
Self-managing Internet of Things

Danny Weyns1(B), Gowri Sankar Ramachandran2, and Ritesh Kumar Singh1

1 Department of Computer Science, KU Leuven, Leuven, Belgium
danny.weyns@kuleuven.be

2 University of Southern California, Los Angeles, USA

Abstract. Internet of Things (IoT) are in full expansion. Applications
range from factory floors to smart city environments. IoT applications
consist of battery powered small computing devices (motes) that com-
municate wirelessly and interact with the environment through sensors
and actuators. A key challenge that IoT engineers face is how to manage
such systems that are subject to inherent uncertainties in their opera-
tion contexts, such as interferences and dynamic traffic in the network.
Often these uncertainties are difficult to predict at development time.
In practice, IoT applications are therefore typically over-provisioned at
deployment; however, this leads to inefficiency. In this paper, we make
a case for IoT applications that manage themselves at runtime to deal
with uncertainties. We contribute: (1) a set of concerns that motivate the
need for self-management for IoT systems, (2) three initial approaches
that illustrate the potential of realising self-managing IoT systems, and
(3) a set of open challenges for future research on self-adaptation in IoT.

Keywords: Internet-of-Things · IoT · Uncertainties
Self-adaptation · Self-management

1 Introduction

Internet of Things (IoT) consist of tiny embedded and battery powered comput-
ing device (motes) that are equipped with a low-power wireless radio, sensors
and actuators. These motes form networks that are capable of monitoring and
controlling the physical world and thereby connecting digital processes to our
physical environment. IoT applications are widely deployed in the context of
industries and smart cities, see for example [5,18,21]. Typically, IoT applica-
tions require resources for computation, sensing, actuation and communication.
Continuous management and maintenance of these resources is critical for accom-
plishing the desired stakeholder goals. This problem is particularly challenging
due to the large scale nature of IoT deployments and the conditions under which
they may need to operate that are often difficult to predict [17].

Consider an application example in the context of factory floor monitoring:
an IoT application is deployed on the factory floor to monitor the operational
conditions of the machines and production lines. In order to maintain the pro-
ductivity and the efficiency of the factory floor, machines have to be operational
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 67–84, 2018.
https://doi.org/10.1007/978-3-319-73117-9_5

68 D. Weyns et al.

24/7. To ensure this requirement, the machines are equipped with sensors that
continuously monitor the temperature and the vibration profile of the machines.
Whenever an abnormality is detected, the application is reconfigured to sense
additional parameters of the machine. This allows fine-grained tracking of the
factory environment and alarming operators in case an intervention is required.
In such an application scenario, the IoT application must have capabilities to
manage the resources for sensing, computation and communication. In addition,
this application scenario highlights the dynamic nature of IoT applications.

Resource demands of IoT applications fluctuate during run-time due their
event-driven nature [29]. Consider another application in the context of a smart
building that monitors the comfort level of employees and actuates the heating
when the temperature is too low, or alternatively the air condition when the
temperature is too warm, and regulates the light when the light condition change.
However, in the event of a fire detected in the building, the application has to be
reconfigured to actuate an alarm, and stream a video to assist the fire personnel
to rescue people. While monitoring the comfort level, the application requires
low bandwidth, since the transmission of temperature and light reading requires
few bytes of data. However, in the event of fire, the application requires high
bandwidth, since the streaming of video requires at least kilo bytes of data.
The ability of an IoT application to manage such dynamics autonomously and
correctly is highly critical in such application scenarios.

A key underlying problem that IoT engineers face are uncertainties in the
operation contexts of the applications, internal dynamics, and even changes in
the requirements during operation. Often these uncertainties are difficult to pre-
dict at development time and can only be resolved during operation. To tackle
these run-time uncertainties, IoT applications are typically over-provisioned at
deployment. Although such an approach fulfil some of the desired application
goals, e.g. the reliability, it comes at a cost of high energy consumption. Since
IoT applications are battery powered, it is important to minimise its battery
consumption to maximise their lifetime. With over-provisioning, IoT applica-
tions tend to be configured for worst case demands, which result in high radio
use for wireless communication. According to literature, radio dominates the
energy consumption in IoT application [22]. Minimising the radio usage is a
major requirement for achieving a longer lifetime. Self-management frameworks
that track the system and its context at runtime to resolve uncertainties during
operation is essential for resource and energy constrained IoT applications.

The contributions of this paper are: (1) a set of concerns that motivate why we
need self-management for IoT systems, (2) an overview of three initial approaches
towards tackling some of the challenges in realising self-managing IoT systems,
and (3) a set of open problems for future research on self-adaptation in the IoT
domain.

The remainder of this paper is structured as follows. In Sect. 2, we provide
a brief introduction to self-adaptation. Section 3 elaborates on the need for self-
management in IoT and its specific challenges. Section 4 highlights a number of
our initial efforts that aim to contribute towards tackling some of the challenges.
Finally, Sect. 5 presents a set of open problems for future research in this area
that we identified from our experiences.

