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Abstract. Nowadays, BPMN 2.0 has acquired a clear predominance for
modelling business processes. However, one of its drawback is the lack of a
formal semantics, that leads to different interpretations, and hence imple-
mentations, of some of its features. This, as a matter of fact, results on
process implementations using such features that do not fit with design-
ers expectations, and that are not portable from one BPMN enactment
tools to another. Among the BPMN elements particular ambiguous is
the semantics of the OR-Join. Several formalisations of this element have
been proposed in the literature, but none of them is derived from a direct
and faithful translation of the current version of BPMN standard. In this
work we instead provide direct, global and local, formalisations compli-
ant with the OR-Join semantics reported in the BPMN 2.0 standard. In
particular, the local semantics is devised to more efficiently determine
the OR-Join enablement. The soundness of the approach is given by
demonstrating the correspondence of the local semantics with respect to
the global one.

1 Introduction

Nowadays, modelling is recognised as an important practice also in supporting
software development. In particular, modelling business processes in complex
organisations permits to better understand how organisations work and, at the
same time, to support the development and continuous improvement of related
IT systems [1]. In doing this, a challenge is to provide a precise semantics of the
modelling languages used to guarantee that model behaviours do what they are
supposed to do. We refer here to BPMN 2.0, the standard language for business
process modelling [2]. Even if widely accepted, BPMN major drawbacks are
related to the complexity of the BPMN meta-model semi-formal definition and
to the possible misunderstanding of its execution semantics defined by means
of natural text descriptions, sometimes containing misleading information [3].
These issues worsen when considering BPMN elements that have a particularly
tricky behaviour, such as the OR-Join [4]. Roughly, this is used to synchronise
two or more parallel flows according to specific (and non trivial) states on their
execution status.
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This paper aims at formally specifying the OR-Join semantics of BPMN
process models. This paves the way not only to formal reasoning, but also to
driven implementations of process-aware IT systems ensuring an execution of
the OR-Join compliant with BPMN 2.0. We focus on the OR-Join not only
because of its semantic complexity, but also due to its practical impact, as that
is a convenient way to relax the synchronisation of parallel control flows [5].
Its use is also confirmed by the number of models containing it (316 out of
7.541 BPMN 2.0 collaborations available in the BPM Academic Initiative public
repository [6]).

In providing a novel formal semantics of the OR-Join specification we are
firstly motivated by the results of our literature review on the topic (see Sect. 3).
In fact, already available formalisation attempts mainly refer to previous versions
of BPMN and do not fit with the current 2.0 standard (see [7–10]). Instead,
those that rely on BPMN 2.0, such as [11], only consider the restricted class of
sound processes. In addition, we have also practical motivations concerning the
implementation of process-aware IT systems. We have experimented with some
popular BPMN modelling and enactment tools and we have observed that most
of them relax, simplify or even avoid the implementation of the OR-Join (see
Sect. 3). In other words, almost all considered tools are not fully compliant with
the OMG standard, thus resulting incompatible each other and not faithful with
the designer expectations based on the BPMN specification.

Tackling the above issues, the contribution of this paper is twofold. Firstly,
we provide a direct formalisation compliant with the OR-Join semantics reported
in the current BPMN 2.0 standard specification. The semantics informally
described in the specification is based on global information about the state
of the whole process model. Thus, a direct, one-to-one, formalisation of this
description has to be given with a global style, i.e., it is based on a notion of
state storing information about tokens distribution over the whole model. From
the practical point of view, however, this global perspective does not fit with
the distributed nature of many process aware IT systems, where a single syn-
chronisation point may not be aware of the execution state of the other process
elements. Moreover, the naive implementation of the global conditions enabling
the OR-Join would turn out to be quite inefficient. Thus, we also provide a
local variant of the semantics, devised to more efficiently determine the OR-Join
enablement, as it depends only on information local to the considered OR-Join.
This semantics fosters a compositional, hence more scalable, approach for enact-
ing processes with OR-Joins.

To sum up, the global semantics has been introduced as the formal refer-
ence, while the local one to be used for implementations. The soundness of our
approach is given by the formal proof of their correspondence.

