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Abstract. Sequence diagrams belong to three most frequently used UML
diagrams and they are often an integral part of a software design. Designers
utilize sequence diagrams to define and visualize designed software’s behavior.
But during software development and maintenance, multiple vendor’s changes
are implemented into a source code. These changes lead to inconsistencies
between a software model and the source code, that are omitted due to lack of
time. This paper is focused on problems with automated source code changes
propagation into UML sequence diagrams. In the paper, we propose the
architecture for synchronization of outdated designers’ sequence diagrams with
current software behavior implemented in a source code. The proposed archi-
tecture is focused on updating and not on regenerating sequence diagrams, what
helps designers to understand modified behavior and changes provided in it. We
evaluated the proposed architecture via implemented extension for Eclipse
Papyrus, which analyzes differences between sequence diagrams and source
code model, and based on developers’ styles, it propagates differences to
sequence diagrams.
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1 Introduction

With the focus on current trends in agile software development, great emphasis is
placed on software sustainability. Huge amount of change requests is often required in
massive enterprise architectures and long-term projects. Even though change requests
and bugs are obviously well documented [1], during applying of these changes, there is
regularly a problem that software design documentation is not properly updated and
become insufficient [1, 2]. Outdated software design documentation, e.g. in form of a
UML model can cause significant obstacles during problem investigation.

To solve this problem, automated tools for change propagation from source code to
UML models are required. Tools for automated synchronization of static part of UML
models are already developed and integrated in software modelling tools, e.g. Sparx
Systems Enterprise Architect1 or IBM Rational Software Architect Designer2. But

1 http://www.sparxsystems.com/.
2 http://www-03.ibm.com/software/products/en/ratsadesigner.
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software behavior is still uncovered problem. There are already tools (e.g. IBM
Rational Rhapsody3 or Microsoft Visual Studio4) and research works [3, 4] that are
dealing with generating behavioral UML diagrams from source code. But these tools
can only generate new diagrams from source code or a source code execution, but they
are not able to update existing diagrams with changes provided in source code. This
problem is mainly visible in the third most used UML diagram [5, 6] – sequence
diagram, in which designers obviously keep needed abstraction and they do not model
all scenarios and interactions. The stable position of sequence diagrams in software
models over years is caused by their ability to clarify how software works [5].

To achieve automatic change propagation to UML sequence diagrams, a source
code and sequence diagrams synchronization is required. This means that if we want to
preserve meaning and level of abstraction of models, every time changes are made in a
source code, existing sequence diagrams should be updated. There is also problem with
level of abstraction of sequence diagrams, because transforming all source code
changes is usually not desired. We propose the solution fully functional synchro-
nization of software source code and sequence diagrams based on change detection and
synchronization methods.

2 Related Work

To achieve fully functional synchronization process of UML sequence diagrams and
source code, it is required that sequence diagrams’ components and source code frag-
ments, that can be transformed into sequence diagrams, need to be represented in identical
form suitable for detection of changes. One of promising sequence diagram representa-
tion is a hierarchical tree structure [7], where tree node represents sequence diagram
lifeline and sequence diagram messages are represented with edge of tree (Fig. 1).

Fig. 1. Example of hierarchical tree representation of a sequence diagram [7]

3 http://www-03.ibm.com/software/products/en/ratirhapfami.
4 https://www.visualstudio.com/.
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Another example of solutions where diagram was transformed into suitable structure
for later processing and comparison are Petri nets [9] or control flow graphs [8].

An important part of the synchronization is source code fragments extraction. These
fragments are required for comparison and synchronization of source code and a set of
sequence diagrams. Source code fragments extraction can be made during source code
execution [13] or by manual analysis of program files. Another way to extract infor-
mation about program structure is static analysis with source code transformation to
Abstract Syntax Tree [3] or Knowledge Discovery Metamodel (KDM)5. Knowledge
Discovery Metamodel is technology independent metamodel developed by OMG,
usually used in legacy system to provide intermediate representation of software
components and software structure. KDM is separated into 4 layers – Infrastructure
layer, Program Elements Layer, Runtime Resource Layer and Abstractions Layer [10].
Program Elements Layer provide us with information about source code structure in
XMI format. MoDisco Eclipse Plugin implements KDM standard and it generates
KDM XMI structure from Java Standard Edition projects [12].

