
Swift Logic for Big Data and Knowledge Graphs

Overview of Requirements, Language, and System

Luigi Bellomarini1, Georg Gottlob1,2(B), Andreas Pieris3,
and Emanuel Sallinger1

1 Department of Computer Science, University of Oxford, Oxford, UK
georg.gottlob@gmail.com

2 Institute of Information Systems, TU Wien, Vienna, Austria
3 School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract. Many modern companies wish to maintain knowledge in the
form of a corporate knowledge graph and to use and manage this knowl-
edge via a knowledge graph management system (KGMS). We formu-
late various requirements for a fully-fledged KGMS. In particular, such
a system must be capable of performing complex reasoning tasks but,
at the same time, achieve efficient and scalable reasoning over Big Data
with an acceptable computational complexity. Moreover, a KGMS needs
interfaces to corporate databases, the web, and machine-learning and
analytics packages. We present KRR formalisms and a system achiev-
ing these goals. To this aim, we use specific suitable fragments from the
Datalog± family of languages, and we introduce the vadalog system,
which puts these swift logics into action. This system exploits the the-
oretical underpinning of relevant Datalog± languages and combines it
with existing and novel techniques from database and AI practice.

1 Introduction

The so-called knowledge economy, characteristic for the current Information Age,
is rapidly gaining ground. According to [1], as cited in [29], “The knowledge
economy is the use of knowledge [...] to generate tangible and intangible values.
Technology, and, in particular, knowledge technology, help to transform a part
of human knowledge to machines. This knowledge can be used by decision sup-
port systems in various fields and generate economic value.” The importance
of knowledge as an essential economic driving force has been evident to most
corporate decision makers since the late 1970s, and the idea of storing knowl-
edge and processing it to derive valuable new knowledge existed in the context
of expert systems. Alas, it seems that the technology of those ‘early’ times was
not sufficiently mature: the available hardware was too slow and main memory
too tight for more complex reasoning tasks; database management systems were
too slow and too rigid; there was no web where an expert system could acquire
data; machine learning, and, in particular, neural networks were ridiculed as

This paper is a significantly abbreviated and slightly updated version of [4].

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-73117-9_1

4 L. Bellomarini et al.

largely unsuccessful; ontological reasoning was in its infancy and the available
formalisms were much too complex for Big Data applications. Meanwhile, there
has been huge technological progress, and also much research progress that has
led to a better understanding of many aspects of knowledge processing and rea-
soning with large amounts of data. Hardware has evolved, database technology
has significantly improved, there is a (semantic) web with linked open data,
companies can participate in social networks, machine learning has made a dra-
matic breakthrough, and there is a better understanding of scalable reasoning
mechanisms.

Because of this, and of some eye-opening showcase projects such as IBM
Watson [18], thousands of large and medium-sized companies suddenly wish to
manage their own knowledge graphs, and are looking for adequate knowledge
graph management systems (KGMS).

The term knowledge graph originally only referred to Google’s Knowledge
Graph, namely, “a knowledge base used by Google to enhance its search engine’s
search results with semantic-search information gathered from a wide variety of
sources” [30]. Meanwhile, further Internet giants (e.g. Facebook, Amazon) as
well as some other very large companies have constructed their own knowledge
graphs, and many more companies would like to maintain a private corporate
knowledge graph incorporating large amounts of data in form of facts, both from
corporate and public sources, as well as rule-based knowledge. Such a corporate
knowledge graph is expected to contain relevant business knowledge, for exam-
ple, knowledge about customers, products, prices, and competitors rather than
mainly world knowledge from Wikipedia and similar sources. It should be man-
aged by a KGMS, i.e., a knowledge base management system (KBMS), which
performs complex rule-based reasoning tasks over very large amounts of data
and, in addition, provides methods and tools for data analytics and machine
learning, whence the equation:

KGMS = KBMS + Big Data + Analytics

The word ‘graph’ in this context is often misunderstood to the extent that
some IT managers think that acquiring a graph database system and feeding
it with data is sufficient to achieve a corporate knowledge graph. Others erro-
neously think that knowledge graphs necessarily use RDF triple stores instead
of plain relational data. Yet others think that knowledge graphs are limited to
storing and analyzing social network data only. While knowledge graphs should
indeed be able to manipulate graph data and reason over RDF and social net-
works, they should not be restricted to this. For example, restricting a knowledge
graph to contain RDF data only would exclude the direct inclusion of standard
relational data and the direct interaction with corporate databases.