2 BPMN 2.0 Overview

Here we concentrate on those BPMN elements related to the process behaviour
we use in the following. We also introduce a running example used throughout
the paper.
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BPMN Standard. BPMN process diagrams consist of combinations of different
elements that can be organised in four classes (Fig. 1). Events are used to rep-
resent something that can happen; they can be used to start or end the process.
Gateways are used to join (merging incoming sequence edges) or split (forking
into outgoing sequence edges) the flow of a process. Three types of gateways are
available XOR, AND and OR. An XOR gateway gives the possibility to describe
choices; it is activated each time the gateway is reached and, when executed, it
activates exactly one outgoing edge. An AND gateway has to wait to be reached
by all its incoming edges to start, and then all the outgoing edges are started
in parallel. A OR gateway has to wait to be reached by an arbitrary number
of its incoming edges to start, and then at least one of the outgoing edges is
started (see Sect. 3 for more details). Tasks are used to represent specific works
to perform. Finally, Sequence Edges are used to specify the internal flow of
the process, thus ordering elements.

Start Event End Event XOR AND OR Task Sequence Edge

Fig. 1. Considered BPMN 2.0 elements.

A key concept related to the BPMN process execution is the notion of
token [2, Sect. 7.1.1]. Commonly, a token traverses, from a start event, the
sequence edges of the process and passes through its elements enabling their
execution, and it is consumed by an end event when terminates. The distribu-
tion of tokens in the process elements is called marking, therefore the process
execution is defined in terms of marking evolution.

Running Example. The elements illustrated above can be combined in order
to design models like the one in Fig. 2 modelling an order fulfilment process. This
is the case of a customer-oriented manufacturing caring about the quality of the
order and accepting the payment only when the customer is fully satisfied. The
process shown starts, due to the presence of a start event, whenever a purchase
order has been received from a costumer. In order to manufacture a product,
material availability is checked and then raw materials have to be ordered. Two
preferred suppliers provide different types of raw materials. Depending on the
product to be manufactured, raw materials may be ordered from either Supplier
1 or Supplier 2, or from both. This is rendered by including related tasks in a
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Fig. 2. An order fulfilment process diagram (revised version of model in [5]).
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block composed of two OR gateways: an OR-Split, used to fork the flow into two
branches after a decision; and an OR-Join that acts as a synchronisation point.
Once raw materials are available, the product can be manufactured and the
order confirmed. Then, tasks ‘Ship product’ and ‘Emit invoice’ can be performed
independently from each other, so that they are put in a block between an AND-
Split and an AND-Join enabling a parallel activation and a strict synchronisation
before proceeding. The product is then inspected by the Customer: if he/she is
unsatisfied, the product is manufactured again until he/she is pleased. Finally,
when the Customer is satisfied the product is paid, and the process terminates
by means of an end event.

In the rest of the paper and for the purpose of our study we intentionally left
out tasks, since they do not affect the OR-Join execution [10]. Considering our
running example, we get the process structure in Fig. 3.

Start EndORs1 ORj2 ANDs1 ANDj2 XORs1

e1
e2

e3 e4

e5

e6

e7 e8

e9

Fig. 3. The order fulfilment process structure.

3 Towards the OR-Join Formal Definition

Here we present in detail the semantics of BPMN 2.0 OR-Join as provided in
the OMG specification. We also discuss related works, and give some preliminary
notions we use throughout the paper to formalise the OR-Join behaviour.

From BPMN 2.0 Specification to Process Execution. The OR-Join
semantics is quite complex, both from the definition point of view, in terms
of formally expressing it, and from the computational point of view, in terms of
determining whether an OR-Join is enabled. In our work we distil the charac-
teristics of the OR-Join, from a detailed reading of the BPMN specification we
report in Fig. 4 (where, as a matter of terminology, Inclusive Gateway stands for
OR-Join, while Sequence Flow for sequence edge).

From the standard it is clear that the OR-Join has a non-local semantics
and its activation may depend on the marking evolution considering the whole
diagram. More in detail, given an OR-Join with a token in at least one of its
incoming edges, it has to wait for a token that is in a path ending in a empty
incoming edge of such OR-Join that does not visit the OR-Join itself. However,
if this token is also in a path ending in a non-empty incoming edge, the OR-Join
is activated and the execution can proceed.
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The Inclusive Gateway is activated if:
– At least one incoming Sequence Flow has at least one token and
– For every directed path formed by sequence flow that:

(i) starts with a Sequence Flow f of the diagram that has a token,
(ii) ends with an incoming Sequence Flow of the inclusive gateway that has no token,
(iii) does not visit the Inclusive Gateway.

