
A Min Tjoa · Ladjel Bellatreche
Stefan Biffl · Jan van Leeuwen
Jiří Wiedermann (Eds.)

 123

44th International Conference on Current Trends
in Theory and Practice of Computer Science
Krems, Austria, January 29 – February 2, 2018
Proceedings

SOFSEM 2018:
Theory and Practice
of Computer ScienceLN

CS
 1

07
06

AR
Co

SS

Lecture Notes in Computer Science 10706

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

A Min Tjoa • Ladjel Bellatreche
Stefan Biffl • Jan van Leeuwen
Jiří Wiedermann (Eds.)

SOFSEM 2018:
Theory and Practice
of Computer Science
44th International Conference on Current Trends
in Theory and Practice of Computer Science
Krems, Austria, January 29 – February 2, 2018
Proceedings

123

Editors
A Min Tjoa
Vienna University of Technology
Vienna
Austria

Ladjel Bellatreche
ISAE-ENSMA
Chasseneuil-du-Poitou
France

Stefan Biffl
Vienna University of Technology
Vienna
Austria

Jan van Leeuwen
Utrecht University
Utrecht
The Netherlands

Jiří Wiedermann
Academy of Sciences
Prague
Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-73116-2 ISBN 978-3-319-73117-9 (eBook)
https://doi.org/10.1007/978-3-319-73117-9

Library of Congress Control Number: 2017962878

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Edizioni della Normale imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the invited and contributed papers selected for presentation at
SOFSEM 2018, the 44th International Conference on Current Trends in Theory and
Practice of Computer Science, which was held at Danube University Krems from
January 29 to February 2, 2018. For the first time, Austria was the host country of the
prestigious SOFSEM conference series.

SOFSEM (originally SOFtware SEMinar) is devoted to leading research and fosters
the cooperation among researchers and professionals from academia and industry in all
areas of computer science. As a well-established and fully international conference,
SOFSEM has kept the best of its original Winter School aspects, such as a substantial
number of invited talks (seven for the year 2018) and an in-depth coverage of novel
research results in selected areas of computer science. SOFSEM 2018 was organized
around the following three tracks:

– Foundations of Computer Science
(chaired by Jan van Leeuwen and Jiří Wiedermann),

– Software Engineering: Advanced Methods, Applications, and Tools – SEMAT
(chaired by Stefan Biffl),

– Data, Information, and Knowledge Engineering
(chaired by Ladjel Bellatreche).

With these three tracks, SOFSEM 2018 covered the latest advances in both theo-
retical and applied research in leading areas of computer science. The SOFSEM 2018
Program Committee consisted of 89 international experts from 33 different countries,
representing the track areas with outstanding expertise.

An integral part of SOFSEM 2018 was the traditional SOFSEM Student Research
Forum (chaired by Roman Špánek) organized with the aim of presenting student
projects on both the theory and practice of computer science, and to give the students
feedback on the originality of their results. The papers presented at the Student
Research Forum are published in separate local proceedings.

In response to the call for papers, SOFSEM 2018 received 108 submissions by 246
authors from 32 different countries. The submissions were distributed in the conference
tracks as follows: 60 in Foundations of Computer Science, 25 in Software Engineering:
Advanced Methods, Applications, and Tools, and 23 in Data, Information, and
Knowledge Engineering. From these, 25 submissions fell in the student category.

After a detailed reviewing process, with approximately three reviews per paper in
every track, a careful selection procedure was carried out using the EasyChair Con-
ference System for an electronic discussion. Following strict criteria of quality and
originality, 41 papers were selected for presentation, namely: 26 in Foundations of
Computer Science, 7 in Software Engineering: Advanced Methods, Applications, and
Tools, and 8 in Data, Information, and Knowledge Engineering. From these, 10 were
student papers.

Based on the recommendation of the chair of the Student Research Forum and with
the approval of the track chairs and Program Committee members, seven more student
papers were chosen for the SOFSEM 2018 Student Research Forum.

We are greatly indebted to the many colleagues who contributed to the scientific
program of the conference, especially the invited speakers and all authors of the
submitted papers. We also thank the authors of the accepted papers for their prompt
responses to our editorial requests.

SOFSEM 2018 was the result of a concerted effort by many people. We would like
to express our special thanks to the members of the SOFSEM 2018 Program Com-
mittee and all external reviewers for their precise and detailed reviewing of the sub-
missions, Roman Špánek for his handling of the Student Research Forum,
Fajar J. Ekaputra for his efforts on the proceedings, Springer’s LNCS team for its great
support, and the local Organizing Committee for the support and preparation of the
conference.

Finally we want to thank the Danube University Krems and the Austrian Computer
Society (especially Christine Haas) for their invaluable support, which made it possible
to host SOFSEM in Austria for the first time.

January 2018 A Min Tjoa
Ladjel Bellatreche

Stefan Biffl
Jan van Leeuwen
Jiří Wiedermann

VI Preface

Organization

Steering Committee

Barbara Catania University of Genoa, Italy
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Tiziana Margaria-Steffen University of Limerick, Ireland
Branislav Rovan Comenius University, Bratislava, Slovakia
Petr Šaloun Technical University of Ostrava, Czech Republic
Július Štuller (Chair) Academy of Sciences, Prague, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands

Program Committee

Program Chair

A Min Tjoa Vienna University of Technology, Austria

Track Chairs

Ladjel Bellatreche ISAE-ENSMA, France
Stefan Biffl Vienna University of Technology, Austria
Jan van Leeuwen Utrecht University, The Netherlands
Jiří Wiedermann Academy of Sciences, Prague, Czech Republic

Student Research Forum Chair

Roman Špánek Technical University of Liberec, Czech Republic

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Andris Ambainis University of Latvia, Latvia
Ioannis Anagnostopoulos University of Thessaly, Greece
Claudia P. Ayala Technical University of Catalunya, Spain
Christel Baier Technical University of Dresden, Germany
Ladjel Bellatreche ISAE-ENSMA, France
Salima Benbernou Université Paris Descartes, France
Djamal Benslimane University of Lyon 1, France
Fadila Bentayeb ERIC Lab, University of Lyon 2, France
Jorge Bernardino ISEC - Polytechnic Institute of Coimbra, Portugal
Mária Bieliková Slovak University of Technology in Bratislava,

Slovakia
Stefan Biffl Vienna University of Technology, Austria
Premek Brada University of West Bohemia, Czech Republic

Barbara Catania DIBRIS-University of Genoa, Italy
Gabriel Ciobanu Romanian Academy - Iasi, Romania
Alain Crolotte Teradata Corporation, USA
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Josep Diaz Technical University of Catalunya, Spain
Anton Dignös Free University of Bozen-Bolzano, Italy
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Thomas Erlebach University of Leicester, UK
Javier Esparza Technical University of Munich, Germany
Michael Felderer University of Innsbruck, Austria
Bernd Fischer Stellenbosch University, South Africa
Martin Fürer The Pennsylvania State University, USA
Johann Gamper Free University of Bozen-Bolzano, Italy
Leszek Gąsieniec University of Liverpool, UK
Cyril Gavoille Université Bordeaux-1, France
Tibor Gyimóthy University of Szeged, Hungary
Allel Hadjali ISAE-ENSMA, France
Brahim Hamid IRIT, University of Toulouse, France
Theo Härder Technische Universität Kaiserslautern, Germany
Pinar Heggernes University of Bergen, Norway
Juraj Hromkovič ETH Zurich, Switzerland
Anna Ingolfsdottir Reykjavik University, Iceland
Mirjana Ivanovic University of Novi Sad, Serbia
Kazuo Iwama Kyoto University, Japan
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro, Brazil
Jarkko Kari University of Turku, Finland
Zoubida Kedad University of Versailles, France
Selma Khouri Ecole nationale Supérieure d’Informatique, France
Rastislav Královič Comenius University, Slovakia
Evangelos Kranakis Carleton University, Canada
Milos Kravcik DFKI GmbH, Germany
Stefano Leonardi Sapienza University of Rome, Italy
Sebastian Link The University of Auckland, New Zealand
Óscar Pastor Lopez Universitat Politècnica de València, Spain
Martin Lopez-Nores University of Vigo, Spain
Leszek Maciaszek Wrocław University of Economics, Poland
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Pierre-Etienne Moreau Inria-LORIA Nancy, France
Rim Moussa ENICarthage, Tunisia
Iveta Mrázová Charles University, Prague, Czech Republic
Rolf Niedermeier Technical University Berlin, Germany
Boris Novikov St. Petersburg University, Russia
Mirosław Ochodek Poznan University of Technology, Poland
Alexander Okhotin St. Petersburg State University, Russia
Pekka Orponen Aalto University, Finland
Claus Pahl Dublin City University, Ireland

VIII Organization

Catuscia Palamidessi Inria, France
George Papadopoulos University of Cyprus, Cyprus
Alfonso Pierantonio University of L’Aquila, Italy
Jaroslav Porubän Technical University of Košice, Slovakia
Franck Ravat IRIT, University of Toulouse, France
Karel Richta Czech Technical University in Prague, Czech Republic
Gunter Saake University of Magdeburg, Germany
Sherif Sakr The University of New South Wales, Australia
Petr Šaloun VSB-TU Ostrava, Czech Republic
Eike Schallehn University of Magdeburg, Germany
Markus Schordan Lawrence Livermore National Laboratory, USA
Lukáš Sekanina Technical University Brno, Czech Republic
Miroslaw Staron University of Gothenburg, Sweden
Krzysztof Stencel University of Warsaw, Poland
A Min Tjoa Vienna University of Technology, Austria
Farouk Toumani Blaise Pascal University, France
Mark van den Brand Eindhoven University of Technology, The Netherlands
Peter van Emde Boas University of Amsterdam, The Netherlands
Jan van Leeuwen Utrecht University, The Netherlands
Panos Vassiliadis University of Ioannina, Greece
Valentino Vranić Slovak University of Technology in Bratislava,

Slovakia
Marina Waldén Åbo Akademi University, Finland
Igor Walukiewicz Université Bordeaux-1, France
Jiří Wiedermann Academy of Sciences, Prague, Czech Republic
Dietmar Winkler Vienna University of Technology, Austria
Damien Woods Inria, France
Shmuel Zaks Technion, Haifa, Israel
Apostolos Zarras University of Ioannina, Greece
Jaroslav Zendulka Brno University of Technology, Czech Republic
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Additional Reviewers

Luca Aceto
Achilleas Achilleos
Mario S. Alvim
Bogdan Aman
Kazuyuki Amano
Pradeesha Ashok
Önder Babur
Dénes Bán
Kfir Barhum
Ion Barosan
Matthias Bentert

Valérie Berthé
Michael Blondin
Hans-Joachim

Böckenhauer
Guillaume Bonfante
Broňa Brejová
Leizhen Cai
Yu-Fang Chen
Van Cyr
Bui Phi Diep
Stefan Dobrev

Paul Dorbec
Jeremias Epperlein
Till Fluschnik
Vincent Froese
Anastasios Gounaris
Peter Hegedus
Mika Hirvensalo
Ludovico Iovino
Szabolcs Iván
Sanjay Jain
Tomasz Kociumaka

Organization IX

Yang Li
Richard Lipka
Allan Lo
Zvi Lotker
Michael Luttenberger
David Manlove
Jieming Mao
Russell Martin
George Mertzios
Christos Mettouris
Othon Michail
František Mráz

Martin Nehez
André Nichterlein
Reino Niskanen
Marta Olszewska
Dana Pardubska
Boaz Patt-Shamir
Daniel Paulusma
Krišjānis Prūsis
Karol Rástočný
Othmane Rezine
Matthias Rungger
Eike Schallehn

Grzegorz Stachowiak
Nimrod Talmon
Zoltan Toth
Richard Trefler
Mirco Tribastone
Charlotte Truchet
Ming-Hsien Tsai
Theodoros Tzouramanis
David Wehner
Prudence Wong
Alexandros Yeratziotis

Organizing Committee

Proceedings Chair

Fajar J. Ekaputra Vienna University of Technology, Austria

Local Committee

Wilfried Baumann Austrian Computer Society, Austria
Ronald Bieber (Chair) Austrian Computer Society, Austria
Gerlinde Ecker Austrian Computer Society, Austria
Christine Haas Austrian Computer Society, Austria
Karin Hiebler Austrian Computer Society, Austria
Sandra Pillis Austrian Computer Society, Austria
Wolfgang Resch Austrian Computer Society, Austria
Johann Stockinger Austrian Computer Society, Austria
Christine

Wahlmüller-Schiller
Austrian Computer Society, Austria

X Organization

Contents

Invited Talks

Keynote Talk

Swift Logic for Big Data and Knowledge Graphs:
Overview of Requirements, Language, and System 3

Luigi Bellomarini, Georg Gottlob, Andreas Pieris,
and Emanuel Sallinger

Foundations of Computer Science

On Architecture Specification . 19
Manfred Broy

The State of the Art in Dynamic Graph Algorithms. 40
Monika Henzinger

Software Engineering: Advanced Methods, Applications, and Tools

Diversity in UML Modeling Explained: Observations, Classifications
and Theorizations . 47

Michel R. V. Chaudron, Ana Fernandes-Saez, Regina Hebig,
Truong Ho-Quang, and Rodi Jolak

Self-managing Internet of Things . 67
Danny Weyns, Gowri Sankar Ramachandran, and Ritesh Kumar Singh

Data, Information and Knowledge Engineering

LARS: A Logic-Based Framework for Analytic Reasoning over Streams
(Extended Abstract) . 87

Harald Beck, Minh Dao-Tran, and Thomas Eiter

Network Analysis of the Science of Science: A Case Study in SOFSEM
Conference. 94

Antonia Gogoglou, Theodora Tsikrika, and Yannis Manolopoulos

http://dx.doi.org/10.1007/978-3-319-73117-9_1
http://dx.doi.org/10.1007/978-3-319-73117-9_1
http://dx.doi.org/10.1007/978-3-319-73117-9_2
http://dx.doi.org/10.1007/978-3-319-73117-9_3
http://dx.doi.org/10.1007/978-3-319-73117-9_4
http://dx.doi.org/10.1007/978-3-319-73117-9_4
http://dx.doi.org/10.1007/978-3-319-73117-9_5
http://dx.doi.org/10.1007/978-3-319-73117-9_6
http://dx.doi.org/10.1007/978-3-319-73117-9_6
http://dx.doi.org/10.1007/978-3-319-73117-9_7
http://dx.doi.org/10.1007/978-3-319-73117-9_7

Regular Papers

Network Science and Parameterized Complexity

The Parameterized Complexity of Centrality Improvement in Networks 111
Clemens Hoffmann, Hendrik Molter, and Manuel Sorge

Local Structure Theorems for Erdős–Rényi Graphs and Their Algorithmic
Applications . 125

Jan Dreier, Philipp Kuinke, Ba Le Xuan, and Peter Rossmanith

Target Set Selection Parameterized by Clique-Width
and Maximum Threshold . 137

Tim A. Hartmann

Model-Based Software Engineering

Combining Versioning and Metamodel Evolution in the ChronoSphere
Model Repository . 153

Martin Haeusler, Thomas Trojer, Johannes Kessler, Matthias Farwick,
Emmanuel Nowakowski, and Ruth Breu

Automated Change Propagation from Source Code to Sequence Diagrams . . . 168
Karol Rástočný and Andrej Mlynčár

Multi-paradigm Architecture Constraint Specification and Configuration
Based on Graphs and Feature Models . 180

Sahar Kallel, Chouki Tibermacine, Ahmed Hadj Kacem,
and Christophe Dony

Computational Models and Complexity

Lower Bounds and Hierarchies for Quantum Memoryless Communication
Protocols and Quantum Ordered Binary Decision Diagrams
with Repeated Test . 197

Farid Ablayev, Andris Ambainis, Kamil Khadiev, and Aliya Khadieva

Computational Complexity of Atomic Chemical Reaction Networks 212
David Doty and Shaopeng Zhu

Conjugacy of One-Dimensional One-Sided Cellular Automata
is Undecidable . 227

Joonatan Jalonen and Jarkko Kari

XII Contents

http://dx.doi.org/10.1007/978-3-319-73117-9_8
http://dx.doi.org/10.1007/978-3-319-73117-9_9
http://dx.doi.org/10.1007/978-3-319-73117-9_9
http://dx.doi.org/10.1007/978-3-319-73117-9_10
http://dx.doi.org/10.1007/978-3-319-73117-9_10
http://dx.doi.org/10.1007/978-3-319-73117-9_11
http://dx.doi.org/10.1007/978-3-319-73117-9_11
http://dx.doi.org/10.1007/978-3-319-73117-9_12
http://dx.doi.org/10.1007/978-3-319-73117-9_13
http://dx.doi.org/10.1007/978-3-319-73117-9_13
http://dx.doi.org/10.1007/978-3-319-73117-9_14
http://dx.doi.org/10.1007/978-3-319-73117-9_14
http://dx.doi.org/10.1007/978-3-319-73117-9_14
http://dx.doi.org/10.1007/978-3-319-73117-9_15
http://dx.doi.org/10.1007/978-3-319-73117-9_16
http://dx.doi.org/10.1007/978-3-319-73117-9_16

Software Quality Assurance and Transformation

Formal Verification and Safety Assessment of a Hemodialysis Machine. 241
Shahid Khan, Osman Hasan, and Atif Mashkoor

Automatic Decomposition of Java Open Source Pull Requests:
A Replication Study . 255

Victor da C. Luna Freire, João Brunet, and Jorge C. A. de Figueiredo

Transformation of OWL2 Property Axioms to Groovy. 269
Bogumiła Hnatkowska and Paweł Woroniecki

Graph Structure and Computation

Simple Paths and Cycles Avoiding Forbidden Paths 285
Benjamin Momège

External Memory Algorithms for Finding Disjoint Paths
in Undirected Graphs. 295

Maxim Babenko and Ignat Kolesnichenko

On Range and Edge Capacity in the Congested Clique 305
Tomasz Jurdziński and Krzysztof Nowicki

Business Processes, Protocols, and Mobile Networks

Global vs. Local Semantics of BPMN 2.0 OR-Join 321
Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi,
and Francesco Tiezzi

AODVv2: Performance vs. Loop Freedom . 337
Mojgan Kamali, Massimo Merro, and Alice Dal Corso

Multivendor Deployment Integration for Future Mobile Networks 351
Manuel Perez Martinez, Tímea László, Norbert Pataki,
Csaba Rotter, and Csaba Szalai

Mobile Robots and Server Systems

Patrolling a Path Connecting a Set of Points with Unbalanced
Frequencies of Visits . 367

Huda Chuangpishit, Jurek Czyzowicz, Leszek Gąsieniec,
Konstantinos Georgiou, Tomasz Jurdziński, and Evangelos Kranakis

Contents XIII

http://dx.doi.org/10.1007/978-3-319-73117-9_17
http://dx.doi.org/10.1007/978-3-319-73117-9_18
http://dx.doi.org/10.1007/978-3-319-73117-9_18
http://dx.doi.org/10.1007/978-3-319-73117-9_19
http://dx.doi.org/10.1007/978-3-319-73117-9_20
http://dx.doi.org/10.1007/978-3-319-73117-9_21
http://dx.doi.org/10.1007/978-3-319-73117-9_21
http://dx.doi.org/10.1007/978-3-319-73117-9_22
http://dx.doi.org/10.1007/978-3-319-73117-9_23
http://dx.doi.org/10.1007/978-3-319-73117-9_24
http://dx.doi.org/10.1007/978-3-319-73117-9_25
http://dx.doi.org/10.1007/978-3-319-73117-9_26
http://dx.doi.org/10.1007/978-3-319-73117-9_26

Exploring Graphs with Time Constraints by Unreliable Collections
of Mobile Robots . 381

Jurek Czyzowicz, Maxime Godon, Evangelos Kranakis,
Arnaud Labourel, and Euripides Markou

The k-Server Problem with Advice in d Dimensions and on the Sphere 396
Elisabet Burjons, Dennis Komm, and Marcel Schöngens

Automata, Complexity, Completeness

Deciding Universality of ptNFAs is PSPACE-Complete 413
Tomáš Masopust and Markus Krötzsch

Theoretical Aspects of Symbolic Automata . 428
Hellis Tamm and Margus Veanes

Complete Algorithms for Algebraic Strongest Postconditions and Weakest
Preconditions in Polynomial ODE’S . 442

Michele Boreale

Recognition and Generation

Influence of Body Postures on Touch-Based Biometric
User Authentication. 459

Kamil Burda and Daniela Chuda

Michiko: Poem Models used in Automated Haiku Poetry Generation. 469
Miroslava Hrešková and Kristína Machová

Optimization, Probabilistic Analysis, and Sorting

House Allocation Problems with Existing Tenants and Priorities
for Teacher Recruitment. 479

Ana Paula Tomás

Runtime Distributions and Criteria for Restarts . 493
Jan-Hendrik Lorenz

Inversions from Sorting with Distance-Based Errors 508
Barbara Geissmann and Paolo Penna

Filters, Configurations, and Picture Encoding

An Optimization Problem Related to Bloom Filters with Bit Patterns. 525
Peter Damaschke and Alexander Schliep

XIV Contents

http://dx.doi.org/10.1007/978-3-319-73117-9_27
http://dx.doi.org/10.1007/978-3-319-73117-9_27
http://dx.doi.org/10.1007/978-3-319-73117-9_28
http://dx.doi.org/10.1007/978-3-319-73117-9_29
http://dx.doi.org/10.1007/978-3-319-73117-9_30
http://dx.doi.org/10.1007/978-3-319-73117-9_31
http://dx.doi.org/10.1007/978-3-319-73117-9_31
http://dx.doi.org/10.1007/978-3-319-73117-9_32
http://dx.doi.org/10.1007/978-3-319-73117-9_32
http://dx.doi.org/10.1007/978-3-319-73117-9_33
http://dx.doi.org/10.1007/978-3-319-73117-9_34
http://dx.doi.org/10.1007/978-3-319-73117-9_34
http://dx.doi.org/10.1007/978-3-319-73117-9_35
http://dx.doi.org/10.1007/978-3-319-73117-9_36
http://dx.doi.org/10.1007/978-3-319-73117-9_37

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 539
Michal Szabados

Encoding Pictures with Maximal Codes of Pictures 552
Marcella Anselmo, Dora Giammarresi, and Maria Madonia

Machine Learning

ARCID: A New Approach to Deal with Imbalanced
Datasets Classification . 569

Safa Abdellatif, Mohamed Ali Ben Hassine, Sadok Ben Yahia,
and Amel Bouzeghoub

Fake Review Detection via Exploitation of Spam Indicators and Reviewer
Behavior Characteristics. 581

Ioannis Dematis, Eirini Karapistoli, and Athena Vakali

Mining Spatial Gradual Patterns: Application to Measurement
of Potentially Avoidable Hospitalizations . 596

Tu Ngo, Vera Georgescu, Anne Laurent, Thérèse Libourel,
and Grégoire Mercier

Text Searching Algorithms

New Variants of Pattern Matching with Constants and Variables. 611
Yuki Igarashi, Diptarama, Ryo Yoshinaka, and Ayumi Shinohara

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 624
Davaajav Jargalsaikhan, Diptarama, Yohei Ueki, Ryo Yoshinaka,
and Ayumi Shinohara

Longest Common Prefixes with k-Mismatches and Applications 636
Hayam Alamro, Lorraine A. K. Ayad, Panagiotis Charalampopoulos,
Costas S. Iliopoulos, and Solon P. Pissis

Data and Model Engineering

Managing Reduction in Multidimensional Databases 653
Franck Ravat, Jiefu Song, and Olivier Teste

UML2PROV: Automating Provenance Capture in Software Engineering 667
Carlos Sáenz-Adán, Beatriz Pérez, Trung Dong Huynh, and Luc Moreau

Validating Data from Semantic Web Providers . 682
Jacques Chabin, Mirian Halfeld-Ferrari, Béatrice Markhoff,
and Thanh Binh Nguyen

Author Index . 697

Contents XV

http://dx.doi.org/10.1007/978-3-319-73117-9_38
http://dx.doi.org/10.1007/978-3-319-73117-9_39
http://dx.doi.org/10.1007/978-3-319-73117-9_40
http://dx.doi.org/10.1007/978-3-319-73117-9_40
http://dx.doi.org/10.1007/978-3-319-73117-9_41
http://dx.doi.org/10.1007/978-3-319-73117-9_41
http://dx.doi.org/10.1007/978-3-319-73117-9_42
http://dx.doi.org/10.1007/978-3-319-73117-9_42
http://dx.doi.org/10.1007/978-3-319-73117-9_43
http://dx.doi.org/10.1007/978-3-319-73117-9_44
http://dx.doi.org/10.1007/978-3-319-73117-9_45
http://dx.doi.org/10.1007/978-3-319-73117-9_46
http://dx.doi.org/10.1007/978-3-319-73117-9_47
http://dx.doi.org/10.1007/978-3-319-73117-9_48

Keynote Talk

Swift Logic for Big Data and Knowledge Graphs

Overview of Requirements, Language, and System

Luigi Bellomarini1, Georg Gottlob1,2(B), Andreas Pieris3,
and Emanuel Sallinger1

1 Department of Computer Science, University of Oxford, Oxford, UK
georg.gottlob@gmail.com

2 Institute of Information Systems, TU Wien, Vienna, Austria
3 School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract. Many modern companies wish to maintain knowledge in the
form of a corporate knowledge graph and to use and manage this knowl-
edge via a knowledge graph management system (KGMS). We formu-
late various requirements for a fully-fledged KGMS. In particular, such
a system must be capable of performing complex reasoning tasks but,
at the same time, achieve efficient and scalable reasoning over Big Data
with an acceptable computational complexity. Moreover, a KGMS needs
interfaces to corporate databases, the web, and machine-learning and
analytics packages. We present KRR formalisms and a system achiev-
ing these goals. To this aim, we use specific suitable fragments from the
Datalog± family of languages, and we introduce the vadalog system,
which puts these swift logics into action. This system exploits the the-
oretical underpinning of relevant Datalog± languages and combines it
with existing and novel techniques from database and AI practice.

1 Introduction

The so-called knowledge economy, characteristic for the current Information Age,
is rapidly gaining ground. According to [1], as cited in [29], “The knowledge
economy is the use of knowledge [...] to generate tangible and intangible values.
Technology, and, in particular, knowledge technology, help to transform a part
of human knowledge to machines. This knowledge can be used by decision sup-
port systems in various fields and generate economic value.” The importance
of knowledge as an essential economic driving force has been evident to most
corporate decision makers since the late 1970s, and the idea of storing knowl-
edge and processing it to derive valuable new knowledge existed in the context
of expert systems. Alas, it seems that the technology of those ‘early’ times was
not sufficiently mature: the available hardware was too slow and main memory
too tight for more complex reasoning tasks; database management systems were
too slow and too rigid; there was no web where an expert system could acquire
data; machine learning, and, in particular, neural networks were ridiculed as

This paper is a significantly abbreviated and slightly updated version of [4].

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-73117-9_1

4 L. Bellomarini et al.

largely unsuccessful; ontological reasoning was in its infancy and the available
formalisms were much too complex for Big Data applications. Meanwhile, there
has been huge technological progress, and also much research progress that has
led to a better understanding of many aspects of knowledge processing and rea-
soning with large amounts of data. Hardware has evolved, database technology
has significantly improved, there is a (semantic) web with linked open data,
companies can participate in social networks, machine learning has made a dra-
matic breakthrough, and there is a better understanding of scalable reasoning
mechanisms.

Because of this, and of some eye-opening showcase projects such as IBM
Watson [18], thousands of large and medium-sized companies suddenly wish to
manage their own knowledge graphs, and are looking for adequate knowledge
graph management systems (KGMS).

The term knowledge graph originally only referred to Google’s Knowledge
Graph, namely, “a knowledge base used by Google to enhance its search engine’s
search results with semantic-search information gathered from a wide variety of
sources” [30]. Meanwhile, further Internet giants (e.g. Facebook, Amazon) as
well as some other very large companies have constructed their own knowledge
graphs, and many more companies would like to maintain a private corporate
knowledge graph incorporating large amounts of data in form of facts, both from
corporate and public sources, as well as rule-based knowledge. Such a corporate
knowledge graph is expected to contain relevant business knowledge, for exam-
ple, knowledge about customers, products, prices, and competitors rather than
mainly world knowledge from Wikipedia and similar sources. It should be man-
aged by a KGMS, i.e., a knowledge base management system (KBMS), which
performs complex rule-based reasoning tasks over very large amounts of data
and, in addition, provides methods and tools for data analytics and machine
learning, whence the equation:

KGMS = KBMS + Big Data + Analytics

The word ‘graph’ in this context is often misunderstood to the extent that
some IT managers think that acquiring a graph database system and feeding
it with data is sufficient to achieve a corporate knowledge graph. Others erro-
neously think that knowledge graphs necessarily use RDF triple stores instead
of plain relational data. Yet others think that knowledge graphs are limited to
storing and analyzing social network data only. While knowledge graphs should
indeed be able to manipulate graph data and reason over RDF and social net-
works, they should not be restricted to this. For example, restricting a knowledge
graph to contain RDF data only would exclude the direct inclusion of standard
relational data and the direct interaction with corporate databases.

Not much has been described in the literature about the architecture of a
KGMS and the functions it should ideally fulfil. In Sect. 2 we briefly list what
we believe are the main requirements for a fully fledged KGMS. As indicated
in Fig. 1, which depicts our reference architecture, the central component of a
KGMS is its core reasoning engine, which has access to a rule repository. Grouped
around it are various modules that provide relevant data access and analytics

Swift Logic for Big Data and Knowledge Graphs 5

CORE
REASONING

WEB

Rule Repository

Fig. 1. KGMS reference architecture.

functionalities (see [4] for details). We expect a KGMS to fulfil many of these
functions.

The reasoning core of a KGMS needs to provide a language for knowledge
representation and reasoning (KRR). The data format for factual data should,
as said, match the standard relational formalism so as to smoothly integrate cor-
porate databases and data warehouses, and at the same time be suited for RDF
and graph data. The rule language and reasoning mechanism should achieve a
careful balance between expressive power and complexity. In Sect. 3 we present
vadalog, a Datalog-based language that matches this requirement. vadalog
belongs to the Datalog± family of languages that extend Datalog by existen-
tial quantifiers in rule heads, as well as by other features, and restricts at the
same time its syntax so as to achieve decidability and data tractability; see,
e.g., [5–8]. The logical core of the vadalog language corresponds to Warded
Datalog± [2,16], which captures plain Datalog as well as SPARQL queries using
set semantics [22] under the entailment regime for OWL 2 QL [15], and is able to
perform ontological reasoning tasks. Reasoning with the logical core of vadalog
is computationally efficient.

While the logical core of vadalog has a number of beneificial properties,
several features that have been added to it for achieving more powerful reason-
ing and data manipulation capabilities [4]. To give just one example here, the
language is augmented by monotonic aggregations [26], which permits the use of
aggregation (via summation, product, max, min, count) even in the presence of
recursion. This enables us to swiftly solve problems such as the company control
problem (studied e.g. in [10]) as explained in the following example.

Example 1 (Example). Assume the ownership relationship among a large num-
ber of companies is stored via facts (i.e., tuples of a database relation) of the
following form Own(comp1 , comp2 , w) meaning that company comp1 directly
owns a fraction w of company comp2 , with 0 ≤ w ≤ 1. A company x controls a

6 L. Bellomarini et al.

company y if x directly owns more than half of the shares of y or if x controls a
set S of companies that jointly own more than half of y. Computing a predicate
Control(x, y) expressing that company x controls company y, is then achieved
in vadalog by two rules:

Own(x, y, w), w > 0.5 → Control(x, y)
Control(x, y),Own(y, z, w),

v = msum(w, 〈y〉), v > 0.5 → Control(x, z).

Here, for fixed x, the aggregate construct msum(w, 〈y〉) forms the sum over all
values w such that for some company y, Control(x, y) is true, and Own(y, z, w)
holds, i.e., company y directly owns fraction w of company z. �

In [4] we introduce the vadalog KGMS, which builds on the vadalog
language and combines it with existing and novel techniques from database and
AI practice such as stream query processing, dynamic in-memory indexing and
aggressive recursion control. The vadalog system is Oxford’s contribution to
the VADA (Value Added Data Systems) research project [14,20,28], which is a
joint effort of the universities of Edinburgh, Manchester, and Oxford.

2 Desiderata for a KGMS

In this section we briefly summarize what we think are the most important
desiderata for a fully-fledged KGMS. We will list these requirements according to
three categories, keeping in mind, however, that these categories are interrelated.

Language and System for Reasoning

There should be a logical formalism for expressing facts and rules, and a reason-
ing engine that uses this language, which should provide the following features.

Simple and Modular Syntax: It should be easy to add and delete facts and to
add new rules. As in logic programming, facts should conceptually coincide with
database tuples.

High Expressive Power: Datalog [10,19] is a good yardstick for the expressive
power of rule languages. Over ordered structures (which we may assume here),
Datalog with very mild negation captures ptime; see, e.g., [11]. A rule language
should thus ideally be at least as expressive as plain recursive Datalog, possibly
with mild negation.

Numeric Computation and Aggregations: The basic logical formalism and infer-
ence engine should be enriched by features for dealing with numeric values,
including appropriate aggregate functions.

Swift Logic for Big Data and Knowledge Graphs 7

Probabilistic Reasoning: The language should be suited for incorporating appro-
priate methods of probabilistic reasoning, and the system should propagate prob-
abilities or certainty values along the reasoning process, that is, compute prob-
abilities or certainty values for derived facts, and make adjustments wherever
necessary. Probabilistic models may range from simple triangular norm opera-
tors (T-norm – cf [17]) over probabilistic database models [27] to Markov logic
networks [23].

Ontological Reasoning: Ontological reasoning and query answering should be
provided. We have two yardsticks here. First, ontological reasoning to the extent
of tractable description logics such as DL-LiteR should be possible. Recall that
DL-LiteR forms the logical underpinning of the OWL 2 QL profile of the Web
Ontology Language as standardized by the W3C. Second, it should be expressive
enough to cover all SPARQL queries under set semantics [22] over RDF datasets
under the entailment regime for OWL 2 QL [15].

Low Complexity: Reasoning should be tractable in data complexity (i.e. when
the rules are assumed to be fixed and the fact base is considered the input).
Whenever possible, the system should recognize and take profit of rule sets that
can be processed within low space complexity classes such as nlogspace (e.g.
for SPARQL) or even ac0 (e.g. for traditional conjunctive database queries).

Rule Repository, Rule Management, and Ontology Editor: A library for storing
recurring rules and definitions should be provided, as well as a user interface for
rule management in the spirit of the ontology editor protégé [21].

Dynamic Orchestration: For larger applications, there must be a master module
to allow the orchestration of complex data flows. For simple systems, the process
must be easily specifiable. For complex systems, the process must be dynamically
controllable through intelligent reasoning techniques or external control facilities
and tools (e.g. BPM).

Accessing and Handling Big Data

Big Data Access: The system must be able to provide efficient access to Big Data
sources and systems and fast reasoning algorithms over Big Data. In particular,
the possibility of out-of-memory reasoning must be given in case the relevant data
does not fit into main memory. Integration of Big Data processing techniques
should be possible where the volume of data makes it necessary (see e.g. [25]).

Database and Data Warehouse Access: Seamless access to relational, graph
databases, data warehouses, RDF stores, and major NoSQL stores should be
granted. Data in such repositories should be directly usable as factual data for
reasoning.

8 L. Bellomarini et al.

Ontology-Based Data Access (OBDA): OBDA [9] allows a system to compile a
query that has been formulated on top of an ontology into one directly on the
database. OBDA should be possible whenever appropriate.

Multi-query Support: Where possible and appropriate, partial results from
repeated (sub-)queries should be evaluated once [24] and optimized in this
regard.

Data Cleaning, Exchange and Integration: Integrating, exchanging and cleaning
data should be supported both directly (through an appropriate KRR formalism
that is made available through various applications in the knowledge repository),
and by allowing integration of third-party software.

Web Data Extraction, Interaction, and IoT: A KGMS should be able to interact
with the web by (i) extracting relevant web data (e.g. prices advertised by com-
petitors) and integrating these data into the local fact base, and (ii) exchanging
data with web forms and servers that are available through a web interface. One
way to achieve this is given in [4]. Similar methods can be used for interacting
with the IoT through appropriate network accessible APIs.

Embedding Procedural and Third-Party Code

Procedural Code: The system should have encapsulation methods for embedding
procedural code (proprietary and third party) written in a variety of program-
ming languages and offer a logical interface to it.

Third-Party Packages for Machine Learning, Text Mining, NLP, Data Analyt-
ics, and Data Visualization: The system should be equipped with direct access
to powerful existing software packages for machine learning, text mining, data
analytics, and data visualization. Given that excellent third-party software for
these purposes exists, we believe that a KGMS should be able to use a multitude
of such packages via appropriate logical interfaces.

3 Overview of the VADALOG Language and System

We here only give a brief overview of the vadalog language and system. A more
extensive overview of both language and system is given in [4] and the system
is presented in detail in a forthcoming paper.

As said before, vadalog is a KR language that achieves a careful balance
between expressive power and complexity, and it can be used as the reason-
ing core of a KGMS. In Sect. 3.1 we discuss the logical core of vadalog and
some interesting fragments of it, while in Sect. 3.2 we discuss how this language
can be extended with additional features that are much needed in real-world
applications.

Swift Logic for Big Data and Knowledge Graphs 9

3.1 Core Language

The logical core of vadalog is a member of the Datalog± family of knowledge
representation languages, which we call Warded Datalog±. The main goal of
Datalog± languages is to extend the well-known language Datalog with useful
modeling features such as existential quantifiers in rule heads (the ‘+’ in the
symbol ‘±’), and at the same time restrict the rule syntax in such a way that
the decidability and data tractability of reasoning is guaranteed (the ‘−’ in the
symbol ‘±’).

The core of Datalog± languages consists of rules known as existential rules
or tuple-generating dependencies, which essentially generalize Datalog rules with
existential quantifiers in rule heads; henceforth, we adopt the term existential
rule. An example of such an existential rule is

Person(x) → ∃y HasFather(x, y),Person(y)

which encodes that every person has a father who is also a person. In general,
an existential rule is a first-order sentence

∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄))

where ϕ (the body) and ψ (the head) are conjunctions of atoms with constants
and variables.

The semantics of a set of existential rules Σ over a database D, denoted Σ(D),
is defined via the well-known chase procedure. Roughly, the chase adds new
atoms to D (possibly involving null values used for satisfying the existentially
quantified variables) until the final result Σ(D) satisfies all the existential rules
of Σ. Notice that, in general, Σ(D) is infinite. Here is a simple example of the
chase procedure.

Example 2. Consider the database D = {Person(Bob)}, and the existential
rule

Person(x) → ∃y HasFather(x, y),Person(y).

The database atom triggers the above existential rule, and the chase adds in D
the atoms

HasFather(Bob, ν1) and Person(ν1)

in order to satisfy it, where ν1 is a (labeled) null representing some unknown
value. The new atom Person(ν1) triggers again the existential rule, and the chase
adds the atoms

HasFather(ν1, ν2) and Person(ν2),

where ν2 is a new null. The result of the chase is the instance

{Person(Bob),HasFather(Bob, ν1)} ∪
⋃

i>0

{Person(νi),HasFather(νi, νi+1)},

where ν1, ν2, . . . are (labeled) nulls. �

10 L. Bellomarini et al.

Given a pair Q = (Σ,Ans), where Σ is a set of existential rules and Ans
an n-ary predicate, the evaluation of Q over a database D, denoted Q(D), is
defined as the set of tuples over the set CD of constant values occurring in the
database D that are entailed by D and Σ, i.e., the set

{〈t1, . . . , tn〉 | Ans(t1, . . . , tn) ∈ Σ(D) and each ti ∈ CD}.

The main reasoning task that we are interested in is tuple inference: given a
database D, a pair Q = (Σ,Ans), and a tuple of constants t̄, decide whether
t̄ ∈ Q(D). This problem is very hard; in fact, it is undecidable, even when Q
is fixed and only D is given as input [5]. This has led to a flurry of activity
for identifying restrictions on existential rules that make the above problem
decidable. Each such restriction gives rise to a new Datalog± language.

Warded Datalog±: The Logical Core of VADALOG. The logical core
of vadalog relies on the notion of wardedness, which gives rise to Warded
Datalog± [16]. In other words, vadalog is obtained by extending Warded
Datalog± with additional features of practical utility that are discussed in the
next section.

Wardedness applies a restriction on how the “dangerous” variables of a set of
existential rules are used. Intuitively, a “dangerous” variable is a body-variable
that can be unified with a labeled null value when the chase algorithm is applied,
and it is also propagated to the head of the rule. For example, given the set Σ
consisting of the existential rules

P (x) → ∃z R(x, z) and R(x, y) → P (y),

the variable y in the body of the second rule is “dangerous” (w.r.t. Σ) since
starting, e.g., from the database D = {P (a)}, the chase will apply the first rule
and generate R(a, ν), where ν is a null that acts as a witness for the existentially
quantified variable z, and then the second rule will be applied with the variable
y being unified with ν that is propagated to the obtained atom P (ν). The goal of
wardedness is to tame the way null values are propagated during the construction
of the chase instance by posing the following conditions:

1. all the “dangerous” variables should coexist in a single body-atom α, called
the ward, and

2. the ward can share only “harmless” variables with the rest of the body, i.e.,
variables that are unified only with database constants during the construc-
tion of the chase.

Warded Datalog± consists of all the (finite) sets of warded existential rules.
The rule in Example 2 is clearly warded. Another example of a warded set of
existential rules follows:

Swift Logic for Big Data and Knowledge Graphs 11

Example 3. Consider the following rules encoding part of the OWL 2 direct
semantics entailment regime for OWL 2 QL (see [2,16]):

Type(x, y),Restriction(y, z) → ∃w Triple(x, z, w)
Type(x, y),SubClass(y, z) → Type(x, z)

Triple(x, y, z), Inverse(y, w) → Triple(z, w, x)
Triple(x, y, z),Restriction(w, y) → Type(x,w).

It is easy to verify that the above set is warded, where the underlined atoms are
the wards. Indeed, a variable that occurs in an atom of the form Restriction(·, ·),
or the form SubClass(·, ·), or Inverse(·, ·), is trivially harmless. However, variables
that appear in the first position of Type, or in the first/third position of Triple
can be dangerous. Thus, the underlined atoms are indeed acting as the wards.

Let us now intuitively explain the meaning of the above set of existential
rules: The first rule states that if a is of type b, encoded via the atom Type(a, b),
while b represents the class that corresponds to the first attribute of some binary
relation c, encoded via the atom Restriction(b, c), then there exists some value
d such that the tuple (a, d) occurs in the binary relation c, encoded as the
atom Triple(a, c, d). Analogously, the other rules encode the usual meaning of
subclasses, inverses and the effect of restrictions on types. �

Let us clarify that Warded Datalog± is a refinement of the language of
Weakly-Frontier-Guarded Datalog±, which is defined in the same way but with-
out the condition (2) given above [3]. Weakly-Frontier-Guarded Datalog± is
highly intractable in data complexity; in fact, it is exptime-complete. This
justifies Warded Datalog±, which is a (nearly) maximal tractable fragment of
Weakly-Frontier-Guarded Datalog±.

Warded Datalog± enjoys several favourable properties that make it a robust
core towards more practical languages:

– Tuple inference under Warded Datalog± is data tractable; in fact, it is ptime-
complete when the set of rules is fixed.

– Warded Datalog± contains full Datalog as sub-language without increasing
the complexity. Indeed, a set Σ of Datalog rules is trivially warded since there
are no dangerous variables (w.r.t. Σ).

– Warded Datalog± generalizes central ontology languages such as the OWL 2
QL profile of OWL, which in turn relies on the prominent description logic
DL-LiteR.

– Warded Datalog± is suitable for querying RDF graphs. Actually, by adding
stratified and grounded negation to Warded Datalog±, we obtain a language,
called TriQ-Lite 1.0 [16], that can express every SPARQL query using set
semantics [22] under the entailment regime for OWL 2 QL.

3.2 Extensions

In order to be effective for real-world applications, we extend the logical core of
vadalog described above with a set of additional features of practical utility.

12 L. Bellomarini et al.

Although the theoretical properties of the language are no longer guaranteed, our
preliminary evaluation has shown that the practical overhead for many of these
features remains reasonable in our streaming implementation. In the future, we
plan to perform a more thorough complexity analysis and isolate sets of features
for which beneficial complexity upper bounds are met and runtime guarantees
are given.

Data Types: Variables and constants are typed. The language supports the most
common simple data types: integer, float, string, Boolean, date. There is also
support for composite data types, such as sets.

Expressions: Variables and constants can be combined into expressions, which
are recursively defined as variables, constants or combinations thereof, for which
we support many different operations for the various data types: algebraic sum,
multiplication, division for integers and floats; containment, addition, deletion of
set elements; string operations (contains, starts-with, ends-with, index-of, sub-
string, etc.); Boolean operations (and, or, not, etc.). Expressions can be used in
rule bodies (1) as the left-hand side (LHS) of a condition, i.e., the comparison
(>, <, >=, <=, <>) of a body variable with the expression itself; (2) as the LHS
of an assignment, i.e., the definition of a specifically calculated value, potentially
used as an existentially quantified head variable. In our running example, vari-
able v is calculated with the expression msum(w, 〈y〉) and used in the condition
v > 0.5.

Skolem Functions: Labeled null values can be suitably calculated with func-
tions defined on-the-fly. They are assumed to be deterministic (returning unique
labeled nulls for unique input bindings), and to have disjoint ranges.

Monotonic Aggregations: vadalog supports aggregation (min, max, sum, prod,
count), by means of an extension to the notion of monotonic aggregations [26],
which allows adopting aggregation even in the presence of recursion while pre-
serving monotonicity w.r.t. set containment. The company control example
shows the use of msum, which calculates variable v, as the monotonically increas-
ing sum of the quota w of company z owned by y, in turn controlled by x. The
sum is accumulated so that above the threshold 0.5, we have that x controls z.
Recent applications of vadalog in challenging industrial use cases showed that
such aggregations are very efficient in many real-world Big Data settings.

Data Binding Primitives: Data sources and targets can be declared by adopt-
ing input/output annotations, a.k.a. binding patterns. Annotations are special
facts augmenting sets of existential rules with specific behaviours. The unnamed
perspective used in vadalog can be harmonized with the named perspective
of many external systems by means of bind and mapping annotations, which
also support projection. A special query bind annotation also supports binding
predicates to queries against inputs/outputs (in the external language, e.g., SQL-
queries for a data source or target that supports SQL). In our example, the exten-
sion of the Own predicate is our input, which we denote with an @input(“Own”)

Swift Logic for Big Data and Knowledge Graphs 13

annotation. The actual facts then may be derived, e.g., from a relational or graph
database, which we would respectively access with the two following annotations
(the latter one using neo4j’s cypher graph query language):

@bind(“Own”, “rdbms”, “companies.ownerships”).
@qbind(“Own”, “graphDB”,

“MATCH (a)-[o:Owns]->(b)
RETURN a,b,o.weight”).

A similar approach is also used for bridging external machine learning and
data extraction platforms into the system. This uses binding patterns as a form
of behaviour injection: the atoms in rules are decorated with binding annota-
tions, so that a step in the reasoning process triggers the external component.
We give a simple example using the OXPath [13] large-scale web data extrac-
tion framework (developed as part of the DIADEM project [12]) – an extension
of XPath that interacts with web applications to extract information obtained
during web navigation. In our running example, assume that our local company
ownership information is only partial, while more complete information can be
retrieved from the web. In particular, assume that a company register acts as a
web search engine, taking as input a company name and returning, as separate
pages, the owned companies. This information can be obtained as follows:1

@qbind(“Own”, “oxpath”,
“doc(‘http://company register.com/ownerships’)
/descendant::field()[1]/{$1}
/following::a[.#=‘Search’]/{click/}

/(//a[.#=‘Next’]/ {click/})∗
//div[@class=‘c’]:<comp>
[./span[1]:<name=string(.)>]
[./span[3]:<percent=string(.)>]”).

The above examples show a basic bridging between the technologies. Interest-
ing interactions can be seen in more sophisticated scenarios, where the reasoning
process and external component processing is more heavily interleaved.

Probabilistic Reasoning: vadalog offers support for the basic cases in which
scalable computation can be guaranteed. Facts are assumed to be probabilisti-
cally independent and a minimalistic form of probabilistic inference is offered
as a side product of query answering. Facts can be adorned with probability
measures according to the well-known possible world semantics [27]. Then, if
the set of existential rules respects specific syntactic properties that guarantee
probabilistic tractability (namely, a generalization of the notion of hierarchi-
cal queries [27]), the facts resulting from query answering are enriched with
their marginal probability, safely calculated in a scalable way. In the following
extension to our running example, we use probabilistic reasoning to account
for uncertain ownerships (e.g., due to unreliable sources), prefixing the facts

1 Concretely, the first position of the Own predicate is bound to the $1 placeholder in
the OXPath expression.

14 L. Bellomarini et al.

with their likelihood, so as to derive non-trivial conclusions on company control
relationships:

0.8 :: Own(“ACME”, “COIN”, 0.7)
0.3 :: Own(“COIN”, “SAVERS”, 0.3)
0.4 :: Own(“ACME”, “GYM”, 0.55)
0.6 :: Own(“GYM”, “SAVERS”, 0.4).

In total, the language allows bridging logic-based reasoning and machine
learning in three ways. First, the language supports scalable probabilistic infer-
ence in basic cases as seen above. Second, the extensions to the core language
provide all the necessary features to abstract and embed advanced inference
algorithms (e.g. belief propagation) so that they can be executed directly by the
vadalog system, and hence leverage its optimization strategies. Third, for the
more sophisticated machine learning applications, data binding primitives allow
a simple interaction with specialized libraries and systems as described before.

Post-processing Annotations: Since specific computations are often needed after
the result has been produced, vadalog supports many of them by means of
annotations for the following features: ordering of the resulting values, as set
semantics is assumed on the output, and yet a particular ordering of the facts
may be desired by the consumer: for example, @orderby(“Control”, 1) sorts
the obtained control facts by the controlling company; deduplication, in specific
conditions (e.g. in presence of calculated values), the output may physically
contain undesired duplicates; non-monotonic aggregations on the final result,
without the limitations induced by recursion; and certain answers.

4 Conclusion

In this paper, we have formulated a number of requirements for a KGMS, which
led us to postulate our reference architecture (see Fig. 1). Based on these require-
ments, we introduced the vadalog language whose core corresponds to Warded
Datalog±. The basic vadalog language is extended by features for numeric
computations, monotonic aggregation, probabilistic reasoning, and, moreover,
by data binding primitives used for interacting with the corporate and external
environment. These binding primitives allow the reasoning engine to access and
manipulate external data through the lens of a logical predicate. The external
data may stem from a corporate database, may be extracted from web pages,
or may be the output of a machine-learning program that has been evaluated
over previously computed data relations. The vadalog system, which is being
implemented at the University of Oxford, puts these swift logics into action. This
system exploits the theoretical underpinning of Warded Datalog± and combines
it with existing and novel techniques from database and AI practice.

Many core features of the vadalog system [4] are already integrated and
show good performance. Our plan is to complete the system in the near future.
A detailed report on the key technical features of the vadalog reasoning system

Swift Logic for Big Data and Knowledge Graphs 15

and on their implementation is already available on request from the authors.
We believe that the vadalog system is a well-suited platform for applications
that integrate machine learning (ML) and data analytics with logical reasoning.
We are currently implementing applications of this type and will report about
them soon.

Acknowledgments. This work has been supported by the EPSRC Programme Grant
EP/M025268/1 “VADA – Value Added Data Systems”. The VADALOG system as
presented here is the intellectual property of the University of Oxford.

References

1. Amidon, D.M., Formica, P., Mercier-Laurent, E.: Knowledge Economics: Emerging
Principles. Tartu University Press Tartu, Pactices and Policies (2005)

2. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS, pp. 14–26 (2014)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

4. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, 19–25 August 2017, pp. 2–10. ijcai.org (2017). https://doi.org/10.24963/
ijcai.2017/1

5. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

6. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

7. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/−: a
family of logical knowledge representation and query languages for new applica-
tions. In: LICS, pp. 228–242 (2010)

8. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87–128 (2012)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based
data access. Semant. Web 2(1), 43–53 (2011)

10. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-83952-8

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

12. Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C., Wang, C.:
DIADEM: thousands of websites to a single database. PVLDB 7(14), 1845–1856
(2014). http://www.vldb.org/pvldb/vol7/p1845-furche.pdf

13. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: Oxpath: a lan-
guage for scalable data extraction, automation, and crawling on the deep web.
VLDB J. 22(1), 47–72 (2013)

14. Furche, T., Gottlob, G., Neumayr, B., Sallinger, E.: Data wrangling for big data:
towards a lingua franca for data wrangling. In: AMW (2016)

15. Glimm, B., Ogbuji, C., Hawke, S., Herman, I., Parsia, B., Polleres, A., Seaborne,
A.: SPARQL 1.1 entailment regimes, 2013. W3C Recommendation, 21 March 2013

https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.1007/978-3-642-83952-8
http://www.vldb.org/pvldb/vol7/p1845-furche.pdf

16 L. Bellomarini et al.

16. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI, pp. 2999–3007 (2015)

17. Hájek, P.: Metamathematics of Fuzzy Logic. Springer, Heidelberg (1998). https://
doi.org/10.1007/978-94-011-5300-3

18. High, R.: The era of cognitive systems: an inside look at IBM Watson and how it
works. IBM, Redbooks (2012)

19. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an inter-
active tutorial. In: SIGMOD, pp. 1213–1216. ACM (2011)

20. Konstantinou, N., Koehler, M., Abel, E., Civili, C., Neumayr, B., Sallinger, E.,
Fernandes, A.A.A., Gottlob, G., Keane, J.A., Libkin, L., Paton, N.W.: The VADA
architecture for cost-effective data wrangling. In: SIGMOD, pp. 1599–1602 (2017)

21. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protege-2000. IEEE IS 16(2), 60–71 (2001)

22. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009). https://doi.org/10.1145/1567274.
1567278

23. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

24. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. In: SIGMOD, pp. 249–260 (2000)

25. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big
data analytics with datalog queries on spark. In: SIGMOD, pp. 1135–1149 (2016).
http://doi.acm.org/10.1145/2882903.2915229

26. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in deals. In: ICDE, pp. 867–878 (2015)

27. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Clay-
pool, San Rafael (2011)

28. VADA: Project Website (2016). http://vada.org.uk/. Accessed 19 May 2017
29. Wikipedia: Knowledge economy (2017). https://en.wikipedia.org/wiki/Knowledge

economy. Accessed 19 May 2017
30. Wikipedia: Knowledge graph (2017). https://en.wikipedia.org/wiki/Knowledge

graph. Accessed 19 May 2017

https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/2882903.2915229
http://vada.org.uk/
https://en.wikipedia.org/wiki/Knowledge_economy
https://en.wikipedia.org/wiki/Knowledge_economy
https://en.wikipedia.org/wiki/Knowledge_graph
https://en.wikipedia.org/wiki/Knowledge_graph

Foundations of Computer Science

On Architecture Specification

Manfred Broy(&)

Institut für Informatik, Technische Universität München,
80290 Munich, Germany
broy@in.tum.de

http://www.broy.informatik.tu-muenchen.de

Abstract. The design, specification, and correct implementation of an archi-
tectural design are after the task of requirements specification the perhaps most
important design decisions, when building large software or software based
systems. Architectures are responsible for software quality, for a number of
quality attributes such as maintainability, portability, changeability, reusability
but also reliability, security, and safety. Therefore, the design of architectures is
a key issue in system and software development. For highly distributed, net-
worked systems and for cyber-physical systems we need a design concept which
supports composition, parallelism, and concurrency and finally real time but
keeps all of the general advantages of object-oriented programming. We
describe an approach to specify and implement systems along the lines of some
of the established concepts of object-orientation – such as inheritance and class
instantiation. This leads to an approach that nevertheless provides an execution
model which is parallel and concurrent in nature and supports real time and
modular composition. This way, it lays the foundation of a software and systems
engineering style where classical object-orientation can be extended to
cyber-physical systems in straightforward way.

Keywords: Specification � Design � Contracts � Assumptions � Commitments
System specification � Interface � Architecture

1 Introduction

Object-oriented programming is currently the perhaps most widely used programming
style in software development. It combines a number of useful concepts in program-
ming in a way that, in particular, the development of large software systems is
supported by it. Nevertheless, object-oriented programming shows a number of
deficiencies when dealing with distributed cyber-physical systems. First of all, in
classical object-oriented programming the execution model is inherently sequential. All
attempts to extend or generalize it to parallel execution models without significant
changes in the underlying execution model make the understanding and design of
object-oriented programs utterly complicated. Secondly, the composition of object-
oriented programs shows some weaknesses and open issues. This is related to the
recognized lack of a clear notion of component, a lack of parallel composition, and the
lack of a parallel execution model as needed usually for the development of

© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 19–39, 2018.
https://doi.org/10.1007/978-3-319-73117-9_2

cyber-physical systems as we see them nearly everywhere nowadays. A further issue is
time and probability which are first class citizens in cyber-physical applications.

When looking at software families and product lines, architecture becomes even
more significant, because it determines the possibilities and options of variability and
reusability (see [8]). With this in mind, it is a key issue to have an appropriate
methodology with a calculus for the design of architectures. This includes a number of
ingredients.

• A key concept for subsystems, also called components, as building blocks of
architectures: this means that we have to determine what the concept of a subsystem
is and, in particular, what the concept of an interface and interface behavior is.
Interfaces are the most significant concept for architectures. Subsystems are com-
posed and connected via their interfaces.

• The second ingredient is composition. We have to be able to compose systems by
composition via their interfaces. Composition has to reflect parallel execution.

• This requires that interfaces of subsystems can be structured into a family of
sub-interfaces, which are then the basis for the composition of subsystems, more
precisely the composition of sub-interfaces of subsystems with other sub-interfaces
of subsystems. For this we need a syntactic notion and a notion of behavior
interface.

• In addition, we are interested in options to specify properties of interface behaviors
in detail.

• Moreover, we have to be able to deal with interface types and subsystem types.
These concepts allow us to introduce a notion of subsystems and their types, called
system classes as in object-oriented programs, and these can also be used to
introduce types of interfaces, properties of assumptions of the interfaces of sub-
systems which we compose.

• As a result, we also talk about the concept of refinement of systems and their
interfaces as a basis of inheritance.

A key is the ability to specify properties of subsystems in terms of their interfaces
and to compose interface specifications in a modular way.

In the following, we introduce a logical calculus to deal with interfaces and show
how we can use it to define subsystems via properties of their interface assumptions
also be able to deal with architectural patterns such as layered architectures.

2 A Formal Model of Interfaces

The key to software and system design is interface specifications where we do not only
describe syntactic interfaces but also specify interface behavior.

2.1 Data Models

Systems exchange messages. Messages are exchanged between systems and their
operational context and also between subsystems. Systems have states. States are
composed of attributes. In principle, we can therefore work out the data model for a

20 M. Broy

service-oriented architecture which consists, just as an object-orientation, of all the
attributes which are part of the local states of the subsystems which consists of the
description of the data which are communicated over the interfaces between the
subsystems.

2.2 Syntactic Interfaces and Interface Behavior

We choose a very general notion of interface where the key is the concept of a channel.
A channel is a directed typed communication line on which data of the specified type
are transmitted. As part of an interface, a channel is a possibility to provide input or
output to a system. Therefore, we speak about input channels and output channels.

Syntactic Interfaces
An interface defines the way a system interacts with its context. Syntactically an
interface is specified by a set C of channels where each channel has a data type
assigned that defines the set of messages, events, or signals that are transmitted over
that channel.

In this section, we briefly introduce syntactic and semantic notions of discrete
models of systems and their interfaces. This theoretical framework is in line with [1]
called the FOCUS approach. Systems own input and output channels over which streams
of messages are exchanged. In the following we denote the universe of all messages by
IM.

Let I be a syntactic interface of typed input channels and O be a syntactic interface
of typed output channels that characterize the syntactic interface of a system. (I▶O)
denotes this syntactic interface. Figure 1 shows system F with its syntactic interface in
a graphical representation as a data flow node.

System Interaction: Timed Data Streams
Let IN denote the natural numbers (including 0) and INþ denote the strictly positive
natural numbers.

The system model is based on the concept of a global clock. The system model can
be described as time synchronous and message asynchronous. In the following, we
work with streams that include discrete timing information. Such streams represent
histories of communications of data messages transmitted within a time frame. By this
model of discrete time, time is structured into an infinite sequence of finite time
intervals of equal length. We use the natural numbers INþ to number the time intervals.

x1: S1

xn: Sn

y1: T1

ym: Tm
F

M M

Fig. 1. Graphical representation of a system F as a data flow node with its syntactic interface
consisting of the input channels x1, …, xn of types S1, …, Sn and the output channels y1, …, ym
of types T1, …, Tm, resp.

On Architecture Specification 21

Definition. Timed Streams
Given a message set M � IM of data elements of type T we represent a timed stream

s of type T by a function

s : INþ ! M�

In a timed stream s a sequence of messages s(t) is given for each time interval
t 2 INþ ; s(t) ¼ e indicates that in time interval t no message is communicated. By
(M*)∞ we denote the set of timed streams. ❑

Throughout this paper, we work with a couple of basic operators and notations for
streams over the message set that are shortly summarized as follows:

〈 〉 empty sequence or empty finite stream,
〈m〉 one-element sequence containing m as its only element,
a^s concatenation of the finite sequence with the finite or infinite sequence s,
s(t) element in the t-th time interval of the stream s,
s#t prefix of length t 2 IN of the stream s (which corresponds to a sequence of

message in t time intervals),
s"t the stream s without its first t time intervals,
#s number of messages in stream s,
M#s number of copies of messages of stream s that are in a given set M � IM (for

{m}#x we also write m#x),
�x denotes the result x(1)^x(2)^ … of concatenating the sequences x(1), x(2), x(3),

… resulting in a finite stream in M* or an infinite stream in INþ ! Mð Þ:

A channel history for a set C of typed channels (which is a set of typed identifiers)
assigns to each channel c 2 C a timed stream of messages communicated over that
channel.

Let C be a set of typed channels; a (total) channel history x is a mapping

x : C ! ðINþ ! M�Þ

such that x(c) is a timed stream of type Type(c) for each channel c 2 C. We denote the

set of all channel histories for the channel set C by C
!
. A finite (partial) channel history

is a mapping

x : C ! ð 1; . . .; tf g ! M�Þ

with some number t 2 IN such that x(c) respects the channel type of c. ❑

As for streams, for every history z 2 C
!

and every time t 2 IN the expression z#t
denotes the partial history (the communication on the channels in the first t time
intervals) of z until time t. z#t yields a finite history for each of the channels in C
represented by a mapping of the type C ! ð 1; . . .; tf g ! IM�Þ: z#0 denotes the history
with the empty sequence associated with all its channels.

22 M. Broy

Interface Behavior

For a given syntactic interface (I▶O) a relation that relates the input histories in l
!

with

output histories in O
!

defines its behavior. It is called system interface behavior (see
[10]). We represent the relation by a set-valued function. In the following we write ℘
(M) for the power set over M.

Definition. Interface Behavior and Causal Interface Behavior
A function

F: l
!! }ðO!Þ

is called an I/O-behavior; F is called causal in input x if (for all times t 2 IN and input

histories x, z 2 l
!
):

x#t = z#t) y#t: y 2 F(x)f g ¼ y#t: y 2 F(z)f g

F is called strongly causal if (for all times t 2 IN and input histories x, z 2 l
!
):

x#t = z#t) y#t + 1: y 2 F(x)f g ¼ y#t + 1: y 2 F(z)f g ❑

Causality indicates consistent time flow between input and output histories (for an
extended discussion of causality see [1]).

Notation: Extension of predicates on infinite histories to finite ones. Throughout the
paper, we use the following notation: Given a predicate

p: C
!! IB

on infinite histories, we extend it also to finite histories x of length t by the definition:

pðxÞ � 9 x0 2 C
!
; t 2 IN : x ¼ x0#t ^ pðx0Þ ❑

In other words, assertion p(x) holds for a finite history x if there exists some infinite
history x′ for which predicate p holds and which is identical to x till time t. This
notation is easily extended to n-ary predicates on histories.

Interface Assertions
The interface behavior of systems can be specified in a descriptive logical style using
interface assertions.

Definition. Interface Assertion
Given a syntactic interface (I▶O) with a set I of typed input channels and a set O of

typed output channels, an interface assertion is a formula in predicate logic with
channel identifiers from I and O as free logical variables which denote streams of the
respective types. ❑

On Architecture Specification 23

We specify the behavior FS for a system with name S with syntactic interface (I▶O)
and an interface assertion Q by a scheme:

spec S
in I
out O

Q

Q is an assertion containing the input and the output channels as free variables for

channels. We also write q(x, y) with x 2 l
!

and y 2 O
!

for interface assertions. This is
only another way to represent interface assertions which is equivalent to the formula
Q x x1ð Þ=x1; . . .x xnð Þ=xn½ Þ; y y1ð Þ=y1; . . .y ymð Þ=ym�.
Definition. Meaning of Specifications and Interface Assertions

An interface behavior F fulfills the specification S with interface assertion q(x, y) if

8x 2 l
!
; y 2 O

!
: y 2 F xð Þ) q x; yð Þ

S and q(x, y) are called (strongly) realizable if there exists a “realization” which is a

strongly causal function f: l
!! O

!
that fulfills S. ❑

The purpose of a specification and an interface assertion is to specify systems.

Composing Interfaces
Finally, we describe how to compose systems from subsystems described by their
interface behavior. Syntactic interfaces (Ik▶Ok) with k = 1, 2 are called composable, if
their channel types are consistent and O1 \O2 ¼ £; I1 \O1 ¼ £; I2 \O2 ¼ £:

Definition. Composition of Systems – Glass Box View
Given for k = 1, 2 composable interface behaviors Fk : (Ik▶Ok) with composable

syntactic interfaces; let I = I1\O2 [I2\O1, O = O1 [O2 and C = I1 [I2 [O1 [O2;
we define the composition (F1 � F2) : (I▶O) by

ðF1 � F2ÞðxÞ ¼
�
y 2 O

!
: 9 z 2 C

!
: x = z I ^ y = zj jO ^ zjO1 2 F1ðzjI1Þ ^ zjO2

2 F2ðzjI2Þ
�

where | denotes the usual restriction operator for mappings. ✠
In the glass box view the internal channels and their valuations are visible. In the

black box view the internal channels are hidden. From the glass box view we can
derive the black box view of composition.

Definition. Composition of Systems – Black Box View – Hiding internal channels
Given two composable interface behaviors Fk : (Ik▶Ok) with k = 1, 2; let I = I1\O2

[I2\O1 and O = O1\I2 [O2\I1 and C = I1 [I2 [O1 [O2

24 M. Broy

ðF1 � F2Þ xð Þ ¼ fy 2 O
!

: 9 z 2 C
!

: y ¼ zjO ^ z 2 ðF1 � F2Þ xð Þg

Shared channels in (I1 \ O2) [(I2 \ O1) are hidden by this composition. ✠

Black box composition is commutative and associative as long as we compose only
systems with disjoint sets of input channels.

A specification approach is called modular if specifications of composed systems
can be constructed from the specification of their components. The property of mod-
ularity of composition of two causal interface specifications Fk, k = 1, 2, where at least
one is strongly causal is as follows. Given system specifications by specifying asser-
tions Pk:

spec F1

in I1
out O1

P1

spec F2

in I2
out O2

P2

We obtain the specification of the composed system F1⊗F2 as a result of the
composition of the interface specification F1 and F2 as illustrated in Fig. 3: L1 [L2

denotes the set of shared channels.

spec F1⊗F2

in I1\L2 ∪ I2\L1

out O1\L1 ∪ O2\L2

∃ L1, L2: P1 ∧ P2

The specifying assertion of F1⊗F2 is composed in a modular way from the spec-
ifying assertions of its components by logical conjunction and existential quantification
over streams denoting internal channels (Fig. 2).

I2\L1

O2\L2L 1

L 2O1\L1

I1\L2 F1 F2

Fig. 2. Composition F1⊗F2

On Architecture Specification 25

In a composed system, the internal channels are used for internal communication.
The composition of strongly causal behaviors yields strongly causal behaviors. The

set of systems together with the introduced composition operators form an algebra. For
properties of the resulting algebra, we refer to [1, 4]. Since the black box view hides
internal communication over shared channels, the black box view provides an
abstraction of the glass box composition.

Note that this form of composition works also for instances. Then, however, often it
is helpful to use not channels identified by instance identifiers but to connect the
channels of classes and to use the instance identifiers to address instances.

3 Specifying Contracts

Contracts are used in architectures (see [7, 9, 11–16]). In the following we show how to
specify contracts.

3.1 Interface Assertions for Assumption/Commitment Contracts

Specifications in terms of assumptions and commitments for a system S with syntactic

interface (I▶O) and with input histories x 2 l
!

and output histories y 2 O
!

are syn-
tactically expressed by interface assertions asu(x, y) and cmt(x, y). We write
A/C-contracts by the following specification pattern:

assume : asu x; yð Þ
commit : cmt x; yð Þ

with interface assertions asu(x, y) and cmt(x, y). In the following section we explain
why, in general, in the assumption not only the input history occurs but also the output
history y. We interpret this specification pattern as follows:

• Contracts as Context Constraints: the assumption asu(x, y) is a specifying assertion
for the context with syntactic interface (I▶O)

Understanding the A/C-contract pattern as context constraints leads to the following
meaning: if the input x to the system generated by the context on its input y, which is the
system output, fulfills the interface assertion given by the assumption asu(x, y) then the
system fulfills the promised assertion cmt(x, y). This leads to the specification:

asu x; yð Þ) cmt x; yð Þ

Assertion asu(x, y) is a specification indicating which inputs x are permitted to be
generated by context E fulfilling the assumption given the output history y.

3.2 Contracts in Architectures

In this section, we discuss methodological applications of the A/C-pattern in system
development with emphasis on system architecture design. We study contracts for

26 M. Broy

subsystems and their role in designing and reasoning about architectures and their
relationship to the A/C-contract of the composite system. This provides a basis for a
method for supporting steps in architecture design.

Architectures are blue prints to build and structure systems. Architectures contain
descriptions of subsystems and specify how to compose the subsystems. In other
words, architectures are described by the sets of subsystems where the subsystems are
described by their syntactic interfaces and their interface behavior. Shared channels
describe internal communication between the subsystems.

In the following we assume that each system used in an architecture as a component
has a unique identifier k.

4 On Systems, Their Interfaces and Properties

In the following, we use the term system in a specific way. We address discrete
systems, more precisely discrete real-time system models with input and output. For us,
a system is an entity that shows some specific behavior by interacting with its oper-
ational context. A system has a boundary, which determines what is inside and what is
outside the system. Inside the system there is an encapsulated internal structure. The set
of actions and events that may occur in the interaction of the system with its operational
context at its border determines the syntactic (“static”) interface of the system. At its
interface, a system shows some interface behavior.

From the behavioral point of view, we distinguish between

• the syntactic interface of a system that describes which actions may be executed at
the interface and which kind of information is exchanged by these actions across the
system border,

• the semantic interface (also called interface behavior) which describes the behavior
evolving over the system border in terms of the specific information exchanged in
the process of interaction by actions according to the syntactic interface.

F

F3

x1 : T1

y6: T’6

x4 : T4

x3 : T3x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 F2
F1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Fig. 3. Architecture of a system with interface behavior F = F1⊗F2⊗F3

On Architecture Specification 27

For specifying predicates there are further properties that we expect. We require
that system behaviors fulfill properties such as causality and realizability. However, not
all interface assertions guarantee these properties (see [3, 5]).

4.1 About Architecture

Architecture of systems and also of software systems is about the structuring of sys-
tems. There are many different aspects of structuring of systems and therefore of
architecture. Examples are functional architectures which structure systems in terms of
their offered services (see [2]) – also called functional features. We speak of a func-
tional architecture or of a service feature architecture (see [6]). Another very basic
concept of architecture is the decomposition of a larger system into a number of
subsystems that are composed and provide this way the behavior of the overall system.
We speak of a sub-system architecture.

This shows that architecture is the structuring of a system into smaller elements, a
description how these elements are connected and behave in relationship to each other.
A key concept of architecture is the notion of element and interface. An interface shows
at the border of a system how the system interacts with its operational context.

4.2 On the Essence of Architecture: Architecture Design is Architecture
Specification

Architecture is not what is represented and finally implemented in code but a
description of architectural structures and rules which are required by the design for
implementations leading to code that is correct w.r.t. the specified architecture. The
rules, structure, and therefore the principles of architecture usually cannot be reengi-
neered from the code but provide an additional design frame that is documented in the
architecture specification. An architecture design is the specification of the system’s
structures, rules, and principles.

Implemented systems realize architectures, more precisely architecture designs
described by specifications. Architectures define the overall structure of systems.
Consequently, architectures have to be specified. Designs of sub-system architectures
are specifications of the sets of subsystems, relevant properties of their interfaces
including their interface behavior, and the way the interfaces are connected. This
defines the way the subsystems are composed following the design of an architecture in
terms of their interfaces that follow the rules and principles of the architectural design.

4.3 Logical Sub-system Architectures

Logical sub-system architectures including service-oriented architectures are execution
platform independent. They consist of the following ingredients

• A set of elements called sub-systems, each equipped with a set of interfaces
• A structure connecting these interfaces

This shows that a key issue in architectural design is the specification of interfaces
including their interface behavior and the description of the architectural structure.

28 M. Broy

5 Interfaces and Their Composition

An interface is structured into a syntactic part, which describes the set of available
activities on the system border, separated in activities of the context (which are input to
the system) and activities of the system (which are output of the system). The syntactic
part is the basis for the behavior part which describes the logic of behavior.

A system has a syntactic interface and an interface behavior. The interface can be
formalized as we shown by sets of input and output channels and the relationship of
their valuations. The interface of a system can be structured into a set of sub-interfaces
that may serve as connectors to other sub-systems.

Two interfaces that fit syntactically together can be connected by a composition of
the two systems over their interfaces, if their syntactic interfaces fit together (formally,
what is an input channel of one of the interfaces is an output channel of the other
system and vice versa).

A system has an interface the behavior of which is specified by an interface
assertion L. If we want to use the system in context with a number of other systems we
partition the syntactic interface into a number of sub-interfaces. Each sub-interface can
be specified by an assertion L’ for which we require

L) L0

In the following, we show how to deal with export, import and assumption/
commitment interfaces.

5.1 Export Interfaces

We consider the following example illustrated by Fig. 4. We specify subsystem K1 as
follows: y1, z2: {req}, x1, z1: D

L1 � ½#z1 ¼ min # x1; #z2ð Þ ^ 8 d 2 D : d#z1	 d# x1 ^ y1 ¼ z2�

We specify K2 in analogy as follows: z2, x2: {req}, z1, y2 : D

L2 � ½#y2 ¼ min # z1;# x2ð Þ ^ 8 d 2 D : d# y2	 d# z1 ^ z2 ¼ x2�

Composing the two components results into the following interface assertions

#z1 ¼ min #x1;#z2ð Þ ^ 8 d 2 D : d#z1	 d#x2
^#y2 ¼ min #z1;# x2ð Þ ^ 8 d 2 D : d#y2	 d#z1 ^ y1 ¼ z2 ^ z2 ¼ x2

Hiding z1 and z2 by existential quantification we get

#y2 ¼ min #x1;#x2ð Þ ^ 8 d : d#y2	 d#x2 ^ y1 ¼ x2

In this special case, the composed system fulfills the same assertion as the two
sub-systems.

On Architecture Specification 29

For the hidden channels, we get the assertions

z2 ¼ y1 ^ z2 ¼ x2

and

#y2 ¼ min #z1;#x2ð Þ ^ 8 d : d#y2	 d#x1	 d#x1 ^#z1 ¼ min #x1;#z2ð Þ

This assertion characterizes the properties of the internal channels of this little
architecture.

However, we may also specify an assertion for the internal channels:

9 x1; y1; x2; y2 : #z1 ¼ min #x1;#z2ð Þ ^ 8 d 2 D : d#z1	 d#x2
^#y2 ¼ min #z1;#x2ð Þ ^ 8 d 2 D : d#y2	 d#z1 ^ y1 ¼ z2 ^ z2 ¼ x2

which can be simplified to

9 x1; y2 : #z1 ¼ min #x1;#z2ð Þ ^ 8 d 2 D : d#z1	 d#z2
^#y2 ¼ min #z1;#z2ð Þ ^ 8 d 2 D : d#y2	 d#z1

This condition is an assertion for the internal channels z1 and z2.
We call interfaces that describe the service offered of a system export interfaces.

They describe the export a service without any assumptions about properties of their
context.

5.2 Import Interfaces

If a component requires a certain interface to be able to fulfill its task this is expressed
by an import interface. An import interface is a specification of a requested interface.
Given a system with interface assertion G and the input assumption A we compose it
with a system with interface B if the composition condition holds

B) A

A is called assumption. We get the interface specification of the composed
component

K1

y1

x1

z2

z1
K2

z2

z1

x2

y2

K1

y1

x1

z2

z1
K2

x2

y2

Fig. 4. Example of two sub-systems and their composition

30 M. Broy

ðA) GÞ ^ B

which is equivalent to

G ^ B

Example: Consider the component K1 in Fig. 4 with the specification as before and
the additional assumption

Asu1 � 8 t : #z2#t	ð#z1#tÞþ 1

For the second component, we add the assertion Asu1 to the specifying assertion of
sub-system K2 leading to interface assertion

L20 ¼ ðL2 ^ Asu1Þ

We get obviously

L20) Asu1

Only if component K2 with specification L2′ fulfills the assumption Asu1 we may
compose the components and get the assertion

ðL1 ^ L20Þ � ðL1 ^ L2 ^ Asu1Þ

We get assumptions as additional condition for the internal channels. To fulfill
these assumptions, we have to add the following assumption to K2 – note z2 = y1 ^
z2 = x2

8 t : #x2#t	ð#z1#tÞþ 1

This demonstrates how assumptions are part of specifications and how they have to
be distributed.

5.3 Assumption/Commitment Specifications

We may also work with interfaces that provide assumptions and commitments at the
same time. Consider interface specifications with interface assertions L1 and L2 where

L1) ðA1) C1Þ L2) ðA2) C2Þ

and interface specifications with an assumption A1 and a commitment C1 and with
assumption A2 and commitment C2 such that

ðA1) C1Þ) A2

ðA2) C2Þ) A1

On Architecture Specification 31

In other words, the specifications fulfil mutually the resp. assumptions. Then the
interface assertion

L1 ^ L2

implies assumption A1 as well as assumption A2.

Example: We introduce an additional assumption Asu2 and commitment Com2 for the
second component

Asu2 � 8 t : #ðz1#tÞ	#ðz2#tÞ
Com2 � 8 t : #ðz1#tÞ	#ðz2#tÞþ 1

and a commitment for the first component

Com1 � 8 t : #z1#t	#z2#t

and add Asu2 to L1 and Asu1 to L2:

L10 � Asu2 ^ L1 L20 � Asu1 ^ L2

We get obviously

L10) Asu2 L20) Asu1

and by composition a component that fulfills the specification

L10 ^ L20

This demonstrates how we compose systems specified by assumptions and com-
mitments. ❑

We get a logical calculus of interface assertions for the composition of systems.

5.4 Using Different Types of Interfaces Side by Side

We distinguish the following three types of interfaces:

• export interfaces: they describe services offered by the system to its outside world
• import interfaces: they describe services required by the system from its outside

world
• assumption/commitment interfaces: they describe assumptions about the behavior of

the outside world and the commitment of the system under the condition that the
assumption holds.

We consider the following cases:

• Connecting export and import interfaces: Given an export interface described by
interface assertion P and an import interface described by interface assertion Q
which fit together syntactically we speak of a sound connection if

32 M. Broy

P) Q

• Connecting two export interfaces: Given two export interfaces with interface
assertions A1 and A2 that fit together syntactically then we speak of a sound
connection annotated by (see Fig. 6)

A1 ^ A2

• Connecting two assumption/commitment interfaces: Given two assumption/
commitment interfaces with assumptions A1 and A2 and commitment P1 and P2
that fit together syntactically and where if

ðA2) P2Þ) A1

ðA1) P1Þ) A2

We speak of a sound connection; the connection is annotated by P1 ^ P2.
The case of connecting an export interface with an assumption/commitment

interface is considered as a special case of connecting two assumption/commitment
interfaces where one assumption is true.

Similarly, the composition of an export interface with an input interface can be
understood as a special case where one assumption is true (for the export interface) and
one commitment is true (for import interface). This shows that the general case is the
assumption of two assumption/commitment interfaces that cover all other cases as
special cases.

A system has an interface that can be structured into a family of sub-interfaces each
of which is determined by an interface specification. Now we show how these
sub-interfaces can be combined into a comprehensive interface. Let us consider a
simple example of a system with three sub-interfaces S1, S2, and S3 as described in
Fig. 5.

The interface specification of a sub-system defines the contract for the subsystem
between its implementer and the architect that uses the subsystem. Each implemented
subsystem may fulfill many contracts. The sub-interfaces shown in Fig. 4 describe

Fig. 5. System S with 3 sub-interfaces of different types

On Architecture Specification 33

three different types of interfaces. S1 is the assertion specifying a service, offered by the
system (called provided service). S3 is a service that is structured into an assumption A3

and a commitment C3. S2 is an interface assertion that specifies a service which is
assumed to be provided called required service.

The three sub-services are put together into the over-service specified by the fol-
lowing interface specification in terms of interface assertions. This finally leads to a
complete overall interface specification for the system S.

ðS2 ^ A3Þ) ðC3 ^ S1Þ

Here the assertion S2 ^ A3 defines an assumption while the assertion defines a
commitment C3 ^ S1.

Channels allow us, in addition, the structuring of interfaces. Interfaces consist of
channels where each channel has a data type indicating which data are communicated.

An important aspect in structuring interfaces is the separation of the set of channels
of the interface into input and output channels. This has semantic consequences. We
require causality which is a notion similar to monotonicity in a domain theoretic
approach. Causality for an interface consisting of a set of input channels and output
channels where the input and output are timed streams indicating the asymmetry
between input and output. Causality basically says that the output produced till time t
does only depend on input received before time t. The reverse does not hold. Input
generated at time t can be arbitrary and does not have to depend on the output produced
till time t.

6 Composition: Interfaces in Architectures

Given specifications of S1 and S2 by interface assertions A1 and A2 we define the
interaction assertion

A1 ^ A2

which specifies the interaction between the subsystems that are connected via their
interfaces.

t

Syst

Sys

em S1

A

em S2

A1
2

Fig. 6. Connecting subsystem S1 with subsystem S2 via their interfaces

34 M. Broy

Another specification may give only the interaction assertion Q which describes the
result A1 ^ A2.

We may introduce a layering between subsystems, if we specify only one interface,
by assertion P and do only specify the behavior of the other one by assertion A. For
instance, for a layer in a layered architecture the interface looks as shown in Fig. 7.

6.1 Interaction Assertions

Given a set of systems with interface assertions we may compose them into an
architecture, provided the semantic interfaces fit together. We call the architecture
well-formed, if all assumptions are implied by the interface assertions the interfaces
they are composed with.

For each pair of connected interfaces, we speak of a connector, we derive an
interaction assertion which describes the properties of the data streams that are com-
municated over this connector. An example of an interaction assertion is given at the
end of Sect. 5.1 specifying the properties of the internal channels z1 and z2 of the
composition shown in Fig. 4.

6.2 Layered Architectures

Layered architectures have many advantages. In many applications, therefore layered
architectures are applied. In a layered architecture as shown in Fig. 8 the key idea is
that system S2 offers some service that does not include any assumptions about the way
it is used. Therefore, we describe the service by some interface assertion A2. The
interface P of system S1 can be arbitrary. However, the specification of the interface Q
of S1 reads as follows

Q ¼ ½A1) P�

and P is an interface specification for the reverse interface, then the interface can only
be used in a meaningful way if the assumption is fulfilled by system S1. Note that S2
does not rely in any way on the behavior of S1 – it is supposed only to offer export
interface A.

Figure 8 shows the composition of layer S2 providing service A1 with system S1
requiring this service. We get

System S

A

P

Fig. 7. Interface between two layers

On Architecture Specification 35

ðA1) PÞ ^ ðA2) A1Þ

which hiding interface A1 results in

A2) P

If we replace the component S2 with the interface assertion A2 by the component S′
with interface assertion A2) B where

B) A1

then the arguments work as well. S2′ is a refinement of S2 and we get for the
composition

ðA2) BÞ ^ ðB) A1Þ

which results the hiding interface B again into

A2) P

The sub-systems of a layered architecture are partitioned in layers. The set of layers
is in a linear order and sub-systems of layer k are only connected to layer k − 1 or
k + 1.

However, this definition is not sufficient. The key idea of a layered architecture is
that layer k offers services to layer k + 1 but does not assume anything about layer
k + 1. Layer k may use services offered by layer k − 1 but has to know nothing more
about layer k − 1. In other terms, a layer imports a number of services (from layer
k − 1) and exports a number of services (for layer k + 1). The only relationship
between the layers is by the services that are exported to the next layer.

The idea of layered architecture thus is therefore not captured by data flow (by the
idea that data may only flow from lower to higher layers or vice versa) nor by control
flow (by the idea that calls may only be issued by higher to lower layers) but by the
“design flow”. Lower layers can be designed without any knowledge of the higher
layers – only knowing the services that are requested at the higher layer.

System S1

A1

P

System S2

A2

Fig. 8. Composition of two layers

36 M. Broy

Example: Layered Architecture of a Question Answering System
We describe a simple layered architecture of two layers L1 and L2 as shown in

Fig. 9. We start by defining two types of messages

Qst the set of questions
Asw the set of answers

Let the predicate

asw : Qst� Asw ! B

specify by asw(q, a) that a is an answer for question q. We define for x 2 (Qst*)∞ and y
2 (Asw*)∞ the two assertions

P ¼ 8 k 2 IN : k	#�x) asw �x kð Þ; �y kð Þð Þ
A ¼ 8 t 2 IN : #x#t	 1þ#y#t

P expresses that all questions are answered and A expresses that no further question
is asked before all previous questions are answered. We specify the layer L1 with input
channel x and output channel y by

A) P

We can add a layer L2 with input channel x´ and y and output channel x and y´which
controls x and satisfies this way the assumption. Let x´ be an infinite sequence of ques-
tions. A solution for the layer is given by the specification p(x, y, x´, y´) which holds if

y0 ¼ y

and (for all t)

x(t) ¼ e otherwise
x0 kð Þ if # y# t
 1ð Þð Þ ¼ k ^# x0# t
 1ð Þð Þ ¼ k

�

The layer makes sure that the system gets only one question at a time. ❑
The example shows a classical assumption/commitment specification.

Layer L2

Layer L1

yx

y’x’

Fig. 9. Composition of the two layers L1 and L2

On Architecture Specification 37

7 Concluding Remarks and Future Work

The purpose of this paper is to show that architecture can be specified by assertions
similar to assertion logic in programs. This includes also on assertion calculus for
architecture. The key here is a denotation for interaction in our case in terms of timed
streams.

An interesting question is the logical flow of the assertions through an architecture.
An example are assumptions and how they propagate through the architecture.

Acknowledgement. It is a pleasure to thank my colleagues for stimulating discussions.

References

1. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement. Monographs in Computer Science. Springer, New
York (2001). https://doi.org/10.1007/978-1-4613-0091-5

2. Broy, M., Krüger, I., Meisinger, M.: A formal model of services. TOSEM - ACM Trans.
Softw. Eng. Methodol. 16, 5 (2007)

3. Broy, M.: Interaction and realizability. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 29–50. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-69507-3_3

4. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

5. Broy, M.: Computability and realizability for interactive computations. Inf. Comput. 241,
277–301 (2015)

6. Broy, M.: Multifunctional software systems: structured modeling and specification of
functional requirements. Sci. Comput. Program. 75, 1193–1214 (2010)

7. Broy, M.: Theory and Methodology of assumption/commitment based system interface
specification and architectural contracts, to appear

8. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn.
Addison-Wesley, Boston (2010)

9. Derler, P., Lee, E.A., Tripakis, S., Törngren, M.: Cyber-physical system design contracts. In:
Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems
(ICCPS 2013), pp. 109–118. ACM, New York, (2013)

10. Henzinger, Th.A., Qadeer, S., Rajamani, S.K.: Decomposing refinement proofs using
assume-guarantee reasoning. In: Proceedings of the International Conference on Computer-
Aided Design (ICCAD), pp. 245–252. IEEE Computer Society Press (2000)

11. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992). IEEE
12. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein

contract-based design for cyber-physical systems. Europ. J. Control 18(3), 217–238 (2012)
13. Soderberg, A., Vedder, B.: Composable safety-critical systems based on pre-certified

software components. In: 2012 IEEE 23rd International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp. 343–348, November 2012

38 M. Broy

http://dx.doi.org/10.1007/978-1-4613-0091-5
http://dx.doi.org/10.1007/978-3-540-69507-3_3

14. Toerngren, M., Tripakis, S., Derler, P., Lee, E.A.: Design contracts for cyber-physical
systems: making timing assumptions explicit. Technical report UCB/EECS-2012–191,
EECS Department. University of California, Berkeley, August 2012

15. Tripakis, S., Lickly, B., Henzinger, Th.A., Lee, E.A.: A theory of synchronous relational
interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14:1–14:41 (2011)

16. Westmann, J.: Specifying safety-critical heterogeneous systems using contracts theory.
KTH, Industrial Engineering and Management. Doctoral thesis Stockholm, Sweden (2016)

On Architecture Specification 39

The State of the Art in Dynamic Graph
Algorithms

Monika Henzinger(B)

Fakultät für Informatik, University of Vienna, Vienna, Austria
monika.henzinger@univie.ac.at

A dynamic graph algorithm is a data structure that supports operations on
dynamically changing graphs. Typically there are two type of operations:

Graph update operations, which insert and delete edges or nodes;
Query operations, that either output a desired graph property (such as a mini-

mum cost spanning tree) or the value of the desired graph property (such as
the cost of the minimum cost spanning tree).

In the following we assume that n is the number of nodes in the graph and
m is the number of edges. Frequently one assumes that the set of nodes in the
graph remains unchanged (or that only degree-0 nodes are inserted or deleted)
and that only the set of edges that changes and all the work cited below refers
to this setting.

There has been a lot of progress in dynamic graph algorithms in the last
decade. One fundamental contribution was the development of (conditional)
lower bounds (initiated by [2] and extended by [1,17,24,32]) for a large set of
dynamic problems and variants thereof. These lower bounds are based on popu-
lar conjectures such as the subexponential time hypothesis and assume that only
polynomial (and sometimes even only O(n2)) preprocessing time is allowed. They
are interesting as they are frequently linear in n1−ε or m1−ε for an arbitrarily
small ε > 0, while prior lower bounds for dynamic graph algorithms in the cell
probe model were only polylogarithmic in n [28,33,35].

There is a small set of problems (among them the connected, 2-edge con-
nected, and 2-vertex connected components [27,29] and the minimum spanning
tree [29]) that can by maintained in polylogarithmic time per operation1. The
recent conditional lower bounds give an explanation why not more progress has
been made for many dynamic graph problems: Given a sublinear-time algorithm
for one of them would contradict popular conjectures. For example, even (i)
maintaining whether a graph is strongly connected, (ii) maintaining the length
of the shortest path between two fixed nodes s and t in an undirected, unweighted
graph, or (iii) maintaining a perfect matching in an unweighted graph cannot
be done in time polylogarithmic time for both query and update (assuming the
popular conjectures hold): There exists a graph with m = Θ(n2) edges such

1 There are still some openresearch question regarding the amortized versus the worst-
case time per operation, but we will not discuss them here.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 40–44, 2018.
https://doi.org/10.1007/978-3-319-73117-9_3

The State of the Art in Dynamic Graph Algorithms 41

that it is not possible to perfom updates in time O(m1/2−ε) and queries in time
O(m1−ε) if only polynomial preprocessing time is allowed2.

As a result research in dynamic graph algorithms is now mainly concentrating
on (a) approximate solutions, (b) special classes of graphs, and (c) restricted
types of update operations such as deletions-only or insertions-only settings.
In these cases very efficient solutions are possible, as shown by the following
examples.

(1) Approximate matching algorithms. As mentioned above the exact maximum
cardinality matching cannot be maintained efficiently under edge insertions
and deletions (see [38] for the best known non-trivial upper bound). How-
ever, a (1+ ε)-approximate matching can be maintained in time O(

√
mε−2)

per operation [22,37], already beating the conditional lower bound for the
exact setting. Furthermore, there has been a sequence of work on maintain-
ing a (usually small) constant approximate matching [5,7,9,10,12–14,34]
which finally resulted in a constant expected time randomized algorithm for
a 2-approximate matching [39] and a constant deterministic time algorithm
for a O(1)-approximate maximum matching [11].

(2) Restricted graph classes. There is a sequence of work on dynamic graph algo-
rithms for planar graphs that achieve sublinear-time update times [19,21,
30,31,40] such as for shortest-paths and single-source reachability. However,
there exist also conditional lower bounds for dynamic graph algorithms in
planar graphs [1], for example for the maximum weight bipartite match-
ing in planar weighted graphs. More recently, further improvements have
been achieved on even more restricted graph classes such as graphs with
low highway dimension [3].

(3) Restricted types of update sequences. Insertions-only (aka incremental) set-
tings and deletions-only (aka decremental) setttings can sometimes be solved
more efficiently. For example, maintaining single-source reachability from a
source node s (in a directed graph) under a sequence of edge insertions can
be done with an “incremental” breadth-first (or depth-first) search: Mark
every node that can be reached from s. Ignore every newly inserted edge into
a marked node and store every newly inserted edge between two unmarked
nodes. Whenever, however, a newly inserted edge goes from a marked node
to an unmarked node u, then mark u and start a breadth-first search from u
in the current graph that only calls itself recursively on unmarked nodes. In
this way the total work for all insertions is O(m), i.e., the amortized time per
insertion is only constant. Another example is maintenance of single-source
shortest paths to all nodes in an undirected, unweighted graph under a
sequence of edge deletions. It is possible to maintain a (1+ε)-approximation
in amortized time O(mO(

√
log log n/ log n)) = O(mo(1)) per deletion [23]. How-

ever, there are also conditional lower bounds known for the incremental and
decremental setting [17], for example for maintaining the s-t maximum flow
and for maximum cardinaltiy bipartite matching.

2 Note, however, that this does not exclude an algorithm that takes time O(m1/2) for
both updates and queries.

42 M. Henzinger

We briefly sketched in this abstract the main trends in the standard dynamic
graph algorithms model. However, we want to point out that there are also other
dynamic graph models such as the kinetic algorithms model [4,6], the subgraph
model [15,20,26], and the sensitivity model [8,16,18,25,36].

References

1. Abboud, A., Dahlgaard, S.: Popular conjectures as a barrier for dynamic planar
graph algorithms. In: FOCS (2016)

2. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: FOCS (2014)

3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, short-
est paths, and provably efficient algorithms. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793. Society for
Industrial and Applied Mathematics (2010)

4. Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic
minimum spanning trees. In: Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science, 1998, pp. 596–605. IEEE (1998)

5. Anand, A., Baswana, S., Gupta, M., Sen, S.: Maintaining approximate maximum
weighted matching in fully dynamic graphs. In: D’Souza, D., Kavitha, T., Rad-
hakrishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18, pp. 257–266. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

6. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algo-
rithms 31(1), 1–28 (1999)

7. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n)
update time. In: FOCS (2011). http://dx.doi.org/10.1137/130914140

8. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and
edges. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, pp. 101–110. ACM (2009)

9. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 167–179. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 14

10. Bernstein, A., Stein, C.: Faster fully dynamic matchings with small approximation
ratios. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 692–711. Society for Industrial and Applied Mathematics
(2016)

11. Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic
approximate vertex cover and fractional matching in O(1) amortized update time.
In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 86–98.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 8

12. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data
structures for vertex cover and matching. In: SODA (2015)

13. Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation
algorithms for fully dynamic matching. In: STOC 2016

14. Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate max-
imum matching and minimum vertex cover in o(log3 n) worst case update time.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 470–489. SIAM (2017)

http://dx.doi.org/10.1137/130914140
https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1007/978-3-319-59250-3_8

The State of the Art in Dynamic Graph Algorithms 43

15. Chan, T.M.: Dynamic subgraph connectivity with geometric applications. SIAM
J. Comput. 36(3), 681–694 (2006)

16. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: F-sensitivity distance oracles
and routing schemes. Algorithmica 63(4), 861–882 (2012)

17. Dahlgaard, S.: On the hardness of partially dynamic graph problems and connec-
tions to diameter. In: ICALP, pp. 48:1–48:14 (2016)

18. Duan, R., Pettie, S.: Connectivity oracles for failure prone graphs. In: Proceedings
of the Forty-Second ACM Symposium on Theory of Computing, pp. 465–474. ACM
(2010)

19. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based sparsification
for dynamic planar graph algorithms. In: Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, pp. 208–217. ACM (1993)

20. Frigioni, D., Italiano, G.F.: Dynamically switching vertices in planar graphs. Algo-
rithmica 28(1), 76–103 (2000)

21. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for
maintaining shortest paths trees. J. Algorithms 34(2), 251–281 (2000)

22. Gupta, M., Peng, R.: Fully dynamic (1 + ε)-approximate matchings. In: FOCS
(2013)

23. Henzinger, M., Krinninger, S., Nanongkai, D.: Decremental single-source shortest
paths on undirected graphs in near-linear total update time. In: 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 146–155.
IEEE (2014)

24. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and
strengthening hardness for dynamic problems via the online matrix-vector mul-
tiplication conjecture. In: STOC (2015)

25. Henzinger, M., Lincoln, A., Neumann, S., Williams, V.V.: Conditional hardness
for sensitivity problems. In: ITCS (2017)

26. Henzinger, M., Neumann, S.: Incremental and fully dynamic subgraph connectivity
for emergency planning. In: ESA (2016)

27. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with poly-
logarithmic time per operation. J. ACM (JACM) 46(4), 502–516 (1999)

28. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity
problems in graphs. Algorithmica 22(3), 351–362 (1998)

29. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM (JACM) 48(4), 723–760 (2001)

30. Italiano, G.F., La Poutré, J.A., Rauch, M.H.: Fully dynamic planarity testing in
planar embedded graphs. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp.
212–223. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57273-2 57

31. Klein, P.N., Subramanian, S.: A fully dynamic approximation scheme for shortest
paths in planar graphs. Algorithmica 22(3), 235–249 (1998)

32. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3 sum conjec-
ture. In: SODA, pp. 1272–1287 (2016)

33. Larsen, K.G., Weinstein, O., Yu, H.: Crossing the logarithmic barrier for dynamic
boolean data structure lower bounds. arXiv preprint arXiv:1703.03575 (2017)

34. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: STOC (2013)

35. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)

https://doi.org/10.1007/3-540-57273-2_57
http://arxiv.org/abs/1703.03575

44 M. Henzinger

36. Patrascu, M., Thorup, M.: Planning for fast connectivity updates. In: 48th Annual
IEEE Symposium on Foundations of Computer Science, 2007, FOCS 2007, pp.
263–271. IEEE (2007)

37. Peleg, D., Solomon, S.: Dynamic (1+ε)-approximate matchings: a density-sensitive
approach. In: SODA (2016)

38. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: SODA (2007)
39. Solomon, S.: Fully dynamic maximal matching in constant update time. In: 2016

IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp.
325–334. IEEE (2016)

40. Subramanian, S.: A fully dynamic data structure for reachability in planar
digraphs. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 372–383. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57273-2 72

https://doi.org/10.1007/3-540-57273-2_72

Software Engineering: Advanced
Methods, Applications, and Tools

Diversity in UML Modeling Explained:
Observations, Classifications and Theorizations

Michel R. V. Chaudron1(B), Ana Fernandes-Saez2, Regina Hebig1,
Truong Ho-Quang1, and Rodi Jolak1

1 Chalmers | Gothenburg University, Gothenburg, Sweden
michel.chaudron@cs.gu.se, {regina.hebig,rodi.jolak}@cse.gu.se,

truongh@chalmers.se
2 University Castilla La-Mancha, Ciudad Real, Spain

AnaMaria.Fernandez@uclm.es

Abstract. Modeling is a common part of modern day software engi-
neering practice. Little evidence exists about how models are used in
software development and how they help in producing better software.
In this talk we introduce a classification-matrix and a theoretical frame-
work that helps explain the large variety of models and modeling styles
found in industrial practice. As part of this explanation, we will explore
empirical findings on the uses of UML modeling in practice. We inter-
sperse this paper with some insights about modeling in software develop-
ment that may be common to some, but certainly not generally accepted
throughout the software engineering community.

1 Introduction

There exists a large variety of modeling languages in the field of software engi-
neering. These range from languages for modeling user interfaces, business pro-
cesses, data-exchange formats, and software designs. In this paper we focus on
the use of UML in the modeling of the design of software systems. The UML lan-
guage has emerged in the mid-1990’s after a phase in which many software design
notations existed. Often each of these design notations was proposed in conjunc-
tion with a software design method. The naissance of UML was no different:
it came together with an object-oriented design method. However, nowadays,
UML is considered mostly a notation. Ever since its introduction, the use of
UML in software development has been subject to (almost religious) debate. In
this paper we aim to contribute to clarifying the field of modeling by explaining
different type of approaches to modeling.

The structure of this paper is as follows: First, we describe models as they can
be found in current software development. In order to understand the differences
found across such models, we present two classifications based on different distin-
guishing characteristics. Next, we discuss different purposes of models in software
development, and explain that the different ways of modeling can be understood
by recognizing different goals and contexts of different projects. Then, we reflect
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 47–66, 2018.
https://doi.org/10.1007/978-3-319-73117-9_4

48 M. R. V. Chaudron et al.

on some insights and findings from empirical studies into modeling. Finally we
discuss selected future directions.

We intersperse this paper with some propositions that highlight insights
about modeling in software development that may be familiar to some, but
are certainly not commonly accepted throughout the software engineering
community.

2 Classifications of Software Models and Their Uses

Nowadays, we have come to realize that software modeling (using UML) is done
in a large variety of ways. Indeed various terms are used to suggest different
ways of using models in software development: model-driven sw development,
model-based sw development, model-based engineering, model-centric develop-
ment. Unfortunately, there is no common agreement on the meaning or char-
acteristics of these terms. This has o.a. led to the running (and publishing)
of survey studies that lump together every respondent that says that they do
‘model-* development’. Yet, in order to properly perform and interpret scientific
studies on modeling in software development, we need a way to precisely define
the object of study. Based on the empirical studies from the last decades, we
next propose multiple classifications for characterizing UML modeling and their
uses in software development.

2.1 A Classification of Models by Abstraction Level

In this section we illustrate how modeling can be classified by looking at the
abstraction level of the system that they aim to capture. We recognize the fol-
lowing levels of abstraction:

– A-type: Architecture modeling
– D-type: Design modeling
– I-type: Implementation modeling.

We give a brief characterization of each of these approaches:
Architecture modeling targets a high level of abstraction of the system. Fol-

lowing [1], architecture targets the overall structure and behaviour of a system
as defined by the components, their relations and their interactions. Also, as
part of the architecting activity, a model is used to assess whether the design
meets the extra-functional1 requirements of the system. An architecture is typ-
ically defined in terms of the main system components and layers. Rarely do
architecture designs include actual mention of classes, methods or attributes. At
the abstraction level that they target, architectures aim to be complete in the
sense that all important components are included in the model. For complete-
ness sake, one could distinguish two different levels of architecture: (i) software/
system-architecture, and (ii) enterprise architecture - which can be seen as

1 Also known as non-functional.

Diversity in UML Modeling Explained 49

systems-of-systems abstraction. UML can be used for the enterprise architec-
ture level, but we will not make this distinction in this paper.

In Design modeling, there is a medium abstraction of the implementation of
the system. The design level model of a system is typically represented in terms
of classes (or components or packages) and the relations between them. For some
classes, details such as methods and attributes are defined. Models at the design-
level of abstraction typically focus on important parts of the system. Importance
is relative to the producers and consumers of the model, but generally is driven
by importance and risk (see [18]).

For implementation modeling, there is a close correspondence between the
system model and the implementation: In principle, every class in the model
can be mapped onto one of more classes (or other artifacts) in the implementa-
tion. Hence, because the model mirrors the implementation, the model must be
complete.

Some projects use modeling at all three levels of abstraction. Modeling at
more than one level of abstraction introduces the challenge of keeping the models
at different levels consistent with each other.

An insightful diagram (Fig. 1 about the spectrum of approaches to the use
of modeling in software development was presented by Brown [2]. His spectrum
is organized around different types of key uses of models in a project. The top
row in the original paper only stated ‘Model’ in all boxes. The use of the same
term ‘Model’ across all boxes is actually a bit misleading. Based on our studies
of the use of models, we have come to understand that the models for the types
of use suggested in the diagram are quite different. Hence, we have added letters
‘A’ (Architecture), ‘D’ (Design), and ‘I’ (Implementation) to indicate that the
models in the types of use suggest are typically of various levels of abstraction.

Fig. 1. Spectrum of modeling approaches by Brown [2] - Annotated

2.2 A Classification of Models by Stage of Development

In this section, we explain a complementary classification of models in software
development from the perspective of the stage of development for which they

50 M. R. V. Chaudron et al.

are used. The scientific field of Design recognizes several stages of a design in the
process of developing a product [4]. In the context of software development, we
state these stages and their use of models as follows. We illustrate these stages
in Fig. 22:

– Ideation/Conceptualization: The main objective of this step is to create a
concept of the system to be created. This is one of the most creative and
synthetic steps in the design: it requires the exploration, formation and com-
bination of ideas.

– Externalization: The main objective of this step is to construct an external/
explicit (as opposed to internal (to the mind of the designer)/tacit) repre-
sentation of the system to be built. This representation serves as a vehicle
for achieving shared understanding in a team/organization, and as persis-
tent reference for a complicated abstraction that cannot be maintained in the
memory of the engineers.

– Production/Implementation: In this stage, the system is actually being con-
structed. The model of the system is used to produce specifications of the
parts that need to be constructed, as well as recipes on how to assemble the
parts. In software engineering, models can indeed be used to generate (parts
of) the implementation.

Fig. 2. Models in different stages of development

Ideation or conceptualization in software development is commonly done by
sketching on a whiteboard or on a piece of paper. At this stage, the syntax of
2 Images of Bilbao Guggenheim Museum (c) by Gehry, and Mike from Monsters Inc.

(c) by Pixar.

Diversity in UML Modeling Explained 51

the actual representation is not considered critical. Presumably, this is because
the people involved in the ideation share the same room, hence can clarify issues
by talking to each other. Ideation sessions tend to range on a timescale of tens
of minutes to a few hours. This ideation effort is independent of the size of the
system.

Externalization can be done in different ways. The quick and dirty way is to
take a picture of the drawing on the whiteboard using a smartphone and then
store the image in the project repository. The next step up in rigour is to create a
design using a generic drawing tool, such as Powerpoint, or Visio. The advantage
of generic Office tools is that the resulting diagrams can be easily integrated into
overall ‘Software Architecture Design’ (SAD) documents that typically are a mix
of text and diagrams. The most rigorous representations are made using a UML-
CASE tool. Such representation supports basic forms of version management,
but are considered a bit more complicated to integrate with word-processors
for creating SAD documents. Using a CASE tool to create a UML model for a
modest system can take a few hours, while creating a detailed UML model for
a complex system can be a matter of days.

For using models in the production of software, the models need to be com-
plete in the sense that they cover all of the implementation functionality and
also in strict conformance to the syntax of the modeling language so that a com-
piler/code generator can produce implementation code. Creating such models
requires dedicated CASE tools and (as they represent the main implementation
activity) can take a large part of the effort of the overall project (say 30–40%).

A key difference between on the one hand the ideation and externalization
stage and on the other hand the production stage, is that in the ideation and
externalization stage, the main consumer/audience of the models are people,
whereas for the production stage computers are an essential consumer of the
models - see Fig. 3. Aiming for a computer as consumer requires that models
are specified following a rigorous syntax and semantics. The fact that humans
are the audience of models can be used to tailor the approach to modeling

Fig. 3. Main audience of models in different stages of design

52 M. R. V. Chaudron et al.

to the audience’s needs: One best practice observed in industry is to test a
‘design model/document’: before committing a document as ‘stable’, the docu-
ment should be reviewed/tested by the consuming party/parties.

Proposition 1. When created wisely, design models (and by generalization:
documentation) are consulted much more often than that they are cre-
ated/modified. For the ‘consumption’ of models to work well, producers and con-
sumers of models should agree (from early on in a project) on representation
(detail, conventions for naming and layout), organization (layering), and con-
ventions for navigation in- and searching for models.

2.3 Syntactic Characterization of Software Design Models

The previous sections have introduced two key dimensions for classifying mod-
els. In this section, we will introduce some characteristics by which models differ
from each other. We see these characteristics as mostly syntactical, and also more
as a resultant of the dimensions ‘abstraction’ and ‘development stage’ than as
additional angles by which to classify models. Table 1 shows an overview of these
characteristics. Detail of a models can be seen by the amount of aspects of ele-
ments that are represented in the model. For example a class can be represented
only by a rectangle with a class name (which would be low detail). Alternatively,
a class can additionally be represented by attributes and methods. The latter
can have public/private attributes, signature with typing. Using all these aspects
represents a class in a high level of detail. Nugroho et al. introduced a metric
for level of detail for UML models in [19]. Using this metric, this paper shows
that a higher level of detail in sequence diagrams correlates with a lower defect
density in the implementation of the corresponding classes.

Rigour refers to the degree to which a representation conforms to a formal
syntax. A low conformance to formal syntax is common in the ideation stage.
However, also in industrial SAD documents we frequently find that the design
diagrams are enhanced by ‘free format’ shapes and icons which are not part of
the UML syntax. We call a low adherence to a formal syntax ‘sketchy’.

Table 1. Syntactic dimensions of software design models

Dimension Description of range

Detail A model can be represented in low detail or very high
detail

Rigour A model can precisely follow the syntax of the language or
largely ignore the syntax (e.g. sketchy) (even mixed levels
of rigour are common)

Completeness A model can focus on representing key parts only or can be
a complete mirror-image of the implementation

Consistency A model can be consistent or contain many inconsistencies

Diversity in UML Modeling Explained 53

Completeness refers to the degree to which all parts of the system are rep-
resented by the model. From the work of Osman [20] we know that UML mod-
els (made as part of forward design) contain only between 50% and 10% of
the classes of the corresponding implementation (See Fig. 4. Moreover, we know
from [17] that designers focus on parts of the system that is complex and critical,
hence follow a risk-driven approach to choosing which information to include and
leave out of a design.

Fig. 4. Ratio of #Classes in UML design vs #Classes in implementation (from [20])

Consistency refers to the degree of intrinsic consistency in the model. The
issue of consistency arises mostly from the fact that UML supports multiple types
of diagrams that are logically linked to each other through reference to the same
classes (and states). The problem of inconsistency has been identified in the
early 2000’s. A recent mapping study aimed to establish a definitive collection
of consistency rules [22]. As part of an overall research program that aimed at
assessing quality of UML models, Lange et al. [13] describe an empirical study in
which they show that the amount of inconsistencies that exists in UML models
of a few industrial case studies is very high. Partially this is due to the fact that
incompleteness of a model can often also be interpreted as an inconsistency,
and we know from our aforementioned empirical study on completeness of UML
models [17] that designers leave out many parts of the implementation. In a
follow-up experiment [14] we found that inconsistencies in UML models increase
the divergence of interpretations of the models and thus increase the risk of
various mistakes.

2.4 A Classification of the Uses of Software Design Models

At first the huge diversity of types of models found across industry puzzled us.
Was there not one right way or best way to do modeling in software projects? In

54 M. R. V. Chaudron et al.

the previous section we have already explained that there are different project
settings that drive modeling practices. In addition to those, we explain in this
section that design models are used in support of many different activities.
Figure 5 shows an overview of different activities that have been reported in
various industrial case studies to use UML models (see e.g. [6] as a starting
point).

Fig. 5. Uses of design models in software development

We have classified the uses into several global categories: Generic: ‘create
overview’ and ‘understanding’: these apply to all types of models. There is a
surprisingly large number of project management type of activities that are
supported by design models:

– Planning: a design model allows to split the work in parts and delegate these
to different teams/developers.

– Progress monitoring: a design model can be uses to track progress by pro-
viding an overview of the progress of individual components, or - at a higher
abstraction level - by showing which components have been completed.

– Cost estimation: similarly to planning, the fact that a design model provides
a breakdown of the system into components, allows the estimation of costs for
parts which can then be used to estimate cost (and schedule) for the entire
system.

– Risk management: a design model makes explicit, and helps discover, which
components are needed in a system, this in turn triggers discussion about pos-
sible risks that may arise in the construction and composition of components
into the overall system.

– Compliance: One typical use of design models is to use them to verify that the
implementation indeed conforms to the design. When no design model exist,
there is a higher risk of ‘drift’ in the implementation. Additionally, models
can be used to verify that particular policies are integrated in the system

Diversity in UML Modeling Explained 55

(such policies exist in the banking-domain); alternatively, some domains (e.g.
medical, automotive) ask that certain models are constructed and used for
analysis of critical properties of the system.

– Coordination/standardization: For teams that work across multiple locations,
it is important that a common standard on how to handle the design and
implementation is available. Design models play such a role.

– Knowledge sharing: modeling a system is a way of capturing knowledge about
a system. Through its representation this knowledge can be shared in a devel-
opment team.

– Ideation: Ideation is the formation, exploration and combinations of ideas. In
the case of software, these apply to the design (and analysis) of a system.
Having an explicit model serves as an aid in inventing ideas and exploring
new directions.

– Analysis (XFP): a design model can be used for various types of analysis
of the system: ranging from more qualitative ‘what if’ scenarios (e.g. about
maintainability) to quantitative analysis of extra-functional properties such
as performance, reliability, safety and others.

– Prototyping: design models may be (partially) executable and can hence by
used to demonstrate and try out how the system will work.

– Code-generation: models of the system are essential for code-generation. The
main objective of this, is to increase the overall development speed of the
project.

– Traceability: design models provide an intermediate abstraction esp. between
requirements and the implementation. As such design models can act as a
pivot point and aid in establishing traceability between requirements and the
implementation.

– Testing: models can be the basis for specifying and prioritizing tests.

Figure 5 shows that that are many uses of design models and that these
uses serve different stakeholders in software engineering projects. Indeed, some
of these uses are secondary or by-catch of other more important uses of design
models. So, the use of design models should not be seen as exclusive to one
purpose. Moreover, the main purposes of a model change during the execution
of a project. We will elaborate this theme in Sect. 4. We summarize the findings
on the multiple uses of models through the following propositions:

Proposition 2. Models of software designs serve a multitude of purposes in
software development projects.

Proposition 3. In software development projects, the purposes of models of
software designs change focus over time.

Proposition 4. The value of models in achieving the goals changes over time.

Proposition 4 applies to various goals, but we will explain it using one example
that is illustrated by Fig. 6. Figure 6 depicts the utility of documentation (as
a generalization of models) as a function of the experience of developers. For
developers that are new to a system, the documentation is of much value/utility

56 M. R. V. Chaudron et al.

because it helps them understand the system which they need in order to do their
work effectively. However, as developers work for longer time on the same system,
they build up in their working memory an understanding of the system. Hence,
the value of the documentation becomes less to them (while the documentation
itself has not changed - only the context has changed!).

Fig. 6. Utility of documentation over time

Thus the purpose of models is a moving target. Clearly, this complicates
finding empirical evidence for effectiveness of modeling because this has to be
assessed relative to the purpose.

Interestingly, when going over the list of uses of models, there are only
few uses for which models are indispensable. For most other uses, alternative
approaches can be used. Clearly this is unlike the inevitability of producing
implementation-code of systems. Indeed, in general models are a means to an
end - the end being: the efficient development of (quality) software. This ‘weak-
ens’ the commitment to modeling. And if alternatives work better than modeling,
then projects are indeed better served with such alternatives. Possibly a good
metaphor for the use of models is that they function as lubricant: they make
many task run more smoothly.

Proposition 5. There are many uses of models that do not directly follow from
the main goals for using modeling.

Various surveys have explored the main goals of using modeling approaches
in software development projects. The commonly mentioned goals are: reduce
development time/increase productivity/agility/velocity, improve quality (of
code and of design), improve efficiency/reduce cost. When looking at the uses
of models in Fig. 5, then there is not a very direct contribution of the uses of
models to the aforementioned goals. Again through its diversity of uses, model-
ing has contributions to many goals in many ways. Empirical evidence regarding
the ‘effect-size’ of modeling is still elusive. We point to two attempt at collecting
evidence on the effectiveness of modeling: In [3] Chaudron et al. propose a theory
that offers a causal explanation of the impact of UML modeling on quality and
productivity. Some steps in this chain are supported by evidence from research

Diversity in UML Modeling Explained 57

papers, for other causal steps no empirical evidence is mentioned. For a more
general perspective, Garousi et al. provide studies into the factors that affect the
use and usefulness of documentation [7]. Their study culminates in the formula-
tion of costs and benefits of technical documentation and a theory (meta-model)
for the quality of software documentation [24]. However, their study does not
look at the process of the use of documentation over a development project. In
the next section we propose a theory that explains the different types of modeling
found.

3 A Theory for Explaining the Plethora of Approaches
to Modeling

In this section, we propose a theoretical framework that captures the insights
from the previous sections that modeling practices are linked to project goals.
Our theoretical framework is shown in Fig. 7. In this diagram ‘SE’ stands for
Software Engineering. The interpretation of the framework is as follows: Projects
happen in a context, have stakeholders and can be in a particular stage of devel-
opment. Context may include may facets (See e.g. [5]). For example, one can
think of: risk-propensity of the organization, available time/money, organiza-
tional culture (e.g. [11]), but also size and geographic distribution. In practice
many more factors of the context may play significant roles. Stakeholders have
goals, such as increase development speed, a particular quality-level of the final
product and so on. The goals may change across the stages of execution of a
project. These goals of the stakeholders drive the development process used and
the practices used in the overall approach to SE. A process denotes the collec-
tion of (formalized) steps of tasks that the project follows to engineer software.
The processes and practices in turn drive the choice and use of tools. The next
aspects of the diagram we explain are the nested rounded rectangles: The out-
ermost rounded rectangle denotes the overall approach to software engineering
including all its processes, practices and tools. Part of the overall approach to
SE are the approach to documentation (AtD) and the approach to implemen-
tation (AtI). AtD and AtI refer to a combination of processes, practices and
tools for documentation and implementation respectively. Together these AtD
and AdI drive the approach to modeling (AtM). The approach to modeling itself
again consists of a modeling process, a set of modeling practices and a collection
of modeling tools. To summarize, this theoretical framework enables explaining
which modeling approach is followed in a project by tracing it to the goals of
the stakeholders and the project context.

For explanation purposes we have used ‘drives’ arrows between process, prac-
tice and tools in one direction. In reality, there may as well be arrows in the
opposite direction where tools make a practice (im)possible or constrain pos-
sible processes. The same applies for the arrows between concepts specific to
modeling and concepts general for SE: a modeling approach may enable or con-
strain the general SE approach.

58 M. R. V. Chaudron et al.

Fig. 7. Theoretical framework for modeling practices

4 Modeling Pathways

Earlier we observed that models of software designs serve multiple purposes to
different stakeholders of software development projects. In this section we will
zoom into how the types of models used in a project change as a project pro-
gresses. We explain this by means of Fig. 8. This diagram combines the main
dimensions for classifying models that were introduced in Sect. 2. In the hori-
zontal direction this diagram shows stages of modeling: moving from ideation
into production. The vertical direction shows the abstraction levels: architecture,
design and implementation. A project’s modeling practices can occupy zero or
more cells in this matrix. In this matrix, we have drawn a pathway that illus-
trates the evolution of the focal role of design models over time. Together with
a change of their focal role, design models also change their abstraction level,
their rigour as well as other dimensions mentioned in Table 1.

The first phase of the pathway is denoted ‘I’ and deals with ideation. Typi-
cally ideation addresses the architecture and/or design levels of abstraction. It is
not common for models to be used for ideation of the implementation of a whole
system, but ideation is not uncommon for designing parts of an implementation
- such as e.g. use of patterns. A typical next use of design models (denoted ‘II’)
is for externalization (communication, standardization, persistence). This can
happen for the architecture and for the design. Also externalization is not com-
mon for the whole implementation - because the source code is a good source
of information for the implementation. The third stage (denoted ‘III’) is pro-
duction. Here the model is used to guide or produce the implementation. For
this stage, the model must contain all the details necessary for a developer or
compiler to generate the implementation. Its level of abstraction is therefore
generally medium to low (‘implementation level’). Please note that such path-
ways focus on the process of creating and refining a design. As development
of the system progresses and also in the maintenance of the system, all of the

Diversity in UML Modeling Explained 59

design models created along a pathway will have to be updated when significant
changes are made.

Indeed, a key problem for most modeling-pathways is that of updating more
abstract design models to reflect (the significant parts of) increments of models at
a lower level of abstraction. In theory, this ‘continuous synchronization’ of models
at different levels of abstraction seems technically possible when both levels are
described in a rigorous/formal manner and there exist clear traceability between
two representations. Osman has demonstrated a prototype for synchronizing
models across different levels of abstraction [21], yet much more work is needed
in this direction.

A company may have a design-flow that supports the creation of a next
system model on the basis of a set of systematic transformations of a model
from a preceding stage. In this case there is high traceability between successive
models. Alternatively, subsequent design models may be created largely inde-
pendently from previous models. This happens for example when the models
are used mostly for supporting the own understanding of the designers (at that
stage). In the latter case there is poor traceability between successive models.

Fig. 8. Pathway of models in software development

In the future, we aim to show how these pathways can be used to illustrate
the different approaches to modeling found across different projects.

5 Observations on Modeling in Open Source Projects

We set out to look into open source projects for empirical evidence on the use
of modeling.

To answer these question, we mined GitHub for open source projects that
use UML. We identified more than 20,000 projects that use UML [9]. Then, we
ran a survey to collect information from more than 400 open source developers
who work on these projects [10]. In this section, we report a brief selection of
our findings.

Stage of Development: In our set of open source projects models are introduced
at all phases on the life-cycles. Yet we found a concentration of first appearance
of models around the start of projects [9]. Furthermore, for 26% of the projects

60 M. R. V. Chaudron et al.

we found that models were updated as projects progressed over time. The ques-
tionnaire confirmed that models are used for all three stages of development:
ideation, externalization, and production. For ideation we found a large number
of photos of sketches of UML diagrams. As documentation (i.e. externalization),
models most commonly targeted the design-level of abstraction. Also, reverse
engineered diagrams are also frequently used to serve as documentation. How-
ever, code generation based on implementation-level models, was only reported
for few of the OSS projects [10]. Possibly because this requires an advanced
level of training on methods and tools, and advanced coordination amongst the
contributors.

Use of Models: Our survey asked after the use of models through a multiple
choice questions to which multiple responses were possible. The responses are
shown in Fig. 93. By far the most common uses are for documentation (an exter-
nalization use) and for ideation and production of designs at the architecture-
and design-level.

Fig. 9. Uses of models in open source software development

The responses to the survey confirm the non-negligible use of models for less
obvious uses: 19% of the respondents uses models for verification tasks and 15%
of the respondents uses models as part of doing refactoring. Another observation
from our survey is that novices often use existing UML models as one of the
most important sources for gaining an understanding of a system. Interestingly,
the developers who create these models often seem unaware that other project
members use their models in this way.

Models for coordinating distribution of work (planning): To investigate one other
use of UML models, we explored whether models are used to coordinate work.
The first interesting observation was that the design model was implemented
by only a single person (no coordination) in only 33% of our set of open source
projects. In 41% of the projects 3 or more persons participated in the imple-
mentation of a design. This suggests that models indeed are frequently used
3 The categories have been renamed to be consistent with the naming used in this

paper.

Diversity in UML Modeling Explained 61

to coordinate implementation tasks. When asked for the involvement of these
developers in the modeling process, it turned out that 88% of the persons imple-
menting a modeled design also participated in the creating of that model. Thus,
it seems that many open source projects adopt a team modeling approach, where
developers create models together. This may be a particular trait of open source
projects as the open source community values ‘equality’ and ‘transparency’.

For more findings on these studies we refer to [9,10].

6 Future Directions

In this section we discuss selected ideas on future directions for improving the
effective use of modeling in software development.

6.1 Aligning the Tools with the Tasks and the Process

Tooling continues to be mentioned as a problematic area in model-based devel-
opment. In this section we use our classification matrix together with design
pathways to understand why tooling continues to be problematic.

Fig. 10. UML tools across design stages

There are several major challenges related to modeling-tooling: One challenge
is the large diversity in modeling styles. It is very difficult for any one tool to be
a good match in supporting so many different uses. Integrating all possible uses
of modeling in a tool would lead to a ‘universal Swiss army knife’: it becomes
too complicated to use. Hence, this diversity of uses also explains the continued
existence of a large variety of UML-based software modeling and design tools.

Figure 10 uses our classification matrix to explain that different tools focus
on supporting different stages of development: Traditional UML CASE tools
focus on creating UML models that strictly follow the UML syntax. One can
consider them ‘UML editors’. They can cover parts of the implementation- and
production-stage (through code generation), but generally ignore informal nota-
tions and sketching that is typical for the ideation stage. Tools that aim to

62 M. R. V. Chaudron et al.

support MDA with code-generation force developers to model at the implemen-
tation level of abstraction. One example of such a tool is UMPLE [8]. Moreover,
while there are certainly benefits of these types of tools, their use is mostly lim-
ited to the production stage. Other tools aim to bridge the gap between ideation
and externalization by offering both informal sketchy modeling and transforma-
tions of these into rigorous/geometric UML shapes. One example of such a tool is
for example OctoUML [12]. In summary, in practice models are developed along
pathways that cross different stages of development and change in abstraction
level. None of the modeling tools that is currently around efficiently supports a
complete pathway.

Fig. 11. UML tools across design stages

Figure 11 uses our classification matrix to illustrate where various supporting
features of modeling tools fit in the development process. It shows that code gen-
eration transforms design level representations into code implementation level
representation. Reverse engineering tries to reconstruct a design representation
from an implementation. Conformance checking (such as [23], and [16]) try to
verify (and quantify the degree of) the correspondence between the implementa-
tion and design. To this end, conformance checking techniques need to find ways
to represent the abstractions that are made between design and implementation.

Future Direction 1. Future software design tooling should support the mixing
of text, sketches, formal diagrams, and source code in a flexible manner.

Motivation: (i) different developers have a need for different combinations of text,
sketches, diagrams and code. (ii) some artifacts evolve from one form (sketch)
into another form (formal diagram). If this is a common use of models, then
tools should support this.

Future Direction 2. We need to move away from documentation as a static
source of information about a system. Instead, we should move to dynamic ‘infor-
mation/knowledge’ management about a design: multiple sources of data about
a system should be combined dynamically and smart selections and abstractions
of these data should be presented in an interactive way is both user-centric and
task-centric.

Diversity in UML Modeling Explained 63

The aforementioned issues are related to two key aspects of modeling tools:
(i) usability, and (ii) efficient chaining of tools in tool-chains.

6.2 A Promising Future: Domain Specific Architecture- and
Modeling

There are interesting model-based approaches in practice that counter the afore-
mentioned usability and tool-chaining issues: One notable example are so-called
‘low-code’ platforms as offered by e.g. Mendix and OutSystems. Their approaches
capitalize on the fact that the most common architecture is a 3-layered architec-
ture that consists of a data-layer, a business logic layer and a user-interaction
layer. The ‘low-code’ approach offers 3 separate modeling languages (each of
which can be considered a domain-specific modeling language): one modeling
language for specifying data-models, one modeling language for defining busi-
ness processes, and one for specifying user-interaction (user interface, possibly
with user-processes). This approach is illustrated in Fig. 12.

Fig. 12. Low-code approach to modeling for 3-layered architectures

These approaches are called ‘low-code’ because an entire running system can
be generated out of a triplet of three types of models - hence no (textual) code
is involved. Through specializing for particular types of software architecture,
and separating the concerns in different modeling languages, the modeling of an
application becomes fairly simple. Indeed these companies have shown factors of
3×–10× of speed-up in application development. One other key aspect of these

64 M. R. V. Chaudron et al.

new approaches is that the development pipeline is highly automated and even
includes automated deployment (e.g. in the cloud) and automated production of
app’s for mobile platforms. In our view, this is one example of how modeling can
be used in a very effective way by specializing the modeling language and linking
it to a common architecture and architectural style in a particular domain.

One complementary study evaluated the impact of migrating of an existing
(legacy) 3-layered architecture that was programmed ‘manually’ from scratch
into a format that was generated out of a (3-layered) domain specific model
(DSM) [15]. The results show that after introducing the DSM-approach the
defect density lowered, defects were found earlier, but resolving defects took
longer. Other observed benefits are that the number of developers and the num-
ber of person-hours needed for maintaining the system decreased, and the porta-
bility to new platforms increased.

When seen together, the use of the combination of a domain specific archi-
tecture and domain specific modeling languages promise to offer higher levels of
abstraction while still being able to generate the implementation.

6.3 Practical Guidelines for Tailoring Modeling Approaches

Our theoretical framework Fig. 7 argues that project goals and project context
are the drivers for the approach to modeling that is used in project. Currently the
theory is explanatory in character: we can use it to explain the differences that we
observe. Possibly the same framework could be made actionable if we could use
it to create guidelines on how to chose modeling processes, practices and tools
to best fit particular projects goals and context. This requires collecting best
practices in modeling approaches and systematic ways for documenting contexts
as part of case studies [5].

7 Summary and Conclusions

The term ‘modeling’ is a general term and it is used in a large variety of mean-
ings. Possibly some people even want ‘modeling’ to mean certain things. How-
ever, as a result many scientific studies in software engineering fail to provide
sufficiently precise characterizations of the modeling-practices that are used in
the projects that they study. This lack of precise characterization leads to confu-
sion and contradictions about the findings of modeling in software development.
In this paper, we introduce several classification to more precisely describe the
types of modeling encountered in software development. The main dimensions
of these classification are: (i) the different levels of abstraction, and (ii) different
stages of development. We introduced a classification matrix that combines these
dimensions. This matrix can be used to characterize models as well as illustrate
pathways that characterize how the focus of models evolve as projects progress.

Additionally, we proposed a theoretical framework that explains how the use
of different modeling practices can be explained by looking at how they are
driven by different context and different project goals. Further, we showed that

Diversity in UML Modeling Explained 65

UML models are used for many more activities than only the guiding of the
implementation.

All these extra uses of models impose additional requirements on the tools
and processes used for the creation and maintenance of UML models throughout
software projects. UML tools have to cater for interoperability with other pro-
cesses and tools used in software development in order to support software engi-
neers in moving tasks through differ stages of development. Only by recognizing
and embracing the diversity of uses of models throughout software projects can
we improve the tools needed to support their effective use. Currently, usability
of modeling tools is one of the main challenges in modeling. In order for mod-
eling to be more effective and achieve higher adoption, tools should become a
better fit with the tasks of developers and better support various uses of models
throughout the entire software development process.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Boston (2012)

2. Brown, A.W.: Model driven architecture: principles and practice. Softw. Syst.
Model. 3(4), 314–327 (2004)

3. Chaudron, M.R.V., Heijstek, W., Nugroho, A.: How effective is UML modeling?
Softw. Syst. Model. 11(4), 571–580 (2012)

4. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Berg,
Oxford (2011)

5. Dyb̊a, T.: Contextualizing empirical evidence. IEEE Softw. 30(1), 81–83 (2013)
6. Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M.: Exploring costs and bene-

fits of using UML on maintenance: preliminary findings of a case study in a large
it department. In: EESSMOD@ MoDELS, pp. 33–42 (2013)

7. Garousi, G., et al.: Usage and usefulness of technical software documentation: an
industrial case study. Inf. Softw. Technol. 57, 664–682 (2015)

8. Garzón, M.A., Aljamaan, H., Lethbridge, T.C.: Umple: a framework for model
driven development of object-oriented systems. In: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 494–
498. IEEE (2015)

9. Hebig, R., Quang, T.H., Chaudron, M.R.V., Robles, G., Fernandez, M.A.: The
quest for open source projects that use UML: mining GitHub. In: Proceedings
of the ACM/IEEE 19th International MODELS Conference, pp. 173–183. ACM
(2016)

10. Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M.R.V., Fernandez, M.A.: Prac-
tices and perceptions of UML use in open source projects. In: Proceedings of the
39th International Conference on Software Engineering: Software Engineering in
Practice Track, pp. 203–212. IEEE Press (2017)

11. Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations - Software
of the Mind: Intercultural Cooperation and its Importance for Survival, 3rd edn.
McGraw-Hill, New York (2010)

12. Jolak, R., Vesin, B., Chaudron, M.R.V.: OctoUML: an environment for exploratory
and collaborative software design. In: ICSE 2017, vol. 17 (2017)

66 M. R. V. Chaudron et al.

13. Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., Dortmans, H.M.: An
empirical investigation in quantifying inconsistency and incompleteness of UML
designs. In: Workshop Consistency Problems in UML-Based Software Development
II, pp. 26–34 (2003)

14. Lange, C.F.J., Chaudron, M.R.V.: Effects of defects in UML models: an experimen-
tal investigation. In: Proceedings of the 28th International Conference on Software
Engineering, pp. 401–411. ACM (2006)

15. Melleg̊ard, N., Ferwerda, A., Lind, K., Heldal, R., Chaudron, M.R.V.: Impact of
introducing domain-specific modelling in software maintenance: an industrial case
study. IEEE Trans. Softw. Eng. 42(3), 245–260 (2016)

16. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing consistency checking
between software views. In: Fifth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), 6–10 November 2005, USA, pp. 169–180. IEEE Com-
puter Society (2005)

17. Nugroho, A., Chaudron, M.R.V.: A survey of the practice of design-code corre-
spondence amongst professional software engineers. In: ESEM 2007, September
2007, Spain, pp. 467–469. ACM/IEEE Computer Society (2007)

18. Nugroho, A., Chaudron, M.R.V.: A survey into the rigor of UML use and its per-
ceived impact on quality and productivity. In: Proceedings of the 2nd International
Symposium on Empirical Software Engineering and Measurement, ESEM 2008,
9–10 October 2008, Germany, pp. 90–99. ACM (2008)

19. Nugroho, A., Flaton, B., Chaudron, M.R.V.: Empirical analysis of the relation
between level of detail in UML models and defect density. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
600–614. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87875-
9 42

20. Osman, M.H., Chaudron, M.R.V.: UML usage in open source software develop-
ment: a field study. In: Proceedings of the 3rd International Workshop on Expe-
riences and Empirical Studies in Software Modeling Co-located MODELS 2013,
USA, vol. 1078, pp. 23–32. CEUR-WS.org (2013)

21. Osman, M.H., Chaudron, M.R.V., van der Putten, P.: Interactive scalable abstrac-
tion of reverse engineered UML class diagrams. In: APSEC 2014, South Korea,
December 2014, pp. 159–166. IEEE (2014)

22. Torre, D., Labiche, Y., Genero, M.: UML consistency rules: a systematic mapping
study. In: EASE 2014, UK, 13–14 May 2014. ACM (2014)

23. van Opzeeland, D.J.A., Lange, C.F.J., Chaudron, M.R.V.: Quantitative techniques
for the assessment of correspondence between UML designs and implementations.
In: 9th ECOOP Workshop on Quantitative Approaches in Object-Oriented Soft-
ware Engineering (2005)

24. Zhi, J., et al.: Cost, benefits and quality of software development documentation:
a systematic mapping. J. Syst. Softw. 99, 175–198 (2015)

https://doi.org/10.1007/978-3-540-87875-9_42
https://doi.org/10.1007/978-3-540-87875-9_42

Self-managing Internet of Things

Danny Weyns1(B), Gowri Sankar Ramachandran2, and Ritesh Kumar Singh1

1 Department of Computer Science, KU Leuven, Leuven, Belgium
danny.weyns@kuleuven.be

2 University of Southern California, Los Angeles, USA

Abstract. Internet of Things (IoT) are in full expansion. Applications
range from factory floors to smart city environments. IoT applications
consist of battery powered small computing devices (motes) that com-
municate wirelessly and interact with the environment through sensors
and actuators. A key challenge that IoT engineers face is how to manage
such systems that are subject to inherent uncertainties in their opera-
tion contexts, such as interferences and dynamic traffic in the network.
Often these uncertainties are difficult to predict at development time.
In practice, IoT applications are therefore typically over-provisioned at
deployment; however, this leads to inefficiency. In this paper, we make
a case for IoT applications that manage themselves at runtime to deal
with uncertainties. We contribute: (1) a set of concerns that motivate the
need for self-management for IoT systems, (2) three initial approaches
that illustrate the potential of realising self-managing IoT systems, and
(3) a set of open challenges for future research on self-adaptation in IoT.

Keywords: Internet-of-Things · IoT · Uncertainties
Self-adaptation · Self-management

1 Introduction

Internet of Things (IoT) consist of tiny embedded and battery powered comput-
ing device (motes) that are equipped with a low-power wireless radio, sensors
and actuators. These motes form networks that are capable of monitoring and
controlling the physical world and thereby connecting digital processes to our
physical environment. IoT applications are widely deployed in the context of
industries and smart cities, see for example [5,18,21]. Typically, IoT applica-
tions require resources for computation, sensing, actuation and communication.
Continuous management and maintenance of these resources is critical for accom-
plishing the desired stakeholder goals. This problem is particularly challenging
due to the large scale nature of IoT deployments and the conditions under which
they may need to operate that are often difficult to predict [17].

Consider an application example in the context of factory floor monitoring:
an IoT application is deployed on the factory floor to monitor the operational
conditions of the machines and production lines. In order to maintain the pro-
ductivity and the efficiency of the factory floor, machines have to be operational
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 67–84, 2018.
https://doi.org/10.1007/978-3-319-73117-9_5

68 D. Weyns et al.

24/7. To ensure this requirement, the machines are equipped with sensors that
continuously monitor the temperature and the vibration profile of the machines.
Whenever an abnormality is detected, the application is reconfigured to sense
additional parameters of the machine. This allows fine-grained tracking of the
factory environment and alarming operators in case an intervention is required.
In such an application scenario, the IoT application must have capabilities to
manage the resources for sensing, computation and communication. In addition,
this application scenario highlights the dynamic nature of IoT applications.

Resource demands of IoT applications fluctuate during run-time due their
event-driven nature [29]. Consider another application in the context of a smart
building that monitors the comfort level of employees and actuates the heating
when the temperature is too low, or alternatively the air condition when the
temperature is too warm, and regulates the light when the light condition change.
However, in the event of a fire detected in the building, the application has to be
reconfigured to actuate an alarm, and stream a video to assist the fire personnel
to rescue people. While monitoring the comfort level, the application requires
low bandwidth, since the transmission of temperature and light reading requires
few bytes of data. However, in the event of fire, the application requires high
bandwidth, since the streaming of video requires at least kilo bytes of data.
The ability of an IoT application to manage such dynamics autonomously and
correctly is highly critical in such application scenarios.

A key underlying problem that IoT engineers face are uncertainties in the
operation contexts of the applications, internal dynamics, and even changes in
the requirements during operation. Often these uncertainties are difficult to pre-
dict at development time and can only be resolved during operation. To tackle
these run-time uncertainties, IoT applications are typically over-provisioned at
deployment. Although such an approach fulfil some of the desired application
goals, e.g. the reliability, it comes at a cost of high energy consumption. Since
IoT applications are battery powered, it is important to minimise its battery
consumption to maximise their lifetime. With over-provisioning, IoT applica-
tions tend to be configured for worst case demands, which result in high radio
use for wireless communication. According to literature, radio dominates the
energy consumption in IoT application [22]. Minimising the radio usage is a
major requirement for achieving a longer lifetime. Self-management frameworks
that track the system and its context at runtime to resolve uncertainties during
operation is essential for resource and energy constrained IoT applications.

The contributions of this paper are: (1) a set of concerns that motivate why we
need self-management for IoT systems, (2) an overview of three initial approaches
towards tackling some of the challenges in realising self-managing IoT systems,
and (3) a set of open problems for future research on self-adaptation in the IoT
domain.

The remainder of this paper is structured as follows. In Sect. 2, we provide
a brief introduction to self-adaptation. Section 3 elaborates on the need for self-
management in IoT and its specific challenges. Section 4 highlights a number of
our initial efforts that aim to contribute towards tackling some of the challenges.
Finally, Sect. 5 presents a set of open problems for future research in this area
that we identified from our experiences.

Self-managing Internet of Things 69

2 Background on Self-adaptation

Dealing with uncertainties is an increasingly important challenge for software
engineers. Here our focus is on the ability of software systems to deal with uncer-
tainties that needs to be resolved at runtime [7,16,20]. A prominent approach
to deal with uncertainties at runtime is so called self-adaptation [8,12,13,19,33].
Self-adaptation equips a software system with a feedback loop that collects data
of the system and its environment that was difficult or impossible to determine
before deployment. The feedback loop uses the collected data to reason about
itself and to adapt itself to changes in order to provide the required quality goals,
or gracefully degrade if needed. A typical example is a self-managing Web-based
client-server system that continuously tracks and analyzes changes in work load
and available bandwidth and dynamically adapts the server configuration to
provide the required quality of service to its users, while minimising costs [8].

Self-adaptation can be considered from two perspectives [30]: (1) the ability of
a system to adjust its behaviour in response to the perception of the environment
and the system itself [3,15]; the self prefix indicates that the system decides and
adapts autonomously (i.e., without or with minimal interference of humans)
[2], and (2) the mechanisms that are used to realises self-adaptation, typically
by means of a closed feedback loop [1,8,32], i.e. there is an explicit separation
between a part of the system that deals with the domain concerns (goals for
which the system is built) and a part that deals the adaptation concerns (the
way the system realises its goals under changing conditions). Figure 1 shows the
basic building blocks of a self-adaptive system, taken from [30].

Environment

Adaptation
Goals Managing

System

Managed System

effect

adapt

sense

sense

read

Self-Adaptive System

Fig. 1. Basic building blocks of a self-adaptive system [30]

70 D. Weyns et al.

The environment refers to the part of the external world with which the self-
adaptive system interacts and in which the effects of the system can be observed
[10]. The managed system comprises the application code that realizes the sys-
tems domain functionality. The managing system manages the managed system;
that is, the managing system collects runtime data, reasons about this data and
adapts the managed system to deal with one or more adaption goals. The adap-
tation goals are concerns of the managing system over the managed system; they
usually relate to the software qualities of the managed system. Adaptation goals
themselves can be subject of change (which is not shown in Fig. 1). A typical
approach to structure the software of the managing system is by means of a so-
called Monitor-Analyser-Planner-Executer + Knowledge feedback loop [4,12,26]
(MAPE-K loop in short). The Monitor collects runtime data from the managed
system and the environment and uses this to update the content of the Knowl-
edge. Based on the current knowledge, the Analyser determines whether there
is a need for adaptation of the managed system using the adaptation goals. If
adaptation is required, the Planner puts together a plan that consists of a set
of adaptation actions that are then enacted by the Executor that adapts the
managed system as needed.

In the past few years, research in this area has particularly been focussing on
how to provide assurances for the adaptation goals of self-adaptive systems that
operate under uncertain operating conditions [14,31]. This is particularly impor-
tant for systems with strict quality goals. Such systems require the provision of
evidence that the system requirements are satisfied during its entire lifetime,
from inception to and throughout operation. It is important to highlight that
this evidence must be produced despite the uncertainty in the environment, the
behaviour of the system itself and its requirements.

3 Why Do We Need Self-management in IoT?

IoT applications are inherently resource-constrained and subject to various types
of dynamics during operation. These dynamics manifest themselves at different
layers of the IoT technology stack. Figure 1 shows the typical layers of IoT appli-
cations. We highlight management concerns related to dynamics and uncertain-
ties at different layers.

Things. The primary elements of IoT applications are battery powered motes.
Consequently, energy consumption is a crucial aspect, as changing batteries
is costly, or sometimes even not possible. The primary factor that determines
energy consumption is communication, so the network should be configured care-
fully to avoid unnecessary communication. Motes of monitoring applications are
equipped with sensors to sense the environment, such as RFID sensors, infrared
and temperature sensors. However, IoT applications are not restricted to merely
sensing and may also control elements in the environment, such as lightbulbs,
heating devices, valves etc. Sensors and actuators are subject to all kind of
uncertainties, ranging from inaccurate sampling or actuating up to failure.

Communication. IoT deployments primarily rely on wireless communication
to relay sensor data to a central server. Wireless communication is subject to

Self-managing Internet of Things 71

 Cross Domain

cloud
reyaL ssorC

Applications: Collaborations, Processes

Platform: Connectivity, Information
Exchange, Analytics, Monitoring, Control

Communication: Routing and
Processing Units

Industrial Food Healthcare Transportation

Fig. 2. Typical layers of IoT applications

runtime uncertainties, such as interferences, noise, and multi-path fading effects.
Different communication technologies with dedicated protocols are applied to
support different settings. For example, bluetooth enables establishing on the
fly local networks between mobile entities, while a LoRa mesh network can sup-
port efficient very long range communication. Mobility may introduce particular
challenges to reliable communication. Run-time uncertainties in communication
result in packet loss. In such cases, it is important to reconfigure the wireless
communication network to minimise packet loss (e.g. route messages differently
in a multi-hop network setting).

Platform. Platforms provide the glue between user applications and the
underlying IoT resources. An IoT platform offers a variety of services to applica-
tions and application developers, including a runtime environment, programming
APIs etc. Platform services may range from the provision of basic resources to
storage facilities up to advanced analytics and control management of under-
lying IoT resources. Crucial aspects in a distributed context are information
exchange, monitoring and control services. Platforms can be deployed on var-
ious infrastructures, ranging from dedicated machines to a public cloud. IoT
platforms and the infrastructure on which they are deployed can be subject of
various sources of dynamics, typical examples are changes in the availability of
resources, and dynamics in load (e.g. in a multi-tenant setting).

Applications. Application themselves can be subject of change, which in turn
may affect the configuration of underlying layers. In the data-driven society, IoT
deployments are acting as a catalyst to meet the demands of stakeholders in
various disciplines. In the context of a smart city for example, garbage man-
agement units can support collection schedules for different parts of the city
by knowing the status of individual garbage cans. Similarly, traffic regulators
can dynamically alter the traffic routes in a city by knowing the traffic flows in

72 D. Weyns et al.

various parts of the city. These examples show that the sensor data produced
by IoT deployments may be consumed by multiple stakeholders to tackle vari-
ous societal issues. Such multidisciplinary approaches require the integration of
domain specific knowledge into IoT deployments. Domain experts may modify
their requirements during run-time to collect a particular type of sensor data
with a specific setting.

Summary. We identified various concerns at different layers of the technology
stack of IoT systems that require management. Often these concerns are handled
either through over-provisioning (e.g. a conservative power settings of motes to
ensure sufficient reliability), or through human intervention (e.g. an operator
reconfigures the system to deal with temporal disruptions of service). Over-
provisioning leads to inefficiencies and reduced lifetime of IoT systems. Manual
intervention is not only very costly, it is also error prone. Hence, in order to
fulfil the application demands and deal with continuous change and runtime
uncertainty in a trustworthy manner, a self-management framework is essential.

4 Initial Contributions to Self-management in IoT

We highlight three initial contributions from our work that illustrate how self-
adaptation techniques enable IoT systems to manage themselves autonomously.
We start with Dawn that supports autonomous bandwidth allocation for IoT
systems. Then we show how Hitch Hiker enables self-adaptation for concerns
that cross multiple layers of IoT systems. Finally, we demonstrate how simulation
and statistical techniques can be exploited at runtime to provide guarantees for
a set of adaptation goals of an IoT application.

4.1 Autonomous Bandwidth Allocation Using Dawn

Dawn [24] is a self-management middleware for automatically configuring and
reconfiguring 6TiSCH [28] networks based upon the requirements of their resi-
dent software. 6TiSCH [28] is a de-facto standard in high-reliability, low-power
networking for the IoT. 6TiSCH networks are time synchronised and follow a
communication schedule that repeats over time. The atomic unit of the com-
munication schedule is a time slot. Time slots have a fixed, predefined duration,
long enough for a single radio transmission and acknowledgment. Each platform
is allocated a number of time slots in the schedule, that it then uses for com-
munication. Platforms save energy by sleeping during inactive time slots. Each
allocated time slot adds a quantum of communication bandwidth to the plat-
form. The more time slots are allocated in the schedule for a given platform,
the more data the platform can transmit per unit of time (higher bandwidth)
and has more frequent transmission opportunities (lower latency), at the cost of
higher energy consumption.

The schedule is typically created and maintained by an entity called the
network manager. For periodic application traffic with static requirements, this
process is straightforward. However, application dynamism, traffic periodicity

Self-managing Internet of Things 73

and traffic heterogeneity render approaches based on static bandwidth provision-
ing suboptimal. On one hand, over-provisioning bandwidth to account for the
worst case increases energy consumption. On the other hand, under-provisioning
bandwidth results in packet loss for non-deterministic traffic patterns due to
insufficient bandwidth and thus lower reliability. The challenge is therefore to
handle these non-deterministic traffic patterns while meeting requirements on
low latency or high bandwidth, as well as the application dynamism that arises
due to software and hardware reconfiguration. Practically, this means that each
individual node should be provisioned with the optimum amount of bandwidth,
and that this should be adjusted to meet the demands of runtime reconfiguration.

Dawn builds on top of LooCI binding model [9]. LooCI is a component based
middleware for developing and managing IoT applications. In LooCI, application
software is realized in the form of ’compositions’ of reusable components. Figure 3
shows an example LooCI composition, where a temperature and light sensor
component deployed on Node A communicate with an aggregator component on
Node B via a TEMP and LIGHT type binding, respectively. A LooCI binding
connects a component’s provided interface (shown as) to another component’s
required interface (shown as), and it is depicted as in Fig. 3.

Temp.
Sensor

Period=120s

Aggregator

Node A Node B

Light
Sensor

Period=120s
Logger

TEMP

LIGHT

LOG

[P]

[P]

[B]

Buffer=10

Fig. 3. Example composition of a component-based IoT application.

In the composition shown in Fig. 3, the temperature and light sensor com-
ponents are sources, while the aggregator component is a sink. All source com-
ponents are required to carry the standard Dawn property, period [P], which
provides the transmission frequency of the source component in seconds. In this
example, the temperature and light reading is transmitted once every 120 s. In
cases where a source component transmits sporadically, such as the triggering
of a PIR sensor, P provides the maximum rate at which the component may
transmit. As with all LooCI properties, the period property may be inspected
by external software or users. A component may also choose to allow runtime
modification of this property in cases where transmission frequencies are deter-
mined by the application composition.

74 D. Weyns et al.

Intermediate components are located between a source and sink in the com-
position graph. These components may expose either the period property or the
buffer property [B], which determines how many inputs the component will store
from its dependent before forwarding a message. In the example composition
shown in Fig. 3, the aggregator component buffers 10 sensor readings from the
light and temperature interfaces before transmitting the aggregated results to the
logger component. For each component in the composition with a buffer property
[B], the bandwidth requirement of the component is the aggregate bandwidth
requirement of its dependents. The property naming conventions such as period
[P] and buffer property [B] are standardised in Dawn, and it enables Dawn to
allocate optimal bandwidth for the compositions.

As can be seen from Fig. 3, the bandwidth requirement of a component
depends on its period and buffer properties as well as the properties of all of
its dependents in the component graph. The total bandwidth requirement of
a node is therefore the aggregate of the transmission frequencies of all compo-
nents with a remote binding. For the composition shown in Fig. 3, Node A has a
bandwidth requirement of 8 bytes every 120 s, since the payload sizes of TEMP
and LIGHT bindings are 5 and 3 bytes, respectively. However, Node B does not
have any bandwidth requirement, as bandwidth assignments are based only on
outgoing traffic and Node B has no remote bindings, thus there is no outgoing
traffic. All the outgoing traffic on the node, which are determined by the remote
bindings of components, require bandwidth resources from the network in order
to reliably transmit the data to the intended destination. Existing bandwidth
allocation approaches are static, which makes them suboptimal. In addition,
such approaches offer less flexibility in the face of runtime reconfiguration.

Runtime reconfiguration of a software composition can significantly impact
bandwidth requirements. Let us consider the software composition shown in
Fig. 4, which is functionally equivalent to the composition shown in Fig. 3, but
with a modified deployment location for the aggregator component and differ-
ent period property settings.

While both compositions are functionally equivalent, the bandwidth alloca-
tion required to support the composition in Fig. 4 is 40 bytes every 50 min is
50 times less than the configuration shown in Fig. 3, since the buffer becomes
full after receiving five sensor readings from both temperature and light sensor
components. From these example compositions, it can be seen that the band-
width requirement of the composition depends on the components and their
properties. An automatic composition analysis approach is therefore required to
extract bandwidth requirements from software compositions.

Dawn uses a composition analysis algorithm to derive the bandwidth require-
ments of application compositions, and then it invokes the bandwidth allocation
algorithm to allocate the desired bandwidth for the IoT platform.

Dawn handles runtime reconfiguration by listening for reconfiguration actions
at the middleware level. When reconfiguration is detected, the composition anal-
ysis and bandwidth allocation algorithms are executed. The process is fully auto-
mated and therefore imposes no burden on developers.

Self-managing Internet of Things 75

Temp.
Sensor

Period=600s

Aggregator

Node A Node B

Logger

[P]

[P]

Light
Sensor

Period=600s

TEMP

LIGHT

[B]

LOG

Buffer=10

Fig. 4. Reconfigured composition of a component-based IoT application shown in
Fig. 3.

Dawn elegantly automates the bandwidth reservation process, which enables
the application developer to build extremely flexible and dependable IoT appli-
cations. Evaluation results on a 50-node testbed show that Dawn provides 100%
reliability and manages to increase the lifetime by three-fold with minimal mem-
ory and performance overhead. For more information, we refer the interested
reader to [24].

4.2 Self-adaptation Across Layers with Hitch Hiker

Internet-of-Things (IoT) devices must operate for long periods on limited power
supplies. As discussed earlier, wireless communication is the primary source of
energy consumption for IoT devices [22]. The lifetime of IoT applications can
therefore be increased by minimising radio communication. Data aggregation
has been widely applied to tackle this problem [11,23,27]. Data aggregation is a
technique in which multiple messages are combined in to a single datagram, thus
reducing radio transmissions and hence, the energy consumption of IoT devices.
Furthermore, less frequent transmissions result in fewer collisions and therefore
retransmissions. This can significantly improve the performance of IoT devices.

Hitch Hiker is a middleware that uses application knowledge to perform data
aggregation based on the priority of the application data. Hitch Hiker allows the
application developers to classify its application traffic as high-priority and low-
priority based on its criticality. Hitch Hiker creates a data aggregation overlay
using the high-priority transmissions, and the low-priority data is aggregated
with high- priority transmissions. Hitch Hiker reduces the energy consumption,
while offering a flexible data aggregation scheme for application developers.

Figure 5 shows the building blocks of Hitch Hiker distributed across the dif-
ferent layers of network stack. Hitch Hiker supports two types of management:
centralized and decentralized. With the centralized scheme, the configuration
and maintenance of low priority Hitch Hiker bindings is done by a centralized
network manager. In this case, the central manager collects the information

76 D. Weyns et al.

1. Physical

2. Data-link

3. Network

4. Transport

5. Application

Comfort
 Level Runtime Probe

Hitch Hiker Bindings

Hiker

Hitch

set binding

Network
Manager

request binding

binding ack.

intercept req
u

est H
iker b

in
d

in
g

In
frastru

ctu
re ro

u
te d

isco
very

e.g. IPv6

e.g. CX-MAC
intercept

1. Physical

2. Data-link

3. Network

4. Transport

5. Application

Comfort
 Level

Runtime Probe

Hitch Hiker Bindings

Hiker

Hitch

set binding

e.g. IPv6

e.g. CX-MAC
intercept

A
d

-h
o

c ro
u

te d
isco

very

Application
Network

.....

Fig. 5. High level overview of Hitch Hiker [25].

about high priority bindings, and it sets up the network for low priority data
aggregation by configuring Hitch and Hiker protocols. In case of the decentralised
scheme, the network configuration process is delegated to all the nodes in the
network. Nodes self-configure themselves by coordinating and collaborating with
each other.

Hitch Hiker autonomously add and remove data aggregation support for
IoT applications using the existing high and low priority application bindings.
Whenever the application gets reconfigured, Hitch Hiker recompute the route to
retain the data aggregation functionality. If data aggregation route cannot be
estabilished using the existing application compositions, Hitch Hiker notifies the
application managers to take appropriate action.

Evaluation of the prototype implementation shows that Hitch Hiker consumes
minimal memory, introduces limited overhead and that transmitting messages
with Hitch Hiker consumes a small fraction of the energy that is required for a
standard radio transmission. The interested reader finds more information about
Hitch Hiker in [25].

Self-managing Internet of Things 77

4.3 Area Security Surveillance

In a joint R&D effort between imec-DistriNet and VersaSense1 we studied self-
adaptation for an area security surveillance application. The particular aim of
this work was to evaluate whether simulation combined with statistical tech-
niques can be used to provide guarantees for adaptation goals of an IoT system
during operation. Figure 6 shows an overview of the deployment that a science
campus of KU Leuven that we used in this study.

Fig. 6. Configuration area security surveillance application

The network is set up as a mesh network that comprises 15 motes equipped
with different types of sensors that communicate over a time synchronised LoRa
network. Motes are strategically placed to provide access control to labs (via
RFID sensor), to monitor the movements and occupancy status (via Passive
infrared sensor) and to sense the temperature (via heat sensor). The sensor data
from all the motes are relayed to the IoT gateway, which is deployed at a central
monitoring facility. The communication in the network is organised in cycles,
each cycle comprising a fixed number of communication slots. Each slot defines
a sender and receiver mote that can communicate with one another.

The domain concern for the IoT network is to relay surveillance data to
the gateway. The stakeholders defined the adaptation goals as follows: (1) the
average packet loss over 24 h should not exceed 10%, (2) the average latency of
messages should be less than 5% of the cycle time, (3) the energy consumption
of the motes should be minimised to optimise the life time of the network.
Achieving these adaptation goals is challenging due to two primary types of
1 www.versasense.com.

www.versasense.com

78 D. Weyns et al.

uncertainty: (1) network interference and noise caused by external factors such as
weather conditions and the presence of other WiFi signals in the neighbourhood
of communication links; interference affects the quality of the communication
which may lead to packet loss; (2) fluctuating traffic load which may be difficult
to predict (e.g., messages produced by a passive infrared sensor are based on the
detection of motion of humans).

To solve the problem of the IoT network we applied a self-adaptation app-
roach shown in Fig. 7.

Gateway

Knowledge

Statistical
Model

Checker

Executor

PlannerAnalyzer

Monitor

Probes Effectors

Managed System (IoT System)

Managing
System

Mote

Mote

Mote

Client

Network
Engine

Mote

Network
Data Analytics

Fig. 7. Self-adaptation approach for the area security surveillance application

The bottom layer consists of the managed system with the network of motes
and the gateway. The middle layer comprises a client that runs on a dedicated
machine. This client offers an interface to the network using probes and effec-
tors. Probes can be used to monitor the status of motes and links, statistical
data about the packet loss, energy consumption, and latency of the network.
The effectors allow adapting the mote settings, including power settings of the
motes, distribution of messages to parents. The network engine collects the net-
work data in a repository and performs analyses on the data to serve operators
or adaptation logic using the analytics component. In manual mode, an operator
can access the IoT network via the client to track its status and perform recon-
figurations manually. These reconfigurations include changing the power settings

Self-managing Internet of Things 79

per communication link and changing the distribution of packets sent to parents
(in case there are multiple parents). In the self-adaptive solution, the top layer is
added to the system that automatically adapts the configuration such that the
adaptation goals of the IoT network are met.

Self-adaptation is realised using a MAPE-K feedback loop. The Monitor uses
the probe to track the recent traffic load and network interferences as well as
the statistics for each quality property of interest. This data is used to update a
set of models in the knowledge repository, including a model of the IoT system
and its environment, a representation of the adaptation goals in the form of a
set of rules, and a set of quality models, one for each adaptation goal.

The Analyzer uses a statistical model checker to predict the quality prop-
erties for each possible configuration of the IoT application. A configuration
is characterised by: (i) a power setting for each communication link (a value
between 0 and 15) and (ii) a distribution of packets sent along to links of motes
with more than one parent (discretised in steps of 20%). The statistical model
checker performs a series of simulations and uses statistical techniques to predict
the qualities. Compared to exhaustive model checking, statistical model checking
is very efficient in terms of verification time and required resources. The tradeoff
is that the results are not exact, but subject to a level of confidence. The engi-
neer can set this level, but higher confidence requires more time and resources.
If the currently deployed configuration does not realise the adaptation goals, the
planner is triggered to plan an adaptation. The results of analysis is a predicted
value for each quality property of interest (average packet loss, average latency,
energy consumption) for each possible configuration.