Not much has been described in the literature about the architecture of a
KGMS and the functions it should ideally fulfil. In Sect. 2 we briefly list what
we believe are the main requirements for a fully fledged KGMS. As indicated
in Fig. 1, which depicts our reference architecture, the central component of a
KGMS is its core reasoning engine, which has access to a rule repository. Grouped
around it are various modules that provide relevant data access and analytics

Swift Logic for Big Data and Knowledge Graphs 5

CORE
REASONING

WEB

Rule Repository

Fig. 1. KGMS reference architecture.

functionalities (see [4] for details). We expect a KGMS to fulfil many of these
functions.

The reasoning core of a KGMS needs to provide a language for knowledge
representation and reasoning (KRR). The data format for factual data should,
as said, match the standard relational formalism so as to smoothly integrate cor-
porate databases and data warehouses, and at the same time be suited for RDF
and graph data. The rule language and reasoning mechanism should achieve a
careful balance between expressive power and complexity. In Sect. 3 we present
vadalog, a Datalog-based language that matches this requirement. vadalog
belongs to the Datalog± family of languages that extend Datalog by existen-
tial quantifiers in rule heads, as well as by other features, and restricts at the
same time its syntax so as to achieve decidability and data tractability; see,
e.g., [5–8]. The logical core of the vadalog language corresponds to Warded
Datalog± [2,16], which captures plain Datalog as well as SPARQL queries using
set semantics [22] under the entailment regime for OWL 2 QL [15], and is able to
perform ontological reasoning tasks. Reasoning with the logical core of vadalog
is computationally efficient.

While the logical core of vadalog has a number of beneificial properties,
several features that have been added to it for achieving more powerful reason-
ing and data manipulation capabilities [4]. To give just one example here, the
language is augmented by monotonic aggregations [26], which permits the use of
aggregation (via summation, product, max, min, count) even in the presence of
recursion. This enables us to swiftly solve problems such as the company control
problem (studied e.g. in [10]) as explained in the following example.

Example 1 (Example). Assume the ownership relationship among a large num-
ber of companies is stored via facts (i.e., tuples of a database relation) of the
following form Own(comp1 , comp2 , w) meaning that company comp1 directly
owns a fraction w of company comp2 , with 0 ≤ w ≤ 1. A company x controls a

6 L. Bellomarini et al.

company y if x directly owns more than half of the shares of y or if x controls a
set S of companies that jointly own more than half of y. Computing a predicate
Control(x, y) expressing that company x controls company y, is then achieved
in vadalog by two rules:

Own(x, y, w), w > 0.5 → Control(x, y)
Control(x, y),Own(y, z, w),

v = msum(w, 〈y〉), v > 0.5 → Control(x, z).

Here, for fixed x, the aggregate construct msum(w, 〈y〉) forms the sum over all
values w such that for some company y, Control(x, y) is true, and Own(y, z, w)
holds, i.e., company y directly owns fraction w of company z. �

In [4] we introduce the vadalog KGMS, which builds on the vadalog
language and combines it with existing and novel techniques from database and
AI practice such as stream query processing, dynamic in-memory indexing and
aggressive recursion control. The vadalog system is Oxford’s contribution to
the VADA (Value Added Data Systems) research project [14,20,28], which is a
joint effort of the universities of Edinburgh, Manchester, and Oxford.

2 Desiderata for a KGMS

In this section we briefly summarize what we think are the most important
desiderata for a fully-fledged KGMS. We will list these requirements according to
three categories, keeping in mind, however, that these categories are interrelated.

