
Target Set Selection Parameterized
by Clique-Width and Maximum Threshold

Tim A. Hartmann(B)

Lehrstuhl für Informatik 1, RWTH Aachen University, Aachen, Germany
hartmann@algo.rwth-aachen.de

Abstract. The Target Set Selection problem takes as an input a
graph G and a non-negative integer threshold thr(v) for every vertex v.
A vertex v can get active as soon as at least thr(v) of its neighbors have
been activated. The objective is to select a smallest possible initial set
of vertices, the target set, whose activation eventually leads to the acti-
vation of all vertices in the graph.

We show that Target Set Selection is in FPT when parameterized
with the combined parameters clique-width of the graph and the max-
imum threshold value. This generalizes all previous FPT-membership
results for the parameterization by maximum threshold, and thereby
solves an open question from the literature. We stress that the time
complexity of our algorithm is surprisingly well-behaved and grows only
single-exponentially in the parameters.

1 Introduction

The Target Set Selection problem (TSS) suits to model irreversible prop-
agation of all sorts of conditions or information in a network. This may be
for example a word-of-mouth-effect, disease spreading or fault influence in dis-
tributed systems [15]. The input is an undirected graph G and a non-negative
integer threshold thr(v) for every vertex v. The task is to select a smallest pos-
sible set S of initially active vertices, the target set, whose activation eventually
leads to the activation of all vertices in the graph. A vertex v can become active
as soon as at least thr(v) of its neighbors have been activated.

Our view on the activation of a vertex is that it is allowed to become active
if enough neighbors are active before, in contrast to that it is obligated to get
active as soon as possible. We ask for a smallest possible set S, the target set,
and a permutation of the vertices π, which is the ordering in which the vertices
get active. Then, for every non-target set vertex v, to assure its activation we
require that at least threshold thr(v) many neighbors of v are ordered before v.
In particular, our permutation may order the target set vertices S not at the
beginning. This definition is more robust towards re-orderings of the permutation
of vertices. We can re-order the permutation and not have to bother that for
example the target set no longer consists of the very first vertices of the ordering.
In the literature the problem is commonly defined via rounds of activations that
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 137–149, 2018.
https://doi.org/10.1007/978-3-319-73117-9_10

138 T. A. Hartmann

define sets of active vertices for each round. Our definition is equivalent while
being much more convenient for our techniques.

Target Set Selection
Input: An undirected graph G, a non-negative threshold for every vertex

thr : V (G) → N, and k ∈ N.
Question: Is there a set of vertics S ⊆ V (G) of size at most k and a permuta-

tion of the vertices π : V (G) → [|V (G)|] such that for every vertex
v ∈ V (G) \ S we have |{u ∈ NG(v)

∣
∣ π(u) < π(v)

}| ≥ thr(v)?

The problem was first introduced by Kempe et al. [14]. It proves to be com-
putationally extremely difficult. It is NP-hard even for the restriction to split-
graphs of diameter two [15]. Chen showed that minimizing the size of the target
set is APX-hard [4]. More recently, Bazgan et al. showed that for every func-
tions f and ρ this problem cannot be approximated within a factor of ρ(k) in
f(k) · nO(1) time [1]. The parameterized complexity studies focus on the origi-
nal problem and two variants that limit the allowed thresholds. These are con-
stant thresholds, where all thresholds are at most a constant tmax, and majority
thresholds, where a vertex can get active as soon as at least the majority of its
neighborhood is active before. The general TSS is W[1]-hard for each of the
parameterization, “distance to cluster,” [5] “distance to forest” and pathwidth
[15]. The strongest positive FPT-membership results for constant thresholds are
the parameterization by treewidth [2], the parameterization by “distance to clus-
ter” [5], and the parameterization by neighborhood diversity [11]. There are a
lot more parameterized complexity results for these three variants of TSS [5,15].
Further, Cicalese et al. study a variant of TSS which asks if a set of vertices A can
be activated in a given number of activation rounds [6]. They give a polynomial
time algorithm when the number of activation rounds and the clique-width of
the input graph are constant. Their exponential dependency on the clique-width
is unlikely to be improved, as even TSS for one activation round is W[1]-hard
with respect to the treewidth [3]. For a more extend introduction to the history
of the problem as well as other algorithmic aspects and similar models see for
example [5,15].

