prime.
Alice chooses a = (a1, az) where ged(ar,n) = ged(az,m) = 1. Her automor-
phism is ¢4(g’) = (g1, g5"*). She choose an element g € G. Then she sends
®a(g) to Bob.

Bob chooses b = (by, by) where ged(by,n) = ged(ba, m) = 1. His automorphism
is pp(g') = (97", g¥?). Then he send ¢p(pa(g)) to Alice.

Alice compute ¢ (¢5(d4(g))) = ¢5(g). Next Alice choose ¢ = (c1, c2) where
ged(cy,n) = ged(cz, m) = 1. Her automorphism is ¢x(g') = (97, g5%). Then
she sends ¢y (d5(g)) to Bob.

Bob compute ¢ (¢#(¢5(9))) = ¢ (g), which is their common secret key.
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Abstract. In probability theory, as well as in other alternative uncertainty the-
ories, the existence of efficient processes for the multidimensional model con-
struction is a basic assumption making the application of the respective theory to
practical problems possible. Most of the approaches are based on the idea that a
multidimensional model is set up from a great number of smaller parts represent-
ing pieces of local knowledge. Such a process is called knowledge integration.
In the probabilistic framework, it means that a multidimensional probability dis-
tribution is aggregated from a number of low-dimensional (possibly conditional)
ones.

Historically, two different operators of aggregation were designed for this pur-
pose: the operator of combination, and the operator of composition. This paper,
using the simplest possible framework of discrete probability theory, answers
some natural questions like: What is the difference between these operators? Is
there a need for both of them? Are there situations when they can be mutually
interchanged?

Keywords: Discrete probability - Aggregation of distributions - Factorization
Algebraic properties + Idempotency

1 Introduction

Broad application of probability theory in artificial intelligence that took place in the
last decades of the last century was facilitated by the development of new tools and
models that were incorporated into the basic theoretical gear of artificial intelligence.
There are many of them, though not all of them are as famous as the Bayesian networks
[7], or more generally, graphical Markov models [13]. Some of them were developed
not only in the theoretical framework of probability theory but also in the framework
of other uncertainty theories like possibility [6] or belief functions theories [4,17]. This
holds true also for two operators of aggregation that belong among the concepts of sev-
eral uncertainty theories. The goal of this paper is to make clear the difference between
these two operators of aggregation and to show that both of them have their indisputable
role for uncertain knowledge modeling. Namely, they are widely used in the process of
knowledge integration, the process aiming at the construction of big knowledge bases of

(© Springer International Publishing AG 2018
L. H. Anh et al. (eds.), Econometrics for Financial Applications, Studies in Computational
Intelligence 760, https://doi.org/10.1007/978-3-319-73150-6_9
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intelligent systems. To make the exposition as clear as possible we restrict our consider-
ation only to the best-known probability theory, we will study aggregation of (discrete)
probability distributions (measures).

The basic idea of the knowledge integration process copies a human-like behav-
ior. Nobody is able to express/comprehend knowledge that is too complex. Therefore,
it should be formulated in small pieces of local knowledge, and the pieces of local
knowledge are then aggregated to form a complete knowledge of the area of interest.
Analogously, a probabilistic model of a knowledge base should be integrated from a
great number of pieces of local knowledge, which are represented by small dimen-
sional probability distributions. This way of knowledge base representation has also an
additional advantage. For such models, there exist efficient computational procedures
that can be applied for making inferences [1,11,14-16].

In probability theory there are many ways and purposes why two or more proba-
bility distributions are aggregated; see, e.g. “Aggregating Probability Distributions” by
Clemen and Winkler [3]. In this paper we restrict our attention only to two ways that
can be both considered as an aggregation of knowledge in Al applications: Combination
and Composition.

Combination

The purpose of the combination of probability distributions can hardly be described
better than it was done by Dempster in [4]: A probability measure may be regarded
as defining degrees of belief which quantify a state of partial knowledge. ... A mech-
anism for combining such sources of information is a virtual necessity for a theory of
probability oriented to statistical inference. The mechanism adopted here assumes inde-
pendence of the sources, a concept whose real world meaning is not so easily described
as its mathematical definition. So, by the operation of combination we understand in
this paper a proper way to combine independent sources of information. In agreement
with the Dempster’s words, with the stress on the notion of independence.

As an example, consider a situation when data files are the main source of informa-
tion. Let two data files describe patients from hospitals A and B, respectively. Then, a
natural way of combining these two sources of information is to join the records into
one file. The respective estimation of the probability distribution 7 corresponding to the
joint data file can be got as a weighted sum of the estimations of probability distribu-
tions 14 and g corresponding to the data files from hospitals A and B, respectively. So,
in spite of the fact that in the described situation we do not have any objections against
the employment of distribution & received as a weighted sum distributions w4 and 7
(representing two sources of information), we should not consider the weighted sum of
distributions a combination operation for probability distributions. This is because the
computation of a weighted sum is not appropriate when the sources are independent.
Naturally, data collected in different hospitals cannot be considered independent. They
are samples from different populations, or from two disjoint parts of a population.

Composition

As the term suggests, the operation of the composition is an inverse operation to decom-
position. By decomposition, we understand the result of a process that, with the goal
of simplification, divides an original object into its sub-objects. Thus, for example, a
problem is decomposed into two (or more) simpler sub-problems. General properties of
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such decomposition can be viewed on the example familiar to everybody: decomposi-
tion of a positive integer into prime numbers. In this case, an elementary decomposition
is a decomposition of an integer into two factors, the product of which gives the original
integer. For this example, we see that

o the result of decomposition are two objects of the same type as the decomposed
object — an integer is decomposed into two integers;

e both these sub-objects are simpler (smaller) than the original object — both factors
are smaller that the original integer, we do not consider 1 X n to be a decomposition
of n;

e not all objects can be decomposed — prime numbers cannot be decomposed;

o there exists an inverse operation (we will call it a composition) yielding the original
object from its decomposed parts — the composition of two integers is their product.

It can easily be deduced from the above-presented properties that the process of a
repeatedly performed decomposition of an arbitrary (finite) object into elementary sub-
objects that cannot be further decomposed is always finite.

As another example, let us note that a decomposition is studied also in graph theory.
A simple! graph G = (V,E) is decomposed into two simple graphs G; = (Vy,E;) and
Gy = (Vo Ey) if

e ViUV =V VI £V #£V,,
e both G| and G, are induced subgraphs of G (i.e., E; = {(u—v) € E : {u,v} CV;}),
e FTUE, =E.

Note that the graphs that cannot be decomposed are called prime-graphs.

What is a decomposition of a finite probability distribution? Consider a two-
dimensional distribution 7(X,Y). Simpler sub-objects are just one-dimensional distri-
bution 7(X) and (Y). Generally, the process of marginalization is unique, but, with the
exception of a degenerate distribution, we cannot unambiguously reconstruct the orig-
inal two-dimensional distribution from its one-dimensional marginals. To bypass this
fact, we restrict the decomposition of two-dimensional distributions 7(X,Y) into their
one-dimensional marginals only for the case of independence (to denote that variables
X and Y are independent for distribution 7 we use symbol X I Y[rx] — for a precise
definition see the next section). In this case, 7(X,Y) can easily be reconstructed from
its marginals 7(X) and n(Y): #(X,Y) = n(X) - (Y, where “-” denotes pointwise mul-
tiplication, i.e., 7(X,Y)(x,y) = n(X)(x) m(¥)(y) for all values x of X and y of Y.

Analogously, three-dimensional distribution 7£(X,Y,Z) can be decomposed into two
simpler probability distributions (marginals of 7(X,Y,Z)) only if either a couple of
variables (say X,Y) is independent of the remaining third variable (in this case Z), or,
if two variables (say X and Z) are conditionally independent given the remaining third
variable (in this case Y):

o {X,Y} 1L Z[r], then n(X,Y,Z) can be reconstructed from 7(X,Y) and 7(Z),
e X Il Z|Y[r], then m(X,Y,Z) can be reconstructed from n(X,Y) and (Y, Z).

' An undirected graph containing no loops and no multiple edges.



Combination and Composition in Probabilistic Models 123

Thus, the composition considered in this paper will be an inverse operation to the
following general operation of decomposition: Probability distribution ©(Xi,...,X,)
can be decomposed into x({X;}icx) and A ({Xi}icL) if

1. KUL={1,2,....n};
2. K#{1,2,...,n},L#{1,2,...,n};
3. n({Xitiekur) - A({Xi}Yieknr) = x({Xi}iek) - A({Xi}ier)-

Notice that in this case the original distribution 7(X;, X5, ..., X,) can be uniquely recon-
structed from distributions x({X;}icx) and A ({X; }icr)-

The formal definitions of both combination and composition operators as well as
the notation used in the paper form the content of the next section. The main part of
the paper is Sect.3 where we show what are the common properties of the studied
operators (Sect.3.1) and in what way they differ from each other (Sect. 3.2). The last
section concludes the paper referring to the relation of the presented results with other
uncertainty theories.

2 Basic Definitions and Notation

In this text we deal with finite-valued random variables denoted by upper case charac-
ters of Latin alphabet X,Y,Z, with possible indices. The respective finite (nonempty)
sets of values of variables X,Y,Z will be denoted by X,Y,Z, respectively. Therefore,
the values of (X,Y) are from the Cartesian product X x Y. In the case of a subset of
variables {X;}icxk C {X1,X2,...,X,}, we will use a simplified notation:

Xg = XiekX;

to denote the set of values of {X;}ck.

Distributions of subsets of variables will be denoted by lower-case Greek alpha-
bets 7, k,A, 1,8 (again with possible indices). Thus, 7(X;,X>,...,X,) denotes an n-
dimensional probability distribution. It’s marginal distribution for K C {1,... ,n} will
be denoted 7({X;}ick), or, more often simply 7'X. Analogously, for x € X{tpnys xtK
denote the projection of x into Xg. When considering marginal distributions we do not
exclude situations when K = 0. In this case, we assume that Xy = {4}, and naturally,
%(¢)=1.

In what follows we will also need a symbol for conditional probability distribution.
For disjoint L,M C K, m'“™ denote the conditional probability distribution of variables
{X;}icL given variables {X;}icp, i.e., if the marginal £V is positive then

oM

v _
T nlM .

In a general case, for each x € Xy, UM ({X;};c1|x) is a probability distribution of
variables {X;}icr such that

AEM (X ier, {Xiiew = x) = M (X }iep |x) - M (x).
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Thus, the conditional probability distribution miM g always defined, though some-
times ambiguously (in case that 7'M (x) = 0 for some x € Xyy).

In Sect. 1, we used the symbol 1L to denote the independence of variables. Let us,
now, introduce it more formally. Consider a distribution 7({X;};cy), and three disjoint
subset K,L,M C N, K # 0, L # 0. We say that for distribution 7 variables {X;};cx and
{Xi}icL are conditionally independent given variables {X;}icu, if for all x € Xgurum

anULUM (x) . n_J,M (XLM) _ n_lKUM (leUM) . n.iLUM (leUM)'

This independence will be denoted {X;}icx L {X;}icr|{X;}iem[n]. If M = 0 the inde-
pendence simplifies to (unconditional - some authors say also marginal) independence
{Xitiek L {Xi}ier[m].

Suppose K and L are subsets of {1,...,n}. Two distributions x({X;}cx) and
A({X;}icr) are said to be consistent if their joint marginals coincide: X" = A 1KNL,
Notice that if KN L = 0 then x({X;}icx) and A ({X;};cr.) are always consistent.

Having two distributions defined for the same set of variables mw({X;}icx) and
kK({Xi}tick), we say that Kk dominates 7 (in symbol & < k) if for all x € Xg

k(x)=0 = =m(x)=0.

Combination
Here we adopt (and adapt to the introduced notation) the definition introduced by
Dempster in [4].

Definition 1. For arbitrary two distributions x({X;}icx) and A({X;}icL) their combi-
nation is for each x € X7 k) given by the following formula

(k®A)(x) = Const ' k(x!K) A (x'D),
where Const is the normalization constant given by:

Const = Y K(x Ky A ().

xeXguL

In the case where Const = 0, we say that distributions x and A are in fotal conflict, and,
for this case, their combination is undefined.

Composition
The following definition was first introduced in [8].

Definition 2. For arbitrary two distributions x({X;}icx) and A({X;}icr), for which
Kl KOL < AKOL their composition is for each x € X(zuk) given by the following for-

mula® Kr L
KA ()
(kpA)(x) = ATKNL (xIKNL)”
In case that kK" & 2 1KNL the composition remains undefined.

2 Define % =0.
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The reader certainly noticed that the presented definition slightly extends the notion
of composition discussed in Sect. 1. We do not require that both K and L are proper
subsets of KU L. There are two reasons for this. First, we are going to compare the two
operations, and combination was basically defined for the distributions defined for the
same variable sets. Second, this generalization makes the formulation of some theoret-
ical properties simpler.

3 Properties of Combination and Composition

As already said above, the two operators were designed for different purposes, and so
it is not surprising that they possess different properties. Nevertheless, from a formal
point of view, they manifest some similar, or even identical, properties. And, it is the
purpose of this section to show what the similarities and dissimilarities between the two
operators are.

3.1 Common Properties
Theorem 1. Suppose K({X;}icx) and A({X;}icr) are probability distributions.

1. (Domain of combination): If K ® A is defined, then K ® A is a probability distribution
for {Xi}iekur, and

KDA = (KumL @/lumL) i WK\LIKOL 3 IL\KIKAL. (1)

2. (Domain of composition): If K> A is defined, then K> A is a probability distribution
for {Xi}iexur, and

b A = (KLKQLDQLLKOL) 1\ K\LIKOL 5 |L\K|KNL. @)

3. (Disjoint domains of arguments): If KN L = 0, then both k & A and k> A are defined
and KO A = Kk>A.
4. (Simple marginalization): Ler (KNL) CM C KUL. If k® A is defined, then

(K@l)lM _ KlKﬂM@leﬂM.

If x> A is defined, then

(KDA)lM — KlKﬂMD)LlLﬂM.

5. (Conditional independence): Ler K\ L # 0 # L\ K. If K ® A is defined, then
Xitier\r L AXi}ien\k {XibieknL[K © A,
and if K> A is defined, then

{Xitiex\r L {Xi}iep\xI{Xi YiexnL[x> A,

Proof. Ad. 1. Consider probability distributions x({X;}icx) and A ({X;}icL), such that
their combination is well defined. Then, for each x € Xgr.:
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(KD A)(x) = Const ™! x(xK) A (x'E)
= Const ™! (KLK”L(JAK“)KlK\L\KﬂL(le\L‘xLKmLD
. (,’LlKﬁL(xLKﬂL))LLL\K\KﬂL (le\K|lemL))
= Const™! (KUmL(leﬁL) ,llKﬂL(xiKﬂL))

. KLK\L\KOL (le\L |leﬂL)l LL\K|KNL (le\K ‘leﬁL) ,

which yields Eq. (1), because the constant Const in the definition of Kk ® A and kXL @
AMEOL i the same as shown below:

Z K(le)l(le): 2 (KLKQL(XLKHL)K.LK\L\KHL(le\L|leﬂL))

x€XkuL x€XkuL

) ( 2 LKNL (xumL) )LlL\K\KﬂL(le\K| leﬂL))

_ Z KlKﬂL(leﬂL).AlKﬂL(leﬂL)

x€XknL
2 KlK\L\KﬂL(yPClKﬂL) z )LLL\K\KQL(ZPCU(OL)
)'GXK\L ZEXL\K

_ z KlKﬂL(leﬂL)_;LLKﬂL(leﬂL).

xeXgnL

The last equality holds true because both the expressions in parentheses equal 1.

Ad. 2. Equation (2) can be proven analogously to the first part of this proof.

Ad. 3. The assertion follows immediately from Egs. (1) and (2), because x'® ®
A0 — 0210 — 1,

Ad. 4. Assume (KNL) C M C KUL, and k@ A is defined. Then

(K@A)lM _ ((KumL o llKﬂL) e K\LIKNL /ILL\K\KmL) M

_ (KumL@)LumL) ] (KlK\L|KﬁL.AlL\K\[(mL) M
_ (KumL @)LumL) i HENM\LIKNL | 3 LLOM)\KIKNL _ 4 |KOM gy 3 LLOM
The respective assertion for the operator of composition was formulated (and

proven) as Lemma 5.10 in [10], however, using Eq. 2 it can easily be proven analo-
gously to the preceding part of the proof.
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Ad. 5. Assume K@ A is defined. Then due to already proven Property 4 (Simple
marginalization)
(kDA)K = kA KDL
(k@A) =KL g )
(K'EBA.)U(QL KLKQL@)LLKHL

and therefore one can easily verify the validity of the equality defining the required
conditional independence: For each x € Xk
(kS A)(x)- (K@l)w“(x“m)
= Const ™" k(x*A (x!F) - Const™
= Const ™" k(xMYA KL (KDL Copst =1 1 KOE (xKNEY ), (xHE)
= (k). (k@)

1 KlkmL(xlkmL)MkmL(xlkmL)

which proves the required property for the operator of combination (notice that Const =
Sergn KAL) = By, kKL ()AKNL(y)),

The respective assertion for the operator of composition was formulated (and
proven) as Lemma 5.2 in [10], however, it can be proven analogously to the preced-
ing part of the proof. ]

Conditioning

Consider arbitrary two distributions x({X;}icx) and A({X;}icr). From formulae (1)
and (2) it immediately follows that k @A = k> A if and only if kKL @ AKOL —
iclKNLp A 1KOL A expressed in Property 3 of the previous theorem, it holds if K N L =
0. However it holds also in other situations. In this paragraph we are going to show
that this happens also in the case when one of these distributions is a degenerate one-
dimensional distribution expressing certainty. Consider variable X and its value a € X;.
The probability distribution §,(X}) expressing for certain that variable X = a is defined
for each x € X, as

1,ifx=a;

0, otherwise.

8 = {

Let us now show that, using the respective definitions, 6,(X;) ® A({X;}ier) =
04(Xx) > A({Xi}icL). In case that k € L this equality holds because of Property 3 of
Theorem 1. Therefore, consider the case when k € L. Then for each x € X,

= -1 1{k} _ Const~"A(x), iftxHK = g
Qe = Comt LI { 0, otherwise, 3)
where

Const = z a( l{k} Z Ax) = )Ll{k}(a). @

xeXy, xeXL;xl{k}zg

Notice that &, & A is a probability distribution when A1} (a) is positive; otherwise &,
and A are in total conflict and their combination is not defined.
Using Eq. (4) we can rewrite formula (3) into the form

(6 ®A)(x) = -2 = AP

8, (x AL (x) QDA e 1K) g
AHK (a) 0, otherwise,
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which obviously equal (§,>2)(x) in case that A 14} (a) is positive (otherwise A 1K} 3%
0, and the composition is not defined), because
L{k} S HDAC) e 1)
(8,5 1)(x) = Gu(x)A () _ @y Y =a;
A MK (k) 0, otherwise.
So, let us summarize the proven equality along with what was proven about the compo-
sition operator in Theorem 2.3 in [2].

Theorem 2. Consider a distribution A({X;}icL), variable X € {X;}icy, its value a €
X, and K C L\ {k}. If A5} (a) > 0, then the corresponding conditional distribution
A({Xi}ick| Xk = a) can be computed

A{Xi Yiek | Xe = a) = (8.(X) DAY = (8,(X0) > 1)K

It is worth mentioning that this assertion formally justifies what is often called
“Dempster conditioning”. Recall that, for example, Dubois and Denceux describe it in
[5] as a special case of Dempster rule of combination, which, widely used in evidence
theory, can be viewed as a revision process, understood as a prioritized merging of a
sure piece of information with an uncertain one.

3.2 Differences

Commutativity

From Definition 1 it is obvious that the operator of combination is commutative. On
the other hand, it is equally evident that, generally, the operator of composition is not
commutative. To show it, it is enough to consider a pair of distributions k({X;}ick),
A({X;}icr), for which xlKNE o£ L LKNL 1 et us express the respective property precisely
in the following assertion, the proof of which can be found in [10].

Theorem 3. For arbitrary two probability distributions k({X;}icx) and A({Xi}icL),
for which either MMKNL « MKOL o QAKOL s 4 lKOL it holds that k and A are consis-
tent if and only if K> A = A > K.

Associativity

The associativity of the operator of combination is again obvious from the definition.
The corresponding properties of the operator of composition are expressed in the fol-
lowing assertion.

Theorem 4. Consider three probability distributions K({X;}icx), A({Xi}ticr) and
m({Xi}iem).

1. (Non-associativity): In general, (k>A)> U # K> (A> ).

2. (Associativity under RIP): Let k> (A > ) be defined. If K O (LNM), or LD (KNM),
then (K>A)>U = K> (A>U).

3. (Exchangeability): If K O (LNM), then (k>A)>u = (K> p)>A.
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Proof. Ad. 1. To show non-associativity, it is enough to consider x(X),A(Y), and
1(X,Y), such that X £Y[u]. Then, it is easy to show that X Il Y[(x>A)w>u] (this is
because it follows from the definition that (x(X)>A(Y))>p(X,Y) = x(X)>A(Y)), and
X LY [k (A>p)]. The latter relation follows from the fact that for the given choice of
distributions

XLY[k>(Avrp)] <= X LY[Abu] < X LY[ul.

Ad. 2. This property was proven in [10] as Theorems 7.2. and 7.3.

Ad. 3. This property was proven in [10] as Lemma 5.7. (]

Notice that from the commutativity and associativity of the operator of combination
it follows that (kB A) P u = (k@ u) D A holds always true. Thus, the exchangeability
property holds for the combination operator trivially.

Idempotency of composition

The following assertion summarizes the basic properties of the operator of composition,
neither of which, generally, hold for the operator of combination. The respective proofs
can be found in [9,10].

Theorem 5. Suppose k({X;}icx) an A({X;}icL) are probability distributions such that
KL« AKOL Then the following statements hold true:

(Extension): If M C K then, KM = k.

(Composition preserves first marginal): (k>4 )HK = «.

(Reduction): If L C K then, K>A = K.

(Perfectization): k>4 = k> (k> A) M

(Stepwise composition): If (KNL) C M C L then, (k> A™M)> 24 = k> A.

LR W~

All these properties are, in a way, connected with the fact that the operator of com-
position is idempotent. This fact supports the explanation of the difference between the
combination and the composition.

The composition assembles (composes) pieces of knowledge that are supposed to
have their origin by decomposition of global knowledge. So it corresponds, for example,
to the reconstruction of a picture that was torn into pieces. Having one piece of the
picture twice does not help us to reconstruct the picture better than if we have this very
piece of picture only once.