– There is also a directed path formed by Sequence Flow that:
(iv) starts with f,
(v) ends with an incoming Sequence Flow of the inclusive gateway that has a token,
(vi) does not visit the Inclusive Gateway.

Fig. 4. OR-Join semantics according to the OMG standard BPMN 2.0.
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Fig. 5. OR-Join activation.

Let us consider the example in Fig. 5(A). In this case ORj1 has an incoming
token in e5, but it is not activated because it has to wait for the token in e4
(corresponding to f in the definition in Fig. 4). Indeed, there is not another
path from e4 to e5. However, if the token in e4 moves to e6, as in Fig. 5(B),
the execution of ORj1 resumes, because now there is no marked path ending
in e7. Moreover, if we move the token in e4 back to e1, as in Fig. 5(C), quite
surprisingly ORj1 is activated, since this token can follow the path leading to
e5. In this case, the OR-Join behaviour is quite anomalous; this is due to the
fact that we are in presence of an unsafe model. Finally, to illustrate the effects
of the condition “does not visit the Inclusive Gateway” in Fig. 4, let us consider
a variant of the process where ORj1 is enclosed in a cycle (Fig. 5(D)). Also in
this case ORj1 is activated; indeed, although the token in e8 is in a path ending
in an empty edge incoming in ORj1 (i.e., e9), since it visits ORj1 this path is
ignored.

OR-Join in the Literature. Most of the previous attempts to formalise the
semantics of the OR-Join [7–10] are based on earlier versions of the BPMN
standard, which provide different semantics for the OR-Join. Moreover, also
when the same version of the standard is considered, different interpretations
of the OR-Join behaviour, not always faithful to the specification, have been
given. In particular, these differences regard the treatment of mutually dependent
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OR-Joins (the so-called ‘vicious circles’) and of deadlock upstream an OR-Join.
In fact, from a faithful translation of the standard, it results that mutually
dependent OR-Joins are blocked, and that an OR-Join is not able to recognise
that there is a deadlock on a path leading to it, thus it will wait forever. Below,
we discuss the most significant related works.

Völzer [7] proposes a non-local semantics for the OR-Join in the BPMN 1.0
specification (2006) using workflow graphs. In case of vicious circles he argues
that the intended meaning is not clear and hence they should be sort out by
static analysis. This approach is then improved in [12], which quotes the 2010
version of the specification and gives an informal description of this one by
means of inhibiting and anti-inhibiting paths. Dumas et al. [8] base their work on
BPMN 1.0 and on the definition of the Synchronisation Merge pattern to which
the specification refers to. They provide a local semantics, without imposing
restrictions on the language, able to detect deadlocks upstream and to unlock
mutually dependent OR-Joins. Thalheim et al. [9] make use of ASMs to introduce
the OR-Join, by referring to the the specification of 2006, and make a comparison
between the definitions given by other authors. Adopting a token-based view of
workflow semantics, they start to analyse acyclic models. In this case, to threat
the OR-Join, they introduce a special type of synchronisation tokens that fire
flow objects in their downstream. They then consider cycles and, to deal with
synchronisation in their presence, they introduce sets of tokens, which are viewed
as a coherent group when a join fires. Christiansen et al. [10] refer to BPMN 2.0
- Beta 1, providing a global semantics directly in terms of a subset of BPMN.
As for the vicious circle, they argue that, since informally BPMN specification
does not include the resolution strategy and their work is a faithful translation,
they do not consider it.

Differently from our work, the above approaches rely on past versions of the
BPMN standard, which provide different semantics for the OR-Join with respect
to the current 2.0 version. Thus, they cannot be applied as they are to the
standard BPMN 2.0. Moreover, concerning the issues about vicious circles and
deadlock upstream considered by some of those works, we have checked how they
are dealt with by the current specification and, to be completely faithful with
it, we have simply applied the same solution. Indeed, in the current description
of the OR-Join semantics (Fig. 4), it does not seem to be any ambiguity about
these two issues. The OR-Join is able to detect neither a vicious circle nor a
deadlock upstream, thus in both cases its execution is blocked forever.