Self-managing Internet of Things 69

2 Background on Self-adaptation

Dealing with uncertainties is an increasingly important challenge for software
engineers. Here our focus is on the ability of software systems to deal with uncer-
tainties that needs to be resolved at runtime [7,16,20]. A prominent approach
to deal with uncertainties at runtime is so called self-adaptation [8,12,13,19,33].
Self-adaptation equips a software system with a feedback loop that collects data
of the system and its environment that was difficult or impossible to determine
before deployment. The feedback loop uses the collected data to reason about
itself and to adapt itself to changes in order to provide the required quality goals,
or gracefully degrade if needed. A typical example is a self-managing Web-based
client-server system that continuously tracks and analyzes changes in work load
and available bandwidth and dynamically adapts the server configuration to
provide the required quality of service to its users, while minimising costs [8].

Self-adaptation can be considered from two perspectives [30]: (1) the ability of
a system to adjust its behaviour in response to the perception of the environment
and the system itself [3,15]; the self prefix indicates that the system decides and
adapts autonomously (i.e., without or with minimal interference of humans)
[2], and (2) the mechanisms that are used to realises self-adaptation, typically
by means of a closed feedback loop [1,8,32], i.e. there is an explicit separation
between a part of the system that deals with the domain concerns (goals for
which the system is built) and a part that deals the adaptation concerns (the
way the system realises its goals under changing conditions). Figure 1 shows the
basic building blocks of a self-adaptive system, taken from [30].

Environment

Adaptation
Goals Managing

System

Managed System

effect

adapt

sense

sense

read

Self-Adaptive System

Fig. 1. Basic building blocks of a self-adaptive system [30]

70 D. Weyns et al.

The environment refers to the part of the external world with which the self-
adaptive system interacts and in which the effects of the system can be observed
[10]. The managed system comprises the application code that realizes the sys-
tems domain functionality. The managing system manages the managed system;
that is, the managing system collects runtime data, reasons about this data and
adapts the managed system to deal with one or more adaption goals. The adap-
tation goals are concerns of the managing system over the managed system; they
usually relate to the software qualities of the managed system. Adaptation goals
themselves can be subject of change (which is not shown in Fig. 1). A typical
approach to structure the software of the managing system is by means of a so-
called Monitor-Analyser-Planner-Executer + Knowledge feedback loop [4,12,26]
(MAPE-K loop in short). The Monitor collects runtime data from the managed
system and the environment and uses this to update the content of the Knowl-
edge. Based on the current knowledge, the Analyser determines whether there
is a need for adaptation of the managed system using the adaptation goals. If
adaptation is required, the Planner puts together a plan that consists of a set
of adaptation actions that are then enacted by the Executor that adapts the
managed system as needed.

In the past few years, research in this area has particularly been focussing on
how to provide assurances for the adaptation goals of self-adaptive systems that
operate under uncertain operating conditions [14,31]. This is particularly impor-
tant for systems with strict quality goals. Such systems require the provision of
evidence that the system requirements are satisfied during its entire lifetime,
from inception to and throughout operation. It is important to highlight that
this evidence must be produced despite the uncertainty in the environment, the
behaviour of the system itself and its requirements.

3 Why Do We Need Self-management in IoT?

IoT applications are inherently resource-constrained and subject to various types
of dynamics during operation. These dynamics manifest themselves at different
layers of the IoT technology stack. Figure 1 shows the typical layers of IoT appli-
cations. We highlight management concerns related to dynamics and uncertain-
ties at different layers.

Things. The primary elements of IoT applications are battery powered motes.
Consequently, energy consumption is a crucial aspect, as changing batteries
is costly, or sometimes even not possible. The primary factor that determines
energy consumption is communication, so the network should be configured care-
fully to avoid unnecessary communication. Motes of monitoring applications are
equipped with sensors to sense the environment, such as RFID sensors, infrared
and temperature sensors. However, IoT applications are not restricted to merely
sensing and may also control elements in the environment, such as lightbulbs,
heating devices, valves etc. Sensors and actuators are subject to all kind of
uncertainties, ranging from inaccurate sampling or actuating up to failure.

Communication. IoT deployments primarily rely on wireless communication
to relay sensor data to a central server. Wireless communication is subject to

Self-managing Internet of Things 71

 Cross Domain

cloud
reyaL ssorC

Applications: Collaborations, Processes

Platform: Connectivity, Information
Exchange, Analytics, Monitoring, Control

Communication: Routing and
Processing Units

Industrial Food Healthcare Transportation

Fig. 2. Typical layers of IoT applications

runtime uncertainties, such as interferences, noise, and multi-path fading effects.
Different communication technologies with dedicated protocols are applied to
support different settings. For example, bluetooth enables establishing on the
fly local networks between mobile entities, while a LoRa mesh network can sup-
port efficient very long range communication. Mobility may introduce particular
challenges to reliable communication. Run-time uncertainties in communication
result in packet loss. In such cases, it is important to reconfigure the wireless
communication network to minimise packet loss (e.g. route messages differently
in a multi-hop network setting).

