
Diversity in UML Modeling Explained:
Observations, Classifications and Theorizations

Michel R. V. Chaudron1(B), Ana Fernandes-Saez2, Regina Hebig1,
Truong Ho-Quang1, and Rodi Jolak1

1 Chalmers | Gothenburg University, Gothenburg, Sweden
michel.chaudron@cs.gu.se, {regina.hebig,rodi.jolak}@cse.gu.se,

truongh@chalmers.se
2 University Castilla La-Mancha, Ciudad Real, Spain

AnaMaria.Fernandez@uclm.es

Abstract. Modeling is a common part of modern day software engi-
neering practice. Little evidence exists about how models are used in
software development and how they help in producing better software.
In this talk we introduce a classification-matrix and a theoretical frame-
work that helps explain the large variety of models and modeling styles
found in industrial practice. As part of this explanation, we will explore
empirical findings on the uses of UML modeling in practice. We inter-
sperse this paper with some insights about modeling in software develop-
ment that may be common to some, but certainly not generally accepted
throughout the software engineering community.

1 Introduction

There exists a large variety of modeling languages in the field of software engi-
neering. These range from languages for modeling user interfaces, business pro-
cesses, data-exchange formats, and software designs. In this paper we focus on
the use of UML in the modeling of the design of software systems. The UML lan-
guage has emerged in the mid-1990’s after a phase in which many software design
notations existed. Often each of these design notations was proposed in conjunc-
tion with a software design method. The naissance of UML was no different:
it came together with an object-oriented design method. However, nowadays,
UML is considered mostly a notation. Ever since its introduction, the use of
UML in software development has been subject to (almost religious) debate. In
this paper we aim to contribute to clarifying the field of modeling by explaining
different type of approaches to modeling.

The structure of this paper is as follows: First, we describe models as they can
be found in current software development. In order to understand the differences
found across such models, we present two classifications based on different distin-
guishing characteristics. Next, we discuss different purposes of models in software
development, and explain that the different ways of modeling can be understood
by recognizing different goals and contexts of different projects. Then, we reflect
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 47–66, 2018.
https://doi.org/10.1007/978-3-319-73117-9_4



48 M. R. V. Chaudron et al.

on some insights and findings from empirical studies into modeling. Finally we
discuss selected future directions.

We intersperse this paper with some propositions that highlight insights
about modeling in software development that may be familiar to some, but
are certainly not commonly accepted throughout the software engineering
community.

2 Classifications of Software Models and Their Uses

Nowadays, we have come to realize that software modeling (using UML) is done
in a large variety of ways. Indeed various terms are used to suggest different
ways of using models in software development: model-driven sw development,
model-based sw development, model-based engineering, model-centric develop-
ment. Unfortunately, there is no common agreement on the meaning or char-
acteristics of these terms. This has o.a. led to the running (and publishing)
of survey studies that lump together every respondent that says that they do
‘model-* development’. Yet, in order to properly perform and interpret scientific
studies on modeling in software development, we need a way to precisely define
the object of study. Based on the empirical studies from the last decades, we
next propose multiple classifications for characterizing UML modeling and their
uses in software development.

2.1 A Classification of Models by Abstraction Level

In this section we illustrate how modeling can be classified by looking at the
abstraction level of the system that they aim to capture. We recognize the fol-
lowing levels of abstraction:

– A-type: Architecture modeling
– D-type: Design modeling
– I-type: Implementation modeling.

We give a brief characterization of each of these approaches:
Architecture modeling targets a high level of abstraction of the system. Fol-

lowing [1], architecture targets the overall structure and behaviour of a system
as defined by the components, their relations and their interactions. Also, as
part of the architecting activity, a model is used to assess whether the design
meets the extra-functional1 requirements of the system. An architecture is typ-
ically defined in terms of the main system components and layers. Rarely do
architecture designs include actual mention of classes, methods or attributes. At
the abstraction level that they target, architectures aim to be complete in the
sense that all important components are included in the model. For complete-
ness sake, one could distinguish two different levels of architecture: (i) software/
system-architecture, and (ii) enterprise architecture - which can be seen as

1 Also known as non-functional.



Diversity in UML Modeling Explained 49

systems-of-systems abstraction. UML can be used for the enterprise architec-
ture level, but we will not make this distinction in this paper.

In Design modeling, there is a medium abstraction of the implementation of
the system. The design level model of a system is typically represented in terms
of classes (or components or packages) and the relations between them. For some
classes, details such as methods and attributes are defined. Models at the design-
level of abstraction typically focus on important parts of the system. Importance
is relative to the producers and consumers of the model, but generally is driven
by importance and risk (see [18]).

For implementation modeling, there is a close correspondence between the
system model and the implementation: In principle, every class in the model
can be mapped onto one of more classes (or other artifacts) in the implementa-
tion. Hence, because the model mirrors the implementation, the model must be
complete.