Recently, Prinz and Amme [11] propose a formalisation of the OR-Join
semantics referred to the current version of the standard. However, they limit
the work on sound workflow graphs, which identify a quite restricted class of
BPMN processes [13]. In fact soundness is defined as the combination of proper-
ties concerning the dynamic behaviour of a process: option-to-complete, proper-
completion, and no-dead-activities. Moreover, the proposed semantics does not
fit with the standard as, for instance, it avoids vicious circles by determining
which OR-Join in a circle has to wait and which one must proceed.
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OR-Join Implementations. We have seen that in formalising the OR-Join
semantics different interpretations have been given. The same has happened
also for what concerns its implementation. Indeed, unfaithful implementations
can be found in the most popular BPMN modelling and enactment tools. In par-
ticular, we have checked: Activiti [14], Camunda [15], Flowable [16], jBPM [17],
ProcessMaker [18], Signavio [19], Stadust [20] and Sydle [21]. These BPMN tools
provide their own interpretation of the BPMN standard, typically relaxing the
OR-Join semantics. More specifically, Camunda and Flowable take advantage
from the Activiti OR-Join implementation that in some cases keeps blocked
a waiting token differently from what prescribed in the specification (see dis-
cussions above). A similar behaviour arises in Stadust. Instead, jBPM, Process
Maker and Sydle relax the process structure handling only OR-Joins preceded by
OR-Splits, and then enforce a simplified semantics. Last but not least, Signavio,
and in particular its simulation feature, does not support the OR-Join at all.

Preliminaries. To define the formal semantics of a BPMN model we rely on
information extracted from the model by means of a pre-processing step. This
information consists of: i. paths from each OR-Join backward to the start event
(and their suffix sub-paths) that do not visit the inclusive gateway; ii. sequence
edges involved in a cycle; and iii. dependences between OR-Joins. We only con-
sider models with one start event; this is not a limitation as in this setting each
model can be rendered in this form.

For the purpose of our pre-processing, we consider a process model as a direct
graph G = (V,A) where: V is a set of vertices, ranged over by v and consisting
of start events, end events, and gateways; and A is a set of arrows, consisting
of triples (v1, e, v2) with v1 �= v2 and e ∈ E, where E is the set of all (sequence)
edges. Since edges are uniquely identified in a BPMN model, we have that for
each (v1, e, v2) in A there exists no triple (v′

1, e
′, v′

2) in A with e′ = e. This allows
us to write, when convenient, (v1, e, v2) as e. Moreover, an OR-Join vertex is
uniquely identified by the name of its outgoing edge.

A path in G, denoted by p, is a non-empty sequence of edges in A, where the
third element of a triple is equal to the first of the next triple in the sequence,
if any. A path that ends in its starting vertex is called cycle. For example, in
the model in Fig. 3 we can observe the following cycle: (e4, e6, e7, e9). Given a
path p of the form (v0, e0, v1), . . . , (vk−1, ek−1, vk), notations first(p) and last(p)
indicate the starting edge e0 and the ending edge ek−1 of p, respectively.

We also refer with P the set of all the paths in G and we define P : E → 2P

such a function that, given as input an edge e ∈ E returns the set of all paths
ending in the OR-Join uniquely identified by e and starting from all vertices
between the start event and the OR-Join, which do not visit the considered
OR-Join. Notably, this function returns a finite set of paths, because cycles
within paths are not repeated. While computing P, we can also compute the set
C ⊆ E of edges included in a cycle. Concerning the example in Fig. 3, we have
P(e4) = {(e2), (e3), (e1, e2), (e1, e3)}, and C = {e4, e6, e7, e9}.
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Finally, to properly formalise the OR-Join semantics in presence of vicious
circles (i.e., to keep blocked the execution, see discussion above), we have to
detect for each OR-Join the presence of OR-Joins from which it depends. This
is expressed as a boolean predicate noDep : E → {true, false}, which taken as
input an edge e identifying an OR-Join, it holds if no other OR-Join mutually
depends with e.