The Planner starts with selecting the best adaptation option based on the
quality properties determined by the analyser. If valid configuration is found, a
failsafe strategy is applied (i.e., the network is reconfigured to a default setting).
Otherwise, the planner creates a plan to adapt the IoT network from its current
configuration to the best adaptation option that was found. A plan consists of
steps, where each step either adapts the power setting of a mote for a link, or
it adapts the distribution of packets sent to a parent of a mote. As soon as the
plan is ready, the Executer is triggered that will enact the adaptation steps via
the effectors.

We compared the self-adaptation approach with an approach commonly used
in practice that uses over-provisioning to deal with uncertainties (power settings
are set to maximum and packets are duplicated in case of multiple parents).

We evaluated the packet loss, latency, and energy consumption of the IoT
network for both approaches for a period of 24 h. The cycle time was set to
9.5 min, corresponding to 153 cycles in 24 h. During the first 8 min of the cycle
the motes can communicate packets downstream to the gateway; during the
remaining 1.5 min the gateway can communicate adaptation messages upstream
to the motes. For the self-adaptation approach we configured the verification
queries with a confidence of 90% and simulations queries with a relative standard
error of the mean of 0.5%. Figure 8 shows the main results.

80 D. Weyns et al.

12
13

14
15

16
17

Energy Consumption

E
ne

rg
y

C
on

su
m

pt
io

n
(C

ou
lo

m
b)

Traditional
Approach

Self-Adaptation
Approach

5
10

15

Packet Loss

P
ac

ke
t L

os
s

(%
)

Traditional
Approach

Self-Adaptation
Approach

0
10

20
30

40
50

Latency

La
te

nc
y

(%
 o

f C
yc

le
 T

im
e)

Traditional
Approach

Self-Adaptation
Approach

Fig. 8. Test results for the area security surveillance application

The graphs show that the average energy consumption of the self-
adaptation solution is significantly better compared to the traditional approach
(p-value< 0.000). Similarly, the self-adaptation approach outperforms the tra-
ditional approach for latency (p-value< 0.000). For the packet loss, both
approaches have similar results (mean of paired differences is 1.4%). We mea-
sured also the time required for adaptation. With a mean of 45.7 s, the adaptation
time was perfectly fine for a setting with a cycle time of around 9.5 min with
1.5 min to make an adaptation decision.

The area security surveillance application demonstrates how self-adaption
techniques can be applied to enable an IoT application to deal with uncertainties
at runtime and provide guarantees with sufficient confidence for a set of required
quality properties in an automatic manner. For more information, we refer the
reader to the DeltaIoT website2.

5 Open Problems for Self-management in IoT

We conclude this paper with a number of open challenges for future research on
self-adaptation of IoT systems that we identified based on the state of the art
and our experiences with engineering concrete IoT applications.

Local adaptation. The examples of autonomous bandwidth allocation using
Dawn (Sect. 4.1) and area security surveillance (Sect. 4.3) are examples of self-
adaptation that is applied locally. Existing solutions such as these have primarily
focussed on the benefits and tradeoffs in terms of qualities that can be achieved
by self-adaptation. However, in the context of IoT, an important factor is the
cost associated with applying the adaptation actions. For example, in a mesh

2 https://people.cs.kuleuven.be/danny.weyns/software/DeltaIoT/.

https://people.cs.kuleuven.be/danny.weyns/software/DeltaIoT/

Self-managing Internet of Things 81

network, to adjust the network settings of motes, adaptation messages needs
to be routed from the gateway upstream to the motes. Communicating these
messages requires energy. The cost of this energy may invalidate the expected
benefits of the adaptation. Another example of cost may be the time that is
required to enact the adaptation actions. Hence, an important challenge for
future research is to develop solutions that consider both the benefits and the
costs of self-adaptation.

Cross-layer adaption. Hitch Hiker is an approach that supports cross-layer
adaptation (Sect. 4.2). In the context of smart cities, IoT applications typically
consist of hundreds of motes equipped with various types of sensors and actua-
tors. Continuous adaptation based on context changes of such motes has shown
to be useful for understanding sensor data [23]. On the other hand, reconfigu-
rations of applications may also alter the underlying communication demands
[24,25]. As a consequence, reconfiguration at one layer of the technology stack
may call for reconfigurations at another layer. While traditional layering schemas
leads to separation of concerns, it may be less suitable for dynamic IoT appli-
cations where concerns inevitably crosscut the layers. An important challenge is
to investigate how to deal with dominant crosscutting concerns such as energy
efficiency and security in IoT, which may require a new view on layering of the
IoT technology stack.

Cross-application adaption. Besides adaptation concerns that span different
layers of the IoT technology stack, concerns can also cross domains as shown
in Fig. 2. Although generally considered as crucial for the future of IoT, little
research has been devoted to interactions and collaborations between different
IoT applications. Such collaborations have the potential to generate dramatic
synergies [6]. However, at the same time they create dependencies that in a
dynamic context may be extremely difficult to handle. Hence, an important
challenge for future research is how to investigate the interplay between IoT
applications in an ecosystem. This will require solutions for technical alignment
and stability, but also suitable business models and methods for establishing
trust.

Providing guarantees. One of the crucial aspects of many IoT applications is
trustworthiness. Trustworthiness refers to stakeholders’ confidence, dependabil-
ity, and reliability in the applications. As we have highlighted in Sect. 3, given
that IoT applications are subject to a zoo of uncertainties, this raises an impor-
tant challenge: how to obtain trustworthiness in IoT systems that are subject of
ongoing uncertainties? Tacking this challenge is hard, in particular in an ecosys-
tem context. It does not only require novel technical solutions to guarantee the
concerns of stakeholders throughout the lifetime of IoT systems, it also requires
novel legal frameworks that can handle continuous change.

Acknowledgments. We are grateful to the technical staff of VersaSense (https://
www.versasense.com/) for the fruitful collaborations.

https://www.versasense.com/
https://www.versasense.com/

82 D. Weyns et al.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Software Engineering for Self-adaptive Systems. LNCS, vol.
5525, pp. 27–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02161-9 2

2. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software
Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

3. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

4. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci,
F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of auto-
nomic communications. ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006).
http://doi.acm.org/10.1145/1186778.1186782

5. Dohler, M., Barthel, D., Watteyne, T., Winter, T.: RFC5548: routing requirements
for urban low-power and lossy networks (2009)

6. Dustdar, S., Nastic, S., Scekic, O.: A novel vision of cyber-human smart city. In:
2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb), pp. 42–47, October 2016

7. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

8. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

9. Hughes, D., Thoelen, K., Maerien, J., Matthys, N., Del Cid, J., Horre, W., Huygens,
C., Michiels, S., Joosen, W.: LooCI: the loosely-coupled component infrastructure.
In: Proceeding of the 11th IEEE International Symposium on Network Computing
and Applications, pp. 236–243 (2012)

10. Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997).
http://dl.acm.org/citation.cfm?id=590564.590577

11. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Maximum lifetime data gathering and
aggregation in wireless sensor networks. Proc. IEEE Netw. 2, 685–696 (2002)

12. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–
50 (2003)

13. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering, FOSE 2007. IEEE Computer Society (2007)

14. de Lemos, R., et al.: Software engineering for self-adaptive systems: research
challenges in the provision of assurances. In: de Lemos, R., Garlan, D., Ghezzi,
C., Giese, H. (eds.) Software Engineering for Self-adaptive Systems III. LNCS,
vol. 9640. Springer, Heidelberg (2018, forthcoming). https://people.cs.kuleuven.
be/danny.weyns/papers/2018SEfSAS.pdf

https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_1
http://doi.acm.org/10.1145/1186778.1186782
https://doi.org/10.1007/978-3-642-35813-5_9
http://dl.acm.org/citation.cfm?id=590564.590577
https://people.cs.kuleuven.be/danny.weyns/papers/2018SEfSAS.pdf
https://people.cs.kuleuven.be/danny.weyns/papers/2018SEfSAS.pdf

Self-managing Internet of Things 83

15. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

16. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification of current
architecture-based approaches tackling uncertainty in self-adaptive systems with
multiple requirements. In: Managing Trade-offs in Adaptable Software Architec-
tures. Elsevier (2016)

17. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, WSNA 2002, pp. 88–97.
ACM, New York (2002). http://doi.acm.org/10.1145/570738.570751

18. Martocci, J., Mil, P., Riou, N., Vermeylen, W.: Building automation routing
requirements in low-power and lossy networks (5867) (2010)

19. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-based runtime software evo-
lution. In: International Conference on Software Engineering, ICSE 1998. IEEE
Computer Society (1998). http://dl.acm.org/citation.cfm?id=302163.302181

20. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modelling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: International
Conference on Performance Engineering, ICPE 2014 (2014)

21. Pister, K., Thubert, P., Dwars, S., Phinney, T.: Industrial routing requirements in
low-power and lossy networks. Technical report (2009)

22. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless
microsensor networks. IEEE Sig. Process. Mag. 19(2), 40–50 (2002)

23. Rajagopalan, R., Varshney, P.: Data-aggregation techniques in sensor networks: a
survey. IEEE Commun. Surv. Tutor. 8(4), 48–63 (2006)

24. Ramachandran, G.S., Matthys, N., Daniels, W., Joosen, W., Hughes, D.: Build-
ing dynamic and dependable component-based internet-of-things applications with
dawn. In: 2016 19th International ACM SIGSOFT Symposium on Component-
Based Software Engineering (CBSE), pp. 97–106, April 2016

25. Ramachandran, G.S., Proenca, J., Daniels, W., Pickavet, M., Staessens, D., Huy-
gens, C., Joosen, W., Hughes, D.: Hitch hiker 2.0: a binding model with flexible
data aggregation for the internet-of-things. J. Internet Serv. Appl. 7(1), 4 (2016).
http://dx.doi.org/10.1186/s13174-016-0047-7

26. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. Trans. Auton. Adapt. Syst. 4, 14:1–14:42 (2009)

27. Tan, H.O., Körpeoǧlu, I.: Power efficient data gathering and aggrega-
tion in wireless sensor networks. SIGMOD Rec. 32(4), 66–71 (2003).
http://doi.acm.org/10.1145/959060.959072

28. Watteyne, T., Palattella, M., Grieco, L.: Using IEEE 802.15.4e time-slotted channel
hopping (TSCH) in the Internet of Things (IoT): problem statement. RFC 7554,
RFC Editor, May 2015

29. Watteyne, T., Weiss, J., Doherty, L., Simon, J.: Industrial IEEE802.15.4e networks:
performance and trade-offs. In: 2015 IEEE International Conference on Commu-
nications (ICC), pp. 604–609, June 2015

30. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and
future challenges. In: Dick Taylor, R., Kang, K., Cha, S. (eds.) Handbook of
Software Engineering. Springer, Heidelberg (2018, forthcoming). https://people.
cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf

https://doi.org/10.1007/978-3-642-35813-5_1
http://doi.acm.org/10.1145/570738.570751
http://dl.acm.org/citation.cfm?id=302163.302181
http://dx.doi.org/10.1186/s13174-016-0047-7
http://doi.acm.org/10.1145/959060.959072
https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf
https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf

84 D. Weyns et al.

31. Weyns, D., et al.: Perpetual assurances in self-adaptive systems. In: de Lemos,
R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-adaptive
Systems III. LNCS, vol. 9640. Springer, Heidelberg (2018, forthcoming). https://
people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf

32. Weyns, D., Iftikhar, U., Söderlund, J.: Do external feedback loops improve the
design of self-adaptive systems? A controlled experiment. In: International Sym-
posium on Software Engineering of Self-managing and Adaptive Systems, SEAMS
2013 (2013)

33. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst.
7(1), 8:1–8:61 (2012)

https://people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf
https://people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf

Data, Information and Knowledge
Engineering

LARS: A Logic-Based Framework for Analytic
Reasoning over Streams

(Extended Abstract)

Harald Beck, Minh Dao-Tran, and Thomas Eiter(B)

Institute of Information Systems, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{beck,dao,eiter}@kr.tuwien.ac.at

Abstract. Stream reasoning considers continuously deriving conclu-
sions on streaming data. While traditional stream processing approaches
focus on throughput and are often based on operational grounds, rea-
soning approaches aim at high expressiveness based on declarative
semantics; yet according theoretical underpinning in the streaming area
has been lacking. To fill this gap, we provide LARS, a Logic-based
Framework for Analytic Reasoning over Streams. It provides generic win-
dow operators to limit reasoning to recent snapshots of data, and modal-
ities to control the temporal information of data. Building on resulting
formulas, a rule-based language is presented which can be seen as exten-
sion of Answer Set Programming (ASP) for streams. We study semantic
properties and the computational complexity of LARS, its relation to
other formalisms and mention various work that builds on it.

Keywords: Answer Set Programming · Stream reasoning
Dynamic data

1 Introduction

Stream Reasoning [15,28] is an emerging field of computation with broad inter-
est1 in which streams of data are considered. These streams may origin in dif-
ferent ways and at different velocities, ranging from low frequency updates in
the realm of minutes, days, or even months, to high frequency changes such
as sensor data produced in real-time environment (e.g., in transport and traffic
scenarios), to very high speed changes such as of bonds at the stock market.
Typically, a large amount of data is produced, and processing these large data
streams requires special methods and techniques.

This work has been supported by the Austrian Science Fund (FWF) projects P26471,
P27730, and W1255-N23.

1 Several workshops on this subject have been held in the recent years, e.g. in Vienna
2015 and in Berlin 2016 apart from further workshops at major conferences.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 87–93, 2018.
https://doi.org/10.1007/978-3-319-73117-9_6

88 H. Beck et al.

Many works in databases and data processing follow the approach of the
continuous query language (CQL) [4], where only a recent snapshot of the data,
a window, is kept and other data is dropped. If data arrives in buffers, then the
size of the buffer may regulate the contents that can be handled, and only the
latest data is kept (tuple-based windows); alternatively, data within a certain
time of arrival are kept (time-based window). Furthermore, the way in which
windows are changed over time (continuously, periodically, etc.) is another aspect
of low-level data management.

2 The LARS Framework

As many stream processing systems have an operational semantics, LARS [10]2

was proposed as a logic-based framework that provides a means to express
semantics of stream processing formally, and in a declarative way. Furthermore,
LARS has been conceived to model more expressive reasoning than plain filter-
ing, joining and aggregation of data.

Stream and Windows. The LARS framework evaluates streams at time
points. We view a stream S as a pair (T, υ), where the timeline T ⊆ N is a closed
interval of natural numbers, and the evaluation function υ : T → 2A maps each
time point t ∈ T to a (possibly empty) set of atoms. A window function is any
computable function w that takes a stream S and a time point t and returns a
substream S′ ⊆ S, called a window.

Formulas. LARS adds to Boolean connectives the following syntactic elements.
A unary window operator �w restricts the evaluation of the subsequent formula
to window obtained by w. Dually, the reset operator � re-accesses the original
stream. Furthermore, temporal modalities ♦, �, and @t′ serve to express that
the subsequent formula holds at some time, all the time, and at the exact time t′

in the current stream, respectively.
The semantics relies on structures, i.e., tuples M = 〈S�,W,B〉, where S� is

a stream, W a set of window functions, and background knowledge B ⊆ A are
atoms. Given a substream S = (T, υ) of S� and a time point t ∈ N, entailment
M,S, t � ϕ of formulas ϕ is inductively defined as follows:

a ∈ A iff a ∈ υ(t) or a ∈ B,
¬φ iff M, S, t � φ,

φ ∧ ψ iff M, S, t � φ and M, S, t � ψ,
φ ∨ ψ iff M, S, t � φ or M, S, t � ψ,

φ → ψ iff M, S, t � φ or M, S, t � ψ,

♦φ iff M, S, t′ � φ for some t′ ∈ T,
�φ iff M, S, t′ � φ for all t′ ∈ T,

@t′φ iff M, S, t′ � φ and t′ ∈ T,
�wφ iff M, S′, t � φ, where S′ = w(S, t),

� φ iff M, S�, t � φ.

If M,S, t � ϕ holds, we say that (M,S, t) entails ϕ. Moreover, we say that M
satisfies ϕ at time t, if (M,S�, t) entails ϕ. In this case we write M, t |= ϕ and
call M a model of ϕ at timet.

2 An extended version with details, examples, and further results is online available
[9].

LARS: A Logic-Based Framework for Analytic Reasoning 89

Programs. Based on this, we define a LARS program as a set of rules of form

α ← β1, . . . , βn

where head α and each body element βi (1 ≤ i ≤ n) is a LARS formula. In
contrast to the monotone semantics of LARS formulas, LARS programs have a
stable model (answer set) semantics based on the formulation in [19]. Given an
interpretation I ⊇ D for a data stream D = (T, υ), define a model M = 〈I,W,B〉
program P for D at time t, denoted by M, t |= P , if M, t � β(r) → α for every
rule r ∈ P of the above form, where β(r) = β1 ∧ · · · ∧ βn. An answer stream then
is a ⊆-minimal model (w.r.t. I) of the (FLP) reduct PM,t = {r ∈ P | M, t |=
β(r)} at time t.

Properties and complexity. LARS extends Answer Set Programming (ASP)
[13,23] and inherits properties like minimality and supportedness of models;
expressive features like nonmonotonic negation, recursion, or default reasoning
carry over as well. The multiple model semantics is amenable to see alternative
solutions by model enumeration.

Regarding computational complexity, both satisfiability and model checking
are PSpace-complete for propositional (ground) LARS formulas and for LARS
programs in general, but have lower complexity if either the nesting depth of
window operators is bounded by a constant, or only common window operators
as those mentioned above are used. In particular, reasoning in LARS is then not
harder than in ASP. Notably, this includes the most practical programs which
employ no window nesting. For non-ground LARS formulas and programs (i.e.,
the Datalog case), the complexity increases up to NExpTimeNP for satisfiability,
but not much for model checking (for LARS formulas, it remains unchanged).
Regarding expressiveness, LARS formulas express only (and in general all) poly-
nomial time recognizable languages, while propositional LARS programs with
sliding time-based windows capture the class of regular languages, i.e., all and
only regular languages. As non-ground LARS programs subsume disjunctive
Datalog and are not harder to evaluate, these programs capture the class of Σp

2

recognizable languages, and are thus a rather expressive formalism.

3 Relation to Other Formalisms

Stream reasoning is naturally related to temporal logics, where usually infinite
state sequences are considered, but typically no window operators. LARS formu-
las with sliding time-based windows can be translated into linear time temporal
logic (LTL). Expressing other window functions like tuple-based windows is more
involved and not possible in general for windows evaluable in polynomial time.
The more expressive Metric Temporal Logic (MTL) [26] allows for time-based
sliding windows with subsequent some resp. all temporal modality, but has no
general window operators like LARS. It has a timed state-sequence semantics
with arbitrary time increase between successive states, while LARS has a fixed
(unit) time tick. In addition, MTL has as LARS formulas a monotone semantics,
while the answer set semantics of LARS programs has no counterpart.

90 H. Beck et al.

The core semantics of CQL [4], which extends SQL for streams, can be cap-
tured by LARS. Given a window function w in CQL, the stream-to-relation
operator drops the timestamps of the selected tuples to obtain a relation. This
amounts in LARS to a formula of form �w♦s, where the streaming tuple s is
directly accessed. The SQL-part (on relations obtained) is then reflected by well-
known Datalog translations [20]. LARS also allows us to describe the difference
arising from pull-based and push-based querying in model theoretic-terms, as
exemplified on the syntactically similar SPARQL extensions C-SPARQL [5] and
CQELS [30] for streaming RDF data, respectively.

The explicit access to time points and generic window operators enables us
to express intervals as in Allen’s interval algebra [2]. Such intervals are used, e.g.,
in the rule-based language ETALIS [3], which aims at describing complex events
(over intervals) based on events (at time points). ETALIS has a canonical model
semantics and can express overlapping intervals. Streamlog [33] is another rule-
based language, which extends Datalog with temporal rules. Syntactic restric-
tions on negation ensure unique models; mechanisms to drop data, however, are
lacking. Time-decaying logic programs [21] incorporate a limited form of window
mechanisms where program parts expire after a fixed number of steps. This lead
to the multi-shot solving capabilities of the ASP solver Clingo [22], targeting the
control of the grounding and solving processes. LARS programs, on the other
hand, explicitly lift the ASP semantics for streams and provide novel language
constructs than can be flexibly composed. Related are also the Linked Sensor
Middleware [31] and StreamRule [27] which present system architectures.

4 Theoretical Aspects and Applications

Towards optimizations of LARS programs, different notions of equivalence in
ASP and their model-theoretic characterizations [32] were lifted to LARS [8];
notably, the computational complexity of equivalence checking does not increase
compared to ASP in general. Besides a tailored approach with so-called Bi-
LARS models, which capture a large fragment of LARS, a variant for monotone
windows (e.g. time-based windows) extends the logic of Here-and-There [25] and
thus links LARS to Equilibrium logic [29].

Of special interest in stream reasoning, in particular for nonmonotonic lan-
guages like LARS, is incremental reasoning. Due to a partial correspondence
of ASP and Doyle’s [16] justification-based truth maintenance system (JTMS)
[18]o, we extended the latter [24] for plain LARS programs, which replaces in
the definition of logic programs a body atom a by an extended atom, given
by the grammar a | @ta | �@ta | �♦a | ��a; in the head only a or @ta is
allowed. JTMS considers model update when a new rule is added; our extended
data structures incorporate intervals in which formulas hold. Introducing a new
concept of stream-stratified programs, which split the program in layers due to
generic window operators, in analogy to stratified negation, we show how the
acyclic flow of information can be exploited for efficient update of an answer
stream.

LARS: A Logic-Based Framework for Analytic Reasoning 91

Furthermore, incremental reasoning has been considered in [11] which elabo-
rates how a static ASP encoding of a plain LARS program can be updated incre-
mentally. Using JTMS as specific update technique (for the resulting model),
where also removal of rules is provided, a performance benefit over repeated one-
shot solving with Clingo is shown. The resulting prototype engine Ticker works
for sliding time-based and sliding-tuple based windows. A slight variant of plain
LARS, where negation is occurs only in front of atoms, has been employed as
formal underpinning in another prototype engine called Laser [6], which extends
evaluation techniques from Datalog [1]. Targeting the same windows as Ticker,
it focuses on highly efficient update of the model, which is unique due to the
restriction to programs with stratified negation.3

Further work has employed LARS as formal tool. In Content-Centric Net-
working (CCN) research [7] for future internet architectures, where routers can
store popular content (like video chunks) for faster delivery to end users, we
built a simulation architecture for switching caching strategies based on the
popularity distribution of chunks. The decision control was specified in LARS
and implemented using the dlvhex solver [17]. Furthermore, in [14], bridge rules
of nonmonotonic multi context systems (MCS) [12] that interlink knowledge
bases (contexts) were extended to streaming utilizing a fragment of LARS for
processing data streams that are dynamically generated by contexts. Moreover,
the semantic key concept of equilibrium was lifted in a nontrivial way to an
asynchronous execution model.

5 Conclusion

LARS offers a theoretical underpinning for stream processing and reasoning
approaches, based on which the declarative semantics of stream languages can
be expressed, analyzed and compared. LARS programs extend ASP with explicit
means to handle streams, i.e., generic window operators and temporal modal-
ities. We highlighted some properties of the framework, its relation to other
formalisms, and recent work building on LARS. The potential for future work
is manifold, ranging from comparative studies, e.g., with variants of MTL, to
algorithmic issues like fully incremental grounding. In particular, incremental
model update, especially in the nonmonotonic setting, remains a challenging yet
intriguing issue due to the trade-off between throughput and expressiveness.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

3 Source code: https://github.com/hbeck/ticker, https://github.com/karmaresearch/
laser.

https://github.com/hbeck/ticker
https://github.com/karmaresearch/laser
https://github.com/karmaresearch/laser

92 H. Beck et al.

3. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In: Hitzler, P.,
Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15918-3 5

4. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
a continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1),
3–25 (2010)

6. Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive stream reasoning with laser.
In: Proceeding of ISWC (2017) (to appear). http://arxiv.org/abs/1707.08876

7. Beck, H., Bierbaumer, B., Dao-Tran, M., Eiter, T., Hellwagner, H., Schekotihin, K.:
Stream reasoning-based control of caching strategies in CCN routers. In: Mao, S.,
Marina, M.K., Senouci, S.M. (eds.) IEEE ICC 2017 Next Generation Networking
and Internet Symposium (2017).https://arxiv.org/abs/1610.04005

8. Beck, H., Dao-Tran, M., Eiter, T.: Equivalent stream reasoning programs. In:
Kambhampati, S., Brewka, G. (eds.) Proceeding of 25th International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, pp. 929–935. AAAI Press/IJCAI
(2016)

9. Beck, H., Dao-Tran, M., Eiter, T.: LARS: A Logic-Based Framework for Ana-
lytic Reasoning over Streams. Technical report INFSYS RR-1843-17-03, Institute
of Information Systems, TU Wien, October 2017. http://www.kr.tuwien.ac.at/
research/reports/rr1703.pdf

10. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for
analyzing reasoning over streams. In: Bonet, B., Koenig, S. (eds.) Proceeding of
28th Conference on Artificial Intelligence, AAAI 2015, pp. 1431–1438. AAAI Press
(2015)

11. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental ASP-based stream
reasoning. Theory and Practice of Logic Programming (2017) (to appear). special
issue on ICLP 2017

12. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceeding of 22nd Conference on Artificial Intelligence, AAAI 2007,
pp. 385–390. AAAI Press (2007)

13. Brewka, G., Eiter, T., Truszczyński, M. (eds.): AI Magazine: special issue on
Answer Set Programming, vol. 37, no. 3. AAAI Press (2016) (Fall issue)

14. Dao-Tran, M., Eiter, T.: Streaming multi-context systems. In: Sierra, C., Bacchus,
F. (eds.) Proceeding of 26th International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, pp. 1000–1007. IJCAI (2017)

15. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intell. Syst. 24, 83–89 (2009)

16. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)
17. Eiter, T., Ianni, G., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: A model

building framework for ASP with external computations. Theory Pract. Logic Pro-
gram. 16(4), 418–464 (2016)

18. Elkan, C.: A rational reconstruction of nonmonotonic truth maintenance systems.
Artif. Intell. 43(2), 219–234 (1990)

19. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

20. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book, 2nd edn. Pearson Education, London (2009)

https://doi.org/10.1007/978-3-642-15918-3_5
http://arxiv.org/abs/1707.08876
https://arxiv.org/abs/1610.04005
http://www.kr.tuwien.ac.at/research/reports/rr1703.pdf
http://www.kr.tuwien.ac.at/research/reports/rr1703.pdf

LARS: A Logic-Based Framework for Analytic Reasoning 93

21. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Stream reasoning with answer set programming. Preliminary report. In: KR, pp.
613–617 (2012)

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. CoRR abs/1705.09811 (2017). http://arxiv.org/abs/1705.09811

23. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9, 365–385 (1991)

24. Beck, H., Dao-Tran, M., Eiter, T.: Answer update for rule-based stream reasoning.
In: Yang, Q., Wooldridge, M. (eds.) Proceeding of 24th International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, pp. 2741–2747. AAAI Press/IJCAI
(2015)

25. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preußischen Akademie der Wissenschaften, phys.-math. Klasse, pp. 42–65, 57–
71, 158–169 (1930)

26. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

27. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a non-
monotonic stream reasoning system for the semantic web. In: Faber, W., Lembo,
D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39666-3 23

28. Mileo, A., Dao-Tran, M., Eiter, T., Fink, M.: Stream reasoning. In: Liu, L., Özsu,
M.T. (eds.) Encyclopedia of Database Systems, 2nd edn. Springer, New York
(2017). https://doi.org/10.1007/978-1-4899-7993-3 80715-1

29. Pearce, D.: Equilibrium logic. Annals Math. Artif. Intell. 47(1–2), 3–41 (2006)
30. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and

adaptive approach for unified processing of linked streams and linked data.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 24

31. Phuoc, D.L., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware
framework for scalable management of linked streams. J. Web Sem. 16, 42–51
(2012)

32. Woltran, S.: Characterizations for relativized notions of equivalence in answer
set programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 161–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30227-8 16

33. Zaniolo, C.: Logical foundations of continuous query languages for data streams.
In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 177–189.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32925-8 18

http://arxiv.org/abs/1705.09811
https://doi.org/10.1007/978-3-642-39666-3_23
https://doi.org/10.1007/978-1-4899-7993-3_80715-1
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-540-30227-8_16
https://doi.org/10.1007/978-3-540-30227-8_16
https://doi.org/10.1007/978-3-642-32925-8_18

Network Analysis of the Science of Science:
A Case Study in SOFSEM Conference

Antonia Gogoglou1(B), Theodora Tsikrika2, and Yannis Manolopoulos1

1 Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece
{agogoglou,manolopo}@csd.auth.gr

2 Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
theodora.tsikrika@iti.gr

Abstract. A rising issue in the scientific community entails the iden-
tification of temporal patterns in the evolution of the scientific enter-
prise and the emergence of trends that influence scholarly impact. In
this direction, this paper investigates the mechanism with which citation
accumulation occurs over time and how this affects the overall impact
of scientific output. Utilizing data regarding the SOFSEM Conference
(International Conference on Current Trends in Theory and Practice of
Computer Science), we study a corpus of 1006 publications with their
associated authors and affiliations to uncover the effects of collaboration
network on the conference output. We proceed to group publications into
clusters based on the trajectories they follow in their citation acquisition.
Representative patterns are identified to characterize dominant trends of
the conference, while exploring phenomena of early and late recognition
by the scientific community and their correlation with impact.

Keywords: Scientometrics · Bibliographic data
Time series clustering · Trends

1 Introduction

With the extensive recording of scientific endeavors in large scale online
databases and a rising interest in assessing scientific impact, the “science of sci-
ence” [1] has attracted significant attention. However, the age old question in the
quantification and evaluation of scientific impact still remains: Does a pattern
for success exist and what can cause a publication or scholar to stand out? First,
it is necessary to quantify success effectively and then investigate the process
that leads to high performance levels. Since the seminal work of Eugene Garfield
[10], the acknowledgment received by peers in the form of citations serves as the
most straightforward measure for representing visibility and recognition by one’s
cohorts; therefore it is the most widely used metric for popularity. Even though
many different approaches exist for measuring citations and correlating them
with impact [20], the timing of each received citation is also of high importance.
How do citations accumulate? Is the process unique for each individual or are
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 94–108, 2018.
https://doi.org/10.1007/978-3-319-73117-9_7

Network Analysis of the Science of Science 95

there identifiable trends and, if so, how do they relate to impact? What is the
role of collaboration in citation acquisition?

Across different scientific disciplines, countries and performance levels, the
process of accumulating citation varies widely. Efforts have focused on profiling
scholars and their publications to compartmentalize their growth and identify
similarities amongst seemingly unrelated scientific entities (e.g. publications from
different authors or time periods). In [4] an extensive study of Computer Science
publications revealed six dominant categories based on their citation attraction
process and associated this categorization with year of publication, publishing
venue and topological features of the citation network. At author level, in [11],
five scholarly profiles were distinguished for Computer Scientists in terms of
temporal evolution and their overall impact was correlated with frequency of
publications (“publish or perish effect” [8]). Grouping of scientific entities in
profiles proves to be of assistance to the estimation of future impact evolution
[3,7], since past behavior may not only determine current but also future status.
Given the diversity of observed profiles, building a specialized prediction model
for each profile can produce more accurate predictions.

Modeling citation trajectories as spatio-temporal objects can shed light into
the process that leads to success. More specifically, the citation time series of
a paper reveals whether the number of citations increases steadily, or it satu-
rates after some time, or whether the paper seems to receive a belated citation
explosion. Citation time series have been utilized for identifying scientific break-
throughs [17,21], while entire citation networks have been studied accounting
for temporal degeneracy [5]. Focusing specifically on the timing of citation shifts
[9], citation cascades have been associated with paradigm shifting in scientific
discoveries [15]. These cascading events were also found to reveal unique pat-
terns, such as the “sleeping beauty” effect [13] where a publication exhibits a
long hibernation period before receiving recognition or early discoveries, where
a citation boost occurs soon after publication [6]. It turns out that these distin-
guishing citation patterns do not constitute an isolated scarce phenomenon, but
occur often in science highly affecting careers, future visibility and even award
giving or fund allocation.

The real challenge in these efforts is to determine a trend given the diversity
of publishing behaviors that arise in science. Essentially, fair comparisons need
to be computed amongst publishing and citing patterns of scientists of different
age and background in different time periods. In this work, we attempt to tackle
this challenge and contemplate the following research questions:

– What is the dominant trend in the temporal evolution of publications in e.g.
a particular conference? Are they steady, rising or decaying over time?

– When does the peak of citations occur for most publications and does
increased output mean deviation from trends?

– And finally, is there a correlation between these temporal patterns and the
total output or other academic features (e.g. affiliations)?

To address the aforementioned questions, we contemplate the temporal pop-
ularity dynamics of the citation curves for individual publications associated

96 A. Gogoglou et al.

with the SOFSEM conference1. We conduct a bibliometric analysis of the con-
ference records and identify prominent participants, frequent contributors and
associated communities. Next, we extract citation curves from the historical
data of the conference; a citation curve is defined as the set of points that rep-
resent citations acquired at given time steps (e.g. yearly). We attempt to fit
these curves into representative profiles, while characterizing the members in
each profile according to their collective output, set of authors, and associated
affiliations. Indeed, our goal is not to perfectly model the popularity evolution of
all possible trajectories, but rather capture the most prevalent tendencies based
on shape similarity, regardless of differences in amplitude and phase. We build
upon similar efforts that address online content growth as a time series pattern
mining problem studying how different pieces of user generated content com-
pete for attention in mircoblogs (e.g. Twitter) [22]. Apart from the shape of the
total curve, we additionally micro-analyze the timing of shifts in the time series
of citations to comprehend the mechanism causing citation boosts and how it
relates to the total impact.

The rest of the paper is organized as follows: Sect. 2 describes the process for
collecting the data, while Sect. 3 provides an overview of our bibliometric analysis
for the SOFSEM conference. Section 4 focuses on the temporal evaluation of
publications and Sect. 5 concludes the article.

2 Data Acquisition

SOFSEM (SOFtware SEMinar) was first held in 1974 as a local Czechoslovakian
event to bring together theorists and practitioners of computing. Since 1995 it
has been steadily evolving into a fully-fledged annual multidisciplinary interna-
tional conference on Current Trends in Theory and Practice of Informatics with
participants from multiple European countries including UK, France, Germany,
and Spain. For the next 21 years, the conference location has alternated between
Czech Republic and Slovakia, while in 2017 it was first held in a different loca-
tion (Limerick, Ireland). Since 1995, the conference proceedings have featured
in the Lecture Notes in Computer Science (LNCS) series by Springer.

To obtain the SOFSEM 1995–2017 publication data, the DBLP XML dump
[14] (as downloaded on June 23, 2017) was processed using appropriate XQuery
queries that featured the “conf/sofsem” keyword. This led to the collection
of 1027 publication titles in the main SOFSEM proceedings (i.e., excluding
papers/posters published in the SOFSEM Student Research Forum proceed-
ings) over 22 years2, resulting in an average of 47 publications per year. The
next step was to gather metadata and citation records on these publications.

Regarding the citation data, many online data sources are available, either
proprietary, such as the Web of Science3 by Clarivate Analytics and Scopus4

1 https://link.springer.com/conference/sofsem.
2 The SOFSEM 2003 proceedings are not listed in DBLP and thus omitted from this

study.
3 https://apps.webofknowledge.com/.
4 https://www.scopus.com/.

https://springerlink.bibliotecabuap.elogim.com/conference/sofsem
https://apps.webofknowledge.com/
https://www.scopus.com/

Network Analysis of the Science of Science 97

by Elsevier, or open source ones, such as Google Scholar5 and Microsoft Aca-
demic6. Each follows a different data collection policy that affects both the pub-
lications covered and the number of citations found, while differences in their
coverage may affect the assessment of scholarly impact metrics [12]. For the
purposes of our analysis, we focused on freely available databases that do not
require subscriptions and we opted for the newly introduced Beta 2.0 version
of Microsoft Academic. Even though Google Scholar also offers wide coverage
of citation records, Microsoft includes a more structured collection of scientific
entities (conferences, journals, author and institutional profiles). Therefore, we
queried its database for the publication titles collected from DBLP adding the
keyword SOFSEM, since publications with the same title are often published
later on in other venues (e.g. journals) as well. Additionally, Microsoft Academic
offers author profiles which alleviates author name disambiguation issues that
often arise in other citation databases. Out of the original publication set, 1006
publication titles (98%) were identified in Microsoft Academic and their publi-
cation year, authors with related affiliations, as well as yearly citation records
were obtained.

3 Bibliometric Analysis

First, we conduct a bibliometric analysis of the records collected to identify the
most prominent participants in the conference over the years, the diversity of
participants and their institutions and explore the dynamics of collaboration
amongst them. Table 1 illustrates the highest ranking publication based on var-
ious citation rates (total, average and peak), while Tables 2 and 3 illustrate,
respectively, authors and institutions with the highest participation rates in the
conference and the biggest impact, as measured by the total citations acquired
by their publications in SOFSEM. An interesting observation in the selected
publication titles is that the ones with the highest total citation count are not
necessarily the ones that received the biggest boost in citations or the ones with
a steady average citation rate over the years. This leads us to the realization
that different citation patterns can lead to increased overall impact. Another
intriguing finding regarding authors and their affiliated institutions is that high
productivity, meaning a high participation rate, does not guarantee a higher
impact level. Therefore the question rises, what makes an author stand out in
this conference?

To explore the presence of each author amongst their collaborators and the
effects of it on their impact, we created the co-authorship network that is rep-
resented as an undirected graph where nodes correspond to authors and edges
correspond to a co-authored publication. The resulting graph is depicted in Fig. 1
filtered by size and color based on two centrality metrics: degree and betweeness
centrality. Degree centrality is computed by counting the neighbors of each node,
whereas betweeness centrality is equal to the number of shortest paths from all
5 https://scholar.google.com.
6 http://academic.research.microsoft.com/.

https://scholar.google.com
http://academic.research.microsoft.com/

98 A. Gogoglou et al.

Table 1. Top rated publications in the SOFSEM proceedings.

Total citations

Chevaleyre et al.: A short introduction to computational social choice 2007 155

Appelt: WWW based collaboration with the BSCW system 1999 143

Rahman & Iliopoulos: Indexing factors with gaps 2007 136

Allauzen et al.: factor oracle: a new structure for pattern matching 1999 115

Bodlaender: Discovering treewidth 2005 115

Average citations

Chevaleyre et al.: A short introduction to computational social choice 2007 14

Lee et al.: Efficient group key agreement for dynamic TETRA networks 2007 13

Rahman & Iliopoulos: Indexing factors with gaps 2007 12

Navigli: A quick tour of word sense disambiguation 2012 11

Dolog: Designing adaptive web applications 2008 8

Citations peak

Lee et al.: Efficient group key agreement for dynamic TETRA networks 2007 34

Chevaleyre et al.: A short introduction to computational social choice 2007 28

Rahman & Iliopoulos: Indexing factors with gaps 2007 22

Appelt: WWW based collaboration with the BSCW system 1999 20

Navigli: A quick tour of word sense disambiguation 2012 16

Table 2. Most prolific and cited authors

Publications # Citations

Mária Bieliková 11 Yann Chevaleyre 155

Costas S. Iliopoulos 7 Ulle Endriss 155

Shunsuke Inenaga 7 Nicolas Maudet 155

Friedrich Otto 7 M. Sohel Rahman 152

Henning Fernau 6 Costas S. Iliopoulos 146

Table 3. Most prolific and cited institutions

Publications # Citations

Charles University in Prague 64 ETH Zurich 662

Slovak Univ. of Technology in Bratislava 50 King’s College London 449

University of Latvia 49 University of Amsterdam 392

Masaryk University 47 University of Latvia 318

ETH Zurich 40 Lamsade (Univ. Paris-Dauphine) 316

Network Analysis of the Science of Science 99

Fig. 1. Visualization of the SOFSEM co-authorship network, with darker colored nodes
representing high number of authored publications and bigger sized nodes representing
higher betweeness centrality values.

nodes to all others that pass through that specific node (i.e. author). Closeness
centrality was also calculated for the participating authors, which is the mean
distance from a node to others. For our co-authorship graph, as it contained
a number of disconnected nodes, we utilized the harmonic mean to calculate
representative values for the closeness centrality [18]. Essentially a high degree
centrality indicates a scientist with a large number of co-authors, while betwee-
ness centrality gives highest values to individuals through whom information is
more likely to pass, i.e. they bridge different groups of collaborators. Closeness
centrality, in turn, highlights the actors who will be able to contact easily all
other members of the network, meaning they share many common collaborators
with other participants. As seen in Fig. 1, a large number of small author com-
munities appear that are seemingly disconnected from the rest of the network.
We observe though some densely connected groups formed around nodes with
high betweeness centrality further indicating these nodes’ level of influence.

100 A. Gogoglou et al.

Fig. 2. Co-authorship network based on the countries of the authors’ affiliations.

We also performed a similar analysis on a higher level of granularity by con-
sidering the co-authorship network where the nodes correspond to the countries
of the authors’ affiliations and edges to the co-authored publications. The ana-
lyzed SOFSEM publications were collaboratively produced by authors affiliated
with institutions in 55 countries. Figure 2 shows the collaborations between the
different countries in the SOFSEM community and depicts 51 countries and 158
edges. The most prolific country in terms of publications (Germany) is also the
most extrovert with the most collaborations. On the other hand, the second
most prolific country in terms of publications authored (Czech Republic) is fifth
in terms of collaborations, indicating a more conservative approach.

Apart from collaboration relationships, we identify the set of authors that
have consistently participated in SOFSEM and received high recognition to dis-
tinguish the patterns that led to their increased status. The citation time series
of the selected authors are included in Table 4 along with their closeness and
betweeness centrality values. The selected scientists are ranked in descending
order of publication number (size of citation vector) in SOFSEM conference. As
we observe, they appear to follow very different citation patterns, with some
achieving high boosts in citations (e.g. Keith G. Jeffrey) while others display-
ing a moderate but steady rate (e.g. Michal Barla). However, the majority of

Network Analysis of the Science of Science 101

the selected prominent scientists share high values in betweeness centrality indi-
cating that obtaining strategic collaborations with scientists from diverse co-
authorship groups and bridging them together is the most effective pattern for
overall increased visibility and popularity. On the other hand, establishing mul-
tiple co-authorship relationships (higher closeness centrality) appears to have
little effect on impact.

Table 4. Citation records, closeness and betweeness centrality values for authors with
more than 2 SOFSEM publications and more than 10 citations overall.

Author name Citation vector Closeness
centrality

Betweeness
centrality

Costas S. Iliopoulos [136, 1, 11, 1, 0, 0, 16] 1.25 22

Keith G. Jeffrey [143, 1, 0, 2, 0] 1.00 12

Hans L. Bodlaender [115, 1, 0, 0, 4] 1.00 17

Juraj Hromkovi [0, 11, 56, 0, 5] 1.25 45

Petr Jancar [12, 0, 13, 30] 1.30 3

Michal Barla [6, 7, 13, 20] 2.00 74.3

Hans-Joachim Bckenhauer [1, 11, 56, 1] 1.00 12.5

Nieves R. Brisaboa [0, 17, 39] 1.80 9

Oscar Pedreira [0, 17, 39] 1.00 22

Michal Tvaroek [6, 13, 20] 2.60 6

Maxime Crochemore [115, 11, 1] 1.00 9

Wojciech Rytter [0, 11, 27] 1.42 1

Johannes Uhlmann [17, 5, 12] 1.40 1

Ngoc Thanh Nguyen [27, 5, 1] 1.00 3

Next, we will explore the patterns that lead to high impact at publication
level and how they correspond to author impact.

4 Temporal Dynamics of Scholarly Impact

Time-series sequences, such as citation curves, advance with respect to two axis,
time and scale (or magnitude). We propose two different approaches to study a
set of such sequences and identify temporal patterns: one is macroscopic focus-
ing on the shape of the resulting curves regardless of citation scale or timing of
shifts, while the other one is microscopic contemplating the relationship between
magnitude of citations and the timing of occurrence. The result of the first app-
roach is a set of profiles of publications going through similar stages of impact.

102 A. Gogoglou et al.

The second approach provides a different categorization of publications with
respect to the timing of their recognition and their aging process.

4.1 Publication Profiles

The need for clustering time series with scale- and shift-invariant methods has
emerged in multiple fields, such as business, social media, medicine, biology,
etc. [11,16], with the goal to identify and summarize interesting patterns and
correlations in the underlying data. In this work, we employ a recently proposed
time series clustering algorithm called K-spectral clustering (KSC) [22] that has
been utilized to discover common trends in the spread of online content. The KSC
algorithm groups times series based on the shape of the curve and thus respects
invariants of scale in the popularity axis and shifts in the time axis. That is, two
entities that have their popularity evolving according to similar processes (e.g.
linear growth) will be assigned to the same cluster by KSC, regardless of the
popularity values. KSC requires that all time series are comprised of the same
number of points.

0 1 2 3 4
Time

0.0

0.2

0.4

0.6

0.8

1.0

V
ie
w
s

(a) Cluster 0 for TS=5

0 1 2 3 4
Time

0.2

0.4

0.6

V
ie
w
s

(b) Cluster 1 for TS=5

0 1 2 3 4
Time

0.2

0.3

0.4

0.5

0.6

V
ie
w
s

(c) Cluster 2 for TS=5

0 5 10 15
Time

0.0

0.2

0.4

0.6

0.8

1.0

V
ie
w
s

(d) Cluster 0 for TS=20

0 5 10 15
Time

0.0

0.2

0.4

0.6

V
ie
w
s

(e) Cluster 1 for TS=20

0 5 10 15
Time

0.0

0.2

0.4

0.6

V
ie
w
s

(f) Cluster 2 for TS=20

Fig. 3. Citation patterns for the centroids of each of the three clusters for two different
time spans: short-term TS = 5 (top) and long-term TS = 20 (bottom).

Regarding the citation vectors, we represent each publication with a series of
t points each corresponding to the citations this particular publication acquired
in one particular year, starting from its publication year. Because publication

Network Analysis of the Science of Science 103

(a) Cluster 0 for TS=5 (b) Cluster 1 for TS=5 (c) Cluster 2 for TS=5

(d) Cluster 0 for TS=20 (e) Cluster 1 for TS=20 (f) Cluster 2 for TS=20

Fig. 4. Four examples of members from each of the three clusters for two different time
spans: short-term TS = 5 (top) and long-term TS = 20 (bottom).

ages vary from 1 to 22 for our given time period (1995–2017), we define four
time spans (t = TS) that correspond to the minimum age of the publications
included in each span and consider only the first t years of a publication’s life.
We consider TS = 5, 10, 15 and 20 years so that patterns for both long- and
short-term impact can be studied. A predefined number of clusters k also needs
to be determined and in our case we opted for k = 3 based on optimal inter-
and intra-cluster distance amongst publications.

The implementation of KSC we adopted7 closely resembles the classic k-
means but with a different definition for the distance metric. The similarity
between two vectors x and y (in our case of citations) is calculated as follows:

d(x, y) = min
a,q

||x − αy(q)||
||x|| (1)

where y(q) represents the shift of vector y by q units and ||.|| the l2-norm [2]. In
the above dual minimization problem there is no straightforward way to compute
q; therefore, we follow a heuristic proposed in the original paper [22] that includes
searching for the optimal value of q in the range of all integers (−t, t), where
t is the size of the time series, as mentioned above. Given a fixed q, the exact
solution for α can be obtained by computing the minimum distance d from Eq. 1.

7 http://github.com/flaviovdf/pyksc.

http://github.com/flaviovdf/pyksc

104 A. Gogoglou et al.

By shifting citation vectors to find optimal values for the distance metric,
we were able to match publications to three prevalent patterns. The interesting
finding here is that these patterns, as represented by the cluster centroids, appear
to be similar over time, meaning that analogous patterns are identified when
contemplating either the first 5 or 20 years of a publication’s history. As can
be seen in Fig. 3, the three patterns can be summarized as one with a steep
peak (referred to as cluster 0), another one with a peak followed by a more
smooth decay (cluster 1) and, finally, a curve with two prominent peaks and a
relatively steady acquisition rate (cluster 2). Figure 4 displays four examples of
citation trajectories from each cluster for two selected time spans (TS = 5 and
20 years).

How do these patterns relate to impact? Fig. 5 depicts the distribution of
total citation count for each cluster over all time spans. A clear pattern here is
that cluster 2 is associated with higher citation counts, whereas cluster 0 that
includes single peak publications leads to lower overall impact. Therefore, one
can assume that a single boost of citations does not relate to actual impact,
whereas a pattern of multiple peaks amongst a steady rate of citations indicates
an influential publication over time. But does the timing of the peak/s matter?

Fig. 5. Boxplots of total citation counts for all three clusters for each of the four time
spans; e.g. C0T5 represents cluster 0 at time span equal to 5 years.

Network Analysis of the Science of Science 105

4.2 Publication Recognition: Timing and Aging

In this subsection, we explore the timing of citation shifts and the aging pro-
cess of publications. Studies examining citation patterns have identified different
behaviors of early recognition or long hibernation periods for publications. As
introduced in [19], a metric to calculate the obsolescence of publications, without
examining each citation curve individually to identify shifts, is defined as:

Gs = 1 − 2 × [n × C1 + (n − 1) × C2 + ... + Cn] − C

C × n
(2)

where n is the age of a publication, C is the total number of citations, and
Ci corresponds to the citations until the ith year. We refer to Gs as the aging
coefficient and dependent on its calculated values, we can assign publications to
groups related to the timing of their recognition.

For the purposes of our study and given the citation rates observed in our
dataset, we employ the following thresholds to define three distinct timing cat-
egories for publications with “extra-ordinary” citation trajectories:

– 0.1 < Gs < 1 and C > 10 indicates a sleeping beauty, meaning a publication
that received recognition after a long period of time;

– Gs < 0 and C > 10 indicates a flash in a pan, meaning a publication that
received a citation boost soon after its release; and

– 0 < Gs < 0.05 and C > 10 indicates an aging gracefully publication, meaning
it maintains a steady citation rate for longer periods.

Table 5 contains information on publications categorized in one of the above
groups based on their aging coefficient. We observe highly prestigious institutions
and authors in all three categories indicating that the timing of impact does not
directly relate to the size of impact. Moreover, one of the most seminal publica-
tions of the conference, “A Short Introduction to Computational Social Choice”,
managed to acquire citations steadily leading to a graceful aging period, while
another highly popular publication, “Automatic Testing of Object-Oriented Soft-
ware”, appears to have acquired 59 citations in total with the majority of them
occurring soon after publication. On the other hand, a comprehensive survey
by A. Goldberg, “Point-to-Point Shortest Path Algorithms with Preprocessing”,
did not rise in popularity until several years after publication. Looking into the
citation ranges and the categories that mostly populate them in Fig. 6, we fur-
ther realize that publications from all categories can obtain high citation counts,
with a slight competitive edge attributed to the flashes in a pan category.

106 A. Gogoglou et al.

Table 5. Examples of publications belonging to each timing category based on the
timing of their recognition including title, authors and affiliations.

Category Titles and # of citations Authors

Flashes in a pan Automatic testing of
object-oriented software (59)

Bertrand Meyer
Ilinca Ciupa
Andreas Leitner
Lisa Ling Liu
(ETH Zurich)

Sample method for
minimization of OBDDs (27)

Anna Slobodova
(Comenius University in Bratislava),
Christoph Meinel
(Universitä Potsdam)

Improving watermark resistance
against removal attacks using
orthogonal wavelet
adaptation (40)

Jan Stolarek
(University of Edinburh),
Piotr Lipiski
(University of Edinburh)

Explicit connectors in
component based software
engineering for distributed
embedded systems (16)

Dietmar Schreiner
(Vienna University of Technology),
Karl M. Gschka
(Vienna University of Technology)

Sleeping
beauties

On the NP-completeness of
some graph cluster
measures (50)

Jiri Sima
(Academy of Sciences Czech Republic),
Satu Elisa Schaeffer
(Helsinki University of Technology)

Domain engineering: a software
engineering discipline in need of
research (11)

Dines Bjrner
(Technical University of Denmark)

Fuzzy set theory and medical
expert systems: survey and
model (14)

Nguyen Hoang Phuong
(Academy of Sciences Czech Republic)

Point-to-point shortest path
algorithms with
preprocessing (25)

Andrew V. Goldberg
(Microsoft)

Aging
gracefully

A short introduction to
computational social
choice (155)

Yann Chevaleyre (Lamsade),
Ulle Endriss
(University of Amsterdam),
Jrme Lang
(Centre national de la recherche scien-
tifique),
Nicolas Maudet (Lamsade)

Complexity of model checking
for modal dependence logic (21)

Johannes Ebbing
(Leibniz University of Hanover),
Peter Lohmann
(Leibniz University of Hanover)

Spatial selection of sparse
pivots for similarity search in
metric spaces (39)

Oscar Pedreira
(University of A Corua),
Nieves R. Brisaboa
(University of A Corua)

Recent challenges and ideas in
temporal synthesis (13)

Orna Kupferman
(Hebrew University of Jerusalem)

Network Analysis of the Science of Science 107

0−10 10−15 15−20 20−25 25−30 30−35 35−40 40−45 45−50 50−70 70−90
0

10

20

30

40

50

Citation ranges

N
um

be
r o

f p
ub

lic
at

io
ns

Flashes in a pan
Sleeping Beauties
Flats

Fig. 6. Number of publications from each timing category that belong to various cita-
tion ranges.

5 Conclusions

In this work, we conducted a bibliometric analysis of publication and citation
records of the SOFSEM conference to determine the mechanism that leads
to high impact scientific output. Exploring the effects of affiliations and co-
authorship we realized that scientists bridging together different communities
through collaboration are more likely to produce popular publications. We then
focused on identifying citation patterns over the years and an interesting finding
was that there exist three distinct trajectory patterns in citation acquisition for
both long- and short-term impact irrespective of timing and magnitude of pop-
ularity. Going one step further, we revealed publications with different timing in
receiving recognition and concluded that the timing of citation boosts does not
correlate to impact in the same degree as the overall shape of the citation time
series. Therefore, increased popularity is mostly achieved by publications that
obtain multiple citation sprees and manage to age gracefully over time.

References

1. Börner, K., Dall’Asta, L., Ke, W., Vespignani, A.: Studying the emerging global
brain: analyzing and visualizing the impact of co-authorship teams. Complexity
10(4), 57–67 (2005)

2. Bourbaki, N., Eggleston, H., Madan, S.: Topological Vector Spaces. Éléments de
mathématique. Springer, Heidelberg (1987)

3. Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., Mukherjee, A.: Towards a
stratified learning approach to predict future citation counts. In: Proceedings 14th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), pp. 351–360 (2014)

4. Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., Mukherjee, A.: On the catego-
rization of scientific citation profiles in computer science. Communi. ACM 58(9),
82–90 (2015)

108 A. Gogoglou et al.

5. Clough, J.R., Evans, T.S.: Time and citation networks. In: Proceedings 16th Con-
ference of the International Society of Scientometrics & Informetrics (ISSI) (2015)

6. Costas, R., van Leeuwen, T.N., van Raan, A.F.: Is scientific literature subject to
a ‘sell-by-date’? A general methodology to analyze the “durability” of scientific
documents. J. Am. Soc. Inf. Sci. Technol. 61(2), 329–339 (2010)

7. Davletov, F., Aydin, A.S., Cakmak, A.: High impact academic paper prediction
using temporal and topological features. In: Proceedings 23rd ACM International
Conference on Conference on Information & Knowledge Management (CIKM), pp.
491–498 (2014)

8. Publish or perish: Editorial. Nature 467, 252–252 (2010)
9. Egghe, L., Bornmann, L., Guns, R.: A proposal for a first-citation-speed-index. J.

Informetrics 5(1), 181–186 (2011)
10. Garfield, E.: The application of citation indexing to journals management. Curr.

Contents 33, 3–5 (1994)
11. Gonçalves, G.D., Figueiredo, F., Almeida, J.M., Gonçalves, M.A.: Characterizing

scholar popularity: a case study in the computer science research community. In:
Proceedings IEEE/ACM Joint Conference on Digital Libraries (JCDL), pp. 57–66
(2014)

12. Harzing, A., Alakangas, S.: Google scholar, scopus and the web of science: a longi-
tudinal and cross-disciplinary comparison. Scientometrics 106(2), 787–804 (2016)

13. Ke, Q., Ferrara, E., Radicchi, F., Flammini, A.: Defining and identifying sleeping
beauties in science. Proc. Natl. Acad. Sci. 112(24), 7426–7431 (2015)

14. Ley, M.: DBLP: some lessons learned. Proc. VLDB Endowment 2(2), 1493–1500
(2009)

15. Mazloumian, A., Eom, Y., Helbing, D., Lozano, S., Fortunato, S.: How citation
boosts promote scientific paradigm shifts and nobel prizes. PLoS ONE 6(5), 1–6
(2011)

16. Paparrizos, J., Gravano, L.: k-shape: efficient and accurate clustering of time series.
In: Proceedings ACM International Conference on Management of Data (SIG-
MOD), pp. 1855–1870 (2015)

17. Revesz, P.Z.: A method for predicting citations to the scientific publications of
individual researchers. In: Proceedings 18th International Database Engineering &
Applications Symposium (IDEAS), pp. 9–18 (2014)

18. Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic
centrality index. In: ASNA, No. EPFL-CONF-200525 (2009)

19. Sun, J., Min, C., Li, J.: A vector for measuring obsolescence of scientific articles.
Scientometrics 107(2), 745–757 (2016)

20. Wildgaard, L., Schneider, J.W., Larsen, B.: A review of the characteristics of 108
author-level bibliometric indicators. Scientometrics 101(1), 125–158 (2014)

21. Wolcott, H.N., Fouch, M.J., Hsu, E.R., DiJoseph, L.G., Bernaciak, C.A., Corri-
gan, J.G., Williams, D.E.: Modeling time-dependent and-independent indicators
to facilitate identification of breakthrough research papers. Scientometrics 107(2),
807–817 (2016)

22. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceed-
ings 4th ACM International Conference on Web Search and Data Mining (WSDM),
pp. 177–186 (2011)

Network Science and Parameterized
Complexity

The Parameterized Complexity of Centrality
Improvement in Networks

Clemens Hoffmann1, Hendrik Molter1, and Manuel Sorge1,2(B)

1 Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany
h.molter@tu-berlin.de

2 Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer Sheva, Israel

sorge@post.bgu.ac.il

Abstract. The centrality of a vertex v in a network intuitively cap-
tures how important v is for communication in the network. The task of
improving the centrality of a vertex has many applications, as a higher
centrality often implies a larger impact on the network or less trans-
portation or administration cost. In this work we study the parameter-
ized complexity of the NP-complete problems Closeness Improvement
and Betweenness Improvement in which we ask to improve a given
vertex’ closeness or betweenness centrality by a given amount through
adding a given number of edges to the network. Herein, the closeness of
a vertex v sums the multiplicative inverses of distances of other vertices
to v and the betweenness sums for each pair of vertices the fraction of
shortest paths going through v. Unfortunately, for the natural parame-
ter “number of edges to add” we obtain hardness results, even in rather
restricted cases. On the positive side, we also give an island of tractabil-
ity for the parameter measuring the vertex deletion distance to cluster
graphs.

1 Introduction

Measuring the centrality of a given vertex in a network has attracted the interest
of researchers since the second half of the 20th century [11], see Newman’s book
[16] for an overview. There are various interpretations of what makes a vertex
more central than another vertex in a network. Two popular measures for the
centrality of a vertex z are closeness centrality cz and betweenness centrality bz

[11]. They are based on the distances of the given vertex z to the remaining
vertices and on the number of shortest paths going through z, respectively.

MS supported by the People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agree-
ment number 631163.11 and the Israel Science Foundation (grant no. 551145/14).

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 111–124, 2018.
https://doi.org/10.1007/978-3-319-73117-9_8

112 C. Hoffmann et al.

cz =
∑

u∈V
d(u,z)<∞

u�=z

1
d(z, u)

bz =
∑

s,t∈V
s �=t;s,t�=z

σst �=0

σstz

σst

Herein, d(s, t) is the distance between two vertices s and t, that is, the number of
edges on a shortest s-t path, σst is the number of shortest s-t paths, and σstz is
the number of shortest s-t paths that contain z. Intuitively, if z has many close-
by vertices, then its closeness centrality is large, and if z is on shortest paths
between many vertices, then its betweenness centrality is large. The closeness
centrality as defined above is also known as the harmonic centrality.1

Analyzing vertex centrality in networks has been studied intensively (e.g.
[4,11,16–18]) and comprises a diverse set of applications in, e.g., biological [21],
economic [19], and social networks [11].

Some examples: A transport company might be interested in placing its
depots centrally such that the transportation costs are rather low. The value
of an airport might be influenced by its centrality in the flight-connection net-
work between airports. The most central nodes in a computer network may be
useful for determining the locations of data centers where the routes are short
and peering costs are low. In social networks, economically important influencers
are presumably more central than other users.

Since it is so desirable to find vertices with large centrality in a graph, vertices
have incentive to improve their own centrality. E.g., a social network member
might want to increase her impact on other users by increasing her own cen-
trality, or an airport operator wants to increase the appeal of her airport for
investors (as measured by the centrality). In both cases, natural operations are
to introduce new links into the network, i.e., to make new acquaintances or incen-
tivise airlines to offer certain routes. In this work, we hence study the complexity
of improving the centrality of a given vertex by introducing new links into the
network. Formally, the computational problems that we study are defined as
follows.

Closeness (Betweenness) Improvement

Input: An undirected, unweighted graph G = (V,E), a vertex z ∈ V , an integer
k and a rational number r.

Question: Is there an edge set S, S ∩ E = ∅, of size at most k such that cz ≥ r
(bz ≥ r) in G + S := (V,E ∪ S)?

We also say that an edge set S as above is a solution.
The above two problems were introduced by Crescenzi et al. [5] and D’Angelo

et al. [8], respectively, who gave approximation algorithms and showed that their
empirical approximation ratios are close to one on random graphs with up to 100
vertices and up to 1000 vertices, respectively. In a corresponding presentation
Crescenzi et al. [5] noted that finding the optimal solution for comparison was

1 There are several definitions for closeness centrality in the literature. We use the
present one because it is natural [16] and it was used in closely related work [5].

The Parameterized Complexity of Centrality Improvement in Networks 113

very time consuming. Here, we study the parameterized complexity of Close-
ness Improvement and Betweenness Improvement with the ultimate goal
to design efficient exact algorithms. That is, we aim to find fixed-parameter
(FPT) algorithms with running time f(k) · nO(1), where n is the input length
and k is some secondary measure, called parameter, or we show W[1] or W[2]-
hardness, meaning that there are presumably no FPT algorithms.

Our Results. Our results for Closeness Improvement are as follows. From two
reductions from Dominating Set it follows that Closeness Improvement is
NP-hard on (disconnected) planar graphs with maximum degree 3 and W[2]-hard
with respect to k, the number of added edges, on disconnected split graphs, for
example (Corollary 2). Split graphs are a simple model of core-periphery struc-
ture, which occurs in social and biological networks [6]. In particular, we can
derive that a straightforward nO(k)-time algorithm for Closeness Improve-
ment is asymptotically optimal. Motivated by the fact that social networks
often have small diameter in conjunction with small H-index [9], we show that
Closeness Improvement remains NP-hard on (connected) graphs of diame-
ter at most 6 and H-index 4 (Theorem 2). On the positive side, we show that
Closeness Improvement allows a fixed-parameter algorithm with respect to
the parameter distance to cluster graph, that is, the smallest number of vertices
to delete in order to obtain a cluster graph. Directed Closeness Improve-
ment is NP-hard and W[2]-hard with respect to k even if the input graph is
acyclic (Theorem 4) or has diameter 4 (Theorem 5).

For Betweenness Improvement the picture is similar. It is W[2]-hard
with respect to k (Theorem 6) also in the directed case (Theorem 8), NP-hard
for graphs of H-index 4 (Corollary 5), and Betweenness Improvement is f
ixed-parameter tractable with respect to k and the distance to cluster graph
combined. Due to space constraints, results marked by ∗ are deferred to a full
version.

Preliminaries and Notation. We use standard notation from graph theory [20].
Throughout, we refer to the number of vertices as n and to the number of edges
(arcs) as m. For two vertices u, v we denote by d(u, v) the distance between u
and v, i.e. the number of edges on a shortest path from u to v. If u and v are not
connected by a path, then d(u, v) = ∞. A split graph allows for a partition of the
vertex set into a clique and an independent set. In a cluster graph each connected
component is a clique. The diameter of a graph is ∞ if it is disconnected and
the maximum distance of any two vertices otherwise. The H-index of a graph is
the largest integer h such that there h vertices of degree at least h.

We also use standard notation from parameterized complexity [7]. Impor-
tantly, a parameterized reduction from a parameterized problem L ⊆ Σ∗×N with
parameter k to a parameterized problem L′ ⊆ Σ∗ × N with parameter k′ is a
g(k)·|I|O(1)-time computable function f : Σ∗×N → Σ∗×N : (I, k) → (I ′, k′) such
that k′ ≤ h(k) for some computable function h and (I, k) ∈ L ⇔ (I ′, k′) ∈ L′.

114 C. Hoffmann et al.

The Exponential Time Hypothesis roughly states that satisfiability of a
Boolean formula in conjunctive normal form with clauses of size 3 cannot be
decided in 2o(n) time, see Impagliazzo and Paturi [13], Impagliazzo et al. [14].

2 Closeness Centrality

In this section, we present algorithmic and hardness results for Closeness
Improvement. First, we make an important observation that will help us in
our proofs. Intuitively, we show that to improve the closeness of a vertex by
adding edges, it always makes sense to add only edges adjacent to that vertex.
From this observation we get an XP algorithm with respect to k.

Lemma 1 (∗). Let I = (G = (V,E), z, k, r) be a Closeness Improvement
instance. If I is a Yes-instance, then cz can be increased to r by adding at most
k edges, all of which contain z.

Corollary 1. Closeness Improvement is solvable in O(nk · (n + m)) time
where k is the number of edge additions, and thus is in XP with respect to k.

Hardness Results. Next, we present several hardness results for Closeness
Improvement which are based on two reductions from Dominating Set. From
results on Dominating Set we can then infer corresponding results for Close-
ness Improvement. In particular, we show that the nO(k)-time algorithm from
Corollary 1 is essentially optimal unless the Exponential Time Hypothesis is
false.

Theorem 1 (∗). Closeness Improvement is NP-hard and W[2]-hard with
respect to the number k of edge additions (on disconnected graphs). Moreover,
unless the Exponential Time Hypothesis fails, Closeness Improvement does
not allow an algorithm with running time f(k) · no(k).

Corollary 2 (∗). Closeness Improvement is

1. NP-hard even on disconnected planar graphs with maximum degree 3,
2. NP-hard and W[2]-hard on disconnected split graphs, and
3. NP-hard and W[2]-hard on disconnected graphs in which each connected com-

ponent has diameter two.

Applications in social networks, which have both small diameter and small H-
index2 [9], motivate the following more special hardness result where both these
values are small constants. It also shows that Closeness Improvement remains
hard on connected graphs, which was left open by Theorem1.

Theorem 2. Closeness Improvement is NP-hard and W[2]-hard with
respect to the parameter number k of edge additions even on connected graphs
with diameter 4. Moreover, Closeness Improvement is NP-hard even on
graphs which simultaneously have diameter 6 and H-index 4.
2 Recall that the H-index of a graph is the largest integer h such that there are h

vertices of degree at least h.

The Parameterized Complexity of Centrality Improvement in Networks 115

u1 u2

u3 u4

u5

u6

u1 u2

u3 u4

u5

u6

z

x 1

x 2

x 3

x 4

x 5

x 6

y 1

y 2

y 3

y 4

y 5

y 6

Fig. 1. Parameterized reduction from Dominating Set to Closeness Improvement
on graphs with diameter 4. Left: A Dominating Set instance I = (G, k = 2). The red
colored vertices u2 and u3 form a solution for I. Right: The constructed Closeness
Improvement instance (I ′ = G′, z, k′ = 2, 2n + k

2
). The red, dashed edges form a

solution for I ′. (Color figure online)

Proof. The proof is by a parameterized reduction from two variants of Domi-
nating Set, detailed below. Let I = (G = (V,E), k ∈ N) be a Dominating
Set instance where V = {u1, . . . , un}. We construct a Closeness Improve-
ment instance I ′ = (G′ = (V ′, E′), z, k, 2n + k

2) as follows (see Fig. 1): Given
the input graph G, we add 2n vertices x1, . . . , xn, y1, . . . , yn such that each
vertex xi is adjacent to ui and yi. Furthermore, we add z and add edges
between z and each y1, . . . , yn. Formally, V ′ = V ∪ {xi, yi | 1 ≤ i ≤ n} ∪ {z}
and E′ = E ∪ {{ui, xi}, {xi, yi}, {z, yi} | 1 ≤ i ≤ n}. We partition V ′ into the
subsets Y ′ := {y1, . . . , yn},X ′ := {x1, . . . , xn}, and U ′ := {u1, . . . , un}. Note
that the vertices in Y ′ have distance 1 to z, the vertices in X ′ have distance 2 to
z and the vertices in U ′ all have distance 3 to z. This completes the construction
which can clearly be carried out in polynomial time.

Suppose the reduction is correct. To get NP-hardness and W[2]-hardness with
respect to k on diameter 4 graphs, we reduce from Dominating Set on graphs
of diameter two, which is NP-hard [1] and W[2]-hard with respect to k [15]. It
is not hard to see that the resulting graph G′ indeed has diameter 4. To get
NP-hardness on graphs with simultaneously diameter 6 and H-index 4, reduce
instead from Dominating Set on graphs G with maximum degree 4. By the
connections via xi, yi, and z, any two vertices of G are connected in G′ by a path
of length at most 6. Graph G′ has H-index 4, because it has maximum degree 4
apart from z. The correctness of the reduction is deferred to a full version. �
We note that it is not hard to show that Closeness Improvement is
polynomial-time solvable on graphs of diameter 2. The case of diameter 3 remains
open.

Algorithmic Result. Now we present an algorithm for Closeness Improve-
ment, which shows that the problem is fixed-parameter tractable when param-
eterized by the distance of the input graph to a cluster graph.

116 C. Hoffmann et al.

Theorem 3. Closeness Improvement can be solved in 22
2O(�) · nO(1) time,

where � is the vertex deletion distance of G to a cluster graph, and thus is in
FPT with respect to �.

Proof. Let (G, z, k, r) be a Closeness Improvement instance, where VVDS ⊂
V is a vertex set of size � such that GC = (VC , EC) := G − VVDS is a cluster
graph with the set of connected components C = {C1, . . . , Cs} which we also
call clusters. Since a cluster vertex deletion set VVDS of size � can be found in
O(1.92� · (n + m)) time if it exists [2,12], we may assume that VVDS is given. By
Lemma 1 we may assume that the edges in an optimal solution E∗ to (G, z, k, r)
all have endpoint z. Hence, in the following we denote by a solution V ′ the
endpoints different from z of the corresponding edge set. Any solution can thus be
divided into vertices in VVDS and those in V \VVDS. Let V ∗

VDS be the intersection of
an optimal solution V ∗ with VVDS. The first step in our algorithm is to find V ∗

VDS,
by trying all 2� possibilities. It remains to determine V ∗\VVDS. Intuitively, if there
are vertices which have the same neighborhood in VVDS and are in clusters that
also have the same neighborhood in VVDS, then each such vertex after the first
one does not help to shorten distances to z for any vertex except itself. Hence, if
we know that the optimal solution contains vertices in clusters both with some
specified neighborhood in VVDS, then we can assume that these vertices are
distributed among the largest clusters with that neighborhood. In the algorithm
we thus first determine for which neighborhoods in VVDS there are clusters and
vertices in these clusters in the optimal solution. Then we distribute the vertices
in the solution optimally among the chosen neighborhoods. The proof that this
yields an optimal solution is unfortunately technical and we need the following
notation.

We say that the signature sig(Ci) of a cluster Ci, i = 1, . . . , s, is the set of
neighbors in VVDS∪{z} of vertices in Ci, that is, the signature is {v ∈ VVDS∪{z} |
∃u ∈ Ci : {u, v} ∈ E}. Similarly, the signature sig(v) of a vertex w ∈ V \ VVDS

is N(v) ∩ (VVDS ∪ {z}). For some subset Vi ⊆ Ci of some cluster Ci ∈ C denote
by the signature sig(Vi) of Vi the tuple (sig(Ci), {sig(v) | v ∈ Vi}). Say also
that Ci is Vi’s cluster. Now the signature sig(V̂) of a solution V̂ is the set
{sig(Vi) | Ci ∈ C ∧ Ci ∩ V̂ = Vi �= ∅}. That is, the signature of V̂ encodes the
signatures of the clusters touched by V̂ along with, for each touched cluster,
the signatures of all vertices touched by V̂ in that cluster. Say that a vertex
subset Vj of some cluster Cj is eligible for some signature sig(Vi) of a vertex
subset Vi of a cluster Ci if sig(Vj) = sig(Vi). Accordingly, for some solution
V̂ with signature sig(V̂), say that a vertex subset Vi ⊆ Ci of some cluster Ci

is eligible for sig(V̂) if sig(Vi) ∈ sig(V̂). Finally, the reduct of a solution V̂ is
a subset V ′ ⊆ V̂ such that, for each cluster Ci ∈ C with V̂ ∩ Ci �= ∅ and
each vertex signature S ∈ {sig(v) | v ∈ V̂ ∩ Ci}, there is exactly one vertex
u ∈ V ′ ∩Ci with signature S. Observe that, if V ′ is the reduct of V̂ and V ′′ ⊇ V ′

is any superset of V ′ with |V ′′| = |V̂ |, then sig(V̂) = sig(V ′) ⊆ sig(V ′′) and the
closeness centrality of z achieved by V ′′ is at least the one achieved by V̂ .

Let S be the signature of some vertex subset of some cluster. Call a vertex
subset Vi ⊆ Ci of some cluster Ci ∈ C most potent for S if it is eligible for S

The Parameterized Complexity of Centrality Improvement in Networks 117

and among all vertex subsets of some cluster in C that are eligible for S we have
that Vi’s cluster is the largest. If the signature S is clear from the context, we
say that Vi is most potent.

Let V ∗ be the reduct of an optimal solution. We claim that there is an optimal
solution with reduct V ∗

2 with signature sig(V ∗
2) = sig(V ∗) such that, for each S ∈

sig(V ∗
2), there is a vertex subset Vj of some cluster contained in V ∗ that is most

potent among vertex subsets eligible for S. Assume the claim does not hold. Then
there exists the reduct V ∗

3 of some optimal solution such that V ∗
3 contains the

largest number of most potent vertex sets and at least one signature S ∈ sig(V ∗
3)

such that no vertex subset of some cluster which is most potent for S is contained
in V ∗

3 . Observe however, that some vertex subset Vi ⊆ Ci with sig(Vi) = S is
contained in V ∗

3 . Let Vj be most potent among vertex sets with signature sig(Vi)
and let V ∗

4 = (V ∗
3 \ Vi) ∪ Vj . Note that, sig(V ∗

4) = sig(V ∗
3) and, because of that,

each vertex in V \ (Ci ∪ Cj) has the same distance to z according to V ∗
3 and

to V ∗
4 . However, since |Ci| < |Cj |, sig(Vi) = sig(Vj), and since, for each vertex

signature in sig(Vi) there is at most one vertex in each of V ∗
4 and V ∗

3 with that
signature, more vertices have distance 2 to z according to V ∗

4 than to V ∗
3 . This is

a contradiction to V ∗
3 being the reduct of an optimal solution. Hence, the claim

holds. Thus, once we know the signature of an optimal solution, we know it is
optimal to take the most potent (according to that signature) vertex sets into
our solution.

Let V ∗ again be the reduct of an optimal solution. The remainder of V ∗ is
the subset of V ∗ resulting from removing for each S ∈ sig(V ∗) a most potent
vertex set Vj with signature sig(Vj) = S from V ∗ (note that the Vj ’s are present
without loss of generality by the previous claim).

We claim that there is some optimal solution with reduct V ∗
2 with sig-

nature sig(V ∗
2) = sig(V ∗) such that the remainder of V ∗

2 contains among all
vertex subsets of some cluster with a signature in sig(V ∗

2) those vertex sub-
sets in the largest clusters. Assume otherwise. Then there exists the reduct V ∗

3

of some optimal solution such that the remainder V ∗,R
3 of V ∗

3 contains some
Vi ⊆ Ci such that V ∗,R

3 ∩ Ci = Vi, and there is a cluster Cj and a vertex sub-
set Vj ⊆ Cj such that V ∗,R

3 ∩ Vj = ∅, sig(Vj), sig(Vi) ∈ sig(V ∗
3), and |Cj | > |Ci|.

Let V ∗
4 = (V ∗

3 \ Vi) ∪ Vj . Note that sig(V ∗
3) = sig(V ∗

4) and, because of that, each
vertex in V \ (Ci ∪ Cj) has the same distance to z according to V ∗

3 and to V ∗
4 .

By the same argument as in the previous claim, we obtain a contradiction to V ∗
3

being the reduct of an optimal solution. Hence, also this claim holds. Thus, once
we know the signature S of an optimal solution, we know it is optimal to take
into the remainder of the optimal solution those vertex subsets with a signature
in S that are contained in the largest clusters.

The algorithm to compute an optimal solution V ∗ is now as follows. Try
all possibilities for the intersection V ∗ ∩ VVDS. Next, try all possibilities for the
signature S of V ∗. Put into V ∗, for each S′ ∈ S, a vertex subset of some cluster
which is most potent for S′. Then, find the smallest vertex subsets of the clusters
which have some signature in S and add them to V ∗ in decreasing order of the
size of their cluster as long as |V ∗| ≤ k. Finally, add to V ∗ arbitrary vertices

118 C. Hoffmann et al.

until |V ∗| = k. This algorithm finds an optimal solution because at least one of
the possibilities checked above corresponds to an optimal solution and by the
claims above.

It remains to show the running time: There are at most 2� possibilities
for V ∗ ∩ VVDS. For each signature of a cluster Ci, of which there are at most 2�,
there are at most 22

�

possibilities for the set of vertex signatures of a subset
of Ci. Hence, the signature of V ∗ is the subset of a set of size 2� · 22

�

, mean-

ing that there are at most 22
2O(�)

possibilities for the signature of V ∗. Hence,

the algorithm checks at most 22
2O(�)

possibilities. To see that the cluster vertex
subsets added to V ∗ for each possibility can be computed in polynomial time,
observe that the it suffices to iterate over each cluster, find its signature and the
signature of its vertices and accumulate the largest ones into a dictionary data
structure indexed by the size of the clusters. �

Directed Closeness Improvement. We now investigate the problem Directed
Closeness Improvement of improving the closeness centrality of a vertex z
on directed, unweighted graphs. Herein, the closeness centrality is measured by
sum of the multiplicative inverse distances from z the other vertices3. We show
that the problem remains W[2]-hard with respect to the number k of added
arcs, even on directed acyclic graphs and even if the diameter of the graph is
4. Analogously to the undirected variant, we show that we can maximize the
closeness centrality of a vertex z in a directed graph by adding arcs adjacent to
z. Again, this directly implies that Directed Closeness Improvement is in
XP with respect to the number of arc additions:

Lemma 2 (∗). Let I = (G = (V,E), z, k, r) be a Directed Closeness
Improvement instance. If I is a Yes-instance, then there is a solution S for I
where for each arc a ∈ S, the source vertex is z.

Corollary 3. Directed Closeness Improvement can be solved in O(nk ·
(n + m)) time, where k is the number of arc additions and thus is in XP with
respect to k.

With two similar reductions from Set Cover we get the following two hard-
ness results for Directed Closeness Improvement.

Theorem 4 (∗). Directed Closeness Improvement is NP-hard and W[2]-
hard with respect to the number k of edge additions on directed acyclic graphs.

Theorem 5 (∗). Directed Closeness Improvement is NP-hard and W[2]-
hard with respect to the number k of edge additions on directed graphs with
diameter 4.

3 It is easy to check that all our results also hold if the closeness centrality is measured
by sum of the multiplicative inverse distances from the other vertices to z.

The Parameterized Complexity of Centrality Improvement in Networks 119

3 Betweenness Centrality

We now investigate the problem of increasing the betweenness centrality of a ver-
tex in a graph by inserting a certain number of edges into the graph. We remark
that the betweenness centrality of a vertex in an undirected graph can be com-
puted in O(n ·m) time [3]. We show that, similar to Closeness Improvement,
Betweenness Improvement is W[2]-hard with respect to the parameter num-
ber of edge additions and we also present algorithmic results.

First, we make an important observation that will help us in our proofs.
Analogous to Lemma 1, we show that to improve the betweenness of a vertex by
adding edges, it always makes sense to add only edges adjacent to that vertex.

Lemma 3 (∗). Let I = (G, z, k, r) be a Betweenness Improvement
instance. If I is a Yes-instance, then there is an optimal solution that only
contains edges where one endpoint is z.

Hence, if we compute a solution for some Betweenness Improvement
instance, we need to find a subset of the graph’s vertices of size k such that
adding an edge between z and these vertices maximally increases the betweenness
centrality of z. This directly implies the following corollary:

Corollary 4. Betweenness Improvement is solvable in O(nk ·(n+m)) time
where k is the number of edge additions and thus is in XP with respect to k.

Hardness Results. We show that Betweenness Improvement is W[2]-hard
with respect to the parameter number of edge additions by a parameterized
reduction from Dominating Set on graphs with diameter 3. Furthermore, we
show that the problem is NP-hard on graphs with diameter 3 and H-index 4.

Theorem 6. Betweenness Improvement is NP-hard and W[2]-hard with
respect to the parameter number k of edge additions on graphs with diame-
ter 3. Moreover, unless the Exponential Time Hypothesis fails, Betweenness
Improvement does not allow an algorithm with running time f(k) · no(k).

Proof. We give a parameterized reduction from Dominating Set, which also
directly implies the running time lower bound when assuming ETH [7]. Let
I = (G = (U,E), k) be a Dominating Set instance, where U = {u1, . . . , un}.
We construct a Betweenness Improvement instance

I ′ =
(

G′ = (V,E′), z1, k, r = αk +
2
3
α(n − k) +

1
2

(
k + α +

(
α

2

)))
,

where α > 3k(k−1)
2 . The graph G′ is constructed as follows. For each ui ∈ U , we

add a vertex u′
i to G′. Also, for each edge {ui, uj} ∈ E, we add an edge {u′

i, u
′
j}

to E′. We set U ′ := {u′
1, . . . , u

′
n}. Next, we add the vertices {z1, z3, z4} and Z2 =

{z21 , . . . , z2α
} to G′. For each z2i

∈ Z2, we add two edges {z1, z2i
} and {z2i

, z3}
to G′. Furthermore, we add the edges {z1, z3}, {z1, z4} and {z3, z4}. Finally, for

120 C. Hoffmann et al.

u1

u2

u3 u4

u5

u6u6

u1 u2

u3 u4

u5

u6

z1

z21

z22

z2α

z3z4

Fig. 2. Parameterized reduction from Dominating Set to Betweenness Improve-
ment. Left: A Dominating Set instance (I = (G, k = 2)). The red colored vertices
u2, u3 form a solution. Right: The constructed Betweenness Improvement instance
I ′ = (G, z1, k, r). The red, dashed edges form a solution. (Color figure online)

each vertex u′
i ∈ U ′, we add an edge {z4, u

′
i}. Figure 2 illustrates the construction.

It is easy to check that G′ has diameter 3.
As z1 is adjacent to all vertices except the ones in U ′, a solution S for

I ′ contains only edges where one endpoint is z1 and each other one is in U ′

(Lemma 3). The correctness of the reduction is deferred to a full version. �
By closer inspection of the reduction, we can also show that Betweenness

Improvement remains hard on graphs with diameter 3 and H-index 4.

Corollary 5 (∗). Betweenness Improvement is NP-hard on graphs with
diameter 3 and H-index 4.

Algorithmic Result. We also derive a positive result for Betweenness
Improvement. We show that the problem is fixed-parameter tractable with
respect to the combined parameter distance to cluster and number of edge addi-
tions.

Theorem 7. Betweenness Improvement is solvable in time 2O(22
� ·k log k) ·

nO(1), where � is the distance of G to a cluster graph, and thus is in FPT with
respect to the combined parameter (k, �).

Proof. Let (G, z, k, r) be a Betweenness Improvement instance, where the
set VVDS ⊂ V is a cluster vertex deletion set of size �, that is, G[V \ VVDS] is
a cluster graph with connected components (clusters) {C1, . . . , Cs} =: C. Since
a cluster vertex deletion set of size � can be found in O(1.92� · (n + m)) time
if it exists [2,12], we may assume that VVDS is given. The basic idea is similar
to Theorem 3. First, we determine the intersection of an optimal solution with
VVDS. To find the vertices in V \VVDS we assign signatures to clusters and vertices
in clusters based on their neighborhood in VVDS. We then find the signatures in
an optimal solution and the optimal vertices for each signature. A difference
to Theorem 3 is that, once we have determined the signatures of vertices in an
optimal solution, it still matters how many vertices we take for each signature.

The Parameterized Complexity of Centrality Improvement in Networks 121

Let V ∗ be the set of endpoints different from z of the edges in an optimal
solution. By Lemma 3 we may assume that |V ∗| = k. The first step in the
algorithm is to iterate over all 2� possibilities for putting V ∗ ∩VVDS in the output
solution. Assume henceforth that we are in the iteration in which we have found
V ∗ ∩ VVDS.

Define for each cluster Ci its cluster signature as the set of neighbors of Ci

in VVDS ∪ {z}. From V ∗ we get a subset S of the set of all 2� possible cluster
signatures by putting into S all signatures of clusters which have nonempty
intersection with V ∗. That is, S = {N(Ci)∩ (VVDS ∪{z}) | i ∈ {1, . . . , s}}, where
N(Ci) =

⋃
v∈Ci

N(v). The second step in the algorithm is to iterate over all 22
�

possibilities for S. Assume below that we are in the iteration in which we have
found S.

Define for each vertex v ∈ V \ (VVDS ∪ {z}) its vertex signature as the set
N(v) ∩ (VVDS ∪ {z}). From V ∗, for each cluster signature S ∈ S, we obtain a
family TS of sets of vertex signatures by, for each cluster Ci with signature S
that has nonempty intersection with V ∗, putting into TS the set {N(v) ∩ VVDS |
v ∈ Ci ∩ VVDS}. The third step in the algorithm is to iterate for each S ∈ S
over all 22

�

possible families TS . In total, these are at most 2� · 222�

possibilities.
Assume henceforth that we are in the iteration in which we have found TS for
each S ∈ S.

As fourth step in the algorithm we find for each S ∈ S and each S′ ∈ TS

the number nS,S′ of clusters Ci such that Ci ∩ V ∗ �= ∅, Ci has signature S′, and
the set of vertex signatures of vertices in Ci ∩ V ∗ is exactly S′. We do this by
iterating over all at most (2� · 22�

)k possibilities. Assume henceforth that we are
in the iteration in which we have found nS,S′ for each S ∈ S and each S′ ∈ TS .

As a fifth step in the algorithm we find for each of the nS,S′ clusters Ci

as above, for each vertex signature in s ∈ S′ the number nS,S′,s of vertices in
Ci ∩ V ∗ with signature s. Again, we iterate over all at most (2� · 22

� · 2� · k)k

possibilities. Assume henceforth that we are in the iteration in which we have
found nS,S′,s.

Say that a cluster Ci is eligible for S, S′ if it has cluster signature S and for
each vertex signature s ∈ S′ there are nS,S′,s vertices with signature s in Ci.
We now claim that, without loss of generality, among clusters that are eligible
for S, S′, set V ∗ contains only vertices from the k largest such clusters. Assume
otherwise. Hence, there is a cluster Ci among the k largest clusters eligible
for S, S′ and a cluster Cj which is eligible for S, S′ but not among the k largest
such clusters. (Recall that we are in an iteration in which we have found S, S′,
nS,S′ , and nS,S′,s as defined and hence, Cj exists.) Obtain W ∗ from V ∗ by
replacing each vertex in Cj ∩V ∗ with a vertex in Ci with the same signature; call
the vertices in Ci ∩ W ∗ the replacements of the vertices in V ∗. The betweenness
centrality of z with respect to W ∗ is at least the one with respect to V ∗. Indeed,
each shortest path with respect to V ∗ that contains z and some vertices in Cj∩V ∗

induces a shortest path with respect to W ∗ containing z and the corresponding
replacements in Ci ∩ W ∗. Thus, the claim holds.

122 C. Hoffmann et al.

The sixth and final step in the algorithm is thus to try all possibilities to mark
nS,S′ clusters which are eligible for S, S′ and to put, for each marked cluster and
each s ∈ S′ a set of nS,S′,s arbitrary vertices of signature s in the marked
cluster into the output solution. There are at most (2� · 22

� · k2)k possibilities.
By the claim and since we can replace vertices with the same signatures in the
marked clusters in V ∗, in one of the tried possibilities, we will find an optimal
solution. �

Directed Betweenness Improvement. We now cover results for the problem of
improving the betweenness centrality of a vertex in a directed, unweighted
graphs. First, we define betweenness centrality for directed, unweighted graphs,
as the definition due to Freeman [10] only measures the centrality over all
unordered subsets of vertices of size two. A very natural definition, which is
equivalent to the one used in further literature (e.g. by White and Borgatti
[22]) is to measure the ratio of shortest paths containing a certain vertex z for
both orders of any pair of vertices: bz =

∑
s∈V

∑ σstz

σst
. Herein s, t �= z and the

second sum is taken over all t ∈ V such that t �= s and σst �= 0. Using this
definition, Directed Betweenness Improvement is defined analogously to
Betweenness Improvement.

Analogously to the undirected problem variant, we show that we can maxi-
mize the betweenness centrality of a vertex z by adding arcs incident to z.

Lemma 4 (∗). If a Directed Betweenness Improvement instance I =
(G = (V,A), z, k, r) is a Yes-instance, then there is a solution S that only
contains arcs where either the source or the target is z.

However, note that a solution S for a Yes-instance I = (G, z, k, r) may
also contain arcs where z is the source. For instance, (G = {z, v1, v2}, A =
{(v1, z)}, z, 1, 1) is a Yes-instance with solution S = {(z, v2)}.

Corollary 6. Directed Betweenness Improvement is solvable in
O((2n)k · (n + m)) time where k is the number of edge additions, and thus is in
XP with respect to the parameter number of edge additions.

Substantial improvement of this running time is unlikely, as Theorem8 shows.

Theorem 8 (∗). Directed Betweenness Improvement is NP-hard and
W[2]-hard with respect to the parameter number of arc additions k on directed
acyclic graphs.

4 Outlook

Our tractability results yield running times that are impractical and need to
be improved. Some further questions that we left open are as follows. First, it
is not hard to show that Closeness Improvement polynomial-time solvable
on graphs of diameter 2. Is this also true for diameter 3? As we showed, for
diameter 4 it is NP-hard. Noticeable is also that the problem seems to be harder

The Parameterized Complexity of Centrality Improvement in Networks 123

on disconnected graphs. In particular, our reductions also imply NP-hardness
for disconnected graphs where every connected component has diameter 2.

There seem to be similarities between Dominating Set and Closeness
Improvement, as indicated by our hardness reductions. Dominating Set is
fixed-parameter tractable with respect to the combined parameter maximum
degree and k. Does the same hold for Closeness Improvement? Similar ques-
tions extend to Betweenness Improvement. For Betweenness Improve-
ment it would also be interesting to see, whether in our fixed-parameter algo-
rithm for the combined parameter solution size k and the distance to cluster
graph, we can remove the dependency on k.

References

1. Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G.,
Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Raman,
V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17493-3 4

2. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theor. Comput. Syst. 58(2), 357–376 (2016)

3. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163–177 (2001)

4. Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Soc. Netw. 30(2), 136–145 (2008)

5. Crescenzi, P., D’angelo, G., Severini, L., Velaj, Y.: Greedily improving our own
closeness centrality in a network. ACM Trans. Knowl. Discov. Data 11(1), 9 (2016)

6. Csermely, P., London, A., Wu, L.-Y., Uzzi, B.: Structure and dynamics of
core/periphery networks. J. Complex Netw. 1(2), 93–123 (2013)

7. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

8. D’Angelo, G., Severini, L., Velaj, Y.: On the maximum betweenness improvement
problem. Electron. Notes Theor. Comput. Sci. 322, 153–168 (2016)

9. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)

10. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40, 35–41 (1977)

11. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215–239 (1978)

12. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

13. Impagliazzo, R., Paturi, R.: Complexity of k-SAT. In: Proceeding of the 14th
Annual IEEE Conference on Computational Complexity (CCC 1999), pp. 237–
240 (1999)

14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? In: Proceedings 39th Annual Symposium on Foundations of Computer
Science (FOCS 1998), pp. 653–662 (1998)

15. Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness
of r -dominating set on Graphs of Diameter (r + 1). In: Gutin, G., Szeider, S.
(eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-03898-8 22

https://doi.org/10.1007/978-3-642-17493-3_4
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-03898-8_22
https://doi.org/10.1007/978-3-319-03898-8_22

124 C. Hoffmann et al.

16. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
17. Newman, M.E.: A measure of betweenness centrality based on random walks. Soc.

Netw. 27(1), 39–54 (2005)
18. Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale

social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS,
vol. 5059, pp. 186–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-69311-6 21

19. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks:
generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

20. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 5th edn.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53622-3

21. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses
and interpretations. Neuroimage 52(3), 1059–1069 (2010)

22. White, D.R., Borgatti, S.P.: Betweenness centrality measures for directed graphs.
Soc. Netw. 16(4), 335–346 (1994)

https://doi.org/10.1007/978-3-540-69311-6_21
https://doi.org/10.1007/978-3-540-69311-6_21
https://doi.org/10.1007/978-3-662-53622-3

Local Structure Theorems for Erdős–Rényi
Graphs and Their Algorithmic Applications

Jan Dreier1, Philipp Kuinke1, Ba Le Xuan2, and Peter Rossmanith1(B)

1 Theoretical Computer Science, Department of Computer Science,
RWTH Aachen University, Aachen, Germany

{dreier,kuinke,rossmani}@cs.rwth-aachen.de
2 The Sirindhorn International Thai-German Graduate School of Engineering,
King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

ba.l-sse2015@tggs-bangkok.org

Abstract. We analyze local properties of sparse Erdős–Rényi graphs,
where d(n)/n is the edge probability. In particular we study the behav-
ior of very short paths. For d(n) = no(1) we show that G(n, d(n)/n) has
asymptotically almost surely (a.a.s.) bounded local treewidth and there-
fore is a.a.s. nowhere dense. We also discover a new and simpler proof that
G(n, d/n) has a.a.s. bounded expansion for constant d. The local struc-
ture of sparse Erdős–Rényi graphs is very special: The r-neighborhood
of a vertex is a tree with some additional edges, where the probabil-
ity that there are m additional edges decreases with m. This implies
efficient algorithms for subgraph isomorphism, in particular for finding
subgraphs with small diameter. Finally, experiments suggest that pref-
erential attachment graphs might have similar properties after deleting
a small number of vertices.

Keywords: Graph theory · Random graphs · Sparse graphs
Graph algorithms

1 Introduction

One of the earliest and most intensively studied random graph models is the
Erdős–Rényi model [1,2]. Graphs from this class are usually depicted as a ran-
dom variable G(n, p), which is a graph consisting of n vertices where each pair
of vertices is connected independently uniformly at random with probability p.
The edge probability p may also depend on the size of the graph, e.g., p = d/n.
Many properties of Erdős–Rényi graphs are well studied including but not lim-
ited to, threshold phenomena, the sizes of components, diameter, and lengths
of paths [1]. One particular impressive result is the 0-1 law: Let ϕ be a first-
order formula. If we take a random graph G = G(n, 1/2), then the probability
of G |= ϕ is either 0 or 1 as n → ∞ [3].

“Instead of the worst case running time, it is also interesting to consider
the average case. Here even the most basic questions are wide open.” as Grohe
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 125–136, 2018.
https://doi.org/10.1007/978-3-319-73117-9_9

126 J. Dreier et al.

puts it [4]. One can find an optimal coloring of G(n, p) in expected linear time
for p < 1.01/n [5]. The 0-1 law on the other hand has (not yet) an efficient
accompanying algorithm that can decide whether G |= ϕ for G = G(n, 1/2) and
a fixed formula ϕ.

One possibility to open up a whole graph class to efficient algorithms are algo-
rithmic meta-theorems. Such meta-theorems were developed for more and more
general graph classes: planar, bounded genus, bounded degree, H-minor free,
H-topological minor free etc. In all these graph classes we can decide properties
that are expressible in first-order logic in linear time for a fixed formula ϕ [6,7].
Unfortunately, random graph classes do not belong to any of these classes. For
example G(n, 1.1/n) has a.a.s. linear treewidth and does contain constant-size
cliques of arbitrary size [8]. Recently, however, graph classes of bounded expan-
sion were introduced by Nešetřil and de Mendez [9]. These classes also admit
linear time FO-model checking and generalize the older meta-theorems [10]. The
most general model checking algorithm runs in time O(n1+ε) on nowhere-dense
classes [11]. In G(n, d/n), the value d is the expected density of a random graph.
For constant d it was shown that G(n, d/n) has a.a.s. bounded expansion [12].
Unfortunately, this does not automatically imply that one can test first-order
properties on G(n, d/n) in linear (expected) time, but only that we can test such
a property in linear time with a failure probability of o(1) while the expected run-
time might be unbounded. This is for example the case if the runtime grows faster
than the failure probability converges to zero. One example of an (expected-
time) fpt-algorithm is one that finds a k-clique in G(n, p(n)) in time f(k)nO(1),
for many choices of p [13].

In Sect. 3 we find an easier proof for the fact that G(n, d/n) has a.a.s. bounded
expansion for constant d and give concrete probability bounds, which were miss-
ing up to now. Then we investigate local properties of Erdős–Rényi graphs.
The expected density of G(n, d(n)/n) is d(n) and therefore, if d(n) is not con-
stant, unbounded. This implies that G(n, d(n)/n) does a.a.s. not have bounded
expansion. Nevertheless, we show that subgraphs with small diameter are tree-
like with only a few additional edges. From this it follows that G(n, no(1)/n)
has a.a.s. locally bounded treewidth, which implies that they are a.a.s. nowhere
dense. Locally bounded treewidth [14] and more generally, locally excluding a
minor [15] are useful concepts for developing first-order model checking algo-
rithms that run in time O(n1+ε).

We discussed that a random graph class that is a.a.s. nowhere dense or has
a.a.s. bounded expansion may not directly admit efficient algorithms. It is known
that one can check first-order properties in G(n, d(n)/n) in time O(g(|ϕ|)n1+o(1))
for d(n) = no(1) and some function g [4,16]. For constant d one can check first-
order properties in time O(g(|ϕ|)n). In Sect. 4 we use the locally tree-like struc-
ture of Erdős–Rényi graphs to construct an efficient algorithm for subgraph
isomorphism. We show that one can find a subgraph H with h vertices and
radius r in G(n, d(n)/n) in time 2O(h)(d(n) log n)O(r)n, while a naive algorithm
may need time O(d(n)hn). Therefore, our method may be faster for finding large
pattern graphs with small radius.

Local Structure Theorems for Erdős–Rényi Graphs 127

It can be argued that Erdős–Rényi graphs are not a good model for real-
world networks and therefore efficient algorithms for Erdős–Rényi graphs admit
only limited practical applications. Recently, there were more and more efforts
to model real world networks with random graph models. One candidate to meet
this goal were the Barabási–Albert graphs, which use a preferential attachment
paradigm to produce graphs with a degree distribution that tries to mimic the
heavy-tailed distribution observed in many real-world networks [17].

This model is particularly interesting from the point of mathematical analysis
because of its simple formulation and interesting characteristics, which is why
they have been widely studied in the literature [18–20]. It was also shown that
this model does not have a.a.s. bounded expansion [21].

In Sect. 5 we discuss experiments to see how similar the local structure of
Barabási–Albert graphs is to Erdős–Rényi graphs. Not surprisingly, it seems
that they are quite different and the former contain dense subgraphs and are
likely to be somewhere dense. If we, however, remove the relatively small dense
early part of these graphs, the local structure of the remaining part looks quite
similar to Erdős–Rényi graphs and indicators hint that the remaining part is
indeed nowhere dense. As the dense part is quite small it gives us hope that
hybrid algorithms exist that combine different methods for the dense part and
the structurally simple part. To search for a subgraph H, for example, could
be done by guessing which vertices of H lie in the dense part and then using
methods from Sect. 4 to find the remaining vertices in the simple part.

2 Preliminaries

In this work we will denote probabilities by P[. . .] and expectation by E[. . .].
We use common graph theory notation [22]. For a graph G let V (G) be its
vertex set and E(G) its edge set. For v ∈ V (G) we denote the r-neighborhood
of v by Nr(v). The degree of a vertex v in graph G is denoted by deg(v). We
write G′ ⊆ G if G′ is a subgraph of G. For X ⊆ V (G) we denote by G[X] the
subgraph of G that is induced by the vertices in X. The graph G[V (G) − X]
obtained from G by deleting the vertices in X and their incident edges, is denoted
by G−X. The treewidth tw(G) of a graph is a measure how tree-like a graph is.
We denote Erdős–Rényi graphs by a random variable G(n, d/n) and distinguish
between graphs with constant d and graphs G(n, d(n)/n), where we allow d to
grow (slowly) with n. We will use various ways to measure the sparsity of a
graph or graph class.

Definition 1 (Shallow topological minor [9]). A graph M is an r-shallow
topological minor of G if M is isomorphic to a subgraph G′ of G if we allow
the edges of M to be paths of length up to 2r + 1 in G′. We call G′ a model
of M in G. For simplicity we assume by default that V (M) ⊆ V (G′) such that
the isomorphism between M and G′ is the identity when restricted to V (M).
The vertices V (M) are called nails1 and the vertices V (G′)\V (M) subdivision

1 Also known as principal vertices.

128 J. Dreier et al.

vertices. The set of all r-shallow topological minors of a graph G is denoted by
G ˜� r.

With that we can define the clique size over all topological minors of G as

ω(G ˜� r) = max
H∈G ˜� r

ω(H).

Definition 2 (Topological grad [23]). For a graph G and an integer r ≥ 0,
the topological grad at depth r is defined as

˜∇r(G) = max
H∈G ˜� r

|E(H)|
|V (H)|

For a graph class G, define ˜∇r(G) = supG∈G ˜∇r(G).

Definition 3 (Bounded expansion [23]). A graph class G has bounded expan-
sion if and only if there exists a function f such that ˜∇r(G) < f(r) for all r ≥ 0.

Definition 4 (Locally bounded treewidth). A graph class G has locally
bounded treewidth if and only if there exists a function f , such that for all r ≥ 0
every subgraph with radius r has treewidth at most f(r).

Definition 5 (Nowhere dense [23]). A graph class G is nowhere dense if there
exists a function f such that ω(G ˜� r) < f(r) for all G ∈ G and all r ≥ 0.

If a graph class has locally bounded treewidth it is also nowhere dense [23].

3 Local Structure and Algorithmic Applications

In this section, we observe the local structure of Erdős–Rényi graphs and how
to exploit it algorithmically. It is already known that Erdős–Rényi graphs have
a.a.s. bounded expansion if the edge probability is d/n for constant d [12]. We
present a simpler proof via a direct method, that also gives concrete probability
bounds. The original proof did not give such concrete bounds so we feel that
this new proof has applications in the design of efficient algorithms. To make
our calculations easier we assume that d ≥ 2, since Erdős–Rényi graphs are only
sparser for smaller d, our techniques will also work in this case.

3.1 Bounded Expansion

The technique we use to bound the probability that certain shallow topological
minors exists is to bound the probability that a path of length at most r exists
between two arbitrary vertices.

Lemma 1. Let pr be the probability that there is a path of length at most r
between two arbitrary but fixed vertices in G(n, d/n). It holds that

d

n
≤ pr ≤ 2dr

n
.

Local Structure Theorems for Erdős–Rényi Graphs 129

Proof. Since all edges are independent, we do not need to identify the start and
end vertices of the path. We prove by induction over r that the probability of
the existence of a path of length exactly r is bounded by dr

n . For r = 1 the
statement holds: p1 ≤ d

n . The probability of a path of length r is at most that
of some path of length r − 1 times the probability of a single edge:

pr ≤
n

∑

k=0

pr−1p1 ≤
n

∑

k=0

dr−1d

n2
≤ dr

n

By using the union bound and assuming that d ≥ 2, the joint probability is
bounded by 2dr

n . 	

Having this bound in place, we can show that G(n, d/n) has a.a.s. no r-

shallow topological minors of large density from which it follows that they are
contained in a graph class of bounded expansion a.a.s. The proof of this theorem
can be found in the full version.2

Theorem 1. G(n, d/n) is a.a.s. contained in a graph class of bounded expan-
sion. In particular, for d ≥ 16 the probability that such a random graph contains
some r-shallow topological minor of size k and at least 8kd2r+1 edges is at most
max{n−2k, 2−n2/3}. For d < 16 the same result holds for at least 8k162r+1 edges.

3.2 Locally Simple Structure

It is known that even for constant d the treewidth of G(n, d/n) grows with
Ω(n) [8]. Furthermore, G(n, d(n)/n) does a.a.s not have bounded expansion if
d(n) is unbounded. We now show that G(n, no(1)/n) nevertheless has locally
bounded treewidth and thus is a.a.s. nowhere dense. We start by counting the
expected number of occurrences of a certain subgraph in G(n, d(n)/n).

Lemma 2. The expected number of induced subgraphs with k vertices and at
least k + m edges in G(n, d(n)/n) is at most k2k+2md(n)k+m/nm.

Proof. There are
(

n
k

) ≤ nk induced subgraphs H of size k in G. For each such

H there are
((k2)
k+m

) ≤ k2k+2m ways to choose k + m edges. The probability
that these k + m edges are present in H is then exactly (d(n)/n)k+m and the
probability that H has k + m edges is at most k2k+2m(d(n)/n)k+m. Finally, the
expected number of such induced subgraphs is at most k2k+2md(n)k+m/nm. 	

From Lemma 2 we can conclude a well known property of Erdős–Rényi
graphs: The expected number of cycles of fixed length r is O(d(n)r) (which
is a constant if d is constant) by setting k = r and m = 0. We now use this
Lemma to make statements about the density of neighborhoods.

Lemma 3. The probability that there is an r-neighborhood in G(n, d(n)/n) with
m more edges than vertices is at most f(r,m)d(n)2r(d(n)2r+1/n)m for some
function f .
2 https://arxiv.org/abs/1709.09152.

https://arxiv.org/abs/1709.09152

130 J. Dreier et al.

Proof. Consider any r-neighborhood with � vertices. Assume the neighborhood
contains at least m more edges than vertices. Let T be a breadth-first search
spanning tree of this neighborhood. Since T contains � vertices and � − 1 edges,
there are m + 1 edges which are not contained in T . Each extra edge is incident
to two vertices. Let U be the set of these vertices. Let H be the graph induced
by the union of the m + 1 extra edges and the unique paths in T from u to the
root of T for each u ∈ U . Since |U | ≤ 2(m + 1) and each path to the root in the
breadth-first-search tree T has length at most r, the number of vertices of H is
bounded by 2r(m + 1).

In summary, if there exists an r-neighborhood with at least m more edges
than vertices then there exists a subgraph with k ≤ 2r(m + 1) vertices and m
more edges than vertices. But according to Lemma 2, the expected number of
such subgraphs is bounded by

(

(

2r(m + 1)
)2

d(n)
)2r(m+1)+m

nm
= f(r,m)d(n)2r

(d(n)2r+1

n

)m

.

This also bounds the probability that such a subgraph exists. 	

Theorem 2. Let d(n) = no(1). Then G(n, d(n)/n) has a.a.s. locally bounded
treewidth.

Proof. The show that a graph has locally bounded treewidth we have to show
that the treewidth of every r-neighborhood is bounded by a function of r alone.

Since d(n) = no(1), there exists a monotone decreasing function g(n) with
d(n) ≤ ng(n) and limn→∞ g(n) = 0. Let h(r) be the inverse function of 1/8g(r).
Since g(n) is monotone decreasing, h(r) exists and is monotone increasing. We
show that for all r ≥ 0 every subgraph with radius r has a.a.s. treewidth at
most h(r). We distinguish between two cases. The first case is r < 1/8g(n) and
f(r, 1) < n1/4.

According to Lemma 3, an r-neighborhood of G has more edges than vertices
with probability at most

f(r, 1)
d(n)4r+1

n
≤ f(r, 1)ng(n)(4 1

8g(n)+1)−1 ≤ f(r, 1)n−1/2+g(n) = o(1)

We can conclude that every r-neighborhood has a.a.s. treewidth at most 2.
The second case is r ≥ 1/8g(n), which means h(r) ≥ n, so even the treewidth

of the whole graph is a.a.s. bounded by h(r) and the third case is given by
f(r, 1) ≥ n1/4 and the (total) treewidth is a.a.s. bounded by f(r, 1)4.

Altogether, the treewidth of an r-neighborhood is a.a.s. bounded by 2, by
h(r), or by f(r, 1)4. 	

4 Algorithm for Subgraph Isomorphism

In this section we solve Subgraph Isomorphism, which given a graph G and
a graph H asks, whether G contains H as a subgraph. This is equivalent to
FO-model checking restricted to only existential quantifiers.

Local Structure Theorems for Erdős–Rényi Graphs 131

Let H be a connected graph with h vertices and radius r. In this section
we discuss how fast it can be decided whether G(n, d(n)/n) contains H as a
subgraph. We first discuss the runtime of simple branching algorithms on Erdős–
Rényi graphs and how exploiting local structure may lead to better run-times.
We discovered that if the radius r of the pattern graph is small, an approach
based on local structure is significantly faster.

For low-degree graphs there exists a simple branching algorithm to decide
whether a graph G contains H as a subgraph in time O(Δhn), where Δ is the
maximal degree in G. Let us first assume that d(n) = d is constant. There is
nevertheless a non-vanishing probability that the maximal degree of G(n, d/n)
is as large as

√
log n. Therefore, the maximal degree cannot be bounded by any

function of d. This implies that a naive, maximal degree based algorithm may
have at least a quasi-linear dependence on n, while we present an algorithm
which has only a linear dependence on n.

Let us also assume that d(n) is of order log n and even that the maximum
degree is bounded by O(d(n)). A naive branching algorithm may therefore decide
whether G(n, d(n)/n) contains H in expected time O(d(n))hn. We improve this
result, not making any assumption about the maximal degree, by replacing the
factor O(d(n))h in the runtime with 2O(h)(d(n) log n)O(r), where r is the radius
of H. For graphs with small radius, the runtime is no longer dominated by a
factor O(d(n))h. The new algorithm may be significantly smaller when d(n) is,
for example, of order log n.

So far we only discussed connected subgraphs. Using color-coding techniques,
the results in this section can easily be extended to disconnected subgraphs,
where the radius of each component is bounded by r. Color-coding may, however,
lead to an additional factor of ch in the runtime: Assume H has c components
where the size of H is h. We want to color each vertex of G uniformly at random.
Assume G contains H, then the probability that every component of H can be
embedded using vertices of a single color is at least 1/ch. So if H can be embedded
in G we will answer yes after an expected number of ch runs.

For the following result notice that if d(n) is poly-logarithmic in n the run-
time is quasi-linear in n. For d(n) = no(1) the dependence on n is n1+o(1). The
algorithm is given in the proof for Theorem3.

Lemma 4. In G(n, d(n)/n) holds with probability of at least 1 − n− 1
4 log(n) that

every r-neighborhood has size at most log(n)2rd(n)r.

Proof. The Chernoff Bound states for the degree D of an individual vertex that
P[D ≥ x] ≤ e−(1

3
x

d(n)−1)d(n) and therefore P[D ≥ log(n)2d(n)] ≤ n− 1
4 log(n). Let

D̂ be the maximal degree of the graph. With the union bound we have a similar
bound for D̂. Every r-neighborhood has size at most D̂r. 	

Theorem 3. Let H be a connected graph with h vertices and radius r.

There is a deterministic algorithm that can find out whether H occurs as a
subgraph in G(n, d(n)/n) in expected time 2O(h)(d(n) log n)O(r)n.

132 J. Dreier et al.

Proof. We sketch the algorithm briefly. The algorithm works on a graph G =
G(n, d(n)/n). In the following we assume that every r-neighborhood in G has
size at most d(n)r log(n)2r. By Lemma 4 this assumption holds with a probability
of at least 1−nlog(n)/4 and we can easily check it within the stated time bounds.
Should the assumption be wrong, we can use a brute force algorithm without
affecting the average running time.

In a preprocessing step we look at the connected graph H and construct a
subgraph H ′ that is also connected, but consists only of a tree with two additional
edges (if possible, otherwise we set H ′ = H).

We enumerate all r-neighborhoods in G and try to find H in every one
of them as follows: By using color-coding we enumerate all subgraphs in the r-
neighborhood that are isomorphic to H ′. This can be done by using the algorithm
for finding a graph of bounded treewidth [24] with the enumeration techniques
in [25]. The expected time needed is 2O(h)(d(n) log(n))O(r) times the number of
subgraphs that are found. However, by Lemma2 the latter number is bounded
by a constant.

After enumerating all subgraphs isomorphic to H ′ we have to find out
whether G contains H as a subgraph. If this turns out to be true, then H can be
found only somewhere where H ′ was found. Hence, it suffices to look at all found
H ′ in G and see whether by adding a subset of the possible

(

h
2

)

edges we can
find H. This can be done in time O(2h2

d(n)r log(n)2), which is asymptotically
faster than the remaining part. 	

5 Experimental Evaluation of Barabási–Albert-Graphs

In the previous section, we showed that Erdős–Rényi graphs have bounded
expansion for edge probability p = d/n (with constant d) and are nowhere dense
with p = no(1)/n. In this section, we discuss the sparsity of the Barabási–Albert
model. It is known that this model has not a.a.s. bounded expansion, because
it contains an unbounded clique with non-vanishing probability [21]. It is not
known, however, if it is (or is not) a.a.s. somewhere-dense. Our experiments seem
to imply that on average Barabási–Albert graphs seem to be dense but that this
density is limited to early vertices: In the Barabási–Albert model, vertices with
high degree tend to be preferred for new connections. This means that edge
probabilities are not independent. Moreover, the expected degree d(i) =

√

n/i
for a vertex i is less uniform than it is for Erdős–Rényi graphs, where d(i) = pn.

To evaluate the expansion properties of the Barabási–Albert-model, we com-
pute transitive fraternal augmentations and p-centered colorings. These have
been introduced by Nešetřil and de Mendez, and are highly related to bounded
expansion and a tool for developing new and faster algorithms. A graph class
has bounded expansion if and only if the maximum in-degree of transitive fra-
ternal augmentations is bounded, or the graph admits a p-centered coloring with
bounded number of colors.

Definition 6 (Transitive fraternal augmentation [9]). Let
−→
G be a directed

graph. A 1-transitive fraternal augmentation of
−→
G is a directed graph

−→
H with

Local Structure Theorems for Erdős–Rényi Graphs 133

the same vertex set, including all the arcs of
−→
G and such that, for any vertices

x, y, z,

– if (x, z) and (z, y) are arcs of
−→
G then (x, y) is an arc of

−→
H (transitivity),

– if (x, z) and (y, z) are arcs of
−→
G then (x, y) or (y, x) is an arc of

−→
H (frater-

nity).

A transitive fraternal augmentation of a directed graph
−→
G is then the consecutive

application of 1-transitive fraternal augmentations.

Definition 7 (p-centered coloring [26]). For an integer p, a p-centered col-
oring of G is a coloring of the vertices such that any connected subgraph H
induced on the vertices of an arbitrary set of i colors (i ≤ p), H must have at
least one color that appears exactly once.

Showing that the maximum in-degree of a transitive fraternal augmentation
or the number of colors needed for a p-centered coloring does not grow with the
size of the graph is a way to prove that a graph has bounded expansion [9]. When
designing algorithms, p-centered colorings can be used to solve hard problems
efficiently. By using p-centered colorings, we can decompose a graph into small,
well-structured subgraphs such that NP-hard problems can be solved easily on
each subgraph before combining these small solutions to get a solution for the
entire graph. It is important that the number of colors needed for a p-centered
coloring for a fixed p is small, as the runtime usually is a function of the number
of colors needed. If a graph class does not have bounded expansion; that is, the
number of colors grows with n, but very slowly, such as log log n, using these
algorithms might still be practical.

One example problem which can be solved directly using p-centered colorings
is Subgraph Isomorphism, where one asks if a graph H is contained in a graph
G as a subgraph. In general graphs, this problem is W[1]-hard when parameter-
izing by the size of H [27]. However, there exist an algorithm, whose runtime
is a function of the number of colors needed for a p-centered coloring, where p
depends on the size of H [23]. So, regardless of the fact whether Barabási–Albert
graphs are theoretically sparse or not, calculating the number of colors of a p-
centered coloring for different graph sizes has direct impact on the feasibility of
a whole class of algorithms on these graphs.

5.1 Barabási–Albert Graphs are Empirically Dense

First, we analyze the maximum in-degree of transitive fraternal augmentations.
We ran the previously described algorithm on random Barabási–Albert graphs
with d = 2 for different sizes (500 ≤ n ≤ 3000) and calculated the maximum
in-degree of up to five transitive fraternal augmentation steps. The results are
shown in Fig. 1a. Each data point is an average over ten runs with the same n.
For all graphs both the maximum in-degree grows with n, which would not be
the case for graphs with bounded expansion.

134 J. Dreier et al.

To evaluate how well the expansion properties of Barabási–Albert graphs can
be practically exploited, we analyzed the number of colors needed to construct
p-centered colorings. We constructed 3- and 4-centered colorings. With the same
graph parameters and sizes than before. The results are shown in Fig. 1b. For the
analyzed range, the number of colors needed grows steadily. Furthermore, the
number of colors needed to construct 4-centered colorings is substantially higher
than the number of colors needed for 3-centered colorings. Computing higher
order colorings or colorings for larger graphs was infeasible with the used algo-
rithm. It seems practically impossible to use p-centered colorings algorithmically
for Barabási–Albert graphs. We have to note that the used algorithm is only a
heuristic and the real values might be much better than what we have com-
puted. But since these heuristics work well for graphs that have low treedepth
colorings, it is unlikely that the graphs have bounded coloring number for p-
centered colorings. Previously, we showed that the colors needed to construct
p-centered colorings of small graphs can be very high. In this section we dis-
cover that the early vertices of the random process heavily affect these results.
We remove the first 10% of the vertices added in the random process and ana-
lyze the maximum in-degree of transitive fraternal augmentations and number
of colors needed to construct p-centered colorings. By removing those 10%, we
can construct p-centered colorings for much larger graphs (5000 ≤ n ≤ 30000),
see Fig. 2a and b. The required number of colors for p-centered colorings and
maximum in-degree of transitive fraternal augmentations remain stable and do
not seem to depend on the number of vertices. This suggests that these 10% of
the early vertices contain almost all of the density of Barabási–Albert graphs.
This is of course a linear factor and it remains to see if one can use much smaller
functions of n, like for example log n. The sizes of the graphs at hand, however,
were not large enough to investigate sub-linear functions of n with a meaningful
result.

(a) augmentations (b) colorings

Fig. 1. Results for Barabási–Albert graphs with d = 2 for increasing n.

Local Structure Theorems for Erdős–Rényi Graphs 135

(a) augmentations (b) colorings

Fig. 2. Results for Barabási–Albert graphs with d = 2 for increasing n after deleting
the first 10% of vertices.

6 Conclusion

In this work we gave an alternative proof that G(n, d/n) has a.a.s. bounded
expansion and have shown that G(n, d(n)/n) with d(n) = no(1) has a.a.s. locally
bounded treewidth. Our results are based on the fact that local neighborhoods
of Erdős–Rényi graphs are tree-like with high probability. It is known [4] that for
a graph G = G(n, d(n)/n) with d(n) = no(1) and a first-order formula ϕ one can
decide whether G |= ϕ in expected time f(|ϕ|)n1+o(1) for some functions f and g.
This result can also be proven using our techniques. It remains to show whether
it is possible to answer this question in linear expected fpt-time (where d(n)n
is the expected number of edges), i.e. O(f(|ϕ|)d(n)n). In this paper, we also
presented a more efficient algorithm for the subgraph isomorphism problem on
Erdős–Rényi graphs if the pattern graph has small radius. It would be interesting
to consider other measures for the pattern graph as well, such as treewidth or
treedepth. Furthermore, we gathered empirical evidence which suggests that
Barabási–Albert graphs are somewhere dense. It would be interesting to prove
this conjecture.

References

1. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

2. Erdős, P., Rényi, A.: On random graphs. Publ. Math. 6, 290–297 (1959)
3. Fagin, R.: Probabilities on finite models. J. Symb. Log. 41(1), 50–58 (1976)
4. Grohe, M.: Logic, graphs, and algorithms (2007)
5. Coja-Oghlan, A., Taraz, A.: Colouring random graphs in expected polynomial time.

In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 487–498. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 43

6. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007), pp. 270–279, July
2007

https://doi.org/10.1007/3-540-36494-3_43

136 J. Dreier et al.

7. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM
49(6), 716–752 (2002)

8. Gao, Y.: Treewidth of Erdős–Rényi random graphs, random intersection graphs,
and scale-free random graphs. Discrete Appl. Math. 160(4–5), 566–578 (2012)

9. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion I. Decom-
positions. Eur. J. Comb. 29(3), 760–776 (2008)

10. Dvořák, Z., KráÎ, D., Thomas, R.: Testing first-order properties for subclasses of
sparse graphs. J. ACM 60(5), 36:1–36:24 (2013)

11. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere
dense graphs. In: Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, STOC 2014, pp. 89–98. ACM, New York (2014)

12. Nešetřil, J., de Mendez, P.O., Wood, D.R.: Characterisations and examples of graph
classes with bounded expansion. Eur. J. Comb. 33(3), 350–373 (2012). Topological
and Geometric Graph Theory

13. Fountoulakis, N., Friedrich, T., Hermelin, D.: On the average-case complexity of
parameterized clique. Theoret. Comput. Sci. 576, 18–29 (2015)

14. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. J. ACM 48(6), 1184–1206 (2001)

15. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proceedings of
the 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), Wroclaw,
Poland, 10–12 July 2007, pp. 270–279. IEEE Computer Society (2007)

16. Grohe, M.: Generalized model-checking problems for first-order logic. In: Fer-
reira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44693-1 2

17. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999). American Association for the Advancement of Science

18. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90,
058701 (2003)

19. Kamrul, M.H., Hassan, M.Z., Pavel, N.I.: Dynamic scaling, data-collapse and self-
similarity in Barabási–Albert networks. J. Phys. A: Math. Theoret. 44(17), 175101
(2011)

20. Klemm, K., Egúıluz, V.M.: Growing scale-free networks with small-world behavior.
Phys. Rev. E 65, 057102 (2002)

21. Demaine, E.D., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S., Sullivan,
B.D.: Structural sparsity of complex networks: random graph models and linear
algorithms. CoRR abs/1406.2587 (2014)

22. Diestel, R.: Graph Theory. Springer, Berlin (2010)
23. Nešetřil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms.

Springer, Berlin (2014)
24. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
25. Chen, J., Kanj, I.A., Meng, J., Xia, G., Zhang, F.: On the effective enumerabil-

ity of NP problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 215–226. Springer, Heidelberg (2006). https://doi.org/10.
1007/11847250 20

26. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion II. Algo-
rithmic aspects. Eur. J. Comb. 29(3), 777–791 (2008)

27. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (2012)

https://doi.org/10.1007/3-540-44693-1_2
https://doi.org/10.1007/11847250_20
https://doi.org/10.1007/11847250_20

Target Set Selection Parameterized
by Clique-Width and Maximum Threshold

Tim A. Hartmann(B)

Lehrstuhl für Informatik 1, RWTH Aachen University, Aachen, Germany
hartmann@algo.rwth-aachen.de

Abstract. The Target Set Selection problem takes as an input a
graph G and a non-negative integer threshold thr(v) for every vertex v.
A vertex v can get active as soon as at least thr(v) of its neighbors have
been activated. The objective is to select a smallest possible initial set
of vertices, the target set, whose activation eventually leads to the acti-
vation of all vertices in the graph.

We show that Target Set Selection is in FPT when parameterized
with the combined parameters clique-width of the graph and the max-
imum threshold value. This generalizes all previous FPT-membership
results for the parameterization by maximum threshold, and thereby
solves an open question from the literature. We stress that the time
complexity of our algorithm is surprisingly well-behaved and grows only
single-exponentially in the parameters.

1 Introduction

The Target Set Selection problem (TSS) suits to model irreversible prop-
agation of all sorts of conditions or information in a network. This may be
for example a word-of-mouth-effect, disease spreading or fault influence in dis-
tributed systems [15]. The input is an undirected graph G and a non-negative
integer threshold thr(v) for every vertex v. The task is to select a smallest pos-
sible set S of initially active vertices, the target set, whose activation eventually
leads to the activation of all vertices in the graph. A vertex v can become active
as soon as at least thr(v) of its neighbors have been activated.

Our view on the activation of a vertex is that it is allowed to become active
if enough neighbors are active before, in contrast to that it is obligated to get
active as soon as possible. We ask for a smallest possible set S, the target set,
and a permutation of the vertices π, which is the ordering in which the vertices
get active. Then, for every non-target set vertex v, to assure its activation we
require that at least threshold thr(v) many neighbors of v are ordered before v.
In particular, our permutation may order the target set vertices S not at the
beginning. This definition is more robust towards re-orderings of the permutation
of vertices. We can re-order the permutation and not have to bother that for
example the target set no longer consists of the very first vertices of the ordering.
In the literature the problem is commonly defined via rounds of activations that
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 137–149, 2018.
https://doi.org/10.1007/978-3-319-73117-9_10

138 T. A. Hartmann

define sets of active vertices for each round. Our definition is equivalent while
being much more convenient for our techniques.

Target Set Selection
Input: An undirected graph G, a non-negative threshold for every vertex

thr : V (G) → N, and k ∈ N.
Question: Is there a set of vertics S ⊆ V (G) of size at most k and a permuta-

tion of the vertices π : V (G) → [|V (G)|] such that for every vertex
v ∈ V (G) \ S we have |{u ∈ NG(v)

∣
∣ π(u) < π(v)

}| ≥ thr(v)?

The problem was first introduced by Kempe et al. [14]. It proves to be com-
putationally extremely difficult. It is NP-hard even for the restriction to split-
graphs of diameter two [15]. Chen showed that minimizing the size of the target
set is APX-hard [4]. More recently, Bazgan et al. showed that for every func-
tions f and ρ this problem cannot be approximated within a factor of ρ(k) in
f(k) · nO(1) time [1]. The parameterized complexity studies focus on the origi-
nal problem and two variants that limit the allowed thresholds. These are con-
stant thresholds, where all thresholds are at most a constant tmax, and majority
thresholds, where a vertex can get active as soon as at least the majority of its
neighborhood is active before. The general TSS is W[1]-hard for each of the
parameterization, “distance to cluster,” [5] “distance to forest” and pathwidth
[15]. The strongest positive FPT-membership results for constant thresholds are
the parameterization by treewidth [2], the parameterization by “distance to clus-
ter” [5], and the parameterization by neighborhood diversity [11]. There are a
lot more parameterized complexity results for these three variants of TSS [5,15].
Further, Cicalese et al. study a variant of TSS which asks if a set of vertices A can
be activated in a given number of activation rounds [6]. They give a polynomial
time algorithm when the number of activation rounds and the clique-width of
the input graph are constant. Their exponential dependency on the clique-width
is unlikely to be improved, as even TSS for one activation round is W[1]-hard
with respect to the treewidth [3]. For a more extend introduction to the history
of the problem as well as other algorithmic aspects and similar models see for
example [5,15].

Dvořák et al. raised the question of the complexity of the parameterization
by the modular-width [11]. The structural graph parameter modular-width was
introduced by Gajarský et al. [13]. We give a positive answer by showing FPT-
membership for a more general question. We consider the clique-width which
is upper bounded by the parameters modular-width and treewidth [7], and by
further common structural parameters for which the parametrized complexity of
TSS was open. Thereby, we generalize all positive FPT-memberships results for
TSS with constant thresholds. Further, our result does not rely on the maximum
threshold tmax being a constant, but allows that tmax is a parameter. Moreover,
the time complexity of our algorithm behaves surprisingly well and grows only
single-exponentially in the parameters clique-width and maximum threshold.

Target Set Selection Parameterized by Clique-Width 139

A related result is that TSS is in FPTwhen parameterized by treewidth
and maximum threshold, by Ben-Zwi et al. [2]. They use a dynamic program
that works along the bags of a computed tree decomposition. They fix the local
ordering in which the vertices of the currently observed bag get active. Our
approach also uses such an recursive approach, while working on a computed
�-expression. Informally, an �-expression is a tree-decomposition in the context
of clique-width. Such an �-expression f uses three types of recursive operations
that work on labeled vertices using at most � different labels. Analogously to the
approach for a tree decomposition, for every subexpression a current state fixes
a part of the global ordering of the vertices.

However, the described vertices of a current subexpression is not bounded
by our parameters. Our algorithm has to remember an ordering of a limited
number of vertices and further has to address these vertices indirectly. Crucial
for the activation of a vertex is its threshold and neighborhood. However, we
cannot address the neighborhood even for vertices of currently equal label and
threshold since they can have very different neighborhoods as subexpression may
reveal. Consequently, our approach explores the �-expression top down, and fixes
an ordering of the important vertices of the up to now described graph. The up to
now encountered operations define a common neighborhood for all vertices of a
fixed label. This is because for every outer operations, vertices of the same label
behave equally. Thus, our local ordering indirectly references the vertices solely
by their label and threshold.

Further, vertices of the same label that occur late enough in a global ordering
behave equally. There is only one type of edge operation of �-expression, namely
ηα,β adding all edges between vertices of some labels α and β. There, for a vertex
v of label α we have to account the contribution to the activation of v due to
vertices of label β. Only the first thr(v) ≤ tmax active vertices of label β are
important. If the activation of v is between the activation of the first tmax of
label β, we fix their relative positioning in our local ordering. Otherwise, the
activation of v does not differ from other late vertices of label α.

However, we need to guarantee that a vertex v of label α that is not referenced
by our local ordering is indeed ordered late enough. That is, the first tmax vertices
of label β occur before vertex v. We denote such a global ordering as nice to the
current subexpression ηα,βf ′. It is possible to modify any valid global ordering
to be nice to all subexpressions. We extend our local ordering to also include
the (tmax + 1)-st vertex of every label. Then, whether the underlying global
ordering π is nice, is reflected in our local ordering. Therefore, we can restrict
our algorithm to consider nice global orderings only.

The resulting procedure for our algorithm at each operation of the given �-
expression then is as follows. For a current edge operation ηα,β , for each vertex v
we simply have to adjust the number of neighbors contributing to the activation
of v according to our fixed local ordering. We remember this contribution as the
activation from outside. For a current operation that combines two subgraphs,
consider the unknown partition of the vertices fixed by the local ordering in
either subgraph. In that case, the algorithm tries all possibilities. The approach

140 T. A. Hartmann

for the operation that re-labels a label is very similar. For every subexpression,
the number of possible states is single-exponentially bounded by our parameters,
which yields to an overall FPT-runtime.

Theorem 1. Let tmax, � ∈ N. There is an algorithm that, given a graph G, a
threshold for each vertex thr : V (G) → [0, tmax] and an �-expression f of G,
computes the minimal size of a target set in time O(�3�t · t�(4t+1) · |f |), where
t := tmax + 1 and |f | is the length of f .

An easy upper bound for the length of the �-expression f is |V (G)|2. Further,
one can obtain a minimum target set, and not only its size, by tracking such sets
throughout our dynamic program.

Oum gave an algorithm that either outputs an (8� − 1)-expression of graph
G or confirms that the clique-width of G is larger than �, and that runs in time
O(g(�) · |V (G)|3), where g(�) only depends on the clique-width � [17]. Combined
with the algorithm of Theorem1 it follows that TSS parameterized by the clique-
width and the maximum threshold is in FPT.

Corollary 1. Target Set Selection is in FPT with respect to the combined
parameters clique-width of the given graph and the maximum threshold.

Following the preliminaries in Sect. 2, we prove Theorem 1 in Sect. 3. We
conclude in Sect. 4. Due to space constraints, we omit some proofs or only give
a proof sketch. For the full proof, we refer to an online version at https://arxiv.
org/abs/1710.00635.

2 Preliminaries

For integers i < j, let [i] := {1, 2, . . . , i} and [i, j] := {i, (i+1), . . . , j}. For a list
(or vector) A, we describe the i-th element as A[i].

All our graphs are simple, finite and undirected. For a graph G, we denote by
V (G) its set of vertices. We use NG(v) as the neighborhood of vertex v ∈ V (G).
Usually we consider graphs with thresholds for each vertex thr : V (G) → [0, tmax]
which are at most a constant tmax, and assume that its thresholds thr and tmax

are given, if needed.
In this work, we consider parameterized complexity. For an introduction see

for example [9,10,12,16]. For a graph class, for example clusters (the disjoint
union of cliques), the parameter “distance to cluster” is the minimal number of
vertices one needs to delete from the input graph in order to obtain a cluster.

The clique-width cw(G) of a graph G was introduced in [8]. A graph has
clique-width at most � ∈ N, if it can be constructed by an �-expression that uses
four types of operations and a labeling of the vertices of at most � labels, as we
describe in the following. Let labels(f) be the set of labels used by f . To avoid
confusion with thresholds, we use small Greek letters α, β, γ for the labels. An �-
expression defines a graph G(f) with labels per vertex labG : V (G) → labels(f).
The graph G(f) is recursively defined as

https://arxiv.org/abs/1710.00635
https://arxiv.org/abs/1710.00635

Target Set Selection Parameterized by Clique-Width 141

– G(v(α)), a single vertex v of label α ∈ labels(f),
– G(f1 ⊕ f2), the disjoint union of G(f1) and G(f2) for �-expressions f1, f2,
– G(ηα,βf ′), the graph G(f ′) where there is an edge between every vertex of

label α and every vertex of label β, for �-expression f ′, and
– G(ρα→βf ′), the graph G(f ′) where all vertices of label α are re-labeled to

label β, for �-expression f ′.

The subexpressions of f are all expressions f1, f2, f
′ used in the recursive defi-

nition of f . Especially f is a subexpression of f . We drop the G(·) when using
G(f) as a nested term. For example, instead of V (G(f)), we simply write V (f).
Further, we also refrain from specifying the set of labels labels(f) if it is clear
from the context.

An �-expression is irredundant if for every subexpression ηα,βf ′ the graph
G(ηα,βf ′) has no edge between vertices of label α and β. We assume that the
given �-expression is irredundant, which we can assure by a simple preprocessing
step [8].

3 Dynamic Program

A good way to convince someone that a graph G with thresholds has a target set
of size at most k is to state a complete ordering in which the vertices get active.
We denote this permutation of the vertices as a global ordering π : V (G) →
[|V (G)|]. We say that π is k-activating for graph G if there is a k-vertex set
S ⊆ V (G), the target set, such that for every other vertex v the neighbors of v
that are ordered before v outnumber the threshold thr(v).

Definition 1. A global ordering of a graph G is a permutation of the vertices
π : V (G) → [|V (G)|]. Further, π is k-activating (for G) if there is a k-vertex set
S ⊆ V (G) such that for every vertex v ∈ V (G) \ S we have

π<
G(v) :=

∣
∣{u ∈ NG(v)

∣
∣ π(u) < π(v)

}∣
∣ ≥ thr(v).

Graph G has a target set of size k if there is a global ordering π such that π is
k-activating for G.

Example 1. The following graph G has global ordering π : vi �→ i, which is 1-
activating (for S = {v1}). Further, f = ηβ,γf ′ = ηβ,γ(v6(γ) ⊕ v8(γ) ⊕ v11(γ) ⊕
v9(γ)⊕v7(β)⊕ργ→αηβ,γ(v10(γ)⊕ργ→αηα,βηα,γηβ,γ(v2(γ)⊕v1(β)⊕v3(β)⊕v4(α)⊕
v5(α)))) is a 3-expression of G. For each vertex, the label among {α, β, γ} and
threshold at most tmax = 2 is given as a tuple.

(β, 1)

v1

v7, (β, 1)

v3, (β, 1)

v2, (α, 1)

v4, (α, 2)

v5, (α, 2)

v10, (α, 2)

v6, (γ, 2)

v8, (γ, 2)

v11, (γ, 2)

v9, (γ, 2)

142 T. A. Hartmann

For later examples, let A :=
(
(β, 1), (α, 1), (β, 1), (α, 2), (α, 2), (γ, 2), (β, 1),

(γ, 2), (γ, 2)
)
, and further ηα,βf ′, G and π be as defined here.

An �-expression f describes a graph G(f) with three types of recursive oper-
ations that rely on � different labels assigned to the vertices. We formulate a
dynamic program over the subexpressions of f . At a current subexpression f ,
a state fixes a part of a global ordering π. Whether such a state is a part of a
k-activating global ordering, is verified by considering the subexpressions with
suitable states.

In order to obtain the desired FPT-runtime, we may only work with states
that fix an ordering of a number of vertices bounded by our parameters, which
are maximum threshold tmax and clique-width �. However, the number of all
vertices described by a current subexpression is not bounded by our parame-
ters. Our algorithm thus can only remember an ordering of a limited number
of vertices and further cannot address these vertices directly. We identify the
important verices and a suitable way to remember them. Crucial for the activa-
tion of a vertex is its threshold and neighborhood. Our local ordering can very
well remember the threshold of vertices. However, it cannot address the neigh-
borhood even for vertices of currently equal label and threshold since they can
have very different neighborhoods as subexpression may reveal.

Consequently, our approach explores the given �-expression top down, and
fixes an ordering of the important vertices of the graph described by the up to
now seen part of the �-expression. The up to now seen operations define a com-
mon neighborhood for all vertices of a fixed label. This is because for every outer
operation, two vertices of equal label behave equally. Thus, our local ordering
can indirectly reference the vertices solely by their label and threshold.

Now, let us identify the vertices whose relative ordering is crucial. We can
observe that vertices of the same label that occur late enough in a global ordering
behave equally. An �-expression has only one type of operation that adds edges,
namely ηα,β for some labels α and β, which adds all edges between vertices
of labels α and β. There, for a vertex v of label α we have to account for
the contribution to the activation of v by the vertices of label β. Only the
first thr(v) ≤ tmax vertices of label β of the global ordering π are important.
Consequently, if π orders v somewhere between the first tmax vertices of label β,
the local ordering fixes the ordering of v relatively to those first vertices of label
β as well. If π orders v after the first tmax of label β, we can neglect its exact
ordering. This is because the number of neighbors of label β that contribute to
its activation do not differ from other such late vertices of label α. Our plan
therefore is that the local ordering fixes the relative positioning of these crucial
first tmax vertices of every label.

Doing so, we need to guarantee that a vertex v of label α that is not referenced
by our local ordering is indeed ordered late enough. That is, the first tmax vertices
of label β occur before vertex v. In particular, the first tmax vertices of label β are
ordered before the (tmax + 1)-st of label α. Then, given that v is not referenced
by our local ordering, there are at least tmax of label β ordered before, or if
there are not even as many of label β, accordingly less. We denote such an

Target Set Selection Parameterized by Clique-Width 143

ordering as nice to the current subexpression ηα,βf ′. It is possible to modify
any valid global ordering such that it is nice to every subexpression. Therefore,
our algorithm may only consider nice global orderings. We extend our local
ordering to also include the (tmax + 1)-st vertex of every label. Then, whether
the underlying global ordering π is nice to a current expression ηα,βf ′, is reflected
in our local ordering. Our algorithm may then ignore states with such not nice
local orderings.

We define the local ordering A for a current �-expression f that fixes the
relative ordering of the first (tmax + 1) activate vertices for each label α (or if
there are not even as many vertices of label α, accordingly less), which we denote
by tα. We indirectly remember a vertex v by fixing the label and threshold of
v. For technical reasons, we define a local ordering as possibly incomplete. Our
algorithm only considers complete local orderings.

Definition 2. Let G be a graph with labels lab : V (G) → labels(G). For label α,
let tα(G) := min{tmax(G)+1, |{v ∈ V (G) | lab(v) = α}|}. A local ordering A of
G is a list of tuples of label and threshold (α, a) ∈ labels(G) × [0, tmax(G)] such
that for every label α there are at most tα tuples of label α; and A is complete
if, for every label α, there are exactly tα tuples of label α.

The local ordering A is our limited view on a global ordering π. Let
condense(π) be the ordered list of vertices consisting of the first tα vertices of
each label α. A global ordering π extends A if the tuples of label and threshold
of condense(π) are equal to A. As a technical tool, we also define condense(π,A)
as the first ordered vertices consisting of each label α, such that the number of
vertices labeled α is equal to as there are in A.

Definition 3. Let graph G have global ordering π. Consider the list of ver-
tices according to the global ordering π−1(1), . . . , π−1(|V (G)|). For every label
α, remove all vertices of label α but the first tα vertices of label α. Then, the
resulting list is condense(π). Global ordering π extends a local ordering A (for
G) if the list tuples of label and threshold of condense(π) is equal to A.

Let condense(π,A) be the remaining list, after, for every label α, removing
all vertices of label α but the first |{i | lab(A[i]) = α}| of label α.

Example 2. We have tα, tβ , tγ = 3 and A is a complete local ordering of G.
Further, condense(π) = condense(π,A) = (v1, . . . , v9), whose list of tuples of
label and threshold is equal to A. Thus, A extends π. Let incomplete local
ordering A∗ contain only one tuple per label. Then, condense(π,A∗) is the list
of vertices (v1, v2, v6). The list of tuples of label and threshold is equal to A∗.

For an edge operation ηα,β , which adds all edges between vertices of two
distinct labels, we simply have to adjust the number of neighbors contributing
to an activation of a vertex according to our fixed local ordering. We remember
this contribution as the activation from outside. The mapping afo maps to a value
[0, tmax] for each position of the local ordering A, as well as maps to a value for
each label. That way we have a value for every vertex indirectly referenced by

144 T. A. Hartmann

A. Further, there is a value for every vertex v not referenced by A, which we
identify via the label of v.

A state of a current subgraph G(f) is a tuple consisting of a local ordering
A and an activation from outside afo. To reference the activation from outside
for a concrete vertex v we define Aπ(v) such that afo(Aπ(v)) is the activation
from outside for v. Thus, Aπ(v) maps v to its according position in A if it exists
and otherwise to the label of v. A global ordering π is k-activating for a state
(A, afo) of G if it is k-activating for G while supported by the activation from
outside afo.

Definition 4. Let f be an �-expression, and graph G(f) have local ordering A.
An activation from outside for A is a mapping afo : [|A|]∪ labels(f) → [0, tmax].
Then, the tuple (A, afo) is a state of G(f). For a global ordering π of G(f), let
Aπ : V (f) → [|A|] ∪ labsetf),

Aπ(v) �→
{

i, i ∈ [|A|], v = condense(π,A)[i],
lab(v), else.

A global ordering π of G(f) is k-activating for (A, afo) if there is k-vertex set
S ⊆ V (G) such that for every vertex v ∈ V (G) \ S we have that

π<
G(v) ≥ thr(v) − afo(Aπ(v)).

Example 3. Let afo(1) = 1, and for x ∈ {2, . . . , 6, α, β, γ}, let afo(x) = 0. The
activation from outside for vertex v1 is afo(Aπ(v1)) = afo(1) = 1 and for vertex
v10 it is afo(Aπ(v10)) = afo(α) = 0. Further, π is 0-activating for state (A, afo).

We define nice orderings, analogously for global orderings π and local order-
ings A. As we show in the following, for every k-activating global ordering π
there is a slightly modified k-activating global ordering π which is nice to every
subexpression of f . Our local ordering A includes the (tmax + 1)-st vertex of
every label. Thus, whether π is to nice the current expression f is expressed in
the ordering of A. Therefore, our algorithm can avoid not nice global orderings
by ignoring states where the local ordering A is not nice to f .

Definition 5. Let G be a graph with global ordering π. Let f be an �-expression
describing a subgraph of G. For label α, let vα[1], vα[2], · · · ∈ V (f) be the vertices
of label α of G(f) ordered ascending according to π. For every label α, let tαmax :=
min{tmax(G), |{v ∈ V (G) | lab(v) = α}|}. Then, π is nice to f if f = ηα,βf ′

implies that (if those respective positions exist)

π(vα[tmax+1]) > π(vβ [tβmax]) and π(vβ [tmax+1]) > π(vα[tαmax]).

Let A be the list of tuples of label and threshold of condense(π �V (f)) for graph
G(f), where π �V (f) is π restricted to vertices V (f). Then, A is nice to f if (and
only if) π is nice to f .

Target Set Selection Parameterized by Clique-Width 145

Example 4. Global ordering π is not nice to ηβ,γf ′ since π(vβ [tmax + 1]) =
π(v7) = 7 ≯ 8 = π(v8) = π(vγ [tmax]). By switching the 7th and 8th posi-
tion π becomes nice to ηβ,γf ′. Likewise, A is not nice to ηβ,γf ′, but A′ =

(
(β, 1),

(α, 1), (β, 1), (α, 2), (α, 2), (γ, 2), (γ, 2), (β, 1), (γ, 2)
)

is nice to ηβ,γf ′.

Lemma 1. Let f be an �-expression and π a global ordering that is k-activating
for graph G(f). Then, there is a global ordering π′ that is k-activating for graph
G(f) and nice to every subexpression of f .

Proof (Sketch). There may be subexpressions ηα,βf ′ where the (tmax+1)st vertex
of label α is ordered before the first tmax vertices of label β, formally π(vα[tmax+
1]) =: i < π(vβ [tβmax]). We repair such a violation by moving all vertices of
vβ [1], . . . , vβ [tβmax] that did not occur already between positions (i − 1) and i.
Since there are tmax vertices of label α ordered before position i, the modified
local ordering is still activating. We repair all such violations top-down. Following
this order prevents recursive violations for already fixed subexpression ηα′,β′ . For
a full proof see online version.

Definition 6. Graph G(f) is k-activating for a state (A, afo) if there is a global
ordering π that extends A, is k-activating for (A, afo), and is nice to every subex-
pression of f .

Lemma 2. Let f be an �-expression. Then, graph G(f) has a target set of size
k if and only if there is a complete local ordering A of G(f) such that G(f) is
k-activating for state (A,0), where 0 : [|A|] ∪ labels(G) → {0}.
Proof (Sketch). Use Lemma 1. For a full proof see online version.

It remains to specify the recursive dependency of our computation. We dis-
tinguish the three operations, which are adding edges if f = ηα,βf ′, taking the
disjoint union if f = f1 ⊕ f2, and re-labeling if f = ρα→βf ′.

Consider a current �-expression ηα,βf ′ and a state (A, afo). The operation
ηα,β adds the edges between all vertices of label α and β. We adjust the activation
from outside such that it replaces the edges between vertices of label α and β.
The relative ordering of the first (tmax + 1) vertices of label α and label β is
already fixed by the local ordering A. We increase the activation from outside
of a position y of A of label β for every prior position x of A of label α. For the
activation from outside for vertex v of label α that is not referenced by A, every
position x of A of label β increases the activation from outside. We denote the
result as ηα,βafo.

Definition 7. Let graph G with labels α and β have local ordering A. For y ∈
[|A|] ∪ labels(G), let

(ηα,βafo)(y) := min
{
tmax, afo(y) + add(y)

}
, where

add(y) := |{x ∈ [|A|] ∣
∣ x < y, {lab(x), lab(y)} = {α, β}}|,

146 T. A. Hartmann

where 1 < 2 < · · · < |A| < γ, for every label γ; and where lab(x), for x ∈ [|A|],
is defined as lab(A[x]). For every vertex v ∈ V (G), let

eπ(v) := |{u ∈ V (G)
∣
∣ π(u) < π(v), {lab(u), lab(v)} = {α, β}}|.

The number of edges that additionally contribute to the activation of a vertex
v, denoted by eπ(v), is equal to the increase of the activation from outside add(v)
(while ignoring an overall activation exceeding tmax).

Lemma 3. Let global ordering π extend local ordering A, which is nice to ηα,βf ′.
For every vertex v ∈ V (ηα,βf ′), we have that

min{tmax, afo(Aπ(v)) + eπ(v)} = (ηα,βafo)(Aπ(v)).

Proof (Sketch). We need to show for every vertex v that the number of new
neighbors ordered before, eπ(v), is equal to how much we increase afo(Aπ(v)),
when capped by tmax. Since A is nice to ηα,βf ′, this number of new neighbors
is correctly expressed by comparing v with its neighbors of label β in A, which
is how add(Aπ(v)) is computed. For a full proof see online version.

Lemma 4. Graph G(ηα,βf ′) is k-activating for state (A, afo) if and only if A is
nice to ηα,βf ′ and G(f ′) is k-activating for (A, ηα,βafo).

Proof (Sketch). We assume that the �-expression ηα,βf ′ is irredundant as men-
tioned in the preliminaries. Then, every edge between vertices of label α and β is
new to G(f ′) such that π<

ηα,βf ′(v) = π<
f ′(v) + eπ(v). For the forward direction,

let G(ηα,βf) have global ordering π that extends A, is k-activating for state
(A, afo) and nice to every subexpression of ηα,βf ′. It follows directly that A is
nice to ηα,βA. We in particular show that the same ordering π is k-activating
for the modified state (A, ηα,βafo). That is, every non-target set vertex v has
π<

f ′(v) ≥ thr(v) − (ηα,βafo)(Aπ(v)). We can follow this result from our initial
observation and by applying Lemma3. The backward direction is similar. For a
full proof see online version.

In case of a current expression f = f1 ⊕ f2, we have to show how to recur-
sively rely on the subexpressions f1 and f2, analogously for f = ρα→βf ′, on
subexpression f ′. For both cases, vertices of label β potentially come from dif-
ferent sets of vertices. In case of a re-labeling form α to β, a vertex of label β
possibly had label α before or already had label β. In case of a disjoint union
of subgraphs, a vertex of label β (or any other label) can be from either sub-
graph G(f1) or G(f2). For our indirect referenced vertices of our local ordering
A, we do not know the true origin. Thus, we have to try all possible partitions of
label β into labels α and β, respective all partitions of label β (and every other
label) into either subgraph. As the possible local orderings A are bounded by
our parameters, also the possible partitions are bounded by our parameters.

Target Set Selection Parameterized by Clique-Width 147

Definition 8

(1) A state (A, afo) of graph G(f) completes a state (A∗, afo∗) if A is complete,
and removing from A, for every label α, the last tuples of label α from A until
as many as in A∗ remain, results in A∗; and afo : [|A|]∪ labels(f) → [0, tmax],
maps x to afo∗(x), if defined for x, and otherwise to afo∗(lab(A[x])

)
.

(2) Let (f1 ⊕ f2) be an �-expression. Then, S[f1 ⊕ f2, (A, afo)] is the family of
every pair of states

(
(A1, afo1), (A2, afo2)

)
that complete the possible incom-

plete states (A∗
1, afo

∗
1) and (A∗

2, afo
∗
2) that can be constructed as follows. Start

with states (A∗
1, afo

∗
1), (A∗

2, afo
∗
2) where A∗

1 = A∗
2 = () and, for every label α,

we have afo∗
i (α) = afo(α). For position j, beginning from 1 to |A|, add A[j]

to the end of either list A∗
i ∈ {A∗

1, A
∗
2} where possible. For position j ∈ [|A|],

tuple A[j] is added to list A∗
i , and let j′ be the position of A[j] in A∗

i . Then,
let afo∗

i (j
′) := afo(j).

(3) Let (A, afo) be a state of G(ρα→βf ′). Then, S[ρα→βf ′, (A, afo)] is the family
of every state (A′, afo′) that completes a state (A∗, afo∗) that can be con-
structed as follows. Re-label s ∈ [0, tαmax(f

′)] many tuples of A of label β
to α, while at most tβmax(f

′) of label β remain, resulting in A∗. Let afo∗ be
defined as afo but where afo∗(α) = afo(β).

Lemma 5. Graph G(f1⊕f2) is k-activating for state (A, afo) if and only if there
are states

(
(A1, afo1), (A2, afo2)

) ∈ S[f1 ⊕ f2, (A, afo)] and partition k1 + k2 = k
such that, for i ∈ {1, 2}, graph G(fi) is ki-activating for (Ai, afoi).

Lemma 6. Graph G(ρα→βf ′) is k-activating for state (A, afo) if and only if
there is a state (A′, afo′) ∈ S[ρα→βf ′, (A, afo)] such that G(f ′) is k-activating
for (A′, afo′).

Finally, we can show our main theorem, which was stated in the introduction.

Theorem 2 (Theorem 1 restated). Let tmax, � ∈ N. There is an algorithm
that, given a graph G, a threshold for each vertex thr : V (G) → [0, tmax] and an
�-expression f of G,computes the minimal size of a target set in time O(�3�t ·
t�(4t+1) · |f |), where t := tmax + 1 and |f | is the length of f .

Proof. The minimal size of a target set is the minimal k of all local orderings A
of G(f) such that G(f) is k-activating for (A,0), as seen in Lemma 2.

Our algorithm computes the minimal k for possibly each subexpression f ′

of f and state (A, afo) of G(f ′), in the fashion of dynamic programming. The
minimum for a subexpression f ′ and state (A, afo) of G(f ′) is remembered for
future queries. There are at most (�t)�t possible local orderings A for a subgraph
G(f ′). And there are at most t�t+� possible activations from outside afo : [|A|] ∪
labels(f) → [0, tmax]. Thus, there are at most (�t)�t · t�t+� different states for
a fixed subexpression. Further, every computation is the minimum of at most
(�t)2�t entries (an upper bound is guessing A1, A2 respectively A′ from scratch),
and the minimum can be found in linear time. Therefore, the algorithm runs in
time O((�t)�t · t�t+� · (�t)2�t) · |f | = O(�3�t · t�(4t+1) · |f |). If (A, afo) is not a correct
state for G(f ′), set its minimum to ∞.

148 T. A. Hartmann

If f contains only one operation, then f = v(α) and the only possible global
ordering is π : {v} → {1}. Graph G(f) is at least 1-activating, and possibly
0-activating if thr(v) ≥ thr(v) − afo(1). Answer accordingly in time O(1).

Otherwise, if f consists of more than one operation, we have either of the
recursive cases that f is ηα,βf ′, f1 ⊕ f2 or ρα→βf ′. According to Lemmas 5
and 6 respectively, graph G(f1 ⊕ f2) is k-activating for state (A, afo) if and
only if there is a pair of states

(
(A1, afo1), (A2, afo2)

) ∈ S[f1 ⊕ f2, (A, afo)] and
partition k1 + k2 = k such that, for i ∈ {1, 2}, the graph G(fi) is ki-activating
for (Ai, afoi);and graph G(fρα→βf ′) is k-activating if and only if there is a
state (A′, afo′) ∈ S[ρα→βf ′, (A, afo)] such that G(f ′) is k-activating for (A′, afo′).
Therefore, in those two cases we can recursively obtain a minimum size of a
target set by querying for the according subgraphs G(f ′), G(f1), G(f2) and states(
(A1, afo1), (A2, afo2)

) ∈ S[f1 ⊕ f2, (A, afo)] and (A′, afo′) ∈ S[ρα→βf ′, (A, afo)],
respectively. In case of f = f1 ⊕ f2 the minimum size of a target set is the
minimum of the sum of the minimum sizes for f1 and f2. For f = ρα→βf the
minimum size is equal to the minimum for f ′.

According to Lemma 4, graph G(ηα,βf ′) is k-activating for state (A, afo)
if and only if A is nice ηα,βf ′ and graph G(ηα,βf ′) is k-activating for state
(A, ηα,βafo). Thus, in case of that A is not nice to f we can discard the current
computation for a minimal size of a target set for the graph G(ηα,βf ′) and state
(A, afo). Otherwise, the minimum size of a target set is equal to the minimum
size of subgraph G(f) with state (A, ηα,βafo).

4 Conclusion

In this work, we gave an FPT-algorithm for TSS for the combined parameters
clique-width and maximum threshold. This result generalizes all previous FPT-
membership results of TSS with constant thresholds. It would be interesting to
explore the whole dichotomy of constant TSS for common structural parameters.
Is there a different dichotomy when the maximum threshold is a parameter and
not a constant?

References

1. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized inapproximabil-
ity of target set selection and generalizations. Computability 3(2), 135–145 (2014)

2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discret. Optim. 8(1), 87–96 (2011)

3. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree ver-
tex deletion parameterized by treewidth. Discret. Appl. Math. 160(1–2), 53–60
(2012)

4. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret.
Math. 23(3), 1400–1415 (2009)

5. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)

Target Set Selection Parameterized by Clique-Width 149

6. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded
target set selection in social networks. Theor. Comput. Sci. 535, 1–15 (2014)

7. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101(1–3), 77–114 (2000)

9. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

10. Downey, R.G., Thilikos, D.M.: Confronting intractability via parameters. CoRR,
abs/1106.3161 (2011)

11. Dvorák, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. CoRR,
abs/1610.07530 (2016)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

13. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

14. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Washington, D.C.,
USA, 24–27 August 2003, pp. 137–146 (2003)

15. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

17. Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algo-
rithms 5(1), 1–20 (2008)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-319-03898-8_15

Model-Based Software Engineering

Combining Versioning and Metamodel Evolution
in the ChronoSphere Model Repository

Martin Haeusler1(B), Thomas Trojer2, Johannes Kessler1, Matthias Farwick2,
Emmanuel Nowakowski1, and Ruth Breu1

1 University of Innsbruck, 6020 Innsbruck, Austria
{martin.haeusler,johannes.kessler,emmanuel.nowakowski,

ruth.breu}@uibk.ac.at
2 Txture GmbH, 6020 Innsbruck, Austria

{thomas.trojer,matthias.farwick}@txture.io

Abstract. Model Driven Engineering (MDE) has gained a lot of popu-
larity in recent years and is being applied in a wide variety of domains.
As teams, models and applications grow in size, the need for faster and
more scalable technology emerges, in particular in the crucial area of
model repositories. These software components are responsible for per-
sisting, querying and versioning the model content and act as central
hubs for interaction with the model. However, existing repository solu-
tions do not consider metamodel evolution, which is important in long-
running projects. In this paper, we present ChronoSphere, a novel model
repository, targeted specifically towards developers working with MDE
technology in industry, with a focus on models-at-runtime scenarios. By
utilizing the latest innovations in graph databases and version control,
ChronoSphere provides transparent and efficient versioning as well as
metamodel evolution capabilities. This paper focuses on the core con-
cepts of ChronoSphere, in particular data management, versioning and
metamodel evolution. Our open-source implementation serves as proof
of concept.

1 Introduction

The discipline of Model Driven Engineering (MDE) is employed in a wide variety
of domains with different goals and purposes [1]. One of the most pressing con-
cerns in any larger modeling endeavour is collaboration on model data which also
entails model persistence, versioning [2] and model querying. Model repositories
serve this very purpose and constitute a major part in the tooling landscape
of model engineering and model-driven disciplines. Over the years, a consider-
able number of approaches and tools have been developed [3]. However, most
implementations never exceeded the prototypical stage and have therefore never
actually been employed in industrial contexts. The most prominent tool that
has passed the test of time is called Connected Data Objects (CDO1). CDO is

1 https://wiki.eclipse.org/CDO.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 153–167, 2018.
https://doi.org/10.1007/978-3-319-73117-9_11

https://wiki.eclipse.org/CDO

154 M. Haeusler et al.

a powerful, full-featured repository for EMF Ecore2-based models that provides
a client-server architecture, database connectivity, transaction handling as well
as a graphical user interface. CDO is widely considered to represent the state-
of-the-art in model repositories. However, it offers no solution for metamodel
evolution. If a new metamodel version is required, the database needs to be
dropped and recreated from scratch, deleting all existing model elements in the
process. Metamodel evolution is of crucial importance in several areas, especially
in MDE [4] and models-at-runtime scenarios [5,6].

Over the course of the past two years, we have dedicated our efforts to solving
these issues by designing and implementing a next-generation model repository
that is dedicated to the developers of model-driven applications. In particu-
lar we considered the requirements for models-at-runtime scenarios. The result
of these efforts is the ChronoSphere EMF model repository which is an open-
source project3 that is freely available on GitHub4. As we are going to discuss
in detail in Sect. 3, ChronoSphere is fundamentally different from existing solu-
tions. It implements the entire data management stack, from high-level Ecore
model elements to on-disk data structures, in order to maximize the flexibility,
scalability and separation of concerns while adhering to a coherent architecture.
It addresses the needs of practitioners to adapt the metamodel without deleting
existing instance data and scales well even with large models. The individual
architectural layers (c.f. Sect. 3) can also be used as standalone components out-
side the model repository context. These components have also contributed to
the state-of-the-art in database systems in the areas of versioned data manage-
ment [7] and graph databases [8].