Language and System for Reasoning

There should be a logical formalism for expressing facts and rules, and a reason-
ing engine that uses this language, which should provide the following features.

Simple and Modular Syntax: It should be easy to add and delete facts and to
add new rules. As in logic programming, facts should conceptually coincide with
database tuples.

High Expressive Power: Datalog [10,19] is a good yardstick for the expressive
power of rule languages. Over ordered structures (which we may assume here),
Datalog with very mild negation captures ptime; see, e.g., [11]. A rule language
should thus ideally be at least as expressive as plain recursive Datalog, possibly
with mild negation.

Numeric Computation and Aggregations: The basic logical formalism and infer-
ence engine should be enriched by features for dealing with numeric values,
including appropriate aggregate functions.

Swift Logic for Big Data and Knowledge Graphs 7

Probabilistic Reasoning: The language should be suited for incorporating appro-
priate methods of probabilistic reasoning, and the system should propagate prob-
abilities or certainty values along the reasoning process, that is, compute prob-
abilities or certainty values for derived facts, and make adjustments wherever
necessary. Probabilistic models may range from simple triangular norm opera-
tors (T-norm – cf [17]) over probabilistic database models [27] to Markov logic
networks [23].

Ontological Reasoning: Ontological reasoning and query answering should be
provided. We have two yardsticks here. First, ontological reasoning to the extent
of tractable description logics such as DL-LiteR should be possible. Recall that
DL-LiteR forms the logical underpinning of the OWL 2 QL profile of the Web
Ontology Language as standardized by the W3C. Second, it should be expressive
enough to cover all SPARQL queries under set semantics [22] over RDF datasets
under the entailment regime for OWL 2 QL [15].

Low Complexity: Reasoning should be tractable in data complexity (i.e. when
the rules are assumed to be fixed and the fact base is considered the input).
Whenever possible, the system should recognize and take profit of rule sets that
can be processed within low space complexity classes such as nlogspace (e.g.
for SPARQL) or even ac0 (e.g. for traditional conjunctive database queries).

Rule Repository, Rule Management, and Ontology Editor: A library for storing
recurring rules and definitions should be provided, as well as a user interface for
rule management in the spirit of the ontology editor protégé [21].

Dynamic Orchestration: For larger applications, there must be a master module
to allow the orchestration of complex data flows. For simple systems, the process
must be easily specifiable. For complex systems, the process must be dynamically
controllable through intelligent reasoning techniques or external control facilities
and tools (e.g. BPM).

Accessing and Handling Big Data

Big Data Access: The system must be able to provide efficient access to Big Data
sources and systems and fast reasoning algorithms over Big Data. In particular,
the possibility of out-of-memory reasoning must be given in case the relevant data
does not fit into main memory. Integration of Big Data processing techniques
should be possible where the volume of data makes it necessary (see e.g. [25]).

Database and Data Warehouse Access: Seamless access to relational, graph
databases, data warehouses, RDF stores, and major NoSQL stores should be
granted. Data in such repositories should be directly usable as factual data for
reasoning.

8 L. Bellomarini et al.

Ontology-Based Data Access (OBDA): OBDA [9] allows a system to compile a
query that has been formulated on top of an ontology into one directly on the
database. OBDA should be possible whenever appropriate.

Multi-query Support: Where possible and appropriate, partial results from
repeated (sub-)queries should be evaluated once [24] and optimized in this
regard.

Data Cleaning, Exchange and Integration: Integrating, exchanging and cleaning
data should be supported both directly (through an appropriate KRR formalism
that is made available through various applications in the knowledge repository),
and by allowing integration of third-party software.

Web Data Extraction, Interaction, and IoT: A KGMS should be able to interact
with the web by (i) extracting relevant web data (e.g. prices advertised by com-
petitors) and integrating these data into the local fact base, and (ii) exchanging
data with web forms and servers that are available through a web interface. One
way to achieve this is given in [4]. Similar methods can be used for interacting
with the IoT through appropriate network accessible APIs.