In contrast, the combination operator combines pieces of knowledge from indepen-
dent sources. So, in this case, one cannot have the same piece of knowledge twice.
Though the two pieces of knowledge can (formally) be expressed in the same way,
being from independent sources they are not (they cannot be) identical. Learning from
two independent physicians that I am healthy makes me feel better than when I hear this
message just from one of them. Hearing the same message repeatedly from independent
sources decreases my uncertainty, and this is exactly the property, which is expressed
in the following assertion. Using Shannon entropy of a probability distribution x(X)

z K(x)log, x(x)

xeX

as a measure of uncertainty connected with the distribution «x, the following assertion
says that getting the same amount of information from another independent source
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decreases our uncertainty. This, in a way, corresponds to what is often understood by
the Latin proverb “Repetitio est mater studiorum”.

Theorem 6. For an arbitrary probability distribution ©
H(ndr) <H(m). )

Proof. In the proof, we will use an obvious property of Shannon entropy: For two
probability distributions k(X ) and A (X), such that k(x) = A(x) for all x € X\ {a,b},
k(a) —A(a) = A(b) — x(b) > 0, and x(a) < k(b) it holds that

H(x)>H(A). ©6)

This property can be proven by the following simple consideration. Denote € = k(a) —
A(a), and

f(e)=H(x) —H(A) = —k(a)log,(k(a)) — k(b)log, (k(b))
+ (k(a) —€)log,(x(a) — &) + (x(b) + €) log, (k(b) + ).

Since f(0) =0, and

K(b)+ o
K(a)— o

(a) = togs )-tn2y”!

is nonnegative for all o € [0, ], it is clear that f(g) > 0, and therefore strict inequal-
ity (6) holds true.
To prove inequality (5) for w(X) notice that

(@ 7)(x) = (m(x))? - Const ™",
where Const = ¥, cx ((x))?, and therefore

(rom)(x) < m(x) iff nw(x) < Const,

(m@m)(x) > n(x) iff mw(x) > Const. )

To finish the proof we will construct a finite sequence of probability distributions,
such that & = 7y, 71, M, ..., M = t® w, and H(m;)) < H(m;—y) foralli=1,2,... k.

Consider 7; (starting with mp), and denote A; = {x € X : m;({x}) # (@ 7)(x)}.
Let a be the element of A;, for which the difference between m;(x) and (7 @ 7)(x) is
minimal, i.e.,

|mi(a) — (m®m)(a)| < |mi(x)— (D m)(x)] Vxec A 8)
Naturally, there must exist b € A; such that

sign(;(b) — (w @ m)(b)) = —sign(mi(a) — (& 7)(a)), ©)
and, because of (8), |m;(b) — (m@® ) (b)| > |mi(a) — (r D7) (a)|. Therefore we can define
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distribution 74 1:
Tip1(a) = (r&m)(a),
7ir1(b) = 7 (b) + (mi(a) — (r© ) (a)),
Tir1(x) = m(x) forall x € X\ {a,b}.

We immediately see that |A;j| > |A;|, and therefore the sequence 7 = my,m,
M,..., M = T G must be finite. We also can see that, because of inequalities (7),
each pair m; and m; 1 meets the assumptions of the property presented at the beginning
of this proof. Therefore H(r;;1) < H(m;), which completes the proof. O

Factorization/Decomposition

Property 5 of Theorem 1 says that a relation of conditional independence holds for
distributions that are created as a combination or composition of two probability distri-
butions kK ({X;}icx) and A ({X;}icr). The following assertion expresses the fact that for
the operator of composition the assertion may be strengthen. For this operator it can be
formulated in a form of equivalence that was proven as Corollary 5.3. in [10].

Theorem 7. For arbitrary probability distribution 1L({X;}iem) and K,L C M such that
K\L#0#L\K
Xitiexr L A{Xibiep kX biekne 1]

if and only if utKVE = ylKp L,

Let us conclude this section by saying that combining Property 5 of Theorem 1 with
Theorem 7 we get the following assertion, which casts a new viewpoint to the relation
between the two studied operators.

Corollary. Assume that K\ L # ® # L\ K. For any two probability distribution
K({Xitiek) and A({X;}icL), which are not in total conflict, their combination x ® A
can be expressed in the following way

KA = (k@A) Kp (kpA)t.

4 Summary and Conclusions

In this paper, we studied the properties of the operators of combination and composition.
Though these operators were designed to solve different tasks, both of them may be
used in the process of knowledge integration, and both of them were defined not only
in classical probability theory but also in some alternative uncertainty theories like the
possibility and belief functions theories. Since both these operators were introduced in
Shenoy’s valuation-based system framework [12, 18], it means that they can directly
be applied in other uncertainty theories such as Spohn’s epistemic belief theory [20],
Dempster-Shafer theory [17], and others.

The purpose, for which the two operators were designed, is explained in Sect. 1.
The remainder of the paper studies the formal (algebraic) properties of these operators
stressing their common features and differences. To make the presentation as simple as
possible, we restricted the exposition to classical probability theory. The readers famil-
iar with alternative uncertainty theories should keep in mind that analogous results can
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be formulated in all the theories that meet the axioms of Shenoy’s valuation-based sys-
tems [18, 19], and also in a general possibility theory [21]. It concerns also the important
formulae (1) and (2), which help us to reveal surprisingly many similarities of the stud-
ied operators, the similarities that may explain why some researchers do not properly
distinguish between the combination and composition. From the formal point of view,
an interesting result is formulated as a corollary in the last section. It says that if a distri-
bution is a combination of two independent distributions then it may be expressed also
as a composition of its marginals.
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University of Kansas to the second author.
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Abstract. It is known that symmetry ideas can explain the empirical
success of many non-linear models. This explanation makes these mod-
els theoretically justified and thus, more reliable. However, the mod-
els remain non-linear and thus, identification or the model’s parameters
based on the observations remains a computationally expensive nonlinear
optimization problem. In this paper, we show that symmetry ideas can
not only help to select and justify a nonlinear model, they can also help us
design computationally efficient almost-linear algorithms for identifying
the model’s parameters.

1 Formulation of the Problem

Need for prediction. In many real-life situations, we have a quantity x that
changes with time ¢, and we want to use the previous values of this quantity to
predict its future values. For example, we know how the stock price has changed
with time, and we want to use this information to predict future stock prices.

In many cases, such a prediction is possible. For example, when weather
records show clear yearly cycles, it is reasonable to predict that a similar yearly
cycle will be observed in the future as well.

How can we predict: main idea. A usual approach to prediction is that
we select some model, i.e., some parametric family of functions f(¢,c1,...,cp).
Based on the available observations, we find the parameters ¢; which provide
the best fit, and then we use these values ¢; to predict the future values of the
quantity z as

a(t) ~ f(t,E1, ..., E).

Examples of models. In some cases, the dependence of the quantity = on time
t is polynomial, in which case

f(t,Ch...,Cg)ZCl+02~t—|—63-t2—|—...—|—65-t2_1.

© Springer International Publishing AG 2018
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For a simple periodic process, the dependence of the quantity x on time is
described by a sinusoid, in which case

f(t,c1,e9,c3) =cp -sin(eq -t + c3).

To get a more realistic description of a periodic process, we need to take into
account higher harmonics, i.e., assume that

f(t,cr,ea,...) =c1-sin(eg -t +c3) +cq-sin(2e2 -t +c¢5) + ...

For a simple radioactive decay, the amount of radioactive material decreases
exponentially:

ftye1,e9) =1 - exp(—ca - 1).

A more realistic model takes into account that often, a radioactive material is a
mixture of several different isotopes, with different half-lives. In this case,

ft,cr,c0,...) =c1-exp(—co-t) +c3-exp(—cq - t) +...
Other models include log-periodic model
fltyer,c0, . 05c7) =c1+ca(c3—t) +c5- (c5 — ) - cos(cg - In(ez — t) + ¢7)
which is used to predict economic crashes [2-5,7-12,14,21-26], or a model
flt,c1,c0,¢3) =c1-In(t —c2) +¢3

that describes, for some software packages, the dependence of the number of
uncovered faults on time ¢; see, e.g., [15,16].

A more complex example is a neural network, when c; are the corresponding
weights; see, e.g., [1,6].

How do we estimate the parameters? Usually, the Least Squares method
is used to estimate the values of the parameters cq, ..., cg.

In other words, based on the values x(t;) observed at different moments of
time ¢;, 1 < ¢ < n, we find the values c; for which the mean square approxi-
mation error is the smallest possible, i.e., for which the following expression is
minimized:

n

Z(ffi—f(tz‘,01w~-76e))2~ (1)

=1

Identifying the model’s parameters is often computationally intensive.
In some cases — e.g., for the polynomial dependence — the model f(x,cy,...,¢p)
linearly depends on the values of the parameters c;. In this case, the minimized
expression (1) is quadratic in ¢;.

We can find the minimum of a function of several variables by equating all
its partial derivatives to 0. For a quadratic objective function (1), all the partial
derivatives are linear functions of c¢;. Thus, by equating them all to 0, we get
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a system of linear equations for the unknowns c;. For solving systems of linear
equations, there are many efficient algorithms, so in this case, the problem of
identifying the model’s parameters is computationally easy.

On the other hand, in general, the dependence of the model on the parameters
¢; is non-linear. Thus, the objective function (1) is more complex than quadratic.
It is known that, in general, optimization is computationally intensive — for
example, it has been proven that optimization is an NP-hard problem, meaning
that it as complex as a computational problem can be; see, e.g., [13,17,18].

It is therefore desirable to select models for which identification is easier.
This bring us to a question of how we select models in the first place.

How are models selected in the first place? Sometimes, we have an good
understanding of the processes that cause the quantity = to change. In such
situations, we have a theoretically justified model.

In most cases, however, the model is selected empirically. We try different
models, and we select the one for which, for the same number of parameters, the
approximation error is the smallest.

In many cases, the empirical efficiency of selected models can be
explained by symmetry ideas. In an empirical choice, we only compare a
few possible models. As a result, the fact that the selected model turned out to
be better than others does not necessarily mean that this model is indeed the
best for a given phenomenon: there are, in principle, many other models that we
did not consider in our empirical comparison.

Good news is that in many cases, the empirical selection can be confirmed
by a theoretical analysis. For example, often, it turns out that the empirically
successful model can be derived from the natural symmetry requirements; see,
e.g., [16]. This theoretical justification compares the selected model not just with
a few others, but with all possible models — thus, it makes us more confident
that the selected model is indeed the best.

But the model remains computationally intensive. The fact that the
empirically selected model is theoretically justified does not change its formu-
las. So, if the dependence of this model on the corresponding parameters c; is
non-linear, the problem of identifying parameters of this model remains compu-
tationally intensive.

What we do in this paper: we show that symmetries can help in param-
eter identification too. In this paper, we show that symmetries are not only
helpful in selecting a model, they can also help design computationally efficient
algorithms for identifying parameters of the selected model.

Structure of this paper. In Sect. 2, we briefly recall what symmetries are used
to derive the corresponding models, how exactly these models are derived, and
what are the resulting models. In Sect. 3, we analyze the problem of determin-
ing parameters of these models, and we show how to make this identification
computationally easier.
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2 How Symmetries Justify Models: A Brief Reminder

Preliminaries. In some practical cases, the changes in the quantity = come from
a single and simple process — this is the situation, e.g., with most oscillations.
In most practical cases, however, many different factors lead to changes in x.
Some of these changes are independent, and may have different intensity. Thus,
the resulting value of the quantity x can be represented as a linear combination
of the dependencies corresponding to different factors.

In precise terms, this means that we consider models of the type

e (t) +...+C - em(t) (2)
for some functions e;(t) (which may depend on other parameters as well).

e This is the case for polynomials, when e1(t) = 1, ea(t) = t, e3(t) = t2, etc.

e This is the case for periodic processes, when e (t) is the main sinusoid, ez (t)
is the sinusoid corresponding to double frequency, es(t) is the sinusoid corre-
sponding to triple frequency, etc.

e This is the case for radioactive decay, where e;(t) are exponential functions
with different hall-life.

In all these cases, the functions e;(t) are differentiable (smooth). So, without
losing generality, we can assume that these functions are smooth.
In these terms, selecting a model means selecting the corresponding functions

61(t>7 e ,em(t).

What natural symmetries should we consider? Many physical processes —
such as radioactive decay — do not have a starting point, their general properties
do not change whether we consider the piece of a radioactive material now or in a
hundred years. The exact amount of the material will decrease, but its properties
— and its rate of decay — will remain the same. In such situations, the observed
value z(t) changes with time, but the whole family of functions (2) should not
change if we simply start counting time from a different starting point.

If we start to count time from a starting point which is ¢y moments in the
future, then moment ¢ in the new scale corresponds to moment ¢t + ¢y in the
original scale. Thus, if in the new scale, the set of functions has the form (2),
then these same functions in the original time scale have the form

Cy-er(t+to)+...4+ Ch-en(t+to). (3)

The above natural requirement then says that the families (2) and (3) must
coincide — i.e., that:

e every function of type (2) can be expressed in the form (3) (with, of course,
different constants C;), and
e vice versa, every function of type (3) can be expressed in the form (2).
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In other cases, there is a natural starting (or ending) point tg, but there is no
preferred time unit. In such cases, it is reasonable to require that if we use a
different unit for measuring time, nothing will change — in particular, the class
(2) of possible dependencies should not change.

If we keep ty as the starting point, and choose a measuring unit which is A
times smaller, then we get a new numerical value t' = tg+\-(t—tp). It is therefore
reasonable to require that if we make this change, the family of approximating
functions remains the same, i.e., that the family

Cr-ei(to+A-(t—to)) + ...+ Cry - emlto+ A (t — o)) (4)

coincides with the original family (2).

What can we conclude from these symmetry requirements. Let us con-
sider the two cases separately:

o first, the case (3) of shift-invariance, and
e then, the case (4) of scale-invariance.

Case of shift-invariance. In the shift-invariant case, every function from the
family (3) also belongs to the family (2).

In particular, for every j and g, the function e;(t +to) belongs to the family
(3): it corresponds to the case when C; =1 and C;» = 0 for all j/ # j. Thus, we
conclude that the function e;(t 4 to) belongs to the family (2), i.e., that

ej(t + to) = Clj(to) . el(t) + ...+ ij(to) . em(t) (5)

for some coefficients Cj/;(ty) depending on the shift to.

For each t, if we consider the Eq. (5) at m different moments of time t =
t1,...,tm, then we get the following system of m linear equations with m linear
unknowns C;(to), ..., Cmj(to):

ej(tl + to) = Clj(to) -e1 (tl) + ...+ ij(to) . em(tl),
€j(t2 + to) = Clj(to) . 61(t2) + ...+ ij(to) . em(tz),

ej(tm + tO) = Clj(tO) : el(tm) +. 4+ Omj(tO) : em(tm)- (6)

The solution to a linear system can be explicitly described by the Cramer’s
rule (see. e.g., [19]), according to which this solution is a ratio of two determinants
— i.e., a differentiable function of the right-hand sides and of the coefficients at
the unknowns. Since the functions e;(t) are smooth, the right-hand sides and the
coefficients are also smooth, and thus, thus the solution Cj/;(to) is a differentiable
function of differentiable functions — thus, a smooth function itself.

Since the functions e;/ (t) and Cj/;(to) are all differentiable, we can differen-
tiate both sides of Eq. (5) by to and take tg = 0. As a result, for each j, we get
the following differential equation:

ei(t) =cij-e1+ ...+ Cmj-em, (7)
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where e/, as usual, denotes the derivatives, and c;r; def CJ’-/ ; (0).

Thus, m functions e (t), ..., e, (t) satisfy a system of m linear differential
equations (7) with constant coefficients. A general solution to this system of
equations is well known: it is a linear combination of functions of the type t* -
exp(A - t), where X\ are eigenvalues of the matrix ¢;; and factors ¢, 2, ...t
appear if the corresponding eigenvalue is multiple, with multiplicity ¢; see, e.g.,
[20]. Please note that the eigenvalues are, in general, complex numbers A = a+b-i,
in which case

exp(A-t) =exp(a-t)- (cos(b-t)+1i-sin(b-1)).

In real-valued terms, each function e;(t) is thus a linear combination of functions
of the type
th - exp(a-t) - (cos(b-t) +i-sin(b-t)).

Case of scale-invariance. Let us now consider the case of scale-invariance
with respect to the special point ¢ty. To simplify our analysis, let us consider,
instead of time, an auxiliary variable 7 o In(t — tg). In terms of this auxiliary
variable, we have t = ¢y 4+ exp(7), and the original functions e;(t) take the form
E;(1) = e;(to + exp(7)).

In terms of the new variable 7, the scaling transformation takes the form
T — T+79, where 7y def In(A). Thus, for the new functions E;(7), scale-invariance
means that the original class of functions

Cr-Ei(1)+ ...+ Ch - Ep(7)
coincides with the transformed family
C1-Ei(t+70)+...+Ch - Ep (7 + 10).
We already know what this condition implies: that each function E;(7) is a linear

combination of functions

k

™ exp(A-7) =7F -exp(a- 1) - (cos(b-7) +1i-sin(b-7)).

Substituting 7’s definition 7 = In(t — ¢g) into this formula, and taking into
account that exp(7) = exp(In(t —tg)) = t — tp and thus, exp(a-7) = (exp(7))* =

(t — to)®*, we conclude that each function e;(t) = E;(7) = E;(In(t — t)) is a

linear combination of functions of the type
(In(t — o)) - (t — to)* =
(In(t — to))* - (t — to)® - (cos(b - In(t — to) +i-sin(b-In(t —tg))).

Comments.

e While it is good that we get expressions similar to what we have empirically
observed, be it in case of predicting economic crashes or the case of predicting
the number of discovered software faults, the dependence of these expressions
on the corresponding parameters tg, a, and b is highly nonlinear. So, it is

computationally difficult to identify the parameters of these models from
observations.
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e What if we have both shift- and scale-invariance? In this cases, the expression
should be both a linear combination of the terms ¢*-exp(\-t) and a combina-
tion of the terms of the type (In(t —to))* - (t — tg)*. The need for the second
interpretation excludes exponential terms, so such functions should be linear
combinations of terms z*, i.e., polynomials, with C; as the only parameters.
This is the only case when the dependence on the parameters is linear and
so, identification of these parameters is computationally easy.

What we plan to do now. Now that we have described the symmetry-
motivated models, let us described how to make identification of the parameters
of these models easy.

3 Analysis of the Problem and Resulting Computationally
Efficient Parameter Identification

Main idea. What we would like to do is come up with a linear differential equa-
tion with linear coefficients that describes all linear combinations of symmetry-

motivated models. To describe such an equation, let us denote the differentiation

operation by D, so that (Df)(t) e ().

Shift-invariant case: analysis of the problem. Let us start with describing
shift-invariant models in these terms. In these models, every function e;(t) is a
linear combination of functions of the type z* - exp(\ - t).

To find an appropriate differential equation for these functions, let us start
with the case k = 1, when this function takes the form exp(A-t). For the function

exp()\ ’ t)7

we have Dexp(A-t) = A-exp(A-t), thus (D — N exp(\-t) =0.
For the next (k = 1) function e(t) = ¢ - exp(At), we have

(De)(t) = exp(A-t) + X - exp(A- 1),
thus ((D — A)e)(t) = exp(A - t). We already know that
(D —X)exp(A-t) =0,

thus we have ((D — \)2e)(t) = 0.
Similarly, for the function e(t) = t* - exp(\ - t), we have

(De)(t) =k -t" 1 exp(\-t) + X -t -exp(\ - 1),

thus
(D=MNe)t)=k- k=1 ~exp(A - t).

So, by induction, we can prove that for this function e(t), we have (D —\)Fe = 0.
Different expressions forming e;(¢) correspond to different eigenvalues Ay, so
each of them annihilated by a corresponding differential operation D — Ay, or, if
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this eigenvalue if multiple with multiplicity ¢¢, by an operator (D — A)?%. Thus,
if we apply all these operators one after another, all the terms in e;(¢) will be
annihilated and thus, we will have a differential operator

DY (D= A)"(D=A)% ... (D= Ap)™
for which Bej = 0 for all j. Since each model x(t) is a linear combination of the
functions e;(t), the function z(t) also satisfies the equation Dz = 0.

If we open the parentheses, we conclude that Disa polynomial of m-th order
in terms of D, i.e., that it has the form

D=D"+4a;-D™" ' 4ay-D" 24 . +a,,.
Thus, the equation (Dz)(t) = 0 takes the form

dmz N dm—lx N dm—2$
aj - as -
dem O g1 T T2 ggm=2

+...4ap -z=0. (8)

This is the desired differential equation with constant coefficients.

Examples. For a polynomial of order < m — 1, all eigenvalues are zeros, so
D = D™, and the corresponding differential equation has the form

d™x

e~
One can see that solutions to this differential equation are indeed exactly poly-
nomials of order < m — 1.
For a simple sinusoidal signal z(¢) = A - cos(w - t + ), we get a second order
differential equation with constant coefficients

d’z n dx n 0

— 4a1-—4ax-x=0.

aez Tt a7

To be more precise, the sinusoid correspond to the case when a; = 0 and as > 0;

other cases correspond to exponential functions or functions of the type

A-exp(—a-t)-cos(w-t+ ).

How can we easily identify a model: towards an algorithm. Instead of
the original parameters of the model — parameters on which depends highly non-
linearly — we can instead identify the parameters a1, ..., a,, of the corresponding
differential equation (8).

Of course, we have to approximate each derivative by a finite difference, so
that if we start with a sequence of values x1, ..., z;, ... corresponding to moments
of time

tr, to=t,+At, t3=1t1 +2At,... t; =t + (i — 1) At,
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then we form finite difference (Ax); o % Then, instead of the second

derivatives, we will use the values

2\ def (Az); — (Az)im1 wi = 2T T2
(A%2); = (A(Az)); = A = (A

Similarly, in the general case, we have

(W), — (A(A+tay), — Sk we A Ot — Ot 4 (DY b

(At)k
So, instead of Eq. (8), we have an approximate equation
(Amx)l “+ap - (Amill')i + ag - (Am72$)i + ...tz = 0. (9)

The values (A*z); are computed based on the observations z;, so we get an
(over-determined) system of linear equations from which we can easily find the
unknowns ay, ..., a,;, by using the Least Squares method.

Shift-invariant case: resulting algorithm. Based on the sequence of obser-
. Ti — Tj—1
vations x; = x(t;), we compute the sequence of values (Az); = ———— then

the sequence (A2%z); = (A(Ax));, ete., until we have computed (A™z);. Based
on thus computed sequences, we find the parameters a; by applying the Least
Squares Method to the Eq. (9).