The remainder of this paper is structured as follows. In Sect. 2, we present
the requirements we considered in the design and construction of ChronoSphere.
In Sect. 3 we give an overview of our proposed solution, which we then compare
to related work in Sect. 4. Finally, we present an outlook to future work in Sect. 5
before concluding the paper with a summary in Sect. 6.

2 Requirements Overview

This section is dedicated to the requirements that guided the design and develop-
ment of ChronoSphere. We synthesized those requirements from related work [3]
as well as from our own long-standing experiences with model repositories [9–12].

The following list summarizes some of the requirements that we considered
in the design and implementation of our ChronoSphere prototype. There are
several other aspects that are already implemented in ChronoSphere (such as
model-level queries and secondary indices). These requirements are beyond the
scope of this paper.

2 https://www.eclipse.org/modeling/emf/.
3 This work was partially funded by the research project “txtureSA” (FWF-Project

P 29022).
4 http://tinyurl.com/chronosphere-github.

https://www.eclipse.org/modeling/emf/
http://tinyurl.com/chronosphere-github

Combining Versioning and Metamodel Evolution 155

– [R1] Model Persistence
• [R1.1] Persisting Model Data

The ability to persist model data is the most fundamental capability of
any model repository. Given an arbitrary metamodel and instance model,
ChronoSphere must be able to store this data in a persistent format on
disk, and reconstruct it as needed, in whole or partially.

• [R1.2] Transactional Safety
In order to cope with concurrent access, ChronoSphere must offer trans-
action concepts that allow for safe model usage in the presence of parallel
modifications. This requirement is closely related to the ACID properties
in database systems [13].

• [R1.3] Scalability
Instance models can grow to considerable sizes in practice, in particular
in scenarios where instances are not created and managed manually but
by an automated process. The ability to efficiently manage models with
several 100000 elements (e.g. with respect to query response times, CPU
and RAM usage. . .) is paramount for ChronoSphere.

– [R2] Model Versioning and Evolution
• [R2.1] Versioning

Auditing, traceability of changes and legal compliance are just three
examples why versioning capabilities are important in practice. The abil-
ity to consistently reproduce the same results for a given query and
request version, as well as capabilities for analyzing the history of indi-
vidual elements, are the essence of this requirement.

• [R2.2] Lightweight Branching
The orthogonal requirement to the linear versioning concept is to have
several branches in a repository. Branches have several use cases in prac-
tice, for example in planning and comparing different scenarios based on
a common ancestor model. Branching should be lightweight, i.e. creating
a branch should not entail the creation of a full copy of the model on disk.

• [R2.3] Metamodel Evolution
The ability to evolve the metamodel over time, even in the presence
of existing instance elements, is crucial in models-at-runtime contexts.
ChronoSphere must be able to support this process, ensuring the confor-
mance of instance model elements to their metamodel at all times.

• [R2.4] Metamodel Versioning
Given requirements [R2.1] and [R2.3], being able to include the meta-
model in the version control mechanism is mandatory. Otherwise, older
versions of instance model elements might not conform to an evolved
metamodel.

3 Proposed Solution

Figure 1 shows the data management concepts of ChronoSphere. The Ecore-
based application, depicted on the far left, is working with EObjects and their

156 M. Haeusler et al.

corresponding EClasses, EPackages and other Ecore elements. The fact that
the model and the metamodel are stored and managed together will become a
critical factor when dealing with metamodel evolution. This combined model
needs to be persisted and versioned [R1.1, R2.1, R2.3, R2.4]. In the top
left, the programmer is working (A) with the APIs provided by ChronoSphere
and Ecore, or formulates model-level queries (which are beyond the scope of
this paper). The repository then transforms (B) the model-level request into a
request in the underlying graph database called ChronoGraph5 [8]. This graph
database implements the concept of a versioned property graph [14] and is fully
compliant to the Apache TinkerPop6 graph computing standard. To the best of
our knowledge, ChronoGraph is the first TinkerPop graph database that provides
full versioning support, and we implemented it primarily in order to serve as a
backend for our ChronoSphere repository. Property graphs are conceptionally
very close to Ecore models [R1.3]. Our model-to-graph mapping is inspired by
Neo4EMF [15] but uses a custom implementation for technical reasons.

Fig. 1. ChronoSphere data management stack

In order to achieve a serial form for the model data that can be persisted
to disk, ChronoGraph disassembles (C) the property graph into individual Star
Graphs, one for each vertex (i.e. node). A star graph is a sub-graph that is cen-
tered around one particular vertex. It contains all properties from this vertex,
5 http://tinyurl.com/chronograph-github.
6 http://tinkerpop.apache.org/.

http://tinyurl.com/chronograph-github
http://tinkerpop.apache.org/

Combining Versioning and Metamodel Evolution 157

as well as all adjacent edges. The star graph also contains the IDs of the neigh-
bour vertices, but has no further information about them. Figure 1 shows the
star graph of vertex v1 (where v1 is depicted as a black circle). Creating star
graphs for each vertex is a special kind of graph partitioning. This partitioning
only affects the data layout, it has no impact on transaction control (i.e. a sin-
gle transaction can contain multiple star graphs). When linking the star graphs
again by replacing IDs by vertices, the original graph can be reconstructed from
this partitioning. This reconstruction can occur fully or only partially, which
makes this solution particularly suitable for lazy loading techniques [R1.3]. For
further details on ChronoGraph, we refer the interested reader to our previous
work [8].

In the next step (D) we transform the star graph of each vertex into a
binary string using the well-known Kryo7 serializer, and pass the result to our
underlying versioned Key-Value-Store ChronoDB8 which we describe in detail
in our previous work [7]. When the transaction is committed [R1.2], the commit
timestamp is assigned to each pair of modified keys and corresponding binary
values, creating time-key-value triples as shown in Fig. 1 [R2.1]. ChronoDB then
stores (E) these triples in a Temporal Data Matrix [7] which is implemented as
a B+-Tree [16]. Each row in this matrix represents the full history of a single
element, each column represents a model revision, and each cell represents the
data of one particular element for a given ID at a given timestamp. As history
is immutable, unchanged values are reused implicitly in all future versions until
they are overridden by another entry, allowing for a very compact representation
on disk. Lightweight branching [R2.2] is achieved on the ChronoDB layer as well.
Each branch has a one-to-one relationship to a temporal data matrix. If an entry
is requested in a matrix that is older than the creation timestamp of the matrix,
the request will be deferred to the matrix of the origin branch (recursively). As
each matrix only stores the changes applied to its own branch, no copying is
required, thus achieving lightweight branching.

The transformation chain depicted in Fig. 1 is bijective, i.e. it can be applied
for saving data as well as loading data. The EObjects which are loaded from
the underlying layers by ChronoSphere are fully compliant to the Ecore stan-
dard and can therefore be used by any tool in the Ecore ecosystem, such as
EMFCompare [17].

The conceptual metamodel of ChronoSphere is shown in Fig. 2. An instance
of ChronoSphere manages a number of named Branches (with master as the
predefined one) [R2.2], and each Branch refers to its origin (recursively). Each
Branch contains any number of Versions, which in turn contain a (Ecore-based)
Metamodel and an InstanceModel, which is a collection of EObjects that adhere
to the EClasses in the Metamodel. A ChronoSphere instance can then create
Transactions on a given Version by starting them on a transactionTimestamp,
which is usually obtained from a user-provided java.util.Date. This is a fairly
common setup for versioning- and branching-enabled model repositories. A detail

7 https://github.com/EsotericSoftware/kryo.
8 http://tinyurl.com/chronodb-github.

https://github.com/EsotericSoftware/kryo
http://tinyurl.com/chronodb-github

158 M. Haeusler et al.

Fig. 2. Conceptual ChronoSphere metamodel (simplified)

deserving special attention is the fact that a Version and a Metamodel are bound
to each other in a one-to-one relationship. This is a requirement for metamodel
evolution, which we will discuss in the next section.

3.1 Metamodel Evolution

One of the major benefits of employing model repositories is the freedom of
defining a custom, domain-specific metamodel for any given use case. In prac-
tice, users often cannot take full advantage of this benefit because they are
hampered by the lack of proper tool support, in particular in cases where the
metamodel evolves over the duration of a project [4]. These cases are very com-
mon in industrial contexts with long-running projects. In enterprise scenarios,
developers create database scripts that migrate the database schema (and con-
tained data) from one version to the next. There is a wide variety of tools for
this purpose (e.g. Flyway9 and LiquiBase10). In a model-based environment, this
translates to the concept of metamodel evolution, sometimes also referred to as
metamodel adaptation [18]. The key challenge of metamodel evolution is to keep
the instance model consistent with the metamodel, i.e. the instances need to be
co-adapted such that they conform to the new metamodel [19].

For some evolutionary metamodel changes, no instance co-adaptation is
required. For example, when adding a new (optional) EAttribute to an exist-
ing EClass, the existing instances are still valid, they just have no value
set for the new attribute. Other basic examples include the addition of new
EClasses or increasing the multiplicity of an EAttribute from multiplicity-one
to multiplicity-many. However, far more complex examples exist as well, and in
many cases, fully automatic and deterministic instance co-adaptation is not pos-
sible. Cicchetti et al. refer to such cases as unresolvable breaking changes [19]. For
instance, we consider a metamodel that contains an EClass A. The next version
of the same metamodel does not contain A anymore, but a new EClass named B
instead. Even though there are algorithms for model differencing [17,20,21], in
the absence of unique identifiers (e.g. UUIDs) and change logs we cannot tell if A

9 https://flywaydb.org/.
10 http://www.liquibase.org/.

https://flywaydb.org/
http://www.liquibase.org/

Combining Versioning and Metamodel Evolution 159

was removed and B was added, or if A was merely renamed to B. In the first case,
we would have to delete all instances of A, in the second case we would need to
migrate them to become instances of B. This basic example shows that instance
co-adaptation requires semantic information about the change, which is only
available to the application developer. For this reason, ChronoSphere provides
an API for managing metamodel evolution with instance co-adaptation [R2.3].
Rose et al. provide a summary of related approaches [22]. This in-place transfor-
mation approach is in line with Wimmer et al. [23] and Meyers et al. [24], with
the notable difference that we propose a Java API instead of ATL processes or
DSLs [25,26]. The concept is also similar to the Model Change Language [27].
This API offers three different modes of operation:

– Metamodel Changes without need for instance adaptation
This kind of evolution is intended for the most basic changes that do not
require any kind of instance co-adaptation, such as adding EClasses, adding
EAttributes, or increasing feature multiplicities from one to many. This cat-
egory is also known as non-breaking changes [19]. The developer only provides
the new version of the metamodel and loads it into ChronoSphere, which will
create a new version in the history.

– One-to-one correspondence
When instance co-adaptation is required, a common case is that each EObject
from the old model will still correspond to (at most) one EObject in the
new model. Examples for changes in this category include the renaming of
EClasses and EAttributes. For such cases, the ChronoSphere metamodel
evolution engine provides the developer with a predefined evolution process
and a predefined element iteration order. The developer implements an Incu-
bator that is responsible for either migrating a given EObject to match the
new metamodel, or deleting it if it is obsolete. The Incubator is specific to a
given source and target metamodel and contains the semantics and domain-
specific constraints of the migration, expressed in Java source code.

– Generic adaptation
In more complex cases, a one-to-one correspondence of elements can no longer
be established, for example when an EClass is refactored and split up into
two separate classes. In such cases, ChronoSphere provides a generic Evolution
Controller interface that is in full control over the instance co-adaptation. It
receives the migration context, which provides utility methods for querying
the old and new model states. The migration process as well as the iteration
order of elements are defined by the implementation of the controller. For that
reason, implementing an evolution controller is the most powerful and expres-
sive way of defining a migration, but also the most technically challenging one
that entails the highest effort for the developer. Just like the incubators from
the one-to-one correspondence case, such migration controllers are specific to
a given source and target metamodel version.

By offering these features, we implement the metamodel evolution requirement
[R2.3]. Since we only adapt the latest version of the model to the new meta-
model, the old model instances still conform to their corresponding metamodel.

160 M. Haeusler et al.

We must not touch these instances, because this would violate the requirements
for versioning and traceability of changes [R2.1]. Hence we need to put the
metamodel under version control as well.

mm1 mm2

m1 m2 m3 m4 m5
...M

od
el

Ve
rs

io
n

M
et

a-
M

od
el

Ve
rs

io
n

Metamodel Evolution

Instance Co-AdaptionRegular Change

Version 1 Version 2 Version 3 Version 4 Version 5 ...

Fig. 3. Metamodel evolution in ChronoSphere

As shown in Fig. 3, every version in every branch of the model can have its
own metamodel to which it corresponds [R2]. A direct consequence of this app-
roach is that the application developer needs to be aware of those (potentially)
multiple metamodels, and create queries dynamically based on that metamodel.
While this will entail additional efforts in development, it is the only fully con-
sistent way of managing versioned models with evolving metamodels.

The alternative would be to retroactively adapt every stored version of the
model to a single new metamodel. However, since this adaptation process is not
guaranteed to conserve all information (e.g. consider a new metamodel where an
EAttribute has been deleted), we would not be able to guarantee traceability
anymore. Consequently, we would introduce a considerable threat to the validity
of audits. By storing a new metamodel alongside the co-adapted instance model,
we restrict the impact of a metamodel evolution to a single version (e.g. the
version that simultaneously introduces m4 and mm2 in Fig. 3), and can still
guarantee traceability in the remaining sections of our data. As we will discuss
in the remainder of this section, in our approach we can guarantee traceability
even across metamodel evolutions.

Algorithm 1 shows how metamodel evolution works in ChronoSphere when
using an Incubator. In the beginning of the metamodel evolution algorithm, we
open two transactions on the repository, and we refer to them as txOld and
txNew. We will use txOld in order to read the repository state before the evo-
lution has occurred, and txNew to perform our modifications. We assume that
txOld contains a metamodel and a corresponding instance model (otherwise the
evolution is a regular insertion). It is crucial at this point that these two transac-
tions are able to work in parallel, and are furthermore completely isolated from
each other. Our first actual modification is to override the previous metamodel
in txNew. We can safely do so because the original is still stored in txOld. There
is no metamodel differencing taking place in this phase, we perform a plain over-
write. We initially delete all elements in txNew (lines 4 to 5) and start with an

Combining Versioning and Metamodel Evolution 161

Algorithm 1. Metamodel Evolution using an Incubator
Data: Repository; NewMetamodel; Incubator

1 txOld ← Repository.tx();
2 txNew ← Repository.tx();
3 txNew.setMetamodel(NewMetamodel);
4 foreach EObject e in txNew.allInstances do
5 txNew.delete(e)

6 foreach EObject e in txOld.allInstances do
7 newClass ← Incubator.getEClass(NewMetamodel, e);
8 if newClass != NULL then
9 txNew.recreate(e, newClass);

10 foreach EObject e in newTx.allInstances do
11 oldEObject ← oldTx.getEObject(e);
12 Incubator.transferEAttributes(oldEObject, e);

13 foreach EObject e in newTx.allInstances do
14 oldEObject ← oldTx.getEObject(e);
15 Incubator.transferEReferences(oldEObject, e);

16 txNew.commit();
17 txOld.rollback();

empty instance model. Afterwards we begin our first instance evolution phase
(lines 6 to 9). We iterate over all EObjects stored in the old repository state,
and ask our Incubator for a new EClass for this particular EObject. If there is a
corresponding EClass in the new metamodel, we recreate the EObject with the
same ID, preserving the historical traceability link. Otherwise, we discard the
EObject. In lines 10 through 12, we iterate over the elements that received a new
EClass previously and look for their counterparts in txOld. We ask the Incubator
to transfer any desired EAttribute values from the old version to the new one,
which may also involve a value transformation step. For the fulfillment of all of
its tasks, the Incubator has access to the Ecore API as well as the ChronoSphere
API, allowing for very clean and expressive implementations. Finally, we con-
struct the EReference instances by iterating over the EObjects again (lines 13
to 15). Once more, the Incubator is responsible for the actual semantics. In the
last phase, we perform the commit that persists our changes to disk (and creates
a new entry in the version history), and roll back the historical transaction.

Overall, we have maintained our traceability links (by retaining the IDs of
EObjects) and performed a metamodel evolution with instance adaptation that
is ACID safe and creates a clean history without partially evolved intermediate
states. The evolution process with a full-fledged Evolution Controller works in
much the same way. The primary difference is that the lines 6 through 15 are
replaced by a call to the controller, allowing for a maximum of flexibility in
the controller implementation. This algorithm requires efficient management of
RAM in practice, in particular when working with larger models. Since txNew

162 M. Haeusler et al.

needs to manage all changes applied to all model elements, the change set can
grow to very large sizes. ChronoSphere provides mechanisms [28] to mitigate this
problem while providing the same level of ACID safety and equivalent histories.

3.2 Transaction and Versioning Concepts

Transactional safety [R1.2] is the foundation of all collaboration- and evolution-
related features in ChronoSphere. Originally coined by the database community,
this concept has since been adopted by other domains as well. In the context of
modeling and model repositories, transactional safety implies that several clients
can work in parallel on a model without interfering with each other.

In ChronoSphere, a client11 requests a transaction, then operates on it by
executing queries and applying changes locally in this transaction. Afterwards,
the transaction can either be committed (local changes will be made available
globally [R1.1] by creating a new version [R2.1]) or rolled back (reverting all
local changes). The isolation property defined in the SQL Standard [13] states
that any operation executed within a transaction must not be affected by other,
concurrent transactions [R1.2]. In order to achieve the highest possible isolation
level (serializable [13], also known as snapshot isolation), databases tradition-
ally either need to perform excessive pessimistic locking, or allocate considerable
amounts of RAM to open transactions in order to retain duplicates of concur-
rently modified entries. Thanks to its versioning capabilities, ChronoSphere can
provide snapshot isolation with minimal locking, no additional memory overhead
and without sacrificing performance. This is a direct consequence of our design:
once a model version is committed, it is effectively immutable. Further changes
will create new versions. Therefore, as long as a client is working on any given
version (i.e. the used transaction timestamp does not change), the model content
will not change, thus guaranteeing snapshot isolation.

ChronoSphere is a full ACID model repository. A direct consequence of this
feature is that Online Transaction Processing (OLTP) and Online Analytics Pro-
cessing (OLAP) are supported in parallel. For instance, one client may have a
long-running transaction that performs extensive model analysis, while other
clients execute short-lived transactions that modify the model content. Due
to the snapshot isolation, the long-running analysis transaction will not block
the other transactions, and the changes they introduce to the model will not
be visible to the analysis transaction. This guarantees that the analysis will be
executed without any interference.

4 Related Work

The tool landscape in the area of model repositories is as large as it is varied
today, ranging from traditional approaches like CDO and EMFStore [29] to
11 We use the term “client” to refer to application code that operates on top of Chrono-

Sphere. This can be a remote method invocation, another thread or simply a method
call to the public API.

Combining Versioning and Metamodel Evolution 163

modern NoSQL-solutions like the Hawk Model Indexer [30] and Neo4EMF [15].
Pierantonio et al. provide a good overview of existing tools in their paper [3].
In this Section, we will compare ChronoSphere to existing tools on a conceptual
level. We are also performing comparative benchmarks, but since this process is
tightly tied to model queries, which are outside the scope of this paper, these
results will be published separately.

Table 1. Feature comparison of model repositories and model indexers

In ChronoSphere the entire data management stack was implemented from
scratch, ranging from data storage and versioning to transaction and model
management. To the best of our knowledge, this is an unparalleled effort in the
area of model repositories. This approach allows for a complete redesign of the
architecture, avoiding the common problems introduced by traditional methods,
such as Object-Relational Mapping (e.g. used by CDO) or the storage of model
differences for versioning (e.g. EMFStore) while still achieving a comparable
feature set in a coherent solution. There are several NoSQL model repositories
available, e.g. MORSA [31], but ChronoSphere is the first to fully leverage the
potential of graph databases. Approaches like Neo4EMF [15] and Hawk [30] are
graph-based and inspired and guided our efforts. However, these tools do not offer
the versioning and temporal indexing capabilities provided by ChronoSphere,
which are essential for models-at-runtime scenarios. They serve different use
cases that only partially overlap with our goals. This also becomes evident when
comparing the feature sets of Neo4EMF and Hawk to the requirements we have
stated in Sect. 2. Table 1 shows a comparison of features of related technologies.

ChronoSphere is, to the best of our knowledge, the only actively maintained
model repository for EMF models that offers metamodel evolution features. These
features are enabled by the fact that graph databases, such as ChronoGraph, do
not need a fixed schema, whereas most traditional SQL databases require schemas
for their tables. Model repositories based on SQL databases, such as CDO, can-
not offer metamodel evolution features to the same extent as ChronoSphere,
because such a change would require a schema adaptation in SQL. Such an change
inevitably affects all rows stored in the modified tables, potentially breaking audit
traces in the process. In contrast, a metamodel evolution in ChronoSphere will
never affect model elements from previous versions, allowing for highly accu-
rate auditing and version history analysis. Furthermore, by exposing a dedicated
Java API to developers, we provide a mechanism for co-adaptation of instances.

164 M. Haeusler et al.

The transaction-based nature of this mechanism allows implementations to ana-
lyze the pre-evolved as well as the current state of the repository, which greatly
reduces the difficulty of the co-adaptation implementation.

5 Outlook and Future Work

In future publications, we will discuss the query framework provided by Chrono-
Sphere in detail which is already part of the implementation. It also contains
mechanisms for the detection of conflicts that can occur during concurrent trans-
actions. Currently, conflicts are resolved in a “first writer wins” fashion, but
more elaborate conflict resolution strategies based on the three-way differenc-
ing algorithms [17] employed by version control systems (e.g. GIT) are on our
roadmap. This will also allow to merge branches in future versions of Chrono-
Sphere. Another major goal for the future is to distribute ChronoGraph across
several machines in order to achieve higher scalability and load balancing. Due
to the clean layer separation, ChronoSphere will also benefit from these improve-
ments with minimal need for adaptations. This will turn ChronoSphere into a
distributed model repository that will be able to work effectively with very large
models. We also intend to publish an extensive case study on the industrial
application of ChronoSphere in the context of the commercial IT Landscape
Management tool Txture12. Txture is already using ChronoSphere in produc-
tion. This software leverages the capabilities of ChronoSphere and its underlying
components to bring powerful interactive model-based visualizations to its users.
The planned case study will showcase how ChronoSphere supports the critical
tasks in such an industrial environment.

6 Summary

In this paper, we presented the model repository ChronoSphere. Incorporating
over two years of work and dedication, this open-source project utilizes the latest
innovations in graph computing and version control and makes them accessible
for the MDE community in the form of a novel, next-generation model repository.
We provided a requirements specification for our repository synthesized from
related work as well as our own long-standing experience in this area. Based upon
these requirements, we showcased the basic principles of ChronoSphere and its
unique data management stack. The presented concept for supporting versioning
and metamodel evolution in a consistent fashion retains traceability links and
allows for effective auditing and history analysis. We concluded the paper with a
comparison with related state-of-the-art model repositories. ChronoSphere is an
all-new open-source technology that offers unique advantages and possibilities.
It is intended to serve as a platform for future projects in research and industry
alike.

12 www.txture.io.

www.txture.io

Combining Versioning and Metamodel Evolution 165

References

1. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A., Nordmoen, B.,
Fritzsche, M.: Where does model-driven engineering help? Experiences from three
industrial cases. Softw. Syst. Model. 12(3), 619–639 (2013)

2. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An
introduction to model versioning. In: Bernardo, M., Cortellessa, V., Pierantonio,
A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 336–398. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30982-3 10

3. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Collaborative repositories
in model-driven engineering. IEEE Softw. 32(3), 28–34 (2015)

4. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel
evolution in MDE. J. Object Technol. 11(3), 1–3 (2012)

5. Seybold, D., Domaschka, J., Rossini, A., Hauser, C.B., Griesinger, F., Tsitsipas,
A.: Experiences of models@ run-time with EMF and CDO. In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering,
pp. 46–56. ACM (2016)

6. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009)

7. Haeusler, M.: Scalable versioning for key-value stores. In: Proceedings of 5th Inter-
national Conference on Data Management Technologies and Applications, Lisbon,
Portugal, 24–26 July 2016, DATA 2016, pp. 79–86. http://dx.doi.org/10.5220/
0005938700790086

8. Haeusler, M., Nowakowski, E., Farwick, M., Breu, R., Kessler, J., Trojer, T.:
ChronoGraph - versioning support for OLTP TinkerPop Graphs. In: Proceedings
of the 6th International Conference on Data Science, Technology and Applications,
DATA, INSTICC, vol. 1, pp. 87–97. SciTePress (2017)

9. Breu, M., Breu, R., Löw, S.: Living on the move: towards an architecture for a
living models infrastructure. In: The Fifth International Conference on Software
Engineering Advances, 22–27 August 2010, Nice, France, ICSEA 2010, pp. 290–295.
http://dx.doi.org/10.1109/ICSEA.2010.51

10. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-
Oberperfler, F.: Living models - ten principles for change-driven software engi-
neering. Int. J. Softw. Inform. 5(1–2), 267–290 (2011). http://www.ijsi.org/ch/
reader/view abstract.aspx?file no=i84

11. Trojer, T., Farwick, M., Häusler, M., Breu, R.: Living modeling of IT architectures:
challenges and solutions. In: De Nicola, R., Hennicker, R. (eds.) Software, Services,
and Systems. LNCS, vol. 8950, pp. 458–474. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15545-6 26

12. Trojer, T., Farwick, M., Haeusler, M.: Modeling techniques for enterprise architec-
ture documentation: experiences from practice. In: Multi-level Modelling Workshop
Proceedings, MULTI 2014, p. 113 (2014)

13. ISO: SQL Standard 2011 (ISO/IEC 9075:2011) (2011)
14. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. In: Graph Data Man-

agement: Techniques and Applications, pp. 29–46 (2011). http://dx.doi.org/10.
4018/978-1-61350-053-8.ch002

15. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable
persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014.
LNCS, vol. 8569, pp. 230–241. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09195-2 15

https://doi.org/10.1007/978-3-642-30982-3_10
http://dx.doi.org/10.5220/0005938700790086
http://dx.doi.org/10.5220/0005938700790086
http://dx.doi.org/10.1109/ICSEA.2010.51
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i84
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i84
https://doi.org/10.1007/978-3-319-15545-6_26
https://doi.org/10.1007/978-3-319-15545-6_26
http://dx.doi.org/10.4018/978-1-61350-053-8.ch002
http://dx.doi.org/10.4018/978-1-61350-053-8.ch002
https://doi.org/10.1007/978-3-319-09195-2_15
https://doi.org/10.1007/978-3-319-09195-2_15

166 M. Haeusler et al.

16. Salzberg, B.: File Structures: An Analytic Approach. Prentice-Hall Inc., Upper
Saddle River (1988)

17. Toulmé, A., Intalio, Inc.: Presentation of EMF compare utility. In: Eclipse Model-
ing Symposium, pp. 1–8 (2006)

18. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73589-2 28

19. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, EDOC 2008. IEEE, pp. 222–231 (2008)

20. Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J., Gervais, M.-P.: Detecting
complex changes during metamodel evolution. In: Zdravkovic, J., Kirikova, M.,
Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 263–278. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19069-3 17

21. ben Fadhel, A., Kessentini, M., Langer, P., Wimmer, M.: Search-based detection of
high-level model changes. In: 2012 28th IEEE International Conference on Software
Maintenance (ICSM), pp. 212–221. IEEE (2012)

22. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: An analysis of approaches
to model migration. In: Proceedings of the Joint MoDSE-MCCM Workshop, pp.
6–15 (2009)

23. Wimmer, M., Kusel, A., Schönböck, J., Retschitzegger, W., Schwinger, W., Kappel,
G.: On using inplace transformations for model co-evolution. In: Proceedings of the
2nd International Workshop Model Transformation with ATL, vol. 711, pp. 65–78
(2010)

24. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place
transformation-based approach to structured model co-evolution. Electron. Com-
mun. EASST 42 (2012)

25. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with
epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
184–198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13688-
7 13

26. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0 4

27. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
domain model migration to manage metamodel evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04425-0 57

28. Haeusler, M., Breu, R.: Sustainable management of versioned data. In: Proceed-
ings of the 24th PhD Mini-Symposium. Budapest University of Technology and
Economics (2017)

29. Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In:
Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) ICSE, vol. 2, pp. 307–308.
ACM (2010). http://dblp.uni-trier.de/db/conf/icse/icse2010-2.html#KoegelH10

https://doi.org/10.1007/978-3-540-73589-2_28
https://doi.org/10.1007/978-3-319-19069-3_17
https://doi.org/10.1007/978-3-642-13688-7_13
https://doi.org/10.1007/978-3-642-13688-7_13
https://doi.org/10.1007/978-3-642-03013-0_4
https://doi.org/10.1007/978-3-642-03013-0_4
https://doi.org/10.1007/978-3-642-04425-0_57
http://dblp.uni-trier.de/db/conf/icse/icse2010-2.html#KoegelH10

Combining Versioning and Metamodel Evolution 167

30. Barmpis, K., Kolovos, D.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering, p. 6.
ACM (2013)

31. Espinazo Pagán, J., Sánchez Cuadrado, J., Garćıa Molina, J.: Morsa: a scalable
approach for persisting and accessing large models. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 77–92. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24485-8 7

https://doi.org/10.1007/978-3-642-24485-8_7

Automated Change Propagation from Source
Code to Sequence Diagrams

Karol Rástočný(&) and Andrej Mlynčár

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava,

Ilkovičova 2, 842 16 Bratislava, Slovakia
karol.rastocny@stuba.sk, a.mlyncar@gmail.com

Abstract. Sequence diagrams belong to three most frequently used UML
diagrams and they are often an integral part of a software design. Designers
utilize sequence diagrams to define and visualize designed software’s behavior.
But during software development and maintenance, multiple vendor’s changes
are implemented into a source code. These changes lead to inconsistencies
between a software model and the source code, that are omitted due to lack of
time. This paper is focused on problems with automated source code changes
propagation into UML sequence diagrams. In the paper, we propose the
architecture for synchronization of outdated designers’ sequence diagrams with
current software behavior implemented in a source code. The proposed archi-
tecture is focused on updating and not on regenerating sequence diagrams, what
helps designers to understand modified behavior and changes provided in it. We
evaluated the proposed architecture via implemented extension for Eclipse
Papyrus, which analyzes differences between sequence diagrams and source
code model, and based on developers’ styles, it propagates differences to
sequence diagrams.

Keywords: UML � Sequence diagram � Source code � Change propagation

1 Introduction

With the focus on current trends in agile software development, great emphasis is
placed on software sustainability. Huge amount of change requests is often required in
massive enterprise architectures and long-term projects. Even though change requests
and bugs are obviously well documented [1], during applying of these changes, there is
regularly a problem that software design documentation is not properly updated and
become insufficient [1, 2]. Outdated software design documentation, e.g. in form of a
UML model can cause significant obstacles during problem investigation.

To solve this problem, automated tools for change propagation from source code to
UML models are required. Tools for automated synchronization of static part of UML
models are already developed and integrated in software modelling tools, e.g. Sparx
Systems Enterprise Architect1 or IBM Rational Software Architect Designer2. But

1 http://www.sparxsystems.com/.
2 http://www-03.ibm.com/software/products/en/ratsadesigner.

© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 168–179, 2018.
https://doi.org/10.1007/978-3-319-73117-9_12

http://www.sparxsystems.com/
http://www-03.ibm.com/software/products/en/ratsadesigner

software behavior is still uncovered problem. There are already tools (e.g. IBM
Rational Rhapsody3 or Microsoft Visual Studio4) and research works [3, 4] that are
dealing with generating behavioral UML diagrams from source code. But these tools
can only generate new diagrams from source code or a source code execution, but they
are not able to update existing diagrams with changes provided in source code. This
problem is mainly visible in the third most used UML diagram [5, 6] – sequence
diagram, in which designers obviously keep needed abstraction and they do not model
all scenarios and interactions. The stable position of sequence diagrams in software
models over years is caused by their ability to clarify how software works [5].

To achieve automatic change propagation to UML sequence diagrams, a source
code and sequence diagrams synchronization is required. This means that if we want to
preserve meaning and level of abstraction of models, every time changes are made in a
source code, existing sequence diagrams should be updated. There is also problem with
level of abstraction of sequence diagrams, because transforming all source code
changes is usually not desired. We propose the solution fully functional synchro-
nization of software source code and sequence diagrams based on change detection and
synchronization methods.

2 Related Work

To achieve fully functional synchronization process of UML sequence diagrams and
source code, it is required that sequence diagrams’ components and source code frag-
ments, that can be transformed into sequence diagrams, need to be represented in identical
form suitable for detection of changes. One of promising sequence diagram representa-
tion is a hierarchical tree structure [7], where tree node represents sequence diagram
lifeline and sequence diagram messages are represented with edge of tree (Fig. 1).

Fig. 1. Example of hierarchical tree representation of a sequence diagram [7]

3 http://www-03.ibm.com/software/products/en/ratirhapfami.
4 https://www.visualstudio.com/.

Automated Change Propagation from Source Code 169

http://www-03.ibm.com/software/products/en/ratirhapfami
https://www.visualstudio.com/

Another example of solutions where diagram was transformed into suitable structure
for later processing and comparison are Petri nets [9] or control flow graphs [8].

An important part of the synchronization is source code fragments extraction. These
fragments are required for comparison and synchronization of source code and a set of
sequence diagrams. Source code fragments extraction can be made during source code
execution [13] or by manual analysis of program files. Another way to extract infor-
mation about program structure is static analysis with source code transformation to
Abstract Syntax Tree [3] or Knowledge Discovery Metamodel (KDM)5. Knowledge
Discovery Metamodel is technology independent metamodel developed by OMG,
usually used in legacy system to provide intermediate representation of software
components and software structure. KDM is separated into 4 layers – Infrastructure
layer, Program Elements Layer, Runtime Resource Layer and Abstractions Layer [10].
Program Elements Layer provide us with information about source code structure in
XMI format. MoDisco Eclipse Plugin implements KDM standard and it generates
KDM XMI structure from Java Standard Edition projects [12].

3 Architecture for Automated Change Propagation

Our proposed solution of automated change propagation from source code to sequence
diagrams is designed as modular architecture containing seven modules that expose
services (see Fig. 2):

• KDM Code Analyzer – analyzes source code described by KDM and transforms it
to an object model;

• UML Analyzer – analyzes UML model, extracts information about sequence dia-
grams and transforms them to an object model;

• Strategy Analyzer – analyzes design strategies used by designers in sequence dia-
grams and prepares data for synchronization rules;

• Graph Transformation module – transforms source code object model and sequence
diagram object model to comparable graph representations;

• Comparison module – compares the source code graph and sequence diagrams
graphs and builds a list of changes provided in the source code;

• Synchronization module – uses the list of detected changes and synchronizations
rules to propagate changes into a changelog, which should be applied on sequence
diagrams;

• Interpreter module – interprets the changelog on the UML model.

The solution can extract information about sequence diagrams from a software
UML model and source code fragments generated by MoDisco Eclipse Plugin from
source code and use this information to synchronize newly added modifications in
source code into existing sequence diagrams.

Each module has defined output and input formats and acts mostly independently
of the other modules. This means that even if a core functionality in one of modules has

5 http://www.omg.org/technology/kdm/.

170 K. Rástočný and A. Mlynčár

http://www.omg.org/technology/kdm/

been changed, inputs and outputs of the module remain unchanged so functionality of
the rest of modules is sustained. For example, if the KDM Analyzer module is replaced
with an AST analyzer, it should not affect functionality of other modules. Another
example is in comparison module – if another comparison algorithm is used in com-
parison module, this change does not affect ways of a source code and sequence
diagrams synchronization.

3.1 UML Analyzer

The module UML Analyzer parses an UML model stored in a XMI file and transforms
the model’s sequence diagrams to simplified sequence diagram representation (Fig. 3),
which contains necessary data for comparing newer source code with outdated
sequence diagrams. This simplified representation is efficient for later transformations
and it also suitable for representation of algorithms written in the source code.

3.2 KDM Analyzer

The KDM Analyzer provides an adapter between the proposed architecture and used
tool for static source code analysis. Getting the KDM Analyzer apart makes the
architecture programming language and technology independent. We can easily
implement language specific adapter, and only by implementation of specialized
adapter, we can make IDE specific implementation, while the specialized adapter can

KDM Code Analyzer

Source Code
Analyzer Service

UML Analyzer

Uml Model Analyzer Service

Graph Transformation Module

Transformation Service

Comparison Module

Comparison Service

Synchronization Module

Interpreter Module

Interpreter Service

Strategy Analyzer

Strategy Service

Sequence Diagram GraphsSource Code Graph

Change Generator

Fig. 2. Modular architecture for automated change propagation from source code to sequence
diagrams.

Automated Change Propagation from Source Code 171

reuse source code model of an IDE (e.g., CodeModel in case of Visual Studio).
These IDE specific implementations should be more efficient and accurate.

The KDM Analyzer transforms source code’s model in KDM to the common
representation as the UML Analyzer. Re-usage of the representations adds more logic to
the KDM Analyzer, what is not ideal for adapters. But nearness to a source code gives
better possibilities for efficient mapping source code artifacts to sequence diagram
artifacts and it reduce complexity of later source code and sequence diagrams
comparison.

3.3 Graph Transformation Module

The main objective of the Graph Transformation module is to transform data created
by the KDM Analyzer and the UML Analyzer to a format which supports efficient
change detection between a source code and sequence diagrams. There are several
representation solutions mentioned in the Sect. 2. Based on analysis and comparison of
these methods we use Hierarchical tree structure [7], based on which we proposed our
sequence diagram tree graph structure. Each tree node (class Node) contains lifeline
name, execution identifier, list of child nodes, message by which node is created, and
list of combined fragments affecting this message.

- id: String
- interaction: Object
- interactionResourceHolder: Object
- name: String
- notationResource: Object

- name: String
- seqNumber: Integer

- name: String
- packageName: String

- interactionFragment: String

SYNCH
ASYNCH
CREATE
RETURN
DESTROY
SELF

ALT
OPT
LOOP
BREAK
PAR
STRICT
SEQ
CRITICAL
IGNORE
CONSIDER
ASSERT
NEG

*

*

SeqDiagram

MessageLifeline CombFragment

«enumeration»
MessageType

«enumeration»
CombFragmentType

-targetLifeline

-combFragmentType-messageType

-combFragment
-sourceLifeline

-messages

Fig. 3. Simplified sequence diagram representation generated by the UML analyzer.

172 K. Rástočný and A. Mlynčár

3.4 Comparison Module

The Comparison module detects changes between a source code tree structure and
sequence diagram tree structures created by the Graph Transformation module. The
Comparison module process each potentially outdated sequence diagram in three steps:

1. Find identical subtree in the source code tree structure – the module tries to match
the sequence diagram in the source code. If the sequence diagram is found as
identical subtree, the diagram is marked as up-to-date and the next two steps are
omitted.

2. Find the root node of similar subtree in the source code tree structure – the module
tries to identify the root node of the sequence diagram in the source code. To match
the root node, the breadth-first search with following conditions is used:
a. For a root node candidate, a subtree-depth is calculated. If the subtree depth is

less than the sequence diagram’s tree-depth - 2, the root node candidate is
rejected. The difference 2 has been chosen as search algorithm optimization,
while it markedly reduces searched space. We defined this heuristic, because the
source code is more detailed than sequence diagrams and if the source code’s
subtree is significantly smaller, than it will been rejected in the following con-
dition with high probability.

b. If 35% nodes of the root node candidate’s subtree are identical with the sequence
diagram tree’s nodes, the root node candidate is marked as the root node. The
ratio of identical nodes has been determined by manual experiments. The value
35% is relatively small, but the source code tree contains precise details like
system and external calls at lowest level, that are not modeled in sequence
diagrams.

3. Comparison of the source code’s subtree with the sequence diagram tree – the
comparison algorithm is based on [11], which finds an edit script which contains a
set of tree modifications to achieve quickest way to reach an isomorphic state
between these two trees. In our case, our modified change detection algorithm
creates a list of changes detected in compared source code’s subtree and the
sequence diagram tree. Detected changes are later processed by synchronization
module to finalize synchronization process.

The comparison algorithm is proposed to process a source code representable by a
tree, i.e. programs with one execution point (e.g. Main function). The algorithm can be
modified to reflect a source code with multiple execution points, e.g. REST services. In
this case, the source code is not a tree, but it is still directed graph with nodes that have
not any input edges. These nodes are execution points and they acts as root nodes for
their sub-graphs – trees. Therefore, by matching sequence diagrams against all root
nodes (execution points), the comparison algorithm became suitable to current software
systems that utilize execution frameworks.

Automated Change Propagation from Source Code 173

3.5 Strategy Analyzer

The Strategy Analyzer module analyzes original sequence diagrams and based on this
analysis it collects information, that describe a sequence diagrams design style. Current
set of analyzed design style information contains:

• Average lifelines count;
• Average messages count;
• Lifelines count in each sequence diagram;
• Messages count in each sequence diagram;
• Frequencies of combined fragment types;
• Usage of get/set messages in each sequence diagram.

3.6 Synchronization Module

The Synchronization module is responsible for managing synchronization process.
From this module, users can start execution of synchronization process. The module
uses lists of changes and sets of design style information for each sequence diagram to
build a list of synchronization actions, that should be provided in the UML model.

The list of synchronization actions is built by resolutions, whether a change
detected in the Comparison module should be interpreted to a software sequence
diagram. This feature is fulfilled by set of synchronization rules. Each modification
detected in the Comparison module is evaluated by following synchronization rules
and based on output from rule, it is determined, if the modification is added to the list of
synchronization actions:

• Lifeline synchronization rules:
– if an addition of a lifeline exceeded maximal lifelines count in the sequence

diagram, the addition is ignored;
– if an addition of a lifeline will introduce a package, which has not been used in

the sequence diagram, the addition is ignored;
• Messages lifeline synchronization rules:

– If multiple occurrences of a message should be added to the sequence diagram,
but the sequence diagram does not contain any occurrence of the message, all
additions of the message are ignored;

– If the sequence diagram does not contain any get/set messages, all additions of
get/set messages are ignored;

• Combined fragments synchronization rules:
– If multiple combined fragments should be added, but the sequence diagram does

not contain any combined fragment, the sequence diagram is evaluated as high
level diagram and all additions of combined fragments are ignored;

– If an opt combined fragment should be deleted and alt combined fragment
should be added at the same position, both modifications are ignored and new
modify synchronization action, which transforms the opt combined fragment to
the alt combined fragment, is added to the list of synchronization actions.

174 K. Rástočný and A. Mlynčár

3.7 Interpreter Module

The Interpreter module is designed to finalize whole synchronization process. The
module interprets actions from the list of synchronizations actions. The Interpreter
module should be implemented for each UML modelling tool separately. There is also
possibility to provide tool independent implementation that modifies XMI files, but
each UML modelling tool uses their own XMI extension for sequence diagrams’ layout
information.

4 Evaluation

To evaluate usability of the proposed architecture we implemented the prototype6

which synchronizes Java source code analyzed by MoDisco Eclipse Plugin with
sequence diagrams modeled in Eclipse Papyrus. In the prototype, we did not implement
synchronization of all elements from the sequence diagram metamodel, but we focused
on the mainly used elements, via which we can present correctness of change propa-
gation from obviously used source code structures:

• Synchronous messages;
• Reply messages;
• Lifelines;
• Combined fragments: loop, opt.

Modules of the prototype are implemented as OSGi Eclipse Bundles with fully
implemented APIs and data structures necessary for supporting whole sequence dia-
gram metamodel. So, this restriction of sequence diagram elements does not affect
results of the evaluation and the restriction will be resolved by final implementation of
the change detection module and the interpreter module.

We evaluated the proposed architecture via sixteen test cases, that was organized in
three test sets based on level of their complexity:

• Evaluation of basic functionalities
– TC01: Adding a synchronous message
– TC02: Adding a synchronous message and a lifeline
– TC03: Removing a synchronous message
– TC04: Removing a synchronous message and a lifeline
– TC05: Adding a combined fragment opt
– TC06: Removing a combined fragment opt

• Evaluation of synchronization rules
– TC07: Filtration of system calls
– TC08: Restriction of lifelines count
– TC09: Filtration of get/set calls
– TC10: Filtration of external calls
– TC11: Filtration of combined fragments

6 Replication package: https://github.com/rastocny/SOFSEM_SeqDiag_ChangeProp.

Automated Change Propagation from Source Code 175

https://github.com/rastocny/SOFSEM_SeqDiag_ChangeProp

• Evaluation of propagation of complex changes
– TC12: Replacing two messages with one new message, which contains inter-

nally six new calls
– TC13: Condition change and movement of existing calls to new operation
– TC14: Part of the functionality has been moved to new operation
– TC15: Removing a sequence diagram implementation from the source code
– TC16: Adding a loop over an existing condition and adding a new synchronous

call into the condition

For each test case, we defined outdated sequence diagram (Fig. 4), modified source
code (List. 1) and expected changelog (List. 2). After execution of all test cases we
manually compared expected changelogs with obtained changelogs and evaluated
differences. In the next step, we reviewed updated sequence diagrams (Fig. 5) and
evaluated their layout and correctness.

During the evaluation of the first test case set, 20 modifications in sequence dia-
grams were done. The evaluation proved, that the prototype correctly processes the
source code and sequence diagrams in UML Analyzer and KDM Analyzer modules and
that the source code and the sequence diagrams are correctly transformed to the se-
quence diagram tree graph structure. This evaluation also showed, that the Compar-
ison module can detect modifications on implemented sequence diagram elements and
that detected modifications are correctly interpreted by the Interpreter module.

The first set of test cases uncover some layout issues in the Interpreter module.
After deletion of messages, bellow messages are not shifted up. There was also
problem with added combined fragment which has not correctly set top and bottom
margins.

Fig. 4. Outdated sequence diagram for testcases TC01-TC07.

176 K. Rástočný and A. Mlynčár

public void createRegistry(){
Person person1 = new Person("Andrej", "Mlyncar", null);
PersonRegistry registry = new PersonRegistry();
if(registry != null)
registry.printDetails();

StatsManager statsManager = new StatsManager(registry);
}

List. 1. Modified source code for TC03.

fragment_add = opt:registry!=null; message: printDetails
List. 2. Expected change log for TC03.

The second test case set is focused no validation if the proposed architecture is able
to detect basics of used design styles. For these test cases, we defined different
sequence diagrams and we observed if the Strategy Analyzer and the Synchronization
module correctly detect and interpret used styles. The test cases applied 20 modifica-
tions in sequence diagrams and proved that observed design styles are correctly
identified independently. We observed only one new issue with calculating horizontal
positions of nested execution specifications.

Combinations of multiple design styles and source code modifications were eval-
uated by the last test case set, which provided 67 modifications. The results showed that
proposed architecture can correctly detects complex changes and propagates them to
sequence diagrams with respect of a design style. Some issues were observed in layouts

Fig. 5. Updated sequence diagram for TC03.

Automated Change Propagation from Source Code 177

of sequence diagrams, where multiple modifications have been done. Some sequence
diagram elements did not have correctly calculated heights and x-coordinates, but all
elements were semantically and syntactically placed correctly. These problems can be
later resolved by reusing Eclipse Papyrus’s layouting algorithm in the Interpreter
module. The layouting algorithm should be also updated to use distances and sizes
learned from original sequence diagrams for added and modified elements.

5 Conclusion and Future Work

The work presented in the paper is primarily focused on architectural design of solution
which will be able to provide an effective way to automate update of a behavioral
documentation of software systems for software architects and developers. The pro-
posed solution can improve process of applying changes to existing software systems
by reducing communication about implemented software changes between software
developers and architects or analytics.

Synchronization of source code and sequence diagrams is executed by set of modules.
Modules operate independently of other modules functionality, which means that inter-
pretation, comparison or synchronization methods can be changed without any or signif-
icant effects to other modules and that core functionality is language and tool independent.

We implemented the first prototype to prove concepts of the proposed architecture
and to evaluate its applicability. The next steps are focused on completion of the
implementation with support of all applicable sequence diagram elements. After that
we will provide final evaluation of the architecture in two steps. Firstly, we will utilize
modularity and we will implement a sandbox system which replaces the Graph
Transformation module and the Interpreter module. The sandbox system will test
robustness of the solution with generating test cases and observing results of the
Synchronization module. In the second step, we will provide empirical study by
applying the implemented prototype in real agile teams. In this study, we will deploy
the prototype into the tool for collaborative modelling [14] and we will involve teams
from the course Team project and teams from our innovation lab built in cooperation
with the project DA-SPACE7.

Later we will focus also on applying the proposed architecture on other behavioral
diagrams. We assume that the architecture is almost directly applicable on communi-
cation diagrams, that have equivalent expression power as sequence diagrams. More
challenging are activity diagrams, in that same algorithmic concepts (e.g., loops) can be
modelled variously.

Acknowledgement. This work was partially supported by the Scientific Grant Agency of the
Slovak Republic, grant No. VG 1/0752/14, the Slovak Research and Development Agency under
the contract No. APVV-15-0508, and this publication is the partial result of the Research &
Development Operational Programme for the project Research of methods for acquisition,
analysis and personalized conveying of information and knowledge, ITMS 26240220039,
co-funded by the ERDF.

7 http://www.interreg-danube.eu/approved-projects/da-space.

178 K. Rástočný and A. Mlynčár

http://www.interreg-danube.eu/approved-projects/da-space

References

1. Voigt, S., von Garrel, J., Müller, J., Wirth, D.: A study of documentation in agile software
projects. In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, p. 6. ACM, New York (2016)

2. Rashid, N., Khan, S.: Developing green and sustainable software using agile methods in
global software development: risk factors for vendors. In: Proceedings of the 11th
International Conference on Evaluation of Novel Software Approaches to Software
Engineering, pp. 247–253. SCITEPRESS (2016)

3. Fauzi, E., Hendradjaya, B., Sunindyo, W.D.: Reverse engineering of source code to
sequence diagram using abstract syntax tree. In: International Conference on Data and
Software Engineering (ICoDSE), p. 6. IEEE (2016)

4. Srinivasan, M., Yang, J., Lee, Y.: Case studies of optimized sequence diagram for program
comprehension. In: 24th International Conference on Program Comprehension (ICPC), p. 4.
IEEE (2016)

5. Dobing, B., Parsons, J.: How UML is used. Commun. ACM - Two Decades Lang-action
Perspect. 49(5), 109–113 (2006)

6. Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagram constructs?
A document and tool analysis study covering activity and use case diagrams. In: Hammoudi,
S., Pires, L.F., Filipe, J., das Neves, R.C. (eds.) MODELSWARD 2014. CCIS, vol. 506,
pp. 66–83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25156-1_5

7. Li, X., Liu, Z., Jifeng, H.: A formal semantics of UML sequence diagram. In: Australian
Software Engineering Conference 2004, pp. 1–10. IEEE (2004)

8. Rountev, A., Volgin, O., Reddoch. M.: Control flow analysis for reverse engineering of
sequence diagrams. Technical report, Ohio State University (2004)

9. Emadi, S., Shams, F.: Transformation of usecase and sequence diagrams to petri nets. In:
ISECS International Colloquium on Computing, Communication, Control, and Management
2009, pp. 399–403. IEEE (2009)

10. Pérez-Castillo, R., De Guzman, I.G.R., Piattini, M.: Knowledge discovery metamodel-
ISO/IEC 19506: a standard to modernize legacy systems. Comput. Stan. Interfaces 33(6),
519–532 (2011)

11. Wang, Y., DeWitt, D.J., Cai., J.-Y.: X-Diff: an effective change detection algorithm for XML
documents. In: 19th International Conference on Data Engineering, pp. 519–530. IEEE
(2003)

12. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and extensible
framework for model driven reverse engineering. In: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pp. 173–174. ACM,
New York (2010)

13. Oechsle, R., Schmitt, T.: JAVAVIS: automatic program visualization with object and
sequence diagrams using the Java debug interface (JDI). In: Diehl, S. (ed.) Software
Visualization. LNCS, vol. 2269, pp. 176–190. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45875-1_14

14. Ferenc, M., Polasek, I., Vincúr, J.: Collaborative modeling and visualisation of software
systems using multidimensional UML, In: Proceedings of the Fifth IEEE Working
Conference on Software Visualization VISSOFT 2017, p. 5. IEEE, Shanghai (2017)

Automated Change Propagation from Source Code 179

http://dx.doi.org/10.1007/978-3-319-25156-1_5
http://dx.doi.org/10.1007/3-540-45875-1_14
http://dx.doi.org/10.1007/3-540-45875-1_14

Multi-paradigm Architecture Constraint
Specification and Configuration Based

on Graphs and Feature Models

Sahar Kallel1,2(B), Chouki Tibermacine1, Ahmed Hadj Kacem2,
and Christophe Dony1

1 LIRMM, CNRS and University of Montpellier, Montpellier, France
{sahar.kallel,tibermacin,dony}@lirmm.fr
2 ReDCAD, University of Sfax, Sfax, Tunisia

ahmed.hadjkacem@fsegs.rnu.tn

Abstract. Currently, architecture constraints can be specified and
checked in different paradigms of software development, the object-
oriented, component-based and service-based one. But the current state
of the art and practice do not consider their specification at a high level of
abstraction, independently from any paradigm vocabulary. We propose
in this paper a process combining graphs and feature modeling to specify
multi-paradigm architecture constraints. These constraints are expressed
with OCL on a particular meta-model of graphs. Then these constraints
can be transformed to any chosen paradigm, after their configuration
using a feature/variability model. This transformation allows later to
handle these constraints in that (chosen) paradigm: to refine them, to
generate source code from them, and to check them on models and on
source code. A case study is presented in this paper; it concerns architec-
ture constraint specification and configuration under software migration
from the object-oriented to the component-based paradigm.

1 Introduction

Documenting software architectures provides a preliminary comprehensive view
of the structure and the behavior of the software. This documentation includes
the definition of architecture decisions which provide an important element:
Architecture constraints.

Architecture constraints [11], which are meta-level specifications of invari-
ants on the structure of the entities, constituting a user application (objects for
instance), enable to “formalize” the topological/structural conditions imposed
by design patterns, architectural styles or any design principle. They are involved
throughout the software development life-cycle (from design to implementa-
tion stages and in maintenance). Currently, these artifacts can be specified and
checked in different programming paradigms: the object-oriented, component-
based and service-based one, among others. But constraint specifications in the
different paradigms are defined completely separately from each other, while
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 180–193, 2018.
https://doi.org/10.1007/978-3-319-73117-9_13

Multi-paradigm Architecture Constraint Specification 181

these share a major part of their specification. This part concerns the formalized
structural conditions. The variable part between them is the set of architectural
entities on which these conditions are checked (objects, object dependencies,
components, ports, connectors, services, and so on). For example, in the Façade
pattern, the façade entity is an object in an object-oriented application, and
what it hides to client entities are the internal methods of the application. In a
component-based application, the façade entity is a component which provides a
unique port to client entities; it hides the provided services by the other compo-
nents of the application. The structural conditions here are the same (presence
of a unique entity – object or component – which serves client entities).

In our previous works [6,7], we have studied the use of OCL/UML1 for archi-
tecture constraint specification and their checking at the design and implemen-
tation stages in different development paradigms. Our first work presented a
process which enables to generate meta-programs that make possible constraint
checking on object-oriented applications. The second work proposed another
process which enables to generate reusable and executable components deployed
in component-based applications, in addition to architecture constraints as ser-
vices which are reusable, searchable, executable and checkable in service-based
applications. We propose in this paper an approach (a language and a process)
in which architecture constraints are specified in an abstract way, with a neu-
tral structural constraint vocabulary. They are expressed in ocl and navigate in
a meta-model of graphs. Then these constraints can be transformed towards a
given paradigm (in our case, the object-oriented, component-based and service-
based ones) by configuring a feature model. This feature model expresses the
commonality and variability between development paradigms. Once constraints
are transformed to a given paradigm, they can be checked on models defined
in that paradigm, or be refined and transformed into meta-programs (partic-
ular classes or component/service descriptors) to be checked on the code of
applications.

The remaining of this paper is organized as follows. In the following section,
we present the graph meta-model and the feature model used in our approach.
Section 3 explains the process of architecture constraint configuration and trans-
formation. A case study is exposed in Sect. 4. Before concluding, we discuss the
related work in Sect. 5.

2 Architecture Constraint Specification
and Configuration

We define in the first subsection a meta-model of graphs on which an example
of an architecture constraint is specified. In the second subsection, we present
the feature model used for the configuration of constraints.

1 OCL/UML means that the constraints are specified with OCL and navigate in the
UML meta-model.

182 S. Kallel et al.

2.1 A Meta-model of Graphs

As an underlying software representation we use graphs because they can cap-
ture the basic structure in a straightforward and generic way: nodes represent
software entities and edges represent relationships between those entities. More
precisely, we have used typed, directed and labeled graphs. We have used
a typed graph to specify that nodes can be nested in other nodes. We have
used directed graphs, implying that each edge has a source and a target node
(directed dependencies between software entities) and labeled graphs to attach
any number of domain-specific properties to the nodes and edges.

Fig. 1. Meta-model of graphs

Figure 1 shows the meta-model of graphs used in our approach. A graph is
composed of edges and nodes. A node has at least one outgoing and ingoing
edge. Each edge has exactly one source node and one target node. A node can
be composite or simple. The composite node can be composed of simple and also
composite nodes. Each node and edge can be labeled in order to refine the graph.
According to this meta-model, we can obtain a model (a graph) that contains
edges going from inside a composite node to a simple one.

Listing 1.1 presents an architecture constraint characterizing the Façade pat-
tern. This constraint is formalized with OCL navigating in the meta-model shown
in Fig. 1. It consists of several sub-constraints. We suppose that there exist a set
of nodes that represent clients, another set represents systems and a node
represents a facade.

Multi-paradigm Architecture Constraint Specification 183

1 context Graph inv :

2 −−Cl i en t s have only outgoing edges

3 c l i e n t s −>f o rA l l (n : Node | n . ingoing−>isEmpty ())

4 and

5 −−Systems have only ingo ing edges

6 systems−>f o rA l l (n : Node | n . outgoing−>isEmpty ())

7 and

8 −−No edges between c l i e n t s and systems

9 c l i e n t s −>f o rA l l (n : Node | n . outgoing−>f o rA l l (e : Edge |
10 systems−>exc ludes (e . t a r g e t)))

11 and

12 −−Al l the edges whose source s are the c l i e n t s should go to the facade

13 c l i e n t s −>f o rA l l (n : Node | n . outgoing−>f o rA l l (e : Edge | e . t a r g e t=facade))

14 and

15 −−The facade should be l i nked to at l e a s t one system

16 facade . outgoing−>e x i s t s (e : Edge | systems−>i n c l ude s (e . t a r g e t))

Listing 1.1. Facade constraint specification in the graph meta-model

These node labeled Client, System, Facade may give a hint about constraint
semantic but it is not clear that these nodes represent objects, components or
classes. At this level, we can say that the constraint is formalized in an abstract
way, i.e. independently from any paradigm. To translate the constraints into a
specific paradigm, we have to configure a feature model which is presented in
the following section.

2.2 Feature Models

Feature models [8] are simple and hierarchical models that capture the com-
monality and variability of a set of products in a software product line. In our
approach, a feature model is used to express the variability between software
development paradigms.

A feature diagram is a representation of a feature model. We have used the
notation of Czarnecki et al. [5] in the feature diagram developed for our approach
because it is a practical way to integrate labels for the nodes and the edges.
It is a useful way to configure the constraint which navigates, among others,
in Label, Node and Edge meta-classes of the graph meta-model. Moreover, an
architecture constraint is generally composed of sub-constraints assembled by
the logic operator “and” (see Listing 1.1). In each sub-constraint, we find several
(0-n) nodes and/or edges. Each node or edge can be translated to the appropriate
element in the chosen paradigm (class, method, connector, port, object, etc.).
For doing so, we added a cardinality to the feature diagram in order to be able
to do all the required transformation for each sub-constraint and configure each
node and each edge.

Since this work is a continuation of our previous works (introduced in the
previous section), we have chosen to translate ocl architecture constraints from
a graph meta-model to UML2 meta-model based on feature models. Therefore,

2 UML http://www.omg.org/spec/UML/2.4.1 is an OMG standard and covers both
class/object and component modeling.

http://www.omg.org/spec/UML/2.4.1

184 S. Kallel et al.

the features (without considering the leaves) represent, among others, the meta-
classes (Ex: Graph, Node, Edge) and the meta-roles (ex: source and target) of
the meta-model of graphs, while the leaves of the feature diagram are elements
of the UML meta-model (Fig. 23).

Fig. 2. An excerpt of the feature diagram for constraint transformation from graphs

The root feature of the diagram is the graph representing the architecture on
which the constraint is formalized. The feature Node is a sub-feature of EltGraph
(i.e., Node is a child of EltGraph in the feature tree) and has an attribute for
specifying its label, if any. Every feature is qualified by a feature cardinality. It
specifies how often the entire sub-tree rooted in the solitary feature can be copied
(with the roots of the replicated sub-trees becoming siblings). For example, the
features Node and Edge have the feature cardinality [0..n]. This means that an
EltGraph can be formed by 0 or n Nodes and Edges.

3 Multi-paradigm Architecture Constraints

In this section, we present the different steps of the constraint transformation.
We use the Façade architecture constraint shown in Listing 1.1 as a running
example.

3.1 Constraint Configuration

Constraint configuration consists in selecting, in the feature diagram, the suitable
features to build a new constraint in the chosen paradigm. This step is started
by configuring first the context of the constraint, then configuring the OCL
definitions4 and OCL let expressions, if any, and finally the sub-constraints by
respecting their appearance order in the constraint. A step called feature model
specialization [5] is performed before the configuration. It consists in choosing the
precise values of cardinalities presented in the feature diagram. This facilitates
3 For space limitation, the constraints accompanying the feature diagram are not

showed.
4 OCL queries characterized by the keyword def:. They allow to declare and define

attribute values (like let expression) and/or to return internal OCL operation values.

Multi-paradigm Architecture Constraint Specification 185

the configuration of the constraint by reserving the exact number of features in
the configuration interface.

Each sub-constraint, including the OCL let expression, is represented by
EltGraph. In our constraint, we have 8 EltGraphs. We can configure all these
EltGraphs thanks to the cardinality of this feature. We follow the order of the
sub-constraints to configure them. Figure 3 presents a possible configuration of
the sub-constraint 5 (in Listing 1.1 without considering the let expressions) in
the object-oriented development paradigm.

Fig. 3. A possible configuration of Facade constraint in OO paradigm

The constraint configuration is performed using the feature IDE plugin. It
shows an interface to configure a feature diagram. We can see all the possible
configurations and it produces exceptions if the configuration does not respect
the requirements of the feature diagram.

3.2 Constraint Transformation

The implementation of the constraint transformation is performed using the
editor of the feature model. The first step is a direct transformation of the
constraint. It uses the configured feature model. The second step is based on
the abstract syntax tree (AST) generated from the obtained constraint and the
XMI document representing the UML meta-model. It has as a goal to make the
constraint valid. The tool-set used for configuring the feature diagram provides a
document that includes the inputs and the outputs of the configuration (names of
features). Our process uses this document and automatically applies the mapping
to the constraint. An abstract syntax tree is generated from the constraint (which
is specified in the graph meta-model). The AST node names and their types
(the meta-class names) are then modified by their corresponding features and
are regenerated in order to obtain an architecture constraint written in the UML
meta-model.

Listing 1.2 presents the façade constraint after the direct transformation.
The meta-role outgoing in Line 9 in Listing 1.1 is replaced by clientDependency
and in Line 16 by ownedAttribute as the configuration is defined (see Fig. 3).

186 S. Kallel et al.

1 context Package inv :
2 −−
3 c l i e n t s −>f o rA l l (n : Class | n.−>isEmpty ()) and
4 systems−>f o rA l l (n : Class | n.−>isEmpty ()) and
5 c l i e n t s −>f o rA l l (n : Class | n . cl ientDependency−>f o rA l l (e : Edge |
6 systems−>exc ludes (e . s upp l i e r))) and and
7 facade . ownedAttribute−>e x i s t s (e : Edge | systems
8 −>i n c l ud e s (e . type))

Listing 1.2. An excerpt from a Facade constraint after a direct transformation

In Listing 1.2, the constraint is specified in UML meta-model, but this trans-
formation does not necessarily produce a valid OCL constraint. OCL exceptions
are provided when compiling the constraint in an OCL compiler. For example
Edge in Line 5 is undefined in UML meta-model. The two following sub-steps
are implemented to solve these errors.

1. Removing unnecessary sub-constraints: This is the case of the sub-
constraints 1 and 2 in Listing 1.2. The user does not completely configure the
sub-constraints. They do not have any equivalence in the target paradigm: the
object-oriented paradigm. These sub-constraints are safely removed from the
constraint.

2. Adding OCL expressions: There are two cases where we should add OCL
expressions. The process here examines the constraint in each case and try to
add OCL expressions to make it valid and accurate.

The process in the first case consists first in replacing all the roles and meta-
classes that are still written in the graph meta-model by their corresponding
modeling elements in the UML meta-model. This transformation is complemen-
tary to the direct one. It is based on the AST generated from the constraint. The
AST parser, taking into consideration the UML meta-model, indicates the AST
nodes which whose types do not belong to the UML meta-model. We take the
example presented in Line 5, in Listing 1.2 in which the meta-class Edge is not
translated yet. According to the UML meta-model, clientDependency is a naviga-
tion that produces Set(Dependency). So, Edge will be replaced by Dependency.
The same processing is performed for the error located in Line 8 in the same
Listing: Edge is replaced by Property.

The process in the second case consists in adding navigation patterns5 in
the constraint. Indeed, after the direct transformation, we can obtain in a sub-
constraint an ocl inequality exception. Suppose that we take an example of
a constraint that has, in its specification in the graph meta-model, a naviga-
tion towards the Node meta-class via target, to get the target node (one node
[1..1]) (see Listing 1.3). The user configures target by end in the component-
based development paradigm. end is a meta-role in the UML meta-model. It
provides a set [0..*] of component connectors. So, we face an OCL exception
(Set(Connectors)= a component). Here, the process adds, among others, an

5 A navigation pattern is a set of navigations. It includes more roles and ocl opera-
tions/quantifiers.

Multi-paradigm Architecture Constraint Specification 187

appropriate quantifier that takes only one of the sets to complete the constraint
transformation. More details are given in the following Listings.

In the first line of Listing 1.3, X and Y are nodes composing the graph of
the model. The constraint imposes that the node X should have at least one
outgoing edge towards the node Y. To transform this constraint in the component
paradigm, the user configured outgoing by ownedPort and target by end. The
process checks if the constraint has again errors of the first case. The second line
represents the constraint specification under the transformation. We observe that
the specification of this constraint is wrong. It is violated when evaluating it in
the UML meta-model. To solve this problem, we integrate first some meta-roles
such as ownedConnector and role (an application of the first case) and then
pattern navigations as presented in Listing 1.4. This Listing shows a possible
result.

1 X. outgoing−>e x i s t s (e : Edge | e . t a r g e t=Y)
2 X. ownedPort−>e x i s t s (e : Port | e . end = Y)

Listing 1.3. OCL AC before and after direst transformation

1 X. ownedPort−>e x i s t s (e : Port | e . ownedConnector . end−>
2 exists(ee:ConnectorEnd | ee.role −> includes(Y.role)))

Listing 1.4. OCL AC specified in the UML meta-model

As we noticed above, the implementation of the process that consists in
making the architecture constraint independent to any paradigm uses an Eclipse
tool-set. This tool-set generates the abstract syntax tree (AST) and analyzes the
UML meta-model. Each output (sub-constraint) provided by this process should
be validated by the user.

4 Case Study

We have applied the proposed approach on a particular engineering activity:
the automatic software migration from the object-oriented paradigm to the
component-based one. In this kind of activities, it is too difficult to directly
specify the architecture constraint in the transformed application (component-
based application) because many constraints imposed by the initial application
(like, inheritance and instantiation) may generate other constraints (new archi-
tectural patterns are added under the migration, which are not known by the
user, especially if the migration is automatic) and new architectural elements
(connectors and ports) which can impose new architecture constraints.

We take the example of an object-oriented application which is designed
with UML and implemented with java, and which represents an information
screen [2]. This application simulates the behavior of an information screen, a
software system which displays in a public transportation’s embedded screen, the
names of stations, the expected time at each station, etc. The ContentProvider
class implements methods which send text messages (instances of the Message

188 S. Kallel et al.

class), and time information obtained through Clock instances based on the data
returned by TimeZone instances. The DisplayManager is responsible for view-
ing the provided information through a Screen. The design of this application
imposed a set of architecture constraints that should be valid on the code. Some
of these constraints are presented in the following list.

– ContentProvider class should be a singleton class.
– Clock and Message classes should be kept in relation with the Content

abstract class (which is an inheritance relation in the OO application).
– The Observer pattern is instantiated in this application. We focus in this case

study on a part of this pattern, in which DisplayManager class should be in
association with ContentProvider to invoke methods returning the content.

When migrating an application, major changes of the architecture and then
the source code are performed. Some elements are removed, others are added, e.g.
dependencies between some elements are changed, etc. In fact, each paradigm
imposes its own architecture design principles. For example, in the component-
based paradigm, each component must hide its internal structure. It should
provide its services without exposing the classes that implement them. These
conditions should be taken into consideration. In addition, the works cited pre-
viously proposed an automatic migration of the applications, which generally
produces additional intermediate classes, methods and components in addition
to dependencies between them, which are seamless to developers. In this case,
rewriting the constraints in the target paradigm is difficult because architectural
elements constituting the target application can be unknown.

Our intuition is that our approach can allow to simplify the migration of
the architecture constraints of information screen object-oriented application
in component-based paradigm. To apply our approach, we have used software
migration works that are composed of two steps: architecture recovery then
code transformation. These works generate automatically a graph describing the
architecture of the target application. This graph contains labeled nodes that
may represent the classes, the methods, the attributes and the components rep-
resenting clusters of cohesive classes, in addition to edges that link between nodes
(method invocations, connectors between required/provided interfaces, etc.).
Besides, to make component interfaces operational, the graph is extended by
other nodes and edges that represent new classes, interfaces and attributes that
are generated to transform inheritance into the component-based paradigm [2].
Figure 4 shows an excerpt of this graph.

Based on this graph which contains architecture elements of the source appli-
cation and also new elements added by the migration, we have rewritten the
architecture constraints of the application. It is specified in the meta-model of
graphs shown in Fig. 1. For reasons of space limitation, Listing 1.5 presents only
an excerpt of this constraint.

Multi-paradigm Architecture Constraint Specification 189

Fig. 4. An excerpt of a graph representing the architecture recovered from the Infor-
mation Screen application

1 context Graph inv :

2 l et compo1 : Set (CompositeNode)=s e l f . nodes−>s e l e c t (n : Node | n . l a b e l s

3 −>e x i s t s (a : Label | a . name=’Component1 ’)) in

4 −− the same f o r compo2 , compo3 , compo4 and compo5

5 l et content : Node= compo2 . simpleNodes−>s e l e c t (n : Node | n . l a b e l s

6 −>e x i s t s (a : Label | a . name=’Content ’))−>asOrderedSet ()−> f i r s t () in

7 −− other l e t exp r e s s i on s . . .

8 in

9 compo1 . outgoing−>one (e : Edge | e . t a r g e t=compo2) and

10 compo2 . ingoing−>f o rA l l (e1 , e2 | e1 . source=compo3 and e2 . source=compo4)

11 and . . . and

12 content . outgoing−>e x i s t s (e : Edge | e . t a r g e t=iContent) and

13 f a c t o ry . ingoing−>one (e : Edge | e . source=content) and

14 content . simpleNodes−>s e l e c t (n | n . outgoing−>e x i s t s (e | e . t a r g e t=iContent))

15 and . . . and

16 message . simpleNodes−>s e l e c t (n : Node | n . outgoing

17 −>e x i s t s (e : Edge | e . t a r g e t=iContent))

Listing 1.5. An excerpt of AC specification in graph meta-model

In this constraint, the let expressions search for the elements composing the
application, and which can be classes or components. compo1 is an example of
a variable which references the node named Component1. This component was
identified in the architecture recovery step; it is considered in this constraint as
a graph’s node.

4.1 Configuring the Constraint by the Feature Model

There are nodes that represent classes (annotated by CP, Factory, Content and
TimeZone), attributes (dashed nodes in Fig. 4), components (annotated by Com-
ponenti, i = [1..5]), etc. There are edges that represent connectors (thick dashed

190 S. Kallel et al.

edges), others represent inheritance (between classes inside components). There
are other nodes which are generated due to solutions kept to transform the
instantiation and inheritance. Some of these nodes are annotated with IContent,
Factory, this, super, ITimeZone. There are also edges which link them. These
elements did not exist in the architecture of the source application (object-
oriented information screen application). They imposed a new condition that
consists in respecting the factory pattern (which is instantiated in the architec-
ture when transforming an inheritance relation in the chosen migration solution
in this case study). The constraint will be configured in our feature model start-
ing by the first sub-constraint and so on as described in Sect. 3. We indicate for
each element its equivalent in the new architecture.

4.2 Transforming the Constraint

Following the process explained in Sect. 3 by using the configured feature model
of our constraint and after making the constraint well specified in the UML
meta-model, we obtain as an excerpt of a result the following Listing.

1 context Component inv :
2 l et internalCompo : Set (Component) . . . in
3 l et compo1 : Component=internalCompo−>s e l e c t (n : Component |
4 c . name=’Component1 ’)−>asOrderedSet ()−> f i r s t () in
5 −− the other l e t exp r e s s i on s . . . in
6 compo1 . ownedPort−>one (e : Port | e . ownedConnector . end
7 −>f o rA l l (ee : ConnectorEnd | ee . ro l e−>i n c l ud e s (compo2 . r o l e))) and
8 compo2 . ownedPort . ownedConnector−>f o rA l l (e1 , e2 |
9 compo3 . ro l e−>i n c l ud e s (e1 . end . r o l e) and compo4 . r o l e

10 −>i n c l ud e s (e2 . end . r o l e)) and
11 content . i n t e r f a c e −>e x i s t s (e : I n t e r f a c e | e . name=iContent) and
12 f a c t o ry . ownedAttribute−>one (e : Property | e . type=content)

Listing 1.6. An excerpt of AC specification in UML meta-model (Component
modeling)

This constraint declares first the internal component which composes the
target application. This implies modifications in the let expressions like in Line 3.
According to the configured feature diagram, the sub-constraints 1 and 2 (Lines 6
to 10) handle the relations between the generated components, and the remaining
of the constraint deals with classes. Indeed, the migration solution used in this
case study produces a component-based application in which components are
clusters of classes (a hybrid object/component target model). This is the reason
why the end of the architecture constraint in the Listing still treats classes. This
makes this example a multi-paradigm architecture constraint.

Discussion: The migration of the object-oriented information screen applica-
tion has produced new architecture elements and new architecture relations. This
is observable (in Fig. 4) by the production of 5 components, 6 classes and several
attributes. Therefore, a direct transformation of the application’s constraints is
obviously very complex because they do not treat the newly created architec-
tural elements. After specifying the constraints of the target application in the
graph meta-model, based on the generated graph from the architecture recovery

Multi-paradigm Architecture Constraint Specification 191

step, which should be done only once, the user can transform the constraints
after a simple configuration of the feature model. To migrate the application to
another paradigm, such as the service-oriented one, with the proposed approach
the developer can just configure again the feature model to transform her/his
constraints.

In addition, the usage of the graph meta-modeling and the feature model
facilitate constraint specification at an abstract level. In the long term, we imag-
ine the development of a catalog of architecture constraints written in the graph
meta-model. This catalog can be used in different scenarios. Suppose that we
use another software migration solution, like [1], which transforms inheritance
and instantiation from object-oriented to component-based paradigm by using
the Adapter and Facade patterns, in contrast to the one used in this case study
that is based on the Factory pattern. The architecture constraints formalizing
these two patterns (Adapter and Facade) can be checked out from the catalog,
then configured (by adding the necessary labels) and at last integrated in the
architecture constraint specification of the application.

5 Related Work

Vranic et al. proposed a method of multi-paradigm software development called
multi-paradigm design with feature modeling (MPDFM) [13]. Feature modeling
is used to model both an application and the solution domain. Solution domain
concepts (paradigms) are represented as features. These later (called paradigms)
are being selected in the feature model in order to obtain code skeleton. This
method is evaluated on the AspectJ paradigm as a solution domain. Like our
approach, this method uses feature modeling to express variabilities between
paradigm instances. But the term paradigm denotes a solution domain concept,
which corresponds to a programming language mechanism/extension. In our
approach, we used the common definition of a paradigm – a way of development.
This covers a larger spectrum.

Balarin et al. proposed a formalism for constraint specification at higher
levels of abstraction [3]. This formalism use mathematical theorems to remove
any ambiguity in its interpretation, and yet it allows quite simple and natu-
ral specification of many typical constraints. In our work, we have proposed an
abstract specification level of constraints based on graphs. With graphs, we can
benefit from a visualization that simplifies the comprehensibility of any kind
of constraints. Constraint specification with graphs allows later transformation,
refinement and code generation which is very complex when using a pure math-
ematical formalism.

ACL [12] is a family of languages which allows the specification of constraints
associated to architecture decisions, at any stage of the component-based soft-
ware development process. Independently to any component-based model, archi-
tecture constraints can be specified with this language. The authors proposed a
generic meta-model that includes the common concepts found in existing com-
ponent models. This meta-model can be used to specify these constraints, which

192 S. Kallel et al.

are independent from component models. Then, through XML transformations,
constraints can be checked on a precise component model, like Corba. In contrast
to our work, this work deals with the component-based software development
paradigm only, and not the other paradigms. Their generic meta-model includes
common concepts in component-models and not variable concepts. In our work,
thanks to feature modeling, we specified common and variable concepts in devel-
opment paradigms and used this in constraint transformation.

Many works [4,9,10] handle the specification of constraints with graphs.
These works share the same context as our approach but their goal is differ-
ent from ours. They focus on, among authors, formalizing semantics in UML
models and transformations using ocl, verifying them on models. But no one
considers ocl architecture constraint specification. To the best of our knowl-
edge, there is no work that enables to make architecture constraints specified
independently to the paradigm used in the application development.

6 Conclusion

We presented in this paper an approach that enables the specification of multi-
paradigm architecture constraints. These constraints are written in an abstract
way independently from any paradigm. The key idea is to combine the usage of
OCL with a graph metamodel, and a feature model to implement our method.
The meta-model of graphs is used to specify the constraints and the feature
model is exploited to express paradigm variabilities. The constraints can be
translated to any specific paradigm, simply through the configuration of the
feature model.

As a future work, we plan to provide a way to express architecture constraints
at (yet) a more abstract level, with a natural language syntax, and then combine
it with this work and our previous approaches to provide a complete process.
A transformation method should be developed to transform the architecture
constraint specification from natural language into graph-based specification and
then into UML-based one, until source code generation according to a specific
paradigm. This will make the architecture constraint specification simpler, yet
keep it operational (checkable on source code and at runtime).

References

1. Allier, S., et al.: From object-oriented applications to component-oriented applica-
tions via component-oriented architecture. In: WICSA, pp. 214–223. IEEE (2011)

2. Alshara, Z., et al.: Migrating large object-oriented applications into component-
based ones. In: ACM SIGPLAN Notices, no. 3, pp. 55–64. ACM (2015)

3. Balarin, F., et al.: Constraints specification at higher levels of abstraction. In:
HLDVT Workshop, pp. 129–133. IEEE (2001)

4. Bauer, E.: Enhancing the dynamic meta modeling formalism and its eclipse-based
tool support with attributes. Bachelor thesis. University of Paderborn (2008)

Multi-paradigm Architecture Constraint Specification 193

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. Softw. Process: Improv. Pract.
10(2), 143–169 (2005)

6. Kallel, S., Tibermacine, C., Tramoni, B., Dony, C., Kacem, A.H.: Automatic trans-
lation of OCL meta-level constraints into Java meta-programs. In: Lee, R. (ed.)
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing 2015. SCI, vol. 612, pp. 213–226. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-23509-7 15

7. Kallel, S., et al.: Generating reusable, searchable and executable “architecture con-
straints as services”. J. Syst. Softw. 127, 91–108 (2017)

8. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer Science & Business Media, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

9. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential
OCL invariants to nested graph constraints focusing on set operations. In: Parisi-
Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 155–170.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9 10

10. Rutle, A., et al.: A formal approach to the specification and transformation of
constraints in MDE. J. Logic Algebraic Program. 81(4), 422–457 (2012)

11. Tibermacine, C.: Architecture constraints. Softw. Archit. 2, 37–90 (2014)
12. Tibermacine, C., et al.: A family of languages for architecture constraint specifi-

cation. J. Syst. Softw. 83(5), 815–831 (2010)
13. Vranić, V.: Multi-paradigm design with feature modeling. Comput. Sci. Inf. Syst.

2(1), 79–102 (2005)

https://doi.org/10.1007/978-3-319-23509-7_15
https://doi.org/10.1007/978-3-319-23509-7_15
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-319-21145-9_10

Computational Models and Complexity

Lower Bounds and Hierarchies for Quantum
Memoryless Communication Protocols
and Quantum Ordered Binary Decision

Diagrams with Repeated Test

Farid Ablayev2, Andris Ambainis1, Kamil Khadiev1,2(B), and Aliya Khadieva2

1 Faculty of Computing, Center for Quantum Computer Science,
University of Latvia, R̄ıga, Latvia

andris.ambainis@lu.lv, kamilhadi@gmail.com
2 Kazan Federal University, Kazan, Russia

fablayev@gmail.com, aliyakhadi@gmail.com

Abstract. We explore multi-round quantum memoryless communica-
tion protocols. These are restricted version of multi-round quantum com-
munication protocols. The “memoryless” term means that players forget
history from previous rounds, and their behavior is obtained only by
input and message from the opposite player. The model is interesting
because this allows us to get lower bounds for models like automata,
Ordered Binary Decision Diagrams and streaming algorithms. At the
same time, we can prove stronger results with this restriction. We
present a lower bound for quantum memoryless protocols. Additionally,
we show a lower bound for Disjointness function for this model. As an
application of communication complexity results, we consider Quantum
Ordered Read-k-times Branching Programs (k-QOBDD). Our commu-
nication complexity result allows us to get lower bound for k-QOBDD
and to prove hierarchies for sublinear width bounded error k-QOBDDs,
where k = o(

√
n). Furthermore, we prove a hierarchy for polynomial size

bounded error k-QOBDDs for constant k. This result differs from the
situation with an unbounded error where it is known that an increase of
k does not give any advantage.

Keywords: Quantum computation · Communication complexity
Branching programs · Binary decision diagrams · OBDD
Quantum models · Hierarchy · Computational complexity

1 Introduction

The quantum communication protocol is a well-known model. That was explored
in papers [21,22,26,31]. We consider communication “game” of two players: Alice
and Bob. They together want to compute Boolean function. In the paper we con-
sider the “memoryless” model. It means that players do not remember anything

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 197–211, 2018.
https://doi.org/10.1007/978-3-319-73117-9_14

198 F. Ablayev et al.

from previous rounds. So, on each round a player knows only his own part of
the input and the message from an opposite player. This type of communication
models was explored, for example in [13,18,37]. On the one hand, this model
is powerful enough for emulating computational models that store all informa-
tion in states: automata, OBDDs, streaming algorithms, etc. On the other hand,
memoryless protocol requires fewer resources and can be implemented in prac-
tice easier. Such model is useful, for example, in web applications for REST
architecture.

Researchers are often interested in exploring lower bounds for computational
models. We can see different lower bounds for quantum communication mod-
els and selected functions in following papers: [9,23,24,26,27]. We suggest a
lower bound that demonstrates the relation between complexity characteristics
of Boolean function (number of subfunctions) and complexity characteristics of
the model: Nπ(f) ≤ 2l·(Ct2l)2 , where t is a number of rounds, l is a maximal
length of a message for all rounds, π is a partition of input variables, N(f) is a
number of subfunctions for a Boolean function f and C is some constant. Note,
that a number of subfunctions is exactly one-way deterministic communication
complexity of a function. We prove this lower bound, using a technique, which
was described in [7,18] for classical models. That based on the representation of
the computational process in a linear form.

We apply the proven lower bound to Branching programs. The model is one
of well-known models of computation. That has been shown useful in a variety of
domains such as hardware verification, model checking, and other applications
[35]. It is known that the class of Boolean functions computed by polynomial
size branching programs coincided with the class of functions computed by non-
uniform log-space Turing machines. One of the important restrictive branching
programs are oblivious read-once branching programs or Ordered Binary Deci-
sion Diagrams (OBDD) [35]. The OBDD model can be considered as a nonuni-
form automata (see, for example, [3]). In the last decades quantum model of
OBDD was considered [4,29,32,33]. Researchers are interested in read-k-times
quantum model of OBDD (k-QOBDD), for example [16]. k-QOBDD can be
explored from automata point of view. And in that situation, we can find good
algorithms for two way quantum classical automata and related models [10,36].

If we apply the lower bound for memoryless protocols to k-OBDD, then
we get the relation between the characteristic of a function f (a number of
subfunctions, N(f)) and characteristics of the model: a width (w) and a number
of layers (k). N(f) ≤ wC·(kw)2 , for some C = const. Note, that a number
of subfunctions is a minimal width of a deterministic OBDD for a function
[35]. A relation with another classical k-OBDDs was presented in paper [18]. A
relation between deterministic OBDD and probabilistic, quantum OBDDs was
presented in [5]. Furthermore, different relations between models were discussed,
for example, in [1,6,8,14,15,19,20]. Additionally, we apply this lower bound to
Matrix XOR Pointer Jumping function and present k-QOBDD for this function.
Using this result, we prove a hierarchy of complexity classes for bounded error
k-QOBDDs of a sublinear width with a natural order of input variables and

Lower Bounds and Hierarchies 199

up to non-constant k. k-OBDD model of small width is also interesting, because,
for example, the class of functions computed by constant width poly(n)-OBDD
equals to the well-known complexity class NC1 for logarithmic depth circuits
[11,34]. For constant k, we apply a lower bound from communication complexity
theory [25,26] to XOR Reordered Pointer Jumping function and get a hierarchy
for polynomial size k-QOBDD. Recall that if we consider unbounded error k-
OBDDs, then we have another situation. Let us consider two classes of Boolean
functions: function computed by polynomial size unbounded error k-QOBDDs
and 1-QOBDDs. Homeister and Waack [16] have shown equality of these two
classes. Note that due to the definition, k-OBDD is polynomial width iff it is
polynomial size. Similar hierarchies are known for classical cases [7,12,18,20].
But for k-QOBDD it is a new result.

The paper has the following structure. Section 2 contains definitions of a
communication model. In Sect. 3, we prove a lower bound for a bounded error
quantum memoryless communication protocol and apply it to the MXPJk,p

function. We apply the lower bound to OBDD in Sect. 4. And use these lower
bounds to prove hierarchies of complexity classes for k-QOBDDs.

2 Communication Model

(π, t, l) memoryless communication quantum protocol R is quantum t-round pro-
tocol with a partition of input variables π and a maximal length of a message l.
On each round, a player does not remember anything about previous rounds and
sends a message that depends only on an input of the player and a received mes-
sage from the opposite player. Both players can measure states on any rounds,
after that, they should return 1-answer and stop computation process or con-
tinue. On the last round Player B measures qubits and answers 0 or 1, if someone
did not do it before. Let us define the model in a formal way:

Definition 1. Let π be a partition of a set X of variables. We define (π, t, l)
memoryless communication quantum protocol R as follows: R is a two party
t-round communication protocol. Protocol R uses a partition π of variables X
among two quantum players Alice (A) and Bob (B). Let ν = (σ, γ) be a partition
of the input ν according to π. Alice always starts the computation. All messages
contain l qubits.

Round 1. A generates the first quantum message |m1〉 (|m1〉 = |m1〉(σ)) and
sends it to B.

Round 2. B generates quantum message |m2〉 (|m2〉 = |m2〉(|m1〉, γ)), and sends
it to A.

Round 3. A generates |m3〉 (|m3〉 = |m3〉(|m2〉, σ)), and sends it to B.
Round 4. B generates quantum message |m4〉 (|m4〉 = |m4〉(|m3〉, γ)), and sends

it to A.
. . .
Round t. B receives |mt〉 and produces a result of computation 0 or 1, if players

do not produce an answer on previous rounds.

200 F. Ablayev et al.

Both players can measure states on any rounds, after that they should return
1-answer and stop computation process or continue. The result R(ν) of computa-
tion R on ν ∈ {0, 1}n is 1 if the probability of 1-result greats 1/2+ε and R(ν) = 0
if the probability of 1-result less than 1/2 − ε for some constant ε > 0. If Pr{R
returns z} > 1/2 + ε, then Rε(ν) = z, for z ∈ {0, 1}. A Boolean function f(X)
is computed by protocol R (presented by R) with bounded error if f(ν) = Rε(ν)
for some 0 < ε < 0.5 and for all ν ∈ {0, 1}n. We say that protocol R uses l · t
bits communication on all rounds.

3 Lower Bounds for Communication Model

Let us start from the necessary definitions and notation.
Let π = (XA,XB) be a partition of the set X into two sets XA and

XB = X\XA. Below we will use equivalent notations f(X) and f(XA,XB).
Let f |ρ(XB) be a subfunction of f , where ρ is mapping ρ : XA → {0, 1}|XA|

such that ρ = {xi1 = σ1, . . . , xi|XA| = σ|XA|, for {xi1 , . . . , xi|XA|} = XA}. Func-
tion f |ρ(XB) is obtained from f by fixing values of variables from XA using
values from ρ. Let us consider all possible subfunctions with respect to par-
tition π: SFπ(f) = {f |ρ, such that ρ : XA → σ, for σ ∈ {0, 1}|XB |}. Let
Nπ(f) = |SFπ(f)| be the number of different subfunctions with respect to the
partition π. Let the partition half = ({1, . . . , n/2}, {n/2 + 1, . . . , n}).

Theorem 1. Suppose Boolean function f(X) be computed by (π, t, l) memory-
less quantum communication protocol R with bounded error; then we have:

Nπ(f) ≤ 2(1.5t+0.5+(t−1) log2(2
l+2))·(0.5t−0.5)(2l+1+4)2

Let us describe the same result in a short way.

Corollary 1. Suppose Boolean function f(X) be computed by (π, t, l) memory-
less quantum communication protocol R with bounded error; then we have:

Nπ(f) ≤ 2Cl·
(
t2l

)2

, for some C = const

We present proof in the next section.

3.1 Proof of Theorem1

The proof of Theorem 1 is based on a representation of a protocol’s computation
process in a matrix form. Then we estimate a number of special matrices, which
are used for this representation.

Now we define a sequence of matrices MR(σ, γ) that represents a
computation procedure of protocol R on input ν = (σ, γ) with respect
to partition π. Let t = 2k − 1, then the sequence is following:
MR(σ, γ) =

(
M

(1)
R (γ),M (1)

R (σ),M (2)
R (γ), M

(2)
R (σ), . . . , M (k−2)

R (σ),M (k−1)
R (γ),

M
(k−1)
R (σ),M (k)

R (γ)
)
. The sequence describes a computation on rounds from

2 to t.

Lower Bounds and Hierarchies 201

The (2l+2)×(2l+2)-matrix M
(i)
R (σ) describes a computation of round 2i+1.

And the (2l +2)× (2l +2)-matrix M
(i)
R (γ) describes a computation of the round

2i.
Let MR(σ) =

(
M

(1)
R (σ),M (2)

R (σ), . . . ,M (k−2)
R (σ),M (k−1)

R (σ)
)

be a part of

sequence, which depends on σ, and MR(γ) =
(
M

(1)
R (γ),M (2)

R (γ), . . . ,M (k−1)
R (γ),

M
(k)
R (γ)

)
be a part of the sequence, which depends on γ.

Matrix M
(i)
R (γ) is a complex-value matrix. It represents transformation that

was made by B on the round 2i:

– Let s = (s1, . . . , s2l+2) be the r-th row of M
(i)
R (γ), for 1 ≤ r ≤ 2l. Elements

(s1, . . . , s2l) is amplitudes for states of l qubits of a message that B sends on
round 2i, if he receives a message with pure state r. And last two elements
of the row s2l+1 = s2l+2 = 0.

– Let s = (0, . . . , 0, 1, pr) be the (2l + 1)-st row of matrix M
(i)
R (γ). The row

represents a measurement event on the round 2i. pr is probability of getting
1 on the round 2i.

– Let s = (0, . . . , 0, 0, 1) be the (2l + 1)-st row of matrix M
(i)
R (γ). The row

represents probability of measurement on previous rounds.

Matrices M
(i)
R (σ) describe a computation of the round 2i and have the similar

structure.
Additionally, we define vectors p0R(σ) and qR, which describe the first round

and accepting states after the last round, respectively. The row vector p0R(σ) =
(p1, . . . p2l+2) defines the message, which was formed on the first round of R.
Each element of vector corresponds to one of M

(1)
R (γ) matrix’s row. p2l+1 = 1

and p2l+1 is the probability of 1-result if we have measurement on the first round.
The column vector qR = (q1, . . . , q2l , 0, 1). Each element of vector corresponds

to one of Mk
R(γ) matrix’s row. qr = 1 iff r is accepting state, qr ∈ {0, 1}, for

1 ≤ r ≤ 2l.
Let us define sqr operator that describes measurement after the last round.

Let operator sqr : C2l+2 → R2l+2 be given by sqr(z1 . . . , z2l+2) = (s1 . . . , s2l+2),
where si = |zi|2, for 1 ≤ i ≤ 2l and si = |zi| for 2l + 1 ≤ i ≤ 2l + 2, C is a set of
complex numbers and R is a set of real numbers.

Lemma 1. For any input ν ∈ {0, 1}n, ν = (σ, γ) we have:

Pr{R reaches 1 on ν} = sqr

(

p0R(σ)

(
k−1∏

i=1

M
(i)
R (γ)M (i)

R (σ)

)

M
(k)
R (γ)

)

· qR.

(1)

Proof. Let the vector pj = (pj
1, . . . p

j
2l+2

) be a vector that describes the compu-
tation of R after j rounds on input ν = (σ, γ). Then pj

r for 1 ≤ r ≤ 2l describes
amplitudes for state r, pj

2l+1
= 1 and pj

2l+2
is the probability of 1-result if we

have measurements on previous rounds and should answer 1.

202 F. Ablayev et al.

Vector pj is computed as follows: pj = p0R(σ)
(∏�j/2�

i=1 M
(i)
R (γ)M (i)

R (σ)
)

for

even j, and pj = p0R(σ)
(∏�j/2�

i=1 M
(i)
R (γ)M (i)

R (σ)
)

M
(k)
R (γ) for odd j.

By the definition of vector qR we have the following fact: sqr
(
p2k−1

) · qR is
the probability of reaching 1 on input ν = (σ, γ). Hence (1) is right. ��

Let us discuss the following question: “How similar should be sequences
MR(σ, γ) and MR(σ′, γ) for equivalence of computation results for inputs (σ, γ)
and (σ′, γ)?”. For simplifying an answer to the question, we convert complex-
value matrices and vectors to real-value matrices. We use the trick from the
paper [28]. It is well known that complex numbers c = a + bi can be repre-

sented by 2 × 2 real matrix c =
(

a b
−b a

)
The reader can check that multipli-

cation is faithfully reproduced and that cT c = |c|1. In the same way, a r × r
complex-value matrix can be simulated by a 2r×2r real-valued matrix. Moreover,
this matrix is unitary if the original matrix is. Consequently, we will consider
(2l+1 + 4) × (2l+1 + 4) real-value matrices M

(i)
R (σ) and M

(i)
R (γ), (2l+1 + 4) × 2

real-number matrix p0R(σ) and 2 × (2l+1 + 4) real-number matrix qR. Let us

pay attention to matrix qR =

⎛

⎝
q1, 0
.

q2l+1+4, 0

⎞

⎠. Element qr = 1 iff �(r + 1)/2	

is accepting state, qr ∈ {0, 1}, for 1 ≤ r ≤ 2l. q2l+1+1 = q2l+1+2 = 0 and for
probability of 1-result on previous rounds we have q2l+1+3 = q2l+1+4 = 1.

Before introduction closeness of matrices, let us consider δ-close metric of
number equivalence. Let δ ≥ 0. Two real numbers p and p′ are called δ-close if
both: −1 ≤ p, p′ ≤ 1 and |p − p′| < δ. Let β ≥ 0. Two q × r matrices M = [sij]
and M ′ = [s′

ij] are δ-close iff sij and s′
ij are δ-close, for any i ∈ {1, . . . , q} and

j ∈ {1, . . . , r}. We have the similar definition for vectors.
Now we can discuss an equivalence of inputs according to similarity of answer

probability in the following lemma.

Lemma 2. Suppose inputs (σ, γ) and (σ′, γ) such that corresponding matri-
ces in sequences MR(σ, γ) and MR(σ′, γ) are δ-close, p0R(σ) and p0R(σ′)
are δ-close; then we have: |Pr{R returns 1 on input(σ, γ)} − Pr{R returns 1
on input(σ′, γ)}| < 23k−1(2l + 2)2kδ, for t = 2k − 1 (See arXiv version [2]).

According to above lemma, we can introduce the δ-equivalence for inputs
with respect to the protocol R. Two inputs σ and σ′, (σ, σ′ ∈ {0, 1}|XA|) are
δ-equivalent if corresponding matrices in sequences MR(σ) and MR(σ′) are
δ-close and p0R(σ) and p0R(σ′) are δ-close.

Let us obtain possible biggest δ such that it does not affect 1-result proba-
bility too much.

Lemma 3. Suppose inputs σ, σ′ ∈ {0, 1}|XA| are δ-equivalent and δ =
ε2−3k(2l + 2)−2k, then for any γ ∈ {0, 1}|XB | we have: Rε(σ, γ) = Rε/2(σ′, γ).

Lower Bounds and Hierarchies 203

Proof. Let p = Pr{R reaches 1 on (σ, γ)} and p′ = Pr{R reaches 1 on (σ′, γ)}.
Probabilities p and p′ are 23k−1(2l + 2)2kδ-close due to Lemma 2. Therefore,

p and p′ are ε/2-close. Hence, we have: |p − p′| < ε/2. Thus, if p > 0.5 + ε then
p′ > 0.5 + ε/2; if p < 0.5 − ε then p′ < 0.5 − ε/2. And the claim of the lemma is
right. ��

Let protocol R computes Boolean function f(X) with bounded error ε. Let
us prove that the number of subfunctions Nπ(f) is less than or equal to the
number of non δ-equivalent inputs σ’s with respect to the protocol R and error
ε/2, for δ = ε2−3k(2l + 2)−2k. Assume that Nπ(f) greats the number of non
δ-equivalent σ’s. Then due to Pigeonhole principle there are two inputs σ and
σ′ and corresponding mappings ρ and ρ′ such that f |ρ(XB) �= f |′ρ(XB), but
σ and σ′ are δ-equivalent inputs. Therefore, there is γ ∈ {0, 1}|XA| such that
f |ρ(γ) �= f |′ρ(γ), but Rε/2(σ, γ) = Rε/2(σ′, γ). This is contradiction.

If we compute the number of different non δ-equivalent σ’s, we will get a
claim of the lemma. Let us compute the number of different non δ-equivalent
σ’s. It is equal to the number of non δ-close matrices from sequence MR(σ)
multiply the number of non δ-close matrices p0R(σ). The number of non δ-close
matrices in sequence MR(σ) is at most

(
2
δ

)(k−1)(2l+1+4)2 ≤
(

23k+1(2l+2)2k

ε

)(k−1)(2l+1+4)2

= 2(3k+1−log ε+2k log2(2
l+2))·(k−1)(2l+1+4)2

≤ 2(3k+1+2k log2(2
l+2))·(k−1)(2l+1+4)2 .

Additionally, we have the following bound for the number of non δ-close
vectors p0(σ): 2(3k+1+2k log2(2

l+2))·(2l+1+4)2 . Therefore,

Nπ(f) ≤ 2(3k+1+2k log2(2
l+2))·k(2l+1+4)2 = 2(1.5t+0.5+(t−1) log2(2

l+2))·(0.5t−0.5)(2l+1+4)2 . ��

A Lower Bound for Boolean Function MXPJk,d. Let us consider Boolean
function MXPJk,d(X). It is a modification of Shuffled Address Function from
[17] which based on definition of Pointer Jumping (PJ) function from [12,30].

Let us present a definition of PJ function for integers. Let VA, VB be two
disjoint sets (of vertexes) with |VA| = |VB | = d and V = VA ∪ VB . Let FA =
{fA : VA → VB}, FB = {fB : VB → VA} and f = (fA, fB) : V → V defined by
f(v) = fA(v), if v ∈ VA and f = fB(v), v ∈ VB . For each j ≥ 0 define f (j)(v)
by f (0)(v) = v, f (j+1)(v) = f(f (j)(v)). Let v0 ∈ VA. We want to compute
gk,d : FA × FB → V function. This is defined by gk,d(fA, fB) = f (k)(v0).

The Matrix XOR Pointer Jumping function(MXPJ2k,d) is modification
of PJ . Firstly, we introduce the definition of MatrixPJ2k,d function. Let us
consider functions fA,1, · · · fA,k ∈ FA and fB,1, · · · fB,k ∈ FB . On iteration
j + 1 function f (j+1)(v) = fj+1(f (j)(v)), where fi(v) = fA,� i

2 �(v) if i is odd,
and fi(v) = fB,� i

2 �(v) otherwise. MatrixPJ2k,d(fA,1, · · · fA,k, fB,1, · · · fB,k) =
f (k)(v0). MXPJ2k,d is modification of MatrixPJ2k,d. Here we take f (j+1)(v) =
fj+1(f (j)(v)) ⊕ f (j−1)(v), for j ≥ 0.

204 F. Ablayev et al.

Finally, we consider a boolean version of these functions. The Boolean func-
tion PJt,n : {0, 1}n → {0, 1} is gk,d, where we encode fA in a binary string
using d log d bits and do it with fB as well. The result of the function is a
parity of bits from the binary representation of the result vertex’s number.
For encoding functions in an input of MXPJ2k,d, we use following order:
fA,1, . . . , fA,k, fB,1, . . . , fB,k. Let us describe the process of computation on
Fig. 1. Function fA,i is encoded by ai,1, · · · ai,d, and fB,i is encoded by bi,1, · · · bi,d,
for i ∈ {1 · · · k}. We assume that v0 = 0.

Fig. 1. Boolean function MXPJk,d

Let us discuss a number of subfunctions for MXPJ2k,d in Lemma 4 and apply
our lower bound to the function in Lemma5.

Lemma 4. For kd log d = o(n) we have: N id(MXPJ2k,d) ≥ d�d/3−1�(k−3).

Proof. The idea is similar to the proof from [17]. See arXiv version [2]. ��
Lemma 5. MXPJ2k,�√

d� cannot be computed by any (k/r,half, l) quantum

memoryless communication protocol, for C1

√
d log d − (C22lkl)/r2 > 0 and

C,C1 = const (See arXiv version [2]).

4 Application to Ordered Binary Decision Diagrams

Let us start with definitions. Ordered Read k-times Branching Programs (k-
OBDD) are a well-known model for computation of Boolean functions. For more
details see [35].

k-OBDD is a restricted version of a branching program (BP). BP over a
set X of n Boolean variables is a directed acyclic graph with two distinguished
nodes s (a source node) and t (a sink node). We denote it Ps,t or just P . Each
inner node v of P is associated with a variable x ∈ X. A deterministic P has
exactly two outgoing edges labeled x = 0 and x = 1 respectively for that node
v. The program P computes Boolean function f(X) (f : {0, 1}n → {0, 1}) as
follows: for each σ ∈ {0, 1}n we let f(σ) = 1 iff there exists at least one s−t path
(called accepting path for σ) such that all edges along this path are consistent

Lower Bounds and Hierarchies 205

with σ. A size of branching program P is a number of nodes. Ordered Binary
Decision Diagram (OBDD) is a BP with following restrictions: (i) Nodes can be
partitioned into levels V1, . . . , V�+1 such that s belongs to the first level V1 and
sink node t belongs to the last level V�+1. Nodes from level Vj have outgoing
edges only to nodes of level Vj+1, for j ≤
. (ii) All inner nodes of one level are
labeled by the same variable. (iii) Each variable is tested on each path only once.

A width w(P) of a program P is w(P) = max1≤j≤� |Vj |. OBDD P reads
variables in its individual order θ(P) = (j1, . . . , jn). Let trP : {1, . . . , n} ×
{1, . . . , w(P)} × {0, 1} → {1, . . . , w(P)} be transition function of OBDD P on
the level i. OBDD P is called commutative iff for any permutation θ′ OBDD
P ′ can be constructed by reordering transition functions and P ′ still computes
the same function. Formally, trP ′(i, s, xθ′(i)) = trP (θ−1(θ′(i)), s, xθ′(i)), for θ is
the order of P . A BP P is called k-OBDD if it consists of k layers. The i-th
(1 ≤ i ≤ k) layer P i of P is an OBDD. We call order θ(P) = θ the order of
P , where θ(P 1) = · · · = θ(P k) = θ. k-OBDD P is commutative iff each layer is
commutative OBDD.

Let us define a quantum k-OBDD (k-QOBDD). That is given in different
terms, but you can see that they are equivalent, see [4] for more details. For a
given n > 0, a quantum OBDD P of width w defined on {0, 1}n, is a 4-tuple
P = (T, |ψ〉0, Accept, π), where T = {Tj : 1 ≤ j ≤ n and Tj = (G0

j , G
1
j)} are

ordered pairs of (left) unitary matrices representing the transitions. Here G0
j

or G1
j is applied on the j-th step. And a choice is determined by the input

bit. |ψ〉0 is a initial vector from w-dimensional Hilbert space over the field of
complex numbers. |ψ〉0 = |q0〉 where q0 corresponds to the initial node. Accept ⊂
{1, . . . , w} is a set of accepting nodes. π is a permutation of {1, . . . , n} defines
the order of input bits.

For any given input ν ∈ {0, 1}n, the computation of P on ν can be traced by
a w-dimensional vector from Hilbert space over the field of complex numbers.
The initial one is |ψ〉0. In each step j, 1 ≤ j ≤ n, the input bit xθ(j) is tested and
then the corresponding unitary operator is applied: |ψ〉j = G

xθ(j)
j (|ψ〉j−1), where

|ψ〉j represents the state of the system after the j-th step, for 1 ≤ j ≤ n. We can
measure one of qubits. Let the program was in state |ψ〉 = (v1, . . . , vw) before
measurement and let us measure the i-th qubit. And let states with numbers
j01 , . . . , j0w/2 correspond to 0 value of the i-th qubit, and states with numbers
j11 , . . . , j1w/2 correspond to 1 value of the i-th qubit. The result of measurement

of i-th qubit is 1 with probability pr1 =
∑w/2

u=1 |vj1
u
|2 and 0 with probability

pr0 = 1 − pr1. In the end of computation program P measures all qubits. The
accepting (return 1) probability Praccept(σ) of Pn on input σ is Praccept(ν) =∑

i∈Accept v2
i , for |ψ〉n = (v1, . . . , vw).

Let Pε(ν) = 1 if P accepts input ν ∈ {0, 1}n with probability at least 0.5+ε,
and Pε(ν) = 0 if P accepts input ν ∈ {0, 1}n with probability at most 0.5 − ε,
for ε ∈ (0, 0.5]. We say that a function f is computed by P with bounded error
if there exists an ε ∈ (0, 0.5] such that Pε(ν) = f(ν) for any ν ∈ {0, 1}n. We can
say that P computes f with bounded error 0.5 − ε.

206 F. Ablayev et al.

Quantum k-OBDD (k-QOBDD) is Quantum Branching program with k lay-
ers. Each layer is QOBDD, and each layer has the same order θ. We allow mea-
surement for k-QOBDD during the computation, but after that, it should stop
and accept an input or continue the computation. k-id-QOBDD is k-QOBDD
with the natural order of input bits id = (1, . . . , n).

Let k-QOBDDW be a set of Boolean functions that can be computed by
bounded error k-QOBDDs of width w, for w ∈ W. k-id-QOBDDW is the same
for bounded error k-id-QOBDDs. As W we will consider only “good” sets Gk,r,
for integer k = k(n), r = r(n). The set W belongs to Gk,r if this is ths set of
integers with following properties: (i) if w ∈ W, then �√w�, �√w�2 ∈ W; (ii)
k2w2 log w = o(n), for any w ∈ W; (ii) C1

√
w log w−(Cv2k log v)/r2 > 0 for any

w, v ∈ W and C,C1 = const. Let BQPε-kQOBDD be a set of Boolean functions
that can be computed by polynomial size k-QOBDDs with probability of a right
answer at most 1 − ε or an error at least ε. We can consider similar classes
for deterministic model (P-kOBDD) and bounded error probabilistic model
(BPε-kOBDD).

Lower Bound for Ordered Binary Decision Diagrams. Let us start
from necessary definitions and notation. Let Θ(n) be the set of all permuta-
tions of {1, . . . , n}. Let the partition π(θ, u) = (XA,XB) = ({xj1 , . . . , xju

},
{xju+1 , . . . , xjn

}), for the permutation θ = (j1, . . . , jn) ∈ Θ(n), 1 < u < n. We
denote Π(θ) = {π(θ, u) : 1 < u < n}. Let Nθ(f) = maxπ∈Π(θ) Nπ(f), N(f) =
minθ∈Θ(n) Nθ(f).

We can emulate k-QOBDD P of width w and order θ with (π, t, l) memoryless
communication quantum protocol R, such that π ∈ Π(θ), t = 2k−1 and 2l = w.
Such emulation is described, for example, in [18]. Therefore, the lower bound for
k-QOBDD follows from Theorem 1.

Theorem 2. Suppose function f(X) is computed by bounded error k-QOBDD
P of width w; then N(f) ≤ 2d, for d =

(
3k + 1 + 2k log2(w + 2)

) · k(2w + 4)2.

Corollary 2. Suppose function f(X) is computed by bounded error k-QOBDD
P of width w; then N(f) ≤ wC·(kw)2 , for some C = const.

Note that this lower bound gives us relation with deterministic OBDD com-
plexity of function, because N(f) is the width of better deterministic OBDD for
function [35]. Let us apply this lower bound to MXPJk,d(X) function.

Lemma 6. Let W ∈ Gk,r, for integers k = k(n), r = r(n). Then
MXPJ2k,�√

d� �∈ �k/r�-id-QOBDDW (See arXiv version [2]).

5 Hierarchy Results

Hierarchy for Sublinear Width. Firstly, let us discuss upper bound for
MXPJk,d function. The Proof is in arXiv version [2].

Lemma 7. There is exact k-id-QOBDD P of width d2 which computes
MXPJ2k,d.

Lower Bounds and Hierarchies 207

Using above lemma and lower bound from Lemma6, we get hierarchy results.

Theorem 3. Suppose W ∈ Gk,r, for integers k = k(n), r = r(n), then: �k/r�-
id-QOBDDW � k-id-QOBDDW (See arXiv version [2]).

Partial cases are hierarchies for the following classes: k-id-QOBDDCONST , k-
id-QOBDDPLOG and k-id-QOBDDSUBLIN(α). Here CONST = {w : w =
const}, PLOG = {w : w = (log n)O(1)}, SUBLIN(α) = {w : w = O(nα), for
0 < α < 1}.

Corollary 3. Claim 1. �√k/r�-id-QOBDDCONST � k-id-QOBDDCONST ,
for k = o(

√
n),

√
k > r, 1 = o(r).

Claim 2. �√k/nr�-id-QOBDDPLOG � k-id-QOBDDPLOG, for k =
o(n0.5−δ),

√
k > nr, r > 0, δ > 0.

Claim 3. �√k/nα+r�-id-QOBDDSUBLIN(α) � k-id-QOBDDSUBLIN(α),
for k = o(n0.5−α−δ),

√
k > nα+r, r > 0, δ > 0 and 0 > α > 1/6 − δ/3 − 2r/3.

Proof. Let us consider Claim 1. We get conditions 1 and 2 of Gk,r, because
W = CONST, k = o(

√
n). Let us consider condition 3 and r′ =

√
kr. Then

C1w log w − (Cv2k log v)/r′2 = C ′ − C ′′/r2 > 0 for C ′, C ′′ = const, because
1 = o(r). Therefore, due to Theorem 3, we have:

�k/r′�-id-QOBDDCONST � k-id-QOBDDCONST and we get Claim 1.
Let us consider Claim 2. We get conditions 1 and 2 of Gk,r, because

W = PLOG, k = o(n0.5−δ). Let us consider condition 3 and r′ =
√

knr.
Then C1w log w − (Cv2k log v)/r′2 > C ′ − C ′′O(nr)/n2r = C ′ − C ′′/nr > 0
for C ′, C ′′ = const. Therefore, due to Theorem 3, we have:

�k/r′�-id-QOBDDPLOG � k-id-QOBDDPLOG and we get Claim 2.
Let us consider Claim 3. We get conditions 1 and 2 of Gk,r, because W =

SUBLIN(α), k = o(n0.5−α−δ),
√

k > nα+r, r > 0, δ > 0 and 0 > α > 1/6 −
δ/3 − 2r/3. Let us consider condition 3 and r′ =

√
knα+r. Then C1w log w −

(Cv2k log v)/r′2 > C ′ − C ′′O(n2α+r)/n2α+2r = C ′ − C ′′/nr > 0 for C ′, C ′′ =
const. Therefore, due to Theorem 3, we have:

�k/r′�-id-QOBDDSUBLIN(α) � k-id-QOBDDSUBLIN(α) and we get
Claim 3. ��

Hierarchy for Polynomial Size. Let us consider a Boolean function XRPJk,n,
it is a modification of boolean version of PJk,n function using reordering method
from [20]. We add address for each bit of input and compute with respect to the
address in original input. If we meet bits with the same address, then we consider
their XOR. XRPJk,n is a total version of xor-reordered PJk,n, details in [20].
Let us define this formally.

Let us split the input X = (x1, . . . , xn) to b blocks with n/b elements, such
that b�log2 b + 1	 = n, therefore, b = O(n/ log n). And let Adr(X, i) be an
integer such that its binary representation is first �log2 b	 bits of the i-th block.
Let V al(X, i) be a value of the bit number �log2 b + 1	 from the block i, for
i ∈ {0, . . . , b−1}. Let 2d�log d	 = b and VA = {0, . . . , d−1}, VB = {d, . . . , 2d−1}.

208 F. Ablayev et al.

Hence, d = O(n/ log2 n). Let function BV : {0, 1}n × {0, . . . , 2d − 1} →
{0, . . . , d − 1} be the following:

BV (X, v) =
v log b∑

j=(v−1) log b+1

2j−(v−1) log b−1 ·
⊕

i:Adr(X,i)=j

V al(X, i)

Then fA(v) = BV (X, v) + d, fB(v) = BV (X, v). Let r = gt,a(fA, fB), then

XRPJt,n(X) =
⊕

i:(r−1) log b<Adr(X,i)≤r log b

V al(X, i).

Let us prove lower and upper bounds for XRPJk,n:

Lemma 8. Claim 1. Suppose k-QOBDD P of width w computes
XRPJ 2k−1,n(X) with bounded error at least 1/8; then w ≥ 2r, for r =
n/(k2O(k)) − k log n.

Claim 2. There is exact 2k-QOBDD P of width O(n2k+1) computing
XRPJ2k−1,n(X).

Proof. The proof of the first claim is based on lower bound for quantum com-
munication complexity from [25,26]. We apply the bound in the similar way as
in [20].

Assume that XRPJ2k−1,n is computed by k-QOBDD P of width w = 2o(r).
k-QOBDD P can be simulated by 2k−1-round quantum communication protocol
R, which sends at most �log2 w	(2k−1) bits. For prove this fact look, for example,
at [18]. Let us consider only inputs from the set Σ ⊂ {0, 1}n such that for
σ ∈ Σ we have Adr(σ, i) = i + b, for 0 ≤ i ≤ b − 1 and Adr(σ, i) = i − b, for
b ≤ i ≤ 2b − 1, b log b = n. For these inputs, our protocol will just compute
PJ2k−1,b, but in a communication game B starts the computation. Therefore,
from the protocol R we can get the protocol R′ such that B starts computation.
The protocol R′ computes PJ2k−1,b and sends at most �log2 w	(2k − 1) bits. It
means QB,2k−1

1/8 (PJ2k−1,b) = o(r). This contradicts with results from quantum
communication complexity [25,26].

For the proof of the second claim, we construct 2k-id-QOBDD for the func-
tion. The main idea is to store a pointer for current steps and use new qubits
for a new step. And we apply reordering method from [20]. See arXiv version [2]
for the full proof. ��

Using this lemma, we can prove the following hierarchy result:

Theorem 4. BQP1/8-kOBDD�BQP1/8-(2k)QOBDD, for k > 0, k = const
(See arXiv version [2]).

Both hierarchies from Corollary 3 and Theorem 4 are interesting, because we
cannot apply lower bound from Theorem2 to polynomial width, at the same
time, we cannot use results from Lemma 8 to sublinear width.

Lower Bounds and Hierarchies 209

Acknowledgements. The work is partially supported by ERC Advanced Grant
MQC. The work is performed according to the Russian Government Program of Com-
petitive Growth of Kazan Federal University.

References

1. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math.
37(6), 670–682 (2016)

2. Ablayev, F., Ambainis, A., Khadiev, K., Khadieva, A.: Lower bounds and hier-
archies for quantum memoryless communication protocols and quantum ordered
binary decision diagrams with repeated test. arXiv preprint arXiv:1703.05015
(2017)

3. Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform
automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp.
78–87. Springer, Heidelberg (2005). https://doi.org/10.1007/11505877 7

4. Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of quantum
branching programs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 59–70.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44669-9 8

5. Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the com-
putational power of probabilistic and quantum branching program. Inf. Comput.
203(2), 145–162 (2005)

6. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6 6

7. Ablayev, F., Khadiev, K.: Extension of the hierarchy for k-OBDDs of small width.
Russ. Math. 53(3), 46–50 (2013)

8. Ablayev, F., Khasianov, A., Vasiliev, A.: On complexity of quantum branching
programs computing equality-like boolean functions. In: ECCC (2008, to appear
in 2010)

9. Ambainis, A.: A new protocol and lower bounds for quantum coin flipping. In: Pro-
ceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
pp. 134–142. ACM (2001)

10. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. Theoret. Comput. Sci. 287(1), 299–311 (2002)

11. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

12. Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I.: Hierarchy theorems for kOBDDs
and kIBDDs. Theoret. Comput. Sci. 205(1), 45–60 (1998)

13. Chailloux, A., Kerenidis, I., Laurière, M.: The information cost of quantum mem-
oryless protocols. arXiv preprint arXiv:1703.01061 (2017)

14. Gainutdinova, A.F.: Comparative complexity of quantum and classical OBDDs for
total and partial functions. Russ. Math. 59(11), 26–35 (2015)

15. Gainutdinova, A., Yakaryılmaz, A.: Nondeterministic unitary OBDDs. In: Weil, P.
(ed.) CSR 2017. LNCS, vol. 10304, pp. 126–140. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58747-9 13. arXiv:1612.07015

16. Homeister, M., Waack, S.: Quantum ordered binary decision diagrams with
repeated tests. arXiv preprint arXiv:quant-ph/0507258 (2005)

http://arxiv.org/abs/1703.05015
https://doi.org/10.1007/11505877_7
https://doi.org/10.1007/3-540-44669-9_8
https://doi.org/10.1007/978-3-319-09704-6_6
http://arxiv.org/abs/1703.01061
https://doi.org/10.1007/978-3-319-58747-9_13
https://doi.org/10.1007/978-3-319-58747-9_13
http://arxiv.org/abs/1612.07015
http://arxiv.org/abs/quant-ph/0507258

210 F. Ablayev et al.

17. Khadiev, K.: Width hierarchy for k-OBDD of small width. Lobachevskii J. Math.
36(2), 178–183 (2015)

18. Khadiev, K.: On the hierarchies for deterministic, nondeterministic and proba-
bilistic ordered read-k-times branching programs. Lobachevskii J. Math. 37(6),
682–703 (2016)

19. Khadiev, K., Ibrahimov, R.: Width hierarchies for quantum and classical ordered
binary decision diagrams with repeated test. In: Proceedings of the Fourth Russian
Finnish Symposium on Discrete Mathematics. TUCS Lecture Notes, no. 26. Turku
Centre for Computer Science (2017)

20. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and
classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS,
vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58747-9 16

21. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-
way protocols. In: STOC 2000: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pp. 644–651 (2000)

22. Klauck, H.: Quantum communication complexity. arXiv preprint
arXiv:quant-ph/0005032 (2000)

23. Klauck, H.: Lower bounds for quantum communication complexity. In: Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 288–297.
IEEE (2001)

24. Klauck, H.: Lower bounds for quantum communication complexity. SIAM J. Com-
put. 37(1), 20–46 (2007)

25. Klauck, H., Nayak, A., Ta-Shma, A., Zuckerman, D.: Interaction in quantum com-
munication and the complexity of set disjointness. In: Proceedings of the Thirty-
Third Annual ACM Symposium on Theory of Computing, pp. 124–133. ACM
(2001)

26. Klauck, H., Nayak, A., Ta-Shma, A., Zuckerman, D.: Interaction in quantum com-
munication. IEEE Trans. Inf. Theory 53(6), 1970–1982 (2007)

27. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on
factorization norms. Random Struct. Algorithms 34(3), 368–394 (2009)

28. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret.
Comput. Sci. 237(1–2), 275–306 (2000)

29. Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Ordered quantum branching pro-
grams are more powerful than ordered probabilistic branching programs under a
bounded-width restriction. In: Du, D.-Z.-Z., Eades, P., Estivill-Castro, V., Lin,
X., Sharma, A. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 467–476. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44968-X 46

30. Nisan, N., Widgerson, A.: Rounds in communication complexity revisited. In: Pro-
ceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,
pp. 419–429. ACM (1991)

31. Raz, R.: Exponential separation of quantum and classical communication com-
plexity. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, pp. 358–367. ACM (1999)

32. Sauerhoff, M.: Quantum vs. classical read-once branching programs. In: Complex-
ity of Boolean Functions. Dagstuhl Seminar Proceedings, no. 06111. Internationales
Begegnungs- und Forschungszentrum für Informatik (2006)

33. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded
nonuniform quantum complexity. Theoret. Comput. Sci. 334(1–3), 177–225 (2005)

https://doi.org/10.1007/978-3-319-58747-9_16
https://doi.org/10.1007/978-3-319-58747-9_16
http://arxiv.org/abs/quant-ph/0005032
https://doi.org/10.1007/3-540-44968-X_46

Lower Bounds and Hierarchies 211

34. Vasiliev, A.V.: Functions computable by boolean circuits of logarithmic depth and
branching programs of a special type. J. Appl. Ind. Math. 2(4), 585–590 (2008).
https://doi.org/10.1134/S1990478908040145

35. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM, Philadelphia (2000)

36. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum
finite automata. Discret. Math. Theoret. Comput. Sci. 12(2), 19–40 (2010)

37. Zheng, S., Gruska, J.: Time-space tradeoffs for two-way finite automata. arXiv
preprint arXiv:1507.01346 (2015)

https://doi.org/10.1134/S1990478908040145
http://arxiv.org/abs/1507.01346

Computational Complexity of Atomic Chemical
Reaction Networks

David Doty1(B) and Shaopeng Zhu2

1 Computer Science Department, University of California, Davis, Davis, USA
doty@ucdavis.edu

2 Computer Science Department, University of Maryland, College Park, USA
szhu@terpmail.umd.edu

Abstract. Informally, a chemical reaction network is “atomic” if each
reaction may be interpreted as the rearrangement of indivisible units
of matter. There are several reasonable definitions formalizing this idea.
We investigate the computational complexity of deciding whether a given
network is atomic according to each of these definitions.

Primitive atomic, which requires each reaction to preserve the total
number of atoms, is shown to be equivalent to mass conservation. Since
it is known that it can be decided in polynomial time whether a given
chemical reaction network is mass-conserving [28], the equivalence we
show gives an efficient algorithm to decide primitive atomicity.

Subset atomic further requires all atoms be species. We show that
deciding if a network is subset atomic is in NP, and “whether a network is
subset atomic with respect to a given atom set” is strongly NP-complete.

Reachably atomic, studied by Adleman, Gopalkrishnan et al. [1,22],
further requires that each species has a sequence of reactions splitting
it into its constituent atoms. Using a combinatorial argument, we show
that there is a polynomial-time algorithm to decide whether a given net-
work is reachably atomic, improving upon the result of Adleman et al.
that the problem is decidable. We show that the reachability problem
for reachably atomic networks is PSPACE-complete.

Finally, we demonstrate equivalence relationships between our def-
initions and some cases of an existing definition of atomicity due to
Gnacadja [21].

1 Introduction

A chemical reaction network is a set of reactions such as A+B � C and X → 2Y ,
intended to model molecular species that interact, possibly combining or split-
ting in the process. For 150 years [23], the model has been a popular language
for describing natural chemicals that react in a well-mixed solution. It is known
that in theory any set of reactions can be implemented by synthetic DNA com-
plexes [43]. Syntactically equivalent to Petri nets [3,5,18], chemical reaction net-
works are now equally appropriate as a programming language that can be com-
piled into real chemicals. With advances in synthetic biology heralding a new era

This work was supported by NSF grant 1619343.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 212–226, 2018.
https://doi.org/10.1007/978-3-319-73117-9_15

Computational Complexity of Atomic Chemical Reaction Networks 213

of sophisticated biomolecular engineering [10,29,32,34,35,40,44], chemical reac-
tion networks are expected to gain prominence as a natural high-level language
for designing molecular control circuitry.

There has been a flurry of recent progress in understanding the abil-
ity of chemical reaction networks to carry out computation: computing func-
tions [2,5,7–9,13,15,16,18,36,38,42], as well as other computational tasks such
as space- and energy-efficient search [45], signal processing [25,37], linear I/O
systems [31], machine learning [30], and even identifying function computation in
existing biological chemical reaction networks [6]. These studies generally assume
that any set of reactions is permissible, but not all are physically realistic. Con-
sider, for example, the reaction X → 2X, which appears to violate the law of
conservation of mass. Typically such a reaction is a shorthand for a more real-
istic reaction such as F + X → 2X, where F is an anonymous and plentiful
source of “fuel” providing the necessary matter for the reaction to occur. The
behavior of the two is approximately equal only when the number of executions
of X → 2X is far below the supplied amount of F , and if F runs out then
the two reactions behave completely differently. Thus, although X → 2X may
be implemented approximately, to truly understand the long-term behavior of
the system requires studying its more realistic implementation F + X → 2X. A
straightforward generalization of this “realism” constraint is that each chemical
species S may be assigned a mass m(S) ∈ R

+, where in each reaction the total
mass of the reactants equals that of the products. Indeed, conservative Petri
nets formalize this very idea [27,28], and it is straightforward to decide algo-
rithmically if a given network is conservative by reducing to a question of linear
algebra.

The focus of this paper is a more stringent condition: that the network should
be atomic, i.e., each reaction rearranges discrete, indivisible units (atoms), which
may be of different noninterchangeable types.1 (In contrast, mass conservation
requires each reaction to rearrange a conserved quantity of continuous, generic
“mass”.) We emphasize that this is not intended as a study of the atoms appear-
ing in the periodic table of the elements. Instead, we aim to model chemical sys-
tems whose reactions rearrange certain units, but never split, create, or destroy
those units. For example, DNA strand displacement systems [43,46] have individ-
ual DNA strands as indivisible components, and each reaction merely rearranges
the secondary structure among the strands (i.e., which bases on the strands are
hybridized to others).

Contrary to the idea of mass conservation, there is no “obviously correct”
definition of what it means for a chemical reaction network to be atomic, as
we will discuss. Furthermore, at least two inequivalent definitions exist in the
literature [1,21]. It is not the goal of this paper to identify a single correct
definition. Instead, our goal is to evaluate the choices that must be made in
formalizing a definition, to place existing and new definitions in this context to

1 This usage of the term “atomic” is different from its usage in traditional areas like
operating system or syntactic analysis, where an “atomic” execution is an uninter-
ruptable unit of operation [41].

214 D. Doty and S. Zhu

see how they relate to each other, and to study the computational complexity of
deciding whether a given network is atomic. This is a step towards a more broad
study of the computational abilities of “physically realistic” chemical reaction
networks.

1.1 Summary of Results and Connection with Existing Work

The most directly related previous work is that of Adleman et al. [1] and of
Gnacadja [21], which we now discuss in conjunction with our results.

We identify two fundamental questions to be made in formalizing a definition
of an “atomic” chemical reaction network:

1. Are atoms also species? (For example, if the only reaction is 2H2+O2 � 2H2O;
then H and O are atoms but not species that appear in a reaction.)

2. Is each species separable into its constituent atoms via reactions?

A negative answer to (1) implies a negative answer to (2). (If some atom is
not a species, then it cannot be the product of a reaction.) Thus there are three
non-degenerate answers to the above two questions: no/no, yes/no, and yes/yes.
We respectively call these primitive atomic, subset atomic, and reachably atomic,
defined formally in Sect. 3. Intuitively, a network is primitive atomic if each
species may be interpreted as composed of one or more atoms, which themselves
are not considered species (a species can be composed of just a single atom, but
they will have different “names”). More formally, if Λ is the set of species, there
is a set Δ of atoms, such that each species S ∈ Λ has an atomic decomposition
dS ∈ N

Δ \ {0} describing the atoms that constitute S, such that each reaction
preserves the atoms. A network is subset atomic if it is primitive atomic and the
atoms are themselves considered species; i.e., if Δ ⊆ Λ. A network is reachably
atomic if it is subset atomic, and furthermore, for each species S ∈ Λ, there is a
sequence of reactions, starting with a single copy of S, resulting in a configuration
consisting only of atoms. (If each reaction conserves the atomic count, then this
configuration must be unique and equal to the atomic decomposition of S.)

A long-standing open problem in the theory of chemical reaction networks
is the global attractor conjecture [12,24], of which even the following special
case remains open: is every network satisfying detailed balance persistence,
i.e., if started with all positive concentrations, do concentrations stay bounded
away from 0? Adleman et al. [1] defined reachably atomic chemical reaction
networks and proved the global attractor conjecture holds for such networks.
Gnacadja [21], attacking similar goals, defined a notion of atomicity called
“species decomposition” and showed a similar result. We establish links between
our definitions and those of both [1,21] in Sect. C. We discuss related complexity
issues in Sects. 6 and C. In particular, Adleman et al. [1] showed that it is decid-
able whether a given network is reachably atomic. This is not obvious since the
condition of a species being separable into its constituent atoms via reactions
appears to require an unbounded search. We improve this result, showing it is
decidable in polynomial time.

Computational Complexity of Atomic Chemical Reaction Networks 215

Mayr and Weihmann [28] proved that configuration reachability graphs for
mass conserving chemical reaction networks (i.e., conservative Petri nets) are at
most exponentially large in the size of the binary representation of the network,
implying via Savitch’s theorem [39] a polynomial-space algorithm for deciding
reachability in mass-conserving networks. We use these results in analyzing the
complexity of reachability problems in reachably atomic chemical reaction net-
works in Sect. 6.

It is clear that any reasonable definition of atomicity should imply mass
conservation: simply assign all atoms to have mass 1, noting that any reaction
preserving the atoms necessarily preserves their total count. Perhaps surprisingly,
the conditions of primitive atomic and mass-conserving are in fact equivalent, so
it is decidable in polynomial time whether a network is primitive atomic and what
is an atomic decomposition for each species. A key technical tool is Chubanov’s
algorithm [11] for finding exact rational solutions to systems of linear equations
with a strict positivity constraint.

In their work on autocatalysis of reaction networks [14], Abhishek and Manoj
showed that a consistent reaction network is self-replicable if and only if it is criti-
cal. Since weak-reversibility implies consistency and our definition of reversibility
implies weak-reversibility , we obtain the following equivalence: let a chemical
reaction network C be reversible. Then C is mass conserving if and only if there
does not exist c1 < c2 ∈ N

Λ such that c1 ⇒∗ c2.
Lastly, we note that there have been other models addressing different aspects

of atomicity (not necessarily using the term “atomic”). They focus on features of
chemical reaction networks not modeled in this paper. For discussions on these
works, please see Sect. A of the Appendix in [17].

2 Preliminaries

Let Z,N,R respectively denote the set of integers, nonnegative integers, and
reals. Let Λ be a finite set. We write N

Λ to denote {f : Λ → N}. Equiva-
lently, by assuming a “canonical” ordering on Λ, an element c ∈ N

Λ can also
be viewed as a |Λ|-dimensional vector of natural numbers, with each coordinate
labeled by S ∈ Λ interpreted as the count of S. c ∈ N

Λ interpreted this way
is called a configuration. We sometimes use multiset notation, e.g., {3A, 2B} to
denote the configuration with 3 copies of A, 2 of B, and 0 of all other species.
Z

Λ,RΛ,NΛ×Δ,NΔ (where Δ is also a finite set) are defined analogously.
We write c ≤ c′ to denote that (∀X ∈ Λ) c(X) ≤ c′(X), and c < c′ if c ≤ c′

and c �= c′. We say c and c′ are incomparable if c �≤ c′ and c �≥ c′.

Definition 2.1. Given a finite set of chemical species Λ, a reaction over Λ is
a pair α = (r,p) ∈ N

Λ × N
Λ, specifying the stoichiometry of the reactants and

products respectively.2

A chemical reaction network is a pair C = (Λ,R), where Λ is a finite set of
chemical species, and R is a finite set of reactions over Λ.
2 There is typically a positive real-valued rate constant associated to each reaction,

but we ignore reaction rates in this paper and consequently simplify the definition.

216 D. Doty and S. Zhu

A chemical reaction network is reversible if (∀(r,p) ∈ R) (p, r) ∈ R.
For configurations c1, c2 ∈ N

Λ, we write c1 ⇒∗
C c2 (read “C reaches c2 from

c1”) if there exists a finite reaction sequence (including the empty sequence)
that starts with c1 and ends with c2. For simplicity, write c1 ⇒∗ c2 (read “c2 is
reachable from c1”) when C is clear.

Definition 2.2. Given c ∈ N
Λ (or Z

Λ,RΛ etc. analogously), the support of c,
written as [c], is the set {S ∈ Λ | c(S) �= 0}.

A few more notational conventions are listed here: write eA ∈ N
Λ as the unit

vector that has count 1 on A ∈ Λ and 0 on everything else. Given a vector x ∈ N
Λ,

write ‖x‖ = ‖x‖1 =
∑

S∈Λ x(S). When · is any data, write 〈·〉 for its binary
representation as a string, so |〈·〉| is the length of the binary representation of ·.
Given f : A → B and C ⊆ A, f � C is the function C → B, c → f(c) (∀c ∈ C).
Lastly, when M is a matrix, write MT as its transposition.

3 Definitions of “Atomic”

This section addresses definitions of several classes of networks, some computa-
tional complexity result of which will be exhibited later.

Intuitively, C = (Λ,R) is primitive atomic if all species can be decomposed
into combinations of some atoms. Atoms are not required to be species. Each
reaction conserves the total count of each type of atom in the species involved
(i.e., the reaction can only rearrange atoms but not create or destroy them).

Note that the purpose of studying the primitive-atomic model (as well as
all other types of atomic later) is not to analyze “real-world” atoms. Instead,
we are trying to study how molecules can be interpreted as decomposable into
exchangeable parts. In particular, if we know only the reactions but not those
exchangeable parts, we are interested in whether the reactions can tell us how the
molecules are composed from parts. Proposition 4.2 below, for example, shows
that this information can be retrieved by finding a mass distribution vector.

Definition 3.1 (Primitive Atomic). Let Δ be a nonempty finite set and C =
(Λ,R) a chemical reaction network. C is primitive atomic with respect to Δ if
for all S ∈ Λ, there is dS ∈ N

Δ \ {0} such that

1. (∀(r,p) ∈ R)(∀A ∈ Δ)
∑

S∈Λ

r(S)·dS(A) =
∑

S∈Λ

p(S)·dS(A) (reactions preserve

atoms), and
2. (∀A ∈ Δ)(∃S ∈ Λ) dS(A) �= 0. (each atom appears in the decomposition of

some species).

For S ∈ Λ, call dS in Condition (1) the (atomic) decomposition of S. We say
C is primitive atomic if there is a nonempty finite set Δ such that C is primitive
atomic with respect to Δ. In the cases above, Δ is called the set of atoms.

Computational Complexity of Atomic Chemical Reaction Networks 217

Condition (1) embodies the intuition above. Condition (2) prescribes that
each atom appears in the decomposition of at least one species. (See Remark
D.1 [17] for comment on Condition 2.) Consider the network C = ({X,Y,W,Z},
{((2, 1, 0, 1)T , (0, 0, 2, 1)T), ((1, 2, 1, 1)T , (0, 1, 1, 2)T)}). One may write C as:

{2X + Y + Z → 2W + Z, X + 2Y + W + Z → Y + W + 2Z.}

C is primitive-atomic with respect to, say, Δ = {H,O}, via the decomposition
vector dX = (2, 0)T ,dY = (0, 2)T , dW = (2, 1)T ,dZ = (2, 2)T . Here dX =
(2, 0)T means the species X is composed of 2 units of atom H and 0 unit of
atom O, and dY ,dW ,dZ can be interpreted likewise. Observe that each of the
two reactions in C preserves the total count of each type of atom on both sides
of reactions.

Next, we introduce the definitions of stoichiometric matrix and decomposi-
tion matrix. In particular, A encodes the net change of species caused by exe-
cution of one reaction, and D compiles all decomposition vectors into one data
structure.

Definition 3.2 (Stoichiometric Matrix). The stoichiometric matrix A for
a chemical reaction network C = (R,Λ) is the |R| × |Λ| matrix where the entry
A(r,p),S = p(S) − r(S) for each (r,p) ∈ R and S ∈ Λ.

Notation-wise, A(r,p),S is the entry whose row is labeled by the reaction (r,p)
and column by the species S. Each row of the stoichiometric matrix represents
the change of count of each species via execution of 1 unit of (r,p). For more
illustration, see Example D.1 [17].

Definition 3.3 (Decomposition Matrix). Let C = (Λ,R) be primitive
atomic with respect to Δ. The decomposition matrix, denoted as DΔ for C with
respect to Δ is the |Λ| × |Δ| matrix whose row vectors are (dS)T (S ∈ Λ).

Note that the set of decomposition vectors {dS}S∈Λ is in general not unique
for primitive atomic chemical reaction networks – for example, A + B → C is
primitive atomic with respect to Δ = {D} via (k, k, 2k)(∀k ∈ N>0). Correspond-
ingly, DΔ’s are defined with respect to each set {dS}S∈Λ. See Example D.2 and
Remark D.2 [17] for more discussion on decomposition matrices.

The next definition requires all atoms to be species.

Definition 3.4 (Subset Atomic). Let C = (Λ,R) be a chemical reaction net-
work and let Δ ⊆ Λ be nonempty. We say that C is subset-Δ-atomic if C is
primitive atomic with respect to Δ and, for each S ∈ Λ:

1. S ∈ Λ ∩ Δ = Δ =⇒ dS = {S}, and
2. S ∈ Λ \ Δ =⇒ ‖dS‖ ≥ 2.

We say C is subset atomic if ∃∅ �= Δ ⊆ Λ such that C is subset-Δ-atomic.

218 D. Doty and S. Zhu

By Definition 3.4, no two atoms can have the same atomic decomposition, but
it is allowed that two distinct molecular (i.e. non-atom) species to have the same
decomposition. In this case we say the two species are isomers (reminiscent of
isomers in nature that are composed of the same atoms in different geometrical
arrangements). As for the requirement that each non-atom species decompose
to a vector of size at least 2, that is to incorporate the idea that generally a
molecule should be composed of at least 2 atoms.

For example, the network C = {2X + Y + Z → 2W + Z,X + 2Y + W + Z →
Y + W + 2Z} mentioned above is subset-atomic: just redefine Δ = {X} and
dX = (1),dY = (2),dZ = (3),dW = (2). One may verify that in the first
reaction, each side has 7 atoms X, while in the second each side has 10.

The next definition further requires that decomposition of each molecular
species Si can be “realized” via a sequence of reactions, given {1Si} as initial
state. As discussed in Subsect. 1.1, this definition was originally developed in [1]
to help their approach to the Global Attractor Conjecture in the field of mass
action kinetics. Considering the convention for most networks, we relax their
requirement of reversibility for each reaction.

Definition 3.5 (Reachably Atomic). A chemical reaction network C =
(Λ,R) is reachably atomic if

1. C is subset atomic with respect to some Δ ⊆ Λ, and
2. for each S ∈ Λ \ Δ, {1S} ⇒∗ dS.

Here and wherever necessary, with slight abuse of notation, dS , which
represents the atomic decomposition of S, simultaneously represents a con-
figuration in N

Δ reachable from {1S}. Observe that C = {2X + Y + Z →
2W + Z,X + 2Y + W + Z → Y + W + 2Z} is not reachably-atomic unless we
add the following reactions: Y → 2X,Z → 3X,W → 2X.

Condition 2 is a strong restriction ensuring some nice properties. For example,
the atom set of a reachably atomic network is unique:

Lemma 3.6. If C = (Λ,R) is reachably atomic, then the choice of Δ with respect
to which C is reachably atomic is unique. Moreover, for each S ∈ Λ, dS is unique,
i.e., if {1S} ⇒∗ c ∈ N

Δ, then c = dS.

Proof. The intuition is to show that should there exist Δ1 �= Δ2 and without loss
of generality, assume ∃A ∈ Δ1 \ Δ2, then the decomposition of A with respect
to Δ1 violates the preservation of atoms in Δ2. For details, see Sect. B [17].

Conservation laws in “-atomic” networks reminds us of a more familiar type
of conservation law, which is mass conservation. The next section exhibits some
observations on the relationship between these two types of conservation laws.

4 Mass-Conservation and Primitive Atomicity

This section shows that “primitive atomic” and “mass conserving” are equivalent
concepts. We first formalize what it means for a network to conserve mass:

Computational Complexity of Atomic Chemical Reaction Networks 219

Definition 4.1 (Mass Conserving). A chemical reaction network C = (Λ,R)
is mass conserving if

(∃m ∈ R
Λ
>0)(∀(r,p) ∈ R)

∑

S∈Λ

r(S) · m(S) =
∑

S∈Λ

p(S) · m(S)

Equivalently, if A is the stoichiometric matrix in Definition 3.2, then C is mass
conserving if (∃m ∈ R

Λ
>0) A · m = 0. We call m a mass distribution vector.

Using our familiar example, C = {2X +Y +Z → 2W +Z,X +2Y +W +Z →
Y + W + 2Z} is mass conserving with respect to m = (0.5, 1, 1.5, 1)T . “Mass
Conserving” captures the feature that for every reaction in C, the total mass
of reactants are equal to the total mass of products. Difference between the
definitions of Mass Conserving and Primitive Atomic (as well as all “-atomic”
definitions descended therefrom) become clear if we compare the matrix form
of their respective conservation laws: mass conservation requires a single conser-
vation relation (A · m = 0|R|), while primitive atomicity requires |Δ| of them
(A · D = 0 where D is a |Λ| × |Δ|) matrix.

However, apparently these two conservation laws are closely related. In fact,
the freedom of defining Δ independent of Λ provides us a choice for making Δ
a singleton, which enables us to prove the following equivalence:

Proposition 4.2. For any network C, C is primitive atomic ⇔ C is mass con-
serving. Further, there exists an O(|〈A〉|5) algorithm to decide if C is primitive
atomic, with A the stoichiometric matrix of C.

Proof. Intuitively, the “ =⇒ ” direction is shown by assigning mass 1 to each
atom, as “homogenizing” the atoms preserves the original conservation law; for
the “ ⇐= ” direction, one may essentially create a Δ of cardinality 1 with respect
to which the network is primitive atomic. The proof also reflects the difference
in number of conservation relations addressed two paragraphs above. See Sect. B
[17] for details and more remarks.

Recall that subset atomicity imposes the restriction that Δ ⊆ Λ. As we’ll
show in the following section, this single restriction increases the computational
complexity of the decision problem “is a network ‘(prefix)-atomic’ ”.

5 Complexity of Subset Atomic

We shall determine in this chapter the computational complexity for deciding
the subset atomicity of networks. First, we define the relevant languages:

Definition 5.1. We define the following languages:

Subset-Atomic={〈Λ,R〉 | (∃Δ ⊆ Λ)(Λ,R) is subset atomic with respect to Δ}
Subset-Fixed-Atomic={〈Λ,R,Δ〉 |(Λ,R) is subset atomic with respect to Δ}

By definition, Subset-Atomic is the language whose elements are the encod-
ing of a subset atomic chemical reaction network. Subset-Fixed-Atomic, on
the other hand, is the language consisting of the encoding of a (network, atom
set) pair where the network is subset atomic with respect to the given atom set.
In this section we determine the complexity classes of these languages.

220 D. Doty and S. Zhu

5.1 Subset-Fixed-Atomic and Subset-Atomic are in NP

It is not immediately obvious that there exists a short witness for either language
(which if true would imply that both languages are in NP immediately), so we
reduce Subset-Fixed-Atomic to Integer-Programming, which is in NP [33].

Proposition 5.2. Subset-Fixed-Atomic ≤p
m Integer-Programming (here

inafter, “IP”).

Proof. The proof is done by exhibiting a polynomial time algorithm to transition
the conditions in Definition 3.4 into a linear system. Note that the atom set Δ
is given as input. For details, see Sect. B [17].

Corollary 5.3. Subset-Fixed-Atomic,Subset-Atomic ∈ NP.

Proof. It is proved (e.g., in [33]) that IP ∈ NP, hence so is Subset-Fixed-
Atomic.

The proof that Subset-Atomic ∈ NP is given by an polynomial time veri-
fication algorithm using the polynomial-time verifier of Subset-Fixed-Atomic
as an oracle and taking as witness both the atom set and decomposition matrix.
For details, see Sect. B [17].

5.2 Subset-Fixed-Atomic is NP-hard

Our proof shall be based on reduction from Monotone-1-In-3-Sat. Recall that
a monotone 3-CNF C is a conjunctive normal form with no negations, and a 1-in-
3 satisfying assignment for C is an assignment of Boolean values to all variables
such that for each clause in C, exactly one variable is assigned true.

As a well-established result, the following language is NP-complete [19].

Monotone-1-In-3-Sat = {〈V,C〉 | C is a monotone 3-CNF over V = {vi}n
i=1,

and there exists a 1-in-3 satisfying assignment for C}
Proposition 5.4. Monotone-1-In-3-Sat ≤p

m Subset-Fixed-Atomic.

Proof. Given an instance 〈V,C〉, we design a chemical reaction network C where

1. Each molecular species consists of 2 atoms T and F (representing “True” and
“False” respectively), and

2. reactions guarantees the equivalence: C is subset-Δ-atomic if and only if the
〈V,C〉 ∈ Monotone-1-In-3-Sat.

For details, see Sect. B [17].

The full proof of Proposition 5.4 uses only coefficients of size O(1) with respect
to |〈V,C〉|, which combined with Corollary 5.3 establishes the following:

Corollary 5.5. Subset-Fixed-Atomic is strongly NP-hard (and hence
strongly NP-complete).

Computational Complexity of Atomic Chemical Reaction Networks 221

Remark 5.6. Subset-Fixed-Atomic remains NP-complete even restricted to
instances where R contains only unimolecular and bimolecular reactions. To see
details on this, see Sect. B [17].

The lower bound of the complexity of Subset-Atomic therefore remains
open, but we conjecture that Subset-Atomic is NP-hard (hence NP-complete).

6 Complexity of Reachably Atomic

Without repeating the intuition of the definition of reachably atomic which has
been explained in Subsect. 1.1 and Sect. 3, we proceed with the corresponding
definition of languages for deciding reachable atomicity and the reachability prob-
lem in reachably atomic networks.

Definition 6.1. We define the following languages (to save space I use “w.r.t.”
as shorthand for “with respect to”):

Reachably-Atomic = {〈Λ,R〉 | (∃Δ ⊆ Λ)(Λ,R) is reachably atomic w.r.t. Δ}
Reachably-Fixed-Atomic = {〈Λ,R,Δ〉 | (Λ,R) is reachably atomic w.r.t. Δ}

Distinction between Reachably-Fixed-Atomic and Reachably-Atomic
is analogous to “Subset-Fixed-Atomic vs. Subset-Atomic”. However,
by Lemma 3.6 there is no semantic reason to distinguish between
“Rreachably-FixedAtomic” and Reachably-Atomic. So we shall only con-
sider Reachably-Atomic.

6.1 Reachably-Atomic is in P

As mentioned before, the requirement that {1S} ⇒∗ dS (∀S ∈ Λ) ensures some
interesting results. The complexity results in this subsection confirm this.

Lemma 6.2. If a network C = (Λ,R) is reachably atomic with respect to Δ
via decompositin matrix D (or equivalently, via the set of decomposition vectors
{dS}S∈Λ), then ∃S ∈ Λ \ Δ and (r,p) ∈ R s.t. r = {1S} and p = dS.

Proof. The claim is saying that if a network is reachably atomic, then there
exists a molecular species that can be decomposed into its atomic decomposition
in one single reaction. Proof is done by assuming otherwise and chasing the
decomposition sequence to find an infinite descending chain of species ordered
by the size of their decomposition vectors, contradicting the finiteness of species
set. For details, see Sect. B [17].

Theorem 6.3. Reachably-Atomic ∈ P.

Proof. We need to exhibit a polynomial time algorithm that decides whether
there exists a separation of Λ into two non-empty, disjoint sets M (molecules)
and Δ (atoms), with elements in M decomposable via sequences of reactions
into combination of elements in Δ.

222 D. Doty and S. Zhu

To achieve this goal, we set M = {S ∈ Λ | (∃(r,p) ∈ R)r = {1S}}, the subset
of species which are the single reactant of some reaction; apparently M is non-
empty for reachably-atomic networks, by Lemma 6.2. Then recursively, we check
if there exist elements in M that can be decomposed into combination of atoms
via a reaction sequence of length i = 1, 2, · · · , and reject if we succeed to do so
at i = k but fails at i = k + 1 while not all elements in M have been examined.
When this process terminates (note that M is finite) finding (candidate) atomic
decomposition for all molecules, we verify if the necessary conservation laws hold.
Details of the proof are included in Sect. B of [17].

6.2 Reachable-Reach is PSPACE-complete

We shall first introduce the definition of configuration reachability graphs, fol-
lowed by a result proved in [28] (see also Subsect. 1.1), based on which we prove
Reachable-Reach (see Definition 6.7), a problem motivated by restricting rel-
evant problems such as “exact reachability” [26], is PSPACE-complete.

Definition 6.4 (Configuration Reachability Graph). An i-initiated Con-
figuration Reachability Graph GC,i of the chemical reaction network C = (Λ,R)
is a directed graph (V,E), where:

1. each vc ∈ V (c ∈ N
Λ) is labeled by a reachable configuration c of C;

2. vi ∈ V (i ∈ N
Λ) is the vertex labeled by the initializing configuration i;

3. the ordered pair (vc1 , vc2) ∈ E if and only if c1 ⇒1 c2.

Remark 6.5. For the sake of simplicity, we use GC,i as shorthand for GC,vi
.

For the same C, Configuration Reachability Graphs can be far from isomor-
phic due to parameterization by different initialization vectors. We have included
an example (Example D.3) in [17].

We will soon prove the conclusion on the complexity of the reachability prob-
lem for reachably atomic networks. But first, we point out that the following is
a straightforward translation of a finding in [28], giving the complexity class of
reachability problems for mass-conserving chemical reaction networks.

Observation 6.6 (A result proved in [28]). For all mass conserving chemical
reaction networks C and initial configuration i of C, |〈GC,i〉| ∈ O(2poly(|〈C,i〉|)).
That is, the binary size of the encoding of the configuration reachability graph
GC,i is at most exponential to the binary size of the encoding of the pair (C, i).

Furthermore, reachability problem for mass conserving networks is PSPACE-
complete. That is, it is PSPACE-complete to decide if an instance is in the fol-
lowing language:

{〈Λ,R, c1, c2 | (Λ,R) is mass conserving; c1, c2 ∈ N
Λ; c1 ⇒∗ c2〉}

Built on Observation 6.6, we now exhibit the proof that the decision prob-
lem “Given a Reachably Atomic network, is c2 reachable from c1” is PSPACE-
Complete.

Computational Complexity of Atomic Chemical Reaction Networks 223

Definition 6.7 (Reachable-Reach). We define the language

Reachable-Reach = {(Λ,R, c1, c2) | (Λ,R) is reachably atomic; c1, c2 ∈ N
Λ;

c1 ⇒∗ c2}

Proposition 6.8. Reachable-Reach is PSPACE-complete.

Proof. Reachable-Reach ∈ PSPACE is a direct application of Observation 6.6
– note that all reachably-atomic chemical reaction networks are primitive atomic,
and hence mass conserving (Proposition 4.2). Hardness is shown by simulating
polynomial space Turing Machines via reactions. Details in Sect. B [17].

Remark 6.9. The fact that the coefficients of all reactions involved in the proof
of Proposition 6.8 are constant also implies that Reachable-Reach is PSPACE-
hard (and hence complete) in the strong sense. Another remark on the irreversibil-
ity of reactions may be found in Sect. D [17].

We also found connections between our definitions of “-atomic” and the con-
cept of “core composition”, addressed by Gnacadja [21] and detailed in Sect. C
[17]. Some interesting results are:

1. Lemma C.12 states that a network is subset atomic if and only if it admits
a “near-core composition” with certain restrictions;

2. Lemma C.20 in the same section says reachable-atomicity implies admitting
a core composition;

3. Theorem C.15 gives the equivalence between “reversibly-reachable atomic”
and “explicitly-reversibly constructive with no isomeric elementary species”.

7 Open Problems

Conjecture 7.1. Subset-Atomic ∈ NP-complete.

One may note that there are two sources of indeterminancy in the problem
Subset-Atomic: the choice of Δ and D. For example, the network constructed
in the proof of NP-hardness of Subset-Fixed-Atomic would remain subset
atomic if we define Δ = {T, F}, and let dP = dQ = {kT, sF} for any k, s ≥ 2.

There is a formal sense in which chemical reaction networks have been shown
to be able to compute functions f : Nk → N [8] and predicates N

k → {0, 1} [4].
A function/predicate can be computed “deterministically” (i.e., regardless of the
order in which reactions occur) ⇐⇒ it is semilinear (see [20] for a definition).

Problem 7.2. What semilinear functions/predicates can atomic chemical reac-
tion networks compute deterministically, and how efficiently? What general func-
tions/predicates can atomic chemical reaction networks compute with high prob-
ability, and how efficiently?

224 D. Doty and S. Zhu

Remark 7.3. A partial answer for Problem7.2 based on results in [8] says that
primitive atomic networks and subset atomic networks can stably compute any
seminilear functions (For the proof of this, see Sect. [17]), but it is not obvious
how to modify the subset-atomic network into reachably-atomic with the stably-
computation property maintained, or whether it is even possible to do so.

Acknowledgements. The authors are thankful to Manoj Gopalkrishnan, Gilles
Gnacadja, Javier Esparza, Sergei Chubanov, Matthew Cook, and anonymous reviewers
for their insights and useful discussion.

References

1. Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., Reishus, D.: On the
mathematics of the law of mass action. In: Kulkarni, V.V., Stan, G.-B., Raman, K.
(eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models
and System Characterizations, pp. 3–46. Springer, Dordrecht (2014). https://doi.
org/10.1007/978-94-017-9041-3 1

2. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.: Time-space trade-
offs in molecular computation. In: Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 2560–2579 (2017)

3. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of
persistence in chemical reaction networks. Math. Biosci. 210, 598–618 (2007)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253
(2006). https://doi.org/10.1007/s00446-005-0138-3. Preliminary version appeared
in PODC 2004

5. Brijder, R., Doty, D., Soloveichik, D.: Robustness of expressivity in chemical reac-
tion networks. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp.
52–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43994-5 4

6. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2 (2012)

7. Chen, H., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation
by chemical reaction networks. Distributed Computing (2015, to appear). Special
issue of invited papers from DISC 2014

8. Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 13(4), 517–534 (2013). Special issue of
invited papers from DNA 2012

9. Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous
chemical reaction networks. In: ITCS 2014: Proceedings of the 5th Conference on
Innovations in Theoretical Computer Science, pp. 313–326 (2014)

10. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8(10), 755–762 (2013)

11. Chubanov, S.: A polynomial projection algorithm for linear feasibility problems.
Math. Program. 153(2), 687–713 (2015)

12. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J.
Symb. Computat. 44(11), 1551–1565 (2009)

https://doi.org/10.1007/978-94-017-9041-3_1
https://doi.org/10.1007/978-94-017-9041-3_1
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/978-3-319-43994-5_4

Computational Complexity of Atomic Chemical Reaction Networks 225

13. Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical
reaction networks. Nat. Comput. 1–17 (2015). https://doi.org/10.1007/s11047-015-
9501-x. Special issue of invited papers from DNA 2014

14. Deshpande, A., Gopalkrishnan, M.: Autocatalysis in reaction networks. arXiv
preprint arXiv:1309.3957 (2013)

15. Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 772–784,
January 2014

16. Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. Nat.
Comput. 14(2), 213–223 (2015). Preliminary version appeared in DNA

17. Doty, D., Zhu, S.: Computational complexity of atomic chemical reaction networks.
arXiv preprint arXiv:1702.05704 (2017)

18. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Inform. 54, 1–25 (2016)

19. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman,
New York (1979)

20. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966). http://projecteuclid.org/euclid.pjm/1102994974

21. Gnacadja, G.: Reachability, persistence, and constructive chemical reaction net-
works (part II): a formalism for species composition in chemical reaction network
theory and application to persistence. J. Math. Chem. 49(10), 2137 (2011)

22. Gopalkrishnan, M.: Private communication. Email (2016)
23. Guldberg, C.M., Waage, P.: Studies concerning affinity. In: Forhandlinger:

Videnskabs-Selskabet i Christinia, p. 35. Norwegian Academy of Science and Let-
ters (1864)

24. Horn, F.J.M.: The dynamics of open reaction systems. In: SIAM-AMS Proceedings
VIII, pp. 125–137 (1974)

25. Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing
with DNA. ACS Synth. Bafiology 2(5), 245–254 (2013)

26. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS,
vol. 6638, pp. 41–64. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21254-3 3

27. Lien, Y.E.: A note on transition systems. Inf. Sci. 10(2), 347–362 (1976)
28. Mayr, E.W., Weihmann, J.: A framework for classical Petri net problems: conserva-

tive Petri nets as an application. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS
2014. LNCS, vol. 8489, pp. 314–333. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07734-5 17

29. Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in
vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7(1)
(2011)

30. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction net-
works. In: Advances in Neural Information Processing Systems, pp. 2247–2255
(2013)

31. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET
Syst. Biol. 5(4), 252–260 (2011)

32. Padirac, A., Fujii, T., Rondelez, Y.: Nucleic acids for the rational design of reaction
circuits. Curr. Opin. Biotechnol. 24(4), 575–580 (2013)

33. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM (JACM)
28(4), 765–768 (1981)

https://doi.org/10.1007/s11047-015-9501-x
https://doi.org/10.1007/s11047-015-9501-x
http://arxiv.org/abs/1309.3957
http://arxiv.org/abs/1702.05704
http://projecteuclid.org/euclid.pjm/1102994974
https://doi.org/10.1007/978-3-642-21254-3_3
https://doi.org/10.1007/978-3-642-21254-3_3
https://doi.org/10.1007/978-3-319-07734-5_17
https://doi.org/10.1007/978-3-319-07734-5_17

226 D. Doty and S. Zhu

34. Qian, L., Winfree, E., Bruck, J.: Neural network computation with dna strand
displacement cascades. Nature 475(7356), 368–372 (2011)

35. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196 (2011)

36. Salehi, S.A., Parhi, K.K., Riedel, M.D.: Chemical reaction networks for computing
polynomials. ACS Synth. Biol. 6, 76–83 (2016)

37. Salehi, S.A., Riedel, M.D., Parhi, K.K.: Asynchronous discrete-time signal pro-
cessing with molecular reactions. In: 2014 48th Asilomar Conference on Signals,
Systems and Computers, pp. 1767–1772. IEEE (2014)

38. Salehi, S.A., Riedel, M.D., Parhi, K.K.: Markov chain computations using molecu-
lar reactions. In: 2015 IEEE International Conference on Digital Signal Processing
(DSP), pp. 689–693. IEEE (2015)

39. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

40. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid
logic circuits. Science 314(5805), 1585–1588 (2006). http://www.sciencemag.org/
cgi/doi/10.1126/science.1132493

41. Silberschatz, A., Galvin, P.B., Gagne, G., Silberschatz, A.: Operating System Con-
cepts. Addison-Wesley, Reading (2013)

42. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008). https://doi.
org/10.1007/s11047-008-9067-y

43. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. 107(12), 5393 (2010). Preliminary version appeared
in DNA 2008

44. Srinivas, N.: Programming chemical kinetics: engineering dynamic reaction net-
works with DNA strand displacement. Ph.D. thesis, California Institute of Tech-
nology (2015)

45. Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand
displacement systems. In: DNA 2012: Proceedings of the 18th International Meet-
ing on DNA Computing and Molecular Programming, pp. 135–149 (2012)

46. Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled
molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

http://www.sciencemag.org/cgi/doi/10.1126/science.1132493
http://www.sciencemag.org/cgi/doi/10.1126/science.1132493
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/s11047-008-9067-y

Conjugacy of One-Dimensional One-Sided
Cellular Automata is Undecidable

Joonatan Jalonen(B) and Jarkko Kari

University of Turku, Turku, Finland
jsjalo@utu.fi

Abstract. Two cellular automata are strongly conjugate if there exists
a shift-commuting conjugacy between them. We prove that the following
two sets of pairs (F, G) of one-dimensional one-sided cellular automata
over a full shift are recursively inseparable:
(i) pairs where F has strictly larger topological entropy than G, and
(ii) pairs that are strongly conjugate and have zero topological entropy.
Because there is no factor map from a lower entropy system to a higher
entropy one, and there is no embedding of a higher entropy system into a
lower entropy system, we also get as corollaries that the following decision
problems are undecidable: Given two one-dimensional one-sided cellular
automata F and G over a full shift: Are F and G conjugate? Is F a factor
of G? Is F a subsystem of G? All of these are undecidable in both strong
and weak variants (whether the homomorphism is required to commute
with the shift or not, respectively). It also immediately follows that these
results hold for one-dimensional two-sided cellular automata.