Some projects use modeling at all three levels of abstraction. Modeling at
more than one level of abstraction introduces the challenge of keeping the models
at different levels consistent with each other.

An insightful diagram (Fig. 1 about the spectrum of approaches to the use
of modeling in software development was presented by Brown [2]. His spectrum
is organized around different types of key uses of models in a project. The top
row in the original paper only stated ‘Model’ in all boxes. The use of the same
term ‘Model’ across all boxes is actually a bit misleading. Based on our studies
of the use of models, we have come to understand that the models for the types
of use suggested in the diagram are quite different. Hence, we have added letters
‘A’ (Architecture), ‘D’ (Design), and ‘I’ (Implementation) to indicate that the
models in the types of use suggest are typically of various levels of abstraction.

Fig. 1. Spectrum of modeling approaches by Brown [2] - Annotated

2.2 A Classification of Models by Stage of Development

In this section, we explain a complementary classification of models in software
development from the perspective of the stage of development for which they



50 M. R. V. Chaudron et al.

are used. The scientific field of Design recognizes several stages of a design in the
process of developing a product [4]. In the context of software development, we
state these stages and their use of models as follows. We illustrate these stages
in Fig. 22:

– Ideation/Conceptualization: The main objective of this step is to create a
concept of the system to be created. This is one of the most creative and
synthetic steps in the design: it requires the exploration, formation and com-
bination of ideas.

– Externalization: The main objective of this step is to construct an external/
explicit (as opposed to internal (to the mind of the designer)/tacit) repre-
sentation of the system to be built. This representation serves as a vehicle
for achieving shared understanding in a team/organization, and as persis-
tent reference for a complicated abstraction that cannot be maintained in the
memory of the engineers.

– Production/Implementation: In this stage, the system is actually being con-
structed. The model of the system is used to produce specifications of the
parts that need to be constructed, as well as recipes on how to assemble the
parts. In software engineering, models can indeed be used to generate (parts
of) the implementation.

Fig. 2. Models in different stages of development

Ideation or conceptualization in software development is commonly done by
sketching on a whiteboard or on a piece of paper. At this stage, the syntax of
2 Images of Bilbao Guggenheim Museum (c) by Gehry, and Mike from Monsters Inc.

(c) by Pixar.



Diversity in UML Modeling Explained 51

the actual representation is not considered critical. Presumably, this is because
the people involved in the ideation share the same room, hence can clarify issues
by talking to each other. Ideation sessions tend to range on a timescale of tens
of minutes to a few hours. This ideation effort is independent of the size of the
system.

Externalization can be done in different ways. The quick and dirty way is to
take a picture of the drawing on the whiteboard using a smartphone and then
store the image in the project repository. The next step up in rigour is to create a
design using a generic drawing tool, such as Powerpoint, or Visio. The advantage
of generic Office tools is that the resulting diagrams can be easily integrated into
overall ‘Software Architecture Design’ (SAD) documents that typically are a mix
of text and diagrams. The most rigorous representations are made using a UML-
CASE tool. Such representation supports basic forms of version management,
but are considered a bit more complicated to integrate with word-processors
for creating SAD documents. Using a CASE tool to create a UML model for a
modest system can take a few hours, while creating a detailed UML model for
a complex system can be a matter of days.

For using models in the production of software, the models need to be com-
plete in the sense that they cover all of the implementation functionality and
also in strict conformance to the syntax of the modeling language so that a com-
piler/code generator can produce implementation code. Creating such models
requires dedicated CASE tools and (as they represent the main implementation
activity) can take a large part of the effort of the overall project (say 30–40%).

A key difference between on the one hand the ideation and externalization
stage and on the other hand the production stage, is that in the ideation and
externalization stage, the main consumer/audience of the models are people,
whereas for the production stage computers are an essential consumer of the
models - see Fig. 3. Aiming for a computer as consumer requires that models
are specified following a rigorous syntax and semantics. The fact that humans
are the audience of models can be used to tailor the approach to modeling

Fig. 3. Main audience of models in different stages of design



52 M. R. V. Chaudron et al.

to the audience’s needs: One best practice observed in industry is to test a
‘design model/document’: before committing a document as ‘stable’, the docu-
ment should be reviewed/tested by the consuming party/parties.

Proposition 1. When created wisely, design models (and by generalization:
documentation) are consulted much more often than that they are cre-
ated/modified. For the ‘consumption’ of models to work well, producers and con-
sumers of models should agree (from early on in a project) on representation
(detail, conventions for naming and layout), organization (layering), and con-
ventions for navigation in- and searching for models.