Embedding Procedural and Third-Party Code

Procedural Code: The system should have encapsulation methods for embedding
procedural code (proprietary and third party) written in a variety of program-
ming languages and offer a logical interface to it.

Third-Party Packages for Machine Learning, Text Mining, NLP, Data Analyt-
ics, and Data Visualization: The system should be equipped with direct access
to powerful existing software packages for machine learning, text mining, data
analytics, and data visualization. Given that excellent third-party software for
these purposes exists, we believe that a KGMS should be able to use a multitude
of such packages via appropriate logical interfaces.

3 Overview of the VADALOG Language and System

We here only give a brief overview of the vadalog language and system. A more
extensive overview of both language and system is given in [4] and the system
is presented in detail in a forthcoming paper.

As said before, vadalog is a KR language that achieves a careful balance
between expressive power and complexity, and it can be used as the reason-
ing core of a KGMS. In Sect. 3.1 we discuss the logical core of vadalog and
some interesting fragments of it, while in Sect. 3.2 we discuss how this language
can be extended with additional features that are much needed in real-world
applications.

Swift Logic for Big Data and Knowledge Graphs 9

3.1 Core Language

The logical core of vadalog is a member of the Datalog± family of knowledge
representation languages, which we call Warded Datalog±. The main goal of
Datalog± languages is to extend the well-known language Datalog with useful
modeling features such as existential quantifiers in rule heads (the ‘+’ in the
symbol ‘±’), and at the same time restrict the rule syntax in such a way that
the decidability and data tractability of reasoning is guaranteed (the ‘−’ in the
symbol ‘±’).

The core of Datalog± languages consists of rules known as existential rules
or tuple-generating dependencies, which essentially generalize Datalog rules with
existential quantifiers in rule heads; henceforth, we adopt the term existential
rule. An example of such an existential rule is

Person(x) → ∃y HasFather(x, y),Person(y)

which encodes that every person has a father who is also a person. In general,
an existential rule is a first-order sentence

∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄))

where ϕ (the body) and ψ (the head) are conjunctions of atoms with constants
and variables.

The semantics of a set of existential rules Σ over a database D, denoted Σ(D),
is defined via the well-known chase procedure. Roughly, the chase adds new
atoms to D (possibly involving null values used for satisfying the existentially
quantified variables) until the final result Σ(D) satisfies all the existential rules
of Σ. Notice that, in general, Σ(D) is infinite. Here is a simple example of the
chase procedure.

Example 2. Consider the database D = {Person(Bob)}, and the existential
rule

Person(x) → ∃y HasFather(x, y),Person(y).

The database atom triggers the above existential rule, and the chase adds in D
the atoms

HasFather(Bob, ν1) and Person(ν1)

in order to satisfy it, where ν1 is a (labeled) null representing some unknown
value. The new atom Person(ν1) triggers again the existential rule, and the chase
adds the atoms

HasFather(ν1, ν2) and Person(ν2),

where ν2 is a new null. The result of the chase is the instance

{Person(Bob),HasFather(Bob, ν1)} ∪
⋃

i>0

{Person(νi),HasFather(νi, νi+1)},

where ν1, ν2, . . . are (labeled) nulls. �

10 L. Bellomarini et al.

Given a pair Q = (Σ,Ans), where Σ is a set of existential rules and Ans
an n-ary predicate, the evaluation of Q over a database D, denoted Q(D), is
defined as the set of tuples over the set CD of constant values occurring in the
database D that are entailed by D and Σ, i.e., the set

{〈t1, . . . , tn〉 | Ans(t1, . . . , tn) ∈ Σ(D) and each ti ∈ CD}.

The main reasoning task that we are interested in is tuple inference: given a
database D, a pair Q = (Σ,Ans), and a tuple of constants t̄, decide whether
t̄ ∈ Q(D). This problem is very hard; in fact, it is undecidable, even when Q
is fixed and only D is given as input [5]. This has led to a flurry of activity
for identifying restrictions on existential rules that make the above problem
decidable. Each such restriction gives rise to a new Datalog± language.