1 Introduction

The original setting for cellular automata theory was the theory of computation
and computability, as cellular automata were created as a mathematical model
of natural computational devices. Thus algorithmic questions have always been
a significant part of the study of cellular automata. It is known, for example,
that surjectivity and injectivity (and so also reversibility) are decidable for one-
dimensional cellular automata [1] and undecidable in higher dimensions [10], and
that nilpotency and periodicity are undecidable for one- and higher-dimensional
cellular automata [9,13,16]. It is also known that the topological entropy of one-
and higher-dimensional cellular automata is uncomputable [8].

The Curtis-Lyndon-Hedlund Theorem, which says that the classical defini-
tion of cellular automata is equivalent to saying that cellular automata are shift
commuting endomorphisms of the full shift, prompted the fruitful study of cel-
lular automata as topological dynamical systems. One natural question then is
to determine if two cellular automata are conjugate dynamical systems.

Combining both views, one ends up asking if conjugacy of cellular automata
is decidable. In [6,7] it was conjectured that topological conjugacy of one-
dimensional cellular automata is undecidable. We prove that this holds for strong

Research supported by the Academy of Finland Grant 296018.
J. Jalonen—Research supported by the Finnish Cultural Foundation.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 227–238, 2018.
https://doi.org/10.1007/978-3-319-73117-9_16

228 J. Jalonen and J. Kari

and weak conjugacy (whether the conjugacy is required to be shift commuting
or not, respectively). In fact we prove a stronger result: Consider sets of pairs
(F,G) of one-dimensional one-sided cellular automata over a full shift such that

(i) F has strictly larger topological entropy than G,
(ii) F and G are strongly conjugate and both have zero topological entropy.

We prove that these sets of pairs are recursively inseparable. The same result
then also holds for one-dimensional two-sided cellular automata, too. As an
immediate corollary we get that (strong) conjugacy, being a (strong) factor, and
being a (strong) subsystem are undecidable properties for one-dimensional one-
and two-sided cellular automata.

2 Preliminaries

2.1 Symbolic Dynamics

Zero is considered a natural number, i.e., 0 ∈ N. For two integers i, j ∈ Z such
that i < j the interval from i to j is denoted [i, j] = {i, i + 1, . . . , j}. We also
denote [i, j) = {i, i + 1, . . . j − 1} and (i, j] = {i + 1, . . . , j}. Notation M is
used when it does not matter whether we use N or Z. Composition of functions
f : X → Y and g : Y → Z is written as gf , and defined by (gf)(x) = g(f(x))
for all x ∈ X.

The set of infinite sequences over an alphabet A indexed by M is AM. An
element c ∈ AM is a configuration. A configuration is a function M → A and
we denote c(i) = ci for i ∈ M. For any D ⊂ M we denote by cD the restriction
of c to the domain D and by AD the set of all functions D → A. The set of
finite words is denoted by A+ =

⋃
n∈N

A[0,n]. Let D be finite and u ∈ AD, then
we denote [u] = {c ∈ AM | cD = u} and call such sets cylinders. Let A have
the discrete topology and AM the product topology. Cylinders form a countable
clopen (open and closed) base of this topology. We consider AM to be a metric
space with the metric

d(c, e) =

{
2−min({|i||ci �=ei}), if c �= e

0, if c = e
,

for all c, e ∈ AM. It is well-known that this metric induces the product topology,
and that this space is compact.

A (topological) dynamical system is a pair (X, f) where X is a compact metric
space and f a continuous map X → X. Let (X, f) and (Y, g) be two dynamical
systems. A continuous map φ : X → Y is a homomorphism if φf = gφ. If φ is
surjective, it is a factor map, and (Y, g) is a factor of (X, f). If φ is injective, it is
an embedding, and (X, f) is a subsystem of (Y, g). And lastly, if φ is a bijection, it
is a conjugacy, and (X, f) and (Y, g) are conjugate, denoted by (X, f) ∼= (Y, g).
Let U be a finite open cover of X, and denote h(U) the smallest number of
elements of U that cover X. Let V be another finite open cover of X and denote

Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable 229

U ∨ V = {U ∩ V | U ∈ U , V ∈ V} \ {∅}. Then the entropy of (X, f) with respect
to U is

h(X, f,U) = lim
n→∞

1
n

log2 h
(U ∨ f−1(U) ∨ f−2(U) ∨ · · · ∨ f−n+1(U)

)
.

The entropy of (X, f) is

h(X, f) = sup{h(X, f,U) | U is an open cover of X}.

We need the following:

Proposition 1 [14, Proposition 2.88]. If (Y, g) is a subsystem or a factor of
(X, f), then h(Y, g) ≤ h(X, f). It follows that if (X, f) and (Y, g) are conjugate,
then h(X, f) = h(Y, g).

The direct product of dynamical systems (X, f) and (Y, g) is (X × Y, f × g),
where f × g : X × Y → X × Y, (f × g)(x, y) = (f(x), g(y)). It is known that
h(X × Y, f × g) = h(X, f) + h(Y, g) [14, Proposition 2.89].

The shift map σ : AM → AM, defined by σ(c)i = ci+1 for all i ∈ M, is easily
seen to be continuous. The dynamical system (AM, σ) is the full (A-)shift. A
dynamical system (X,σ), where X ⊂ AM is topologically closed and σm(X) ⊂ X
for all m ∈ M, is a subshift. When it does not cause confusion, we will simply talk
about a subshift X. A configuration c ∈ AM avoids u ∈ A[0,n) if σi(c)[0,n) �= u
for all i ∈ M. Let S ⊆ A+, and let XS be the set of configurations that avoid
S, i.e., XS = {c ∈ AM | ∀u ∈ S : c avoids u}. It is well-known that the given
topological definition of subshifts is equivalent to saying that there exists a set
of forbidden words S such that X = XS . If there exists a finite set S such that
X = XS , then X is a subshift of finite type (SFT). If Y is a factor of an SFT
then it is a sofic shift. An equivalent characterization of sofic shifts is that the
set of forbidden words is a regular language.

The subword complexity (of length n) of a subshift X is pn(X) = |{u ∈ A+ |
∃c ∈ X : c[0,n) = u}|. The entropy of (X,σ) can be calculated using the subword
complexity

h(X,σ) = lim
n→∞

1
n

log2(pn(X)).

2.2 Cellular Automata

A cellular automaton (CA) is a dynamical system (X,F) where X ⊂ AM is a
subshift and F commutes with the shift map, i.e., Fσ = σF . In this paper we
will only consider CA’s over a full shift, i.e., X = AM. When M = N, the CA
is called one-sided and, when M = Z, the CA is called two-sided. We will often
refer to a CA by the function alone, i.e., talk about the CA F , and in a similar
fashion we often omit the phase space from notations. For example, we write
h(F) = h(AM, F) for the entropy. Let D = [i, j] ⊂ M and let Gl : AD → A.
Define G : AM → AM by G(c)i = Gl((σi(c))D). It is easy to see that G is
continuous and commutes with σ, and so it is a cellular automaton. The set D is

230 J. Jalonen and J. Kari

the local neighborhood of G and the function Gl is the local rule of G. According
to the Curtis-Hedlund-Lyndon Theorem every CA is defined by a local rule.
We will denote the local and global rules with the same G. This will not cause
confusion as it will be clear from the context which function G stands for. Let
r ∈ N be the smallest number such that D ⊆ [−r, r]. The number r is the radius
of G.

Let (AM, F) and (BM, G) be two CA’s. If H : AM → BM is a homomorphism
from (AM, F) to (BM, G), and also a homomorphism from (AM, σ) to (BM, σ)
then it is a strong homomorphism. Naturally we define strong factor, strong
subsystem, and strongly conjugate, when the corresponding homomorphism is a
strong homomorphism. If F and G are strongly conjugate, we denote F ∼=s G.
Notice that if φ is a strong conjugacy from (AM, F) to (BM, G), then automati-
cally φ−1 is also strong, i.e., commutes with σ (see, e.g., [11]).

For every n ∈ N, CA (AM, F) defines the nth trace subshift

τn(F) =
{
e ∈ (

An
)N | ∃c ∈ AM : ∀i ∈ N : ei =

(
F i(c)

)
[0,n)

}
.

The entropy of F can be calculated as the limit of the entropies of its trace
subshifts

h(F) = lim
n→∞ h(τn(F), σ).

For a one-sided cellular automaton F with radius r we have that pn(τr+1(F)) =
|A| · pn(τr(F)), so we get the following:

Proposition 2. Let F : AN → AN be a CA with radius r. Then h(F) =
h(τr(F), σ).

Let F : AM → AM and G : BM → BM be two CA’s. There are two natural
ways to interpret the direct product of F and G. First we can consider F ×G to
be a CA that has two separate tracks AM and BM, and F × G operates on the
A-track via F and on the B-track via G. On the other hand we can also consider
F × G as a CA on (A × B)M, where the states have two layers. For any F × G
we use which ever interpretation seems more natural. We can, of course, define
a CA over (A×B)M that is not a direct product of two CA’s. For such a CA we
will also talk about tracks and layers.

Let F be a CA. If there exist n, p > 0 such that Fn+p = Fn, then F is
eventually periodic, and if there exists p > 0 such that F p = id, then F is
periodic. For a state a ∈ A we denote ωaω ∈ AM the configuration such that
ωaω(i) = a for all i ∈ M. A state q ∈ A is quiescent if F (ωqω) = ωqω. A
cellular automaton is nilpotent if there exists a quiescent state q such that for
every c ∈ AM there exists n ∈ N such that Fn(c) = ωqω. A state s ∈ A is
spreading if the local rule maps every neighborhood containing s to s. Clearly
a spreading state is quiescent. It is known that for cellular automata nilpotency
implies uniform nilpotency:

Proposition 3 [3]. Let F : AM → AM be a nilpotent CA. Then there exists
n ∈ N such that for all c ∈ AM it holds that Fn(c) = ωqω.

Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable 231

We also need the following, which is a result of a simple compactness argu-
ment.

Proposition 4. Let F : AM → AM be a CA that is not nilpotent, and let s ∈ A
be a spreading state. Then there exists c ∈ AM such that Fn(c)j �= s for all n ∈ N

and j ∈ M.

Consider a one-sided reversible cellular automaton F : AN → AN such that
both F and its inverse F−1 have radius 1. In many cases this restriction for
radius is not a serious one as every reversible CA is conjugate (though maybe
not strongly conjugate) to such a CA through suitable grouping of cells. It is
easy to see that for every fixed a ∈ A the map F (a) : A → A, x → F (xa) has
to be a permutation. We will denote this permutation with ρa. Notice however
that not every set of permutations {ρa}a∈A define a reversible CA. We refer
the reader to [4] for a detailed combinatorial considerations of such reversible
one-sided CA’s. For our purposes the following simple example will be enough.

Example 1. Define a one-sided CA F : AN → AN where A = {0, 1, 2} using the
following permutations:

0 → 0
ρ0 = ρ2 : 1 → 2

2 → 1

0 → 1
ρ1 : 1 → 2

2 → 0
.

This is reversible, and its inverse also has radius one. Namely the permutations
π0 = π1 = (0)(12), π2 = (021) can be verified to define the inverse of F . This
example was already considered in [4]. We will compute its entropy.

According to Proposition 2 the entropy is just the entropy of the subshift
τ1(F). From the local rule we see that 0 maps to 0 or 1, 1 always maps to 2,
and 2 maps to 0 or 1. So τ1(F) ⊆ {0, 12}Z (which is here considered a subshift
of {0, 1, 2}Z). Suppose 20n1 is a factor of some element in τ1(F). Notice that
the only word of length n − 2 that can appear next to 20n1 in the space-time-
diagram of F is 20n−21 (consider this with the help of Fig. 1). Inductively this
implies that if 20n1 is a factor of some element in τ1(F) then n is even. So we
have that τ1(F) ⊆ {00, 12}Z. But for any t ∈ {00, 12}Z we can construct a valid
space-time-diagram of F that contains t as follows: Consider 00 to represent zero
and 12 to represent one, and let t1 be xor of t (turn to Fig. 2). We see that when
lined up correctly, this gives a configuration that is locally compatible with t,
i.e., that they could be successive columns of a space-time-diagram of F . This
process can be repeated to obtain a valid space-time-diagram of F .

We have seen that τ1(F) = {00, 12}Z, and so h(F) = 1
2 . Using the direct

product construction we can obtain a one-sided reversible CA that has radius
one, and whose inverse also has radius one, and that has arbitrarily high entropy.

For an overview of the topics considered here, we refer the reader to [11] (a
survey of cellular automata theory), and [14] (a book on topological and symbolic
dynamics).

232 J. Jalonen and J. Kari

2

1

0

0

0

0

a

b

c

0

Fig. 1. First notice that c has to be
1, since only ρ1 maps 0 to 1. The
same way a has to be 2, since only
π2 maps 0 to 2. Finally b has to be
0, since b has to satisfy ρb(0) = 0
and πb(0) = 0.

1
2

2
1

0
0

0
0

1
2

1
2

0
0

0
0

1
2

0
0

Fig. 2. Fill the leftmost column in an arbi-
trary way using the blocks 00 and 12. Fill
the next column by taking xor (addition
modulo 2) interpreting 00 as 0 and 12 as
1. Notice that we get no violations of the
local rule of F doing this. Repeat.

3 Main Result

Our proof is based on the undecidability of nilpotency of one-dimensional cellular
automata.

Theorem 1 [9,16]. Nilpotency of one-dimensional one-sided cellular automata
with a spreading state and radius 1 is undecidable.

Now we can prove the main result of this paper.

Theorem 2. The following two sets of pairs of one-dimensional one-sided cel-
lular automata are recursively inseparable:

(i) pairs where the first cellular automaton has strictly higher entropy than the
second one, and

(ii) pairs that are strongly conjugate and both have zero topological entropy.

Proof. We will reduce the decision problem of Theorem1 to this problem, which
will prove our claim.

Let H : BN → BN be an arbitrary given one-sided CA with neighborhood
radius 1 and a spreading quiescent state q ∈ B. Let k ∈ N be such that k >
log2(|B|), F2k be the 2k-fold cartesian product of the cellular automaton F of
Example 1, and A = {0, 1, 2}2k (we are aiming for high enough entropy). Now
we are ready to define CA’s F and G such that

H is not nilpotent =⇒ h(F) > h(G)
H is nilpotent =⇒ F ∼=s G and h(F) = h(G) = 0.

Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable 233

Both of these new CA’s work on two tracks F ,G : (A × B)N → (A × B)N. The
CA G is simply idA × H, i.e.,

G((a0, b0)(a1, b1)) = (a0,H(b0b1)),

for all a0, a1 ∈ A, b0, b1 ∈ B. The CA F acts on the A-track as F2n when the B-
track is not going to become q, and as idA when the B-track is going to become
q, i.e.,

F((a0, b0)(a1, b1)) =

{
(F2n(a0a1),H(b0b1)), if H(b0b1) �= q

(a0,H(b0b1)), if H(b0b1) = q,

for all a0, a1 ∈ A, b0, b1 ∈ B.
(i) Suppose that H is not nilpotent. The entropy of G is

h
(
(A × B)N ,G)

= h
(
AN, idA

)
+ h

(
BN,H

)
= h

(
BN,H

)
,

since G = idA × H. On the other hand, by Proposition 4, there exists a configu-
ration e ∈ BZ such that for all i, j ∈ N we have that Hi(c)j �= q. But then we
have that

h
(
(A × B)N ,F) ≥ h

(
AN, F2k

)
> log2(|B|) ≥ h

(
BN,H

)
,

according to Example 1 and how we chose k. Overall we have that

h
(
(A × B)N ,F)

> h
(
(A × B)N ,G)

,

as was claimed.
(ii) Suppose that H is nilpotent. Let us first explain informally why we now

have that F ∼=s G. Both F and G behave identically on the B-track, so the
conjugacy will map this layer simply by identity. Nilpotency of H guarantees
that for all configurations the B-track will be ωqω after some constant time n.
By the definition of F this means that after n steps F does nothing on the A-
track. Since G never does anything on the A-track, we can use this fact to define
the conjugacy on the A-track simply with Fn. That this is in fact a conjugacy
follows since F is, informally, reversible on the A-layer for a fixed B-layer.

Let us be exact. First we will define a continuous map φ : (A×B)N → (A×B)N

such that φF = Gφ. This φ will be a CA. Then we show that φ is injective, which
implies reversibility (see, e.g., [11]), and so F ∼=s G.

Let πA : AN × BN → AN be the projection πA(c, e) = c for all c ∈ AN and
e ∈ BN. Define πB : AN × BN → BN similarly.

Let n ∈ N be a number such that for all c ∈ BN we have Hn(c) = ωqω. Such
n exists according to Proposition 3, since H is nilpotent. Because F and G act
identically on the B-track, φ will map this layer simply by identity, i.e.,

πBφ(c, e) = e,

234 J. Jalonen and J. Kari

for all c ∈ AN, e ∈ BN. On the A-layer φ is defined using the fact that after n
steps F does nothing on the A-track, i.e., acts the same way G does. Due to this
we define

πAφ = πAFn.

Now φ is a CA, since it is continuous and shift-commuting. Let us show that φ
is a homomorphism. Of course we have that

φF = Gφ ⇐⇒ (
πAφF = πAGφ and πBφF = πBGφ

)
.

It is immediate from the definitions that πBφF = πBGφ. For the equality on the
A-layer notice first that πAG = πA, and then compute:

πAφF def.= (πAFn)F
= πAFFn || after n steps F
= πAGFn behaves as G
= πAFn

def.= πAφ

= πAGφ.

So we have that φF = Gφ.
To prove that φ is a strong conjugacy it is enough to show that φ is an

injection. As the B-layer is mapped by identity, we only need to show that for a
fixed e ∈ BN we have that for all c ∈ AN there exists a unique c′ ∈ AN such that
φ(c′, e) = (c, e). By the definition of φ it is clear that this will hold if

πAFn(, e) : AN −→ AN

c −→ πAFn(c, e)

is a bijection for every e ∈ BN. We can consider this step by step. We claim that
(c, e) = (c0c1c2 . . . , e0e1e2 . . .) ∈ (A × B)N uniquely defines the A-track of the
elements in the set F−1(c, e). Let (c′, e′) = (c′

0c
′
1c

′
2 . . . , e′

0e
′
1e

′
2 . . .) ∈ F−1(c, e). It

is enough to show that c′
0 is defined uniquely by (c, e). Suppose first that e0 = q.

Then according to the definition F acted as identity, so we have that c′
0 = c0.

Suppose next that e0 �= q. We have two cases, either e1 = q or not. Suppose first
that e1 = q. Then as before we have that c′

1 = c1. And so c′
0 = ρ−1

c′
1

(c0) = ρ−1
c1 (c0).

And lastly suppose that e1 �= q. Then we have that F2n(c′
0c

′
1c

′
2 . . .) = (c0c1 . . .)

according to the definition of F . But now c′
0 is uniquely determined since F2n is

reversible and the inverse also has radius 1: We have that c′
0 = F−1

2n (c0c1).
To complete the proof we observe that

h(F) = h(G) = h(idA) + h(H) = 0,

since F ∼=s G = idA × H, and H is nilpotent. ��
Since the two-sided variant of Theorem2 can be reduced to the one-sided case,

also the two-sided variant is undecidable. We also get the following corollary.

Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable 235

Corollary 1. Let M = N or M = Z. Let F,G : AM → AM be two cellular
automata. Then the following hold:

1. It is undecidable whether F and G are (strongly) conjugate.
2. It is undecidable whether F is a (strong) factor of G.
3. It is undecidable whether F is a (strong) subsystem of G.

Proof. 1. The pairs in the set (i) of Theorem 2 can not be (strongly) conjugate,
and the pairs in (ii) have to be. Thus deciding (strong) conjugacy would
separate these sets.
2. The first CA in the pair from the set (i) has strictly higher entropy than
the second one, and so it can not be a (strong) factor of the other. On the
other hand CA’s of pairs from the set (ii) are (strong) factors of each other.
So checking for both CA’s of a pair whether it is a (strong) factor of the other
one would separate the sets of Theorem 2.
3. In a similar way, since a subsystem can not have higher entropy. ��

4 Other Results

4.1 Decidable Cases

Now that we know conjugacy to be undecidable for one-dimensional cellular
automata, we can consider what happens if we restrict to some natural subclass.
Recently it was proved that

Theorem 3 [7, Corollary 5.17]. Conjugacy of periodic cellular automata on one-
or two-sided subshifts of finite type is decidable.

Periodic cellular automata are the least sensitive to changes in the initial
configuration. Next we consider the most sensitive cellular automata, i.e., pos-
itively expansive ones. A dynamical system (X, f) is called positively expansive
if

∃ε > 0 : ∀x, y ∈ X : ∃n ∈ N : x �= y =⇒ d(fn(x), fn(y)) > ε.

Positively expansive CA’s are quite extensively studied which allows us to deduce
the following result.

Proposition 5. Conjugacy of positively expansive cellular automata on one- or
two-sided full shifts is decidable.

Proof. Let F : AM → AM and G : BM → BM be two positively expansive
cellular automata. Due to the positive expansivity, F and G are conjugate to
τk(F) and τk(G) (resp.) for large enough k. These subshifts are conjugate to
subshifts of finite type ([2] for one-sided case, [17] for two-sided case). According
to [5, Theorem 36] we can effectively compute these subshifts. The claim follows,
as the conjugacy of one-sided subshifts of finite type is decidable [18]. ��

236 J. Jalonen and J. Kari

Naturally these results raise the question whether strong conjugacy is decid-
able when restricted to periodic or positively expansive cellular automata. Also
the questions whether (strong) conjugacy is decidable for eventually periodic,
i.e., equicontinuous, cellular automata [7, Question 8.1], or for expansive cellular
automata remain unanswered. It is conjectured that expansive cellular automata
are conjugate to two-sided subshifts of finite type (this is known for expansive
two-sided cellular automata with one-sided neighborhoods). However the previ-
ous proof still wouldn’t work, as it is not known whether conjugacy of two-sided
subshifts of finite type is decidable.

4.2 Conjugacy of Subshifts

Questions about conjugacy provide perhaps the most well-known open problems
in symbolic dynamics. For example it is unknown whether conjugacy of two-sided
subshifts of finite type is decidable. It is also unknown whether conjugacy of one-
or two-sided sofic shifts is decidable. On the other hand conjugacy of one-sided
subshifts of finite type is known to be decidable; we used this fact to show that
conjugacy of positively expansive cellular automata is decidable. We can ask if
we could work to the opposite direction, i.e., if the classical problems for sub-
shifts could be answered using cellular automata. For example, undecidability of
conjugacy for one-sided expansive cellular automata would imply undecidability
of conjugacy of two-sided subshifts of finite type, although it seems more likely
that conjugacy for one-sided expansive cellular automata is decidable. A more
plausible result would be that conjugacy is undecidable for expansive two-sided
cellular automata, which together with the conjecture that every expansive cel-
lular automaton is conjugated to a two-sided SFT [15, Conjecture 30], would
imply undecidability of conjugacy of two-sided SFT’s.

All of the above relied on the connection between cellular automaton and its
trace subshift. The problem with this approach is that only expansive cellular
automata are conjugate to subshifts. However there could be some more inventive
ways to link subshifts and cellular automata to obtain decidability results. We
provide the following, somewhat artificial, result.

Proposition 6. Let X,Y ⊆ (A×A)M be two subshifts of finite type. It is unde-
cidable whether X and Y are conjugate via a conjugacy of the form φ × φ.

Proof. The proof is a direct reduction from strong conjugacy of cellular
automata. Let F,G : AM → AM be two CA’s. Let X = {(c, F (c)) | c ∈ AM}
and Y = {(c,G(c)) | c ∈ AM}. These subshifts are naturally conjugate to AM.
Suppose there exists a conjugacy φ × φ : X → Y . Then φ commutes with the
shift and for every c ∈ AM we have that (φ(c), φF (c)) = (e,G(e)), where e has
to be φ(c), and so φF (c) = Gφ(c) for all c ∈ AM. In other words φ is a strong
conjugacy of (AM, F) and (AM, G).

On the other hand, any strong conjugacy φ from (AM, F) to (AM, G) imme-
diately gives a conjugacy φ × φ between X and Y . ��

Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable 237

5 Conclusion

We have proved that the decision problems “are (strongly) conjugate”, “is a
(strong) subsystem of” and “is a (strong) factor of” are undecidable for one-
dimensional one- and two-sided cellular automata. We note that these results
provide an example that contradicts the rule of thumb that one time step prop-
erties of one-dimensional cellular automata are decidable.

A natural question to ask is whether conjugacy remains undecidable even for
reversible cellular automata. Since our proof is based on the undecidability of
nilpotency, it is clear that a different approach is needed. We note that though
for non-reversible cellular automata one- and two-sided cases differ only little,
for reversible cellular automata the one-sided case seems far more distant as
there are no known undecidability results for one-sided cellular automata that
could be used for the reduction. For two-sided cellular automata periodicity and
mortality problems [12,13] are known to be undecidable, and provide a possible
replacement for the nilpotency problem in the reversible case. This is of course
implicitly assuming that one is expecting the problem to remain undecidable.
As a first step one could consider whether topological entropy is computable for
one- and two-sided reversible cellular automata.

Lastly it is interesting to consider whether there is way to solve or at least
shed new light on the long-standing open problems of symbolic dynamics, namely
conjugacy problems of subshifts.

References

1. Amoroso, S., Patt, Y.: Decision procedures for surjectivity and injectivity of parallel
maps for tessellation structures. J. Comput. Syst. Sci. 6, 448–464 (1972)

2. Boyle, M., Kitchens, B.: Periodic points for onto cellular automata. Indag. Math.
10(4), 483–493 (1999)

3. Culik II, K., Pachl, J., Yu, S.: On the limit sets of cellular automata. SIAM J.
Comput. 18(4), 831–842 (1989)

4. Dartnell, P., Maass, A., Schwartz, F.: Combinatorial constructions associated to
the dynamics of one-sided cellular automata. Theoret. Comput. Sci. 304, 485–497
(2003)

5. Di Lena, P.: Decidable and computational properties of cellular automata. Depart-
ment of Computer Science, University of Bologna, Ph.D. thesis (2007)

6. Epperlein, J.: Classification of elementary cellular automata up to topological con-
jugacy. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 99–112. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7 8

7. Epperlein, J.: Topological conjugacies between cellular automata. Fakultät Mathe-
matik und Naturwissenschaften der Technischen Universität Dresden, Ph.D. thesis
(2017)

8. Hurd, L.P., Kari, J., Culik, K.: The topological entropy of cellular automata is
uncomputable. Ergod. Theory Dyn. Syst. 12, 255–265 (1992)

9. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.
Comput. 21, 571–586 (1992)

10. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.
Syst. Sci. 48, 149–182 (1994)

https://doi.org/10.1007/978-3-662-47221-7_8

238 J. Jalonen and J. Kari

11. Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33
(2005)

12. Kari, J., Lukkarila, V.: Some undecidable dynamical properties for one-dimensional
reversible cellular automata. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Win-
free, E. (eds.) Algorithmic Bioprocesses. NCS, pp. 639–660. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-540-88869-7 32

13. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4 34

14. Kůrka, P.: Topological and Symbolic Dynamics, vol. 11. Société Mathématique de
France (2003)

15. Kůrka, P.: Topological dynamics of cellular automata. In: Meyers, R.A. (ed.) Ency-
clopedia of Complexity and System Sciences, pp. 9246–9268. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-0-387-30440-3 556. Print ISBN 978-0-
387-75888-6

16. Aanderaa, S., Lewis, H.: Linear sampling and the ∀∃∀ case of the decision problem.
J. Symb. Logic 39(3), 519–548 (1974)

17. Nasu, M.: Textile systems for Endomorphisms and Automorphisms of the Shift,
vol. 546. Memoirs of the American Mathematical Society (1995)

18. Williams, R.F.: Classification of subshifts of finite type. Ann. Math. 98, 120–153
(1973)

https://doi.org/10.1007/978-3-540-88869-7_32
https://doi.org/10.1007/978-3-540-85238-4_34
https://doi.org/10.1007/978-0-387-30440-3_556

Software Quality Assurance and
Transformation

Formal Verification and Safety Assessment
of a Hemodialysis Machine

Shahid Khan1(B), Osman Hasan1, and Atif Mashkoor2

1 School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{shahid.khan1,osman.hasan}@seecs.nust.edu.pk
2 Software Competence Center Hagenberg GmbH, Hagenberg, Austria

atif.mashkoor@scch.at

Abstract. Given the safety-critical nature of healthcare systems, their
rigorous safety assessment, in terms of studying their behavior in the
presence of potential faults and how the malfunctioning components
cause system failures, is of paramount importance. Traditionally, the
safety assessment of a system is done analytically or using simulation
based tools. However, the former is prone to human error and the later
does not provide a complete analysis, which makes them inappropriate
for the safety assessment of healthcare systems. These limitations can be
overcome by using formal methods based safety assessment. This paper
presents our experience of applying model based safety assessment and
system verification tools on a hemodialysis machine. In particular, we use
the nuXmv model checker to formally verify a formal model of the given
hemodialysis machine. The formal model of the given system is then
extended with various fault modes of the system components and the
eXtended Safety Assessment Platform is used to check various undesired
behaviors of the system using invariant properties defined as Top Level
Events. This way, we can automatically generate the FTA and FMEA
to do the safety assessment of the given hemodialysis machine.

1 Introduction

Modern healthcare systems are increasingly incorporating computing and com-
munication technologies to provide a safe and reliable experience to the patients
in the most effective manner. Given the integration of many technologies and
the safety-critical nature of healthcare systems, where a system failure may even
result in the loss of human lives, the healthcare system manufacturers and reg-
ulatory bodies are obliged to rigorously analyze and control the production and
usage of such machines. On the contrary, due to the complex nature of present-
age healthcare systems and stringent constraints on their time-to-market, both

The research presented in this paper is partially supported by the Austrian Ministry
for Transport, Innovation and Technology, the Federal Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of the COMET center
SCCH.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 241–254, 2018.
https://doi.org/10.1007/978-3-319-73117-9_17

242 S. Khan et al.

healthcare system manufacturers and regulatory bodies have very limited time
and resources to perform a thorough safety analysis [22]. For instance, the Food
and Drug Administration (FDA) of the USA has to substantively interact with
its clients within 90 calender days of the filing date, which is clearly insufficient to
perform a detailed analysis of each incoming equipment. The situation is further
complicated as the details about the product, submitted for review, typically
consist of several hundred pages [17].

Safety assessment of systems mainly involves a set of methods, such as Failure
Mode and Effect Analysis (FMEA) [21] and Fault Tree Analysis (FTA) [5], to
study the way the faults are dealt-with by the system. FTA is a widely used top
down technique, which provides a graphical model for analyzing the conditions
and factors causing an undesired Top Level Event (TLE), i.e., a critical event,
which can cause the complete system failure upon its occurrence. FMEA, on the
other hand, provides a bottom up approach in which atomic low level events are
tabulated to check the way they lead to an undesired event.

Traditionally, both FTA and FMEA are done using human interventions. A
safety assessment expert along with domain experts enlist the possible failure
events and from these events FTA and FMEA are generated and analyzed using
paper-and-pencil based analytical techniques. However, the complex nature of
the present-age healthcare systems makes their analysis on paper almost impos-
sible. Moreover, such manual analysis is quite prone to human error as well.
Alternatively, the failure assessment of complex systems is conducted using sim-
ulation tools, such as ReliaSoft1. However, the results obtained through these
simulation based tools cannot be fully trusted as well due to the involvement
of numerical methods and the sampling based nature of simulation, where the
given system is not exhaustively tested for all possible scenarios. This inaccuracy
limitation makes the simulation based FTA or FMEA infeasible for the safety-
critical healthcare systems, where an undetected system fault may lead to the
loss of human life in the worst-case scenario.

Formal methods [15], which are computer based mathematical reasoning
techniques, have been successfully used to overcome the above-mentioned lim-
itations of the paper-and-pencil proof methods and simulation. The main idea
behind the formal analysis of any given system is to first construct a mathemat-
ical model of the given system using a state-machine or an appropriate logic and
then use logical reasoning and deduction methods to formally verify that this
system exhibits the desired characteristics, which are also specified mathemati-
cally using an appropriate logic. Formal methods are mainly categorized into two
mainstream techniques: (1) Model checking [3] that is a state-based technique
in which system behavior, specified as a state-machine, is analyzed by verifying
the temporal properties exhaustively over the entire state-space of the formal
model of the given system within a computer, and (2) theorem proving [15] that
allows using logical reasoning to verify relationships between a system and its
properties as theorems, specified in an appropriate logic, using a computer.

1 ReliaSoft: http://www.reliasoft.com/.

http://www.reliasoft.com/

Formal Verification and Safety Assessment of a Hemodialysis Machine 243

Both model checking and theorem proving have been used for the FT-based
failure analysis of many real-world systems such as wheel brake system [10] and
satellite solar arrays [1]. To the best of our knowledge, formal safety assessment of
healthcare systems has not been reported in the literature so far. We believe that
using formal methods for the safety assessment of healthcare systems would not
only ensure more accurate results, compared to the traditional simulation and
analytical based analysis techniques, but would also allow the manufacturers and
regulators to manage the safety assessment of healthcare systems within their
resources and time constraints. As a first step towards this direction, we investi-
gate the formal safety assessment of a hemodialysis machine [19], which is used
to remove metabolic waste from the blood in case of a kidney failure, making it a
very safety-critical machine. The hemodialysis machine is a classical example of
cyber-physical system and has been identified as a potential candidate of formal
safety analysis of a S# based analysis framework [14]. Another main motivation
of choosing a hemodialysis machine as our application is the availability of its
detailed description along with the required functional requirements [19] as a
case study to promote the usage of formal methods in medical cyber-physical
systems. All of the reported work, in response to this case study, focused on the
formal specification and/or functional verification of this machine using various
formal methods, like Event-B [16,18], Hybrid Event B [4], Algebraic State Tran-
sition Diagrams (ASTD) [12] and Abstract State Machines (ASMs) [2]. Thus,
in this paper, we extend these recently reported efforts by presenting the formal
safety assessment of this hemodialysis machine.

In particular, we chose to build upon the classical ASM based analysis of
the hemodialysis machine [2], in which the ASM model of the hemodialysis
machine was automatically translated to the corresponding Symbolic Model Ver-
ifier (SMV) model for its functional verification by the nuXmv model checker.
In this work, we enhance their SMV model with various failure modes for the
safety assessment of the given system using the eXtended Safety Assessment
Platform (xSAP) tool [9]. The main motivation behind choosing xSAP and the
nuXmv model checker for the proposed safety assessment is the ability to con-
duct a comprehensive analysis using both FTA and FMEA methods since, to
the best of our knowledge, the theorem proving based safety analysis does not
support FMEA as of now. Moreover, a distinguishing feature of our work is that
a formally verified model of the hemodialysis machine is used to integrate the
failure modes and analyze the safety aspects.

2 Preliminaries

2.1 Model Checking and nuXmv Model Checker

Model checking [3] is primarily used as a verification technique for reactive sys-
tems, i.e., the systems whose behavior is dependent on time and their environ-
ment. The inputs to a model checker include a finite-state model of the system
that needs to be analyzed along with the intended system properties, which

244 S. Khan et al.

are expressed in temporal logic, which is a logic that allows expressing time-
dependent behaviors. The model checker automatically and exhaustively verifies
if the properties hold for the given system while providing an error trace in
case of a failing property. The state-space of a system grows exponentially with
the increase in the size of system variables and their possible values. Thus, it
becomes computationally impossible to explore the entire state-space with lim-
ited resources of time and memory for larger models. This problem, termed
as state-space explosion [3], is usually resolved by using efficient algorithms and
techniques, like symbolic [7] and Bounded Model Checking (BMC) [8]. The main
idea behind BMC is to allow the model checker to check the given property for a
partial model, based on the user provided depth. The model checker detects the
failing property if it fails in this reduced model. Otherwise, the depth of BMC
is incrementally increased in search of a failing property.

The nuXmv model checker supports a wide range of systems, including the
infinite state systems, by introducing the new data types of integers and reals
and using Satisfiability Modulo Theory (SMT) [6] for verification. The system
to be verified is modeled in a modular manner using the SMV language [7],
which allows declaring of Variables (VAR), macros (DEFINE), environment vari-
ables interacting with system (IVAR), state transition relations (using INIT and
NEXT statements) and nondeterminism. The properties [11] to be verified can
be specified in nuXmv using the Linear Temporal Logic (LTL) or the Computa-
tion Tree Logic (CTL). LTL specifications are written in nuXmv with the help
of logical operations like, AND (&), OR (❘), Exclusive OR (xor), Exclusive NOR
(xnor), Implication (➝) Equality (↔), and temporal operators, like Globally
(G), Finally (F), neXt (X) and Until (U). Similarly, the CTL specifications can
be written by combining logical operations with quantified temporal operators,
like Exists Globally (EG), Exists neXt state (EX) and for All Finally (AF). In
case a property turns out to be false, a counterexample in the execution trace
of the state machine is provided. Although the approaches used by nuXmv are
in general incomplete, a Lasso-shaped counter example is always found if it is
guaranteed to exist [11].

2.2 eXtended Safety Assessment Platform

xSAP [9] is the safety assessment tool supported by the nuXmv [11] model
checker. xSAP requires three inputs, i.e., a nominal model written in the SMV
language, Fault Extension Instructions (FEI) written in a dedicated FEI lan-
guage and fault library to perform the safety assessment of a system. The nomi-
nal model is written in the SMV language and consists of a modular architecture
of the system under investigation along with some additional variables, called
affected symbols. The FEI file provides the fault definitions in a SMV under-
standable format. xSAP uses its built-in fault library, which is also customizable,
to interpret the FEI [9]. The FEI file mainly consists of fault slices, where each
fault slice targets an affected symbol of a nominal component, which is a module
in nominal model. Upon execution, xSAP forces affected symbols to be stuck at
some value to emulate the behavior of fault occurrence in the system. Each fault

Formal Verification and Safety Assessment of a Hemodialysis Machine 245

slice represents a single or a set of basic failure modes targeting single affected
symbol. Upon construction of the overall system state space, these failure modes
lead to more complex system failures through the mechanism of local and global
dynamic models. For the safety assessment of the overall system, TLE are defined
as invariant properties, which mainly describe the bad behavior of the system.
For instance, in the context of the hemodialysis machine, if the system is in the
self test phase then it is desirable that it eventually successfully completes the
self test and goes to the next phase, i.e., connect concentrate. The TLE in this
case would be !CN.self test status. Upon execution, xSAP will identify all
fault slices and all basic failure modes that can lead to this undesirable behavior,
and these fault slices and failure modes are then used to automatically gener-
ate the fault tree for the specific event [9]. The xSAP supports many classical
tools for safety analysis, including FTA, FMEA, failure propagation analysis
using Timed Failure Propagation Graphs (TFPGs), and Common Cause Anal-
ysis (CCA). One of the main strengths of this approach is that it automatically
generates these artifacts from a formal model, which has been independently
checked for its functional correctness using nuXmv.

3 Proposed Approach

The proposed formal analysis approach for healthcare systems, depicted in Fig. 1,
is divided in two phases, i.e., Formal Functional Verification (FFV) phase and
Formal Safety Assessment (FSA) phase. The phase of functional verification
requires a SMV model of the given healthcare system and the associated tempo-
ral properties capturing the functional requirements. The nuXmv model checker
exhaustively checks the model against the provided temporal properties and pro-
vides the counterexamples in case of failing properties. These counterexamples
can then be investigated to check whether the problem is due to a modeling error
or actually a functional bug in the system. The modeling issues can be rectified
by iteratively refining the SMV model to remove all issues until all the properties
are successfully verified. On the other hand, the system designers can be con-
sulted in case of identifying a design bug. Thus, upon the completion of the FFV
phase, we obtain a functionally verified SMV model against all its requirements.
We use this model in the FSA phase to introduce the affected symbols and pro-
vide the fault extension in the .FEI file. Besides the above-mentioned inputs, we
consider the involvement of domain experts in this step very important as they
can provide useful insights in the modeling process and greatly facilitate the
fault identification due to their past experiences in the domain. Both of these
files, i.e., the .SMV file containing the nominal model and the .FEI file contain-
ing fault extension instructions, are provided to xSAP for model extension as
mentioned in Sect. 2.2. The xSAP extends the provided .SMV model based on
the information provided in the .FEI by invoking its fault library, and applies
the fault slices written in the .FEI file on the .SMV nominal component affected
symbols of the .SMV file. The next step is to provide the TLE along with this
extended model to xSAP to perform the safety assessment. The xSAP automat-
ically generates the FTA and the FMEA tables satisfying TLEs. These artifacts

246 S. Khan et al.

Fig. 1. Proposed Formal Safety Assessment approach

can be subsequently documented and further analyzed for the safety assessment
of the given healthcare system.

4 Hemodialysis Machine

Hemodialysis machines are used to remove a controlled amount of metabolic
wastes from blood in the case of kidney failures. Their correct operation is the
key for the patients wellbeing and thus they can be classified as a safety-critical
healthcare system. The machine’s internal architecture, as depicted in Fig. 2,
can be mainly divided into 8 sub-blocks. Each block further consists of various
components having predefined functions. A brief description of each block and
its constituent components is given below.

Low Level and High Level Controller. The controller module [19] consist
of two sub-modules, i.e., high level and low level controllers. The former mainly
interacts between the machine and the operator through a Graphical User Inter-
face (GUI). Moreover, it also connects the machine with the cyberspace to facili-
tate remote therapy and on-line observation of therapy results. Whereas, the low
level controller acts as a coordinator of tasks between the remaining modules of
the machine and thus plays an important role for the successful operation of the

Fig. 2. Hemodialysis machine architecture

Formal Verification and Safety Assessment of a Hemodialysis Machine 247

overall machine. It receives feedback from different sensors and transmits actu-
ation signals to fulfill the requirements of the machine. For our proposed safety
assessment, we have considered the low level controller only. This is because
ensuring the cybersecurity is in itself a major challenge and considering it here
would divert the focus of this paper to general cybersecurity issues rather than
the safety assessment of healthcare systems.

Extracorporeal Blood Circuit (EBC). This module connects the patient
to the machine through the Arterial and Vascular (AV) connections. It consists
of 2 Venous Peristaltic Pumps (VPP), 1 Arterial Peristaltic Pump (APP), 1
Blood Pump (BP), 1 Heparin Syringe Pump (HSP), a Disposable System (DS)
(connectors, drip chambers, tubing), a Safety Air Detector (SAD), 2 Pressure
Transducers (1 for Venous (VPT) and other for Arterial (APT) side) and 1
Venous Valve (VV).

Dialyzer. This module mainly performs the dialysis of patient’s blood. It con-
sists of a bidirectional diffusive membrane, which filters out a predetermined
amount of the metabolic wastes from the blood.

Bypass. It bypasses the dialyzing process when the temperature raises beyond
a certain limit or an out-of-proportion concentration of acid and/or bicarbonate
is detected in the Dialyzing Fluid (DF). The bypass module mainly consists of
two Valves (V1 and V2).

Balance Chamber. The Balance Chamber (BC) keeps a balance between the
incoming and outgoing DF. It consist of two chambers with a flexible membrane
and two Magnetic Position Sensors (MPS1 and MPS2) to keep track of the
flexible membrane position.

Dialyzer Fluid Preparation. This module is mainly responsible for mix-
ing the prepared water with acid and bicarbonate concentrates. It consists of
a Conductivity Meter (CM) and a Temperature Sensor (TC) to monitor the
parameters of the prepared water.

Dialyzer Fluid Water Preparation (DFWP). The DFWP mainly degasses
and heats the refined water and subsequently provides the processed water to the
DF preparation module. It comprises of a Degassing Chamber (DC), a Heater
(HT) and a Reverse Osmosis (RO) filter.

Failure Modes. Now, we describe the failures of the hemodialysis machine
[10,13]2. These failures are mainly associated with the modules and sub-modules

2 Courtesy: Fresenius Medical Care: url: http://fmcna.com//).

http://fmcna.com//

248 S. Khan et al.

described above. As explained in Sect. 3, these failure modes are first expressed
in the FEI file and then integrated with the control logic of the machine to
emulate run-time feedback and controlling actuation signal mechanism.

The faults occurring in the pump module include permanently being in the
off state, not reaching the maximum speed at the maximum voltage, the pump
is turning in the wrong direction, the signal of the optical tachometer is going
out of range, analog voltage going out of range, rotor turning when it is not sup-
posed to, and pump rate and its setting not being synchronized. The behavior
of all pumps, including peristaltic pumps, the heparin pump and blood pump,
is captured through the module named pump, which is instantiated six times,
namely EBC.APP1, EBC.APP2, EBC.VPP, EBC.HSP and BC.UFP to repre-
sent 2 arterial peristaltic pumps, 1 venous peristaltic pump, 1 heparin syringe
pump of EBC and 1 ultra filtration pump of the balance chamber, respectively.

The faults occurring in the disposable tubing system module include a leak,
kinking, clotting and clamping, the fibre clotting of dialyzer, and a closed line.
This module is instantiated twice, namely EBC.DS and D.DS, to represent
the disposable system of EBC and the disposable assembly of the dialyzer,
respectively.

The failure modes of the valve module include a failure when the valve is
open, failure when it is close, failure at the last commanded position and a
failure at an erroneous position. These failure modules are instantiated three
times, namely EBC.VV, B.V1, B.V2, to represent the venous valve of the EBC
and the valve 1 and 2 of the bypass module, respectively.

The failure modes of the chamber module captures the failing behavior of
all chambers, including the balance and degassing chamber, by considering the
conditions of low and high fluid levels and low and high pressures. The chamber
module is instantiated three times, namely EBC.VC, EBC.AC and DWP.DC,
to represent the venous chamber of the EBC, arterial chamber of EBC and
degassing chamber of DWP stage, respectively.

The conductivity Meter module of the DF preparation stage is modeled by
undetected erroneous data and no data faults. It is used once, i,e., DFP.CM, to
represent the conductivity meter of DFP module.

The failure modes of sensors associated with temperature, safety air detec-
tor and magnetic position are captured by the undetected erroneous data, no
data, signal ramping down and signal out of limit events. The sensor module
is instantiated four times, namely EBC.SAD, BC.MPS1, BC.MPS2, DFP.TS,
to represent the air detector of EBC and the magnetic position Sensors 1 and
2 of the balance chamber and the temperature sensor of the DF preparation
modules, respectively.

The Heater module is required for water heating in the DF water preparation
stage. Its failures are captured by the insulation break, burn out of the heating
element and malfunctioning or complete failure of heater events. The heater
module is instantiated once to represent the heater of dialyzing water preparation
stage (DWP.HT).

Formal Verification and Safety Assessment of a Hemodialysis Machine 249

The failure mode of the Transducer module is represented by the wet trans-
ducer protector (protectors are used to keep interior of pressure transducers from
getting wet), obstructed monitor line, erroneous data, no data and data out of
limit events. This module is instantiated twice, i.e., EBC.APT and EBC.VPT,
to represent the arterial and the pressure transducers of the EBC module,
respectively.

5 Formal Functional Verification and Safety Assessment

The model, described in Sect. 4, is used to conduct the formal functional veri-
fication and safety assessment of the hemodialysis machine using the approach
outlined in Sect. 3. For verification purposes, we used Version 1.0.0 of nuXmv
with an Intel(R) Core(TM) i5-3320M CPU @ 2.60GHZ, x64-based processor.
While the safety assessment is carried out using Version 1.1.0 of xSAP. All
reported properties are verified using BMC with a depth of 100. However, the
TLEs are exhaustively checked for developing of the fault trees and FMEA.
Next, we describe four top level events for which we generated the fault trees
and FMEA during the safety assessment process3.

5.1 Self Test Pass

We first verify that there is at least one instance when the self test of the
hemodialysis machine, i.e., CN.prepPhase = SELF TEST, during the Preparation
Phase succeeds and the system goes to the next Preparation Phase, i.e., Con-
necting Concentrate [19], CN.prepPhase = CONNECT CONCENTRATE. The CTL prop-
erty used to check this property is as follows AG(CN.prepPhase = SELF TEST -> EF

CN.prepPhase = CONNECT CONCENTRATE). It is important to note that the property
is not verified for all cases since it obviously fails in the presence of machine
faults. To generate the FT and FMEA for the bad conditions, i.e., when the
system is stuck at self test, we introduced an undefined state, i.e., PREP UNDEF.
Such that, the system goes in this state whenever it is not in any known state
of the Preparation Phase. The TLE is CN.prepPhase = PREP UNDEF. The verifica-
tion of this property allows us to automatically generate the fault tree, which is
partially shown in Fig. 3a. It can be clearly seen that a fault occurrence in any
component can lead to an overall system failure. The reliability of the overall
system can be increased by introducing redundancy in the system components.
Thus, we added another venous peristaltic pump EBC.VPP2 in the system. This
change would lead to the addition of an AND gate between both arterial peri-
staltic pumps, EBC.VPP1 and EBC.VPP2 (newly introduced in system). Which
means that, both arterial peristaltic pump 1 and arterial peristaltic pump 2 have
to fail simultaneously to lead to the system level failure.

3 The codes and associated properties are available at: http://save.seecs.nust.edu.pk/
projects/fvsahm/.

http://save.seecs.nust.edu.pk/projects/fvsahm/
http://save.seecs.nust.edu.pk/projects/fvsahm/

250 S. Khan et al.

The effect of adding redundancy on the system reliability is further illus-
trated in Figs. 4a and b. In these figures, the horizontal axis represents the fail-
ure probability of individual failure events, while the vertical axis depicts the
failure probability of subcomponents and the overall system. As discussed in
Sect. 4, the SMV model of hemodialysis machine consists of multiple instances
of 8 basic components. The failure probability of an individual event is assigned
to every instance of the respective component and the collective failure behav-
ior is computed using the corresponding fault tree. For example, there are five
instances of the pump module, in the machine, namely, EBC.APP1, EBC.VPP,
EBC.HSP, BC.UFP and BC.BP. Each instance can fail independently of the
other and their collective failing behavior is presented in the graph. Likewise,
there are 1, 3, 4, 1, 4, 1, 2 instances of Disposable system, Valve, Chamber, Meter,
Sensor, Heater and Transducer, respectively. The failure probability of the indi-
vidual components is swept from 0 to 1 and the complete behavior of the failure
of the hemodialysis system and its constituent components is captured in both
figures. It is evident from the figures that the failure probability of the system
with redundant components reaches 1 when failure probability of constituent
basic events is below 0.1. Whereas, in the case of redundant components, the
same probability is around 0.8 when the basic events failure probabilities are
between 0.3 and 0.4. The decrease in slope with redundancy implies that for any
given basic event failure probability, the likelihood of failure of a system with
redundancy is less than the likelihood of failure of a system without redundancy.
The relationship between cut-sets of FT and FMEA, as generated by xSAP, is
elaborated in Fig. 3e, in the context of self test TLE. The graph is shown on a
semilogarithmic scale to suppress the huge difference between FTA and FMEA
cut-set values. These statistics were generated from the model having 21 basic
failure events. According to the statistics displayed, there are obviously zero cut-
sets with cardinality 0. While, the cut-sets with cardinality 1 for both FTA and
FMEA are reported by xSAP to be 21 (note that FTA of the system without
redundancy had 22 cut-sets with cardinality 1 and no cut-sets for higher cardi-
nalities). This change (from 22 to 21) in cut sets by adding redundancy effects
the system reliability as depicted in Fig. 4b. When the cardinality is increased to
2, the number of FT generated cut-sets decreases to 1, but the number of cut-sets
reported by FMEA increases to 274. Upon further increasing the cardinality, we
reach a stage where no cut-sets for FT were found. Whereas, for FMEA, the
number of cut-sets further increases to 2045 and 10900 for cardinalities 3 and 4,
respectively. During the formal safety analysis of the hemodialysis machine, it is
observed that the number of cut-sets for FMEA reported by xSAP are generally
greater than those of FT for the same property and cardinality. This is because
the FMEA tables do not present minimal cut-sets leading to TLE, like fault
trees. On the contrary, they consider all possible faults even if the faults are not
contributing directly to TLE [9].

Formal Verification and Safety Assessment of a Hemodialysis Machine 251

(a)

(b) (c)

(d)

0 1 2 3 4 5
100

101

102

103

104

105

0

21

1

274

0

2045

0

10900

Cardinality

N
um

be
r o

f C
ut

se
ts

FMEA Statistics
FT Statistics

(e)

Fig. 3. Fault trees (a) self test of the hemodialysis machine (b) temperature control
(c) blood pump stoppage (d) hemolysis (e) FMEA and FTA statistics

5.2 Temperature Control

We verify that if the system is in the preparation phase and performs priming or
rinsing or if the system is in the initiation phase, then the dialysate temperature
shall remain between 33 ◦C and 40 ◦C [20].
G ((CN.phase = PREPARATION & CN.tubingSystemPhase = PRIMING |

CN.prepPhase = RINSE DIALYZER) | CN.phase = INITIATION ->

CN.current temp > 33 & CN.current temp < 40)

We transformed this property to an invariant TLE by asserting that the
water temperature must always invariantly remain within 33◦ and 40 ◦C.
CN.current temp > 40 | CN.current temp < 33

252 S. Khan et al.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Individual Failure Event Probability

C
om

po
ne

nt
/S

ys
te

m
 F

ai
lu

re
 P

ro
ba

bi
lit

y

Pump
Disposable Tubes
Valve
Chamber
Meter
Sensor
Heater
Transducer
Overall System

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Individual Failure Event Probability

C
om

po
ne

nt
/S

ys
te

m
 F

ai
lu

re
 P

ro
ba

bi
lit

y

Pump
Disposable Tubes
Valve
Chamber
Meter
Sensor
Heater
Transducer
Overall System

(b)

Fig. 4. Hemodialysis system failure (a) without redundancy (b) with redundancy

The Fault tree for this TLE is shown in Fig. 3b. As can be see from the
figure, the temperature violates this condition limit in the presence of one of
the seven events, namely, the heater insulation gets a short circuit condition or
the heater element is blown or the heater fails permanently or the temperature
sensor signal ramps down or the sensor signal is out of limit or erroneous or no
data can be obtained from the temperature sensor at all.

5.3 Stoppage of Blood Pump

An important safety property for the hemodialysis machine is that its blood
pump should stop immediately whenever its dialyzer is empty. The corresponding
TLE is
(TRUE -> CN.dialyzer empty-> CN.EBC.BP.state = on)

The fault tree which resulted from the verification of this property is shown
in Fig. 3c. Intuitively, this undesired event can occur whenever the blood pump
permanently fails at the on condition. Among the failure conditions where pump
is not stopping and thus stuck at the on state, as depicted in the failure tree,
are the pump turning in the wrong direction, its speed being too low but not
halting, the signal of the pump being out of range, the pump explicitly failing at
the on condition, the feedback signal of pump being out of range or the pump
rotation being out of synchronization.

5.4 Hemolysis

The hemolysis is one of the most undesired conditions that must be averted
during hemodialysis. In this condition, the red blood cells are damaged in the
dialyzer. The conditions, which can cause the hemolysis are improper flow in the
blood lines (due to clamping, kinking, etc.), the dialysate temperature exceed-
ing 42 ◦C, low conductivity of dialysate, high arterial pressure, contaminated
dialysate water (contaminations may include bleach, copper or nitrates), and a
highly diluted dialysate [13]. As discussed in Sect. 4, many of these basic events

Formal Verification and Safety Assessment of a Hemodialysis Machine 253

leading to hemolysis are captured in the FEI semantics. We defined a property
and named it hemolysis in our code and generated the corresponding fault tree,
given in Fig. 3d. The failure events including kinking, clamping, fiber clotting,
issues with conductivity meters, heaters, blood pressure are ORed together lead-
ing to hemolysis. In case of the emerging remote therapy scenarios, these failure
events should be given extreme attention. Moreover, redundancy is strongly rec-
ommended here to prevent hemolysis.

6 Conclusion

This paper presents a formal safety assessment approach for a hemodialysis
machine. The results obtained from this analysis are quite useful in assessing
the safety levels of the hemodialysis machine and thus complement its previ-
ously verified functional correctness results. This work can be extended in many
directions and one of the possible directions is to further refine the model of
the system by adding more architectural details and more detailed failure modes
for each device. Another direction is to come up with more interesting safety
and security scenarios and check whether the model and thus the system design
satisfies those properties or not.

References

1. Ahmed, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS (LNAI), vol. 9150, pp. 39–54. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-20615-8 3

2. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Integrat-
ing formal methods into medical software development: the ASM approach. Sci.
Comput. Program. (2017, in press)

3. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press,
Cambridge (2008)

4. Banach, R.: Hemodialysis machine in hybrid Event-B. In: Butler, M., Schewe,
K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 376–393.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 32

5. Barlow, R.E., Chatterjee, P.: Introduction to fault tree analysis. Technical report,
DTIC Document (1973)

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, vol. 185, pp. 825–885 (2009)

7. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Design Automation Conference, pp.
317–320. ACM (1999)

8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

9. Bittner, B., et al.: The xSAP safety analysis platform. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 533–539. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9 31

https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-319-33600-8_32
https://doi.org/10.1007/978-3-662-49674-9_31

254 S. Khan et al.

10. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri,
T., Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel
brake system. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 518–535. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 36

11. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

12. Fayolle, T., Frappier, M., Gervais, F., Laleau, R.: Modelling a hemodialysis machine
using algebraic state-transition diagrams and B-like methods. In: Butler, M.,
Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp.
394–408. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 33

13. Fresenius Medical Care: 2008T Hemodialysis Machine, User Manual (2008)
14. Habermaier, A.: Design time and run time formal safety analysis using executable

models. Ph.D. thesis, University of Augsburg (2016)
15. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information

Science and Technology, 3rd edn., pp. 7162–7170. IGI Global (2015)
16. Hoang, T.S., Snook, C., Ladenberger, L., Butler, M.: Validating the requirements

and design of a hemodialysis machine using iUML-B, BMotion Studio, and co-
simulation. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 360–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 31

17. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-
based development of the generic PCA infusion pump user interface prototype in
PVS. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS,
vol. 8153, pp. 228–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40793-2 21

18. Mashkoor, A.: Model-driven development of high-assurance active medical devices.
Softw. Qual. J. 24(3), 571–596 (2016)

19. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

20. Mashkoor, A., Sametinger, J.: Rigorous modeling and analysis of interoperable
medical devices. In: Modeling and Simulation in Medicine Symposium. p. 5. Society
for Computer Simulation International (2016)

21. Stamatis, D.H.: Failure Mode and Effect Analysis FMEA from Theory to Execu-
tion. ASQ Quality Press, Milwaukee (2003)

22. Zuckerman, D.M., Brown, P., Nissen, S.E.: Medical device recalls and the FDA
approval process. Arch. Intern. Med. 171(11), 1006–1011 (2011)

https://doi.org/10.1007/978-3-319-21690-4_36
https://doi.org/10.1007/978-3-319-21690-4_36
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-33600-8_33
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-642-40793-2_21
https://doi.org/10.1007/978-3-642-40793-2_21
https://doi.org/10.1007/978-3-319-33600-8_29

Automatic Decomposition of Java Open Source
Pull Requests: A Replication Study

Victor da C. Luna Freire(B), João Brunet, and Jorge C. A. de Figueiredo

Federal University of Campina Grande (UFCG), Campina Grande, PB, Brazil
victorfreire@copin.ufcg.edu.br

Abstract. The presence of large changesets containing several inde-
pendent modifications (e.g. bug fixes, refactorings, features) can neg-
atively affect the efficacy of code review. To cope with this problem,
Barnett et al. developed ClusterChanges — a lightweight static analy-
sis technique for decomposing changesets in different partitions that can
be reviewed independently. They have found that ClusterChanges can
indeed decompose such changesets and that developers agree with their
decomposition. However, the authors’ restricted their analysis to soft-
ware that is: (i) closed source, (ii) written in C# and (iii) developed
by a single organization. To address this threat to validity, we imple-
mented JClusterChanges, a free and open source (FOSS) implementation
of ClusterChanges for Java software, and replicated the original Barnett
et al. study using changesets from Java open source projects hosted on
GitHub. We found that open source changesets are similar to the change-
sets of the original study. Thus, our research confirms that the problem
is relevant to other environments and provides a FOSS implementation
of ClusterChanges that not only shows the feasibility of the technique in
other contexts but can also be used to help future research.

Keywords: Modern code review · Changeset decomposition

1 Introduction

Developers have been increasingly applying lightweight code review processes
known as “modern code review” (MCR) [1] because of the drawbacks of formal
inspections [2–4]. MCR usually consists of reviewing changesets in a distributed
and asynchronous manner with the assistance of specialized tools [5–7].

MCR is not trivial to perform though. In particular, understanding the code
under review is one of the main challenges faced by developers [1]. The more inde-
pendent modifications contained in a changeset, the harder it is to understand
what has been changed and, consequently, review it [8]. This type of change-
set has been called tangled changes [9] and composite changes [8] in previous
research. In this paper, we refer to them as composite changesets.

Composite changesets are a significant problem. Researchers have estimated
that as many as 17% of the changesets from open source software (OSS) are com-
posite [9,10]. Furthermore, previous research indicates that developers would like
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 255–268, 2018.
https://doi.org/10.1007/978-3-319-73117-9_18

256 V. C. Luna Freire et al.

an automatic partitioning tool not only to help them understand the composite
changesets under review [8,11,12] but also to improve the accuracy of software
repository mining programs [9].

With this problem in mind, Barnett et al. [11] developed ClusterChanges – a
lightweight static analysis technique for automatically partitioning changesets.
Their evaluation of the technique had promising results. As a remarkable result,
they found that, although ClusterChanges failed to detect some relationships
between changes, it never marked two unrelated changes as being related, i.e.
there were no false-positives. Furthermore, most of the software developers they
interviewed agreed with the decomposition generated by ClusterChanges and
all of them believe that the tool could be useful for understanding composite
changesets [11].

Notwithstanding the excellent results, Barnett et al. [11] pointed out that
their study suffers from the following threats to external validity: (1) the change-
set sample only contains C# code and (2) the changesets are from a single orga-
nization. In addition, we also believe that a possible threat to external validity
is that the analysis was restricted to closed source code, since OSS development
practices tend to be significantly different [13,14].

Considering the aforementioned threats to validity, we replicated the quan-
titative substudy of the original study from Barnett et al. [11] using changesets
from OSS projects written in Java by several organizations. More specifically, we
(1) created JClusterChanges — a free and open source (FOSS) implementation
of ClusterChanges for Java code changesets and (2) applied JClusterChanges
to a sample of 1000 pull requests from the 10 most popular Java OSS projects
hosted on GitHub. We had to create JClusterChanges to carry out the replica-
tion because the original implementation of ClusterChanges for C# software is
not publicly available.

Our replication consisted of following the original study as close as possi-
ble except that we deliberately changed the context to better understand how
widely applicable the results were, i.e., to address the threats to external validity.
Replication is an important mechanism for assuring the reliability of scientific
knowledge, due to the fact that designing and executing experiments is a com-
plex and error-prone activity [15]. By means of this work, we increase the body
of knowledge in Software Engineering and provide stronger evidence for previous
work.

We obtained similar results to the original study. Although small and inde-
pendent changesets are demanded in OSS projects [14], we observed that OSS
changesets are often composite like the closed source changesets from Microsoft
analyzed in the original study. Therefore, we found evidence that ClusterChanges
is also valuable for OSS developers.

The main contributions of this work are:

– Evidence that the problem also exists in OSS projects, i.e. composite change-
sets are common in OSS projects;

– Evidence that ClusterChanges is effective in other contexts;

Automatic Decomposition of Java Open Source Pull Requests 257

– JClusterChanges: a FOSS implementation of ClusterChanges for changesets
written in Java (publicly available with a live demo at: https://sites.google.
com/site/jclusterchanges/)

2 Motivating Example

Fig. 1. Shortened diff view of the pull request in GitHub [6].

Consider a pull request where a developer performed two independents tasks in
a class called Person (Fig. 1). A pull request is equivalent to a changeset in the
context of OSS development, i.e., it is a set of changes that should be reviewed
by someone other than its author and merged into the main repository if it is
deemed to be acceptable. One of the tasks in this pull request was to fix a bug
where methods that should alter the lastName field were instead changing the
firstName field (lines 17, 20–22). The other task was to store the age of a person
(lines 6, 24–29).

Figure 1 shows how a developer assigned to review (the reviewer) such a pull
request would typically view it. With typical code review tools, the reviewer has
to understand on his own which changes are related to each other.

The ClusterChanges algorithm [11] identifies which diff-regions are related
by analyzing the data dependencies between them. A diff-region is a contiguous
set of source code lines that have been added or changed and it contains at most
one class or method.

In our example, there are five diff-regions. Running JClusterChanges on
this pull request yields two partitions, one containing diff-regions [6, 6], [24, 27],
[28, 29] and the other containing diff-regions [17, 17] and [20, 23]. In particular,
diff-regions [6, 6] and [24, 27] are marked as related by JClusterChanges because
the former contains the definition of the variable age and the latter contains an
use of that variable (def-use relationship).

https://sites.google.com/site/jclusterchanges/
https://sites.google.com/site/jclusterchanges/

258 V. C. Luna Freire et al.

Figure 2 shows how the JClusterChanges web application would display this
pull request to the reviewer. When the reviewer selects a partition, the corre-
sponding diff-regions are highlighted. Consequently, the user can review each
partition independently without being confused by unrelated changes.

Fig. 2. Diff view of the pull request provided by JClusterChanges.

3 ClusterChanges

Given a changeset containing multiple diff-regions, ClusterChanges [11] aims to
find a partitioning where each disjoint subset of the diff-regions can be reviewed
independently from the others.

There are four basic definitions for understanding the technique:

Changeset. A changeset is a set of pair of files where each pair contains the orig-
inal version of the file (before-file) and the modified version of the file (after-file).
For the purposes of ClusterChanges, a pull request is equivalent to a changeset.

Diff-region. A diff-region is a contiguous set of source code lines that have been
added or changed. Diff-regions are split at type and method boundaries.

Definition. A definition is a group of statements that introduces an entity into a
program along with an identifier for referring to it. Such entities can be methods,
fields and types for instance.

Use. A use is a reference to a definition by its identifier.
In order to determine which diff-regions are related, ClusterChanges searches

for three possible relationships:

Def-use. If a diff-region f1 has a definition d and a diff-region f2 has a use u
whose associated definition is d, then we say that there is a def-use relationship
between diff-regions f1 and f2.

Automatic Decomposition of Java Open Source Pull Requests 259

Use-use. Given a definition d that is present in the changeset but is not inside
any diff-region, if a diff-region f1 has a use u1 whose associated definition is d
and a diff-region f2 has a use u2 whose associated definition is also d, then we
say that there is a use-use relationship between diff-regions f1 and f2.

Same enclosing method. ClusterChanges also considers diff-regions to be
related if they are in the same method.

After identifying the relationships between the diff-regions, the changeset can
be decomposed using graph theory and the resulting partitions are classified as
either trivial or non-trivial. Trivial partitions are those that contain only diff-
regions that belong to the same method or that contain a single diff-region.
Non-trivial partitions are those which are not trivial partitions, i.e. they have
multiple diff-regions that are not all enclosed by the same method.

3.1 Evaluation by Barnett et al.

First, the authors of the original study quantitatively evaluated ClusterChanges
[11] by running their implementation on a random sample of 1000 changesets
from the Microsoft Office project. Assuming that ClusterChanges correctly iden-
tifies non-trivial partitions (no false-positives), their results show that as much
as 42% of the changesets can be decomposed.

Then, Barnett et al. divided the changesets into four groups based on their
number of partitions and performed different analyses for each group:

– ≤ 1 non-trivial partition: Barnett et al. analyzed 50 of these changesets
to determine if the partitioning was not obviously wrong by looking at the
commit messages and the code changes. Although, 6 of those changesets had
commit messages that suggested more than one task, they were all reasonably
partitioned. Moreover, the authors found no false-positives.

– [2, 5] non-trivial partitions: These were subjected to a qualitative evalua-
tion described in the next paragraph.

– ≥ 6 non-trivial partitions: The authors of the original study did not ana-
lyze this group because only 1.4% of the changesets fall into it and it would
take too much time to interview developers about these changesets.

– ≥ 10 trivial partitions: The authors analyzed 15 out of the 199 changesets
that had at least 10 trivial partitions and concluded that missing relationships
are what caused so many trivial partitions.

For their qualitative study, the authors conducted 20 semi-structured inter-
views with Microsoft developers who had recently submitted a changeset for
code review that contained between 2 and 5 non-trivial partitions. 16 intervie-
wees agreed that the non-trivial partitions were correct and complete, all of them
agreed with the rationale behind ClusterChanges and 18 of them would like to
use the tool in their next changesets.

260 V. C. Luna Freire et al.

4 JClusterChanges

In this section, we present JClusterChanges, our FOSS implementation of the
ClusterChanges technique [11] for Java software projects.

We decided to implement ClusterChanges for Java instead of C# because
(1) Java is a more popular programming language for OSS projects [16], (2)
there are multiple OSS Java code parsers available, (3) in case Barnett et al.
publicly release their implementation of ClusterChanges, our implementation is
more valuable to the community if it targets a different language and (4) we had
previous experience with the Java programming language.

A parser is needed in order to identify the relationships between diff-regions.
We could not apply the Roslyn compiler as in the original study because it only
works with C# code. Thus, we used the Eclipse Compiler for Java (ECJ) [17]
for parsing Java code.

To verify and validate JClusterChanges, we applied automated test cases and
analyzed the results it generated for changesets from real software projects.

JClusterChanges provides a command-line interface that takes as input a
changeset represented by source code files and their corresponding diffs. After
parsing the input files, JClusterChanges outputs a set of files in the comma-
separated values (CSV) file format, which contain not only the partitioning of
the changeset but also all definitions, uses, diff-regions, relationships between
diff-regions that were identified.

We also developed a Web GUI for visualizing the results of JClusterChanges
(Fig. 2). It improves the usability of JClusterChanges and allows users to try
the tool without having to install it on their computers. Using the GUI, users
can choose a pull request from GitHub and visualize the partitioning generated
by JClusterChanges. Consequently, the user can review each partition indepen-
dently.

5 Replication

The goal of this study was to address the threats to external validity from the
original study. To accomplish this, we performed a replication of the original
quantitative substudy by Barnett et al. [11] where we changed the population
dimension as recommended by Gómez et al. classification of Software Engineer-
ing replications [18]. Hence, this is a changed-population/changed-experimenters
replication.

This study can be divided into three phases. First, we randomly selected 1000
pull requests from the 10 most popular Java OSS projects hosted on GitHub.
After that, we used JClusterChanges to automatically partition them. Finally,
we analyzed the dataset similarly to the original study.

There are two main reasons for choosing OSS projects as context. First, it is
a different context as desired, because researchers have shown OSS development
practices to be significantly different from their closed source counterparts [13,
14]. Second, OSS projects have data easily accessible on the Internet, which
facilitates data collection and replicability of empirical studies.

Automatic Decomposition of Java Open Source Pull Requests 261

Our choice of GitHub [19] stems from the fact that not only it had over
100,000 OSS projects using pull-based software development in 2013 [20], but it
also provides a REST API that makes it easy to mine data from it.

Out of all the Java OSS projects in GitHub, we mined the most popular ones
because we hypothesized that these would have large numbers of diverse pull
requests to analyze.

5.1 Data Collection

We chose 10 projects from GitHub by manually analyzing the OSS Java software
projects with the most stars until we had selected 10 of them. We selected a
project for the study if:

– it used GitHub’s pull request system (most projects do not use pull requests
[21]);

– it had at least 300 pull requests which contained Java source code (in 2014,
95% of GitHub projects had at most 25 pull requests [21]);

– it was targeted at the JVM (i.e. Android exclusive projects were not consid-
ered). We wanted to avoid compatibility issues.

In order to select 100 pull requests from each of those software projects, we:

1. Sampled 300 pull requests at random that had at least one Java source code
after-file, since we are interested in analyzing Java code;

2. Executed JClusterChanges on these 300 pull requests;
3. Of these 300 pull requests, sampled 100 pull requests at random that were

analyzed by JClusterChanges without errors or warnings (we discuss this
further in Sect. 5.6).

5.2 Pull Request Sizes

Similarly to the original study, we use boxplots of three metrics to describe the
sizes of the changesets in the dataset, namely files changed, methods changed
and diff-regions (Fig. 3).

The boxplots of this study indicate that pull requests tend to be small. Nev-
ertheless, the presence of numerous outliers show that big pull requests occur
frequently. It is likely that these outliers contain independent modifications and,
thus, it is likely that the problem is real, i.e. that composite changesets are not
rare.

Since the original study data is not publicly available, we could only compare
the results visually. The boxplots show that the changesets of this study are
generally smaller than the ones from the original study.

262 V. C. Luna Freire et al.

Fig. 3. Comparison between the boxplots of change sizes from the original study (left-
hand side) and the ones from this study (right-hand side).

5.3 Partitions

According to the histogram of non-trivial partitions from this study (Fig. 4), the
three most common cases in descending order are pull requests with: 1 (41.5%),
0 (36.9%) and 2 non-trivial partitions (12.2%). Moreover, 90.6% of the pull
requests have at most 2 non-trivial partitions and 95.3% of the pull requests
have at most 3 non-trivial partitions.

Fig. 4. Comparison between the histogram of non-trivial partitions of the original
study (left-hand side) and the one from this study (right-hand side).

37% of the changesets did not have non-trivial partitions. This happens when
the modifications are too small or consist of relationships not detected by JClus-
terChanges, thus the diff-regions are spread out in several trivial partitions. Since

Automatic Decomposition of Java Open Source Pull Requests 263

Fig. 5. Comparison between the histogram of trivial partitions of the original study
(left-hand side) and the one from this study (right-hand side).

the median of diff-regions was small, the most frequent case was a changeset with
few modifications.

Again, we could only compare the results visually because the original study
data is not publicly available.

The histogram of non-trivial partitions obtained in this study is visually
similar to the one from the original study (Fig. 4). More specifically, the tail of
both distributions is similar and the most common cases are the same. But, the
changesets from this study tend to have fewer non-trivial partitions.

As for the trivial partitions from this study (Fig. 5), the three most common
cases in descending order are pull requests with: 1 (30.5%), 0 (25.9%) and 2
trivial partitions (12.6%). Unlike the distribution of non-trivial partitions, there
is a long tail and 31% of the pull requests have more than 2 trivial partitions

A visual comparison between the histogram of trivial partitions from this
study and the one from the original study (Fig. 5) shows a certain similarity
between them. However, the changesets from this study tend to have fewer trivial
partitions. Furthermore, while 4% of the changesets from the original study have
more than 20 trivial partitions, 3% of the changesets from this study have more
than 20 trivial partitions.

We followed the grouping strategy from the original study and performed
a different analysis for each group. Table 1 summarizes the percentage of pull
requests in each of the four groups. There is a marked difference between the
proportions of pull requests with at most 1 non-trivial partition and the propor-
tions of those with between 2 and 5 non-trivial partitions.

264 V. C. Luna Freire et al.

Table 1. Groupwise comparison between this study dataset and the original study
one.

Group This study Original study

≤ 1 non-trivial partition 78.4% 58%

[2, 5] non-trivial partitions 20.1% 40%

≥ 6 non-trivial partitions 1.5% 1.4%

≥ 10 trivial partitions 7.7% 11.9%

5.4 Pull Requests with ≤ 1 Non-Trivial Partitions

We manually investigated a random sample of 50 pull requests that have at most
one non-trivial partition with the goal of determining if ClusterChanges grouped
unrelated diff-regions in the same non-trivial partition. As in the original study,
we manually analyzed these pull requests following a process similar to Herzig
and Zeller [10].

Only two pull requests clearly contained independent changes and JCluster-
Changes separated those changes into different partitions as expected. Therefore,
JClusterChanges never grouped unrelated diff-regions in the same partition in
these 50 pull requests.

5.5 Pull Requests with > 10 Trivial Partitions

We manually investigated 15 of the 77 pull requests with more than 10 trivial
partitions in order to determine what relationships ClusterChanges does not
detect and, as a result, gain insight on how it can be improved.

We obtained results that are similar to the ones from the original study. The
three most common relationships that JClusterChanges could not detect were:

– Refactoring patterns (e.g. code styling, formatting changes);
– Changes dependent on code not available in the pull request;
– Code called indirectly (e.g. methods meant to be called by a test framework).

5.6 Discussion

The similarity between the histograms of non-trivial partitions and trivial par-
titions of this study and the ones from the original study suggests that Cluster-
Changes is as effective in the context of OSS projects as in the context of closed
source software projects.

The boxplots of size metrics (Fig. 3) indicate that these dataset changesets
are smaller than the ones analyzed in the original study. This suggests that pull
requests tend to be more cohesive and less complex than the changes sent for
review at companies such as Microsoft. We hypothesize that this is because pull
requests are often created by outside developers who are not familiar with the
code.

Automatic Decomposition of Java Open Source Pull Requests 265

Given the smaller size of this dataset changes compared to the changes of
the original study dataset, we expected to see fewer non-trivial partitions in this
dataset and this prediction proved to be correct since there were about half as
many changesets as the original study with more than 1 non-trivial partition.
Nevertheless, the number of changesets with multiple partitions is significant and
is evidence that large changesets with independent changes are also commonplace
in OSS projects.

22% of the pull requests analyzed in this study have more than 1 non-
trivial partition (Fig. 4). Considering that ClusterChanges never identified a
false-positive, this means that at most 22% of the changesets are composite.
Furthermore, this proportion is close to the estimates of 16% and 17% provided
by past studies as to how many changesets in OSS projects are composite. This
suggests that the partitioning is correct.

Our manual analysis of 50 pull requests provided further evidence that the
def-use relationship is a fundamental one as claimed in the original study since
we did not found any false positives. A false-positive would be an instance where
JClusterChanges had put two unrelated diff-regions in the same partition and
this did not happen in any of the pull requests analyzed. Such absence of false
positives means that the tool provides an upper bound on the number of inde-
pendent partitions within a changeset. Furthermore, we believe that this is of
vital importance for user acceptance of the tool, because false positives have
been a significant obstacle in the adoption of static analysis tools for finding
bugs [22].

Although there were no false positives, we did observe several types of rela-
tionships between diff-regions that ClusterChanges did not detect. Diff-regions
that were related by logical patterns but did not have code dependencies between
them were a common type of false negative. A few real examples were: adding
the prefix “Abstract” to the name of all abstract classes and adding final modi-
fiers to fields. Tao et al. had some success using pattern matching techniques for
detecting such relationships [10], so their approach could potentially be used to
improve the efficacy of ClusterChanges with regards to these relationships.

We also frequently saw missed use-use relationships because these depended
on definitions not present in the changeset, e.g. calls to a Logger API not present
in the changeset and test cases for code that was not changed. One way to address
this would be to modify ClusterChanges to consider the whole code base instead
of just the files changed. But, future research is needed to determine whether
this can be done efficiently since there would be a lot more source code for the
tool to analyze.

One of the threats to validity of this study is that some changesets are not
being fully analyzed by our tool. This seems to be caused by limitations in
ECJ when parsing certain new features of Java. As this may result in missing
relationships and seem to be an implementation issue unrelated to the technique
itself, we have excluded such changesets from the dataset.

Another threat to validity is that we have not finished our replication of
the qualitative study due to time constraints. Even though our results provide

266 V. C. Luna Freire et al.

evidence that OSS developers face a similar situation to Microsoft developers
and that ClusterChanges behave similarly in an OSS context, it is still possible
that OSS developers do not agree with the partitionings or that they would not
like to use the tool, since OSS development practices tend to be significantly
different [13,14].

6 Related Work

We found two studies with goals similar to ClusterChanges. Dias et al. [23]
created a technique for decomposing changes before developers commit them
to avoid the creation of composite commits. Tao and Kim [10] also published
a heuristic-based technique for automatically partitioning changesets but they
used different heuristics.

The other studies focus on the impact of composite changes on mining soft-
ware repositories (MSR). Herzig and Zeller [9] presented a technique that com-
bines five heuristics to identify related changesets. Kirinuki et al. [24] devised a
technique that is able to warn users if they are about to commit a potentially
composite change by analyzing the history of the software repository. Nguyen
et al. [25] used natural language processing algorithms to create a tool for decom-
posing changesets containing a mix of bug fixing code changes and unrelated
non-fixing code changes.

7 Conclusion

To address the limitations of Barnett et al. evaluation of ClusterChanges [11], we
created JClusterChanges, a FOSS implementation of ClusterChanges for Java
software projects, and used it to evaluate the technique in the context of Java
OSS projects from different organizations.

We obtained results similar to the ones in the original study. Hence, we have
provided evidence that ClusterChanges is generalizable to other contexts and
further evidence that the problem does exist. In addition, JClusterChanges shows
that it is possible to implement the technique for other programming languages
and it can be used to help future research on this subject, e.g. by using it as
a baseline to evaluate other techniques and by extending its implementation to
evaluate changes to the technique.

There are numerous possibilities for future work. Presently, we are working
on a replication of the qualitative portion of the original ClusterChanges study.
Another possibility would be to try to improve JClusterChanges according to
the discussion on missing relationships from both this paper and the original
study.

Finally, to aid future research and to encourage replication of this work, we
provide the material and results of this research at: https://sites.google.com/
site/jclusterchanges/.

https://sites.google.com/site/jclusterchanges/
https://sites.google.com/site/jclusterchanges/

Automatic Decomposition of Java Open Source Pull Requests 267

References

1. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the 2013 International Conference on Software Engi-
neering, pp. 712–721. IEEE Press (2013)

2. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software reviews: the state of the prac-
tice. IEEE Softw. 20(6), 46–51 (2003)

3. Harjumaa, L., Tervonen, I., Huttunen, A.: Peer reviews in real life - motivators
and demotivators, pp. 29–36. IEEE (2005)

4. Shull, F., Seaman, C.: Inspecting the history of inspections: an example of evidence-
based technology diffusion. IEEE Softw. 25(1), 88–90 (2008)

5. Gerrit team: Gerrit. https://www.gerritcodereview.com/. Accessed 21 July 2016
6. GitHub: Github’s features. https://github.com/features. Accessed 21 July 2016
7. Phacility Inc: Phabricator. https://www.phacility.com/phabricator/. Accessed 21

July 2016
8. Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S.: How do software engineers under-

stand code changes? an exploratory study in industry. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engi-
neering, Article no. 51. ACM (2012)

9. Herzig, K., Zeller, A.: The impact of tangled code changes. In: 2013 10th IEEE
Working Conference on Mining Software Repositories (MSR), pp. 121–130. IEEE
(2013)

10. Tao, Y., Kim, S.: Partitioning composite code changes to facilitate code review. In:
Proceedings of the 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp. 180–190. IEEE, May 2015

11. Barnett, M., Bird, C., Brunet, J., Lahiri, S.K.: Helping developers help themselves:
automatic decomposition of code review changesets. In: Proceedings of the 37th
International Conference on Software Engineering. IEEE (2015)

12. Dias, M., Ducasse, S., Cassou, D., Uquillas-Gmez, V.: Do tools support code inte-
gration? a survey. J. Object Technol. 16(2), 1–20 (2016)

13. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 11(3), 309–346 (2002)

14. Rigby, P.C., German, D.M., Cowen, L., Storey, M.A.: Peer review on open-source
software projects: parameters, statistical models, and theory. ACM Trans. Softw.
Eng. Methodol. 23(4), 1–33 (2014)

15. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of exper-
iments. IEEE Trans. Softw. Eng. 25(4), 456–473 (1999)

16. Black Duck Software Inc: Open Hub - comparison between C# and Java with
regard to monthly commits. https://www.openhub.net/languages/compare?
language name%5B%5D=csharp&language name%5B%5D=java&language name
%5B%5D=-1&language name%5B%5D=-1&measure=commits. Accessed 01 Aug
2016

17. The Eclipse Foundation: Eclipse Java development tools (JDT). https://www.
eclipse.org/jdt/. Accessed 26 Nov 2015

18. Gómez, O.S., Juristo, N., Vegas, S.: Understanding replication of experiments in
software engineering: a classification. Inf. Softw. Technol. 56(8), 1033–1048 (2014)

19. GitHub: About GitHub. https://github.com/about. Accessed 01 Aug 2016
20. Gousios, G., Pinzger, M., van Deursen, A.: An exploratory study of the pull-based

software development model. In: Proceedings of the 36th International Conference
on Software Engineering, pp. 345–355. ACM (2014)

https://www.gerritcodereview.com/
https://github.com/features
https://www.phacility.com/phabricator/
https://www.openhub.net/languages/compare?language_name%5B%5D=csharp&language_name%5B%5D=java&language_name%5B%5D=-1&language_name%5B%5D=-1&measure=commits
https://www.openhub.net/languages/compare?language_name%5B%5D=csharp&language_name%5B%5D=java&language_name%5B%5D=-1&language_name%5B%5D=-1&measure=commits
https://www.openhub.net/languages/compare?language_name%5B%5D=csharp&language_name%5B%5D=java&language_name%5B%5D=-1&language_name%5B%5D=-1&measure=commits
https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/
https://github.com/about

268 V. C. Luna Freire et al.

21. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.:
The promises and perils of mining GitHub. In: Proceedings of the 11th Working
Conference on Mining Software Repositories, pp. 92–101. ACM (2014)

22. Bessey, A., Engler, D., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S.,
Henri-Gros, C., Kamsky, A., McPeak, S.: A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

23. Dias, M., Bacchelli, A., Gousios, G., Cassou, D., Ducasse, S.: Untangling fine-
grained code changes. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 341–350. IEEE (2015)

24. Kirinuki, H., Higo, Y., Hotta, K., Kusumoto, S.: Hey! Are you committing tan-
gled changes? In: Proceedings of the 22nd International Conference on Program
Comprehension, ICPC 2014, pp. 262–265. ACM, New York (2014)

25. Nguyen, H.A., Nguyen, A.T., Nguyen, T.N.: Filtering noise in mixed-purpose fixing
commits to improve defect prediction and localization. In: 2013 IEEE 24th Inter-
national Symposium on Software Reliability Engineering (ISSRE), pp. 138–147.
IEEE (2013)

Transformation of OWL2 Property Axioms
to Groovy

Bogumiła Hnatkowska(&) and Paweł Woroniecki

Wrocław University of Science and Technology,
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bogumila.Hnatkowska@pwr.edu.pl,

192157@student.pwr.edu.pl

Abstract. Ontology is a formal representation of domain knowledge. It may be
effectively used in software development – large parts of the object-oriented
code can be automatically generated from existing domain ontologies. The paper
is related to transformations from OWL2 to Groovy. It proposes transformations
of OWL2 properties together with object property axioms. Many axioms, e.g.
asymmetry, irreflexivity have not been considered in the existing literature up to
now. Mapping of some others is incomplete. Proposed transformations preserve
the OWL2 semantics of axioms, assuring model consistency with the original
definition. The implemented rules either guarantee consistency of the source
code by performing additional actions ‘behind the scene’ or prohibit inconsis-
tency by throwing exceptions. As a result, their application can speed up the
development process and produce the source code of high quality at the same
time. All defined transformation rules were implemented and verified by several
examples. A bigger case study confirmed the usability of the rules. Both the tool
as well as the case study are publicly available.

Keywords: OWL2 � Groovy � Transformation rules � Property � Symmetry
Asymmetry � Transitivity � Reflexivity � Irreflexivity � Functional property
Inverse functional property

1 Introduction

Ontology can be defined as “a formal specification of a shared conceptualization” while
“a conceptualization is a structured interpretation of a part of the world that people use
to think and communicate about the world” [1]. In other words, ontology is a formal
description of existing terms in the domain and relationships between them. This
description can be reused for different purposes, e.g. for software development.

Object-oriented paradigm allows representing a complex reality with the use of
classes. They are used to create instances communicating by exchange of messages.
Typically, a subset of classes (called a model) serves as a representation of the specific
domain. The model should be consistent with domain knowledge as much as possible,
as it has a positive influence on source code quality.

The possible scenario of practical application of domain ontology in the develop-
ment process can be as follows. Software developers are given a domain ontology or

© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 269–282, 2018.
https://doi.org/10.1007/978-3-319-73117-9_19

part of it, which is correct, consistent, and complete (and handled by inference engine).
Instead of spending hours on domain knowledge elicitation, e.g. by interviewing future
users or domain experts, they automatically translate the ontology into a runnable
source code, which doesn’t need to be modified. The generated source code is delivered
as a separate package. If the ontology is changed in any way, the transformation
process can be repeated. The role of domain expert changes a little bit – it is a person
responsible for finding or preparing the ontology or its part for the transformation
purposes.

There exist many attempts to automatic translation from domain ontology to a
selected programming language, e.g. Java [2–4]. Most of them focus on basic structural
elements, for example define how to map ontology classes or class properties,
neglecting important property features like symmetry, transitivity or functionality.
Even if some property features are considered, e.g. in [4], the transformations are
incomplete. So there is a need to extend transformation rules when it is possible.
Properly defined transformation rules can be automatized, resulting in a source code of
high quality and faster software development.

In this paper, we demonstrate a subset of transformation rules from OWL2 to
Groovy. OWL2 is used as a specification language for many domain ontologies and is
supported by dedicated tools, e.g. Protégé [5].

Groovy is a modern OO dynamic language with static compilation capabilities [6],
and with some new features like traits, that can be effectively used for transformation
purposes. These features allow to propose better transformations as well as to extend
their scope (new transformation rules are defined for concepts typically not consid-
ered). Similarly to Java, Groovy is executed on the JVM machine. What is more, the
Groovy code is shorter, and because of that more comprehensible, than equivalent code
written in Java or C#.

The rest of the paper is structured as followed. Section 2 presents related works in
deeper detail. Section 3 describes proposed basic transformations from OWL2 to
Groovy. It brings necessary context to understand the way in which OWL2 properties
are represented in Groovy – see Sect. 4 for details. Section 5 defines transformations
for particular property axioms. Most of the transformation rules are illustrated with a
simple example. A bigger case study was described in Sect. 6. Conclusions and further
work are the content of Sect. 7.

2 Related Works

The best solutions for code generation of object-oriented (OO) languages based on
OWL2 ontology were provided in [2–4]. However, they are not perfect.

OWL2 classes are typically transformed to OO classes (see [2, 4]) or interfaces (see
[3]). The second approach is problematic as many parts of the source code must be
implemented multiple times instead of reusing them. Java 8 default implementation of
interfaces does not solve that problem as interfaces cannot implement a state.

OWL2 class axioms (e.g. SubClassOf, EquivalentClasses) and descriptions (e.g.
ObjectIntersectionOf, ObjectUnionOf) are transformed to such implementation of
setters/getters which prevents illegal operations performed by individuals. This logic is

270 B. Hnatkowska and P. Woroniecki

created dynamically (see [3]) or statically (see [4]). Dynamic implementation is hard to
understand, debug and can decrease application performance. Static solutions, based on
interfaces, usually lead to the repeated implementation of them in many places.

OWL2 property, regardless of its type (data property, object property), is repre-
sented as a class attribute (see [2, 4]) or as an interface with setters/getters and
dynamically created implementation logic (see [3]). In the case of a data property,
determination of property type may be difficult. There are many possible types in
OWL2 (imported from XML Schema) that have no similar type in most OO languages.
These are for example: xsd:language or xsd:negativeInteger. They may be mapped to
the most similar types in the target language, e.g. xsd:negativeInteger is mapped to
BigInteger, see [10, 11]. Such transformation is not exact. To overcome these problems
an extra validation logic is needed to ensure correct attribute values. Such logic may be
placed in setters. However, in such implementation there is no direct (static) infor-
mation about attribute’s type and the validation code is repeated in each setter for the
same original type.

Transformation of property axioms (symmetry, reflexivity) is rarely considered in
the literature. In [2] only selected axioms (functional and inverse properties) are
addressed. Other axioms like symmetry, transitivity and inverse functionality are not
covered. In [4], we can find the proposal of transformations for most of the axioms
(except the properties: inverse functional, asymmetry, reflexive and irreflexive), but
some of them seem to be too complicated. In particular, it concerns functional property
which is transformed into a list of values, and then the uniqueness of the list is checked
when any value is added to the list or removed from it. A simpler way to achieve such
functionality is to set a simple type for the attribute (no collection type). In case of
symmetry and transitive properties, only element addition was considered – there is no
logic to ensure correct element removal.

To summarize, we expect the transformation:

– to be based on static mechanisms which are easier to understand and maintain,
– to be able to reuse implemented business logic rather than to repeat it many times,
– to cover as many class axioms and property axioms as possible.

3 OWL2 to Groovy Basic Class Transformations

In OWL2 “class can be understood as a set of individuals” [7]. An individual represents
an object from the domain. It can be a member of many classes. Two classes can be
related with SubClassOf axiom stating that each instance of the subclass is also an
instance of its parent. In particular Thing class being the root of class hierarchy
“represents the set of all individuals” [7].

In object-oriented languages like Groovy or Java, “class is a blueprint or prototype
from which object is created” [8]. It is treated as a (reference) type serving as a
descriptor representing the same structure of its instances [9]. One class (type) can be a
subtype of another class. Class understood as a type is conformant to itself and all of its
generalizations, so in consequence, an instance of type A can be used in the context in
which its parent (B) is expected. However, in such a case widening reference

Transformation of OWL2 Property Axioms to Groovy 271

conversion is applied meaning that the instances of A and B are not equivalent (in
OWL2 in such a case we deal with the same instance) [6]. The fact that an instance is of
specific class type cannot be interpreted as the synonym for “being a member of a set”.

Above mentioned semantic differences are obstacles in defining OWL2 to OO
mapping rules. However, they can be overcome by choosing proper OO language that
provides necessary constructs. Groovy is an excellent destination language for OWL2
to OO language transformation. In contrast to Java, it enables effective mapping of
many OWL2 elements including multiple class inheritance and relations between
classes like equivalence, union, disjoint, intersection.

The most useful Groovy construct in the considered context is a trait. Traits in
Groovy are placed between interfaces and classes. They allow to carry state and may
contain the implementation of methods. Like interfaces, they cannot be instantiated but
can be implemented by classes. Multiple inheritance of traits is also allowed. All these
features make traits applicable in OWL2 to Groovy transformations.

3.1 Classes and Class (Multiple) Inheritance

OWL2 classes are typically transformed to OO classes or interfaces. We propose a
mixture of both approaches where the OWL2 class is transformed to a trait, repre-
senting the class’s state (such state can be reused by the subclasses), and a Groovy class
with the name of the OWL2 class, which implements (directly or indirectly) the trait.
So, OWL2 class A is transformed into two Groovy elements: TraitA and class A which
implements TraitA. There is one root of all generated traits – ThingTrait (related to
OWL2 supertype called Thing). TraitA contains properties of A, a list of A instances, a
factory method (create) for creating new instances of A and a method (removeInstance)
to remove a specific A instance. Both methods call appropriate methods from TraitA
parent classes (to add or remove the instance from theirs instance lists). Class A con-
tains only default private empty constructor – fields and methods are covered by
TraitA.

OWL2 class inheritance is transformed to trait inheritance in Groovy. For example,
mapping of class A, which extends B and C, results in the following Groovy structure:
TraitA extending TraitB and TraitC – see Fig. 1.

Fig. 1. Transformation rule for OWL2 (multiple) class inheritance

272 B. Hnatkowska and P. Woroniecki

3.2 Equivalence of Classes

If OWL2 class A is equivalent to B, then it means that both names can be used
interchangeably (they are synonyms). At the level of programming language, it means
that instances of class A are also instances of class B and vice versa. That effect is
achieved by the equivalence of traits (TraitA and TraitB) by defining one trait that
extends both of them, and this common trait is implemented by classes A and B – see
Fig. 2. TraitAB contains all elements that – in another case – would be implemented by
TraitA, and TraitB appropriately. TraitA and TraitB are empty.

To create instances of A or B one can write:

After that it is possible to assign an instance of A to B (B to A) without casting:

3.3 Union of Classes

OWL2 class A, which is defined as the union of B and C, means that each instance of
B or C is also an instance of A. Translation of such construct to Groovy results in the
creation of three traits: TraitA, TraitB, and TraitC. Each object of TraitA may be cast to
one of the types: TraitB or TraitC (depending on the class the object belongs to – object
of A cannot be instantiated directly, but it must be B or C). See details in Fig. 3.

Fig. 2. Transformation rule for OWL2 equivalence class axiom

Transformation of OWL2 Property Axioms to Groovy 273

3.4 Disjoint Classes

Another fundamental class transformation is related to disjoint classes. This axiom
states that no OWL2 individual belongs to two or more disjoint classes simultaneously.
It was not possible to define a static mapping rule like in previous cases using traits.
Therefore@DisjointClasses annotation was introduced. When TraitA is annotated with
@DisjointClasses([TraitB, TraitC]) then it means that pairs: TraitA and TraitB, TraitA
and TraitC are disjoint. The annotation is not enough alone – a validator that uses it is
necessary. The validator scans all subtypes of ThingTrait (using reflection) to ensure
that none of them extends two or more disjoint traits.

4 Transformation of Properties

OWL2 properties (both types: data property and object property) are mapped to
Groovy attributes in generated traits. The domain of the property determines the trait in
which the property is placed. It means that property can be applied only to objects of
domain type. If the domain is defined as D, then the property must be placed in DTrait
(implemented by class D). If no domain is specified, then the attribute is generated in
ThingTrait (as Thing is the default domain in OWL2). The range of the property
specifies the type of attribute. The default range is ThingTrait. The generated attributes
have private visibility. Accessor methods are also generated to make them accessible.

By default, any attribute should be represented as a list because default cardinality
of the OWL2 property is infinity. The only exception is when the upper bound of the
cardinality is set to 1, or the attribute is marked as functional.

Let us consider the following fragment of OWL2 ontology (see Listing 1) con-
taining object property called madeFromGrape.

Fig. 3. Transformation rule for OWL2 union class axiom

274 B. Hnatkowska and P. Woroniecki

The defined mapping rule translates it into the following Groovy code (see Listing 2).

The domain of the madeFromGrape property is Wine, so it is placed in the
WineTrait trait. Its range is WineGrape what is reflected in the attribute type:
List <WineGrapeTrait>. According to the rule, the property is private, and there are
accessor methods: getter and setter.

Some additional methods are added to increase property usability: addMade-
FromGrape (to add a single grape), and removeMadeFromGrape (to remove a single
grape).

Data property is also translated to an attribute placed in a proper trait. Its type is
either a Groovy type – if it is an equivalent to original OWL2 datatype, e.g. String – or
an immutable wrapper class otherwise. Such class accepts a value only in its con-
structor (no setters are defined) and validates it according to original type semantic.
Then the value can be obtained using getter or type conversion (operator as in Groovy);
for example, NegativeInteger wrapper class stores internally its value as an object of
BigInteger type. Therefore, an instance of NegativeInteger may be converted to an
instance of BigInteger (which is a convenient way to use it) or provide a getter that
returns its value as BigInteger.

5 Transformation of Property Axioms

In further, selected axioms defining characteristics of object property are considered.
They are symmetry, asymmetry, transitivity, functionality, inverse functionality,
reflexivity and irreflexivity. For simplicity mapping rules presented in this section
assume that attributes and accessors are defined directly in classes while in fact they are
defined in traits implemented by classes.

Defined transformations try to preserve the original ontology semantics by:

Transformation of OWL2 Property Axioms to Groovy 275

– Automatic update of the model when it is possible
– Throwing exceptions when an operation can result in model inconsistency
– Use of built-in features of the Groovy language.

5.1 Symmetry

OWL2 symmetry axiom states that if an individual x is connected to an individual y,
then y is also connected to x. As OWL2 properties are mapped to attributes in Groovy,
then the mapping rule is expressed in terms of attributes.

Rule: if a symmetric attribute attr of object x contains value y, then the same
attribute attr of object y must contain value x.

The rule is achieved by a proper construction of getter and setter for the symmetric
attribute, as well as methods for attribute manipulation (add, remove). They must check
(setter, add method) if parameters are connected with ‘this’ object and create the
connection when necessary. If a new value is assigned, the old one symmetrically must
be removed. Remove method does the opposite – called for one end automatically
removes the other.

Let us consider the fragment of OWL2 ontology (see Listing 3) which declares that
adjacentRegion is a symmetric property of class Region (property domain).

Let us consider two regions: r1 and r2. Assume also the existence of addAdja-
centRegion method (in Region) that adds a single adjacent region. Invoking
addAdjacentRegion on r1 with r2 passed as parameter means that r2 must be added to
adjacetRegions in r1, but also r1 must be added to the same attribute’s values list in r2
to preserve symmetry.

Similarly, removing any value from adjacentRegions must also be done symmet-
rically, e.g. if r2 is no longer an adjacent region of r1 (it is removed from adja-
centRegions values in r1), then r1 must be deleted from the adjacentRegions list in r2.

An example of generated Groovy code that fulfills above requirements is presented
in Listing 4 (setter, and add method).

276 B. Hnatkowska and P. Woroniecki

5.2 Asymmetry

OWL2 asymmetry axiom states that if an individual x is connected to an individual y,
than y cannot be connected to x. Similarly to symmetry axiom, the mapping rule is
expressed in terms of attributes.

Rule: if an asymmetric attribute attr of object x contains value y, then the same
attribute attr of object y must not contain value x.

The rule is realized by a proper implementation of setter and add method. The
methods check if any parameter is connected to ‘this’ object by the same property. If
yes, an exception is thrown.

Let us consider Person class with parents property (with domain and range defined
as Person), and two instances of Person: p1 and p2. The property parents is declared
asymmetric because if p1 is a parent of p2, then p2 must not be a parent of p1.

Parents setter checks the condition mentioned above. If any person passed to
setParents contains ‘this’ object as its parent, then asymmetry rule is violated, and an
exception is thrown. Otherwise, values are set correctly.

Transformation of OWL2 Property Axioms to Groovy 277

5.3 Transitivity

Transformation rule for transitivity axiom is also expressed regarding object’s
attributes.

Rule: if a transitive attribute attr of object x contains value y and the same attribute
of object y contains value z, then the attribute of object x must contain value z.

Its transformation is quite similar to that defined for symmetric property with two
small differences. The setter and add method do the connections transitively. Remove
method throws an exception if transitivity rule is violated.

Let us consider the following fragment of OWL2 ontology (see Listing 5):

The example presents the placedIn property (of Region class) which is transitive.
The addPlacedIn method adds a single value not symmetrically but transitively. Let us
consider three regions: r1, r2, and r3. If r3 is located in r2 and one adds the fact that r2
is located in r1, then the fact that r3 is also located in r1 must be added.

Because of transitivity, some attempts of values removal may be illegal. For
example, if place r1 is located in r2, and r2 is located in r3, then r1 must also be
located in r3. In such a case r1 cannot be deleted directly from the placedIn list of r3
because it would change the state of the system to illegal. Such attempt of value
removal results in throwing an exception. A programmer should delete instances
gradually, first: remove r1 from r2, and next – delete the others in any order: r2 from r3
and r1 from r3.

5.4 Functionality

OWL2 functionality axiom states that for each individual x there can be at most one
distinct literal y such that x is connected with y by functional property. In terms of
attributes the same semantics can be expressed with the rule given below.

Rule: A functional attribute of object x can contain at most one unique value.
The semantics of functional attribute is ensured by the transformation which allows

the attribute to contain only one value. It implies a proper type of the attribute which
cannot be a collection or array; it could be Person but not List <Person>. Proposed
transformation requires no additional validation logic.

An alternative approach would be to set attribute’s type as List and validate that it
does not contain more than one unique value. Such validation would have to be done in
all methods that set or add new values to the attribute. It would be obviously more
complicated than the first approach and bring no advantages over it.

278 B. Hnatkowska and P. Woroniecki

5.5 Inverse Functionality

OWL2 inverse functionality axiom states that for each individual x there can be at most
one individual y such that y is connected with x. The rule expressed regarding attributes
is given below.

Rule: if an inverse functional attribute attr of object x contains value y, then value
y must not be present in values of attr in any other object.

The rule is realized at Groovy side by storing the list of all objects of a given class
in a static class attribute. Then, before setting a value of this attribute (setter, add
method), it is checked if the value has not been already set in another object. When the
rule is violated, the InverseFunctionalPropertyException is raised.

Let us consider the following fragment of OWL2 ontology (see Listing 6) where
children property is introduced. It means that a specific child can be related to one woman
only.

Implementation of the rule is demonstrated in the following Groovy code (see
Listing 7). The static attribute used here is called allWomen.

Transformation of OWL2 Property Axioms to Groovy 279

Implementation of addChild and removeChild methods is not provided here due to
limited space, but it is straightforward. The first method is a simplified version of the
setChildren method. It checks if the new child exists in the list of children of any other
woman. Implementation of removeChild removes the parameter (child) from the cur-
rent woman’s children list – no assertions are necessary in this case.

5.6 Reflexivity

OWL2 reflexivity axiom states that each individual is connected to itself.
Rule: a reflexive attribute of object x must contain value x.
This rule is assured by such implementation of the setter which throws an exception

if the input parameter does not contain ‘this’ instance. It is combined with setting an
initial attribute’s value – its list of values contains ‘this’ value. A method removing
attribute’s values must not remove ‘this’ instance, so if this happens, it throws an
exception. In consequence, the reflexive attribute always contains ‘this’ among its
values.

Let us consider an example of reflexive property – knows (everybody knows self)
of Person class. The methods setKnows and addKnows will check if among the
parameters is ‘this’ instance. Otherwise, it will throw an exception. On the contrary, the
removeKnows method will check if the parameter list does not contain ‘this’ instance
and throw an exception when it does.

If the attribute is functional as well as reflexive, then it must be set to ‘this’, and its
value cannot be changed, so there is no setter generated for such attribute – only getter.
Additionally, it can be marked as a final field.

5.7 Irreflexivity

OWL2 irreflexivity axiom means that no individual is connected to itself, which is
expressed in terms of attributes by the rule given below.

Rule: an irreflexive attribute of object x must not contain value x.
Mapping of the irreflexive attribute is similar to the mapping of reflexive one.

However, there are two main differences: ‘this’ is not set as an initial value of the
attribute, and values passed to the setter must not contain ‘this’ instance (in contrast to
reflexive attribute where it must be present). The second condition must also be
checked in the add method to prevent the addition of ‘this’ to attribute’s values.

Let us consider the marriedTo property of Person class marked as irreflexive. The
setMarriedTo method will check if a parameter list does not contain ‘this’ instance.
Similarly, the addMarriedTo method will check if the parameter is different from ‘this’.

6 Case Study

The correctness of implemented transformations was verified by several examples,
including a bigger case study. In the case study, an ontology describing a shop selling
products from different categories was used. This ontology was created by paper’s
authors. Both, the ontology and generated code are publicly available (see [12]). The

280 B. Hnatkowska and P. Woroniecki

ontology includes all axioms described here and contains two extra related to cardi-
nality – not presented in the paper but supported by converter implementation.

The ontology (326 lines, 84 axioms at the first level) was transformed by the
implemented engine to a set of 65 files organized in 5 packages. The package called
model is the core one, including 13 Groovy classes with 14 accompanying traits written
in 2011 code lines. No single class from application model had to be changed in this
case to create a simple shop implementation where basic CRUD functionalities were
provided, e.g. displaying products, orders, customers as well as their modifications.
Only presentation and control layers were implemented – in total 180 lines of code
(command-line user interface).

The case study could be easily extended, e.g. by introducing Object-Relational
Mapping (to save data in a database), providing a graphical user interface or adding
new useful functionalities. However, it was enough to confirm the usability of proposed
transformation rule set.

The proposed approach should scale well for larger OWL2 models. Bigger
ontology means bigger output package with model classes. Other source code packages
will not be influenced by the ontology size as they contain auxiliary elements: decla-
rations of thrown exceptions (exception package), definitions of data types (owlSim-
pleType package) or definitions of necessary validators (validator package).

7 Summary

In the paper, a set of transformation rules from OWL2 to Groovy was presented. The
rules take into account transformation of OWL2 properties together with their features
like symmetry, transitivity or functionality. Proposed rules fill the gap in similar
transformations to Java language and address vulnerabilities in existing ones.

The rules were implemented in Groovy and are available as a jar file under the
link [12]. The tool depends on OWLAPI [13]. The ontology may be provided in:
OWL/XML [14], RDF/XML [15] or OWL Functional (used in this paper) [7].

The fact that Groovy is a target transformation language does not limit the usage of
the approach to applications written only in Groovy. There exist integration mecha-
nisms, e.g. API called JSR-223, which allows calling Groovy code from Java.

Domain experts can share their knowledge directly in ontology which is then
automatically mapped to a source code, what speeds up the development process
significantly. Generated code can be up to 80% of entire application source code. It is
easy to understand by developers. The code can also be instrumented by annotations
required by ORM frameworks or logs instructions. Moreover, the automatically gen-
erated code is less error-prone comparing to manually written one. Assuming cor-
rectness of transformation rules, it is always correct. Furthermore, domain ontologies
may be effectively reused across many products. Reusability is also possible with
manually written code, but as already mentioned, it is less readable to many domain
experts. Besides, OWL2 ontologies may be obtained from external sources like the
Internet. Automatic transformation rules allow to adopt them into own product
immediately.

Transformation of OWL2 Property Axioms to Groovy 281

Known limitations of the proposed approach are as follows. The main assumption
is that domain ontology which is translated to a source code is correct (syntactically and
semantically), consistent and complete. Otherwise, the resulting source code will need
to be modified or may not succeed at all. If the ontology is too wide, it is a task of a
domain expert to select proper parts for transformations. Transformation rules cover
many but not all OWL2 syntax constructs (not supported elements: axioms referring to
anonymous classes, assertions, own datatype definitions, keys). Subsequently, we are
going to propose transformation rules also for these elements. Provided solution is
complete in the scope of considered OWL2 axioms, but the same validation logic must
be repeated for many properties, e.g. if two or more properties are transitive. The
problem can be addressed by the use of annotations and Aspect Oriented Programming
(AOP).

References

1. Borst, W.N.: Construction of engineering ontologies for knowledge sharing and reuse. CTIT
Ph.D-series No. 97–14, Enschede, The Netherlands (1997)

2. Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Ontologies, JavaBeans and relational databases
for enabling semantic programming. In: 31th IEEE Annual International Computer Software
and Applications Conference (COMPSAC), Beijing (2007)

3. Stevenson, G., Dobson, S.: Sapphire: generating java runtime artefacts from OWL
ontologies. In: Salinesi, C., Pastor, O. (eds.) CAiSE 2011. LNBIP, vol. 83, pp. 425–436.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22056-2_46

4. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic mapping of OWL ontologies
into Java. In: Proceedings of Sixteenth International Conference on Software Engineering
and Knowledge Engineering (SEKE), Banff (2004)

5. Protégé. http://protege.stanford.edu/. Accessed 27 June 2017
6. Groovy Language Documentation. http://groovy-lang.org/single-page-documentation.html.

Accessed 27 June 2017
7. OWL2 Web Ontology Language. Structural Specification and Functional-Style Syntax, 2nd

edn. https://www.w3.org/TR/owl2-syntax. Accessed 03 June 2017
8. Object-Oriented Programming Concepts. https://docs.oracle.com/javase/tutorial/java/

concepts/index.html. Accessed 27 June 2017
9. OMG Unified Modeling Language, Version 2.5. http://www.omg.org/spec/UML/2.5.

Accessed 27 June 2017
10. Ohlbach, H.J..: Java2OWL a system for synchronising Java and OWL. In: 4th International

Conference on Knowledge Engineering and Ontology Development, pp. 15–24. SciTePress,
Barcelona (2012)

11. Data Types and Data Binding in WebLogic Web Services. https://docs.oracle.com/cd/
E13222_01/wls/docs100/webserv/data_types.html#wp209610. Accessed 22 May 2017

12. OWL2 to Groovy Converter. https://bitbucket.org/pworoniecki/owl-to-groovy/. Accessed 03
June 2017

13. The OWL API. http://owlapi.sourceforge.net/. Accessed 03 June 2017
14. OWL2 Web Ontology Language XML Serialization, 2nd edn. https://www.w3.org/TR/

owl2-xml-serialization/. Accessed 03 June 2017
15. OWL2 Web Ontology Language Mapping to RDF Graphs, 2nd edn. https://www.w3.org/

TR/2012/REC-owl2-mapping-to-rdf-20121211/. Accessed 03 June 2017

282 B. Hnatkowska and P. Woroniecki

http://dx.doi.org/10.1007/978-3-642-22056-2_46
http://protege.stanford.edu/
http://groovy-lang.org/single-page-documentation.html
https://www.w3.org/TR/owl2-syntax
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
http://www.omg.org/spec/UML/2.5
https://docs.oracle.com/cd/E13222_01/wls/docs100/webserv/data_types.html#wp209610
https://docs.oracle.com/cd/E13222_01/wls/docs100/webserv/data_types.html#wp209610
https://bitbucket.org/pworoniecki/owl-to-groovy/
http://owlapi.sourceforge.net/
https://www.w3.org/TR/owl2-xml-serialization/
https://www.w3.org/TR/owl2-xml-serialization/
https://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
https://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

Graph Structure and Computation

Simple Paths and Cycles Avoiding
Forbidden Paths

Benjamin Momège(B)

Inria Lille - Nord Europe, Villeneuve-d’Ascq, France
benjamin.momege@inria.fr

Abstract. A graph with forbidden paths is a pair (G,F) where G is a
graph and F is a subset of the set of paths in G. A simple path avoiding
forbidden paths in (G,F) is a simple path in G such that each subpath
is not in F . It is shown in [S. Szeider, Finding paths in graphs avoiding
forbidden transitions, DAM 126] that the problem of deciding the exis-
tence of a simple path avoiding forbidden paths in a graph with forbidden
paths is Np-complete even when the forbidden paths are restricted to be
transitions, i.e., of length two. We give an exact exponential time algo-
rithm that decides in O(2nn2k+O(1)) time and O(nk+O(1)) space whether
there exists a simple path between two vertices of a given n-vertex graph
where k is the length of the longest forbidden path. We also obtain an
exact O(2nn2k+O(1)) time and O(nk+O(1)) space algorithm to check the
existence of a Hamiltonian path avoiding forbidden paths and for the
graphs with forbidden transitions an exact O∗(2n) time and polynomial
space algorithm to check the existence of a Hamiltonian cycle avoiding
forbidden transitions. In the last section, we present a new sufficient
condition for graphs to have a Hamiltonian cycle, which gives us some
interesting corollaries for graphs with forbidden paths.

Keywords: Exponential time algorithms · Exact algorithms
Graph algorithms · Forbidden paths · Hamiltonian cycles

1 Introduction

Algorithms manipulating graphs are often used to solve concrete situations in
many applied fields. Finding a path between two given points/vertices is a funda-
mental tool that often serves as a subroutine in many more complex algorithms
and software, for example in flows: improving paths between a source and a sink,
in scheduling: notion of constraint and critical path, in networks for routing oper-
ations, etc. Several well-known polynomial time algorithms are able to do this
task: depth-first search (DFS) or breadth-first search (BFS) to find a shortest
paths in unweighted graphs, Dijkstra for weighted graphs. They are widely avail-
able in software packages (like Maple and Mathematica) and are taught in most
of the first level computer science or engineering courses all around the world
(see a reference book on algorithms like [10]).

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 285–294, 2018.
https://doi.org/10.1007/978-3-319-73117-9_20

286 B. Momège

One of the most fundamental combinatorial problems is that of checking the
existence of paths in graphs. In this paper we study a variant of this problem:
consider a graph G with vertices s and t and a set F of paths in G called forbid-
den paths. The task is to find a simple (s, t)-path P such that no forbidden path
appears as a subpath of P . We call the desired path a path avoiding forbidden
paths. When the solution is restricted to a simple path, Szeider [19] uses a reduc-
tion from 3-SAT to show that the problem of checking the existence of a simple
path avoiding forbidden paths is Np-Complete even when forbidden paths are
transitions (paths of length two). When the solution is not restricted to a sim-
ple path, the problem has already been solved by Villeneuve and Desaulniers
[20] and by Ahmed and Lubiw [2]. They found polynomial time algorithms to
obtain a shortest (s, t)-path avoiding forbidden paths. The problem had not been
studied before them.

More precisely, Villeneuve and Desaulniers [20] give an algorithm for a short-
est (possibly non-simple) path avoiding forbidden paths. They preprocess the
graph G = (VG, EG) in O((n+L) log(n+L)+m+ dL) time and O(n+m+ dL)
space so that a shortest path from s to a query vertex can be found in O(n+L)
time, where n = |VG|, m = |EG|, d is the largest degree of a vertex, and L is the
total size of all forbidden paths. They first build a deterministic finite automaton
(DFA) from the set of fordidden paths using the idea of Aho and Corasick [3],
which can detect in linear time whether a given path contains any of the for-
bidden paths. They then “insert” the DFA into G by replicating certain vertices
of G in the manner introduced by Martins [11], and then they build a shortest
path tree in this modified graph.

Ahmed and Lubiw [2] give two algorithms to compute shortest (possibly
non-simple) path avoiding forbidden paths for the case when all the forbidden
paths are not known a priori (more precisely, they can identify a forbidden path
only after failing in their attempt to follow that path). Their algorithms are
strictly more general than the one of Villeneuve and Desaulniers because these
algorithms solve their problem in roughly the same time but in O(n + m + L)
space, and the algorithm has no a priori knowledge of the forbidden path. The
algorithms take O(fn log n + fm) and O((n + L) log(n + L) + m + dL) time to
find shortest path avoiding forbidden paths from s to all other vertices, where
f is the number of forbidden paths. Their algorithms use a vertex replication
technique similar to the one used to handle non-simple paths in other shortest
path problems [11,20]. Their idea is to handle a forbidden path by replicating its
vertices and deleting edges. The result is that one copy of the forbidden path is
missing its last edge and the other copy its first edge. With that technique, they
want to exclude the forbidden path but to allow all its subpaths. During their
work, they identified the same problem as Villeneuve and Desaulniers: vertex
replication can result in an exponential number of copies of any forbidden path
that overlaps the current one. Villeneuve and Desaulniers solve this problem by
identifying and compressing the overlaps of forbidden paths; such an approach
was impossible for Ahmed and Lubiw since they didn’t have access to the set of
forbidden paths. Their idea is to couple vertex replication with the “growth” of
a shortest path tree. Indeed, they proved that these extra copies are immaterial.

Simple Paths and Cycles Avoiding Forbidden Paths 287

In their article, Ahmed and Lubiw [1] were motivated for the research on
path avoiding forbidden paths by a problem in optical network routing from
Nortel Network. Indeed, in an optical network, a ray of light may fail to reach
the endpoint of a path P . This failure can occur because of various transmission
impairments such as attenuation, crosstalk, dispersion and non-linearities [13,
18]. Moreover, it has been noticed that the ray of light doesn’t reach the endpoint
of P even if it is able to follow any subpath of P . Forbidden paths provide
a straight-forward model of this situation. The path avoiding forbidden paths
problem may also have applications in vehicle routing. Indeed, in some networks,
it is not possible, while going from a point a towards a point b to continue towards
point c. For example in several large streets of cities, it is forbidden to turn left
at point b (on the way towards point c) and to cross a road (if one comes from
point a preceding b). Many such transits are forbidden in all the countries; several
other restrictions exist (no “U” turn for example). In other applications, a path
can represent a list of incident tasks having precedence constraints that can be
done to go from a certain state s of the system to another one t. However, due
to some incompatibility features, a task c can be done after task b, except if
the preceding task is a. For example state/task a can change the temperature
of an object (for example a can be an industrial oven for workpieces) and going
through b is not sufficient to lower this temperature (b can be a quick quality
control of the piece). If task c does not bear such a temperature (for example if
c puts pieces in a plastic envelope), it is then impossible to reach c, coming from
b if b is directly reached by a. Several other studies have been done on graphs
with forbidden transitions (paths of length two). For example, in [7] the authors
want to find an Eulerian path in a graph representing biological data (from
DNA sequencing) where not all transitions between these biological elements
are allowed. Later, in [8], this practical problem serves as a motivation for a
graph theoretic study. The authors prove, among other results, that finding an
Eulerian path is Np-Complete when the graph contains forbidden transitions.
All these concrete limitations are due to the system modeled by graphs (optical
network, routes, systems of production, biological data etc.) in which not all the
paths are possible because they have subpaths that are not allowed.

In [15], we addressed the problem of checking the existence of a simple path
avoiding forbidden transitions. After the work of Szeider [19], we conjectured
that the problem could be solved in O∗(2n) time and polynomial space. It is
possible to find an O∗(2n) time algorithm using dynamic programming adapting
the algorithms of Bellman [5,6] or Held and Karp [14] for the travelling salesman
problem. However, their algorithms have the serious disadvantage of exponential
space complexity which prohibits their use in many circumstances. Another algo-
rithm using the principle of inclusion-exclusion with the same running time and
polynomial space amenable to detecting if a graph (without forbidden paths)
is Hamiltonian has been (re)discovered at least three times (see [4,16,17]). But
when this method is adapted to our problem we only get an O∗(3n) time algo-
rithm. Our idea was to find new sums where we can make a change of variables

288 B. Momège

which reduces the number of operations to obtain an O∗(2n) time and polyno-
mial space algorithm.

In this paper, we study the problem of checking the existence of a simple path
avoiding forbidden paths. To be as general as possible we study the problem in
directed graphs. We give a new exact exponential time algorithm that decides
in O(2nn2k+O(1)) time and O(nk+O(1)) space whether there exists a simple path
between two vertices of a given n-vertex graph where k is the length of the
longest forbidden path. This algorithm generalizes (for all k) and uses a faster
and simpler techniques than the algorithm of [15]. We also obtain an exact
O(2nn2k+O(1)) time and O(nk+O(1)) space algorithm to check the existence of
a Hamiltonian path avoiding forbidden paths and for the graphs with forbidden
transitions an exact O∗(2n) time and polynomial space algorithm to check the
existence of a Hamiltonian cycle avoiding forbidden transitions.

2 Preliminary Definitions

We refer to [9,12,21] for undefined notations. Except for the last section, we only
consider simple directed graphs. We recall that a path of length � in a graph is
a sequence of � + 1 vertices (not necessarily distinct) such that from each of its
vertices there is an arc to the next vertex in the sequence. A path is simple if
all its vertices are distinct.

Definition 1. A graph with forbidden paths is a pair (G,F) where G = (VG, EG)
is a graph and F is a subset of the set of paths in G. A path (resp. simple path,
Hamiltonian path, Hamiltonian cycle) avoiding forbidden paths in (G,F) is a
path (resp. simple path, Hamiltonian path, Hamiltonian cycle) in G such that
no subsequence of consecutive elements of the path is in F . For a fixed positive
integer k a graph with forbidden k-paths is a graph with forbidden paths (G,F)
such that the length of the elements of F is less than or equal to k. A transition
is a path of length two.

We consider the following decision problems:

Simple Path Avoiding Forbidden Paths (SPAFP)

Input: An n-vertex graph with forbidden k-paths and two vertices s
and t.
Output: Does there exist a simple (s, t)-path avoiding forbidden paths
((s, t)-SPAFP) in the graph?

Theorem 1 (Szeider - [19]). The problem SPAFP is Np-complete even for
k = 2.

The Hamiltonian path problem and the Hamiltonian cycle problem are prob-
lems of determining whether a Hamiltonian path or a Hamiltonian cycle exists
in a given graph (whether directed or undirected). Recall that both problems
are NP-complete even in graphs without forbidden paths (See [9]).

Simple Paths and Cycles Avoiding Forbidden Paths 289

Hamiltonian Path Avoiding Forbidden Paths (HPAFP)

Input: An n-vertex graph with forbidden k-paths and two vertices s
and t.
Output: Does there exist a Hamiltonian (s, t)-path avoiding forbidden
paths ((s, t)-HPAFP) in the graph?

Hamiltonian Cycle Avoiding Forbidden Transitions (HCAFT)

Input: An n-vertex graph with forbidden transitions.
Output: Does there exist a Hamiltonian cycle avoiding forbidden tran-
sitions in the graph?

In the Sects. 3 and 4 we present three algorithms:

– An exact O(2nn2k+O(1)) time and O(nk+O(1)) space algorithm to solve the
SPAFP problem. If a SPAFT exists, it also returns the length of the shortest,

– An exact O(2nn2k+O(1)) time and O(nk+O(1)) space algorithm to solve the
HPAFP problem,

– An exact O∗(2n) time and polynomial space algorithm to solve the HCAFT
problem.

3 The Algorithms for the SPAFP and HPAFP Problems

Let (G,F) be a n-vertex graph graph with forbidden k-paths, A and T be subsets
of VG, � a positive integer and s and t two vertices of G. We denote by P the set
of paths (not necessarily simple) avoiding forbidden paths in (G,F). The proof
of the following result is straightforward.

Lemma 1. For j ≥ k we have (x0, . . . , xj) ∈ P if and only if (xi, . . . , xi+k) ∈ P
for all i ∈ {0, . . . j − k}.
Definition 2. Define P(A, �) as the number of (s, t)-paths (not necessarily sim-
ple) of length �−1 that only visit vertices in A and that avoid the forbidden paths.

Define P(A, �; v1, v2, . . . , vi) as the number of (s, vi)-paths (not necessarily
simple) of length � − 1 that only visit vertices in A, that avoid the forbidden
paths, and whose last i visited vertices are v1, v2, . . . , vi (in this order).

Lemma 2. For fixed A, the values P(A, �) for 1 ≤ � ≤ n can be computed in
O(n2k+O(1)) time and O(nk+O(1)) space.

Proof. If � < k, we will still need to check against the paths in F , requiring
O(nk) time for each (s, t)-path of length �− 1 that only visit vertices in A being
checked.

If � = k, P(A, �; v1, . . . , vk) =
{

1 if (v1, . . . , vk) ∈ P and v1, . . . , vk ∈ A,
0 else.

290 B. Momège

If � > k and vk /∈ A, we have P(A, �; v1, . . . , vk) = 0.
If � > k and vk ∈ A, with the help of Lemma 1 we obtain:

P(A, �; v1, . . . , vk) =
∑

v0∈A:(v0,...,vk)∈P

P(A, � − 1; v0, . . . , vk−1)

=
∑

v0∈A:(v0,...,vk) is good

P(A, � − 1; v0, . . . , vk−1),

where (v0, . . . , vk) ∈ P is good if and only if (vj , . . . , vk) /∈ F for 0 ≤ j ≤ k.
We have {P(A, �; v1, . . . , vk) | (v1, . . . , vk) ∈ Ak}

=

⎧⎨
⎩

∑
v0∈A:(v0,...,vk) is good

P(A, � − 1; v0, . . . , vk−1) | (v1, . . . , vk) ∈ Ak

⎫⎬
⎭

and so we can compute this set from {P(A, �−1; v0, . . . , vk−1) | (v0, . . . , vk−1) ∈
Ak} in O(n2k+2) time (the cost of checking each path against paths in F could
be O(nk+1) time for each path in P in the worst case) and O(nk+O(1)) space,
and by induction from {P(A, k; v1, . . . , vk) | (v1, . . . , vk) ∈ Ak} in O(n2k+3) time
and O(nk+O(1)) space. Finally, with the formula

P(A, �) =
∑

(v1,...,vk−1)∈Ak−1

P(A, �; v1, . . . , vk−1, t)

valid for � ≥ k we compute P(A, �) in O(n2k+O(1)) time and O(nk+O(1)) space.
This concludes the proof. ��
Definition 3. Define H(T) as the number of Hamiltonian (s, t)-paths that avoid
the forbidden paths in the subgraph induced by T .

Lemma 3. H(T) =
∑

A⊆T (−1)|T�A| · P(A, |T |).
Proof. Let P be a fixed path of length |T | − 1 that is counted in at least one of
the terms P(A, |T |) of the sum

∑
A⊆T

(−1)|T�A| · P(A, |T |). (1)

Then we show that when P is simple, it contributes 1 to the sum, and when not
simple, contributes 0. Indeed, the path P contributes

∑
U⊆A⊆T

(−1)|T�A| (2)

to the sum (1), where U is the set of vertices of P . Substituting |T � A| by i the
sum (2) is

|T�U |∑
i=0

(|T � U |
i

)
(−1)i,

Simple Paths and Cycles Avoiding Forbidden Paths 291

and is equal to 0 if U is not equal to T , and to 1 otherwise. Thus, the sum (1)
counts the number of (s, t)-paths of length |T | − 1 avoiding forbidden paths and
visiting each vertex of T , that is to say H(T). This concludes the proof. ��

Now the number of simple (s, t)-paths of length �−1 that avoid the forbidden
paths is obviously obtained by taking the sum

∑
T⊆VG:|T |=�

H(T)

of H(T) over all vertex subsets T of the graph such that |T | = �. It remains to
derive a nicer-to-compute expression with the help of Lemma 3, e.g., as follows:

∑
T⊆VG:|T |=�

H(T) =
∑

T⊆VG:|T |=�

∑
A⊆T

(−1)|T�A| · P(A, |T |)

=
∑

A⊆VG

∑
A⊆T⊆VG:|T |=�

(−1)�−|A| · P(A, �)

=
∑

A⊆VG

(−1)�−|A| · P(A, �) ·
(

n − |A|
n − �

)
.

We deduce that the number of Hamiltonian (s, t)-paths that avoid the forbidden
paths is ∑

A⊆VG

(−1)n−|A| · P(A,n),

and the number of simple (s, t)-paths that avoid the forbidden paths is

n∑
�=1

∑
A⊆VG

(−1)�−|A| · P(A, �)
(

n − |A|
n − �

)
.

So the following algorithms are correct:

Algorithm 2. Input: A graph with forbidden k-paths (G,F) and two vertices s
and t.
Output: Does there exist a (s, t)-HPAFP in (G,F)?

1. Let n := |VG| and R := 0
2. For Each A ⊆ VG do R := R + (−1)n−|A| · P(A,n) end

If R ≥ 1 then Return YES
3. Return NO

Algorithm 3. Input: A graph with forbidden k-paths (G,F) and two vertices s
and t.
Output: Does there exist a (s, t)-SPAFP? If yes, what is the length of the shortest
one?

292 B. Momège

1. Let n := |VG|
2. For � ← 1 To n do:

R := 0
For Each A ⊆ VG do R := R + (−1)�−|A| · P(A, l) · (

n−|A|
n−�

)
end

If R ≥ 1 then Return (YES, �) end
3. Return NO

Theorem 4. Algorithms 2 and 3 are correct and run in O(2nn2k+O(1)) time
and O(nk+O(1)) space for every n-vertex graph with forbidden k-paths.

Proof. In light of the above, algorithms are correct and the space complexity is
bounded by O(nk+O(1)). The time complexity of Algorithm 2 is bounded by

n∑
i=1

(
n

i

)
· O(n2k+O(1)) = O(2nn2k+O(1)).

The time complexity of Algorithm 3 is bounded by
n∑

�=1

n∑
i=1

(
n

i

)
· O(n2k+O(1)) = O(2nn2k+O(1)).

This concludes the proof. ��
Remark 1. By repeating the Algorithm 2 for all ordered pairs of vertices (s, t)
we check the existence of a HPAFP in (G,F) in O(2nn2k+O(1)) time.

4 The Algorithm for the HCAFT Problem

In this section (G,F) is a n-vertex directed graph with forbidden transitions
(paths of length two). We use the abbreviation (s, t)-HPAFT for Hamiltonian
(s, t)-path avoiding forbidden transitions.

Lemma 4. A HCAFT cannot contain both arcs of a transition of F .

Proof. Indeed, if a cycle contains two arcs ab and bc (with possibly a = c) of
a transition of F , bc cannot be the successor of ab (otherwise the cycle would
contain a transition of F). Thus, the vertex b appears twice in the cycle. This is
a contradiction. This concludes the proof. ��

For each given arc ts ∈ EG, we construct from (G,F) a graph with forbidden
transition (Gs,t, Fs,t) as follows:

1. Delete the arc distinct from ts of each transition of F containing ts,
2. Remove all transitions containing the arc ts from F .

i.e. VGs,t
:= VG,

EGs,t
:= EG � ({vt | (v, t, s) ∈ F} ∪ {sv | (t, s, v) ∈ F}),

Fs,t := F � {(v, t, s), (t, s, v) | v ∈ VG} .

Simple Paths and Cycles Avoiding Forbidden Paths 293

Theorem 5. There is a HCAFT containing the arc ts in (G,F) if and only if
there is a (s, t)-HPAFT in (Gs,t, Fs,t).

Proof. If there is a HCAFT containing the arc ts in (G,F), then by Lemma 4, it
does not contain the arc different from ts of each transition of F containing the
arc ts. So the graph (Gs,t, Fs,t) contains the cycle and therefore a Hamiltonian
(s, t)-path.

Conversely, suppose that there is a (s, t)-HPAFT in (Gs,t, Fs,t). By construc-
tion, this graph contains the arc ts and does not contain a transition of F
containing this arc. So we can add this arc to the previous HPAFT to form a
HCAFT in (Gs,t, Fs,t). This cycle does not contain any transition of F . It is
therefore a HCAFT containing the arc ts in (G,F). This concludes the proof. ��
Corollary 1. There is a HCAFT in (G,F) if and only if there exist an st ∈ EG

such that there is a (s, t)-HPAFT in (Gs,t, Fs,t).

Algorithm 6. Input: A graph with forbidden transitions (G,F).
Output: Does there exist a HCAFT in (G,F)?

1. For Each arc st ∈ EG :
Apply the Algorithm 2 to Gs,t

If Algorithm 2 returns YES then Return YES
2. Return NO

Corollary 2. Algorithm 6 is correct and runs in O∗(2n) time and polynomial
space for every n-vertex graph with forbidden transitions.

Proof. By Corollary 1, Algorithm 6 is correct and has a polynomial space com-
plexity. By Theorem 4 and Corollary 1 the time complexity is bounded by

n(n − 1) · O(2nn4+O(1)) = O∗(2n).

This concludes the proof. ��

References

1. Ahmed, M., Lubiw, A.: Shortest paths avoiding forbidden subpaths. In: STACS,
pp. 63–74 (2009)

2. Ahmed, M., Lubiw, A.: Shortest paths avoiding forbidden subpaths. Networks
61(4), 322–334 (2013)

3. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

4. Bax, E.T.: Inclusion and exclusion algorithm for the Hamiltonian path problem.
Inf. Process. Lett. 47(4), 203–207 (1993)

5. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM 9(1), 61–63 (1962)

6. Bellman, R.E.: Combinatorial processes and dynamic programming. In: Proceed-
ings of 10th Symposium in Applied Mathematics, pp. 217–249 (1960)

294 B. Momège

7. B�lażewicz, J., Kasprzak, M.: Computational complexity of isothermic DNA
sequencing by hybridization. Discrete Appl. Math. 154(5), 718–729 (2006)

8. B�lażewicz, J., Kasprzak, M., Leroy-Beaulieu, B., de Werra, D.: Finding Hamil-
tonian circuits in quasi-adjoint graphs. Discrete Appl. Math. 156(13), 2573–2580
(2008)

9. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2010)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn. MIT Press, Cambridge (2009)
11. de Queiros, E., Martins, V.: An algorithm for ranking paths that may contain

cycles. Eur. J. Oper. Res. 18(1), 123–130 (1984)
12. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 173rd edn. Springer,

Heidelberg (2012)
13. Gouveia, L., Patŕıcio, P., de Sousa, A.F., Valadas, R.: MPLS over WDM network

design with packet level QOS constraints based on ILP models. In: Proceedings of
IEEE INFOCOM (2003)

14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

15. Kanté, M.M., Laforest, C., Momège, B.: An exact algorithm to check the existence
of (elementary) paths and a generalisation of the cut problem in graphs with forbid-
den transitions. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 257–267. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35843-2 23

16. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1(2), 49–51 (1982)

17. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling
salesman problem. In: Proceedings of the 1977 Annual Conference, ACM 1977, pp.
294–300. ACM, New York (1977)

18. Lee, K., Shayman, M.A.: Optical network design with optical constraints in
IP/WDM networks. IEICE Trans. 88-B(5), 1898–1905 (2005)

19. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Appl.
Math. 126(2–3), 261–273 (2003)

20. Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden paths.
Eur. J. Oper. Res. 165(1), 97–107 (2005)

21. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle
River (2000)

https://doi.org/10.1007/978-3-642-35843-2_23

External Memory Algorithms for Finding
Disjoint Paths in Undirected Graphs

Maxim Babenko1,3 and Ignat Kolesnichenko2,3(B)

1 National Research University Higher School of Economics, Moscow, Russia
2 Moscow Institute of Physics and Technology, Moscow, Russia

ignat1990@gmail.com
3 Yandex LLC, Moscow, Russia

Abstract. Consider the following well-known combinatorial problem:
given an undirected graph G = (V,E), terminals s, t ∈ V , and an integer
k ≥ 1, find k edge-disjoint s–t paths in G or report that such paths do
not exist.

We study this problem in the external memory (EM) model of
Agrawal and Vitter, i.e. assume that only M words of random access
memory (RAM) are available while the graph resides in EM, which
enables reading and writing contiguous blocks of B words per single
I/O. The latter external memory is also used for storing the output and
some intermediate data.

For k = 1, the problem consists in finding a single s–t path in
an undirected graph and can be solved in Conn(V,E) = O

(
V +E
V

Sort(V) log log V B
E

)
I/Os, where Sort(N) = O

(
N
B

logM/B
N
B

)
is the

complexity of sorting N words in external memory.
Our contribution is two novel EM algorithms that solve the prob-

lem for k ≤ M
B

. The first takes O(k · Conn(V,E)) I/Os. The second
one applies the ideas of Ibaraki–Nagamochi sparse connectivity cer-
tificates and takes O

(
(Sort(V + E) + k · Conn(V, kV)) · log V

M

)
I/Os,

which improves upon the first bound for sufficiently dense graphs.
Both algorithms outperform the naive approach based on successive

BFS- or DFS-augmentations for a wide range of parameters |V |, |E|,
M , B.

1 Introduction

Consider the following well-known combinatorial problem: given a undirected
graph G = (V,E) terminals s, t ∈ V , and integer k ≥ 1, find k edge-disjoint
s–t paths in G (or report that such paths do not exist). This problem, having
intimate connections with network flow theory, dates back to the beginning of
the 20th century. A multitude of efficient combinatorial algorithms are known to
solve this problem but most are formulated in terms of the RAM model, where
the cost of accessing each memory cell is O(1).

Now suppose that graph G is huge; it cannot fit into RAM and is instead kept
in a storage (say, HDD or SSD), which enables reading and writing contiguous
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 295–304, 2018.
https://doi.org/10.1007/978-3-319-73117-9_21

296 M. Babenko and I. Kolesnichenko

blocks of size B words (typically B � M) within a single I/O, while only
M � |V |, |E| words of the usual (internal, random access) memory are available.
The external memory is also used for storing the output and any intermediate
data the algorithm finds necessary. The complexity is measured as the number
of I/Os (reads and writes) the algorithm performs in the worst case for inputs of
a given size. This framework (introduced by Agrawal and Vitter [AV88]) proved
to be a useful tool for analysing real-world algorithms dealing with huge volumes
of data.

For example, consider the standard Sorting problem: given a sequence of N
integers (each fitting into a machine word), the goal is to reorder its elements in
non-decreasing order. The external memory version of Merge-Sort algorithm
solves this problem in O(Sort(N)) I/Os. Here Sort(N) := O

(
N
B logM/B

N
B

)
;

the latter can often be found as a part of various complexity estimates.
Assuming the EM model, the problem of finding disjoint paths becomes more

intricate. Indeed, most RAM algorithms start with the empty collection of paths
and then gradually improve it by running certain digraph traversals (e.g. BFS
or DFS). Traversing a directed graph in external memory is known to be hard
and takes Ω(V + E/B) I/Os for modern algorithms [MSS03]. (Hereinafter, in
complexity bounds we identify sets with their cardinalities.)

Note that for k = 1 the problem is simpler: finding a spanning forest in
an undirected graph can be done in Conn(V,E) = O

(
V +E

V Sort(V) log log V B
E

)
I/Os [MR99]; note that Conn(V,E) = o(V + E/B) for reasonable parameter
values. Now it remains to check if s and t are in the same tree and, if so,
compute a (unique) s–t path in that tree. The latter is known to be doable in
O(Sort(V + E)) I/Os.

Our contribution is two novel EM algorithms that solve the problem for undi-
rected graphs for moderate values of k; namely we assume that k ≤ M

B . Our first
algorithm takes O(k · Conn(V,E)) I/Os and works best for sparse graphs. The
second applies ideas of Ibaraki–Nagamochi sparse connectivity certificates and
takes O

(
(Sort(V + E) + k · Conn(V, kV)) · log V

M

)
I/Os, which gives a better

bound for, e.g. E > kV · log V
M .

The rest of the paper is organized as follows. In Sect. 2 we introduce some
basic definitions and notation that is used throughout the paper. Section 3
presents the first algorithm that employs the special structure of residual graphs
to speed up finding augmenting paths. Section 4 discusses sparse connectivity
certificates and presents the second algorithm, which improves upon the first
one for sufficiently dense graphs. Finally in Sect. 5 we conclude with a number
of observations and open questions.

2 Preliminaries

2.1 Flows and Packings

As it is widely known, there is an intimate connection between collections
of vertex-simple edge-disjoint s-t paths (packings) and s–t integral flows in

External Memory Algorithms for Finding Disjoint Paths 297

unit-capacitated networks. The latter can be equivalently described as follows.
Suppose that some edges of G are made directed in such a way that: (i) all
directed edges incident to s leave s; (ii) all directed edges incident to t enter t;
(iii) for each v ∈ V − {s, t} the number of directed edges entering v is equal to
the number of directed edges leaving v. Then this (partial) orientation gives an
s–t flow. The number of directed edges leaving s is always equal to the number
of directed edges entering t; this common number is called the flow value and is
denoted by |f |.

A packing can be trivially converted into a flow (by orienting all edges tra-
versed by paths in the packing in the direction along the path from s to t). The
reverse transformation is also possible: given a flow, one can decompose it into
a collection of edge-disjoint s–t paths and circuits (by listing these components
explicitly).

The latter transformation, while being trivially doable in linear time in the
RAM model, is more challenging if the EM model is assumed. Fortunately, these
exists an efficient algorithm that solves the problem in O(Sort(V + E)) I/Os. It
reduces the decomposition to a variant of List-Ranking problem. Consider a
linked list with N items (given by a collection of links (x, y) indicating that y
is the immediate successor of x). The goal is to compute the ranks of its items,
i.e. distances from the beginning of the list. While the task can be easily solved
in O(N) time in RAM, this straightforward approach involves Θ(N) random
reads, which implies O(N) I/Os bound in the EM model. A substantially better
solution, which takes O(Sort(N)) I/Os, is known [AV88,MSS03].

Moreover, a similar algorithm can deal with linked lists consisting of multiple
connected components, some of which could be cyclic. Instead of computing
ranks the algorithm can list the items in these components explicitly (in the
natural order induced by links).

With these techniques at hand, one can turn a flow into a packing as follows:
consider the set of all directed edges and regard them as items. Sort these edges
by their head vertices. Make a copy of the edge list and sort it by tail vertices.
Now for each v ∈ V −{s, t} one has the lists of all incoming and outcoming edges
δin(v) and δout(v), resp. These lists are of equal size, so we may arbitrarily (and
bijectively) match edges in δin(v) and δout(v) to form links between items. It
remains to run a variant of List-Ranking algorithm [CGG+95] to decompose
items (directed edges) into components (s–t paths and circuits). Among these
components, we are only interested in s–t paths and may ignore circuits. The
total complexity of this procedure is O(Sort(V + E)). The reader may refer to
[Bab13] for more details.

2.2 Flow Augmentation

Our algorithms primarily work with flows rather than packings. Given a flow
f , the standard augmenting path search may either reveal a way to increase
the value of f or detect that it is already maximum, as follows. Consider the
(partially directed) graph Gf (usually called residual) obtained from G by tak-
ing all undirected (w.r.t. f) edges and reversing the directions of all directed

298 M. Babenko and I. Kolesnichenko

(w.r.t. f) edges. Now if Gf admits no s–t path (where directed edges must be
traversed in the given direction and undirected can be traversed arbitrarily)
then f is maximum. Otherwise, for such a path P (called augmenting) we alter
f into f ′ as follows: all edges not traversed by P remain unchanged, all undi-
rected edges traversed by P become directed in f ′ (and P induces a direction
for them), and finally all directed edges traversed by P are reversed. This is the
standard flow augmentation procedure; one can easily check that the resulting
(partial) orientation f ′ is a flow obeying |f ′| = |f | + 1.

These observations immediately imply the naive algorithm for finding k edge-
disjoint s–t paths (typically referred to as the Fulkerson–Ford algorithm): start
with the empty flow, run k augmentations; finally convert the flow into a packing.
In the RAM model, this algorithm takes O(k(V + E)) time.

Unfortunately there exists a fundamental obstacle preventing this approach
from yielding an efficient EM algorithm: while checking for s–t connectivity in
undirected graphs is easy (takes O(Conn(V,E)) = O(V +E

V ·Sort(V) log log V B
E)

I/Os [MR99]), residual graphs arising at intermediate steps are (partially)
directed and no efficient EM digraph traversal is known; in particular both BFS
and DFS take Ω(V + E/B) I/Os, which may easily be prohibitive.

3 Efficient External Memory Augmentation

We solve the above issue by exploiting the structure of residual graphs. Our
approach takes O(Conn(V,E)) I/Os per augmentation step and thus enables to
compute k edge-disjoint s–t paths in O(k · Conn(V,E)) I/Os.

3.1 Ladder Graph

The idea is to replace the residual graph with another one, called the ladder
graph H, which is constructed as follows. Let f be the current flow of value l,
and P = {P1, . . . , Pl} be the current packing of s–t paths. We split vertices of
Gf that appear in Pi to make paths Pi vertex-disjoint. Namely, let U be the set
of vertices that belong to any Pi; for each v ∈ U count the number p(v) of paths
Pi that contain v and make p(v) copies v1, . . . , vp(v) of v. In particular, we have
exactly l copies s1, . . . , sl of s and exactly l copies t1, . . . , tl of t. Directed edges
of Gf are turned into directed edges of H.

In other words, H consists of l vertex-disjoint paths from ti to si (for i =
1, . . . , l). We call these paths Q = {Q1, . . . , Ql} (where Qi in H corresponds to
Pi in Gf).

Now we add undirected edges to H to capture the reachability properties of
the original Gf . First, we need to account for vertex splitting: for each v ∈ U we
add p(v) − 1 undirected edges of the form

{
vi, vi+1

}
for i = 1, . . . , p(v) − 1; we

call them glue edges.
Second, we need to account for the undirected edges present in Gf . To this

aim, we compute a spanning forest of the undirected part Gundir
f of Gf . For each

such component Γ , let u1, . . . , us be its vertices belonging to U . Recall that each

External Memory Algorithms for Finding Disjoint Paths 299

s

a

b

t

c

d

e

(a)

s1

c1

b1

t1

s2

a1

b2

e1

t2

(b)

Fig. 1. Ladder graph construction. (a) Initial residual graph Gf ; (b) Ladder graph H.
Blue dashed indicates glue edges. Red thin indicates connectivity edges. (Color figure
online)

of these vertices u is split into p(u) copies in H. To capture the connectivity,
we add s − 1 undirected edges between arbitrary copies of ui and ui+1, for
i = 1, . . . , s − 1; we call them connectivity edges. This completes the description
of H.

One can easily see that each s–t path in Gf gives rise to an si–tj path in
H (for some i, j) and vice versa. Indeed, each s–t path in Gf can be split into
maximal directed and undirected segments. Each directed segment induces a
sequence of directed edges in H; since the endpoints of each consequent pair
could be different copies vα, vβ of the same v ∈ U , we may need to insert glue
edges between.

Next, each undirected segment consists of edges from the same connected
component Γ ; we replace it with the appropriate sequence of connectivity edges.

An example of the original graph Gf and its corresponding ladder graph H
is given in Fig. 1. Also this construction of H can be carried out in the EM
settings; due to the lack of space we omit the relevant details.

Lemma 1. Ladder graph H can be constructed in O(Conn(V,E)) I/Os.

3.2 Finding Augmenting Paths

We now consider the problem of finding an augmenting path in H, i.e. a path
connecting some si with some tj . Like in most EM algorithms, all our graphs
are given by files consisting of tuples describing edges. Vertices and edges are
identified with numbers (or short tuples of numbers) and each edge is described

300 M. Babenko and I. Kolesnichenko

by the ids of its endpoints. For graph H, its vertex ids explicitly encode ids of
the originating vertices of G.

Recall that each path Pi in the current packing P in G is turned into a
path Qi in H and the latter paths are vertex-disjoint. We run List-Ranking
for the directed part Dir of H to assign ranks to all vertices of H: copies si

will have rank 0, the rank of each ti coincides with the edge-length of the cor-
responding path Qj ending in ti; this assignment is given by file Ranks with
tuples (v id, rank, path id). rank is the above-mentioned rank, and path id is an
integer ranging from 1 to l and designating paths Qi.

We take glue and connectivity edges and make them “symmetric” by adding
edges (x, y) and (y, x) for each undirected edge {x, y}. The resulting file Undir
consists of tuples with endpoints (edge id, head id, tail id). We join (by sorting
and merging) Ranks with Undir on condition v id = tail id and split the
result into files Edges1, . . . ,Edgesl by path id where Edgesi consists of tuples
(tail rank, tail id, head id, edge id) describing undirected edges of H that leave
the vertices of Qi, i = 1, . . . , l; here tail rank indicates the rank of vertex with
id tail id. These files Edgesi are furthermore sorted by tail rank.

We execute a certain variant of graph traversal: maintain the set of reachable
vertices R, which is initialized to be

{
s1, . . . , sl

}
, then gradually examine edges

leaving R and extend R until no more suitable edges remain or some tj is added
into R. The cornerstone of the efficient implementation is the following obser-
vation, which follows from the structure of H: if some v ∈ V (Qi) is added into
R then all vertices of smaller rank (preceding v) in Qi can also be immediately
added to R. This enables to maintain an array of border ranks b[1], . . . , b[l] and
assume that

R = {v ∈ H | rank(v) ≤ b[path id(v)]} ,

where rank(v) and path id(v) is the rank and the path id assigned to v, resp.,
by List-Ranking.

We start with b[i] := 0 for all i = 1, . . . , l, and scan all Edgesi in parallel.
From each Edgesi, we read edges e = (x, y) originating from vertices x ∈ V (Qi)
with rank(x) ≤ b[i]. For each such e, let j := path id(y); we update b[j] :=
max (b[j], rank(y)) and proceed. These updates enable reads to progress. We
stop either when some b[i] becomes equal to the edge-length of Qi (in which case
some copy of t is reached and we have a breakthrough) or when for each Edgesi

all edges with tail rank ≤ b[i] are processed (in which case no augmenting path
exists and the algorithm halts).

Note that border ranks are maintained in RAM. Also to enable reading from
all Edgesi in parallel, we need Bl words of RAM to facilitate prefetch. This is
feasible since k ≤ M

B .
The total I/O complexity of checking for the existence of an augmenting path

is O(Sort(V + E)). In case of positive answer, however, we need to construct
such a path explicitly and apply it to the current flow. The detailed proof of the
following fact is rather technical and is omitted.

External Memory Algorithms for Finding Disjoint Paths 301

Lemma 2. If the above algorithm reveals the existence of an augmenting path in
H, then it is possible to construct one and augment f along it in O(Sort(V +E))
I/Os.

Summing over all stages, we get

Theorem 1. Given an undirected graph G = (V,E), vertices s, t ∈ V , integer
k ≥ 1, and assuming the EM model, one can find k edge-disjoint s–t paths (or
figure out that such paths do not exist) in O(k · Conn(V,E)) I/Os.

4 External Memory Sparsification

4.1 Sparse Connectivity Certificates

The complexity of the algorithm from Sect. 3 can be improved by applying the
following idea: when graph G is sufficiently dense most of its edges are redundant
and can be ignored. This intuition is formalized by the following

Theorem 2 [NI92]. Given an undirected graph G = (V,E), vertices s, t ∈ V ,
and integer k ≥ 1, consider the sequence of undirected forests (regarded as edge
sets) F1, . . . , Fk constructed as follows: F1 is a spanning forest in G; Fi is a
spanning forest in (V,E − F1 − . . . − Fi−1) for i = 2, . . . , k. Then, if G has k
edge-disjoint s–t paths then G′ = (V,E′), for E′ := F1 ∪ . . . ∪ Fk also has k
edge-disjoint s–t paths.

We call G′ a k-sparse certificate for G. Note that G′ has at most k(|V | − 1)
edges. In [NI92] it was shown how G′ can be constructed from G in linear time.
However, the latter algorithm only applies to the RAM model and requires Ω(V +
E) I/Os in the EM model, which makes it impractical.

In this section we establish the following

Theorem 3. Assuming the EM model, a k-sparse certificate for G = (V,E) can
be constructed in O

(
(Sort(V + E) + k · Conn(V, kV)) log V

M

)
I/Os.

Together with Theorem 1 from Sect. 3 this implies

Theorem 4. Given an undirected graph G = (V,E), vertices s, t ∈ V ,
integer k ≥ 1, and assuming the EM model, one can find k edge-
disjoint s–t paths in G (or figure out that such paths do not exist) in
O

(
(Sort(V + E) + k · Conn(V, kV)) log V

M

)
I/Os.

4.2 Incremental Construction of Sparse Certificates

To prove Theorem 3, we need some better understanding of how spanning forests
are constructed. A spanning forest F in G can be found as follows: initialize
F := ∅, then scan all edges of G and offer each edge e = {x, y} to F . If x and
y are in distinct connected components of F then accept e into F (merging two
components); otherwise reject (skip) e.

302 M. Babenko and I. Kolesnichenko

This implies some important observations:

– One may process edges in an arbitrary order and interrupt the process at any
moment to get a spanning forest for the initial prefix of the edge set.

– One need not maintain F ; instead it suffices to maintain the connected com-
ponents of F .

– At any point, G can be replaced by another graph with all connected com-
ponents of the current F contracted, loops and isolated vertices eliminated.

Now for the problem of constructing a sequence of spanning forests
F1, . . . , Fk, we can state the following generic scheme: maintain a sequence of
equivalence relations ∼1, . . . ,∼k on V such that ∼i+1 is a refinement of ∼i for
all i = 1, . . . , k − 1. Initially all ∼i are diagonal (x ∼i y iff x = y for all i).

Enumerate (in some order) pairs (e, i), where e = {x, y} ∈ E and i = 1, . . . , k
and offer e to ∼i. If x 	∼i y then ∼i accepts e and we merge the equivalence classes
of x and y in ∼i. If x ∼i y then ∼i rejects e, and we proceed to other pairs (e, i).
The order in which (e, i) are tried is arbitrary as long as the following property
holds: (e, i) is tried after all (e, 1), . . . , (e, i − 1).

Lemma 3. The above generic scheme is correct, i.e. computes some spanning
forests F1, . . . , Fk as required by Theorem2 (where Fi consists of edges accepted
by ∼i).

Proof. Indeed, ∼1 sees all edges of G in some order, and hence accepts a subset
of edges forming a certain spanning forest F1. Similarly ∼2 sees all edges of G
except for those accepted by ∼1 and accepts a certain spanning forest F2 of
(V,E − F1), etc.

Like for the case of a single spanning forest, at any point G can be replaced by
another graph with all equivalence classes of ∼k contracted, loops and isolated
vertices eliminated. Since ∼i+1 is a refinement of ∼i for i = 1, . . . , k − 1, these
contractions are well-defined for all ∼i.

4.3 Sparse Certificates in External Memory

We now present an efficient algorithm for constructing k-sparse certificates in
EM. The algorithm combines the above observations and the standard EM algo-
rithms for computing spanning forests [MR99].

The algorithm works in phases, maintains the current graph G = (V,E) and
a sequence of equivalence relations ∼1, . . . ,∼k, where ∼i+1 is a refinement of ∼i

for i = 1, . . . , k − 1. Initially all ∼i are diagonal, i.e. x ∼i y iff x = y for all
i = 1, . . . , k. At the beginning of a phase we pick some subset of edges of the
current graph G. Then we offer all picked edges to ∼1; those rejected by ∼1 are
offered to ∼2, etc. All picked edges are removed from E as they cannot be of use
anymore. Also at the end of the phase the algorithm contracts the equivalence
classes of ∼k, adjusts ∼i for i = 1, . . . , k − 1 (recall that ∼k is the finest of
these relations), rebuilds E (replacing each remaining edge with its image in the

External Memory Algorithms for Finding Disjoint Paths 303

contracted graph), drops loops and isolated vertices. In particular, ∼k is always
diagonal upon entering a phase. The goal of a phase is to decrease |V | by a factor
of 3

4 .
Partition V into V − and V + as follows: vertices v with deg v < 4k go into

V −, the others go to V +. Now for each vertex v, pick min(4k,deg v) arbitrary
incident edges. (An edge can be picked by just one of its endpoints or by both of
them.) Totally we picked at most 4k|V | edges; this costs O(Sort(V + E)) I/Os.
Process picked edges by running the connected components algorithm k times:
first for all picked edges and ∼1, then for the remaining picked edges (rejected
by ∼1) and ∼2, and so on.

Let us bound the number of phases. Consider the equivalence classes of ∼k

after all picked edges are handled (but before contractions). Three types of classes
are possible: those fully contained in V − (denote their number by N1), those
containing vertices from both V − and V + (denote their number by N2), and
those fully contained in V + (denote their number by N3). The latter are further
divided into trivial components (with just one vertex; let there be N1

3 such
components) and nontrivial components (with at least two vertices; let there be
N2

3 such components). Note that N1-components become isolated vertices (as we
have picked all the edges incident to vertices in V −) and thus vanish. Hence the
next phase deals with a graph with at most N2+N3 vertices. We have |V | vertices
in G in total, N2 components of size at least 2, N2

3 components of size at least 2,
and N1

3 components of size at least 1. Since these components are vertex-disjoint,
one has 2N2 + 2N2

3 + N1
3 ≤ |V | and therefore N2 + N3 ≤ 1

2 (|V | + N1
3).

It remains to bound N1
3 . A vertex v counts in N1

3 iff v ∈ V + and no picked
edges incident to v remained at the time the algorithm was handling ∼k. Recall
that at least 4k incident edges were picked for each v ∈ V +. Therefore at least
4k ·N1

3 /2 = 2kN1
3 edges were accepted by ∼1, . . . ,∼k−1. Each of the latter k −1

forests contains up to |V |−1 edges; hence 2kN1
3 ≤ (k−1)(|V |−1), which implies

N1
3 ≤ 1

2 |V |.
Now we see that the next phase deals with at most 1

2 (|V | + 1
2 |V |) = 3

4 |V |
vertices. Hence after O(log V

M) phases the number of vertices of the current graph
becomes O(M), i.e. the problem becomes semi-external. Clearly one needs just
O(V) RAM words to describe all the relations ∼1, . . . ,∼k (as their equivalence
classes form a laminar family). At the last phase, the algorithm maintains all
these relations in RAM, scans the edges in an arbitrary order and updates ∼i

(by offering each edge e to ∼1, . . . ,∼k, in this order).
Clearly all the above takes O

(
(Sort(V + E) + k · Conn(V, kV)) log V

M

)
in total, as claimed.