2.3 Syntactic Characterization of Software Design Models

The previous sections have introduced two key dimensions for classifying mod-
els. In this section, we will introduce some characteristics by which models differ
from each other. We see these characteristics as mostly syntactical, and also more
as a resultant of the dimensions ‘abstraction’ and ‘development stage’ than as
additional angles by which to classify models. Table 1 shows an overview of these
characteristics. Detail of a models can be seen by the amount of aspects of ele-
ments that are represented in the model. For example a class can be represented
only by a rectangle with a class name (which would be low detail). Alternatively,
a class can additionally be represented by attributes and methods. The latter
can have public/private attributes, signature with typing. Using all these aspects
represents a class in a high level of detail. Nugroho et al. introduced a metric
for level of detail for UML models in [19]. Using this metric, this paper shows
that a higher level of detail in sequence diagrams correlates with a lower defect
density in the implementation of the corresponding classes.

Rigour refers to the degree to which a representation conforms to a formal
syntax. A low conformance to formal syntax is common in the ideation stage.
However, also in industrial SAD documents we frequently find that the design
diagrams are enhanced by ‘free format’ shapes and icons which are not part of
the UML syntax. We call a low adherence to a formal syntax ‘sketchy’.

Table 1. Syntactic dimensions of software design models

Dimension Description of range

Detail A model can be represented in low detail or very high
detail

Rigour A model can precisely follow the syntax of the language or
largely ignore the syntax (e.g. sketchy) (even mixed levels
of rigour are common)

Completeness A model can focus on representing key parts only or can be
a complete mirror-image of the implementation

Consistency A model can be consistent or contain many inconsistencies



Diversity in UML Modeling Explained 53

Completeness refers to the degree to which all parts of the system are rep-
resented by the model. From the work of Osman [20] we know that UML mod-
els (made as part of forward design) contain only between 50% and 10% of
the classes of the corresponding implementation (See Fig. 4. Moreover, we know
from [17] that designers focus on parts of the system that is complex and critical,
hence follow a risk-driven approach to choosing which information to include and
leave out of a design.

Fig. 4. Ratio of #Classes in UML design vs #Classes in implementation (from [20])

Consistency refers to the degree of intrinsic consistency in the model. The
issue of consistency arises mostly from the fact that UML supports multiple types
of diagrams that are logically linked to each other through reference to the same
classes (and states). The problem of inconsistency has been identified in the
early 2000’s. A recent mapping study aimed to establish a definitive collection
of consistency rules [22]. As part of an overall research program that aimed at
assessing quality of UML models, Lange et al. [13] describe an empirical study in
which they show that the amount of inconsistencies that exists in UML models
of a few industrial case studies is very high. Partially this is due to the fact that
incompleteness of a model can often also be interpreted as an inconsistency,
and we know from our aforementioned empirical study on completeness of UML
models [17] that designers leave out many parts of the implementation. In a
follow-up experiment [14] we found that inconsistencies in UML models increase
the divergence of interpretations of the models and thus increase the risk of
various mistakes.

2.4 A Classification of the Uses of Software Design Models

At first the huge diversity of types of models found across industry puzzled us.
Was there not one right way or best way to do modeling in software projects? In



54 M. R. V. Chaudron et al.

the previous section we have already explained that there are different project
settings that drive modeling practices. In addition to those, we explain in this
section that design models are used in support of many different activities.
Figure 5 shows an overview of different activities that have been reported in
various industrial case studies to use UML models (see e.g. [6] as a starting
point).

Fig. 5. Uses of design models in software development

We have classified the uses into several global categories: Generic: ‘create
overview’ and ‘understanding’: these apply to all types of models. There is a
surprisingly large number of project management type of activities that are
supported by design models:

– Planning: a design model allows to split the work in parts and delegate these
to different teams/developers.

– Progress monitoring: a design model can be uses to track progress by pro-
viding an overview of the progress of individual components, or - at a higher
abstraction level - by showing which components have been completed.

– Cost estimation: similarly to planning, the fact that a design model provides
a breakdown of the system into components, allows the estimation of costs for
parts which can then be used to estimate cost (and schedule) for the entire
system.

– Risk management: a design model makes explicit, and helps discover, which
components are needed in a system, this in turn triggers discussion about pos-
sible risks that may arise in the construction and composition of components
into the overall system.

– Compliance: One typical use of design models is to use them to verify that the
implementation indeed conforms to the design. When no design model exist,
there is a higher risk of ‘drift’ in the implementation. Additionally, models
can be used to verify that particular policies are integrated in the system



Diversity in UML Modeling Explained 55

(such policies exist in the banking-domain); alternatively, some domains (e.g.
medical, automotive) ask that certain models are constructed and used for
analysis of critical properties of the system.

– Coordination/standardization: For teams that work across multiple locations,
it is important that a common standard on how to handle the design and
implementation is available. Design models play such a role.

– Knowledge sharing: modeling a system is a way of capturing knowledge about
a system. Through its representation this knowledge can be shared in a devel-
opment team.