Dvořák et al. raised the question of the complexity of the parameterization
by the modular-width [11]. The structural graph parameter modular-width was
introduced by Gajarský et al. [13]. We give a positive answer by showing FPT-
membership for a more general question. We consider the clique-width which
is upper bounded by the parameters modular-width and treewidth [7], and by
further common structural parameters for which the parametrized complexity of
TSS was open. Thereby, we generalize all positive FPT-memberships results for
TSS with constant thresholds. Further, our result does not rely on the maximum
threshold tmax being a constant, but allows that tmax is a parameter. Moreover,
the time complexity of our algorithm behaves surprisingly well and grows only
single-exponentially in the parameters clique-width and maximum threshold.

Target Set Selection Parameterized by Clique-Width 139

A related result is that TSS is in FPTwhen parameterized by treewidth
and maximum threshold, by Ben-Zwi et al. [2]. They use a dynamic program
that works along the bags of a computed tree decomposition. They fix the local
ordering in which the vertices of the currently observed bag get active. Our
approach also uses such an recursive approach, while working on a computed
�-expression. Informally, an �-expression is a tree-decomposition in the context
of clique-width. Such an �-expression f uses three types of recursive operations
that work on labeled vertices using at most � different labels. Analogously to the
approach for a tree decomposition, for every subexpression a current state fixes
a part of the global ordering of the vertices.

However, the described vertices of a current subexpression is not bounded
by our parameters. Our algorithm has to remember an ordering of a limited
number of vertices and further has to address these vertices indirectly. Crucial
for the activation of a vertex is its threshold and neighborhood. However, we
cannot address the neighborhood even for vertices of currently equal label and
threshold since they can have very different neighborhoods as subexpression may
reveal. Consequently, our approach explores the �-expression top down, and fixes
an ordering of the important vertices of the up to now described graph. The up to
now encountered operations define a common neighborhood for all vertices of a
fixed label. This is because for every outer operations, vertices of the same label
behave equally. Thus, our local ordering indirectly references the vertices solely
by their label and threshold.

Further, vertices of the same label that occur late enough in a global ordering
behave equally. There is only one type of edge operation of �-expression, namely
ηα,β adding all edges between vertices of some labels α and β. There, for a vertex
v of label α we have to account the contribution to the activation of v due to
vertices of label β. Only the first thr(v) ≤ tmax active vertices of label β are
important. If the activation of v is between the activation of the first tmax of
label β, we fix their relative positioning in our local ordering. Otherwise, the
activation of v does not differ from other late vertices of label α.

However, we need to guarantee that a vertex v of label α that is not referenced
by our local ordering is indeed ordered late enough. That is, the first tmax vertices
of label β occur before vertex v. We denote such a global ordering as nice to the
current subexpression ηα,βf ′. It is possible to modify any valid global ordering
to be nice to all subexpressions. We extend our local ordering to also include
the (tmax + 1)-st vertex of every label. Then, whether the underlying global
ordering π is nice, is reflected in our local ordering. Therefore, we can restrict
our algorithm to consider nice global orderings only.

The resulting procedure for our algorithm at each operation of the given �-
expression then is as follows. For a current edge operation ηα,β , for each vertex v
we simply have to adjust the number of neighbors contributing to the activation
of v according to our fixed local ordering. We remember this contribution as the
activation from outside. For a current operation that combines two subgraphs,
consider the unknown partition of the vertices fixed by the local ordering in
either subgraph. In that case, the algorithm tries all possibilities. The approach

140 T. A. Hartmann

for the operation that re-labels a label is very similar. For every subexpression,
the number of possible states is single-exponentially bounded by our parameters,
which yields to an overall FPT-runtime.

Theorem 1. Let tmax, � ∈ N. There is an algorithm that, given a graph G, a
threshold for each vertex thr : V (G) → [0, tmax] and an �-expression f of G,
computes the minimal size of a target set in time O(�3�t · t�(4t+1) · |f |), where
t := tmax + 1 and |f | is the length of f .

An easy upper bound for the length of the �-expression f is |V (G)|2. Further,
one can obtain a minimum target set, and not only its size, by tracking such sets
throughout our dynamic program.

Oum gave an algorithm that either outputs an (8� − 1)-expression of graph
G or confirms that the clique-width of G is larger than �, and that runs in time
O(g(�) · |V (G)|3), where g(�) only depends on the clique-width � [17]. Combined
with the algorithm of Theorem1 it follows that TSS parameterized by the clique-
width and the maximum threshold is in FPT.