3 Architecture for Automated Change Propagation

Our proposed solution of automated change propagation from source code to sequence
diagrams is designed as modular architecture containing seven modules that expose
services (see Fig. 2):

• KDM Code Analyzer – analyzes source code described by KDM and transforms it
to an object model;

• UML Analyzer – analyzes UML model, extracts information about sequence dia-
grams and transforms them to an object model;

• Strategy Analyzer – analyzes design strategies used by designers in sequence dia-
grams and prepares data for synchronization rules;

• Graph Transformation module – transforms source code object model and sequence
diagram object model to comparable graph representations;

• Comparison module – compares the source code graph and sequence diagrams
graphs and builds a list of changes provided in the source code;

• Synchronization module – uses the list of detected changes and synchronizations
rules to propagate changes into a changelog, which should be applied on sequence
diagrams;

• Interpreter module – interprets the changelog on the UML model.

The solution can extract information about sequence diagrams from a software
UML model and source code fragments generated by MoDisco Eclipse Plugin from
source code and use this information to synchronize newly added modifications in
source code into existing sequence diagrams.

Each module has defined output and input formats and acts mostly independently
of the other modules. This means that even if a core functionality in one of modules has

5 http://www.omg.org/technology/kdm/.

170 K. Rástočný and A. Mlynčár

http://www.omg.org/technology/kdm/


been changed, inputs and outputs of the module remain unchanged so functionality of
the rest of modules is sustained. For example, if the KDM Analyzer module is replaced
with an AST analyzer, it should not affect functionality of other modules. Another
example is in comparison module – if another comparison algorithm is used in com-
parison module, this change does not affect ways of a source code and sequence
diagrams synchronization.

3.1 UML Analyzer

The module UML Analyzer parses an UML model stored in a XMI file and transforms
the model’s sequence diagrams to simplified sequence diagram representation (Fig. 3),
which contains necessary data for comparing newer source code with outdated
sequence diagrams. This simplified representation is efficient for later transformations
and it also suitable for representation of algorithms written in the source code.

3.2 KDM Analyzer

The KDM Analyzer provides an adapter between the proposed architecture and used
tool for static source code analysis. Getting the KDM Analyzer apart makes the
architecture programming language and technology independent. We can easily
implement language specific adapter, and only by implementation of specialized
adapter, we can make IDE specific implementation, while the specialized adapter can

KDM Code Analyzer

Source Code
Analyzer Service

UML Analyzer

Uml Model Analyzer Service

Graph Transformation Module

Transformation Service

Comparison Module

Comparison Service

Synchronization Module

Interpreter Module

Interpreter Service

Strategy Analyzer

Strategy Service

Sequence Diagram GraphsSource Code Graph

Change Generator

Fig. 2. Modular architecture for automated change propagation from source code to sequence
diagrams.

Automated Change Propagation from Source Code 171



reuse source code model of an IDE (e.g., CodeModel in case of Visual Studio).
These IDE specific implementations should be more efficient and accurate.

The KDM Analyzer transforms source code’s model in KDM to the common
representation as the UML Analyzer. Re-usage of the representations adds more logic to
the KDM Analyzer, what is not ideal for adapters. But nearness to a source code gives
better possibilities for efficient mapping source code artifacts to sequence diagram
artifacts and it reduce complexity of later source code and sequence diagrams
comparison.