5 Conclusions

We have presented some improved EM algorithms for solving the edge-disjoint
paths problem. These should be considered as just first steps since they raise
more questions than answer. Clearly our approach is highly dependent on the
structure of residual graphs and only works for undirected networks. For the

304 M. Babenko and I. Kolesnichenko

latter, some improved flow algorithms are known [KL98,GR99] but they involve,
e.g., flow decycling, shortest path augmentations, and dynamic connectivity data
structures that are unlikely to be efficiently implementable in the EM settings.

Sparse certificates present another interesting challenge. While our
algorithm benefits from graph sparsification, the complexity of constructing a
k-sparse certificate seems unsatisfactory (and only improves upon the trivial
O(k · Conn(V,E)) algorithm for small values of k). In a sense, our sparsification
algorithm is not fast, it is just not too slow compared with the subsequent aug-
mentation procedure. Since the algorithm of Ibaraki and Nagamochi solves the
problem in linear time in the RAM model, one should probably aim for an EM
algorithm with complexity closer to Sort(V + E).

References

[AV88] Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and
related problems. Commun. ACM 31(9), 1116–1127 (1988)

[Bab13] Babenko, M.: Flow decompositions in external memory. In: van Emde Boas,
P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 146–156. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35843-2 14

[CGG+95] Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E.,
Vitter, J.S.: External-memory graph algorithms. In: Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
1995, pp. 139–149 (1995)

[GR99] Goldberg, A.V., Rao, S.: Flows in undirected unit capacity networks. SIAM
J. Discret. Math. 12(1), 1–5 (1999)

[KL98] Karger, D.R., Levine, M.S.: Finding maximum flows in undirected graphs
seems easier than bipartite matching. In: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 69–78,
ACM, New York (1998)

[MR99] Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In:
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 1999, pp. 687–694. Society for Industrial and Applied
Mathematics, Philadelphia (1999)

[MSS03] Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Memory Hier-
archies: Advanced Lectures. LNCS, vol. 2625. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36574-5

[NI92] Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica
7(5&6), 583–596 (1992)

https://doi.org/10.1007/978-3-642-35843-2_14
https://doi.org/10.1007/978-3-642-35843-2_14
https://doi.org/10.1007/3-540-36574-5

On Range and Edge Capacity
in the Congested Clique

Tomasz Jurdziński(B) and Krzysztof Nowicki

Institute of Computer Science, University of Wroclaw, Wroclaw, Poland
tju@cs.uni.wroc.pl

Abstract. The congested clique is a synchronous, message-passing
model of distributed computing in which each computational unit (node)
in each round can send message of O(log n) bits to each other node of
the network, where n is the number of nodes.

Following recent progress in design of algorithms for graph connec-
tivity and minimum spanning tree (MST) in the congested clique, we
study these problems in limited variants of the congested clique. We show
that MST can be computed deterministically and connected components
can be computed by a randomized algorithm with optimal edge capac-
ity Θ(log n), while preserving the best known round complexity [6,13].
Moreover, our algorithms work in the rcast model with range r = 2,
the weakest model of the congested clique above the broadcast variant
(r = 1) in the hierarchy with respect to the range [2].

1 Introduction

Recently, the (unicast) congested clique model of distributed computation
attracted much attention in algorithmic community. In this model, each pair
of n nodes of a network is connected by a separate communication link. That
is, the network forms an n-node clique. Communication is synchronous, each
node in each round can send message of O(log n) bits to each other node of
the network. Significantly, a node can send (possibly) different message to each
other node of the network in a round. The main purpose of such a model is to
understand the role of congestion in distributed computation.

The possibility of sending different messages to all neighbors makes the model
very strong. Therefore, it is natural to consider quantitative measures of usage
of the possibility of sending different messages through each outgoing link. Such
approach was introduced recently in [2], parametrized by the range r, the max-
imum number of different messages a node can send in a round. We call the
model with such a restriction the rcast congested clique.

The model. We consider the congested clique model with the following param-
eters: r – the maximum number of different messages a node can send over its

This work was supported by the Polish National Science Centre grant DEC-
2012/07/B/ST6/01534.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 305–318, 2018.
https://doi.org/10.1007/978-3-319-73117-9_22

306 T. Jurdziński and K. Nowicki

outgoing links in a round; b – the maximum size of a message (bandwidth); n –
the number of nodes in the network/graph. The model with the above parame-
ters will be denoted rcast(n, r, b). Usually, we consider the model with b = log n
and therefore the model rcast(n, r, log n) is also denoted rcast(n, r).

We consider randomized algorithms in which a computational unit in each
node of the input network can use private random bits in its computation. We say
that some event holds with high probability (whp) for an algorithm A running
on an input of size n if this event holds with probability 1 − 1/nc for a given
constant c.

Graph problems in the congested clique model. Graph problems in the
congested clique model are considered in the following framework. The joint
input to the n nodes of the network is an undirected n-node weighted graph
G(V,E,w), where each node corresponds to a node of the communication net-
work and weights of edges are integers of polynomial size (i.e., each weight is a
bit sequence of lenght O(log n)). Each node u initially knows the network size
n, its unique ID in [n], the list of IDs of its neighbors in the input graph and the
weights of its incident edges.

In the paper, we consider connected components problem (CC) and minimum
spanning forest problem (MSF). Our goal is to compute CC or MSF of input
graph, i.e., each node should know the set of edges inducing CC/MSF at the
end of an execution of an algorithm. (Note that unlike a common definition of
the connectivity problem, where the result should only specify the connected
components, we require that the set of edges connecting the components has to
be a part of the final solution.)

Complexity measures. The key complexity measure considered in context of
the congested clique models is round complexity (or time) equal to the number
of rounds in which an algorithm works for a given input size.

In order to provide accurate measure of the amount of information trans-
mitted over communication links of a network, we consider the edge capacity
measure. The edge capacity βA(i, n) is the (maximal) length (in bits) of mes-
sages which can be transmitted in the ith round of executions of the algorithm A
on graphs of size n. The (total) edge capacity B(A,n) is the sum of edge capac-
ities of all rounds, BA(n) =

∑

i

βA(i). As n is usually known from the context,

we use shorthands βA(i) and BA for βA(i, n) and BA(n), respectively.
For further references we make the following observation concerning edge

capacity of algorithms solving CC and MSF.

Fact 1. Total edge capacity of any algorithm solving the connected components
problem or the minimum spanning forest problem is Ω(log n).

For the rcast model, the range r is also a parameter determining complexity
of an algorithm. That is, the range r means that a node u is allowed to transmit
only r different messages in a round (i.e., each other node receives one of those
r different messages from u).

On Range and Edge Capacity in the Congested Clique 307

Related work. The congested clique was studied in several papers, e.g. in [4–
7,12–14]. The recent Lenzen’s [12] constant time routing and sorting algorithm
shows the power of the model. Lotker et al. [13] designed a O(log log n) round
deterministic algorithm for MSF (minimum spanning forest) (See also [11].) The
best randomized solution for MSF in the unicast model works in O(log∗ n) rounds
[6], improving [7]. Reduction of the number of overall transmitted messages in
the MST algorithms was studied in [15]1. If messages can have

√
n log n bits, one

can compute MSF in O(1) of rounds, even if each node sends the same message
to every other in a round [14]. Drucker et al. [5] explain the difficulty in obtaining
lower bounds for cong. clique. In an extreme scenario of one-round protocols in
which each node can send only one message has also been considered connectivity
can be solved with public random bits, provided nodes can send messages of
size Θ(log3 n) [1]. The rcast model of the congested clique was introduced in
[2,3]. The authors showed the substantial difference between r = 1 and r =
2. Moreover, it was shown that an exponential increase of the range r may
cause ω(1) drop in round complexity. The impact of a single message size b is
also studied in [2,3]. One can observe that each step of the congested clique
algorithm might be simulated in the rcast model with r > 1 in logr n = O(log n)
rounds. This seems to diminish importance of the rcast hierarchy. However,
the logr n multiplicative factor becomes important in the case of problems of
sublogarithmic round complexity, as it is in this paper.

Apart from purely theoretical and algorithmic interest, the model is closerly
related to other models of processing of large-scale graphs [8,10].

Our results. We show that MST can be computed deterministically and con-
nected components can be computed by randomized algorithms with optimal
edge capacity and in the rcast(2) model, the weakest model above a very weak
broadcast congested clique (i.e., for r = 1) in the hierarchy of rcast(r) models.
Significantly, our algorithms work also in the smallest known round complexity.
Our results rely on new efficient distributed implementations of round efficient
algorithms from [6,13] (these algorithms rely on basic primitives with large range
and edge capacity).

Due to limited space, some proofs are omitted in the paper. The full exposi-
tion of the results is available in [9].

2 Graph Terminology and Tools for Capacity/Range
Reduction

Given a natural number p, [p] denotes the set {1, 2, . . . , p}. For a graph G(V,E)
and E′ ⊆ E, C1, C2, ..., Ck ⊂ V is a partition of G into components with respect
to E′ ⊆ E if Cis are pairwise disjoint,

⋃
i∈[k] Ci = V , each Ci is connected with

respect to the edges from E′ and there are no edges (u, v) ∈ E′ such that u ∈ Ci

and v ∈ Cj for i �= j. That is, C1, . . . , Ck are connected components of G(V,E′).

1 The authors of [15] allow for different capacities of various edges in a round; this
assumption makes their measure and results incomparable to ours.

308 T. Jurdziński and K. Nowicki

A fragment of a graph G(V,E,w) is a tree F which is a subgraph of a mini-
mum spanning forest of G. A family F of fragments of G(V,E,w) is a partition of
G into fragments with respect to E′ ⊆ E if F1 and F2 have disjoint sets of nodes
for each F1 �= F2 from F, each v ∈ V belongs to some F ∈ F and each edge of
each tree F ∈ F belongs to E′. Given a partition C (F , resp.) of a graph G(V,E)
into components (fragments, resp.) and v ∈ V , Cv (F v) denotes the component
(the fragment, resp.) containing v. We will usually consider components with
respect to a set of edges which are known to all nodes in the congested clique.

We say that a fragment (component, resp.) is growable if there is an edge
connecting it with some other fragment/component in the considered graph.
An edge (u, v) is incident to a fragment F (component C, resp.) wrt to some
partition of a graph in fragments/components if it connects F with another
fragment (component, resp.), i.e., Fu �= F v = F or F v �= Fu = F (Cu �= Cv = C
or Cv �= Cu = C, resp.).

Tools for capacity and range reduction. As tools to reduce edge capac-
ity and range of congested clique algorithms, we introduce the local broadcast
problem and the global broadcast problem. In the local broadcast problem, the
following parameters are known to each node of a network: a set T ⊂ V , a set
R ⊂ V , and a natural number b. Moreover, each node v ∈ T has its own mes-
sage Mu of length b. As a result of local broadcast, each node v ∈ R receives
the message Mu from each u ∈ T . As we show in Proposition 1, Algorithm 1
(LocalBroadcast) efficiently solves the local broadcast problem.

Algorithm 1. LocalBroadcast(T,R, b)
1: assign a segment Si of nodes of size b to each v ∈ T
2: Round 1: each node v sends the jth bit of Mv to the jth node of its segment
3: Round 2: each node u (from the segment assigned to v) sends the bit received in

Round 1 to all nodes from R

Proposition 1. Algorithm1 solves the local broadcast problem in O(1) rounds
with range r = 2 and capacity 1, provided |T |b = O(n). It is possible to exe-
cute Algorithm1 simultaneously for k triplets (Ti, Ri, bi)i∈[k], as long as Ti’s are
pairwise disjoint, Ri’s are pairwise disjoint and |Ti|bi ∈ O(n) for each i ∈ [k].

Assume that each node from a set S ⊆ V of nodes knows (the same) message
M of length b. The global broadcast problem is to deliver M to each node v ∈ V
of the network.

Proposition 2. The global broadcast problem can be solved in one round with
range r = 1 and edge capacity � b

|S|�.

On Range and Edge Capacity in the Congested Clique 309

3 Deterministic Rcast Algorithm for MSF

In this section we provide a deterministic algorithm for minimum spanning forest
(MSF) in the rcast model. First, we describe a generic algorithm for minimum
spanning tree from [13]. Then we provide a new efficient rcast(n, 2) version of this
general algorithm. Finally, an algorithm optimizing the range r and achieving
asymptotically optimal edge capacity is presented.

3.1 Generic MSF Algorithm

For a graph G(V,E,w) and its partition into fragments, we say that an edge
e = (v, u) is relevant for a set A ⊆ V if F v �= Fu and e is the lightest edge
connecting a node from A and a node from fragment Fu. Let EA,µ denote the
set of μ lightest relevant edges incident to the set A ⊂ V . Moreover, NF,µ for a
fragment F denotes the set of fragments connected with F by edges from EF,µ.

The following lemma is applied in a round efficient algorithm for MSF [13].

Lemma 1. [13] Let F be a partition of a graph G(V,E) into fragments, let EF
be the set of edges in the trees of the partition F . Then, given EF ∪ ⋃

F∈F EF,µ

for μ > 0, it is possible to determine a new partition F ′ of G(V,E) such that
the size of each growable tree of F ′ is at least (μ + 1)min

F∈F

|F |.

Using Lemma 1, one can build MSF in phases using Algorithm 2 [13] in
O(log log n) rounds. Let μ1 = 1 and μi = μi−1(μi−1 + 1) for i > 1. Phase i
starts from a partition of the input graph into fragments of size ≥ μi and ends
with a new partition into fragments of size ≥ μi+1. Before the first phase, each
node is considered as a separate fragment. At the beginning of the ith phase, the
set EF,µi

of μi lightest relevant edges (or all relevant edges, if there are at most
μi) is determined for each fragment F of the current partition. Then, this infor-
mation is broadcasted to all nodes of the network. Using Lemma 1, each node
can compute a new partition into fragments such that the size of the smalles
growable fragment is increased at least μi + 1 times.

Algorithm 2. Minimum Spanning Forest
1: i ← 1
2: F = {{v1}, {v2}, . . . , {vn}}
3: while E �= ∅ do
4: SelectEdges(μi,F)
5: announce edges from EF,µi

6: locally merge fragments, modify F appropriately
7: E ← E \ {(u, v)|F v = Fu}
8: i ← i + 1

Lotker et al. algorithm essentially relies on the power of the unicast model,
using linear range and super-logarithmic edge capacity.

310 T. Jurdziński and K. Nowicki

Corollary 1. The deterministic congested clique MSF algorithm from [13]
works in O(log log n) rounds with range r = O(n) and edge capacity O(log n ·
log log n).

3.2 Minimum Spanning Forest Algorithm in rcast(n, 2)

In this section we will show an implementation of Algorithm2 in O(log log n)
rounds, which is also efficient with respect to the range and edge capacity. As
we discussed above, the only part of the Lotker et al. [13] implementation of
Algorithm 2 with large range is the selection of the set of the lightest relevant
edges for the current fragments. Therefore, in order to reduce the range without
increasing round complexity, it is sufficient to design a new version of this part
of Algorithm 2 for the sequence μ1 = 1 and μi = μi−1(μi−1 + 1) for i > 1. We
give such a solution in this section.

First, observe that the set of μ lightest relevant edges incident to a fragment
F (i.e., EF,µ) is included in the union of μ lightest relevant edges incident to each
node from F , i.e., EF,µ ⊆ ⋃

v∈F Ev,µ. Thus, in order to determine EF,µ, it is suffi-
cient to distribute/broadcast information about Ev,µ for each v ∈ F among nodes
of F . This task corresponds to the local broadcast problem (see Sect. 2). More pre-
cisely, given a partition F = {F1, . . . , Fk} in phase i, each v ∈ Fj is supposed to
broadcast the message Mv of size bi = O(μi log n) (i.e., description of μ lightest
relevant edges incident to v) to all nodes of Fj . Using Proposition 1, we can solve
this task in O(1) rounds with range r = 2 and edge capacity 1, provided

|Fi|μi log n ≤ n. (1)

However, for large fragments and/or large μi, this inequality is not satisfied.
Therefore, we need a more general observation saying that μ lightest relevant
edges incident to a set A (not necessarily a fragment) might be chosen from the
sets of μ lightest edges incident to subsets Aj forming a partition of A.

Fact 2. Let F be a partition of a graph in fragments and let A1, . . . , Ak be a
partition of the set of nodes of a fragment F ∈ F. Then, for each μ ∈ N, EF,µ ⊆⋃

j∈[k] EAj ,µ.

Using Fact 2 we compute EF,µ for a large fragment in the following way. The
set F is split into small groups and μ lightest relevant edges are selected for
each group and knowledge about them is distributed among nodes of the group.
Then, the leader of each group is chosen and the task is reduced to choosing
μ lightest relevant edges among the sets of μ edges known to the leaders. This
reduces our problem to its another instance with smaller size of nodes. Another
issue to deal with is to set the value of μi not too large for each i, in order to
satisfy (1). The choice of parameters in Algorithm 3 guarantees that the task
of selecting min{μi, n

1/3} lightest relevant edges incident to each fragment is
possible in O(1) rounds with edge capacity 1.

Proposition 3. Algorithm3 determines the set EF,µ′ of μ′ lightest relevant
edges incident to each fragment F ∈ F in O(1) rounds with edge capacity 1
and range r = 2, where μ′ = min{n1/3, μ}. Moreover, EF,µ′ is known to each
v ∈ F for each F ∈ F at the end of an execution.

On Range and Edge Capacity in the Congested Clique 311

Proof. Assume that n is large enough to satisfy n1/3 > log n. First observe that
the inequality |A|μ′ log n ≤ n is satisfied when the last step of the algorithm is
executed. If |F |μ′ log n ≤ n then the claimed inequality holds, since |A| = |F | in
this case. Otherwise, the size of A is reduced to

k =
|A|

|A|/(μ′ log n)
= μ′ log n ≤ n1/3 log n <

n2/3

log n
.

Algorithm 3. SelectEdges(μ,F) � the algorithm for node v

1: μ′ ← min{n1/3, μ}
2: nmax ← n1/3

3: for each F ∈ F and each v ∈ F simultaneously do
4: A ← the nodes of F
5: Mv ← μ′ lightest relevant edges incident to v
6: if |A|μ′ log n > n then

7: n′ ← |A|
µ′ logn

, k ← �|A|/n′�
8: split A into A1, . . . , Ak such that |Ai| = n′ for i < k and |Ak| ≤ n′

9: for each Ai simultaneously do
10: LocalBroadcast(Ai, Ai, μ

′ log n)

11: let Aj denote the set which contains v
12: Mv ← μ′ lightest edges incident to Aj

13: if ID(v) = min{ID(u) | u ∈ Aj} then
14: Mv ← μ′ lightest edges incident to Aj

15: else
16: v is removed from A
17: LocalBroadcast(A, F, μ′ log n)
18: v determines EF,µ′ on the basis of received messages � see Fact 2

The choice of n′ guarentees also that |Aj |μ′ log n ≤ |F | ≤ n for each j ∈ [k].
Also, all fagments are pairwise disjoint, and all sets Aj are pairwise disjoint (as
a disjoint subsets of fragments). Thus, all execution of LocalBroadcast last O(1)
rounds with edge capacity 1, by Proposition 1.

By Fact 2, the algorithm determines μ′ lightest relevant edges for elements
of partitions of F and eventually determines μ′ lightest relevant edges for each
F ∈ F, i.e., EF,µ′ . For each F ∈ F, the set EF,µ′ is known to all element of F at
the end of the execution of the algorithm, thanks to LocalBroadcast executed in
the last step of the algorithm.

Lemma 2. Assume that μ1 = 1 and μi = min{n1/3, μi−1(μi−1 + 1)} for i > 1.
Then, an implementation of Algorithm2 using the procedure SelectEdges from
Algorithm3 solves the MSF problem in O(log log n) rounds with range r = 2.

Proof. After an execution of SelectEdges, a designated node v ∈ F for each
fragment F knows μi edges which should be broadcasted to all nodes in step 5.

312 T. Jurdziński and K. Nowicki

The definition of the sequence μ′
i and Lemma 1 guarantee that the smallest size

of a fragment at the beginning of phase i is at least μ′
i. Using these facts, one

can implement step 5 of Algorithm 2 in two rounds. In round 1, that the node
v ∈ F which knows EF,µ′ sends the jth edge from EF,µ′ to the jth element of
F . In round 2, each node broadcasts an edge received in round 1 to the whole
network. Thus, each iteration of the while-loop works (i.e., each phase) works in
O(1) rounds with range r = 2.

It remains to determine the number of iterations of the while-loop (i.e., the
number of phases). For some i = O(log log n) we get μi ≥ n1/3. The smallest
size of a (growable) component is larger than n1/3 after i = O(log log n) phases.
For j > i, the smallest size of a growable component is increased (at least) n1/3

times in the jth round. As a result, the size of the smallest component is n after
the phase i + 2 which shows that the algorithm works in O(log log n) rounds.

Reduction of total edge capacity
Our solution for the MSF from Lemma2 reduces the range r to 2, but each

phase requires sending Θ(log n) bits by some nodes, because weights of some
edges are transmitted by nodes in step 5 of Algorithm2. In order to reduce
(total) edge capacity, we modify the sequence {μi} again to make it possible
that step 5 of Algorithm 2 requires O(1) edge capacity for large fragments and
edge capacities sum up to O(log n) for small fragments. More precisely, let

μi =
{

1 for i ≤ 2 log log n (Stage 1)
min{μ2

i−1/ log n, n1/3} for i > 2 log log n (Stage 2)

Then, we implement Algorithm 2 as described in Lemma 2 for the new
sequence {μi}i. One can verify that executions of SelectEdges can still be imple-
mented in O(1) rounds with capacity 1. However, to reduce also total edge
capacity of the whole algorithm we change implementation of the part, where
the edges from EF,µ are announced for each F to the whole network (step 5
of Algorithm 2). Using Lemma 1, one can observe that the size of the smallest
growable fragment is

– at least 2i−1 at the beginning of phase i ≤ 2 log log n;
– at least μi at the beginning of phase i > 2 log log n.

In a phase of i ≤ 2 log log n phases each fragment F has to broadcast a
message MF of Θ(log n) bits describing the lightest relevant edge incident to F .
We split this message into |F | fragments, each of length O(logn

|F |).
For i > 2 log log n and a fragment F we want to broadcast a description

of |F |
log n edges, which consists of O(|F |

log n log n) = O(|F |) bits. In order to do
that it is enough that each node announces O(1) bits to the whole network, cf.
Proposition 2.

By analyzing this algorithm, we will prove the following result.

Theorem 1. It is possible to calculate the minimum spanning forest in
O(log log n) rounds and with total capacity of communication edges O(log n) and
range r = 2.

On Range and Edge Capacity in the Congested Clique 313

Proof. Number of rounds. The first stage consists of 2 log log n rounds by
definition. The second stage also consists of O(log log n) rounds, however, we
need a slightly more detailed analysis to show this fact.

At the beginning of the second stage, the size of all growable fragments is at
least log2 n. Assume that the size of each growable fragment at the beginning
of phase i is at least μi. Then, µi

log n lightest relevant edges announced by each

fragment satisfies µi

logn ≥ μ
1/2
i . Therefore, by Lemma 1, the size of the smallest

growable fragment increases μ
1/2
i + 1 times in a phase. Thus, the size of the

smallest growable fragment in the ith phase during the second stage is limited
from below by fi defined as follows: f1+2 log log n = log2 n, fi = f

3/2
i−1 for i >

1 + 2 log log n. For some i ∈ Θ(log log n), the size of the smallest fragment will
be at least n1/3. Then, as shown in the previous section (Lemma 2), we obtain
MSF after O(1) additional phases.

Total capacity of communication edges. In the first stage we have
O(log log n) phases, the size of the smallest growable fragment in the ith phase
is at least 2i−1. Thus total capacity of communication edges of the first stage
is O(

∑

i

log n
2i) = O(log n). In the second stage we have O(log log n) phases, each

is implemented in O(1) rounds with edge capacity 1, thus total capacity of
communication edges of those stages is O(log log n). Therefore total capacity of
communication edges of presented algorithm is O(log n + log log n) = O(log n).

4 Randomized Rcast Algorithm for Connected
Components

The fastest known randomized algorithm calculating Connected Components
works in O(log∗ n) communication rounds [6]. The algorithm works in phases.
At the beginning of each phase, a partition of an input graph into components
is known to all nodes. In a phase of the algorithm, the number of growable
components drops from n

log2 x
to n

x . The key tool to make it possible is a special
kind of linear sketches.

We first describe the linear sketches from Then, we briefly describe the
O(log∗ n) algorithm for connected components [6]. In the next part, we give an
algorithm implementing the idea from [6] in the rcast(n, 2) model. Finally, we
provide a version of the algorithm with optimal total edge capacity and range 2.

4.1 Linear Sketches

In order to build sketches [6] for a graph with n nodes, a preprocessing is nec-
essary. During the preprocessing, each (prospective) edge (u, v) is assigned an
ID of size O(log n), based on a random seed of size O(log n). In order to build
sketches for a given graph G(V,E) with n nodes and a parameter x ≤ n, the sets
E1, E2, . . . , E10 log x included in E are chosen such that each edge e ∈ E belongs
Ej with probability 1/2j and all random choices are independent. For v ∈ V and
A ⊂ V , let Ej(v) be the set of elements of Ej incident to v and let Ej(A) be the

314 T. Jurdziński and K. Nowicki

set of elements of Ej incident to A, i.e., Ej(A) = {{u, v} ∈ Ej |u ∈ A, v �∈ A}.
Then, sketch(X) for X ⊆ V is a table consisting of 10 log x rows, each row con-
tains a bit string of length O(log n). The jth row of sketch(X) is the xor of
IDs of all elements of Ej(X). The sequence of log x sketches for a set or a node
will be called its multi-sketch. Thus, a multi-sketch is a table of 10 log2 x rows.
By sketchr(A) and multi-sketchr(A) we denote the rth row of a sketch and a
mutli-sketch of A, resp.

Proposition 4. [6] 1. It is possible to determine an edge {u, v} such that u ∈ A
and v �∈ A from a sketch of A ⊂ V with probability Ω(1), provided the number
of edges {u, v} such that u ∈ A, v �∈ A is at most x5.
2. The sketch of a set A = A1 ∪ A2 ⊂ V for disjoint sets A1, A2 is equal to
sketch(A1) xor sketch(A2). That is, the ith row of sketch(A) is equal to the xor
of the ith row of sketch(A1) and the ith row of sketch(A2).

4.2 Ghaffari-Parter O(log∗ n) Connected Components Algorithm

Ghaffari-Parter algorithm for connected components in the unicast congested
clique works in O(log∗ n) phases, each phase consists of O(1) rounds [6]. At the
beginning of a phase, a partition C of an input graph into O(n/ log2 x) (growable)
components is known to each node. As a result of the phase, the number of
components is reduced to O(n/x), whp. During the phase (see Algorithm4):

(i) multi-sketches are computed for each component and sent to the leader u∗;
(ii) the leader u∗ locally simulates log x steps of the Boruvka’s algorithm, using

obtained multi-sketches of components;
(iii) the leader distributes information about new partition into components;
(iv) each node v broadcast a random edge {u, v} such that Cu �= Cv and a

partition is updated using the broadcasted edges.2
(v) non-growable components are deactivated.

Algorithm 4. CCLogstar � the algorithm for a node v ∈ Ck

1: C = {{v1}, . . . , {vn}}
2: while C �= ∅ do � i.e., while there are active components
3: x ← min{y | |C| < n

10 log2 x
} � C is the number of growable components

4: Compute multi-sketches of all components from C

5: Distribute the multi-sketches in the network
6: Update C by simulating Θ(log x) rounds of Boruvka’s alg., using sketches,
7: Determine real edges which connect old components in the new ones
8: Broadcast a random edge incident to each component, update C accordingly
9: Deactivate (remove from C) non-growable components.

The following result from [6] implies that Algorithm 4 determines connected
components in O(log∗ n) iterations of the while-loop, whp.
2 Random edges are necessary in order to deal with components with degree > x5,

because sketches do not help much to find their neighbors.

On Range and Edge Capacity in the Congested Clique 315

Lemma 3. An iteration of the while-loop Algorithm4 reduces the number of
non-growable components from n/ log2 x to at most n/x, whp.

As the Ghaffari-Parter [6] distributed implementation of Algorithm4 uses
Lenzen’s routing algorithm in each phase, and it also requires that nodes send
independently chosen random messages of size Θ(log n) on each edge (in a
round), the edge capacity of this algorithm is Ω(log n) in each phase and its
range is r = n.

4.3 Range Efficient Algorithm for Connected Components

In order to implement a phase of Algorithm4 in the rcast model with the range
r = 2 and in O(1) rounds, we need a new method of computing and distributing
sketches. Assume that a partition C into components is known to all nodes at
the beginning of a phase. Consider a meta-graph, whose nodes correspond to the
current components, where Ci, Cj are connected by a meta-edge iff there is an
edge {u, v} such that u ∈ Ci and v ∈ Cj . From the “point of view” of nodes
it means that u and v are connected by an edge iff Cu and Cv are neighbors in
the current meta-graph.

In our algorithm, the sketches are computed for the meta-graph and delivered
to all nodes. On the basis of the sketches, each node can simulate log x steps
of the Boruvka’s algorithm on the meta-graph, merging components into larger
ones. After determining new larger components, information about the real edges
connecting merged input components (into new larger ones) are determined and
broadcasted to all nodes. Below, we describe this strategy in more detail.

Computing sketches in a meta-graph. For computing (and broadcasting)
multi-sketches in a meta-graph, each component Ci is associated with a repre-
sentative set Vi of size log2 x. In the first round, each node v sends the bit 1 to
each element of Vi for i ∈ [log2 x] iff (v, u) ∈ E for some u ∈ Ci. Otherwise, v
sends 0 to each node of Vi. After such a round each node of Vi knows all neigh-
bors of Ci in the meta-graph. In order to compute and distribute a multi-sketch
of Ci in O(1) rounds, we make the jth element of Vi (say, vi,j) responsible for
the jth row of the multi-sketch of Ci. For each edge (Ci, Ci′) such that i > i′, vi,j
chooses with appropriate probability (i.e., 1/21+(j−1) mod 10 log x) whether this
edge is included in the jth row of the multi-sketch. In the second communication
round vi,j sends 1 to vi′,j when the edge is included and 0 otherwise. Using own
random choices and messages received in both rounds, vi,j computes the jth row
of the multi-sketch of Ci and broadcasts it to the whole network. More precise
description of the above strategy is presented in Algorithm5.

Proposition 5. Assume that Algorithm5 is executed for a partition of an input
graph in at most n/ log2 x components. Then, the algorithm determines multi-
sketches of all nodes in the meta-graph and broadcasts them to the whole network
in O(1) rounds, with range r = 2 and edge capacity O(log n).

Determining real edges connecting merged components. An offline sim-
ulation of the Boruvka’s algorithm based on meta-edges derived from sketches

316 T. Jurdziński and K. Nowicki

Algorithm 5. LinearSketches � the algorithm for a node v ∈ Ck

1: y ← 10 log2 x
2: Let Ck be the component containing v
3: Vi ← {vi,1, . . . , vi,y} for i ∈ [n/y], where vi,j = v(i−1)y+j

4: Let v = vp,r
5: for each j ∈ [n/y] do
6: if {{v, u} | u ∈ Cj} �= ∅ then bj ← 1 else bj ← 0

7: Round 1: v sends bj to each node of Vj for each j ∈ [n/y]
8: E(Cp) ← {(Cp, Cl) | 1 received from some u ∈ Cl}
9: for each e = (Cp, Cl) ∈ E(Cp) such that l > p:

bl ← 1 with probability 1/21+(r−1) mod y, bl ← 0 otherwise
10: Round 2: v = vp,r sends bl to vl,r for each l ∈ [n/y]
11: for each l < p: set bl to the bit received in Round 2 from vl,r
12: multi-sketchr(Cp) ← xork∈[n/y]bk · ID((Cp, Ck))
13: Round 3: vp,r sends multi-sketchr(Cp) to all nodes

gives a new partition into components C′. Each component C ′ of this new par-
tition is a connected subgraph of the meta-graph, with meta-edges connecting
elements of C ′ known to all nodes (determined by sketches). In order to deter-
mine real edges connecting elements of C ′, a rooted spanning tree for C ′ is chosen
arbitrarily but in the same way by each node v ∈ C ′. For each node v, if v is
adjacent to (u, v) such that Cu is the parent of Cv then v chooses such edge
arbitrarily. Then, v broadcasts such chosen edge to the whole network.

Let CCLogstarR be a variant of Algorithm 4 where the steps 4 and 5 are
implemented through Algorithm 5. In order to decode the real edges between
joined components, we use the above described method. It requires 1 round with
capacity O(log n) and range 1 for step 7 of our implementation of Algorithm4.

Lemma 4. Algorithm CCLogstarR identifies the connected components of the
input graph in O(log∗ n) communication rounds in the rcast(n, 2) model, whp.

4.4 Reduction of Total Edge Capacity

In this section we show that it is possible to achieve the optimal edge capacity
O(log n) without increasing the range or round complexity of CCLogstarR.

Theorem 2. There is a randomized algorithm in the rcast(n, 2) congested clique
that identifies the connected components of the input graph with total edge capac-
ity O(log n) in O(log∗ n) communication rounds, with high probability.

The key idea of the proof of Theorem2 is to distribute capacity load of nodes
with help of the local broadcast and the global broadcast. Moreover, in order to
distribute sketches in capacity-efficient way, we slow down an algorithm a bit.
That is, the reduction of the number of components in a phase is not as efficient
as originally; however, this weaker variant does not harm asymptotic complexity.

On Range and Edge Capacity in the Congested Clique 317

Conclusions
We have provided new efficient algorithms for MSF and connected compo-

nents in the congested clique. An interesting research direction is to determine
a relationship between adaptiveness (the number of rounds) and total capacity
of communication edges.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 459–467
(2012)

2. Becker, F., Anta, A.F., Rapaport, I., Rémila, E.: Brief announcement: a hierarchy
of congested clique models, from broadcast to unicast. In: Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-
San Sebastián, Spain, 21–23 July 2015, pp. 167–169 (2015)

3. Becker, F., Anta, A.F., Rapaport, I., Rémila, E.: The effect of range and bandwidth
on the round complexity in the congested clique model. In: Proceedings of 22nd
International Conference on Computing and Combinatorics, COCOON 2016, Ho
Chi Minh City, Vietnam, 2–4 August 2016, pp. 182–193 (2016)

4. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: private coins, public coins and deter-
minism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9 8

5. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: ACM Symposium on Principles of Distributed Computing, PODC 2014, Paris,
France, 15–18 July 2014, pp. 367–376 (2014)

6. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: Proceed-
ings of PODC 2016 (2016)

7. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquiz-
zato, M.: Toward optimal bounds in the congested clique: graph connectivity and
MST. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC 2015, Donostia-San Sebastián, Spain, 21–23 July 2015, pp.
91–100 (2015)

8. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
mapreduce. Theor. Comput. Sci. 608, 268–281 (2015)

9. Jurdzinski, T., Nowicki, K.: MSF and connectivity in limited variants of the con-
gested clique. CoRR, abs/1703.02743 (2017)

10. Klauck, H., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed compu-
tation of large-scale graph problems. In: Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, 4–6 January 2015, pp. 391–410 (2015)

11. Korhonen, J.H.: Deterministic MST sparsification in the congested clique. CoRR,
abs/1605.02022 (2016)

12. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Fatourou, P., Taubenfeld, G. (eds.) ACM Symposium on Principles of Distributed
Computing, PODC 2013, Montreal, QC, Canada, 22–24 July 2013, pp. 42–50.
ACM (2013)

https://doi.org/10.1007/978-3-319-09620-9_8

318 T. Jurdziński and K. Nowicki

13. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST construction in o(log log n)
communication rounds. In: Proceedings of the Fifteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 2003, pp. 94–100. ACM, New
York (2003)

14. Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity
in the broadcast congested clique. In: Proceedings of PODC 2016 (2016)

15. Pemmaraju, S.V., Sardeshmukh, V.B.: Super-fast MST algorithms in the congested
clique using o(m) messages. In: 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2016, 13–15
December 2016, Chennai, India, pp. 47:1–47:15 (2016)

Business Processes, Protocols, and
Mobile Networks

Global vs. Local Semantics of BPMN 2.0
OR-Join

Flavio Corradini, Chiara Muzi(B), Barbara Re, Lorenzo Rossi,
and Francesco Tiezzi

School of Science and Technology, University of Camerino, Camerino, Italy
{flavio.corradini,chiara.muzi,barbara.re,lorenzo.rossi,

francesco.tiezzi}@unicam.it

Abstract. Nowadays, BPMN 2.0 has acquired a clear predominance for
modelling business processes. However, one of its drawback is the lack of a
formal semantics, that leads to different interpretations, and hence imple-
mentations, of some of its features. This, as a matter of fact, results on
process implementations using such features that do not fit with design-
ers expectations, and that are not portable from one BPMN enactment
tools to another. Among the BPMN elements particular ambiguous is
the semantics of the OR-Join. Several formalisations of this element have
been proposed in the literature, but none of them is derived from a direct
and faithful translation of the current version of BPMN standard. In this
work we instead provide direct, global and local, formalisations compli-
ant with the OR-Join semantics reported in the BPMN 2.0 standard. In
particular, the local semantics is devised to more efficiently determine
the OR-Join enablement. The soundness of the approach is given by
demonstrating the correspondence of the local semantics with respect to
the global one.

1 Introduction

Nowadays, modelling is recognised as an important practice also in supporting
software development. In particular, modelling business processes in complex
organisations permits to better understand how organisations work and, at the
same time, to support the development and continuous improvement of related
IT systems [1]. In doing this, a challenge is to provide a precise semantics of the
modelling languages used to guarantee that model behaviours do what they are
supposed to do. We refer here to BPMN 2.0, the standard language for business
process modelling [2]. Even if widely accepted, BPMN major drawbacks are
related to the complexity of the BPMN meta-model semi-formal definition and
to the possible misunderstanding of its execution semantics defined by means
of natural text descriptions, sometimes containing misleading information [3].
These issues worsen when considering BPMN elements that have a particularly
tricky behaviour, such as the OR-Join [4]. Roughly, this is used to synchronise
two or more parallel flows according to specific (and non trivial) states on their
execution status.
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 321–336, 2018.
https://doi.org/10.1007/978-3-319-73117-9_23

322 F. Corradini et al.

This paper aims at formally specifying the OR-Join semantics of BPMN
process models. This paves the way not only to formal reasoning, but also to
driven implementations of process-aware IT systems ensuring an execution of
the OR-Join compliant with BPMN 2.0. We focus on the OR-Join not only
because of its semantic complexity, but also due to its practical impact, as that
is a convenient way to relax the synchronisation of parallel control flows [5].
Its use is also confirmed by the number of models containing it (316 out of
7.541 BPMN 2.0 collaborations available in the BPM Academic Initiative public
repository [6]).

In providing a novel formal semantics of the OR-Join specification we are
firstly motivated by the results of our literature review on the topic (see Sect. 3).
In fact, already available formalisation attempts mainly refer to previous versions
of BPMN and do not fit with the current 2.0 standard (see [7–10]). Instead,
those that rely on BPMN 2.0, such as [11], only consider the restricted class of
sound processes. In addition, we have also practical motivations concerning the
implementation of process-aware IT systems. We have experimented with some
popular BPMN modelling and enactment tools and we have observed that most
of them relax, simplify or even avoid the implementation of the OR-Join (see
Sect. 3). In other words, almost all considered tools are not fully compliant with
the OMG standard, thus resulting incompatible each other and not faithful with
the designer expectations based on the BPMN specification.

Tackling the above issues, the contribution of this paper is twofold. Firstly,
we provide a direct formalisation compliant with the OR-Join semantics reported
in the current BPMN 2.0 standard specification. The semantics informally
described in the specification is based on global information about the state
of the whole process model. Thus, a direct, one-to-one, formalisation of this
description has to be given with a global style, i.e., it is based on a notion of
state storing information about tokens distribution over the whole model. From
the practical point of view, however, this global perspective does not fit with
the distributed nature of many process aware IT systems, where a single syn-
chronisation point may not be aware of the execution state of the other process
elements. Moreover, the naive implementation of the global conditions enabling
the OR-Join would turn out to be quite inefficient. Thus, we also provide a
local variant of the semantics, devised to more efficiently determine the OR-Join
enablement, as it depends only on information local to the considered OR-Join.
This semantics fosters a compositional, hence more scalable, approach for enact-
ing processes with OR-Joins.

To sum up, the global semantics has been introduced as the formal refer-
ence, while the local one to be used for implementations. The soundness of our
approach is given by the formal proof of their correspondence.

2 BPMN 2.0 Overview

Here we concentrate on those BPMN elements related to the process behaviour
we use in the following. We also introduce a running example used throughout
the paper.

Global vs. Local Semantics of BPMN 2.0 OR-Join 323

BPMN Standard. BPMN process diagrams consist of combinations of different
elements that can be organised in four classes (Fig. 1). Events are used to rep-
resent something that can happen; they can be used to start or end the process.
Gateways are used to join (merging incoming sequence edges) or split (forking
into outgoing sequence edges) the flow of a process. Three types of gateways are
available XOR, AND and OR. An XOR gateway gives the possibility to describe
choices; it is activated each time the gateway is reached and, when executed, it
activates exactly one outgoing edge. An AND gateway has to wait to be reached
by all its incoming edges to start, and then all the outgoing edges are started
in parallel. A OR gateway has to wait to be reached by an arbitrary number
of its incoming edges to start, and then at least one of the outgoing edges is
started (see Sect. 3 for more details). Tasks are used to represent specific works
to perform. Finally, Sequence Edges are used to specify the internal flow of
the process, thus ordering elements.

Start Event End Event XOR AND OR Task Sequence Edge

Fig. 1. Considered BPMN 2.0 elements.

A key concept related to the BPMN process execution is the notion of
token [2, Sect. 7.1.1]. Commonly, a token traverses, from a start event, the
sequence edges of the process and passes through its elements enabling their
execution, and it is consumed by an end event when terminates. The distribu-
tion of tokens in the process elements is called marking, therefore the process
execution is defined in terms of marking evolution.

Running Example. The elements illustrated above can be combined in order
to design models like the one in Fig. 2 modelling an order fulfilment process. This
is the case of a customer-oriented manufacturing caring about the quality of the
order and accepting the payment only when the customer is fully satisfied. The
process shown starts, due to the presence of a start event, whenever a purchase
order has been received from a costumer. In order to manufacture a product,
material availability is checked and then raw materials have to be ordered. Two
preferred suppliers provide different types of raw materials. Depending on the
product to be manufactured, raw materials may be ordered from either Supplier
1 or Supplier 2, or from both. This is rendered by including related tasks in a

Purchase
order

received

Request raw
materials from

Supplier 1

order
Manufacture

productRequest raw
materials from

Supplier 2

Obtain raw
materials from

Supplier 1

Obtain raw
materials from

Supplier 2
Emit

invoice

Ship
product

Customer
inspection

End

Receive
payment

Check raw
materials
availability

Fig. 2. An order fulfilment process diagram (revised version of model in [5]).

324 F. Corradini et al.

block composed of two OR gateways: an OR-Split, used to fork the flow into two
branches after a decision; and an OR-Join that acts as a synchronisation point.
Once raw materials are available, the product can be manufactured and the
order confirmed. Then, tasks ‘Ship product’ and ‘Emit invoice’ can be performed
independently from each other, so that they are put in a block between an AND-
Split and an AND-Join enabling a parallel activation and a strict synchronisation
before proceeding. The product is then inspected by the Customer: if he/she is
unsatisfied, the product is manufactured again until he/she is pleased. Finally,
when the Customer is satisfied the product is paid, and the process terminates
by means of an end event.

In the rest of the paper and for the purpose of our study we intentionally left
out tasks, since they do not affect the OR-Join execution [10]. Considering our
running example, we get the process structure in Fig. 3.

Start EndORs1 ORj2 ANDs1 ANDj2 XORs1

e1
e2

e3 e4

e5

e6

e7 e8

e9

Fig. 3. The order fulfilment process structure.

3 Towards the OR-Join Formal Definition

Here we present in detail the semantics of BPMN 2.0 OR-Join as provided in
the OMG specification. We also discuss related works, and give some preliminary
notions we use throughout the paper to formalise the OR-Join behaviour.

From BPMN 2.0 Specification to Process Execution. The OR-Join
semantics is quite complex, both from the definition point of view, in terms
of formally expressing it, and from the computational point of view, in terms of
determining whether an OR-Join is enabled. In our work we distil the charac-
teristics of the OR-Join, from a detailed reading of the BPMN specification we
report in Fig. 4 (where, as a matter of terminology, Inclusive Gateway stands for
OR-Join, while Sequence Flow for sequence edge).

From the standard it is clear that the OR-Join has a non-local semantics
and its activation may depend on the marking evolution considering the whole
diagram. More in detail, given an OR-Join with a token in at least one of its
incoming edges, it has to wait for a token that is in a path ending in a empty
incoming edge of such OR-Join that does not visit the OR-Join itself. However,
if this token is also in a path ending in a non-empty incoming edge, the OR-Join
is activated and the execution can proceed.

Global vs. Local Semantics of BPMN 2.0 OR-Join 325

The Inclusive Gateway is activated if:
– At least one incoming Sequence Flow has at least one token and
– For every directed path formed by sequence flow that:

(i) starts with a Sequence Flow f of the diagram that has a token,
(ii) ends with an incoming Sequence Flow of the inclusive gateway that has no token,
(iii) does not visit the Inclusive Gateway.

– There is also a directed path formed by Sequence Flow that:
(iv) starts with f,
(v) ends with an incoming Sequence Flow of the inclusive gateway that has a token,
(vi) does not visit the Inclusive Gateway.

Fig. 4. OR-Join semantics according to the OMG standard BPMN 2.0.

Start
End2

ANDs1

XORs1

ORj1

XORj1

XORs2

(A)
End1

e0

e1

e3

e4

e5

e6

e7

e8

Start
End2

ANDs1

XORs1

ORj1

XORj1

XORs2

(B)
End1

e0

e1

e3

e4

e5

e6

e7

e8

Start
End2

ANDs1

XORs1

ORj1

XORj1

XORs2

(C)
End1

e0

e1

e3

e4

e5

e6

e7

e8

Start ANDs1

XORs1

ORj1

XORj1

XORs2

(D)
End1

e0

e1

e3

e4

e5

e6

e7

e8

End2
e9

e10

XORs3

e2

e2 e2

e2

Fig. 5. OR-Join activation.

Let us consider the example in Fig. 5(A). In this case ORj1 has an incoming
token in e5, but it is not activated because it has to wait for the token in e4
(corresponding to f in the definition in Fig. 4). Indeed, there is not another
path from e4 to e5. However, if the token in e4 moves to e6, as in Fig. 5(B),
the execution of ORj1 resumes, because now there is no marked path ending
in e7. Moreover, if we move the token in e4 back to e1, as in Fig. 5(C), quite
surprisingly ORj1 is activated, since this token can follow the path leading to
e5. In this case, the OR-Join behaviour is quite anomalous; this is due to the
fact that we are in presence of an unsafe model. Finally, to illustrate the effects
of the condition “does not visit the Inclusive Gateway” in Fig. 4, let us consider
a variant of the process where ORj1 is enclosed in a cycle (Fig. 5(D)). Also in
this case ORj1 is activated; indeed, although the token in e8 is in a path ending
in an empty edge incoming in ORj1 (i.e., e9), since it visits ORj1 this path is
ignored.

OR-Join in the Literature. Most of the previous attempts to formalise the
semantics of the OR-Join [7–10] are based on earlier versions of the BPMN
standard, which provide different semantics for the OR-Join. Moreover, also
when the same version of the standard is considered, different interpretations
of the OR-Join behaviour, not always faithful to the specification, have been
given. In particular, these differences regard the treatment of mutually dependent

326 F. Corradini et al.

OR-Joins (the so-called ‘vicious circles’) and of deadlock upstream an OR-Join.
In fact, from a faithful translation of the standard, it results that mutually
dependent OR-Joins are blocked, and that an OR-Join is not able to recognise
that there is a deadlock on a path leading to it, thus it will wait forever. Below,
we discuss the most significant related works.

Völzer [7] proposes a non-local semantics for the OR-Join in the BPMN 1.0
specification (2006) using workflow graphs. In case of vicious circles he argues
that the intended meaning is not clear and hence they should be sort out by
static analysis. This approach is then improved in [12], which quotes the 2010
version of the specification and gives an informal description of this one by
means of inhibiting and anti-inhibiting paths. Dumas et al. [8] base their work on
BPMN 1.0 and on the definition of the Synchronisation Merge pattern to which
the specification refers to. They provide a local semantics, without imposing
restrictions on the language, able to detect deadlocks upstream and to unlock
mutually dependent OR-Joins. Thalheim et al. [9] make use of ASMs to introduce
the OR-Join, by referring to the the specification of 2006, and make a comparison
between the definitions given by other authors. Adopting a token-based view of
workflow semantics, they start to analyse acyclic models. In this case, to threat
the OR-Join, they introduce a special type of synchronisation tokens that fire
flow objects in their downstream. They then consider cycles and, to deal with
synchronisation in their presence, they introduce sets of tokens, which are viewed
as a coherent group when a join fires. Christiansen et al. [10] refer to BPMN 2.0
- Beta 1, providing a global semantics directly in terms of a subset of BPMN.
As for the vicious circle, they argue that, since informally BPMN specification
does not include the resolution strategy and their work is a faithful translation,
they do not consider it.

Differently from our work, the above approaches rely on past versions of the
BPMN standard, which provide different semantics for the OR-Join with respect
to the current 2.0 version. Thus, they cannot be applied as they are to the
standard BPMN 2.0. Moreover, concerning the issues about vicious circles and
deadlock upstream considered by some of those works, we have checked how they
are dealt with by the current specification and, to be completely faithful with
it, we have simply applied the same solution. Indeed, in the current description
of the OR-Join semantics (Fig. 4), it does not seem to be any ambiguity about
these two issues. The OR-Join is able to detect neither a vicious circle nor a
deadlock upstream, thus in both cases its execution is blocked forever.

Recently, Prinz and Amme [11] propose a formalisation of the OR-Join
semantics referred to the current version of the standard. However, they limit
the work on sound workflow graphs, which identify a quite restricted class of
BPMN processes [13]. In fact soundness is defined as the combination of proper-
ties concerning the dynamic behaviour of a process: option-to-complete, proper-
completion, and no-dead-activities. Moreover, the proposed semantics does not
fit with the standard as, for instance, it avoids vicious circles by determining
which OR-Join in a circle has to wait and which one must proceed.

Global vs. Local Semantics of BPMN 2.0 OR-Join 327

OR-Join Implementations. We have seen that in formalising the OR-Join
semantics different interpretations have been given. The same has happened
also for what concerns its implementation. Indeed, unfaithful implementations
can be found in the most popular BPMN modelling and enactment tools. In par-
ticular, we have checked: Activiti [14], Camunda [15], Flowable [16], jBPM [17],
ProcessMaker [18], Signavio [19], Stadust [20] and Sydle [21]. These BPMN tools
provide their own interpretation of the BPMN standard, typically relaxing the
OR-Join semantics. More specifically, Camunda and Flowable take advantage
from the Activiti OR-Join implementation that in some cases keeps blocked
a waiting token differently from what prescribed in the specification (see dis-
cussions above). A similar behaviour arises in Stadust. Instead, jBPM, Process
Maker and Sydle relax the process structure handling only OR-Joins preceded by
OR-Splits, and then enforce a simplified semantics. Last but not least, Signavio,
and in particular its simulation feature, does not support the OR-Join at all.

Preliminaries. To define the formal semantics of a BPMN model we rely on
information extracted from the model by means of a pre-processing step. This
information consists of: i. paths from each OR-Join backward to the start event
(and their suffix sub-paths) that do not visit the inclusive gateway; ii. sequence
edges involved in a cycle; and iii. dependences between OR-Joins. We only con-
sider models with one start event; this is not a limitation as in this setting each
model can be rendered in this form.

For the purpose of our pre-processing, we consider a process model as a direct
graph G = (V,A) where: V is a set of vertices, ranged over by v and consisting
of start events, end events, and gateways; and A is a set of arrows, consisting
of triples (v1, e, v2) with v1 �= v2 and e ∈ E, where E is the set of all (sequence)
edges. Since edges are uniquely identified in a BPMN model, we have that for
each (v1, e, v2) in A there exists no triple (v′

1, e
′, v′

2) in A with e′ = e. This allows
us to write, when convenient, (v1, e, v2) as e. Moreover, an OR-Join vertex is
uniquely identified by the name of its outgoing edge.

A path in G, denoted by p, is a non-empty sequence of edges in A, where the
third element of a triple is equal to the first of the next triple in the sequence,
if any. A path that ends in its starting vertex is called cycle. For example, in
the model in Fig. 3 we can observe the following cycle: (e4, e6, e7, e9). Given a
path p of the form (v0, e0, v1), . . . , (vk−1, ek−1, vk), notations first(p) and last(p)
indicate the starting edge e0 and the ending edge ek−1 of p, respectively.

We also refer with P the set of all the paths in G and we define P : E → 2P

such a function that, given as input an edge e ∈ E returns the set of all paths
ending in the OR-Join uniquely identified by e and starting from all vertices
between the start event and the OR-Join, which do not visit the considered
OR-Join. Notably, this function returns a finite set of paths, because cycles
within paths are not repeated. While computing P, we can also compute the set
C ⊆ E of edges included in a cycle. Concerning the example in Fig. 3, we have
P(e4) = {(e2), (e3), (e1, e2), (e1, e3)}, and C = {e4, e6, e7, e9}.

328 F. Corradini et al.

Finally, to properly formalise the OR-Join semantics in presence of vicious
circles (i.e., to keep blocked the execution, see discussion above), we have to
detect for each OR-Join the presence of OR-Joins from which it depends. This
is expressed as a boolean predicate noDep : E → {true, false}, which taken as
input an edge e identifying an OR-Join, it holds if no other OR-Join mutually
depends with e.

To compute the pre-processing data mentioned above, we rely on existing
graph theory procedures (the code is available at https://goo.gl/wv5Afu).

In particular, we use the jGraphT (www.jgrapht.org) Java library that is
able to manage graphs. In this way, we capture cycles with the implementation
of the Szwarcfiter and Lauer algorithm [22] and paths by using a Dijkstra-like
algorithm [23].

4 Formalisation of the OR-Join Global Semantics

According to the OMG standard the semantics of the OR-Join requires global
information about the state of the whole model. Here, we formalise this global
perspective of the BPMN semantics. In particular, to enable a formal treatment
of BPMN models including the OR-Join, we defined in Fig. 6 a BNF syntax of
the model structure.

In the proposed grammar, the non-terminal symbol S represents Process
Structures, while the terminal symbols, denoted by the sans serif font, are the
considered elements of a BPMN model, i.e. events and gateways. The corre-
spondence between the textual notation used here and the graphical notation of
BPMN presented in Sect. 2 is as follows:

– e ∈ E denotes a sequence edge, while E ∈ 2E a set of edges; we require |E| > 1
when E is used in joining and splitting gateways;

– start(e) represents a start event with outgoing edge e;
– end(e) represents an end event with incoming edge e;
– andSplit(e, E) (resp. xorSplit(e, E), resp. orSplit(e, E)) represents an AND

(resp. XOR, resp. OR) split gateway with incoming edge e and outgoing
edges E;

– andJoin(e, E) (resp. xorJoin(e, E), resp. orJoin(e, E)) represents an AND
(resp. XOR, resp. OR) join gateway with incoming edges E and outgoing
edge e;

– S1 | S2 represents a composition of structure elements in order to render a
process structure in terms of a collection of elements.

To achieve a compositional definition, each sequence edge of the BPMN model
is split in two parts: the part outgoing from the source element and the part
incoming into the target element. The two parts are correlated by means of
unique sequence edge names in the BPMN model. To avoid malformed structure
models, we only consider structures in which for each edge labelled by e outgoing
from an element, there exists only one corresponding edge labelled by e incoming
into another node, and vice versa.

https://goo.gl/wv5Afu
www.jgrapht.org

Global vs. Local Semantics of BPMN 2.0 OR-Join 329

Fig. 6. Syntax of BPMN process structures.

The operational semantics we propose is given in terms of configurations of
the form 〈S, σ,P〉, where: S is a process structure; σ is the execution state, storing
for each edge the current number of tokens marking it; and P is the function
that associates to each OR-Join gateway all paths that are incoming to it, not
visiting it, and starting from marked edges (it results from pre-processing, see
Sect. 3). Specifically, a state σ : E → N is a function mapping edges to numbers
of tokens. The state obtained by updating in the state σ the number of tokens
of the edge e to n, written as σ · {e �→ n}, is defined by (σ · {e′ �→ n})(e) = n
if e′ = e and σ(e) otherwise. The inital state, where all edges are unmarked, is
denoted by σ0; formally, σ0(e) = 0 ∀e ∈ E.

The reduction relation over configurations, written →G and defined by the
rules in Fig. 7, formalises the execution of a process in terms of edge marking
evolution. Since such execution only affects the process state, for the sake of
presentation, we omit the structure and P from the target configuration of the
transition. Moreover, since P is exploited only by the OR-Join rule, it will also
be omitted from the source configuration. Thus, 〈S, σ,P〉 →G 〈S, σ′,P〉 shall be
usually written as 〈S, σ〉 →G σ′. Before commenting on the rules, we introduce
the auxiliary functions they exploit. Function inc : S × E → S (resp. dec :
S×E → S), where S is the set of states, allows updating a state by incrementing
(resp. decrementing) by one the value of an edge in the state. Formally, they
are defined as follows: inc(σ, e) = σ · {e �→ σ(e) + 1} and dec(σ, e) = (σ · {e �→
σ(e) − 1}. These functions extend to sets of edges as follows: inc(σ, ∅) = σ and
inc(σ, {e} ∪ E)) = inc(inc(σ, e), E) (the cases for dec are similar).

We now briefly comment on the operational rules. Rule G-Start starts the
execution of a process when it is in its initial state (i.e., all edges are unmarked).
The effect of the rule is to increment the number of tokens in the edge outgoing
from the start event. For the sake of simplicity, the rule is defined in a way that,
when the process execution terminates it can restart. Rule G-End instead is
enabled when there is at least a token in the incoming edge of the end event,
which is then removed. Rule G-AndSplit is applied when there is at least one
token in the incoming edge of an AND-Split gateway; as result of its application
the rule decrements the number of tokens in the incoming edge and increments
that in each outgoing edge. Similarly, rule G-AndJoin decrements the tokens in
each incoming edge and increments the number of tokens of the outgoing edge,
when each incoming edge has at least one token. Rule G-XorSplit is applied
when a token is available in the incoming edge of a XOR-Split gateway, the rule
decrements the token in the incoming edge and increment the token in one of the
outgoing edges. Rule G-XorJoin is activated every time there is a token in one of
the incoming edges, which is then moved to the outgoing edge. Rule G-OrSplit

330 F. Corradini et al.

Fig. 7. BPMN global semantics.

is activated when there is a token in the incoming edge of an OR-Split gateway,
which is then removed while a token is added in some outgoing edges (at least
one). Notably, in the rule we make use of operator �, denoting the disjoint union
of sets, i.e. E1 � E2 stands for E1 ∪ E2 if E1 ∩ E2 = ∅, it is undefined otherwise.
Rules G-Int1 and G-Int2 deal with interleaving in a standard way.

We conclude by describing in detail the rule G-OrJoin defining the semantics
of the OR-Join gateway. The operator � is used to split the set of edges incoming
in the OR-Join into two disjoint sets, E1 and E2, such that one contains marked
edges (∀e′ ∈ E1 . σ(e′) > 0) and the other one contains unmarked edges (∀e′ ∈
E2 . σ(e′) = 0). In describing the rule we quote the BPMN 2.0 specification
to make clear the correspondence. “The Inclusive Gateway is activated if” the
conditions for the rule applications are satisfied. Thus, the requirement “At least
one incoming Sequence Flow has at least one token” is represented by condition
E1 �= ∅. The second requirement “For every directed path formed by Sequence
Flow that (i). . . (ii). . . (iii). . .There is also a directed path formed by Sequence
Flow that (iv). . . (v). . . (vi)” is represented by the condition ∀p1 ∈ Π . ∃ p2 ∈
Πp1 , where Π is the set of paths satisfying (i), (ii) and (iii), while the sets Πp,
one for each path p in Π, contain paths satisfying (iv), (v) and (vi). Formally,
they are defined as Π = {p ∈ P(e) |σ(first(p)) > 0 ∧ last(p) ∈ E2} and Πp =
{p′ ∈ P(e) | first(p′) = first(p) ∧ last(p′) ∈ E1}. In particular, a path p in Π is
such that: “(i) starts with a Sequence Flow f of the diagram that has a token”
(σ(first(p)) > 0), “(ii) ends with an incoming Sequence Flow of the inclusive
gateway that has no token” (last(p) ∈ E2), and “(iii) does not visit the Inclusive
Gateway” (ensured by definition of P). Instead, given a path p in Π, a path p′

in Πp is such that: “(iv) starts with f ” (first(p′) = first(p), as f is the first edge

Global vs. Local Semantics of BPMN 2.0 OR-Join 331

of p), “(v) ends with an incoming Sequence Flow of the inclusive gateway that
has a token” (last(p′) ∈ E1), and “(vi) does not visit the Inclusive Gateway”
(ensured again by definition of P).

Example 1. The initial configuration of the process in Fig. 3 is 〈S, σ0〉 where:

S = start(e1) | orSplit(e1, {e2, e3}) | orJoin(e4, {e2, e3, e9}) | andSplit(e4, {e5, e6})
| andJoin(e7, {e5, e6}) | xorSplit(e7, {e8, e9}) | end(e8)

By applying ruleG-Start the execution of the process starts by marking with a
token the edge e1. Rule G-OrSplit can be then applied; it moves the token from
e1 to one (or more) outgoing edges of the OR-Split, say e3. Now, all premises
of rule G-OrJoin are satisfied: E1 = {e3} �= ∅, and the condition based in the
universal quantification trivially holds as Π = ∅, since all paths with a token at
the beginning and no token at the end, e.g. (e3, e4, e5, e7, e9), do visit the OR-
Join, thus violating the requirement (iii). Therefore, the rule can be applied and
the token in e3 moves to e4. From there, the execution simply proceeds according
to the semantics of AND and XOR gateways.

5 Formalisation of the OR-Join Local Semantics

The OR-Join semantics presented in the previous section perfectly fits with the
informal definition given in the BPMN 2.0 standard specification. However, the
evaluation of the OR-Join gateway activation (formalised by the premises of
rule G-OrJoin) requires a global view of the process marking. From a practical
perspective, this may complicate the implementation of the process control flow,
also considering that the semantics of all other BPMN constructs is local, i.e. it
relies only on the information about the marking of incoming and outgoing edges.
Therefore, we propose in this section an alternative, yet equivalent, semantics of
BPMN, including the OR-Join construct, that is local.

For the local semantics, we consider only safe models [24]. Safeness requires a
model to not activate an edge more than once at the same time. This assumption
is not too restrictive, since safeness is recognized as one of the most important
correctness criteria for business process models [25]. The lack of this property,
in fact, may cause issues concerning process execution, related e.g. to the proper
termination of processes or to erroneous synchronizations among concurrent con-
trol flows [26].

To enable local treatment of the BPMN semantics, roughly the global state
information of a process is spread over the edges of its structure, resulting on
a Marked Process. Formally, the syntax of marked processes, denoted by M , is
defined in Fig. 8. The only difference between the syntax of a marked process and
a process structure is that in the former an edge is also characterised by a type
T , indicating if it is part of a cycle (c) or not (nc), and by a status Σ, denoting
whether a token is marking the edge (live status denoted by l), or may still arrive
(wait status denoted by w), or will not arrive (dead status denoted by d). As

332 F. Corradini et al.

Fig. 8. BPMN syntax of marked processes.

explained in Sect. 3, edge types are statically determined in the pre-processing.
With abuse of notation, edge set notation E extends to marked edges.

Now, the operational semantics does not need to consider any more con-
figurations with a state, but it is directly given in terms of marked processes.
Formally, the operational semantics is defined by means of a labelled transition
relation M

α−→L M ′, meaning that “the marked process M performs a transition
labelled by α and becomes M ′ in doing so”. Labels α are used to propagate the
effect of marking updates, resulting from the evolution of a subterm of the pro-
cess, to the other subterms. They are triples of the form (w : E1, d : E2, l : E3),
indicating the edges whose status must be set to w, d and l, respectively. For
the sake of simplicity, within labels, sets Ei contain just edge names (without
type and status). Moreover, to improve readability, we omit a field of the triple
when the associated edge set is empty, and we remove brackets {and} in case of
singleton; for example, the label (w : ∅, d : ∅, l : {e}) is written l : e. Finally, to
identify the initial status of a marked process M we rely on the boolean predicate
isInit(M), which holds when all edges of M have status w. Due to lack of space,
we present below an excerpt of the operational semantics; we refer the interested
reader to the companion technical report [27] for a complete account of defini-
tions, operational rules, proofs of the correspondence results, and application to
the running examples.

To define the labelled transition relation, we need a few auxiliary functions.
First, we exploit setDead(E) and setWait(E) to change the status of gateway
edges to d and w, respectively. Similarly, to check if the edges in E have live (resp.
dead) status, we make use of the boolean function isLive(E) (resp. isDead(E)).
Finally, to distinguish the type T of edges in E we make use of boolean func-
tions isC (E) (resp. isNC (E)). All these functions are inductively defined on the
structure of E.

In Fig. 9 we report some significant operational rules defining the evolution
of live tokens in the BPMN local semantics. A start event has edges with non-
cyclic type, as according to the BPMN standard it cannot have an incoming
edge. Rule L-Start-NC annotates the edge e outgoing from the start event with
l when the process is in the initial status (in fact, the edge has a w status before
the transition), the corresponding label l : e is produced. Let us consider the
OR-Join rules. L-OrJoin-NC is applied when the outgoing edge is of non-cyclic
type, while L1-OrJoin-C and L2-OrJoin-C when it is of type c. In these latter
cases, we also make use of the boolean predicate noDep(e), defined in Sect. 3,
to ensure that in case of vicious circles (noDep(e) = false) the rules cannot be
applied, thus enforcing a deadlocked behaviour as prescribed by BPMN 2.0.

Global vs. Local Semantics of BPMN 2.0 OR-Join 333

Fig. 9. BPMN local semantics (an excerpt).

The rules described so far are not enough for properly expressing the OR-
Join behaviour only using local information. Other rules are indeed needed to
propagate the dead status. They are applied when all incoming edges of a gate-
way are annotated with d, and propagate this information to the outgoing edges.
As an example, we report here rule D-OrJoin. Finally, M -StatusUpd allows the
interleaving of the process element. It relies on the status updating function
M � α, which returns a process obtained from M by updating the status of its
edges according to the labelled sets they belong to in α.

We conclude the section with our main result, ensuring the soundness of our
approach. In particular, we show the correspondence between the global and
local semantics we provided. In order to do that we first need to illustrate the
correspondence between the syntax used in the global formalisation and that
used in the local version. The local notation is achieved by applying σ to the
structure S, that is by distributing the token information included in σ on the
edges of S. We recall, we consider only safe processes, thus 0 � σ(e) � 1.
Formally, we have the following definition; we rely here on auxiliary notations t
and nl to denote an undefined type, which can be either c or nc, and a not live
status, which can be either w or d.

Definition 1 (Syntax correspondence). Let 〈S, σ〉 be a process configura-
tion, then S · σ is inductively defined on the structure of S as follows (we show
here only few cases of the definition, since the other are similar):
start(e) · σ = start(e.t.(e · σ)) end(e) · σ = end(e.t.(e · σ))
orJoin(e, E) · σ = orJoin(e.t.(e · σ), (E · σ)) (S1 | S2) · σ = S1 · σ | S2 · σ

where e ·σ =
{

l if σ(e) = 1;
nl otherwise. ∅ ·σ = ∅ ({e}∪E) ·σ = {e ·σ}∪ (E ·σ).

334 F. Corradini et al.

According to the above definition, a term S · σ represents a class of marked
processes, i.e. all those processes with the same marking for what concerns the
live status, but possibly different markings for the other two status and possibly
different edge types (information that indeed are not considered at all in the
global semantics). Therefore, to state that marked processes belong to a given
class we use the relation ≡, whose meaning is as follows: M ≡ S · σ means that
M is syntactical equivalent to S ·σ, up to an instantiation of t and nl occurrences
in S · σ.

Finally, our results rely on the notion of reachable configuration/processes.
In fact, the considered syntaxes are too liberal, as they allow terms that cannot
be obtained (by means of transitions) from a process in its initial state.

Definition 2 (Reachable configuration/marked process). A process con-
figuration 〈S, σ〉 (resp. marked process M) is reachable if there exists 〈S, σ′〉
(resp. process M ′) such that σ′ = σ0 (resp. isInit(M ′)) and 〈S, σ′〉 →G

*σ (resp.
M ′ α−→L

*M).

Now, we can formally define our results, stating that each step of the global
semantics corresponds to one or more steps of the local semantics (Theorem 1)
and vice versa (Theorem 2). Their proofs are given by induction on the derivation
of the transitions.

Theorem 1. Let 〈S, σ〉 be a reachable process configuration, if 〈S, σ〉 →G σ′

then there exists M such that M ≡ S · σ, M
α−→L
+M ′ and M ′ ≡ S · σ′.

Theorem 2. Let M be a reachable marked process, with M ≡ S·σ, if M
α−→L M ′,

then there exists M ′′ such that M ′ α−→L
*M ′′, 〈S, σ〉 →G σ′ and M ′′ ≡ S · σ′.

6 Concluding Remarks

In this paper we presented global and local direct formalisations of BPMN
process models compliant with the OR-Join semantics reported in the BPMN
2.0 standard. In particular, the local semantics fosters a compositional, and
hence more scalable, approach to enact business processes involving OR-Joins.
The soundness of the proposed approach is given by the formal correspondence
between the local and global semantics.

As a future work, we plan to validate the performance of the proposed global
and local semantics over models coming from real scenarios. Moreover, we intend
to use the OR-Join semantics to enable process verification and ensure process
models correctness by design. Last but not least, we plan to extend enactment
tools, such as Camunda [15], to implement process aware IT systems fitting with
the proposed semantics.

Global vs. Local Semantics of BPMN 2.0 OR-Join 335

References

1. Pastor, O.: Model-driven development in practice: from requirements to code. In:
Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.)
SOFSEM 2017. LNCS, vol. 10139, pp. 405–410. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-51963-0 31

2. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
3. Suchenia, A., Potempa, T., Lig ↪eza, A., Jobczyk, K., Kluza, K.: Selected approaches

towards taxonomy of business process anomalies. In: Pe�lech-Pilichowski, T., Mach-
Król, M., Olszak, C.M. (eds.) Advances in Business ICT: New Ideas from Ongoing
Research. SCI, vol. 658, pp. 65–85. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-47208-9 5

4. van der Aalst, W.M., Desel, J., Kindler, E.: On the semantics of EPCs: a vicious
circle. In: EPK, pp. 71–79 (2002)

5. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-33143-5

6. Kunze, M., Berger, P., Weske, M.: BPM academic initiative - fostering empirical
research. In: BPM Demonstration Track, CEUR Workshop Proceedings, vol. 940,
pp. 1–5 (2012)

7. Völzer, H.: A new semantics for the inclusive converging gateway in safe processes.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 294–309.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2 21

8. Dumas, M., Grosskopf, A., Hettel, T., Wynn, M.: Semantics of standard process
models with OR-Joins. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol.
4803, pp. 41–58. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
76848-7 5

9. Thalheim, B., Sorensen, O., Borger, E.: On defining the behavior of OR-Joins in
business process models. J. Univ. Comput. Sci. 15(1), 3–32 (2009)

10. Christiansen, D.R., Carbone, M., Hildebrandt, T.: Formal semantics and imple-
mentation of BPMN 2.0 inclusive gateways. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 146–160. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19589-1 10

11. Prinz, T.M., Amme, W.: A complete and the most liberal semantics for converging
OR gateways in sound processes. Complex Syst. Inf. Model. Q. 4, 32–49 (2015).
http://dblp.org/db/journals/csimq/csimq4

12. Gfeller, B., Völzer, H., Wilmsmann, G.: Faster Or-Join enactment for BPMN 2.0.
In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp.
31–43. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25160-3 3

13. Wynn, M.T., et al.: Business process verification-finally a reality!. Bus. Process
Manag. J. 15(1), 74–92 (2009)

14. Alfresco Software Inc: Activiti v. 6.0. www.activiti.org (2017)
15. Camunda services GmbH: Camunda v. 7.7.0. www.camunda.com (2017)
16. Flowable: Flowable v. 6.1.0. www.flowable.org (2017)
17. Red Hat: jBPM v. 7.0.0. www.jBPM.org (2017)
18. ProcessMaker Inc.: Process maker v. 3.2. www.processmaker.com (2017)
19. Signavio Inc: Signavio v. 11.2.0. www.signavio.com (2017)
20. Stadust: Stadust v. 4.1.0. www.eclipse.org/stardust (2017)
21. Sydle: Sydle. www.sydle.com (2017)

https://doi.org/10.1007/978-3-319-51963-0_31
https://doi.org/10.1007/978-3-319-51963-0_31
https://doi.org/10.1007/978-3-319-47208-9_5
https://doi.org/10.1007/978-3-319-47208-9_5
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-642-15618-2_21
https://doi.org/10.1007/978-3-540-76848-7_5
https://doi.org/10.1007/978-3-540-76848-7_5
https://doi.org/10.1007/978-3-642-19589-1_10
https://doi.org/10.1007/978-3-642-19589-1_10
http://dblp.org/db/journals/csimq/csimq4
https://doi.org/10.1007/978-3-642-25160-3_3
www.activiti.org
www.camunda.com
www.flowable.org
www.jBPM.org
www.processmaker.com
www.signavio.com
www.eclipse.org/stardust
www.sydle.com

336 F. Corradini et al.

22. Szwarcfiter, J.L., Lauer, P.E.: A search strategy for the elementary cycles of a
directed graph. BIT Numer. Math. 16(2), 192–204 (1976)

23. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

24. van der Aalst, W.M.P.: Workflow verification: finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45594-9 11

25. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

26. Corradini, F., Fornari, F., Muzi, C., Polini, A., Re, B., Tiezzi, F.: On avoiding
erroneous synchronization in BPMN processes. In: Abramowicz, W. (ed.) BIS 2017.
LNBIP, vol. 288, pp. 106–119. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59336-4 8

27. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Global vs. Local Semantics of
BPMN 2.0 OR-Join. Technical report, Univ. Camerino (2017). http://pros.unicam.
it/documents.html

https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/978-3-319-59336-4_8
https://doi.org/10.1007/978-3-319-59336-4_8
http://pros.unicam.it/documents.html
http://pros.unicam.it/documents.html

AODVv2: Performance vs. Loop Freedom

Mojgan Kamali1(B), Massimo Merro2(B), and Alice Dal Corso2

1 Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
mojgan.kamali@abo.fi

2 Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy
massimo.merro@univr.it

Abstract. We compare two evolutions of the Ad-hoc On-demand Dis-
tance Vector (AODV) routing protocol, i.e. DYMO and AODVv2-16. In
particular, we apply statistical model checking to investigate the perfor-
mance of these two protocols in terms of routes established and looping
routes. Our modelling and analysis are carried out by the Uppaal Statis-
tical Model Checker on 3× 3 grids, with possibly lossy communication.

1 Introduction

Ad hoc networking has gained popularity and is applied in a wide range of appli-
cations, such as public safety and emergency response networks. Mobile Ad-hoc
Networks (MANETs) are self-configuring networks that support broadband com-
munication without relying on wired infrastructure. Routing protocols of ad-hoc
networks are among the main factors determining performance and reliability of
these networks. They specify the way of communication among different nodes
by finding appropriate paths on which data packets must be sent.

In this work, we focus on two evolutions of the Ad-hoc On-demand Distance
Vector (AODV) [21] protocol to investigate their performance and to analyse if
they may yield routing loops. The protocol finds alternative routes on demand
whenever needed, meaning that it is intended to first establish a route between
a source node and a destination (route discovery), and then maintain a route
between the two nodes during topology changes (route maintenance).

Most studies of wireless network protocols, especially for large scale networks,
are mostly done by simulation techniques and test-bed experiments. These are
valuable techniques for performance analysis, however they do not allow us to
simulate all possible scenarios. As a consequence, unexpected behaviours and
flaws appear many years after the development of protocols. Formal analysis
techniques allow to screen protocols for flaws and to exhibit counterexamples
to diagnose them. For instance, model checking [6] provides both an exhaustive
search of all possible behaviours of the system, and exact quantitative results.

Statistical Model checking (SMC) [25] is a technique combining model check-
ing and simulation, aiming at providing support for quantitative analysis as well
as addressing the size barrier to allow analysis of large models. It relies on choos-
ing sampling traces of the system and verifying if they satisfy the given property

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 337–350, 2018.
https://doi.org/10.1007/978-3-319-73117-9_24

338 M. Kamali et al.

with a certain probability. In contrast to exhaustive approach, statistical model
checking does not assure a 100% correct result, but it is possible to restrict the
probability of an error occurring. In this work, we apply Uppaal SMC [8], the
statistical extension of the Uppaal model checker [2] to support the composition
of timed and/or probabilistic automata. In Uppaal SMC, two main statistical
parameters α and ε, in the interval [0, 1], must be specified by the user; the num-
ber of necessary runs is then computed by the tool using the Chernoff-Hoeffding
bounds. The tool provides a value in the confidence interval [p−ε, p+ε] indicat-
ing the probability p of the intended property. Parameters α and ε represent the
probability of false negatives and probabilistic uncertainty, respectively.

Since its first definition, AODV has seen several versions and improvements.
In particular, DYMO [22] is an evolution of AODV supporting path accumula-
tion: whenever a control message travels via more than one node, information
about all intermediate nodes is accumulated in the message and distributed to
its recipients [7]. Several studies have shown that AODV, DYMO and AODVv2
suffer from routing loops [5,10,14,20], i.e. an established route stored in the
routing tables at a specific point in time that visits the same node more than
once before the intended destination is reached [11]. Caught packets in a routing
loop can saturate the links and decrease the network performance. Thus, loop
freedom is a critical and challenging property for any routing protocol.

Contributions. Our work has been motivated by a recent version of AODVv2,
appearing in the AODVv2-16 Internet draft [24] and containing a number of
modifications to overcome the looping problem of AODV and DYMO. As a first
contribution, we have modelled in Uppaal SMC the core functionality of both
AODVv2-16 and DYMO protocols for 3× 3 grid topologies (9 nodes). While the
model for AODVv2-16 is completely new, the model for DYMO is a refinement of
those appearing in [7,15]. In both cases, we have adopted a probabilistic model for
wireless communication to take into account both message loss and link breakage
at different rates. As a second contribution, we have compared the performance
of DYMO and AODVv2-16 with respect to four different workbenches: (i) route
discovery, (ii) number of routes found, (iii) optimal route finding, (iv) and packet
delivery. From our analysis, it emerges that DYMO performs significantly better
than AODVv2-16 with respect to all workbenches, in particular in the presence of
a significant message loss rate. Finally, as the third contribution, we investigate
whether the models for the two protocols may yield routing loops under extreme
conditions, such as message loss and link breakage. As expected, our model of
DYMO faces a number of loops; however the corresponding Uppaal model for
AODVv2-16 is loop free, with an accuracy of 99%, suggesting that the changes
introduced in this version of the protocol help to reduce/remove loops.

Outline. In Sect. 2, we overview both DYMO and AODVv2-16. In Sect. 3, we
discuss the Uppaal models of the two protocols based on their RFCs [22,24]. In
Sects. 4 and 5, we present the results of our analysis with respect to performance
and loop occurrences. In Sect. 6, we draw conclusions and review related work.

AODVv2: Performance vs. Loop Freedom 339

2 DYMO and AODVv2-16: Two Evolutions of AODV

This section provides a brief overview of DYMO and AODVv2-16 protocols. In
both protocols, each node maintains a routing table (RT) containing information
about the routes to be followed when sending messages to the other nodes of
the network. The collective information in the nodes’ routing table is at best a
partial representation of network connectivity as it was at some times in the past;
in the most general scenario, mobility together with node and communication
failures continually modify that representation.

We report a scheme of the DYMO protocol [22] with an injected packet having
the source node s and destination node d. When s receives the data packet, it first
looks up an entry for d in its routing table. If there is no such entry, it broadcasts
a rreq message through the network. Afterwards when an intermediate node
receives the rreq, it first checks whether or not the information in the message
is new. If this is not the case, the receiving intermediate node discards the rreq
and the processing stops. If the information is new, the receiving node updates
its routing table based on the information in the rreq. Then, it checks if it
has a route to the destination d. If this information is provided, intermediate
node sends a rrep back to the source s as well as to the destination d. By this,
DYMO establishes bidirectional routes between originator and destination. On
the other hand, if the intermediate node does not have any route to d, it adds
its own address to the rreq and rebroadcasts the message.

When next intermediate node receives the rebroadcast rreq, it updates (if the
message is new) the routing table entry associated with s and the corresponding
intermediate sender node and repeats the same steps executed by the former
intermediate node. Finally when the destination d receives the rreq, it updates
its routing table for the source node s and all the intermediate nodes that have
rebroadcast the rreq, and then sends a unicast rrep that follows the reverse
path towards s. Each node receiving the rrep will update the routing table
entry associated with d and intermediate nodes.

Nodes also monitor the status of alternative active routes to different destina-
tions. Upon detecting the breakage of a link in an active route, an rerr message
is broadcast to notify the other nodes about the link failure. The rerr message
contains the information about those destinations that are no longer reachable
toward the broken link. When a node receives an rerr from its neighbours, it
invalidates the corresponding route entry for the unreachable destinations.

The architecture of the AODVv2-16 protocol [24] is quite similar to that of
DYMO considering some differences. One of the main differences of AODVv2-16
is to avoid sending rrep by intermediate nodes. When AODVv2-16 broadcasts
a rreq, it waits to get the rrep back only from the destination of the rreq. It
means that intermediate nodes do not send the rreps to the source of the rreq
even if they have active routes through the destination node. This behaviour will
increase the time needed for route discovery (routing tables in AODVv2-16 are
not updated as often as in DYMO), decreasing the performance of the protocol1.

1 Due to lack of space, we highlight the design differences between two protocols in [16].

340 M. Kamali et al.

2.1 Degrading Performance to Avoid Routing Loops

Different studies have proved the presence of loops in AODV, DYMO and
AODVv2 protocols [5,10,14,20]. Here, we report a simple example to show how
a loop can occur in DYMO, and how this is avoided in AODVv2-16.

Fig. 1. Presence of a loop in DYMO.

The network in Fig. 1 consists of three nodes that are connected in a linear
topology. Let’s assume that node s has a pkt to send to node d. It initiates
the route discovery and broadcasts a rreq. Node i gets the rreq, updates its
routing table for node s, adds itself as an intermediate node in the rreq of s, and
rebroadcasts the rreq, Fig. 1(1). Node s and d receive the rreq. Node s drops
the message since the received message is its own rreq and node d updates its
routing table for node s and i and since it is the rreq destination, it sends a
rrep back through the path to the originator of the rreq, i.e. node s. Node i gets
the rrep from d, updates its routing table for d, adds itself as an intermediate
node in rrep of d and sends the rrep to s. Finally, node s receives the rrep of
d, Fig. 1(1), updates its routing table for i and d and sends the pkt to node i
to be delivered to d, Fig. 1(2).

Afterwards, the link between s and i breaks and node i has a pkt to send
to s. Node i becomes aware of the link breakage and broadcasts an rerr to its
neighbours. Assume the rerr from i is lost in the reception of d, resulting in
node d not being notified about the link breakage, Fig. 1(3). Next when node i
has another pkt to send to s, and it knows already that there is no valid route to
s, it initiates a rreq to its neighbours. Node d receives the rreq and it has the
valid route to s. Node d, as the intermediate node, sends the rrep to i, Fig. 1(4).
Node i receives the rrep from d and updates its routing table for node s with
new information. In this situation, node i sends its pkt to d since node i’s next
hop through s is d. Node d then sends the pkt to i as node d’s next hop through
s is i. Finally, the pkt is circulated in a loop, Fig. 1(5).

Protocol designers have overcome the looping problem of DYMO by incorpo-
rating several changes in the new version (AODVv2-16). In this current version,
if route discovery is initiated the intermediate nodes which have active routes

AODVv2: Performance vs. Loop Freedom 341

through the destination do not send the rrep to the originator, meaning that
the destination of the rreq has sole responsibility for sending the rrep back
to the originator. By this, they have solved the problem of having loops in the
network, but the performance level has decreased.

In AODVv2-16, the routing tables can be updated if:

– “If AdvRte is more recent than all matching LocalRoutes. ”
– “If the sequence numbers are equal, Check that AdvRte is safe against routing loops com-

pared to all matching LocalRoutes, If LoopFree(AdvRte, LocalRoute) returns TRUE, com-
pare route costs:

–If AdvRte is better than all matching LocalRoutes, it MUST be used to update the
Local Route Set because it offers improvement.

–If AdvRte is not better (i.e. it is worse or equal) but LocalRoute is Invalid, AdvRte
SHOULD be used to update the Local Route Set because it can safely repair the existing
Invalid LocalRoute.” [[24], page 28]

Here, LocalRoutes stores previously received messages, AdvRte contains
the information about newly received message, and LoopFree(AdvRte,
LocalRoute):= (Cost(AdvRte) <= Cost(LocalRoute)).

There are more conditions in the specification of the AODVv2-16 indicating
when to update routing tables, leading to less information being stored, hereby
decreasing the performance. For instance, routing tables in AODVv2-16 are not
updated in the scenario where sequence numbers are the same, the message is
received via a longer path, and the link toward a destination is broken, although
updating would have helped to fix broken paths. In addition, the sending of rrep
by intermediate nodes is not specified in AODVv2-16. This leads to routes being
established more slowly than in DYMO, since the rreq has to travel all the way
to the destination node and rrep has to be sent back along the whole path, from
the rreq destination to the rreq originator.

3 Uppaal Models of AODVv2-16 and DYMO

In this section, we briefly explain our AODVv2-16 automata and provide some
modifications of the Uppaal SMC model of [15] for DYMO2. As in [15], both
protocols are represented as parallel compositions of node processes, where each
process is a parallel composition of two timed automata, the Handler and the
Queue. This is because each node maintains a message queue to store incoming
messages and a process for handling these messages; the workflow of the handler
depends on the type of the message. Communication between nodes i and j is
only feasible if they are neighbours, i.e. in the transmission range of each other.
This is modelled by predicates of the form isconnected[i][j] which are true if
and only if i and j can communicate. Communication between different nodes i
and j are on channels with different names, according to the type of the control
message being delivered (rrep, rreq, rerr).

Messages (arriving from other nodes) are stored in the queue, by using a
function addmsg(). Only messages sent by nodes within the transmission range
2 The reader can consult our models at http://users.abo.fi/mokamali/SOFSEM2018.

http://users.abo.fi/mokamali/SOFSEM2018

342 M. Kamali et al.

may be received. Unlike the model of [15] our Queue is essentially a probabilistic
timed automata. Uppaal SMC features branching edges with associated weights
for the probabilistic extension. Thus we define an integer constant loss, with
0 ≤ loss ≤ 100, and a node can either lose a message with weight loss or receive
it with weight (100−loss).

The Handler automaton, modelling the message-handling protocol, is far
more complicated and has around 22 locations. The implementation of the two
protocols differs for this automaton. The Handler is busy while sending mes-
sages, and can only accept one message from the Queue once it has completely
finished handling the previous message. Whenever it is not processing a mes-
sage and there are messages stored in the Queue, the Queue and the Handler
synchronise via channel imsg[ip], transferring the relevant message data from
the Queue to the Handler. According to the specification of the protocols, the
most time consuming activity is the communication between nodes, which takes
40 ms on average [22,24]. This is modelled in the Handler by means of a clock
variable t, set to 0 before transmission, so that a delay between 35 and 45 ms is
selected uniformly at random.

Based on DYMO and AODVv2-16 specifications, rreqs can be resent the
maximum of 3 times in the presence of message loss. The major differences
between AODVv2-16 and DYMO, are the absence of intermediate rreps and also
conditions regarding updates of the routing tables. As we explained in Sect. 2,
AODVv2-16 tries to find the whole path through the destination node and it
does not rely on the rreps from intermediate nodes that have routes through the
destination node (intermediate nodes do not generate any rrep message even if
they have active routes through the destination node).

Finally, we report the main changes which have been introduced in our
Uppaal SMC model of DYMO with respect to that proposed in [15]:

– In the DYMO model by [15], two connected nodes could get disconnected
while a node is waiting to transmit a message (waiting time of 40 ms), which
could cause a potential deadlock in the system. For our experiments, we mod-
ify this behaviour and assume that two connected nodes cannot get discon-
nected during this period of time which is the case in reality (the probability
that two nodes disconnect upon communication is too low).

– We minimised the DYMO automaton of [15] by removing a number of redun-
dant locations and transitions that were modelling the same procedure.

– We have also modelled the resending of rreq for the maximum number of 3
times, when control messages, i.e. rreq, rrep and rerr, can get lost. This
was done by adding new locations and transitions.

– In the current version of DYMO Uppaal model, when a node receives a mes-
sage from its neighbour it first checks the message sequence number. If it is
recent then it updates its routing table for the message originator and for
the stored intermediate nodes in the message. If the sequence number is not
recent, the message is simply dropped without any routing table update.

For further details the reader is referred to our technical report [16].

AODVv2: Performance vs. Loop Freedom 343

4 Performance Analysis on Static Grids

We replay the experiments of [7,15] to compare DYMO and AODVv2-16 on
3× 3 grid topologies with possibly lossy channels. Furthermore, we investigate
one more property, namely packet delivery. More precisely, we consider four
different workbenches to compare the two protocols: 1. A probabilistic analysis
to estimate the ability to successfully complete the protocol finding the requested
routes for a number of properly chosen scenarios; 2. A quantitative analysis to
determine the average number of routes found during the routing process in the
same scenarios; 3. A qualitative analysis to verify how good (i.e. short) are the
routes found by the routing protocol. 4. A probabilistic analysis to investigate
the number of delivered packets to their corresponding destinations. We conduct
our experiments using the following set-up: (i) 2.3 GHz Intel Quad-Core i7, with
16 GB memory, running the Mac OS X 10.11.6 “El Capitan”; (ii) Uppaal SMC
model-checker 64-bit version 4.1.19. The statistical parameters of false negatives
(α) and probabilistic uncertainty (ε) are both set to 0.01, leading to a confidence
level of 99%. For each experiment with these parameters, Uppaal SMC checks
several hundred runs of the model, up to 26492 runs (cf. Chernoff-Hoeffding
bound). We run our experiments for the message loss rates used in [7], namely
0%, 10% and 30%, and then also for 40% to obtain more precise results.

4.1 Successful Route Requests

In the first set of experiments we consider four specific nodes: A, B, C and D; each
with particular originator/destination roles. Our scenarios are a generalisation
of those of [15] (as we consider larger networks) and assign roles as follows:

(i) A is the only originator sending a packet first to B and afterwards to C;
(ii) A is sending to B first and then B is also sending to C;
(iii) A is sending to B first and then C is sending to D.

Up to symmetry, varying the nodes A, B, C and D on a 3× 3 grid, we have
5184 different configurations. From this number we deduct 4518 configurations
because they make little sense in our analysis, as the source and the destination
node coincide. This calculation yields 666 different configurations. As we will
repeat our simulations for four different loss rates, this makes in total 2664
experiments.

Initially, for each scenario no routes are known, i.e. the routing tables of each
node are empty. Then, with a time gap of 35–45 ms, two of the distinct nodes
receive a data packet and have to find routes to the packet’s destinations. The
query in Uppaal SMC syntax has the following shape:

Pr[<=10000](<>(tester.final && emptybuffers() &&

art[OIP1][DIP1].nhop!=0 && art[OIP2][DIP2].nhop!=0))

The first two conditions require the protocol to complete; here, tester refers
to a process which injects to the originators nodes (tester.final means

344 M. Kamali et al.

that all data packets have been injected), and the function emptybuffers()
checks whether the nodes’ message queue are empty and the Handler is
idle (is not busy with processing messages). The third and the fourth
conditions require that two different route requests are established. Here,
art[o][d].nhop is the next hop in o’s routing table entry for destination
d. As soon as this value is set (is different to 0), a route to d has been
established. Thus, the whole query asks for the probability estimate (Pr) sat-
isfying the CTL-path expression <>(tester.final && emptybuffers() &&
art[OIP1][DIP1].nhop!=0 && art[OIP2][DIP2].nhop!=0) within 10000 time
units (ms); as in [15] this bound is chosen as a conservative upper bound to ensure
that the analyser explores paths to a depth where the protocol is guaranteed to
have terminated.

In Table 1 we provide the results of our query for both models. More precisely,
we report the average probability to satisfy the required property in all 666
configurations. This is done for four different loss rates. Note that in the case of
perfect communication, our analysis shows that the probability to successfully
establish a required route in our setting can be estimated to be at least 0.99. We
should add here that increasing message loss rate leads an increase in the number
of runs to complete the simulation. This is because unreliable communication
channels make the routing process longer in order to resend control messages.
In other words, the number of runs is affected by the lower success probability
which requires a larger number of runs to provide confidence intervals.

Table 1. Route establishment on 3× 3 grid networks (α = ε = 0.01).

Loss= 0% St. dev. Loss= 10% St. dev. Loss= 30% St. dev. Loss= 40% St. dev.

DYMO 0.99 0.00 0.99 0.00 0.89 0.06 0.65 0.14

AODVv2-16 0.99 0.00 0.98 0.00 0.72 0.14 0.45 0.20

We can see that on the 3× 3 grid with perfect communication the reliabil-
ity of the two protocols is quite similar. However, in the presence of message
loss, DYMO performs better than AODVv2-16. In fact, the higher the loss rate,
the bigger the gap between the two protocols. More precisely, with a 10% loss
rate DYMO performs better than AODVv2-16, whereas with 30% and 40% loss
rate the gap between two protocols becomes more obvious (DYMO performs
much better than AODVv2-16). It should be also noticed that the results of the
simulations on DYMO are more homogeneously distributed around the average
probability, as it appears from the smaller standard deviation.

4.2 Number of Route Entries

The second analysis proposed in [15] takes into account the capability to build
other routes while establishing a route between two specific nodes. Routing tables
are updated whenever control messages are received. Both protocols update for

AODVv2: Performance vs. Loop Freedom 345

the whole discovered paths by forcing path accumulation (storing the information
about intermediate nodes in control messages).

We check the property:

E[<=10000,26492](max:total knowledge())

where the function total knowledge() counts the number of non-empty entries
appearing in all routing tables built along a run of the protocol, and the function
max returns for all runs of the simulation, the maximum number of non-empty
entries. This calculation is done for all different configurations; the result of the
analysis is the average over all configurations. The reader should notice that this
kind of query is different from the previous one. It has the form E..,
where the letter “E” stands for expected value estimation, as the result of the
query is a value and not a probability. Since the number of runs is not determined
by value estimation, we set 26492 runs for our simulations to guarantee a 99%
confidence level. The time bound remains as 10000.

Table 2. Route quantity on 3× 3 grid networks (26492 runs for each experiment).

Loss 0% St. dev. Loss 10% St. dev. Loss 30% St. dev. Loss= 40% St. dev.

DYMO 37.27 7.68 37.42 6.18 34.68 5.86 31.27 5.39

AODVv2-16 34.01 5.93 34.38 5.76 34.57 5.91 31.66 5.36

We repeat the same analysis of [15] on our 3× 3 grid by considering four
different loss rates. In total we did 2664 experiments, one for each configuration
with a different loss rate. The results of our analysis are reported in Table 2.
Table 2 shows that during the routing process DYMO establishes more routes
than AODVv2-16 (37 versus 34 routes), in the absence of message loss. This gap
remains the same when having 10% message loss rate. The analysis shows that
increasing the rate of the message loss leads to have similar behaviour of DYMO
and AODVv2-16 (having the same number of route entries).

4.3 Optimal Routes

The results of the previous section tell us that in our 3× 3 grid, DYMO is
more efficient than AODVv2-16 in populating routing tables while establishing
routing requests. In this section, we provide a class of experiments to compare
the ability of two protocols in establishing optimal routes, i.e. routes of minimal
length, according to the network topology. As explained in [15,19], all ad-hoc
routing protocols based on rreq-broadcast can establish non-optimal routes.
This phenomenon is more evident in a scenario with unreliable communication.

We replay the same experiments of [15]. We checked the following property:

Pr[<=10000](<>(tester.final && emptybuffers() &&

art[OIP1][DIP1].hops==min path && art[OIP2][DIP2].hops==min path1)).

346 M. Kamali et al.

Here, the third and the fourth conditions require that two different route requests
are established. In fact, art[o][d].hops returns the number of hops necessary
to reach the destination node d from the originator o, according to o’s routing
table. Furthermore, we require this number to be equal to the length of the
corresponding optimal route (which has been previously computed).

In this experiment we are not interested in checking all non-empty routing
entries but only those which are directly involved in the two routing requests.
This property is checked on all 666 configurations with four different loss rates.
Notice that this time we ask for a probability estimation, so the result is going to
be a probability. The statistical parameters of our simulations are α = ε = 0.01.

Table 3. Optimal routing on 3× 3 grid network. (α = ε = 0.01).

Loss 0%Stand. dev. Loss 10%Stand. dev. Loss 30%Stand. dev. Loss= 40% Stand. dev.

DYMO 0.94 0.20 0.84 0.18 0.67 0.17 0.48 0.17

AODVv2-16 0.95 0.19 0.86 0.18 0.58 0.19 0.37 0.19

Table 3 says that the probability to establish optimal routes in the two routing
protocols is very close when having no message loss. Actually, in the presence
of message loss, there is still a gap in favour of DYMO. This gap would become
bigger if we would focus only on the optimality of the second route request, which
is launched slightly after the first one. This is because DYMO works better than
AODVv2-16 when routing tables are not completely empty.

4.4 Packet Delivery

The packet delivery property differs from the successful route request property,
in that the route establishment property only checks if the source node has the
information about the destination node, however the packet delivery property
checks if the injected packets are delivered to the destination at the end. Indeed,
there might be a situation where an originator node has the information about
the destination node and sends its packet to the next node along the path to
the destination node, but the next node itself does not have valid information
about the destination node. As a consequence, all the packets stemming from the
originator node will be lost, hence the packets cannot arrive at the destinations.

This property in Uppaal SMC syntax is as following:

Pr[<=10000](<>(tester.final && emptybuffers() && empty queues()==0 &&

packet delivered()==2))

Here, the third and the fourth conditions require that the two packets are deliv-
ered at their destinations; empty queues() is a function checking whether or
not there is any packet in the queue of any nodes. When this function returns
0, it shows that there is no more packet in the queues of nodes. Function
packet delivered() returns the number of delivered packets which must be 2
at the end, given that we have injected two packets for our experiments. Thus,
the whole query asks for the probability estimate (Pr) satisfying the CTL-path

AODVv2: Performance vs. Loop Freedom 347

expression <>(tester.final && emptybuffers() && empty queues()==0 &&
packet delivered()==2) within 10000 time units (ms); as in [15] this bound is
chosen as a conservative upper bound to ensure that the analyser explores to a
depth where the protocol is ensured to have terminated.

The results in Table 4 show that AODVv2-16 works worse than DYMO w.r.t.
the packet delivery property as it tries to find the whole path to the destina-
tion node, whereas DYMO relies on replying back from the intermediate nodes.
Moreover, routing tables in AODVv2-16 are not updated regularly due to the
more restricted routing table updates in AODVv2-16. Therefore, the probability
that all packets are delivered to the destination nodes is lower in AODVv2-16.

5 Loop Analysis on Grids with Link Breakage

We run our experiments, looking for loops on 3× 3 grids during the routing
process, under the assumption that links between nodes can break with a high
probability. We model link breakage by modifying the Queue automaton so that
when a control message is received by the queue of a node (using a function
addmsg()) with probability of 100-loss, the link between one random node in
the network and the receiver can break with a fixed probability breaks. Since
link breakage is one of the main factors causing routing loops, we assign this
value to 80, so that with a very high probability the link between the sender and
the receiver fails. Furthermore, in order to increase the traffic in the network we
inject three packets in total. The slightly new scenario is explained below.

Table 4. Packet delivery on 3× 3 grid networks (α = ε = 0.01).

Loss 0% Stand. dev. Loss 10% Stand. dev. Loss 30% Stand. dev. Loss=40% Stand. dev.

DYMO 0.99 0.00 0.98 0.00 0.78 0.09 0.50 0.16

AODVv2-16 0.99 0.00 0.97 0.01 0.60 0.16 0.35 0.18

We consider again four specific nodes: A, B, C and D; each with particular
originator/destination roles. We assign roles as follows: (i) A is the only origi-
nator sending the first packet to B, and afterwards sends the second and third
packets to C; (ii) A is sending to B first and then B is also sending the second
and third packets to C; (iii) A is sending to B first and then C is sending the
second and third packets to D.

For simplicity, in order to work with a reasonable number of experiments,
second and third packets have the same originators and destinations, so the
number of configurations up to symmetry will remain the same, i.e. 666. In our
experiments we check the number of loops in all 666 different configurations
(how many loops exist in the network) and we show how many configurations
have routing loops i.e. in how many configurations an injected packet can be
circulated between nodes. This gives 2664 experiments in total for each protocol.
Our experiments can be represented using the following Uppaal SMC syntax:

E[<=10000;26492](max:numberofloops())

348 M. Kamali et al.

Function numberofloops() counts the number of loops found along a run of the
protocol, and the function max returns for all runs of the simulation, the maxi-
mum number of loops. We maintain the same number of runs as for performance
analysis, i.e. 26492, to guarantee a 99% accuracy.

Table 5 depicts the maximum number of loops considering different message
loss rate in different configurations for both protocols. The results of our analysis
show that when message loss rate increases, the number of loops in the networks
for DYMO also increases. For instance when having 0% message loss, the number
of loops in the network is 1 and when message loss increases to 10% or more
number of loops in the network increases to 2. Unlike DYMO, the rate of message
loss does not have any effect on the number of loops in the network for AODVv2-
16 as we cannot find routing loops while verifying AODVv2-16.

Table 5. Number of loops in different
configurations.

Loss 0% Loss 10% Loss 30% Loss 40%

DYMO 1 2 2 2

AODVv2-16 0 0 0 0

Table 6. Number of configurations that
have loops.

Loss 0% Loss 10% Loss 30% Loss 40%

DYMO 10 11 13 11

AODVv2-16 0 0 0 0

Table 6 shows the number of configurations having loops. Results for DYMO
show with 0% message loss there are 10 configurations out of 666 that have loops
in the network. This value is increased to 11 with 10% message loss, and when
message loss is increased to 30%, the number of configurations that have loops
goes up to 13. The table depicts when message loss increases to 40%, the number
of configurations that have loops decreases to 11. In contrast to DYMO, there
is no configuration in AODVv2-16 that has routing loops.

6 Conclusions and Related Work

Our work has been strongly inspired by recent version of AODVv2-16 [24] where
several modifications were proposed to overcome looping problem of DYMO (and
previous versions of AODVv2). We believe that the protocol designers accepted
the performance hit in order to ensure that the protocol is loop free. To the best
of our knowledge, our work is the first to investigate the looping property of
AODVv2-16 and compare the performance of DYMO and AODVv2-16.

In this paper, we modelled the AODVv2-16 protocol and investigated the
performance of the protocols DYMO and AODVv2-16 in 3× 3 grids, with possi-
bly lossy communication, as well as checking the loop freedom property for both
protocols. Our analysis is performed using the Uppaal SMC (release 4.1.19). We
were able to show how the performance of the more recent AODVv2-16 has been
worsened compared to DYMO, especially in the case of lossy communication.
DYMO can cause routing loops whereas our extensive analysis was not able to
find loops in AODVv2-16. This result encourages us to pursue towards a formal
proof of loop freedom for AODVv2-16.

AODVv2: Performance vs. Loop Freedom 349

Formal analysis of MANETs and their protocols is a challenging task, and
their formal verification have attracted the attention from formal methods com-
munity [1,3,4,7,13,15,17,18,20]. There are number of papers which apply (sta-
tistical) model checking to AODV and its variants, to test the performances of
the protocol(s). Fehnker et al. [9] used the Uppaal model checker [2] to anal-
yse basic qualitative properties of the AODV routing protocol in all network
topologies up to five nodes. Höfner and McIver [15] showed that AODV per-
forms better than DYMO on the same topologies, relying on the Uppaal SMC
model checker. On the contrary, Dal Corso et al. [7] showed that on larger net-
works (4× 3 toroids) with lossy communication DYMO performs better than
AODV.

There are also several studies on loop freedom of AODV and DYMO. van
Glabbeek et al. [14] have studied the loop freedom of the AODV protocol and
they have showed that AODV is not loop free and sequence numbers do not
guarantee loop freedom. Namjoshi and Trefler [20] have investigated the looping
property of AODVv2-04 and they have proved this protocol causes routing loops.
There are several other studies that confirm existence of routing loops in AODV
[5,10,12]. In a recent paper, Yousefi et al. [26] have applied their extension of
actor-based modelling language bRebeca to model AODVv2-11 [23] (a previous
version of AODVv2) where they have proved that the loop freedom property of
AODVv2-11 does not hold. The authors had reported the existing loop scenario
to protocol designers and the protocol has been modified in the newer version
(AODVv2-13).

References

1. Battisti, L., Macedonio, D., Merro, M.: Statistical model checking of a clock syn-
chronization protocol for sensor networks. In: Arbab, F., Sirjani, M. (eds.) FSEN
2013. LNCS, vol. 8161, pp. 168–182. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40213-5 11

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

3. Benetti, D., Merro, M., Viganò, L.: Model checking ad hoc network routing proto-
cols: ARAN vs. endairA. In: SEFM 2010, pp. 191–202. IEEE (2010)

4. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

5. Bres, E., van Glabbeek, R., Höfner, P.: A timed process algebra for wireless net-
works with an application in routing. In: Thiemann, P. (ed.) ESOP 2016. LNCS,
vol. 9632, pp. 95–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49498-1 5

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

7. Dal Corso, A., Macedonio, D., Merro, M.: Statistical model checking of Ad Hoc
routing protocols in lossy grid networks. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 112–126. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 9

https://doi.org/10.1007/978-3-642-40213-5_11
https://doi.org/10.1007/978-3-642-40213-5_11
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-319-17524-9_9

350 M. Kamali et al.

8. David, A., Larsen, K.G., Legay, A., Mikuăionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

9. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 13

10. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV. CoRR abs/1312.7645 (2013)

11. Garcia-Luna-Aceves, J.J.: A unified approach to loop-free routing using distance
vectors or link states. SIGCOMM Comput. Commun. Rev. 19(4), 212–223 (1989)

12. Garcia-Luna-Aceves, J.J., Rangarajan, H.: A new framework for loop-free on-
demand routing using destination sequence numbers. In: MASS 2004, pp. 426–435.
IEEE (2004)

13. van Glabbeek, R., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying
the AODV routing protocol. Distrib. Comput. 29(4), 279–315 (2016)

14. van Glabbeek, R., Höfner, P., Tan, W.L., Portmann, M.: Sequence numbers do
not guarantee loop freedom: AODV can yield routing loops. In: MSWiM 2013, pp.
91–100. ACM (2013)

15. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing proto-
cols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
322–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 22

16. Kamali, M., Merro, M., Dal Corso, A.: AODVv2: performance vs. loop freedom.
Technical report. pp. 1177. TUCS - Turku Centre for Computer Science (2016)

17. Kamali, M., Höfner, P., Kamali, M., Petre, L.: Formal analysis of proactive, dis-
tributed routing. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 175–189. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-
0 13

18. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. TCS
412(47), 6585–6611 (2011)

19. Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks:
design, analysis and experiments. In: INFOCOM 2010, pp. 1–9. IEEE Press (2010)

20. Namjoshi, K.S., Trefler, R.J.: Loop freedom in AODVv2. In: Graf, S., Viswanathan,
M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 98–112. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19195-9 7

21. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
Routing. RFC 3561 (Experimental) (2003)

22. Perkins, C., Stan, R., Dowdell, J.: Dynamic MANET on-demand (AODVv2) Rout-
ing draft-ietf-manet-dymo. Internet Draft 26 (2013)

23. Perkins, C., Stan, R., Dowdell, J., Steenbrink, L., Mercieca, V.: Ad Hoc On-demand
Distance Vector (AODVv2) Routing draft-ietf-manet-aodvv2. Internet Draft 11
(2015)

24. Perkins, C., Stan, R., Dowdell, J., Steenbrink, L., Mercieca, V.: Dynamic MANET
On-demand (AODVv2) Routing draft-ietf-manet-aodvv2. Internet Draft 16 (2016)

25. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: a statistical model-checker and ana-
lyzer for probabilistic systems. In: QEST 2005, pp. 251–252. IEEE (2005)

26. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of wire-
less ad hoc networks. CoRR abs/1604.07179 (2016)

https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-19195-9_7

Multivendor Deployment Integration for Future
Mobile Networks

Manuel Perez Martinez1, T́ımea László2, Norbert Pataki3, Csaba Rotter1(B),
and Csaba Szalai1

1 Nokia Bell Labs, Budapest, Hungary
{manuel.p.martinez,csaba.rotter,csaba.szalai}@nokia-bell-labs.com

2 Nokia, Budapest, Hungary
timea.laszlo@nokia.com

3 Department of Programming Languages and Compilers,
Eötvös Loránd University, Budapest, Hungary

patakino@elte.hu

Abstract. During the last few years, we have seen a tremendous explo-
sion in the range of possibilities when speaking about software delivery.
The web-scale IT capabilities have evolved drastically and complex web-
based applications have adapted rapidly in an ever changing world where
user experience is in the focus. Terms like Agile, Cloudification, microser-
vices or DevOps are lately on the crest of the wave.

The focus of this paper, however, is not within the managed services
providers, but with the network providers, or operators. These companies
are experiencing similar challenges as described above especially with the
imminent arrival of 5th generation mobile networks, but with a differ-
ent set of constraints that make the adoption of the new paradigms or
best practices a tough process. Along the paper we will cover the main
bottlenecks that operators face in terms of adapting to the ever increas-
ing network needs, paying especial attention to the multivendor nature
and the extreme high availability expected in this kind of services. We
present our tool for scheduling deployments in this special environment
with the related workflows and leveraged DevOps best practices. Finally,
we measure how a proof of concept tool helps to improve the delivery
process in multivendor environments.

1 Introduction

Release management encompasses planning, coordinating, and verifying the
deployment of software solutions into production. Release management requires
collaboration by the development teams producing the solutions and the people
responsible for your organizations operational IT infrastructure. In the case of
organizations based on the agile development methodology, these people with the
different responsibility areas may form several cross-functional teams, although

N. Pataki—Supported by the NKP-17-4 New National Excellence Program of the
Ministry of Human Capacities.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 351–364, 2018.
https://doi.org/10.1007/978-3-319-73117-9_25

352 M. P. Martinez et al.

even in these situations there could be a group of people responsible for govern-
ing the overall release management effort [11]. In the telecom industry the release
procedure often spans over two or more organizations, as the development and
operation are performed by distinct companies. On the other hand, the number
of software releases per year has to be dramatically increased to cope with the
ever-changing customer demands, affecting the release procedure as well [18].

New approaches have been appeared for software transition from develop-
ment into production, such as continuous delivery (CD). The focus of contin-
uous delivery is the release procedure automation [7]. Changes are committed
to code repositories, builds and tests are run immediately as part of the contin-
uous integration (CI) procedure. If all the changes are automatically deployed
into production then we can speak about continuous deployment. This approach
motivates the developers as well because they prefer faster deployment of the
code they develop [23]. However, security of deployment pipelines also becomes
important [6]. The DevOps approach is an extension of continuous delivery with
feedback to the developers from production and intensive logging and monitor-
ing that can be used for analysis to prevent problems and improve operational
aspects [20].

Complex telecommunication systems typically consist of many components
[1,22]. These components can be separated vendors or developed by different
vendors and delivered to the operator who possesses the hardware and ensure
several network functions – that can be selected from many different versions. It
is the operator’s responsibility that the subsystems are able to work together.

Continuous deployment in telecommunication industry requires coordination
among the different vendors (or the delivery pipelines of the vendors). These
vendors likely have different release procedure, schedule and might have whole
different release frequency. Therefore, the introduction of DevOps is considered
difficult in telecommunication services [15]. New technologies and approaches
have been developed, adopted and fine-tuned for making this process easier. For
instance, virtualization techniques (clouds and containerization) are widely-used
in the telecom industry, as well.

However, there is no thoroughgoing toolchain to cover multivendor aspects
of the deployment in complex telecommunication network nowadays [13]. This
paper aims for providing a possible solution deployed to the operators premise to
control and coordinate the releases of software components in a multivendor 5G
telecommunication environment [4]. This architecture requires new approaches
for deploying mobile networks and to be compliant with the DevOps paradigm
[3]. The main cornerstones of 5G are automation and DevOps [27], thus we
support existing CI/CD/DevOps pipelines with a new tool that finds the proper
window for updating a network element, so it can increase the upgrade capacity
at the operator side. We present different approaches for this tool, we compare
them and propose a workflow how to use it.

This paper is organized as follows. We show the integration-related problems
in Sect. 2. We present the existing techniques that motivate our work in Sect. 3.
We particularize our solution in Sect. 4: the architecture details are described in

Multivendor Deployment Integration for Future Mobile Networks 353

the section. We measure how a specific application deployment can be gained
speed in Sect. 5. Finally, this paper is concluded in Sect. 6.

2 Problems of Integration

The traditional software delivery process in telecommunication is milestone-
based with upfront release planning, taking the form of project/release plans
and spreadsheets. They rely on regular meetings between project office and the
technical staff to keep them in sync.

The release handover process takes mostly manual planning for scheduling
updates, requires additional and integration testing in staging. These processes
are executed at the operator with the help of the vendor. Operator defines strait
maintenance windows, in which slight service outages are tolerated. The software
upgrade process is also executed most manually with incidental rollback method.
Thus, these are slow, circumstantial, cumbersome processes which result in sub-
optimal capacity of upgrading mobile network elements. In casual development
continuous delivery can be used to increase delivery frequency and automate the
delivery and deployment. Agile methodologies are able speed-up these processes,
but it cannot solve all the problems in telecommunication software development
because a telecommunication software significantly differs from a casual one in
the following aspects [22]:

– resilience: usual IT application is much less complex as a telecommunication
subsystem and thus detecting and fixing errors makes less time.

– multivendor : CD is typically applied in such IT product where the develop-
ment and the operation is done by the very same company. So they usually
have a single CI pipeline. We do not know any solution in IT that would
synchronize among different CD pipelines belong to different vendors taking
care of the security aspect as well. In contrast in telecommunication systems
we need to synchronize different outputted artifacts and deployments from
different vendors.

– high availability : In a telecommunication system five nines (99.999%) network
availability is required while for a typical web-application 99% availability can
be enough.

On the other hand, developing continuous deployment pipelines is hard, for
instance, 15 companies have been analysed in 2015 and no company had an
automatic pipeline all the way to deployment in a production environment [14].
However, tools, technologies and methodologies have been improved [10].

The delivery control systems in casual development supervise the delivery
of a single component, so there is no need of synchronising the deployments of
different DevOps pipelines. We are not aware of any tool in IT that would syn-
chronize the output of distinct pipelines into production environment. Complex
IT services and multivendor telecommunication systems require synchronization
among the distinct pipelines providing quality and high availability.

354 M. P. Martinez et al.

As in the past it was usual to deliver just a few times a year, in the near future
new releases should be deployed even every day [15]. This speed-up means prob-
lem regarding the increased amount of data, the compatibility and deployment
scheduling of overlapping new release deployments.

Integration becomes more challenging when one deals with DevOps pipelines
in multivendor environments [9]. The approaches of software architectures and
the deployments processes have been changed, e.g. microservice-based architec-
ture, which will be elaborated further, is gaining increasing popularity. This
includes that the software is split into several components (services), which can
and shall be deployed and operated separately, but it introduces additional oper-
ational and configuration complexity.

There are situations when the new release of a software component is no
longer compatible to an other one because the public APIs and data schemas
evolve time by time and the various software components should communicate
with each other. Therefore the importance of spotting, tracking and resolving
colliding software component versions is highly important. In some cases the
software components are tightly coupled with each other, meaning that they
cannot be updated independently. Software updates have to be carried out then
in a predefined order.

Development team is likely to have separate CI pipeline set up for each
software component. This pipeline guides the software components in its way
from a software change to its release across several levels of test phases and
quality assurance steps. This brings the need to create a common, automated way
to deploy each software component to any test environment and to production
as well.

The mentioned problems grow exponentially in a complex, multivendor-based
telecommunication software system in which different subsystems are deployed
and updated very frequently with DevOps approach. The existing approach can-
not handle the complexity of the network, so new approaches are required to
overcome this combinatorial explosion. In the 5G realm high availability (HA) is
a very important aspect from the view of the operators [2]. Service outages are
not acceptable from the view of end-users. Furthermore, so far only small main-
tenance windows (timeslots when updates and new releases can be deployed)
have been allowed. This would not change in the 5G-based environment.

The traditional upgrade process causes suboptimal capacity of upgrading
mobile network elements because of the long-term planning processes. Telecom-
munication operators are eager for frequent updates for the applied network
elements, thus we define a new approach for making this processes faster and
seamless. The solution guarantees proper timeslots for updating network ele-
ment when a new release becomes available and performs the process. Thus, it
increases the number of release updates at the operator side because correct time-
frame for the separate, safe update of the different subsystems is ensured. This
approach requires fine-grained network element architecture. However, there is
a limit that should be approximated in the number of release updates.

Multivendor Deployment Integration for Future Mobile Networks 355

3 Enablers

Continuous Delivery is a software development discipline which focuses on the
deploymentability of developed software. Comprehensive testing is an important
aspect because a deployable software always should be available [21]. It empha-
sizes the deployment automation for transparent deployment pipelines.

DevOps is an emerging methodology based on continuous delivery. The main
missions of DevOps are: the development and operation affect each other, receiv-
ing feedback from operation to developers with comprehensive monitoring, log-
ging that are continuously evaluated.

DevOps pipelines include many stages: starts with building, followed by dif-
ferent kinds of testing (e.g. component and integration testing) [24]. Compre-
hensive analysis requires static analyzers (e.g. [12]), vulnerability scanning, etc.
After this phase, the automatic deployment of application starts [8]. Logging
and monitoring supervise the working software and the problems in production
are solved in a seamless way [16]. However, the development team is eager for
feedback from the application which is in the production environment: e.g. what
are the unused features or where are performance bottlenecks. The visibility of
the whole process is guaranteed.

Microservice architecture is an approach to developing application as a set
of small services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API [19]. Services do not run
on the same machine necessarily and they can be deployed independently, thus
this architecture supports DevOps intensively [5]. Scaling of the application is
much easier and fine-grained with microservices.

Using microservice architecture in telecommunication is not straightforward.
For instance, well-defined boundaries and clean compositions are required in the
case of this architecture because refactoring among services considered lumber-
ing. Integration testing requires much more effort.

The Network Function Virtualization (NFV) Management and Orchestration
(MANO) architecture aims at the flexible, transparent on-boarding and configu-
ration of virtualized network functions (VNFs) and services composed of VNFs
[17]. Networking, storage and virtual machines are included in the deployment.
Virtualization breaks the coupling with specific equipment, thus NFV technol-
ogy is able to virtualize a wide range of network function types, thus this is an
ideal basis for multivendor environment.

The NFV MANO consists of three functional elements: the virtual infras-
tructure manager (VIM), the NFV orchestrator (NFVO) and the NFV manager
(NFVM). The NFVO is responsible for on-boarding of new network services
(NSs) and VNF packages. It handles the lifecycle management of the NS and
global resource management. NFVO validates and authorizes network functions
virtualization infrastructure (NFVI) resource requests. The VNF Manager han-
dles lifecycle management of VNF instances. VIM controls and manages the
NFVI compute, storage, and network resources.

NFV MANO architecture utilizes the virtualization techniques but virtu-
alization has further benefits, as well. It is well-known that common staging

356 M. P. Martinez et al.

environment should be similar to the production environment. The integration
status can be tracked in the staging environment. However, different hardware
elements may be available in staging and production because the production
must be always available, so the hardware has high capacity. Fortunately, mod-
ern virtualization techniques are able to hide the details of hardware, thus the
production and staging environment can be very similar, the only difference is
the capacity of environments [25].

4 Our Technique

4.1 Approaches

A possible solution for the above mentioned challenges is a deployment control
system (referred as Deployment Manager), deployed to the operators as part of
the NFV orchestration and management solution.

The Deployment Manager provides the operators with a comprehensive view
of software changes across a large collection of related software components,
forming a single or multiple network service(s). It keeps track of available soft-
ware artifacts delivered by different vendors and it gives aid for planning and
scheduling system-level software upgrade.

Figure 1 shows a simple but descriptive setup and usage scenario involving
the Deployment Manager. The operator has a network service consisting of three
VNFs operated. Two of them are provided by a vendor, the other one is from
another vendor. Deployment Manager runs in the operator’s environment as part
of the Service Orchestration Layer. It facilitates the Network Orchestration layer
to deploy or update network services or the VNFs.

Each vendor has a fully automated development pipeline. The first part of
each build pipeline follows the guideline of the continuous integration practice.
The second part of the build pipeline is an internal deployment. During the
internal deployment the solution is tested against functional and performance
requirements with all the components provided by an other vendor emulated.
The deployment procedure is also tested here.

If the software successfully passes all the phases, it can be deployed. We pro-
pose the Deployment Scheduler which is inside the Deployment Manager. The
scheduler provides the appropriate date and time for the deployment to each
pipeline. With its help the deployments will not overlap or hinder each other in
any way. The main components of the Deployment Scheduler are the Decision
Logic that uses the Component and the Compatibility Graphs and the Rule
Engine that keeps track the already scheduled deployments in a database. This
approach works in the following way: Deployment Scheduler receives schedule
request containing compatibility info of the new component version. The Deci-
sion Logic stores the compatibility info of the new component version into the
Compatibility Graph. The Decision Logic checks whether the new component
version is compatible (based on Compatibility Graph, that was just updated)
with all other component that the old version in the same component uses accord-
ing to the Component Graph. The Decision Logic requests schedule from the

Multivendor Deployment Integration for Future Mobile Networks 357

Rule Engine. The Rule Engine asks the Schedules database about the already
scheduled deployments. Based on that and its rules the rule engine counts the
next possible schedule for the given component version. The Rule Engine pro-
vides the schedule for the Decision Logic. The Decision Logic answers with the
schedule response to the requester. Using a rule machine inside the Deployment
Scheduler can implement any rules in terms of the schedule (dependencies, cus-
tomer activities, etc.).

Another option is that the Deployment Scheduler is included in a more full-
fledged Delivery Manager instead of the Deployment Manager. In this case dur-
ing the software handover process to the operator the software with all its arti-
facts (release information, external configuration files and other metadata) gets
uploaded to the Product and Service database inside the Delivery Manager.
Based on the predefined rules and schedule, the Decision Logic performs the
update of the corresponding VNF first in the staging environment. Deployment
into the staging environment is part of the verification procedure: each software
increment gets tested in an environment that is similar to the production. A
software component passing this verification phase can now be deployed into
production. It can be an immediate or a scheduled action (or may based on
custom rules) and it might require formal approval as in the example of Fig. 1.

Fig. 1. Delivery control

An alternative would be to use only one common CD pipeline shared among
the different vendors. Our opinion is this multivendor pipeline would rise secu-
rity issues. Moreover, the development and test environment of the different
vendors could not be separated because all of them need to have access to the
administration of the pipeline, configuration of the test environments and the
common version control systems. Building a common CD pipeline would also

358 M. P. Martinez et al.

need intensive cooperation among the different vendors. So all in all, our solu-
tion provides better isolation and maintainability and proves to be easier to
implement compared to the shared version.

The schematic picture of our solution can be seen in Fig. 2, the Deployment
Scheduler that synchronizes the deployment of different products that are deliv-
ered by different pipelines controlled by the corresponding vendor. It shows an
example when all the three pipelines are ready to deploy at the same time. They
inform the Deployment Scheduler that decides the schedule of the deployments
and responds to the pipelines to deploy accordingly.

Fig. 2. Multivendor delivery with deployment scheduler

4.2 Proposed Workflow

The proposed approach is that the Deployment Manager is not only responsible
for the schedule but also the deployment itself. The DevOps pipelines end at the
delivery phase creating the software releases that they handle to our tool, to be
stored, scheduled and deployed. The features that the Comprehensive Deploy-
ment Manager additionally provides are presented ahead:

– Product/Service repository : A database for the available software components.
After a formal software release, the software artifacts are pushed into this
repository. This is the place where the change logs, release information and
operational guides are stored.

– Deployment artifacts: models for network services created by the solution
architects that describe the VNFs and the required network setup, annotated
with the corresponding software versions and lifecycle dependency graphs.

– Deployment Scheduler : The core part of the Comprehensive Deployment Man-
ager. It helps to create release and deployment action plans according to the
availability of the software components, assets and operational personnel. It
aligns the different release trains of the vendors, ad-hoc releases and deploy-
ment windows. It supports several strategies from a fully automated, best-
effort to a multiphased delivery process with fine-grained scheduling for every
phase with manual approvals in between.

Multivendor Deployment Integration for Future Mobile Networks 359

– Asset Manager : The release management team will work closely with the
operations team to perform configuration management of the operational
environment. To safely deploy into production they must know the current
production and its dependencies comprehensively. The Asset Manager pro-
vides input for the release planner and scheduler to determine the status and
availability of the necessary resources for software verification and operation.

– Reporting : The main role of the reporting subsystem is to provide all the
contributors (solution architects, operation personnel, etc.) with release intel-
ligence as an insight into the effectiveness of the release management effort.
Predefined release metrics help the operator to gain insight and improve the
release process. Such metrics can be:
• number of pending software releases waiting in the “backlog”
• number or rate of successful releases
• number and duration of outages suffered during releases
• percentage of releases by type (regular software update, security patch,

emergency update, etc.)

The general software release management workflow (see Fig. 3) would look
like as follows:

Fig. 3. Comprehensive deployment manager workflow

360 M. P. Martinez et al.

1. Software releases continuously provided by the various vendors are collected
in the Product/Service Repository.

2. Solution Architects design the network services with all the necessary deploy-
ment artifacts.

3. With these two a network service becomes available for verification and for
production use.

4. Portfolio and Release Management create a release plan with the corre-
sponding ruleset and schedule, then upload them to the Release Planner
and Scheduler.

5. Operations Personnel revises the current state of assets and resources accord-
ing to the release plans.

6. Asset Manager keeps its state in sync with the verification and production
environment.

7. Based on the release ruleset, the network service and asset availability the
Decision Logic in the Release Planner and Scheduler triggers software deploy-
ment and release.

8. Release Planner and Scheduler delegates actions for deployment to the
underlying network service orchestration and management layer.

9. Release Planner and Scheduler obtains feedback for the process state and
the collected metrics.

10. With the Reporting component, the Comprehensive Deployment Manager
provides views and reports of the release process for the management. This
input is used for continuous improvement, i.e. further refinement of the
release procedure.

The Deployment Scheduler uses a rule engine to determine schedule that
can consider the deployment windows, priorities and not-yet-known dependen-
cies among the components. The trivial rule engine just avoids overlapping of the
deployment windows and provide schedule in a “first come, first served” basis, but
there can be improved approaches. The operator has long-term information about
the service usage and this can be used to detect the optimal update windows.

5 Measurements

We have developed a proof of concept tool for connecting existing CD/DevOps
pipelines and scheduling the deployment of their output. Our tool defines a
proper timeslot for execute deployment of a new release based on compatibility
information, so this is the Deployment Scheduler in our approach. It implements
a RESTful API for the communication. We have taken advantage of Neo4j graph
databases [26] for components (products with version information). Components
typically use each other, so in our database graph defines this relation. Another
relation that is stored is the compatibility among the components.

We have prepared a distributed Hadoop cluster application to deploy accord-
ing to the proposed approach. This application is deployed to cloud as a bunch
of virtual machines with external volumes, connected via networks. We measure

Multivendor Deployment Integration for Future Mobile Networks 361

different (re)deployment times and analyse how we can speed up the deployment
process. The deployment time includes three independent components: deploy-
ment of the resources (e.g. virtual machines, network ports, etc.), deployment of
the software and the smoke test of the application.

The application consists of 6 virtual machines: 3 data nodes, an edge server, a
distributed repository and a master node. All virtual machines have an attached
volume and the nodes are connected with 7 networks. The different networks aim
at different communication purposes (e.g. network for accessing the distributed
repository). The virtual machines have different IP addresses on these networks.
We distinguish the node releases based on compatibility information. There are
node types which are compatible to the previously deployed virtual machines
and there are node types which are incompatible to the previously deployed
hosts. When a new incompatible node is deployed we have to redeploy all nodes
with new compatible hosts. The edge and data nodes are compatible to every
other nodes, but the master and repository releases are not.

We have configured the tool with different pipelines: first configuration of
pipelines simulates the monolithic approach, the second one is the microservice-
based. The first configuration redeploys all nodes when one of the pipelines has
finished successfully because the published images are considered to be incom-
patible. The second one executed the incremental upgrade process if the com-
patibility is correct.

The entire deployment from scratch process takes 73 s for the cloud resources,
1525 s for the software configuration and 3 s for smoke test. This is the monolithic
approach, but the deployment process should be more efficient, so we fine-grain
the nodes of the cluster. The incremental update processes should speed up the
progress because reconfiguration does not affect all nodes and sequential restart-
ing can be avoided. The redeployment time of a single node is much better but we
are not able to redeploy all nodes separately. We set the compatibility informa-
tion into our proof of concept tool and receive update timeslots for upgrading the
application.

Table 1. Application average deployment times

Scenario Deployment of
cloud resources

Software
configuration

Smoke test

Application deployment 73 s 1525 s 3 s

Edge server
redeployment

42 s 449 s 3 s

3 data nodes
redeployment

43 s 383 s 3 s

3 data nodes and edge
server redeployment

53 s 484 s 3 s

The average running times of different scenarios can be seen on Table 1. The
table reflects that the fine-grained approach is worthwhile, the redeployment

362 M. P. Martinez et al.

time is decreased regardless if it is related to the software configuration or the
cloud resources. However, the software configuration time is improved better. On
the other hand, in our case we cannot redeploy all the different node types. It is
also seen that deployment times of different nodes vary but the number of nodes
does not affect the runtime significantly. When the redeployment processes are
faster we can effectively schedule the deployment of new releases and we can
achieve better deployment capacity with less service outage compared to the
former, monolithic approach. On the other hand, we cannot speed-up the smoke
test with our approach, but operators also may take advantage of incremental,
fast update processes and update the network service frequently.

6 Conclusion

DevOps is an emerging principle in the modern software development because it
improves user experience from the view of end-users and it improves the oper-
ational tasks, as well. It is based on comprehensive testing, automatic deploy-
ment and release upgrade processes, feedback collection. However, the complex
telecommunication systems in the 5G world also require DevOps-based frequent
updates in the communication network. Operators work in a complex, multi-
vendor environment with strong expectations of high availability. Using DevOps
principles is not straightforward in this complex environment.

In this paper we argue for an approach that can be used in multivendor envi-
ronment for synchronizing separate DevOps pipelines. Our work increases the
update frequency and takes advantage of the deployment capacity at the oper-
ator side. This approach contains the Deployment Manager that is responsible
for scheduling and deploying the scheduled VNFs. We have developed a proof
of concept tool for this approach that makes proper schedule in multivendor
environments based on compatibility information.

References

1. NGMN 5G white paper. White Paper, February 2015
2. Preliminary views and initial considerations on 5G RAN architecture and func-

tional design. White Paper, March 2016. https://metis-ii.5g-ppp.eu/wp-content/
uploads/white papers/5G-RAN-Architecture-and-Functional-Design.pdf

3. 5G PPP Architecture Working Group: View on 5G Architecture. Technical report,
5G PPP Architecture Working Group (2016)

4. Agyapong, P.K., Iwamura, M., Staehle, D., Kiess, W., Benjebbour, A.: Design
considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75
(2014)

5. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

6. Bass, L., Holz, R., Rimba, P., Tran, A.B., Zhu, L.: Securing a deployment pipeline.
In: 2015 IEEE/ACM 3rd International Workshop on Release Engineering, pp. 4–7,
May 2015

https://metis-ii.5g-ppp.eu/wp-content/uploads/white_papers/5G-RAN-Architecture-and-Functional-Design.pdf
https://metis-ii.5g-ppp.eu/wp-content/uploads/white_papers/5G-RAN-Architecture-and-Functional-Design.pdf

Multivendor Deployment Integration for Future Mobile Networks 363

7. Chen, L.: Continuous delivery: huge benefits, but challenges too. IEEE Softw.
32(2), 50–54 (2015)

8. Cukier, D.: DevOps patterns to scale web applications using cloud services. In:
Proceedings of the 2013 Companion Publication for Conference on Systems, Pro-
gramming, & Applications: Software for Humanity. SPLASH 2013, pp. 143–152,
ACM, New York (2013). http://doi.acm.org/10.1145/2508075.2508432

9. Fazal-Baqaie, M., Güldali, B., Oberthür, S.: Towards DevOps in multi-provider
projects. In: Krusche, S., Lichter, H., Riehle, D., Steffens, A. (eds.) Proceedings of
the 2nd Workshop on Continuous Software Engineering, pp. 18–21. CEUR-WS.org
(2017). http://ceur-ws.org/Vol-1806/paper03.pdf

10. Fowley, F., Elango, D.M., Magar, H., Pahl, C.: Software system migration to cloud-
native architectures for SME-sized software vendors. In: Steffen, B., Baier, C., van
den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS,
vol. 10139, pp. 498–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-51963-0 39

11. Highsmith, J., Cockburn, A.: Agile software development: the business of innova-
tion. Computer 34(9), 120–127 (2001)

12. Horváth, G., Pataki, N.: Source language representation of function summaries in
static analysis. In: Proceedings of the 11th Workshop on Implementation, Com-
pilation, Optimization of Object-Oriented Languages, Programs and Systems,
ICOOOLPS 2016, pp. 6:1–6:9, ACM, New York (2016). http://doi.acm.org/10.
1145/3012408.3012414

13. Karl, H., Dräxler, S., Peuster, M., Galis, A., Bredel, M., Ramos, A., Martrat,
J., Siddiqui, M.S., van Rossem, S., Tavernier, W., Xilouris, G.: DevOps for net-
work function virtualisation: an architectural approach. Trans. Emerg. Telecom-
mun. Technol. 27(9), 1206–1215 (2016). https://doi.org/10.1002/ett.3084

14. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.P., Itkonen, J., Mäntylä, M.V.,
Männistö, T.: The highways and country roads to continuous deployment. IEEE
Softw. 32(2), 64–72 (2015)

15. Lwakatare, L.E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H.H., Bosch, J.,
Oivo, M.: Towards DevOps in the embedded systems domain: why is it so hard?
In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp.
5437–5446, January 2016

16. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In: Lassenius,
C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 212–217.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2 19

17. Mijumbi, R., Serrat, J., Gorricho, J.L., Latre, S., Charalambides, M., Lopez,
D.: Management and orchestration challenges in network functions virtualization.
IEEE Commun. Mag. 54(1), 98–105 (2016)

18. Neely, S., Stolt, S.: Continuous Delivery? Easy! Just change everything (Well,
maybe it is not that easy). In: 2013 Agile Conference, pp. 121–128, August 2013

19. Newman, S.: Building Microservices. O’Reilly, Sebastopol (2015)
20. Révész, Á., Pataki, N.: Containerized A/B testing. In: Budimac, Z. (ed.) Proceed-

ings of the Sixth Workshop on Software Quality Analysis, Monitoring, Improve-
ment, and Applications, pp. 14:1–14:8. CEUR-WS.org (2017). http://ceur-ws.org/
Vol-1938/paper-rev.pdf

21. Roche, J.: Adopting DevOps practices in quality assurance. Commun. ACM
56(11), 38–43 (2013). https://doi.org/10.1145/2524713.2524721

22. Rotter, C., Illés, J., Nýıri, G., Farkas, L., Csatári, G., Huszty, G.: Telecom strategies
for service discovery in microservice environments. In: 2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), pp. 214–218, March 2017

http://doi.acm.org/10.1145/2508075.2508432
http://ceur-ws.org/Vol-1806/paper03.pdf
https://doi.org/10.1007/978-3-319-51963-0_39
https://doi.org/10.1007/978-3-319-51963-0_39
http://doi.acm.org/10.1145/3012408.3012414
http://doi.acm.org/10.1145/3012408.3012414
https://doi.org/10.1002/ett.3084
https://doi.org/10.1007/978-3-319-18612-2_19
http://ceur-ws.org/Vol-1938/paper-rev.pdf
http://ceur-ws.org/Vol-1938/paper-rev.pdf
https://doi.org/10.1145/2524713.2524721

364 M. P. Martinez et al.

23. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M.: Continuous
Deployment at Facebook and OANDA. In: Proceedings of the 38th International
Conference on Software Engineering Companion. ICSE 2016, pp. 21–30, ACM,
New York (2016). http://doi.acm.org/10.1145/2889160.2889223

24. Schaefer, A., Reichenbach, M., Fey, D.: Continuous integration and automation
for DevOps. In: Kim, K.H., Ao, S.I., Rieger, B.B. (eds.) IAENG Transactions on
Engineering Technologies: Special Edition of the World Congress on Engineering
and Computer Science 2011, pp. 345–358. Springer, Netherlands (2013). https://
doi.org/10.1007/978-94-007-4786-9 28

25. Sonkoly, B., Szabo, R., Jocha, D., Czentye, J., Kind, M., Westphal, F.J.: UNIFYing
cloud and carrier network resources: an architectural view. In: 2015 IEEE Global
Communications Conference (GLOBECOM), pp. 1–7, December 2015

26. Webber, J.: A programmatic introduction to Neo4j. In: Proceedings of the 3rd
Annual Conference on Systems, Programming, and Applications: Software for
Humanity. SPLASH 2012, pp. 217–218. ACM, New York (2012). http://doi.acm.
org/10.1145/2384716.2384777

27. Ziegler, V., Theimer, T., Sartori, C., Prade, J., Sprecher, N., Albal, K., Bedekar,
A.: Architecture vision for the 5G era. In: 2016 IEEE International Conference on
Communications Workshops (ICC), pp. 51–56, May 2016

http://doi.acm.org/10.1145/2889160.2889223
https://doi.org/10.1007/978-94-007-4786-9_28
https://doi.org/10.1007/978-94-007-4786-9_28
http://doi.acm.org/10.1145/2384716.2384777
http://doi.acm.org/10.1145/2384716.2384777

Mobile Robots and Server Systems

Patrolling a Path Connecting a Set of Points
with Unbalanced Frequencies of Visits

Huda Chuangpishit1, Jurek Czyzowicz2, Leszek G ↪asieniec3,
Konstantinos Georgiou1, Tomasz Jurdziński4, and Evangelos Kranakis5(B)

1 Department of Mathematics, Ryerson University, Toronto, Canada
hoda.chuang@gmail.com, konstantinos@ryerson.ca

2 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Canada

Jurek.Czyzowicz@uqo.ca
3 Department of Computer Science, University of Liverpool, Liverpool, UK

L.A.Gasieniec@liverpool.ac.uk
4 Instytut Informatyki, Uniwersytet Wroc�lawski, Wroc�law, Poland

Tomasz.Jurdzinski@ii.uni.wroc.pl
5 School of Computer Science, Carleton University, Ottawa, Canada

evankranakis@gmail.com

Abstract. Patrolling consists of scheduling perpetual movements of a
collection of mobile robots, so that each point of the environment is reg-
ularly revisited by any robot in the collection. In previous research, it
was assumed that all points of the environment needed to be revisited
with the same minimal frequency.

In this paper we study efficient patrolling protocols for points located
on a path, where each point may have a different constraint on frequency
of visits. The problem of visiting such divergent points was recently posed
by G ↪asieniec et al. in [14], where the authors study protocols using a sin-
gle robot patrolling a set of n points located in nodes of a complete graph
and in Euclidean spaces.

The focus in this paper is on patrolling with two robots. We adopt
a scenario in which all points to be patrolled are located on a line. We
provide several approximation algorithms concluding with the best cur-
rently known

√
3-approximation.

1 Introduction

In this paper we study efficient patrolling protocols by two robots for a collection
of n points distributed arbitrarily on a path or a segment of length 1. Each
point needs to be attended perpetually with known but often distinct minimal
frequency, i.e., some points need to be visited more often than others.

J. Czyzowicz, K. Georgiou and E. Kranakis—Research supported in part by NSERC.
L. G ↪asieniec—Research supported by Networks Sciences and Technologies (NeST).
T. Jurdziński—Research supported by the Polish National Science Centre grant
DEC-2012/06/M/ST6/00459.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 367–380, 2018.
https://doi.org/10.1007/978-3-319-73117-9_26

368 H. Chuangpishit et al.

The problem was recently studied in [14] where a collection of n points was
monitored with use of a single mobile robot. The points to be patrolled in [14]
are located in nodes of a complete graph with edges of uniform (unit) length, as
well as in Euclidean spaces, where the points are distributed arbitrarily. In their
work the frequency constraints refer to urgency factors hi, meaning that during a
unit of time the urgency of point pi grows by an additive term hi, and the task is
to design a schedule of perpetual visits to nodes which minimizes the maximum
ever observed urgency on all points. In complete graphs and for any distribution
of frequencies (urgency factors) the authors of [14] proposed a 2-approximation
algorithm based on a reduction to the pinwheel scheduling problem, see, e.g., [6,
7,15,16,19]. They also discuss more tight approximations for the cases with more
balanced urgency factors. In Euclidean spaces [14] proposes several lower bounds
and concludes with an O(log n)-approximation for an arbitrary distribution of
points and urgency factors.

In our formulation, we assume that both robots have unit speed, and we try
to minimize the relative violation of visitation-frequency requirements, i.e. the
worst case time between two visitations over the required largest waiting time of
each point. Equivalently, one may think of the problem of finding the minimum
possible speed s that both robots should patrol with that induces no violation
for the visitation-frequency requirements. In such setting, our patrolling result
refers naturally to a competitive ratio, which is defined by the ratio of the speed
the robots attain in our algorithm divided by the speed in the optimal solution.

Specific to our model is the use of two robots, for which, as we show, one can
achieve

√
3-approximation patrolling schedules. Notably, and maybe counter-

intuitively, reducing the number of robots from two to one does not lead to
constant approximation. An instructive example is when the central point has a
very large visiting frequency (we can dedicate one robot to this point) comparing
to the rest of the points on the line.

In the previous research on boundary and fence patrolling (cf. [11,12,17])
all points of the patrolled environment were supposed to be revisited with the
same frequency. However, assigning different importance to distinct portions of
the monitored boundary seems natural and observable in practice. A particu-
lar variation of this problem was studied in [10], where the authors focus on
monitoring vital (possibly disconnected) parts of a linear environment, while the
remaining neutral portions of the boundary need not be attended at all.

The problem of distinct attendance assigned to different portions of the envi-
ronment, while of inherent combinatorial interest, is also observed in perpetual
testing of virtual machines in cloud systems [1]. In such systems the frequency
with which virtual machines are tested for undesirable symptoms may vary
depending on the importance of dedicated cloud operational mechanisms.

The problem studied here is also a natural extension of several classical com-
binatorial and algorithmic problems referring to monitoring and mobility. This
includes the Art Gallery Problem [20,21] and its dynamic variant called the k-
Watchmen Problem [24]. In a more recent work on fence patrolling [10,11,17] the
efficiency of patrolling is measured by the idleness of the protocol, which is the
time where a point remains unvisited (maximized over all time moments and all
points of the environment). In [12] one can find a study on monitoring of linear

Patrolling a Path Connecting a Set of Points 369

environments by robots prone to faults. In [11,17] the authors assume robots
have distinct maximum speeds which makes the design of patrolling protocols
more complex, in which case the use of some robots becomes obsolete.

In a very recent work [18] Liang and Shen consider a line of points attributed
with uniform urgency factors. For robots with uniform speeds, they give a
polynomial-time optimal solution, and for robots with constant number of speeds
they present a 2-approximation algorithm. For an arbitrary number of veloci-
ties they design a 4-approximation algorithm, which can be extended to a 2α-
approximation algorithm family scheme, where integer α > 1 is the tradeoff
factor to balance the time complexity and approximation ratio.

2 Problem Statement and Definitions

An instance of the Path Patrolling Problem of Points with Unbalanced Fre-
quencies (PUF) consists of points S = {yi}i=1,...,n in the unit interval, where
0 = y1 < y2 < . . . < yn = 1. Each point yi is associated with its idleness
time I(yi) ∈ R+, a positive real number which is also referred to as visitation
frequency requirement.

A perpetual movement schedule of two robots r1, r2 of speed 1 will be referred
to as a patrolling schedule (robots may change movement direction instanta-
neously, and at no cost). Given a patrolling schedule A, we define the waiting
time wA(yi) of each point yi as the supremum of the time difference between
any two subsequent visitations by any of r1, r2. When the patrolling schedule is
clear from the context, we will drop the subscript in wA.

A patrolling schedule A is called feasible if for all i, wA(yi) ≤ I(yi). Schedule
A is called c textit-feasible, or c-approximation, if wA(yi)/I(yi) ≤ c, for each
i = 1, . . . , n. Thus a feasible patrolling schedule is also 1-approximation, or
1-feasible.

An instance of PUF that admits a feasible patrolling schedule will be called
feasible. In this paper we are concerned with the combinatorial optimization
problem of minimizing the worst (normalized) violation of the idleness times
for feasible instances, i.e., we are concerned with finding good approximation
patrolling schedules, in which robots’ trajectories can be determined efficiently
in the size of the given input. We will call such patrolling schedules efficient.

The problem considered here is a close relative of Pinwheel scheduling [15]
modeled by points with non-uniform deadlines (visitation-frequencies) spanned
by a complete network with edges of uniform length. The complexity of Pinwheel
scheduling depends on its representation. In particular we know that in the
standard multi-set representation the problem is in NP, however, we still don’t
known whether it is NP-hard. One can try to get closer to this answer either by
studying particular instances of the problem which can be decided [16] or instead
by seeking approximate solutions [14]. In this paper we adopted the latter.

We use the following concepts in the analysis of our patrolling schedules. We
associate each point yi with its range defined as the closed intervals R(yi) =[
max

{
0, yi − I(yi)

2

}
,min

{
1, yi + I(yi)

2

}]
. Intuitively, R(yi) is the ball around

370 H. Chuangpishit et al.

yi within which a robot can be moving introducing no violation to the visitation
frequency requirement of yi. We also group points yi with respect to whether
the extreme points fall within their range, i.e., we introduce:

S00 := {yi ∈ S : 0, 1 �∈ R(yi)} , S01 := {yi ∈ S : 0 �∈ R(yi) � 1} ,

S10 := {yi ∈ S : 0 ∈ R(yi) �� 1} , S11 := {yi ∈ S : 0, 1 ∈ R(yi)} .

3 Summary of Results and Paper Organization

Our main contribution pertains to efficient patrolling schedules (algorithms) of
feasible PUF instances. In particular, the patrolling schedules we propose are
highly efficient and simple, meaning that robots’ trajectories can be determined
by a few critical turning points, which can be computed in linear time in the
number of points of the PUF instance. In order to do so, we provide in Sect. 4
some useful properties that all feasible PUF instances exhibit, and in particu-
lar a characterization of instances with “no problematic points”. For the latter
instances, we also provide optimal feasible schedules (Theorem 1). Then we turn
our attention to arbitrary feasible PUF instances. As a warm-up, we present
in Sect. 5 a simple efficient 4-approximation patrolling schedule that does not
require coordination between robots. Section 6 is devoted to the introduction of
an elaborate and efficient

√
3-approximation patrolling schedule. The execution

of the patrolling schedule requires robots to remember at most two special turn-
ing points (that can be found efficiently), and, in some cases, their coordination
so that they never come closer than a predetermined critical distance. Its perfor-
mance analysis is based on further properties of feasible PUF instances that are
presented in Sect. 6.1. In particular, the

√
3-feasible patrolling schedule is the

combination of Algorithms 1 and 2, presented in Sects. 6.2 and 6.3 respectively,
each of them performing well for a different spectrum of a special structural
parameter of the given instance that we call expansion. In the full paper [8]
we also show that the analyses we provide for all our proposed algorithms are
actually tight.

4 Characterization of (Some) Feasible PUF Instances

In this section we characterize feasible instances of PUF for which at least one
of the extreme points falls within the range of each point.

Theorem 1. An instance of PUF with S00 = ∅ is feasible if and only if the
following conditions are satisfied:

(1) S10 ⊂ ⋂
x∈S10

R(x) = X10, and 0 ∈ X10.
(2) S01 ⊂ ⋂

x∈S01
R(x) = X01, and 1 ∈ X01.

(3) S ⊂ [
⋂

x∈S10
R(x)] ∪ ⋂

x∈S01
R(x)] = X10 ∪ X01

Moreover, if conditions (1)–(3) are satisfied, then there exists an efficient 1-
approximation partition-based patrolling schedule, i.e. a schedule in which every
yi is visited only by one robot.

In order to prove Theorem 1 we need few observations.

Patrolling a Path Connecting a Set of Points 371

Observation 1. Assume A is a feasible patrolling schedule. Then, for each x ∈
S and each time window of length at least I(x)

2 during an execution of A, at least
one robot is in R(x).

Proof. Reset time to t0 = 0. Aiming at contradiction, assume there is no robot
in R(x) at t ≥ I(x)

2 . Since both robots have speed 1, no robot visited x in the
period [t− I(x)

2 , t] and no robot is able to visit x in the period [t, t+ I(x)
2]. Thus,

A is not a feasible patrolling schedule. ��
For simplicity, we may also assume that in any patrolling schedule (hence in

feasible schedules as well), the position of robot r1 in the unit interval is always
to the left of the position of r2, as otherwise we can exchange the roles of the
robots whenever they swap while they meet. We summarize as follows.

Observation 2. In any patrolling schedule of PUF, r1 (r2) is the only robot
patrolling y1 = 0 (yn = 1), and r1 stays always to the left of r2.

We are now ready to prove Theorem 1.

Proof (Theorem 1). First, we show implication (⇒) by contraposition. If Con-
dition (1) is not satisfied, then there exists x ∈ S10 such that x /∈ X10. Fix a
feasible schedule A. By Observation 2, we may assume that r1 stays to the left
of r2, throughout the execution of the schedule. By Observation 1, there must
be a robot in X10 at each time t. Thus, r1 must be in X10 at each time t. Con-
sequently, x ∈ S10 \ X10 is visited only by r2. But r2 has to visit point yn = 1,
and by definition of S10 we know that 1 /∈ R(x). Therefore, A is not a feasible
schedule. By definition of S10, for all x ∈ S10, we have 0 ∈ R(x). Therefore
0 ∈ X10. A similar argument proves that Condition (2) is satisfied.

By (1) and (2), there exist a, b ∈ (0, 1) such that X10 = [0, a] and X01 = [b, 1].
Now suppose that Condition (3) is not satisfied. Then a < b, and there is a point
x ∈ S such that a < x < b, and therefore neither r1 nor r2 can visit x.

For implication (⇐), assume that (1)–(3) are satisfied. Consider a partition
traversal A, where r1 is searching X10 \ X01 and r2 is searching X01. Then, by
the definition of the ranges R(x), X10 and X01, the traversal A is feasible. ��

The complication of instances when S00 is non empty is that in a feasi-
ble solution, points in S00 have to be interchangeably patrolled by both r1, r2,
which further requires appropriate synchronization between them. Even though
a characterization of feasibility for such instances is eluding us, we provide below
a necessary condition. This condition will be useful also later on.

Lemma 1. For every feasible instance of PUF, we have S00 ⊂ ⋂
x∈S R(x).

Proof. Suppose to the contrary, that there are x ∈ S00 and y ∈ S, such that
x /∈ R(y). By Observation 1, a robot is always present inside R(y). Therefore
the other robot must visit x. Without loss of generality assume that y < x. The
robot that visits y cannot pass the point y + I(y)

2 < x. Also the robot that visits
x cannot pass the point x + I(x)

2 . Since x ∈ S00 then x + I(x)
2 < 1. This means

that no robot can visit point yn = 1. ��

372 H. Chuangpishit et al.

5 A Simple 4-Approximation Patrolling Schedule

In light of Theorem1, it is interesting to study feasible instances of PUF that
may have points that cannot be patrolled by one robot, i.e. for which S00 �= ∅.
As a warm-up, we provide a 4-feasible patrolling schedule for such instances.
The advantage of this schedule is that robots’ trajectories are simple and no
coordination is required.

Theorem 2. Feasible instances of PUF admit an 4-approximate patrolling
schedule.

Proof (Theorem 2). Let A be a feasible solution. Let I = miny∈SI(y) and let
x ∈ S be such that I(x) = I. If I ≥ 1

2 , then one robot patrolling the interval
[0, 1] gives a 4-approximation solution. Thus, we may assume that I ≤ 1

2 .
According to Observation 1, at least one robot stays in R(x) during A, at

each time t. We claim that a nested traversal A in which one robot traverses
[0, 1] and the other robot traverses R(x) is a 4-approximation.

We split the interval [0, 1] into A = [0, a], R(x) = [a, a + I] = [a, 1 − b] and
B = [1 − b, 1], where a + I + b = 1. First, note that the waiting time of each
y ∈ R(x) during A is wA(y) = 2I = 2I(x) ≤ 2I(y). Thus, it remains to show
that wA(y) ≤ 4I(y) for each point y ∈ A ∪ B.

Without loss of generality assume that |A| = a < b = |B|. Using the assump-
tion I ≤ 1

2 and a + I + b = 1, we have a + b ≥ 1
2 , and therefore b ≥ 1

4 . Using
Observation 2, we consider a feasible schedule B in which r1 is always to the left
of r2. By Observation 1, at least one robot stays in R(x) at each time during B.
We consider the following cases:

(Case y ∈ A): As at each time moment there must exist a robot in R(x), then
in B robot r1 has to stay in R(x) while r2 is traversing B = [1 − b, 1] twice
to visit yn = 1 and return to R(x). Therefore the waiting time wB satisfies
I(y) ≥ wB ≥ 2b ≥ 2 1

4 = 1
2 . On the other hand wA(y) = 2 = 41

2 ≤ 4I(y).
(Case y ∈ B): Let y′ = y−(a+I), thus y′ is the distance of y to R(x). Consider

a time t during the execution of B at which r1 leaves R(x) in order to visit
the point 0. As r2 must be in R(x) at t, the last visit of y before t was at time
t′ ≤ t− y′. Then, it has to stay in R(x) for at least 2a+ y′. The time between
two consecutive visits at y is at least t + 2a + y′ − (t − y′) = 2a + 2y′. On the
other hand, in order to visit 1, r2 has also time at least 2(1− y′) between two
consecutive visits of y. Altogether wB(y) ≥ max{2(a + y′), 2(b − y′)}. Thus
wB(y) ≥ 1

2 [2(a + y′) + 2(b − y′)] = a + b ≥ 1
2 . On the other hand wA(y) = 2

and thus wA(y) ≤ 4wB ≤ 4I(y). ��

6 A
√
3-Approximation Patrolling Schedule

The bottleneck toward patrolling instances of PUF is caused by points which
require the coordination of both robots in order to be patrolled, i.e. instances
in which S00 �= ∅. In order to improve upon the 4-feasible schedule of Theorem

Patrolling a Path Connecting a Set of Points 373

2, we need to understand better the visitation requirements of points in S00,
as well as their relative positioning in the path to be patrolled. The result of
our analysis, and our main contribution, is an elaborate

√
3-feasible patrolling

schedule.

Theorem 3. Feasible instances of PUF admit an efficient
√

3-approximate
patrolling schedule.

In what follows, we explicitly assume that S00 �= ∅, as otherwise, due to
Theorem 1, we can easily find feasible schedules for instances of PUF that admit
feasible solutions. Next, we introduce a key notion to our algorithms.

Definition 1. Given an instance of PUF we identify critical points x1, . . . , x4

that are defined as follows:
⋂

x∈S00
R(x) = [x1, x4], and x2, x3 are the left-

most and rightmost points point in S00, respectively. The instance is called α-
expanding if x1 = α

1+αx4.

Theorem 3 is an immediate corollary of the following Lemmata 2, 3 that we
prove in subsequent Sects. 6.2 and 6.3, respectively. The lemmata are interesting
in their own right, since they explicitly guarantee good approximate schedules
as a function of the expansion of the given instance.

Lemma 2. Feasible α-expanding instances of PUF admit an efficient (1+2α)-
approximate patrolling schedule.

Lemma 3. Feasible α-expanding instances of PUF admit an efficient 2+α
1+α -

approximate patrolling schedule.

Lemmata 2, 3 above imply that any feasible α-expanding instance admits a
min

{
1 + 2α, 2+α

1+α

}
feasible patrolling schedule. The achieved approximation is

the worst when the instance is
√
3−1
2 -expanding, in which case, the patrolling

schedule is
√

3-feasible. This concludes the proof of Theorem3.
Notably, our feasibility bounds above are tight. In the full paper [8] we show

that for every α, there are feasible α-expanding PUF instances for which the per-
formance of our patrolling schedules that prove Lemmas 2 and 3 (see Sects. 6.2,
and 6.3) is equal to the proposed bound. Hence, the performance analysis of our
patrolling schedule showing Theorem3 cannot be improved.

6.1 Useful Observations for Feasible PUF Instances

In an α-expanding instance of PUF we have that x1 = α(x4−x1). If the instance
is also feasible, then by Lemma 1 we have that S00 ⊂ ⋂

x∈S R(x). Since S00 ⊂ S,
we obtain that S00 ⊂ ⋂

x∈S00
R(x) = [x1, x4]. Also, it is easy to see that for the

critical points x1, . . . , x4 we have that x1 ≤ x2 < x4 and that x1 < x3 ≤ x4.
In particular we may assume, without loss of generality, that x1 ≤ 1 − x4, as
otherwise we flip the order of all points. Also using Observation 2, we assume
that the feasible schedule to the PUF instance has robot r1 stay always to the
left of r2.

374 H. Chuangpishit et al.

Lemma 4. Consider a feasible patrolling schedule A for a PUF instance. Then

(1) there is always a robot inside the interval [x1, x4].
(2) the interval [0, x1) is only traversed by r1 and the interval (x4, 1] is only

traversed by r2.
(3) 0 ∈ R(x) for all x ∈ [0, x1), and 1 ∈ R(x) for all x ∈ (x4, 1].
(4) x4 − x3 ≤ x3 − x1 and x2 − x1 ≤ x4 − x1.

Proof. The proof of (1) is a direct consequence of Observation 1 and the fact
that [x1, x4] is the intersection of the ranges of all of the points of S00.

During the execution of A a robot needs to visit 0 and 1. Also, by (1) we
know that there is always a robot inside [x1, x4]. Therefore while the robot r2
is traversing (x4, 1] the robot r1 has to stay inside [x1, x4], and while robot r1
is traversing [0, x1), the robot r2 has to stay inside [x1, x4]. This implies that r1
never passes x4 and r2 never passes x1. This proves (2). Part (3) follows directly
from (2).

We now prove the first inequality of (4). Suppose to the contrary that x4 −
x3 > x3 − x1, and thus x3 < x1+x4

2 . For all x ∈ S00 we have that x4 ∈ R(x).
Therefore for all x ∈ S00, x4 ≤ x+ I(x)

2 . Moreover x3 is the rightmost point of S00,
hence x ≤ x3 < x1+x4

2 . Consequently x4 ≤ x + I(x)
2 ≤ x3 + I(x)

2 < x1+x4
2 + I(x)

2 .

This implies that I(x) > x4−x1
2 . So for all x ∈ S00 we have x− I(x)

2 ≤ x− x4−x1
2 <

x1+x4
2 − x4−x1

2 = x1. Therefore there is a point y ∈ (0, 1) such that for all x ∈ S00,
x − I(x)

2 ≤ y < x1. Hence y ∈ ⋂
x∈S00

R(x) and y < x1. This contradicts the
fact that x1 is the leftmost point of the intersection of the ranges of all the
points of S00. The proof of the second inequality of (4) follows by an analogous
argument. ��
Lemma 5. If there is a feasible solution for patrolling with two robots then the
idle time of the points of S satisfy the following inequalities.