To compute the pre-processing data mentioned above, we rely on existing
graph theory procedures (the code is available at https://goo.gl/wv5Afu).

In particular, we use the jGraphT (www.jgrapht.org) Java library that is
able to manage graphs. In this way, we capture cycles with the implementation
of the Szwarcfiter and Lauer algorithm [22] and paths by using a Dijkstra-like
algorithm [23].

4 Formalisation of the OR-Join Global Semantics

According to the OMG standard the semantics of the OR-Join requires global
information about the state of the whole model. Here, we formalise this global
perspective of the BPMN semantics. In particular, to enable a formal treatment
of BPMN models including the OR-Join, we defined in Fig. 6 a BNF syntax of
the model structure.

In the proposed grammar, the non-terminal symbol S represents Process
Structures, while the terminal symbols, denoted by the sans serif font, are the
considered elements of a BPMN model, i.e. events and gateways. The corre-
spondence between the textual notation used here and the graphical notation of
BPMN presented in Sect. 2 is as follows:

– e ∈ E denotes a sequence edge, while E ∈ 2E a set of edges; we require |E| > 1
when E is used in joining and splitting gateways;

– start(e) represents a start event with outgoing edge e;
– end(e) represents an end event with incoming edge e;
– andSplit(e, E) (resp. xorSplit(e, E), resp. orSplit(e, E)) represents an AND

(resp. XOR, resp. OR) split gateway with incoming edge e and outgoing
edges E;

– andJoin(e, E) (resp. xorJoin(e, E), resp. orJoin(e, E)) represents an AND
(resp. XOR, resp. OR) join gateway with incoming edges E and outgoing
edge e;

– S1 | S2 represents a composition of structure elements in order to render a
process structure in terms of a collection of elements.

To achieve a compositional definition, each sequence edge of the BPMN model
is split in two parts: the part outgoing from the source element and the part
incoming into the target element. The two parts are correlated by means of
unique sequence edge names in the BPMN model. To avoid malformed structure
models, we only consider structures in which for each edge labelled by e outgoing
from an element, there exists only one corresponding edge labelled by e incoming
into another node, and vice versa.

https://goo.gl/wv5Afu
www.jgrapht.org
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Fig. 6. Syntax of BPMN process structures.

The operational semantics we propose is given in terms of configurations of
the form 〈S, σ,P〉, where: S is a process structure; σ is the execution state, storing
for each edge the current number of tokens marking it; and P is the function
that associates to each OR-Join gateway all paths that are incoming to it, not
visiting it, and starting from marked edges (it results from pre-processing, see
Sect. 3). Specifically, a state σ : E → N is a function mapping edges to numbers
of tokens. The state obtained by updating in the state σ the number of tokens
of the edge e to n, written as σ · {e �→ n}, is defined by (σ · {e′ �→ n})(e) = n
if e′ = e and σ(e) otherwise. The inital state, where all edges are unmarked, is
denoted by σ0; formally, σ0(e) = 0 ∀e ∈ E.

The reduction relation over configurations, written →G and defined by the
rules in Fig. 7, formalises the execution of a process in terms of edge marking
evolution. Since such execution only affects the process state, for the sake of
presentation, we omit the structure and P from the target configuration of the
transition. Moreover, since P is exploited only by the OR-Join rule, it will also
be omitted from the source configuration. Thus, 〈S, σ,P〉 →G 〈S, σ′,P〉 shall be
usually written as 〈S, σ〉 →G σ′. Before commenting on the rules, we introduce
the auxiliary functions they exploit. Function inc : S × E → S (resp. dec :
S×E → S), where S is the set of states, allows updating a state by incrementing
(resp. decrementing) by one the value of an edge in the state. Formally, they
are defined as follows: inc(σ, e) = σ · {e �→ σ(e) + 1} and dec(σ, e) = (σ · {e �→
σ(e) − 1}. These functions extend to sets of edges as follows: inc(σ, ∅) = σ and
inc(σ, {e} ∪ E)) = inc(inc(σ, e), E) (the cases for dec are similar).