– Ideation: Ideation is the formation, exploration and combinations of ideas. In
the case of software, these apply to the design (and analysis) of a system.
Having an explicit model serves as an aid in inventing ideas and exploring
new directions.

– Analysis (XFP): a design model can be used for various types of analysis
of the system: ranging from more qualitative ‘what if’ scenarios (e.g. about
maintainability) to quantitative analysis of extra-functional properties such
as performance, reliability, safety and others.

– Prototyping: design models may be (partially) executable and can hence by
used to demonstrate and try out how the system will work.

– Code-generation: models of the system are essential for code-generation. The
main objective of this, is to increase the overall development speed of the
project.

– Traceability: design models provide an intermediate abstraction esp. between
requirements and the implementation. As such design models can act as a
pivot point and aid in establishing traceability between requirements and the
implementation.

– Testing: models can be the basis for specifying and prioritizing tests.

Figure 5 shows that that are many uses of design models and that these
uses serve different stakeholders in software engineering projects. Indeed, some
of these uses are secondary or by-catch of other more important uses of design
models. So, the use of design models should not be seen as exclusive to one
purpose. Moreover, the main purposes of a model change during the execution
of a project. We will elaborate this theme in Sect. 4. We summarize the findings
on the multiple uses of models through the following propositions:

Proposition 2. Models of software designs serve a multitude of purposes in
software development projects.

Proposition 3. In software development projects, the purposes of models of
software designs change focus over time.

Proposition 4. The value of models in achieving the goals changes over time.

Proposition 4 applies to various goals, but we will explain it using one example
that is illustrated by Fig. 6. Figure 6 depicts the utility of documentation (as
a generalization of models) as a function of the experience of developers. For
developers that are new to a system, the documentation is of much value/utility



56 M. R. V. Chaudron et al.

because it helps them understand the system which they need in order to do their
work effectively. However, as developers work for longer time on the same system,
they build up in their working memory an understanding of the system. Hence,
the value of the documentation becomes less to them (while the documentation
itself has not changed - only the context has changed!).

Fig. 6. Utility of documentation over time

Thus the purpose of models is a moving target. Clearly, this complicates
finding empirical evidence for effectiveness of modeling because this has to be
assessed relative to the purpose.

Interestingly, when going over the list of uses of models, there are only
few uses for which models are indispensable. For most other uses, alternative
approaches can be used. Clearly this is unlike the inevitability of producing
implementation-code of systems. Indeed, in general models are a means to an
end - the end being: the efficient development of (quality) software. This ‘weak-
ens’ the commitment to modeling. And if alternatives work better than modeling,
then projects are indeed better served with such alternatives. Possibly a good
metaphor for the use of models is that they function as lubricant: they make
many task run more smoothly.

Proposition 5. There are many uses of models that do not directly follow from
the main goals for using modeling.

Various surveys have explored the main goals of using modeling approaches
in software development projects. The commonly mentioned goals are: reduce
development time/increase productivity/agility/velocity, improve quality (of
code and of design), improve efficiency/reduce cost. When looking at the uses
of models in Fig. 5, then there is not a very direct contribution of the uses of
models to the aforementioned goals. Again through its diversity of uses, model-
ing has contributions to many goals in many ways. Empirical evidence regarding
the ‘effect-size’ of modeling is still elusive. We point to two attempt at collecting
evidence on the effectiveness of modeling: In [3] Chaudron et al. propose a theory
that offers a causal explanation of the impact of UML modeling on quality and
productivity. Some steps in this chain are supported by evidence from research



Diversity in UML Modeling Explained 57

papers, for other causal steps no empirical evidence is mentioned. For a more
general perspective, Garousi et al. provide studies into the factors that affect the
use and usefulness of documentation [7]. Their study culminates in the formula-
tion of costs and benefits of technical documentation and a theory (meta-model)
for the quality of software documentation [24]. However, their study does not
look at the process of the use of documentation over a development project. In
the next section we propose a theory that explains the different types of modeling
found.