Corollary 1. Target Set Selection is in FPT with respect to the combined
parameters clique-width of the given graph and the maximum threshold.

Following the preliminaries in Sect. 2, we prove Theorem 1 in Sect. 3. We
conclude in Sect. 4. Due to space constraints, we omit some proofs or only give
a proof sketch. For the full proof, we refer to an online version at https://arxiv.
org/abs/1710.00635.

2 Preliminaries

For integers i < j, let [i] := {1, 2, . . . , i} and [i, j] := {i, (i+1), . . . , j}. For a list
(or vector) A, we describe the i-th element as A[i].

All our graphs are simple, finite and undirected. For a graph G, we denote by
V (G) its set of vertices. We use NG(v) as the neighborhood of vertex v ∈ V (G).
Usually we consider graphs with thresholds for each vertex thr : V (G) → [0, tmax]
which are at most a constant tmax, and assume that its thresholds thr and tmax

are given, if needed.
In this work, we consider parameterized complexity. For an introduction see

for example [9,10,12,16]. For a graph class, for example clusters (the disjoint
union of cliques), the parameter “distance to cluster” is the minimal number of
vertices one needs to delete from the input graph in order to obtain a cluster.

The clique-width cw(G) of a graph G was introduced in [8]. A graph has
clique-width at most � ∈ N, if it can be constructed by an �-expression that uses
four types of operations and a labeling of the vertices of at most � labels, as we
describe in the following. Let labels(f) be the set of labels used by f . To avoid
confusion with thresholds, we use small Greek letters α, β, γ for the labels. An �-
expression defines a graph G(f) with labels per vertex labG : V (G) → labels(f).
The graph G(f) is recursively defined as

https://arxiv.org/abs/1710.00635
https://arxiv.org/abs/1710.00635

Target Set Selection Parameterized by Clique-Width 141

– G(v(α)), a single vertex v of label α ∈ labels(f),
– G(f1 ⊕ f2), the disjoint union of G(f1) and G(f2) for �-expressions f1, f2,
– G(ηα,βf ′), the graph G(f ′) where there is an edge between every vertex of

label α and every vertex of label β, for �-expression f ′, and
– G(ρα→βf ′), the graph G(f ′) where all vertices of label α are re-labeled to

label β, for �-expression f ′.

The subexpressions of f are all expressions f1, f2, f
′ used in the recursive defi-

nition of f . Especially f is a subexpression of f . We drop the G(·) when using
G(f) as a nested term. For example, instead of V (G(f)), we simply write V (f).
Further, we also refrain from specifying the set of labels labels(f) if it is clear
from the context.

An �-expression is irredundant if for every subexpression ηα,βf ′ the graph
G(ηα,βf ′) has no edge between vertices of label α and β. We assume that the
given �-expression is irredundant, which we can assure by a simple preprocessing
step [8].

3 Dynamic Program

A good way to convince someone that a graph G with thresholds has a target set
of size at most k is to state a complete ordering in which the vertices get active.
We denote this permutation of the vertices as a global ordering π : V (G) →
[|V (G)|]. We say that π is k-activating for graph G if there is a k-vertex set
S ⊆ V (G), the target set, such that for every other vertex v the neighbors of v
that are ordered before v outnumber the threshold thr(v).

Definition 1. A global ordering of a graph G is a permutation of the vertices
π : V (G) → [|V (G)|]. Further, π is k-activating (for G) if there is a k-vertex set
S ⊆ V (G) such that for every vertex v ∈ V (G) \ S we have

π<
G(v) :=

∣
∣{u ∈ NG(v)

∣
∣ π(u) < π(v)

}∣
∣ ≥ thr(v).

Graph G has a target set of size k if there is a global ordering π such that π is
k-activating for G.

Example 1. The following graph G has global ordering π : vi �→ i, which is 1-
activating (for S = {v1}). Further, f = ηβ,γf ′ = ηβ,γ(v6(γ) ⊕ v8(γ) ⊕ v11(γ) ⊕
v9(γ)⊕v7(β)⊕ργ→αηβ,γ(v10(γ)⊕ργ→αηα,βηα,γηβ,γ(v2(γ)⊕v1(β)⊕v3(β)⊕v4(α)⊕
v5(α)))) is a 3-expression of G. For each vertex, the label among {α, β, γ} and
threshold at most tmax = 2 is given as a tuple.