We now briefly comment on the operational rules. Rule G-Start starts the
execution of a process when it is in its initial state (i.e., all edges are unmarked).
The effect of the rule is to increment the number of tokens in the edge outgoing
from the start event. For the sake of simplicity, the rule is defined in a way that,
when the process execution terminates it can restart. Rule G-End instead is
enabled when there is at least a token in the incoming edge of the end event,
which is then removed. Rule G-AndSplit is applied when there is at least one
token in the incoming edge of an AND-Split gateway; as result of its application
the rule decrements the number of tokens in the incoming edge and increments
that in each outgoing edge. Similarly, rule G-AndJoin decrements the tokens in
each incoming edge and increments the number of tokens of the outgoing edge,
when each incoming edge has at least one token. Rule G-XorSplit is applied
when a token is available in the incoming edge of a XOR-Split gateway, the rule
decrements the token in the incoming edge and increment the token in one of the
outgoing edges. Rule G-XorJoin is activated every time there is a token in one of
the incoming edges, which is then moved to the outgoing edge. Rule G-OrSplit
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Fig. 7. BPMN global semantics.

is activated when there is a token in the incoming edge of an OR-Split gateway,
which is then removed while a token is added in some outgoing edges (at least
one). Notably, in the rule we make use of operator �, denoting the disjoint union
of sets, i.e. E1 � E2 stands for E1 ∪ E2 if E1 ∩ E2 = ∅, it is undefined otherwise.
Rules G-Int1 and G-Int2 deal with interleaving in a standard way.

We conclude by describing in detail the rule G-OrJoin defining the semantics
of the OR-Join gateway. The operator � is used to split the set of edges incoming
in the OR-Join into two disjoint sets, E1 and E2, such that one contains marked
edges (∀e′ ∈ E1 . σ(e′) > 0) and the other one contains unmarked edges (∀e′ ∈
E2 . σ(e′) = 0). In describing the rule we quote the BPMN 2.0 specification
to make clear the correspondence. “The Inclusive Gateway is activated if” the
conditions for the rule applications are satisfied. Thus, the requirement “At least
one incoming Sequence Flow has at least one token” is represented by condition
E1 �= ∅. The second requirement “For every directed path formed by Sequence
Flow that (i). . . (ii). . . (iii). . .There is also a directed path formed by Sequence
Flow that (iv). . . (v). . . (vi)” is represented by the condition ∀p1 ∈ Π . ∃ p2 ∈
Πp1 , where Π is the set of paths satisfying (i), (ii) and (iii), while the sets Πp,
one for each path p in Π, contain paths satisfying (iv), (v) and (vi). Formally,
they are defined as Π = {p ∈ P(e) |σ(first(p)) > 0 ∧ last(p) ∈ E2} and Πp =
{p′ ∈ P(e) | first(p′) = first(p) ∧ last(p′) ∈ E1}. In particular, a path p in Π is
such that: “(i) starts with a Sequence Flow f of the diagram that has a token”
(σ(first(p)) > 0), “(ii) ends with an incoming Sequence Flow of the inclusive
gateway that has no token” (last(p) ∈ E2), and “(iii) does not visit the Inclusive
Gateway” (ensured by definition of P). Instead, given a path p in Π, a path p′

in Πp is such that: “(iv) starts with f ” (first(p′) = first(p), as f is the first edge
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of p), “(v) ends with an incoming Sequence Flow of the inclusive gateway that
has a token” (last(p′) ∈ E1), and “(vi) does not visit the Inclusive Gateway”
(ensured again by definition of P).

Example 1. The initial configuration of the process in Fig. 3 is 〈S, σ0〉 where:

S = start(e1) | orSplit(e1, {e2, e3}) | orJoin(e4, {e2, e3, e9}) | andSplit(e4, {e5, e6})
| andJoin(e7, {e5, e6}) | xorSplit(e7, {e8, e9}) | end(e8)

By applying ruleG-Start the execution of the process starts by marking with a
token the edge e1. Rule G-OrSplit can be then applied; it moves the token from
e1 to one (or more) outgoing edges of the OR-Split, say e3. Now, all premises
of rule G-OrJoin are satisfied: E1 = {e3} �= ∅, and the condition based in the
universal quantification trivially holds as Π = ∅, since all paths with a token at
the beginning and no token at the end, e.g. (e3, e4, e5, e7, e9), do visit the OR-
Join, thus violating the requirement (iii). Therefore, the rule can be applied and
the token in e3 moves to e4. From there, the execution simply proceeds according
to the semantics of AND and XOR gateways.