Platform. Platforms provide the glue between user applications and the
underlying IoT resources. An IoT platform offers a variety of services to applica-
tions and application developers, including a runtime environment, programming
APIs etc. Platform services may range from the provision of basic resources to
storage facilities up to advanced analytics and control management of under-
lying IoT resources. Crucial aspects in a distributed context are information
exchange, monitoring and control services. Platforms can be deployed on var-
ious infrastructures, ranging from dedicated machines to a public cloud. IoT
platforms and the infrastructure on which they are deployed can be subject of
various sources of dynamics, typical examples are changes in the availability of
resources, and dynamics in load (e.g. in a multi-tenant setting).

Applications. Application themselves can be subject of change, which in turn
may affect the configuration of underlying layers. In the data-driven society, IoT
deployments are acting as a catalyst to meet the demands of stakeholders in
various disciplines. In the context of a smart city for example, garbage man-
agement units can support collection schedules for different parts of the city
by knowing the status of individual garbage cans. Similarly, traffic regulators
can dynamically alter the traffic routes in a city by knowing the traffic flows in

72 D. Weyns et al.

various parts of the city. These examples show that the sensor data produced
by IoT deployments may be consumed by multiple stakeholders to tackle vari-
ous societal issues. Such multidisciplinary approaches require the integration of
domain specific knowledge into IoT deployments. Domain experts may modify
their requirements during run-time to collect a particular type of sensor data
with a specific setting.

Summary. We identified various concerns at different layers of the technology
stack of IoT systems that require management. Often these concerns are handled
either through over-provisioning (e.g. a conservative power settings of motes to
ensure sufficient reliability), or through human intervention (e.g. an operator
reconfigures the system to deal with temporal disruptions of service). Over-
provisioning leads to inefficiencies and reduced lifetime of IoT systems. Manual
intervention is not only very costly, it is also error prone. Hence, in order to
fulfil the application demands and deal with continuous change and runtime
uncertainty in a trustworthy manner, a self-management framework is essential.

4 Initial Contributions to Self-management in IoT

We highlight three initial contributions from our work that illustrate how self-
adaptation techniques enable IoT systems to manage themselves autonomously.
We start with Dawn that supports autonomous bandwidth allocation for IoT
systems. Then we show how Hitch Hiker enables self-adaptation for concerns
that cross multiple layers of IoT systems. Finally, we demonstrate how simulation
and statistical techniques can be exploited at runtime to provide guarantees for
a set of adaptation goals of an IoT application.

4.1 Autonomous Bandwidth Allocation Using Dawn

Dawn [24] is a self-management middleware for automatically configuring and
reconfiguring 6TiSCH [28] networks based upon the requirements of their resi-
dent software. 6TiSCH [28] is a de-facto standard in high-reliability, low-power
networking for the IoT. 6TiSCH networks are time synchronised and follow a
communication schedule that repeats over time. The atomic unit of the com-
munication schedule is a time slot. Time slots have a fixed, predefined duration,
long enough for a single radio transmission and acknowledgment. Each platform
is allocated a number of time slots in the schedule, that it then uses for com-
munication. Platforms save energy by sleeping during inactive time slots. Each
allocated time slot adds a quantum of communication bandwidth to the plat-
form. The more time slots are allocated in the schedule for a given platform,
the more data the platform can transmit per unit of time (higher bandwidth)
and has more frequent transmission opportunities (lower latency), at the cost of
higher energy consumption.

The schedule is typically created and maintained by an entity called the
network manager. For periodic application traffic with static requirements, this
process is straightforward. However, application dynamism, traffic periodicity

Self-managing Internet of Things 73

and traffic heterogeneity render approaches based on static bandwidth provision-
ing suboptimal. On one hand, over-provisioning bandwidth to account for the
worst case increases energy consumption. On the other hand, under-provisioning
bandwidth results in packet loss for non-deterministic traffic patterns due to
insufficient bandwidth and thus lower reliability. The challenge is therefore to
handle these non-deterministic traffic patterns while meeting requirements on
low latency or high bandwidth, as well as the application dynamism that arises
due to software and hardware reconfiguration. Practically, this means that each
individual node should be provisioned with the optimum amount of bandwidth,
and that this should be adjusted to meet the demands of runtime reconfiguration.