3 A Theory for Explaining the Plethora of Approaches
to Modeling

In this section, we propose a theoretical framework that captures the insights
from the previous sections that modeling practices are linked to project goals.
Our theoretical framework is shown in Fig. 7. In this diagram ‘SE’ stands for
Software Engineering. The interpretation of the framework is as follows: Projects
happen in a context, have stakeholders and can be in a particular stage of devel-
opment. Context may include may facets (See e.g. [5]). For example, one can
think of: risk-propensity of the organization, available time/money, organiza-
tional culture (e.g. [11]), but also size and geographic distribution. In practice
many more factors of the context may play significant roles. Stakeholders have
goals, such as increase development speed, a particular quality-level of the final
product and so on. The goals may change across the stages of execution of a
project. These goals of the stakeholders drive the development process used and
the practices used in the overall approach to SE. A process denotes the collec-
tion of (formalized) steps of tasks that the project follows to engineer software.
The processes and practices in turn drive the choice and use of tools. The next
aspects of the diagram we explain are the nested rounded rectangles: The out-
ermost rounded rectangle denotes the overall approach to software engineering
including all its processes, practices and tools. Part of the overall approach to
SE are the approach to documentation (AtD) and the approach to implemen-
tation (AtI). AtD and AtI refer to a combination of processes, practices and
tools for documentation and implementation respectively. Together these AtD
and AdI drive the approach to modeling (AtM). The approach to modeling itself
again consists of a modeling process, a set of modeling practices and a collection
of modeling tools. To summarize, this theoretical framework enables explaining
which modeling approach is followed in a project by tracing it to the goals of
the stakeholders and the project context.

For explanation purposes we have used ‘drives’ arrows between process, prac-
tice and tools in one direction. In reality, there may as well be arrows in the
opposite direction where tools make a practice (im)possible or constrain pos-
sible processes. The same applies for the arrows between concepts specific to
modeling and concepts general for SE: a modeling approach may enable or con-
strain the general SE approach.



58 M. R. V. Chaudron et al.

Fig. 7. Theoretical framework for modeling practices

4 Modeling Pathways

Earlier we observed that models of software designs serve multiple purposes to
different stakeholders of software development projects. In this section we will
zoom into how the types of models used in a project change as a project pro-
gresses. We explain this by means of Fig. 8. This diagram combines the main
dimensions for classifying models that were introduced in Sect. 2. In the hori-
zontal direction this diagram shows stages of modeling: moving from ideation
into production. The vertical direction shows the abstraction levels: architecture,
design and implementation. A project’s modeling practices can occupy zero or
more cells in this matrix. In this matrix, we have drawn a pathway that illus-
trates the evolution of the focal role of design models over time. Together with
a change of their focal role, design models also change their abstraction level,
their rigour as well as other dimensions mentioned in Table 1.

The first phase of the pathway is denoted ‘I’ and deals with ideation. Typi-
cally ideation addresses the architecture and/or design levels of abstraction. It is
not common for models to be used for ideation of the implementation of a whole
system, but ideation is not uncommon for designing parts of an implementation
- such as e.g. use of patterns. A typical next use of design models (denoted ‘II’)
is for externalization (communication, standardization, persistence). This can
happen for the architecture and for the design. Also externalization is not com-
mon for the whole implementation - because the source code is a good source
of information for the implementation. The third stage (denoted ‘III’) is pro-
duction. Here the model is used to guide or produce the implementation. For
this stage, the model must contain all the details necessary for a developer or
compiler to generate the implementation. Its level of abstraction is therefore
generally medium to low (‘implementation level’). Please note that such path-
ways focus on the process of creating and refining a design. As development
of the system progresses and also in the maintenance of the system, all of the



Diversity in UML Modeling Explained 59

design models created along a pathway will have to be updated when significant
changes are made.

Indeed, a key problem for most modeling-pathways is that of updating more
abstract design models to reflect (the significant parts of) increments of models at
a lower level of abstraction. In theory, this ‘continuous synchronization’ of models
at different levels of abstraction seems technically possible when both levels are
described in a rigorous/formal manner and there exist clear traceability between
two representations. Osman has demonstrated a prototype for synchronizing
models across different levels of abstraction [21], yet much more work is needed
in this direction.

A company may have a design-flow that supports the creation of a next
system model on the basis of a set of systematic transformations of a model
from a preceding stage. In this case there is high traceability between successive
models. Alternatively, subsequent design models may be created largely inde-
pendently from previous models. This happens for example when the models
are used mostly for supporting the own understanding of the designers (at that
stage). In the latter case there is poor traceability between successive models.

Fig. 8. Pathway of models in software development

In the future, we aim to show how these pathways can be used to illustrate
the different approaches to modeling found across different projects.

5 Observations on Modeling in Open Source Projects

We set out to look into open source projects for empirical evidence on the use
of modeling.

To answer these question, we mined GitHub for open source projects that
use UML. We identified more than 20,000 projects that use UML [9]. Then, we
ran a survey to collect information from more than 400 open source developers
who work on these projects [10]. In this section, we report a brief selection of
our findings.

Stage of Development: In our set of open source projects models are introduced
at all phases on the life-cycles. Yet we found a concentration of first appearance
of models around the start of projects [9]. Furthermore, for 26% of the projects



60 M. R. V. Chaudron et al.

we found that models were updated as projects progressed over time. The ques-
tionnaire confirmed that models are used for all three stages of development:
ideation, externalization, and production. For ideation we found a large number
of photos of sketches of UML diagrams. As documentation (i.e. externalization),
models most commonly targeted the design-level of abstraction. Also, reverse
engineered diagrams are also frequently used to serve as documentation. How-
ever, code generation based on implementation-level models, was only reported
for few of the OSS projects [10]. Possibly because this requires an advanced
level of training on methods and tools, and advanced coordination amongst the
contributors.