I(x) ≥
⎧
⎨
⎩

max{2x, 2(1 − x − x4 + x1), x4 − x1} , x ∈ [0, x1)
2max{x4 − x, x − x1} , x ∈ [x1, x4]
max{2(1 − x), 2(x − x4 + x1), x4 − x1} , x ∈ (x4, 1]

Proof. Let A be a feasible solution and x ∈ S.
First assume that x ∈ [0, x1). By (2) of Lemma 4, in A the points of [0, x1)

are only visited by r1 and 0 ∈ R(x). Thus, I(x) ≥ wA(x) ≥ 2x. Moreover robot
r1 has to stay inside the interval [x1, x4] for at least 2(1−x4) while the robot r2
is traversing the interval (x4, 1] to visit 1. The time length for r1 to traverse from
x to x1, stay for at least 2(1−x4) inside [x1, x4], and then traverse from x1 to x
is at least 2[(x1 −x)+(1−x4)]. Therefore, I(x) ≥ wA(x) ≥ 2[(x1 −x)+(1−x4)].
On the other hand, by Lemma1, we know that x3 ∈ R(x), and thus I(x)

2 ≥
x3 − x ≥ x3 − x1. By (3) of Lemma 4, x4 − x3 ≤ x3 − x1 ≤ I(x)

2 . Therefore,
x4 − x1 = (x4 − x3) + (x3 − x1) ≤ I(x)

2 + I(x)
2 = I(x). By the above discussion,

and for all x ∈ [0, x1), we have I(x) ≥ max{2x, 2(1 − x − x4 + x1), x4 − x1}.
A similar argument shows that for x ∈ (x4, 1] we have that I(x) ≥ max{2x, 2(1−
x − x4 + x1), x4 − x1}.

Patrolling a Path Connecting a Set of Points 375

Now assume that x ∈ [x1, x4]. Then x1, x4 ∈ R(x), and therefore x − I(x)
2 ≤

x1 ≤ x4 ≤ x + I(x)
2 . This implies that 2(x − x1) ≤ I(x) and 2(x4 − x) ≤ I(x). So

for all x ∈ [x1, x4] we have I(x) ≥ max{x − x1, x4 − x}.

6.2 (1 + 2α)-Approximate Patrolling Schedules (Proof of Lemma 2)

Given a feasible α-expanding instance of PUF and using its critical points as in
Definition 1, we propose the following algorithm.

Algorithm 1
1: Robot r1 starts anywhere in [0, x3], and robot r2 starts anywhere in [x3, 1].
2: Repeat forever

3: Robot r1 zigzags inside [0, x3] and robot r2 zigzags inside [x3, 1].

Next we show that Algorithm 1 is (1 + 2α)-feasible, effectively proving
Lemma 2. For this we analyze the waiting time w(x) for all points x ∈ S.

Assume that x ∈ [0, x1). By Lemma 1, we know that x3 ∈ R(x). Moreover
by (3) of Lemma 4, 0 ∈ R(x). Since r1 zigzags inside [0, x3] then w(x) ≤ I(x).

Similarly, for x ∈ (x3, 1], by Lemmas 1 and 4 we have {x3, 1} ⊂ R(x). Since
r2 zigzags inside [x3, 1] then w(x) ≤ I(x).

Finally, let x ∈ [x1, x3]. First assume that x < x3. Then in Algorithm 1
the point x is only visited by r1. Since r1 zigzags inside [0, x3] we have that
w(x) = 2max{x, x3 − x}. We now compute the feasibility ratio. Clearly for the
points x ∈ [0, x1) ∪ (x3, 1] we have that w(x)

I(x) ≤ 1. So when x ∈ [x1, x3], then by

Lemma 5 w(x)
I(x) ≤ max{x,x3−x}

max{x−x1,x4−x} . First let max{x − x1, x4 − x} = x4 − x. Then

x ≤ x1+x4
2 . If max{x, x3 − x} = x3 − x, as x3 ≤ x4 we have that w(x)

I(x) ≤ 1. If, on
the other hand, max{x, x3 − x} = x, then we have

w(x)
I(x)

≤ x

x4 − x
≤

x1+x4
2

x4 − x1+x4
2

≤ x1 + x4

x4 − x1

=
(x4 − x1) + 2x1

x4 − x1
= 1 +

2x1

x4 − x1

= 1 +
2x1
x1
α

[Using x1 = α(x4 − x1)]

= 1 + 2α.

Now let max{x − x1, x4 − x} = x − x1. Then x ≥ x1+x4
2 . Moreover by (4) of

Lemma 4, we have x3 ≥ x1+x4
2 . Therefore x3 − x ≤ x − x1. If max{x, x3 − x} =

x3 − x then w(x)
I(x) ≤ 1. So assume that max{x, x3 − x} = x, in which case

w(x)
I(x)

≤ x

x − x1
≤ x − x1 + x1

x − x1
= 1 +

x1

x − x1

≤ 1 +
x1

x1+x4
2 − x1

= 1 +
2x1

x4 − x1
= 1 +

2x1
x1
α

= 1 + 2α.

376 H. Chuangpishit et al.

6.3 2+α
1+α

-Approximate Patrolling Schedules (Proof of Lemma 3)

The distributed algorithm that achieves feasibility performance 2+α
1+α is quite elab-

orate. At a high level, the two robots maintain some distance that never drops
below a certain carefully chosen threshold. During the execution of the patrolling
schedule, there will always be some robot patrolling (zigzaging within) a certain
subinterval defined by critical points of the given instance. When the robots
move towards each other, and their distance reaches the certain threshold, then
robots exchange roles; the previously zigzaging robot abandons the subinterval
and goes to patrol its extreme point, while the other robot starts zigzaging within
the subinterval. The formal description of our algorithm follows. The reader may
also consult Fig. 1.

Fig. 1. The red arrow determines the patrolling area of r1 and the blue arrow deter-
mines the patrolling area of r2. (Color figure online)

Algorithm 2
1: Let d = 1

1+α
min{x1, x4 − x1}.

2: Robot r1 starts at x1 − d and robot r2 at x1.
3: Repeat forever

4: Patrolling Schedule of r1:
5: while r1 is inside the interval [x1, x4] and the distance between the locations

of r1 and r2 is at least d do
6: Zigzag between points x1 and x4.

7: Visit point 0, then visit point x1, and then go to step 5.

8: Patrolling Schedule of r2:
9: while r2 is inside the interval [x1, x4] and the distance between the locations

of r2 and r1 is at least d do
10: Zigzag between points x1 and x4.

11: Visit point 1, then visit point x4, and then go to step 9.

Note that each robot has an explicit segment in which the points are visited
by only that robot, i.e. [0, x1) is the explicit segment of r1 and (x4, 1] is the
explicit segment of r2. The trajectories of the robots overlap at [x1, x4] where
the points are visited by both r1 and r2. The movements of the robots have two
states: zigzagging inside [x1, x4] and traversing their explicit segments twice.
More precisely, once a robot enters [x1, x4] it zigzags inside [x1, x4] until the
other robot is at distance d. Then it leaves [x1, x4], traverses its explicit segment
twice, and the same process repeats perpetually.

Note that by the definition of d, we know that min{x1, x4 − x1, 1 − x4} ≥ d.
Therefore, the original placement of r1 at x1 −d is compatible with Algorithm 2.

Patrolling a Path Connecting a Set of Points 377

The remaining of the section is devoted to proving that Algorithm2 is 2+α
1+α -

approximate, effectively proving Lemma3. As a first step, we calculate the worst
case waiting times w(x) of all points in S.

Lemma 6. The waiting times of points in S for Algorithm2 are as follows.

w(x)

⎧
⎨
⎩

= 2max{x, 1 − x − d} , x ∈ [0, x1)
≤ 2max{x − x1, x4 − x} + d , x ∈ [x1, x4]
= 2max{1 − x, x − d} , x ∈ (x4, 1]

Proof. Recall that x1 ≤ 1 − x4, and in particular min{x1, x4 − x1, 1 − x4} ≥ d.

Case 0 ≤ x < x1: Point x is only visited by robot r1. We now calculate the time
interval between two consecutive visitations of x by r1. We distinguish two
subcases.

First consider the subcase where r1 is moving to the left when it visits x.
Before r1 visits x again, it has to visit 0 and then return to x. Therefore, the
time between the two visitations of x is 2x.
Second consider the subcase in which r1 is moving to the right when it visits
x. Before r1 visits x again, it has to visit x1 (i.e. enter interval [x1, x4]), zigzag
between points x1 and x4 until its distance to the other robots becomes d,
and then r1 exits the interval [x1, x4] and return to x. Below we compute the
total time between these two visitations of x by r1.

(1a): r1 traverses from x to x1: it takes x1 − x.
(1b): r1 zigzags inside [x1, x4]: at the time that r1 arrives at x1 and starts

zigzaging inside [x1, x4], robot r2 is at distance d from r1 and it is moving
to the right to visit 1 and return. Also, at the time that r1 arrives at x1

to exit the interval [x1, x4], the distance between r1 and r2 is d and robot
r2 is moving to the left to zigzag inside the interval [x1, x4]. Therefore,
the time r1 spends inside the interval [x1, x4] is equal to the time that
r2 spends to traverse from x1 + d to 1 and return to x1 + d, which is
2(1 − x1 − d).

(1c): r1 traverses from x1 to x: it takes x1 − x.
Using (1a,1b,1c) above, we conclude that the total time between two consec-
utive visitations of x by r1 is 2(1 − x − d).
Taking into consideration both subcases, the overall (worst case) waiting time
of x is 2max{x, 1 − x − d}.

Case x4 < x ≤ 1: The analysis is analogous to the previous case.
Case x1 ≤ x ≤ x4: Point x is visited by both r1 and r2. We consider two

subcases
(1) The two consecutive visits of x are by the same robot r1 or r2: this case

occurs when either of r1 or r2 zigzags inside the interval [x1, x4]. Therefore
w(x) = 2max{x4 − x, x − x1}.

(2) The two consecutive visits of x are by different robots r1 and r2: this case
occurs when one robot is exiting the interval [x1, x4] and the other one is
entering it.

378 H. Chuangpishit et al.

First suppose that r1 visits x and the next visit of x is performed by r2.
The worst waiting time in this case occurs when r1 is about to visit x but
the distance between r1 and r2 reduces to d and so r1 turns away from
x. Then r2 visits x after at most d time steps. Note that since x1 ≥ d
the visit of x by r2 is guaranteed. Therefore w(x) ≤ 2(x − x1) + d. Now
assume that r2 visits x and the next visit of x is performed by r1. By a
similar discussion we have that w(x) ≤ 2(x4 − x) + d. This implies that
w(x) ≤ 2max{x − x1, x4 − x} + d.

By Subcases 1, 2 above we conclude that w(x) ≤ 2max{x − x1, x4 − x} + d,
for all x ∈ [x1, x4]. ��

The proof of Lemma 3 follows by upper bounding maxx∈S

{
w(x)
I(x)

}
. Using

Lemmas 5 and 6, we see that the approximation ratio of Algorithm2 is no more
than

w(x)
I(x)

≤

⎧
⎪⎨
⎪⎩

2max{x,1−x−d}
max{2x,2(1−x−x4+x1),x4−x1} , x ∈ [0, x1)
2max{x−x1,x4−x}+d
2max{x4−x,x−x1} , x ∈ [x1, x4]

2max{1−x,x−d}
max{2(1−x),2(x−x4+x1),x4−x1} , x ∈ (x4, 1]

(1)

Using that d = min{x1,x4−x1}
1+a , and the fact that the given instance is α-

expanding, i.e. that x1 = α(x4−x1), and after some tedious and purely algebraic
calculations, we see that w(x)

I(x) ≤ 2+α
1+α for all x ∈ S, as wanted. Details can be

found in the full paper [8].

7 Conclusion

The paper investigated the problem of patrolling a line segment by two robots
when time-patrolling constraints are placed on the frequency of visitation of all
the points of the line. As shown in this study, finding “efficient” trajectories that
satisfy the requirements or even deciding on their existence for two robots turns
out to be a highly intricate problem. Nothing better is known aside from the√

3-approximation algorithm for two robots on a line presented in this work. The
patrolling problem with constraints is also open for more general graph topolo-
gies (e.g., cycles, trees, etc.). Further, the case of patrolling with constraints for
multiple robots is completely unexplored in all topologies, including for the line
segment.

References

1. Alshamrani, S., Kowalski, D.R., G ↪asieniec, L.: How reduce max algorithm behaves
with symptoms appearance on virtual machines in clouds. In: Proceedings of IEEE
International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015)

2. Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress:
a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)

3. Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems.
IEEE Trans. Comput. 47(7), 812–816 (1998)

Patrolling a Path Connecting a Set of Points 379

4. Bender, M.A., Fekete, S.P., Kröller, A., Mitchell, J.S.B., Liberatore, V., Polishchuk,
V., Suomela, J.: The minimum backlog problem. Theoret. Comput. Sci. 605, 51–61
(2015)

5. Bodlaender, M.H.L., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J.,
Zantema, H.: Cinderella versus the wicked stepmother. In: Baeten, J.C.M., Ball, T.,
de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 57–71. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33475-7 5

6. Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)

7. Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorith-
mica 9(5), 425–462 (1993)

8. Chuangpishit, H., Czyzowicz, J., Gasieniec, L., Georgiou, K., Jurdzinski, T.,
Kranakis, E.: Patrolling a path connecting set of points with unbalanced frequen-
cies of visits (2012). http://arxiv.org/abs/1710.00466

9. Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer
minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 70

10. Collins, A., Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E., Krizanc,
D., Martin, R., Morales Ponce, O.: Optimal patrolling of fragmented boundaries.
In: Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2013, New York, USA, pp. 241–250 (2013)

11. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling
by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23719-5 59

12. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.:
When patrolmen become corrupted: monitoring a graph using faulty mobile robots.
In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0 30

13. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34(1), 14–38 (2002)

14. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

15. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-
time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second
Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702,
January 1989

16. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two
distinct numbers. Theoret. Comput. Sci. 100(1), 105–135 (1992)

17. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. Distrib. Comput. 28(2), 147–154 (2015)

18. Liang, D., Shen, H.: Point sweep coverage on path. Unpublished work https://
arxiv.org/abs/1704.04332

19. Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica 19(4), 411–426 (1997)

20. Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)

https://doi.org/10.1007/978-3-642-33475-7_5
http://arxiv.org/abs/1710.00466
https://doi.org/10.1007/3-540-48224-5_70
https://doi.org/10.1007/978-3-642-23719-5_59
https://doi.org/10.1007/978-3-662-48971-0_30
https://doi.org/10.1007/978-3-319-51963-0_18
https://arxiv.org/abs/1704.04332
https://arxiv.org/abs/1704.04332

380 H. Chuangpishit et al.

21. O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University
Press, Oxford (1987)

22. Romer, T.H., Rosier, L.E.: An algorithm reminiscent of Euclidean-gcd for comput-
ing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)

23. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM J. Discret. Math. 2(4), 550–581 (1989)

24. Urrutia, J.: Art gallery and illumination problems. Handbook Comput. Geom.
1(1), 973–1027 (2000)

Exploring Graphs with Time Constraints
by Unreliable Collections of Mobile Robots

Jurek Czyzowicz1, Maxime Godon1, Evangelos Kranakis2, Arnaud Labourel3,
and Euripides Markou4(B)

1 Université du Québec en Outaouais, Gatineau, Canada
2 School of Computer Science, Carleton University, Ottawa, Canada

3 LIF, Aix-Marseille University & CNRS, Marseille, France
4 University of Thessaly, Lamia, Greece

emarkou@dib.uth.gr

Abstract. A graph environment must be explored by a collection of
mobile robots. Some of the robots, a priori unknown, may turn out to be
unreliable. The graph is weighted and each node is assigned a deadline.
The exploration is successful if each node of the graph is visited before
its deadline by a reliable robot. The edge weight corresponds to the time
needed by a robot to traverse the edge. Given the number of robots
which may crash, is it possible to design an algorithm, which will always
guarantee the exploration, independently of the choice of the subset of
unreliable robots by the adversary? We find the optimal time, during
which the graph may be explored. Our approach permits to find the
maximal number of robots, which may turn out to be unreliable, and
the graph is still guaranteed to be explored.

We concentrate on line graphs and rings, for which we give positive
results. We start with the case of the collections involving only reliable
robots. We give algorithms finding optimal times needed for exploration
when the robots are assigned to fixed initial positions as well as when such
starting positions may be determined by the algorithm. We extend our
consideration to the case when some number of robots may be unreliable.
Our most surprising result is that solving the line exploration problem
with robots at given positions, which may involve crash-faulty ones, is
NP-hard. The same problem has polynomial solutions for a ring and for
the case when the initial robots’ positions on the line are arbitrary. The
exploration problem is shown to be NP-hard for star graphs, even when
the team consists of only two reliable robots.

Keywords: Fault · Deadline · Exploration · Graph · Line · NP-hard
Ring · Robot · Star graph

J. Czyzowicz—Research supported in part by NSERC Discovery grant.
E. Kranakis—Research supported in part by NSERC Discovery grant.
A. Labourel—Research partially supported by the ANR project MACARON (anr-
13-js02-0002).

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 381–395, 2018.
https://doi.org/10.1007/978-3-319-73117-9_27

382 J. Czyzowicz et al.

1 Introduction

Alice and Bob is a busy Ottawa couple with three kids Chris, Donald and Elsa.
One day they need to pick up Elsa from the kindergarten, drive Donald to the
wrestling practice and get Chris to the train station. They also need to get
groceries, pick up wine and flowers before each store closes for a dinner party in
their house. How should Alice and Bob share these tasks to minimize the effort
and complete each one before its deadline?

An Ottawa School Bus Company needs to transport pupils to local schools
before the start of their classes. Given the harsh Canadian climate, it is the norm
rather than exception that a number of buses fail to function on any given day
and an adequate replacement must be planned in advance. How should the buses
allocate the tasks so as to successfully conclude the distribution of students while
respecting the time deadlines?

Throughout this paper, the environment is modelled by a graph that must
be serviced by a collection of mobile robots. The graph edges are weighted by
numbers, representing the time it takes to traverse them. Each graph node is
assigned a deadline, representing the maximal time moment to deliver a service
to this node by some mobile robot. A number of robots may crash during their
work. What is the minimal time needed to service a given graph by a collection
of k robots? What is such a time if we assume that up to f unknown robots may
crash during their work?

1.1 Preliminaries and Notation

We are given a weighted n-node graph G = (V,E) with V its set of vertices,
E its set of edges, and a set of k mobile robots initially placed at a subset of
its nodes. The weight of an edge {vi, vj} corresponds to the time it takes to be
traversed by a robot. Each node vi of the graph is assigned a deadline Δi, which
is a positive real number. Robots walk along the edges of the graph with unit
speed. The robots collaborate attempting to explore the entire graph. However,
a subset of up to f robots may turn out to be unreliable and fail to collaborate.
Unreliability refers to the robots which may be crash faulty in that they suffer
from an (unspecified) passive, omission failure and then stop responding but
are otherwise harmless. This subset of unreliable robots may be chosen by the
adversary, which is assumed to know our algorithm beforehand. The exploration
is successful if each graph node is visited before its deadline by at least one of
the reliable robots.

We assume that nodes already explored “do not block passage” and can still
be visited, even after their deadlines have expired, by robots on their way to
reaching unexplored parts of the graph.

We denote by t → ri(t) the trajectory of the i-th robot as a function of the
time t, where ri(t) denotes the position of the i-th robot in the graph at time
t, for i = 1, 2, . . . , k. Note that at a given time t, a robot may be located in the
interior of an edge.

Exploring Graphs with Time Constraints 383

By a schedule we mean a set of functions ri(t), i = 1, 2, . . . , k which define
the motion of the robots respecting their maximum unit speed. We say that the
schedule explores the graph if for each node vi there exists a robot rj such that
rj(t∗) = vi, for some time t∗ ≤ Δi.

Given a time Δ, we study the decision problem whether the graph may be
successfully explored before time Δ. We also look at the optimization problem,
that is, the problem of ensuring that the reliable robots visit every node before
expiration of its deadline, and the last explored node is visited as fast as possible.
If for any schedule, the adversary can find a subset of f unreliable robots, so that
any of the remaining k − f robots fails to visit some node before its deadline,
then the instance of the problem is deemed unsolvable.

1.2 Related Work

Searching a graph with one or more searchers has been widely studied in the
mathematics literature (see, e.g. [14] for a survey). There is extensive literature
on linear search (referring to searching a line in the continuous or discrete model),
e.g., see [1] for optimal deterministic linear search and [11] for algorithms incor-
porating a turn cost when a robot changes direction during the search. Variants
of search using collections of collaborating robots has also been investigated. The
robots can employ either wireless communication (at any distance) or face-to-
face communication, where communication is only possible among co-located
robots. For example, the problem of evacuation [9] is essentially a search prob-
lem where search is completed only when the target is reached by the last robot.
Linear group search in the face-to-face communication model has also been stud-
ied with robots that either operate at the same speed or with a pair of robots
having distinct maximal speeds [2,6]. Linear search with multiple robots where
some fraction of the robots may exhibit either crash faults or Byzantine faults is
studied in [8,10], respectively.

The (Directed) Rural Postman Problem (DRPP) is a general case of the Chi-
nese Postman Problem where a subset of the set of arcs of a given (directed)
graph is ’required’ to be traversed at minimum cost. [5] presents a branch and
bound algorithm for the exact solution of the DRPP based on bounds com-
puted from Lagrangian Relaxation. [7] studies the polyhedron associated with
the Rural Postman Problem and characterizes its facial structure. [12] gives a
survey of the directed and undirected rural postman problem and also discusses
applications.

A scheduling problem considered by the research community concerns n jobs,
each to be processed by a single machine, subject to arbitrary given precedence
constraints; associated with each job j is a known processing time aj and a
monotone nondecreasing cost function cj(t), giving the cost that is incurred by
the completion of that job at time t. [20] gives an efficient computational proce-
dure for the problem of finding a sequence which will minimize the maximum of
the incurred costs. Further, [20] also studies a class of time-constrained vehicle
routing and scheduling problems that may be encountered in several transporta-
tion/distribution environments. In the single-vehicle scheduling problem with

384 J. Czyzowicz et al.

time window constraints, a vehicle has to visit a set of sites on a graph, and
each site must be visited after its ready time but no later than its deadline.
[23] studies the problem of minimizing the total time taken to visit all sites.
[15] considers the problem of determining whether there exists a schedule on
two identical processors that executes each task in the time interval between its
start-time and deadline and presents an O(n3) algorithm that constructs such a
schedule whenever one exists.

The author of [3] resolves the complexity status of the well-known Travel-
ing Repairman Problem on a line (Line-TRP) with general processing times at
the request locations and deadline restrictions by showing that it is strongly
NP-complete. [21] considers the problem of finding a lower and an upper bound
for the minimum number of vehicles needed to serve all locations of the multi-
ple traveling salesman problem with time windows in two types of precedence
graphs: the start-time precedence graph and the end-time precedence graph.
[17] considers “the pinwheel”, a formalization of a scheduling problem arising in
satellite transmissions whereby a piece of information is transmitted for a set
duration, then the satellite proceeds with another piece of information while a
ground station receiving from several such satellites and wishing to avoid data
loss faces a real-time scheduling problem on whether a “useful” representation
of the corresponding schedule exists.

The work of [22] is very related to our work in that jobs are located on
a line. Each job has an associated processing time, and whose execution has
to start within a prespecified time window. The paper considers the problems
of minimizing (a) the time by which all jobs are executed (traveling salesman
problem), and (b) the sum of the waiting times of the jobs (traveling repairman
problem). Also related is the research on Graphs with dynamically evolving
links (also known as time varying graphs) which has been explored extensively
in theoretical computer science (e.g., see [4,13,19]).

1.3 Outline and Results of the Paper

We consider first the collections of robots which are all reliable. We start in
Sect. 2 with the case of a single robot on a line graph and we give an algorithm
finding the shortest exploration time when the robot’s starting position is given,
is arbitrary, or it is arbitrary but restrained to some subset of line nodes. In
Sect. 3 we study line exploration by a collection of robots at fixed or arbitrary
positions on the line. We observe, that these algorithms may be extended to the
ring case, although their complexity is slightly compromised.

In Sect. 4 we consider the case of unreliable robots. In one case, we show
an unexpected result. If k robots are at given fixed initial positions on the line
and up to f out of k robots may turn out to be crash-faulty, the problem of
finding the optimal exploration time is NP-hard. This result holds even if the
nodes’ deadlines may be ignored (e.g. they are infinite for all nodes). For all
other settings we give algorithms finding optimal exploration times. In Sect. 5 we
extend our approach to the ring environment. However, the setting which was
proven to be NP-hard for lines is polynomial-time decidable for the ring. Finally,

Exploring Graphs with Time Constraints 385

we show that outside the line and ring environment the problem becomes hard.
For a graph as simple as a star, already for the case of two robots, the exploration
problem turns out to be NP-complete.

Because of the space constraints, all proofs and some illustrations are moved
to an Appendix which can be found online in http://arxiv.org/abs/1710.00775.

2 Single Robot on the Line

In this section, we present algorithms that allow a single robot to solve the
optimization problem on the line for two cases: when the robots’ initial positions
are given by an adversary, and when we have the possibility of choosing them
ourselves.

We have a sequence of nodes v0 < v1 < · · · < vn−1 on the real line, and
a robot r initially placed at initial position r(0). We denote by vs the starting
node of the robot, i.e. r(0) = vs.

Observation 1. Without loss of generality we may assume that Δs+1 < Δs+2 <
· · · < Δn−1. Indeed, if Δk ≥ Δk+1 for some k > s we can drop node vk from
consideration, since visiting vk+1 before its deadline implies that vk is also visited
before its deadline. For the same reason, we can also assume that Δ0 > Δ1 >
· · · > Δs−1.

Observation 2. Without loss of generality we may consider only the solutions
which consist of sequences that are increasing and decreasing at alternate nodes,
respectively, i.e., sequences r(0), r(t1), r(t2), . . . , r(tp) such that 0 ≤ r(t2i) <
r(t2i+2), and 0 ≥ r(t2i+1) > r(t2i+3), for all i in the appropriate range. More-
over, each turning node r(ti) is located at some node vj , j = 0, 1, . . . , n − 1.

2.1 The Snapshot Graph

With these observations in mind, we define the fundamental concept of a
directed, layered snapshot graph S which will form the basis of all subsequent
algorithms.

Every node of the snapshot graph S represents a situation when a new node
of the line is visited by the robot for the first time. Consequently, each node of
S is denoted by a pair (i, j̄) or (̄i, j), where i ≤ j, [i, j] is the interval of nodes
already explored by the robot and the node of the line marked with the bar
(either ī or j̄) denotes the current position of the robot.

Observe that the robot can advance its exploration in one of two ways: either
by visiting the next unexplored node to the left of the interval already explored,
or by visiting the next unexplored node to its right. These two possibilities
generate the directed edges between the nodes of the snapshot graph. The weight
of such an edge equals the time needed by the robot to traverse the path between
robot positions in both nodes. Consequently, the nodes (i, j̄) and (̄i, j) are placed
at layer j − i and the adjacencies in S are only between nodes of consecutive
layers. Notice the following properties of the snapshot graph (see also Fig. 1 in
the Appendix):

http://arxiv.org/abs/1710.00775

386 J. Czyzowicz et al.

– The graph S has n layers numbered from 0 to n − 1.
– There are n source nodes at the zeroth layer and 2(n − j) nodes at the j-th

layer for each j = 1, 2, · · · , n − 1. Consequently, there are 2 target nodes (on
the (n − 1)-th target layer).

– The in-degree and the out-degree of each node is bounded by 2. Hence the
complexity of the snapshot graph is O(n2).

Observe that, the solution to the optimization problem for the line corre-
sponds to the shortest path from the source node representing the initial position
of the robot to one of its target nodes, which respects the time constraints of all
the nodes of L.

2.2 Given Initial Position of the Robot

We first present an algorithm which produces the optimal exploration path,
assuming a given starting position vs of the robot on the line. Consider the
snapshot graph S described above. In order to obtain the optimal exploration
path in the snapshot graph respecting the time constraints of L, we generate an
all-targets shortest-time tree T whose root coincides with the node (vs, v̄s) of
the snapshot graph corresponding to the initial position vs of the robot. This is
done in the following way.

We add a time counter time to every node of S. We set to zero the time
counter of the initial node (vs, v̄s) and to ∞ the initial time counters of all
other nodes of S. We then visit all nodes of S layer by layer. Consider a visit of
any such node v, which corresponds to the first visit to node vj of L. For each
predecessor of v in S we consider the time equaling its time counter augmented
by the weight of the edge joining it with v. Let Min denote the smaller of these
values (we take an arbitrary one in the case of equality). If Min does not exceed
the time constraint of vj (i.e. Min ≤ Δj) we set the time constraint of v to Min
and we add to T the edge from the corresponding predecessor of v. Otherwise,
the time counter of v is set to ∞ and we leave v parentless.

Observe that, T is a tree, as each node has at most one parent. One of the
two target nodes of the smaller time counter defines the optimal exploration
time and the path to it in T corresponds to an optimal exploration path of L.
Otherwise, there exists no exploration path respecting the node deadlines of the
line graph.

For any node v of S we denote by new(v) the index of the node of the line
G which is newly explored when arriving at v. More exactly, new(v) = j, such
that either v = (i, j̄) or v = (j̄, k), for some i ≤ j ≤ k ≤ n − 1.

The following procedure InitStart indicates how to initialize the time counters
of the nodes of S before running the main body of the algorithm. For each node
i of the line L, which may be a starting position of a robot, we put a node (i, ī)
of S to the set A. All nodes of A have their time counters initialized to 0.

Exploring Graphs with Time Constraints 387

Procedure InitStart(A, S) with A a subset of nodes of S at zeroth layer;

1 for every node v of V (S) \ A do
2 time(v) = ∞;

3 for every node v of A do
4 time(v) = 0;

Algorithm 1 describes pseudo-code that formalizes the previously outlined
construction of a shortest-time tree.

Algorithm 1. Single Robot exploration on the line with given initial posi-
tion vs;
Input: A snapshot graph S and the starting position vs of the robot
Output: An exploration tree with optimal exploration times

1 InitStart({vs}, S);
2 for layer i = 0 to n − 1 do
3 for each arc v → w starting at layer i do
4 t = time(v) + weight(v, w);
5 if t < time(w) and t ≤ Δnew(w) then
6 time(w) = t; v = parent(w);

Please see the Appendix for an execution of Algorithm 1.

Theorem 1. Consider a line graph G and a robot placed at its starting position
vs. Algorithm1 correctly computes an optimal exploration path which satisfies
the node deadlines in O(n2) time.

2.3 Arbitrary Starting Position

We now consider a variation of the problem when the choice of the starting
position of the robot is left to the user or it is restricted to be chosen from a
subset of nodes of the line graph. We will show that Algorithm 1 also works in
such a setting. We need, however, to modify the call to procedure InitStart in
line 1 of Algorithm 1, so that its first parameter equals the set of all nodes of
the line at which the robot may start. An example of its execution is presented
in the Appendix.

Observe that, for any node w of the snapshot graph, the value of time(w),
computed by the algorithm, represents now the shortest exploration time ending
at w starting from any node of the line graph. T is now a forest with the nodes of
T , whose time counter remains at ∞ isolated in T (having no children or parent
in T).

388 J. Czyzowicz et al.

Corollary 1. Let A be the subset of nodes of the line graph which we can choose
for the starting position of the robot. Suppose that the first parameter of the call
to procedure InitStart in line 1 of Algorithm1 (A) equals the set of all nodes from
zeroth level of S which correspond to the nodes of A. Such version of Algorithm1
correctly computes in O(n2) time an optimal exploration path of the line graph,
which satisfies the node deadlines. Moreover, for any sub-interval [i, j] of the
line, the algorithm computes an optimal robot starting position to explore [i, j],
the cost (time) of such exploration and the trajectory of the robot.

3 Multiple Robots on the Line

In this section we consider line exploration by a collection of k < n mobile robots.
As before we study two variants of the time optimization problem. In the first
setting, the distinct initial robot positions are given in advance. In the second
setting, the initial positions of the robots are arbitrary, i.e. the algorithm identi-
fies the initial placement of the robots, which results in the shortest exploration
time respecting the node deadlines. Both variants are solved using versions of
dynamic programming. We start with the following observation concerning the
movement of the robots1.

Observation 3. There exists an optimal exploration solution in which the
robots never change their initial order along the line. Moreover, the sub-intervals
of the line explored by different robots are mutually disjoint.

We use the following notation. Suppose that we need to explore an interval
[i, j] of the line respecting the deadlines of the nodes of [i, j]. For the setting
when the robots are placed at given initial positions, for any pair of indices i, j,
such that 0 ≤ i ≤ j ≤ n−1, we denote by Ti,j the optimal time of exploration of
the interval [i, j] using the robots placed within [i, j]. When the initial placement
of the robots is left to the algorithm, for any 1 ≤ r ≤ k, we denote by T

(r)
i,j the

optimal time of exploration of the interval [i, j] using r robots which may be
placed at arbitrary initial positions within [i, j].

3.1 Given Initial Positions

We start with the following observation

Observation 4. Consider a line and a robot initially placed in its sub-interval
[i, j]. Using Algorithm1 the values Ti,j for all 0 ≤ i ≤ j ≤ n−1, may be computed
by the formula

Ti,j = min(time((i, j)), time((i, j))) (1)

1 We remind the reader that all robots move with identical unit speed.

Exploring Graphs with Time Constraints 389

Let pi denote the initial position of robot i. We assume that we have 0 ≤
p1 < p2 < · · · < pk ≤ n − 1. By Observation 3 we need to partition the line
into sub-intervals [li, ri] for i = 1, 2, . . . , k (with l1 = 1 and rk = n), each one
explored by a different robot. The interval [li, ri], explored by robot i, contains
its initial position pi, but not an initial position of any other robot. Hence edges
(ri, li+1) for i = 1, . . . , k − 1, that we call idle edges, are never traversed by any
robot. The following formula, is an obvious consequence of Observation 3,

Ti,j = min
pq<m≤pq+1

max(Ti,m−1, Tm,j), (2)

for any i ≤ pq, pq+1 < j. Indeed, the idle edge (m − 1,m), separating the sub-
segments of operation of robots q and q + 1, is chosen so as to minimize the
exploration time of interval [i, j].

We give first an idea of our algorithm. We generate the snapshot graph, as
described in Subsect. 2.2. Let’s use the notation p0 = −1 and pk+1 = n. For
m = 1, . . . , k let Sm be the subgraph of S obtained by keeping the nodes (̄i, j)
and (i, j̄) such that pm−1 < i, j < pm+1. In the first part of our algorithm, for
each robot m, we run Algorithm 1 with inputs pm and Sm, obtaining the optimal
exploration time Ti,j of each line sub-interval [i, j], which contains exactly one
starting position pi, for i = 1, 2, . . . , k.

In the second part of the algorithm, we combine exploration times of indi-
vidual robots, in order to obtain the optimal exploration time T0,j using robots
initially placed within [0, j], subsequently for each j. Let rj denote the num-
ber of robots initially placed in interval [0, j] and suppose, that we computed
the optimal exploration times of all intervals, which initially contain robots
1, 2, . . . , rj − 1. When j exceeds prj we use robot rj and we determine the idle
edges preceding the intervals of operation of rj , resulting in the optimal explo-
ration times of intervals, which initially contain robots 1, 2, . . . , rj . The formal
algorithm (Algorithm 2) can be found in the Appendix.

Theorem 2. Algorithm2 in O(n2) time computes the optimal exploration of the
line by k robots initially placed at given initial positions 0 ≤ p1 < p2 < · · · <
pk ≤ n − 1.

3.2 Arbitrary Initial Positions

This algorithm is also based on the dynamic programming approach for com-
puting the table T

(r)
i,j , for all 1 ≤ r ≤ k and 0 ≤ i < j ≤ n − 1. The values of

T
(k)
0,n−1 represent the optimal exploration time of the line using k robots. We use

the following formula, which works for any r, r1, r2, where r1, r2 ≥ 1, r = r1 + r2
and any 0 ≤ i < j ≤ n − 1.

T
(r)
i,j = min

i≤k≤j
max

(
T

(r1)
i,k , T

(r2)
k+1

)
. (3)

Using Formula (3), the values of T
(r)
i,j may be computed in a greedy manner

for the increasing values of r. As Formula (3) may be naturally computed in
O(n) time, the total complexity of such a greedy approach is in O(kn3).

390 J. Czyzowicz et al.

We give now a more efficient algorithm computing T
(k)
0,n−1. Observe first, that

when [i1, j1] ⊆ [i2, j2], then T
(r)
i1,j1

≤ T
(r)
i2,j2

. Consequently, when computing T
(r)
i,j ,

the value of index k which minimizes max(T (r−1)
i,k , T

(1)
i,k+1) may be found by a

binary search (cf. function OptTime in the Appendix).
The following observation is easy.

Observation 5. Consider two fixed numbers r1, r2 of robots. If for any interval
[i, j] of the line, T

(r1)
i,j and T

(r2)
i,j represent the optimal time of exploration of

the interval by r1 and r2 robots, respectively, then function OptTime correctly
computes in O(log n) time the optimal exploration time T

(r)
i,j of the interval [i, j]

by r = r1 + r2 robots.

The greedy approach would compute the values of table T
(r)
i,j for any given

r. Our algorithm below computes the values of T
(r)
i,j when r is a power of 2

not exceeding k. Then, using formula 3, they are combined in �log k� steps, to
compute the values of T

(k)
i,j . The formal algorithm (Algorithm 3) can be found

in the Appendix.
The following theorem proves the correctness and the complexity of

Algorithm 3.

Theorem 3. Algorithm 3 computes in O(n2 log n log k) time the optimal time
needed by k robots to explore the line.

4 Line Exploration with Unreliable Collections of Robots

In this section we study the exploration problem when some of the robots may
be faulty, i.e., when they fail to realize their exploration tasks. In this case, other
robots need to help, so that eventually every node of the line is visited by some
reliable robot before its deadline. Let there be given a weighted line L, containing
n nodes with given deadlines and a collection of k robots at most f of which
may turn out to be faulty. Consider a schedule for k robots on the line L. We
say that the schedule is f -reliable in time Δ, if for any choice of f faulty robots
by an adversary, each node of the line is visited by at least one non-faulty robot
before its deadline and before time Δ.

Note that in the case of the presence of unreliable robots, it might be useful
to initially place more than one robot at the same position. Consequently, we
will assume that it is admissible for more than one robot to start from the same
node of the line.

Observation 6. If there can be f faulty robots, then to successfully explore a
node v with deadline Δ(v), node v must be visited by at least f + 1 robots before
time Δ(v).

It is interesting to look at the decision problem as well as the optimization
problem related to faulty agents. In the decision problem we look for an algo-
rithm, which, given f and Δ, verifies whether there exists an f -reliable schedule

Exploring Graphs with Time Constraints 391

in time Δ. In the optimization problem, we need an algorithm, which, for any
given f , finds the minimal time interval Δ, which admits some f -reliable sched-
ule in time Δ. Clearly, solving the optimization problem implies a solution to
the decision problem and hardness of the decision problem implies hardness of
the optimization problem. We are interested in both settings – for fixed and for
arbitrary initial positions of the robots. As the case of the arbitrary starting
positions is easier we discuss this variant first.

We prove the following theorem.

Theorem 4. Let there be given a weighted line L, containing n nodes with given
deadlines and a collection of k robots, which may be put at arbitrary starting
positions on L. For any 0 < f < k the optimization problem involving up to f

faulty robots may be solved in O
(
n2 log n log

⌊
k

f+1

⌋)
time.

We now consider the more difficult case of given starting positions. Contrary
to the case studied in the previous section, when the robots are assigned to fixed
positions on the line, the existence of faulty robots leads to a problem which
turns out to be NP-hard. In fact, the decision problem is hard, even in the case
when all individual deadlines may be ignored (they are all larger than Δ), i.e.
when the line does not have any node time constraints.

Exploration of the Line with Crash Faults (ELCF) problem
Instance: A line L, a multiset P of k starting positions of robots, a number of
faults f and a time interval Δ.
Question: Is there an exploration strategy for the collection of k robots, which
may include up to f faulty ones, such that each node of L is visited by at least
one non-faulty robot before time Δ?

We construct a polynomial-time many to one reduction from the Numerical
3-Dimensional Matching problem (N3DM) which is a strongly NP-hard problem
(referenced as [SP16] in [18]).

Theorem 5. The ELCF decision problem is strongly NP-complete.

5 The Ring Environment

In this section we show that most of the results for the line environment may be
adapted to work on the ring. However, the ELCF decision problem turns out
to have a polynomial-time solution for the ring.

Suppose that the ring R contains nodes 0, 1, 2, . . . , n−1 in that counterclock-
wise order around R. Then every node i of the ring has a counterclockwise neigh-
bour (i + 1) mod n and a clockwise neighbour (i − 1) mod n. Consequently,
in this section, all the ring node indices are implicitly taken modulo n. The
approach used for the ring also starts by creating the snapshot graph, however
slightly different from the one introduced in Sect. 2.1. The nodes of the snapshot
graph are of the form (i, j̄) and (̄i, j), where the node of the ring marked with
the bar denotes the current position of the robot and [i, j] is the segment of the

392 J. Czyzowicz et al.

ring already explored by the robot taken in the counterclockwise direction from
i to j. Observe that, the terminal nodes of the snapshot graph, i.e. those which
correspond to the exploration of every node of the ring, are now all nodes (i, j̄)
and (̄i, j), such that (j − i) mod n = 1, i.e. i is the counterclockwise neighbour
of j. Such snapshot graph also has O(n2) nodes of constant degree (see Fig. 5 in
the Appendix). Consequently, by using the argument from Theorem2 we have
the following Observation.

Observation 7. All values of Ti,j for pairs (i, j), such that each pair denotes
a counterclockwise segment around the ring containing an initial position of at
most one robot, may be computed in amortized O(n2) time.

Observe that, there exists an optimal solution for the ring with idle edges
between initial positions of consecutive robots. By removing one such edge the
ring becomes a line-segment. Consequently, most of our observations for lines
may be applied for rings. In particular, for the case of robots which may be placed
at arbitrary initial positions on the ring, the following Corollary is obvious.

Corollary 2. In O(n2 log n log k) time it is possible to compute the optimal time
of exploration of the ring of size n by a set of k robots, which may be placed at
arbitrary initial positions.

Indeed, it is sufficient to apply Algorithm 3, in which in lines 5 and 12 we
consider all pairs (i, j) (rather than pairs for which i < j).

In the case of robots at given initial positions, the adaptation of the line
algorithm to the ring case is also relatively easy, with some compromise on its
time complexity. We have the following Proposition.

Proposition 1. There exists an O
(
n2 + n2

k log n
)

algorithm for computing an
optimal exploration of the ring R of size n using k mobile robots, initially placed
at fixed positions on R.

We now consider unreliable robots. Similarly to the line exploration case,
every node of the environment must be explored f + 1 times by different robots
before its deadline.

Consider first the case of robots which may be placed at arbitrary initial
positions on the ring R. Suppose that we denote by R(f+1) a ring obtained in
the following way. We cut R at any node v, obtaining a line segment starting
and ending by a copy of v. We merge f + 1 copies of such segment, identifying
the starting and the ending nodes of consecutive copies, obtaining a segment of
n(f + 1) nodes. Finally, we identify both endpoints of such segment obtaining
a ring R(f+1). Observe that, covering R by k robots’ exploration trajectories,
so that each node of R is visited f + 1 times, is equivalent to exploring R(f+1)

using k robots, so that each of its nodes is visited (once) before its deadline. As
the size of R(f+1) is in O(nf), from Corollary 2 we get.

Corollary 3. Suppose that in an n-node ring we can place at arbitrary initial
positions k robots, which may include up to f faulty ones. In O(n2f2 log k(log n+
log f)) time it is possible to compute the optimal time of exploration of the ring.

Exploring Graphs with Time Constraints 393

If the initial positions of the robots on the ring are given in advance, contrary
to the case of the line segment, it is possible to decide in polynomial time whether
there exists an f -reliable schedule in any given time Δ.

Proposition 2. Consider a ring R of size n and k robots placed at given initial
positions at the nodes of S. For any given time Δ it is possible to decide in
polynomial time whether ring R may be explored by its robots within time Δ.

6 NP-Hardness for Star Graphs

We gave exploration algorithms for lines and rings with time constraints on the
nodes. It is easy to see that the exploration problem is hard for graphs, even
for the case of a single robot and a graph with edges of unit length. Indeed, for
a graph on n nodes, by setting all its node deadlines to n − 1, an instance of
exploration problem is equivalent to finding a Hamiltonian path. However, we
show below that the exploration problem is hard for graphs as simple as stars
and already for two mobile robots. We construct a polynomial-time reduction
from the Partition Problem [16].

Proposition 3. The exploration problem respecting node deadlines for given
starting positions of the robots is NP-hard. This problem is also NP-hard if the
starting positions are arbitrary.

7 Conclusion and Open Problems

We studied the question of exploring graphs with time constraints by collections
of unreliable robots. When all robots are reliable we used dynamic programming
to give efficient exploration algorithms for line graphs and rings. We showed,
however, that the problem is NP-hard for graphs as simple as stars. We showed
how to extend, in most cases, our solutions to unreliable collections of robots.
One of our results is quite unexpected and important. Suppose that a collection
of robots, placed on a line, may contain an unknown subset of robots (of bounded
size), which turn out to be crash faulty. Verifying whether it is possible to explore
the line within a given time bound is an NP-hard problem. The same problem
on the ring has a polynomial-time solution.

An interested reader may observe that our positive results imply the possi-
bility to compute the resilience of the configuration, i.e. given a time Δ, to find
the largest value f , such that there exists a schedule assuring exploration when
any set of f robots turns out to be unreliable.

In our paper, we did not actually produce schedules for our robots, but
we only computed the optimal times when such schedules may be completed.
However, from our work it is implicitly clear how to generate such schedules.
We proved the optimality of the schedules but we did not prove the optimality
of our algorithms. One of the possible open problems is to attempt to design
algorithms of better time complexity.

394 J. Czyzowicz et al.

References

1. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.
106(2), 234–252 (1993)

2. Bampas, E., Czyzowicz, J., G ↪asieniec, L., Ilcinkas, D., Klasing, R., Kociumaka, T.,
Paj ↪ak, D.: Linear search by a pair of distinct-speed robots. In: Suomela, J. (ed.)
SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48314-6 13

3. Bock, S.: Solving the traveling repairman problem on a line with general processing
times and deadlines. Eur. J. Oper. Res. 244(3), 690–703 (2015)

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

5. Christofides, N., Campos, V., Corberán, A., Mota, E.: An algorithm for the rural
postman problem on a directed graph. Math. Program. Study 26, 155–166 (1986)

6. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46078-8 14

7. Corberán, A., Sanchis, J.M.: A polyhedral approach to the rural postman problem.
Eur. J. Oper. Res. 79(1), 95–114 (1994)

8. Czyzowicz, J., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny,
J., Shende, S.: Search on a line with Byzantine robots. In: ISAAC, LIPCS (2016)

9. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J.,
Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communi-
cation (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015.
LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18173-8 10

10. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: PODC, pp. 405–414 (2016)

11. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret.
Comput. Sci. 361(2), 342–355 (2006)

12. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: the rural
postman problem. Oper. Res. 43(3), 399–414 (1995)

13. Flocchini, P.: Time-varying graphs and dynamic networks. In: 2015 Summer Sol-
stice: 7th International Conference on Discrete Models of Complex Systems (2015)

14. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

15. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-times and dead-
lines. SIAM J. Comput. 6(3), 416–426 (1977)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman,
New York (2002)

17. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time
scheduling problem. In: Proceedings of the Twenty-Second Annual Hawaii Interna-
tional Conference on System Sciences. Software Track, vol. 2, pp. 693–702. IEEE
(1989). Also, in Handbook of Scheduling Algorithms, Models, and Performance
Analysis. CRC Press (2004)

18. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms
6(3), 434–451 (1985)

https://doi.org/10.1007/978-3-319-48314-6_13
https://doi.org/10.1007/978-3-319-48314-6_13
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-319-18173-8_10

Exploring Graphs with Time Constraints 395

19. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
pp. 513–522. ACM (2010)

20. Lawler, E.L.: Optimal sequencing of a single machine subject to precedence con-
straints. Manag. Sci. 19(5), 544–546 (1973)

21. Mitrovic-Minic, S., Krishnamurti, R.: The multiple traveling salesman problem
with time windows: bounds for the minimum number of vehicles. Simon Fraser
University TR-2002-11 (2002)

22. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with
time windows. Networks 22(3), 263–282 (1992)

23. Young, G.H., Chan, C.-L.: Single-vehicle scheduling with time window constraints.
J. Sched. 2(4), 175–187 (1999)

The k-Server Problem with Advice
in d Dimensions and on the Sphere

Elisabet Burjons1(B), Dennis Komm1, and Marcel Schöngens2

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{elisabet.burjons,dennis.komm}@inf.ethz.ch

2 CSCS, ETH Zurich, Lugano, Switzerland
schoengens@cscs.ch

Abstract. We study the impact of additional information on the hard-
ness of the k-server problem on different metric spaces. To this end, we
consider the well-known model of computing with advice. In particular,
we design an algorithm for the d-dimensional Euclidean space, which
generalizes a known result for the Euclidean plane. As another relevant
setting, we investigate a metric space with positive curvature; in partic-
ular, the sphere. Both algorithms have constant strict competitive ratios
while reading a constant number of advice bits with every request, inde-
pendent of the number k of servers, and solely depending on parameters
of the underlying metric structure.

Keywords: Online algorithms · Advice complexity
k-server problem · d-dimensional Euclidean space · Sphere
Positive curvature

1 Introduction

Online computation plays an important role for both theoretical and practical
aspects of computer science. When studying online problems, we usually neglect
the algorithm’s time and space complexities, but face another challenge that
is met in many real-world situations. The input is not known in advance to
an online algorithm, but it arrives gradually in consecutive time steps; these
chunks of input are called requests. Every request needs an immediate and usually
definite answer. For instance, when considering paging or caching problems, the
requests are given by page indices that need to be accessed by the CPU. If such a
page is not in the cache at this point, an online algorithm answers by discarding
a page currently in the cache to make space for the requested one. Of course, an
optimal choice depends on future requests and the knowledge available is usually
insufficient to guarantee creating an output of very high quality.

Being a powerful tool to measure the performance of online algorithms, com-
petitive analysis was introduced in 1985 by Sleator and Tarjan [36], who applied
it to the paging and list accessing problems. Here, the solution computed by the
online algorithm at hand is compared to an optimal one. However, computing
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 396–409, 2018.
https://doi.org/10.1007/978-3-319-73117-9_28

The k-Server Problem with Advice in d Dimensions and on the Sphere 397

such an optimal solution requires knowledge about the whole instance in general
and can therefore never be achieved from a worst-case point of view. For an
overview on competitive analysis and online algorithms, we refer to the litera-
ture [8,22,25,27]. Throughout this paper, we consider the objective to minimize
a given cost function; an online algorithm Alg is called strictly c-competitive if,
for every instance of the given problem, its cost is at most c times as large as
the optimal cost. The infimum of all c for which this holds is called the (strict)
competitive ratio of Alg.

A complementing measurement is the advice complexity of an online prob-
lem that tries to answer a question along the lines of “how much information
does one need to achieve a certain competitive ratio?” Other than allowing some
lookahead or having some particular information (e.g., the size of an optimal
solution, a specific knowledge about some requests etc.) about the input, this
model allows any kind of such information; our interest only lies in its amount.
To give a formal framework, we introduce an oracle that sees the whole input
in advance, and that encodes binary information about this input onto an addi-
tional tape the algorithm may use during its computation. Online algorithms
that have access to such an advice tape are called online algorithms with advice;
we formalize this notion in the following definition.

Definition 1 (Online Algorithm with Advice). Let I = (x1, . . . , xn) be an
instance of some online minimization problem. An online algorithm Algwith
advice computes the output sequence Algφ(I) = (y1, . . . , yn) such that, for every
i with 1 ≤ i ≤ n, yi is computed from φ, x1, . . . , xi, where φ is the content of the
advice tape, i.e., an infinite binary sequence. Alg is strictly c-competitive with
advice complexity b(n) if, for every n and for every input sequence I of length at
most n, there is some φ such that cost(Algφ(I)) ≤ c ·cost(Opt(I)), and at most
the first b(n) bits of φ have been accessed during the computation of Algφ(I).

Dobrev et al. [15,16] were the first to investigate this setup using a slightly
different setting. Here, the oracle was implicitly allowed to use an “end marker”
as part of the advice, which led to effects that allowed to reduce the advice. As
a consequence, this model was revised by both Hromkovič et al. [26] (see also
Böckenhauer et al. [3,4]) and Emek et al. [19,20]; in this paper, we use the former
model. For an overview on online algorithms with advice, we again refer to the
literature [9,17,27]. The large number of problems analyzed within this model
includes the paging problem [4], the knapsack problem [7], the set cover problem
[14], and various scheduling problems [18,28,35]. Furthermore, there are some
nontrivial connections between advice and randomization [2,4,23,28].

In this paper, we study the k-server problem, where a number of entities
(called servers) are moved through a metric space to certain points that are
requested in an online fashion; the objective is to minimize the total distance
traveled by the servers while covering all requests.

Definition 2 (k-Server Problem). Let M = (P,dist) be a metric space,
where P is a (not necessarily finite) set of points and dist : P ×P → R is a metric

398 E. Burjons et al.

cost function, i.e., it satisfies identity of indiscernibles, non-negativity, symme-
try, and the triangle inequality (which means that dist(p1, p2) ≤ dist(p1, p3) +
dist(p3, p2) for all p1, p2, p3 ∈ P). Furthermore, we are given a set of k servers,
residing in some points from P . Let Ci ⊆ P be the multiset of points occupied by
servers at time step i with 0 ≤ i ≤ n; a point occupied by j servers occurs j times
in Ci. We also call Ci the configuration at time step Ti. The initial configuration
C0 is the configuration of the servers before any point is requested. Then, a point
xi = p is requested and some servers may be moved yielding a new configuration
Ci+1. The request xi is satisfied if, after this movement of servers, some server
resides at p, i.e., if p ∈ Ci+1. The distance between two configurations C and
C ′ is given by the unique cost of a minimum-cost matching between C and C ′.
The k-server problem is the problem to satisfy all requests while minimizing the
sum of the distances between all pairs of consecutive configurations.

The k-server problem was introduced by Manasse et al. in 1988 [31], and it
is beyond question one of the most famous and well-studied online problems.
One of the reasons is that it generalizes a number of online problems, e.g., the
aforementioned paging problem [8]. Another reason is that, in contrast to the
paging problem, the k-server problem is still not fully understood despite a lot
of effort.

The best known deterministic online algorithm is the work function algo-
rithm, which was formally defined for the k-server problem by Chrobak and Lar-
more [11]. In 1995, Koutsoupias and Papadimitriou [30] showed that it achieves
a competitive ratio of 2k − 1; later, Emek et al. [21] proved that, as a conse-
quence, the algorithm is also strictly (4k − 2)-competitive. However, it remains
open whether there is a k-competitive online algorithm for general metric spaces;
this is known as the k-server conjecture. For the randomized setting, there is an
even larger gap. More specifically, the best known lower bound is Ω(log k), which
carries over from the paging problem, while the best known upper bound that
only depends on k is intriguingly that implied by the deterministic one from
Koutsoupias and Papadimitriou [30]. It is widely believed that there actually
is a Θ(log k)-competitive randomized online algorithm, which is known as the
randomized k-server conjecture.

In 2011, Bansal et al. [1] showed the existence of a randomized online algo-
rithm that achieves an expected competitive ratio of O(log2 k log3 m log log m),
where m denotes the number of points in the underlying metric space. For more
information about the k-server problem in deterministic or randomized settings,
we refer to the literature [8,29].

Related Work

The advice complexity of the k-server problem was first studied by Emek
et al. [19,20]. The authors considered a model where a fixed number of advice
bits is supplied with every request, and designed an online algorithm that uses b
bits of advice in every time step and that achieves a competitive ratio of kO(1/b),
where Θ(1) ≤ b ≤ log2 k.

The k-Server Problem with Advice in d Dimensions and on the Sphere 399

Further investigations in the model we are using in this paper were made
by Böckenhauer et al. [5,6]. There, it was shown that Ω(n log k) advice bits are
necessary to obtain an optimal output for all instances of length n. In essence,
the idea of the proof is to give a reduction to guessing a permutation. If and only
if an online algorithm with advice knows a permutation of the numbers 1, . . . , k,
it can be optimal. It is easy to see that this bound is asymptotically tight [20];
indeed, in every time step, �log2 k� advice bits suffice to encode the index of the
server a fixed optimal algorithm uses. Moreover, the authors improved the pre-
vious results from Emek et al. Specifically, Böckenhauer et al. showed that there
is an online algorithm with advice that is roughly (2 log2 k/(b − 1))-competitive
while again using b advice bits in every time step. Renault and Rosén [34] fur-
ther improved this bound by a factor of 2 by giving a roughly (log2 k/(b − 2))-
competitive online algorithm with advice that also uses b advice bits per time
step.

Furthermore, Renault and Rosén [34] investigated the k-server problem on
the line, combining the “double coverage” strategy [12] with advice, and on
graphs with a bounded caterpillar dimension. Gupta et al. [24] studied the k-
server problem on special metric spaces, e.g., with bounded treewidth. For this
large subclass of k-server instances, the authors gave both well-performing online
algorithms with advice and hardness results.

Böckenhauer et al. [6] also observed an interesting connection between the
randomized setting and online algorithms with advice, namely that a strong
lower bound on the advice complexity could be used to disprove the randomized
k-server conjecture.

It should be remarked that, to date, for neither deterministic, randomized,
or advice algorithms, we have a complete picture of the k-server problem.

Finally, Böckenhauer et al. [6] also considered the k-server problem on the
Euclidean plane, and designed an online algorithm with advice that reads a
constant number b of advice bits in every time step, and that achieves a constant
strict competitive ratio; here (other than for the general case), “constant” means
independent of k. In order to put the results presented in this paper into context,
and since our techniques are to some extent based on them, we now revisit this
result in more detail. The proofs of the results presented in this section can
also be found in the textbook by Komm [27]. Consider the subproblem of the
k-server problem where the underlying metric space is the Euclidean plane; i.e.,
every point p from P has two coordinates, and the distance between any two
points p1 and p2 is given by dist(p1, p2) := ‖p1 −p2‖2. For this setting, we revisit
the online algorithm Seg2d for the k-server problem in the Euclidean plane that
was introduced and analyzed by Böckenhauer et al. [6].

If, in any time step, the requested point is p, Seg2d divides the plane into
2b disjoint segments S1, . . . , S2b with their origin in p and with an angle of

2π

2b
:=γ (1)

each, where b ≥ 3 and thus γ ≤ π/4; without loss of generality, we choose the
x-axis as a boundary for one of the segments. Then, Seg2d reads b bits of advice

400 E. Burjons et al.

Fig. 1. The construction used in the proofs of Lemma 1 and Theorem 1

that identify some segment Sj with 1 ≤ j ≤ 2b, and moves the closest server in
Sj to p. The segment is chosen by the oracle such that a certain solution (which
we describe later) uses a server from this segment. The idea is shown in Fig. 1a
and explained in more detail in the proof of Theorem1. In the following, let
rplane := 1/(1 − 2 sin(γ/2)).

Figure 1b shows the situation for the first time step T1, where a point x1 = p
is requested. Seg2d uses a server ŝ (located at some point p̂ in Sj), incurring a
cost of a whereas the given solution uses a server s1 (located at some point p1)
that causes cost d1, where d1 ≥ a. The initial distance between the locations of
s1 and ŝ, i.e., p1 and p̂, is denoted by c. To show that Seg2d achieves a constant
competitive ratio, the following technical lemma was proven.

Lemma 1 (Böckenhauer et al. [6]). Let a, d1, c, rplane, and γ be as above. If
d1 is fixed, we have a/(d1 − c) ≤ rplane.
�

Now we are ready to analyze the competitive ratio of Seg2d. To this end,
we need to take special care of the positions on which the servers are located
at the beginning. As in Definition 2, a configuration C is a multiset of k points
from P that are occupied by the servers. A configuration Cp�→p′ is obtained from
C by moving a server from p ∈ C to p′. Recall that the initial configuration is
the configuration before any request is served. In the following, we will simply
speak of the initial configuration of a given instance.

Theorem 1 (Böckenhauer et al. [6]). Seg2d has a strict competitive ratio of
g := 1/(1 − 2 sin(π/2b)) for the k-server problem in 2-dimensional Euclidean
space, using b ≥ 3 bits of advice per request.

Proof Sketch. The proof is done by induction on the input length. We show that,
for any input I with some initial configuration C, the first move of Seg2d can be
made as described above, i.e., using the server ŝ indicated by the advice. Moving
ŝ to x1 leads to a new configuration C ′. Then, we look at the suffix of I of length

The k-Server Problem with Advice in d Dimensions and on the Sphere 401

n − 1 with initial configuration C ′ and argue that, by induction, there is some
solution to this instance I ′ with some certain cost (note that this solution is not
necessarily optimal). By induction, Seg2d’s cost is at most g times larger on
I ′. An easy calculation shows that the first move of Seg2d in I is also not too
expensive. It is crucial to note that the induction explicitly shows that Seg2d
is at most g times worse than any given solution of I and C, which then also
holds for an optimal one.
�

Our Contribution

In this paper, we present online algorithms with advice that achieve constant
strict competitive ratios using a number of advice bits that is independent of
the number k of servers for different metric spaces.

After having revisited the original proof in this section, we first give a gen-
eralization to three dimensions in Sect. 2. In Sect. 3, we consider d-dimensional
Euclidean space. We can make use of Lemma 1 due to the fact that three points
in d-dimensional space define a plane. The main issue we are facing is that we
need to partition the space in a particular way; to this end, we use results from
Rakhmanov et al. [33] and Damelin and Maymeskul [13] on the well-known prob-
lem of minimizing the discrete energy and point distribution on d-dimensional
spheres [10]. Then we partition the space around these points using Voronoi
diagrams [32]. One reason to treat the 3-dimensional case separately is that our
bound is more constructive with respect to the values of advice bits b per time
step for which it holds.

Our main result, presented in Sect. 4, deals with k-server on the sphere. Here,
we design an algorithm that treats the sphere like a plane when only dealing with
a small part of its surface, or that cleverly partitions the surface while again
employing results from Rakhmanov et al. [33].

Due to space constraints, some of the proofs are omitted.

2 From Two Dimensions to Three Dimensions

We first discuss how to generalize the ideas presented in the preceding section.
Suppose we are dealing with the k-server problem in 3-dimensional Euclidean
space. Consider the online algorithm Seg3d with advice that acts analogously
to Seg2d. For every request xi with 1 ≤ i ≤ n, it partitions the 3-dimensional
space around xi using a sphere. Consider a unit sphere S

2 centered at xi; b bits
of advice allow us to divide its surface into 2b areas and then give one of them
as advice, i.e., the server used by the solution computed by the algorithm Alg
(we compare against) lies within the “cone” defined by the corresponding area
and the center xi. In order to define these areas, we use a partitioning of S

2

in surfaces of the same area and a small diameter, as stated by Rakhmanov
et al. [33].

Theorem 2 (Rakhmanov et al. [33]). For any N ≥ 2, there is an area-regular
partition of S2 into N parts with the diameter of each part being at most 7/

√
N .

�

402 E. Burjons et al.

Fig. 2. The construction used in the proof of Theorem 3

Let S1, . . . , S2b denote the cones into which the space is partitioned. The
advice encodes a cone Sj in which the server used by Alg is located. Seg3d
uses the closest server from Sj to satisfy the current request. This way, with
every request, Seg3d reads b bits of advice.

As in the 2-dimensional case, consider the first time step and the three points
x1, p1, and p̂. Recall that x1 is requested, Seg3d serves x1 with a server ŝ located
at p̂ while the given solution serves x1 with a server s1 located at p1. The idea
of the following proof is that, since x1, p1, and p̂ are located in some plane P, we
can use Theorem 1 to get an upper bound also for three dimensions. However,
we need to bound the angle β of the triangle induced by x1, p1, and p̂ on P

in a different way. Here, we must consider the angle δ that results from the
intersection of P and the current cone. In this case, we define the angle α as the
maximum angle within one of the cones and observe that δ ≤ α for any plane
P, and α can be computed using Theorem 2.

Theorem 3. Seg3d has a strict competitive ratio of 1/(1 − 7/2b/2) for the k-
server problem in 3-dimensional Euclidean space, using b ≥ 6 bits of advice per
request.

Proof. Theorem 2 ensures that each cone Sj has a diameter of at most 7/
√

2b

over the unit sphere S2. This means that, when taking the cone Sj , the maximum
angle will be at most that determined by the isosceles triangle of base 7/

√
2b

and equal sides of length 1 as shown in Fig. 2b. Then the angle can be simply
computed by the trigonometric equality sin(α/2) = 7/2

√
2b, which gives α =

2arcsin(7/(2
√

2b)).
Let Sj denote the cone indicated by the advice in time step T1, i.e., the

pyramid with apex x1 that covers the points p1 and p̂, at which the servers s1
and ŝ are located. Since x1, p1, and p̂ are in a plane P, we can proceed analogously

The k-Server Problem with Advice in d Dimensions and on the Sphere 403

to the proof of Lemma1. The only difference is that we need to bound the angle
δ around x1 that we obtain when intersecting Sj and P. Clearly, β ≤ δ ≤ α; see
Fig. 2. Consequently, α is an upper bound for the angle β.

Plugging γ = α into Lemma 1, we can give a proof analogously to that of
Theorem 1, and it follows that the strict competitive ratio of Seg3d is at most
1/(1 − 7/2b/2), which finishes the proof.
�

3 From Three Dimensions to d Dimensions

Now we consider the d-dimensional Euclidean space. Suppose we are dealing with
the k-server problem in this setting and consider the online algorithm Segdd
with advice that acts analogously to Seg2d and Seg3d.

First, we observe that, similarly as in the previous section, here, the first
request x1 together with the position of the server p1 (that is used by the solution
computed by the algorithm Alg we compare against) and the position p̂ of the
server ŝ that serves the request for Segdd are located in some plane P. Hence,
with the appropriate partition of the (d − 1)-dimensional unit sphere into parts
of small diameter, we can consider the d-dimensional cones projected from x1

and use the same technique as in the previous section to generalize the result.
Consider a unit sphere S

d−1 centered at the request xi; again, the b bits
of advice allow us to partition its (d − 1)-dimensional hyperspace into 2b parts
and then give one of them as advice, i.e., the server used by Alg lies within the
“cone” defined by the corresponding part of the hypersphere and the center xi. In
order to define these parts, we use a partition of Sd−1 in parts of small diameter.
First of all, given a distribution of N points in a sphere ωN = {u1, . . . , uN}, its
associated Riesz s-energy is given by

Es(Sd−1, ωN) :=
∑

1≤i<j≤N

|ui − uj |−s.

Observe that pairs of points that are far from each other make small con-
tributions to the sum, whereas close points make larger contributions. Thus,
distributions with small Riesz energy have all points far from one another.

A distribution is s-extremal if it attains minimal s-energy and can be written
as ω∗

s (Sd−1, N). We define the mesh norm ρ(Sd−1, ωN) of a distribution of N
points by ρ(Sd−1, ωN) := maxy∈Sd−1 minx∈ωN

|y − x|.
Damelin and Maymeskul [13] gave an upper bound for the mesh norm of s-

extremal distributions for the class of compact sets Ad−1 with some restrictions.
A compact set A belongs to Ad−1 if it fulfills the following conditions.

– A ⊆ Rd′
for some d′ ≥ d − 1;

– A has a non-zero Hausdorff measure;
– A is a finite union of bi-Lipschitz images of compact sets in Rd−1.

In particular, (d − 1)-dimensional spheres (and ellipsoids in general) in Rd

belong to Ad−1 [13]. When this upper bound is applied to S
d−1, we get the

following corollary.

404 E. Burjons et al.

Corollary 1. For any N ≥ 2, any s-extremal distribution of N points on
S

d−1, ω∗
s (Sd−1, N), has a mesh norm ρ∗

s(S
d−1, N) bounded by ρ∗

s(S
d−1, N) ≤

CN−1/(d−1), where C is a constant that only depends on d.

Now, if we take the Voronoi diagram of such an s-extremal distribution
with N = 2b points ω∗

s = {u1, . . . , uN}, it partitions S
d−1 into convex (d − 1)-

dimensional parts S∗
1 , . . . , S∗

N such that ui ∈ S∗
i for all i, and y ∈ S∗

i if and only
if |y − xi| ≤ |y − xj | for all j = i.

By the definition of S∗
i and using Corollary 1, we can conclude that the

maximum diameter of S∗
i is 2ρ∗

s(S
d−1, N) ≤ C ′N−1/(d−1), where we set C ′ := 2C.

Recall that S1, . . . , S2b denote the cones into which the space is partitioned,
i.e., Sj is the cone projected from the center of the sphere to S∗

j . As above, the
advice encodes a cone Sj in which the server used by Alg is located, and Segdd
uses the closest server from Sj to satisfy the current request.

As in the 2- and 3-dimensional cases, consider the first time step and the
three points x1, p1, and p̂. Again, we need to bound the angle β of the triangle
induced by x1, p1, and p̂ on P in a different way. Here, we must consider the
angle δ that results from the intersection of P and the current cone. As in the
case of three dimensions, we define α as the maximum angle within one of the
cones. We observe that, for any plane with δ ≤ α, this angle can be computed
using Corollary 1 in exactly the same way as we did for Seg3d.

Theorem 4. There is a constant C ′ solely depending on d such that Segdd
has a strict competitive ratio of 1/(1 − C ′/2b/(d−1)) for the k-server problem
in d-dimensional Euclidean space, using b ≥ (d − 1) log2(C ′) bits of advice per
request.

Proof. Recall that Corollary 1 ensures each partition S∗
j has a diameter of at

most C ′N−1/(d−1) = C ′2−b/(d−1) if N = 2b. This means that, when taking the
cone Sj , the maximum angle will be that determined by the isosceles triangle of
base C ′2−b/(d−1) and equal sides of length 1 as in the 3-dimensional case. Then
the angle can be simply computed by the trigonometric equality sin(α/2) =
C/2b/(d−1), yielding α = 2arcsin(C/(2b/(d−1))).

Let Sj denote the cone indicated by the advice in time step T1, i.e., the cone
with apex x1 that covers the points p1 and p̂, at which s1 and ŝ are located.
Since x1, p1, and p̂ are on a plane P, we can again proceed analogously to the
proof of Lemma1. To this end, we again need to bound the angle δ around x1

that we obtain when intersecting Sj and P. Clearly, β ≤ δ ≤ α, and thus we
ask when δ is maximized; see Fig. 2. Consequently, α is an upper bound for the
angle β.

Again plugging γ = α into Lemma 1, we can give a proof analogously to that
of Theorem 1, and it finally follows that the strict competitive ratio of Segdd is
at most 1/(1 − C ′/2b/(d−1)), finishing the proof.
�

4 From None to Some Curvature

Now consider the k-server problem on the surface of a sphere S
2. Without loss

of generality, we assume that the radius of S2 is R = 1; this will help simplifying

The k-Server Problem with Advice in d Dimensions and on the Sphere 405

some computational steps, because, in this case, the shortest distance in radians
between two points on S

2 is their angle at the center of S2 [37].
Let us consider the following algorithm SegSph. For every request xi with

1 ≤ i ≤ n, SegSph gets b + 1 bits of advice with b ≥ 10. The first such bit
indicates whether the server used by the solution computed by the algorithm
Alg (we compare against) is close to xi or far from it. The threshold is at a
distance of 1/p from xi (where p depends only on b and will be fixed later).
Then the other b bits indicate where the server used by Alg is located. S2 is
divided in the following way. In the case that the server used by Alg is far
away, SegSph divides the whole sphere into 2b disjoint parts by selecting 2b

points on the surface distributed according to Theorem2. We name the parts
P1, . . . , P2b . SegSph serves the request xi with the closest server to xi within
the part indicated by the advice (ignoring the servers at a distance less than
1/p). Conversely, in the case that the server used by Alg is close, we want
to assimilate the behavior to that of Seg2d in the Euclidean plane. To this
end, SegSph divides the points closer than 1/p to xi into 2b disjoint segments
S1, . . . , S2b with their origin in xi and with an angle of 2π/2b :=γ (as already
defined in (1)).

In the following, we analyze both cases separately.

4.1 The Far Case

Let Alg be an algorithm for the k-server problem on S
2 that again serves the

first request x1 with a server located at p1 that lies in a part Pj of the far
partition. The request is served with cost d1 = dist(p1, x1), where dist is the
distance function on the sphere. Now, SegSph serves x1 with a server located
at p̂ in Pj with cost a = dist(p̂, x1). Let the distance between p1 and p̂ be
c = dist(p1, p̂). Recall that, as we are in the far case with 1/p ≤ a ≤ d1 and since
the diameter of Pj ,diam(Pj), is at most 7/

√
N (as seen in Theorem 2), we have

c ≤ 7/
√

N .
As we want the close partition to be small and similar to the Euclidean plane,

we will need 1/p < 1. Moreover, since we want c to be small compared to d1 and
a, it is reasonable to make the size of 1/p larger than the size of one far part; so
we define 1 < p < 2b/2/7. In the following, let rfar := 1/(1 − (7p)/2b/2).

Lemma 2. Let a, d1, c, p, and Pj be as above. Then a/(d1 − c) ≤ rfar.

Proof. Substituting rfar in a + rfarc, we obtain a + rfarc = a + c/(1 − (7p)/2b/2),
and since c ≤ diam(Pj) ≤ 7/2b/2, it follows that a + rfarc ≤ a + 7/(2b/2 − 7p).
It thus remains to prove that a + 7/(2b/2 − 7p) ≤ d1/(1 − (7p)/2b/2), which is
equivalent to

a +
7

2b/2 − 7p
≤ d1 · 2b/2

2b/2 − 7p
.

As 2b/2 − 7p > 0, it suffices to show that a · (2b/2 − 7p) + 7 ≤ d1 · 2b/2 or,
equivalently, 7 − 7pa ≤ 2b/2(d1 − a). Due to d1 ≥ a and a ≥ 1/p, the inequality
follows and so does the lemma.
�

406 E. Burjons et al.

Fig. 3. Projection of a close server request to a surface

To be able to generalize the original theorem for both close and far parti-
tions, we need a result similar to Lemma 2 for the close case, and then take the
maximum of both “close competitive ratio” and “far competitive ratio” in order
to have a bound on the general competitive ratio of SegSph.

4.2 The Close Case

The intuition is that the bound for the close partition should not be very different
from that we already know for Euclidean plane, as in the limit for small distances,
the surface of a sphere is homeomorphic to a plane.

Again, let Alg be an algorithm that serves x1 with a server located at p1,
which lies in a segment Sj of the close partition. The request is served with
cost d1 = dist(p1, x1). Now, SegSph serves x1 with a server located at p̂ in
Sj with cost a = dist(p̂, x1). As before, let the distance between p1 and p̂ be
c = dist(p1, p̂). Recall that, as we are in the close case, a ≤ d1 < 1/p and that
the maximum angle between a and d1 is γ = 2π/2b.

Now if we project the triangle ad1c to the plane tangent to the sphere in x1,
we get a flat triangle as shown in Fig. 3. We label the sides of this triangle a′, d′

1,
and c′. Observe that a′ = tan a, d′

1 = tan d1, c
′ > c, and the angle between a′ and

d′
1 is at most γ. The specific values of c and c′ can be computed using the cosine

law in the sphere and in the plane, respectively. Now Lemma1 in the plane holds
for a′, d′

1, c
′, and γ. Taking this into account, we can prove an analogous lemma

for the spherical values a, d1, c, and γ.
First, the original lemma yields a′ + rplanec

′ ≤ rplaned
′
1 for the plane projec-

tion. Second, if we bound

k0a
′ ≥ a ≥ 1

k0
a′ and k1(d′

1 − c′) ≥ d1 − c ≥ 1
k1

(d′
1 − c′), (2)

The k-Server Problem with Advice in d Dimensions and on the Sphere 407

where k0 and k1 are two constants we determine in what follows, we can state
a/k0 ≤ a′ ≤ rplane(d′

1 − c′) ≤ rplanek1(d1 − c) ⇐⇒ a ≤ rplanek0k1(d1 − c), which
is formalized by the following lemma. Let rclose := (k0k1)/(1 − 2 sin(γ/2)).

Lemma 3. Let a, d1, c, p, and Sk be as above. Then a/(d1 − c) ≤ rclose.
�
It remains to find k0 and k1 that satisfy (2). To find k0, recall that a′ = tan(a),

so k0 tan(a) ≥ a if and only if k0 ≥ 1. On the other side, we have a ≥ tan(a)/k0
if and only if k0 ≥ tan(a)/a. Since tan(x)/x grows for 0 ≤ x ≤ π/2, we just need
to consider the maximum value for a. As we will require p ≥ 2.5 for the next
part of the proof, and a ≤ d1 ≤ 1/p ≤ 0.4, we get

tan(a)
a

≤ tan(1/p)
1/p

≤ tan(0.4)
0.4

< 1.06 = k0

and a can be even smaller if we restrict the value of p further. However, restricting
p has an effect on the number of advice bits needed per request as 2.5 ≤ p ≤
2b/2/7 implies that b ≥ 10.

We can prove that d1 − c ≤ d′
1 − c′, which implies k1 ≥ 1. However, to find

k1, we need to find a bound for k1 ≥ (d′
1 − c′)/(d1 − c). First, we can show that

d′
1 − c′ ≤ tan a, which implies (d′

1 − c′)/(d1 − c) ≤ tan a/(d1 − c). Note that c
grows with β and β ≤ γ = 2π/2b, yielding

d′
1 − c′

d1 − c
≤ tan(a)

d1 − c(β = 2π/2b)
.

As a next step, we can show that tan(a)/(d1−c(β = 2π/2b)) grows with a, i.e.,
that the fraction is maximized if a = d1. Then, we can prove that tan(d1)/(d1−c)
grows with d1, and taking into account that b ≥ 10, we can state

d′
1 − c′

d1 − c
≤ tan(0.4)

0.4 − arccos(cos2(0.4) + sin2(0.4) cos(π/29))
≤ 1.17 = k1.

We can finally multiply the values for k0 and k1, yielding rclose = 1.25/(1 −
2 sin(γ/2)) and plug this into Lemma3.

4.3 Putting It Together

Finally, combining Lemmata 2 and 3 (i.e., using rfar and rclose in the correspond-
ing cases) with the concrete values for k0 and k1, we can easily state the following
theorem, which can be proven exactly as Theorem 1.

Theorem 5. For 2.5 < p < 2b/2/7, SegSph has a strict competitive ratio of

max
{

1.25
1 − 2 sin(π/2b)

,
1

1 − (7p)/2b/2

}

for the k-server problem on S
2, using b ≥ 10 bits of advice per request.

408 E. Burjons et al.

References

1. Bansal, N., Buchbinder, N., M ↪adry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: Proceedings of the FOCS 2011, pp. 267–276
(2011)

2. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Královič, R., Rossmanith, P.:
On the power of randomness versus advice in online computation. In: Bordihn,
H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 30–43.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31644-9 2

3. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10631-6 35

4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: Online
algorithms with advice: the tape model. Inf. Comput. 254, 59–83 (2017)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22006-7 18

6. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. J. Comput. Syst. Sci. 86, 159–170 (2017)

7. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack
problem: advice and randomization. Theoret. Comput. Sci. 527, 61–72 (2014)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

9. Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online
algorithms with advice: a survey. SIGACT News 47(3), 93–129 (2016)

10. Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal
energy and designs. J. Complex. 31(3), 293–326 (2015)

11. Chrobak, M., Larmore, L.: The server problem and online games. In: On-line Algo-
rithms, Proceedings of a DIMACS Workshop. DIMACS Series in Discrete Mathe-
matics and Computer Science. vol. 7, pp. 11–64. American Mathematical Society
(1991)

12. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM J. Discret. Math. 4(2), 172–181 (1991)

13. Damelin, S.B., Maymeskul, V.: On point energies, separation radius and mesh norm
for s-extremal configurations on compact sets in R

n. J. Complex. 21(6), 845–863
(2005)

14. Dobrev, S., Edmonds, J., Komm, D., Královič, R., Královič, R., Krug, S., Mömke,
T.: Improved analysis of the online set cover problem with advice. Theoret. Com-
put. Sci. 689, 96–107 (2017)

15. Dobrev, S., Královič, R., Pardubská, D.: How much information about the future
is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-77566-9 21

16. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. Theor. Inf. Appl. (RAIRO) 43(3), 585–613 (2009)

17. Dobrev, S., Královič, R., Královič, R.: Computing with advice: when knowledge
helps. Bull. EATCS 110, 35–51 (2013)

https://doi.org/10.1007/978-3-642-31644-9_2
https://doi.org/10.1007/978-3-642-10631-6_35
https://doi.org/10.1007/978-3-642-10631-6_35
https://doi.org/10.1007/978-3-642-22006-7_18
https://doi.org/10.1007/978-3-642-22006-7_18
https://doi.org/10.1007/978-3-540-77566-9_21

The k-Server Problem with Advice in d Dimensions and on the Sphere 409

18. Dohrau, J.: Online makespan scheduling with sublinear advice. In: Italiano, G.F.,
Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOF-
SEM 2015. LNCS, vol. 8939, pp. 177–188. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46078-8 15

19. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02927-1 36

20. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoret. Comput. Sci. 412(24), 2642–2656 (2011)

21. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: On the additive constant of
the k -server work function algorithm. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 128–134. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12450-1 12

22. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms: The State of the Art. LNCS,
vol. 1442. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029561

23. Gebauer, H., Komm, D., Královič, R., Královič, R., Smula, J.: Disjoint path allo-
cation with sublinear advice. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015.
LNCS, vol. 9198, pp. 417–429. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21398-9 33

24. Gupta, S., Kamali, S., López-Ortiz, A.: On advice complexity of the k-server prob-
lem under sparse metrics. Theory Comput. Syst. 59, 476–499 (2016)

25. Irani, S., Karlin, A.R.: On online computation. In: Hochbaum, D. (ed.) Approxi-
mation Algorithms for NP -Hard Problems, pp. 521–564 (1997). Chap. 13

26. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 3

27. Komm, D.: An Introduction to Online Computation: Determinism, Randomiza-
tion, Advice. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42749-2

28. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor.
Inf. Appl. (RAIRO) 45(2), 249–267 (2011)

29. Koutsoupias, E.: The k-server problem. Comput. Sci. Rev. 3(2), 105–118 (2009)
30. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5),

971–983 (1995). Association for Computing Machinery
31. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for on-line

problems. In: Proceedings of the STOC 1988, pp. 322–333. Association for Com-
puting Machinery (1988)

32. Preparata, F.P., Shamos, M.: Computational Geometry: An Introduction.
Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

33. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere.
Math. Res. Lett. 1, 647–662 (1994)

34. Renault, M., Rosén, A.: On online algorithms with advice for the k-server problem.
Theory Comput. Syst. 56(1), 3–21 (2015)

35. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin
packing and scheduling problems. Theoret. Comput. Sci. 600, 155–170 (2015)

36. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

37. Zwillinger, D.: Standard Mathematical Tables and Formulae, 32nd edn. CRC, Boca
Raton (2011)

https://doi.org/10.1007/978-3-662-46078-8_15
https://doi.org/10.1007/978-3-662-46078-8_15
https://doi.org/10.1007/978-3-642-02927-1_36
https://doi.org/10.1007/978-3-642-12450-1_12
https://doi.org/10.1007/978-3-642-12450-1_12
https://doi.org/10.1007/BFb0029561
https://doi.org/10.1007/978-3-319-21398-9_33
https://doi.org/10.1007/978-3-319-21398-9_33
https://doi.org/10.1007/978-3-642-15155-2_3
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-1-4612-1098-6

Automata, Complexity, Completeness

Deciding Universality of ptNFAs
is PSPACE-Complete

Tomáš Masopust1(B) and Markus Krötzsch2

1 Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic
masopust@math.cas.cz

2 cfaed, TU Dresden, Dresden, Germany
markus.kroetzsch@tu-dresden.de

Abstract. An automaton is partially ordered if the only cycles in its
transition diagram are self-loops. We study the universality problem for
ptNFAs, a class of partially ordered NFAs recognizing piecewise testable
languages. The universality problem asks if an automaton accepts all
words over its alphabet. Deciding universality for both NFAs and par-
tially ordered NFAs is PSpace-complete. For ptNFAs, the complexity
drops to coNP-complete if the alphabet is fixed but is open if the alpha-
bet may grow. We show, using a novel and nontrivial construction, that
the problem is PSpace-complete if the alphabet may grow polynomially.

1 Introduction

Piecewise testable languages form a strict subclass of star-free languages or,
in other words, of the languages definable by the linear temporal logic. They
are investigated and find applications in semigroup theory [2,25], in logic on
words [9], in formal languages and automata theory [17], recently mainly in
applications of separability [26], in natural language processing [10,28], in cog-
nitive and sub-regular complexity [29], in learning theory [11,18], or in database
theory in the context of schema languages for XML data [8,14,15,20]. They have
been extended from words to trees [4,12].

Simon [31] showed that piecewise testable languages are exactly those regular
languages whose syntactic monoid is J -trivial and that they are characterized
by confluent, partially ordered DFAs. An automaton is partially ordered if the
only cycles are self-loops, and it is confluent if for any state q and any two
of its successors s and t accessible from q by transitions labeled by a and b,
respectively, there is a word w ∈ {a, b}∗ such that a common state is reachable
from both s and t under w; cf. Fig. 1 (left) for an illustration.

Omitting confluence results in partially ordered DFAs (poDFAs) character-
izing R-trivial languages [6]. Lifting the notion of partial order from DFAs to
NFAs, partially ordered NFAs (poNFAs) characterize the languages of level 3

2
of the Straubing-Thérien hierarchy [30]; hence poNFAs are strictly more pow-
erful than poDFAs. These languages are better known as Alphabetical Pattern

Supported by DFG grants KR 4381/1-1 & CRC 912 (HAEC), and by RVO 67985840.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 413–427, 2018.
https://doi.org/10.1007/978-3-319-73117-9_29

414 T. Masopust and M. Krötzsch

q

s

t

a

b

w ∈ {a, b}∗

w ∈ {a, b}∗

a

a

Fig. 1. Confluence (left) and the forbidden pattern of self-loop det. poNFAs (right)

Constraints, which are regular languages effectively closed under permutation
rewriting used in algorithmic verification [5].

In our recent work, we showed that the increased expressivity of poNFAs
is caused by self-loop transitions involved in nondeterminism. Consequently, R-
trivial languages are characterized by self-loop deterministic poNFAs (denoted
by rpoNFAs from restricted poNFAs) [19]. A poNFA is self-loop deterministic if
it does not contain the pattern of Fig. 1 (right). Our study further revealed that
complete, confluent and self-loop deterministic poNFAs (denoted by ptNFAs
from piecewise testable) characterize piecewise testable languages [21,23]. An
NFA is complete if a transition under every letter is defined in every state.

In this paper, we study the universality problem of ptNFAs. The problem
asks if an automaton accepts all words over its alphabet. The study of univer-
sality (and its dual, emptiness) has a long tradition in formal languages with
many applications across computer science, e.g., in knowledge representation
and database theory [3,7,32]. The problem is PSpace-complete for NFAs [24].
Recent studies investigate the problem for specific types of regular languages,
such as prefixes or factors [27].

Despite a rather low expressivity of poNFAs, the universality problem for
poNFAs has the same worst-case complexity as for general NFAs, even if
restricted to binary alphabets [19]. This is because poNFAs have a powerful
nondeterminism. The pattern of Fig. 1 (right) admits an unbounded number of
nondeterministic steps—the poNFA either stays in the same state or moves to
another. Forbidding the pattern results in rpoNFAs where the number of nonde-
terministic steps is bounded by the number of states. This restriction affects the
complexity of universality. Deciding universality for rpoNFAs is coNP-complete
if the alphabet is fixed but remains PSpace-complete if the alphabet may grow
polynomially [19]. The growth of the alphabet thus compensates for the restric-
tion on the number of nondeterministic steps. The reduced complexity is also
preserved by ptNFAs if the alphabet is fixed [21] but is open if the alphabet may
grow.

We solve this problem by showing that deciding universality for ptNFAs is
PSpace-complete if the alphabet may grow polynomially. To this aim, we use
a novel and nontrivial extension of the construction for rpoNFAs [19]. Conse-
quently, our result provides lower-bound complexities for the problems of inclu-
sion, equivalence, and k-piecewise testability [21]. The results are summarized
in Table 1.

Deciding Universality of ptNFAs is PSpace-Complete 415

Table 1. Complexity of deciding universality

|Σ| = 1 |Σ| = k ≥ 2 Σ is growing

DFA L-comp. [16] NL-comp. [16] NL-comp. [16]

ptNFA NL-comp. (Theorem 1) coNP-comp. [21] PSpace-comp. (Theorem 2)

rpoNFA NL-comp. [19] coNP-comp. [19] PSpace-comp. [19]

poNFA NL-comp. [19] PSpace-comp. [19] PSpace-comp. [1]

NFA coNP-comp. [33] PSpace-comp. [1] PSpace-comp. [1]

2 Preliminaries

We assume that the reader is familiar with automata theory [1]. The cardinality
of a set A is denoted by |A| and the power set of A by 2A. The empty word is
denoted by ε. For a word w = xyz, x is a prefix, y a factor, and z a suffix of w.
A prefix (factor, suffix) of w is proper if it is different from w.

Let A = (Q,Σ, ·, I, F) be a nondeterministic finite automaton (NFA). The
language accepted by A is the set L(A) = {w ∈ Σ∗ | I · w ∩ F �= ∅}. We often
omit · and write Iw instead of I ·w. A path π from a state q0 to a state qn under
a word a1a2 · · · an, for some n ≥ 0, is a sequence of states and input symbols
q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for i = 0, . . . , n − 1. Path π is
accepting if q0 ∈ I and qn ∈ F . We write q0

a1a2···an−−−−−−→ qn to denote that there is
a path from q0 to qn under the word a1a2 · · · an. Automaton A is complete if for
every state q of A and every letter a ∈ Σ, the set q · a is nonempty. An NFA A
is deterministic (DFA) if |I| = 1 and |q · a| = 1 for every q ∈ Q and every a ∈ Σ.

The reachability relation ≤ on states is defined by p ≤ q if there is a w ∈ Σ∗

such that q ∈ p · w. An NFA A is partially ordered (poNFA) if the reachability
relation ≤ is a partial order. For two states p and q of A, we write p < q if p ≤ q
and p �= q. A state p is maximal if there is no state q such that p < q.

A restricted partially ordered NFA (rpoNFA) is a poNFA such that for every
state q and every letter a, if q ∈ q · a then q · a = {q}.

A poNFA A over Σ with the state set Q can be turned into a directed graph
G(A) with the set of vertices Q where a pair (p, q) ∈ Q × Q is an edge in G(A)
if there is a transition from p to q in A. For an alphabet Γ ⊆ Σ, we define
the directed graph G(A, Γ) with the set of vertices Q by considering only those
transitions corresponding to letters in Γ . For a state p, let Σ(p) = {a ∈ Σ | p

a−→
p} denote all letters labeling self-loops in p. We say that A satisfies the unique
maximal state (UMS) property if, for every state q of A, state q is the unique
maximal state of the connected component of G(A, Σ(q)) containing q.

Definition 1. An NFA A is a ptNFA if it is partially ordered, complete and
satisfies the UMS property.

An equivalent notion to the UMS property for DFAs is confluence [17]. A
DFA D over Σ is (locally) confluent if, for every state q of D and every pair

416 T. Masopust and M. Krötzsch

of letters a, b ∈ Σ, there is a word w ∈ {a, b}∗ such that (qa)w = (qb)w. We
generalize this notion to NFAs as follows. An NFA A over Σ is confluent if, for
every state q of A and every pair of (not necessarily distinct) letters a, b ∈ Σ, if
s ∈ qa and t ∈ qb, then there is a word w ∈ {a, b}∗ such that sw ∩ tw �= ∅.

Lemma 1 [21]. Complete and confluent rpoNFAs are exactly ptNFAs.

3 Complexity of Universality for ptNFAs

We now study the universality problem for ptNFAs. If the alphabet is fixed,
deciding universality for ptNFAs is coNP-complete and the hardness holds even
if restricted to binary alphabets [21]. For unary alphabets, universality for ptN-
FAs is decidable in polynomial time [19]. The following theorem improves this
result.

Theorem 1. Deciding universality of ptNFAs over a unary alphabet is an NL-
complete problem.

If the alphabet may grow polynomially, the universality problem for ptNFAs
is open. In the rest of this paper we solve this problem by showing that the
universality problem for ptNFAs is PSpace-complete.

A typical proof showing PSpace-hardness of universality for NFAs is to take
a p-space bounded deterministic Turing machine M, for a polynomial p, together
with an input x, and to encode the computations of M on x as words over some
alphabet Σ that depends on the alphabet and the state set of M. One then
constructs a regular expression (or an NFA) Rx representing all computations
that do not encode an accepting run of M on x. That is, L(Rx) = Σ∗ if and
only if M does not accept x [1].

The form of Rx is relatively simple, consisting of a union of expressions of
the form

Σ∗ K Σ∗ (1)

where K is a finite language with words of length bounded by O(p(|x|)).
Intuitively, K encodes possible violations of a correct computation of M on

x, such as the initial configuration does not contain the input x, or the step from
a configuration to the next one does not correspond to any rule of M. These
checks are local, involving at most two consecutive configurations of M, each of
polynomial size. They can therefore be encoded as a finite language with words
of polynomial length.

The initial Σ∗ of (1) then nondeterministically guesses a position in the word
where a violation encoded by K occurs, and the last Σ∗ reads the rest of the
word if the violation check was successful.

This idea cannot be directly used to prove Theorem 2 for two reasons:

(i) Although expression (1) can easily be translated to a poNFA, it is not true
for ptNFAs. The translation of the leading part Σ∗K may result in the
forbidden pattern of Fig. 1;

Deciding Universality of ptNFAs is PSpace-Complete 417

(ii) The constructed poNFA may be incomplete and its “standard” completion
by adding the missing transitions to a new sink state may violate the UMS
property.

A first observation to overcome these problems is that the length of the
encoding of a computation of M on x is at most exponential with respect to
the size of M and x. It would therefore be sufficient to replace the initial Σ∗

in (1) by prefixes of an exponentially long word. However, such a word cannot
be constructed by a polynomial-time reduction. Instead, we replace Σ∗ with a
ptNFA encoding such a word, which exists and is of polynomial size as shown in
Lemma 2. There we construct, in polynomial time, a ptNFA An,n that accepts
all words but a single one, Wn,n, of exponential length.

Since the language K of (1) is finite, and hence piecewise testable, there is a
ptNFA for K. For every state of An,n, we make a copy of the ptNFA for K and
identify its initial state with the state of An,n if it does not violate the forbidden
pattern of Fig. 1; see Fig. 2 for an illustration. We keep track of the words read
by both An,n and the ptNFA for K by taking the Cartesian product of their
alphabets. A letter is then a pair of symbols, where the first symbol is the input
for An,n and the second is the input for the ptNFA for K. A word over this
alphabet is accepted if the first components do not form Wn,n or the second
components form a word that is not a correct encoding of a run of M on x. This
results in an rpoNFA that overcomes problem (i).

Substitute for initial Σ∗ Substitute for ending Σ∗

The ptNFA An,n

A copy of the ptNFA for KA copy of the ptNFA for K

Fig. 2. Const. of an rpoNFA (solid edges) solving prob. (i), illustrated for two copies
of the ptNFA for K, and its completion to a ptNFA (dashed edges) solving prob. (ii)

However, this technique is not sufficient to resolve problem (ii). Although
the construction yields an rpoNFA that is universal if and only if the regular
expression Rx is [19], the rpoNFA is incomplete and its “standard” completion
by adding the missing transitions to an additional sink state violates the UMS
property. According to Lemma 1, to construct a ptNFA from the rpoNFA, we
need to complete the latter so that it is confluent. This is not possible for every
rpoNFA, but it is possible for our case because the length of the input that
is of interest is bounded by the length of Wn,n. The maximal state of An,n

is accepting, and therefore all the missing transitions can be added so that
the paths required by confluence meet in the maximal state of An,n. Since all

418 T. Masopust and M. Krötzsch

words longer than |Wn,n| are accepted by An,n, we could complete the rpoNFA
by adding paths to the maximal state of An,n that are longer than |Wn,n|.
However, this cannot be done by a polynomial-time reduction, since the length
of Wn,n is exponential. Instead, we add a ptNFA to encode such paths in the
formal definition of An,n as given in Lemma 2 below. We then ensure confluence
by adding the missing transitions to states of the ptNFA An,n from which the
unread part of Wn,n is not accepted and from which the maximal state of An,n is
reachable under the symbol of the added transition (cf. Corollary 1). The second
condition ensures confluence, since all the transitions meet in the maximal state
of An,n. The idea is illustrated in Fig. 2. The details follow.

By this construction, we do not get the same language as defined by the
regular expression Rx, but the language of the constructed ptNFA is universal
if and only if Rx is, which suffices for universality.

Thus, the first step of the construction is to construct the ptNFA An,n that
accepts all words but Wn,n of exponential length. This automaton is the core
of the proof of Theorem2. The language considered there is the same as in our
previous work [19, Lemma 17], where the constructed automaton is not a ptNFA.

Lemma 2. For all integers k, n ≥ 1, there exists a ptNFA Ak,n over an n-letter
alphabet with n(2k + 1) + 1 states, such that the unique non-accepted word of
Ak,n is of length

(
k+n

k

) − 1.

Proof. For positive integers k and n, we recursively define words Wk,n over the
alphabet Σn = {a1, a2, . . . , an} as follows. For the base cases, we set Wk,1 = ak

1

and W1,n = a1a2 . . . an. The cases for k, n > 1 are defined recursively by setting

Wk,n = Wk,n−1 an Wk−1,n = Wk,n−1 an Wk−1,n−1 an · · · an W1,n−1 an .

The length of Wk,n is
(
k+n

n

) − 1 [23]. Notice that letter an appears exactly k
times in Wk,n. We further set Wk,n = ε whenever kn = 0, since this is useful for
defining Ak,n below.

We construct a ptNFA Ak,n over Σn that accepts the language Σ∗
n \ {Wk,n}.

For n = 1 and k ≥ 0, let Ak,1 be a DFA for {a1}∗ \ {ak
1} with k additional

unreachable states used to address problem (ii) and included here for uniformity
(see Corollary 1). Ak,1 consists of 2k + 1 states of the form (i; 1) and a state
max, as shown in the top-most row of states in Fig. 3, together with the given
a1-transitions. All states but (i; 1), for i = k, . . . , 2k, are accepting, and (0; 1) is
initial. All undefined transitions in Fig. 3 go to state max.

Given a ptNFA Ak,n−1, we recursively construct Ak,n as defined next. The
construction for n = 3 is illustrated in Fig. 3. We obtain Ak,n from Ak,n−1 by
adding 2k + 1 states (0; n), (1;n), . . . , (2k;n), where (0;n) is added to the initial
states, and all states (i;n) with i < k are added to the accepting states. The
automaton Ak,n therefore has n(2k +1)+1 states. The additional transitions of
Ak,n consist of the following groups:

Deciding Universality of ptNFAs is PSpace-Complete 419

0; 1 1; 1 . . . k − 1; 1 k; 1

0; 2 1; 2 . . . k − 1; 2 k; 2 k + 1; 2 k + 2; 2 . . . 2k; 2

0; 3 1; 3 . . . k − 1; 3 k; 3 k + 1; 3 k + 2; 3 . . . 2k; 3

max

k + 1; 1 k + 2; 1 . . . 2k; 1
a1 a1 a1 a1

a1

a2

a1

a2 a2

a1

a2

a1
a 2 a 2

a 2 a 2
a2

a1

a2

a1

a2 a2

a1

a2

a1, a2 a1, a2 a1, a2 a1, a2

a
1 , a

2 , a
3

a3 a3 a3 a3

a 3

a 3

a 3

a 3

a 3

a 3

a 3

a 3

a1, a2

a1, a2 a1, a2

a3 a3 a3

a 3

a
3

a
3

a
3 a3 a3

a3

a1 a1 a1

a
1a
2 a2 a2

a2

a
3

a
3

a
3

a
3

Fig. 3. The ptNFA Ak,3 with 3(2k +1) +1 states; all undefined transitions go to state
max; dotted lines depict arrows from (k + i, 1) to (k + 1, 3) under a3, for i = 2, 3, . . . , k

1. Self-loops (i;n)
aj−→ (i;n) for i ∈ {0, 1, . . . , 2k} and aj = a1, a2, . . . , an−1;

2. Transitions (i;n) an−−→ (i + 1;n) for i ∈ {0, 1, . . . , 2k − 1} \ {k};
3. Transitions (k, n) an−−→ max, (2k, n) an−−→ max, and the self-loop max

an−−→ max;
4. Transitions (i;n) an−−→ (i + 1;m) for i = 0, 1, . . . , k − 1 and m = 1, . . . , n − 1;
5. Transitions (i;m) an−−→ max for every accepting state (i;m) of Ak,n−1;
6. Transitions (i;m) an−−→ (k+1, n) for every non-accepting state (i;m) of Ak,n−1.

By construction, Ak,n is complete and partially ordered. It satisfies the UMS
property because if there is a self-loop in a state q �= max under a letter a, then
there is no other incoming or outgoing transition of q under a. This means that
the component of the graph G(Ak,n, Σ(q)) containing q is only state q, which
is indeed the unique maximal state. Hence, it is a ptNFA. Equivalently, to see
that the automaton is confluent, the reader may notice that the automaton has
a single sink state.

We show that Ak,n accepts Σ∗
n \ {Wk,n}. The additional states of Ak,n and

transitions 1, 2, and 3 ensure acceptance of every word that does not contain
exactly k occurrences of an. The transitions 4 and 5 ensure acceptance of all
words in (Σ∗

n−1an)iL(Ak−i,n−1)anΣ∗
n, for which the longest factor before the

(i + 1)th occurrence of an is not of the form Wk−i,n−1, and hence not a correct
factor of Wk,n = Wk,n−1an · · · anWk−i,n−1an · · · anW1,n−1an. Together, these
conditions ensure that Ak,n accepts every input other than Wk,n.

It remains to show that Ak,n does not accept Wk,n, which we do by induction
on (k, n). We start with the base cases. For (0, n) and any n ≥ 1, the word
W0,n = ε is not accepted by A0,n, since the initial states (0;m) = (k;m) of A0,n

are not accepting. Likewise, for (k, 1) and any k ≥ 0, we find that Wk,1 = ak
1 is

not accepted by Ak,1 (cf. Fig. 3).
For the inductive case (k, n) ≥ (1, 2), assume that Ak′,n′ does not accept

Wk′,n′ for any (k′, n′) < (k, n). We have Wk,n = Wk,n−1anWk−1,n, and Wk,n−1

is not accepted by Ak,n−1 by induction. Therefore, after reading Wk,n−1an,
automaton Ak,n must be in one of the states (1;m), 1 ≤ m ≤ n, or (k + 1;n).
However, states (1;m), 1 ≤ m ≤ n, are the initial states of Ak−1,n, which
does not accept Wk−1,n by induction. Assume that Ak,n is in state (k + 1;n)
after reading Wk,n−1an. Since Wk−1,n has exactly k − 1 occurrences of letter
an,Ak,n is in state (2k;n) after reading Wk−1,n. Hence Wk,n is not accepted
by Ak,n.
�

420 T. Masopust and M. Krötzsch

The last part of the previous proof shows that the suffix Wk−1,n of the word
Wk,n = Wk,n−1anWk−1,n is not accepted from state (k + 1;n). This can be
generalized as follows.

Corollary 1. For any suffix aiw of Wk,n, w is not accepted from state (k +1; i)
of Ak,n.

The proof of Lemma 2 also shows that the transitions of 6 are redundant.

Corollary 2. Removing from Ak,n the non-accepting states (k+1, i), . . . , (2k, i),
for 1 ≤ i ≤ n, and the corresponding transitions results in an rpoNFA that
accepts the same language.

A deterministic Turing machine (DTM) is a tuple M = (Q,T, I, δ, ��, qo, qf),
where Q is the finite state set, T is the tape alphabet, I ⊆ T is the input alphabet,
�� ∈ T \ I is the blank symbol, qo is the initial state, qf is the accepting state,
and δ is the transition function mapping Q × T to Q × T × {L,R, S}; see Aho
et al. [1] for details.

We now prove the main result, whose proof is a nontrivial generalization of
our previous construction showing PSpace-hardness of universality for rpoN-
FAs [19].

Theorem 2. The universality problem for ptNFAs is PSpace-complete.

Proof. Membership follows since universality is in PSpace for NFAs [13].
To prove PSpace-hardness, we consider a polynomial p and a p-space-

bounded DTM M = (Q,T, I, δ, ��, qo, qf). Without loss of generality, we assume
that qo �= qf . A configuration of M on x consists of a current state q ∈ Q,
the position 1 ≤ � ≤ p(|x|) of the read/write head, and the tape contents
θ1, . . . , θp(|x|) with θi ∈ T . We represent it by a sequence

〈θ1, ε〉 · · · 〈θ�−1, ε〉〈θ�, q〉〈θ�+1, ε〉 · · · 〈θp(|x|), ε〉

of symbols from Δ = T × (Q ∪ {ε}). A run of M on x is represented as a word
#w1#w2# · · · #wm#, where wi ∈ Δp(|x|) and # /∈ Δ is a fresh separator symbol.
One can construct a regular expression recognizing all words over Δ∪{#} that do
not correctly encode a run of M (in particular are not of the form #w1#w2# · · ·
#wm#) or that encode a run that is not accepting [1]. Such a regular expression
can be constructed in the following three steps: we detect all words that

(A) do not start with the initial configuration;
(B) do not encode a valid run since they violate a transition rule;
(C) encode non-accepting runs or runs that end prematurely.

If M has an accepting run, it has one without repeated configurations. For
an input x, there are C(x) = (|T × (Q ∪ {ε})|)p(|x|) distinct configuration words
in our encoding. Considering a separator symbol #, the length of the encoding
of a run without repeated configurations is at most 1 + C(x)(p(|x|) + 1), since
every configuration word ends with # and is thus of length p(|x|) + 1. Let n be

Deciding Universality of ptNFAs is PSpace-Complete 421

the least number such that |Wn,n| ≥ 1 + C(x)(p(|x|) + 1), where Wn,n is the
word constructed in Lemma 2. Since |Wn,n| + 1 =

(
2n
n

) ≥ 2n, it follows that n is
smaller than �log(1 + C(x)(p(|x|) + 1))�, and hence polynomial in the size of M
and x.

Consider the ptNFA An,n over the alphabet Σn = {a1, . . . , an} of Lemma 2,
and define the alphabet Δ#$ = T × (Q∪{ε})∪{#, $}. We consider the alphabet
Π = Σn ×Δ#$ where the first letter is an input for An,n and the second letter is
used for encoding a run as described above. Recall that An,n accepts all words
different from Wn,n. Therefore, only those words over Π are of our interest,
where the first components form the word Wn,n. Since the length of Wn,n may
not be a multiple of p(|x|) + 1, we add $ to fill up any remaining space after the
last configuration.

For a word w = 〈ai1 , δ1〉 · · · 〈ai�
, δ�〉 ∈ Π�, we define w[1] = ai1 · · · ai�

∈ Σ�
n

as the projection of w to the first component and w[2] = δ1 . . . δ� ∈ Δ�
#$ as

the projection to the second component. Conversely, for a word v ∈ Δ∗
#$, we

write enc(v) to denote the set of all words w ∈ Π |v| with w[2] = v. Similarly,
for v ∈ Σ∗

n, enc(v) denotes the words w ∈ Π |v| with w[1] = v. We extend this
notation to sets of words.

Let enc(An,n) denote the automaton An,n with each transition q
ai−→ q′

replaced by all transitions q
π−→ q′ with π ∈ enc(ai). Then enc(An,n) accepts

the language Π∗ \{enc(Wn,n)}. We say that a word w encodes an accepting run
of M on x if w[1] = Wn,n and w[2] is of the form #w1# · · · #wm#$j such that
there is an i ∈ {1, 2, . . . ,m} for which #w1# · · · #wi# encodes an accepting run
of M on x, wk = wi for all k ∈ {i+1, . . . , m}, and j ≤ p(|x|). That is, we extend
the encoding by repeating the accepting configuration until we have less than
p(|x|)+1 symbols before the end of |Wn,n| and fill up the remaining places with
symbol $.

For (A), we want to detect all words that do not start with the word

w[2] = #〈x1, q0〉〈x2, ε〉 · · · 〈x|x|, ε〉〈��, ε〉 · · · 〈��, ε〉#

of length p(|x|) + 2. This happens if (A.1) the word is shorter than p(|x|) + 2,
or (A.2) at position j, for 0 ≤ j ≤ p(|x|) + 1, there is a letter from the alphabet
Δ#$ \ {xj}. Let Ēj = Σn × (Δ#$ \ {xj}) where xj is the jth symbol on the
initial tape of M. We can capture (A.1) and (A.2) in the regular expression

(
ε + Π + Π2 + . . . + Πp(|x|)+1

)
+

∑

0≤j≤p(|x|)+1

(Πj · Ēj · Π∗) (2)

Expression (2) is polynomial in size. It can be captured by a ptNFA as
follows. Each of the first p(|x|) + 2 expressions defines a finite language and can
easily be captured by a ptNFA (by a confluent DFA) of size of the expression.
The disjoint union of these ptNFAs then form a single ptNFA recognizing the
language ε + Π + Π2 + . . . + Πp(|x|)+1.

To express the language Πj ·Ēj ·Π∗ as a ptNFA, we first construct the minimal
incomplete DFA recognizing this language (states 0, 1, . . . , j, j+1,max in Fig. 4).

422 T. Masopust and M. Krötzsch

However, we cannot complete it by simply adding the missing transitions to a
new sink state because it results in a DFA with two maximal states, max and
the sink state, violating the UMS property. Instead, we use a copy of the ptNFA
enc(An,n) and add the missing transitions from state j under enc(xj) to state
(n + 1; i) if enc(xj)[1] = ai; see Fig. 4. Notice that states (n + 1; i) are the states
(k + 1; i) in Fig. 3. The resulting automaton is a ptNFA, since it is complete,
partially ordered, and satisfies the UMS property—for every state q different
from max, the component co-reachable and reachable under the letters of self-
loops in q is only state q itself. The automaton accepts all words of Πj · Ēj ·Π∗.

0 . . . j

j + 1 n + 1; 1 n + 2; 1 . . . 2n; 1

n + 1; 2 n + 2; 2 . . . 2n; 2

n + 1; 3 n + 2; 3 . . . 2n; 3

max

Π Π

Ē j enc
(xj)[1

] = a1

enc(xj)[1
] = a2

enc(xj)[1] = a3

enc(a1)

enc(a2)

enc(a1)

enc(a2) enc(a2)

enc(a1)

enc(a2)

enc({a
1 , a

2 , a
3 })

enc({a1, a2})

enc({a1, a2}) enc({a1, a2})

enc(a3) enc(a3) enc(a3)

en
c(
a 3

)

en
c(a

3)

enc
(a3)

enc(a3)
enc(a3)

enc(a1) enc(a1) enc(a1)

enc(a
1)en

c(a
2)

enc
(a2)

enc(a2)
enc(a2)

en
c(a

3)

en
c(a

3)

en
c(a

3)

en
c(a

3)

Π

Fig. 4. A ptNFA accepting the language Πj · Ēj · Π∗ + (Π∗ \ {enc(Wn,n)} illustrated
for Σn = {a1, a2, a3}; only the relevant part of An,n is depicted

We now show that any word w that is accepted by this automaton and that
does not belong to Πj · Ēj · Π∗ is such that w[1] �= Wn,n, that is, it belongs to
Π∗ \ {enc(Wn,n)}. Assume that w[1] = Wn,n = uaiv, where ai is the position
and the letter under which the state (n + 1; i) of An,n is reached. Then v is not
accepted from (n + 1; i) by Corollary 1. Thus, the ptNFA accepts the language
Πj · Ēj · Π∗ + (Π∗ \ {enc(Wn,n)}). Constructing such a ptNFA for polynomially
many expressions Πj · Ēj · Π∗ and taking their union results in a polynomially
large ptNFA accepting the language

∑p(|x|)+1
j=0 (Πj ·Ēj ·Π∗)+(Π∗\{enc(Wn,n)}).

Notice that we ensure that the surrounding # in the initial configuration are
present.

For (B), we check for incorrect transitions. Consider again the encoding
#w1# . . . #wm# of a sequence of configurations with a word over Δ ∪ {#}.
We can assume that w1 encodes the initial configuration according to (A).
In an encoding of a valid run, the symbol at any position j ≥ p(|x|) + 2 is
uniquely determined by the symbols at positions j − p(|x|) − 2, j − p(|x|) − 1,
and j − p(|x|), corresponding to the cell and its left and right neighbor in the
previous configuration. Given symbols δ�, δ, δr ∈ Δ ∪ {#}, we can therefore
define f(δ�, δ, δr) ∈ Δ ∪ {#} to be the symbol required in the next configu-
ration. The case where δ� = # or δr = # corresponds to transitions applied

Deciding Universality of ptNFAs is PSpace-Complete 423

at the left and right edge of the tape, respectively; for the case that δ = #,
we define f(δ�, δ, δr) = #, ensuring that the separator # is always present in
successor configurations as well. We extend f to f : Δ3

#$ → Δ#$. For allowing
the last configuration to be repeated, we define f as if the accepting state qf of
M had a self loop (a transition that does not modify the tape, state, or head
position). Moreover, we generally permit $ to occur instead of the expected next
configuration symbol. We can then check for invalid transitions using the regular
expression

Π∗ ∑

δ�,δ,δr∈Δ#$

enc(δ�δδr) · Πp(|x|)−1 · f̂(δ�, δ, δr) · Π∗ (3)

where f̂(δ�, δ, δr) is Π \ enc({f(δ�, δ, δr), $}). Note that (3) only detects wrong
transitions if a long enough next configuration exists. The case that the run
stops prematurely is covered in (C).

Expression (3) is not readily encoded in a ptNFA because of the leading Π∗.
To address this, we replace Π∗ by the expression Π≤|Wn,n|−1, which matches
every word w ∈ Π∗ with |w| ≤ |Wn,n| − 1. Clearly, this suffices for our case
because the computations of interest are of length |Wn,n| and a violation of a
correct computation must occur. As |Wn,n|−1 is exponential, we cannot encode
it directly and we use enc(An,n) instead.

In detail, let E be the expression obtained from (3) by omitting the initial Π∗,
and let B1 be an incomplete DFA that accepts the language of E constructed as
follows. From the initial state, we construct a tree-shaped DFA corresponding to
all words of length three of the finite language

∑
δ�,δ,δr∈Δ#$

enc(δ�δδr). To every
leaf state, we add a path under Π of length p(|x|) − 1. The result corresponds
to the language

∑
δ�,δ,δr∈Δ#$

enc(δ�δδr) · Πp(|x|)−1. Let qδ�δδr
denote the states

uniquely determined by the words in enc(δ�δδr)·Πp(|x|)−1. We add the transitions

qδ�δδr

enc(f̂(δ�,δ,δr))−−−−−−−−−→ max′, where max′ is a new accepting state. The automaton
is illustrated in the upper part of Fig. 5, denoted B1. It is an incomplete DFA
for language E of polynomial size. It is incomplete only in states qδrδδ�

due
to the missing transitions under enc(f(δ�, δ, δr)) and enc($). We complete it by
adding the missing transitions to the states of the ptNFA An,n. Namely, for
z ∈ {enc(f(δ�, δ, δr)), enc($)}, we add qδ�δδr

z−−→ (n + 1; i) if z[1] = ai.
We construct a ptNFA B accepting the language (Π∗ \ {enc(Wn,n)}) +

(Π≤|Wn,n|−1 · E) by merging enc(An,n) with at most n(n + 1) copies of B1,
where we identify the initial state of each such copy with a unique accepting
state of enc(An,n), if it does not violate the property of ptNFAs (Fig. 1). This
is justified by Corollary 2, since we do not need to consider connecting B1 to
non-accepting states of An,n and it is not possible to connect it to state max.
We further identify state max′ of every copy of B1 with state max of An,n. The
fact that enc(An,n) alone accepts (Π∗ \ {enc(Wn,n)}) was shown in Lemma 2.
This also implies that it accepts all words of length ≤ |Wn,n| − 1 as needed to
show that (Π≤|Wn,n|−1 · E) is accepted. Entering states of (a copy of) B1 after

424 T. Masopust and M. Krötzsch

0; 1 1; 1 . . . n − 1; 1 n; 1

0; 2 1; 2 . . . n − 1; 2 n; 2 n + 1; 2 n + 2; 2 . . . 2n; 2 max

n + 1; 1 n + 2; 1 . . . 2n; 1

. . .

· · ·

. . .

qδ�δδr

A copy of B1 for state (0; 1)

enc(a1) enc(a1) enc(a1) enc(a1)

enc(a1)

enc(a2)

enc(a1)

enc(a2) enc(a2)

enc(a1)

enc(a2)

enc(a1)

enc({a
1 , a

2 })
en
c(
a 2

)

en
c(
a 2

)

en
c(
a 2

)

en
c(
a 2

)
enc(a2)

enc(a1)

enc(a2)

enc(a1)

enc(a2) enc(a2)

enc(a1)

enc(a2)

enc(a1) enc(a1) enc(a1)

enc(a
1)

en
c(a

2)

en
c(a

2)
enc(a2)

enc(a2)

en
c(
δ �
)

en
c(δ

) enc(δ
r)

Π Π Π

enc(f̂(δ
� , δ, δ

r))

z
[1

] =
a
1

z
[1

] =
a
2

Fig. 5. ptNFA B consisting of enc(An,n), n = 2, with, for illustration, only one copy
of ptNFA B1 for the case the initial state of B1 is identified with state (0; 1) and state
max′ with state max

accepting a word of length ≥ |Wn,n| is possible but all such words are longer
than Wn,n and hence in (Π∗ \ {enc(Wn,n)}).

Let w be a word that is not accepted by (a copy of) B1. Then, there are
words u and v such that u leads enc(An,n) to a state from which w is read in a
copy of B1. Since w is not accepted, there is a letter z and a word v such that
uwz goes to state (n + 1; i) of An,n (for z[1] = ai) and v leads enc(An,n) from
state (n + 1; i) to state max. If u[1]w[1]aiv[1] = Wn,n,, then v is not accepted
from (n + 1; i) by Corollary 1, and hence uwzv[1] �= Wn,n.

It remains to show that for every proper prefix wn,n of Wn,n, there is a state
in An,n reached by wn,n that is the initial state of a copy of B1, and hence the
check represented by E in Π≤|Wn,n|−1 · E can be performed. In other words,
if an,n denotes the letter following wn,n in Wn,n, then there must be a state
reachable by wn,n in An,n that does not have a self-loop under an,n. However,
this follows from the fact that An,n accepts everything but Wn,n, since then
the DFA obtained from An,n by the standard subset construction has a path of
length

(
2n
n

) − 1 labeled with Wn,n without any loop. Moreover, any state of this
path in the DFA is a subset of states of An,n, therefore at least one of the states
reachable under wn,n in An,n does not have a self-loop under an,n.

The ptNFA B thus accepts the language Π≤|Wn,n|−1 ·E+(Π∗\{enc(Wn,n)}).
Finally, for (C), we detect all words that (C.1) end in a configuration that is

incomplete (too short), (C.2) end in a configuration that is not in the accepting
state qf , (C.3) end with more than p(|x|) trailing $, or (C.4) contain $ not only
at the last positions, that is, we detect all words where $ is followed by a different
symbol. For a word v, we use v≤i to abbreviate ε + v + . . . + vi, and we define
Ēf = (T × (Q \ {qf})).

Deciding Universality of ptNFAs is PSpace-Complete 425

(C.1) Π∗ enc(#)(Π + . . . + Πp(|x|)) enc($)≤p(|x|) +
(C.2) Π∗ enc(Ēf)(ε + Π + . . . + Πp(|x|)−1) enc(#) enc($)≤p(|x|) +
(C.3) Π∗ enc($)p(|x|)+1 +
(C.4) (Π \ enc($))∗ enc($) enc($)∗(Π \ enc($))Π∗

(4)

As before, we cannot encode the expression directly as a ptNFA, but we can
perform a similar construction as the one used for encoding (3).

The expressions (2)–(4) together then detect all non-accepting or wrongly
encoded runs of M. In particular, if we start from the correct initial config-
uration ((2) does not match), then for (3) not to match, all complete future
configurations must have exactly one state and be delimited by encodings of #.
Expressing the regular expressions as a single ptNFA of polynomial size, we have
thus reduced the word problem of polynomially space-bounded Turing machines
to the universality problem for ptNFAs.
�

All missing proofs can be found in the full version of this paper [22].

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Boston (1974)

2. Almeida, J., Costa, J.C., Zeitoun, M.: Pointlike sets with respect to R and J. J.
Pure Appl. Algebra 212(3), 486–499 (2008)

3. Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. J. ACM
61(1), 8:1–8:54 (2014)

4. Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. Log-
ical Methods Comput. Sci. 8(3) (2012)

5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic
verification. Inf. Comput. 205(2), 199–224 (2007)

6. Brzozowski, J.A., Fich, F.E.: Languages of R-trivial monoids. J. Comput. Syst.
Sci. 20(1), 32–49 (1980)

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular
path queries. ACM SIGMOD Rec. 32(4), 83–92 (2003)

8. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 150–161. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39212-2 16

9. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order
logic over finite words. Int. J. Found. Comput. Science 19(3), 513–548 (2008)

10. Fu, J., Heinz, J., Tanner, H.G.: An algebraic characterization of strictly piecewise
languages. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
252–263. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-
5 26

11. Garćıa, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from
positive data. Grammars 7, 125–140 (2004)

12. Garćıa, P., Vidal, E.: Inference of k-testable languages in the strict sense and
application to syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 12(9), 920–925 (1990)

https://doi.org/10.1007/978-3-642-39212-2_16
https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1007/978-3-642-20877-5_26

426 T. Masopust and M. Krötzsch

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

14. Hofman, P., Martens, W.: Separability by short subsequences and subwords.
In: Arenas, M., Ugarte, M. (eds.) ICDT 2015. LIPIcs, vol. 31, pp. 230–246.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.
4230/LIPIcs.ICDT.2015.230

15. Holub, Š., Jirásková, G., Masopust, T.: On upper and lower bounds on the length of
alternating towers. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014. LNCS, vol. 8634, pp. 315–326. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44522-8 27

16. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Com-
put. Syst. Sci. 11(1), 68–85 (1975)

17. Kĺıma, O., Polák, L.: Alternative automata characterization of piecewise testable
languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 289–
300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5 26

18. Kontorovich, L., Cortes, C., Mohri, M.: Kernel methods for learning languages.
Theor. Comput. Sci. 405(3), 223–236 (2008)

19. Krötzsch, M., Masopust, T., Thomazo, M.: Complexity of universality and related
problems for partially ordered NFAs. Inf. Comput. Part 1 255, 177–192 (2017).
https://doi.org/10.1016/j.ic.2017.06.004

20. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: BonXai: combining the
simplicity of DTD with the expressiveness of XML schema. In: Milo, T., Calvanese,
D. (eds.) PODS 2015, pp. 145–156. ACM (2015). https://doi.org/10.1145/2745754.
2745774

21. Masopust, T.: Piecewise testable languages and nondeterministic automata. In:
Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) MFCS 2016. LIPIcs, vol.
58, pp. 67:1–67:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.MFCS.2016.67

22. Masopust, T., Krötzsch, M.: Universality of confluent, self-loop deterministic par-
tially ordered NFAs is hard (2017). http://arxiv.org/abs/1704.07860

23. Masopust, T., Thomazo, M.: On Boolean combinations forming piecewise testable
languages. Theor. Comput. Sci. 682, 165–179 (2017)

24. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expres-
sions with squaring requires exponential space. In: Symposium on Switching and
Automata Theory, pp. 125–129. IEEE Computer Society (1972). https://doi.org/
10.1109/SWAT.1972.29

25. Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic and Games,
Pure and Applied Mathematics, vol. 141. Academic Press, Cambridge (2004)

26. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40313-2 64

27. Rampersad, N., Shallit, J., Xu, Z.: The computational complexity of universality
problems for prefixes, suffixes, factors, and subwords of regular languages. Funda-
menta Informatica 116(1–4), 223–236 (2012)

28. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel,
S.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger,
G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp. 255–265.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14322-9 19

https://doi.org/10.4230/LIPIcs.ICDT.2015.230
https://doi.org/10.4230/LIPIcs.ICDT.2015.230
https://doi.org/10.1007/978-3-662-44522-8_27
https://doi.org/10.1007/978-3-662-44522-8_27
https://doi.org/10.1007/978-3-642-38771-5_26
https://doi.org/10.1016/j.ic.2017.06.004
https://doi.org/10.1145/2745754.2745774
https://doi.org/10.1145/2745754.2745774
https://doi.org/10.4230/LIPIcs.MFCS.2016.67
http://arxiv.org/abs/1704.07860
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1007/978-3-642-14322-9_19

Deciding Universality of ptNFAs is PSpace-Complete 427

29. Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and sub-
regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS,
vol. 8036, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39998-5 6

30. Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: a
new characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT
2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46011-X 20

31. Simon, I.: Hierarchies of events with dot-depth one. Ph.D. thesis, University of
Waterloo, Canada (1972)

32. Stefanoni, G., Motik, B., Krötzsch, M., Rudolph, S.: The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif.
Intell. Res. 51, 645–705 (2014)

33. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison,
M.A., Karp, R.M., Strong, R. (eds.) ACM Symposium on the Theory of Comput-
ing, pp. 1–9. ACM (1973). https://doi.org/10.1145/800125.804029

https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/3-540-46011-X_20
https://doi.org/10.1007/3-540-46011-X_20
https://doi.org/10.1145/800125.804029

Theoretical Aspects of Symbolic Automata

Hellis Tamm1(B) and Margus Veanes2

1 Tallinn University of Technology, Tallinn, Estonia
hellis@cs.ioc.ee

2 Microsoft Research, Redmond, USA
margus@microsoft.com

Abstract. Symbolic finite automata extend classical automata by
allowing infinite alphabets given by Boolean algebras and having transi-
tions labeled by predicates over such algebras. Symbolic automata have
been intensively studied recently and they have proven useful in several
applications. We study some theoretical aspects of symbolic automata.
Especially, we study minterms of symbolic automata, that is, the set of
maximal satisfiable Boolean combinations of predicates of automata. We
define canonical minterms of a language accepted by a symbolic automa-
ton and show that these minterms can be used to define symbolic ver-
sions of some known classical automata. Also we show that canonical
minterms have an important role in finding minimal nondeterministic
symbolic automata. We show that Brzozowski’s double-reversal method
for minimizing classical deterministic automata as well as its generaliza-
tion is applicable for symbolic automata.

1 Introduction

Symbolic finite automata are finite state automata with an alphabet given by
a Boolean algebra which can possibly have an infinite domain, and with tran-
sitions labeled by predicates over such algebra. Symbolic finite automata are a
generalization of nondeterministic finite automata (NFAs), with a motivation for
their introduction coming from practical applications which require handling of
large or infinite alphabets.

Automata with predicates was first mentioned in [18]. We consider symbolic
finite automata as defined in [4], where predicates are drawn from a decidable
Boolean algebra. These automata have been intensively studied recently, for
example, in the context of minimization of deterministic symbolic automata [5],
computing forward bisimulations for nondeterministic symbolic automata [6],
learning symbolic automata [9], and others.

We study some theoretical aspects of symbolic automata. We call the lan-
guages accepted by symbolic automata symbolic regular languages. These lan-
guages can be expressed with symbolic regular expressions. A similar symbolic

This work was supported by the Estonian Ministry of Education and Research insti-
tutional research grant IUT33-13.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 428–441, 2018.
https://doi.org/10.1007/978-3-319-73117-9_30

Theoretical Aspects of Symbolic Automata 429

generalization of regular expressions, called extended regular expressions, was
used in [11] where also intersection and negation operators were supported.

We study minterms of symbolic automata, that is, the set of maximal satisfi-
able Boolean combinations of predicates of automata. It was pointed out in [4,5]
that minterms can be used as a finite alphabet when adapting classical automata
algorithms to the symbolic setting. This is because a symbolic automaton has
a finite number of transition predicates, implying that the set of minterms is
finite as well. We show that any symbolic regular language has a minimal set
of minterms, the minterms of its minimal deterministic automaton. This set
of minterms is unique up to predicate equivalence. We show that this set of
canonical minterms can be used in place of a finite alphabet to define symbolic
versions of some known NFAs, such as the symbolic átomaton and canonical
symbolic residual finite state automaton of the language. Also we show that the
minterms of a language have an important role in finding minimal nondetermin-
istic symbolic automata.

We show that Brzozowski’s double-reversal method for minimizing classical
deterministic automata as well as its generalization is applicable for symbolic
automata.

2 Symbolic Regular Languages and Symbolic Finite
Automata

An effective Boolean algebra B has components (Σ,Ψ, [[]],⊥,�,∨,∧,¬), where
Σ is a set of domain elements, Ψ is a set of predicates closed under the Boolean
connectives, and ⊥,� ∈ Ψ . The denotation function [[]] : Ψ → 2Σ is such that
[[⊥]] = ∅, [[�]] = Σ, and for all ϕ,ψ ∈ Ψ , [[ϕ∨ψ]] = [[ϕ]]∪ [[ψ]], [[ϕ∧ψ]] = [[ϕ]]∩ [[ψ]],
and [[¬ϕ]] = Σ \ [[ϕ]]. If [[ϕ]] �= ∅, then ϕ is satisfiable. We require that checking
satisfiability is decidable.

A predicate ϕ is a subpredicate of ψ, if [[ϕ]] ⊆ [[ψ]].
Elements of Σ are characters. A word over Σ is a sequence ai1 · · · aim , where

aij ∈ Σ, j = 1, . . . , m. If m = 0, then we get the empty word, denoted by ε. The
set of all words over Σ is denoted by Σ∗. We require that Σn ∩Σ = ∅ for n ≥ 2.

We define a symbolic regular expression as follows:

– The constants ε and ∅ are symbolic regular expressions, denoting the lan-
guages {ε} and ∅, respectively.

– For any predicate ϕ ∈ Ψ , ϕ is a symbolic regular expression, denoting the
language L(ϕ) = [[ϕ]].

– For any symbolic regular expressions X and Y , the expressions X + Y , XY ,
and X∗ are symbolic regular expressions, denoting respectively the languages
L(X) ∪ L(Y), L(X)L(Y), and (L(X))∗.

Any language defined by a symbolic regular expression is a symbolic regular
language.

A symbolic nondeterministic finite automaton (s-NFA) is a quintuple N =
(B,Q,Δ, I, F), where B = (Σ,Ψ, [[]],⊥,�,∨,∧,¬) is an effective Boolean alge-
bra, called the alphabet, Q is a finite set of states, Δ ⊆ Q × Ψ × Q is a finite set

430 H. Tamm and M. Veanes

of transitions, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. The left language of a state q of N , denoted by LI,q(N), is the set of
words w ∈ Σ∗ such that, either w = ε and q ∈ I, or w = a1 . . . ak and there exist
states q1, . . . , qk ∈ Q such that (qi−1, ϕi, qi) ∈ Δ and ai ∈ [[ϕi]], with q0 ∈ I and
qk = q. The right language, or simply, the language of a state q of N , denoted
by Lq,F (N), or simply, Lq(N), is the set of words w ∈ Σ∗ such that, either
w = ε and q ∈ F , or w = a1 . . . ak and there exist states q1, . . . , qk ∈ Q such that
(qi−1, ϕi, qi) ∈ Δ and ai ∈ [[ϕi]], with q0 = q and qk ∈ F . A state is unreachable
if its left language is empty. A state is empty if its right language is empty. An
s-NFA is trim if it does not have any unreachable or empty states. The language
accepted by N is L(N) =

⋃
q∈I Lq(N). Two s-NFAs are equivalent if they accept

the same language. The reverse of an s-NFA N = (B,Q,Δ, I, F) is the s-NFA
N R = (B,Q,ΔR, F, I), where (q, ϕ, p) ∈ ΔR if and only if (p, ϕ, q) ∈ Δ for
p, q ∈ Q and ϕ ∈ Ψ . An s-NFA N is normalized for predicates if for all p, q ∈ Q
there is at most one predicate ϕ such that (p, ϕ, q) ∈ Δ. Any s-NFA N can be
normalized, resulting in the s-NFA N N , where all distinct transitions (p, ϕ1, q)
and (p, ϕ2, q) from any state p to any state q have been replaced by a single
transition (p, ϕ1 ∨ ϕ2, q). An s-NFA N is complete if for every p ∈ Q and a ∈ Σ,
there is a transition (p, ϕ, q) ∈ Δ with a ∈ [[ϕ]], q ∈ Q. If N1 = (B,Q1,Δ1, I1, F1)
and N2 = (B,Q2,Δ2, I2, F2) are s-NFAs, then a map π from Q1 into Q2 is a
morphism from N1 into N2 if and only if π(I1) ⊆ I2, π(F1) ⊆ F2, and for all
states p, q ∈ Q1 and a ∈ Σ it holds that if (p, ϕ1, q) ∈ Δ1 for some ϕ1 such that
a ∈ [[ϕ1]], then there is some ϕ2 such that (π(p), ϕ2, π(q)) ∈ Δ2 and a ∈ [[ϕ2]].

Sometimes it is useful to allow transitions on the empty word ε in a symbolic
automaton. A symbolic nondeterministic finite automaton with epsilon transi-
tions (s-εNFA) is N = (B,Q,Δ, I, F), where B, Q, I, and F are as in an
s-NFA, and Δ ⊆ Q × (Ψ ∪ {ε}) × Q.

Similarly to regular languages, one can show that symbolic regular languages
are accepted by s-NFAs and vice versa.

We can apply the well-known Thompson’s construction [15,17] to a symbolic
regular expression, to obtain an s-εNFA. We present a slightly modified version
of this construction in the following proposition:

Proposition 1. Every symbolic regular language is accepted by an s-εNFA.

Proof. An s-εNFA can be constructed from any symbolic regular expression,
using structural induction which involves parts described as follows: First, the
s-εNFAs for the constants ε and ∅ are respectively Nε = (B, {q}, ∅, {q}, {q})
and N∅ = (B, ∅, ∅, ∅, ∅), and the s-εNFA for any predicate ϕ ∈ Ψ is Nϕ =
(B, {q1, q2}, {(q1, ϕ, q2)}, {q1}, {q2}).

Now, let NX = (B,QX ,ΔX , IX , FX) be the s-εNFA for the expression X, and
let NY = (B,QY ,ΔY , IY , FY) be the s-εNFA for the expression Y , where the
sets QX and QY are disjoint. The s-εNFAs for the expressions XY , X + Y , and
X∗ are respectively NXY = (B,QX ∪ QY ,ΔX ∪ ΔY ∪ (FX × {ε} × IY), IX , FY),
NX+Y = (B,QX ∪ QY ∪ {q1, q2},ΔX ∪ ΔY ∪ ({q1} × {ε} × (IX ∪ IY)) ∪ ((FX ∪
FY)×{ε}×{q2}), {q1}, {q2}), and NX∗ = (B,QX ∪{q1, q2},ΔX ∪ ({q1}×{ε}×
(IX ∪ {q2})) ∪ (FX × {ε} × (IX ∪ {q2})), {q1}, {q2}), where q1, q2 �∈ QX ∪ QY . ��

Theoretical Aspects of Symbolic Automata 431

Similarly to finite automata accepting regular languages, an s-εNFA can be
converted to an equivalent s-NFA by eliminating epsilon transitions by standard
methods.

An s-NFA N = (B,Q,Δ, I, F) is a symbolic deterministic finite automaton
(s-DFA) if |I| = 1 and if for all transitions (p, ϕ, q), (p′, ϕ′, q′) ∈ Δ it holds
that if p = p′ and ϕ ∧ ϕ′ is satisfiable, then q = q′. An s-NFA N can be
determinized to obtain an equivalent s-DFA N D = (B,QD,ΔD, {s0}, FD), using
a symbolic version [16] of the well-known subset construction procedure. We
present here a slightly modified variant of it which produces a complete and
normalized s-DFA. Similarly to the classical subset construction, this procedure
gradually forms the set QD of states, along with the set ΔD of transitions of
N D, including only reachable states, starting with QD = {I} and ΔD = ∅. For
every s ∈ QD, we do the following steps: first, we form the set Ss of states q
of N such that there is a transition (p, ϕ, q) ∈ Δ from a state p ∈ s to q with
some ϕ ∈ Ψ ; then, for all q ∈ Ss, let ϕs,q =

∨
(p,ϕ,q)∈Δ,p∈s ϕ; for every s′ ⊆ Ss,

let ϕs,s′ = (
∧

q∈s′ ϕs,q) ∧ (
∧

q∈Ss\s′ ¬ϕs,q); if ϕs,s′ is satisfiable, then we add s′

to QD (if s′ �∈ QD) and add the transition (s, ϕs,s′ , s′) to ΔD. Finally, we let
s0 = I and FD = {s ∈ QD | s ∩ F �= ∅}.

We assume for the rest of the paper that s-DFAs are complete. An s-DFA
is minimal if it has the minimal number of states among all equivalent s-DFAs.
We also require that a minimal s-DFA is normalized for predicates. A minimal
s-DFA is unique up to renaming of states and equivalence of predicates [5]. In
the minimal s-DFA, the languages of any two distinct states are different from
each other. It is easy to see that every predicate occurring in any s-DFA with
reachable states only, is a subpredicate of some predicate of the minimal s-DFA
of the same language. This is because the minimal s-DFA can be obtained from
any such s-DFA by merging some states and transitions.

3 Brzozowski’s Theorem for Symbolic Automata

In this section we consider non-empty symbolic regular languages. We show the
symbolic version of a (slightly modified) classical result by Brzozowski [2]:

Theorem 1. If an s-NFA N has no empty states and N R is an s-DFA, then
N D is minimal.

Proof. Let N = (B,Q,Δ, I, F) be an s-NFA with no empty states such that its
reverse s-NFA N R = (B,Q,ΔR, F, I) is an s-DFA. We note that F is a singleton
set. If |Q| = 1, then N and N R are the same automata. The determinized version
N D of N is complete and normalized, and has one or two states. In the former
case N D is clearly minimal. In the latter case, one of the states of N D is the
initial state with a non-empty language, and the other is an empty state, so the
languages of these two states are different, implying that N D is minimal.

We now consider the case where |Q| ≥ 2. Let q, q′ ∈ Q, with q �= q′. We show
that Lq(N) ∩ Lq′(N) = ∅. Indeed, suppose that there is a word w ∈ Σ∗ such

432 H. Tamm and M. Veanes

that w ∈ Lq(N) and w ∈ Lq′(N). If w = ε, then both q and q′ must be final, but
since N has only one final state, we have a contradiction. If w = a1 . . . ak, where
k ≥ 1, then there are some states qi−1, q

′
i−1, qi ∈ Q such that qi−1 �= q′

i−1, and
transitions (qi−1, ϕ, qi), (q′

i−1, ϕ
′, qi) ∈ Δ with ai ∈ [[ϕ]] and ai ∈ [[ϕ′]]. Therefore,

ϕ ∧ ϕ′ is satisfiable, implying that N R is not deterministic, a contradiction.
Now, let s1 and s2 be any two states of N D, where s1 �= s2. We show that

Ls1(N D) �= Ls2(N D). Indeed, because both s1 and s2 are subsets of Q, there
is a state q ∈ Q such that either q ∈ s1 and q �∈ s2, or q ∈ s2 and q �∈ s1.
Since Ls1(N D) =

⋃
q∈s1

Lq(N) and Ls2(N D) =
⋃

q∈s2
Lq(N), and because we

assumed that Lq(N) �= ∅ for any q ∈ Q, and showed above that Lq(N) ∩
Lq′(N) = ∅ for every q, q′ ∈ Q with q �= q′, it holds that Ls1(N D) �= Ls2(N D).
Therefore, N D is minimal. ��

Based on Theorem 1, similarly to its classical version, it is possible to get
a minimization algorithm for s-DFAs which we call Brzozowski’s minimization
or double-reversal minimization algorithm. By this algorithm, the minimal s-
DFA of a language can be obtained from any s-NFA N by first applying the
determinization procedure to the reverse N R of N to obtain an s-DFA N RD of
the reverse language, and then applying determinization to its reverse N RDR to
obtain the s-DFA N RDRD. By Theorem 1, N RDRD is a minimal s-DFA.

4 Minterms of Symbolic Automata

Let L be a symbolic regular language. Let N be an s-NFA of L and let N N

be the s-NFA obtained from N by predicate normalization. Let ϕ1, . . . , ϕk be
the predicates occurring in N N . Any satisfiable predicate (

∧
i∈S ϕi)∧(

∧
i∈S ¬ϕi)

with S ⊆ {1, . . . , k} and S = {1, . . . , k}\S is a minterm of N . Obviously, N and
N N have the same set of minterms. Also, it is easy to see that every predicate of
N N is a disjunction of minterms of N . The minterms of N provide a partition
of Σ.

We show that the minterms of any s-NFA of L are a refinement of the
minterms of the minimal s-DFA of L.

Proposition 2. Any minterm of an s-NFA of L is a subpredicate of some
minterm of the minimal s-DFA of L.

Proof. Let us first consider an s-NFA N that has only reachable states, and its
normalized variant N N . We notice that the determinized versions N D and N ND

of these two automata are the same s-DFAs (up to predicate equivalence). Let
s ⊆ Q be a state of N ND. Let ϕ1, . . . , ϕk be the predicates occurring in N N

as the labels of out-transitions of the states p ∈ s, and let ψ1, . . . , ψ� be the
predicates in N ND which occur as the labels of out-transitions of s. According
to how N ND is constructed from N N , we notice that every ψj is a disjunction
of predicates of the form (

∧
i∈S ϕi) ∧ (

∧
i∈S ¬ϕi), where S ⊆ {1, . . . , k} and S =

{1, . . . , k}\S, therefore any predicate (
∧

i∈S ϕi)∧(
∧

i∈S ¬ϕi) is a subpredicate of
some ψj . Since N ND is deterministic, ψh ∧ψj is not satisfiable if h �= j, and thus

Theoretical Aspects of Symbolic Automata 433

(
∧

i∈S ϕi) ∧ (
∧

i∈S ¬ϕi) is a subpredicate of ψj ∧ (
∧

h∈{1,...,�},h�=j ¬ψh). Because
every minterm of N N is a conjunction of predicates of the form (

∧
i∈S ϕi) ∧

(
∧

i∈S ¬ϕi), and every minterm of N ND is a conjunction of predicates of the
form ψj ∧ (

∧
h∈{1,...,�},h�=j ¬ψh), it is easy to see that every minterm of N N is

a subpredicate of some minterm of N ND. Because the minterms of N and N N

are equal, and the same holds for the minterms of N D and N ND, we get that
every minterm of N is a subpredicate of some minterm of N D.

Furthermore, because every predicate occurring in any s-DFA that has only
reachable states, is a subpredicate of some predicate of the minimal s-DFA (see
the end of Sect. 2), it is implied that any minterm of N D is a subpredicate of some
minterm of the minimal s-DFA of L. Thus, any minterm of N is a subpredicate
of some minterm of the minimal s-DFA of L.

Now, let us consider the case where an s-NFA N has some unreachable states.
It was shown above that any minterm of the reachable part of N is a subpredicate
of a minterm of the minimal s-DFA. It is clear that every minterm of N is a
subpredicate of some minterm of the reachable part of N . We conclude that any
minterm of N is a subpredicate of some minterm of the minimal s-DFA of L. ��
Proposition 3. Let N be an s-NFA and let D be the minimal s-DFA of L. Any
minterm of D is a disjunction of minterms of N .

Proof. The minterms of N partition Σ, and so do the minterms of D. Since by
Proposition 2, any minterm of N is a subpredicate of some minterm of D, we
conclude that any minterm of D is a disjunction of minterms of N . ��

Considering that the minterms of any s-NFA of L are a refinement of the
minterms of the minimal s-DFA of L, we call the latter the (canonical) minterms
of L. Denoting the reverse language of L by LR, we can show the following:

Proposition 4. The minterms of L and LR are the same.

Proof. Let D be the minimal s-DFA of L. By Theorem 1, the minimal s-DFA
of LR can be obtained by reversing D and determinizing the resulting s-NFA
DR to get DRD. The set of transition predicates of DR is the same as the set
of transition predicates of D, because reversing an automaton does not change
predicates. Similarly, we get that the minterms of DR are the minterms of D.
The predicates of DRD are formed by using Boolean operations on predicates of
DR, and the resulting predicates are disjunctions of minterms of DR. Thus, the
minterms of DRD are disjunctions of the minterms of D.

By a similar reasoning as above we can obtain that the minterms of D are
disjunctions of the minterms of DRD. We conclude that the minterms of D and
DRD are the same, that is, the minterms of L and LR are the same. ��

We note that although a symbolic regular language L can be defined over
an infinite alphabet, the set of minterms of any s-NFA of L is finite, because an
s-NFA has a finite number of transitions. It is pointed out in [4,5] that minterms
can be used as an alphabet when adapting classical automata algorithms to the

434 H. Tamm and M. Veanes

symbolic setting. Based on the results above, every symbolic regular language
has a minimal set of minterms which is unique (up to predicate equivalence), with
the reverse language having the same set of minterms. This set of minterms can
be used in place of a finite alphabet to define several kind of symbolic automata
for a given language as will be shown in Sect. 6.

5 Quotients and Atoms of Symbolic Languages

Similarly to the case of regular languages, the left quotient, or simply quotient,
of a symbolic regular language L by a word w ∈ Σ∗ is the language w−1L =
{x ∈ Σ∗ | wx ∈ L}. There is one initial quotient, ε−1L = L. A quotient is final
if it contains ε. Left quotients of L are the languages of the states of the minimal
s-DFA of L.

Atoms of regular languages were introduced in [1] as non-empty intersections
of complemented or uncomplemented quotients of the language. In [10] it was
shown that atoms are the left congruence classes of the language. In the same
way, we can define atoms of symbolic regular languages. For a symbolic regular
language L, the left congruence L≡ of L is defined as follows: for x, y ∈ Σ∗,
xL≡y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L. An atom of L is a left
congruence class of L. Thus, an atom is a set of words which belong exactly to
the same quotients. That is, an atom of a language L with quotients K1, . . . ,Kn

is any non-empty language of the form K̃1 ∩ · · · ∩ K̃n, where K̃i is either Ki or
Ki, and Ki is the complement of Ki with respect to Σ∗. It is easy to see that
every quotient Ki is a union of atoms. An atom is initial if it has L (rather than
L) as a term; it is final if it contains ε. There is exactly one final atom, the atom
K̂1 ∩ · · · ∩ K̂n, where K̂i = Ki if ε ∈ Ki, and K̂i = Ki otherwise.

For any s-NFA N = (B,Q,Δ, I, F) with a state set Q = {q1, . . . , qn} we can
define a language equation for each state qi as

Li =
⋃

(qi,ϕ,qj)∈Δ

[[ϕ]]Lj ∪ Lε
i , i = 1, . . . , n, (1)

where Lε
i = {ε} if qi ∈ F , and Lε

i = ∅ otherwise. This is similar to the way the
language equations were defined for NFAs in [1]. Also similarly to what was done
in [1], we can obtain equations for atoms of L, using the language equations of
the minimal s-DFA of L. Namely, because quotients are the languages of the
states of the minimal s-DFA, and atoms are intersections of complemented or
uncomplemented quotients, we can express atoms by taking intersections of the
right sides of the equations of the minimal s-DFA, or their negations.

We consider the minimal s-DFA D = (B,Q,Δ, I, F) of L, with a state set
Q = {q1, . . . , qn}. Since the language of any state qi of D is some quotient Ki,
the equations

Ki =
⋃

(qi,ϕij
,qj)∈Δ

[[ϕij]]Kj ∪ Kε
i , i = 1, . . . , n, (2)

Theoretical Aspects of Symbolic Automata 435

hold, where Kε
i = {ε} if ε ∈ Ki, and Kε

i = ∅ otherwise. Because any atom Ah can
be presented as an intersection Ah =

⋂
i∈Sh

Ki∩
⋂

i∈Sh
Ki, where Sh ⊆ {1, . . . , n}

and Sh = {1, . . . , n} \ Sh, we can compute the language equation for Ah from
the following expression:

Ah =
⋂

i∈Sh

(
⋃

(qi,ϕij
,qj)∈Δ

[[ϕij]]Kj ∪ Kε
i) ∩

⋂

i∈Sh

(
⋃

(qi,ϕij
,qj)∈Δ

[[ϕij]]Kj ∪ Kε
i). (3)

Since atoms are intersections of complemented or uncomplemented quotients,
we can convert formula (3), similarly to how a logical formula is converted into
its full disjunctive normal form, into the expression

Ah = [[ϕh1]]Ah1 ∪ · · · ∪ [[ϕhk
]]Ahk

∪ Aε
h, (4)

where ϕh1 , . . . , ϕhk
are obtained by applying Boolean operations on the pred-

icates appearing in (3), Ah1 , . . . , Ahk
are some atoms of L, and Aε

h = {ε} if
ε ∈ Ah, and Aε

h = ∅ otherwise. Clearly, ϕh1 , . . . , ϕhk
are disjunctions of minterms

of L. Based on this observation, we can state the following proposition:

Proposition 5. Let ϕ be a minterm of L. If aAj ⊆ Ai holds for some a ∈ [[ϕ]]
and atoms Ai, Aj of L, then [[ϕ]]Aj ⊆ Ai holds.

More generally, we show the following:

Proposition 6. Let ϕ be a minterm of L. If aLj ⊆ Li holds for some a ∈ [[ϕ]]
and unions of atoms Li, Lj of L, then [[ϕ]]Lj ⊆ Li holds.

Proof. Let aLj ⊆ Li hold for some a ∈ [[ϕ]] and languages Li, Lj consisting of
unions of atoms of L. Then for every Ah ⊆ Lj there is an atom Ag ⊆ Li such
that aAh ⊆ Ag. By Proposition 5, for every Ah ⊆ Lj there is an atom Ag ⊆ Li

such that [[ϕ]]Ah ⊆ Ag holds. Therefore, [[ϕ]]Lj ⊆ Li holds. ��
We will make use of Proposition 6 in the next section, where we define several

s-NFAs for a given language.

6 Generating Symbolic Automata

In this section we consider the symbolic version of a method presented in [14]
for generating NFAs from a set of languages. Similarly as in [14], we show that
with this method we can define symbolic versions of some known NFAs. For
the method to be able to work in the symbolic setting, minterms of a symbolic
language prove to be very useful.

Let L be a symbolic regular language. We define a set {L1, . . . , Lk} of lan-
guages to be a cover of L, if every quotient Kj of L is a union of some Li’s. We
say that a cover is atomic if every Li is a union of atoms of L. We note that
since L is the quotient of itself by the empty word ε, L is a union of some Li’s.
We define the s-NFA based on an atomic cover {L1, . . . , Lk} as follows:

436 H. Tamm and M. Veanes

Definition 1. The s-NFA generated by an atomic cover {L1, . . . , Lk} of L is
defined by G = (B,Q,Δ, I, F), where Q = {q1, . . . , qk}, I = {qi | Li ⊆ L},
F = {qi | ε ∈ Li}, and (qi, ϕ, qj) ∈ Δ if and only if [[ϕ]]Lj ⊆ Li for qi, qj ∈ Q
and a minterm ϕ of L.

Next, we present some properties of an s-NFA G = (B,Q,Δ, I, F) generated
by an atomic cover {L1, . . . , Lk} of L. These results, originally presented for
NFAs and general covers in [14], also fit into the symbolic setting. Proofs can be
found in [14]; in the symbolic version, only minor adjustments are needed.

Proposition 7. The following properties hold for s-NFA G:

1. Lqi(G) ⊆ Li for every qi ∈ Q.
2. L(G) ⊆ L.

We note that because of Proposition 6, it holds for every pair Li, Lj of Def-
inition 1 that whenever the inclusion Lj ⊆ a−1Li holds for some a ∈ Σ, there
is a transition (qi, ϕ, qj) of G such that a ∈ [[ϕ]]. This property ensures that the
following proposition holds:

Proposition 8. The equality Lqi(G) = Li holds for every qi ∈ Q if and only if
a−1Li is a union of Lj’s for every Li and a ∈ Σ.

Next property easily follows from Proposition 8:

Proposition 9. If a−1Li is a union of Lj’s for every Li and a ∈ Σ, then G
accepts L.

A simple example of an atomic cover is the set A = {A1, . . . , Am} of atoms
of L, where Am is the final atom. We can define a symbolic version of the NFA
called the átomaton [1], as follows:

Definition 2. The symbolic átomaton of L is the s-NFA A=(B,Q,Δ, I, {qm}),
where Q = {q1, . . . , qm}, I = {qi | Ai ⊆ L}, and (qi, ϕ, qj) ∈ Δ if and only if
[[ϕ]]Aj ⊆ Ai for Ai, Aj ∈ A and a minterm ϕ of L.

It is known that for every atom Ai and a ∈ Σ, a−1Ai is a union of atoms [1].
Thus, by Proposition 8 it holds that Lqi(A) = Ai for every qi ∈ Q, and it follows
from Proposition 9 that L(A) = L. Also similarly to the classical case in [1], one
can see that the predicate-normalized version of AR is a minimal s-DFA of the
reverse language LR.

As another example of an atomic cover, consider the set K ′ = {K ′
1, . . . ,K

′
k}

of prime quotients of L, that is, those non-empty quotients of L which are not
unions of other quotients. Based on this cover, we define an s-NFA as follows:

Definition 3. The canonical symbolic residual finite state automaton (canon-
ical s-RFSA) of L is the s-NFA R = (B,Q,Δ, I, F), where Q = {q1, . . . , qk},
I = {qi | K ′

i ⊆ L}, and (qi, ϕ, qj) ∈ Δ if and only if [[ϕ]]K ′
j ⊆ K ′

i for K ′
i,K

′
j ∈ K ′

and a minterm ϕ of L.

Theoretical Aspects of Symbolic Automata 437

Since every quotient of L is a union of some prime quotients of L, for every
prime quotient K ′

i and a ∈ Σ, a−1K ′
i is a union of prime quotients. In the same

way as in the example above, one can see that the right language of a state qi ∈ Q
is some prime quotient K ′

i, and that L(R) = L. The classical NFA version of
R is known as the canonical residual finite state automaton [7] of a language.
Residual finite state automata (RFSAs) are NFAs where the languages of its
states are some residuals, that is, quotients of the language. Some properties of
RFSAs in the learning context have been studied in [8]. It would be interesting
to study symbolic versions of these automata as well.

6.1 Generating Minimal s-NFAs

We show that atomic covers and minterms of the language can be used to find
minimal s-NFAs. Our approach here is similar to the way of finding minimal
NFAs in [14].

Let N = (B,Q,Δ, I, F) be a trim s-NFA accepting a symbolic regular lan-
guage L, with Q = {q1, . . . , qk}. For every state qi of N , we define a language
Ci =

⋂
Lqi

(N)⊆Kh
Kh as the intersection of all quotients of L which contain the

right language of qi as a subset. Clearly, the inclusion Lqi(N) ⊆ Ci holds. Since
every quotient is a union of atoms, Ci is also a union of atoms. Because the set
of right languages of the states of N obviously forms a cover for L, the set of
Ci’s has the same property. We note that there may be some states qi and qj of
N , such that qi �= qj , but Ci = Cj . Let the set of distinct Ci’s be C.

Let GC = (B,QC ,ΔC , IC , FC) be the s-NFA generated by the cover C for
the language L. We note that |QC | ≤ |Q|. Let π : Q → QC be the mapping
assigning to state qi of N , the state qCi

of GC , corresponding to Ci.

Proposition 10. The mapping π is a morphism from N into GC .

Proof. First, if qi ∈ I, then Lqi(N) ⊆ K1, where K1 = L. Since the inclusion
Ci ⊆ K1 holds, qCi

is initial, that is, π(qi) ∈ IC .
Similarly, if qi ∈ F , then ε ∈ Lqi(N), implying that ε ∈ Ci, and thus qCi

∈
FC , that is, π(qi) ∈ FC .

We also show that for all states qi, qj ∈ Q and a ∈ Σ, if (qi, ϕ, qj) ∈ Δ for
some ϕ such that a ∈ [[ϕ]], then there is some ϕ′ such that (π(qi), ϕ′, π(qj)) ∈ ΔC

and a ∈ [[ϕ′]]. Let (qi, ϕ, qj) ∈ Δ such that a ∈ [[ϕ]] for some qi, qj ∈ Q and a ∈ Σ.
Then it holds that Lqj (N) ⊆ a−1Lqi(N) ⊆ a−1Ci = a−1

⋂
Lqi

(N)⊆Kh
Kh =

⋂
Lqi

(N)⊆Kh
a−1Kh. Therefore, Lqj (N) is a subset of some quotients a−1Kh

such that Lqi(N) ⊆ Kh, implying that Cj ⊆ ⋂
Lqi

(N)⊆Kh
a−1Kh, that is,

Cj ⊆ a−1Ci. Thus, aCj ⊆ Ci, and by Proposition 6, [[ϕ′]]Cj ⊆ Ci, where ϕ′

is a minterm of L such that a ∈ [[ϕ′]]. It is implied that (qCi
, ϕ′, qCj

) ∈ ΔC , that
is, (π(qi), ϕ′, π(qj)) ∈ ΔC .

We conclude that π is a morphism from N into GC . ��
Corollary 1. For every state qi of N , the inclusion Lqi(N) ⊆ LqCi

(GC) holds.
Also, L(GC) = L.

438 H. Tamm and M. Veanes

Proof. The morphism π : Q → QC implies that for every qi ∈ Q, the inclusion
Lqi(N) ⊆ LqCi

(GC) holds, and also that L(N) ⊆ L(GC) holds.
Since L(N) = L, and by Proposition 7, L(GC) ⊆ L, we conclude that

L(GC) = L. ��
Now, let Li be a union of some atoms of L. We define the maximized version

of Li to be the language max(Li) =
⋂

Li⊆Kh
Kh, that is, the intersection of all

quotients which contain Li as a subset. Since any quotient is a disjoint union of
atoms, max(Li) is a union of atoms.

Based on the results above, we can obtain a minimal s-NFA of L as follows: we
find an atomic cover {L1, . . . , Lk} of L, consisting of the minimal number of lan-
guages Li, then maximize Li’s to get the atomic cover {max(L1), . . . , max(Lk)},
and generate an s-NFA G using this maximized cover. If G accepts L, then G is
a minimal s-NFA of L, otherwise it is not, and we try other covers in the order
of increasing size until we generate an s-NFA which accepts L. The first such
generated s-NFA is a minimal s-NFA for L. We note that a minimal cover and
a minimal s-NFA are not necessarily unique.

7 Generalization of Brzozowski’s Theorem

In this section we present a generalization of Theorem1, which is similar to
its classical version in [1]. Namely, we characterize the class of s-NFAs for which
determinization produces a minimal s-DFA. The approach we take here is similar
to what was used in [13] to prove an analogous result about obtaining a canonical
RFSA.

First, we show the following proposition:

Proposition 11. Given an s-NFA N = (B,Q,Δ, I, F), the left language of a
state s of N D is L{I},s(N D) =

⋂
q∈s LI,q(N) ∩ ⋂

q �∈s LI,q(N).

Proof. Let N = (B,Q,Δ, I, F) be an s-NFA. Let s be a state of N D and let
w ∈ L{I},s(N D) be a word in the left language of s. We prove the proposition
by induction on the length of w. If w = ε, then s = I is the initial state of N D.
Also, since ε ∈ LI,q(N) for every q ∈ I, and ε �∈ LI,q(N) for every q �∈ I, it is
clear that ε ∈ L{I},s(N D) if and only if ε ∈ ⋂

q∈s LI,q(N) ∩ ⋂
q �∈s LI,q(N).

Now, let w = ua with u ∈ Σ∗ and a ∈ Σ. Let us assume that u ∈ L{I},s′(N D)
holds for a state s′ of N D if and only if u ∈ ⋂

q∈s′ LI,q(N) ∩ ⋂
q �∈s′ LI,q(N). If

w ∈ L{I},s(N D), then there is a state s′ of N D, such that u ∈ L{I},s′(N D)
and there is a transition (s′, ϕs′,s, s) in N D with a ∈ [[ϕs′,s]]. According to
how N D is constructed, ϕs′,s = (

∧
q∈s ϕs′,q) ∧ (

∧
q∈Ss′\s ¬ϕs′,q), where ϕs′,q =

∨
(p,ϕ,q)∈Δ,p∈s′ ϕ and Ss′ is the set of states q of N such that there is a transi-

tion from some state p ∈ s′ to q. Since by the induction assumption u ∈ LI,q(N)
holds for q ∈ s′ and u �∈ LI,q(N) holds for q �∈ s′, it is clear that ua ∈ LI,q(N)
holds for q ∈ s and ua �∈ LI,q(N) holds for q �∈ s. This is equivalent to that
ua ∈ ⋂

q∈s LI,q(N) ∩ ⋂
q �∈s LI,q(N). ��

Theoretical Aspects of Symbolic Automata 439

Now, let us consider the minimal s-DFA D = (B,S, Γ, {s1}, Sf) of a symbolic
regular language L, with a state set S = {s1, . . . , sn}. Let Li = L{s1},si

(D) be
the left language of a state si, for i = 1, . . . , n. It is easy to see that Li ∩ Lj = ∅
if si �= sj . Also, it is clear that for any s-DFA D′ of L, there is a one-to-many
correspondence between the Li’s and the states of D′, such that every Li is the
union of the left languages of the corresponding states of D′. We note that only
if D′ is minimal, this correspondence is one-to-one.