Dawn builds on top of LooCI binding model [9]. LooCI is a component based
middleware for developing and managing IoT applications. In LooCI, application
software is realized in the form of ’compositions’ of reusable components. Figure 3
shows an example LooCI composition, where a temperature and light sensor
component deployed on Node A communicate with an aggregator component on
Node B via a TEMP and LIGHT type binding, respectively. A LooCI binding
connects a component’s provided interface (shown as) to another component’s
required interface (shown as), and it is depicted as in Fig. 3.

Temp.
Sensor

Period=120s

Aggregator

Node A Node B

Light
Sensor

Period=120s
Logger

TEMP

LIGHT

LOG

[P]

[P]

[B]

Buffer=10

Fig. 3. Example composition of a component-based IoT application.

In the composition shown in Fig. 3, the temperature and light sensor com-
ponents are sources, while the aggregator component is a sink. All source com-
ponents are required to carry the standard Dawn property, period [P], which
provides the transmission frequency of the source component in seconds. In this
example, the temperature and light reading is transmitted once every 120 s. In
cases where a source component transmits sporadically, such as the triggering
of a PIR sensor, P provides the maximum rate at which the component may
transmit. As with all LooCI properties, the period property may be inspected
by external software or users. A component may also choose to allow runtime
modification of this property in cases where transmission frequencies are deter-
mined by the application composition.

74 D. Weyns et al.

Intermediate components are located between a source and sink in the com-
position graph. These components may expose either the period property or the
buffer property [B], which determines how many inputs the component will store
from its dependent before forwarding a message. In the example composition
shown in Fig. 3, the aggregator component buffers 10 sensor readings from the
light and temperature interfaces before transmitting the aggregated results to the
logger component. For each component in the composition with a buffer property
[B], the bandwidth requirement of the component is the aggregate bandwidth
requirement of its dependents. The property naming conventions such as period
[P] and buffer property [B] are standardised in Dawn, and it enables Dawn to
allocate optimal bandwidth for the compositions.

As can be seen from Fig. 3, the bandwidth requirement of a component
depends on its period and buffer properties as well as the properties of all of
its dependents in the component graph. The total bandwidth requirement of
a node is therefore the aggregate of the transmission frequencies of all compo-
nents with a remote binding. For the composition shown in Fig. 3, Node A has a
bandwidth requirement of 8 bytes every 120 s, since the payload sizes of TEMP
and LIGHT bindings are 5 and 3 bytes, respectively. However, Node B does not
have any bandwidth requirement, as bandwidth assignments are based only on
outgoing traffic and Node B has no remote bindings, thus there is no outgoing
traffic. All the outgoing traffic on the node, which are determined by the remote
bindings of components, require bandwidth resources from the network in order
to reliably transmit the data to the intended destination. Existing bandwidth
allocation approaches are static, which makes them suboptimal. In addition,
such approaches offer less flexibility in the face of runtime reconfiguration.

Runtime reconfiguration of a software composition can significantly impact
bandwidth requirements. Let us consider the software composition shown in
Fig. 4, which is functionally equivalent to the composition shown in Fig. 3, but
with a modified deployment location for the aggregator component and differ-
ent period property settings.

While both compositions are functionally equivalent, the bandwidth alloca-
tion required to support the composition in Fig. 4 is 40 bytes every 50 min is
50 times less than the configuration shown in Fig. 3, since the buffer becomes
full after receiving five sensor readings from both temperature and light sensor
components. From these example compositions, it can be seen that the band-
width requirement of the composition depends on the components and their
properties. An automatic composition analysis approach is therefore required to
extract bandwidth requirements from software compositions.

Dawn uses a composition analysis algorithm to derive the bandwidth require-
ments of application compositions, and then it invokes the bandwidth allocation
algorithm to allocate the desired bandwidth for the IoT platform.

Dawn handles runtime reconfiguration by listening for reconfiguration actions
at the middleware level. When reconfiguration is detected, the composition anal-
ysis and bandwidth allocation algorithms are executed. The process is fully auto-
mated and therefore imposes no burden on developers.

Self-managing Internet of Things 75

Temp.
Sensor

Period=600s

Aggregator

Node A Node B

Logger

[P]

[P]

Light
Sensor

Period=600s

TEMP

LIGHT

[B]

LOG

Buffer=10

Fig. 4. Reconfigured composition of a component-based IoT application shown in
Fig. 3.

Dawn elegantly automates the bandwidth reservation process, which enables
the application developer to build extremely flexible and dependable IoT appli-
cations. Evaluation results on a 50-node testbed show that Dawn provides 100%
reliability and manages to increase the lifetime by three-fold with minimal mem-
ory and performance overhead. For more information, we refer the interested
reader to [24].

4.2 Self-adaptation Across Layers with Hitch Hiker

Internet-of-Things (IoT) devices must operate for long periods on limited power
supplies. As discussed earlier, wireless communication is the primary source of
energy consumption for IoT devices [22]. The lifetime of IoT applications can
therefore be increased by minimising radio communication. Data aggregation
has been widely applied to tackle this problem [11,23,27]. Data aggregation is a
technique in which multiple messages are combined in to a single datagram, thus
reducing radio transmissions and hence, the energy consumption of IoT devices.
Furthermore, less frequent transmissions result in fewer collisions and therefore
retransmissions. This can significantly improve the performance of IoT devices.