Warded Datalog±: The Logical Core of VADALOG. The logical core
of vadalog relies on the notion of wardedness, which gives rise to Warded
Datalog± [16]. In other words, vadalog is obtained by extending Warded
Datalog± with additional features of practical utility that are discussed in the
next section.

Wardedness applies a restriction on how the “dangerous” variables of a set of
existential rules are used. Intuitively, a “dangerous” variable is a body-variable
that can be unified with a labeled null value when the chase algorithm is applied,
and it is also propagated to the head of the rule. For example, given the set Σ
consisting of the existential rules

P (x) → ∃z R(x, z) and R(x, y) → P (y),

the variable y in the body of the second rule is “dangerous” (w.r.t. Σ) since
starting, e.g., from the database D = {P (a)}, the chase will apply the first rule
and generate R(a, ν), where ν is a null that acts as a witness for the existentially
quantified variable z, and then the second rule will be applied with the variable
y being unified with ν that is propagated to the obtained atom P (ν). The goal of
wardedness is to tame the way null values are propagated during the construction
of the chase instance by posing the following conditions:

1. all the “dangerous” variables should coexist in a single body-atom α, called
the ward, and

2. the ward can share only “harmless” variables with the rest of the body, i.e.,
variables that are unified only with database constants during the construc-
tion of the chase.

Warded Datalog± consists of all the (finite) sets of warded existential rules.
The rule in Example 2 is clearly warded. Another example of a warded set of
existential rules follows:

Swift Logic for Big Data and Knowledge Graphs 11

Example 3. Consider the following rules encoding part of the OWL 2 direct
semantics entailment regime for OWL 2 QL (see [2,16]):

Type(x, y),Restriction(y, z) → ∃w Triple(x, z, w)
Type(x, y),SubClass(y, z) → Type(x, z)

Triple(x, y, z), Inverse(y, w) → Triple(z, w, x)
Triple(x, y, z),Restriction(w, y) → Type(x,w).

It is easy to verify that the above set is warded, where the underlined atoms are
the wards. Indeed, a variable that occurs in an atom of the form Restriction(·, ·),
or the form SubClass(·, ·), or Inverse(·, ·), is trivially harmless. However, variables
that appear in the first position of Type, or in the first/third position of Triple
can be dangerous. Thus, the underlined atoms are indeed acting as the wards.

Let us now intuitively explain the meaning of the above set of existential
rules: The first rule states that if a is of type b, encoded via the atom Type(a, b),
while b represents the class that corresponds to the first attribute of some binary
relation c, encoded via the atom Restriction(b, c), then there exists some value
d such that the tuple (a, d) occurs in the binary relation c, encoded as the
atom Triple(a, c, d). Analogously, the other rules encode the usual meaning of
subclasses, inverses and the effect of restrictions on types. �

Let us clarify that Warded Datalog± is a refinement of the language of
Weakly-Frontier-Guarded Datalog±, which is defined in the same way but with-
out the condition (2) given above [3]. Weakly-Frontier-Guarded Datalog± is
highly intractable in data complexity; in fact, it is exptime-complete. This
justifies Warded Datalog±, which is a (nearly) maximal tractable fragment of
Weakly-Frontier-Guarded Datalog±.

Warded Datalog± enjoys several favourable properties that make it a robust
core towards more practical languages:

– Tuple inference under Warded Datalog± is data tractable; in fact, it is ptime-
complete when the set of rules is fixed.

– Warded Datalog± contains full Datalog as sub-language without increasing
the complexity. Indeed, a set Σ of Datalog rules is trivially warded since there
are no dangerous variables (w.r.t. Σ).

– Warded Datalog± generalizes central ontology languages such as the OWL 2
QL profile of OWL, which in turn relies on the prominent description logic
DL-LiteR.

– Warded Datalog± is suitable for querying RDF graphs. Actually, by adding
stratified and grounded negation to Warded Datalog±, we obtain a language,
called TriQ-Lite 1.0 [16], that can express every SPARQL query using set
semantics [22] under the entailment regime for OWL 2 QL.