(β, 1)

v1

v7, (β, 1)

v3, (β, 1)

v2, (α, 1)

v4, (α, 2)

v5, (α, 2)

v10, (α, 2)

v6, (γ, 2)

v8, (γ, 2)

v11, (γ, 2)

v9, (γ, 2)

142 T. A. Hartmann

For later examples, let A :=
(
(β, 1), (α, 1), (β, 1), (α, 2), (α, 2), (γ, 2), (β, 1),

(γ, 2), (γ, 2)
)
, and further ηα,βf ′, G and π be as defined here.

An �-expression f describes a graph G(f) with three types of recursive oper-
ations that rely on � different labels assigned to the vertices. We formulate a
dynamic program over the subexpressions of f . At a current subexpression f ,
a state fixes a part of a global ordering π. Whether such a state is a part of a
k-activating global ordering, is verified by considering the subexpressions with
suitable states.

In order to obtain the desired FPT-runtime, we may only work with states
that fix an ordering of a number of vertices bounded by our parameters, which
are maximum threshold tmax and clique-width �. However, the number of all
vertices described by a current subexpression is not bounded by our parame-
ters. Our algorithm thus can only remember an ordering of a limited number
of vertices and further cannot address these vertices directly. We identify the
important verices and a suitable way to remember them. Crucial for the activa-
tion of a vertex is its threshold and neighborhood. Our local ordering can very
well remember the threshold of vertices. However, it cannot address the neigh-
borhood even for vertices of currently equal label and threshold since they can
have very different neighborhoods as subexpression may reveal.

Consequently, our approach explores the given �-expression top down, and
fixes an ordering of the important vertices of the graph described by the up to
now seen part of the �-expression. The up to now seen operations define a com-
mon neighborhood for all vertices of a fixed label. This is because for every outer
operation, two vertices of equal label behave equally. Thus, our local ordering
can indirectly reference the vertices solely by their label and threshold.

Now, let us identify the vertices whose relative ordering is crucial. We can
observe that vertices of the same label that occur late enough in a global ordering
behave equally. An �-expression has only one type of operation that adds edges,
namely ηα,β for some labels α and β, which adds all edges between vertices
of labels α and β. There, for a vertex v of label α we have to account for
the contribution to the activation of v by the vertices of label β. Only the
first thr(v) ≤ tmax vertices of label β of the global ordering π are important.
Consequently, if π orders v somewhere between the first tmax vertices of label β,
the local ordering fixes the ordering of v relatively to those first vertices of label
β as well. If π orders v after the first tmax of label β, we can neglect its exact
ordering. This is because the number of neighbors of label β that contribute to
its activation do not differ from other such late vertices of label α. Our plan
therefore is that the local ordering fixes the relative positioning of these crucial
first tmax vertices of every label.

Doing so, we need to guarantee that a vertex v of label α that is not referenced
by our local ordering is indeed ordered late enough. That is, the first tmax vertices
of label β occur before vertex v. In particular, the first tmax vertices of label β are
ordered before the (tmax + 1)-st of label α. Then, given that v is not referenced
by our local ordering, there are at least tmax of label β ordered before, or if
there are not even as many of label β, accordingly less. We denote such an

Target Set Selection Parameterized by Clique-Width 143

ordering as nice to the current subexpression ηα,βf ′. It is possible to modify
any valid global ordering such that it is nice to every subexpression. Therefore,
our algorithm may only consider nice global orderings. We extend our local
ordering to also include the (tmax + 1)-st vertex of every label. Then, whether
the underlying global ordering π is nice to a current expression ηα,βf ′, is reflected
in our local ordering. Our algorithm may then ignore states with such not nice
local orderings.

We define the local ordering A for a current �-expression f that fixes the
relative ordering of the first (tmax + 1) activate vertices for each label α (or if
there are not even as many vertices of label α, accordingly less), which we denote
by tα. We indirectly remember a vertex v by fixing the label and threshold of
v. For technical reasons, we define a local ordering as possibly incomplete. Our
algorithm only considers complete local orderings.

Definition 2. Let G be a graph with labels lab : V (G) → labels(G). For label α,
let tα(G) := min{tmax(G)+1, |{v ∈ V (G) | lab(v) = α}|}. A local ordering A of
G is a list of tuples of label and threshold (α, a) ∈ labels(G) × [0, tmax(G)] such
that for every label α there are at most tα tuples of label α; and A is complete
if, for every label α, there are exactly tα tuples of label α.