The following proposition holds:

Proposition 12. For an s-NFA N , N D is minimal if and only if every left
language of N is a union of Li’s.

Proof. Let N = (B,Q,Δ, I, F) be an s-NFA such that its determinized version
N D is a minimal s-DFA. Then for any state si of N D, the left language of si

is Li. Suppose that there is a state qj of N such that its left language is not a
union of Li’s. That is, for some word u ∈ Lh, u ∈ LI,qj (N), but Lh �⊆ LI,qj (N).
Let su be a state of N D such that u ∈ L{I},su

(N D). Since N D is minimal, we
know that L{I},su

(N D) = Lh. By Proposition 11, we also know that qj ∈ su

and L{I},su
(N D) ⊆ LI,qj (N). Therefore the inclusion Lh ⊆ LI,qj (N) holds, a

contradiction.
Conversely, let all the left languages of N be unions of Li’s. Since by Proposi-

tion 11 any left language of N D is a Boolean combination of some left languages
of N , and because it is obvious that any left language of N D is a subset of some
Li, we conclude that the left languages of N D are exactly Li’s. Thus, N D is
minimal. ��

Similarly as in [1], we say that an s-NFA N = (B,Q,Δ, I, F) is atomic if for
every q ∈ Q, Lq(N) is a union of atoms of L(N).

Now we can state the following theorem:

Theorem 2. For any s-NFA N , N D is minimal if and only if N R is atomic.

Proof. By properties of the symbolic átomaton (see Sect. 6), atoms of a language
are equal to the reversed left languages of the states of a minimal s-DFA of the
reverse language. Therefore, N R is atomic if and only if every left language of
N is a union of Li’s. We conclude by Proposition 12 that N D is minimal if and
only if N R is atomic. ��

8 Related and Future Work

The work in [12] discusses the use of symbolic regular expressions over large
but finite alphabets in the context of using regular expression derivatives [3] for
matching. The paper does not use minterms to create predicates but a regu-
lar expression derivative induced equivalence relation over characters to create
predicates. The paper states that in general it is not possible to compute such
predicates without doing work that depends linearly on the size of the alphabet.
This is clearly not possible if the alphabet is infinite. An interesting future work

440 H. Tamm and M. Veanes

would be to extend the derivative based approach to symbolic regular expressions
over arbitrary symbolic alphabets.

References

1. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27
(2014)

2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for
definite events. In: Proceedings of the Symposium on Mathematical Theory of
Automata, MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Poly-
technic Institute of Brooklyn, NY (1963)

3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
4. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.

In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 3

5. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 541–554 (2014)

6. D’Antoni, L., Veanes, M.: Forward bisimulations for nondeterministic symbolic
finite automata. In: Tools and Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS 2017, ETAPS 2017, Proceedings,
Part I, Uppsala, Sweden, 22–29 April 2017, pp. 518–534 (2017)

7. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fund. Informat-
icae 51, 339–368 (2002)

8. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theor.
Comput. Sci. 313(2), 267–294 (2004)

9. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 10

10. Iván, S.: Complexity of atoms, combinatorially. Inf. Process. Lett. 116, 356–360
(2016)

11. Keil, M., Thiemann, P.: Symbolic solving of extended regular expression inequali-
ties. In: 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, 15–17 December 2014, New Delhi,
India, pp. 175–186 (2014)

12. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Programm. 19(2), 173–190 (2009)

13. Tamm, H.: Generalization of the double-reversal method of finding a canonical
residual finite state automaton. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015.
LNCS, vol. 9118, pp. 268–279. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19225-3 23

14. Tamm, H.: New interpretation and generalization of the Kameda-Weiner method.
In: 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 55,
Dagstuhl, Germany, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, pp. 116:1–
116:12 (2016)

15. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–
422 (1968)

https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-319-19225-3_23
https://doi.org/10.1007/978-3-319-19225-3_23

Theoretical Aspects of Symbolic Automata 441

16. Veanes, M., de Halleux, P., Tillmann, N.: Rex: symbolic regular expression explorer.
In: Third International Conference on Software Testing, Verification and Valida-
tion, ICST 2010, pp. 498–507. IEEE Computer Society (2010)

17. Watson, B.W.: A taxonomy of finite automata construction algorithms. Computing
science report 93/43. Eindhoven University of Technology (1995)

18. Watson, B.W.: Implementing and using finite automata toolkits. In: Extended
finite state models of language, pp. 19–36. Cambridge University Press (1999)

Complete Algorithms for Algebraic Strongest
Postconditions and Weakest Preconditions

in Polynomial ODE’S

Michele Boreale(B)

Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) “G. Parenti”,
Università di Firenze, Viale Morgagni 65, I-50134 Firenze, Italy

michele.boreale@unifi.it

Abstract. A system of polynomial ordinary differential equations
(ode’s) is specified via a vector of multivariate polynomials, or vector
field, F . A safety assertion ψ −→ [F] φ means that the system’s trajec-
tory will lie in a subset φ (the postcondition) of the state-space, whenever
the initial state belongs to a subset ψ (the precondition). We consider the
case when φ and ψ are algebraic varieties, that is, zero sets of polynomi-
als. In particular, polynomials specifying the postcondition can be seen as
conservation laws implied by ψ. Checking the validity of algebraic safety
assertions is a fundamental problem in, for instance, hybrid systems. We
consider generalized versions of this problem, and offer algorithms to:
(1) given a user specified polynomial set P and a precondition ψ, find
the smallest algebraic postcondition φ including the variety determined
by the valid conservation laws in P (relativized strongest postcondition);
(2) given a user specified postcondition φ, find the largest algebraic pre-
condition ψ (weakest precondition). The first algorithm can also be used
to find the weakest algebraic invariant of the system implying all con-
servation laws in P valid under ψ. The effectiveness of these algorithms
is demonstrated on a challenging case study from the literature.

Keywords: Ordinary differential equations · Postconditions
Preconditions · Invariants · Gröbner bases

1 Introduction

In recent years, there has been a renewed interest in computational models based
on ordinary differential equations (ode’s), in such diverse fields as System Biol-
ogy [2] and stochastic systems [23]. In particular, starting from [17], the field of
hybrid systems has witnessed the emergence of a novel class of formal methods
based on concepts from Algebraic Geometry – see e.g. [9,18,22] and references
therein.

A system of ode’s can be seen as specifying the evolution over time, or tra-
jectory, of certain variables of interest x1, ..., xN , describing for instance physical
quantities (see Sect. 2). A fundamental problem in many fields is being able to
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 442–455, 2018.
https://doi.org/10.1007/978-3-319-73117-9_31

Complete Algorithms for Algebraic Strongest Postconditions 443

prove or to disprove assertions of the following type. For each initial state in a
given ψ ⊆ R

N (the precondition), the resulting system’s trajectory will lie in a
given set φ ⊆ R

N (the postcondition). This is a safety assertion that, using a
notation akin to Platzer’s Dynamic Logic, we can write as ψ −→ [F]φ, where
F is the vector field specifying the system. Evidently, safety assertions can be
considered as a continuous counterpart of Hoare’s triples in imperative programs
– see [14].

Here we are interested in the case where both ψ and φ are algebraic varieties,
that is they are specified as zeros of (multivariate) polynomial sets, and the drifts
fi in F = (f1, ..., fN) are polynomials themselves (Sect. 3). Although (sets of)
trajectories can rarely be represented exactly as algebraic varieties, these provide
overapproximations that may be useful in practice. In a valid safety assertion, the
polynomials specifying the postcondition φ can be seen as system’s conservation
laws (e.g. energy or mass conservation) that are valid under the precondition ψ.
Driven by the analogy with Hoare’s triples, we find it natural to generalize the
problem of checking the assertion ψ −→ [F]φ in two distinct ways. (1) Strongest
postcondition: given a precondition ψ, find the smallest φ such that the assertion
is valid; (2) weakest precondition: given a postcondition φ, find the largest ψ such
that the assertion is valid. Problem (1) amounts to characterizing Iψ, the set of
all polynomials invariants (conservation laws) valid under ψ. This turns out
to be awkward and motivates the introduction of a relativized version of this
problem: for a user specified polynomial set P , compute P ∩ Iψ. Depending on
P , this can be a lot easier than computing the whole Iψ.

We offer complete algorithms that solve the relativized strongest postcondi-
tion (Sect. 4) and the weakest precondition (Sect. 5) problems. More precisely,
the former problem is considered in the case where the set P is specified via a
polynomial template. This way, for example, one can find at once all polynomial
conservation laws of the system up to a given degree. As a byproduct of the first
algorithm, we also get the weakest algebraic invariant that implies all laws in
P ∩ Iψ. Both algorithms are based on building ascending chains of polynomial
ideals: these represent, basically, more and more refined overapproximations of
the (relativized) strongest postcondition and weakest precondition, respectively.
Correctness and termination rely on a few concepts from Algebraic Geometry,
notably Gröbner bases [8] (Sect. 2). We demonstrate the effectiveness of these
algorithms reporting the outcomes we have obtained on a nontrivial system
taken from the literature, using a preliminary implementation of our algorithms
(Sect. 6). We compare our results with those obtained by other authors.

The present paper builds on and generalizes our previous work on initial
value problems [6]. Recent contributions dealing with invariant generation for
polynomial ode’s, in the context of hybrid systems, are reviewed and discussed
in the concluding section (Sect. 7). Due to space limitations, all proofs and most
examples have been omitted in the present version; they can be found in the full
version [7].

444 M. Boreale

2 Preliminaries

We review a few preliminary notions about ode’s, polynomials and Algebraic
Geometry.

Polynomial ode’s. Let us fix an integer N ≥ 1 and a set of N distinct variables
x1, ..., xN . We will denote by x the vector (x1, ..., xN). We let R[x] denote the
set of multivariate polynomials in the variables x1, ..., xN with coefficients in R,
and let p, q range over it. Here we regard polynomials as syntactic objects. Given
an integer d ≥ 0, by Rd[x] we denote the set of polynomials of degree ≤ d. As
an example, p = 2xy2 + (1/5)wz + yz + 1 is a polynomial of degree deg(p) = 3,
that is p ∈ R3[x, y, z, w], with monomials xy2, wz, yz and 1. Depending on the
context, with a slight abuse of notation it may be convenient to let a polynomial
denote the induced function R

N → R, defined as expected. In particular, xi can
be seen as denoting the projection on the i-th coordinate.

A (polynomial) vector field is a vector of N polynomials, F = (f1, ..., fN),
seen as a function F : R

N → R
N . Throughout the paper, all definitions and

statements refer to an arbitrarily fixed polynomial vector field F over a N -
vector x. The vector field F and an initial condition x0 ∈ R

N together define an
initial value problem Φ = (F,x0), often written in the following form

Φ :
{

ẋ(t) = F (x(t))
x(0) = x0.

(1)

The functions fi in F are called drifts in this context. A solution to this problem
is a differentiable function x(t) : D → R

N , for some nonempty open interval D ⊆
R containing 0, which fulfills the above two equations, that is: d

dtx(t) = F (x(t))
for each t ∈ D and x(0) = x0. By the Picard-Lindelöf theorem [1], there exists
a nonempty open interval D containing 0, over which there is a unique solution,
say x(t) = (x1(t), ..., xN (t)), to the problem. In our case, as F is infinitely often
differentiable, the solution is seen to be analytic in D: each xi(t) admits a Taylor
series expansion in a neighborhood of 0. For definiteness, we will take the domain
of definition D of x(t) to be the largest symmetric open interval where the Taylor
expansion from 0 of each of the xi(t) converges (possibly D = R). The resulting
vector function of t, denoted x(t), is called the time trajectory of the system.
Note that both the time trajectory and its domain of definition do depend in
general on the initial x0. We shall write them as x(t;x0) and Dx0 , respectively,
whenever we want to make this dependence explicit in the notation.

For any polynomial p ∈ R[x], the function p(x(t)) : D → R, obtained by
composing p as a function with the time trajectory x(t), is analytic: we let p(t)
denote the extension of this function over the largest symmetric open interval of
convergence (possibly coinciding with R) of its Taylor expansion from 0. We will
call p(t) the polynomial behaviour induced by p and by the initial value problem
(1). Again, fixing N,x and F once and for all, we shall write p(t;x0) when we
want to emphasize the dependence of this function from the initial value x0.

Complete Algorithms for Algebraic Strongest Postconditions 445

Lie derivatives. Given a differentiable function g : E → R, for some open set
E ⊆ R

N , the Lie derivative of g along F is the function E → R defined as:
LF (g)

�
= 〈∇g, F 〉 =

∑N
i=1(

∂g
∂xi

· fi). The Lie derivative of the sum h + g and
product h · g functions obey the familiar rules

LF (h + g) = LF (h) + LF (g) (2)
LF (h · g) = h · LF (g) + LF (h) · g. (3)

Note that LF (xi) = fi. Moreover if p ∈ Rd[x] then LF (p) ∈ Rd+d′ [x], for
some integer d′ ≥ 0 that depends on d and on F . This allows us to view the
Lie derivative of polynomials along a polynomial field F as a purely syntactic
mechanism, that is as a function LF : R[x] → R[x] that does not assume anything
about the solution of (1). Informally, we can view p as a program, and taking
Lie derivative of p can be interpreted as unfolding the definitions of the variables
xi’s, according to the equations in (1) and to the formal rules for product and

sum derivation, (2) and (3). More generally, we can define inductively L(0)
F (p)

�
= p

and L(j+1)
F (p)

�
= LF (Lj

F (p)).

Example 1. The following system, borrowed from [10], will be used as a running
example. Consider N = 2, x = (x, y) and the vector field F = (y2, xy). Let
p = x − y. Examples of Lie derivatives are LF (p) = y2 − xy and L(2)

F (p) =
2xy2 − x2y − y3.

The connection between Lie derivatives of p along F and the initial value
problem (1) is given by the following equations, which can be readily checked.
Here and in the sequel, we let p(x0) denote the real number obtained by evaluat-
ing p at x0: p(t;x0)|t=0 = p(x0) and and d

dtp(t;x0) = (LF (p))(t;x0). More gen-
erally, we have the following equation for the j-th derivative of p(t) (j = 0, 1, ...):
dj

dtj p(t;x0) = (L(j)
F (p))(t;x0). In the sequel, we shall often abbreviate the syntac-

tic Lie derivative L(j)
F (p) as p(j), and shall omit the subscript F from LF when

clear from the context.

Algebraic Geometry preliminaries. We quickly review a few notions from Alge-
braic Geometry that will be used throughout the paper. A comprehensive treat-
ment of these concepts can be found for instance in Cox et al.’s excellent textbook
[8]. A set of polynomials I ⊆ R[x] is an ideal if: (1) 0 ∈ I and (2) p1, ..., pm ∈ I
and h1, ..., hm ∈ R[x] implies

∑m
i=1 hipi ∈ I. The ideal generated by a set

P ⊆ R[x] is
〈
P

〉 �
= {∑m

i=1 hipi : m ≥ 0 and hi ∈ R[x], pi ∈ P for i = 1, ...,m}.
This is the smallest ideal containing P and as a consequence

〈〈
P

〉〉
=

〈
P

〉
.

Given an ideal I, a set P such that I =
〈
P

〉
is said to be basis for I. Hilbert’s

basis theorem implies that: (a) any ideal I ⊆ R[x] has a finite basis; (b) any
infinite ascending chain of ideals I0 ⊆ I1 ⊆ · · · stabilizes in a finite number of
steps (ascending chain condition). Once a monomial order (e.g. lexicographic)
is fixed, a multivariate version of polynomial division naturally arises – see [8]
for the precise definition. A Gröbner basis of I (w.r.t. a fixed monomial order)

446 M. Boreale

is a finite basis G of I such that for any polynomial p ∈ R[x] the remainder
of the division of p by G, r = p mod G, enjoys following property: p ∈ I iff
r = 0. As a consequence, given a Gröbner basis G of I, the ideal membership
problem p ∈ I can be decided1. Ideal inclusion I ⊆ J can be decided similarly.
There are algorithms (e.g. Buchberger’s) that, given a finite P and a monomial
order, compute a Gröbner basis G such that

〈
G

〉
=

〈
P

〉
. This computation is

potentially expensive.
The geometric counterpart of polynomial sets are algebraic varieties. Given

a set of polynomials P ⊆ R[x], the set of points in R
N annihilating all of them,

V(P)
�
= {x ∈ R

N : p(x) = 0 for each p ∈ P}, is the algebraic variety represented
by P . Ideals and algebraic varieties are connected as follows. For any set A ⊆ R

N ,
the set of polynomials that vanish on A, I(A)

�
= {p : p(x) = 0 for each x ∈ A}, is

the ideal induced by A. Note that both V and I are inclusion reversing: P ⊆ Q
implies V(P) ⊇ V(Q), and A ⊆ B implies I(A) ⊇ I(B). For A an algebraic
variety and J an ideal, it is easy to see that V(I(A)) = A and that I(V(J)) ⊇ J .
We will have in general more than one ideal representing A.

3 Algebraic Safety Assertions and Invariants

We will be interested in safety assertions of the following type, where ψ, φ ⊆ R
N

are user specified algebraic varieties, which we call the pre and postcondition,
respectively. Each of them is specified by a set of polynomials.

Whenever x0 ∈ ψ then for each t ∈ Dx0 ,x(t;x0) ∈ φ. (4)

The above assertion means that every trajectory starting in the precondition ψ
will stay in the postcondition φ; hence necessarily ψ ⊆ φ for the assertion to hold.
Using a notation akin to Platzer’s Dynamic Logic’s [14], the safety assertion (4)
will be abbreviated as

ψ −→ [F] φ. (5)

A common technique for proving (5) is finding an algebraic variety χ such that
ψ ⊆ χ ⊆ φ and χ is an algebraic invariant for the vector field F , that is it satisfies
χ −→ [F] χ. The invariance condition means that all trajectories starting in χ
must remain in χ.

Let us now introduce two distinct generalizations of the problem of checking
the safety assertion (5). These are the problems we will actually try to solve.
In what follows, “finding”an algebraic variety means building a finite set of
polynomials representing it. Also note that, in the present context, “smallest”
means “strongest”, and “largest” means “weakest”.

Problem 1 (strongest postcondition). Given an algebraic variety ψ, find φψ, the
smallest algebraic variety φ such that (5) is true.

1 Provided the involved coefficients can be finitely represented, e.g. are rational.

Complete Algorithms for Algebraic Strongest Postconditions 447

Note that φψ always exists and is the intersection of all the varieties φ such
that ψ −→ [F]φ. Finding φψ amounts to building (a basis of) an appropriate

ideal I such that V(I) = φψ. One such ideal is Iψ
�
= I(φψ). Unfortunately,

computing Iψ, or any other polynomial representation of ψ, appears to be com-
putationally awkward. This motivates the introduction of a relativized version
of the previous problem. In this version, a user specified set of polynomials P is
used to tune the strength, hence precision, of the postcondition.

Problem 2 (strongest postcondition, relativized). Given a polynomial set P ⊆
R[x] and an algebraic variety ψ, find a finite representation of P ∩ Iψ.

Of course, we have that V(P ∩ Iψ) ⊇ V(Iψ) = φψ, which implies that
ψ −→ [F]V(P ∩ Iψ). In other words, P ∩ Iψ represents an overapproximation
of the strongest postcondition. There is another meaningful way of generalizing
the problem of checking (5).

Problem 3 (weakest precondition). Given an algebraic variety φ, find ψφ, the
largest algebraic variety ψ such that (5) is true.

Let us now comment briefly on the relationships between the above intro-
duced problems. It is not difficult to see that Problems 1 and 3 are both more
general than the problem of checking (5) for given ψ and φ, based on the fact
that one knows how to check inclusion between two varieties (see Sect. 2). The
relativized Problem 2 too is more general than checking (5). Indeed, wanting to
check the assertion ψ −→ [F] φ, for given ψ and given φ = V(Q), it is sufficient
to let P = Q in Problem 2 and then check if P is included in the computed
P ∩ Iψ, that is if P ⊆ Iψ.

Example 2. Let us reconsider the vector field F of Example 1. The variety ψ =
V({p}) = V({x−y}) is the line x = y. Consider φ = V({q}) where q = x2 −xy.
Let P the set of all polynomials of degree ≤ 2. We can consider the following
problems. (a) Decide whether ψ −→ [F]φ; (b) find a finite representation of
P ∩ Iψ, that is all the conservation laws of degree at ≤2 that are satisfied, for
each initial state in the line x = y (relativized strongest postcondition); (c) find
a finite representation of the largest algebraic variety ψφ such that ψφ −→ [F]φ
(weakest precondition). Note that solving (b) also yields a solution of (a).

In the following sections, we will provide complete algorithms for solving
Problems 2 and 3. Concerning Problem 2, we shall give a method that works
reasonably well for the case when the polynomial set P is specified by a poly-
nomial template. Moreover, as a byproduct of this method, we will also get the
weakest algebraic invariant included in V(P ∩ Iψ). The solution will also give us
a handle on the more general and difficult Problem 1.

4 Strongest Postconditions

Our goal is to give a method to effectively compute P ∩ Iψ, for user specified
variety ψ and polynomials set P . Following a well-established tradition in the

448 M. Boreale

field of hybrid systems, we shall consider the case when the user specifies P via
a polynomial template, which we review in the next paragraph. Throughout the
section, whenever we consider a Gröbner basis over the polynomial ring R[a,x],
we shall assume a lexicographic monomial ordering2 such that ai > xj for each
i, j. This way, whenever G is a Gröbner basis of an ideal I ⊆ R[a,x], then G∩R[x]
is a Gröbner basis of the ideal I ∩ R[x] (see [8, Chap. 3, Sect. 1, Theorem 2]). In
particular, for any finite set G ⊆ R[x], we have that G is a Gröbner basis in
R[a,x] if and only if it is in R[x].

Templates. Fix a tuple of n ≥ 1 of distinct parameters, say a = (a1, ..., an),
disjoint from x. Let Lin(a), ranged over by �, be the set of linear expressions
with coefficients in R and variables in a; e.g. � = 5a1 + 42a2 − 3a3 is one such
expression3. A template [17] is a polynomial π in Lin(a)[x], that is, a polynomial
with linear expressions as coefficients. For example, the following is a template:
π = (5a1 +(3/4)a3)xy2 +(7a1 +(1/5)a2)xz +(a2 +42a3). Note that Lin(a)[x] ⊆
R[a,x], so, whenever convenient, we can consider a template as a polynomial in
this larger ring. A parameters valuation is a vector v = (r1, ..., rn) ∈ R

n. Given
v, we will let �[v] ∈ R denote the result of replacing each parameter ai with
ri, and evaluating the resulting expression; we will let π[v] ∈ R[x] denote the
polynomial obtained by replacing each � with �[v] in π. Given a set S ⊆ R

n, we
let π[S] denote the set {π[v] : v ∈ S} ⊆ R[x]. The (formal) Lie derivative of π is
defined as expected, once linear expressions are treated as constants; note that
L(π) is still a template. It is easy to see that the following property is true: for
each π and v, one has L(π[v]) = L(π)[v]. This property extends as expected to
the j-th Lie derivative (j ≥ 0): L(j)(π[v]) = L(j)(π)[v].

The Post algorithm. Given user specified algebraic variety ψ (the precondition)
and polynomial template π specifying P = π[Rn], our objective is to compute
P ∩ Iψ. Let us call p ∈ R[x] a polynomial invariant for F and x0 if the function
p(t;x0) is identically 0. A polynomial invariant expresses a law which is satisfied
by the solution of the initial value problem (F,x0), that is a conservation law.
We will rely on the following two lemmas. The first one is just a reformulation
of the definition of Iψ = I(φψ). For the (easy) proof of the second, see e.g. [6].

Lemma 1. Iψ = {p : p is a polynomial invariant for each x0 ∈ ψ}.
Lemma 2. Let p ∈ R[x]. Then p is a polynomial invariant for the initial value
x0 if and only if for each j ≥ 0, p(j)(x0) = 0.

The above two lemmas suggest the following strategy to compute the set
π[Rn] ∩ Iψ. We should identify those parameters valuations v ∈ R

n, such that
π[v] is a polynomial invariant for each x0 ∈ ψ (Lemma 1). That is, those v’s
such that for each j ≥ 0 and for each x0 ∈ ψ, π(j)[v](x0) = 0 (Lemma 2). Or,

2 Any elimination ordering [8] for the parameters ai could as well be considered.
3 Note that linear expressions with a constant term, such as 2 + 5a1 + 42a2 − 3a3 are

not allowed.

Complete Algorithms for Algebraic Strongest Postconditions 449

equivalently, π(j)[v] ∈ I(ψ) for each j ≥ 0. For each j ≥ 0, the last condition
imposes certain constraints on v, that is on the parameters of the template π(j).
In order to make these constraints explicit, we shall rely on the following key
lemma.

Lemma 3. Let G ⊆ R[x] be a Gröbner basis. Let π be a polynomial template and
r = π mod G. Then r is linear in a. Moreover, for each v ∈ R

n, π[v] mod G =
r[v].

Fix a Gröbner basis G of I(ψ). By the above lemma, for a fixed j, π(j)[v] ∈
I(ψ) exactly when rj [v] = 0, where rj = π(j) mod G. By seeing rj as a polynomial
in Lin(a)[x], the condition on v

rj [v] = 0 (6)

can be represented as a set of linear constraints on the parameters a: indeed, a
polynomial is zero exactly when all of its coefficients - in the present case, linear
expressions in a - are zero4. This discussion leads to the method described below.
We give below a mostly mathematical description of the algorithm. Additional
computational aspects, including the determination of the basis G as well as a
relaxation that guarantees soundness, are discussed in the full version [7].

The method can be seen as a generalization of the double chain algorithm of
[6] to algebraic safety assertions. The basic idea is gradually refining the space
of parameters valuations, starting from R

n. More precisely, the algorithm builds
two chains of sets: a descending chain of vector spaces, representing spaces of
possible parameters valuations; and an (eventually) ascending chain of ideals,
induced by those valuations. The ideal chain is used in the algorithm to detect
the stabilization of the sequence. Fix a Gröbner basis G of I(ψ). For each j ≥ 0,

let rj
�
= π(j) mod G. For each i ≥ 0, consider the sets

Vi
�
= {v ∈ R

n : rj [v] is the 0 polynomial, for j = 0, ..., i } (7)

Ji
�
=

〈 i⋃
j=0

π(j)[Vi]
〉
. (8)

It is easy to check that each Vi ⊆ R
n is a vector space over R of dimension ≤ n:

this stems from the linearity in a of the rj ’s. Now let m ≥ 0 be the least integer
such that the following conditions are both true:

Vm+1 = Vm (9)
Jm+1 = Jm. (10)

The algorithm returns (Vm, Jm), written Post(ψ, π) = (Vm, Jm). Note that the
integer m is well defined: indeed, V0 ⊇ V1 ⊇ · · · forms an infinite descending

4 For instance, if π = (a1 + a2)x1 + a3x2 then π[v] = 0 corresponds to the constraints
a1 = −a2 and a3 = 0.

450 M. Boreale

chain of finite-dimensional vector spaces, which must stabilize in finitely many
steps. In other words, we can consider the least m′ such that Vm′ = Vm′+k for
each k ≥ 1. Then Jm′ ⊆ Jm′+1 ⊆ · · · forms an infinite ascending chain of ideals,
which must stabilize at some m ≥ m′. Therefore there must be some index m
such that (9) and (10) are both satisfied, and we choose the least such m.

Let us say that a set of polynomials J is an invariant ideal for the vector field
F if it is an ideal and LF (J)

�
= {LF (p) : p ∈ J} ⊆ J . The next theorem states

the correctness and relative completeness of Post. Informally, the algorithm
outputs the largest space V such that π[V] ⊆ Iψ and the smallest invariant ideal
J witnessing this inclusion.

Theorem 1 (correctness and relative completeness of Post). For an
algebraic variety ψ and a polynomial template π, let Post(ψ, π) = (V, J). Then

(a) π[V] = π[Rn] ∩ Iψ;
(b) J is the smallest invariant ideal such that J ⊇ π[V]. Moreover, J ⊆ Iψ.

Example 3. We reconsider the vector field F of Example 1. Let us consider
ψ = V({x − y}). A Gröbner basis of I(ψ) is just G = {x − y}. We let π be
the complete template of degree 2 (described below). We build the chain of
sets Vi, Ji, for i = 0, 1, ..., with the help of a computer algebra system. Below,
v = (v1, ..., v6) ∈ R

6 denotes a generic parameters valuation.

– π = a6xy +a5y
2 +a4x

2 +a3y +a2x+a1 and r0 = π mod G = a4y
2 +a5y

2 +a6y
2 +

a2y+a3y+a1. Thus V0 = {v : v4 = −v5 −v6, v2 = −v3, v1 = 0} and J0 =
〈
π[V0]

〉
;

– π(1) = a6x
2y − 2a6xy2 + a6y

3 + a3xy − a3y
2 and r1 = π(1) mod G = 0. Thus

V1 = V0. Moreover π(1)[V0] ⊆ J0, which implies J1 =
〈
π[V0] ∪ π(1)[V0]

〉
= J0.

Thus Post(ψ, π) = (V0, J0). A Gröbner basis of J0 is G0 = G.

Remark 1 (result template). Given a template π and v ∈ R
n, checking if π[v] ∈

π[V] is equivalent to checking if v ∈ V : this can be effectively done knowing
a basis B of the vector space V (see [7]). In practice, it is sometimes more
convenient to represent the whole set π[V] returned by Post compactly in terms
of a new m-parameters result template π′ such that π′[Rm] = π[V]. For instance,
in the previous example, the result template π′ = a1(y2−x2)+a2(xy−x2)+a3(y−
x) represents π[V0], in the precise sense that π[V0] = π′[R3]. The result template
π′ can in fact be built directly from π, by propagating the linear constraints on
a (6) as they are generated.

Note that, while typically the user will be interested in π[V], the ideal J as
well may contain useful information, such as higher order, nonlinear conservation
laws.

Corollary 1 (weakest algebraic invariant). For an algebraic variety ψ and
a polynomial template π, let Post(ψ, π) = (V, J) and φ = V(π[V]). Then V(J)
is the largest algebraic invariant included in φ.

Complete Algorithms for Algebraic Strongest Postconditions 451

Finally, we show that the whole ideal Iψ as well can be characterized in
terms of the Post algorithm. For any k ≥ 0, the complete polynomial template
of degree k over a set of variables X is π

�
=

∑
α aαα, where α ranges over all

monomials of degree ≤ k on the variables in X, and aα ranges over distinct
parameters.

Corollary 2 (characterization of Iψ). Let ψ be an algebraic variety. Let k ≥
0, πk be the complete template of degree k over the variables in x and (V, J) =
Post(ψ, πk). For k large enough, J = Iψ.

We leave open the problem of computing a lower bound on the degree k that
is needed to recover Iψ.

5 Weakest Preconditions

We first present a very simple algorithm solving Problem 3 in principle. Let
φ = V(P) be a user specified postcondition, with P ⊆ R[x] a finite set of

polynomials. We define inductively the sets Pj , j ≥ 0, as follows: P0
�
= P and

Pj+1 = L(Pj). For j ≥ 0, we let

Ij
�
=

〈 ∪j
i=0 Pi

〉
. (11)

Let m the least integer such that Im = Im+1, which must exist as I0 ⊆ I1 ⊆ · · ·
forms an infinite ascending chains of ideals that must eventually stabilize. We let
Pre(φ)

�
= Im. Note that the termination condition reduces to checking equality

between two ideals, which can be effectively done (Sect. 2).

Theorem 2 (correctness and completeness of Pre). Let φ be an algebraic
variety and I = Pre(φ). Then V(I) = ψφ.

Example 4. We reconsider the vector field F of Example 1. Let us consider φ =
V({q}), where q = x2−xy. Let us compute the weakest precondition ψφ via Pre.
With the help of a computer algebra system, it is easily checked that q(2) ∈ I1 =〈{q, q(1)}〉

, where q(1) = −x2y+2xy2−y3 and q(2) = −x3y+4x2y2−5xy3+2y4.
This implies I2 = I1. Hence Pre(φ) = I1 and ψφ = V(I1).

Experimentally, we have found that Pre tends to scale badly with the degree
of φ’s defining polynomials (see Sect. 6). Under certain conditions, the following
theorem may provide a more effective alternative for solving Problem 3, via the
Post algorithm. In order to apply the result, it suffices to find any precondition
ψ0 and template π such that Post(ψ0, π) = (V, J) and V(π[V]) = φ. In par-
ticular, ψ0 may consists of a singleton, a case for which it is trivial to obtain a
basis of I(ψ0) (see [7]).

Theorem 3 (weakest precondition via Post). For an algebraic variety ψ0

and template π, let Post(ψ0, π) = (V, J) and φ = V(π[V]). Then V(J) = ψφ.

452 M. Boreale

6 Experiments

We report below the outcomes we have obtained applying our algorithms to
a challenging system taken from the literature. Two more extended examples
(concerning collision avoidance and automatic discovery of Kepler laws from
Newton’s) are described in the full version [7]. The execution times reported
below are for an implementation in Python under Sage, running on a Core i5
machine5.

We consider the 6-th order longitudinal equations that capture the vertical
motion (climbing, descending) of an airplane [20, Chap. 5]. The system is given
by the equations below, where the variables have the following meaning: u =
axial velocity, w = vertical velocity, x = range, z = altitude, q = pitch rate,
θ = pitch angle; we also have two equations encoding cos θ and sin θ; we also
introduce the following auxiliary variables (parameters, hence 0 derivative): g =
gravity acceleration, X/m, Z/m and M/Iyy whose meaning is described in [20]
(see also [9,10]); and u0, w0, x0, z0, q0, standing for the generic initial values of
the corresponding variables. Overall, the system’s vector field F consists of 17
polynomials over as many variables.

u̇ = X/m − g sin θ − qw ż = −u sin θ + w cos θ ẇ = Z/m + g cos θ + qu q̇ = M/Iyy
ẋ = u cos θ + w sin θ θ̇ = q ˙cosθ = −q sin θ ˙sinθ = q cos θ.

In order to discover interesting polynomial invariants, we consider a complete
template π of degree 2 over all the original system’s plus two auxiliary vari-
ables6, the latter representing the monomials qu and qw. So π is a linear
combination of n = 207 monomials that uses as many parameters. We apply
the approach underpinned by Theorem 3: we first pick up a precondition that
requires θ = 0 and assigns (generic) initial values to the remaining variables,

ψ0
�
= V({θ, sin θ, cos θ − 1, u − u0, w − w0, x − x0, z − z0, q − q0}). We then run

Post(ψ0, π), which returns, after m = 8 iterations and about 26s, a pair (V, J).
The vector space V corresponds to the following result template π′.

a1 · (cos2 θ + sin2 θ − 1) + a2 · (−(1/2)q2 + θ(M/Iyy) + (1/2)q20) +

a3 · (uq cos θ + wq sin θ − (X/m) sin θ + (Z/m) cos θ − x(M/Iyy) − (M/Iyy)x0 +

u0q0 + Z/m) +

a4 · (wq cos θ − uq sin θ − θg − (X/m) cos θ − (Z/m) sin θ − zM/Iyy − (M/Iyy)z0 +

w0q0 + X/m).

Let φ
�
= V(π′[Rn]) be the variety defined by the result template π′. The invariant

ideal J returned by the algorithm represents the weakest algebraic precondition
χ

�
= V(J) such that χ −→ [F]φ: in other words, the largest algebraic pre-

condition for which all instances of π′ are polynomial invariants (Theorem 3).

5 Code and examples available at http://local.disia.unifi.it/boreale/papers/Pre
Post.py.

6 We could dispense with them by considering a complete template of degree 3.

http://local.disia.unifi.it/boreale/papers/PrePost.py
http://local.disia.unifi.it/boreale/papers/PrePost.py

Complete Algorithms for Algebraic Strongest Postconditions 453

Moreover, χ is also the weakest algebraic invariant included in φ (Corollary 1).
These findings generalize those in [9,10]. In particular, one obtains the poly-
nomial invariants of [9,10] by letting x0 = z0 = q0 = 0. By comparison, [9]
reports that their method spent 1 hour to find a subset of all instances of π′.
The method in [10] reportedly takes <1s on this system, but again only finds a
subset7 of instances of π′. Moreover, it cannot infer the largest invariant implying
the discovered laws, as we do.

7 Further and Related Work

In the future, we plan to extend the present approach to systems where ψ and
φ are specified as semialgebraic sets, in the vein of Liu et al.’s [11]; see also [19].
Our previous work [6] deals with initial values problems, where the precondition
ψ always consists of a fixed singleton. The method introduced there has its roots
in a line of research concerning weighted automata, bisimulation and Markov
chains [3–5].

The study of the safety of hybrid systems can be shown to reduce construc-
tively to the problem of generating invariants for their differential equations [14].
Many authors have therefore focused on the effective generation of invariants of
a special type. For example, Tiwari and Khanna consider invariants generation
based on syzygies and Gröbner basis [22]. Sankaranarayanan [18] characterizes
greatest invariants in terms of a descending chains of ideals. This iteration does
not always converge, thus a relaxation in terms of bounded-degree pseudoideals
is considered: the resulting algorithm always converges and returns an invariant
ideal, although with no guarantee of maximality [18, Theorem 4.1]. Ghorbal and
Platzer [9] offer sufficient conditions under which all instances of a polynomial
template are polynomial invariants [9, Prop.3]. Matringe et al. encode invariants
constraints using symbolic matrices [16]. None of the above mentioned works
offers (relative) completeness results for post-, preconditions or invariants, in
the sense of our Theorems 1 and 3. Practically, this may reflect on the num-
ber and quality of the discovered invariants, as illustrated by our experimentin
Sect. 6. Moreover, the computational prerequisites of some of these approaches,
such as minimization of the rank of a symbolic matrix [9,16], appear to be quite
more demanding than ours.

The recent work of Kong et al. [10] considers generation of invariant clusters,
again based on templates. Nonlinear constraints on a template parameters are
resolved via sum-of-squares (SOS) programming. The resulting approach also
works for semialgebraic systems. Again, completeness guarantees in our sense
are not offered, though – cf. the vertical airplane motion example in Sect. 6.
Compared to theirs, our approach appears to be slower: but a few more tens
seconds of execution time seem to be a fair price for completeness.

7 For instance, one should compare the polynomial ψ3 = q2−2θ(M/Iyy), which is part
of the invariant cluster in [10], with our polynomial −(1/2)q2 + θ(M/Iyy) + (1/2)q20
in the second summand of π′ above.

454 M. Boreale

Ideas from Algebraic Geometry have been fruitfully applied also in Program
Analysis, see e.g. Müller-Olm and Seidl’s [12], and [7] for a comparison with our
work.

References

1. Arnold, V.I.: Ordinary Differential Equations. The MIT Press, Cambridge (1978).
ISBN 0-262-51018-9

2. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNet-Gen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

3. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalge-
braic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

4. Boreale, M.: Weighted bisimulation in linear algebraic form. In: Bravetti, M., Zavat-
taro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163–177. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04081-8 12

5. Boreale, M.: Analysis of probabilistic systems via generating functions and
Padé approximation. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 82–94. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47666-6 7. Full version available as
DiSIA working paper 2016/10. http://local.disia.unifi.it/wp disia/2016/wp disia
2016 10.pdf

6. Boreale, M.: Algebra, coalgebra, and minimization in polynomial differen-
tial equations. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 71–87. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54458-7 5. Full version available as DiSIA working paper 2017/01.
http://local.disia.unifi.it/wp disia/2017/wp disia 2017 01.pdf

7. Boreale, M.: Complete algorithms for algebraic strongest postconditions and weak-
est preconditions in polynomial ODE’s. In: CoRR, abs/1708.05377. Full version of
the present paper http://arxiv.org/abs/1708.05377 (2017)

8. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. UTM. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

9. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential rad-
ical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 279–294. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54862-8 19. Extended version available from http://reports-archive.
adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf

10. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verifica-
tion of nonlinear hybrid systems based on invariant clusters. In: HSCC 2017, pp.
163–172. ACM (2017)

11. Liu, J., Zhan, N., Zhao, H.: Computing Semi-algebraic Invariants for Polynomial
Dynamical Systems. In: EMSOFT, pp. 97–106. ACM (2011)

12. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41(2), 143–189 (2008)

14. Platzer, A.: Logics of dynamical systems. In: LICS 2012, pp. 13–24. IEEE (2012)
15. Platzer, A.: The structure of differential invariants and differential cut elimination.

Log. Methods Comput. Sci. 8(4), 1–38 (2012)

https://doi.org/10.1007/978-3-642-04081-8_12
https://doi.org/10.1007/978-3-662-47666-6_7
http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_10.pdf
http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_10.pdf
https://doi.org/10.1007/978-3-662-54458-7_5
https://doi.org/10.1007/978-3-662-54458-7_5
http://local.disia.unifi.it/wp_disia/2017/wp_disia_2017_01.pdf
http://arxiv.org/abs/1708.05377
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf

Complete Algorithms for Algebraic Strongest Postconditions 455

16. Rebiha, R., Moura, A.V., Matringe, N.: Generating invariants for non-linear hybrid
systems. Theor. Comput. Sci. 594, 180–200 (2015)

17. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL 2004, pp. 318–329. ACM (2004)

18. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: HSCC 2010, pp. 221–230 (2010)

19. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5 13

20. Stengel, R.F.: Flight Dynamics. Princeton University Press, Princeton (2004)
21. Tiwari, A.: Approximate reachability for linear systems. In: HSCC 2003, pp. 514–

525. ACM (2003)
22. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: HSCC

2004, pp. 600-614. ACM (2004)
23. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process

algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-662-49122-5_13

Recognition and Generation

Influence of Body Postures on Touch-Based
Biometric User Authentication

Kamil Burda(B) and Daniela Chuda

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava,

Ilkovičova 2, 842 16 Bratislava, Slovakia
{kamil.burda,daniela.chuda}@stuba.sk

Abstract. Due to user mobility, many factors may influence a user’s
touch screen behavior and consequently affect the accuracy of user
authentication based on touch-screen behavioral biometrics. Existing
studies have shown significant differences in typing behavior for differ-
ent hand postures. In this paper we examine touch-based biometric user
authentication when performing simple swipes under different body pos-
tures. Our proposed authentication method generates numerous features
from the swipes and selects the most distinctive features using mutual
information. Using an experimental dataset with 43 participants, we have
concluded that performing swipes in different body postures has a neg-
ative impact on authentication accuracy and that several features based
on finger touch size are not significantly affected by different body pos-
tures.

Keywords: User authentication · Behavioral biometrics
Touch screen · Body postures · Influencing factors

1 Introduction

Existing popular approaches to securing access to mobile devices may not be
satisfactory due to their vulnerabilities such as observing a typed password or
gesture over the shoulder or guessing the gesture according to the smudges left on
the touch screen. User authentication may be enhanced by extracting biometric
traits of a user. While physiological traits (such as fingerprints) require special-
ized and not commonly available hardware, behavioral traits can be observed
from readily available sensors on mobile devices such as a touch screen.

Authenticating users based on behavioral biometrics requires building a user
model, which involves logging raw data from one or more input devices or sen-
sors, pre-processing the data (such as normalization), transforming the data
to samples (often represented as vectors of features) and training the model
on a subset of samples using methods ranging from simple distance metrics to
machine learning algorithms. The resulting user model is then used to classify
new samples and perform appropriate actions (such as accepting or rejecting a
user). Common metrics for evaluating the accuracy of a biometric user model
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 459–468, 2018.
https://doi.org/10.1007/978-3-319-73117-9_32

460 K. Burda and D. Chuda

include the false acceptance rate (FAR), false rejection rate (FRR) and equal
error rate (EER).

Each biometric trait (such as keystroke dynamics or touch screen interaction)
should possess a high degree of uniqueness (the ability to distinguish individuals)
and permanence (invariance of the trait over time) [1]. In the context of mobile
devices, many external factors can affect the user behavior due to user mobility,
such as body postures (sitting, standing, walking), hand postures (fingers used
to interact with the touch screen) or a user’s physical condition. The factors can
thus have a negative impact on the accuracy of biometric user modeling.

This paper revisits the feasibility of user authentication based on simple
swipes performed on the touch screen of a mobile device when considering dif-
ferent body postures. The results provide the first step toward building a more
accurate biometric user model based on the interaction with mobile devices under
the influence of external factors.

We first describe existing approaches to behavioral biometrics on mobile
devices, and discuss open problems in this field of study. The second part of
this paper describes our proposed user authentication method when considering
different body postures. Finally, we evaluate our method on an experimental
dataset, discuss the results and possible ways of building upon the results.

2 Related Work

Touch screen biometrics have been predominantly studied for implicit user
authentication. Several studies showed that typing passwords or PINs [2,3] or
tapping objects [4] can be successfully exploited as a user authentication method,
where the lowest EER achieved was 1%, 3.65% and 6.9%, respectively. Typical
features extracted from the keystroke data include dwell time, flight time and
features related to touch size, which were proven to significantly reduce the EER.

Comparable performance was found in performing simple touch screen
swipes. A comprehensive study by Frank et al. [5] showed that such an approach
results in EER below 4%. Other related studies, which also considered gestures
such as zoom and pinch, achieved comparable performance [6,7]. Enhancing the
lock pattern mechanism with touch screen biometrics resulted in approx. 10%
EER in one study [8] and 90% classification accuracy in another [9]. Common
features extracted from gestures include the swipe duration, velocity, start and
end position, and touch size. Features extracted from different stages of each
gesture may also prove useful as each user is assumed to exhibit different touch
behavior at the start, middle and end of a gesture [5,10].

With each tap or gesture performed on the touch screen, the mobile device
is slightly tilted or rotated, which can be tracked by data from accelerome-
ter, gyroscope and geomagnetic sensors. Lin et al. [11] achieved 6.85% EER for
authentication based on features from the accelerometer and geomagnetic sensor
when performing touch screen swipes.

Several studies considered the influence of time on the accuracy of touch
screen biometrics. The error rate has been shown to increase over sessions further

Influence of Body Postures on Touch-Based Biometric User Authentication 461

apart in time [5,12]. To the best of our knowledge, in most studies involving touch
screen user authentication, other influencing factors were either not considered
or minimized by performing experiments in a controlled environment.

The influence of hand postures on touch-screen behavior was studied by
Buschek et al. [12,13]. Based on an experiment involving typing a password
on the touch screen in three different hand postures – thumb, two thumbs and
index finger – the results suggest that typing behavior is strongly specific to hand
postures. The best results were achieved for separate models for each posture
combined in a probabilistic framework rather than a single model for all pos-
tures. In terms of the EER, binary classification methods outperformed anomaly
detection methods [12].

The influence of body postures on touch screen biometrics was examined by
Zheng et al. [2] for typing PINs in an experiment with 10 participants in four
different postures – sitting, standing, lying and walking. Differences in individual
postures for a single user were found, but not as significant as differences between
a user and other users in a sitting posture.

Our previous study [14] showed that different body postures affect several
touch screen features, especially touch size. Based on our observation, we perform
user authentication under different body postures to determine their influence
on user authentication error rate.

3 Method for User Authentication Under Different Body
Postures

This section contains a detailed description of the proposed method of touch
screen biometric user authentication. Overview of the method is depicted in
Fig. 1.

Biometric user authentication can be represented as a binary classification
problem, where the positive class is assigned to the mobile device owner and the
negative class to the impostors attempting to gain unauthorized access to the
device.

The method assumes a dataset containing raw data from the touch screen
while performing simple swipes with arbitrary length and direction. In an exper-
imental setup, we also assume that the raw data are logged from multiple users,
each performing swipes in multiple postures.

On consumer smartphones, each touch screen interaction usually contains
the following fields: timestamp, touch x, touch y and touch size. Additionally,
touch screen gestures (strokes) can be easily distinguished by logging events such
as touch-up and touch-down.

3.1 Data Pre-processing and Transformation

Once the raw data are available, we split the raw data to segments according
to touch events. Each segment begins by a touch-down event and ends with a
touch-up event and contains all data rows between these events. Segments whose

462 K. Burda and D. Chuda

Fig. 1. Overview of the proposed method of touch screen-based user authentication

displacement (distance between end points) is lower than a given threshold are
removed as they are not considered swipes, but rather button or key presses.
Also, such segments would introduce noise in the samples that would confuse
classifiers. The displacement threshold was determined manually based on the
experimental dataset described in Sect. 4. An example of a touch swipe as a valid
segment is shown in Fig. 2. Each point represents an xy touch coordinate logged
at a given timestamp.

Fig. 2. An example of a touch screen swipe

From each segment we compute numerous features based on the combination
of the following criteria:

Influence of Body Postures on Touch-Based Biometric User Authentication 463

1. statistic – mean, standard deviation, median, minimum, maximum, range
(difference of maximum and minimum)

2. segment subset – entire segment, first n points, last m points, subset between
the first n and last m points,

3. feature type – touch size, x-velocity, y-velocity, velocity magnitude, distance
between trajectory and end-to-end line.

Examples of such computed features include the mean velocity magnitude, max-
imum touch size in the first 5 points, and so on. We also consider the following
additional features:

1. ratio of swipe trajectory length and displacement,
2. timestamp (relative to the beginning of the segment) with the maximum

distance of the swipe trajectory from the end-to-end line.

3.2 Feature Processing

Each feature set, hereinafter sample, is a vector comprising a user, posture and
features computed from a single segment. Before being fed into a classifier, each
sample needs to be further processed.

While raw data are dense and usually contain no missing values, some seg-
ments may not comprise enough data points, resulting in the fact that some
features considering only a subset of points in such segments (e.g. between the
first n and last m points) cannot be computed. In such a case, we impute (fill)
missing values for these features based on the existing values of the same feature
from other samples.

We scale each feature using the Z-score normalization as many classifiers
are sensitive to feature values (treating them as weights). The high number of
features considered during the classification may not be desirable in terms of
classification speed and potentially performance. We therefore employ mutual
information to select k features with the highest score.

3.3 Estimator Selection and Method Evaluation

We set samples extracted from one user for all postures as the device owner and
the remaining samples as the impostors. We then perform estimator selection to
determine the best parameters for feature processing methods and for the chosen
classifier. We use the term estimator here to refer to both the chosen feature
processing steps and the classifier because we also search for the best parameters
for the feature processing steps.

Finally, we perform classification (user authentication) and determine the
FAR and FRR of our method. We use the k -nearest neighbors (k -NN) and the
random forest classifier (using the CART tree building algorithm) and compare
the performance of these classifiers for user authentication. The rest of this
section describes the details of estimator selection and user authentication.

Given that the impostor class contains samples from all other users, the num-
ber of samples in the impostor and owner class are highly imbalanced, which may

464 K. Burda and D. Chuda

result in the chosen classifier having good predictability of the impostor class,
but not the owner class. We therefore balance the classes by subsampling the
impostor class. The impostor samples are chosen randomly without replacement
from any user and any posture.

We split the samples to train and test sets in the ratio of 3:1. The training
set is used for estimator selection while the test set is held out for classification.
Both sets are stratified to ensure a balanced number of samples for owner and
impostor classes in each set.

To select the best estimator, we employ 10-fold stratified cross-validation
(meaning that the class balance is maintained in each fold) and perform exhaus-
tive search (i.e. training an estimator for every combination of parameters and
selecting the best combination) to find parameters that yield the best cross-
validation score. The parameters considered in estimator selection are specified
in Table 1. We chose classification accuracy as the cross-validation score to com-
pare the performance of individual estimators. The accuracy is a good indicator
as the classes are assumed to be balanced (otherwise a different metric would
have to be used).

Feature processing steps – imputation, scaling and selection – are performed
on the train samples only and the imputed values, scaling parameters and
selected features are then applied to the test samples.

Table 1. Parameters for determining the best estimator

Step Parameter values

Imputation – strategy Mean, median

Feature selection – mutual information – best k 10, 13, 16, 19

Classification – k -NN – k 1, 3

Classification – k -NN – distance metric Manhattan, Euclidean

Classification – random forest – number of trees 5, 10

Classification – random forest – split criterion Gini impurity, information gain

The entire process of estimator selection and method evaluation is repeated
for each user. This implies that each user has a unique user model – different
selected features and estimator parameters. We thus obtain u results for FAR,
FRR and the list of selected features, where u is the number of users. From
these individual results, we compute average FAR and FRR as a performance
indicator of our user authentication method and the percentage of times a feature
was selected among all users. Features selected the most often may indicate their
low dependence on postures and high distinctiveness.

4 Evaluation

To evaluate our proposed method, we use a dataset from an experiment con-
ducted in our previous study [14]. 43 participants (with one participant removed

Influence of Body Postures on Touch-Based Biometric User Authentication 465

due to erroneous data) performed simple swipes on the touch screen of a smart-
phone. Each user was asked to drag a blue circle toward a black circle. The task
was repeated 10 times for six postures: standing, sitting straight, sitting and
leaning backward, sitting and leaning forward, sitting and leaning forwards with
hands on a table and lying on a sitting bag. In each task the circles appeared
in different random places on the touch screen, with a guaranteed minimum
distance apart.

For each posture, each user managed to successfully perform at least 10
swipes. There may be more segments extracted in case the participant missed
the target circle and so had to perform another swipe.

During segment extraction, we filtered segments not belonging to any task.
The threshold for removing too short segments was set to 150 (which was deter-
mined manually based on the observation of the raw touch data). The number
of remaining segments was 9–20 (11–12 on average) per user for each posture
individually, and 61–99 (70 on average) per user for all postures.

Based on the number of touch-x and touch-y points for raw data per segment
(7–102, 32 on average), we set the n and m parameters for segment subsets to 5
so that the method generates features such as the mean velocity from the first
5 points.

Swipe direction, trajectory length or swipe duration, which may exhibit good
distinctiveness when used as features, are not considered due to random positions
of the circles for each swipe. Moreover, while static authentication mechanisms
may assume a swipe performed in a fixed starting position and direction, contin-
uous authentication mechanisms cannot rely on this property due to the variety
of gestures performed on the touch screen. To make our proposed method appli-
cable for either scenario, we discard these features.

4.1 Results

Figures 3 and 4 show FAR and FRR for user authentication for each user and
for each classifier separately. Average FAR and FRR from all users per each
classifier are shown in Table 2.

The error rates vary widely across users and so do the individual error rates
for each user. This may stem from the fact that the impostor samples were
chosen randomly from any other user and posture and thus impostor samples
for one posture may contain feature values similar to owner samples for one or
more postures. Neither of the two examined classifiers can be overall considered
more accurate for the experimental scenario, as k -NN exhibits higher FAR and
random forest higher FRR on average.

The error rates, relatively high compared to similar studies, suggest that we
cannot rely the touch-screen behavioral biometrics as a sole method for user
authentication as they do not provide sufficient information to distinguish indi-
viduals, and that the chosen body postures have a strong impact on user authen-
tication.

We can further examine the influence of postures by assessing which features
were discarded most often (for all users). The features that were selected most

466 K. Burda and D. Chuda

Fig. 3. User authentication FAR and FRR for each user (sorted by FAR) for the k -NN
classifier

Fig. 4. User authentication FAR and FRR for each user (sorted by FAR) for the
Random Forest classifier

often indicate their relative independence of postures and also their distinctive-
ness. Such features are specified in Table 3.

Features based on finger size thus still prove their usefulness for user authen-
tication even if the user switches postures. Other features, such as touch velocity,
proved to be not as distinctive under different postures, having been selected by
less than in 18% of all users.

Table 2. Average FAR and FRR for user authentication for all users

Classifier Average FAR Average FRR

k -NN 32% 17%

Random forest 26% 25%

Influence of Body Postures on Touch-Based Biometric User Authentication 467

Table 3. Percentage of times a feature was selected per user (acting as the device
owner) based on mutual information

Feature % times selected

Size – mean between first 5 and last 5 points 81%

Size – mean 81%

Size – median between first 5 and last 5 points 74%

Size – mean from first 5 points 69%

Size – median 69%

Size – maximum between first 5 and last 5 points 65%

Size – maximum from first 5 points 62%

Size – minimum from first 5 points 60%

Size – maximum 58%

Size – median from last 5 points 55%

Size – minimum between first 5 and last 5 points 55%

Size – maximum from last 5 points 51%

Size – median from first 5 points 44%

Size – mean from last 5 points 34%

5 Conclusions and Future Work

In this paper we proposed a method for biometric user authentication based on
performing a single swipe on the touch screen of a mobile device when considering
various body postures as influencing factors. We have shown that finger touch
size-based features can be usable for user authentication scenarios even under
the influence of body postures.

The experimental results prompt us to rethink in what real-world scenarios
the touch screen biometrics can be used reliably under various influencing factors
so as to minimize their impact. In case of user authentication, imposing too
many restrictions on the environment only to be successfully authenticated may
significantly impact its usability.

In an endeavor of developing a seamless biometric user authentication
method, an alternative approach to minimizing the influence of factors is to
examine different approaches to processing raw data and classifying samples and
considering additional sensors built-in mobile devices (such as accelerometer).
Different sets of features from the touch screen could be extracted such as cur-
vature or acceleration. User authentication accuracy could further be improved
by considering a sequence of swipes, rather than a single swipe, to gain access
to the mobile device.

Acknowledgments. This work was partially supported by the Scientific Grant
Agency of the Slovak Republic, grant No. VG 1/0646/15 Adaptation of access to infor-
mation and knowledge artifacts based on interaction and collaboration within web
environment and the Slovak Research and Development Agency under the contract
No. APVV-15-0508 Human Information Behavior in the Digital Space.

468 K. Burda and D. Chuda

References

1. Jain, A.K., Ross, A.A., Nandakumar, K.: Introduction to Biometrics. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-77326-1

2. Zheng, N., Bai, K., Huang, H., Wang, H.: You are how you touch: user verifi-
cation on smartphones via tapping behaviors. In: 2014 IEEE 22nd International
Conference on Network Protocols (ICNP), pp. 221–232, October 2014

3. Saevanee, H., Bhattarakosol, P.: Authenticating user using keystroke dynamics
and finger pressure. In: 6th IEEE Consumer Communications and Networking
Conference, CCNC 2009, pp. 1–2, January 2009

4. Chang, T.Y., Tsai, C.J., Lin, J.H.: A graphical-based password keystroke dynamic
authentication system for touch screen handheld mobile devices. J. Syst. Softw.
85(5), 1157–1165 (2012)

5. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)

6. Shahzad, M., Liu, A.X., Samuel, A.: Secure unlocking of mobile touch screen
devices by simple gestures: you can see it but you can not do it. In: Proceedings of
the 19th Annual International Conference on Mobile Computing and Networking,
MobiCom 2013, pp. 39–50. ACM, New York (2013)

7. Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: SilentSense: silent user identifi-
cation via touch and movement behavioral biometrics. In: Proceedings of the 19th
Annual International Conference on Mobile Computing and Networking, MobiCom
2013, pp. 187–190. ACM, New York (2013)

8. Angulo, J., Wästlund, E.: Exploring touch-screen biometrics for user identifica-
tion on smart phones. In: Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes,
R., Russello, G. (eds.) Privacy and Identity 2011. IAICT, vol. 375, pp. 130–143.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31668-5 10

9. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once
and i know it’s you!: implicit authentication based on touch screen patterns. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2012, pp. 987–996. ACM, New York (2012)

10. Feng, T., Liu, Z., Kwon, K.A., Shi, W., Carbunar, B., Jiang, Y., Nguyen, N.:
Continuous mobile authentication using touchscreen gestures. In: 2012 IEEE Con-
ference on Technologies for Homeland Security (HST), pp. 451–456, November
2012

11. Lin, C.C., Liang, D., Chang, C.C., Yang, C.H.: A new non-intrusive authentication
method based on the orientation sensor for smartphone users. In: 2012 IEEE 6th
International Conference on Software Security and Reliability (SERE), pp. 245–
252, June 2012

12. Buschek, D., De Luca, A., Alt, F.: Improving accuracy, applicability and usability
of keystroke biometrics on mobile touchscreen devices. In: Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI 2015,
pp. 1393–1402. ACM, New York (2015)

13. Buschek, D., De Luca, A., Alt, F.: Evaluating the influence of targets and hand
postures on touch-based behavioural biometrics. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI 2016, pp. 1349–1361.
ACM, New York (2016)

14. Chuda, D., Burda, K.: Toward posture recognition with touch screen biometrics.
In: Proceedings of the 17th International Conference on Computer Systems and
Technologies, CompSysTech 2016, pp. 293–299. ACM, New York (2016)

https://doi.org/10.1007/978-0-387-77326-1
https://doi.org/10.1007/978-3-642-31668-5_10

Michiko: Poem Models used in Automated
Haiku Poetry Generation

Miroslava Hrešková(&) and Kristína Machová

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic
Miroslava.hreskova@student.tuke.sk,

kristina.machova@tuke.sk

Abstract. Computational creativity is a part of artificial intelligence that sets its
goal to determine what is creativity and what does it mean to be creative - not
only in humans, but in general. It also aims to mimic creativity by computer
programs. There are multiple approaches and systems that are imitating cre-
ativity in different artistic forms. The approach proposed in this article suggests a
method for automated generation of written text, specifically haiku poetry.
Experiments with system that implements the proposed approach are presented.

Keywords: Computational creativity � Haiku � Poetry generation

1 Introduction

Definition of computational creativity from [1] states: “Computational creativity is the
study and simulation, by computer means, of behavior, natural and artificial, which
would, if observed in humans, be deemed creative.” One of the main objectives of
author’s research is to generate haiku poetry that would be perceived by readers as
artistically pleasing.

Certain areas of current research in computational creativity are focusing on
developing approaches for autonomous creative tasks, e.g. creating pictures, composing
music or writing prose and poetry. Some of such approaches are mentioned in Sect. 3.

According to [2], one of the main goals of computational creativity is to create a
program that would exhibit human creativity. Also, the proposed approach aims to fulfill
this goal by creating a system for automated haiku poetry generation using poemmodels.

Large poem corpus represents the basis for the knowledge discovery. Poem models
and dictionary that are used for automated creation of the poems are extracted from the
corpus. Section 4 is dedicated to the description of the approach and Michiko system,
its implementation. Outputs of the generation were presented to real users for evalu-
ation and results of the evaluation are also presented in this section.

2 Poetry

Poetry belongs to cultural heritage. It is used for expressing personal emotion or sharing
ideas. It differs from prose mainly in strict formal rules defined by rhythm, metre, rhyme
orword-stress pattern. Thatmakes it more challenging to algorithmically generate poetry.

© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 469–476, 2018.
https://doi.org/10.1007/978-3-319-73117-9_33

2.1 Haiku Poetry [3, 4]

Haiku is a famous genre of Japanese poetry. The founder of traditional haiku, Kyoshi,
said that haiku should be “sketch from nature”. As the quote suggests, a traditional
haiku poem usually describes a person’s feeling for nature.

Association with nature in haiku poetry is expressed by seasonal reference. There
are two ways how to express it: directly naming the season (kigo) or by specific
element of a season (kidai), e.g. falling leaves as a reference to autumn.

One haiku poem is a stanza consisting of 3 lines. Each line has fixed count of sound
units (morae, similar to syllables in English). A traditional haiku poem consists of two
parts. Each part creates a different image or aims to express a certain idea. These two
parts are separated by cutting word (kireji) that is a word separating the images or ideas
depicted in the poem.

First line of traditional haiku poem usually expresses an image using seasonal
reference and ends with cutting word. The remaining 2 lines are used to create another
image as a comparison, contrast or complement to the first one.

In the beginning of the 20th century, haiku was adapted to English and later also
into other languages. Foreign adaptation consists of 3 lines of 5-7-5 syllables, since
morae does not have an equivalent in other languages. Foreign haiku does not always
follow strict rules of traditional haiku poem. Therefore, topics are not limited to nature
and often haiku in other language does not conform to the formal haiku rules.

The proposed approach creates English haiku poems about nature. Poems are
generated in 3 lines and conform to traditional 5-7-5 syllable pattern.

2.2 Basic Properties of Poetry

According to [5], poetic text must hold all the following three properties:

• Meaningfulness: the poem is human-understandable – it expresses certain idea or
message under some interpretation

• Grammaticality: poem has to follow grammar and lexical rules
• Poeticness: poem has poetic features specific for the poetry genre (rhythm, meter,

rhyme, etc.)

Approach to generation of poetry, described in this article, aims to follow mostly the
rule of grammaticality and poeticness. Grammaticality is ensured by extraction of poem
models from corpus of existing poems from human authors. Poeticness is provided by
following the formal rules of haiku poem – creating 3 lines of 5-7-5 syllables and by
using haiku-specific dictionary of words to fill the model with. Next step is to implement
methods of artificial intelligence in order to achieve certain level of meaningfulness.

3 Related Works

Language provides a space for creativity - in generation of novel sentences, rhymes,
metaphors, analogies, ideas, etc. This section mentions some approaches to computa-
tional creativity in language, specifically poetry.

470 M. Hrešková and K. Machová

3.1 Chinese Poetry Generation with Recurrent Neural Networks

Approach in [6] aims to generate classical Chinese poetry with formal and rhythmic
constraints. It leverages neural networks and uses them to probabilistically generate the
poem verse by verse. The poem topic is user-selected based on number of keywords
provided as an input.

Poem corpus is used as training set for learning individual Chinese characters, their
combinations and relations (how they form poem verses).

3.2 Constraint Satisfaction-BasedGenerator of Topical Indonesian Poetry

An input to the system, described in [7], is an Indonesian news article and corpus
containing poems written by famous Indonesian authors. Article is user-selected input
and it is used for keyword extraction. Poetry corpus is used for creating sentence tem-
plates and obtaining of poetic words, fifty most frequently used words in poetry corpus.

The system creates poetry from the collection of templates combined with a par-
ticular set of words. All possible combinations of templates, filled by keywords and
poetic words, are created. These combinations are candidates for a line in the output
poem. Candidates are filtered by applying poetic constraints, e.g. number of syllables,
rhyme, rhythm or number of lines.

Thorough evaluation of the system was performed. Experiment was conducted with
180 participants that were asked to determine whether a poem is written by a human or
generated by computes. The results showed that 57% of the respondents thought that
the generated poems were authored by humans.

3.3 Automatic Analysis of Rhythmic Poetry with Applications
to Generation and Translation

In [8], statistical analysis of poetry corpus is described. It is further used for generation
of poems and their translation from Italian to English. Large set of sonnets is the
subject for analysis. Unsupervised learning is used to reveal word-stress patterns.
3 different corpuses were used.

The results from word-stress analysis together with trigram model built from love
poems is used to create poems with lines in a certain meter to generate poetry.

3.4 Computational Creativity for Automatic Generation of Poetry
in Bengali

System described in [9] automatically generates a line of poetry as a response to user’s
one-line poetry input. The goal is to create appropriate verse that has the same rhythmic
structure and rhymes with the input verse.

At first, rhyme structure understanding of the given user input has to be performed.
For this purpose, corpus of Bengali poems is used as a training set for a classifier that
predicts rhyme syllables and syllable sequence patterns. Bigrams are used to prune the
list of candidate words and weighted sentence aggregation used to generate the actual
system output.

Michiko: Poem Models used in Automated Haiku Poetry Generation 471

3.5 Automated Haiku Generation Using Vector Space Model

Approach presented in [10] aims to create haiku poems. To achieve this, set of 500
most common words used in haiku writing (available online) is used as keyword set.
These keywords are then searched in different blogs.

Articles are parsed into sentences and parts of the sentences, containing searched
keyword, are gathered. Vector Space Model (VSM) and Term Frequency–Inverse
Document Frequency (TF-IDF) are used to select sentence fragments and combine
them into poems.

4 Poem Models in Michiko Poetry Generation System

Poem model defines basic structure of haiku poem to be generated. It contains
knowledge on how to create the output poem by filling these models with words from
dictionary based on their part of speech and syllable count.

Example model

Numeral – noun
Preposition – adjective – noun – noun
Noun – noun – noun

1 – 4
1 – 2 – 2 – 2
2 – 1 – 2

Example of generated poem from the above stated model:

each January
in frozen sunshine brightness
cutting pine branches

The corpus is a large set that consists of haiku poems written by human authors [12,
13]. It is used for two main goals:

• creating dictionary of words - splitting poems into words, gathering metadata for
each word

• extracting poem models - list of parts of speech, each with certain syllable count

It is important to note, that the algorithm implementing the proposed approach is
not using nor quoting whole haiku poems nor the verses from the corpus. It only uses
the poems to extract information that is further used to create new poems in haiku
generation process. Haiku corpus is not saved in database, only models and dictionary,
extracted from the poems, are saved.

Michiko system (available online at [11]) implements an approach to generate
haiku poems based on the usage of poem models. Several experiments were carried out
to improve the performance of Michiko system that is implementing the proposed
approach. Conducted experiments, together with results, are presented in this section.

472 M. Hrešková and K. Machová

4.1 Words in Dictionary

Haiku poem has a characteristic topic – the topic of nature. To achieve that generated
poem is thematically consistent with haiku genre, dictionary is created by using words
from the corpus. The corpus is a large set of haiku poems written by human authors
from online haiku portals available at [12, 13]. This dictionary provides the word set
for selection into the output poem.

The approach relies on the fact that human-authored haiku from the corpus are
conforming to the haiku rules in terms of content. Testing with potential users showed
that output poems contained some haikus with words not related to the typical haiku
topics (which are expressing feeling, nature and its beauty), probably used by authors
in some figurative speech. However, the approach does not consider meaning of the
word. To solve this issue, only haiku-specific words are kept in dictionary and another
experiment was carried out.

One word can be used in multiple haikus. The more often the word is used, the
higher is its specificity for haiku poem and its probability to occur in haiku (except of
words from general vocabulary).

For each unique word in dictionary, number of occurrences in haiku corpus was
counted. Based on this, different occurrence thresholds were used for dictionary cre-
ation. Original dictionary and 4 of its subsets (with words that have their occurrence
count higher than a selected threshold of 3, 5, 10 and 15 occurrences) were used in
poetry generation in order to determine the right threshold that would create haiku-
specific dictionary.

With each dictionary, 30 poems were created and evaluated by 3 participants. Their
evaluation of poem generation showed that the most thematically balanced poems were
produced by dictionary created with threshold of 5 occurrences. When too low
occurrence threshold is set, dictionary contains too many words that are not themati-
cally consistent for haiku genre, e.g. microwave. When too high threshold is used, all
haiku-specific words are removed and only general vocabulary remains.

Table 1 shows dictionary size (total number of words in dictionary) for each
threshold and its percentage share of dictionary size when all words extracted from
corpus are used (when occurrence threshold equals 1).

Table 1. Experiment 1 – words in dictionary.

Threshold Number of remaining
words in dictionary

Percentage of remaining
words in dictionary

1 7035 100%
3 3192 45.4%
5 1728 26.4%
10 1074 15.3%
15 625 8.9%

Michiko: Poem Models used in Automated Haiku Poetry Generation 473

4.2 Gathering Metadata

Proposed approach creates poems by filling poem models with words based on their
syllable count and part of speech. These properties of words are considered as meta-
data, providing basic information on when and where can be the word used in the
resulting poem. Thus, dictionary of words with these metadata available is a precon-
dition to successfully generate haikus. Corpus contains 8 107 haikus and 73 309 words
in total, from which 9 117 were unique.

Originally, online tools [14, 15] for word metadata extraction were used. A separate
application was created and used to carry out the metadata extraction, containing
separate tools for syllable count and another for part of speech determination. Each
word in dictionary was searched. HTML of the page was parsed in order to find the
required metadata which was saved to a database. This process was long and
demanding on computational power. It also proved to be unreliable, since it was able to
acquire metadata for only approximately 60% of the dictionary.

Thus, metadata determination was implemented using Words API [16]. With the
usage of Words API, 17% increase in dictionary coverage was observed. The results of
this experiment are indicated in Table 2.

Database of Words API contains 150,000 words and, besides part of speech and
syllable count, it also provides more features, such as list of synonyms, antonyms or
rhymes. Another advantage of Words API is that it provides complex information
about searched word at one place (no need for separate tools) and using it is much
quicker.

4.3 Haiku Generation Testing

Proposed approach was implemented as web application and made available for testing
by real users at [11]. Based on main properties that poetic text has to conform to
(according to [5]), users were asked to take into account following criteria for poem
evaluation:

• Form – haiku poem consists of 3 lines and each line conforms to 5-7-5 syllable
pattern

• Content – generated poem contains words related to nature and/or expressing
emotions

• Meaning – the poem can be considered as meaningful, there is idea recognizable
behind the verses

Table 2. Experiment 2 – metadata gathering.

Dictionary used Words found Percentage of
words found

Online dictionary with
online tool for syllable counting

5471 60%

Words API 7035 77%

474 M. Hrešková and K. Machová

In sum, 254 poems were evaluated. Users evaluate each poem as neutral and as
positive or negative with a degree of strength ranging from 1 to 3. Table 3. presents
count of user evaluations belonging to each class and its percentage share of the total
number of evaluations. Table 4. shows average values of positive and negative
evaluation.

5 Conclusion

The proposed approach and application are work in progress. Its goal is to create haiku
poems that would be considered by users as aesthetically pleasing.

Haiku poems originally capture a picture of nature, the changes of the season. Thus,
the next goal is to implement generating haiku thematically – based on user-selected
season.

Computational creativity, especially creating prose and poetry, is a suitable way to
make the interaction between human and robot more natural - by improving robots’
natural language generation.

Another goal of the research is to enrich the poems with recitation performed by a
robot to create human-like recitation – speech with appropriate speed and voice pitch
supported by non-verbal expression such as posture, hand and head movements to
make robots’ appearance more natural and human-like.

The biggest advantage of creative software (compared to human creativity) is its
ability of “thinking outside the box” - since computers are not limited by conventions,
customs, attitudes, etc. and can explore areas in art that people would not. Another pro
is the ability of computers to analyze large text sets for knowledge, greater memory
capacity to store extracted knowledge and more computational power for knowledge
discovery. Correct poem structure is always kept – conforming to strict poetic formal or
rhythmical rules.

Table 3. Experiment 3 – evaluation count.

Evaluation class Number of evaluations Percentage of evaluations

Positive evaluation
(points ranging from 1 to 3)

127 50%

Neutral evaluation (0 points) 35 13.7%
Negative evaluations
(points ranging from −3 to −1)

92 36.3%

Table 4. Experiment 3 – evaluation statistics.

Statistics Average evaluation value

Average positive evaluation value
(points ranging from 1 to 3)

1.3

Average negative evaluation value
(points ranging from 3 to −1)

−2.1

Michiko: Poem Models used in Automated Haiku Poetry Generation 475

Disadvantage of computational poetry generation (and computational text genera-
tion in general), often viewed as a challenge, is abiding grammar rules, creating
meaningful text representing certain idea or using figures of speech.

Acknowledgment. The work presented in this paper was partially supported by the Slovak
Grant Agency of the Ministry of Education and Academy of Science of the Slovak Republic
under grant no. 1/0493/16 and by the Slovak Research and Development Agency under the
contract No. APVV-16-0213.

References

1. Cardoso, A., Veale, T., Wiggins, G.A.: Converging on the divergent: the history (and future)
of the international joint workshops in computational creativity. AI Mag. 30(3) (2009)

2. Computational Creativity. Accessed 1 Mar 2017. http://computationalcreativity.net/home/
about/computational-creativity/

3. Díaz-Agudo, B., Gervás, P., González-Calero, P.A.: Poetry generation in COLIBRI. In:
Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 73–87. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46119-1_7

4. Haiku Poetry. Accessed 10 Oct 2016. https://www.poets.org/poetsorg/text/haiku-poetic-form
5. Rahman, F., Manurung, R.: Multiobjective optimization for meaningful metrical poetry. In:

Proceedings of the 2nd International Conference on Computational Creativity (2011)
6. Zhang, X., Lapata, M.: Chinese poetry generation with recurrent neural networks. In:

EMNLP (2014)
7. Rashel, F., Manurung, R.: Pemuisi: a constraint satisfaction-based generator of topical

Indonesian poetry. In: 5th International Conference on Computational Creativity, ICCC
(2014)

8. Greene, Erica, Bodrumlu, T., Knight, K.: Automatic analysis of rhythmic poetry with
applications to generation and translation. In: Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics (2010)

9. Das, A., Gambäck, B.: Poetic machine: Computational creativity for automatic poetry
generation in Bengali. In: 5th International Conference on Computational Creativity, ICCC
(2014)

10. Wong, M., Chun, A.H.W.: Automatic haiku generation using VSM. In: Li, Q., Chen, S.Y.,
Xu, A. (eds.) WSEAS International Conference on Proceedings of Mathematics and
Computers in Science and Engineering, no. 7. World Scientific and Engineering Academy
and Society (2008)

11. Michiko. Accessed 01 Mar 2017. http://michiko.azurewebsites.net/
12. Haiku Dictionary. Accessed 10 Mar 2017. http://www.ahapoetry.com/aadoh/h_dictionary.

htm
13. Daily Haiku. Accessed 10 Mar 2017. http://www.dailyhaiku.org/
14. Syllable count. Accessed 10 Mar 2017. http://www.syllablecount.com/
15. YourDictionary. Accessed 10 Mar 2017. http://www.yourdictionary.com/
16. Words API. Accessed 10 Mar 2017. https://www.wordsapi.com

476 M. Hrešková and K. Machová

http://computationalcreativity.net/home/about/computational-creativity/
http://computationalcreativity.net/home/about/computational-creativity/
http://dx.doi.org/10.1007/3-540-46119-1_7
https://www.poets.org/poetsorg/text/haiku-poetic-form
http://michiko.azurewebsites.net/
http://www.ahapoetry.com/aadoh/h_dictionary.htm
http://www.ahapoetry.com/aadoh/h_dictionary.htm
http://www.dailyhaiku.org/
http://www.syllablecount.com/
http://www.yourdictionary.com/
https://www.wordsapi.com

Optimization, Probabilistic Analysis,
and Sorting

House Allocation Problems with Existing
Tenants and Priorities for Teacher Recruitment

Ana Paula Tomás(B)

DCC & CMUP, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
apt@dcc.fc.up.pt

Abstract. We study a variant of house allocation problems with appli-
cation to a real-world job assignment problem where some applicants
cannot result unmatched. Such applicants hold posts initially, which
enter the market if they can get strictly better posts. All applicants
are strictly ordered by priority in a single master list. Their preference
lists may be incomplete and may contain ties. We seek a matching that
assigns the best possible post to each applicant, taking into account their
preferences, priorities and initial posts. We give algorithms for solving
the problem in polynomial time for three different cases.

1 Introduction

Many real-world problems can be modelled as matching problems with pref-
erences, under some specific constraints and optimality criteria [18]. For many
applications, these problems arise in the context of centralised matching schemes
(a.k.a. clearinghouses) that assign applicants to posts. Algorithmic aspects of
matching problems with ordinal preferences have been extensively studied after
Gale and Shapley seminal work on the Stable Marriage Problem (SM) and vari-
ants [5]. For a recent comprehensive survey, we refer to [15]. Every agent reports
his/her preferences, as a preference list, which can be strictly or partially ordered
and complete or incomplete, modelling situations where it is allowed or disal-
lowed to express indifference and unacceptable pairs. These problems are often
modelled by two-sided markets, where each agent on one side has preferences
over agents of the other side [5,19]. Nevertheless, the situations where the mar-
kets are one-sided, in the sense that only one side plays an active role, expressing
preferences, are ubiquitous in practice. These include Housing Markets (HM) and
House Allocation (HA) problems [1,3,20,23], where most frequently the goal is
to find a Pareto optimal matching. In a Pareto optimal matching no agent can
improve his allocation without making any other agent worse off. In housing mar-
kets, each active agent owns an indivisible item, that is called a house, whereas

A. P. Tomás—This work was partially supported by CMUP (UID/MAT/00144/
2013), which is funded by FCT (Portugal) with national (MEC) and European
structural funds through the programs FEDER, under the partnership agreement
PT2020. The author gratefully acknowledges the support of COST Action IC1205
on Computational Social Choice (ECOST-STSM-IC1205-210914-046248).

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 479–492, 2018.
https://doi.org/10.1007/978-3-319-73117-9_34

480 A. P. Tomás

in house allocation no agent owns a specific house. In [1], Abdulkadiroglu and
Sönmez introduce an hybrid model, “house allocation with existing tenants”,
where some agents own a house and some are newcomers. Agents have strict
preferences over houses and each existing tenant is allowed to keep his current
house. The allocation must be individually rational, which means that no agent
may receive a house inferior to his own one. They propose two algorithms: the
Top Trading Cycles mechanism and YRMH-IGYT “you request my house, I get
your turn”. A strict ordering of the agents is required, which can be a random
ordering or an hierarchical ordering defined by seniorities, for example. In addi-
tion, these algorithms work for strict preferences only and, consequently, if there
are ties, a tie-breaking rule is used to eliminate indifference.

We study variants of the house allocation problem with existing tenants and
priorities, without a tie-breaking rule. An instance involves a set of agents A and
a set of houses H. The agents are ranked according to some criteria and define a
single strictly ordered master list. Every agent provides a preference list, which
may contain ties and be incomplete. Each house has a capacity that can be any
integer. We look for a matching that assigns the best possible house to each
agent, in view of their preferences and the priorities given by the master list.
Here, a matching can be a one-to-one matching, for unit capacities (HA), or a
many-to-one matching, in the capacitated case (CHA). Some agents own a house
initially (which, in CHA, corresponds to a vacancy in a house) and their houses
enter the market but cannot be assigned to other agents unless they can move
to a strictly better house.

In the sequel, we call the problem TRP and define the matchings we look for
as applicant-optimal weakly stable matchings. TRP because the initial motivation
for this work was a real-world problem, involving teacher recruitment in Portu-
gal [24,25]. Amendments to the teacher recruitment legislation are made almost
every year and, sometimes, they are troublesome. In the Fall 2004 and 2014,
there was a deep concern due to some failures in the allocation of teachers to
schools. The main recruitment program has a national scope and is centralised.
There are thousands of applicants but very few posts. Applicants are strictly
ranked and when they hold permanent posts, they cannot result unmatched. In
the worst case, they keep their current post. Their preference lists can contain
ties. Since in-service-time is one of the parameters used for ranking the candi-
dates, we need matching mechanisms that can produce optimal solutions, under
the constraints imposed by the law. That raised the question of whether TRP
could be solved in polynomial time, which led us to address the problem, without
being aware of some complementary regulation that established a tie-breaking
rule. This rule resolves ties using an ordering defined by school codes. Although
it has a drastic impact on the matching, it was not clearly stated in the main
decree, in 2004. It was introduced in 2006 as a result of [24]. The problem that
arose in 2014 resulted from another amendment. For the sake of transparency,
an hiring scheme that was running in a completely decentralised way in the pre-
vious years was centralised. It involved fixed-term contracts in public schools
with some autonomy. Each institution (school or school cluster) had its own

House Allocation Problems with Existing Tenants and Priorities 481

master list. First, there was a bug in the formula used to produce the master
lists. But, more importantly, there was really a problem since, for these offers,
the preference lists of the candidates are not sorted. The candidates apply for
schools, and just state whether they are willing to accept only full-time posts in
that school or also a part-time position (there are at least two types of workload
intervals). No candidate has a post initially. That renders the allocation prob-
lem NP-hard if, for instance, we seek a stable matching of maximum size. The
Stable Marriage Problem with Ties and Incomplete lists (SMTI) can be reduced
to this problem and it is known that SMTI is NP-hard, even under quite severe
restrictions on the number and lengths of ties [16]. But, as for the main com-
petition, for each institution, no candidate can overpass a “better” candidate
who is still unmatched. So, the centralised matching mechanism mimicked the
decentralised scheme and some applicants got many offers simultaneously for a
final choice (about a hundred offers in some cases reported in the news). That
raised controversy and caused significant delays. After some rounds, the control
was given back to the school directors, for the remaining vacancies. In a subse-
quent amendment, the procedure was decentralised again. These two situations
motivate our paper, which revises and extends [25]. It is worthwhile mentioning
that TRP was inspired by the teachers recruitment problem, but should not be
regarded as a model for the overall problem.

TRP has no relation to the problem of assigning teachers to schools studied
in [4]. It is related, but not equivalent, to HA with existing tenants and to profile-
based optimal problems (e.g., rank-optimal matchings [9,11], greedy maximum
matching [14], fair matchings [8], lexicographic maximum stable matchings [10]),
and the weighted popular matching problem [17,21]. All of them can be seen as
HA problems, with very distinct goals and properties, that are exploited by the
proposed matching mechanisms despite being grounded and employing standard
matching theory tools and techniques. The notion of applicant-optimal stable
matchings is close to that of strong priority matchings, recently defined in [13].
The Serial Dictatorship Mechanism with Ties (SDMT-1) introduced in that work
can be seen as a particular case of the algorithm we gave for TRP.

The rest of paper is structured as follows. In Sect. 2, we introduce some
notation and describe the problem formally. In Sect. 3 we show that TRP is
polynomially solvable. In Sects. 4–6, we give algorithms for solving specific vari-
ants: TRP with strictly ordered preference lists and unit capacities, with ties
and unit capacities, and the capacitated version (also with ties).

2 Problem Definition and Notation

An instance of TRP involves a set of agents A = {a1, a2, . . . , an1} and a set of
houses H = {h1, h2, . . . , hn2}, with A = AE ∪ AN and H = H0 ∪ HV , being AE

the set of existing tenants, AN the set of new agents, H0 the set of occupied
houses and HV the set of vacant houses. Each house h has a capacity c(h), that
can be any integer. If c(h) < 0 then no new agent can be assigned to h unless
1 − c(h) tenants who initially own h are assigned a new house in the matching.

482 A. P. Tomás

For each agent ai, let Γi,1, Γi,2, . . . , Γi,γi
be his preference list, in strictly

increasing order. Each Γi,l is a set of houses for which ai has the same preference,
which is defined by rankai

(h) = l, for all h ∈ Γi,l, for 1 ≤ l ≤ γi. In real-life
applications, such as [24], γi is limited by a constant, which we denote by U ,
that can be much smaller than the total number of vacancies.

Each agent ai has a last resort house, which is the house ai holds, if ai

is a tenant. Otherwise, we define it as a dummy house h0 (for a one-to-one
matching, we could clone it, and define a dummy house for each applicant). We
assume that A is strictly ordered by decreasing priority, through a master list,
and that rankh(ai) = i, if ai does not hold h and, otherwise, rankh(ai) = 0,
for all h �= h0. For convenience, we introduced the dummy house h0 with an
unbounded number of vacancies. In this way, TRP can be seen as an instance of
SMTI, for unit capacities (or of the Hospital/Residents problem, with ties, for
generic capacities). We look for a matching M that is weakly stable, which means
that there is no pair (a, h) such that agent a strictly prefers house h to M(a)
(i.e., ranka(h) < ranka(M(a))) and h is unassigned or strictly prefers a to M(h)
(i.e., rankh(a) < rankh(M(h)), if h is not free). For the capacitated version, the
second part is rephrased to h is under-subscribed or strictly “prefers” a to the
lowest ranked agent assigned to it in M .

A solution to TRP is an applicant-optimal weakly stable matching M� of the
applicants (agents) to posts (houses). Optimal means that ζ(M�) ≤lex ζ(M),
for every weakly stable matching M , where ≤lex stands for the lexicographic
order in (N ∪ {∞})n1 . The rankings profile ζ(M) of a matching M is the tuple
(z1, . . . , zn1), where zi is the rank of M(ai) in the preference list of ai. We
define rankai

(h0) = ∞, since h0 essentially means that ai gets “no house” (“no
post”). This notion of profile is distinct from the one addressed in other works
(e.g. [8,9,11,14]), but it is essentially the one studied in [13] for strong priority
matchings. In a rank-maximal (or greedy) matching the profile is given by the
number of applicants that are matched to their first choice, to their second
choice, and so forth [9,11].

Example 1. Let us consider the following two scenarios. In Case A, no agent
owns a house, whereas, in Case B, all of them own houses initially.

Case A Case B
a1 : {h1, h2, h3, h4} a1 : {h3}, {h2}, (holds h1)
a2 : {h1, h2, h3, h4} a2 : {h1}, (holds h2)
a3 : {h1} a3 : {h1}, (holds h3)
a4 : {h2}

In case B, the matching {(a1, h2), (a2, h1), (a3, h3)} is the solution of TRP. The
matching {(a1, h1), (a2, h2), (a3, h3)} is weakly stable, because every agent gets
the house he owns initially (for which he is top rank), but is not a solution
of TRP. The matching {(a1, h3), (a2, h2), (a3, h1)} is not weakly stable but its
rankings profile is ≤lex-minimum. In case A, {(a1, h1), (a2, h2), (a3, h0), (a4, h0)}
is weakly stable but not a TRP-solution, because its profile is not ≤lex-minimum.
The matching {(a1, h3), (a2, h4), (a3, h1), (a4, h2)} is a solution to TRP.

House Allocation Problems with Existing Tenants and Priorities 483

Before we proceed, we note that the existence of tenants and the requirement
that the matching must be weakly-stable and optimal in the above sense make
TRP distinct from the weighted popular matching problem, studied in [17,21].
In that variant of popular matchings [2], applicants have weights (used to define
priorities) and a matching M is weighted popular if there is no matching M ′ such
that the applicants preferring M ′ to M overweight the applicants preferring M
to M ′. Example 2 shows that an optimal weighted popular matching is not a
TRP-matching.

Example 2. Consider three agents a1, a2 and a3, given in decreasing priority
(weight) order, and three houses h1, h2 and h3, being h1 and h3 the houses that
a2 and a3 hold initially. Suppose that a1 strictly prefers h1 to h2 and is not
interested in h3, a2 only wants h3 and a3 only wants h1, that is:

a1 : {h1}, {h2} a2 : {h3}, (holds h1) a3 : {h1}, (holds h3)

The matching M1 = {(a1, h2), (a2, h1), (a3, h3)} is the unique solution to
TRP but M2 = {(a1, h2), (a2, h3), (a3, h1)} is more popular than M1. Even if it
seems nonsense to adopt M1 instead of the unstable matching M2, stability is
crucial for some real-life applications to avoid controversy.

Hence, TRP seeks a matching where every agent ai gets a house among
the best he can get in all weakly stable matchings that guarantee the same for
a1, . . . , ai−1, which seems fair. We will see that TRP is polynomially solvable, in
contrast to some variants of the Stable Marriage Problem with master preference
lists studied in [10] and of SMTI [12,16].

3 Polynomial Time Complexity

In this section we present a reduction of TRP with unit capacities to a sequence
of at most t maximum-weight matching problems in bipartite weighted graphs,
where t = |AE | is the number of existing tenants. To reduce the problem we
introduced edge weights that guarantee weak stability but are exponential. This
kind of reduction to weighted matching was previously independently introduced
in [9,11], for solving greedy (rank-maximal) matching problems. We consider a
relaxation of TRP where we no longer require that the existing tenants get a
real house. Thus, we extend the preference list of ai:

Γ̃ai
:
{

Γi,1, Γi,2, . . . , Γi,γi
, {hj}, {h′

i} if ai holds hj

Γi,1, Γi,2, . . . , Γi,γi
, {h′

i}, if ai /∈ AE

where h′
i is the last resort house (a dummy house), which is different for every

applicant. We denote by Ωi the rank of the last resort house, in each case, i.e.,
γi + 2 and γi + 1, respectively, and define the weight w(ai, Γ̃i,z) of every house
that belongs to Γ̃i,z, by w(ai, Γ̃i,z) = r̃i(Ωi −z +1), for 1 ≤ z ≤ Ωi, with r̃n1 = 1
and r̃i−1 = (U + 3)r̃i, for 1 < i ≤ n1. Let G′ = (A ∪ H ′, E′) be the resulting
weighted graph, where A is the set of agents, H ′ = H ∪ {h′

i | i ∈ A} is the set of

484 A. P. Tomás

houses and the set of edges is given by E′ = {〈ai, h〉 | h ∈ Γ̃ai,z, for 1 ≤ z ≤ Ωi},
with weights defined by w. The weight function w has been chosen in such a way
that no group of agents of a lower rank (i.e., lower priority) may violate weak
stability to globally increase the sum of the weights of their assignments. This is
the key result for the proof of Proposition 1, since it implies that any maximum
weight matching in G′ is weakly stable and applicant-optimal in G′.

Proposition 1. If AE = ∅, a maximum weight matching in G′ is a solution to
TRP (with unit capacities) for the weight function w, with G′ defined above.

Proof. Since every agent can be assigned his last resort house h′
i and all weights

are positive integers, every maximum weight matching in G′ is a maximum
cardinality matching in G′. Let (β1, . . . , βn1) and (β′

1, . . . , β
′
n1

) be the weights of
the houses assigned to a1, . . . , an1 in two maximum cardinality matchings. We
will see that the weight function ensures that, for all i0, if

∑n1
i=i0

βi ≥ ∑n1
i=i0

β′
i

then βi0 ≥ β′
i0

. Considering the upper and lower bounds of the weights of the
edges incident to ai in G′, we have βi ≤ r̃i(Ωi −1+1) = r̃iΩi < r̃i(U +3) = r̃i−1

and β′
i ≥ r̃i(Ωi − Ωi + 1) = r̃i. Therefore

n1∑
i=i0

βi −
n1∑

i=i0

β′
i < (βi0 − β′

i0) +
n1∑

i=i0+1

(r̃i−1 − r̃i) = (βi0 − β′
i0) + r̃i0 − 1

and βi0 −β′
i0

= r̃i0(−zi0 +z′
i0

), for some zi0 and z′
i0

, which define the ranks of the
houses assigned to ai0 in each case. If we assume, by contradiction, that βi0 < β′

i0
,

then z′
i0

< zi0 and
∑n1

i=i0
βi − ∑n1

i=i0
β′

i < r̃i0(z
′
i0

− zi0 + 1) − 1 < 0. Hence, for
all i0, if

∑n1
i=i0

βi ≥ ∑n1
i=i0

β′
i then βi0 ≥ β′

i0
. This property implies that if M�

is a maximum weight matching in G′ then M� is a weakly stable matching in
G′ and ζ(M�) is lexicographically minimum among the weakly stable matchings
in G′. If AE = ∅, this means that M� is a solution to TRP. ��

If AE �= ∅, any maximum weight matching M� in G′ that violates the con-
straints imposed by tenure is not a TRP-solution, but provides relevant infor-
mation. Indeed, all agents matched in M� to their last resort (as well, as any
ai ∈ AE that gets the house hj he owns) cannot get a better house other than
their (real) last resort. Hence, we can assign them their last resort house, remove
them and their houses from the graph, and repeat the procedure until all tenants
are matched to real houses (which requires no more than t iterations).

Corollary 1. TRP can be solved in O(
√

min(n1, n2) mn1 max(1, t)) for unit
capacities, where t = |AE | and m =

∑
i

∑
j |Γi,j | is the total length of the pref-

erence lists, assuming that maxi γi ≤ U , for a constant U .

Proof. In [6], Goldberg et al. show that a matching of maximum weight in a
weighted bipartite graph can be found in O(

√
rm log C) time, where r is the

size of the smaller side of the graph, m is the number of edges, and C is the
largest absolute value of an arc-cost. In our model, the largest weight C ≤ Γ̃1,1 =
r1Ω1 < (U + 3)n1 and, in the worst case, we repeat the procedure t times. ��

House Allocation Problems with Existing Tenants and Priorities 485

Although we considered the case of unit capacities, we can conclude that the
capacitated version is solvable in pseudo-polynomial time, since we can clone
each house to reduce the problem to the unit capacity case. The case where c(h)
is negative, for some h, can be handled in the same way, as that means that
the vacancies created by tenants that moved from h to other houses cannot be
assigned to newcomers unless more than |c(h)| tenants move and create some
real vacancies. Otherwise, their vacancies are extinguished.

In the remaining sections we develop specific algorithms for TRP that
improve these complexity bounds.

4 TRP for Strict Preferences and Unit Capacities

We start by considering the case where the preference lists of the agents are
strictly ordered and c(h) = 1, for all h ∈ H. Algorithm 1 adapts the applicant-
oriented version of Gale-Shapley Algorithm to solve TRP in O(m + n) time. It
assumes that the preference lists of the existing tenants contain the houses they
own, whereas, for newcomers, they contain the dummy house h0, as last resort.

Algorithm 1. TRP for strictly ordered preference lists (last resort in Prefs)
1: M := ∅; I := i := 1;
2: while i ≤ n1 do
3: hj := Prefs[ai].pop();
4: if hj is free or hj is the dummy house h0 then
5: M := M ⊕ {〈ai, hj〉}; � assigns ai to hj

6: i := I + 1; I := I + 1; � all agents from 1 to I were matched
7: else
8: ak := M(hj);
9: if (k > i and ak �= holds(hj)) or (k < i and ai = holds(hj)) then

10: M := M ⊕ {〈ak, hj〉, 〈ai, hj〉}; i := k; � ak becomes free
11: end if
12: end if
13: end while

Proposition 2. When the preference lists of the agents contain no ties (i.e.,
Γi,l is a singleton for all i and l), TRP with unit capacities admits a unique
solution. This matching can be found by Algorithm1 in O(n + m), where m is
the total length of the preference lists, and n = n1 + n2.

Proof. TRP with unit capacities and strictly ordered preference lists can be
encoded as an instance of the Stable Marriage Problem with Incomplete Lists,
as we discussed above. It is known that the applicant-oriented version of the
Gale-Shapley algorithm [5,7] computes the stable matching that is optimal from
the point of view of the applicants in O(m + n) time. For strict preferences, this
matching is the unique solution of TRP. ��

486 A. P. Tomás

5 TRP with Ties and Unit Capacities

We will see now that, when the preference lists may contain ties, TRP can
be solved as a sequence of maximum cardinality bipartite matching problems
on reduced sub-graphs, combined with an effective propagation of the stabil-
ity constraints. This structural property is important for an efficient time and
space complexity. Our algorithm (Algorithm2) is given below in pseudocode. It
assumes that the last resort houses are not in the preference lists.

Algorithm 2. TRP for preference lists with ties (last resort not in Prefs)
1: Define all agents and houses to be free and define Reject[hj] := ∞, for all j;
2: M := ∅; G := (A ∪ H, ∅); I := i := 1; ok := false;
3: while i ≤ n1 do
4: while ok = false and not Prefs[ai].isEmpty() do
5: ok := InsertNewLevel(i);
6: end while
7: if ok = false then
8: hj := holds(ai);
9: delete ai from A; � set ai as “definitely assigned”

10: if hj �= h0 then
11: Reject[hj] := 0; � can delete hj from G also
12: end if
13: if hj is free then � h0 is assumed to be free always
14: M := M ⊕ {〈ai, hj〉};

i := I + 1; I := I + 1;
15: else � ai holds hj and hj is no longer free
16: ak := M(hj); � ak was matched to hj in M
17: M := M ⊕ {〈ak, hj〉, 〈ai, hj〉}; � ak looses hj to assign ai

18: i := k; ok := true; � try to match ak at the same level
19: end if
20: else
21: if there is an augmenting path P starting at ai then � found by BFS
22: M := M ⊕ P ; i := I + 1; I := I + 1; � agents from 1 to I matched
23: else
24: k := index of the lowest ranked agent in the Hungarian tree (root ai);
25: if k > i then
26: P := an alternating path from ai to ak (i.e., a switching path);
27: M := M ⊕ P ; � ak becomes free and ai matched
28: i := k;
29: DeleteEdgesAndUpdateRejectionLevel(k);
30: end if
31: end if
32: ok = false; � the current graph must be updated to insert a new tie
33: end if
34: end while

House Allocation Problems with Existing Tenants and Priorities 487

For a matching M , an alternating path is a simple path that alternates
between matched and free edges. An augmenting path is an alternating path
that starts and ends with a free vertex. The function InsertNewLevel(i) looks
for the next preference level Γi,zi

that contains some feasible house (one whose
rejection level is greater than or equal to i). Returns true if it succeeds in finding
such a house and adds the corresponding edges to the current graph. Otherwise
returns false. The function DeleteEdgesAndUpdateRejectionLevel(k)
deletes all edges incident to ak in the current graph and updates the rejection
level of the corresponding houses (this is not important to prevent some agent
with lower priority to be matched to them, but can improve the runtime of the
algorithm). The operator ⊕ denotes the symmetric difference, as usual.

Our algorithm works iteratively and uses a sequence of reduced graphs. The
existence of tenants and ties requires a specialized treatment, although other
algorithms follow a similar approach (e.g., the algorithm given in [17] for finding
weighted popular matchings and their extension to the weighted capacitated
house allocation problem [21]). At each stage, the idea is to try to augment
a partial matching to provisionally (or even definitely) match one more agent,
using the master list to define the order in which the agents are considered.
For each agent ai, only one preference tie Γi,zi

is active in each iteration. The
algorithm adds Γi,zi

to the graph and looks for an augmenting path starting
at ai using the provisonal matching M .

When we try to assign a house to a tenant ai, and there remain no choices
for ai (the preference list is empty), then ai must be assigned the house he owns.
If this house was (provisionally) assigned to another agent, say ak, then ak

becomes free and, in the next iteration, the algorithm looks for a house to ak.
In doing that, it can reach a situation that forces some agent with lowest pri-
ority to become free. Therefore, when no augmenting path remains, we look for
alternating paths that start at the exposed (unmatched) agent ai and end at an
agent ak such that k > i. We will refer to them as switching paths. If ai cannot
be matched to any house in Γi,zi

, we record it, by decreasing the rejection level
of the houses in Γi,zi

to i − 1. Then, we remove the edges defined by Γi,zi
and

introduce the edges defined by the next tie Γi,1+zi
. The rejection level is set to

zero when the house is assigned to the agent that owns it initially (another way
to understand this is to consider that they both leave the matching scheme).

In each iteration, the algorithm looks for a house for ai. It searches for aug-
menting paths, starting at ai, using breadth-first search (BFS). This can be done
in O(|EG|) for the current graph G (e.g., [22]). If no augmenting path is found
then, without increasing the time complexity, we can look for the agent ak with
the lowest rank that was visited by the Hungarian tree rooted at ai. This agent
can be ai itself. If it is an agent ak with lower priority then the algorithm uses
the switching path from ai to ak to update the matching.

Example 3. Suppose A = {a1, a2, a3, a4}, a4 owns h1, each house has unit
capacity and Γ1,1 = {h1, h2, h3, h4}, Γ2,1 = {h1}, Γ2,2 = {h2}, Γ3,1 =
{h1}, Γ3,2 = {h2}, Γ4,1 = {h2}. Figure 1 sketches the idea of our

488 A. P. Tomás

algorithm. Thick solid edges indicate the current matching. In the end, M =
{(a1, h3), (a2, h2), (a4, h1), (a3, h0)}, meaning that a3 results unmatched.

Fig. 1. Looking for a TRP matching.

Theorem 1. Algorithm2 outputs a solution to TRP with unit capacities in
O(n2

1K max(1, t)) time, where K is the maximum number of houses equally
ranked by some agent and t is the number of existing tenants.

Proof. The main while loop keeps the invariant that the agents ai, aI+1, . . . , an1

are free in M and M is a weakly stable matching whose profile is lexicographically
minimum for {a1, . . . , aI} \ {ai}; zM (ap) ≤ zM ′

(ap), for all p, for every lexico-
graphically minimum weakly stable matching M ′ that matches {a1, . . . , aI}.

Now, we proceed by induction.

– When we check i ≤ n1 for the first time, the loop invariant holds trivially.
– Let us assume that the condition holds at the beginning of a given iteration.
– Suppose that ok = false in line 4. Then we move from one preference level

to the next one because there remain no feasible houses in the previous level.
All such houses had a rejection level smaller than i, which implies that we
have to move to the next tie of Prefs[ai].

– If ok = false in line 7, there remain no options in the preference list of ai.
Therefore ai must be assigned to his last resort. We assume that Holds(ai)
returns h0 when ai is not an existing tenant. If hj �= h0, then the algorithm
checks whether hj is free (line 13) or not (line 16). If it is free, all agents
from 1 to I are matched and no blocking pair can arise in a subsequent step

House Allocation Problems with Existing Tenants and Priorities 489

involving hj . If hj is not free (line 16), ak := M(hj) becomes free and hj will
be definitely assigned to ai (who owns it initially [lines 9–12]). In this case,
we have to check whether ak can get a house in the current tie Γk,zk

. For that
reason ok is set to true in line 18.

– (line 21) Suppose that ok = true and an augmenting path P w.r.t. M is found.
Then M ⊕ P is weakly stable matching and lexicographically minimum for
{a1, . . . , aI}, because every agent that was matched in M is matched at the
same tie, and (ai, (M ⊕ P)(ai)) is no longer a blocking pair for the matching
(i.e., a pair that raises a stability conflict). Since z(·) has not changed, we
conclude that the stated condition holds at the beginning of the next iteration
for [aI+1, . . . , an1] and M := M ⊕ P .

– (lines 24–29) We check whether there is a switching path from ai to ak, for
some k > i. The agent ak with the lowest priority (line 24) cannot be assigned
to any house in his current preference level. Here we assume that G contains
no edge that was ruled out by an update of the rejection level of some house
(this can be implemented in a lazy fashion during the search for augmenting
paths).

The main while-loop terminates because the tuple (I,D, i, z(ai)) increases
lexicographically in each iteration: n1 − I + 1 agents remain unmatched, D
is number of agents assigned to their last resort (the house they own or h0),
and z(ai) identifies the current tie Γi,z(ai) for the current agent ai.

The time bound O(n2
1K max(1, t)) follows from the fact that there are at

most O(n1K) edges in the graph and we can expand the Hungarian tree to
continue the search for augmenting paths for ai, when ai is the same as in the
previous iteration, so that the whole procedure takes O(n1K). The time bound
is smaller than the one given in Corollary 1, since n1K ≤ min(n1K,m). ��

6 Extensions to the Capacitated TRP with Ties

In the teacher recruitment setting, it is important to consider also the assignment
of applicants to schools rather than to posts. Each school may have a number of
vacancies, all corresponding to identical posts. Due to demographic reductions,
some schools in Portugal have negative vacancies nowadays. The law says that
whenever a teacher that holds such a vacancy applies for another permanent
position and gets it, his vacancy cannot be assigned to another candidate. That
is, a school that has |c(h)| negative vacancies may admit new teachers only if
more than |c(h)| tenured applicants move from it. The algorithm given previously
may be adapted to solve TRP (with non-unitary capacities) in polynomial time.
As for the previous model, we initially define the capacity of each house as the
number of the published vacancies plus the number of agents that are trying to
move from it. An augmenting path with origin at ai terminates at a house that has
a positive capacity currently or at a provisionally assigned agent of lower priority.
When an agent ai has to be assigned to the house hj he holds initially and the
current capacity of hj is zero, the agent with the lowest priority provisionally
assigned to that house becomes unmatched, if there is any. Otherwise, ai is

490 A. P. Tomás

definitely assigned to his house, which necessarily ends up with negative capacity.
The algorithm, stated as Algorithm3, is based on the model of TRP as a flow
network and adapts the algorithm for computing a maximum s-t flow. Since
TRP is defined by a bipartite graph, and the directed edges from A to H have
unit capacity, we do not have to introduce a source s and a sink t explicitly.

Algorithm 3. TRP for generic capacities and ties (last resort not in Prefs)
1: Define all agents and houses to be free and define Reject[hj] := ∞, for all j;
2: M := ∅; G := (A ∪ H, ∅); I := i := 1; ok := false;
3: while i ≤ n1 do
4: while ok = false and not Prefs[ai].isEmpty() do
5: ok := InsertNewLevel(i);
6: end while
7: if ok = false then
8: set ai as “definitely assigned”; hj := holds(ai);
9: if hj is under-subscribed or all agents assigned to hj hold hj then

10: M := M ⊕ {(ai, hj)}; update residual graph; i := I + 1; I := I + 1;
11: else � ai holds hj and hj is full
12: ak := the lowest ranked agent provisionally assigned to hj ;
13: M := M ⊕ {(ak, hj), (ai, hj)}; and update residual graph (delete ai)
14: Reject[hj] := k − 1;
15: i := k; ok := true; � try to match ak at the same level
16: end if
17: else
18: if there is an augmenting path starting at ai (s → ai � t) then
19: P := an augmenting path starting at ai (breadth-first search);
20: M := M ⊕ P ; and update residual graph
21: i := I + 1; I := I + 1; � all agents from 1 to I were matched
22: else
23: k := the lowest ranked agent reached from ai in the residual graph;
24: if k > i then
25: P := a path from ai to ak in the residual graph (switching path);
26: M := M ⊕ P ; and update residual graph � ak is free and ai matched
27: i := k; DeleteEdgesAndUpdateRejectionLevel(k);
28: end if
29: end if
30: ok = false; � the current graph must be updated
31: end if
32: end while

7 Conclusion

Several variants of the Stable Marriage Problem with ties where individual pref-
erence lists may be derived from master lists are NP-hard, for weak stability [10].
These results carry over to the corresponding Hospital/Resident problems

House Allocation Problems with Existing Tenants and Priorities 491

with ties. Although TRP is related to these problems, the kind of matching
we seek renders TRP polynomially solvable. Hence, for the teacher recruit-
ment problem we could discard tie breaking rules that usually lead to unfair
allocations [24].

Acknowledgments. The author would like to thank Kataŕına Cechlárová and anony-
mous reviewers for insightful comments.

References

1. Abdulkadiroğlu, A., Sönmez, T.: House allocation with existing tenants. J. Econ.
Theory 88, 233–260 (1999)

2. Abraham, D.J., Irving, R.W., Kavitha, R., Mehlhorn, K.: Popular matchings. In:
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), pp. 424–432. SIAM (2005)

3. Cechlárová, K., Manlove, D.F.: The exchange-stable marriage problem. Discret.
Appl. Math. 125(1–3), 109–122 (2005)

4. Cechlárová, K., Fleiner, T., Manlove, D.F., McBride, I.: Stable matchings of teach-
ers to schools. Theoret. Comput. Sci. 653, 15–25 (2016)

5. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69, 9–15 (1962)

6. Goldberg, A.V., Kaplan, H., Hed, S., Tarjan, R.E.: Minimum cost flows in graphs
with unit capacities. In: Mayr, E.W., Ollinger, N. (eds.) STACS 2015, pp. 406–419
(2015)

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem - Structure and Algo-
rithms. MIT Press, Cambridge (1989)

8. Huang, C.C., Kavitha, R., Mehlhorn, K., Michail, D.: Fair matchings and related
problems. Algorithmica 74, 1184–1203 (2016). https://doi.org/10.1007/s00453-
015-9994-9

9. Irving, R.W.: Greedy matchings. University of Glasgow, Computing Science
Department Research report, TR-2003-136, April 2003

10. Irving, R.W., Manlove, D.F., Scott, S.: The stable marriage problem with master
preference lists. Discret. Appl. Math. 156(15), 2959–2977 (2008)

11. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2004), pp. 68–75. SIAM (2004)

12. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete
lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 41

13. Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the
House Allocation problem. In: Proceedings of the EC 2014 15th ACM Conference
on Economics and Computation, pp. 453–470. ACM (2014)

14. Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal
matchings in the student/project allocation problem. In: Kratochv́ıl, J., Miller,
M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 213–225. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19315-1 19

15. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific, Sin-
gapore (2013)

https://doi.org/10.1007/s00453-015-9994-9
https://doi.org/10.1007/s00453-015-9994-9
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/978-3-319-19315-1_19

492 A. P. Tomás

16. Manlove, D.F., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of
stable marriage. Theoret. Comput. Sci. 276, 261–279 (2002)

17. Mestre, J.: Weighted popular matchings. ACM Trans. Algorithms 10(1), 2 (2014)
18. Niederle, M., Roth, A.E., Sönmez, T.: Matching. In: The New Palgrave Dictionary

of Economics, 2nd edn. Palgrave Macmillan (2007)
19. Roth, A.E.: The evolution of the labor market for interns and residents: a case

study in game theory. J. Polit. Econ. 92, 991–1016 (1984)
20. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1, 23–37 (1974)
21. Sng, C.T.S., Manlove, D.F.: Popular matchings in the weighted capacitated house

allocation problem. J. Discret. Algorithms 8, 102–116 (2010)
22. Wolsey, L.A.: Integer Programming. Wiley-Interscience, Hoboken (1998)
23. Yuan, R.: Residence exchange wanted: a stable residence exchange problem. Eur.

J. Oper. Res. 90, 536–546 (1996)
24. Tomás, A.P.: Emparelhamentos, casamentos estáveis e algoritmos de colocação de

professores. Technical report DCC-2005-02, DCC - FC & LIACC, University of
Porto (2005). (in Portuguese). www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-02.pdf

25. Tomás, A.P.: Weak stable matchings with tenants and ties. Presented at CSCLP
2006: Annual ERCIM Workshop on Constraint Solving and Constraint Logic Pro-
gramming, Lisbon, Portugal, June 2006

www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-02.pdf

Runtime Distributions and Criteria for Restarts

Jan-Hendrik Lorenz(B)

Institut für Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany
jan-hendrik.lorenz@uni-ulm.de

Abstract. Randomized algorithms sometimes employ a restart strat-
egy. After a certain number of steps, the current computation is aborted
and restarted with a new, independent random seed. In some cases,
this results in an improved overall expected runtime. This work intro-
duces properties of the underlying runtime distribution which determine
whether restarts are advantageous. The most commonly used probability
distributions admit the use of a scale and a location parameter. Location
parameters shift the density function to the right, while scale parameters
affect the spread of the distribution. It is shown that for all distributions
scale parameters do not influence the usefulness of restarts and that
location parameters only have a limited influence. This result simplifies
the analysis of the usefulness of restarts. The most important runtime
probability distributions are the log-normal, the Weibull, and the Pareto
distribution. In this work, these distributions are analyzed for the use-
fulness of restarts. Secondly, a condition for the optimal restart time (if
it exists) is provided. The log-normal, the Weibull, and the generalized
Pareto distribution are analyzed in this respect. Moreover, it is shown
that the optimal restart time is also not influenced by scale parameters
and that the influence of location parameters is only linear.

1 Introduction

Restart mechanisms are commonly used in day-to-day life. For example, when
waiting for an email response, it is common to send the original email again
after some time. Therefore it is not surprising that restart strategies are used
in subjects as diverse as biology (e.g. [20]), physics (e.g. [7]) and computer sci-
ence (e.g. [9,21]). There are at least two large fields in computer science which
utilize restarts. On the one hand network protocols often have a retransmission
timer (e.g. TCP, see [19]), after a timeout the loss of the package is assumed
and therefore the message is resent. On the other hand, probabilistic algorithms
often restart after a certain number of steps without finding a solution, those
algorithms are especially common for constraint satisfaction problems (CSP)
and the well-known satisfiability problem (SAT). Although in practical use, our
impression is that the power of this algorithm paradigm is still underestimated.
Restarts can be used to improve the performance of an algorithm in regards to
various measures. For example, restarting the algorithm can help to improve the
completion probability when a deadline is present. This model was studied by

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 493–507, 2018.
https://doi.org/10.1007/978-3-319-73117-9_35

494 J.-H. Lorenz

Wu [23] while Lorenz [12] examined completion probabilities for parallel algo-
rithms using restarts. Another measure which can benefit from restarts is the
expected runtime.

An important class of distributions for which restarts often improve the
expected runtime is the so-called class of heavy-tailed distributions. Heavy-tailed
distributions have a tail which decays slower than an exponential. Crovella et al.
[6] showed that transmission times in the world wide web follow a power-law tail
which is a subclass of heavy-tailed distributions. Gomes et al. [9] observed that
some instances in CSP also show a power-law tail, while Caniou and Codognet
[5] examined that the log-normal distribution is a good fit for some problems in
constraint satisfaction. The log-normal distribution also belongs to the class of
heavy-tailed distributions.

Luby et al. [14] introduced two of the most important restart strategies.
The fixed cut-off strategy always restarts after the same (fixed) number of steps.
They showed that this strategy is optimal for a certain (possibly infinite) number
of steps. However, in general finding the right number of steps before restarting
requires extensive knowledge of the distribution. The second strategy which Luby
et al. introduced is called Luby’s (universal) strategy which slowly increases the
restart times. This strategy does not require any knowledge of the underlying
distribution and compared to the optimal strategy the expected runtime of a
process utilizing Luby’s strategy is only higher by a logarithmic factor.

Since Luby’s strategy does not require any a-priori knowledge of the distri-
bution, it is nowadays more commonly used than the fixed cut-off strategy. One
could, however, argue that better strategies are possible since, in a few cases,
some information is available prior to the experiment. For instance, for many
algorithms, the distribution for a certain class of problems has been observed
empirically. Arbelaez et al. [2] use a machine learning approach to predict the
runtime distributions of several randomized algorithms. This knowledge can
be used to obtain a better restart strategy for this class of problems. Then,
a speedup of, at least, a logarithmic factor can be expected (compared to Luby’s
strategy). Such a factor cannot be ignored in practice.

Choosing the wrong restart strategy can result in expected runtimes which
are much worse than not restarting at all. On the other hand, a good choice
regarding the restart strategy can result in a super-exponential speedup. We
believe that not enough attention has been paid to this field of research.

Our contribution: A condition for the usefulness of restart (Theorem1) and
a condition for optimal restart times (Theorem2) is obtained. It is shown that
scale parameters neither influence the usefulness nor the optimal restart times
(Theorems 3 and 4). The log-normal and the generalized Pareto distribution
are analyzed for the usefulness of restarts and their optimal restart times. The
Weibull distribution is also studied for its optimal restart times. Parameter set-
tings for all these distributions for which restarts are useful are obtained. Finally,
it is shown that the influence of location parameters on the usefulness of restarts
is limited. This is, for all distributions discussed here, restarts are still useful
when a location parameter is present. The influence of a location Parameter on
the optimal restart time is just linear.

Runtime Distributions and Criteria for Restarts 495

2 Preliminaries

In this section, the notation used throughout this work is introduced. Let X
be a real-valued random variable. Then FX(t) = Pr(X ≤ t) is the cumulative
distribution function (cdf) of X and its derivative fX(t) = d

dtF (t) is the density
function of X. In many cases the quantile function of the random variable X is
helpful, it is defined as follows:

Definition 1 [18]. Let X be a real-valued random variable with cumulative dis-
tribution function FX : R → [0, 1]. Then the Quantile function QX : [0, 1] → R

is given by
QX(p) = inf{x | F (x) ≥ p}. (1)

For continuous, strictly monotonically increasing cumulative distribution func-
tions FX the quantile function QX is the inverse function of FX .

Luby et al. defined the fixed cut-off strategy.

Definition 2 [14]. Let X be a random variable describing the runtime of a prob-
abilistic algorithm A on some specific input. Given any value t ∈ R+ a new
algorithm At is obtained by restarting A after time t has passed without finding
a solution. Then Xt is a random variable describing the runtime of At.

When talking about restarts, restarts using the fixed cut-off strategy are meant.
The notion of usefulness is often used in this work. Restarts are called useful
if there is a t > 0 with E[Xt] < E[X]. Throughout this work, only real-valued
random variables such that FX , fX and QX exist are considered. If it is clear
from the context, the subscript X is omitted for the functions defined here. For
the results presented here, we assume that the number of restarts is not limited.

3 Main Results

Before employing a restart strategy, it should first be considered under which
conditions restarts are useful at all. Moorsel and Wolter [16] obtained a condition
for the usefulness of restarts: Let T be a random variable describing the runtime
of the process if there is a t > 0 with E[T] < E[T − t | T > t], then restarts are
useful. They showed that this condition is sufficient and necessary if the mean
E[T] exists. This is a property which is often shown by heavy-tailed distributions.
However, there are heavy-tailed distributions which do not fulfill their conditions,
and there are also light-tailed distributions which do fulfill this condition. In
this section, another condition for the usefulness of restarts is provided and it is
applied to several distributions.

3.1 Effective Restarts

There are several ways to describe a dataset. Two of the most commonly used
values are the median and the mean, both of which describe a ‘typical’ value for

496 J.-H. Lorenz

this dataset. If the mean lies to the right of the median one can speak of (posi-
tively) skewed data. While outliers contribute linearly to the mean, the median
is very resistant to outliers. Therefore a big difference between the median and
the mean can be explained by either many outliers or a few, but extreme out-
liers. In both of these cases, restarts can be an efficient way to reduce outliers.
Thus comparing the mean to the median yields a simple condition for the use-
fulness of restarts: If Q(0.5)/E[X] < 0.5, then restarts are beneficial. This holds
because the expected runtime E[XQ(p)] is bounded from above by Q(p)

p . This
idea can be easily generalized. If the mean is large because of a small number of
disproportionately long runs, but there are also many short runs, then restarts
are useful. Measuring this inequality is a well-known field in economics which
is known as income inequality metrics. One of those metrics, the Lorenz curve,
turns out to be helpful in the following.

Definition 3 [13]. Let X be a real-valued random variable. Then the Lorenz
curve L : [0, 1] → [0, 1] is given by:

L(p) =

∫ p

0
Q(x)dx

E[X]
. (2)

The derivative L′ of L is given by L′(p) = Q(p)
E[X] . If the mean is infinite, then

it is clear that restarts are always useful as long as some quantile exists. This is
a property which can, for example, be observed for some power-laws. The next
theorem provides a necessary and sufficient condition.

Theorem 1. Let X be a real-valued random variable, then restart are useful if
and only if there is a p ∈ [0, 1) such that

(1 − p)L′(p) + L(p) < p. (3)

Proof. The expected runtime with an unbounded number of restarts after Q(p)
steps is given by (see [22]):

E[XQ(p)] =
1 − p

p
Q(p) + E[X | X < Q(p)] (4)

The conditional expectation E[X | X < Q(p)] is defined by
∫ Q(p)
0 xf(x)dx

p which is

equivalent to
∫ p
0 Q(u)du

p . This can be obtained by substitution u = F (x). Inserting
these identities into E[X] > E[XQ(p)] and dividing by E[X] yields:

p > (1 − p)L′(p) + L(p). (5)

This completes the proof. ��
The difference with the condition in [16] is that the existence of E[X] is not
required. Also, since p is limited to [0, 1) it is algorithmically easy to find inter-
vals for which restarts are useful, while in the condition in [16] the variable is
often unbounded. If the condition in Eq. 3 would be an equality instead of an
inequality, then the condition would describe quantiles where restarts are nei-
ther harmful nor helpful. Wolter [22] showed that for the exponential distribution
restarts are neither helpful nor harmful.

Runtime Distributions and Criteria for Restarts 497

3.2 Optimal Restarts

In the previous section, a condition for the usefulness of restarts was introduced.
This section focuses on optimal restart times. Wolter [22] provided a relationship
between the optimal restart times and the inverse hazard rate. Here a condition
for the optimal restart time is shown by using quantile functions. This classifi-
cation is used to analyze the optimal restart times of several distributions. It is
shown that a condition for the optimal restart time can be expressed solely in
terms of the quantile function.

Theorem 2. Let X be a real-valued random variable with the quantile function
Q and its antiderivative Q. Then all optimal restart times Q(p) have to fulfill:

(p − 1)Q(p) + p(1 − p)Q′(p) − Q(p) + Q(0) = 0, (6)

where Q′ is the derivative of the quantile function Q.

Proof. The expected runtime under restart after Q(p) steps is given by:

E[XQ(p)] =
1 − p

p
Q(p) +

Q(p) − Q(0)
p

. (7)

By equating the derivative with zero the function can be minimized. After mul-
tiplying the derivative with p2 the obtained condition is:

(p − 1)Q(p) + p(1 − p)Q′(p) − Q(p) + Q(0) = 0, (8)

where Q′ is the derivative of Q. This completes the proof. ��
Next, the influence of scale parameters on the condition from Theorem2 is inves-
tigated.

3.3 Scale Parameter

In this section, it is shown that for every continuous family of distributions there
is one parameter which does not have an effect: the scale parameter.

Definition 4 [15]. Let X be a real-valued, continuous random variable with cdf
FX . A new random variable Y with cdf FY is obtained by the identity FX(x) =
FY (x

β) for β > 0. The parameter β is called a scale-parameter. This is denoted

as Y
d= βX.

With this definition, the main results of the section can be derived.

Theorem 3. Let X be a real-valued, continuous random variable such that
restarts are useful. Then for Y

d= βX restarts are also useful for every β > 0.

498 J.-H. Lorenz

Proof. Let X and Y = βX be random variables with β > 0. Then the quantile
function QY , its antiderivative QY and the mean E[Y] are given by:

QY (p) = βQX(p), (9)
QY (p) = βQX(p), (10)
E[Y] = βE[X] (11)

Thus, Y fulfills the condition from Theorem1 iff X fulfills it. ��
Since the derivative Q′

Y is given by Q′
Y = βQ′

X , the result can be extended
to show that scale parameters do not change the optimal restart time. The proof
is similar in its nature and is therefore omitted.

Theorem 4. Let X be a real-valued, continuous random variable and let q ∈
(0, 1) be such that QX(q) is the optimal restart time. Let β > 0 be a positive, real
number, then QβX(q) is the optimal restart time for the random variable βX.

These findings show that scale parameters can be ignored in the analysis
for restart times. For several commonly used distributions the properties from
Theorems 1 and 2 can be applied.

3.4 Log-Normal

Due to the central limit theorem, the log-normal distribution arises by the prod-
uct of n i.id random variables. Barrero et al. [4] observed log-normally distributed
times of several evolutionary algorithms, including genetic programming, parti-
cle swarm optimization, and genetic algorithms. Muñoz et al. [17] empirically
showed that the runtime of several path planning algorithms such as A∗ and
Theta∗ follow log-normal distributions. Frost et al. [8] argued that the runtime
of several backtracking algorithms follow log-normal distributions in the case
of unsolvable binary CSP instances. Arbelaez [1] studied the runtime distribu-
tions of two SAT solvers and found that for randomly generated instances the
log-normal distribution is a good fit. Thus, the log-normal distribution is com-
monly used to describe the runtime of local search algorithms. The log-normal
distribution is defined as follows:

Definition 5 [18]. Let X be a real-valued random variable. If there are param-
eters μ > 0, σ > 0, such that the random variable U with

U =
log (X) − μ

σ
(12)

is standard normal distributed, then X is said to be log-normally distributed. In
this case the mean E[X] and the quantile function QX are given by

E[X] = eμ+σ2/2, (13)

QX(p) = eμ+σ
√
2erf−1(2p−1), (14)

where erf−1 is the inverse error function.

Runtime Distributions and Criteria for Restarts 499

The erf−1 function is not analytically solvable, but there are numerical
approaches. An antiderivative Q of QX and the derivative Q′ can be obtained
by calculations:

Q(p) = −1
2
eμ+σ2/2erf

(
σ√
2

− erf−1(2p − 1)
)

, (15)

Q′(p) = eμ+
√
2·σ·erf−1(2p−1)+(erf−1(2p−1))2σ

√
2π. (16)

where erf is the error function which only can be computed numerically. With
these definitions the usefulness of restarts for the log-normal distribution can be
estimated.

Theorem 5. Let X be a log-normal distributed random variable. Then there is
a p ∈ (0, 1) such that

E[XQ(p)] < E[X]. (17)

Proof. Due to Theorem 3, the scale parameter eμ can be ignored for the analysis
of the usefulness of restarts. Therefore, let μ = 0. Note that E[XQ(p)] converges
to E[X] as p approaches one. The derivative with respect to p of the expected
runtime E′[XQ(p)] is obtained similarly to Theorem 2 and is given by:

E′[XQ(p)] =
(p − 1)

p2
Q(p) +

(1 − p)
p

Q′(p) − 1
p2

(Q(p) + Q(0)). (18)

The limit of E′[XQ(p)] as p approaches one is analyzed. In this case, it can be
seen that (p−1)

p2 Q(p) converges to zero and 1
p2 (Q(p) + Q(0)) converges to E[X].

Therefore the analysis focuses on the limit of (1 − p)Q′(p).

lim
p→1

(1 − p)Q′(p) = lim
p→1

(1 − p)

e−√
2·σ·erf−1(2p−1)−(erf−1(2p−1))2

σ
√

2π (19)

= lim
p→1

σ
√

2e
√
2·σ·erf−1(2p−1)

√
2σ + erf−1(2p − 1)

= lim
p→1

σ2eσ
√
2erf−1(2p−1) → ∞ (20)

This limit is obtained by applying L’Hospital’s rule twice. Thus, since E[XQ(p)]
converges to E[X] and E′[XQ(p)] approaches positive infinity, there is a p ∈ (0, 1)
with E[XQ(p)] < E[X]. ��

Figure 1 shows parameter combinations for p and σ for which restarts are
useful. Since neither the error function nor the inverse error function can be
solved analytically, numerical methods have been used to obtain those results.

The optimal restart times, as presented in Theorem 2, are shown in Fig. 2a.
It can be seen that for high σ values the optimal restart time quickly approaches
Q(0), while for small σ values the optimal restart time converges to Q(1).

Figure 2b shows the comparison of a log-normal distribution without restarts
to a log-normal distribution with restart at the optimal time. The plot has the
same shape for all values of μ, and only the values on the y-axis differ. It can be

500 J.-H. Lorenz

Fig. 1. A regionplot for the log-normal distribution. The blue area denotes parameter
settings which fulfill the condition from Theorem 1. For σ < 0.48 the numerical app-
roach could not find values of p such that restarts are useful. For high values of σ even
low values of p yield an improved expected runtime under restart, while for low values
of σ only very high values of p improve the expected runtime. (Color figure online)

Fig. 2. The figures show the optimal restart quantiles for a log-normal distribution
with μ = 1 on the left, and the expected runtime and the optimal mean with restarts
on the right. (Color figure online)

observed for values up to approximately σ ≈ 0.8 the difference in the expected
runtime is marginal. On the other hand, while the expected value eμ+σ2

2 behaves
super-exponentially for increasing values of σ, the expected runtime with restarts
after an optimal number of steps starts to decrease at about σ ≈ 1.1. Therefore,
in real applications restarts should only be employed for high values of σ.

3.5 Generalized Pareto

The Pickands–Balkema–de Haan theorem (see [3]) states that the excess proba-
bility Pr(X − u ≤ y | X > u) = F (u+y)−F (u)

1−F (u) converges in distribution towards

Runtime Distributions and Criteria for Restarts 501

the generalized Pareto distribution for a large number of distributions as u → ∞.
Due to this, it can be used to model the tail of distributions. The generalized
Pareto distribution (GP) includes the exponential, the Pareto, and the uniform
distribution. Since the Pareto distribution is a subclass of the GP, the GP is also
well suited to describe power-law decays in the tail. Corvella et al. [6] observed
that network transmission times follow a power-law in the tail. Gomes and Sel-
man [9] found that the runtime of the quasi-group completion problem is also
well described by a power-law. At this point, the generalized Pareto distribution
is formally defined:

Definition 6 [18]. Let X be a real-valued random variable. If the cdf FX is
given by

FX(x) = 1 −
(

1 +
kx

σ

)−1/k

(21)

for σ > 0, k ∈ R, then X has a generalized Pareto (GP) distribution.

For k < 1 the mean of the GP is given by E[X] = σ
1−k , otherwise the mean is

infinite. For k = 0 the GP is equivalent to the exponential distribution, and for
all k > 0 it takes the form of a Pareto distribution. For k ≤ −0.5 the GP has
finite support, and for k = −1 it becomes a uniform distribution. Compare [18]
for these results. The Quantile function Q, an antiderivative Q and the derivative
Q′ are given by:

Q(p) =
σ

k

(
(1 − p)−k − 1

)
, (22)

Q(p) = −σ

k

(
p +

(1 − p)1−k

1 − k

)
, (23)

Q′(p) = σ(1 − p)−1−k. (24)

These definitions can be used to analyze the usefulness of restarts.

Theorem 6. Let X be a generalized Pareto distribution, there is a p ∈ [0, 1)
with

E[XQ(p)] < E[X] (25)

if and only if k > 0.

Proof. Due to Theorem 3, the scale parameter σ does not influence the usefulness
of restarts. Therefore, define σ = 1 for the rest of this proof. For the case k ≥ 1
the mean is infinite. Thus, restarts are useful for all p ∈ (0, 1). Thus, only the
case where k < 1 is considered. Then the Lorenz curve L and its derivative L′

are given by:

L(p) =
Q(p) − Q(0)

E[X]
=

1
k

(
1 − (1 − p)1−k − (1 − k)p

)
, (26)

L′(p) =
Q(p)
E[X]

=
1 − k

k

(
(1 − p)−k − 1

)
. (27)

502 J.-H. Lorenz

By inserting the Lorenz function and its derivative in inequality 3, the following
can be obtained by some calculations:

p > −(1 − p)1−k + 1 (28)
⇔k log (1 − p) < 0 (29)

For p ∈ (0, 1) the left side of the equation k log (1 − p) is negative if and only if
k is positive. Therefore restarts are useful for all p ∈ [0, 1) iff k > 0. ��
This is consistent with other results in this field. Wolter [22] showed that Restarts
are useful for the Pareto distribution, they are not useful for the uniform dis-
tribution and are neither helpful nor harmful for the exponential distribution.
The result presented here is stronger since all of those three distributions are
subclasses of the generalized Pareto distribution while other distributions can be
obtained by using different parameters. The next theorem analyzes the optimal
restart time.

Theorem 7. Let X be a generalized Pareto distributed random variable with
k > 0, then the optimal restart time is zero and the optimal expected runtime
under restart E[XQ(0)] is E[XQ(0)] = σ.

Proof. Due to Theorem 4, the scale parameter σ does not have any influence on
the optimal restart time. Hence, it can be set to σ = 1 for the analysis. Then
the condition as in Theorem2 is:

1
k

(
1

1 − k
− p − (1 − p)1−k

1 − k
+ (1 − p)

(
(1 − p)−k − 1

)
)

− p(1 − p)−k = 0. (30)

By transforming the equation, this condition can be simplified to (1 − p)−k(1 −
kp) = 1. This is obviously true for p = 0. Actually, it can also be shown that p = 0
is the only value which fulfills the condition. Differentiating (1 − p)−k(1 − kp)
with respect to p yields (k−1)kp

(1−p)k(p−1)
. For k ∈ (0, 1) this is strictly positive, and

for k ∈ (1,∞) this is strictly negative for p �= 0. For this reason, the condition
is either strictly monotonically increasing or strictly monotonically decreasing.
Therefore, every other value of p does not fulfill Eq. 30. The expected runtime
is given by E[XQ(p)] = 1−p

p Q(p) + Q(p)−Q(0)
p . In case of GP the limit exists

for p → 0, it can be obtained by applying L’Hospital’s rule and is given by
E[XQ(0)] → Q′(0) = σ. ��

It is noteworthy that the expected runtime does not depend on the shape
parameter k anymore. When comparing expected runtimes under restart with
the expected runtimes without restarts E[X] = σ

1−k for k ∈ (0, 1), it is easy to see
that for k → 0 both runtimes converge against σ. This is consistent with the fact
that the generalized Pareto distribution becomes the exponential distribution for
k = 0.

Runtime Distributions and Criteria for Restarts 503

3.6 Weibull

The Weibull distribution was extensively analyzed by Wolter [22]. The Weibull
distribution is one of the three limiting distributions of the Fisher-Tippett-
Gnedenko Theorem in case of the minimum value (see for example [11]). There-
fore it is a likely candidate when observing the minimum of n i.id random vari-
ables X1, . . . , Xn. Frost et al. [8] observed that the runtime distributions of
several backtracking algorithms can be reasonably well described by Weibull
distributions for solvable binary CSP instances at the 50% satisfiability point.
Hoos and Stützle [10] examined the runtime of a SAT-solver (GSAT). They
found that for non-optimal parameter settings the runtime can be described as
a Weibull distribution. Barrero et al. [4] studied generation based models with-
out selective pressure, they argue that the generations-to-success can be modeled
by a Weibull distribution. The Weibull distribution is defined as follows:

Definition 7 [18]. Let X be a real-valued random variable. The random variable
X has a Weibull distribution if and only if

FX(x) = 1 − e−(x
a)k

(31)

for some fixed k > 0. Then the quantile function QX is given by:

QX(p) = a(− log (1 − p))1/k. (32)

Wolter [22] showed that restarts are always useful for k < 1. In case k > 1 restarts
are always harmful and in case k = 1 the Weibull distribution becomes the
exponential distribution, therefore restarts are neither useful nor harmful. The
same results can be obtained by the technique from Theorem1. The derivative
Q′ and an antiderivative Q of Q are given as follows:

Q′(p) = a
(− log (1 − p))

1
k −1

k(1 − p)
, (33)

Q(p) = aγ

(

1 +
1
k

,− log (1 − p)
)

, (34)

where γ(z, x) =
∫ x

0
tz−1e−tdt is the incomplete gamma function. The optimal

restart time is analyzed in the next theorem.

Theorem 8. Let X be a Weibull distributed random variable with k < 1. Then
the optimal restart time is zero and the optimal expected runtime under restart
is E[XQ(0)] = 0.

The proof is similar to the case of the GP. It is presented in the full version of
this article1. It is remarkable that the optimal expected runtime in the case of
k < 1 is not dependent on any parameter of the distribution.

1 https://arxiv.org/abs/1709.10405

https://arxiv.org/abs/1709.10405

504 J.-H. Lorenz

3.7 Location Parameter

Up to now, several multiplicative variants of random variables X were discussed.
Nonetheless, many commonly used distributions require an additive location
parameter b ∈ R which shifts the support of the cdf. In this section, the results
are augmented with this extension and it is shown that the influence of the
location parameter b is limited.

In the following, let X be a random variable without location parameter
and let Y = X + b be a random variable with some location parameter b. The
expected value is known to be a linear function, therefore E[Y] = E[X] + b.
Similar results follow easily for the quantile function. Since FY (x) = FX(x − b)
holds QY (p) = QX(p)+ b directly follows. Then an antiderivative of QY is given
by QX(p) + pb where QX is an antiderivative of QX . Define c ∈ R such that
b = cE[X]. With these identities the usefulness of restarts can be reestimated:

E[X] + b >
1 − p

p
(QX(p) + b) + b +

1
p
(QX(p) − QX(0)) (35)

⇔p + (p − 1)c > (1 − p)L′
X(p) + LX(p) (36)

is the new condition for the usefulness of restarts. This inequality assumes
E[X] > 0, for E[X] < 0 the ‘greater than’ sign becomes a ‘less than’ sign.
However, this only makes sense if the location parameter shifts the support of
the distribution to strictly positive values. It can be shown that the condition
for the optimal restart time only changes by the location parameter itself. This
can be shown by similar transformations; the proof is therefore omitted.

Theorem 9. Let X be a random variable and let Y = X + b be a random vari-
able with location parameter b ∈ R. Then the condition for the optimal restart
time for Y is:

(p − 1)QX(p) + p(1 − p)Q′
X(p) − QX(p) + QX(0) = b. (37)

If Q′
X dominates (1−p) in the neighborhood of p = 1, then the left side of Eq. 37

approaches infinity. This implies that restarts are useful for an arbitrarily large
b since E[XQ(1)] = E[X]. This is the case for all distributions considered in this
article.

Corollary 1. Let X be log-normal, GP, or Weibull distributed, with parameters
such that restarts are useful. Let b ∈ R+, then there is a p ∈ (0, 1) with

E[(X + b)Q(p)] < E[X + b]. (38)

Note, that this is not a general property which is true for all distributions which
admit useful restarts. Counterexamples are distributions with a finite support.
With this relationship, it is reasonable to analyze distributions without location
parameters and scale parameters. This simplifies the analysis whether a restart
strategy should be employed and if so, which strategy should be chosen.

Runtime Distributions and Criteria for Restarts 505

4 Discussion

This work discussed the relationship between the quantile function and restarts
using the fixed cut-off strategy. Theorem 1 uses the quantile function and its
antiderivative to provide a condition for the usefulness of restarts, while The-
orem 2 established a condition for the optimal restart times. It was proven in
Theorems 3 and 4 that scale parameters can be ignored in the context of restarts.
In Sect. 3.7 it was shown that the influence of location parameters on the use-
fulness of restarts is limited. For a large group of distributions the usefulness of
restarts is not affected at all by the presence of a location parameter. Secondly,
the optimal restart times are just linearly influenced by a location parameter.
Therefore, it often suffices to analyze the remaining parameters.

Several commonly used distributions were observed for their usefulness under
restart. In the following, the log-normal distribution (compare Sect. 3.4) and the
generalized Pareto distribution (compare Sect. 3.5) were discussed. It was shown
that in the case of the log-normal distribution restarts are always useful. In case
of the generalized Pareto distribution, restarts are useful iff the shape parameter
k is greater than zero. The optimal restart times and optimal expected run-
times under restart of the log-normal, the generalized Pareto and the Weibull
distribution were discussed. The expected runtime without restart for the log-
normal distribution increases super-exponentially in σ. For the log-normal dis-
tribution, it was numerically observed that for increasing parameter σ the opti-
mal restart time is decreasing. And while the expected value without restarts
increases super-exponentially, the expected value with restart at the optimal
time starts to decrease at about σ ≈ 1.1. It is also interesting to see that for low
values of σ the speedup with restarts is marginal. This is especially important
if the parameters of the distribution are not completely known. Figure 3 repre-
sents an example of this behavior. This shows that choosing a suboptimal restart
time can easily result in expected runtimes under restart which are worse than
not employing a restart strategy. Therefore, in practice it can be better to not
employ a restart strategy if the parameters are estimates and σ is estimated to
be low.

Fig. 3. This figure depicts the expected runtime of a log-normally distributed random
variable X with μ = 0 and σ = 0.7 as a dashed line. The blue line is the expected
runtime with restart after QX(p) steps. (Color figure online)

506 J.-H. Lorenz

For the Weibull distribution, it was shown that the optimal restart time
and the expected runtime is zero. A similar behavior was observed for the GP
distribution. The optimal restart time is also zero, its optimal expected runtime
under restart, however, approaches σ. It is noteworthy that in these two cases
the expected runtime is no longer dependent on the shape parameter and in the
case of the Weibull distribution also not dependent on the scale parameter. For
algorithms, an intuitive description of the restart quantile zero in, e.g., runtime
distributions with location b and scale a emerges from the optimum restart
condition (p − 1)QX(p) + p(1 − p)Q′

X(p) − QX(p) +QX(0) = b/a. If a b, the
optimal restart time approaches Q(0) = b, i.e., the algorithm’s behavior before
b dominates all subsequent steps. It is also remarkable that some distributions
which show suboptimal behavior without restarts yield low runtimes when an
optimal restart strategy is applied.

References

1. Arbelaez, A., Truchet, C., Codognet, P.: Using sequential runtime distributions for
the parallel speedup prediction of SAT local search. Theory Pract. Logic Program.
13(4–5), 625–639 (2013)

2. Arbelaez, A., Truchet, C., O’Sullivan, B.: Learning sequential and parallel run-
time distributions for randomized algorithms. In: ICTAI 2016: 28th International
Conference on Tools with Artificial Intelligence, San Jose, California, USA, pp.
655–662. IEEE (2016)

3. Balkema, A.A., De Haan, L.: Residual life time at great age. Ann. Probab. 792–804
(1974)

4. Barrero, D.F., Muñoz, P., Camacho, D., R-Moreno, M.D.: On the statistical dis-
tribution of the expected run-time in population-based search algorithms. Soft.
Comput. 19(10), 2717–2734 (2015)

5. Caniou, Y., Codognet, P.: Sequential and parallel restart policies for constraint-
based local search. In: Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing Workshops and Ph.D. Forum, pp. 1754–
1763. IEEE Computer Society (2013)

6. Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-tailed probability distributions
in the World Wide Web. Pract. Guide Heavy Tails 1, 3–26 (1998)

7. Evans, M.R., Majumdar, S.N.: Diffusion with stochastic resetting. Phys. Rev. Lett.
106(16), 160601 (2011)

8. Frost, D., Rish, I., Vila, L.: Summarizing CSP hardness with continuous probability
distributions. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Conference on Innovative Applications of Artificial Intelli-
gence, AAAI 1997/IAAI 1997, pp. 327–333. AAAI Press (1997)

9. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017434

10. Hoos, H.H., Stützle, T.: Evaluating las vegas algorithms: pitfalls and remedies. In:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
pp. 238–245. Morgan Kaufmann Publishers Inc. (1998)

11. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications.
World Scientific, Singapore (2000)

https://doi.org/10.1007/BFb0017434

Runtime Distributions and Criteria for Restarts 507

12. Lorenz, J.H.: Completion probabilities and parallel restart strategies under an
imposed deadline. PloS one 11(10), e0164605 (2016)

13. Lorenz, M.O.: Methods of measuring the concentration of wealth. Publ. Am. Stat.
Assoc. 9(70), 209–219 (1905)

14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

15. Meyer, J.: Two-moment decision models and expected utility maximization. Am.
Econ. Rev. 421–430 (1987)

16. Van Moorsel, A.P., Wolter, K.: Analysis and algorithms for restart. In: Proceedings
of the First International Conference on the Quantitative Evaluation of Systems,
pp. 195–204 (2004)

17. Muñoz, P., Barrero, D.F., R-Moreno, M.D.: Run-time analysis of classical path-
planning algorithms. In: Bramer, M., Petridis, M. (eds.) Research and Development
in Intelligent Systems XXIX, pp. 137–148. Springer, London (2012). https://doi.
org/10.1007/978-1-4471-4739-8 10

18. Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol.
1. Wiley Series in Probability and Mathematical Statistics: Applied Probability
and Statistics (1994)

19. Paxson, V., Allman, M., Chu, J., Sargent, M.: Computing TCP’s retransmission
timer. Technical report (2011)

20. Reuveni, S., Urbakh, M., Klafter, J.: Role of substrate unbinding in Michaelis-
Menten enzymatic reactions. Proc. Natl. Acad. Sci. U.S.A. 111(12), 4391–4396
(2014)

21. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS 1999, p. 410. IEEE Computer Society, Washington, DC (1999)

22. Wolter, K.: Stochastic Models for Fault Tolerance: Restart, Rejuvenation and
Checkpointing. Springer Science & Business Media, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11257-7

23. Wu, H.: Randomization and restart strategies. Master’s thesis, University of Water-
loo (2006)

https://doi.org/10.1007/978-1-4471-4739-8_10
https://doi.org/10.1007/978-1-4471-4739-8_10
https://doi.org/10.1007/978-3-642-11257-7
https://doi.org/10.1007/978-3-642-11257-7

Inversions from Sorting with Distance-Based
Errors

Barbara Geissmann(B) and Paolo Penna

Department of Computer Science, ETH Zurich, Zurich, Switzerland
barbara.geissmann@inf.ethz.ch

Abstract. We study the number of inversions after running the Inser-
tion Sort or Quicksort algorithm, when errors in the comparisons
occur with some probability. We investigate the case in which probabil-
ities depend on the difference between the two numbers to be compared
and only differences up to some threshold τ are prone to errors. We give
upper bounds for this model and show that for constant τ , the expected
number of inversions is linear in the number of elements to be sorted. For
Insertion Sort, we also yield an upper bound on the expected number
of runs, i.e., the number of consecutive increasing subsequences.

1 Introduction

We study the problem of sorting a sequence of distinct elements when the algo-
rithm performs pairwise comparisons, but errors in the comparisons occur with
some probability. A basic question here is to understand the structure of the out-
put sequence for a given algorithm and given error comparabilities. In particular,
here we focus on the number of inversions of the output sequence.1

Our study is in part motivated by the problem of designing energy-efficient
algorithms for sorting, where errors are deliberately introduced in order to spend
less energy on a single comparison (see e.g. the survey [17] and references therein
for studies on the trade-off between energy saving and errors probability at a
hardware level).

Indeed, it is well known that the number of comparisons made by Insertion
Sort is n − 1 + I where I is the number of inversions of the input sequence.
This suggests a natural approach to save energy spent in the computation:

1. First run some sorting algorithm using low energy comparisons. This will save
energy, but introduces errors in the computation, meaning that the output is
not guaranteed to be a sorted sequence in general.

2. Second run Insertion Sort at full energy so that comparisons are always
correct. If the sequence produced by the previous step has “few” inver-
sions, then this step will cost significantly less than running Insertion Sort
directly at full energy, or even an O(n log n)-time algorithm at full energy.

1 The number of inversions of a sequence σ = (σ1, . . . , σn) is the number of pairs (i, j)
with i < j such that σi > σj .

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 508–522, 2018.
https://doi.org/10.1007/978-3-319-73117-9_36

Inversions from Sorting with Distance-Based Errors 509

We ask the following question: Under which conditions is the above approach
effective?

Since the expected number of inversions in a random sequence is Θ(n2) we
aim to presort an input sequence such that the expected number of inversions
is low. The most natural approach is to run the same algorithm, Insertion
Sort, twice (first at low energy and then at full energy). However, it might also
be beneficial to mix different algorithms and use another sorting algorithm at
low energy. Motivated by these questions, we study the number of inversions
that Insertion Sort and Quicksort produce for a certain family of error
probabilities (next section).

A similar idea has been introduced by Funke et al. [7], who distinguish
between cheap (floating-point arithmetic) and expensive (exact geometric com-
putation) comparisons in computational geometry. Their primary goal is not to
save energy, but instead to save time and speedup their computations.

1.1 Our Contributions

We are interested in the number of inversions that single runs of two classical
sorting algorithms, namely, Insertion Sort and Quicksort, produce when
the input sequence is a permutation of the integers 1 to n. We introduce a
simple model in which the probability that a comparison between two elements
(integers) is correct depends on the difference (we will call it distance) between
the two elements we are comparing.

To get a feeling of our model, consider the following special case: All com-
parisons are correct, except those where the two elements are at distance 1, in
which case 0 < q < 1 is the probability of error. The two algorithms guarantee
the following:

1. Insertion Sort. The expected number of inversions is less than n · q
1−q .

2. Quicksort. The number of inversions is guaranteed to be at most n.

In fact, we consider a more general type of errors that depend on the distance
of the compared elements:

– Distance-based errors. The probability of error in a comparison between two
elements x and y depends only on their distance d = |x − y| and it is fully
specified by a vector p = (p1, p2, . . .), where pd is the probability of an error
in a distance-d comparison. Note that this is a very general model as, for
instance, it is possible that errors between distance-1 elements are less likely
than errors at distance 2.

A natural restriction to the model above is to assume a maximum distance in
which comparison errors can occur:

– Threshold error probabilities [1,7]. This is the case in which all distances
up to some constant threshold τ are prone to errors, and higher distance
comparisons are always correct. We additionally assume errors occur with
probability at most q < 1.

510 B. Geissmann and P. Penna

For Insertion Sort, we show that the expected number of inversions is
O(n) for threshold error probabilities (Theorem1). The analysis of Quicksort
on the same model provides an interesting comparison. We indeed show that
Quicksort always returns a sequence with no more than τ · n inversions, for
any threshold τ as above, and that this analysis is tight (Theorem2). Note
for example that, if τ < n−1

2 , then Quicksort will never output the reversed
sequence, while this is possible with Insertion Sort (though very unlikely).
Note that this holds even if comparisons below the threshold τ fail in adversarial
fashion.

Our analysis on the number of inversions of Insertion Sort can be extended
to the weighted number of inversions, a natural variant in which inversions are
weighted according to the distance of the inverted elements [9]. We provide this
in the full version.

Finally, we study the number of runs, that is, the number of consecu-
tive increasing (sorted) subsequences. This is what one should try to min-
imize if, in the above combination of two algorithms in cascade, the sec-
ond algorithm would be Merge Sort, instead of Insertion Sort. Indeed,
it is well-known that Merge Sort can be implemented to run in time
O(n · log R), where R is the number of runs in the input. We show that Inser-
tion Sort has a rather high expected number of runs, namely R = Θ(n)
for threshold error probabilities (Theorem3). This means that the combi-
nation Insertion Sort → Merge Sort is not effective (the second algo-
rithms makes Θ(n log n) comparisons at full energy in expectation). In contrast,
the combinations Insertion Sort → Insertion Sort and Quicksort →
Insertion Sort result in O(n) comparisons at full energy (in expectation or
guaranteed, respectively).

1.2 Related Work

Our distance-based error model with threshold error probabilities includes some
of the other models studied previously in the literature. The closest model is
perhaps the one studied by Funke et al. [7] and Ajtai et al. [1], where compar-
isons are always correct if the difference between the elements is above a certain
threshold τ (the same as our threshold errors, but with no assumptions on the
probabilities below the threshold). In Ajtai et al. [1], the threshold τ represents
the just noticeable difference unit or difference threshold in the psychophysics
literature [19]. Funke et al. [7] distinguish between cheap and expensive com-
parisons. In their terminology, only cheap comparisons between numbers whose
difference is at most τ are prone to errors. They proved that Merge Sort
and Heap Sort with cheap comparisons return a sequence with O(τn log n)
inversions, while Quicksort outputs at most 2τn inversions.

Distance-based error probabilities that decrease exponentially with the dis-
tance d of the elements, e.g., pd = 1/(1 + λ2d) with λ > 1, have been studied for
certain random processes by Geissmann and Penna [9].

Alonso et al. [2] studied the expected number of inversions of Quicksort
when the probability of error is q for each comparison. They showed that the

Inversions from Sorting with Distance-Based Errors 511

number of inversions is Θ(n2q) in expectation for nearly the whole range of q,
including cases where q depends on n. Note that, for our threshold error model,
we obtain stronger guarantees (not just in expectation). Hadjicostas and Lak-
shmanan [10–12] consider well-known sorting algorithms under the assumption
that at most e comparisons fail during the execution. They showed lower and
upper bounds on the number of inversions for Bubble Sort, (straight) Inser-
tion Sort and recursive Merge Sort. In particular, for Insertion Sort,
these bounds are 0 and n2e

2(e+1) + O(n). Lakshmanan et al. [14] adapted the
(binary) Insertion Sort algorithm to return the correctly sorted sequence
using O(n log n + ne) comparisons, where e is again the number of errors.

For recurring errors, Braverman and Mossel [3] showed how to find a so-called
maximum likelihood order of the elements, such that the maximum dislocation
of an element is O(log n) and the total dislocation of all elements is O(n) with
high probability. By the inequality of Diaconis and Graham [5], this implies also
O(n) inversions. However, the time to compute such an order is exponential in
γ, with p = 1

2 − γ. Klein et al. [13] provided a polynomial-time algorithm for
the same upper bound on the maximum dislocation. The results of Geissmann
et al. [8] imply that the number of inversions in the output of any algorithm
cannot be guaranteed to be smaller than 2e if the number of recurring errors is
bounded by some parameter e.

For independent errors, Feige et al. [6] gave an algorithm that sorts n num-
bers with probability 1 − Q in a decision-tree of depth Θ(n log(n/Q)), where
Q ∈ (0, 1/2) is a so-called tolerance parameter that can be chosen freely in this
interval.

Finally, among others, Yao and Yao [20] and Leighton et al. [15,16] studied
error tolerant sorting networks. For a more detailed review of the literature in
the field of sorting and searching while coping with errors in comparisons, or
even in memory, we refer to the surveys of Cicalese [4] and Pelc [18].

1.3 Preliminaries

Error Model. We consider the problem of sorting a sequence of n integer
elements consisting of a permutation of the set {1, 2, . . . , n}. We call the sequence
(1, 2, 3, . . . , n) the sorted order, and the sequence (n, n − 1, n − 2, . . . , 1) the
reverse order of these elements. The number of inversions in any sequence σ =
(σ1, . . . , σn) is the number of pairs i, j with i < j and σi > σj . For instance,
there are two inversions in σ = (1, 3, 4, 2), namely (3, 2) and (4, 2).

We assume that a comparison takes an unordered pair of elements as input
and returns an order of these two elements, e.g., for an input {x, y} the output
is either (x, y) or (y, x). If the comparison operates correctly, the first element in
the output is smaller than the second one. The probability that a comparison is
correct depends on the difference between the two numbers that are compared.
Specifically, we are given a vector of probabilities

p = (p1, p2, . . .),

512 B. Geissmann and P. Penna

where pd ∈ [0, 1) for all d, and a comparison between two elements x and y with
absolute difference d = |x−y| fails with probability pd. Hereafter, we will always
address this absolute difference of two elements as their distance.

In this paper, we consider the case in which errors occur only if the two
elements are at distance smaller than a fixed constant threshold τ .

Definition 1 (Critical Comparisons). Let τ := max{d | pd > 0} be the
maximum distance for which a comparison error might happen.We say that a
comparison between two elements is critical if their distance is at most τ .

The following quantity will play a key role in the analysis:

Πp :=
τ∏

d=1

(1 − pd)d. (1)

Insertion Sort. We consider the non-optimized2 Insertion Sort algorithm:
on an arbitrary input sequence, the algorithm iterates and grows a sorted output
sequence by processing one element in every iteration. The algorithm finds for
the element in process its correct position in the already sorted subsequence
by repeated comparisons and swaps with its left neighboring element until this
neighbor is smaller (or none is left). Hence, the algorithm moves the element to
the left until it is correctly placed.

If some comparisons can fail, it might happen that an element is not placed in
its correct position. This in turn implies that the subsequence which we assume
to be already sorted in fact might contains some inversions.

Example 1. Suppose we run Insertion Sort on the reverse sequence
(5, 4, 3, 2, 1). Erroneous comparisons are shown in boldface. The symbol ‘•’ in
the sequence determines the progress of the algorithm, i.e., the elements on the
left are already processed and the first element on the right is the next element
that will be inserted.

5 • 4 3 2 1
(4, 5) 4 5 • 3 2 1
(3, 5), (3,4) 4 3 5 • 2 1
(2, 5), (2,3) 4 3 2 5 • 1
(1, 5), (1, 2), (1, 3), (1, 4) 1 4 3 2 5 •

While two comparisons failed, the output contains three inversions: (4, 3),
(4, 2), and (3, 2). There would be seven inversions, had the comparison between
1 and 5 also failed.

2 We find the correct position of an element by linear search not by binary search.

Inversions from Sorting with Distance-Based Errors 513

Quicksort. We consider the Quicksort algorithm: Starting with an arbitrary
input sequence, the algorithm choses an arbitrary3 element, compares every other
element with this pivot and places it either left or right of the pivot, according
to the outcome of their comparison. Then, the algorithm continues recursively
with the elements placed left of the pivot and with those placed right of the
pivot.

If a comparison fails, this partition into left and right also fails and the
wrongly placed element causes inversions (with the pivot and possibly also with
elements on the other side of the pivot), that will remain during the further
execution of Quicksort.

Example 2. We simulate Quicksort on the numbers 1 to 5. We assume that
our first pivot element is 3. We show erroneous comparisons in boldface. In a
first step, we compare all elements to the pivot and put them either left or right
of it:

3 5 4 2 1

(5, 3), (4,3), (2, 3), (1,3) 4 2 3 5 1

Then, we recurse on the two subsequences left and right of the pivot:

4 2 3 5 1 4 2 3 5 1

(2, 4) 2 4 3 5 1 (1, 5) 4 2 3 1 5

The output sequence of the algorithm is (2, 4, 3, 1, 5) which contains the four
inversions (2, 1), (4, 3), (4, 1), and (3, 1).

2 Inversions of Insertion Sort

In this section we prove the following result.

Theorem 1. For error probabilities p with threshold τ and an arbitrary input
sequence of size n, the expected number of inversions after one run of Insertion
Sort is at most

n · (1 − Πp)1/τ

(1 − (1 − Πp)1/τ)2
,

where Πp is defined as in (1).

Note that Theorem 1 implies that the expected number of inversions is linear
for threshold error probabilities (constant τ and pi < 1 for i ≤ τ), because in
this case Πp is a strictly positive constant. In Sect. 2.3 we provide a tight bound
for τ = 1.

3 The analysis on the number of inversions appearing after one run of Quicksort
holds for arbitrarily chosen pivots. In particular, it also holds for random pivots.

514 B. Geissmann and P. Penna

2.1 Useful Definitions

In order to compute the expected number of inversions in the output sequence,
we partition the sequence into blocks such that all inversions occur inside the
blocks:

Definition 2 (Block). In a sequence σ, a block is a minimal subsequence of
elements in σ such that each of these elements has only inversions with elements
in the same block.

We distinguish two types of blocks: trivial blocks of size one and non-trivial
blocks of size larger than one. Observe that elements in adjacent trivial blocks
are sorted and an element in a non-trivial block is inverse to at least one other
element in this block. Such a partition into blocks is possible in every sequence
and, as it will turn out, we can upper bound the number of inversions if we know
the expected block size after one execution of Insertion Sort. Consider Fig. 1
for an example of blocks.

2 1 4 5 7 6 8 10 93

2 3 4 5 6 7 8 9 101

output sequence σ

sorted order

BSσj
0 3 1 1 0 2 1 0 20

Yσj
1 2 0 0 0 1 1 0 10

0 1 1 1 0 1 1 0 10Xσj

Fig. 1. An output sequence σ along with the resulting blocks (gray boxes). For each
block, we identify its smallest element (variable Xi) and associate to it the size of the
block (variable BSi). Variables Yi indicate the number of elements larger than i in its
block and are used to upper bound the number of inversions. Note that the variables
Xi, BSi, Yi belong to element i, and Xσj , BSσj , Yσj to the element at position j in σ.