Use of Models: Our survey asked after the use of models through a multiple
choice questions to which multiple responses were possible. The responses are
shown in Fig. 93. By far the most common uses are for documentation (an exter-
nalization use) and for ideation and production of designs at the architecture-
and design-level.

Fig. 9. Uses of models in open source software development

The responses to the survey confirm the non-negligible use of models for less
obvious uses: 19% of the respondents uses models for verification tasks and 15%
of the respondents uses models as part of doing refactoring. Another observation
from our survey is that novices often use existing UML models as one of the
most important sources for gaining an understanding of a system. Interestingly,
the developers who create these models often seem unaware that other project
members use their models in this way.

Models for coordinating distribution of work (planning): To investigate one other
use of UML models, we explored whether models are used to coordinate work.
The first interesting observation was that the design model was implemented
by only a single person (no coordination) in only 33% of our set of open source
projects. In 41% of the projects 3 or more persons participated in the imple-
mentation of a design. This suggests that models indeed are frequently used
3 The categories have been renamed to be consistent with the naming used in this

paper.



Diversity in UML Modeling Explained 61

to coordinate implementation tasks. When asked for the involvement of these
developers in the modeling process, it turned out that 88% of the persons imple-
menting a modeled design also participated in the creating of that model. Thus,
it seems that many open source projects adopt a team modeling approach, where
developers create models together. This may be a particular trait of open source
projects as the open source community values ‘equality’ and ‘transparency’.

For more findings on these studies we refer to [9,10].

6 Future Directions

In this section we discuss selected ideas on future directions for improving the
effective use of modeling in software development.

6.1 Aligning the Tools with the Tasks and the Process

Tooling continues to be mentioned as a problematic area in model-based devel-
opment. In this section we use our classification matrix together with design
pathways to understand why tooling continues to be problematic.

Fig. 10. UML tools across design stages

There are several major challenges related to modeling-tooling: One challenge
is the large diversity in modeling styles. It is very difficult for any one tool to be
a good match in supporting so many different uses. Integrating all possible uses
of modeling in a tool would lead to a ‘universal Swiss army knife’: it becomes
too complicated to use. Hence, this diversity of uses also explains the continued
existence of a large variety of UML-based software modeling and design tools.

Figure 10 uses our classification matrix to explain that different tools focus
on supporting different stages of development: Traditional UML CASE tools
focus on creating UML models that strictly follow the UML syntax. One can
consider them ‘UML editors’. They can cover parts of the implementation- and
production-stage (through code generation), but generally ignore informal nota-
tions and sketching that is typical for the ideation stage. Tools that aim to



62 M. R. V. Chaudron et al.

support MDA with code-generation force developers to model at the implemen-
tation level of abstraction. One example of such a tool is UMPLE [8]. Moreover,
while there are certainly benefits of these types of tools, their use is mostly lim-
ited to the production stage. Other tools aim to bridge the gap between ideation
and externalization by offering both informal sketchy modeling and transforma-
tions of these into rigorous/geometric UML shapes. One example of such a tool is
for example OctoUML [12]. In summary, in practice models are developed along
pathways that cross different stages of development and change in abstraction
level. None of the modeling tools that is currently around efficiently supports a
complete pathway.

Fig. 11. UML tools across design stages

Figure 11 uses our classification matrix to illustrate where various supporting
features of modeling tools fit in the development process. It shows that code gen-
eration transforms design level representations into code implementation level
representation. Reverse engineering tries to reconstruct a design representation
from an implementation. Conformance checking (such as [23], and [16]) try to
verify (and quantify the degree of) the correspondence between the implementa-
tion and design. To this end, conformance checking techniques need to find ways
to represent the abstractions that are made between design and implementation.

Future Direction 1. Future software design tooling should support the mixing
of text, sketches, formal diagrams, and source code in a flexible manner.

Motivation: (i) different developers have a need for different combinations of text,
sketches, diagrams and code. (ii) some artifacts evolve from one form (sketch)
into another form (formal diagram). If this is a common use of models, then
tools should support this.

Future Direction 2. We need to move away from documentation as a static
source of information about a system. Instead, we should move to dynamic ‘infor-
mation/knowledge’ management about a design: multiple sources of data about
a system should be combined dynamically and smart selections and abstractions
of these data should be presented in an interactive way is both user-centric and
task-centric.



Diversity in UML Modeling Explained 63

The aforementioned issues are related to two key aspects of modeling tools:
(i) usability, and (ii) efficient chaining of tools in tool-chains.