5 Formalisation of the OR-Join Local Semantics

The OR-Join semantics presented in the previous section perfectly fits with the
informal definition given in the BPMN 2.0 standard specification. However, the
evaluation of the OR-Join gateway activation (formalised by the premises of
rule G-OrJoin) requires a global view of the process marking. From a practical
perspective, this may complicate the implementation of the process control flow,
also considering that the semantics of all other BPMN constructs is local, i.e. it
relies only on the information about the marking of incoming and outgoing edges.
Therefore, we propose in this section an alternative, yet equivalent, semantics of
BPMN, including the OR-Join construct, that is local.

For the local semantics, we consider only safe models [24]. Safeness requires a
model to not activate an edge more than once at the same time. This assumption
is not too restrictive, since safeness is recognized as one of the most important
correctness criteria for business process models [25]. The lack of this property,
in fact, may cause issues concerning process execution, related e.g. to the proper
termination of processes or to erroneous synchronizations among concurrent con-
trol flows [26].

To enable local treatment of the BPMN semantics, roughly the global state
information of a process is spread over the edges of its structure, resulting on
a Marked Process. Formally, the syntax of marked processes, denoted by M , is
defined in Fig. 8. The only difference between the syntax of a marked process and
a process structure is that in the former an edge is also characterised by a type
T , indicating if it is part of a cycle (c) or not (nc), and by a status Σ, denoting
whether a token is marking the edge (live status denoted by l), or may still arrive
(wait status denoted by w), or will not arrive (dead status denoted by d). As
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Fig. 8. BPMN syntax of marked processes.

explained in Sect. 3, edge types are statically determined in the pre-processing.
With abuse of notation, edge set notation E extends to marked edges.

Now, the operational semantics does not need to consider any more con-
figurations with a state, but it is directly given in terms of marked processes.
Formally, the operational semantics is defined by means of a labelled transition
relation M

α−→L M ′, meaning that “the marked process M performs a transition
labelled by α and becomes M ′ in doing so”. Labels α are used to propagate the
effect of marking updates, resulting from the evolution of a subterm of the pro-
cess, to the other subterms. They are triples of the form (w : E1, d : E2, l : E3),
indicating the edges whose status must be set to w, d and l, respectively. For
the sake of simplicity, within labels, sets Ei contain just edge names (without
type and status). Moreover, to improve readability, we omit a field of the triple
when the associated edge set is empty, and we remove brackets {and} in case of
singleton; for example, the label (w : ∅, d : ∅, l : {e}) is written l : e. Finally, to
identify the initial status of a marked process M we rely on the boolean predicate
isInit(M), which holds when all edges of M have status w. Due to lack of space,
we present below an excerpt of the operational semantics; we refer the interested
reader to the companion technical report [27] for a complete account of defini-
tions, operational rules, proofs of the correspondence results, and application to
the running examples.

To define the labelled transition relation, we need a few auxiliary functions.
First, we exploit setDead(E) and setWait(E) to change the status of gateway
edges to d and w, respectively. Similarly, to check if the edges in E have live (resp.
dead) status, we make use of the boolean function isLive(E) (resp. isDead(E)).
Finally, to distinguish the type T of edges in E we make use of boolean func-
tions isC (E) (resp. isNC (E)). All these functions are inductively defined on the
structure of E.

In Fig. 9 we report some significant operational rules defining the evolution
of live tokens in the BPMN local semantics. A start event has edges with non-
cyclic type, as according to the BPMN standard it cannot have an incoming
edge. Rule L-Start-NC annotates the edge e outgoing from the start event with
l when the process is in the initial status (in fact, the edge has a w status before
the transition), the corresponding label l : e is produced. Let us consider the
OR-Join rules. L-OrJoin-NC is applied when the outgoing edge is of non-cyclic
type, while L1-OrJoin-C and L2-OrJoin-C when it is of type c. In these latter
cases, we also make use of the boolean predicate noDep(e), defined in Sect. 3,
to ensure that in case of vicious circles (noDep(e) = false) the rules cannot be
applied, thus enforcing a deadlocked behaviour as prescribed by BPMN 2.0.
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Fig. 9. BPMN local semantics (an excerpt).