3.2 Extensions

In order to be effective for real-world applications, we extend the logical core of
vadalog described above with a set of additional features of practical utility.

12 L. Bellomarini et al.

Although the theoretical properties of the language are no longer guaranteed, our
preliminary evaluation has shown that the practical overhead for many of these
features remains reasonable in our streaming implementation. In the future, we
plan to perform a more thorough complexity analysis and isolate sets of features
for which beneficial complexity upper bounds are met and runtime guarantees
are given.

Data Types: Variables and constants are typed. The language supports the most
common simple data types: integer, float, string, Boolean, date. There is also
support for composite data types, such as sets.

Expressions: Variables and constants can be combined into expressions, which
are recursively defined as variables, constants or combinations thereof, for which
we support many different operations for the various data types: algebraic sum,
multiplication, division for integers and floats; containment, addition, deletion of
set elements; string operations (contains, starts-with, ends-with, index-of, sub-
string, etc.); Boolean operations (and, or, not, etc.). Expressions can be used in
rule bodies (1) as the left-hand side (LHS) of a condition, i.e., the comparison
(>, <, >=, <=, <>) of a body variable with the expression itself; (2) as the LHS
of an assignment, i.e., the definition of a specifically calculated value, potentially
used as an existentially quantified head variable. In our running example, vari-
able v is calculated with the expression msum(w, 〈y〉) and used in the condition
v > 0.5.

Skolem Functions: Labeled null values can be suitably calculated with func-
tions defined on-the-fly. They are assumed to be deterministic (returning unique
labeled nulls for unique input bindings), and to have disjoint ranges.

Monotonic Aggregations: vadalog supports aggregation (min, max, sum, prod,
count), by means of an extension to the notion of monotonic aggregations [26],
which allows adopting aggregation even in the presence of recursion while pre-
serving monotonicity w.r.t. set containment. The company control example
shows the use of msum, which calculates variable v, as the monotonically increas-
ing sum of the quota w of company z owned by y, in turn controlled by x. The
sum is accumulated so that above the threshold 0.5, we have that x controls z.
Recent applications of vadalog in challenging industrial use cases showed that
such aggregations are very efficient in many real-world Big Data settings.

Data Binding Primitives: Data sources and targets can be declared by adopt-
ing input/output annotations, a.k.a. binding patterns. Annotations are special
facts augmenting sets of existential rules with specific behaviours. The unnamed
perspective used in vadalog can be harmonized with the named perspective
of many external systems by means of bind and mapping annotations, which
also support projection. A special query bind annotation also supports binding
predicates to queries against inputs/outputs (in the external language, e.g., SQL-
queries for a data source or target that supports SQL). In our example, the exten-
sion of the Own predicate is our input, which we denote with an @input(“Own”)

Swift Logic for Big Data and Knowledge Graphs 13

annotation. The actual facts then may be derived, e.g., from a relational or graph
database, which we would respectively access with the two following annotations
(the latter one using neo4j’s cypher graph query language):

@bind(“Own”, “rdbms”, “companies.ownerships”).
@qbind(“Own”, “graphDB”,

“MATCH (a)-[o:Owns]->(b)
RETURN a,b,o.weight”).

A similar approach is also used for bridging external machine learning and
data extraction platforms into the system. This uses binding patterns as a form
of behaviour injection: the atoms in rules are decorated with binding annota-
tions, so that a step in the reasoning process triggers the external component.
We give a simple example using the OXPath [13] large-scale web data extrac-
tion framework (developed as part of the DIADEM project [12]) – an extension
of XPath that interacts with web applications to extract information obtained
during web navigation. In our running example, assume that our local company
ownership information is only partial, while more complete information can be
retrieved from the web. In particular, assume that a company register acts as a
web search engine, taking as input a company name and returning, as separate
pages, the owned companies. This information can be obtained as follows:1

@qbind(“Own”, “oxpath”,
“doc(‘http://company register.com/ownerships’)
/descendant::field()[1]/{$1}
/following::a[.#=‘Search’]/{click/}

/(//a[.#=‘Next’]/ {click/})∗
//div[@class=‘c’]:<comp>
[./span[1]:<name=string(.)>]
[./span[3]:<percent=string(.)>]”).