The local ordering A is our limited view on a global ordering π. Let
condense(π) be the ordered list of vertices consisting of the first tα vertices of
each label α. A global ordering π extends A if the tuples of label and threshold
of condense(π) are equal to A. As a technical tool, we also define condense(π,A)
as the first ordered vertices consisting of each label α, such that the number of
vertices labeled α is equal to as there are in A.

Definition 3. Let graph G have global ordering π. Consider the list of ver-
tices according to the global ordering π−1(1), . . . , π−1(|V (G)|). For every label
α, remove all vertices of label α but the first tα vertices of label α. Then, the
resulting list is condense(π). Global ordering π extends a local ordering A (for
G) if the list tuples of label and threshold of condense(π) is equal to A.

Let condense(π,A) be the remaining list, after, for every label α, removing
all vertices of label α but the first |{i | lab(A[i]) = α}| of label α.

Example 2. We have tα, tβ , tγ = 3 and A is a complete local ordering of G.
Further, condense(π) = condense(π,A) = (v1, . . . , v9), whose list of tuples of
label and threshold is equal to A. Thus, A extends π. Let incomplete local
ordering A∗ contain only one tuple per label. Then, condense(π,A∗) is the list
of vertices (v1, v2, v6). The list of tuples of label and threshold is equal to A∗.

For an edge operation ηα,β , which adds all edges between vertices of two
distinct labels, we simply have to adjust the number of neighbors contributing
to an activation of a vertex according to our fixed local ordering. We remember
this contribution as the activation from outside. The mapping afo maps to a value
[0, tmax] for each position of the local ordering A, as well as maps to a value for
each label. That way we have a value for every vertex indirectly referenced by

144 T. A. Hartmann

A. Further, there is a value for every vertex v not referenced by A, which we
identify via the label of v.

A state of a current subgraph G(f) is a tuple consisting of a local ordering
A and an activation from outside afo. To reference the activation from outside
for a concrete vertex v we define Aπ(v) such that afo(Aπ(v)) is the activation
from outside for v. Thus, Aπ(v) maps v to its according position in A if it exists
and otherwise to the label of v. A global ordering π is k-activating for a state
(A, afo) of G if it is k-activating for G while supported by the activation from
outside afo.

Definition 4. Let f be an �-expression, and graph G(f) have local ordering A.
An activation from outside for A is a mapping afo : [|A|]∪ labels(f) → [0, tmax].
Then, the tuple (A, afo) is a state of G(f). For a global ordering π of G(f), let
Aπ : V (f) → [|A|] ∪ labsetf),

Aπ(v) �→
{

i, i ∈ [|A|], v = condense(π,A)[i],
lab(v), else.

A global ordering π of G(f) is k-activating for (A, afo) if there is k-vertex set
S ⊆ V (G) such that for every vertex v ∈ V (G) \ S we have that

π<
G(v) ≥ thr(v) − afo(Aπ(v)).

Example 3. Let afo(1) = 1, and for x ∈ {2, . . . , 6, α, β, γ}, let afo(x) = 0. The
activation from outside for vertex v1 is afo(Aπ(v1)) = afo(1) = 1 and for vertex
v10 it is afo(Aπ(v10)) = afo(α) = 0. Further, π is 0-activating for state (A, afo).

We define nice orderings, analogously for global orderings π and local order-
ings A. As we show in the following, for every k-activating global ordering π
there is a slightly modified k-activating global ordering π which is nice to every
subexpression of f . Our local ordering A includes the (tmax + 1)-st vertex of
every label. Thus, whether π is to nice the current expression f is expressed in
the ordering of A. Therefore, our algorithm can avoid not nice global orderings
by ignoring states where the local ordering A is not nice to f .

Definition 5. Let G be a graph with global ordering π. Let f be an �-expression
describing a subgraph of G. For label α, let vα[1], vα[2], · · · ∈ V (f) be the vertices
of label α of G(f) ordered ascending according to π. For every label α, let tαmax :=
min{tmax(G), |{v ∈ V (G) | lab(v) = α}|}. Then, π is nice to f if f = ηα,βf ′

implies that (if those respective positions exist)

π(vα[tmax+1]) > π(vβ [tβmax]) and π(vβ [tmax+1]) > π(vα[tαmax]).

Let A be the list of tuples of label and threshold of condense(π �V (f)) for graph
G(f), where π �V (f) is π restricted to vertices V (f). Then, A is nice to f if (and
only if) π is nice to f .