Important comments.

e No problem if observations are not equally spaced in time: just take (Azx); =
%_Aififl? where we denoted At; def ti —ti_1.

o It should be mentioned that even when the measurements of x; = z(t;) at
different moments of time are uncorrelated, their linear combinations (as in
the left-hand side of formula (9)) are correlated, since the expressions for i
and for ¢ — 1 now depend on the same value z;. Thus, we need to use the
Least Squares in the presence of this easy-to-compute correlation. This does
not affect the computational easiness — the expression is still quadratic and
equating its derivatives to O still leads to a system of linear equations.

e If needed, we can convert the new parameters aq, ..., a,, into the more tradi-
tional ones. All we need for this is to compute the derivatives of the original
expressions f(t,c1,...,c¢) and find the values a; for which the linear com-
binations of these derivatives are Os. Then, we get expressions describing a;
in terms of ¢;: a; = fj(c1,...,¢c¢). Once we know a;, we can solve the corre-
sponding system of equations f;(c1,...,¢;) = a;j. This system is non-linear,
but when the number of parameters is small, it is not that difficult to solve.

Scale-invariant case: analysis of the problem. As we have shown earlier,
the scale-invariant case reduces to the shift-invariant case if we introduce an
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auxiliary variable 7 = In(¢ — to). Thus, similarly to the above-described shift-
invariant case, with respect to this new variable 7, we get a differential equation

d™x dm 1z

W+al.m+...+am'$:0. (10)
Differentiating the relation between 7 and ¢, we conclude that dr = - Thus,

— 1o
d d
— =(t —tg) - —, and the Eq. (1) takes the following form:
dr dt
m A"z moq d™T

There are two possibilities:

e it may be that we know tg, or
e it may be that we need to determine ¢y from observations.

In the first subcase, all we need is to find the values a;.
In the second subcase, to make the problem linear, we expand all the poly-
nomials

(t—to)d = a9 + (—j-to)- 971 ...,

oo gmTI
then each term a; - (t — o)™ 7 - "% becomes a linear combination of the
dtm—J
following terms:
mei . dm iz m—j—1 dm iz dmiz
dtm=i"’ dtm=37 "7 dgm=i
. dl‘m_j
Let us denote the coefficients at ™7+ . - by aj. Then, the formula (11)
dtm—i /
takes the following form:
dz™ _p dx™ dz™
tm'w"—aol‘tm ‘dtnl+...+a0m'dt7m
_, dax™! _y daxm! dz™1
+a - t" 1~W—|—a11~tm 2. g1 +...tarm-1- sy
+ ...
+ amo - = 0. (12)

Thus, depending on whether we know ¢y or we don’t, we arrive at the follow-
ing linear algorithms.

Scale-invariant case: resulting algorithms. Based on the original sequence
of observations z; = z(t;), we compute the finite differences (A*x); for all pos-
sible values k < m.

Then, if we know the value tg, we compute the parameters aq, ..., a,, of the
corresponding model by applying the Least Squares method to the following
system of linear equations:

(ti —to)™ - (A™x)i + a1 - (ti —to)™ - (A" )i + .o+ @ - = 0. (13)
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When we do not know the value ¢y, then we need to find the parameters a;,
of the model by applying the Least Squares method to the following system of
equations:

tm o (A™x); 4+ aor -t (A™x); . agm - (A™);
+ag - t;”fl (A" x) dagg -t (AT ) L+ as,m—1 - (A™ 1),
+ ...
Famo -2 =0. (14)
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Abstract. It is known that computational methods developed for solv-
ing equations of quantum physics can be successfully applied to solve
economic problems; there is a whole related research area called quan-
tum econometrics. Current quantum econometrics techniques are based
on a purely mathematical similarity between the corresponding equa-
tions, without any attempt to relate the underlying ideas. We believe
that the fact that quantum equations can be successfully applied in eco-
nomics indicates that there is a deeper relation between these areas,
beyond a mathematical similarity. In this paper, we show that there is
indeed a deep relation between the main ideas of quantum physics and
the main ideas behind econometrics.

1 Quantum Ideas in Economics: Why and What
Is Known

Why quantum ideas in economics. In most practical problems, once we
have a candidate for a solution, we can feasibly check whether this candidate is
indeed a solution.

For example, in mathematics, it is often difficult to find a proof of a statement
or of its negation. However, once someone produces what intends to be a detailed
proof, it is feasible for a referee (or even for a computer-based system) to check
that all the steps in this text are indeed correct and thus, that the text does
indeed constitute a proof.

Similarly, in physics, it is often difficult to find a formula that described the
observed phenomena, but once such a formula is proposed, one can feasibly check
whether all observations indeed satisfy this formula.

In engineering, it is often difficult to come up with a design that satisfies
all the given specifications, but once a design is produced, we can use software
packages to check that this design indeed satisfies the specifications. For example,
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we can check that the designed airplane is indeed stable under allowable winds,
that the corresponding stresses do not exceed the prescribed level, etc.

Problems for which we can feasibly check whether a candidate is indeed a
solution are known as problems from the class NP; see, e.g., [3,4]. The abbrevi-
ation NP stands for Non-deterministic Polynomial, where:

e “non-deterministic” means that we are allowed to guess, and

e “polynomial” means that once a guess is produced, the computation time
needed to check whether a given guess is a solution should not exceed a
polynomial of the length of the input (such polynomial bounds are a formal
description of feasibility).

Not all practical problems belong to the class NP:

e For example, if we want to find an optimal design, then, in general, it is
not easy to check that a given guess is optimal: for that, we would need to
compare it with an unfeasible number of all possible designs.

e Similarly, in multi-step conflict situations, it is not easy to check whether
a given move is winning or not — checking it would require going over all
possible counter-moves of the opposite side.

However, many practical problem are indeed problems from the class NP.

It is still not known whether we can solve all problems from the class NP is
feasible (polynomial) time: this is the famous open problem of whether the class
NP is equal to the class P of all the problems that can be solved feasibly (i.e., in
polynomial time). Most computer scientists believe that NP is different from P.

The fact that we do not know whether NP is different from P means that
there is no problem from the class NP for which we have proven that this problem
cannot be solved in polynomial time. What is proven is that there are problems
from the class NP which are as hard as possible within this class, in the sense that
every other problem from the class NP can be feasibly reduced to this problem.
Such problems are known as NP-complete. Many problems of solving non-linear
equations (and many other problems) have been proven to be NP-complete.

Historically the first problem for which NP-completeness was proven was the
following propositional satisfiability problem (SAT):

e given a propositional formula F, i.e., a formula obtained from propositional
(“yes”-“no”) variables v; by using propositional connectives & (and), V (or),
and — (not),

e find the values of the variables v; that make the formula F' true.

As an illustrative example, we can take F' = (vy V vy V —w3) & (-1 V v3).

Here, a reduction of a problem A to problem B means that for every instance
a of the problem A, we can feasibly compute an appropriate instance b of the
problem B for which, once we have a solution to the instance b, we can feasibly
transform this solution into a solution to the original instance a.

Let us give a simple example of reduction. The problem of solving an equation
p-2*+¢q-x4+7 = 0 can be reduced to the problem of solving a quadratic equation
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p-y2+q-y+r=0. Once we have found a solution y to the quadratic equation,
we can find the solutions to the original fourth order equation by computing
T =+/y.

So, once we know that a problem is NP-complete, then any good algorithm
for solving this problem automatically becomes a good algorithm for solving
all other problems from the class NP. This is not just a theoretical possibility —
efficient tools for solving the propositional satisfiability problem (known as SAT-
solvers) are now used to solve many problems from different application areas.

From this viewpoint, econometrics has many complex problems. Sometimes,
we do not have efficient algorithms for solving these problems. In this case, due
to the above reduction, it is reasonable to look for other complex (NP-complete)
problem, and see if known algorithms for solving these other problems can be
used to solve economics-related problems as well.

Where can we find such other problems? Most of the practical problems deal
with the physical world. Thus, it is reasonable to look into physics for examples
of other complex problems for which efficient algorithms are known.

It is known that adding quantum effects makes problems more complex.
Thus, if we look for complex problems in physics, it is reasonable to look for
problems of quantum physics. So, we arrive at the idea of trying to see if we
can apply known algorithms for solving complex problem of quantum physics to
solve complex economics-related problems.

Quantum econometrics: what is known. The idea of using quantum tech-
niques — i.e., techniques for solving quantum equations — to solve economics
problems has been successfully implemented. The corresponding techniques are
known as quantum econometrics. These techniques and their numerous applica-
tions are described, e.g., in the seminal book [1].

This book emphasizes that quantum econometrics is based on a mathematical
similarity of equations, not on any similarity between physical ideas of quantum
physics and economics ideas.

Our idea and what we do in this paper. The fact that quantum ideas
have been very successful in econometric applications makes us think that there
may be deeper reasons for the mathematical similarity between the correspond-
ing equations, i.e., that there is indeed some relation between physical ideas of
quantum physics and ideas from economics.

In this paper, we show that there is indeed such a relation.

2 Main Ideas Behind Quantum Physics: A Brief
Reminder

Need for a reminder. To describe a relation between the main ideas of quan-
tum physics and the main ideas behind econometrics — and to convince the
readers that this relation is indeed fundamental, not just a mathematical simi-
larity — let us recall the main ideas behind quantum physics (for more details,
see, e.g., [2]).
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Quantum physics as physics of micro-world. The main objective of physics
is to learn the state of the physical world and to predict its future state. The
information about the current state of the physical world comes from measure-
ments. To get the most information about the world, we want to make the
measurements as accurate as possible. This means, in particular, that the mea-
surements should disturb the measured object as little as possible — since each
such disturbance changes the state of the object.

Traditional physics is the physics of macro-world, the physics of objects of
macro-size. For such objects, it is usually possible to measure them while dis-
turbing them as little as possible. For example:

e We can measure the distance to an object by sending an ultrasound signal
towards the object and measure the time it takes for this signal to get to the
object, get reflected, and come back to the sensor.

e We can also perform a similar measurement by sending a laser beam.

In both cases, we can use relatively weak signals, so that the measured object is
not affected by this signal.

However, as we study smaller and smaller objects, this becomes more and
more complicated. When we send a measuring signal to a body consisting of
~ 10?3 particles, we can have a relatively very weak signal whose effect on
the multi-particle body of interest is small. However, the situation drastically
changes if we consider micro-objects.

To measure the location of an elementary particle, we need to send another
particle — e.g., a photon — to interact with the particle of interest. In this case,
the signal that we send is of approximately of the same size as the object itself,
and there is thus no way that we can ignore the effect of this signal on the
measured object.

In other words, in the micro-world, when we perform a measurement on an
object, we change this object. This is one of the main features of the micro-world —
known as a the quantum world — that no matter how much we try, we cannot avoid
changing the state: whenever we measure the state, we change it.

There is a similar idea in economics. At first glance, economics is a macro-
object: when we measure GDP or unemployment, we do not change it, the value
remains very accurate. However, econometrics is not about measuring different
parameters of economics, econometrics is about discovering new dependencies
that describe the economic data.

From this viewpoint, econometrics has exactly the same effect as quantum
physics: once we discover a new dependence, the situation changes.

Indeed, let us consider a simplified example. Suppose that a researcher finds
out a better way to predict the price x(t + 2) of a certain financial instrument
two days from today based on the prices z(t), y(¢), ..., x(t —1), y(t —1), ... of
this stock and related stocks today and in the previous days.
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It is known that the stock values sometimes change drastically. For such
change days, based on the newly discovered dependence, we can potentially
predict, at day tg, that the stock value will drastically increase in 2 days, to the
level

z(to + 2) > x(to), x(to + 1).

When we did not know the dependence, this could indeed be a valid predic-
tion:

e the value z(tp+ 1) would have equal to what the model predicts based on the
prices x(tg — 1), y(to — 1), x(to — 2), y(to — 2), ..., and

e the value z(tp + 2) would have been equal to what the model predicts based
on the prices z(to), y(to), ..., x(t — 1), y(to — 1), ...

However, since we now know the dependence, the traders in the stock
exchange know that the price will rise and therefore, will start buying this
stock — until its price rises, in day to + 1, to the level p - x(tg + 2), where p
is a discount that takes into account one day difference (i.e., that takes into
account the interest rate that you get in one day by a safe investment like
Treasury bonds or bank deposits). This will change the next day’s stock price
x(to + 1) from the previously predicted value z(tg + 1) < x(tp + 2) to a new
value z(tg + 1) =~ z(tg + 2).

So, while the model worked perfectly well until it was discovered, once it
is discovered, it longer provides correct predictions — because the stock traders
take this model into account when trading and thus, change the dynamics of the
system and consequently, modify stock prices.

Similarly, in situations in which the model originally predicted drastic
decreases in stock prices, once the model becomes known, it no longer provides
accurate predictions; see, e.g., [5].

This is an exact analog of the quantum physics phenomenon:

e In quantum physics, once you learn the value of a quantity describing the
object, the actual value of this quantity changes, and the known value is no
longer a perfect description of the current state of the particle.

e Similarly, in economics, once we discover the previously unknown dependence
between economic quantities, this changes the dynamics of trade and thus,
the dependence — which worked well in the past — stops working, at least
stops being accurate.

This fundamental similarity may be the reason why techniques for solving quan-
tum equations are so helpful in the economic realm.

Comment. In both cases, the size of the effect depends on the relative size of the
object:

e In quantum physics, the effect of measurement on a micro-size body can be
minuscule, while for micro-size body, the effect is very drastic.



Quantum Ideas in Economics Beyond Quantum Econometrics 151

e Similarly, in economics, if only one person knows the dependence and uses it
to buy and sell small amounts of stock, the effect on the stock market will be
small. However, nowadays, with financial companies actively investing in data
analytics, a dependence uncovered by one researcher cannot be kept secret
for long: it will inevitably (and very soon) be discovered by others as well.
Once this happens, the effect on the stock market will become large — and it
will invalidate the original dependence.
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Abstract. While econometrics is a reasonable recent discipline, quantitative
solutions to economic problem have been proposed since the ancient times. In
particular, solutions have been proposed for the bankruptcy problem: how to
divide the assets between the claimants? One of the challenges of analyzing
ancient solutions to economics problems is that these solutions are often pre-
sented not as a general algorithm, but as a sequence of examples. When there
are only a few such example, it is often difficult to convincingly extract a gen-
eral algorithm from them. This was the case, for example, for the supposedly
fairness-motivated Talmudic solution to the bankruptcy problem: only in the mid
1980s, the Nobelist Robert Aumann succeeded in coming up with a convincing
general algorithm explaining the original examples. What remained not so clear
in Aumann’s explanation is why namely this algorithm best reflects the corre-
sponding idea of fairness. In this paper, we find a simple economic explanation
for this algorithm.

1 The Bankruptcy Problem and Its Ancient Solution:
An Introduction

The bankruptcy problem: reminder. When a person or a company cannot pay all its
obligation, a bankruptcy is declared, and the available funds are distributed among the
claimants. Since there is not enough money to give, to each claimant, what he/she is
owed, claimants will get less than what they are owed. How much less? What is a fair
way to divide the available funds between the claimants?

An ancient solution. The bankruptcy problem is known for many millennia, since
money became available and people starting lending money to each other. Solutions
to this problem have also been proposed for many millennia. One such ancient solution
is described in the Talmud, an ancient commentary on the Jewish Bible [2]. Specifically,
this solution is described in the Babylonian Talmud, in Ketubot 93a, Bava Metzia 2a,
and Yevamot 38a. (This solution is actually about a more general problem of several
contracts which cannot be all fully fulfilled).

Like many ancient texts containing mathematics, the Talmud does not contain an
explicit algorithm. Instead, it contains four examples illustrating the main idea. In the
first three examples, the three parties are owed the following amounts:

(© Springer International Publishing AG 2018
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o the first person is owed d; = 100 monetary units,
o the second person is owed d» = 200 monetary units, and
o the third person is owed d3 = 300 monetary units:

dy =100, d» =200, d5=7300.

For three different available amounts E, the text describes the amounts e, e, and e3
that each of the three person will get:

E |d;=100|d, =200 ds =300
el e e3
100 33] 331 33]
3 3 3
200 | 50 75 75
300 | 50 100 150

There is also a fourth example, formulated in a slightly different way — as the ques-
tion of dividing a disputed garment. In the bankruptcy terms, it can be described as
follows: the owed amounts are:

d; =50, dy = 100.

The available amount E and the recommended division (e;,e;) are as follows:

E |d;=50|d; =100
€] €2
100 | 25 75

Example are here, but what is a general solution? There has been, historically, a
big problem with this solution: in contract to many other ancient mathematical texts,
where the general algorithm is very clear from the examples, in this particular case, the
general algorithm was unknown until 1985. Actually, many researchers came up with
algorithms that explained some of these examples — while claiming that the original
ancient text must have contained some mistakes.

Mystery solved, algorithm is reconstructed. This problem intrigued Robert Aumann,
later the Nobel Prize winner in Economics (2005). In his 1985 paper [1], Professor
Aumann came up with a reasonable general algorithm that explains the ancient solution;
see also [4,8].

To explain this algorithm, we need to first start with the the case of two claimants.
Without losing generality, let us assume that the first claimant has a smaller claim
d < dp.
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Then, if the overall amount E is small — to be precise, smaller that d; — then this
amount E is distributed equally between the claimants, so that each gets
E

6126225.

When the available amount E is between d and d», i.e., when d; < E < d», then the

. . d . . ..
first claimant receives e; = ?1 and the second claimant receives the remaining amount
ey = E— el.
This policy continues until we reach the amount E = d,, at which moment the first

. . di . .
claimant receives the amount d; = > and the second claimant received the amount

d . .. .
er=dp — ?1 At this moment, after receiving the money, both claimants lose the same

d
amount of money: di —e; =dp, — e = ?1

Finally, when the overall amount is larger than d, (but smaller than the overall
amount of debt d| 4+ d»), the money is distributed in such a way that the losses remain
equal, i.e., that d| —e; = dy — e and e| + e = E. From these two conditions, we can
find the corresponding claims:

_ E+d —d>

_E—d1+d2
2 T '

2

el ()

The division between three (or more) claimants is then explained as the one for
which for every two claimants, the amounts given to them is distributed according to
the above algorithm. This can be easily checked if we select, for each pair (i, j) only
the overall amount E;; = e; + ¢; allocated to claimants from this pair. As a result, for
the pairs (1,2), (2,3), and (1,3), we get the following tables:

Epp | dy =100 | dy =200
4] ey
2 1 1
66§ 335 33§
125 |50 75
150 |50 100

E»y |dy =200/ dy =300

ey es
2 1 1
66— |33 33~
3 3 3
150 |75 75

250 | 100 150
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Ei3 dy =100 | d3 =300
el es
2 1
100 | 66— 33~
3 3
12550 75
200 | 50 150

Remaining problem. That the ancient algorithm has been reconstructed, great. We now
know what the ancients proposed. However, based on the above description, it is still
not clear why this solution to the bankruptcy problem was proposed.

The above solution sounds rather arbitrary. To be more precise, both idea of dividing
the amount equally and dividing the losses equally make sense, but how do we combine
these two ideas? And why in the region between E = min(d,d>) and E = max(d;,d>)
the claimant with the smallest claim always gets half of his/her claim while the sec-
ond claimant gets more and more? How dow that fit with the Talmud’s claim that the
proposed division represents fairness?

What we do in this paper. In this paper, we propose an economics-based explanation
for the above solution.

2 Analysis of the Problem

What is fair is not clear. At first glance, it may look like fairness means dividing the
amount either equally. If everyone is equal, why should someone gets more than others?

However, this is not necessarily a fair division. Suppose that two folks start with an
equal amount of 400 dollars. They both decided to invest some money in the biomedical
company that promised to use this money to develop a new drug curing up-to-now un-
curable disease. The first person invested $200, the second invested $300. After this,
the first person has $200 left and the second person has $100 left.

The company went bankrupt, and only $300 remains in its account. If we divide this
mount equally, both investors will get back the same amount of $150. As a result:

e the first person will have $350 instead of the original $400, while
e the second person will have $250 instead of the original $400.

So, the first person loses only $50, while the second person loses three times more:
$150. So, the first person, who selfishly kept money to himself, gets more than the
altruistic second person who invested more in a noble case: how is this fair?

How we understand fairness: let us divide equally, but with respect to what status
quo point? If two people jointly find an amount of money, then fairness means that this
amount should be divided equally. If two people jointly contributed to some expenses,
fairness means that they should split the expenses equally.

In both cases, we have a natural status quo point (€7,¢3):

e in the first case, we take (€],e;) = (0,0), and
e in the second case, we take (e1,€2) = (d;,da).
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Any change from the status quo should be divided equally, i.e., we should have e; —e; =
e — e3. So, to apply this idea to the bankruptcy problem, we need to decide what is the
status quo point here.

Comment. The idea that the difference between the actual amount and the status quo
point should be divided equally is not only natural and fair, it actually comes from the
game-theoretic notion of bargaining solution proposed by another Nobelist John Nash;
see, e.g., [6,7].

What are possible ranges for the status quo point: example. Let us consider one
of the above cases, when the first person is owed d; = 100 monetary units, the second
person is owed d» = 200 units, and we have an amount Ej» = 125 units to distribute
between these two claimants.

Depending on how we distribute this amount, the first person may get different
amounts. The best possible case for the first claimant is when he get all the money he
is owed, i.e., e, = 100 monetary units. The worst possible case for the first claimant is
when all the money goes to the second person, and the first person gets nothing: ¢; = 0.
Thus, the status quo point for the first person is somewhere in the interval

[e;.e1] = [0,100].

Similarly, the best possible case for the second person is when the second person
gets all the money, i.e., when e, = 125. The worst possible case for the second person
is when the first claimant gets everything he is owed —i.e., all 100 units, and the second
person gets the remaining amount of e, = 125 — 100 — 25 units. Thus, the status quo
point for the second person is somewhere in the interval

le5,22] = [25,125].

Let us perform the same analysis in the general case.

What are possible ranges for the status quo point: general case. Without losing
generality, let us assume that the 1st person is the one who is owed less, i.e., that d; <d;.
We will consider three different cases:

e when the available amount £}, does not exceed di: E1p < dj;
e when the available amount £, is between d; and dp: di < E1; < E», and
e when the available amount £} exceeds dp, i.e.,dy < E1p < d; + d>.

Let us consider these three cases one by one.

Case when the overall amount does not exceed the smallest claim. Let us first con-
sider the case when Ej» < d; < ds. In this case, for the first person, the best possible
case is when this person gets all the amount Ej: ey = E1». The worst possible case
is when all the available money goes to the second claimant and the first person gets
nothing: ¢; = 0. So, for the first person, the range of possible gains is [¢;,e1] = [0, E12].

For the second person, the best possible case is when this person gets all the amount
E1y: ey = E>. The worst possible case is when all the available money goes to the first
claimant and the second person gets nothing: ¢, = 0. So, for the second person, the
range of possible gains is [e,,] = [0, El2].