6.2 A Promising Future: Domain Specific Architecture- and
Modeling

There are interesting model-based approaches in practice that counter the afore-
mentioned usability and tool-chaining issues: One notable example are so-called
‘low-code’ platforms as offered by e.g. Mendix and OutSystems. Their approaches
capitalize on the fact that the most common architecture is a 3-layered architec-
ture that consists of a data-layer, a business logic layer and a user-interaction
layer. The ‘low-code’ approach offers 3 separate modeling languages (each of
which can be considered a domain-specific modeling language): one modeling
language for specifying data-models, one modeling language for defining busi-
ness processes, and one for specifying user-interaction (user interface, possibly
with user-processes). This approach is illustrated in Fig. 12.

Fig. 12. Low-code approach to modeling for 3-layered architectures

These approaches are called ‘low-code’ because an entire running system can
be generated out of a triplet of three types of models - hence no (textual) code
is involved. Through specializing for particular types of software architecture,
and separating the concerns in different modeling languages, the modeling of an
application becomes fairly simple. Indeed these companies have shown factors of
3×–10× of speed-up in application development. One other key aspect of these



64 M. R. V. Chaudron et al.

new approaches is that the development pipeline is highly automated and even
includes automated deployment (e.g. in the cloud) and automated production of
app’s for mobile platforms. In our view, this is one example of how modeling can
be used in a very effective way by specializing the modeling language and linking
it to a common architecture and architectural style in a particular domain.

One complementary study evaluated the impact of migrating of an existing
(legacy) 3-layered architecture that was programmed ‘manually’ from scratch
into a format that was generated out of a (3-layered) domain specific model
(DSM) [15]. The results show that after introducing the DSM-approach the
defect density lowered, defects were found earlier, but resolving defects took
longer. Other observed benefits are that the number of developers and the num-
ber of person-hours needed for maintaining the system decreased, and the porta-
bility to new platforms increased.

When seen together, the use of the combination of a domain specific archi-
tecture and domain specific modeling languages promise to offer higher levels of
abstraction while still being able to generate the implementation.

6.3 Practical Guidelines for Tailoring Modeling Approaches

Our theoretical framework Fig. 7 argues that project goals and project context
are the drivers for the approach to modeling that is used in project. Currently the
theory is explanatory in character: we can use it to explain the differences that we
observe. Possibly the same framework could be made actionable if we could use
it to create guidelines on how to chose modeling processes, practices and tools
to best fit particular projects goals and context. This requires collecting best
practices in modeling approaches and systematic ways for documenting contexts
as part of case studies [5].

7 Summary and Conclusions

The term ‘modeling’ is a general term and it is used in a large variety of mean-
ings. Possibly some people even want ‘modeling’ to mean certain things. How-
ever, as a result many scientific studies in software engineering fail to provide
sufficiently precise characterizations of the modeling-practices that are used in
the projects that they study. This lack of precise characterization leads to confu-
sion and contradictions about the findings of modeling in software development.
In this paper, we introduce several classification to more precisely describe the
types of modeling encountered in software development. The main dimensions
of these classification are: (i) the different levels of abstraction, and (ii) different
stages of development. We introduced a classification matrix that combines these
dimensions. This matrix can be used to characterize models as well as illustrate
pathways that characterize how the focus of models evolve as projects progress.

Additionally, we proposed a theoretical framework that explains how the use
of different modeling practices can be explained by looking at how they are
driven by different context and different project goals. Further, we showed that



Diversity in UML Modeling Explained 65

UML models are used for many more activities than only the guiding of the
implementation.

All these extra uses of models impose additional requirements on the tools
and processes used for the creation and maintenance of UML models throughout
software projects. UML tools have to cater for interoperability with other pro-
cesses and tools used in software development in order to support software engi-
neers in moving tasks through differ stages of development. Only by recognizing
and embracing the diversity of uses of models throughout software projects can
we improve the tools needed to support their effective use. Currently, usability
of modeling tools is one of the main challenges in modeling. In order for mod-
eling to be more effective and achieve higher adoption, tools should become a
better fit with the tasks of developers and better support various uses of models
throughout the entire software development process.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Boston (2012)

2. Brown, A.W.: Model driven architecture: principles and practice. Softw. Syst.
Model. 3(4), 314–327 (2004)

3. Chaudron, M.R.V., Heijstek, W., Nugroho, A.: How effective is UML modeling?
Softw. Syst. Model. 11(4), 571–580 (2012)

4. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Berg,
Oxford (2011)

5. Dyb̊a, T.: Contextualizing empirical evidence. IEEE Softw. 30(1), 81–83 (2013)
6. Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M.: Exploring costs and bene-

fits of using UML on maintenance: preliminary findings of a case study in a large
it department. In: EESSMOD@ MoDELS, pp. 33–42 (2013)

7. Garousi, G., et al.: Usage and usefulness of technical software documentation: an
industrial case study. Inf. Softw. Technol. 57, 664–682 (2015)