3.3 Graph Transformation Module

The main objective of the Graph Transformation module is to transform data created
by the KDM Analyzer and the UML Analyzer to a format which supports efficient
change detection between a source code and sequence diagrams. There are several
representation solutions mentioned in the Sect. 2. Based on analysis and comparison of
these methods we use Hierarchical tree structure [7], based on which we proposed our
sequence diagram tree graph structure. Each tree node (class Node) contains lifeline
name, execution identifier, list of child nodes, message by which node is created, and
list of combined fragments affecting this message.

- id: String
- interaction: Object
- interactionResourceHolder: Object
- name: String
- notationResource: Object

- name: String
- seqNumber: Integer

- name: String
- packageName: String

- interactionFragment: String

SYNCH
ASYNCH
CREATE
RETURN
DESTROY
SELF

ALT
OPT
LOOP
BREAK
PAR
STRICT
SEQ
CRITICAL
IGNORE
CONSIDER
ASSERT
NEG

*

*

SeqDiagram

MessageLifeline CombFragment

«enumeration»
MessageType

«enumeration»
CombFragmentType

-targetLifeline

-combFragmentType-messageType

-combFragment
-sourceLifeline

-messages

Fig. 3. Simplified sequence diagram representation generated by the UML analyzer.
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3.4 Comparison Module

The Comparison module detects changes between a source code tree structure and
sequence diagram tree structures created by the Graph Transformation module. The
Comparison module process each potentially outdated sequence diagram in three steps:

1. Find identical subtree in the source code tree structure – the module tries to match
the sequence diagram in the source code. If the sequence diagram is found as
identical subtree, the diagram is marked as up-to-date and the next two steps are
omitted.

2. Find the root node of similar subtree in the source code tree structure – the module
tries to identify the root node of the sequence diagram in the source code. To match
the root node, the breadth-first search with following conditions is used:
a. For a root node candidate, a subtree-depth is calculated. If the subtree depth is

less than the sequence diagram’s tree-depth - 2, the root node candidate is
rejected. The difference 2 has been chosen as search algorithm optimization,
while it markedly reduces searched space. We defined this heuristic, because the
source code is more detailed than sequence diagrams and if the source code’s
subtree is significantly smaller, than it will been rejected in the following con-
dition with high probability.

b. If 35% nodes of the root node candidate’s subtree are identical with the sequence
diagram tree’s nodes, the root node candidate is marked as the root node. The
ratio of identical nodes has been determined by manual experiments. The value
35% is relatively small, but the source code tree contains precise details like
system and external calls at lowest level, that are not modeled in sequence
diagrams.

3. Comparison of the source code’s subtree with the sequence diagram tree – the
comparison algorithm is based on [11], which finds an edit script which contains a
set of tree modifications to achieve quickest way to reach an isomorphic state
between these two trees. In our case, our modified change detection algorithm
creates a list of changes detected in compared source code’s subtree and the
sequence diagram tree. Detected changes are later processed by synchronization
module to finalize synchronization process.

The comparison algorithm is proposed to process a source code representable by a
tree, i.e. programs with one execution point (e.g. Main function). The algorithm can be
modified to reflect a source code with multiple execution points, e.g. REST services. In
this case, the source code is not a tree, but it is still directed graph with nodes that have
not any input edges. These nodes are execution points and they acts as root nodes for
their sub-graphs – trees. Therefore, by matching sequence diagrams against all root
nodes (execution points), the comparison algorithm became suitable to current software
systems that utilize execution frameworks.
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3.5 Strategy Analyzer

The Strategy Analyzer module analyzes original sequence diagrams and based on this
analysis it collects information, that describe a sequence diagrams design style. Current
set of analyzed design style information contains:

• Average lifelines count;
• Average messages count;
• Lifelines count in each sequence diagram;
• Messages count in each sequence diagram;
• Frequencies of combined fragment types;
• Usage of get/set messages in each sequence diagram.

3.6 Synchronization Module

The Synchronization module is responsible for managing synchronization process.
From this module, users can start execution of synchronization process. The module
uses lists of changes and sets of design style information for each sequence diagram to
build a list of synchronization actions, that should be provided in the UML model.