Target Set Selection Parameterized by Clique-Width 145

Example 4. Global ordering π is not nice to ηβ,γf ′ since π(vβ [tmax + 1]) =
π(v7) = 7 ≯ 8 = π(v8) = π(vγ [tmax]). By switching the 7th and 8th posi-
tion π becomes nice to ηβ,γf ′. Likewise, A is not nice to ηβ,γf ′, but A′ =

(
(β, 1),

(α, 1), (β, 1), (α, 2), (α, 2), (γ, 2), (γ, 2), (β, 1), (γ, 2)
)

is nice to ηβ,γf ′.

Lemma 1. Let f be an �-expression and π a global ordering that is k-activating
for graph G(f). Then, there is a global ordering π′ that is k-activating for graph
G(f) and nice to every subexpression of f .

Proof (Sketch). There may be subexpressions ηα,βf ′ where the (tmax+1)st vertex
of label α is ordered before the first tmax vertices of label β, formally π(vα[tmax+
1]) =: i < π(vβ [tβmax]). We repair such a violation by moving all vertices of
vβ [1], . . . , vβ [tβmax] that did not occur already between positions (i − 1) and i.
Since there are tmax vertices of label α ordered before position i, the modified
local ordering is still activating. We repair all such violations top-down. Following
this order prevents recursive violations for already fixed subexpression ηα′,β′ . For
a full proof see online version.

Definition 6. Graph G(f) is k-activating for a state (A, afo) if there is a global
ordering π that extends A, is k-activating for (A, afo), and is nice to every subex-
pression of f .

Lemma 2. Let f be an �-expression. Then, graph G(f) has a target set of size
k if and only if there is a complete local ordering A of G(f) such that G(f) is
k-activating for state (A,0), where 0 : [|A|] ∪ labels(G) → {0}.
Proof (Sketch). Use Lemma 1. For a full proof see online version.

It remains to specify the recursive dependency of our computation. We dis-
tinguish the three operations, which are adding edges if f = ηα,βf ′, taking the
disjoint union if f = f1 ⊕ f2, and re-labeling if f = ρα→βf ′.

Consider a current �-expression ηα,βf ′ and a state (A, afo). The operation
ηα,β adds the edges between all vertices of label α and β. We adjust the activation
from outside such that it replaces the edges between vertices of label α and β.
The relative ordering of the first (tmax + 1) vertices of label α and label β is
already fixed by the local ordering A. We increase the activation from outside
of a position y of A of label β for every prior position x of A of label α. For the
activation from outside for vertex v of label α that is not referenced by A, every
position x of A of label β increases the activation from outside. We denote the
result as ηα,βafo.

Definition 7. Let graph G with labels α and β have local ordering A. For y ∈
[|A|] ∪ labels(G), let

(ηα,βafo)(y) := min
{
tmax, afo(y) + add(y)

}
, where

add(y) := |{x ∈ [|A|] ∣
∣ x < y, {lab(x), lab(y)} = {α, β}}|,

146 T. A. Hartmann

where 1 < 2 < · · · < |A| < γ, for every label γ; and where lab(x), for x ∈ [|A|],
is defined as lab(A[x]). For every vertex v ∈ V (G), let

eπ(v) := |{u ∈ V (G)
∣
∣ π(u) < π(v), {lab(u), lab(v)} = {α, β}}|.

The number of edges that additionally contribute to the activation of a vertex
v, denoted by eπ(v), is equal to the increase of the activation from outside add(v)
(while ignoring an overall activation exceeding tmax).

Lemma 3. Let global ordering π extend local ordering A, which is nice to ηα,βf ′.
For every vertex v ∈ V (ηα,βf ′), we have that

min{tmax, afo(Aπ(v)) + eπ(v)} = (ηα,βafo)(Aπ(v)).

Proof (Sketch). We need to show for every vertex v that the number of new
neighbors ordered before, eπ(v), is equal to how much we increase afo(Aπ(v)),
when capped by tmax. Since A is nice to ηα,βf ′, this number of new neighbors
is correctly expressed by comparing v with its neighbors of label β in A, which
is how add(Aπ(v)) is computed. For a full proof see online version.

Lemma 4. Graph G(ηα,βf ′) is k-activating for state (A, afo) if and only if A is
nice to ηα,βf ′ and G(f ′) is k-activating for (A, ηα,βafo).