8. Garzón, M.A., Aljamaan, H., Lethbridge, T.C.: Umple: a framework for model
driven development of object-oriented systems. In: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 494–
498. IEEE (2015)

9. Hebig, R., Quang, T.H., Chaudron, M.R.V., Robles, G., Fernandez, M.A.: The
quest for open source projects that use UML: mining GitHub. In: Proceedings
of the ACM/IEEE 19th International MODELS Conference, pp. 173–183. ACM
(2016)

10. Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M.R.V., Fernandez, M.A.: Prac-
tices and perceptions of UML use in open source projects. In: Proceedings of the
39th International Conference on Software Engineering: Software Engineering in
Practice Track, pp. 203–212. IEEE Press (2017)

11. Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations - Software
of the Mind: Intercultural Cooperation and its Importance for Survival, 3rd edn.
McGraw-Hill, New York (2010)

12. Jolak, R., Vesin, B., Chaudron, M.R.V.: OctoUML: an environment for exploratory
and collaborative software design. In: ICSE 2017, vol. 17 (2017)



66 M. R. V. Chaudron et al.

13. Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., Dortmans, H.M.: An
empirical investigation in quantifying inconsistency and incompleteness of UML
designs. In: Workshop Consistency Problems in UML-Based Software Development
II, pp. 26–34 (2003)

14. Lange, C.F.J., Chaudron, M.R.V.: Effects of defects in UML models: an experimen-
tal investigation. In: Proceedings of the 28th International Conference on Software
Engineering, pp. 401–411. ACM (2006)

15. Melleg̊ard, N., Ferwerda, A., Lind, K., Heldal, R., Chaudron, M.R.V.: Impact of
introducing domain-specific modelling in software maintenance: an industrial case
study. IEEE Trans. Softw. Eng. 42(3), 245–260 (2016)

16. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing consistency checking
between software views. In: Fifth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), 6–10 November 2005, USA, pp. 169–180. IEEE Com-
puter Society (2005)

17. Nugroho, A., Chaudron, M.R.V.: A survey of the practice of design-code corre-
spondence amongst professional software engineers. In: ESEM 2007, September
2007, Spain, pp. 467–469. ACM/IEEE Computer Society (2007)

18. Nugroho, A., Chaudron, M.R.V.: A survey into the rigor of UML use and its per-
ceived impact on quality and productivity. In: Proceedings of the 2nd International
Symposium on Empirical Software Engineering and Measurement, ESEM 2008,
9–10 October 2008, Germany, pp. 90–99. ACM (2008)

19. Nugroho, A., Flaton, B., Chaudron, M.R.V.: Empirical analysis of the relation
between level of detail in UML models and defect density. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
600–614. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87875-
9 42

20. Osman, M.H., Chaudron, M.R.V.: UML usage in open source software develop-
ment: a field study. In: Proceedings of the 3rd International Workshop on Expe-
riences and Empirical Studies in Software Modeling Co-located MODELS 2013,
USA, vol. 1078, pp. 23–32. CEUR-WS.org (2013)

21. Osman, M.H., Chaudron, M.R.V., van der Putten, P.: Interactive scalable abstrac-
tion of reverse engineered UML class diagrams. In: APSEC 2014, South Korea,
December 2014, pp. 159–166. IEEE (2014)

22. Torre, D., Labiche, Y., Genero, M.: UML consistency rules: a systematic mapping
study. In: EASE 2014, UK, 13–14 May 2014. ACM (2014)

23. van Opzeeland, D.J.A., Lange, C.F.J., Chaudron, M.R.V.: Quantitative techniques
for the assessment of correspondence between UML designs and implementations.
In: 9th ECOOP Workshop on Quantitative Approaches in Object-Oriented Soft-
ware Engineering (2005)

24. Zhi, J., et al.: Cost, benefits and quality of software development documentation:
a systematic mapping. J. Syst. Softw. 99, 175–198 (2015)

https://doi.org/10.1007/978-3-540-87875-9_42
https://doi.org/10.1007/978-3-540-87875-9_42

	Diversity in UML Modeling Explained: Observations, Classifications and Theorizations
	1 Introduction
	2 Classifications of Software Models and Their Uses
	2.1 A Classification of Models by Abstraction Level
	2.2 A Classification of Models by Stage of Development
	2.3 Syntactic Characterization of Software Design Models
	2.4 A Classification of the Uses of Software Design Models

	3 A Theory for Explaining the Plethora of Approaches to Modeling
	4 Modeling Pathways
	5 Observations on Modeling in Open Source Projects
	6 Future Directions
	6.1 Aligning the Tools with the Tasks and the Process
	6.2 A Promising Future: Domain Specific Architecture- and Modeling
	6.3 Practical Guidelines for Tailoring Modeling Approaches

	7 Summary and Conclusions
	References