An Ancient Bankruptcy Solution Makes Economic Sense 157

Case when the overall amount is in the between the smaller and the larger claims.
Let us now consider the case when di < Ej» < d>. In this case, for the first person,
the best possible case is when this person gets all the amount it is owed: e; = d;. The
worst possible case is when all the available money goes to the second claimant and the
first person gets nothing: ¢; = 0. So, for the first person, the range of possible gains is
[glﬁgl] = [Oadl]'

For the second person, the best possible case is when this person gets all the amount

E\,: e, = E1. The worst possible case is when the first claimant gets all the money he
is owed (i.e., the amount d;), and the second person only gets the remaining amount
¢, = E1p —d, . So, for the second person, the range of possible gains is [¢,,e2] = [E12 —
dl,E 12].
Case when the overall amount is larger than both claims. Let us now consider the
case when d; < dp < Ep. In this case, for the first person, the best possible case is
when this person gets all the amount it is owed: e; = d;. The worst possible case is
when the second person gets all the money it is owed, and the first person only gets the
remaining amount ¢; = E12 — d». So, for the first person, the range of possible gains is
ler,e1] = [E1n —da,d].

For the second person, the best possible case is when this person gets all the amount

it is owed: e, = d». The worst possible case is when the first claimant gets all the
money he is owed (i.e., the amount d;), and the second person only gets the remaining
amount ¢, = E1» —d;. So, for the second person, the range of possible gains is [e,,e2] =
[E12 —dy,da).
Which points of the corresponding intervals should we select? In all three cases, for
both claimants, we have an inferval of possible values of the resulting gain. On each of
these intervals, we need to select a status quo point that corresponds to the equivalent
cost of this interval uncertainty.

The problem of what is the fair cost € in the case of interval uncertainty [e,e] has
been handled by yet another Nobelist, Leo Hurwicz; see, e.g., [3,5,6]. Namely, he pro-
posed to select the value

e=o-e+(l—a)-e,

where the coefficient a € [0,1] describes the decision-maker’s degree of optimism-
pessimism:

e the value @ = 1 describes a perfect optimist, when the decision maker only takes
into account the most optimistic (best possible) scenario;

o the value a = 0 describes a complete pessimist, when the decision maker only takes
into account the worst possible scenario; and

o the values o strictly between 0 and 1 describe a realistic decision maker, who takes
into account both the best-case and the worst-case possibilities.

Let us see what will happen if we take one of these solutions as a status-quo point and
consider a division fair if the differences between the gains e; and the status quo are
equal: e} —e] = ey — 3.
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3 No Matter What Our Level of Optimism, We Get Exactly
the Ancient Solution

Three cases: reminder. We will now show that in all the cases, we get exactly the
ancient solution — so we have a good economic explanation for this solution. To show
this, let us consider all three possible cases:

e case when Ejp <d; <d»,
e case when d| < Ejp < d», and
e case whend| < d) < Ejs.

Case when the overall amount does not exceed the smallest claim: general formu-
las. In this case,

ei=o-e;+(1—0)-e,=0-Ep+(l—a)-0=0-Ej
and similarly,
22:Ot-?z-i-(l—ot)-gzZOC-E12+(1—OC)-O=OC-E12.

Thus, the fairness condition e; — ] = e» — 5 takes the forme; — o - Ejp = e — o - Eq2,
i.e., the form e; = e5.

So, in this case, no matter what is the optimism-pessimism value &, we divide the
available amount E1, equally between the claimants:

ep=e)= &
2
This is exactly what the ancient solution recommends in this case.
Case when the overall amount does not exceed the smallest claim: example. Let us
consider one of the above examples, when d; = 100, d, = 200, and E, = 66%. In this
1

case, the above formulas recommend a solution in which e; = ¢; = 33§.
. s~ 2 ~
For the optimistic case o0 = 1, the status quo pointis e; =e; = 66§ ande; =¢; =
665. Thus, the condition of fairness with respect to this optimistic status quo point is

- ~ 1
indeed satisfied: e; —e; = ey —ep = —33-.

Case when the overall amount is in the between the smaller and the larger claims:
general formulas. In this case,

ei=a-ei+(1—a)-eg=a-di+(1—a)-0=0-d
and

ggZOC-Ez-i-(]—O()-gzzot-Elg—l—(l—OC)-(Elz—d1>=E12—(1—O()-d1.
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Thus, the fairness condition e; —e; = e — ¢, takes the form
ei—a-di=ey—Ep+(1—a)-di=e;—Ep+d—a-d.

Canceling the common term —o: - d; on both sides, we get e; = ey — Ej» +d;. Sub-
stituting e; = E — e into this formula, we conclude that ej = Ej» —e; — Ejp +dj, ie.,

d
e1 = —ej +d;. Moving the term —e; to the left-hand side, we get 2¢; = d; and ] = 31

.. d
The second person gets the remaining amount e, = Ejp — ?1

This is also exactly what the ancient solution recommends in this case.

Case when the overall amount is in the between the smaller and the larger claims:
example. Let us consider one of the above examples, when d; = 100, d> = 200, and
100

Ej> = 125. In this case, the above formulas recommend a solution in which e¢; = - =
50and e; = Ejp —e; = 125—50 =175.

Here, the optimistic status quo point is ¢; = d; = 100 and e; = Ej» = 125. Thus, the
condition of fairness with respect to this optimistic status quo point is indeed satisfied:
e1—e; =50—100= —50and e; —ep = 75— 125 = —50.

Case when the overall amount is larger than both claims: general formulas. In this
case,

ei=o-ei+(1—0)-eg=0-di+(1—0a)-(Ern—d)
=oa-di+(l—-0a) Enp—(1—a)-d

and

=t (1) e =a-dyt (1) (Fad
=o-d+(l—a)-Ep—(l—a)-d.

Thus, the fairness condition e; —e; = e> — ¢; takes the form

61—OC~d1—(1—O()-E12+(l—O£)-d2
=e—o-d—(1-—0a) Epn+(l—a)-d.

Canceling the comon term —(1 — &) - E» in both sides, we get
61—(X~d1+(1 —(X)-dzzez—ot-dz—l—(l —OC)~d1.

Moving terms containing d; and d, to the right-hand side, we conclude that e; =
er+d—ds. Substituting e>» = E1» — e into this formula, we gete; =Epp—e +d —es.
Moving the term —e; to the left-hand side, we get 2e¢; = Ejp +d; —e» and e; =
Ep+d —dy

> . The second person gets the remaining amount

_En+di—dy  En—di+dp

ex =FEp > >

This too is exactly what the ancient solution recommends in this case.
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Case when the overall amount is larger than both claims: example. Let us consider
one of the above examples, when d; = 50, d» = 100, and Ej» = 100. In this case, the
above formulas recommend a solution in which

~100+50— 100

e =

100 —50+ 100
=25and ey = 2070+ 75.

2 2

Here, the optimistic status quo point is e = d; = 50 and e¢; = d» = 100. Thus, the
condition of fairness with respect to this optimistic status quo point is indeed satisfied:
e1—e; =25-50=—-25and e; —e; = 75— 100 = —25.
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Abstract. This paper investigates confidence intervals for the ratio of
means in the delta-lognormal distribution. The method of variance esti-
mates recovery (MOVER) based on the variance stabilizing transforma-
tion, Wilson score method and Jeffreys method were proposed to establish
confidence intervals for the ratio of delta-lonormal means. These confi-
dence intervals were compared with the existing confidence interval based
on the generalized confidence interval (GCI). The coverage probabilities
and average lengths were the performance of these proposed confidence
intervals which were evaluated via Monte Carlo simulation. The simula-
tion results showed that the three MOVERSs’ performance is similar to the
GCI in terms of coverage probability for all sample sizes except when the
probability § of having zero is close to zero and the coefficient of variation
gets large. However, the MOVER, based on Jeffreys provides the minimal
average lengths when the coefficient of variation are small for all sample
sizes. Finally, two data sets are used to illustrate examples of using the
proposed confidence intervals.

1 Introduction

The ratio of means is one of the interesting parameters that indicate the com-
parison of the two quantitative variables measured in different units. In addition,
the ratio of coefficients of variation is also included in the parameters of inter-
est of data distribution. Mean and coefficient of variation are the statistical
measures which collect information from the whole population. These parame-
ters have been utilized in many applications such as public health, agriculture,
medicine and environment. For instance, they are used to examine medical costs
for patients with type I diabetes and patients for diabetic ketoacidosis [6], to
investigate the percentage of fine gravel in the surface of soil types [8], to ana-
lyze the relative carboxyhemoglobin level for two large groups of nonsmokers
and cigarette smokers [14], and to measure relation in millimeters between the
length of frogs from top to tail and the snout-vent length of lizards [26].

In probability and statistics, the delta-lognormal distribution describes the
occurrence in which data are composed of many zeros with a given probability § > 0
and lognormal data with the remaining probability 1 — 0, see e.g. [1,4,18,21]. This
distribution, first introduced by Aitchison [1], is applied in several fields, including
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economics, environment, fisheries survey, biology and medicine. For example, it was
utilized to study the measurement of air contaminants where zeros corresponded
to the case of the number of measurement that did not detect the concentration of
airborne chlorine [16], the densities of fish where zeros corresponded to the case of
empty trawls [15,17,19,20], the certain species in different geographic areas where
zeros corresponded to areas unsuitable for these species [4] and the urinary output
(UO) of patients, zeros corresponded to the case when UO was not found in the
critically ill patients [21].

These situations show that this distribution is used in many research areas,
the achieved estimation of its parameter is critical and interval estimation gives
more information on interesting parameters than point estimation. Consequently,
many researchers have concentrated on the construction of confidence interval
for the parameters in this distribution. For instance, Tian and Wu [21] estab-
lished confidence intervals for the mean of lognormal with excess zeros based on
the adjusted signed log-likelihood ratio statistic. Fletcher [11] also constructed
the proposed confidence intervals of the mean derived from a profile-likelihood
interval. Their results revealed that the profile likelihood performed poorly in
cases of small sample size when the level of skewness was moderate to high.
Wu and Hsieh [27] proposed generalized confidence interval to create confidence
intervals for the mean of delta-lognormal distribution. The simulation study
showed that generalized confidence interval was satisfactory in terms of cover-
age probabilities, expected interval lengths and reasonable relative biases. Chen
and Zhou [5] proposed generalized confidence intervals for the ratio of two means
for lognormal populations with zeros. They found that the approximate gener-
alized pivotal approach outperforms all other methods, even in a small sample.
However, these studies mostly examined confidence intervals for the parameter
function which is mean in delta-lognormal distribution. Therefore, it is necessary
to find a better confidence interval for the ratio of two means as the confidence
intervals for § performed well in many previous studies. These confidence inter-
vals for 0 were constructed by the variance stabilizing transformation that was
presented by Dasgupta [7], Wu and Hsieh [27], Wilson score and Jeffreys method
were recommended by Donner and Zou [9].

The purpose of this research is to look for methods for constructing the
new confidence interval for the ratio means of delta-lognormal distribution. Four
methods were applied: the method of variance estimate recovery (described by
Donner and Zou [10]) based on the variance stabilizing transformation, Wilson
score and Jeffreys method, and the generalized confidence interval by Weer-
ahandi [23]. This article is organized as follows: The theory and method are
detailed in Sect.2. The simulation studies are described in Sect. 3 to assess the
performance of all methods. All confidence interval are applied the real data in
Sect. 4. Finally, the discussion and conclusions are contained in Sect. 5.
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2 Confidence Intervals for the Ratio of Means
of Delta-Lognormal Distribution

Let W; = (W1, Wia, ..., Wiy,) be a positive random variables of lognormal dis-
tribution, denoted as LN (u;,02) and Y;; = In(W;;) ~ N(u;,02) where p; and
01-2 are the mean and variance of Yj;; ¢ = 1,2 j = 1,2,...,n;, respectively. The

probability density function of W;; is given by

1 __1_ N )2 con.
f(wij;ma?):{wij\/2”?eXP< oz () = ?) >0

0 ; otherwise

Suppose that X; = (X;1, Xi2, ..., Xin,) is a non-negative random sample from
delta-lognormal distribution, denoted as A(u;, 02, §;) where d; is the probabilities
of having zero observations. The number of zero observations have the binomial
distribution, n;0y ~ B(n;,0;). Then, Tian and Wu [21] have noted that the
distribution function of Xj; is defined as

625 = 0; ;25 =0
G leginnoirn) = {&- + (1= 8;) Flwij pi, 0F) 1255 > 0 @

where F'(x;5; pi,o?) is the cumulative distribution function of lognormal dis-
tribution. The maximum likelihood estimator of parameter j;, o? and §; are
2 i o n; A2 & v

fii = o3 In(zy), 67 = =300 (nwiy) — )" and 6 = S
ni0) + My1) = ni where n;) and n;;) are the number of zero and positive

observed values from population i*", respectively. The population mean and
variance of X; can be written as

Var (X;) = (1—6&)exp (2 + 07) [exp (07) + 6; — 1] (4)

and the coefficient of variation is

exp (02)+6; — 1

cv<Xi>=¢i=¢ o %)

For the ratio of two means is given by

_ﬁ B (1—=461)exp (,ul—l—%f)
2 (1 —02)exp <M2+%§)

(6)

The confidence intervals for the parameter v can be established by the following
methods.
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2.1 The Method of Variance Estimates Recovery for the Ratio
of Means

In this case, focus is on the confidence interval for a ratio of parameters ;. Sup-
pose that le are random variables with A(u;,02,6;). There are three parame-
ters ui;,02,9; in this distribution. First, constructmg confidence interval for §;.
In the past researchers studied intensively the interval estimator for binomial
proportion. Now, methods are suggested which consist of the variance stabi-
lizing transformation (VST), Wilson score method and Jeffreys method. These
methods are as follows:

The Variance Stabilizing Transformation

This method was presented by Dasgupta [7]. After that Wu and Hsieh [27] used
the variance stabilizing transformation to apply in their study. Since ;) ~
B(n;, ;). The expected Fisher’s Information for §; is given by

Uz

L, (6:) = m (7)

Then Var (6;) = I,;'. Apply delta theorem [7], we get that \/nﬁ(& - 52-) ~
N (0,0; (1 —6;)). As a result, the VST is defined as

/ \/Tdé = arcsin \/0; (8)

4(0)

Thus, g(n;)) = arcsin is the VST for binomial proportion. In fact,

N (arcsin V/8; — arcsin \/E) ~ N(0,1/4) so that
Zin = 24/n; <arcs1n \[ — arcsin \F) (9)

where Z;; converges in distribution to the standard normal distribution as
n — oo. Then, the 100(1 — «)% asymptotically confidence interval of ¢; is

C—[&v = [lviyuvi] (10)

where

A 1
— oin? 1 \/> _
ly, = sin <arcsm 0; Z“(l_%) 7 nz>

1
Uy, = SIN (arcsm \/> +7Z, (1-%) )
’ 2 2./711

The Wilson Score Method
The approach was proposed by Wilson [25]. After that Wilks [24] used it to con-
struct the confidence interval. As a result, it is called the Wilson score metod.
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Donner and Zou [9] found that this method perform well in small to moder-
ate sample sizes when establishing confidence interval of proportion. Thus, the
100(1 — )% confidence interval for J; is

CIJwi = [lwiauwi] (11)
where
) 2
_ Ni0) + Z%/2 B Zi-g IO (ni(l)) + Zj
i n; + ZQ% n; + 22% i 4
) 2
_ Mo +25/2 Zi-g NALIO) (niq)) + Zj
v ni+ 74 ni+ 2% ni 4
2 2

The Jeffreys Method
The Jeffreys method was developed from Brown et al. [3] to use beta priors in
inference on § [2]. Let the prior and posterior distribution of ¢; are Beta(by,bs)
and Beta(n;) + bi,n;1) + b2), respectively. In this study, Jeffreys prior has
the distribution Beta(1/2,1/2) so that the 100(1 — «)% Jeffreys prior confidence
interval for §; is

Cls.g, = [lJi’uJi] (12)

where

qui = Beta (%7’”1(0) + 1/27711(1) + 1/2)

uj, = Beta (1 — %;ni(o) + 1/2,ni(1) + 1/2)

Next, confidence intervals of o? were considered. The unbiased estimator for

o? is
(1)
e — zl: (In(X35) — fis)? (13)
Yongy — 14 J
2(1) j=1
and also ( ) )
. nz(l) -1 &1 9
Ui="—""3"" "~ Xn-1 (14)

7
where 67 denoted as the sample variance for log-transformed data of non-zeros
and X%i -1 is chi-square distribution with n;) — 1 degrees of freedom. To
estimate the variance of normal distribution at a significant level, defined by «.
The coverage probability for X?L -1 is given by

P <X2%,ni(1)—1 S Xii(l)—l S X%—,g ni(1>—1) =l-a (15)

2
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Therefore, the 100(1 — a)% confidence interval for o? is

(niy =) 67 (g —1) 67 (16)
3 I
Xl_%a"i(l)_l X%mi(l)—l

Cloz = [ly2,uq2] =

Then the confidence interval for v can be substituted by fi;, 62, 5; in its parameter

so that ¥y = (1 — 1) exp(siy + %%) and Uy = (1 — 82) exp(sia + 073) Hence, the
100(1 — @)% two-sided confidence interval for v based on MOVER approach is
given by

CIrm = [LT‘TYH Urm] (17)

where

(3282) [ (382)" s (20— 1) (2~ w2)

er == N
Ug (2’[92 — Ug)

(3202) +) (382)” o (20— ) (20 - 1)
I (202~ 1)

By using I; and w; derive from three previous methods, we can establish
confidence intervals for ~.

Urm =

2.1.1 The Method of Variance Estimate Recovery Based
on the Variance Stabilizing Transformation
Uy 2

!
Setting I; , = (1 — uy, ) exp(ti; + %12) and ;. = (1 —1y,) exp(fi; + —=). The new
confidence interval for v based on VST is given by

Clrm.v = [er.va Urm.v] (18)

where

(¥192) — \/(151152)2 - 51.1;U2.1;(21§1 —11.4)(202 — ug.)

Ug. (209 — ug.,)

er.v =

(9192) + \/(51152)2 — up plo.p (201 — u1.) (209 — l2.,)
lz.v(21§2 — o)

Urm.'u =
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2.1.2 The Method of Variance Estimate Recovery Based

on Wilson Score
Given l; o = (1 —uy, ) exp(fi; + %2) and u;. = (1 —lw,) exp(i; + u;2 ). The new
confidence interval for v based on Wilson is given by

C-[rm.w - [er.wa U'r‘m.u)] (19)

where

(?§11§2) - \/(6162)2 — l1.wu2.w(21§1 - l1.w)(21§2 — U2 .4)

U2.w(21§2 — U2.p)

er.w =

(?§11§2) + \/(19}752)2 - Ul.wlz.w(21§1 - U1.w)(27§2 —law)
lz.w(21§2 —law)

Urm,w =

2.1.3 The Method of Variance Estimate Recovery Based on Jeffreys

l U
Let I; ; = (1 —uy,)exp(i; + 072) and u; ;7 = (1 —1;,) exp(gd; + %2) The new
confidence interval for v based on Jeffreys is given by

CI'r‘m,J = [er..]a Urm.J] (20)

where

(9192) — \/(1§11§2)2 — Iy gug 5 (201 — 1y 5)(202 — ug.y)

U2.J(21§2 —ug.)

rm.Jx —

(9192) + \/(1§11§2)2 —uy gly. 7 (201 — uy 5)(202 — la.5)
lo.; (202 — )

Urm.] =

2.2 The Generalized Confidence Interval

The common method to construct the confidence interval is the generalized
confidence interval (GCI) method which has been introduced by Weerahandi
[23]. The GCI is based on the concept following of generalized pivotal quantity.
Let X;; = (Xi1, Xi2, ..., Xin,) be random variables with the probability den-
sity function fx (zi;;7;) where n; = (s, 07,9;) is the vector of unknown param-
eters. Let x;; = (@1, Ti2, ..., Tin,) be observed values of X;;. The generalized
pivotal quantity R(X;;;x,;,7;) is required to satisfy the following conditions:

(i) Given Xj,;, the distribution of R(X;j;xi;,n;) is free of all unknown parame-
ters.

(i) The observed value of R(Xjj;xi;,1:), denoted by r(z;;xij,1;), does not
depend on the nuisance parameters.
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R(Xj;xi;,m;) satisfies conditions (i) and (ii) so that the 100(1 — a)% two-
sided GCI confidence interval for n; is (Ry/2, R1—a/2) where R, is the atl
percentile of R(X,j;x;j,m:). Now, suppose that X;; be a random variables dis-
tributed according to A(u;, 02, 8;). The pivotal quantity for §; based on Dasgupta
[7], Wu and Hsieh [27] is defined as

Rs, = sin? {arcsin \/ 51-,0 - 2?/1;7} (21)

Krishnamoorthy and Mathew [12] showed that another pivotal quantity for p;
and o? given by

(ny = Vot o () =163
N1y Vi 7

R, = [jo0— Z;
i = Mi.0 U,

(22)

(”i(l)*l)&

2
where Z;5 = (i — 1)/ R t denoted as the standard normal distribution

oy —1)62
and U; = % is the chi-square distribution with n;q) — 1 degrees of
freedom. By the information of three pivots, the pivot for v is defined as follows:

R_2
r, = Bon (L= Ro)exp(fy + ) (23)
K R’ﬁz + RU%

(1 - R52) EXp(le 2 )

Therefore, the generalized pivotal quantity of v is

2 : 3 Z11 N "1(1)_1)&%.0 (nl(l)_l)&%-o
(1 —sin [arcsm Vo0 — 5 nl])exp {,uu) — Z124/ 0 + GTen

i02 : 3 Z2 7 na)—1)83 4 (na(1)~1)53 ¢
(1 —sin {arcsm 2.0 — 2\/6] ) exp {,uz_o — Zooy/ oy U +

20>

where Z;1, Z;5, U; are independent random variables and Si.o, fii.0, 62, are the
observed values of d;, fi;, 67, respectively. The expression (24) satisfies the two
conditions for being a general pivotal quantity. Consequently, the 100(1 — a)%

two-sided confidence interval for the ratio of means () based on GCI is

ﬁ

Ry =

24)

Clrgci = [Lrgcia Urgci] = [R’Y(O‘/Q)’ R‘Y(l - O‘/2)] (25)

where R, (c/2) denotes the 100(c/2)% percentile of R, of R,. Additionally, the
100(1 — )% GCI for v can be investigated by the following algorithm.
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Algorithm 1

begin;

for j =1 to M do

Generate dataset x;1, Zia, ..., T1n, from A(u;,02,5;);
Calculate 6;, fis, 02;

for k =1 to m do

Generate Z;1, Z;o from standard normal distribution;

Generate U; from chi-square distribution with n;;) — 1 degrees of
freedom;

Calculate Rs,;

Calculate R,,;;

Calculate R,2;

Calculate Pwl;

end

Calculate the («/2)100th percentile of R.;

Calculate the (1 — a/2)100th percentile of R.;

end

3 Simulation Studies

In this part, all confidence intervals are evaluated based on the coverage probabil-
ities and average lengths which are compared via Monte Carlo simulation. These
methods are investigated by using R statistical programming language [22]. Each
simulation calculate the nominal confidence level of 0.95 which is utilized based
on 10,000 replications and 5,000 pivotal quantities for the GCI method. The
generalized confidence interval is defined as C1,4.;, the method of variance esti-
mate recovery based on the variance stabilizing transformation, Wilson score
and Jeffreys are defined as Cl,., Clrpm.a and Cl,.,,. 5, respectively.