Hitch Hiker is a middleware that uses application knowledge to perform data
aggregation based on the priority of the application data. Hitch Hiker allows the
application developers to classify its application traffic as high-priority and low-
priority based on its criticality. Hitch Hiker creates a data aggregation overlay
using the high-priority transmissions, and the low-priority data is aggregated
with high- priority transmissions. Hitch Hiker reduces the energy consumption,
while offering a flexible data aggregation scheme for application developers.

Figure 5 shows the building blocks of Hitch Hiker distributed across the dif-
ferent layers of network stack. Hitch Hiker supports two types of management:
centralized and decentralized. With the centralized scheme, the configuration
and maintenance of low priority Hitch Hiker bindings is done by a centralized
network manager. In this case, the central manager collects the information

76 D. Weyns et al.

1. Physical

2. Data-link

3. Network

4. Transport

5. Application

Comfort
 Level Runtime Probe

Hitch Hiker Bindings

Hiker

Hitch

set binding

Network
Manager

request binding

binding ack.

intercept req
u

est H
iker b

in
d

in
g

In
frastru

ctu
re ro

u
te d

isco
very

e.g. IPv6

e.g. CX-MAC
intercept

1. Physical

2. Data-link

3. Network

4. Transport

5. Application

Comfort
 Level

Runtime Probe

Hitch Hiker Bindings

Hiker

Hitch

set binding

e.g. IPv6

e.g. CX-MAC
intercept

A
d

-h
o

c ro
u

te d
isco

very

Application
Network

.....

Fig. 5. High level overview of Hitch Hiker [25].

about high priority bindings, and it sets up the network for low priority data
aggregation by configuring Hitch and Hiker protocols. In case of the decentralised
scheme, the network configuration process is delegated to all the nodes in the
network. Nodes self-configure themselves by coordinating and collaborating with
each other.

Hitch Hiker autonomously add and remove data aggregation support for
IoT applications using the existing high and low priority application bindings.
Whenever the application gets reconfigured, Hitch Hiker recompute the route to
retain the data aggregation functionality. If data aggregation route cannot be
estabilished using the existing application compositions, Hitch Hiker notifies the
application managers to take appropriate action.

Evaluation of the prototype implementation shows that Hitch Hiker consumes
minimal memory, introduces limited overhead and that transmitting messages
with Hitch Hiker consumes a small fraction of the energy that is required for a
standard radio transmission. The interested reader finds more information about
Hitch Hiker in [25].

Self-managing Internet of Things 77

4.3 Area Security Surveillance

In a joint R&D effort between imec-DistriNet and VersaSense1 we studied self-
adaptation for an area security surveillance application. The particular aim of
this work was to evaluate whether simulation combined with statistical tech-
niques can be used to provide guarantees for adaptation goals of an IoT system
during operation. Figure 6 shows an overview of the deployment that a science
campus of KU Leuven that we used in this study.

Fig. 6. Configuration area security surveillance application

The network is set up as a mesh network that comprises 15 motes equipped
with different types of sensors that communicate over a time synchronised LoRa
network. Motes are strategically placed to provide access control to labs (via
RFID sensor), to monitor the movements and occupancy status (via Passive
infrared sensor) and to sense the temperature (via heat sensor). The sensor data
from all the motes are relayed to the IoT gateway, which is deployed at a central
monitoring facility. The communication in the network is organised in cycles,
each cycle comprising a fixed number of communication slots. Each slot defines
a sender and receiver mote that can communicate with one another.

The domain concern for the IoT network is to relay surveillance data to
the gateway. The stakeholders defined the adaptation goals as follows: (1) the
average packet loss over 24 h should not exceed 10%, (2) the average latency of
messages should be less than 5% of the cycle time, (3) the energy consumption
of the motes should be minimised to optimise the life time of the network.
Achieving these adaptation goals is challenging due to two primary types of
1 www.versasense.com.

www.versasense.com

78 D. Weyns et al.

uncertainty: (1) network interference and noise caused by external factors such as
weather conditions and the presence of other WiFi signals in the neighbourhood
of communication links; interference affects the quality of the communication
which may lead to packet loss; (2) fluctuating traffic load which may be difficult
to predict (e.g., messages produced by a passive infrared sensor are based on the
detection of motion of humans).

To solve the problem of the IoT network we applied a self-adaptation app-
roach shown in Fig. 7.