The rules described so far are not enough for properly expressing the OR-
Join behaviour only using local information. Other rules are indeed needed to
propagate the dead status. They are applied when all incoming edges of a gate-
way are annotated with d, and propagate this information to the outgoing edges.
As an example, we report here rule D-OrJoin. Finally, M -StatusUpd allows the
interleaving of the process element. It relies on the status updating function
M � α, which returns a process obtained from M by updating the status of its
edges according to the labelled sets they belong to in α.

We conclude the section with our main result, ensuring the soundness of our
approach. In particular, we show the correspondence between the global and
local semantics we provided. In order to do that we first need to illustrate the
correspondence between the syntax used in the global formalisation and that
used in the local version. The local notation is achieved by applying σ to the
structure S, that is by distributing the token information included in σ on the
edges of S. We recall, we consider only safe processes, thus 0 � σ(e) � 1.
Formally, we have the following definition; we rely here on auxiliary notations t
and nl to denote an undefined type, which can be either c or nc, and a not live
status, which can be either w or d.

Definition 1 (Syntax correspondence). Let 〈S, σ〉 be a process configura-
tion, then S · σ is inductively defined on the structure of S as follows (we show
here only few cases of the definition, since the other are similar):
start(e) · σ = start(e.t.(e · σ)) end(e) · σ = end(e.t.(e · σ))
orJoin(e, E) · σ = orJoin(e.t.(e · σ), (E · σ)) (S1 | S2) · σ = S1 · σ | S2 · σ

where e ·σ =
{

l if σ(e) = 1;
nl otherwise. ∅ ·σ = ∅ ({e}∪E) ·σ = {e ·σ}∪ (E ·σ).



334 F. Corradini et al.

According to the above definition, a term S · σ represents a class of marked
processes, i.e. all those processes with the same marking for what concerns the
live status, but possibly different markings for the other two status and possibly
different edge types (information that indeed are not considered at all in the
global semantics). Therefore, to state that marked processes belong to a given
class we use the relation ≡, whose meaning is as follows: M ≡ S · σ means that
M is syntactical equivalent to S ·σ, up to an instantiation of t and nl occurrences
in S · σ.

Finally, our results rely on the notion of reachable configuration/processes.
In fact, the considered syntaxes are too liberal, as they allow terms that cannot
be obtained (by means of transitions) from a process in its initial state.

Definition 2 (Reachable configuration/marked process). A process con-
figuration 〈S, σ〉 (resp. marked process M) is reachable if there exists 〈S, σ′〉
(resp. process M ′) such that σ′ = σ0 (resp. isInit(M ′)) and 〈S, σ′〉 →G

*σ (resp.
M ′ α−→L

*M).

Now, we can formally define our results, stating that each step of the global
semantics corresponds to one or more steps of the local semantics (Theorem 1)
and vice versa (Theorem 2). Their proofs are given by induction on the derivation
of the transitions.

Theorem 1. Let 〈S, σ〉 be a reachable process configuration, if 〈S, σ〉 →G σ′

then there exists M such that M ≡ S · σ, M
α−→L
+M ′ and M ′ ≡ S · σ′.

Theorem 2. Let M be a reachable marked process, with M ≡ S·σ, if M
α−→L M ′,

then there exists M ′′ such that M ′ α−→L
*M ′′, 〈S, σ〉 →G σ′ and M ′′ ≡ S · σ′.

6 Concluding Remarks

In this paper we presented global and local direct formalisations of BPMN
process models compliant with the OR-Join semantics reported in the BPMN
2.0 standard. In particular, the local semantics fosters a compositional, and
hence more scalable, approach to enact business processes involving OR-Joins.
The soundness of the proposed approach is given by the formal correspondence
between the local and global semantics.

As a future work, we plan to validate the performance of the proposed global
and local semantics over models coming from real scenarios. Moreover, we intend
to use the OR-Join semantics to enable process verification and ensure process
models correctness by design. Last but not least, we plan to extend enactment
tools, such as Camunda [15], to implement process aware IT systems fitting with
the proposed semantics.
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