In simulation, four confidence intervals for parameter v, are the comparison
between ni, ne,01,02, 1 and ¢o where the mean ¥J; is fixed to 0; ny = no =
20,50,100; 61 = d2 = 0.2,0.5,0.8 and ¢; = ¢ = 0.2,0.5,1.0,2.0. In the study
by Fletcher [11], if the number of non-zero values E(n;(1) is less than 10, then
the results would not perform well in terms of the coverage probabilities and
average lengths. For Wu and Hsieh [27], this was true also except for the cases
of ng = ny =20, 61 = 62 = 0.8 and ¢ = ¢ = 0.2,0.5,1.0, 2.0 because E(n;())
is below 10. As a result, these combinations are excluded in this study. As the
best method for computing the confidence interval, we selected method with the
smallest nominal confidence level and the shortest average length.

In Tables 1 and 2, the coverage probabilities and the average lengths of confi-
dence intervals for the ratio of means () of delta-lognormal distribution are dis-
played. The result of this study show that the C'I,4; has the coverage probabilities
greater than the nominal confidence level in all cases but its average lengths are
rather wide and go back to narrow as sample size increases. The ClL.p, 4, CLim .10
and CI,,,. s also have coverage probabilities which are greater than the nominal
level for all samples sizes except for cases of § = 0.2 and ¢ = 1,2. The average
lengths of C'I,.,,. s are shorter than other methods except for § = 0.8 and ¢ = 1, 2.
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Table 1. The coverage probabilities of 95% two-sided confidence intervals for the ratio
of means (7) of delta-lognormal distribution

ny |ng |61 |92 | @1 | P2 | Clrgei | Climow | Climow | Clem.g
20 |20 [0.2/0.2/0.2/0.2/0.984 [0.971 |0.988 0.969
0.5/0.5/0.976 10.948 |0.962 0.941
1.0/1.0/0.965 |0.933 |0.941 0.930
2.0/2.0/0.956 |0.930 |0.934 0.929
0.5/0.5/0.2/0.210.993 |0.994 |0.994 0.985
0.5/0.5/0.990 10.990 |0.989 0.981
1.0/ 1.0/0.979 |0.981 0.978 0.973
2.0/2.0/0.965 |0.970 |0.967 0.963
50 50 /0.2/0.2]/0.2/0.2/0.988 |0.984 |0.988 0.981
0.5/0.5/0.972 10.947 |0.952 0.941
1.0/1.0/0.960 |0.924 |0.927 0.919
2.0/2.0/0.954 10.928 ]0.929 0.925
0.5/0.5/0.2/0.2/0.993 |0.993 |0.993 0.989
0.5/0.5/0.987 |0.988 |0.987 0.983
1.0/ 1.0/0.975 0976 |0.975 0.969
2.0/2.0/0.961 10.962 |0.962 0.960
0.8/0.8/0.2/0.2/0.998 |0.998 |0.998 0.996
0.5/0.5/0.994 10.996 |0.996 0.994
1.0/ 1.0/0.984 |0.990 |0.989 0.986
2.0/2.0/0.971 |0.982 |0.980 0.978
100 [100|0.2/0.2/0.2]0.2/0.991 |0.987 |0.989 0.986
0.5/0.5/0.978 10.954 |0.957 0.952
1.0/1.0/0.962 |0.928 0.929 0.927
2.0/2.0/0.953 10.926 |0.926 0.924
0.5/0.5/0.2/0.2/0.996 |0.996 |0.996 0.996
0.5/0.5/0.987 10.986 |0.986 0.984
1.0/1.0/0.975 |0.975 |0.974 0.973
2.0/2.0/0.963 |0.963 |0.963 0.961
0.8/0.8/0.2/0.210.996 |0.997 |0.997 0.996
0.5/0.5/0.993 10.995 |0.995 0.993
1.0/1.0/0.982 |0.989 | 0.988 0.987
2.0/2.0/0.965 |0.978 |0.977 0.975




Confidence Intervals for the Ratio of Means of Delta-Lognormal Distribution 171

Table 2. The average lengths of 95% two-sided confidence intervals for the ratio of
means (7) of delta-lognormal distribution

ny |ng |61 |02 | @1 | P2 | Clrgei | Climow | Climow | Clem.g
20 |20 /0.2/0.2/0.2/0.2| 0.627| 0.596 0.651 0.529
0.5/0.5| 0.968| 0.836 0.875| 0.764
1.0/1.0| 1.954 1.692 1.712 1.600
2.0/2.0] 5.815| 5.368 5.364 5.164
0.5/0.5/0.2/0.2| 1.286 1.288 1.222 1.065
0.5/0.5| 1.718 1.746 1.669 1.498
1.0/1.0| 3.567| 3.827 3.701 3.440
2.012.0] 24.828 | 30.308 | 29.479 | 28.034
50 /50 /0.2{/0.2/0.2/0.2| 0.397| 0.381 0.395 0.358
0.5/0.5| 0.578| 0.507 0.516 | 0.483
1.0/1.0| 1.005| 0.868 0.871 0.840
2.0/2.0] 1.956 1.751 1.748 1.714
0.5/0.5/0.2/0.2| 0.782] 0.782 0.766 | 0.719
0.5/0.5| 0.963| 0.965 0.947 | 0.897
1.0/1.0| 1.506 1.526 1.505 1.450
2.0/2.0] 3.087| 3.208 3.175 3.095
0.8/0.8/0.2/0.2| 1.713 1.734 1.618 1.537
0.5/0.5| 2.090| 2.232 2.125 2.023
1.0 1.0 3.794| 4.470 4.360 | 4.165
2.0/2.0] 22.643 | 31.628 | 31.387| 30.657
100/100/0.2/0.2/0.2]/0.2| 0.285| 0.274 0.279| 0.265
0.5/0.5| 0.405| 0.358 0.362 | 0.349
1.0 1.0| 0.678| 0.587 0.588 0.576
2.0/2.0] 1.209| 1.080 1.079 1.067
0.5/0.5/0.2/0.2| 0.552| 0.552 0.546 | 0.528
0.5/0.5| 0.666| 0.666 0.660 | 0.642
1.0/1.0| 0.981| 0.985 0.978 | 0.959
2.0[/2.0] 1.722 1.746 1.737 1.713
0.8/0.8/10.2/0.2| 1.141 1.151 1.114 1.085
0.5/0.5| 1.323 1.382 1.349 1.315
1.0/1.0| 1.946| 2.135 2.108 2.061
2.0/2.0] 4.060| 4.687 4.664 | 4.576
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4 An Empirical Application

To demonstrate the calculation of all confidence intervals, the data taken from
a nutrition analysis of every menu item on the United State McDonald’s menu
provided by Larion [13] were utilized. In this study, we are interesting in the
calories (kcal) of two categories, including 27 menus of beverages and 95 menus
of coffee plus tea are of interest. There were 9 and 7 menus with no calorie for
beverages and coffee plus tea, respectively. Figure 1 shows the histogram plots
of non-zero calories in two categories: 18 menus of beverages and 88 menus of
coffee plus tea.
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Fig. 1. The histogram plots of calories for beverages and coffee plus tea

Table 3. Point estimation and 95% confidence interval for the ratio of mean calories
each method.

Methods Point estimation of Ratio | Confidence Average
mean calories of interval length
mean
Beverages | Coffee & tea Lower | Upper
GCI 114.31 285.58 0.400 |0.272 | 0.568 |0.297
MOVER based on
VST 0.276 |0.560 |0.284
Wilson score 0.275 | 0.553 | 0.278
Jeffreys 0.286 | 0.528 |0.241

Next, the distribution of these data was investigated. The Shapiro—Wilk nor-
mality test have p-values of 0.7768 and 0.1287 for the log transformation of
beverages and coffee plus tea at the 5% significance level. As a result, both cate-
gories fit the delta-lognormal distribution. The summary statistics are fi; = 5.06,
fiz = 5.62, 62 = 0.17, 63 = 0.22, §; = 0.33, 05 = 0.07 and n; = 27, ny = 95.

From Table 3, the 95% confidence intervals for v were computed, the MOVER
based on the variance stabilizing transformation CI,.,, ,, = [0.276, 0.560] with the
length interval of 0.284, Wilson score Clyp,., = [0.275,0.553] with the length
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interval of 0.278 and Jeffreys C1,.,,.; = [0.286,0.528] with the length interval of
0.241. In comparison, the generalized confidence interval CI,4.; = [0.272,0.568]
with the length interval of 0.297.

5 Discussion and Conclusions

In this article, the aim was to establish a new confidence interval for the ratio of
means of delta-lognormal distribution based on MOVER which is based on the
variance stabilizing transformation, Wilson score method and Jeffreys method,
then compare with the GCI. All of the approaches were assessed via Monte Carlo
simulation. The finding can be summarized as follows: the MOVER based on
the variance stabilizing transformation C1I,,, ., Wilson score CI,,, ., and Jeffreys
Cl,,.y perform similarly in terms of the coverage probability as the probability
of having zero is close to one. The Jeffreys C1,,, ; gave the narrowest aver-
age length in cases of the coefficient of variation was small in all sample sizes.
Hence, the Jeffreys CI,.,,. s is recommended as the interval estimator of the ratio
of means when proportion of zero is close to one and the coefficient of variation
is small for each sample size. The generalized confidence interval C'I,.4.; is rec-
ommended in cases when the probability of zero outcome and the coefficients of
variation are big for large sample sizes because its coverage probability would be
greater than nominal coverage level and average length would also be narrower
than all methods.

Furthemore, Lee and Lin [14] found that the generalized confidence intervals
performed reasonably well in the case of large sample sizes for the ratio of two
means of normal populations which is consistent with the finds in this research.

Acknowledgments. We would like to acknowledge referees for their important com-
ments and recommendations that assisted with the improvements of this paper.
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Abstract. Networked systems offer multiple benefits and new opportu-
nities. However, there are also disadvantages to certain networks, espe-
cially networks of interdependent systems. This paper investigates how
the complexity of a networked system contributes to the emergence of
systemic instability. Systemic instability is said to exist in a networked
system if its integrity is compromised regardless of whether each compo-
nent functions properly. An agent-based model, which seeks to explain
how the behavior of individual agents can affect the outcomes of complex
systems, can make an important contribution to our understanding of
potential vulnerabilities and the way in which risk propagates across net-
worked systems. Furthermore, we discuss various methodological issues
related to managing risk in networks.

1 Introduction

Risks are idiosyncratic in the sense that a risk to one system may present an
opportunity in another. Networks increase the level of interdependence for its
components, and this affects the integrity of the system. Over the last few
decades, we have witnessed the dark side to increased interdependency. A crucial
question follows: Is an interconnected world a safer place in which to live, or is
it more dangerous? This is especially relevant to financial institutions and firms
(or agents), where the actions of a single agent can impact all the other agents
in a network. In this section, we present an overview of the concepts, ideas,
and examples of systemic risks inherent in a network, that is, of “networking
risks” [9].

We often use the terms risk and uncertainty interchangeably. Risk exists
where the outcome is uncertain, but where it is possible to determine the proba-
bility distribution of outcomes. Therefore, we can manage risk using a probability
calculus. By contrast, uncertainty exists in a situation where we do not know the
outcome, or the probability cannot be determined. Most systems we deal with in
the real world contain uncertainties, rather than risks. Risk can be understood
as the probability of an adverse outcome with consideration to the severity of the
consequences should it occur. This definition is sufficient in many cases, but it
is inadequate for situations of the greatest interest-for pivotal events and large-
scale disturbances. Because pivotal events are generally rare and unprecedented,
statistics are powerless to give any meaningful probability to the occurrence of
such events.
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Most natural and social systems are continually subjected to external distur-
bances that can vary widely in degree. Scientific research has focused on natural
disasters, such as earthquakes, or on failures to engineered systems, such as elec-
trical blackouts. However, many major disasters affecting human societies relate
to the internal structure of networked systems. Risk can be categorized as either
exogenous or endogenous. When we explore the sources of risk, it is important
to distinguish between these types. Exogenous risk comes from outside a system,
and is basically a condition imposed on it. For instance, disaster preparedness
involves considering exogenous risk. Other examples include the threat of avian
flu, terrorism, and hurricanes. Endogenous risk, on the other hand, refers to
the risk from disturbances that are generated and amplified within the system.
The amplification of risk proceeds from its systemic nature, and challenges the
integrity of the system. As systems increase their interdependency on other sys-
tems, we must consider the risk inherent to such interdependency. As a distur-
bance propagates through a network, it might encounter components known as
amplifiers, that is, components that increase the risk to other components in the
network. Amplification occurs when such an interaction results in a vicious cycle,
reinforcing the effects of amplifiers. Amplifiers are the mechanisms that boost
the scale of a disturbance in a particular system, and also the means by which
hazards are spread and intensified throughout the system. This phenomenon is
especially prevalent in interdependent systems.

Allen and Gale introduced network theory as a means for enriching our under-
standing of networked risks [1]. They explored critical issues in their study of
networked risk by answering fundamental questions, such as how resilient finan-
cial networks are to contagion, and how financial institutions form connections
when exposed to the risk of contagion. They showed that by increasing the
connections between financial institutions, the overall risk of contagion can be
reduced because the risk is shared. Empirical evidence shows that, whereas a
network’s performance improves as its connectivity increases, there is also a cor-
responding increase to the risk of contagion. Failures to networked components
are significantly more egregious than the failure of any single node or compo-
nent. Network interdependency is a main reason for a series of failures. Examples
include disease epidemics, traffic congestion, and electrical blackouts. These phe-
nomena are known as cascading failures, and more commonly as chain reactions
or domino effects. The definitive feature to cascading failures is that a local fail-
ure results in a global failure on a larger scale. The result is that networked risk,
which can lead to the failure of the networked system as a whole, is not related
in any simple way to the risk profiles for each component. Such networked risks
are common with non-linear interactions, which are ubiquitous in networked
systems.

Networked risks are idiosyncratic, and they are an inherent characteristic of
interdependent networks. In a networked society, the risks faced by any one agent
depend not only on the actions of that agent, but also on those of other agents.
The fact that the risk a single agent faces is often determined in part by the
activities of other agents gives a unique and complex structure to the incentives



Modeling and Simulation of Financial Risks 177

that agents face as they attempt to reduce their exposure to networked risks.
The term “interdependent risk” refers to situations in which multiple agents
decide separately whether to adopt protective management strategies, such as
protection against risk, and where each agent has less of an incentive to adopt
protection if others fail to do so. Protective management strategies can reduce
the risk of a direct loss to any agent, but there is still a chance of suffering damage
from other agents who do not adopt similar strategies. The fact that the risk
is often determined in part by the actions of other agents imposes independent
risk structures for the incentives that agents require to reduce risk by investing
in risk-mitigation measures.

A variety of schemes exist that are designed to mitigate networked risks, but
the majority of these schemes depend on centralized control and full knowledge of
the system. Furthermore, centralized designs are frequently more susceptible to
limited situational awareness, making them inadequate and resulting in increased
vulnerability and disastrous consequences. Understanding the mechanisms and
determinants of risk can only help to describe what is going on, and these mech-
anisms have limited predictive power. Bi-directional causal relationships are an
essential component in the study of networked risk. Understanding the rela-
tionship between the different levels at which macroscopic phenomena can be
observed as networked risk is possible with the tools and insights generated by
combining agent-based and network models. Agent based modeling combined
with network theory can explain certain networked risks. Instead of looking at
the details of particular failures of nodes or agents, this approach involves inves-
tigating a series of failures caused by the dependencies among agents. A detailed
discussion of different approaches can be found in [2,3,7,10,12].

2 Systemic Risks

The concept of systemic risk pertains to something undesirable happening in a
system that is significantly larger and worse than the failure of any one node or
component. Global financial instability and economic crises are typical examples
of systemic risks. The scope and speed of the diffusion of risk in recent financial
crises have stimulated an analysis of the conditions under which financial con-
tagion can actually arise. Systemic risk describes a situation in which financial
institutions fail as a result of a common shock or a contagion process. A conta-
gion process refers to the systemic risk that the failure of one financial institution
will lead to defaults in other financial institutions through a domino effect to
the interbank market.

Network interdependencies are apparent in financial networks, where the
actions of a single agent (e.g., a financial institution) in an interconnected net-
work can impact other agents in the network. Increased globalization and finan-
cial innovation have prompted a sudden increase in the creation of financial
linkages and trade relationships between agents. In financial systems, therefore,
there is a tendency for crises to spread from one agent to another, and this
tendency can lead to systemic failures on a significantly large scale.
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In this section, we analyze the mechanisms to systemic risk using agent-based
modeling and network theory. In an interbank market, banks facing liquidity
shortages may borrow liquidity from other banks that have liquidity surpluses.
This system of liquidity swapping provides the interbank market with enhanced
liquidity sharing, and it decreases the risk of contagion among agents when
unexpected problems arise. However, solvency and liquidity problems faced by
a single agent can also travel through the interbank market to other agents and
cause systemic failures.

May and Arinaminpathy provided the models to analyze financial instability
and the contagion process based on mean-field analysis [9]. The assumption in
their approach is that each agent in the network is identical. External or internal
shocks may lead to the collapse of the entire system. If a single agent is disrupted
and this causes a failure, this initial failure can lead to a cascade of failures.
Several critical constellations determine whether this initial failure remains local
or grows to point where it affects the system leading to systemic risk.

One of the main objectives in research on systemic risk is to identify agents
that are systemically important to the contagion process. When these agents
default, they influence other agents through the interconnectivity of the net-
worked system. Systemic risk is not a risk of failure caused by the fundamental
weakness of a particular agent. Because failed agents are not able to honour their
commitments in the interbank market, other agents are likely to be influenced
to default as well, which can affect more agents and cause further contagious
defaults. For an agent, maintaining interconnections with other agents always
implies a trade-off between risk sharing and the risk of contagion. Indeed, the
more interconnected a balance sheet is, the more easily a negative shock, say
a liquidity shock, can be dissipated and absorbed when an agent has multiple
counter-parties with whom to discharge the negative hit. Therefore, studying the
role of the level and form of connectivity in the interbank network is crucial to
understanding how direct contagion works, i.e. how an idiosyncratic shock may
travel through the network of agents.

In the cascade model, each agent has a threshold, which determines its capac-
ity to sustain a shock. If agents fail, they redistribute their debt to neighboring
agents in a network. Once we can specify the threshold distribution of the agents,
we can analytically derive the size of the default cascade. Systemic risk depends
much more on factors such as the network’s topology.

Gai and Kapadia were the first to analyze the mechanism of systemic risk
with a threshold-based cascade model [6]. They developed an analytical model
to study the potential impact of contagion influenced by idiosyncratic shocks.
Their model also explains the “robust-yet-fragile” tendency exhibited by finan-
cial systems. This property explains a phase transition in contagion occurring
when connectivity and other properties of the network vary. In their model,
every agent in the network is identical, i.e., all agents have the same number of
debtors and creditors. They investigated how the system responds when a single
agent defaults, and, in particular, when this results in contagion events in which
a finite number of default as a result. The agent network was developed using
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a random graph where each agent had an identical threshold. The main results
were the following: (i) as a function of the average connectivity, the network
displayed a window of connectivity for which the probability of contagion was
finite; (ii) increasing the net worth of agents reduced the probability of contagion;
(iii) when the network was well connected (i.e., when the average degree was
high), the network was robust-yet-fragile (i.e., the probability of contagion was
very low, but in those instances where contagion occurred, the entire network
was shut down).

May and Arinaminpathy modeled systemic risk in financial networks with
heterogeneous agents and discovered that the agents with the most capital were
more resilient to contagious defaults [9]. They also modeled part of the tiered
structure by classifying the agents in the network into large and small agents.
They found that tiered structures are not necessarily more prone to systemic
risk, and that whether they are depends on the degree centrality, that is, the
number of connections to the central agent. As the degree centrality increases,
contagious defaults increase at first, but then they begin to decrease as the
number of connections to the central agent leads the dissipation of the shock.

3 Agent-Based Modeling of Systemic Risks

We portray N agents (viz., banks), randomly linked together in a weighted
directed network where the weighted links represent interbank liabilities. The
financial state of each agent is described by the balance sheet. The balance
sheets of agents are modeled according to their assets and liabilities. Agent i’s
assets (denoted by A;) include interbank loans (denoted by I;) and external
assets (denoted by F;). Liabilities (denoted by L;) consist of interbank borrow-
ings (denoted by B;), deposits (denoted by D;) and the net worth (denoted by
C;), as shown in Fig. 1. Agent vulnerability depends on the net worth, which is
defined as follows:

Liabilities L, Assets A,

Capital buffer

c
External assets
Deposit E.
D.

i

Interbank assets

Interbank borrowing (loans)

B ,

i

Fig. 1. Balance sheet for a bank i.
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As an additional assumption, the total interbank asset positions are assumed
to be evenly distributed among all incoming links, which represent loans to the
other agents. The defaulting condition is as follows:

Agent i defaultsif (1—p)A; — qE; — B — D; < 0 (3.2)

where p is the number of agents with obligations to agent i that have defaulted,
and q is the resale price of the illiquid external assets-which takes a value between
0 and 1. When an agent fails, “zero recovery” is assumed and all of that agent’s
assets are lost.

The contagion process begins by selecting one defaulting agent randomly.
Then, we observe whether there is a chain of defaults in the interbank network.
Initially, all agents are solvent, and defaults can spread only if the neighboring
agents of a defaulted agent are vulnerable. By definition, an agent is vulnerable
whenever the default of one of neighboring agents with a credit relation causes a
loss to the balance sheet such that it meets the defaulting condition from (3.2).
The defaulting condition from (3.2) can thus be rewritten as follows:

Ci - (1 - q)Ei

3.3
p> 3 (3.3)
By setting q = 1, we can derive the following solvency condition:
, ) C;
Agent i defaults : if p> 7. = 10) (3.4)

Agent vulnerability depends on the threshold ¢, which is the ratio of the net
worth (C;) to liability (L;).

Leverage generally refers to using credit to buy assets. It is commonly used
in the context of financial markets. However, the concept of leverage covers
a range of techniques from personal investments to the activities in financial
markets on a national scale. One of widely used measures of financial leverage is
the debt-to-net-worth ratio. This is the ratio of the liabilities of an agent with
respect to the net worth. The inverse of the threshold ¢ in (3.4) represents the
debt-to-net-worth ratio of an agent.