Proof (Sketch). We assume that the �-expression ηα,βf ′ is irredundant as men-
tioned in the preliminaries. Then, every edge between vertices of label α and β is
new to G(f ′) such that π<

ηα,βf ′(v) = π<
f ′(v) + eπ(v). For the forward direction,

let G(ηα,βf) have global ordering π that extends A, is k-activating for state
(A, afo) and nice to every subexpression of ηα,βf ′. It follows directly that A is
nice to ηα,βA. We in particular show that the same ordering π is k-activating
for the modified state (A, ηα,βafo). That is, every non-target set vertex v has
π<

f ′(v) ≥ thr(v) − (ηα,βafo)(Aπ(v)). We can follow this result from our initial
observation and by applying Lemma3. The backward direction is similar. For a
full proof see online version.

In case of a current expression f = f1 ⊕ f2, we have to show how to recur-
sively rely on the subexpressions f1 and f2, analogously for f = ρα→βf ′, on
subexpression f ′. For both cases, vertices of label β potentially come from dif-
ferent sets of vertices. In case of a re-labeling form α to β, a vertex of label β
possibly had label α before or already had label β. In case of a disjoint union
of subgraphs, a vertex of label β (or any other label) can be from either sub-
graph G(f1) or G(f2). For our indirect referenced vertices of our local ordering
A, we do not know the true origin. Thus, we have to try all possible partitions of
label β into labels α and β, respective all partitions of label β (and every other
label) into either subgraph. As the possible local orderings A are bounded by
our parameters, also the possible partitions are bounded by our parameters.

Target Set Selection Parameterized by Clique-Width 147

Definition 8

(1) A state (A, afo) of graph G(f) completes a state (A∗, afo∗) if A is complete,
and removing from A, for every label α, the last tuples of label α from A until
as many as in A∗ remain, results in A∗; and afo : [|A|]∪ labels(f) → [0, tmax],
maps x to afo∗(x), if defined for x, and otherwise to afo∗(lab(A[x])

)
.

(2) Let (f1 ⊕ f2) be an �-expression. Then, S[f1 ⊕ f2, (A, afo)] is the family of
every pair of states

(
(A1, afo1), (A2, afo2)

)
that complete the possible incom-

plete states (A∗
1, afo

∗
1) and (A∗

2, afo
∗
2) that can be constructed as follows. Start

with states (A∗
1, afo

∗
1), (A∗

2, afo
∗
2) where A∗

1 = A∗
2 = () and, for every label α,

we have afo∗
i (α) = afo(α). For position j, beginning from 1 to |A|, add A[j]

to the end of either list A∗
i ∈ {A∗

1, A
∗
2} where possible. For position j ∈ [|A|],

tuple A[j] is added to list A∗
i , and let j′ be the position of A[j] in A∗

i . Then,
let afo∗

i (j
′) := afo(j).

(3) Let (A, afo) be a state of G(ρα→βf ′). Then, S[ρα→βf ′, (A, afo)] is the family
of every state (A′, afo′) that completes a state (A∗, afo∗) that can be con-
structed as follows. Re-label s ∈ [0, tαmax(f

′)] many tuples of A of label β
to α, while at most tβmax(f

′) of label β remain, resulting in A∗. Let afo∗ be
defined as afo but where afo∗(α) = afo(β).

Lemma 5. Graph G(f1⊕f2) is k-activating for state (A, afo) if and only if there
are states

(
(A1, afo1), (A2, afo2)

) ∈ S[f1 ⊕ f2, (A, afo)] and partition k1 + k2 = k
such that, for i ∈ {1, 2}, graph G(fi) is ki-activating for (Ai, afoi).

Lemma 6. Graph G(ρα→βf ′) is k-activating for state (A, afo) if and only if
there is a state (A′, afo′) ∈ S[ρα→βf ′, (A, afo)] such that G(f ′) is k-activating
for (A′, afo′).

Finally, we can show our main theorem, which was stated in the introduction.

Theorem 2 (Theorem 1 restated). Let tmax, � ∈ N. There is an algorithm
that, given a graph G, a threshold for each vertex thr : V (G) → [0, tmax] and an
�-expression f of G,computes the minimal size of a target set in time O(�3�t ·
t�(4t+1) · |f |), where t := tmax + 1 and |f | is the length of f .

Proof. The minimal size of a target set is the minimal k of all local orderings A
of G(f) such that G(f) is k-activating for (A,0), as seen in Lemma 2.