The list of synchronization actions is built by resolutions, whether a change
detected in the Comparison module should be interpreted to a software sequence
diagram. This feature is fulfilled by set of synchronization rules. Each modification
detected in the Comparison module is evaluated by following synchronization rules
and based on output from rule, it is determined, if the modification is added to the list of
synchronization actions:

• Lifeline synchronization rules:
– if an addition of a lifeline exceeded maximal lifelines count in the sequence

diagram, the addition is ignored;
– if an addition of a lifeline will introduce a package, which has not been used in

the sequence diagram, the addition is ignored;
• Messages lifeline synchronization rules:

– If multiple occurrences of a message should be added to the sequence diagram,
but the sequence diagram does not contain any occurrence of the message, all
additions of the message are ignored;

– If the sequence diagram does not contain any get/set messages, all additions of
get/set messages are ignored;

• Combined fragments synchronization rules:
– If multiple combined fragments should be added, but the sequence diagram does

not contain any combined fragment, the sequence diagram is evaluated as high
level diagram and all additions of combined fragments are ignored;

– If an opt combined fragment should be deleted and alt combined fragment
should be added at the same position, both modifications are ignored and new
modify synchronization action, which transforms the opt combined fragment to
the alt combined fragment, is added to the list of synchronization actions.
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3.7 Interpreter Module

The Interpreter module is designed to finalize whole synchronization process. The
module interprets actions from the list of synchronizations actions. The Interpreter
module should be implemented for each UML modelling tool separately. There is also
possibility to provide tool independent implementation that modifies XMI files, but
each UML modelling tool uses their own XMI extension for sequence diagrams’ layout
information.

4 Evaluation

To evaluate usability of the proposed architecture we implemented the prototype6

which synchronizes Java source code analyzed by MoDisco Eclipse Plugin with
sequence diagrams modeled in Eclipse Papyrus. In the prototype, we did not implement
synchronization of all elements from the sequence diagram metamodel, but we focused
on the mainly used elements, via which we can present correctness of change propa-
gation from obviously used source code structures:

• Synchronous messages;
• Reply messages;
• Lifelines;
• Combined fragments: loop, opt.

Modules of the prototype are implemented as OSGi Eclipse Bundles with fully
implemented APIs and data structures necessary for supporting whole sequence dia-
gram metamodel. So, this restriction of sequence diagram elements does not affect
results of the evaluation and the restriction will be resolved by final implementation of
the change detection module and the interpreter module.

We evaluated the proposed architecture via sixteen test cases, that was organized in
three test sets based on level of their complexity:

• Evaluation of basic functionalities
– TC01: Adding a synchronous message
– TC02: Adding a synchronous message and a lifeline
– TC03: Removing a synchronous message
– TC04: Removing a synchronous message and a lifeline
– TC05: Adding a combined fragment opt
– TC06: Removing a combined fragment opt

• Evaluation of synchronization rules
– TC07: Filtration of system calls
– TC08: Restriction of lifelines count
– TC09: Filtration of get/set calls
– TC10: Filtration of external calls
– TC11: Filtration of combined fragments

6 Replication package: https://github.com/rastocny/SOFSEM_SeqDiag_ChangeProp.
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• Evaluation of propagation of complex changes
– TC12: Replacing two messages with one new message, which contains inter-

nally six new calls
– TC13: Condition change and movement of existing calls to new operation
– TC14: Part of the functionality has been moved to new operation
– TC15: Removing a sequence diagram implementation from the source code
– TC16: Adding a loop over an existing condition and adding a new synchronous

call into the condition

For each test case, we defined outdated sequence diagram (Fig. 4), modified source
code (List. 1) and expected changelog (List. 2). After execution of all test cases we
manually compared expected changelogs with obtained changelogs and evaluated
differences. In the next step, we reviewed updated sequence diagrams (Fig. 5) and
evaluated their layout and correctness.