The process of contagion gains momentum and suddenly spreads to a large
number of agents after the failure of some critical agents. Therefore, finding these
critical agents is crucial to preventing a cascade of defaults. The criticality of an
agent does not directly depend on the size of liabilities. Rather, it is determined
by the debt-to-net-worth ratio. Another crucial factor is the location of an agent
within the interbank network. It is on this latter point that the agent-based
model may yield information useful for identifying critical agents.

4 Modeling of Financial Networks

Real-world financial networks often have fat-tailed degree distributions [4]. Many
authors also note that there is some form of community structure to the network.



Modeling and Simulation of Financial Risks 181

For example, Nier et al. [11] showed that the so-called core-periphery networks
include a tightly connected core of money-center banks to which all other banks
connect, and that the interbank market is tiered to a certain extent. In their
study of tiered banking systems, Freixas et al. demonstrated that a tiered system
of money-center banks-where banks on the periphery are linked to the center but
not to each other-may also be susceptible to contagion.

Fricke and Lux conducted an empirical study as the starting point for investi-
gating interbank networks [5]. They studied the network derived from the credit
extended via the electronic market for interbank deposits (e-MID) trading plat-
form for overnight loans between 1999 and 2010. e-MID is a privately owned
Italian company and currently the only electronic brokerage market for inter-
bank deposits. They showed that the Italian interbank market has a hierarchical
core-periphery structure. This set of highly connected core banks tends to lend
money to other core banks and a large number of loosely connected peripheral
banks. These banks in turn tend to lend money to a small number of selected
core banks, but they appear to have relatively little trade among themselves.

A core-periphery network structure is a division of the nodes into a densely
connected core and a sparsely connected periphery. The nodes in the core should
also be reasonably well connected to the nodes in the periphery, but the nodes
in the periphery are not well connected to the core. Hence, a node belongs to
the core if and only if it is well connected both to other nodes in the core and
to nodes assigned to the periphery. Thus, a core structure to a network is not
merely densely connected; it also tends to be central to the network in terms of
short paths through the network. The latter feature also helps to distinguish a
core-periphery structure from a community structure. However, many networks
can have a perfect core-periphery structure as well as a community structure,
so it is desirable to develop measurements that allow us to examine the various
types of core-periphery structures.

Understanding the structure of a financial network is the key to understand-
ing its function. Structural features exist at both the microscopic level, resulting
from differences in the properties of single nodes, and the mesoscopic level, result-
ing from properties shared by groups of nodes. In general, financial networks con-
tain unique structures, such as a core-periphery structure, by which a densely
connected subset of core nodes and a subset of sparsely connected peripheral
nodes coexist, or a modular structure with highly clustered sub-graphs. With a
core-periphery structure, the cores consist of the important financial institutions
playing a critical role in the interactions within the financial network. In a mod-
ular network, the connecting nodes (i.e., bridge nodes) of multiple modules play
a key role in network contagion. Therefore, identifying the intermediate-scale
structure at the mesoscopic level allows us to discover features that cannot be
found by analyzing the network at the global or local scale.

We used the different characteristics of network organizations to identify the
influential nodes in some typical networks as a benchmark model. We decided
to use particular local measures, based either on the network’s connectivity at
a microscopic scale or on its community structure at a mesoscopic scale [§].



182 A. Namatame

We used a mesoscopic approach to contagion models for describing risk prop-
agation in a network, and we investigated the manner by which the network’s
topology impacts risk propagation. An agent fails depending on the states of its
neighboring agents, and systemic risk is measured according to the proportion of
failed agents. Failures are usually are absorbed by neighboring agents provided
that each agent is connected to other agents, even if failures occur relatively
frequently with some agents. Such failures may, however, propagate to other
agents under certain conditions. When that happens, things worsen throughout
the chain and the network can experience widespread failure.

We distinguish between amplification, whereby specific agents cause failures
in other agents by contagion, and vulnerability, determined by the number of
failures brought down by the failure of other agents. Thus, we use two indices
to quantify systemic risk:

1. The vulnerability index to quantify the ratio of agent defaults when each
agent is selected in turn as an initial defaulting agent.

2. The amplification index to quantify the ratio of defaulting agents caused by
an agent.
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Fig. 2. Two mock networks: (a) Four symmetrical star networks are connected via one
bridge agent (#1) at the center. (b) Four asymmetrical star networks of different sizes
are connected through four hub agents (#1-#4). Each mock network consists of 100
agents.

We considered two mock networks, each network consisting of the N = 100
agents, as seen in Fig. 2, and we identified the influential agents in these networks.
Figure 2(a) shows four symmetric star networks connected via one bridge agent
in the center. Figure 2(b) shows four asymmetrical star networks of different sizes
with the hub agents connected in the center of each sub-network. These four hub
agents play the role of the bridge agent.
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5 Simulation Results

The parameter 6 denotes the ratio of total interbank loans I = ), I; to total
interbank assets A = ). A;, assuming that the ratio 6 for every agent is the
same across the interbank market. Given this assumption, the interbank loans
I; for agent i can be calculated from the assets A; or the external assets E; as
follows:

Li =qA; = %QEZ (5.1)

Assuming that the unit amount of interbank loans (denoted by w between any
two agents is the same (i.e., the amount of interbank loans represented by one link
is fixed to a certain value w), the interbank loans I; can be calculated by Koyt i,
denoting the out-degree of agent i (i.e., the number of agents who borrow from
agent i). The assets A; and the external assets E; of agent i can be computed
using the relation in (5.1). The interbank borrowings B; is wki,,; where ki, ;
denotes the in-degree for agent i (i.e., the number of agents who lend to agent
i). If we assume an undirected network to represent interbank transactions, we
have kout,i = kin, = ki. In the simulation study, we set these parameters at
w=1,60=0.45 and ¢ = 0.03.

We selected each agent in turn as an initial defaulting agent. We set the
initial shock to a selected agent about to default, by stipulating a loss of 50% of
its external assets. The propagation of default contagion begins with the loss of
half of the external assets F; owned by the agent i that failed initially. If the loss
of the external assets E; cannot be absorbed by the net worth (i.e., by the agent’s
capital buffer) C; the remaining interbank borrowings B; will be absorbed by
each neighboring agent j, and agent j loses a portion of the interbank loans I;. If
the loss of assets A; from agent j cannot be absorbed by the net worth C, the
interbank borrowings B; will be used. This series of debt propagation continues
until all losses are finally absorbed in the interbank network.

We conducted 100 simulations by selecting each agent in turn as an initial
defaulting agent. We derived the vulnerability index and the amplification index
for each of these. Figure 3 shows the vulnerability and amplification indices for
each agent in the network seen in Fig. 2(a). The vulnerability index of the bridge
agent at the center (#1) is the highest. Its amplification index is the lowest,
however, and the same as those of the other peripheral agents (#6-#100). The
respective vulnerability indices for the four hub agents (#2-#5) were very low
but their respective amplification indices are the highest, implying that when
one of these hub agents is selected to default, it causes a large-scale cascade of
defaults.

Figure 4 shows the vulnerability and amplification indices for each agent in
the network depicted in Fig. 2(b). In this case, the vulnerability of the hub agent
(#1) in the smallest star network is extremely high, whereas those of the other
three hub agents (#2, #3, #4) are lower than those of the peripheral agents (#5—
#100). The amplification index for each hub agent (#1-#4) in each star network
increases in the proportion with the degree, implying that the amplification for
a cascade of defaults is proportional to the degree of the hub agent.
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Fig. 3. The ratio of defaults when the cascade is initiated, by selecting each agent from
Fig.2(a) to default in turn: (a) vulnerability index for each agent; (b) amplification
index for each agent. The inserts in the figures highlight these respective indices for
the hub agents.
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Fig. 4. The ratio of defaults when a cascade is initiated by selecting each agent in
Fig. 2(b) to default in turn: (a) vulnerability index for each agent; (b) amplification
index for each agent. The inserts in the figures highlight these respective indices for
the hub agents.

In summary, we found strong correlations between the position of an agent
in the interbank network and the likelihood that it either causes contagion or
will be affected by contagion.

6 Conclusion

Agent-based models allow us to estimate the probability of economic risk-i.e. the
large-scale collective behavior based on the individual behavior of interactive



Modeling and Simulation of Financial Risks 185

agents. The primary advantage to doing so is that an agent-based model can
generate data where there is none or little available in the financial system.
The collective effects can be studied by running multiple simulations. Then,
estimations can be made about the effect that changing the rules for interactions
between agents will have on the collective outcome in the financial system. For
example, in this work, the likelihood of a firm or bank defaulting was shown
to depend on particular regulations, such as the bailout procedure. With agent
models, we can demonstrate that such regulatory measures will have specific
effects; these results would be difficult, if not impossible, to surmise otherwise.
The origin, development, and unfolding of economic crises is tied to the model’s
parameters. In reality, the relevant data is never completely available. If it were,
we could more easily identify the crucial parameters. However, salient parameters
can indeed be identified through a modeling and simulation process.
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Abstract. Traditionally, the Maximum Entropy technique is used to
select a probability distribution in situations when several different prob-
ability distributions are consistent with our knowledge. In this paper, we
show that this technique can be extended beyond selecting probability
distributions, to explain facts, numerical values, and even types of func-
tional dependence.

1 How Maximum Entropy Technique is Currently Used

Need to select a distribution: formulation of a problem. Many data pro-
cessing techniques assume that we know the probability distribution — e.g., the
probability distributions of measurement errors, and/or probability distributions
of the signals; see, e.g., [6,7].

Often, however, we have only partial information about a probability distri-
bution. In such cases, there are several different probability distributions which
are consistent with the available knowledge. To apply to this situation a data
processing algorithm which is based on the assumption that the probability dis-
tribution is known, we must select a single probability distribution out of all
distributions which are consistent with our knowledge. How can we select such
a distribution?

Main idea. By selecting a single distribution out of several, we inevitably
decrease uncertainty. It is reasonable to select a distribution for which this
decrease in uncertainty is as small as possible.

How to describe this idea as a precise optimization problem. A natural
way to measure uncertainty is by the average number of binary (“yes”-“no”)
questions that we need to ask to uniquely determine the corresponding random
value (or, in the case of continuous variables, to determine the random value
with a given accuracy ¢).

One can show that for a probability distribution with a given probability
density function p(z), this average number of binary questions is asymptotically
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(when e — 0) proportional to the entropy S(p) Lof _ [ p(z) - In(p(x)) dz of this

probability distribution; see, e.g., [5] and references therein.
For a class F of distributions, the average number of binary question is
asymptotically proportional to max S(p). We want select a single distribution pg
peE

from the class F' for which the decrease in uncertainty is the smallest possible,
i.e., for which the difference max S(p) — S(pg) is the smallest possible.
pe

How to solve the corresponding optimization problem: enter maxi-
mum Entropy technique. There is a natural solution to this optimization
problem: select a distribution py for which the entropy is the largest possible,
i.e., for which S(pg) = max S(p). In this case. the desired difference is 0 — and

so the decrease in uncertainty is asymptotically negligible.

This is the main idea behind the Maxzimum FEntropy techniques: when we
need to select a single distribution for the class of all possible distributions, we
select the distribution p for which the entropy S(p) attains the largest possible
value.

Simple examples of using the Maximum Entropy techniques. In some
cases, all we know is that the random variable is located somewhere on a given
interval [a, b], but we have no information about the probability of it being in
different parts of this interval. Which probability distribution would we then
select to represent this situation?

If we use the Maximum Entropy approach, then we need to maximize the
expression — ff p(x) -In(p(z)) dz under the condition that the function p(z) >0
is a probability density function, i.e., that f: plx)de =1.

Thus, we get a constraint optimization problem: optimize the entropy under
the constraint fab p(z)dx = 1. To solve this constraint optimization problem,
we can use the Lagrange multiplier method and reduce to the following uncon-
strained optimization problem of maximizing the following expression:

b b
- [ ple) W(p(a)) da + 1 ( [ ptays - 1) ,

where X is the Lagrange multiplier — a constant that needs to be determined so
that the original constraint will be satisfied.

We want to find the function p, i.e., we want to find the values p(z) corre-
sponding to different inputs . Thus, the unknowns in this optimization problem
are the values p(z) corresponding to different inputs z. To solve the result-
ing unconstrained optimization problem, we can simply differentiate the above
expression by each of the unknowns p(z) and equate the resulting derivative
to 0. As a result, we conclude that —In(p(xz)) — 1+ X = 0, hence In(p(x)) is
a constant not depending on z (and equal to A — 1). Therefore, the probabil-
ity density function p(z) itself is a constant. Thus, in this case, the Maximum
Entropy technique leads to a uniform distribution on the interval [a, b].

This conclusion makes perfect sense: if we have no information about which
values from the interval [a,b] are more probable and which are less probable,
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it is reasonable to conclude that all these values are equally probable, i.e., that
p(x) = const. (This idea goes back to Laplace and is known as the Laplace
Indeterminacy Principle).

In other situations, the only information that we have about the probability
distribution on a real line is its first two moments [z - p(z) dz = p and

[ plo)de =

In this case, the Maximum Entropy technique means selecting a distribution
for which the entropy is the largest under the above two constraints and the
constraint that [ p(z)dz = 1. For this problem, the Lagrange multiplier meth-
ods leads to the following unconstrained optimization problem, in which \; are
Lagrange multipliers:

Maximize — /p(x) “In(p(z)) dx + A1 - </ x - plx)dr — u)

+)\2~(/(m—u)z-p(x)dx—a2>+)\3~ (/abp(x)dx—1>.

Differentiating the maximized expression with respect to each unknown p(x)
and equating the resulting derivative to 0, we conclude that

—1n(p(a:))—1+/\1~x+)\2-(x—,u)2+)\320,

i.e., we conclude that In(p(z)) is a quadratic function of 2 and thus, that p(z) =
exp(In(p(z))) is a Gaussian distribution.
This conclusion is also in good accordance with common sense. Indeed:

e in many case, e.g., the measurement error results from many independent
small effects and,

e according to the Central Limit Theorem, the distribution of the sum of a
large number of independent small random variables is close to Gaussian.

There are many other examples of a successful use of the Maximum Entropy
technique; see, e.g., [4].

A natural question. Since the Maximum Entropy technique works so well for
selecting a distribution, can we extend it solving other problems — e.g., explaining
a fact, finding the unknown value of a quantity, or finding the formula for a
functional dependence?

What we do in this paper. In this paper, we show, on several examples, that
such an extension is indeed possible. We will show it on case studies that cover
all three types of possible problems: explaining a fact, finding the number, and
finding the functional dependence.
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2 First Case Study: How Maximum Entropy Techniques
Can Be Used to Explain a Fact

Fact to be explained. This fact comes from a recent study [1], and it is related
to the uncertainty of expert estimates.

Experts’ estimates are imprecise — just like measuring instruments are impre-
cise. Moreover, when we ask the same expert after some time to estimate the
same quantity, he/she will, in general, give a slightly different estimate — just
like when we repeatedly measure the same quantity with the same measuring
instrument, we, in general, get slightly different results. We can describe the
expert’s estimates x; of a quantity = as z; = ¢ + Ax;, where Ax; def T, —x s
the estimation error.

A reasonable way to gauge the expert’s accuracy is to compute the

mean square value of the expert’s estimation error, i.e., the value o, def
1 n
N Z(A:vi)Q, where N is the overall number of estimates performed by this

i=1

expert. This quantity describes the intra-expert variation of the expert estimate.
We can also compare the estimates x; = x + Ax; and y; = z + Ay; of two

(or more) different experts and compute the standard deviation

n n

e 1 1
Oy = v > (zi—yi)? = N > (Az; — Ay,)?

i=1 i=1

that describes the inter-expert variation of expert estimates.

An interesting empirical fact is that in many situations, the intra-expert
and inter-expert variations are practically equal: the difference between the two
variations is about 3% [1].

Why does this fact need explanation. At first glance, it may seem that
the above fact is very natural and does not need any sophisticated explanation.
However, as we show, a deeper analysis makes this fact truly puzzling.

Indeed, the above estimates seem to be informally based on a simple prob-
abilistic model, in which the differences Az; are instances of a random vari-
able Az with 0 mean. The above expression for the intra-expert variance is
simply a sample-based estimation of this random variable’s standard deviation:
0. ~ o[Az] and thus, 02 ~ 0%[Az] = E[(Az)?], where, as usual, E[n] denotes the
expected value of a random quantity 7, and o[n] denotes its standard deviation.

Similarly, the inter-expert variation is approximately equal to the standard
deviation of the difference Az — Ay between the random variables Ax and Ay
corresponding to two experts: o,y & o[Az — Ay, ie., 02, = E[(Az — Ay)?].

Thus, the fact that the intra-expert and the inter-expert variations coincide
means that E[(Az — Ay)?] ~ E[(Axr)?] ~ E[(Ay)?].

If experts were fully independent, then we would have E[(Ax — Ay)?] =
E[(Ax)?] + E[(Ay)?], so we would have 02, ~ 202 and 0,y ~ V2 - 0., and the
inter-expert variation would be at least 40% larger than the intra-expert one.



190 T. N. Nguyen et al.

This we do not observe. It means that there is a correlation between the
experts. If there was the perfect correlation, we would have Az; = Ay;, and the
inter-expert variation would be exactly 0.

In situations of partial correlation, we would get all possible values of o,
ranging from 0 to v/2-o,. So why, out of all possible values from interval [0,v/2-
0z, the value o, corresponds to the average inter-expert variation?

Maximum Entropy technique can help us explain this fact. To pro-

vide our explanation, let us express the inter-expert variation in terms of the

E[Az - A
(Pearson) correlation coefficient r def M
o[Ax] - o[Ay]

By definition of the inter-expert correlation, we have

02, = El(Ax — Ay)?] = E[(Ax)?] + E((Ay)?] - 2E(Ax - Ay).

zy

Here, E(Az)?] = E(Ay)?] = 02, and, by definition of the correlation coefficient,
E[Ax-Ay] = r-o[Az]-0[Ay] = r-02. Thus, the above formula for the inter-expert
variation takes the form

ng:2ai—2roag:2'(1—7")~0g.

In general, the correlation r can take any value from —1 to 1, but in this case,
since we assume that all experts are indeed experts, it is reasonable to assume
that their estimates are non-negatively correlated, i.e., that » > 0. Thus, in this
example, the set of possible value of the correlation r is the interval [0, 1].

In different situations, we may have different values of the correlation coef-
ficient: some experts may be independent, other pairs of experts may have the
same background and thus, have strongly correlated estimates. So, in real life,
there will be some probability distribution on the set [0, 1] of all possible val-
ues of the correlation coefficient that reflects the frequency of different pairs of
experts. We would like to estimate the average value E[r] of r over this distri-
bution. Then, by averaging over r, we will get the desired relation between the
intra- and inter-expert variations:

02, =2-(1—E[r]) o>

We do not have any information about which values r are more probable (i.e.,
more frequent) and which values r are less probable. In other words, in principle,
all probability distributions on the interval [0, 1] are possible. To perform the
above estimation, we need to select a single distribution form this class.

It is reasonable to apply the Maximum Entropy technique to select such a dis-
tribution. As we have mentioned, in this case, the Maximum Entropy technique
selects a uniform distribution on the interval [0, 1]. For the uniform distribution
on the interval [0, 1], the probability density is equal to 1, and the mean value

is 0.5: . L ) )
X2 1 1 0
FElr| = . dxr = der= —| = — — — =0.5.
[r] /0 x - p(x)dz /0 vde= | =5 -3 0.5
Substituting the value E[r] = 0.5 into the above formula o2, = 2-(1— E[r]) - o2,

we conclude that o7, = 02, which is exactly the fact that we try to explain.
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3 Second Case Study: How Maximum Entropy
Techniques Can Be Used to Find a Numerical Value

Empirical fact. It has been observed that when people make crude estimates,
their estimates differ by half-order of magnitude; see, e.g., [2]. For example, when
people estimate the size of a crowd, they normally give answers like 100, 300,
1000, but it is much more difficult for them to distinguish, e.g., between 100 and
200. Similarly, when describing income, people talk about low six figures, high
six figures, etc., — which is exactly half-orders of magnitude.

So, what is so special about the ratio 3 corresponding to half-order of mag-
nitude? Why not 2 or 47

There are explanations for this fact, but can we have a simpler one?
There are explanations for the above fact; see, e.g., [3]. However, these explana-
tions are somewhat complicated.

For a simple fact about commonsense reasoning, it is desirable to have a
simpler, more intuitive explanation.

What we do in this section. In this section, we show that the Maximum
Entropy technique can be used to provide a simpler explanation for this empirical
fact.

Let us formulate this problem in precise terms. Let us assume that we
have two quantities a and b, and a is smaller than b. For example, a and b are
the salaries of two employees on the two layers of the company’s hierarchy. If
all we know is that a < b, what can we conclude about the relation between a
and b?

Applying Maximum Entropy technique: first attempt. Let us try to apply
the Maximum Entropy techniques to answer this question. For this purpose, it
may sound reasonable to come up with some probability distribution on the set
of all possible values of a and on the set of possible values of b. Here, we do not
have any bound on a and b. In this case, similar to the case of interval bounds,
the Maximum Entropy technique implies that p(z) = const for all possible real
numbers = — and thus, since we want p(z) > 0, we get fooo p(z)dz = oo > 1.

Applying Maximum Entropy technique: second attempt and the
resulting explanation. To be able to meaningfully apply the Maximum
Entropy idea, we need to consider bounded quantities. One such possibility is
to comnsider, instead of the original salary a, the fraction of the overall salary
a + b that goes to a, i.e., the ratio

def _a
a+b

We know that a < b, so this ratio takes all possible values from 0 to 0.5, where
0.5 corresponds to the ideal case when the salaries a and b are equal. By using the
Maximum Entropy technique, we can conclude that the variable r is uniformly
distributed on the interval [0,0.5). Thus, the average value of this variable is at
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the midpoint of this interval, when r = 0.25. So, on average, the salary a of the
first person takes 1/4 of the overall amount a + b, and thus, the average salary

b of the second person is equal to the remaining amount 1 — 1/4 = 3/4. Thus,
b 3/4
the ratio of the two salaries is exactly — = 1;4 =3
a
This corresponds exactly to the half-order of magnitude ratio that we are
trying to explain. Thus, the Maximum Entropy technique indeed explains this

empirical ratio.

4 Third Case Study: How Maximum Entropy
Techniques Can Be Used to Find a Functional
Dependence

Often, we need to find a functional dependence. In many practical situa-
tions, we know that the value of a quantity = uniquely determines the values of
the quantity y, i.e., that y = f(x) for some function f(x).

e In some practical situations, this dependence is known, but
e in other situations, we need to find this dependence.