Gateway

Knowledge

Statistical
Model

Checker

Executor

PlannerAnalyzer

Monitor

Probes Effectors

Managed System (IoT System)

Managing
System

Mote

Mote

Mote

Client

Network
Engine

Mote

Network
Data Analytics

Fig. 7. Self-adaptation approach for the area security surveillance application

The bottom layer consists of the managed system with the network of motes
and the gateway. The middle layer comprises a client that runs on a dedicated
machine. This client offers an interface to the network using probes and effec-
tors. Probes can be used to monitor the status of motes and links, statistical
data about the packet loss, energy consumption, and latency of the network.
The effectors allow adapting the mote settings, including power settings of the
motes, distribution of messages to parents. The network engine collects the net-
work data in a repository and performs analyses on the data to serve operators
or adaptation logic using the analytics component. In manual mode, an operator
can access the IoT network via the client to track its status and perform recon-
figurations manually. These reconfigurations include changing the power settings

Self-managing Internet of Things 79

per communication link and changing the distribution of packets sent to parents
(in case there are multiple parents). In the self-adaptive solution, the top layer is
added to the system that automatically adapts the configuration such that the
adaptation goals of the IoT network are met.

Self-adaptation is realised using a MAPE-K feedback loop. The Monitor uses
the probe to track the recent traffic load and network interferences as well as
the statistics for each quality property of interest. This data is used to update a
set of models in the knowledge repository, including a model of the IoT system
and its environment, a representation of the adaptation goals in the form of a
set of rules, and a set of quality models, one for each adaptation goal.

The Analyzer uses a statistical model checker to predict the quality prop-
erties for each possible configuration of the IoT application. A configuration
is characterised by: (i) a power setting for each communication link (a value
between 0 and 15) and (ii) a distribution of packets sent along to links of motes
with more than one parent (discretised in steps of 20%). The statistical model
checker performs a series of simulations and uses statistical techniques to predict
the qualities. Compared to exhaustive model checking, statistical model checking
is very efficient in terms of verification time and required resources. The tradeoff
is that the results are not exact, but subject to a level of confidence. The engi-
neer can set this level, but higher confidence requires more time and resources.
If the currently deployed configuration does not realise the adaptation goals, the
planner is triggered to plan an adaptation. The results of analysis is a predicted
value for each quality property of interest (average packet loss, average latency,
energy consumption) for each possible configuration.

The Planner starts with selecting the best adaptation option based on the
quality properties determined by the analyser. If valid configuration is found, a
failsafe strategy is applied (i.e., the network is reconfigured to a default setting).
Otherwise, the planner creates a plan to adapt the IoT network from its current
configuration to the best adaptation option that was found. A plan consists of
steps, where each step either adapts the power setting of a mote for a link, or
it adapts the distribution of packets sent to a parent of a mote. As soon as the
plan is ready, the Executer is triggered that will enact the adaptation steps via
the effectors.

We compared the self-adaptation approach with an approach commonly used
in practice that uses over-provisioning to deal with uncertainties (power settings
are set to maximum and packets are duplicated in case of multiple parents).

We evaluated the packet loss, latency, and energy consumption of the IoT
network for both approaches for a period of 24 h. The cycle time was set to
9.5 min, corresponding to 153 cycles in 24 h. During the first 8 min of the cycle
the motes can communicate packets downstream to the gateway; during the
remaining 1.5 min the gateway can communicate adaptation messages upstream
to the motes. For the self-adaptation approach we configured the verification
queries with a confidence of 90% and simulations queries with a relative standard
error of the mean of 0.5%. Figure 8 shows the main results.

80 D. Weyns et al.

12
13

14
15

16
17

Energy Consumption

E
ne

rg
y

C
on

su
m

pt
io

n
(C

ou
lo

m
b)

Traditional
Approach

Self-Adaptation
Approach

5
10

15

Packet Loss

P
ac

ke
t L

os
s

(%
)

Traditional
Approach

Self-Adaptation
Approach

0
10

20
30

40
50

Latency

La
te

nc
y

(%
 o

f C
yc

le
 T

im
e)

Traditional
Approach

Self-Adaptation
Approach

Fig. 8. Test results for the area security surveillance application

The graphs show that the average energy consumption of the self-
adaptation solution is significantly better compared to the traditional approach
(p-value< 0.000). Similarly, the self-adaptation approach outperforms the tra-
ditional approach for latency (p-value< 0.000). For the packet loss, both
approaches have similar results (mean of paired differences is 1.4%). We mea-
sured also the time required for adaptation. With a mean of 45.7 s, the adaptation
time was perfectly fine for a setting with a cycle time of around 9.5 min with
1.5 min to make an adaptation decision.

The area security surveillance application demonstrates how self-adaption
techniques can be applied to enable an IoT application to deal with uncertainties
at runtime and provide guarantees with sufficient confidence for a set of required
quality properties in an automatic manner. For more information, we refer the
reader to the DeltaIoT website2.

5 Open Problems for Self-management in IoT

We conclude this paper with a number of open challenges for future research on
self-adaptation of IoT systems that we identified based on the state of the art
and our experiences with engineering concrete IoT applications.