Our algorithm computes the minimal k for possibly each subexpression f ′

of f and state (A, afo) of G(f ′), in the fashion of dynamic programming. The
minimum for a subexpression f ′ and state (A, afo) of G(f ′) is remembered for
future queries. There are at most (�t)�t possible local orderings A for a subgraph
G(f ′). And there are at most t�t+� possible activations from outside afo : [|A|] ∪
labels(f) → [0, tmax]. Thus, there are at most (�t)�t · t�t+� different states for
a fixed subexpression. Further, every computation is the minimum of at most
(�t)2�t entries (an upper bound is guessing A1, A2 respectively A′ from scratch),
and the minimum can be found in linear time. Therefore, the algorithm runs in
time O((�t)�t · t�t+� · (�t)2�t) · |f | = O(�3�t · t�(4t+1) · |f |). If (A, afo) is not a correct
state for G(f ′), set its minimum to ∞.

148 T. A. Hartmann

If f contains only one operation, then f = v(α) and the only possible global
ordering is π : {v} → {1}. Graph G(f) is at least 1-activating, and possibly
0-activating if thr(v) ≥ thr(v) − afo(1). Answer accordingly in time O(1).

Otherwise, if f consists of more than one operation, we have either of the
recursive cases that f is ηα,βf ′, f1 ⊕ f2 or ρα→βf ′. According to Lemmas 5
and 6 respectively, graph G(f1 ⊕ f2) is k-activating for state (A, afo) if and
only if there is a pair of states

(
(A1, afo1), (A2, afo2)

) ∈ S[f1 ⊕ f2, (A, afo)] and
partition k1 + k2 = k such that, for i ∈ {1, 2}, the graph G(fi) is ki-activating
for (Ai, afoi);and graph G(fρα→βf ′) is k-activating if and only if there is a
state (A′, afo′) ∈ S[ρα→βf ′, (A, afo)] such that G(f ′) is k-activating for (A′, afo′).
Therefore, in those two cases we can recursively obtain a minimum size of a
target set by querying for the according subgraphs G(f ′), G(f1), G(f2) and states(
(A1, afo1), (A2, afo2)

) ∈ S[f1 ⊕ f2, (A, afo)] and (A′, afo′) ∈ S[ρα→βf ′, (A, afo)],
respectively. In case of f = f1 ⊕ f2 the minimum size of a target set is the
minimum of the sum of the minimum sizes for f1 and f2. For f = ρα→βf the
minimum size is equal to the minimum for f ′.

According to Lemma 4, graph G(ηα,βf ′) is k-activating for state (A, afo)
if and only if A is nice ηα,βf ′ and graph G(ηα,βf ′) is k-activating for state
(A, ηα,βafo). Thus, in case of that A is not nice to f we can discard the current
computation for a minimal size of a target set for the graph G(ηα,βf ′) and state
(A, afo). Otherwise, the minimum size of a target set is equal to the minimum
size of subgraph G(f) with state (A, ηα,βafo).

4 Conclusion

In this work, we gave an FPT-algorithm for TSS for the combined parameters
clique-width and maximum threshold. This result generalizes all previous FPT-
membership results of TSS with constant thresholds. It would be interesting to
explore the whole dichotomy of constant TSS for common structural parameters.
Is there a different dichotomy when the maximum threshold is a parameter and
not a constant?

References

1. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized inapproximabil-
ity of target set selection and generalizations. Computability 3(2), 135–145 (2014)

2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discret. Optim. 8(1), 87–96 (2011)

3. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree ver-
tex deletion parameterized by treewidth. Discret. Appl. Math. 160(1–2), 53–60
(2012)

4. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret.
Math. 23(3), 1400–1415 (2009)

5. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)

Target Set Selection Parameterized by Clique-Width 149

6. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded
target set selection in social networks. Theor. Comput. Sci. 535, 1–15 (2014)

7. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101(1–3), 77–114 (2000)

9. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

10. Downey, R.G., Thilikos, D.M.: Confronting intractability via parameters. CoRR,
abs/1106.3161 (2011)

11. Dvorák, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. CoRR,
abs/1610.07530 (2016)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

13. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

14. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Washington, D.C.,
USA, 24–27 August 2003, pp. 137–146 (2003)

15. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

17. Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algo-
rithms 5(1), 1–20 (2008)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-319-03898-8_15

	Target Set Selection Parameterized by Clique-Width and Maximum Threshold
	1 Introduction
	2 Preliminaries
	3 Dynamic Program
	4 Conclusion
	References