How the Maximum Entropy technique can help: the main idea. For
each physical quantity, we usually know its bounds. Thus, we can safely assume
that we know that:

e all possible values of the quantity z are in a known interval [z, Z], and
e all possible values of the quantity y are in a known interval [y,7].

If we apply the Maximum Entropy technique to the quantity x, we conclude
that = is uniformly distributed on the interval [z,T]. Similarly, if we apply the
Maximum Entropy technique to the quantity y, we conclude that x is uniformly
distributed on the interval [y, 7].

It is therefore reasonable to select a function f(z) for which,

e when z is uniformly distributed on the interval [z, Z],
e the quantity y = f(«) is uniformly distributed on the interval [y, 7].
What are the resulting functional dependencies? For a uniform distri-
bution, the probability to be in an interval is proportional to its length. In
particular, for a small interval [z, 2 + A] of width Az, the probability to be in
this interval is equal to p,, - Ax.

The corresponding y-interval [f(z), f(z + Az)] has width

Ay = |f(z + Az) — f(z)|.
For small Az, we have

fla+ Ax)— f2)
A ~ h
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Thus, for small Az, we have f(x+ Az) — f(x) =~ f'(z) - Az and therefore, Ay ~
|f'(z)| - Az. Since the variable y is also uniformly distributed, the probability
for y to be in this interval is equal to p, - Ay = p, - | f'(z)| - Ax.

Comparing this expression with the original formula p, - Az for the same

probability, we conclude that p, - |f'(z)|- Az = p, - Az, hence |f'(x)| = p—m, ie.,
p

y
|f/(z)| = const. So, we conclude that the function f(z) should be linear.

What is our result and why it is interesting. Our conclusion is that if we
have no information about the functional dependence, it is reasonable to assume
that this dependence is linear.

This fits well with the usual engineering practice, where indeed the first idea
is usually to try a linear dependence. However, the usual motivation for using
a linear dependence first is that such a dependence is the easiest to analyze —
and why would nature care which dependencies are easier for us to analyze?
The Maximum Entropy argument seems more convincing, since it relies on the
general ideas about uncertainty itself — and not on our ability to deal with this
uncertainty.

Need for nonlinear dependencies. That we came up with an explanation for
a linear dependence may be nice, but in practice, linear dependence is usually
only the first approximation to the true non-linear dependence. Once we know
that the a linear dependence is only an approximation, we would like to find a
more adequate nonlinear model.

The Maximum Entropy technique can help beyond linear dependen-
cies. It turns out that the Maximum Entropy technique can also help in finding
such a nonlinear dependence — just like for probability distributions:

e once we have an additional information which is not consistent with the
assumption that the actual distribution is uniform,

e we can add this information to the corresponding Maximum Entropy problem
and get a non-uniform distribution consistent with this information.

We will actually describe two alternative ideas on in which the Maximum
Entropy technique can help.

The Maximum Entropy technique can help beyond linear dependen-
cies: first idea. The first, more direct, idea is to take into account that often,

d
not only the quantity y, but also its derivative z def 2Y (and sometimes, its

second derivative as well) is also an observable quantity. For example, when y

d
is a distance and z is time, then the first derivative v def d—y is velocity and
x

dv  d?
the second derivative a & pr d—:g is acceleration — both perfectly observable
T x
quantities.
If we apply the Maximum Entropy techniques to the dependence of velocity
v on time x, we conclude that the velocity linearly depends on time — in which

case, by integrating this dependence, we conclude that the distance is a quadratic
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function of time. Similarly, if we apply the Maximum Entropy technique to the
dependence of acceleration a on time, then we conclude that the velocity is a
quadratic function of time, and thus, that the distance is a cubic function of
time.

The Maximum Entropy technique can help beyond linear dependen-
cies: second idea. The second, less direct idea, is to take into account that
when the dependence y = f(x) is non-linear, then, even when the probability
distribution for x is uniform, with density p,(x) = p, = const, the corresponding
probability distribution p,(y) for the quantity y is, in general, not uniform.
How can we describe the dependence p, (y) of the probability density on y? To
describe this auxiliary dependence, we can use the Maximum Entropy technique
and conclude that this dependence is linear, i.e., that p,(y) = a+b-y. Now that
we know the distributions for « and y, we can look for functions f(z) for which:

e once z is uniformly distributed,
e the quantity y = f(z) is distributed with the probability density p,(y) =
a+b-y.

Similarly to the above case when both z- and y-distributions were uniform,
the probability of being in the x-interval of width Az is equal to p, - Az, and
on the other hand, it is equal to p,(y) - |f'(z)| - Az = (a+b- f(x)) - |f'(x)] - Az.
By comparing these two expressions for the same probability, we conclude that

[f'(@)] - (a+b- f(x)) = const,
daf

i.e., that I (a+b- f) = const. By moving all the terms containing f to one side
i

A

a+b-f

e d .
const-x. So, for g def f—l—%, we get Y _ c.da. Integration leads to In(g) = c-x+C
g

for some integration constant C, thus, g = A - exp(ct), and f = A-exp(c-x) +
const.

By assuming that y is uniformly distributed, we get the inverse (logarithmic)
dependence. By assuming that the dependence p,(y) on y is not linear but is
described by one of these nonlinear formulas, we can get an even more complex
dependence.

Thus, we can indeed use the Maximum Entropy technique to describe non-
linear dependencies as well.

and all the terms containing x to another sides, we conclude that
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Abstract. This paper examines confidence intervals for the single
signal-to-noise ratio (SNR), the difference of signal-to-noise ratios
(SNRs), and the common SNR of normal distributions, using the gener-
alized confidence interval (GCI) approach, large-sample approach, and
method of variance estimates recovery (MOVER) approach. The cov-
erage probability and average width of these confidence intervals were
evaluated by Monte Carlo simulation. The simulation results indicated
that the MOVER approach performs better than the other approaches
in terms of coverage probability for the single SNR and the difference of
SNRs. Furthermore, the coverage probabilities of the adjusted MOVER
approach are satisfactory for the common SNR. We also illustrate our
confidence intervals using three examples.

Keywords: Normal distribution - Coefficient of variation
Signal-to-noise ratio + GCI approach - MOVER approach

1 Introduction

The coefficient of variation is a measure of variability relative to the mean. It is
used to compare several populations in different units. The coefficient of variation
is defined as a ratio of the standard deviation (o) to the mean (). The coefficient
of variation is widely used in science, medicine, and economics. That is because
the coefficient of variation is a unit-free measure and can be used to compare the
variation of two or more different measurement methods. The reciprocal of the
coefficient of variation is called signal-to-noise ratio (SNR). The SNR is defined
as the ratio of the signal mean (1) to the standard deviation of the noise (o).
McGibney and Smith [10] described that the SNR is a measure used to quantify
how much a signal has been corrupted by noise.

The issue of SNR is a serious problem in econometrics, in particular in esti-
mation problem. For example, in the standard simple regression, Swann [13]
showed that the SNR of the regression problem is a ratio of the full variance of an
explanatory variable (X) to the partial variance of an explanatory variable (X).
If this ratio is small, then the serious bias of the Ordinary Least Squares (OLS)
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estimator has occurred and otherwise, if this ratio is large, then any bias of the
OLS is very small. The same is true for multivariate models. Hence, the esti-
mation of SNR is one of the main problems in econometrics. In this paper, we
construct a confidence interval for the SNR, problems.

Confidence intervals associated with point estimates provide more informa-
tion about the population characteristics than the p-values in the hypothesis
test (Visintainer and Tejani [18]). The confidence interval for the SNR has been
studied in the literature. For example, Sharma and Krishna [12] presented the
asymptotic sampling distribution and confidence interval for the SNR. George
and Kibria [6] proposed the confidence intervals for the SNR of Poisson distri-
bution. George and Kibria [7] compared several confidence intervals estimate
for the SNR by inverting confidence intervals for the coefficient of variation.
Albatineh et al. [2] revisited the asymptotic sampling distribution of the SNR.
Recently, Albatineh et al. [1] derived the asymptotic sampling distribution of
the SNR and introduced a new confidence interval estimator for the SNR.

It is of interest to develop procedures for confidence interval estimation of
the SNR. The objective of this paper is to propose the confidence intervals for
functions of SNR of normal distribution. The functions are the single SNR, the
difference between SNRs, and the common SNR. First, the confidence intervals
for the single SNR of normal distribution are constructed based on the gener-
alized confidence interval (GCI) approach, the large-sample approach, and the
method of variance estimates recovery (MOVER) approach. Second, the GCI,
large sample, and MOVER approaches are used to find the confidence interval
estimates for the difference of SNRs of normal distributions. Finally, the concepts
of the GCI, large sample and MOVER approaches are extended to k popula-
tions. Hence, the confidence intervals for the common SNR of several normal
distributions are provided using the GCI approach, the large-sample approach,
and the adjusted MOVER, approach.

This paper is organized as follows. In Sect. 2, the confidence intervals for the
single SNR are introduced. In Sect. 3, the confidence intervals for the difference
between SNRs are provided. In Sect. 4, the confidence intervals for the common
SNR are presented. In Sect. 5, the simulation study and simulation results are
described. In Sect. 6, the proposed approaches are illustrated with three exam-
ples. In Sect. 7, a conclusion is presented.

2 Confidence Intervals for the Signal-to-Noise Ratio
of Normal Distribution

Let X = (X3, Xo,...,X,) be a random sample of size n from the normal distri-
bution with mean u and variance o2. The SNR is defined by 6 = u/o.

Let X and S? be sample mean and sample variance for X, respectively. Also,
let Z and s? be the observed values of X and 5?2, respectively. The maximum
likelihood estimators of x4 and o are X and S, respectively. Hence, the estimated
SNR for 6 is given by 6 = X/8S.
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2.1 The Generalized Confidence Interval for the Signal-to-Noise
Ratio

Definition: Let X = (X;,Xs,...,X,) be a random sample from a distribu-
tion F(z|6), where § = (u,0?) is the vector of unknown parameters, and
x = (x1,%2,...,2,) is an observed value of X. Weerahandi [19] defines a gener-
alized pivot R = R(X,x,u,0?) for confidence interval estimation as a random
variable having the following two properties:

(i) R has a probability distribution that is free of unknown parameters.
(ii) The observed value of R, R = R(x,x, i, 0?), is the parameter of interest 6.

Let R(«) be the 100a-th percentile of R. Hence, (R(a/2), R(1 — «/2)) becomes
a 100(1 — a)% two-sided generalized confidence interval for the parameter of
interest 6.

Following Weerahandi [20] and Tian [15], the generalized pivotal quantity for
0=upjois

_ S X-p_= | U Z (1)
o= S sVn—1 /n’

so o
where U denotes the chi-square distribution with degrees of freedom n — 1 and
Z denotes the standard normal distribution.

Therefore, the 100(1—a)% two-sided confidence interval for the SNR 6 based
on the GCI approach is

Cls.ger = (Ls.ger,Us.ger) = (Ro(a/2), Ro(1 — /2)), (2)

where Ry is defined in Eq. (1) and Ry(p) denotes the p-th quantile of Ry.

2.2 The Large-Sample Confidence Interval for the Signal-to-Noise
Ratio

Albatineh et al. [1] provided the variance of § = X /S. The variance is given by

.1 " 12 12
Var(9) = - (1 — ;Ms + H/M T 102 ) (3)
where g = E(Xj—,u)?’ = Z(X X)S and py = E(X;— ) Z( )

] -
Therefore, the 100(1— a)% two-sided confidence interval for the SNR 6 based
on the large-sample approach is defined by

Cls.rs = (Ls.s,Us.s) = (0 — Z1—a/2\/ Var(d),0 + Z1-a/2/ Var(9)),

where z1_, /2 denotes the (1 —a/2)-th quantile of the standard normal distribu-

tion and Var(f) is an estimate of Var(f) in Eq. (3) with z and o replaced by &
and s, respectively.
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2.3 The Method of Variance Estimates Recovery (MOVER)
Confidence Interval for the Signal-to-Noise Ratio

Krishnamoorthy [9] presented following the confidence intervals for p and o

Cly = (s uy) = (ﬂ—tn 11—7f>u+tn 11_f> (5)

n—1)s2 n—1)s2
OIU = (lavuo) = (2 ) 5 ( P} ) ) (6)
Xn—1,1—-2 Xn—1,2

where ¢, 1, and x;_; , denote the p-th quantiles of the ¢-distribution and chi-
square distribution, respectively.

Donner and Zou [4] introduced the MOVER approach to construct confi-
dence interval for a ratio. Hence, the MOVER approach is applied to construct
confidence interval for § = p/o. The lower bound (Ls.povEr) and upper bound
(US.MOVER) of 6 are obtained by

po — \/(/16}2 — luuo (200 — 1,) (26 — u,)
Uy (26 — ugy)

and

(7)

LsyoveER =

and

10(20 — l[,.) ’
where [, and u,, are defined in Eq. (5) and [, and u, are defined in Eq. (6).

Therefore, the 100(1 — )% two-sided confidence interval for the SNR 6 based
on the MOVER approach is defined by

Us.mMoVER =

Clsmover = (Ls.mover, Us.movER), 9)

where Lg prover and Us.yover are defined in Eqgs. (7) and (8), respectively.

3 Confidence Intervals for the Difference
of Signal-to-Noise Ratios of Normal Distributions

Suppose that X; = (X311, X12,...,X1s,) is a random sample from a normal
distribution with mean y; and variance o?. Let Xy = (Xa1, Xo2,. .., Xon,) be
a random sample from a normal distribution with mean us and variance o3.
Also, X; and X, are independent. Let X; and S? be sample mean and sample
variance for X, respectively. Also, let Z; and s? be the observed values of X; and
S?. respectively. Similarly, let X» and S? be sample mean and sample variance
for X, respectively. Also, let Zo and s3 be the observed values of X, and S3,
respectively.
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In this section, the GCI, large-sample, and MOVER, approaches are applied
to establish the confidence intervals for the difference of signal to noise ratios
(SNRs). The difference of SNRs is given by

§=0r—0y =1L F2 (10)
g1 g9
The estimated difference of SNRs for § is given by
X X
0=01—0y=—- — . 11
1= (11)

3.1 The Generalized Confidence Interval for the Difference
of Signal-to-Noise Ratios

Using the generalized pivotal quantity from Eq. (1), the generalized pivotal quan-
tity of ¢ is obtained by

T U Z T U- Z
Rs = 1 LSS S I ) 2 _ 22 7 (12)
S1 n1—1 A/ M1 S92 712—1 A/ T2
where U; and Us; denote the chi-square distribution with degrees of freedom
n1 — 1 and ny — 1, respectively, and Z; and Zs denote the standard normal
distribution.

Therefore, the 100(1 — a)% two-sided confidence interval for the difference
of SNRs § based on the GCI approach is defined by

Clp.ger = (Lp.ger,Up.aer) = (Rs(a/2), Rs(1 — /2)), (13)

where Ry is defined in Eq. (12) and Rs(p) denotes the p-th quantile of Ry.

3.2 The Large-Sample Confidence Interval for the Difference
of Signal-to-Noise Ratios

Firstly, the variance of § is considered. From

. X, X
Var(d) = Var (51 ) +Var (Sj) .
From Eq. (3), the variance of 4 is obtained by

R 1 2 2
VCLT(5) <1 - f/,L13 + 47716 14 — fgg)

ny 1

1 145 13

—(1-2 -2 14
+ ng < 2 /-1123 + 4o 6 H24 405 ) ( )

ny _ ny
where p3 = n% S (X — X0)? and gy = ni Z(le X4 1=1,2.
j=1

j=1
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Therefore, the 100(1 — a))% two-sided confidence interval for the difference
of SNRs § based on the large-sample approach is defined by

Clp s = (LD.LS7 UDALS) = (8 — Z1—a/2\/ VGT(S),S—F Z1—a/2/ Var(S)), (15)

where 2;_ /2 denotes the (1 —«a/2)-th quantile of the standard normal distribu-

tion and Var(d) is an estimate of Var(d) in Eq. (14) with g; and o; replaced by
z; and s;, respectively.

3.3 The Method of Variance Estimates Recovery (MOVER)
Confidence Interval for the Difference of Signal-to-Noise Ratios

Following the confidence interval for 6 based on the MOVER, approach in Eq. (9),
then

e V(161)? — liuia (200 — 11)(261 — u12)

; 2 16
1 u12(261 — u12) 16)
_ 61+ (161)? — unliz(2fn — ui1)(261 — li2)
vy — ! (17)
112(261 — l12)
, _ f2b2— V([1262)% = laruza (212 — l21) (26 — uz0) (18)
g = -
u22(202 — ’LL22)
and
_ fi262 + \/(ﬂQa'Q)Q — u21loa(2fl2 — u21) (262 — l22)
. A ENGD)
la2(262 — l22)
where S; S
(lil7ui1) = (ﬂl — t"i_lvl_%ﬁ’ ,[LZ + tni—l,l—% ni)
and

n; — 1)s? n; —1)s?
(Lia, in) = (2 )si | ] )si )
Xnifl,lfg Xnifl,%

Donner and Zou [4] proposed the confidence interval for the difference of two
parameters based on the MOVER approach. Hence, the confidence limits for
6 = 01 — 05 is obtained by

Lpmover =01 — 03 — \/(él — )2 + (up — 6)? (20)

and

Up.mover =01 — 0, + \/(ul —01)% + (0 — 12)?, (21)

where [; and u; are defined in Eqgs. (16)—(19).
Therefore, the 100(1 — a)% two-sided confidence interval for the difference
of SNRs § based on the MOVER approach is defined by

CIp.mover = (Lp.moveER,Up. MOVER), (22)

where Lp prover and Up pover are defined in Egs. (20) and (21), respectively.
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4 Confidence Intervals for the Common Signa-to-Noise
Ratio of Normal Distributions

Again, let X; = (X1, X2, ..., Xin,) be the i-th random sample from a normal
distribution with mean p; and variance a? for i = 1,2,...,k. Hence, the signal
to noise ratio based on the i-th sample is defined by 6; = p;/o;, i =1,2,... k.
Let X; and S? be sample mean and sample variance for X;, respectively. Also,
let Z; and s? be the observed values of X; and S2, respectively. The maximum
likelihood estimators of y; and o; are X; and S?, respectively. Therefore, the
estimated SNR for 6; is given by 0; = X;/S;.

In this section, the confidence intervals for the common SNR based on the
GCI approach, large-sample approach, and the adjusted MOVER, approach are
presented. The common parameter, introduced by Graybill and Deal [5], was
applied. Therefore, the common SNR is obtained by

! (23)

where 6; is an estimator based on the i-th sample.

4.1 The Generalized Confidence Interval for the Common
Signal-to-Noise Ratio

Following Tian and Wu [16], the generalized pivotal quantities for estimating p;
and o2 based on the i-th sample are given by

R/"i =T — \/ﬁ n (24)
and e
Ry» = me = s 7 L (25)

where Z; denotes standard normal distribution, U; and V; denote chi-square
distribution with degrees of freedom n; — 1.

Using the generalized pivotal quantity in Eq. (1), then the generalized pivotal
quantity for 8; based on the i-th sample is defined by

Z; Ui Zi
Ry, = — —
S; n; — 1 A/ T
The generalized pivotal quantity for the common parameter, introduced by
Tian and Wu [16], is a weighted average of the generalized pivotal quantity Ry,

based on k individual samples. Hence, the generalized pivotal quantity for the
common SNR R, is given by

i=1,2,... k. (26)

"Ry, G
mzzﬁ—f/zﬁ——, (27)
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where Ry, is defined in Eq. (26) and Ry (6, can be obtained from Eq. (3) which
is obtained by

1 R, R% R?
Ry y=—1— =Eps+ Ly — =2 28
Var(6:) = ( Rigﬂs-ﬁ- 4R§’zu4 4RJ§ ) (28)

Uz
i =1

Therefore, the 100(1 — )% two-sided confidence interval for the common
SNR 7 based on the GCI approach is defined by

where i3 = ni i (X” — Xi)B and Hiqa = L zl: (XZJ — Xz)4
i =1

Clc.ger = (Le.ger, Uc.aer) = (Rn(a/2)7Rn(1 —a/2)), (29)

where R, is defined in Eq. (27) and R, (p) denotes the p-th quantile of R,,.

4.2 The Large-Sample Confidence Interval for the Common
Signal-to-Noise Ratio

Graybill and Deal [5] and Tian and Wu [16] proposed the large-sample estimator
of the common parameter of interest. The large-sample estimate of the SNR, is
a pooled estimated estimator, is given by

A—zk: d > ! (30)
1= Var(0;)! = Var(6;)’

where 6; = X;/S; and Var(éi) is an estimate of

;o1 i T 1
Var(0;y = — (1 — Jatis + 1ooHia = om ) (31)

n; _ _

where Hi3 = i Z(Xij - X,L')B and Hi4a = L (X,'j - X’i)4 which i and 0'1-2
i=1

replaced by Z; and s?, respectively.

Therefore, the 100(1 — )% two-sided confidence interval for the common
SNR 7 based on the large-sample approach is defined by

Cle.rs = (Le.ns,Uc.rs)

where 2;_,/; denotes the (1 — a/2)-th quantile of the standard normal
distribution.
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4.3 The Adjusted Method of Variance Estimates Recovery
(Adjusted MOVER) Confidence Interval for the Common
Signal-to-Noise Ratio

Using Egs. (16)—(19), the lower and upper limits for 8; based on the i-th sample
fori=1,2,...,k are given by

165 — /([156)2 — Linwia (215 — 1i1)(265 — wiz)
= ! (33)
i (265 — ug2)

and
b+ (363)% — winlio (20 — uin ) (265 — L)
U; = N ) (34)
li2(26; — li2)
where
N S; " Si

(linswin) = (i —tn,—11-2 \/77, fri +tn,—11-2 \/771)

and

n; — 1)s? n; —1)s?
(li27ui2) = (21 ) L ) ( 12 ) L .
Xni—1,1—2 Xn;i—1,2

Thangjai and Niwitpong [14] introduced the adjusted MOVER approach to
construct the confidence interval for the common parameter. This approach uses
the concepts of the large-sample approach and MOVER approach. Hence, the
common SNR 7 is a weighted average of 6; based on k individual samples. Then

NS
= Z Var(éi)/; m’ )

i=1

where the variance estimate for 6; at 8; = [; and 6; = u; is the average variance
between these two variances and given by

Var(d;) = - <(é" —b)* (i éi)Q) =2, k. (36)

2 2
2 Zoc/2 Za/2

Therefore, the 100(1 — «)% two-sided confidence interval for the common
SNR 7 based on the adjusted MOVER approach is defined by

Clc.am = (Le.av, Uc.am) (37)
k 22/2 k 22/2
= A—Z,a 1 Aai,A‘FZfa 1 aiA,
(n 1—a/2 /; (gi_li)Q n 1—a/2 /; (s —Qi)Q)

where z, denotes the p-th quantile of the standard normal distribution, 7 is
defined in Eq. (35), and I; and u; are defined in Egs. (33)—(34).