The above examples show a basic bridging between the technologies. Interest-
ing interactions can be seen in more sophisticated scenarios, where the reasoning
process and external component processing is more heavily interleaved.

Probabilistic Reasoning: vadalog offers support for the basic cases in which
scalable computation can be guaranteed. Facts are assumed to be probabilisti-
cally independent and a minimalistic form of probabilistic inference is offered
as a side product of query answering. Facts can be adorned with probability
measures according to the well-known possible world semantics [27]. Then, if
the set of existential rules respects specific syntactic properties that guarantee
probabilistic tractability (namely, a generalization of the notion of hierarchi-
cal queries [27]), the facts resulting from query answering are enriched with
their marginal probability, safely calculated in a scalable way. In the following
extension to our running example, we use probabilistic reasoning to account
for uncertain ownerships (e.g., due to unreliable sources), prefixing the facts

1 Concretely, the first position of the Own predicate is bound to the $1 placeholder in
the OXPath expression.

14 L. Bellomarini et al.

with their likelihood, so as to derive non-trivial conclusions on company control
relationships:

0.8 :: Own(“ACME”, “COIN”, 0.7)
0.3 :: Own(“COIN”, “SAVERS”, 0.3)
0.4 :: Own(“ACME”, “GYM”, 0.55)
0.6 :: Own(“GYM”, “SAVERS”, 0.4).

In total, the language allows bridging logic-based reasoning and machine
learning in three ways. First, the language supports scalable probabilistic infer-
ence in basic cases as seen above. Second, the extensions to the core language
provide all the necessary features to abstract and embed advanced inference
algorithms (e.g. belief propagation) so that they can be executed directly by the
vadalog system, and hence leverage its optimization strategies. Third, for the
more sophisticated machine learning applications, data binding primitives allow
a simple interaction with specialized libraries and systems as described before.

Post-processing Annotations: Since specific computations are often needed after
the result has been produced, vadalog supports many of them by means of
annotations for the following features: ordering of the resulting values, as set
semantics is assumed on the output, and yet a particular ordering of the facts
may be desired by the consumer: for example, @orderby(“Control”, 1) sorts
the obtained control facts by the controlling company; deduplication, in specific
conditions (e.g. in presence of calculated values), the output may physically
contain undesired duplicates; non-monotonic aggregations on the final result,
without the limitations induced by recursion; and certain answers.

4 Conclusion

In this paper, we have formulated a number of requirements for a KGMS, which
led us to postulate our reference architecture (see Fig. 1). Based on these require-
ments, we introduced the vadalog language whose core corresponds to Warded
Datalog±. The basic vadalog language is extended by features for numeric
computations, monotonic aggregation, probabilistic reasoning, and, moreover,
by data binding primitives used for interacting with the corporate and external
environment. These binding primitives allow the reasoning engine to access and
manipulate external data through the lens of a logical predicate. The external
data may stem from a corporate database, may be extracted from web pages,
or may be the output of a machine-learning program that has been evaluated
over previously computed data relations. The vadalog system, which is being
implemented at the University of Oxford, puts these swift logics into action. This
system exploits the theoretical underpinning of Warded Datalog± and combines
it with existing and novel techniques from database and AI practice.

Many core features of the vadalog system [4] are already integrated and
show good performance. Our plan is to complete the system in the near future.
A detailed report on the key technical features of the vadalog reasoning system

Swift Logic for Big Data and Knowledge Graphs 15

and on their implementation is already available on request from the authors.
We believe that the vadalog system is a well-suited platform for applications
that integrate machine learning (ML) and data analytics with logical reasoning.
We are currently implementing applications of this type and will report about
them soon.