Local adaptation. The examples of autonomous bandwidth allocation using
Dawn (Sect. 4.1) and area security surveillance (Sect. 4.3) are examples of self-
adaptation that is applied locally. Existing solutions such as these have primarily
focussed on the benefits and tradeoffs in terms of qualities that can be achieved
by self-adaptation. However, in the context of IoT, an important factor is the
cost associated with applying the adaptation actions. For example, in a mesh

2 https://people.cs.kuleuven.be/danny.weyns/software/DeltaIoT/.

https://people.cs.kuleuven.be/danny.weyns/software/DeltaIoT/

Self-managing Internet of Things 81

network, to adjust the network settings of motes, adaptation messages needs
to be routed from the gateway upstream to the motes. Communicating these
messages requires energy. The cost of this energy may invalidate the expected
benefits of the adaptation. Another example of cost may be the time that is
required to enact the adaptation actions. Hence, an important challenge for
future research is to develop solutions that consider both the benefits and the
costs of self-adaptation.

Cross-layer adaption. Hitch Hiker is an approach that supports cross-layer
adaptation (Sect. 4.2). In the context of smart cities, IoT applications typically
consist of hundreds of motes equipped with various types of sensors and actua-
tors. Continuous adaptation based on context changes of such motes has shown
to be useful for understanding sensor data [23]. On the other hand, reconfigu-
rations of applications may also alter the underlying communication demands
[24,25]. As a consequence, reconfiguration at one layer of the technology stack
may call for reconfigurations at another layer. While traditional layering schemas
leads to separation of concerns, it may be less suitable for dynamic IoT appli-
cations where concerns inevitably crosscut the layers. An important challenge is
to investigate how to deal with dominant crosscutting concerns such as energy
efficiency and security in IoT, which may require a new view on layering of the
IoT technology stack.

Cross-application adaption. Besides adaptation concerns that span different
layers of the IoT technology stack, concerns can also cross domains as shown
in Fig. 2. Although generally considered as crucial for the future of IoT, little
research has been devoted to interactions and collaborations between different
IoT applications. Such collaborations have the potential to generate dramatic
synergies [6]. However, at the same time they create dependencies that in a
dynamic context may be extremely difficult to handle. Hence, an important
challenge for future research is how to investigate the interplay between IoT
applications in an ecosystem. This will require solutions for technical alignment
and stability, but also suitable business models and methods for establishing
trust.

Providing guarantees. One of the crucial aspects of many IoT applications is
trustworthiness. Trustworthiness refers to stakeholders’ confidence, dependabil-
ity, and reliability in the applications. As we have highlighted in Sect. 3, given
that IoT applications are subject to a zoo of uncertainties, this raises an impor-
tant challenge: how to obtain trustworthiness in IoT systems that are subject of
ongoing uncertainties? Tacking this challenge is hard, in particular in an ecosys-
tem context. It does not only require novel technical solutions to guarantee the
concerns of stakeholders throughout the lifetime of IoT systems, it also requires
novel legal frameworks that can handle continuous change.

Acknowledgments. We are grateful to the technical staff of VersaSense (https://
www.versasense.com/) for the fruitful collaborations.

https://www.versasense.com/
https://www.versasense.com/

82 D. Weyns et al.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Software Engineering for Self-adaptive Systems. LNCS, vol.
5525, pp. 27–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02161-9 2

2. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software
Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

3. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

4. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci,
F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of auto-
nomic communications. ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006).
http://doi.acm.org/10.1145/1186778.1186782

5. Dohler, M., Barthel, D., Watteyne, T., Winter, T.: RFC5548: routing requirements
for urban low-power and lossy networks (2009)

6. Dustdar, S., Nastic, S., Scekic, O.: A novel vision of cyber-human smart city. In:
2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb), pp. 42–47, October 2016

7. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

8. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

9. Hughes, D., Thoelen, K., Maerien, J., Matthys, N., Del Cid, J., Horre, W., Huygens,
C., Michiels, S., Joosen, W.: LooCI: the loosely-coupled component infrastructure.
In: Proceeding of the 11th IEEE International Symposium on Network Computing
and Applications, pp. 236–243 (2012)

10. Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997).
http://dl.acm.org/citation.cfm?id=590564.590577

11. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Maximum lifetime data gathering and
aggregation in wireless sensor networks. Proc. IEEE Netw. 2, 685–696 (2002)

12. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–
50 (2003)

13. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering, FOSE 2007. IEEE Computer Society (2007)