CIs for Functions of the Normal SNRs 205

5 Simulation Studies

In this section, a Monte Carlo simulation was used to evaluate the performance
of all confidence intervals. First, a simulation is performed to compare the given
approaches in Sect. 2. Second, simulation is performed to compare the approaches
in Sect. 3. Finally, the simulation is performed to compare the approaches in
Sect. 4.

For single SNR, the sample sizes are n = 15, 25, 50, 100, and 200. Following
Albatineh et al. [1], the mean p = 10 and the standard deviation o = 10, 5, 3, 1
are set. The SNR is computed by 6 = u/o as § = 1.00, 2.00, 3.33, and 10.00.
For each parameters and sample size combination, 5000 random samples are
generated. For each of these 5000 random samples, 2500 Ry’s are simulated. The
coverage probabilities and average widths of 95% two-sided confidence intervals
for 8 are reported in Table 1. The average widths of all approaches increase when
the SNR value increases, but the averages widths decrease when the sample size
increases. For averages widths, the simulation results are similar to those of

Table 1. The coverage probabilities (CP) and average widths (AW) of 95% two-sided
confidence intervals for signal to noise of normal distribution

n |0 Cls.cer Cls.Ls Cls.movER
CP AW CP AW CP AW
15| 1.000.9512|1.2939|0.9046 | 1.1667 | 0.9546 | 1.3656
2.0010.9496 | 1.8673 | 0.8694 | 1.5499 | 0.9574 | 1.9127
3.3310.9476 | 2.7851 | 0.8468 | 2.2054 | 0.9530 | 2.8168
10.00 | 0.9462 | 7.8517 | 0.8310 | 5.9761 | 0.9480 | 7.8627
25| 1.000.9452 | 0.9837 | 0.9182 | 0.9290 | 0.9494 | 1.0143
2.00 /0.9512 | 1.4042 | 0.9062 | 1.2579 | 0.9576 | 1.4243
3.3310.9420 | 2.0929 | 0.8960 | 1.8179 | 0.9480 | 2.1057
10.00 | 0.9462 | 5.8540 | 0.8784 | 4.9726 | 0.9460 | 5.8584
50| 1.00|0.9454 | 0.6865 | 0.9360 | 0.6689 | 0.9508 | 0.6967
2.00 1 0.9508 | 0.9777 1 0.9266 | 0.9220 | 0.9538 | 0.9842
3.3310.9448 | 1.4452 1 0.9166 | 1.3517 | 0.9488 | 1.4496
10.00 | 0.9478 | 4.0361 | 0.9180 | 3.7185 | 0.9484 | 4.0364
100 | 1.00|0.9484 | 0.4826 | 0.9416 | 0.4758 | 0.9532 | 0.4858
2.0010.9470 | 0.6862 | 0.9372 | 0.6691 | 0.9486 | 0.6885
3.3310.9490 | 1.0123 | 0.9350 | 0.9763 | 0.9496 | 1.0140
10.00 | 0.9488 | 2.8276 | 0.9374 | 2.7217 | 0.9492 | 2.8277
200 1.00 |0.9492 | 0.3407 | 0.9448 | 0.3383 1 0.9482 | 0.3419
2.0010.9540 | 0.4821 | 0.9482 | 0.4752 | 0.9532 | 0.4827
3.3310.9398 | 0.7145 | 0.9322 | 0.7010 | 0.9420 | 0.7143
10.00 | 0.9466 | 1.9940 | 0.9406 | 1.9515 | 0.9462 | 1.9930
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Table 2. The coverage probabilities (CP) and average widths (AW) of 95% two-sided
confidence intervals for the difference of signal to noise ratios of normal distributions

(n1,n2) (01,62) Clp.gcr Clp.Ls Clp.MOVER

CP AW Cp AW CP AW

10.00, 1.00) |0.9530| 7.9249 | 0.8454 | 6.1028 | 0.9554 | 7.9432
10.00, 2.00) | 0.9516 | 8.0476 | 0.8444 | 6.2165 | 0.9528 | 8.0631
10.00, 3.33) |0.9478 | 8.3541 | 0.8446 | 6.3921 | 0.9492 | 8.3654
10.00, 10.00) | 0.9474 | 11.1580 | 0.8458 | 8.6109 | 0.9482 | 11.1512
10.00, 1.00) |0.9514| 7.9195|0.8444 | 6.0756 | 0.9512 | 7.9313
10.00, 2.00) |0.9428 | 7.9349 | 0.8416 | 6.1089 | 0.9430 | 7.9480
10.00, 3.33) |0.9530| 8.10450.8430 | 6.2892|0.9536 | 8.1120
10.00, 10.00) | 0.9480 | 9.8182|0.8612 | 7.8710 | 0.9490 | 9.8064
10.00, 1.00) |0.9538| 5.9545|0.8998 | 5.1092 | 0.9544 | 5.9619
10.00, 2.00) |0.9494 | 6.0569 | 0.8894 | 5.1864 | 0.9504 | 6.0641
10.00, 3.33) |0.9438| 6.2400 | 0.8932 | 5.3868 | 0.9434 | 6.2445
10.00, 10.00) | 0.9438 | 8.3374 | 0.8896 | 7.1549 | 0.9454 | 8.3288
10.00, 1.00) |0.9538| 5.8785|0.8960 | 5.0379 | 0.9530 | 5.8850
10.00, 2.00) |0.9520| 5.9615|0.8936 | 5.1121|0.9520 | 5.9666
10.00, 3.33) |0.9482| 6.0506 | 0.8886 | 5.2180 | 0.9496 | 6.0517
10.00, 10.00) | 0.9532| 7.1508 | 0.9036 | 6.2866 | 0.9528 | 7.1458
10.00, 1.00) |0.9478| 4.1099 | 0.9206 | 3.7970 | 0.9484 | 4.1100
10.00, 2.00) |0.9508 | 4.1687 | 0.9220 | 3.8579 | 0.9484 | 4.1710
10.00, 3.33) |0.9484 | 4.3088|0.9196 | 3.9905 | 0.9486 | 4.3077
10.00, 10.00) | 0.9502 | 5.7434|0.9232 | 5.3105 | 0.9500 | 5.7378
10.00, 1.00) |0.9514| 4.0841|0.9226 | 3.7794 | 0.9518 | 4.0844
10.00, 2.00) |0.9484 | 4.1043|0.9194 | 3.7964 | 0.9490 | 4.1056
10.00, 3.33) |0.9498 | 4.1691|0.9248 | 3.8622 | 0.9508 | 4.1702
10.00, 10.00) | 0.9496 | 4.9561 | 0.9290 | 4.6531 | 0.9494 | 4.9532
10.00, 1.00) |0.9472| 2.8698|0.9322|2.7598 | 0.9478 | 2.8708
10.00, 2.00) |0.9484| 2.9136 | 0.9308 | 2.8028 | 0.9494 | 2.9138
10.00, 3.33) |0.9472| 3.0105|0.9358 | 2.8962 | 0.9478 | 3.0116
10.00, 10.00) | 0.9534 | 4.0128 | 0.9424 | 3.8707 | 0.9552 | 4.0105
10.00, 1.00) |0.9484 | 2.8554|0.9338 | 2.7484 | 0.9492 | 2.8554
10.00, 2.00) |0.9494| 2.8769 | 0.9372 | 2.7655 | 0.9500 | 2.8762
10.00, 3.33) |0.9498 | 2.9215|0.9338 |2.8110|0.9514 | 2.9215
10.00, 10.00) | 0.9500 | 3.4666 | 0.9384 | 3.3591 | 0.9500 | 3.4658
10.00, 1.00) |0.9520| 2.0203|0.9430 | 1.9830|0.9522 | 2.0194
10.00, 2.00) |0.9528 | 2.0520 | 0.9432 | 2.0074 | 0.9520 | 2.0507
10.00, 3.33) 0.9490| 2.1161|0.9398 | 2.0724 | 0.9472 | 2.1154
10.00, 10.00) | 0.9508 | 2.8184 |0.9472 | 2.7678 | 0.9516 | 2.8169

(15, 15)

(15, 25)

(25, 25)

(25, 50)

(50, 50)

(50, 100)

(100, 100)

(100, 200)

(200, 200)

~~~~ |~~~ |~~~ |~~~ "~~~ "~~|~~~~~|~|~|~|~|~|~|~|—~
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Table 3. The coverage probabilities (CP) and average widths (AW) of 95% of two-
sided confidence intervals for the common signal to noise ratio of normal distributions:

3 sample cases

(n17 n2, n3)

Clc.cer

Clc.Ls

Clc.am

CP

AW

CP

AW

CP

AW

(15, 15, 15)

1.00

0.9666

0.8533

0.8990

0.6503

0.9596

0.7786

2.00

0.9852

1.6012

0.8546

0.8329

0.9576

1.0775

3.33

0.9966

3.9533

0.8222

1.1637

0.9560

1.5722

10.00

1.0000

18.5896

0.8098

3.1348

0.9516

4.3531

(25, 25, 25)

1.00

0.9628

0.6225

0.9198

0.5199

0.9576

0.5810

2.00

0.9814

1.0292

0.8928

0.6929

0.9546

0.8115

3.33

0.9936

1.8716

0.8792

0.9960

0.9506

1.1918

10.00

0.9982

8.2291

0.8740

2.7277

0.9504

3.3116

(50, 50, 50)

1.00

0.9586

0.4198

0.9352

0.3786

0.9544

0.4010

2.00

0.9748

0.6568

0.9246

0.5179

0.9540

0.5639

3.33

0.9838

1.0596

0.9102

0.7553

0.9506

0.8304

10.00

0.9942

3.4041

0.9184

2.0888

0.9534

2.3123

(15, 25, 50)

1.00

0.9608

0.5643

0.9204

0.4800

0.9530

0.5264

2.00

0.9802

1.0680

0.9004

0.6423

0.9582

0.7360

3.33

0.9948

2.6839

0.8862

0.9271

0.9528

1.0826

10.00

0.9996

13.8921

0.8688

2.5386

0.9482

3.0125

(100, 100, 100)

1.00

0.9522

0.2880

0.9422

0.2719

0.9510

0.2803

2.00

0.9654

0.4330

0.9390

0.3790

0.9518

0.3952

3.33

0.9696

0.6715

0.9290

0.5557

0.9502

0.5830

10.00

0.9832

1.9730

0.9392

1.5442

0.9544

1.6256

(25, 50, 100)

1.00

0.9598

0.3861

0.9382

0.3525

0.9536

0.3699

2.00

0.9720

0.6192

0.9222

0.4840

0.9510

0.5211

3.33

0.9866

1.1764

0.9238

0.7063

0.9570

0.7677

10.00

0.9958

5.6740

0.9100

1.9517

0.9484

2.1347

(50, 100, 200)

1.00

0.9548

0.2652

0.9482

0.2525

0.9564

0.2590

2.00

0.9638

0.4011

0.9378

0.3527

0.9514

0.3656

3.33

0.9726

0.6423

0.9354

0.5173

0.9532

0.5389

10.00

0.9842

2.0848

0.9328

1.4368

0.9492

1.5034

(200, 200, 200)

1.00

0.9458

0.2000

0.9416

0.1940

0.9458

0.1970

2.00

0.9622

0.2930

0.9438

0.2721

0.9536

0.2783

3.33

0.9656

0.4446

0.9364

0.4011

0.9498

0.4108

10.00

0.9712

1.2725

0.9426

1.1147

0.9532

1.1461
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Table 4. The coverage probabilities (CP) and average widths (AW) of 95% of two-
sided confidence intervals for the common signal to noise ratio of normal distributions:
6 sample cases

(n1,n2,n3,n4, M5, N6) Ui Clc.cor Clc.Ls Clc.am
CP AW CcP AW CP AW
(15, 15,15,15,15, 15) 1.00 [ 0.9690 | 0.6220  0.8904 | 0.4553 | 0.9632 | 0.5497

2.000.9924 | 1.6096 | 0.8514 | 0.5776 | 0.9652 | 0.7570
3.3310.9994 | 6.7473 | 0.8204 | 0.8054 | 0.9578 | 1.1025
10.00 | 1.0000 | 35.5802 | 0.7834 | 2.1551 | 0.9440 | 3.0478
(25,25,25,25,25,25) 1.00 1 0.9616 | 0.4487|0.9214 | 0.3658 | 0.9600 | 0.4105
2.0010.9852 | 0.8036 | 0.8892 | 0.4831 | 0.9534 | 0.5726
3.3310.9970 | 2.1502|0.8734 | 0.6925 | 0.9508 | 0.8393
10.00 | 1.0000 | 18.6178 | 0.8592 | 1.8946 | 0.9452 | 2.3275
(50, 50, 50, 50, 50, 50) 1.00 1 0.9590 | 0.2997 | 0.9320 | 0.2667 | 0.9554 | 0.2833
2.000.9784 | 0.4863|0.91820.3643 | 0.9532 | 0.3981
3.3310.9922 | 0.8554 | 0.9070 | 0.5306 | 0.9512 | 0.5862
10.00{0.9994 | 3.7716 | 0.9060 | 1.4653 | 0.9436 | 1.6312
(15,15, 25,25, 50, 50) 1.00 1 0.9580 | 0.4050 | 0.9238 | 0.3369 | 0.9530 | 0.3714
2.0010.9862 | 0.8990|0.8968 | 0.4507 | 0.9544 | 0.5195
3.3310.9982| 3.3789|0.8826 | 0.6473 | 0.9550 | 0.7629
10.00 | 1.0000 | 22.4223 | 0.8606 | 1.7675 | 0.9430 | 2.1186
(100, 100, 100, 100, 100, 100) | 1.00|0.9588 | 0.2052|0.9464 | 0.1919 | 0.9564 | 0.1981
2.000.9702| 0.31490.9380 | 0.2671 | 0.9530 | 0.2793
3.3310.9798 | 0.5034 | 0.9342 | 0.3915 | 0.9538 | 0.4118
10.00 | 0.9876 | 1.5616 | 0.9306 | 1.0879 | 0.9512 | 1.1480
(25,25, 50, 50, 100, 100) 1.00 1 0.9610 | 0.2755|0.9394 | 0.2478 | 0.9586 | 0.2613
2.000.9770 | 0.4615|0.9274 | 0.3413 | 0.9550 | 0.3679
3.3310.9926 | 1.1577|0.9144 | 0.4963 | 0.9472 | 0.5417
10.00 | 0.9998 | 8.9890 | 0.9056 | 1.3740 | 0.9476 | 1.5096
(50, 50, 100, 100, 200, 200) 1.00 1 0.9612 | 0.1887|0.9506 | 0.1784 | 0.9580 | 0.1831
2.000.9704 | 0.2904 | 0.9388 | 0.2483 | 0.9550 | 0.2583
3.3310.9778 | 0.4870|0.9334 | 0.3640 | 0.9500 | 0.3810
10.00 | 0.9948 | 1.9740 | 0.9288|1.0133 | 0.9510 | 1.0632
(200, 200, 200, 200, 200,200) | 1.00 | 0.9506 | 0.14210.9466 | 0.1371 | 0.9510 | 0.1393
2.0010.9614 | 0.2102|0.9424 | 0.1922 | 0.9502 | 0.1967
3.3310.9666 | 0.3226 | 0.9446 | 0.2829 | 0.9514 | 0.2904
10.00 1 0.9730 | 0.9370|0.9394 | 0.7869 | 0.9478 | 0.8096
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Albatineh et al. [1]. The coverage probabilities of the GCI and large-sample
approaches are less than nominal confidence level of 0.95, whereas the coverage
probabilities of the MOVER approach are close to nominal confidence level of
0.95. Therefore, the confidence interval based on the MOVER approach performs
the best confidence interval in terms of the coverage probability.

For the difference of SNRs, the sample sizes are (nq,n2) = (15, 15), (15, 25),
(25, 25), (25, 50), (50, 50), (50, 100), (100, 100), (100, 200), and (200, 200).
The population means are (ui,p2) = (10, 10) and the population standard
deviation are o1 = 1, oo = 10,5, 3, 1. Hence, the SNRs (61,602) = (10.00, 1.00),
(10.00, 2.00), (10.00, 3.33), and (10.00, 10.00) are obtained. For each parameter
setting, 5000 random samples are generated, and within each of the 5000 random
samples, 2500 R;’s are obtained. The coverage probabilities and average widths
of 95% two-sided confidence intervals for § are presented in Table 2. The average
widths of all the proposed approaches decrease when the sample size increases.
Overall, the MOVER approach is better than the other approaches in terms of
coverage probability.

For the common SNR, the sample cases are k = 3 and k = 6. The sample sizes
are given in the following tables. For ¢ = 1,2,..., k, the population means are
p1 = po = ... = pr = 4 = 10 and the population standard deviations are com-
puted by o; = p;/n;, where the common SNR n = 1.00, 2.00, 3.33, and 10.00. For
each parameter setting, 5000 random samples are generated and thus 2500 R,,’s
are obtained for each of the random samples. Tables 3 and 4 present the coverage
probabilities and average widths for k = 3 and k = 6 sample cases, respectively.
For n = 1.00, the coverage probabilities of the GCI approach perform as well as
those of the adjusted MOVER approach, but the average widths of the adjusted
MOVER approach are shorter than that of the GCI approach. For n > 2.00, the
coverage probabilities of the GCI approach are in the range from 0.96 to 1.00.
Hence, the generalized confidence interval is a conservative confidence interval
when 1 > 2.00. The coverage probabilities of the large-sample approach are less
than nominal confidence level of 0.95 for all cases. The coverage probabilities of
the adjusted MOVER approach are greater than a nominal confidence level of
0.95in almost all cases. Therefore, the adjusted MOVER approach can be used
to estimate the confidence interval for the common SNR of normal distributions.

6 An Empirical Application

In this section, three examples are given to illustrate the proposed approaches.

Example 1: The data reported by Albatineh et al. [1] are about the heights of
50 nano-pillars in nano-meters. The summary statistics are n = 50, x = 305.58,
s = 36.97, and 6 = 8.27. The 95% two-sided confidence interval for the SNR
based on the GCI approach is (6.6415, 9.9170) with confidence width 3.2755.
The 95% two-sided confidence interval for the SNR based on the large-sample
approach is (6.6932, 9.8376) with confidence width 3.1444. The 95% two-sided
confidence interval for the SNR based on the MOVER approach is (6.6131,
9.9241) with confidence width 3.3110. It can be seen that the confidence interval
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of all the proposed approaches contains the true SNR. The confidence width of
the MOVER approach is greater than the confidence widths of the large-sample
and GCI approaches, while the large-sample approach provides the width shorter
than the GCI approach. Therefore, these results confirm the simulation results
in Table 1.

Example 2: The data considered by Devore [3] and Niwitpong and Wongkhao
[11]. The data are dry density of cyclic strength using Pitcher sampling method
and Block sampling method, see Devore [3]. The Pitcher sampling yields ny =
24, 1 = 103.6583, s; = 3.7376, and 6; = 27.7339. The Block sampling yields
ng = 11, To = 101.1091, s5 = 3.6035, and ég = 28.0586. The difference of SNRs is
5= él —ég = —0.3247. The 95% two-sided confidence interval for the difference of
SNRs based on the GCI approach is (—14.5837,13.5241) with confidence width
28.1078. The 95% two-sided confidence interval for the difference of SNRs based
on the large-sample approach is (—7.3549, 6.7053) with confidence width 14.0602.
The 95% two-sided confidence interval for the difference of SNRs based on the
MOVER approach is (—14.8357, 14.1452) with confidence width 28.9809. The
confidence width of the large-sample approach is shorter than the confidence
widths of the GCI approach and the MOVER approach. Hence, the results from
this example support the simulation results in Table 2.

Example 3: The data collected by Tsou [17] and previously considered by
Gokpinar and Gokpinar [8]. The data consist of 156 observations of numbers
of birth in 1978 in & = 3 groups: Monday, Thursday, and Saturday, with
ni; = ng = ng = 52. A summary of the data are T; = 9350.346(), To = 9471.4@20,
T3 = 8309.3270, s1 = 613.2140, so = 554.8795, s5 = 390.2555, 61 = 15.2481, 05 =
17.0694, and ég = 21.2920. The 95% two-sided confidence interval for the com-
mon SNR based on the GCI approach is (15.0284, 22.9194) with confidence width
7.8910. The 95% two-sided confidence interval for the common SNR based on the
large-sample approach is (16.2237, 19.9769) with confidence width 3.7532. The
95% two-sided confidence interval for the common SNR based on the adjusted
MOVER approach is (15.2742, 19.1691) with confidence width 3.8949. The con-
fidence width of the GCI approach is greater than those of the confidence widths
of the large-sample and the adjusted MOVER approaches. Therefore, the results
confirm the simulation results in Table 3.

7 Discussion and Conclusions

In this paper, the confidence intervals for SNR of normal distribution were con-
structed using the GCI approach, the large-sample approach, and the MOVER
approach. Moreover, the GCI approach, the large-sample approach, and the
MOVER approach were used to construct the confidence intervals for the dif-
ference between two SNRs of normal distribution. Furthermore, the confidence
interval estimation for the common SNR of several normal distributions based on
the GCI approach, the large-sample approach, and the adjusted MOVER, app-
roach were presented. The performances of all the proposed confidence intervals
were evaluated via Monte Carlo simulations.
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For single SNR, the results are similar to the paper by Albatineh et al. [1]
in terms of average width. The coverage probabilities of the MOVER, approach
were satisfactorily stable around 0.95. Therefore, the MOVER approach is rec-
ommended to construct confidence interval for the SNR of normal distribution.
The coverage probabilities of the GCI approach and the large-sample approach
are less than nominal confidence level. Hence, the GCI approach and the large-
sample approach are not recommended to construct the confidence intervals for
the SNR of normal distribution.

For difference of SNRs, the coverage probabilities of the MOVER, approach
were satisfactorily stable around 0.95. Therefore, the MOVER approach is rec-
ommended to construct confidence interval for the difference between two SNRs
of normal distributions. Moreover, the GCI approach can be used as an alterna-
tive for constructing the confidence interval.

For common SNR, the generalized confidence interval is a conservative confi-
dence interval when 1 > 2.00. Hence, the GCI approach can be used to estimate
confidence interval for common SNR of normal distributions when 1 = 1.00, but
it is not recommended to estimate the confidence interval when n > 2.00. The
large-sample approach is not recommended to construct the confidence interval
for the common SNR because the coverage probabilities are less than nomi-
nal confidence level. The coverage probabilities of the adjusted MOVER app-
roach are greater than a nominal confidence level 0.95. Therefore, the adjusted
MOVER approach is recommended to estimate the confidence interval for the
common SNR of normal distributions.
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