Acknowledgments. This work has been supported by the EPSRC Programme Grant
EP/M025268/1 “VADA – Value Added Data Systems”. The VADALOG system as
presented here is the intellectual property of the University of Oxford.

References

1. Amidon, D.M., Formica, P., Mercier-Laurent, E.: Knowledge Economics: Emerging
Principles. Tartu University Press Tartu, Pactices and Policies (2005)

2. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS, pp. 14–26 (2014)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

4. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, 19–25 August 2017, pp. 2–10. ijcai.org (2017). https://doi.org/10.24963/
ijcai.2017/1

5. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

6. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

7. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/−: a
family of logical knowledge representation and query languages for new applica-
tions. In: LICS, pp. 228–242 (2010)

8. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87–128 (2012)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based
data access. Semant. Web 2(1), 43–53 (2011)

10. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-83952-8

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

12. Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C., Wang, C.:
DIADEM: thousands of websites to a single database. PVLDB 7(14), 1845–1856
(2014). http://www.vldb.org/pvldb/vol7/p1845-furche.pdf

13. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: Oxpath: a lan-
guage for scalable data extraction, automation, and crawling on the deep web.
VLDB J. 22(1), 47–72 (2013)

14. Furche, T., Gottlob, G., Neumayr, B., Sallinger, E.: Data wrangling for big data:
towards a lingua franca for data wrangling. In: AMW (2016)

15. Glimm, B., Ogbuji, C., Hawke, S., Herman, I., Parsia, B., Polleres, A., Seaborne,
A.: SPARQL 1.1 entailment regimes, 2013. W3C Recommendation, 21 March 2013

https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.1007/978-3-642-83952-8
http://www.vldb.org/pvldb/vol7/p1845-furche.pdf

16 L. Bellomarini et al.

16. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI, pp. 2999–3007 (2015)

17. Hájek, P.: Metamathematics of Fuzzy Logic. Springer, Heidelberg (1998). https://
doi.org/10.1007/978-94-011-5300-3

18. High, R.: The era of cognitive systems: an inside look at IBM Watson and how it
works. IBM, Redbooks (2012)

19. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an inter-
active tutorial. In: SIGMOD, pp. 1213–1216. ACM (2011)

20. Konstantinou, N., Koehler, M., Abel, E., Civili, C., Neumayr, B., Sallinger, E.,
Fernandes, A.A.A., Gottlob, G., Keane, J.A., Libkin, L., Paton, N.W.: The VADA
architecture for cost-effective data wrangling. In: SIGMOD, pp. 1599–1602 (2017)

21. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protege-2000. IEEE IS 16(2), 60–71 (2001)

22. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009). https://doi.org/10.1145/1567274.
1567278

23. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

24. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. In: SIGMOD, pp. 249–260 (2000)

25. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big
data analytics with datalog queries on spark. In: SIGMOD, pp. 1135–1149 (2016).
http://doi.acm.org/10.1145/2882903.2915229

26. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in deals. In: ICDE, pp. 867–878 (2015)

27. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Clay-
pool, San Rafael (2011)

28. VADA: Project Website (2016). http://vada.org.uk/. Accessed 19 May 2017
29. Wikipedia: Knowledge economy (2017). https://en.wikipedia.org/wiki/Knowledge

economy. Accessed 19 May 2017
30. Wikipedia: Knowledge graph (2017). https://en.wikipedia.org/wiki/Knowledge

graph. Accessed 19 May 2017

https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/2882903.2915229
http://vada.org.uk/
https://en.wikipedia.org/wiki/Knowledge_economy
https://en.wikipedia.org/wiki/Knowledge_economy
https://en.wikipedia.org/wiki/Knowledge_graph
https://en.wikipedia.org/wiki/Knowledge_graph

	Swift Logic for Big Data and Knowledge Graphs
	1 Introduction
	2 Desiderata for a KGMS
	3 Overview of the VADALOG Language and System
	3.1 Core Language
	3.2 Extensions

	4 Conclusion
	References