14. de Lemos, R., et al.: Software engineering for self-adaptive systems: research
challenges in the provision of assurances. In: de Lemos, R., Garlan, D., Ghezzi,
C., Giese, H. (eds.) Software Engineering for Self-adaptive Systems III. LNCS,
vol. 9640. Springer, Heidelberg (2018, forthcoming). https://people.cs.kuleuven.
be/danny.weyns/papers/2018SEfSAS.pdf

https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_1
http://doi.acm.org/10.1145/1186778.1186782
https://doi.org/10.1007/978-3-642-35813-5_9
http://dl.acm.org/citation.cfm?id=590564.590577
https://people.cs.kuleuven.be/danny.weyns/papers/2018SEfSAS.pdf
https://people.cs.kuleuven.be/danny.weyns/papers/2018SEfSAS.pdf

Self-managing Internet of Things 83

15. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

16. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification of current
architecture-based approaches tackling uncertainty in self-adaptive systems with
multiple requirements. In: Managing Trade-offs in Adaptable Software Architec-
tures. Elsevier (2016)

17. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, WSNA 2002, pp. 88–97.
ACM, New York (2002). http://doi.acm.org/10.1145/570738.570751

18. Martocci, J., Mil, P., Riou, N., Vermeylen, W.: Building automation routing
requirements in low-power and lossy networks (5867) (2010)

19. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-based runtime software evo-
lution. In: International Conference on Software Engineering, ICSE 1998. IEEE
Computer Society (1998). http://dl.acm.org/citation.cfm?id=302163.302181

20. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modelling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: International
Conference on Performance Engineering, ICPE 2014 (2014)

21. Pister, K., Thubert, P., Dwars, S., Phinney, T.: Industrial routing requirements in
low-power and lossy networks. Technical report (2009)

22. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless
microsensor networks. IEEE Sig. Process. Mag. 19(2), 40–50 (2002)

23. Rajagopalan, R., Varshney, P.: Data-aggregation techniques in sensor networks: a
survey. IEEE Commun. Surv. Tutor. 8(4), 48–63 (2006)

24. Ramachandran, G.S., Matthys, N., Daniels, W., Joosen, W., Hughes, D.: Build-
ing dynamic and dependable component-based internet-of-things applications with
dawn. In: 2016 19th International ACM SIGSOFT Symposium on Component-
Based Software Engineering (CBSE), pp. 97–106, April 2016

25. Ramachandran, G.S., Proenca, J., Daniels, W., Pickavet, M., Staessens, D., Huy-
gens, C., Joosen, W., Hughes, D.: Hitch hiker 2.0: a binding model with flexible
data aggregation for the internet-of-things. J. Internet Serv. Appl. 7(1), 4 (2016).
http://dx.doi.org/10.1186/s13174-016-0047-7

26. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. Trans. Auton. Adapt. Syst. 4, 14:1–14:42 (2009)

27. Tan, H.O., Körpeoǧlu, I.: Power efficient data gathering and aggrega-
tion in wireless sensor networks. SIGMOD Rec. 32(4), 66–71 (2003).
http://doi.acm.org/10.1145/959060.959072

28. Watteyne, T., Palattella, M., Grieco, L.: Using IEEE 802.15.4e time-slotted channel
hopping (TSCH) in the Internet of Things (IoT): problem statement. RFC 7554,
RFC Editor, May 2015

29. Watteyne, T., Weiss, J., Doherty, L., Simon, J.: Industrial IEEE802.15.4e networks:
performance and trade-offs. In: 2015 IEEE International Conference on Commu-
nications (ICC), pp. 604–609, June 2015

30. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and
future challenges. In: Dick Taylor, R., Kang, K., Cha, S. (eds.) Handbook of
Software Engineering. Springer, Heidelberg (2018, forthcoming). https://people.
cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf

https://doi.org/10.1007/978-3-642-35813-5_1
http://doi.acm.org/10.1145/570738.570751
http://dl.acm.org/citation.cfm?id=302163.302181
http://dx.doi.org/10.1186/s13174-016-0047-7
http://doi.acm.org/10.1145/959060.959072
https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf
https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf

84 D. Weyns et al.

31. Weyns, D., et al.: Perpetual assurances in self-adaptive systems. In: de Lemos,
R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-adaptive
Systems III. LNCS, vol. 9640. Springer, Heidelberg (2018, forthcoming). https://
people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf

32. Weyns, D., Iftikhar, U., Söderlund, J.: Do external feedback loops improve the
design of self-adaptive systems? A controlled experiment. In: International Sym-
posium on Software Engineering of Self-managing and Adaptive Systems, SEAMS
2013 (2013)

33. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst.
7(1), 8:1–8:61 (2012)

https://people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf
https://people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf

	Self-managing Internet of Things
	1 Introduction
	2 Background on Self-adaptation
	3 Why Do We Need Self-management in IoT?
	4 Initial Contributions to Self-management in IoT
	4.1 Autonomous Bandwidth Allocation Using Dawn
	4.2 Self-adaptation Across Layers with Hitch Hiker
	4.3 Area Security Surveillance

	5 Open Problems for Self-management in IoT
	References