During the evaluation of the first test case set, 20 modifications in sequence dia-
grams were done. The evaluation proved, that the prototype correctly processes the
source code and sequence diagrams in UML Analyzer and KDM Analyzer modules and
that the source code and the sequence diagrams are correctly transformed to the se-
quence diagram tree graph structure. This evaluation also showed, that the Compar-
ison module can detect modifications on implemented sequence diagram elements and
that detected modifications are correctly interpreted by the Interpreter module.

The first set of test cases uncover some layout issues in the Interpreter module.
After deletion of messages, bellow messages are not shifted up. There was also
problem with added combined fragment which has not correctly set top and bottom
margins.

Fig. 4. Outdated sequence diagram for testcases TC01-TC07.
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public void createRegistry(){ 
Person person1 = new Person("Andrej", "Mlyncar", null);
PersonRegistry registry = new PersonRegistry();
if(registry != null)
registry.printDetails();

StatsManager statsManager = new StatsManager(registry);
} 

List. 1. Modified source code for TC03.

fragment_add = opt:registry!=null; message: printDetails
List. 2. Expected change log for TC03.

The second test case set is focused no validation if the proposed architecture is able
to detect basics of used design styles. For these test cases, we defined different
sequence diagrams and we observed if the Strategy Analyzer and the Synchronization
module correctly detect and interpret used styles. The test cases applied 20 modifica-
tions in sequence diagrams and proved that observed design styles are correctly
identified independently. We observed only one new issue with calculating horizontal
positions of nested execution specifications.

Combinations of multiple design styles and source code modifications were eval-
uated by the last test case set, which provided 67 modifications. The results showed that
proposed architecture can correctly detects complex changes and propagates them to
sequence diagrams with respect of a design style. Some issues were observed in layouts

Fig. 5. Updated sequence diagram for TC03.
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of sequence diagrams, where multiple modifications have been done. Some sequence
diagram elements did not have correctly calculated heights and x-coordinates, but all
elements were semantically and syntactically placed correctly. These problems can be
later resolved by reusing Eclipse Papyrus’s layouting algorithm in the Interpreter
module. The layouting algorithm should be also updated to use distances and sizes
learned from original sequence diagrams for added and modified elements.

5 Conclusion and Future Work

The work presented in the paper is primarily focused on architectural design of solution
which will be able to provide an effective way to automate update of a behavioral
documentation of software systems for software architects and developers. The pro-
posed solution can improve process of applying changes to existing software systems
by reducing communication about implemented software changes between software
developers and architects or analytics.

Synchronization of source code and sequence diagrams is executed by set of modules.
Modules operate independently of other modules functionality, which means that inter-
pretation, comparison or synchronization methods can be changed without any or signif-
icant effects to other modules and that core functionality is language and tool independent.

We implemented the first prototype to prove concepts of the proposed architecture
and to evaluate its applicability. The next steps are focused on completion of the
implementation with support of all applicable sequence diagram elements. After that
we will provide final evaluation of the architecture in two steps. Firstly, we will utilize
modularity and we will implement a sandbox system which replaces the Graph
Transformation module and the Interpreter module. The sandbox system will test
robustness of the solution with generating test cases and observing results of the
Synchronization module. In the second step, we will provide empirical study by
applying the implemented prototype in real agile teams. In this study, we will deploy
the prototype into the tool for collaborative modelling [14] and we will involve teams
from the course Team project and teams from our innovation lab built in cooperation
with the project DA-SPACE7.

Later we will focus also on applying the proposed architecture on other behavioral
diagrams. We assume that the architecture is almost directly applicable on communi-
cation diagrams, that have equivalent expression power as sequence diagrams. More
challenging are activity diagrams, in that same algorithmic concepts (e.g., loops) can be
modelled variously.
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7 http://www.interreg-danube.eu/approved-projects/da-space.
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