2.2 Bound the Number of Inversions (Proof of Theorem1)

The maximum number of inversions in a (non-trivial) block of size S is equal to(
S
2

)
, which is the number of pairs of elements in S. Consider an output sequence

σ and let the random variable BSi for i ∈ [n] be equal to the size of the block
in σ that contains i as its smallest element, and zero otherwise (if i is not the
smallest element in its block). Furthermore, let Yi be the random variable that
denotes the number of elements larger than i in the same block (see Fig. 1).
Observe now that the sum of all binomial coefficients

(
BSi

2

)
is equal to the sum

of all Yi, that is
n∑

i=1

(
BSi

2

)
=

n∑

i=1

Yi.

Inversions from Sorting with Distance-Based Errors 515

Let I denote the number of inversions in the output sequence of Insertion
Sort. By linearity of expectation, the expected number of inversions in the
output sequence is

E[I] ≤ E

[
n∑

i=1

(
BSi

2

)]
= E

[
n∑

i=1

Yi

]
=

n∑

i=1

E[Yi]. (2)

The following lemmas will be used to bound the expected values of the Yis.
To this aim, let Xi be the random variable indicating whether i is the smallest
element in its block, i.e., Xi = 1 if this is the case and Xi = 0 otherwise.

Lemma 1. Let σ be an output sequence of Insertion Sort. Then, i ∈ [n] is the
smallest element in its block, i.e. Xi = 1, if and only if all critical comparisons
between elements in [i − τ, i − 1] and in [i, i + τ − 1] made by the algorithm did
not fail.

Proof. First, observe that Xi = 1 is equivalent to saying that σ does not contain
any inversion between an element in [1, i− 1] and an element in [i, n]: Whenever
i is the smallest element in a block, all elements smaller than i lie on the left of
this block in σ and all elements larger than i lie either in the same block as i or
on the right of this block. Thus, no element smaller than i is inverse to i or an
element larger than i.

This implies that if Xi = 1, all comparisons that were made during the
algorithm between one element in [1, i − 1] and one in [i, n] turned out correct,
where the only critical comparisons are those of elements in [i − τ, i − 1] with
elements in [i, i + τ − 1].

For the other direction, we show that if no critical comparison between [i −
τ, i − 1] and [i, i + τ − 1] fails, then σ contains no inversions between [1, i − 1]
and [i, n]. Consider Insertion Sort in execution: in its iteration, an element
from [1, i − 1] passes all elements from [i, n]. Similarly, an element from [i, n]
never passes any one from [1, i− 1]. Thus, the algorithm maintains the following
invariant after every iteration: in the sorted subsequence, the elements from
[1, i − 1] are on the left of those from [i, n]. ��
Lemma 2. For any integer k and any i ∈ [n] such that i + kτ ≤ n,

Pr[Xi = Xi+τ = · · · = Xi+kτ = 0] ≤ (1 − Πp)k+1.

Proof. Let relevantj be the set of pairs (a, b) such that a ∈ [j − τ, j − 1] and
b ∈ [j, j+τ −1]. By Lemma 1, Xj = 0 for j ∈ [n] if and only if at least one critical
comparison (a, b) ∈ relevantj failed. Let nj

d ≥ 0 be the number of comparisons
(a, b) ∈ relevantj made by the algorithm such that |a − b| = d. Then, the
probability that at least one critical comparison (a, b) ∈ relevantj failed is

F j :=

(
1 −

τ∏

d=1

(1 − pd)nj
d

)
. (3)

516 B. Geissmann and P. Penna

Since the set of relevant comparisons, relevantj and relevantj′ , of any two dis-
tinct elements j and j′ in {i, i + τ, . . . , i + kτ} are disjoint, and different com-
parisons fail independently with probability pd, we have

Pr[Xi = Xi+τ = · · · = Xi+kτ = 0] ≤ F i · F i+τ · · · F i+kτ . (4)

We next show that F j ≤ 1 − Πp for any j. Observe that, for every d =
1, 2, . . . , τ , there are exactly d possible pairs (a, b) with a ∈ [i − τ, i − 1] and
b ∈ [i, i − τ] and such that |a − b| = d. This implies nj

d ≤ d, and thus

τ∏

d=1

(1 − pd)nj
d ≥

τ∏

d=1

(1 − pd)d = Πp, (5)

where the equality is the definition of Πp in Eq. (1). By combining (3), (4), and
(5) we obtain the desired bound. ��

Observe that Yi is equal to the number of consecutive elements j > i such
that Xj = 0. The expected value of Yi is thus

E[Yi] =
n−i−1∑

k=1

k · Pr[Xi+1 = Xi+2 = · · · = Xi+k = 0,Xi+k+1 = 1], (6)

≤
n−i−1∑

k=1

k · Pr[Xi+1 = 0,Xi+1+τ = 0, . . . , Xi+1+�k/τ� = 0]

≤
∞∑

k=0

k · (1 − Πp)
�k/τ� ≤ (1 − Πp)1/τ

(1 − (1 − Πp)1/τ)2
, (7)

where the second inequality is by Lemma 2. Equations (2) and (7) give now the
following upper bound on the expected number of inversions, which concludes
the proof of Theorem1:

E[I] ≤
n∑

i=1

E[Yi] ≤ n · (1 − Πp)1/τ

(1 − (1 − Πp)1/τ)2
.

2.3 The Case τ = 1

In this section, we study the special case, where τ = 1, and show a tight upper
bound on the expected number of inversions after running Insertion Sort.
To get a feeling for the specialty of this case, we start with an observation for
general τ , which strengthens the intuition that a bad input sequence is one for
which Insertion Sort has to succeed in many critical comparisons to output
the sorted order. In other words, the more inversions an input sequence contains,
the more unlikely it is that Insertion Sort removes all of them.

For any 2 ≤ τ ≤ n − 1, if the input sequence is the reverse order, then (by
Lemma 1) in order to get the sorted order, Insertion Sort has to perform all

Inversions from Sorting with Distance-Based Errors 517

critical comparisons and each one has to be correct. In contrast, if the input is an
arbitrary sequence where many pairs are already in their correct order, the num-
ber of (correct) critical comparisons made during Insertion Sort is smaller.
However, even for τ = 1, Insertion Sort has to succeed in every distance-1
comparison for any input sequence, since every adjacent pair of elements in the
output gets compared during Insertion Sort and is placed according to the
result of this comparison.

Lemma 3. If we assume τ = 1 and start with the reverse order (n, . . . , 1), then
every distance-1 comparison is made during the execution of Insertion Sort.

Proof. Initially all elements larger than an element i are on its left, and all
elements smaller than i are on its right. When i is processed, i is compared only
to elements that are larger, and all comparisons are certainly correct until i is
compared to i+1. If this comparison fails, i stops moving to the left. Otherwise,
i moves to the first position. ��

From Lemma 3 we learn that the reverse order is the worst input for τ = 1,
because the algorithm makes all critical comparisons in every possible execution.
Moreover, an element i is either placed to the right of i+1 or to the (temporally)
first position. We now show that in the former case, no further element will be
placed between i and i + 1.

Lemma 4. For τ = 1, after the execution of Insertion Sort, the elements
within a block are in reverse order.

Proof. By contradiction, assume that a block contains two adjacent elements i
and j (in this order), with i > j, and their absolute difference is larger than one.
During Insertion Sort, every element gets compared to its left and its right
neighbor of the final sequence. Furthermore, the relative order of the already
inserted elements is never again changed during the execution of the algorithm.
This implies that there has been a comparison between i and j that failed (since
i > j is on the left of j), which is a contradiction to τ = 1. Therefore, all elements
in a block lie in reverse order. ��

Lemma 4 implies that for τ = 1, the number of inversions in the output
sequence is indeed equal to the sum of all variables Yi, and that Pr[Xi = 1] =
Πp = 1 − p1. Using Eq. (6), we can thus obtain a better upper bound on the
expected number of inversions for τ = 1:

E[Yi] ≤
∞∑

k=0

k · pk
1 · (1 − p1) =

p1
1 − p1

, and E[I] ≤ n · p1
1 − p1

.

3 Inversions of Quicksort

In this section we study the number of inversions of Quicksort, as opposed to
Insertion Sort considered before. In favour of Quicksort is the fact that it

518 B. Geissmann and P. Penna

usually requires O(n log n) comparisons4, which is, for many inputs, better than
Insertion Sort. Moreover, [7] proved that the number of inversions is at most
2τ · n in the threshold error model. We next provide a tight bound:

Theorem 2. For threshold τ and an arbitrary input sequence of size n, a tight
upper bound on the number of inversions after one execution of Quicksort is
τ · n.

3.1 Proof of Theorem2

To prove an upper bound on the number of inversions in output sequences of
Quicksort, we imagine a slight modification of the algorithm, such that the
output consists of marked and non-marked elements5:

– Whenever an element i is compared to a pivot and this comparison fails, we
mark i for this failure.

Example 3. Assume during our Quicksort algorithm, we consider the numbers
1 to 5 with 2 being the first pivot. Suppose that all comparisons are correct,
except for the one between 2 and 4. The output is (1, 4̄, 2, 3, 5), with 4 being the
only marked element.

Observe that whenever two elements are inverse in the output sequence, there
has been a common pivot (possibly one of those two) during the execution of
Quicksort that placed them to opposite sides, and at least one of them to the
wrong side. In order to bound the number of inversions in the output sequence
we conclude the following:

1. All non-marked elements in the output sequence of Quicksort are sorted.
Thus, every inversion in this sequence includes at least one marked element.

2. The difference between two inverse elements, one marked and the other one
non-marked, is at most τ . The difference between two inverse elements, both
marked, is at most 2 τ .

Consider now any element i in an output sequence of Quicksort and let Li

denote the set of larger elements on its left and Ri the set of smaller elements
on its right, such that |Li| + |Ri| equals the number of inversions that include i.
Note that every element in Li is inverse to every element in Ri, and recall that,
by Item 2, two inverse elements differ by at most 2 τ . Therefore, |Li|+ |Ri| ≤ 2 τ .
Observe that for every inversion between two elements i < j, we have j ∈ Li

and i ∈ Rj , which implies that every inversion is counted twice in the sum∑
i|Li| + |Ri| ≤ 2τ · n. Hence, there cannot be more than τ · n inversions in

the output sequence. A tight example is the output sequence that consists of
blocks of size 2 τ + 1 with elements inside a block in reverse order. There are(
2 τ+1

2

)
inversions per block and n

2 τ+1 such blocks, which results in exactly n · τ
inversions in total.
4 See [7] for a analysis of the time complexity of Quicksort with errors.
5 This modification of marking the elements is purely imaginary; the Quicksort algo-

rithm does not know the correctness of a comparison.

Inversions from Sorting with Distance-Based Errors 519

4 Runs in Insertion Sort

In this section, we study the expected number of runs in the output of Insertion
Sort, that is, the number of increasing (sorted) subsequences. We prove the
following result:

Theorem 3. For error probabilities p with constant threshold τ and an arbitrary
input sequence of size n, the expected number of runs after one execution of
Insertion Sort on an arbitrary input sequence of size n is Θ(n).

4.1 Relation Between the Number of Blocks and Runs

An output sequence of Insertion Sort consists of trivial and non-trivial blocks.
All elements in consecutive trivial blocks are in the same run, since this subse-
quence is strictly increasing. Elements in non-trivial blocks, however, cannot all
be in the same run, since every non-trivial block contains at least one inversion.
Therefore, in every non-trivial block, there ends and starts at least one run (see
Fig. 2 for an example).

Lemma 5. In any sequence, the number of runs is larger than the number of
non-trivial blocks.

Proof. Let R denote the number of runs and B the number of non-trivial blocks.
Then, R ≥ B +1, since the first run starts with the first element of the sequence
and ends somewhere in the first non-trivial block and each non-trivial block
contains at least one inversion, thus at least one start of a new run. ��

2 1 4 5 7 6 8 10 93output sequence σ

runs

Fig. 2. The relation between number of runs and number of non-trivial blocks.

4.2 Consecutive Trivial Blocks (Proof of Theorem3)

Observe that if we remove all trivial blocks from a sequence, the number of runs
is still the same6. Between any two consecutive non-trivial blocks there is a num-
ber (possibly zero) of consecutive trivial blocks. We show that, in expectation,
both the number of consecutive trivial blocks and the size of non-trivial blocks
is “small”, which then implies that the number of non-trivial blocks must be
“large”.

Lemma 6. For error probabilities p and an arbitrary input sequence of size n,
the expected number of elements in a subsequence of consecutive trivial (size one)
blocks is at most 1/p21 in the output sequence of Insertion Sort.
6 This is true if and only if the sequence contains at least one non-trivial block.

520 B. Geissmann and P. Penna

Proof. Note that elements in consecutive trivial blocks differ by one. In Inser-
tion Sort, every two neighbors in the output sequence have been compared with
each other, and sorted accordingly. Therefore, for k consecutive trivial blocks in
the output, at least k −1 distance-1 comparisons have been performed correctly.
Let Ti denote the number of elements in the i-th subsequence of consecutive
trivial blocks. Then it holds for all i,

Pr[Ti = k] ≤ (1 − p1)k−1, and E[Ti] ≤ 1
1 − p1

∑

k

k(1 − p1)k ≤ 1
p21

.

��
Lemma 7. For error probabilities p with threshold τ and an arbitrary input
sequence of size n, the expected size of a non-trivial block in the output sequence
of Insertion Sort is at most 2 + (1−Πp)

1/τ

(1−(1−Πp)1/τ)2
.

Proof. We proceed similar to the proof of Theorem1 and Lemma 2. Since the
size of a non-trivial block is at least two, we need to bound the expected number
of additional elements. Without loss of generality, assume that i − 1 and i are
the two smallest elements in a non-trivial block. Then, the expected size of this
block is at most

2 +
n−i∑

k=1

k · Pr[Xi+1 = · · · = Xi+k = 0,Xi+1+k = 1] ≤ 2 +
(1 − Πp)1/τ

(1 − (1 − Πp)1/τ)2
.

��
The output sequence of Insertion Sort consists of repetitions of a possibly

empty subsequence of consecutive trivial blocks and one non-trivial block. We
call one of such repetitions a unit and shall argue that the expected number
of units in the output is in Ω(n). (Note that only the very last unit might not
contain a non-trivial block.) By Lemmas 6 and 7, the expected length l of a unit
is at most

l ≤ 2 +
(1 − Πp)1/τ

(1 − (1 − Πp)1/τ)2
+

1
p21

,

which is constant for constant values of τ . Thus, the expected number of units
is at least n/l ∈ Ω(n), which implies that the expected number of non-trivial
blocks is also linear. Finally, by Lemma5, the expected number of runs is linear.

5 Conclusion and Open Questions

It would be interesting to investigate whether other restrictions on the error
probabilities still guarantee a linear number of inversions. In particular, whether
a constant value of Πp is in general sufficient to guarantee a linear number of
inversions. One such an example is the model in [9] where the error probability
decreases exponentially with the distance, and for which Πp is indeed constant.

Inversions from Sorting with Distance-Based Errors 521

Our upper bound on the number of inversions for Insertion Sort (Theo-
rem 1) grows exponentially in τ . The analysis of the case τ = 1 suggests that our
analysis can be improved. The exact growth as a function in τ is an interesting
research direction. It would be also interesting to prove lower bounds, that is,
show that any sorting algorithm must produce f(τ) ·n inversions in expectation,
for a suitable function f .

One of the motivations for studying the number of inversions of the out-
put (or other measures of “unsortendness”) is the combination of two or more
algorithms, some of them running at low energy. Our analysis on the num-
ber of inversions and runs, for example, suggests that certain combinations are
better than others: one should prefer the combination ‘Insertion Sort →
Insertion Sort’ to the combination ‘Insertion Sort → Merge Sort’.
There are other combinations of low-energy and full-energy algorithms that
could be considered, as well as whether a three-stage combination could bring
any improvement.

Acknowledgements. This research has been supported by the Swiss National Science
Foundation (SNFS project 200021 165524).

References

1. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with impre-
cise comparisons. ACM Trans. Algorithms 12(2), 19 (2016)

2. Alonso, L., Chassaing, P., Gillet, F., Janson, S., Reingold, E.M., Schott, R.: Quick-
sort with unreliable comparisons: a probabilistic analysis. Comb. Probab. Comput.
13(4–5), 419–449 (2004)

3. Braverman, M., Mossel, E.: Noisy sorting without resampling. In: Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
268–276 (2008)

4. Cicalese, F.: Fault-Tolerant Search Algorithms - Reliable Computation with Unre-
liable Information. MTCSAES. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-17327-1

5. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy.
Stat. Soc.: Ser. B (Methodol.) 39(2), 262–268 (1977)

6. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information.
SIAM J. Comput. 23(5), 1001–1018 (1994)

7. Funke, S., Mehlhorn, K., Näher, S.: Structural filtering: a paradigm for efficient
and exact geometric programs. Comput. Geom. 31(3), 179–194 (2005)

8. Geissmann, B., Mihalák, M., Widmayer, P.: Recurring comparison faults: sorting
and finding the minimum. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015.
LNCS, vol. 9210, pp. 227–239. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22177-9 18

9. Geissmann, B., Penna, P.: Sort well with energy-constrained comparisons. arXiv
e-prints, arXiv:1610.09223, October 2016

10. Hadjicostas, P., Lakshmanan, K.B.: Bubble sort with erroneous comparisons. Aus-
tralas. J. Comb. 31, 85–106 (2005)

11. Hadjicostas, P., Lakshmanan, K.B.: Measures of disorder and straight insertion
sort with erroneous comparisons. ARS Combinatoria 98, 259–288 (2011)

https://doi.org/10.1007/978-3-642-17327-1
https://doi.org/10.1007/978-3-642-17327-1
https://doi.org/10.1007/978-3-319-22177-9_18
https://doi.org/10.1007/978-3-319-22177-9_18
http://arxiv.org/abs/1610.09223

522 B. Geissmann and P. Penna

12. Hadjicostas, P., Lakshmanan, K.B.: Recursive merge sort with erroneous compar-
isons. Discret. Appl. Math. 159(14), 1398–1417 (2011)

13. Klein, R., Penninger, R., Sohler, C., Woodruff, D.P.: Tolerant algorithms. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 736–747.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5 62

14. Lakshmanan, K.B., Ravikumar, B., Ganesan, K.: Coping with erroneous informa-
tion while sorting. IEEE Trans. Comput. 40(9), 1081–1084 (1991)

15. Leighton, F.T., Ma, Y.: Tight bounds on the size of fault-tolerant merging and
sorting networks with destructive faults. SIAM J. Comput. 29(1), 258–273 (1999)

16. Leighton, F.T., Ma, Y., Plaxton, C.G.: Breaking the theta (n log2 n) barrier for
sorting with faults. J. Comput. Syst. Sci. 54(2), 265–304 (1997)

17. Palem, K.V., Lingamneni, A.: Ten years of building broken chips: the physics and
engineering of inexact computing. ACM Trans. Embed. Comput. Syst. 12(2s), 87
(2013)

18. Pelc, A.: Searching games with errors - fifty years of coping with liars. Theoret.
Comput. Sci. 270(1–2), 71–109 (2002)

19. Thurstone, L.L.: A law of comparative judgment. Psychol. Rev. 34(4), 273 (1927)
20. Yao, A.C.-C., Yao, F.F.: On fault-tolerant networks for sorting. SIAM J. Comput.

14(1), 120–128 (1985)

https://doi.org/10.1007/978-3-642-23719-5_62

Filters, Configurations, and
Picture Encoding

An Optimization Problem Related to Bloom
Filters with Bit Patterns

Peter Damaschke1(B) and Alexander Schliep2

1 Department of Computer Science and Engineering,
Chalmers University, 41296 Gothenburg, Sweden

ptr@chalmers.se
2 Department of Computer Science and Engineering,

University of Gothenburg, Gothenburg, Sweden
schliep@cse.gu.se

Abstract. Bloom filters are hash-based data structures for member-
ship queries without false negatives widely used across many application
domains. They also have become a central data structure in bioinformat-
ics. In genomics applications and DNA sequencing the number of items
and number of queries are frequently measured in the hundreds of bil-
lions. Consequently, issues of cache behavior and hash function overhead
become a pressing issue. Blocked Bloom filters with bit patterns offer a
variant that can better cope with cache misses and reduce the amount of
hashing. In this work we state an optimization problem concerning the
minimum false positive rate for given numbers of memory bits, stored
elements, and patterns. The aim is to initiate the study of pattern designs
best suited for the use in Bloom filters. We provide partial results about
the structure of optimal solutions and a link to two-stage group testing.

Keywords: Bloom filter · Genomics · Antichain · Group testing
Disjunct matrix

1 Introduction

The following scenario appears in various applications of computing: A large set
S of data is maintained. Further elements may be added to S, but usually ele-
ments are never removed. Many queries of the form “s ∈ S?” must be answered,
where s is any element from the domain of discourse. To facilitate quick answers,
a certain rate of false positives is permitted: The system may sometimes claim
s ∈ S although actually s /∈ S. However, false negatives are not allowed: The
system must recognize that s ∈ S whenever this is the case. A popular example
of a data structure providing this functionality is the Bloom filter [2].

The word filter in the name indicates their use in avoiding accesses to the
set S, in particular if slow accesses over networks or to disks become neces-
sary. If these costly operations only happen for items passing the filter, the
computational cost of many operations can be reduced, if the filter data struc-
ture allows inserts and queries in a time- and space-efficient manner. A num-
ber of database products (Google BigTable, Apache Cassandra, and Postgresql)
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 525–538, 2018.
https://doi.org/10.1007/978-3-319-73117-9_37

526 P. Damaschke and A. Schliep

and web proxies (Squid) use Bloom filters; they have also been used to accelerate
network router performance [23].

A specific application area in which Bloom filters have become a central data
structure is the bioinformatics analysis of high-throughput DNA sequencing data
from clinical or genomics experiments. In its analysis the k-mer, a consecutive
substring of k characters in a DNA read, or string obtained from a sequenc-
ing instrument, is a fundamental unit for two reasons: First, the nodes of the
de Bruijn-graph [7] are k-mers. The de Bruijn-graph is the most frequently used
data structure in de novo genome assembly [25], the process of assembling com-
plete genomes from the many fragments obtained from a sequencing instrument.
Second, due to the way the errors are distributed in DNA sequencing reads,
frequent k-mers seen a number of times represent the error-free sequence of the
genome, whereas k-mers seen only once are erroneous. This explains the impor-
tance of identifying frequent k-mers [21] and their use in error correction, gene
expression analysis and metagenomics, to list just a few applications.

The size of the problem instances are huge. A DNA sequencing data set of
a human genome might contain 240 billion k-mers in its 2.4 billion reads. One
expects about 3 billion k-mers to be frequent, and there could be up to 270 billion
distinct erroneous k-mers for k = 31 [21]. Consequently, the filters have to be large
too, in the tens of Gigabyte range, which amplifies the effect of cache misses. As
the cost of the Bloom filter operations makes up a large proportion of the total
running time, constants, complexity and details of cache behavior matter and a
better understanding of these aspects of the filters will have impact on many prac-
tical applications. In the following, we first introduce the particular type of Bloom
Filter we will study and motivate the hypothesis pursued in this study.

1.1 Blocked Bloom Filters with Bit Patterns

Bloom filters [2] are a classic implementation of the filtering idea introduced in
the previous section. Although they have some issues (deletions are not sup-
ported, and the space is 1.44 times larger than optimal) and alternatives came
up more recently in theory [11,19] and practice [13], Bloom filters remain an
important and widely used data structure due to their conceptual simplicity.

Some basic notation is needed for the subsequent descriptions. A vector
always means a bit vector, if not said otherwise. For vectors x, y of equal length,
let x ∩ y and x ∪ y denote the bit-wise AND and OR, respectively. We write
y ≤ x if y is contained in x, that is, for every entry 1 in y, the entry at the
same position in x is 1 as well. We write y < x if y ≤ x and y �= x. For a set
or multiset X of vectors,

⋃
X is the vector obtained by joining all vectors in X

by ∪. The complement of a vector x is obtained by flipping all bits. To set a bit
means to assign value 1 to it. We wish to store a subset S of a universal set U .

Bloom filters with bit patterns have been proposed in [20], and standard
Bloom filters appear as a special case of them. Their work can be described
as follows. (A formal definition would be lengthy.) The filter consists of a vector
of m bits, whose length m is chosen depending on parameters of the application.
The filter uses a hash function h : U −→ {0, 1}m, assigning a vector to every ele-
ment s ∈ U . We call this vector the pattern of s. Let d be the number of elements

An Optimization Problem Related to Bloom Filters with Bit Patterns 527

in S ⊂ U , and let x1, . . . , xd be their patterns. Only the vector x := x1 ∪ . . .∪xd

is stored. In order to test whether s ∈ S, one takes the pattern y of s and checks
whether y ≤ x. If not, then clearly s /∈ S. If y ≤ x, then s ∈ S is assumed.
Hence s /∈ S is a false positive if and only if y ≤ x1 ∪ . . . ∪ xd. In particular, any
collision of patterns, y = xi, causes a false positive.

Specifically, the standard Bloom filter uses a fixed k and builds the pattern
by setting up to k bits, chosen by k independent hash functions with values in
{1, . . . , m}; note that the k bits are not necessarily distinct. For variations of
this original idea and theoretical analysis of their properties, in particular, the
false positive rate versus space, see, e.g., [3,8,15,18].

A blocked Bloom filter consists of many small blocks. A hash function first
chooses a block (or blocks are partly predetermined, as the elements may be
already grouped in some way), and then the blocks work like usual Bloom filters.
Blocked Bloom filters with bit patterns have been proposed in [20]. It is one way
to reduce both cache misses and hashing, which make up for the major part
of the running time in some applications. Different applications can have very
different demands on the false positive rate, memory space, time complexity,
cache- and hash-efficiency, etc., therefore it is worthwhile to have a variety of
filters with different strengths regarding these parameters.

Getting back to the description of blocked Bloom filters with bit patterns,
the n patterns to be used are precomputed, by random sampling of k bits per
pattern, and stored. While the space needed for the patterns is negligible com-
pared to the entire filter, too large an n, say larger than the Level-1 or Level-2
cache will lead to deteriorating performance. Too small an n will lead to more
collisions and increase the errors rate, which can be remediated by increasing
filter size. Collision resolution mechanisms may be used to get roughly the same
number d of elements per block. Hashing can be drastically reduced even without
deteriorating the asymptotic false positive rate [15], but these results are shown
for d → ∞ whereas we are interested in blocks with small d and prescribed n.

1.2 Specific Problems and Our Contributions

Our hypothesis, prompted by observations with random k-set designs in com-
binatorial group testing [16], is that the exact choice of random k-bit patterns
does have an effect in particular in light of small n. Also, it is not obvious that
random k-bit patterns indeed attain optimal performance.

To our best knowledge, a study is missing that asks which set of bit pat-
terns (i.e., which image of the hash function) is optimal to use in this approach
to blocked Bloom filters, depending on the mentioned parameters m, d, n. The
present paper is mainly devoted to this question.

We consider arbitrary probability distributions on the m-bit vectors (result-
ing from the part of the hash function that assigns patterns to elements in a
block), and we ask which ones minimize the false positive rate (FPR):

Definition 1. Let m and d be fixed positive integers. Consider any probability
distribution on the set of m-bit vectors. Draw d + 1 vectors x1, . . . , xd and y

528 P. Damaschke and A. Schliep

randomly and independently from the given distribution. We define the false
positive rate (FPR) of the distribution, for the given d, as the probability of
the event y ≤ x1 ∪ . . . ∪ xd. The true negative rate (TNR) is the probability
of the complementary event. We abbreviate the FPR and TNR for a fixed d by
FPR(d) and TNR(d), respectively. (Thus TNR(d) + FPR(d) = 1.) We refer
to the probability of the event y ≤ x1 ∪ . . . ∪ xd, where the xi are fixed and only
y is random, as a conditional FPR.

Problem. Given m, d, n, devise a probability distribution on the m-bit vectors
that assigns positive probabilities to at most n vectors and minimizes FPR(d).

First we look at d = 1. This is not yet the realistic case, because a block
would barely hold just one element. We start with this case rather for theoretical
reasons, as it already provides some structural insights. We show that the best
FPR(1) is achieved by a random vector with a fixed number of 1s, which is m/2
(rounded if m is odd). Note that these vectors form the largest antichain (with
respect to ≤) due to Sperner’s theorem [24]. While the result is not surprising, its
proof is not that straightforward: Clearly, the more vectors we use, the smaller
can we make the probability of collisions (y = x1), and this is the only type
of false positives caused by an antichain. But it must also be shown that using
even more vectors, partly being in ≤ relation, is not beneficial. Our argument is
based on edge colorings in bipartite graphs and resembles the “sizes of shadows”
in one of the proofs of Sperner’s theorem, yet our objective is different. (The
proof also closes a gap in a proof step of a side result, Theorem 4, in [5].) This
start result raises further interesting points addressed in the sequel.

First, notice that a random vector with some fixed number of distinct bits has
the optimal FPR, and its specification needs less than log2 2m = m random bits,
whereas, e.g., setting a fixed number of independent random bits has a worse
FPR and needs Θ(m log m) random bits (more than m/2 specifications of one
out of m position, requiring Θ(log m) bits each).

Getting to the real case with general d (and also with limited n), one may
wonder if random vectors with some fixed number k of 1s (depending on m and
d) yield optimal FPR(d) as well. This conjecture will be disproved already by
a counterexample being as small as m = 2 and d = 2, but then we also obtain
the following general result (that will point to a modified conjecture; see below):
Some distribution with minimum FPR(d) has a support of a form that we call a
weak antichain. While an antichain forbids any vectors in ≤ relation, in a weak
antichain we do allow such pairs of vectors provided that they differ in only one
bit. (In [4] we proved that another combinatorial optimization problem shares
the same property, also the basic proof idea of “quartet changes” is the same,
however the proof details are problem-specific.) The relevance of this general
theorem is that families of bit patterns in Bloom filters can be restricted to
weak antichains, since other designs have only worse FPR values.

Note that setting k independent random bits with replacement violates the
weak antichain property, which naturally leads to the idea of patterns, too.
On the other hand, the proposal in [20] was just to use a “table of random
k-bit patterns”. The small example of non-optimality and the weak antichain

An Optimization Problem Related to Bloom Filters with Bit Patterns 529

property suggest that it might be good to use some mixture of patterns with
two consecutive numbers, k and k + 1, of 1 entries. This seems also plausible
because for any given d and m one would hardly expect one optimal k that
jumps when m grows.

We do not manage to solve the general optimization problem considered
here, however its difficulty is explained by our last contribution that might be
the main result: We show that FPR minimization is, essentially, equivalent to the
(notoriously difficult) construction of optimal almost disjunct matrices, which are
designs being known from the group testing problem. The connection between
Bloom filters and group testing has been noticed earlier here and then, but we
are not aware of an explicit result on their relationship, as provided here.

2 Preliminaries

In this section we collect some special notation and known facts, in the order of
appearance in the paper, except disjunct matrices and group testing which fit
more naturally in the technical sections.

We call the number of 1s in a vector u its level. (This number is also known as
the Hamming weight, but later we want to avoid confusion with another weight.)
We also use the phrase “level k” to denote the set of all vectors with the same
number k of bits 1.

We consider probability distributions Φ on finite sets only. The support of
Φ, denoted supp(Φ), is the set of elements u (in our case: vectors) with nonzero
probability p(u) > 0. The distribution Φ is uniform on supp(Φ) if all these
p(u) > 0 are equal.

As said before, p(u) denotes the probability of vector u in a given distribution.
Sometimes it is more convenient to write pU instead, where U is the set of
positions of bits 1 in u. We also omit commas and brackets. For instance, p(1, 0, 1)
is written as p13. If U = ∅, we write p0.

We presume that standard graph- and order-theoretic concepts not explained
here are widely known. A classic theorem by König (1916) states that every
bipartite graph with maximum degree Δ allows an edge coloring with Δ colors.
That is, we can color the edges in such a way that edges with the same color
always form a matching, i.e., they are pairwise disjoint. Different proofs and
many algorithmic versions have been given later, see, e.g., [14].

An antichain in a partial order (e.g., in the partial order of m-bit vectors
under the ≤ relation), is a subset without any pairs y < x. Sperner’s theorem
[24] states (rephrased) that the largest antichain in the set of m-bit vectors is
simply the set of all vectors on level k, where k = �m/2� or k = m/2�. Slightly
relaxing the notion of antichain, we call a set A of m-bit vectors a weak antichain
if for all vectors u, v ∈ A with u ≤ v, vector v has at most one 1 entry more than
vector u.

Let y be a vector and X a tuple of d vectors (which are in general not distinct).
We define f(y,X) = 1 if y ≤ ⋃

X, and f(y,X) = 0 otherwise. Note that FPR(d)
in Definition 1 is the weighted sum of all f(y,X), where the weight of (y,X)

530 P. Damaschke and A. Schliep

is the probability that d + 1 vectors independently drawn from the distribution
happen to be y and the vectors of X in the given order.

We say that a probability distribution Φ on the m-bit vectors is dominated
by another distribution Ψ if, for every d, the FPR of Ψ is no larger than that of
Φ. We call Φ undominated if Φ is not dominated by any Ψ �= Φ. Clearly, from
the point of view of getting optimal FPR, only undominated distributions need
to be considered.

Every probability distribution on finitely many elements and with rational
numbers as probability values can be equivalently viewed as a uniform distribu-
tion on copies of the elements: Let q be a common denominator of all probabili-
ties. Then we may represent every element of probability p/q as p distinct copies
labeled by the element. We refer to these copies as units, and every unit is chosen
with probability 1/q. Notationally we may not always distinguish between a unit
and its label, if this causes no confusion.

Let e denote Euler’s number. Logarithms are meant with base 2 if not said
otherwise.

3 False Positive Rate for One Element

Theorem 1. For every m > 1, the uniform distribution on a median level, i.e.,
on the level �m/2� or m/2�, attains the smallest FPR(1).

Proof. For any probability distribution Φ on the m-bit vectors, observe that
FPR(1) =

∑
u p(u)2 +

∑
u<v p(u) · p(v), where the sums are taken over all

vectors. Let k be the lowest level containing any vectors in supp(Φ), and assume
that k ≤ (m − 1)/2. We construct a weighted bipartite graph as follows. The
vertices are all vectors u ∈ supp(Φ) on level k, and all vectors v on level k + 1
(including those with zero probability). We use the terms vector and vertex
interchangeably. The edges are all pairs (u, v) with u < v. The weight of a
vertex is its probability, and the weight of an edge (u, v) is p(u) · p(v).

Note that every vertex on level k + 1 has a degree at most k + 1, and every
vertex on level k has exactly the degree m − k ≥ k + 1. By König’s theorem
there exists an edge coloring with m − k colors. Clearly, every vertex on level k
is incident to exactly one edge of each color. Since m > 1, we have m − k ≥ 2.
The total edge weight of the bipartite graph is b :=

∑
u<v p(u) · p(v), where u

and v are restricted to vertices on level k and k +1, respectively. The color class
of a color c is the set of all edges of this color c. Let M be a color class with
minimum total edge weight, among all colors c. This weight can be at most b/2,
since m − k ≥ 2.

Now we modify the probabilities. For every vertex u on level k and its partner
v in M , we set p(u) := 0 and p(v) := p(v) + p(u). Notice that v exists, and
different vertices u have different partners v. The contribution of levels k and
k + 1 to FPR(1) decreases by b as we destroy all edges, and at the same time it
increases by at most 2b/2 = b because every new p(v)2 becomes (p(v)+p(u))2 =
p(v)2 + 2p(u) · p(v) + p(u)2. In words: For every (u, v) ∈ M , the squared vertex
weight p(u)2 just “moves into” p(v)2, and the doubled edge weight is added. The

An Optimization Problem Related to Bloom Filters with Bit Patterns 531

sum of all doubled edge weights in M is bounded by 2b/2. Finally, no further
positive terms in FPR(1) are created by moving probability mass to level k +1:
There are no further vertices w with p(w) > 0 on lower levels, and for any w > v
on higher levels we have already w > u by transitivity. Altogether it follows that
we can empty the level k without increasing FPR(1).

By symmetry, FPR(1) is not affected if we take the complements of all
vectors. Thus the same reasoning applies also to the highest level k that intersects
supp(Φ), assuming that k ≥ (m + 1)/2. By iterating the procedure we can move
all probability mass into the level m/2 if m is even, or into one of �m/2� or
m/2� if m is odd. As the last step, the sum of squares of a fixed number of
values with a fixed sum is minimized if these values are equal. ��

In Theorem 1 we did not limit the size of the support, i.e., the number n. of
patterns. Now let n be prescribed. Due to Theorem 1, if n >

(
m

�m/2�
)
, we would

still take only a median level and no further vectors, and if n ≤ (
m

�m/2�
)
, we can

take the uniform distribution on any antichain of n vectors to achieve the best
FPR(1) which is then 1/n.

4 Weak Antichains

Theorem 2. For every m, every probability distribution on the m-bit vectors is
dominated by some probability distribution whose support is a weak antichain.

Proof. Let u and v be vectors such that u ≤ v, and v has at least two 1 entries
more than u. Clearly, we can get two vectors w and w′ such that w ∩ w′ = u,
w∪w′ = v, and u, v, w,w′ are four distinct vwctors. Now let Φ be any probability
distribution on the vectors with u, v ∈ supp(Φ), that is, Φ contains two such units
u and v, and is therefore not a weak antichain. We replace one unit u with one
unit w, and we replace one unit v with one unit w′. We call such a replacement
a quartet change. We study how a quartet change affects the FPR.

In certain subsets (of sequences of vectors) with even cardinality we will pair
up all members, i.e., divide them completely into disjoint pairs, and we refer
to the members of every such pair as partners. In the following, observe that
distinct units carrying the same label are still considered distinct (as units), and
that to “appear” in a sequence means “at least once”.

Every argument (y,X) of f , where y is a unit and X is a sequence of d units,
belongs to exactly one of the following cases:

(a1) Both u and v are not y, nor do they appear in X.
(a2) Both u and v are not y, and exactly one of them appears in X.
(a3) Both u and v are not y, and both appear in X.
(b1) Unit y is one of u and v, and both u and v do not appear in X.
(b2) Unit y is one of u and v, and y appears in X.
(b3) Unit y is one of u and v, and only the unit other than y appears in X.

Note that, in general, y itself may appear in X.

532 P. Damaschke and A. Schliep

Since we are working with units, all (y,X) have the same probability, hence
FPR(d) is simply the unweighted sum of all f(y,X). In each of the cases we
prove that FPR(d) cannot increase by the quartet change.

Case (a1). Trivially, f(y,X) is not affected by the quartet change.

Case (a2). We pair up the arguments of f that belong to this case: The partner
of every (y,X) is defined by replacing all occurrences of our unit u with v, or
vice versa. Let Xu and Xv be any such partners containing u and v, respectively,
with unions xu :=

⋃
Xu and xv :=

⋃
Xv. We define Xw as the sequence obtained

from Xu by replacing all occurrences of the unit u with w, and xw :=
⋃

Xw.
Finally, Xw′ and xw′ are defined similarly. In the distribution after the quartet
change, Xw and Xw′ are partners.

We claim that f(y,Xu)+f(y,Xv) ≥ f(y,Xw)+f(y,Xw′). This claim follows
from two observations: If both y ≤ xw and y ≤ xw′ , then y ≤ xw∩xw′ = xu ≤ xv,
where the inner equality is true by the distributive law for ∩ and ∪. If only one
of the former inequalities holds, say y ≤ xw, then we still have y ≤ xv.

Case (a3). Consider any such argument (y,X) as specified in this case, and let
X ′ be the sequence obtained from X by the quartet change. Let x :=

⋃
X and

x′ :=
⋃

X ′. We claim that f(y,X) ≥ f(y,X ′). To show this claim, we use that
w ∪ w′ = v: If y ≤ w ∪ w′ then trivially y ≤ v. Together with the distributive
law this shows: If y ≤ x′ then y ≤ x.

Case (b1). Again we pair up the arguments of f that belong to the case: This
time, (u,X) and (v,X) are partners, and the claim is that f(u,X) + f(v,X) ≥
f(w,X) + f(w′,X). With x :=

⋃
X observe the following: If both w ≤ x and

w′ ≤ x, then u ≤ v = w ∪ w′ ≤ x. If only one of the former inequalities holds,
say w ≤ x, then we still have u ≤ x.

Case (b2). The same unit appears in the role of y and also in X, and it is
replaced with the same unit at all occurrences. Thus we have f(y,X) = 1 before
and after the quartet change.

Case (b3). We pair up the arguments (u,Xv) and (v,Xu), where Xu is obtained
from Xv by replacing all occurrences of our unit u with v. Note that we also
obtain Xv from Xu in the opposite direction. We define Xw and Xw′ as in case
(1). We also adopt the earlier notations for the unions.

We claim that f(u,Xv) + f(v,Xu) ≥ f(w,Xw′) + f(w′,Xw). To show the
claim, first note that trivially w ≤ xw and w′ ≤ xw′ . Now, if also both w ≤ xw′

and w′ ≤ xw, then u ≤ v = w ∪ w′ ≤ xw ∩ xw′ = xu ≤ xv, where the first
equality holds by definition, and the second equality was already used in case
(1). If only one of the former inequalities holds, say w ≤ xw′ , then it suffices to
observe that u ≤ v.

Finally, it is not hard to see that a sequence of quartet changes cannot
cycle. Hence we always arrive at a weak antichain dominating the original
distribution. ��

An Optimization Problem Related to Bloom Filters with Bit Patterns 533

5 Some Special Cases

The following propositions are proved by using extremal value calculations and
Theorem 2; a full version is available at www.cse.chalmers.se/∼ptr.

Proposition 1. Among all distributions whose support is contained in the levels
0 and 1, the distribution minimizing FPR(d) is the following:

For d ≥ m, assign probability 1 − m/(d + 1) to the zero vector, and 1/(d + 1) to
every vector on level 1.
For d < m, assign probability 1/m to every vector on level 1.
Moreover, for d < m, the (unrestricted) distribution minimizing FPR(d) does
not have the zero vector in the support.

Proposition 2. For m ≥ 2 and d ≥ 2, the support of any distribution minimiz-
ing FPR(d) does not include the vector on level m.

Although these propositions treat only special aspects of our FPR minimiza-
tion problem, they lead to some interesting conclusions:

Consider m = 2 and d = 2. Proposition 2 yields p12 = 0. Thus we can
apply Proposition 1, and therefore the best distribution is p0 = p1 = p2 =
1/3. Already this small example shows that Theorem 1 does not generalize to
d > 1 in the way that the optimal FPR(d) is always attained by the uniform
distribution on some single level. But together with Theorem2 it suggests that
the minimum FPR(d) might be attained by some distribution whose support is
in at most two consecutive levels, and where all vectors on the same level have
equal probabilities.

Whatever the conjecture is, it is not easy to see how the arguments in The-
orem 1 can be generalized to d > 1. Informally, movements of probability mass
from the lowest level upwards create larger unions x1 ∪ . . . ∪ xd. This makes it
tricky to control the FPR, since probabilities can no longer be assigned to the
edges of some graph.

So far we have usually assumed an unlimited number n of vectors in the
support. The problem earns an extra dimension when a maximum n is prescribed
as well, as in the following section.

6 Using Almost Disjunct Matrices

Disjunct matrices (see definitions below) are test designs for non-adaptive group
testing [9], and relaxed versions are applied to two-stage group testing. In non-
adaptive group testing, d unknown elements in a set of n elements have a specific
property called defective, and these defective elements must be identified by
m simultaneous group tests: A group test indicates whether a certain subset
contains some defective or not. In two-stage group testing the aim is the same,
but the job of the first stage is only to limit the possible defectives to a subset
of candidates, which are then tested individually in the second stage. (There is
also a version where the second stage can apply yet another non-adaptive group

www.cse.chalmers.se/~ptr

534 P. Damaschke and A. Schliep

testing scheme, but this problem version is not relevant in our current context.)
Remarkably, two-stage group testing can accomplish a query number exceeding
the information-theoretic lower bound only by a constant factor [6,12], which is
not possible in one stage.

We call a binary matrix (d, ε)- disjunct if y ≤ x1 ∪ . . . ∪ xd happens with
probability at most ε, when x1, . . . , xd are columns chosen independently and
uniformly at random, and y is uniformly chosen among the remaining vectors,
distinct from all xi. (The definition in [1,17] is slightly different, as it requires
the xi to be distinct as well, but the difference is marginal for d � n.) A (d, 0)-
disjunct matrix is simply called d- disjunct. Informally we also refer to (d, ε)-
disjunct matrices as almost disjunct. For the use of (almost) disjunct matrices
in group testing we refer to the cited literature. In our context, the n columns
are the patterns in a Bloom filter with m bits.

The event y ≤ x1 ∪ . . . ∪ xd can occur for two reasons: either (1) a collision
y = xi happens for some i, or (2) y is in the union of d vectors other than y. We
name the probabilities of (1) and (2) the collision and containment probability,
respectively.

Proposition 3. Among all distributions with a fixed support of size n ≥ d + 1,
the uniform distribution on the support has the smallest collision probability,
which equals 1 − (1 − 1/n)d.

Proof. We denote the n probabilities by q1, . . . , qn. The probability of no col-
lision equals

∑n
i=1 qi(1 − qi)d. We want to maximize this expression under the

constraint
∑n

i=1 qi = 1. From the first and second derivative one can see that the
function q(1 − q)d is increasing if and only if q < 1/(d + 1), and concave if and
only if q < 2/(d+1). It follows that, in an optimal solution, all qi < 2/(d+1) are
equal, and qi ≥ 2/(d+1) holds for at most one index. Denote the small and large
value s and r, respectively. The assumption n ≥ d+1 implies s < 1/n ≤ 1/(d+1).
Hence we can decrease r and increase s so as to preserve the sum constraint and
improve the objective. It follows that, in an optimal solution, an index i with
qi = r cannot exist. Finally we get qi = 1/n for all i. ��

By virtue of Proposition 3 we focus now on filters that use a distribution being
uniform on its support. We remark that, by simple calculation, 1− (1− 1/n)d =
d/n − O((d/n)2), which is essentially d/n.

Proposition 4. Any (d, ε)-disjunct m×n matrix enables a Bloom filter with m
bits, n patterns, and FPR(d) ≤ 1− (1− 1/n)d +(1− 1/n)dε, where the patterns
are assigned uniformly to the elements. The converse holds also true.

Proof. Given a matrix as indicated, we take the uniform distribution on its
columns. The collision probability is 1 − (1 − 1/n)d. The containment probabil-
ity, in the event of no collision, is bounded by ε, by the definition of (d, ε)-
disjunctness. Conversely, suppose that we have a Bloom filter as indicated.
Again, the collision probability is equal to 1− (1− 1/n)d because of the uniform
distribution. Since FPR(d) ≤ 1 − (1 − 1/n)d + (1 − 1/n)dε is assumed, the con-
tainment probability in the case of no collision cannot exceed ε. Hence we can
view the patterns as the columns of some (d, ε)-disjunct m × n matrix. ��

An Optimization Problem Related to Bloom Filters with Bit Patterns 535

Proposition 4 states that, at least for uniform distributions, constructing
Bloom filters with bit patterns that are optimal (in terms of FPR, space, and
amount of patterns and hash bits) is essentially equivalent to constructing opti-
mal almost-disjunct matrices. The next natural question concerns the possi-
ble trade-offs between the parameters. The smallest possible row number of
d-disjunct matrices behaves as m = Θ(d2/ log d) log n [10]. Unfortunately, with
ε := d/n this leads to m/d = Θ(d/ log d)(log d + log(1/ε)), i.e., the space per
element ratio is by a Θ(d/ log d) factor worse than in standard Bloom filters
where m/d = 1.44 log(1/ε). For d = 1 we remark that the optimal 1-disjunct
matrices are the Sperner families, and according to Theorem 2 they have optimal
FPR(1). But for d > 1, using d-disjunct matrices quickly becomes unsuitable.

The picture becomes better with (d, ε)-disjunct matrices. As mentioned in [1,
17], it is possible to achieve m = Θ(d log n) due to [26] (and hence the additional
Θ(d/ log d) factor disappears), although the cited result was not constructive.
But it was not noticed in [1,17] that a special type of (d, ε)-disjunct matrices
with m = Θ(d log n) rows and even better properties is known as well [6,12]. We
will utilize them now.

A binary matrix is called (d, f)-resolvable if, for any d distinct columns
x1, . . . , xd, the inclusion y ≤ x1 ∪ . . .∪xd holds for fewer than f columns y other
than the xi [12]. Note that any (d, f)-resolvable matrix is also (d, f/(n − d))-
disjunct, and the resulting false positive probability bound holds even condi-
tional on every tuple x1, . . . , xd, not only averaged over all tuples. A counterpart
of Proposition 4 holds for resolvable matrices and conditional FPR.

Specifically, Theorem 2 in [12] provides, for every integer f > 0, a (d, f)-
resolvable matrix with m = 2(d2/f) log(en/d)+2d log(en/f)+2(d/f) log n rows.
This yields, in a few steps: m/d = 2(d/f) log(en/d)+2 log(en/f)+(2/f) log n =
(2(d + f + 1)/f) log(n/d) + 2(d/f) log e + 2 log(d/f) + 2 log e + (2/f) log d. For
notational convenience we define r = d/n, s = f/n, and t = (d+f)/n. We assume
bounded ratios r/s and s/r and (for studying the asymptotics for growing n) we
neglect the terms that do not depend on n. Then the above equation simplifies
to m/d = 2(1+r/s) log(1/r). Further rewriting gives m/d = 2t/(t−r) · log(1/r),
which we use below.

It is not totally obvious that the most efficient resolvable matrices, that
maximize n for given m and d, also yield the smallest FPR(d) of Bloom filters
of this type. While the collision probability improves (i.e., decreases) for growing
n, the containment probability increases, as the relation between n and the fixed
m becomes worse. But, in fact, we can establish monotonicity.

Proposition 5. When the columns of the (d, f)-resolvable matrices from [12]
are used as patterns in a Bloom filter, then FPR(d) decreases for growing n.

Proof. Let C denote the factor for which m = Cd log n. Note that C ≥ 2.
Solving m/d = 2t/(t− r) · log(1/r) for t yields t = r/(1− (2/ ln 2)(d/m) ln(1/r)).
Taking the derivative with repect to r by using the quotient rule yields the
denominator 1 − (2/ ln 2)(d/m)(ln(1/r) + 1). We have the following chain of
equivalent inequalities: 1 − (2/ ln 2)(d/m)(ln(1/r) + 1) > 0 ⇐⇒ ln(1/r) < ln 2 ·

536 P. Damaschke and A. Schliep

(m/2d) − 1 ⇐⇒ 1/r < (1/e) · 2m/(2d) ⇐⇒ n/d < (1/e) · 2Cd logn/(2d) ⇐⇒
n < (d/e) · 2(C/2) log n ⇐⇒ n < (d/e) · nC/2, and the latter one is true for C ≥ 2.
Hence the derivative is positive in the relevant range of r, therefore t decreases
with growing 1/r, and the assertion follows. ��

On the other hand, a larger n requires more space to store the patterns and
more hashing. Still, the use of patterns is advantageous in this respect: In a
design with n patterns, only log n hash bits per element are needed. A standard
Bloom filter needs Θ((m/d) log m) = Θ(log n · log m) hash bits per element. The
constants depend on the desired FPR, but the extra Θ(log m) factor remains.

Another remark is that the resolvable matrices in [12] consist again of ran-
domly chosen vectors where a fixed number of bits is set, and Bloom filters are
explicitly mentioned as the inspiration. The opposite direction, namely, using
randomly chosen vectors with a fixed number of 1s as bit patterns in blocked
Bloom filters, was proposed in [20]. However, the known resolvable matrices are
not necessarily optimal. (In general, constructions of improved test designs are a
major theme in group testing research.) An intriguing question is whether there
are better designs with a given number n of patterns, and this is our optimization
problem.

7 Concluding Remarks

The actual construction of improved almost-disjunct matrices, and hence of bet-
ter bit patterns for Bloom filters, is beyond the scope of this paper. Our par-
tial results suggest that certain designs with vectors from two neighbored levels
might be optimal. We notice that the construction of combinatorial designs with
certain “almost-properties” gained new momentum recently [22].

We intend to design large-scale simulation experiments, to gain insights for
real and simulated workloads of using Bloom filters with bit patterns. We expect
to see differences between various pattern choices when viewing the FPR, as the
number of items in the filter increases. There may not necessarily be differences
in the FPR for the nominal design parameter representing the number of items,
but in how the FPR behaves up to this point and beyond.

Yet another aspect could not be addressed here: Cache considerations prevent
making the number n of patterns arbitrarily large, as the pattern storage needs
to fit within primary or at least secondary caches. One possible approach to
increase n (and thus reduce the FPR) in the same pattern storage would be the
computation of the actually needed patterns on-the-fly from hash values, using
only a small amount of auxiliary memory. Naturally, the design of the patterns
must allow fast calculation. We are wondering if such designs exist, that do not
compromise the other parameters too much.

Acknowledgment. We are grateful to the reviewers for encouragement and for careful
comments that helped improve the notation and fix a calculation mistake.

An Optimization Problem Related to Bloom Filters with Bit Patterns 537

References

1. Barg, A., Mazumdar, A.: Almost Disjunct Matrices from Codes and Designs. CoRR
abs/1510.02873 (2015)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Comm.
ACM 13, 422–426 (1970)

3. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: a survey.
Internet Math. 1, 485–509 (2004)

4. Damaschke, P.: Calculating approximation guarantees for partial set cover of pairs.
Optim. Lett. 11, 1293–1302 (2017)

5. Damaschke, P., Muhammad, A.S.: Randomized group testing both query-optimal
and minimal adaptive. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser,
S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 214–225. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27660-6 18

6. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34, 1253–1270 (2005)

7. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 49, 758–764 (1946)

8. Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic verification. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 367–381. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4 26

9. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World
Scientific, New Jersey (2006)

10. Dyachkov, A.G., Vorobev, I.V., Polyansky, N.A., Shchukin, V.Y.: Bounds on the
rate of disjunctive codes. Probl. Inf. Transm. 50, 27–56 (2014)

11. Eppstein, D.: Cuckoo filter: simplification and analysis. In: Pagh, R. (ed.) SWAT
2016. LIPIcs, vol. 53, paper 8, Dagstuhl (2016)

12. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM J. Comput. 36, 1360–1375
(2007)

13. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo filter: prac-
tically better than Bloom. In: Seneviratne, A., et al. (eds.) CoNEXT 2014, pp.
75–88. ACM (2014)

14. Kapoor, A., Rizzi, R.: Edge-coloring bipartite graphs. J. Algorithms 34, 390–396
(2000)

15. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better
Bloom filter. Random Struct. Algorithms 33, 187–218 (2008)

16. Knill, E., Schliep, A., Torney, D.C.: Interpretation of pooling experiments using
the Markov Chain Monte Carlo method. J. Comput. Biol. 3, 395–406 (1996)

17. Mazumdar, A.: Nonadaptive Group Testing with Random Set of Defectives. CoRR
abs/1503.03597 (2016)

18. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

19. Pagh, A., Pagh, R., Srinivasa Rao, S.: An optimal Bloom filter replacement. In:
SODA 2005, pp. 823–829 (2005)

20. Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient Bloom filters.
ACM J. Exp. Algorithms 14, Article 4.4 (2009)

21. Roy, R.S., Bhattacharya, D., Schliep, A.: Turtle: identifying frequent k-mers with
cache-efficient algorithms. Bioinformatics 14, 1950–1957 (2014)

https://doi.org/10.1007/978-3-642-27660-6_18
https://doi.org/10.1007/978-3-540-30494-4_26

538 P. Damaschke and A. Schliep

22. Sarkar, K., Colbourn, C.J., de Bonis, A., Vaccaro, U.: Partial covering arrays: algo-
rithms and asymptotics. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA
2016. LNCS, vol. 9843, pp. 437–448. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44543-4 34

23. Song, H., Dharmapurikar S., Turner J., Lockwood, J.: Fast hash table lookup using
extended Bloom filter: an aid to network processing. In: Guérin, R., Govindan, R.,
Minshall, G.: SIGCOMM 2005, pp. 181–192. ACM (2005)

24. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Zeitschrift
27, 544–548 (1928)

25. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 18, 821–829 (2008)

26. Zhigljavsky, A.: Probabilistic existence theorems in group testing. J. Stat. Plann.
Infer. 115, 1–43 (2003)

https://doi.org/10.1007/978-3-319-44543-4_34
https://doi.org/10.1007/978-3-319-44543-4_34

Nivat’s Conjecture Holds for Sums of Two
Periodic Configurations

Michal Szabados(B)

Department of Mathematics and Statistics,
University of Turku, 20014 Turku, Finland

micsza@utu.fi

Abstract. Nivat’s conjecture is a long-standing open combinatorial
problem. It concerns two-dimensional configurations, that is, maps Z2 →
A where A is a finite set of symbols. Such configurations are often under-
stood as colorings of a two-dimensional square grid. Let Pc(m,n) denote
the number of distinct m×n block patterns occurring in a configuration
c. Configurations satisfying Pc(m,n) ≤ mn for some m,n ∈ N are said
to have low rectangular complexity. Nivat conjectured that such config-
urations are necessarily periodic.

Recently, Kari and the author showed that low complexity configura-
tions can be decomposed into a sum of periodic configurations. In this
paper we show that if there are at most two components, Nivat’s conjec-
ture holds. As a corollary we obtain an alternative proof of a result of
Cyr and Kra: If there exist m,n ∈ N such that Pc(m,n) ≤ mn/2, then
c is periodic. The technique used in this paper combines the algebraic
approach of Kari and the author with balanced sets of Cyr and Kra.

1 Introduction

Let A be a finite set of symbols and d a positive integer, the dimension. A
d-dimensional symbolic configuration c is an element of AZ

d

, that is, a map
assigning a symbol to every vertex of the lattice Z

d. The symbol at position
v ∈ Z

d is denoted cv .
For a non-empty finite domain D ⊂ Z

d, the elements of AD are D-patterns.
We can observe patterns in a given configuration, the D-pattern occurring in c
at position v ∈ Z

d is the map

p : D → A
u �→ cv+u .

The number of distinct D-patterns occurring in c, denoted Pc(D), is the D-
pattern complexity of c. We say that c has low complexity if Pc(D) ≤ |D| holds
for some D.

M. Szabados—Research supported by the Academy of Finland Grant 296018.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 539–551, 2018.
https://doi.org/10.1007/978-3-319-73117-9_38

540 M. Szabados

We study what conditions on complexity imply that a configuration is peri-
odic, that is, when there exists a non-zero vector u such that cv = cv+u for all
v ∈ Z

d. The situation in one dimension was described by Morse and Hedlund
[MH38], let us denote [[n]] = {0, . . . , n − 1}:

Theorem (Morse–Hedlund). Let c be a one-dimensional symbolic configura-
tion. Then c is periodic if and only if there exists n ∈ N such that Pc([[n]]) ≤ n.

As a corollary, non-periodic one-dimensional configurations satisfy Pc([[n]]) ≥
n + 1. Those for which equality holds for every n are Sturmian words, they
are a central topic of combinatorics on words and have connections to discrete
geometry, finite automata and mathematical physics [Lot02,AS03,DL99]. Note
that Sander and Tijdeman [ST00] extended the Morse–Hedlund theorem for
patterns of other shapes than [[n]], they showed that in fact any low complexity
one-dimensional symbolic configuration is periodic.

Nivat’s conjecture [Niv97] is a natural extension of the theorem to two-
dimensions. To simplify notation we write Pc(m,n) = Pc([[m]] × [[n]]).

Conjecture (Nivat). If a two-dimensional symbolic configuration c satisfies
Pc(m,n) ≤ mn for some m,n ∈ N, then it is periodic.

Nivat’s conjecture is tight in the sense that there exist non-periodic configu-
rations satisfying Pc(m,n) = mn+1 for all m,n ∈ N, all such configurations were
classified by Cassaigne [Cas99]. Note that the conjecture is not an equivalence,
the opposite implication is easily seen to be false.

There have been a number of partial results towards the conjecture. Cyr
and Kra [CK16] proved that having Pc(3, n) ≤ 3n for some n ∈ N implies
periodicity, which was an improvement on a previous result with constant 2
[ST02]. In another direction, there are results showing that having Pc(m,n) ≤
αmn for some m,n ∈ N implies periodicity for a suitable real α. The best result to
date is also by Cyr and Kra [CK15] with α = 1/2, which improved on previous
constants α = 1/16 [QZ04] and α = 1/144 [EKM03]. Recently, Kari and the
author [KS15] proved an asymptotic version of the conjecture: If Pc(m,n) ≤ mn
for infinitely many pairs (m,n) ∈ N

2, the configuration is periodic.
The Morse–Hedlund theorem does not analogously generalize to higher

dimensions. There exists a three-dimensional configuration with low block com-
plexity which is not periodic [ST00].

Our contributions

In [KS15], Kari and the author introduced an algebraic view on symbolic con-
figurations. Following their definition, let a configuration be any formal power
series in d variables x1, . . . , xd with complex coefficients, that is, an element of

C[[X±1]] =
{ ∑

v∈Zd

cvXv
∣
∣ cv ∈ C

}

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 541

where Xv is a shorthand for xv1
1 · · · xvd

d .1 If the configuration has only integer
coefficients it is called integral, if they come from a finite set the configuration
is finitary. A symbolic configuration can be identified with a finitary integral
configuration if the symbols from A are chosen to be integers. Kari and the
author in [KS15] proved:

Theorem (Decomposition theorem). Let c be a low complexity d-
dimensional finitary integral configuration. Then there exists k ∈ N and periodic
d-dimensional configurations c1, . . . , ck such that c = c1 + · · · + ck.

Note that the summands do not have to be finitary configurations. The min-
imal possible number of components k in the decomposition plays an important
role. In this paper we prove:

Theorem 1. Let c be a two-dimensional configuration satisfying Pc(m,n) ≤ mn
for some m,n ∈ N. If c is a sum of two periodic configurations then it is periodic.

In the proof of the asymptotic version of Nivat’s conjecture given in [KS16],
configurations which are a sum of horizontally and vertically periodic config-
uration had to be handled separately using a rather technical combinatorial
approach. Theorem 1 is of particular interest since it covers this case.

In this paper we revisit the method of Cyr and Kra [CK15,CK16]. They
approach Nivat’s conjecture from the point of view of symbolic dynamics. They
use a refined version of the classical notion of expansiveness of a subshift, a
so called one-sided non-expansiveness. A key definition of theirs is that of a
balanced set – it is a shape D ⊂ Z

2 which satisfies a particular condition on the
complexity Pc(D). (Note that this notion is different from balancedness usual
in combinatorics on words.) The crucial tool they developed is a combinatorial
lemma which links one-sided non-expansiveness and balanced sets to periodicity
of a configuration. However, in order to obtain the main result of the paper from
the lemma it still takes a rather lengthy technical analysis.

We combine the algebraic method with ideas of Cyr and Kra. We start the
exposition with a very basic introduction to the topic of symbolic dynamics. In
Sect. 2 we define a subshift, in Sect. 3 we fix some geometric terminology, and in
Sect. 4 we give definitions of non-expansiveness and one-sided non-expansiveness
of a subshift.

In Sect. 5 we introduce a simplified version of a balanced set and prove
Lemma 4 which connects balanced sets with periodicity using the ideas of Cyr
and Kra. We use the lemma together with decomposition theorem to prove The-
orem 1 in Sect. 6. As a corollary, we obtain an alternative proof of Theorem 1.2
of [CK15], the main result of their paper:

Theorem (Cyr, Kra). Let c be a configuration satisfying Pc(m,n) ≤ mn/2
for some m,n ∈ N. Then c is periodic.

1 For the most of this paper, however, it is enough to consider configurations to be

elements of CZ
d

.

542 M. Szabados

2 Symbolic Dynamics and Subshifts

Let us recall basic facts from symbolic dynamics, for a comprehensive reference
and proofs see [Kůr03].

Symbolic dynamics studies AZ
d

as a topological space. Let us first make
A a topological space by endowing it with the discrete topology. Then AZ

d

is
considered to be a topological space with the product topology.

Open sets in this topology are for example sets of the following form. Let
D ⊂ Z

d be finite and p : D → A arbitrary. Then

Cyl(p) :=
{

c ∈ AZ
d ∣

∣ ∀v ∈ D : cv = pv
}

is an open set, also called a cylinder. In fact, the collection of cylinders Cyl(p)
for all possible p forms a subbase of the topology on AZ

d

.
For a vector u ∈ Z

d, the shift operator τu : AZ
d → AZ

d

is defined by
(τu (c))v = cv−u . Informally, τu shifts a configuration in the direction of vec-
tor u.

The set AZ
d

is called the full shift. A subset X ⊂ AZd

is called a subshift if
it is a topologically closed set which is invariant under all shifts τu :

∀u ∈ Z
d : c ∈ X ⇒ τu (c) ∈ X.

Subshifts are the central objects of study in symbolic dynamics.
Let c be a symbolic configuration. We denote by Xc the orbit closure of c, that

is, the smallest subshift which contains c. It can be shown that c contains exactly
those configurations c′ whose finite patterns are among the finite patterns of c.
In particular, for any c′ ∈ Xc and a finite domain D we have Pc′(D) ≤ Pc(D).

Example 1. Let us give an example of taking orbit closure. Let c ∈ {0, 1}Z2
be

such that cij = 1 if i = 0 or j = 0, and cij = 0 otherwise. When pictured,
the configuration c consists of a large cross with its center at (0, 0). The orbit
closure Xc then consist of four types of configurations: a cross, a horizontal line, a
vertical line and all zero configurations, with all possible translations, see Fig. 1.
It is easy to see that any pattern which occurs in them also occurs in c, and not
difficult to prove that those are all such configurations.
�

Fig. 1. Four types of configurations in the orbit closure Xc from Example 1. The gray
color corresponds to value 1, white is 0.

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 543

3 Geometric Notation and Terminology

In the sequel we will be concerned with the geometry of Z
2. Let us establish

some notation and terminology.
We view Z

2 as a subset of the vector space Q
2. A direction is an equivalence

class of Q2\{(0, 0)} modulo the equivalence relation u ∼ v iff u = λv for some
λ > 0. By a slight abuse of notation, we identify a non-zero vector u ∈ Z

2 with
the direction uQ+.

Let u ∈ Z
2 be non-zero. An (undirected) line in Z

2 is a set of the form

{v + qu | q ∈ Q } ∩ Z
2

for some v ∈ Z
2. We call both u and −u a direction of the line. We define a

directed line to be a line augmented with one of the two possible directions.
Let � be a directed line in direction u going through v ∈ Z

2. The half-plane
determined by � is defined by

H� =
{
v + w

∣
∣ w ∈ Z

2, w1u2 − u1w2 ≥ 0
}
.

With the usual choice of coordinates it is the half-plane “on the right” from the
line. Let Hu denote the half-plane determined by the directed line in direction
u going through the origin.

We say that a non-empty D ⊂ Z
2 is convex if D can be written as an

intersection of half-planes. Convex hull of D, denoted Conv(D), is the smallest
convex set containing D. Assume � is a directed line in direction u such that
D ⊂ H� and �∩D is non-empty. If |�∩D| > 1 we call it the edge of D in direction
u, otherwise we call it the vertex of D in direction u. Note that a vertex is a
vertex for many directions, but an edge has a unique direction (as long as D is
not contained in a line). See Fig. 2 for an example.

Fig. 2. A convex set. The point v is a vertex of the set for both directions u1 and u2.
The set of three marked points e is the edge in direction u3.

Let u be a direction and �, �′ two directed lines in direction u. If

S = H�\H�′

is non-empty, then S is called a stripe in direction u. We call �, �′ the inner and
outer boundary of S respectively. Let S◦ = S\� be the interior of S.

For A,B ⊂ Z
2, we say that A fits in B if there exists a translation of A

which is a subset of B.

544 M. Szabados

4 Non-expansiveness and One-Sided Non-expansiveness

It can be verified that the topology on AZ
d

is compact and also metrizable.
Note that shift operators τu are continuous maps on AZ

d

. Expansiveness can
be defined in general for a continuous action on a compact metric space, the
definition is however too general for our purposes. We give a definition specific
to the case of AZ

2
.

Let X ⊂ AZ
2

be a subshift and u a direction. Then u is an expansive direction
for X if there exists a stripe S in direction u such that

∀c, e ∈ X : c�S= e�S ⇒ c = e.

Informally speaking, u is an expansive direction for X if a configuration in X is
uniquely determined by its coefficients in a wide enough stripe in direction u.

A two-dimensional configuration is doubly periodic if it has two linearly inde-
pendent period vectors. The following classical theorem links double periodicity
of a configuration with expansiveness. It is a corollary of a theorem by Boyle
and Lind [BL97].

Theorem 2. Let c be a symbolic configuration. Then c is doubly periodic iff all
directions are expansive for Xc.
�

Let X ⊂ AZ
2

be a subshift and u a direction. Then u is a one-sided expansive
direction for X if

∀c, e ∈ X : c�Hu
= e�Hu

⇒ c = e.

Equivalently, u is a one-sided expansive direction for X if there exists a
wide enough stripe S in direction u such that ∀c, e ∈ X : c�S= e�S⇒ c�H−u

=
e�H−u

. See Fig. 3 for a comparison of the notion of expansiveness and one-sided
expansiveness.

� �

Fig. 3. The figure on the left illustrates expansiveness – values of the configuration
inside the stripe determine the whole configuration. On the right we see one-sided
expansiveness in direction (1, 2) – values in the half-plane H�, or equivalently in a wide
enough stripe, determine the values in the half-plane Z

2\H�.

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 545

Example 2 (Ledrappier’s subshift). It is possible for a subshift to be one-
sided expansive but non-expansive in the same direction. Consider a subshift
X ⊂ {0, 1}Z2

consisting of configurations c which satisfy cij ≡ ci,j+1 + ci+1,j+1

(mod 2). Upper half-plane of a configuration determines the whole, since any sin-
gle row determines the one below it. Therefore (−1, 0) is a one-sided expansive
direction for X. However, no stripe in direction (−1, 0) determines a configu-
ration from the subshift; for any row, there are always two possibilities for the
row above it (they are complements of each other). Any horizontal stripe can be
extended to the upper half-plane in infinitely many ways.
�

We are primarily interested in non-expansive directions. In our setup, it is
known that there are only finitely many of them, we omit the proof for space
reasons.

Lemma 1. Let c be a low complexity two-dimensional configuration. Then there
are at most finitely many one-sided non-expansive directions for Xc.
�

For later use it will be practical to define non-expansiveness explicitly. Let
X ⊂ AZ

2
be a subshift and S a stripe in direction u. We say that S is an

ambiguous stripe in direction u if there exist c, e ∈ X such that

c�S◦= e�S◦ , but c�S �= e�S . (1)

We say that c ∈ X contains an ambiguous stripe S if there exists e ∈ X satisfying
(1). Informally, a stripe is ambiguous if its interior does not determine the inner
boundary.

Definition. Let u be a direction and X ⊂ AZ
2

a subshift. Then u is one-sided
non-expansive direction if there exists an ambiguous stripe in direction u of
arbitrary width.

We leave the proof that this is the converse of the earlier definition of one-
sided expansiveness to the reader.

5 Balanced Sets

Let c be a fixed symbolic configuration.

Definition 1. Let B ⊂ Z
2 be a finite and convex set, u a direction and E an

edge or a vertex of B in direction u. Then B is u-balanced if:

(i) Pc(B) ≤ |B|
(ii) Pc(B) < Pc(B\E) + |E|
(iii) Intersection of B with all lines in direction u is either empty or of size at

least |E| − 1.

546 M. Szabados

The three conditions of the definition can be interpreted as follows. The first
one simply states that B is a low complexity shape. The second condition limits
the number of (B\E)-patterns which do not extend uniquely to a B-pattern,
there is strictly less than |E| of them. The third condition is implied if the
length of the edge in direction u is smaller or equal to the length of the edge in
the opposite direction, as can be seen in the next proof.

Lemma 2. Let c be such that Pc(m,n) ≤ mn holds for some m,n ∈ N and u
be a direction. Then there exists a u-balanced or (−u)-balanced set. Moreover,
if u is horizontal or vertical, then there exists a u-balanced set.

Proof. Let D be an m × n rectangle, we have Pc(D) ≤ |D|. Let us define a
sequence of convex shapes D = D0 ⊃ D1 ⊃ · · · ⊃ Dk = ∅ such that Di\Di+1 is
the edge of Di in direction (−1)iu. Informally, the sequence represents shaving
off an edge (or a vertex) of the shape alternately in directions u and −u. See
Fig. 4 for an illustration.

Consider the expression Pc(Di) − |Di| as a function of i. For i = 0 its value
is non-positive and for i = k its value is 1. Let i ∈ [0, k − 1] be smallest such
that 0 < Pc(Di+1) − |Di+1|, then we have

Pc(Di) − |Di| ≤ 0 < Pc(Di+1) − |Di+1|.

Denote E = Di\Di+1, it is an edge or a vertex of Di in direction u or −u. Adding
|Di| to the inequality and rewriting gives P (Di) ≤ |Di| < P (Di\E) + |E|.

We show that B = Di is a balanced set by showing that (iii) of Definition 1
holds. Without loss of generality let the direction of E be u. Then, by construc-
tion, the length of E is smaller or equal to the edge in direction −u. In fact, if
we consider the convex hull of B in Q

2, any line in direction u intersects it in
a line segment longer or equal to d, the length of the edge. Any line segment of
length at least d in direction u intersects either none or at least |E| − 1 integer
points, and we are done.

If u is either horizontal or vertical, instead of alternating the direction of
shaved off edges, we can always shave off the edge in direction u. It will be
always the shortest edge in direction u, therefore verification of part (iii) goes
through.
�

Next we present Lemma 4 which connects non-expansiveness and balanced
sets with periodicity, based on the method of Cyr and Kra. Periodicity in the
proof first arises in a stripe from the use of Morse–Hedlund theorem. This part of
the proof follows Lemma 2.24 from [CK15]. The periodicity is then extended to
the whole configuration by the following lemma, which is a corollary of Lemma
39 from [KS16]. We omit the proof for space reasons.

Lemma 3. Let c be a two-dimensional configuration and D a non-empty finite
subset of Z2 such that Pc(D) ≤ |D|. Let S be a stripe in direction u such that
D fits in S. If S◦ is periodic with a period in direction u then also c is periodic
with a period in direction u.
�

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 547

Fig. 4. Shaving off edges or vertices of a 5 × 5 rectangle alternately in directions (2, 1)
and (−2,−1). Small numbers indicate the order in which the edges or vertices were
removed.

Lemma 4. Let c be a configuration and B a u-balanced set. Assume that c
contains an ambiguous stripe for Xc in direction u such that B fits in the stripe.
Then c is periodic in direction u.

Proof. Let E be the edge or vertex of B in direction u, denote S the stripe
and let � be the inner boundary of S in direction u. Without loss of generality
assume B ⊂ S, E ⊂ �, and that u is not an integer multiple of a smaller vector.
Let e ∈ Xc be such that Eq. 1 holds.

Denote points in E consecutively by e1, . . . , en (see Fig. 5). Define a sequence
B = Dn ⊃ · · · ⊃ D1 ⊃ D0 = B\E by setting Di−1 = Di\{ei}. Consider the
values P (Di) − |Di|. Since B is a balanced set, by (ii) we have Pc(Dn) − |Dn| <
Pc(D0) − |D0|, let k ∈ [0, n − 1] be such that

Pc(Dk+1) − |Dk+1| < Pc(Dk) − |Dk|.

Adding |Dk+1| to both sides yields Pc(Dk+1) < Pc(Dk) + 1. On the other
hand, Pc(Dk) ≤ Pc(Dk+1) since Dk ⊂ Dk+1, and therefore we have Pc(Dk) =
P (Dk+1). In other words, a Dk-pattern uniquely determines the value at position
ek+1.

We will show that ∀i : c�Dk+iu �= e�Dk+iu . For the contrary, assume that there
is j such that c�Dk+ju= e�Dk+ju . Using the property of Dk, we have c�ek+1+ju=
e�ek+1+ju . Therefore c�Dk+(j+1)u= e�Dk+(j+1)u and we can proceed by induction
to show c�Dk+j′u= e�Dk+j′u for all j′ > j. Analogously, by constructing sets
Di by removing edge points from the other end, it can be shown that also
c�Dk+j′u= e�Dk+j′u for all j′ < j. We proved c�S= e�S , which is a contradiction
with ambiguity of S.

We have that all (B\E)-patterns c�(B\E)+iu have at least two possible exten-
sions into a B-pattern. Part (ii) of Definition 1 implies that there are at most
|E| − 1 such patterns. Let T be a thinner stripe in direction u defined by
T =

⋃
i∈Z

(B\E) + iu. Using part (iii) of Definition 1, values of c on every line
λ ⊂ T in direction u contain at most |E| − 1 distinct subsegments of length at
least |E| − 1. By Morse–Hedlund theorem, the values on the line repeat period-
ically. Therefore c�T is periodic in direction u.

548 M. Szabados

B fits in the stripe T ∪ � and its interior T is periodic in direction u. By
Lemma 3 also c is periodic in direction u.
�

Fig. 5. Illustration of the proof of Lemma 4.

6 Main Result

Theorem (Theorem 1). Let c be a two-dimensional configuration satisfying
Pc(m,n) ≤ mn for some m,n ∈ N. If c is a sum of two periodic configurations
then it is periodic.

Proof. For contradiction assume c is non-periodic and denote c1, c2 periodic
configurations such that c = c1 + c2. Let u1,u2 be their respective vectors
of periodicity. If they are linearly dependent, c is periodic and we are done.
Otherwise, define a parallelogram

D =
{

au1 + bu2

∣
∣ a, b ∈ [0, 1)

} ∩ Z
2.

We can choose u1,u2 large enough so that an m × n rectangle fits in. We can
also assume that u2 ∈ Hu1 . Denote Dj = D + ju2 and define a sequence of
stripes Sj =

⋃
i∈Z

Dj + iu1. The setup is illustrated in Fig. 6.
Assume that there are j �= j′ such that c�Dj

= c�Dj′ . We claim that then
c�Sj

= c�Sj′ . Note that since c = c1 + c2, for v ∈ Z
2 we have

(c(v+u1)+ju2
− c(v+u1)+j′u2

) − (cv+ju2 − cv+j′u2) = 0.

In particular, if cv+ju2 = cv+j′u2 , then also c(v+u1)+ju2
= c(v+u1)+j′u2

. Since
cv+ju2 = cv+j′u2 holds for v ∈ D, it also holds for v ∈ D+u1, and by induction
c�Sj

= c�Sj′ .
Since c is finitary there are only finitely many possible D-patterns, let N be

an upper bound on their number. There are also finitely many stripe patterns
c�Sj

since the pattern in Sj is determined by the pattern in Dj . Because c is not
periodic, there exists k ∈ Z such that c�Sk

�= c�Sk−N! .
By Lemma 2, there is either a u1-balanced or (−u1)-balanced set B, without

loss of generality assume the former. Since c is non-periodic, by Lemma 4 there
is no ambiguous stripe in c in direction u1 in which B fits. B fits in any stripe

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 549

Sj , therefore values in any stripe Sj determine the values in the whole half-plane
on the side of the inner boundary of Sj .

By pigeonhole principle, there are j < j′ ∈ [0, N] such that c�Sk+j
= c�Sk+j′ .

The two stripes extend uniquely to the half-planes on the side of their inner
boundary. Therefore the half-plane H =

⋃
i≤j′ Si has period (j′ − j)u2. Since

j′−j divides N ! and Sk, Sk−N ! ⊂ H, we have a contradiction with c�Sk
�= c�Sk−N! .

�

u1

u2
D0

D1

D2

S0

S1

S2

Fig. 6. Proof of Theorem 1.

Corollary 1. If a non-periodic configuration c is a sum of two periodic ones,
then Pc(m,n) ≥ mn + 1 for all m,n ∈ N.
�
We finish the exposition by reproving the result of Cyr and Kra from [CK15].
To do that, we need additional theory from [KS16]. Multiplication of a two-
dimensional configuration c by a polynomial f ∈ C[x1, x2] is well defined. If
fc = 0, we call f an annihilator of c. The following two lemmas we state without
a proof, they are direct corollaries of Corollary 24 and Lemma 32 of [KS16],
respectively.

Lemma 5. Let c be a low complexity two-dimensional integral configuration.
Then there exists k ∈ N and polynomials φ1, . . . , φk ∈ C[x1, x2] with the following
properties:

Every annihilator of c is divisible by φ1 · · · φk. Furthermore, c can be written
as a sum of k, but no fewer periodic configurations. If g is a product of 0 ≤ � < k
of the polynomials φi, then gc can be written as a sum of k − �, but no fewer
periodic configurations.
�

Any polynomial in C[x1, x2] can be written as f =
∑

v∈Z2 avXv . The support
of f , denoted supp(f), is defined as the finite set of vectors v ∈ Z

2 such that
av �= 0. We say that f fits in a subset D ⊂ Z

2 if its support fits in D.

Lemma 6. Let c be a finitary configuration. Then the symbols of A can be
changed to suitable integers such that if Pc(D) ≤ |D| for some D ⊂ Z

d, then
there exists an annihilator f which fits in −D.
�
Theorem 3. Let c be a configuration such that Pc(m,n) ≤ mn/2 for some
m,n ∈ N. Then c is periodic.

550 M. Szabados

Proof. Assume that the symbols of A have been renamed as in Lemma 6, then
there exists f an annihilator of c which fits in an m × n rectangle. By Lemma 5,
we can write f = φ1 · · · φkh. If k ≤ 2 then c is periodic by Theorem 1. Assume
k ≥ 3, we will show that it leads to a contradiction.

Let g = φ3 · · · φk, c′ = gc and let mg, ng ∈ N be smallest such that g fits in an
(mg +1)× (ng +1) rectangle, see Fig. 7. Note that an (m−mg)× (n−ng) block
in c′ is determined by multiplication by g from an m × n block in c. Therefore
Pc(m,n) ≥ Pc′(m − mg, n − ng).

By Lemma 5, c′ is a sum of two but no fewer periodic configurations. Thus
it is not periodic, and by Theorem1,

Pc(m,n) ≥ Pc′(m − mg, n − ng) > (m − mg)(n − ng).

Let v be an arbitrary vertex of the convex hull of −supp(g). Consider all
translations of −supp(g) which are a subset of the rectangle [[m]] × [[n]], denote
R the locus of v under these translations. There are (m − mg)(n − ng) such
translations, therefore the size of R is the same number.

Now let us define a shape U = [[m]] × [[n]]\R. It is a shape such that no
polynomial multiple of g fits in −U . In particular no annihilator of c fits in −U ,
and thus by Lemma 6,

Pc(m,n) ≥ Pc(U) > |U |.
Since either (m−mg)(n−ng) = |R| ≥ mn/2 or |U | ≥ mn/2, we have Pc(m,n) >
mn/2, a contradiction.
�

m−mg

n− ng
ng

mg

v

Fig. 7. Proof of Theorem 3. The quadrilateral depicts the convex hull of −supp(g) for
a polynomial g, positioned in the bottom left corner of an m × n block. The white
points form the set R and the shaded points form the set U . We have |U | ≥ mn/2 or
|R| ≥ mn/2.

References

[AS03] Allouche, J., Shallit, J.: Automatic Sequences: Theory, Applications, Gener-
alizations. Cambridge University Press, Cambridge (2003)

[BL97] Boyle, M., Lind, D.: Expansive subdynamics. Trans. Am. Math. Soc. 349(1),
55–102 (1997)

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations 551

[Cas99] Cassaigne, J.: Double sequences with complexity mn+1. J. Autom. Lang.
Comb. 4(3), 153–170 (1999)

[CK16] Cyr, V., Kra, B.: Complexity of short rectangles and periodicity. Eur. J.
Comb. Part A 52, 146–173 (2016)

[CK15] Cyr, V., Kra, B.: Nonexpansive Z
2-subdynamics and Nivat’s conjecture.

Trans. Am. Math. Soc. 367(9), 6487–6537 (2015)
[DL99] Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional qua-

sicrystals, I. Absence of eigenvalues. Commun. Math. Phys. 207(3), 687–696
(1999)

[EKM03] Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bidimensional
words. Theoret. Comput. Sci. 299(1–3), 123–150 (2003)

[KS15] Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjec-
ture. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6 22

[KS16] Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjec-
ture. arXiv:1605.05929 (2016)

[Kůr03] Kůrka, P.: Topological and Symbolic Dynamics. Collection SMF, Société
mathématique de France (2003)

[Lot02] Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathe-
matics and Its Applications. Cambridge University Press, Cambridge (2002)

[MH38] Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866
(1938)

[Niv97] Nivat, M.: Invited talk at ICALP, Bologna (1997)
[QZ04] Quas, A., Zamboni, L.Q.: Periodicity and local complexity. Theoret. Comput.

Sci. 319(1–3), 229–240 (2004)
[ST00] Sander, J.W., Tijdeman, R.: The complexity of functions on lattices. Theo-

ret. Comput. Sci. 246(1–2), 195–225 (2000)
[ST02] Sander, J.W., Tijdeman, R.: The rectangle complexity of functions on two-

dimensional lattices. Theoret. Comput. Sci. 270(1–2), 857–863 (2002)

https://doi.org/10.1007/978-3-662-47666-6_22
http://arxiv.org/abs/1605.05929

Encoding Pictures with Maximal Codes
of Pictures

Marcella Anselmo1, Dora Giammarresi2, and Maria Madonia3(B)

1 Dipartimento di Informatica, Università di Salerno,
Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

manselmo@unisa.it
2 Dipartimento di Matematica, Università di Roma “Tor Vergata”,

Via della Ricerca Scientifica, 00133 Roma, Italy
giammarr@mat.uniroma2.it

3 Dipartimento di Matematica e Informatica, Università di Catania,
Viale Andrea Doria 6/a, 95125 Catania, Italy

madonia@dmi.unict.it

Abstract. A picture is a two-dimensional counterpart of a string and
it is represented by a rectangular array of symbols over a finite alpha-
bet Σ. A set X of pictures over Σ is a code if every picture over Σ is
tilable in at most one way with pictures in X. Recently, the definition of
strong prefix code was introduced as a decidable family of picture codes,
and a construction procedure for maximal strong prefix (MSP) codes was
proposed. Unfortunately, the notion of completeness cannot be directly
transposed from strings to pictures without loosing important properties.
We generalize to pictures a special property satisfied by complete set of
strings that allow to prove interesting characterization results for MSP
codes. Moreover, we show an encoding algorithm for pictures using pic-
tures from a MSP code. The algorithm is based on a new data structure
for the representation of MSP codes.

1 Introduction

A picture is represented by a rectangular array of symbols over a finite alphabet
Σ and it is taken as the two-dimensional counterpart of a string. The set of
all pictures over Σ is usually denoted by Σ∗∗ and a picture language is then a
subset of Σ∗∗. The general and ambitious intent of the researchers is to gener-
alize the well established theory of string languages to picture languages in a
way to exploit all the richness of having two dimensions. Unfortunately, many
definitions and properties cannot be directly transposed to two dimensions and
many problems become very difficult, sometimes even undecidable.

In the last two decades, two dimensional codes were studied in different
contexts. In particular a picture code is a subset X of Σ∗∗ such that every picture
over Σ is tilable in at most one way with pictures in X. Most of the results show

Partially supported by INdAM-GNCS Project 2017, FARB Project ORSA138754 of
University of Salerno and FIR Project 375E90 of University of Catania.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 552–565, 2018.
https://doi.org/10.1007/978-3-319-73117-9_39

Encoding Pictures with Maximal Codes of Pictures 553

that in the 2D context we loose important properties. A major result due to D.
Beauquier and M. Nivat states that the problem whether a finite set of pictures
is a code is undecidable, and the same result holds also for dominoes [10]. Other
related results on two-dimensional codes can be found in [1,12,15,17,18].

Among the first attempts to define a decidable subclass of picture codes
we mention the definition of prefix code [5,6]. Pictures are considered with the
preferred scanning direction from the top-left corner to the bottom-right one.
Moreover, the notion of a picture p prefix of a picture q is used when p coincides
with the “top-left portion” of q. Prefix picture codes inherit some properties
from the original family of prefix string codes and several non trivial examples
can be exhibited. Nevertheless, it is worth to say that the definition is sometimes
difficult to manage, since the presence of a specific picture in the code depends
on a tiling combination of (possibly) many other pictures in the same set and it
involves a special kind of polyominoes.

An interesting class of pictures codes are the strong prefix codes introduced
in [4,9]. They have a more practicable and usable definition based on the notion
of prefix-overlaps between pictures. Two pictures p and q prefix-overlap if they
coincide in the common part when p is layed on q by superposing their top-left
corners. Then, a set of picture X is said strong prefix if no pairs of pictures in
X prefix-overlap.

Finite strong prefix sets are again a decidable family of picture codes with
a simple polynomial decoding algorithm. Maximal strong prefix (MSP) sets are
also studied and it is proved that it is decidable whether a given finite strong
prefix set is maximal. Some interesting results concerning the measure of strong
prefix codes are given in [7,8] together with an effective procedure to construct all
(maximal) strong prefix codes of pictures, starting from the “singleton” pictures
containing only one alphabet symbol.

All those results naturally promote the class of strong prefix codes of pictures
to be the right generalization in two dimensions of the important class of prefix
string codes that plays an important role in several applications, as for exam-
ple the Huffman coding algorithm (see [11,13] for a complete reference). The
strength of maximal prefix codes of strings lies in the fact that they are right-
complete that is any string w can be encoded as w = x1x2 . . . xky where all the
factors xi are strings from the code and y itself is a prefix (possibly empty) of
a string in the code. The notion of right-completeness can be naturally trans-
posed to two dimensions and called br-completeness (cf. [4,9]). Unfortunately
maximal strong prefix codes of pictures are not in general br-complete and this
implies that they cannot be effectively used in general to encode pictures (as one
would expect from a code!). The main reason is due to the different shapes of
the pictures; it is not always possible to concatenate pictures avoiding holes or
overlaps.

In this paper, we identify a property characterizing the complete sets of
strings and generalize it to sets of pictures. We say that a set of pictures X is
br-full if for any picture p over Σ and for any position (i, j) in p there is a picture
x in X that can be placed on p by putting the top-left corner of x on position

554 M. Anselmo et al.

(i, j) and all the symbols in the superposed positions coincide. We prove that a
strong prefix code of pictures X is maximal if and only if it is br-full. Moreover,
using this property, we show a unique way to tile a generic picture p over Σ with
pictures in X, by using some prefixes of pictures in X chosen in an appropriate
way. This is called decomposition with cuts. In the last part of the paper we
introduce a data structure, called extension-tree, to represent a maximal strong
prefix code. In the finite case, it allows to design an efficient algorithm to find
the unique encoding for any picture p that is related to its decomposition with
cuts in X.

2 Preliminaries

We recall some definitions about two-dimensional languages (see [14]). In the
following, we will consider only finite languages, even if some definitions and
results, given throughout the paper, apply to both finite and infinite languages.

A picture over a finite alphabet Σ is a two-dimensional rectangular array of
elements of Σ. Given a picture p, |p|row and |p|col denote the number of rows and
columns, respectively, while size(p) = (|p|row, |p|col) and area(p) = |p|row×|p|col

denote the picture size and area, respectively. We also consider all the empty
pictures, referred to as λm,0 and λ0,n, for all m,n ≥ 0; they correspond to all
pictures of size (m, 0) or (0, n). The set of all pictures over Σ of fixed size (m,n)
is denoted by Σm,n, while Σm∗ and Σ∗n denote the set of all pictures over Σ
with fixed number of rows m and columns n, respectively. The set of all pictures
over Σ is denoted by Σ∗∗, while Σ++ refers to the set Σ∗∗ without the empty
pictures. A two-dimensional language (or picture language) over Σ is a subset of
Σ∗∗. Any string on Σ can be viewed as a one-row picture in Σ∗∗.

In order to locate a position in a picture, it is necessary to put the pic-
ture in a reference system. The set of coordinates dom(p) = {1, 2, . . . , |p|row} ×
{1, 2, . . . , |p|col} is referred to as the domain of a picture p. We let p(i, j) denote
the symbol in p at coordinates (i, j). We assume the top-left corner of the pic-
ture to be at position (1, 1), and fix the scanning direction for a picture from the
top-left corner (tl-corner, for short) toward the bottom-right corner (br-corner,
for short).

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col, also specified by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain
[(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then, a picture x is a subpicture of
p if x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col.

Prefixes of pictures are special subpictures. Given pictures x, p, with |x|row ≤
|p|row and |x|col ≤ |p|col, picture x is a prefix of p, denoted x�p, if x is a subpic-
ture of p corresponding to its top-left portion, i.e. if x = p[(1, 1), (|x|row, |x|col)];
x is a proper prefix of p if, moreover, x �= p.

Dealing with pictures, two concatenation products are classically defined. Let
p, q ∈ Σ∗∗ be pictures of size (m,n) and (m′, n′), respectively. The row and the
column concatenation of p and q, denoted by p � q and p � q, are defined by

Encoding Pictures with Maximal Codes of Pictures 555

juxtaposing p and q vertically and horizontally, respectively. They are partial
operations, defined only if n = n′ and if m = m′, respectively, as:

p � q =
p
q

p � q = p q .

These operations can be extended to define row and column concatenations,
and row and column stars on languages. We consider another interesting star
operation for picture languages, as introduced by Simplot in [19], the tiling star.
The idea is to compose pictures in some way to cover a rectangular area as, for
example, in the following figures.

The tiling star of X, denoted by X∗∗, is the set that contains all the empty
pictures together with all the non-empty pictures p whose domain can be par-
titioned in disjoint subdomains {d1, d2, . . . , dk} such that any subpicture ph of
p associated with the subdomain dh belongs to X, for all h = 1, . . . , k. Then
X++ denotes the set X∗∗ without the empty pictures. In the sequel, if p ∈ X++,
the partition t = {d1, d2, . . . , dk} of dom(p), together with the corresponding
pictures {p1, p2, . . . , pk}, is called a tiling decomposition of p in X.

2.1 Two-Dimensional Codes

Let us recall the definitions of codes and strong prefix codes of pictures given in
[4–6,9], together with some examples. Let Σ be a finite alphabet. X ⊆ Σ++ is
a code iff any p ∈ Σ++ has at most one tiling decomposition in X.

Example 1. Let Σ = {a, b} be the alphabet and let X =
{

a b ,
a
b

,
a a
a a

}
.

It is easy to see that X is a code. Any picture p ∈ X++ can be decomposed
starting at the top-left-corner and checking the subpicture p[(1, 1), (2, 2)]; it can
be univocally decomposed in X. Then, proceed similarly for the next contiguous
subpictures of size (2, 2).

Example 2. Let X =
{

a b , b a ,
a
a

}
. Notice that no picture in X is prefix of

another picture in X. Nevertheless, X is not a code. Indeed, picture
a b a
a b a

has the

two following different tiling decompositions in X: t1 =
a b a
a b a

and t2 =
a b a
a b a

.

Taking inspiration from the family of prefix codes of strings, the strong prefix
sets of pictures have been defined in [4,9]. Note that the strong prefix sets are
codes.

556 M. Anselmo et al.

The definition of strong prefix set is based on the notion of prefix-overlap; two
pictures p and q prefix-overlap if for any (i, j) ∈ dom(p)∩dom(q), p(i, j) = q(i, j).
Moreover, p and q strictly prefix-overlap if they prefix-overlap, but neither p� q,
nor q � p (cf. [9]). For example, in the following figure, picture p and q strictly
prefix-overlap:

a b
a a

a b a a
a b a a
a a

p q p and q prefix-overlap

Definition 1. Let X ⊆ Σ++. X is strong prefix if for any pictures p, q in X
with p �= q, p and q do not prefix-overlap.

A strong prefix set X ⊆ Σ++ is maximal strong prefix (MSP, for short) over
Σ if it is not properly contained in any other strong prefix set over Σ; that is,
X ⊆ Y ⊆ Σ++ and Y strong prefix imply X = Y .

Example 3. The following language X is strong prefix; no two pictures in X
prefix-overlap. Moreover, in [9] it is proved that X is a maximal strong prefix
code.

X =
{

a b a , a b b ,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b

}
.

The results in [7–9] describe an effective procedure to construct all (maximal)
strong prefix codes of pictures, starting from the “singleton” pictures containing
only one alphabet symbol. The construction in some sense extends the literal
representation of prefix codes of strings in terms of trees. It is based on the
notion of extension of a picture. The set of extensions of a picture p to some
bigger size (m,n), is the set of all pictures of fixed size (m,n), obtained by
adding some columns to the right and some rows to the bottom of p filled with
all possible combinations of alphabet symbols. Formally, the set of extensions of
p to a bigger size (m,n) is E(m,n)(p) = {q ∈ Σm,n | p is a proper prefix of q}.
The next characterization result will be used in Sect. 5 to define a data structure
to handle the MSP codes.

Proposition 1 [9]. X ⊆ Σ++ is a finite maximal strong prefix code if and only
if there exists a finite sequence of picture languages over Σ, X1,X2, . . . , Xk,
such that X1 = Σ1,1, X = Xk, and for i = 1, . . . , k − 1, Xi+1 = (Xi \ {pi}) ∪
E(mi,ni)(pi), for some pi ∈ Xi, mi, ni ≥ 0.

3 Completeness for Sets of Strings

Completeness for a set of strings is a property which guarantees that any string
on the alphabet can be decomposed using the strings in the set. When the set
of strings is a code we have some further uniqueness result (as discussed later).

Usually, in the literature (see for example [11]) a set of strings S over an
alphabet Σ is defined right-complete if any string w ∈ Σ∗ is a prefix of some
string s ∈ S∗. We will adopt an equivalent definition, more suitable for our
purposes, since it can be then extended in two dimensions.

Encoding Pictures with Maximal Codes of Pictures 557

Definition 2. A set of strings S over an alphabet Σ is right-complete if any
string w ∈ Σ∗ can be written as w = xy where x ∈ S∗ and y is a prefix of some
string in S.

It is well-known that all maximal prefix codes are right-complete. More pre-
cisely, a prefix code is right-complete if and only if it is maximal prefix. Hence,
the maximal prefix codes can be used to uniquely encode all the strings on the
alphabet, as follows.

Let S be a maximal prefix code on Σ and w be any string over Σ. The string
w can be decomposed as a concatenation of factors in S, and, possibly, at the end,
a prefix of a string in S; more precisely, w = x1x2 . . . xky with x1, x2, . . . , xk ∈ S
and y a prefix of some string in S. Note that y could be the prefix of more than
one string in S. If one wants to uniquely determine one string in S whose prefix
is y, one could decide, for example, to consider the smallest string xk+1 in S in
the lexicographic order. With this assumption, the encoding of w is the sequence
of the strings x1, x2, . . . , xk, xk+1 ∈ S together with their position inside w.

If S is a maximal prefix code over Σ then any string over Σ has a unique
encoding in S. We are going to generalize this result to the pictures. Our point
of view will be that the last string xk+1 in S in the decomposition of w has been
“cut”, since we have found the obstacle of the right border of the string.

The notion of completeness is not able to capture the maximality of (strong)
prefix codes in the two dimensions. Let us introduce the definition of a new
property on languages of strings, the right-fullness. This property is equivalent to
the right-completeness for strings. On the contrary, in two dimensions, it results
in a different property which will be able to capture the notion of maximality.

Definition 3. A set of strings S over an alphabet Σ is right-full if for any string
w ∈ Σ∗, w = a1a2 · · · an, with a1, a2, · · · , an ∈ Σ, and any position i, 1 ≤ i ≤ n,
either there exists a non-empty x ∈ S, such that x = ai · · · ai+|x|−1 or ai · · · an

is a prefix of a string in S.

Proposition 2. A set of strings S over an alphabet Σ is right-complete iff it is
right-full.

The proof of Proposition 2 is mainly based on the observation that the defini-
tion of right-fullness is equivalent to the following one. A set S ⊆ Σ∗ is right-full
if, for any string w ∈ Σ∗, either there exists a string in S which is a prefix of w,
or w is a prefix of a string in S. We have preferred to state it as above, because
it describes more explicitly the point of view that we will adopt for the encoding
problem in two dimensions.

4 Completeness for Sets of Pictures

The theory of codes of strings is well established. Any string on a given alpha-
bet Σ can be encoded on a (prefix) code on Σ, provided that the code is
right- complete, or, equivalently, right-full, as described in the previous section.
For picture languages, the notion that generalizes the right-completeness of

558 M. Anselmo et al.

string languages is the br-completeness, where “br” indicates that the picture is
read starting from the position (1,1) and going towards the bottom-right corner.
It was introduced in [9] and it refers to the notion of covering. Informally, a
picture p is covered by pictures in a set X, if p can be tiled (without holes and
overlapping) with pictures that possibly exceed p throughout the bottom or the
right border (cf. [5,9]).

Definition 4. A set X ⊆ Σ∗∗ is br-complete if every picture p ∈ Σ∗∗ can be
covered by pictures in X.

Unfortunately, in two dimensions the equivalence between br-completeness
and maximality holds only in a very weak form, i.e. only when the code X is a
set of strings or “thick” strings.

Proposition 3 [9]. Let X ⊆ Σ∗∗ be a finite maximal strong prefix code. X is
br-complete if and only if X ⊆ Σm∗ or X ⊆ Σ∗n, n,m ≥ 1.

As a result of the previous proposition, if X is a MSP code that is not br-
complete, then, when one tries to cover a picture p with pictures in X, one
possibly gets holes where no picture code fits. We illustrate such situation in the
following example.

Example 4. Consider the set X of Example 3. X is a MSP code, but X is not

br-complete. Indeed, consider the picture p =
b b a b
b b b b
a b a b

. It can be easily

verified that p cannot be covered with pictures in X. Two different attempts
of coverings are given below. Always, some positions (printed in bold) remain
uncovered leaving holes in the covering.

b b a b a

b b b b

a b a b

b b a b b

b b b b
a b a b

Note that, in the previous example, a picture of X that matches the uncovered
positions does exist; the problem is that it does not fit exactly in the hole. In
the following, with this example in mind, we will introduce the definition of br-
full set of pictures which extends Definition 3 for strings. First, let us state an
auxiliary definition.

Definition 5. Given x, p ∈ Σ∗∗ and (i, j) ∈ dom(p), we say that x matches p
in position (i, j) if the subpicture p[(i, j)(|p|row, |p|col)] and x prefix-overlap.

Definition 6. A set of pictures X over an alphabet Σ is br-full if for any picture
p ∈ Σ∗∗, and any position (i, j) ∈ dom(p), there exists x ∈ X such that x
matches p in position (i, j).

As already recalled, differently from the string case, the class of MSP codes
does not coincide with the class of br-complete codes. On the contrary, the prop-
erty which captures the maximality, in the case of the pictures, is the br-fullness.

Encoding Pictures with Maximal Codes of Pictures 559

Proposition 4. Let X ⊆ Σ∗∗ be a strong prefix code of pictures. X is a maximal
strong prefix code of pictures if and only if X is br-full.

Proof. Suppose that X is a maximal strong prefix code of pictures and that X
is not br-full. Then, there exist a picture p ∈ Σ∗ and a position (i, j) ∈ dom(p)
such that, for any x ∈ X, x does not match p in position (i, j). Therefore, the
subpicture q = p[(i, j)(|p|row, |p|col)] of p is such that, for any x ∈ X, q and x do
not prefix-overlap. This implies, in particular, that q /∈ X. Hence, X ∪ {q} is a
strong prefix code that properly contains X, contradicting the maximality of X.

Suppose now that X is br-full. Let p ∈ Σ∗∗ \ X and consider position (1, 1)
of p. Since X is br-full then there exists x ∈ X such that x matches p in position
(1, 1), i.e. p and x prefix-overlap. Therefore X ∪ {p} is not strong prefix and,
hence, X is a maximal strong prefix code.
�
Proposition 5. Let X ⊆ Σ∗∗. If X is br-complete then it is br-full. The con-
verse does not hold.

Proof. Suppose that X is br-complete. To prove that X is br-full, consider a
picture p ∈ Σ∗ and a position (i, j) ∈ dom(p). We have to show that there exists
x ∈ X that matches p in position (i, j). Since X is br-complete, the subpicture
q = p[(i, j)(|p|row, |p|col)] of p can be covered by (pictures in) X. In the covering
of q, let x ∈ X be the picture that covers position (1, 1). Then, trivially, we have
that q and x prefix-overlap and, therefore, x matches p in position (i, j).

Now we show that not any br-full set is a br-complete set. Indeed, consider
the set X of Example 3. In the same example, it is stated that X is a maximal
strong prefix code and therefore, from Proposition 4, X is br-full. But, as noted
in the Example 4, X is not br-complete.
�

In general, a MSP code is not br-complete and, therefore, it is not possible
to cover any picture in X, since some holes could remain in its covering. On the
other hand, any MSP code is br-full. The problem is that, in some cases, the
picture of X that matches the positions of the holes cannot be placed, due to
some kinds of obstacles. We will solve this problem, as in the string case, by
introducing the possibility of cutting the pictures, and, then, introducing some
prefixes. Hence, we propose a relaxed definition of the decomposition of pictures,
called decomposition with cuts.

Note that, in the covering of a string w, an element of the set S may be
cut only at the right border of w, since this is the only possible obstacle. In the
covering of a picture p, three different kinds of obstacles can be found; the right
border of p, the bottom border of p and the border of some picture “already”
placed in the covering. Which pictures are “already” placed depends on the
scanning strategy used to examine the picture p.

In the string case, only one possible scanning strategy exists once one starts
from the leftmost position (the one that goes to the right). In the case of pictures,
starting from the top-left corner, we can follow many different scanning strategies
to reach the bottom-right one (cf. [2,3,16]). In this paper, we choose to consider
a scanning strategy that starts from position (1, 1) and then proceeds always

560 M. Anselmo et al.

choosing the next position higher and leftmost, i.e. by following the lexicographic
order of the positions.

Let X ⊆ Σ∗∗, MX = max{|x|row, |x|col for x ∈ X}, and a ∈ Σ be a fixed
symbol. In the next definition, for any picture p ∈ Σ∗∗, we will consider the
picture p obtained from p by adding MX columns filled by a to its right and
MX rows filled by a to its bottom. The reason is to obtain the uniqueness result
stated in Proposition 6.

Definition 7. Let X ⊆ Σ∗∗ and p ∈ Σ∗∗ be a picture of size (m,n). A decom-
position with cuts of p in X is a partition of dom(p) in disjoint subdomains
{d1, d2, . . . , dk} such that, supposing that the domains are ordered by their tl-
corners, for any � = 1, . . . , k, the subpicture p� of p associated with the subdomain
d� = [(i�, j�), (i′�, j

′
�)] satisfies one of the following conditions

(1) p� ∈ X

(2) p� is a proper prefix of x�, for some x� ∈ X that matches p in position
(i�, j�), and if |p�|row < |x�|row then i′� = m; if |p�|col < |x�|col then either
j′
� = n or j′

� + 1 is the minimum index j, j > j�, such that (i�, j) belongs to
d1 ∪ d2 ∪ · · · ∪ d�−1.

Condition (2) in the previous definition represents the situation when a cut
is done on the picture x� matching p in the considered position (i�, j�). This
cut may be done either because x�, when put in position (i�, j�), falls out p, or
because it occupies some positions already occupied by some of the previously
determined pictures p1, p2, . . . , p�−1. Notice that following a prescribed scanning
strategy guarantees that we use cut pictures as in Condition (2) only if we are
forced and this assures the uniqueness of this kind of decomposition.

Example 5. Continuing Example 4, we give below a decomposition with cuts for
the picture p. The bold printed subpictures correspond to the pictures in X that
were cut (they are prefixes of a b a).

b b a b
b b b b

a b a b

Proposition 6. Let X ⊆ Σ∗∗ be a maximal strong prefix code. Then, any pic-
ture p ∈ Σ∗∗ has a unique decomposition with cuts in X.

Proof. Let p ∈ Σ∗∗. The crucial observation is that, since X is a maximal strong
prefix code, then for any position (i, j) ∈ dom(p), there exists one and only one
x ∈ X which matches p in position (i, j). Subsequently, some attention has to
be paid in order to guarantee that also the cuts of such pictures are done in a
uniquely determined way. In order to find a decomposition with cuts in X of p,
consider the positions of dom(p) in lexicographic order, starting from position
(1, 1). Therefore, the subdomains d1, d2, . . . , dk will be obtained in the order of
their tl-corners.

Encoding Pictures with Maximal Codes of Pictures 561

Let x(1,1) ∈ X be the unique picture of X that matches p in position (1, 1).
Then, set d1 = dom(p)∩dom(x(1,1)). Note that the subpicture p1 of p associated
with d1 is such that either p1 = x(1,1) ∈ X (in the case that x(1,1) is a prefix
of p) and hence it satisfies condition (1) in Definition 7, or p1 is a proper prefix
of x(1,1) ∈ X that satisfies condition (2) in Definition 7. In both cases, d1 is
uniquely defined.

Suppose, now, that the subdomains d1, d2, . . . , d�−1 have been uniquely
determined. In order to determine d�, consider the smallest position (i�, j�)
in lexicographic order such that (i�, j�) ∈ dom(p) \ (d1 ∪ d2 ∪ · · · ∪ d�−1). Let
x� ∈ X be the unique picture of X that matches p in position (i�, j�) and set
d� = [(i�, j�), (i′�, j

′
�)] where i′� and j′

� are determined in the following way. If
i� + |x�|row − 1 ≤ |p|row, then i′� = i� + |x�|row − 1; otherwise, i′� = |p|row.
Two different cases can occur for j′

�, following that x�, when put in position
(i�, j�), does not cover any position occupied by the already determined pic-
tures p1, p2, . . . , p�−1, or not. More precisely, in the first case, position (i�, j) /∈
(d1 ∪ d2 ∪ · · · ∪ d�−1) for any j ∈ {j� + 1, . . . , j� + |x�|col − 1}, in the second
case (i�, j) ∈ (d1 ∪ d2 ∪ · · · ∪ d�−1) for some j ∈ {j� + 1, . . . , j� + |x�|col − 1}. In
the first case, if j� + |x�|col − 1 ≤ |p|col, then j′

� = j� + |x�|col − 1; if, instead,
j� + |x�|col − 1 > |p|col then j′

� = |p|col. In the second case, let j be the minimum
index j ∈ {j� + 1, . . . , j� + |x�|col − 1}, such that the position (i�, j) belongs to
(d1 ∪ d2 ∪ · · · ∪ d�−1), and set j′

� = j − 1.
Note that the subpicture p� of p associated with d� is such that either p� =

x� ∈ X (in the first case when furthermore i� + |x�|row −1 ≤ |p|row, j� + |x�|col −
1 ≤ |p|col), and hence p� satisfies condition (1) in Definition 7, or p� is a proper
prefix of x� ∈ X that satisfies condition (2) in Definition 7. In both cases, d� is
uniquely defined.
�

5 The Extension Tree and the Encoding Algorithm

In this section we present a data structure to represent a maximal strong prefix
code of pictures X, called extension tree. The extension tree will be then used
in an algorithm that, given any picture p, finds its unique encoding in X. The
efficiency of the algorithm relies mainly on the data structure to represent X
that we are going to describe.

Let us introduce the extension trees.
An extension tree is a rooted tree where each node v corresponds to a picture

pict(v) and the edges are labeled by a single row or column over the alphabet.
Moreover, an operation op(v) is associated to every node v; the operation is
either a row or a column concatenation. The picture associated to the root is an
empty picture, while the pictures associated to the root’s children are all possible
pictures of size (1, 1). Subsequently, the pictures associated to the children of
a node v are all the extensions of the picture pict(v), which are obtained by
concatenating pict(v) with all possible single rows or all possible single columns
over the alphabet. The type of operation (either row or column concatenation) is
dictated by the field op. More precisely, let v be any node in T and (m,n) be the
size of pict(v). The pictures associated to the children of v are all the extensions
of pict(v) to size (m + 1, n) if op(v) = �, to size (m,n + 1) if op(v) = �.

562 M. Anselmo et al.

Definition 8. An extension tree on Σ is a rooted labeled tree T where

– every node v has two auxiliary fields: op(v) ∈ {�,�} and pict(v) ∈ Σ∗∗

– op(roo(T)) = �, pict(root(T)) = λ1,0

– the children of a node v are given in an ordered list, denoted Children(v)
– every edge (v, w), with w ∈Children(v), is labeled by a row or a column of

symbols in Σ, denoted label(v, w), such that
• if op(v) = � then {label(v, w) | w ∈Children(v)} = Σ1,|pict(v)|col , and

pict(v) � label(v, w) = pict(w),
• if op(v) = � then {label(v, w) | w ∈Children(v)} = Σ|pict(v)|row,1, and

pict(v) � label(v, w) = pict(w).

The language represented by T is the set L(T) = {pict(v) | v is a leaf of T}.
We will assume that, for any node v, the list of outgoing edges is ordered

following the lexicographic order of the labels, where the labels are viewed as
strings. The same order is inherited by the related list Children(v).

Note that any extension of a picture p to a bigger size can be obtained as a
sequence of simple extensions by one row or column. This observation, together
with Proposition 1, allows to prove the following result. Proposition 7 highlights
the analogy existing between the extension trees for the MSP picture codes in
two dimensions, and the literal representation of maximal prefix string codes, in
one dimension.

Proposition 7. The language represented by an extension tree is a maximal
strong prefix code. Vice versa, any maximal strong prefix code can be represented
by an extension tree.

Example 6. Consider again the language X in Example 3. Here below is an
extension tree that represents X. The pictures corresponding to the nodes
v1, v2, . . . , v16 are, respectively

a , b , a a , a b ,
b
a

,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

, a b a , a b b ,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b

.

a b

v1 v2

a b a b

v3 v4 v5 v6

v11 v12

a b

v7 v8 v9 v10

a a a b b a b b

v13 v14 v15 v16

a
a

a
b

b
a

b
b

Encoding Pictures with Maximal Codes of Pictures 563

Let us first draw some considerations on the size of an extension tree in
relation to the size of the represented language, where the size of a language X
is defined as size(X) =

∑
x∈X area(x).

Let T be an extension tree and X = L(T). For any leaf v of T , the depth of v
is given by |pict(v)|row + |pict(v)|col| − 1. Therefore, the height of the extension
tree for X is given by the maximum of |x|row + |x|col| − 1, for all x ∈ X. Then,
the number of nodes of T is less than

∑
x∈X(|x|row + |x|col| − 1), that is strictly

less than the size of X. The number of children of a node v is equal to |Σ|�,
where � = |pict(v)|col if op(v) = �, � = |pict(v)|row, otherwise. Finally, the size
of the set of the labels of all the edges in T is strictly less than the size of X.

Let us sketch how to use the extension tree T of X to find a picture x ∈ X
that matches a given position (i, j) of a picture p, in time proportional to area(x).
The idea is similar to the one used to find a factor of a string in a prefix set
represented by its literal representation. Start from the root of T and follow
a path toward a leaf, scanning the positions around (i, j), as dictated by the
information in the nodes of the tree. If the operation in the reached node is �
then read the symbols of p that are in the row to the bottom of the visited
portion; otherwise, read the column to the right. Then, follow the edge out of v
with the read label. When a leaf w is reached then pict(w) matches p in position
(i, j).

Recall that the length of the list of edges outgoing from v is equal to |Σ|�,
where � = |pict(v)|col if op(v) = �, � = |pict(v)|row, otherwise. Then, since the
list is ordered, the time to access the right edge is proportional to log2 |Σ|� =
� log2 |Σ| (by executing a binary search). Therefore, the overall time to possibly
find the picture in X that matches (i, j) is proportional to the area of x, on a
fixed alphabet Σ.

Let us now focus on the encoding problem. First, we fix the definition.

Definition 9. Let X ⊆ Σ∗∗ and p ∈ Σ∗∗ be a picture of size (m,n). An encod-
ing of p in X is a sequence ((d1, x1), (d2, x2), . . . , (dk, xk)) where {d1, d2, . . . , dk}
is a partition of dom(p) in disjoint subdomains ordered by their tl-corners, and
for any � = 1, . . . , k, x� ∈ X is a picture that matches p in the tl-corner of d�,
while the subpicture p� of p associated with the subdomain d� = [(i�, j�), (i′�, j

′
�)]

satisfies one of the following conditions

(1) p� ∈ X and then x� = p�

(2) p� is a proper prefix of x�, and if |p�|row < |x�|row then i′� = m; if |p�|col <
|x�|col then either j′

� = n or j′
� +1 is the minimum index j, j > j�, such that

(i�, j) belongs to d1 ∪ d2 ∪ · · · ∪ d�−1.

Example 7. Continuing Example 5, an encoding of p in X is

((d1,
b
b

), (d2,
b
b

), (d3, a b a ,), (d4,
b b
a b

), (d5, a b a ,)), where d1 = [(1, 1), (2, 1)],

d2 = [(1, 2), (2, 2)], d3 = [(1, 3), (1, 4)], d4 = [(2, 3), (3, 4)], d5 = [(3, 1), (3, 2)].

564 M. Anselmo et al.

There is a one-to-one correspondence between the encodings of a picture p
in a MSP code X and the decompositions with cuts of p in X. Therefore, we
can obtain the following result as a corollary of Proposition 6.

Corollary 1. Let X ⊆ Σ∗∗ be a maximal strong prefix code. Then, any picture
p ∈ Σ∗∗ has a unique encoding in X.

For the rest of the section, we will sketch an algorithm that takes a MSP
code X and a picture p and finds the unique encoding of p in X as described in
Definition 9.

The algorithm follows the steps described in the proof of Proposition 6. It
adds the pairs (di, xi) to an initially empty list, in the lexicographic order of the
tl-corners of di’s. In order to keep track of the positions occupied by the domains
already determined, it uses an auxiliary array COMB of length |p|col. Indeed,
since the algorithm processes the positions of dom(p) in lexicographic order, at
any step, the occupied positions altogether look like a “comb”; if a position (ı, j)
is occupied then all the positions above it (i.e. positions (i, j) with i ≤ ı) are
already occupied. Then, for any i = 1, 2, . . . , |p|col, COMB(i) = j if j is the
maximum index such that (i, j) is occupied.

The algorithm starts in position (1, 1) of p and looks for the picture
x1 ∈ X that matches p at position (1, 1), as discussed above. Then, it sets
d1 = dom(p) ∩ dom(x1), adds (d1, x1) to the list to return and updates
COMB array. Suppose, now, that the algorithm has constructed the list
((d1, x1), (d2, x2), . . . , (d�−1, x�−1)). In order to determine (d�, x�), it uses the
COMB array to find the smallest position (i�, j�) that is not yet occupied.
Then, it finds the unique picture x� in X that matches p in position (i�, j�), sets
d� = [(i�, j�), (i′�, j

′
�)] where i′� and j′

� are set as in the proof of Proposition 6,
and updates the COMB array. The overall running time of the algorithm is
O(

∑k
�=1 area(x�)), on a fixed alphabet.

Let Enc(p) = {x1, . . . , xk}. Note that the pictures x1, . . . , xk do not in gen-
eral form a tiling decomposition of p, since they may overlap each other. Hence,
in general,

∑k
�=1 area(x�) ≥ area(p). On the other hand, one can observe that

each position (i, j) of p, can be covered by at most j − 1 pictures in Enc(p),
because no two pictures in Enc(p) may cover (i, j) and have their tl-corners in
the same column. Finally, the algorithm runs in O(mn2) time, where (m,n) is
the size of p.

References

1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity.
Theor. Comput. Sci. 147, 165–180 (1995)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: a computational
model for recognizable two-dimensional languages. In: Holub, J., Žd’árek, J. (eds.)
CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-76336-9 27

https://doi.org/10.1007/978-3-540-76336-9_27
https://doi.org/10.1007/978-3-540-76336-9_27

Encoding Pictures with Maximal Codes of Pictures 565

3. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529
(2009)

4. Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In:
Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp.
47–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40663-8 6

5. Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of
pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5 6

6. Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class
of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)

7. Anselmo, M., Giammarresi, D., Madonia, M.: Structure and measure of a decid-
able class of two-dimensional codes. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide,
C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 315–327. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15579-1 24

8. Anselmo, M., Giammarresi, D., Madonia, M.: Infinite two-dimensional strong prefix
codes: characterization and properties. In: Dennunzio, A., Formenti, E., Manzoni,
L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 19–31. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58631-1 2

9. Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong
prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017)

10. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theor.
Comp. Sci 303, 417–430 (2003)

11. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

12. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)
13. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford

(1994)
14. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-

maa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6 4

15. Grammatikopoulou, A.: Prefix picture sets and picture codes. In Proceedings of
the CAI 2005, pp. 255–268. Aristotle University of Thessaloniki (2005)

16. Lonati, V., Pradella, M.: Strategies to scan pictures with automata based on Wang
tiles. RAIRO - Theor. Inf. Appl. 45(1), 163–180 (2011)

17. Moczurad, M., Moczurad, W.: Some open problems in decidability of brick
(labelled polyomino) codes. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004.
LNCS, vol. 3106, pp. 72–81. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27798-9 10

18. Moczurad, W.: Decidability of multiset, set and numerically decipherable directed
figure codes. Discret. Math. Theor. Comput. Sci. 19(1) (2017)

19. Simplot, D.: A characterization of recognizable picture languages by tilings by
finite sets. Theor. Comput. Sci. 218(2), 297–323 (1991)

https://doi.org/10.1007/978-3-642-40663-8_6
https://doi.org/10.1007/978-3-642-38771-5_6
https://doi.org/10.1007/978-3-319-15579-1_24
https://doi.org/10.1007/978-3-319-58631-1_2
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-540-27798-9_10
https://doi.org/10.1007/978-3-540-27798-9_10

Machine Learning

ARCID: A New Approach to Deal
with Imbalanced Datasets Classification

Safa Abdellatif1(B), Mohamed Ali Ben Hassine1, Sadok Ben Yahia1,
and Amel Bouzeghoub2

1 University of Tunis El Manar, Faculty of Sciences of Tunis,
LIPAH-LR11ES14, El Manar, 2092 Tunis, Tunisia

{Safa.abdellatif,mohamedali.benhassine}@fst.utm.tn,
sadok.benyahia@fst.rnu.tn

2 Institut Mines-TELECOM, TELECOM SudParis,
UMR CNRS Samovar, 91011 Evry Cedex, France

amel.bouzeghoub@it-sudparis.eu

Abstract. Classification is one of the most fundamental and well-known
tasks in data mining. Class imbalance is the most challenging issue
encountered when performing classification, i.e. when the number of
instances belonging to the class of interest (minor class) is much lower
than that of other classes (major classes). The class imbalance prob-
lem has become more and more marked while applying machine learning
algorithms to real-world applications such as medical diagnosis, text clas-
sification, fraud detection, etc. Standard classifiers may yield very good
results regarding the majority classes. However, this kind of classifiers
yields bad results regarding the minority classes since they assume a rel-
atively balanced class distribution and equal misclassification costs. To
overcome this problem, we propose, in this paper, a novel associative
classification algorithm called Association Rule-based Classification for
Imbalanced Datasets (ARCID). This algorithm aims to extract signifi-
cant knowledge from imbalanced datasets by emphasizing on information
extracted from minor classes without drastically impacting the predic-
tive accuracy of the classifier. Experimentations, against five datasets
obtained from the UCI repository, have been conducted with reference to
four assessment measures. Results show that ARCID outperforms stan-
dard algorithms. Furthermore, it is very competitive to Fitcare which is
a class imbalance insensitive algorithm.

Keywords: Associative classification · Imbalanced datasets
Machine learning · Data mining

1 Introduction

With the huge advance of technology, enterprises are daily collecting massive
information from multiple sources. Collecting, preprocessing and then taking
advantages of these large amounts of data was really challenging at the time. In
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 569–580, 2018.
https://doi.org/10.1007/978-3-319-73117-9_40

570 S. Abdellatif et al.

this respect, data mining techniques have been shown to be of benefit to han-
dle such overwhelming data. Indeed, through a computational processus, useful
knowledge is unveiled. A range of data mining techniques namely association
rule mining, classification and clustering have been well developed and applied
in several domains.

Associative classification is the integration of association rule mining and
classification in order to build classifiers that can predict class labels for unseen
data [1]. Techniques based on this approach have yield good accuracy com-
paring to other classification techniques. However, mining imbalanced datasets
was considered as one of the top ten data mining challenges since most of the
machine learning (ML) algorithms assume that datasets have balanced class
distribution [29]. A dataset is called imbalanced when the number of instances
belonging to the class of interest (minor class) is much lower than the ones of
other classes (major classes). Association rules belonging to minor classes are
rare as compared with ones that predict major classes. Consequently, this yields
to a misclassification of the testing samples belonging to minor classes. Gener-
ally, classifiers aim to minimize the error rate and maximize the accuracy. They
assume that the misclassification errors cost equally which is not the case of
many real-world domains. For example, in a medical diagnostic problem where
the disease cases are usually quite rare as compared with normal populations,
the recognition goal is to detect people with these diseases. Hence, a good clas-
sifier is the one that provides a high accuracy on the disease class. Also worth
of cite, in fraud detection domain, fraudulent transactions are rare as compared
with legitimate transactions. However, missing a fraudulent example is much
more expensive than classifying a non-fraudulent as fraudulent. The problem of
imbalanced datasets classification is encountered in many other domains ranging
from sentiment analysis and text classification, network intrusion detection and
many others.

To overcome this problem, we introduce in this paper a novel associative clas-
sification algorithm called Association Rule-based Classification for Imbalanced
Datasets (ARCID). ARCID is based on three phases which are generating, filter-
ing and selecting rules. The first phase consists in generating frequent rules from
each class of the training set using a local support. The second phase consists
in filtering rules generated during the first phase. To do so, a new ranking and
pruning technique is proposed based on multiple criteria aggregation in order to
keep simultaneously rules with a high predictive accuracy and those which are
rare but of primary interest. The last phase consists in predicting the class label
of the new data. Experimentations, against five real-world datasets obtained
from the UCI repository [21] and using different rule-based and non-rule-based
approaches, have been conducted with reference to four assessment measures in
order to evaluate the performance of the proposed approach.

The remainder of this paper is organized as follows. Section 2 recalls the
basic concepts related to associative and imbalanced datasets classification. The
proposed approach is described in Sect. 3. Experimental results are shown in
Sect. 4. Conclusion and perspectives are sketched in Sect. 5.

ARCID: A New Approach to Deal with Imbalanced Datasets Classification 571

2 Background and Related Work

We provide, in the following, the basic concepts related to this work.

2.1 Classification Based on Association Rules

Let D be a training dataset containing |D| instances and I = {I1, I2, . . . , Im+1}
a set of m + 1 distinct items. Each instance of D is a set of items of I. The pattern
of the form X → Y is called association rule (AR) where X and Y are disjoint
subsets of I. Using an ARs mining technique on the training set D, frequent
itemsets are mined and ARs are generated. Class Association Rule (CAR) is an
AR where X is a subset of items and Y is a class label.

Associative Classification (AC) is a rule-based approach which first discov-
ers from the training set a complete set of CARs and then uses it to pre-
dict class labels of new data objects [2]. Several studies [2,3] have shown that
AC approaches are able to achieve more accurate classifiers than traditional
approaches namely decision trees, rule induction and probabilistic approaches.

AC typically consists of three phases. The first phase consists in generating a
set of CARs using a given training set. The second phase consists in ranking and
pruning the complete set generated in the first phase in order to discard useless
rules and select the important ones. The final phase consists in predicting the
class label of the testing set instances based on the collection of CARs retained.

Several AC algorithms have been proposed namely CBA, CPAR, MMAC,
MCAR, CMAR and many others [26]. These algorithms use several methodolo-
gies to generate, rank, prune and select rules for data prediction. To generate
rules, several AR mining techniques have been proposed such as Apriori [1] (as
used in CBA), FP-Growth [12] (as used in CMAR), FOIL [24] (as used in CPAR),
etc. To eliminate redundant and inefficient rules, several pruning techniques have
been proposed such as database coverage (as used in CBA, CMAR, MMAC and
MCAR), redundant rules pruning (as used in CMAR) and interesting measures
based pruning (as used in CMAR and CBA). The last phase of an AC algorithm
is to assign the appropriate class label to the new data. Several methods use
the single rule class assignment approach [20] such as CBA, MCAR and MMAC
while other methods like CMAR and CPAR use the class assignment based on
group of rules approach [27].

2.2 Imbalanced Data Sets Classification

Dealing with class imbalance has become a common problem faced in data
mining. A dataset is imbalanced when it contains a small number of training
instances which belong to the class of interest (also called the minority or pos-
itive class), while other instances make the other class (called the majority or
negative class) [16]. The class imbalance problem has become more marked while
applying ML algorithms to real-world problems. Researchers around the world
have treated actively this problem for years [14]. In fact, major studies were
dedicated especially to evaluation metrics and classification techniques.

572 S. Abdellatif et al.

Evaluation metrics. In ML, several assessment measures have been proposed
in order to evaluate the performance of a classifier. The common measures are:

– Accuracy and error rate: These measures are the most commonly used metrics
for classifier’s performance evaluation. They evaluate the overall effectiveness
of the algorithm by estimating the proportion of instances that are correctly
(accuracy)/incorrectly (error rate) classified. However, they are not appropri-
ate in the case of imbalanced datasets since they place more interest on the
majority class.

– Precision, Recall and F-measure: Precision calculates the number of errors
made in predicting instances as being of some label l. However, Recall assesses
the goodness of a classifier in not leaving out instances that should have been
predicted with the label l. F-measure combines Precision and Recall into a
single measure that reflects the goodness of a classifier in the presence of rare
classes [25]. F-measure provides more information about the efficiency of a
classifier than the accuracy metric. Hence, it has been used for the evaluation
of classifiers with imbalanced data in several fields such as text classification,
fraud detection and churn prediction.

– Geometric mean (Gmean): Gmean is one of standard evaluation measures
used in an imbalanced dataset classifier. It was suggested by [18] as the prod-
uct of the prediction accuracies of minor and major classes. Gmean measures
the performance balance of a classifier between the minority and majority
classes. A high Gmean value can only be achieved with high prediction accu-
racies on both classes.

Classification techniques. To resolve the problem of imbalanced data sets,
several solutions have been proposed both at the data as well as the algorithmic
level.

At the data level, proposed works aim to modify the data itself by re-
balancing classes before applying any algorithm. The most common techniques
related to this approach are oversampling and undersampling. The oversampling
approach tends to increase the population of minority class by replicating its
instances. Several oversampling techniques have been proposed recently namely
random oversampling, SMOTE [5] and Borderline SMOTE [11]. The main advan-
tage of these techniques is that there is no loss of data. However, it may lead
to an overfitting and a computational overhead. The undersampling approach
tends to decrease the population of the majority class by ignoring a large num-
ber of its instances. Many undersampling techniques have been proposed such
as random undersampling, Tomek links [28], Condensed Nearest Neighbor Rule
[13] and One-sided selection [19]. The main drawback of these techniques is that
potentially useful information may be lost during the sampling process.

At the algorithmic level, proposed solutions deal with modifying the clas-
sifier itself. It is about trying to adapt existing algorithms to the problem of
imbalanced datasets in order to reveal the minority class. Several works have
adopted this strategy mainly Fitcare [7] which is one of the well-known competi-
tors of our proposed approach. Other works, based on Cost-Sensitive Learning

ARCID: A New Approach to Deal with Imbalanced Datasets Classification 573

[15], also adopt the same strategy. They tend to modify the classifier by applying
a misclassification cost to the incorrectly classified instance. Learn only the rare
class approach is also classified in this category. It consists in only learning from
the minor class by treating major class’ instances as outliers. HIPPO [17] and
RIPPER [8] are examples of this approach.

3 Proposed Approach: ARCID

Generally, in a context of a data mining classification problem, classical classi-
fiers aim to minimize the error rate and maximize the accuracy. They assume
also a balanced class distribution and an equal cost of misclassification errors.
Nevertheless, in many real-world applications, data extracted from the web is
imbalanced and the difference between misclassification errors is considerable.
Consider, for example, a case of fraud detection where the fraudulent cases only
represent 1% and the non-fraudulent ones represent 99%. In this case, tradi-
tional classifiers offer an excellent accuracy (99%) since they predict correctly
all non-fraudulent examples, however, they omit fraudulent ones which are very
important in our case. To overcome this issue and to avoid problems caused
by data-based classification strategy described in the last section, we choose to
adopt the algorithmic based strategy.

ARCID (Association Rule-based Classification for Imbalanced Datasets), our
proposed approach, is an associative rule-based classification technique which
aims to extract significant knowledge from imbalanced datasets by emphasizing
on information extracted from minor classes without drastically impacting the
predictive accuracy of the classifier. ARCID is based on three main phases: (1)
generating, (2) filtering, and (3) selecting rules for class prediction.

3.1 Rule Generation

In this phase, two main problems are faced: (1) Managing the overwhelming num-
ber of CARs generated from real-life datasets and (2) Removing redundant rules
conveying the same information. To overcome these problems, ARCID uses the
IGB algorithm [9]. This algorithm provides a reduced set of rules which are infor-
mation lossless, generic, non-redundant, and informative. To adapt IGB to our
context, ARCID starts by scanning the training set to create instances’ groups
based on their class labels. Each resulting group contains instances belonging to
the same class. Then, for each group, the support measure is applied to reduce
the search space and generate frequent rules. Since we work on a homogeny
group, i.e. containing instances belonging to the same class, a local support is
used regarding the whole data set. Hence, rules with low support in the whole
dataset and frequent in their own class have the chance to be generated.

3.2 Ranking, Pruning and Selecting Relevant CAR Rules

To deal with the huge set of rules generated in the previous phase and to guar-
antee a high accuracy in classification without neglecting rules belonging to rare

574 S. Abdellatif et al.

classes, we propose a new technique for ranking and pruning rules based on the
combination of two different criteria (measures). Our main idea consists in:

1. Ranking then selecting top k rules using two interestingness measures that
highlight respectively two kinds of rules:

– Rules that have a very high predictive accuracy (because of their high
support value) and generally belong to major classes.

– Rules that are rare (because of their low support value), interesting in
many applications and generally belong to minor classes.

In order to select the best two measures that verify conditions mentioned
above, we carried out several experiments using five binary datasets chosen
from the UCI repository [21]. These experiments are carried as follows: (i)
Rules are generated using the IGB algorithm with a local support for each
class (ii) These rules are then sorted using eight different measures each indi-
vidually. (iii) The sorted rules are used for the prediction of class labels for
the testing dataset. A Rule is selected for prediction of a test instance if it has
the highest rank according to a specific measure which minimizes the classifi-
cation error rate. Figures 1 and 2 show the result of classification (considering
minor class in Fig. 1 and major class in Fig. 2) applied on different datasets
using different measures separately.

Fig. 1. Correct prediction for minor
class

Fig. 2. Correct prediction for major
class

The x−axis shows the different measures while the y−axis shows the per-
centage of instances correctly classified. For example, in Fig. 1, the LaPlace
measure only correctly classifies 20% (resp. 0% and 16%) of instances belong-
ing to the minor class of the Breast-cancer dataset (resp. German and Mofn)
while the lift measure correctly classifies the majority of these instances (96%
for Breast−cancer, 87% for German and 100% for Mofn). In Fig. 2, the results
are inverted. In fact, we notice that the LaPlace measure classifies correctly
the majority of instances belonging to the major class while the use of the lift

ARCID: A New Approach to Deal with Imbalanced Datasets Classification 575

measure yields poor results (i.e. low percentage of instances correctly classi-
fied). We may conclude that lift (resp. Laplace) is the best−suited measure
for minor (resp. major) classes prediction since it increases the number of
instances correctly classified. If we had used other measures, these instances
would have been misclassified. At the end of this stage, we obtain two lists
of CARs having the same content but sorted according to Lift (Lift list) and
LaPlace (LaPlace list) measures.

2. Selecting top K rules from both obtained lists. The parameter k is chosen as
follows: From the list of rules ranked by the lift measure, we discard those
having a Lift value less than or equal to one (i.e. rule’s antecedent and rule’s
conclusion are negatively correlated or independent). The k parameter is the
number of rules maintained and will be used to prune Laplace list.

3. Selecting common rules that are the result of the intersection operator applied
on the pruned lists. The resulting set Common list contains relevant rules that
are suitable for instances classification in minor and major classes.

3.3 Class Prediction

In this phase, two methods can be used for class prediction [20,27]. The first
method selects the class label of the highest ranked rule (based on a defined
measure) which matches the test instance. The second method selects the class
label using an aggregate value (the highest). This value corresponds to the aver-
age of a defined measure for each group of rules predicting the same class and
matching the test instance. If no rule matches the test instance, the minor class
is assigned to it.

4 Experimental Evaluation

4.1 Data Collection and Experimental Setup

In this study, five real-world datasets obtained from the UCI repository [21] are
selected to evaluate ARCID. Datasets are summarized in Table 1. Each dataset
includes the number of instances, the number of attributes and the imbalance
ratio (IR) which is defined as the ratio of major class’ instances divided by
the minor class’ instances. All the datasets are binary class. The next version
handling the multi-class imbalance classification problem stands as the hottest
forthcoming issue that we plan to tackle.

Experiments were carried out on a Windows 8 PC equipped with an Intel
Core i7-4720, 2.6 GHz processor and 8 GB of RAM. Our approach is compared
to several well-known classification approaches including the non-rule-based ones
like Naive Bayes (NB) [22] and Random Forest (RF) [6], the rule-based ones like
C4.5 [23] and CBA [20], and those handling the class imbalance problem such
as Fitcare [7] and RIPPER [8]. Fitcare is kindly provided by its author [7] while

576 S. Abdellatif et al.

the others are available in WEKA software System [10]. The four assessment
metrics [4] used in this comparison are Global accuracy, Gmean, F-measure and
per-class accuracy of minor class.

Table 1. Datasets used for the evaluation

Datasets # Instances (#Maj/#Min) # Attributes Imbalance ratio

Breast Cancer 286 (201/85) 10 2.36

Tic-tac-toe 425 (276/149) 10 1.68

Mofn 1323 (1031/292) 11 3.53

Post-operator 88 (64/24) 9 2.66

German 1001 (701/300) 25 2.33

4.2 Results of the Experiments

Before evaluating and comparing ARCID to the other state-of-art approaches,
experiments were conducted in order to choose the best-suited method for the
class prediction phase. Table 2 presents the results obtained from the application
of the two methods (highest ranked rule and the average of measures) using four
assessment measures over five datasets. It is clearly observed that the proposed
classifier using the highest ranked rule based method yields better results than
the one using the average of measures for all the assessment measures. For this
reason, it will be used in the remainder.

Table 2. Comparaison of ARCID’s performance using the highest ranked rule based
method and the average of measures based method

Datasets Global
accuracy

Gmean Accuracy
(Min. class)

FM (Min. class)

HRR AVG HRR AVG HRR AVG HRR AVG

Breast cancer 72.34 69.14 0.67 0.67 64 64 0.55 0.52

Tic-tac-toe 72.71 58.49 0.77 0.63 92.3 84.6 0.67 0.55

Mofn 68.81 67.15 0.77 0.75 100 97.6 0.59 0.57

Post-operator 59.25 59.25 0.34 0.32 14.3 14.3 0.15 0.15

German 67.27 51.65 0.66 0.57 64.8 73.6 0.54 0.45

Avg 68.07 61.13 0.64 0.58 67.08 66.82 0.5 0.448

Avg rank 1 1.8 1 1.8 1.2 1.4 1 1.8

In the following, we perform a thorough experimental comparison between
ARCID and the state-of-art approaches using the four assessment measures men-
tioned above.

ARCID: A New Approach to Deal with Imbalanced Datasets Classification 577

Global accuracy. Global accuracy is the proportion of instances which are
correctly classified. The results of the experiments are presented in Table 3. It
shows that the state-of-art algorithms are better ranked than ARCID. This could
be explained by the fact that they pursue on maximizing the global accuracy and
minimizing the error rate to which minor class rarely contributes. However, if
we take a look at the average of global accuracies of all classifiers, we may notice
that even if ARCID emphasis on efficiently predicting the instances of minor
classes, it gives pretty good results whenever compared to other approaches.

Table 3. Global accuracies (%) for all classification techniques

Datasets ARCID Specific rule-based Standard rule-based Non-rule-based

Fitcare Ripper CBA C4.5 NB RF

Breast cancer 72.34 63.82 74.73 78.68 74.73 75.78 66.31

Tic-tac-toe 72.71 100 98.59 69.01 80.75 72.71 89.2

Mofn 68.81 87.68 90.23 82.03 85.54 86.71 94.23

Post-operator 59.25 48.14 71.4 71.42 71.42 71.42 71.42

German 67.27 61.7 71.55 75.44 76.04 77.24

Avg 68.07 72.26 81.3 75.28 77.57 77.57 77.57

Avg rank 5.6 4.6 2.6 4.4 3.2 2.8 2.6

Gmean. As we mentioned above, the state-of-art classifiers yield better results
than the ARCID in terms of accuracy. In the case of imbalanced datasets, accu-
racy puts more focus on major classes than minor classes which makes it a
misleading indicator. For this reason, we have proposed to use an additional
metric which is Gmean in order to measure the balance between classification
performances on the minority and majority classes. According to the results pre-
sented in Table 4, ARCID gets the best rank compared to other approaches. In
fact, it can be observed that ARCID performs slightly better than Fitcare and
RIPPER. However, it outperforms all standard rule-based and non-rule-based
approaches by several ranks.

Performance in minority classes. In the case of imbalanced datasets classifi-
cation problem, minority classes are generally grasping interest. To evaluate the
performances of the different methods in classifying instances of minor classes,
two measures are used: the per-class accuracy and the F-measure.

Per-class accuracy results. Results obtained from the experiments are depicted
in Table 5. As may be seen, ARCID provides statistically better results. We
may conclude that ARCID is an efficient algorithm when it comes to correctly
predicting the class label on the minor class instances since it tends to focus on
the accuracy of the minor class while trading off the accuracy of major class.

578 S. Abdellatif et al.

Table 4. GMean results for all classification techniques

Datasets ARCID Specific rule-based Standard rule-based Non-rule-based

Fitcare Ripper CBA C4.5 NB RF

Breast cancer 0.67 0.62 0.59 0 0.47 0.66 0.41

Tic-tac-toe 0.77 1 0.97 0 0.68 0.61 0.83

Mofn 0.77 0.83 0.85 0.61 0.65 0.64 0.26

Post-operator 0.34 0.46 0 0 0 0 0.34

German 0.66 0.58 0.58 0 0.66 0.66 0.64

Avg rank 2.2 2.4 3 5.8 3.6 3.4 4.4

Table 5. Per-class accuracy of minor classes

Datasets ARCID Specific rule-based Standard rule-based Non-rule-based

Fitcare Ripper CBA C4.5 NB RF

Breast cancer 64 60 40 0 24 52 20

Tic-tac-toe 92.3 100 95.5 0 50 43.9 71.2

Mofn 100 75.9 78.4 37.9 44 41.4 75

Post-operator 14.3 42.8 0 0 0 0 12.5

German 64.8 52.7 40.7 48.4 47.3 52.7 47.3

Avg rank 1.6 1.8 3.6 5.8 4.8 4.6 4.4

F-measure results. To ensure that the results are not biased towards minor
classes, the per-class accuracy is dropped in favor of the F-measure. The
F-measure results are reported in Table 6. ARCID is ranked the first which owe
to the fact that it asserts an absence of a bias towards minor classes.

Table 6. F-measure results of minor classes

Datasets ARCID Specific rule-based Standard rule-based Non-rule-based

Fitcare Ripper CBA C4.5 NB RF

Breast cancer 0.55 0.46 0.45 0 0.33 0.53 0.23

Tic-tac-toe 0.67 1 0.97 0 0.61 0.5 0.8

Mofn 0.59 0.74 0.78 0.48 0.58 0.58 0.85

Post-operator 0.15 0.3 0 0 0 0 0.2

German 0.54 0.43 0.43 0 0.54 0.52 0.52

Avg rank 2.4 2.6 3.4 6.4 4 4 3.2

ARCID: A New Approach to Deal with Imbalanced Datasets Classification 579

5 Conclusion

This paper dealt with imbalanced datasets problems. In fact, in these datasets,
important information related to minor classes are omitted by classical classi-
fiers which tend generally to focus on prevalent classes and ignore minor ones.
This process, called imbalanced datasets classification, could produce high realis-
tic value in many real-world applications (security, medicine, counter-terrorism,
etc.). This paper proposed a novel associative classification algorithm called
ARCID in order to handle problems mentioned above. ARCID aims to empha-
size on rare but important information from minor classes without drastically
impacting the predictive accuracy. The performance of ARCID is assessed on
five datasets with reference to four evaluation measures. Experimentations show
that ARCID outperforms standard algorithms. However, it is very competitive
to Fitcare. In our future work, we intend to extend our approach to handle
the multi-class imbalanced learning problem. Moreover, we plan to use dataset
meta features in order to find the best measures for filtering and selecting rules
phases. Furthermore, we plan to apply our proposed approach in text mining
and sentiment analysis domains.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of 20th International Conference on Very Large Data
Bases, VLDB 1994, Santiago de Chile, Chile, 12–15 September 1994, pp. 487–499
(1994)

2. Ali, K., Manganaris, S., Srikant, R.: Partial classification using association rules.
In: Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD-1997), Newport Beach, California, USA, 14–17 August 1997,
pp. 115–118 (1997)

3. Antonie, M., Zäıane, O.R.: An associative classifier based on positive and negative
rules. In: Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, DMKD 2004, Paris, France, 13 June 2004,
pp. 64–69 (2004)

4. Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assess-
ment over imbalanced data sets. J. Inf. Eng. Appl. 3(10), 2–4 (2013)

5. Bowyer, K.W., Chawla, N.V., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. CoRR abs/1106.1813 (2011). http://arxiv.org/
abs/1106.1813

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Cerf, L., Gay, D., Selmaoui-Folcher, N., Crémilleux, B., Boulicaut, J.: Parameter-

free classification in multi-class imbalanced data sets. Data Knowl. Eng. 87, 109–
129 (2013)

8. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pp. 115–123 (1995)

9. Gasmi, G., Yahia, S.B., Nguifo, E.M., Slimani, Y.: IGB: a new informative generic
base of association rules. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS, vol. 3518, pp. 81–90. Springer, Heidelberg (2005). https://doi.org/10.1007/
11430919 11

http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813
https://doi.org/10.1007/11430919_11
https://doi.org/10.1007/11430919_11

580 S. Abdellatif et al.

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

11. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538059 91

12. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

13. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

14. Hido, S., Kashima, H., Takahashi, Y.: Roughly balanced bagging for imbalanced
data. Stat. Anal. Data Min.: ASA Data Sci. J. 2(5–6), 412–426 (2009)

15. Holmes, J.H.: Differential negative reinforcement improves classifier system learn-
ing rate in two-class problems with unequal base rates. In: Genetic Programming,
pp. 635–642 (1998)

16. Hu, B., Dong, W.: A study on cost behaviors of binary classification measures in
class-imbalanced problems. CoRR abs/1403.7100 (2014)

17. Japkowicz, N., Myers, C., Gluck, M., et al.: A novelty detection approach to clas-
sification. In: IJCAI, vol. 1, pp. 518–523 (1995)

18. Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills
in satellite radar images. Mach. Learn. 30(2–3), 195–215 (1998)

19. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided
selection. In: Proceedings of the Fourteenth International Conference on Machine
Learning (ICML 1997), Nashville, Tennessee, USA, 8–12 July 1997, pp. 179–186
(1997)

20. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
Proceedings of the Fourth International Conference on Knowledge Discovery and
Data Mining (KDD-1998), New York City, New York, USA, 27–31 August 1998,
pp. 80–86 (1998)

21. Merz, C.: UCI repository of machine learning databases (1996). http://www.ics.
uci.edu/∼mlearn/MLRepository.html

22. Mitchell, T.M.: Machine Learning. McGraw Hill Series in Computer Science.
McGraw-Hill (1997)

23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Burling-
ton (1993)

24. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: a midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 1–20. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56602-3 124

25. Rijsbergen, C.J.V.: Information Retrieval. Butterworth, London (1979)
26. Sasirekha, D., Punitha, A.: A comprehensive analysis on associative classification

in medical datasets. Indian J. Sci. Technol. 8(33), 3–5 (2015)
27. Thabtah, F., Cowling, P., Peng, Y.: Multiple label classification rules approach. J.

Knowl. Inf. Syst. 9, 109–129 (2006)
28. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst.

Man Cybern. 6, 448–452 (1976)
29. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf.

Technol. Decis. Mak. 5(04), 597–604 (2006)

https://doi.org/10.1007/11538059_91
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
https://doi.org/10.1007/3-540-56602-3_124
https://doi.org/10.1007/3-540-56602-3_124

Fake Review Detection via Exploitation
of Spam Indicators and Reviewer Behavior

Characteristics

Ioannis Dematis1(&), Eirini Karapistoli2, and Athena Vakali1

1 Informatics Department, Aristotle University of Thessaloniki,
Thessaloniki, Greece

{icdematis,avakali}@csd.auth.gr
2 CapriTech Limited, 10-12 Mulberry Green,

Old Harlow, Essex CM17 0ET, UK
irene@capritech.co.uk

Abstract. The rapid spread of Internet technologies has redefined E-commerce,
since opinion sharing by product reviews is an inseparable part of online pur-
chasing. However, e-commerce openness has attracted malicious behaviors
often expressed by fake reviews targeting public opinion manipulation. To
address this phenomenon, several approaches have been introduced to detect
spam reviews and spammer activity. In this paper, we propose an approach
which integrates content and usage information to detect fake product reviews.
The proposed model exploits both product reviews and reviewers’ behavioral
traits interlinked by specific spam indicators. In our proposed method, a
fine-grained burst pattern detection is employed to better examine reviews
generated over “suspicious” time intervals. Reviewer’s past reviewing history is
also exploited to determine the reviewer’s overall “authorship” reputation as an
indicator of their recent reviews’ authenticity level. The proposed approach is
validated with a real-world Amazon review dataset. Experimentation results
show that our method successfully detects spam reviews thanks to the com-
plementary nature of the employed techniques and indicators.

Keywords: Fake review � Reviewer behavior � Spam indicators

1 Introduction

E-commerce has been radically affected by the rapid spread of Web and Internet
technologies which enabled tremendous user-generated content (UGC) production and
sharing. Consumers publicly and continuously declare and share opinions for pur-
chased products or services and assess quality and value-for-money. A recent study [1]
demonstrated that online reviews are quite important to prospective buyers as around
90% of consumers read and incorporate online reviews in their decision-making.
Moreover, it has been reported that 88% of consumers trust online reviews as much as
personal recommendations.

Such online reviewing impact has opened the floor to “non-honest” activities which
aim to either capitalize on or manipulate user reviews for particular products or services.

© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 581–595, 2018.
https://doi.org/10.1007/978-3-319-73117-9_41

It is now evident that professional “spammers” are repeatedly hired to populate the
online reviewing space with fake reviews [2, 3] due to competition and/or profit reasons.
This large scale of deceptive reviews has emerged as a significant problem attracting the
scientific community’s interest. Research efforts mostly aim to improve fake review
detection towards re-establishing online opinions validity and credibility.

Fake review detection is a mostly recent research field [4], which initially focused on
duplicated review content and review context. Such text analysis was mostly based on
machine learning (classifiers) at word or sentence level which targeted the detection of
spam reviews by performing supervised learning classification of review content [5–7].
However, the absence of a globally reliable training set of annotated review instances
necessary to empower supervised learning approaches led to a shift in research focus [8].
Reviewer behavior was found to hold an abundance of spam indicators including
excessive reviewing [9], rating manipulation [10–13], bursty behavior [14–16], etc.

While recent approaches have displayed promising and highly accurate results by
featuring a variety of spam indicators, there is a lack of lightweight methods that
successfully combine review features and extensive reviewer activity analysis, and
work on a fine-grained (product) level, i.e., processing a product’s string of reviews to
detect fakes. Additionally, in-depth models are usually hard to adapt and be integrated
into functional reviewing sites, while most streamlined and focused approaches result
in loss of information.

In this paper, we examine the most important spam indicators relative to review
spam and leverage on a reviewer’s behavior characteristics, which are exploited for
review labeling in two classes of “honest” or “spam”. Our main goal is to maintain a
core part of information associated with online reviewing to feed a generalized
methodology, which will be adaptive and computationally effective. The dataset of the
proposed work includes commonly available review metadata, which are used to
identify bursty review arrival patterns and track reviewer activity. Moreover, past
reviewing history is exploited to gain additional indications for a reviewer’s overall
reputation, which aids in determining the genuine or deceptive nature of the reviewer’s
more recent reviews.

Thus, our main contributions are as follows:

• Proposition of an adaptive fake review detection model which integrates a wide and
heterogeneous number of review and reviewer traits.

• Determination of a reviewer’s reputation profile based on reviewer history analysis.
• Inclusion of burst pattern detection not as sole focus but as an additional technique.
• Computational efficiency by implementing a lightweight and non-complex review

scoring approach.

The remainder of this paper is organized as follows. Section 2 offers an overview of
existing work in the field of review spam detection. In Sect. 3 the problem definition is
laid down. Sections 4 and 5 describe the proposed methodology and experimentation
results of our study, respectively. Finally, Sect. 6 concludes this paper summarizing our
findings.

582 I. Dematis et al.

2 Related Work

Over the last decade, considerable research has been conducted in the field of opinion
spam detection of online reviews. The most relevant literature is summarized with
emphasis on detecting spam reviewing activity.

Review text analysis. Identification of fake reviews was initially studied as a task of
detecting duplicated review text, since content duplication has been recognized as a
common spammer practice, in which the same review is reproduced numerous times
(semantically or textually). Indeed, the cosine similarity between review contents is
often proposed as an effective detection feature [5, 17]. These duplicate and
near-duplicate reviews originally served as the positive class for review content clas-
sification approaches [4, 5, 17]. The release of the gold-standard dataset [6, 7] of
annotated review instances though, procured by employing the Amazon Mechanical
Turk (AMT) service, sparked a new interest in supervised learning. Classifiers, built on
the aforementioned gold-standard dataset and based on word n-gram [6, 7, 18] or
character n-gram features [19], displayed high detection accuracy across both positive
and negative sentiment. However, the reliability of the training set of review instances
remains a debatable factor in regards to its applicability on real world review cases, as
the knowledge and psychology of AMT workers is allegedly not accurately repre-
sentative of real professional spammers [20].

Graph-based approaches. Certain studies [21, 22] proposed an heterogenous graph
representation to model the interconnections between reviewers, reviews and online
stores in order to detect irregularities. Using these interconnections, it is possible to
iteratively determine the trustworthiness of reviewers, the reliability of stores and the
honesty of reviews. FraudEagle [23], an unsupervised network-based framework,
consists of a bipartite network of reviewers and products, with edges representing a
positive or negative review rating. It initializes the vertices and then iteratively prop-
agates the respective values across the network via the edges until convergence is
achieved, which implies consistent scores between neighboring nodes.

Burst pattern discovery. There has been increasing focus on the aspect of time in
regards to studying spam reviewing activity. Given that most reviewers create only a
single review for a given product, i.e., singleton review, the authors of [14] observed
the bursty arrival pattern of singletons, as well as their temporal correlation to rating,
and built a multidimensional time series for each product based on average rating, total
number of reviews and the ratio of singleton reviews. A joint anomaly detection on
these temporally correlated abnormal sections revealed suspicious singleton review
activity. Another study [15] asserted that reviews and reviewers, appearing in the same
burst of a product’s reviewing activity, are often related and thus, using a graph
representation to model author interconnections, successfully identified review spam-
mers. The computational costs of analyzing the entire string of a product’s reviews led
[9] to only analyze and consider those reviews fallen in bursty time intervals on the
grounds that they are most likely to contain suspicious activity.

Fake Review Detection via Exploitation of Spam Indicators 583

Rating manipulation analysis. Spammers attempt to promote or demote a product by
manipulating its overall ranking. As a result, the identification of the proportion of
ratings disagreeing with the majority opinion has already been studied as a standalone
detection technique or as part of a wider combination of spam indicators and features
[11, 12]. A considerable number of early ratings, as well as extreme ratings, have also
been linked to suspicious behavior [8, 11]. Furthermore, spammers have been found to
distort their distribution of review scores leaving behind a trail of distributional foot-
prints, which can be used to assist in the discovery of spam reviewers [13].

Group spammers detection. Deceptive reviewers often work in collaboration with
each other in order to promote or demote a particular product or service. Using frequent
pattern mining, [24] found candidate spammer groups and ranked them with
SVM RANK based on a number of group related features. The authors of [25] applied
a frequent itemset mining method on Amazon review data to extract candidate groups
and rank them according to the probability of spamming. A more recent approach [26]
used the co-bursting spammer relations to model a co-bursting network, which suc-
cessfully detected spammer groups.

In short, most methods utilizing a graph-based model [15, 21, 23] and examining
various behavior footprints [8, 11, 12] perform an in-depth analysis of reviewing
activity, however their (computational) complexity and/or focus on spammer detection
does not enable a dedicated product-level approach akin to already established spam
review filtering systems. A few approaches [9, 14] did focus on a product-based
analysis by taking as input a product’s reviews and identifying burst patterns and
suspicious reviews, though they suffer from loss of information by ignoring reviews
created outside of bursty time intervals. Moreover, they lack an in-depth analysis of
reviewer activity and behavior.

In contrast, the proposed method bridges the existing gaps by introducing an
effective fake review detection model that operates on a fine-grained (product) level,
utilizes burst pattern discovery (detecting suspicious time intervals) as an additional
analysis technique and integrates reviewer past and present activity.

3 Problem Definition

Before detailing our approach towards detecting fake reviews, we describe the main
concepts of this study and present the issues our method addresses.

To start with, for a given product p we consider a set of n reviews R ¼ r1; . . .; rnf g
and a set of m reviewers or authors A ¼ a1; . . .; amf g where m � n, and n, m vary
depending on the product. It is apparent that review and reviewer constitute the core
entities in our study:

Definition 1 (User Review). A user review ri refers to a review written by a user or
consumer for a product or a service p based on their experience as a user of the
reviewed product. A review usually includes the following information:

584 I. Dematis et al.

ri;c: A relatively short passage of text or comment expressing the user’s experience
and judgement of the reviewed product.

ri;rt: The rating given to the reviewed product with its range typically at the [1, 10]
or [1, 5] scales.

ri;t: The creation date and time of the review.
ri;a: The author ID of the review.

Definition 2 (Reviewer). A reviewer a rið Þ is a person who formally assesses a used
product or service p by authoring a review ri. A reviewer is associated with a set Ra;j,
where Ra;j

�� �� [0, defined as the set of all reviews that a rið Þ has written for p.

Most fake review detection methods focus only on a product’s reviews, lacking the
deep level (across multiple products) analysis of spammer detection methods. Our goal
is to propose a spam review detection approach satisfying the following criterion:

Problem Definition 1 (Fake Review Detection). Detect spam in online reviews with a
model that (1) operates on a product level, (2) exploits all available data relative to
reviews and (3) analyzes past and present reviewer activity.

As we will show in the subsequent section, a hybrid approach combining indicators
of spam for review and reviewer, can successfully determine whether the former is fake
or honest.

4 Proposed Model

Our approach attempts to create a robust fake review detection system by considering a
variety of well-established and accepted by the scientific community spam features
linked to both review and reviewer behavior. With regard to the product-level pro-
cessing, our model receives as input a set of n reviews R ¼ r1; . . .; rnf g associated with
a product. Then, for each review ri we extract the necessary information and metadata
including review text, review rating, timestamp and reviewer ID, which we first study
across some basic spam indicators. We also use burst pattern discovery as a comple-
mentary analysis tool to identify bursty time intervals and pinpoint “suspicious”
reviews, which we then examine across two additional spam indicators. Thus, our
method considers all reviews of a product (no loss of information), while probing
further into the most high-risk ones. Lastly, the history of an author’s past reviewing
activity is taken into account as it can affect their overall reputation as a user and
subsequently, as a spam or honest reviewer. During analysis of a review, its author’s
associated set of past reviews Hista;j is investigated and studied across a number of
features and behavior characteristics as an additional measure of reviewer trustwor-
thiness and ultimately, review spam level. We determine the review spam level by
applying a linear weighted scoring function [11] to the review and define a spam score

Fake Review Detection via Exploitation of Spam Indicators 585

threshold to which we compare each review’s accumulated score. Thus, our method
outputs as fake those reviews whose score exceeds the threshold and as honest those
reviews whose score does not exceed the threshold. On overview of the proposed
method can be seen in Fig. 1.

4.1 Basic Spam Indicators

This section presents and describes the 3 basic spam indicators used in our model to
detect spam in online reviews.

• Rating Deviation (RD)

A spam review will typically aim at increasing or decreasing a product’s overall rank
by manipulating its mean score towards a particular direction and, consequently,
deviates from the mean.

Considering Smean pð Þ as the mean rating of a product p and normalizing according
to a 5-star rating scale, the rating deviation score [0, 1] of a review ri is found to be:

RD rið Þ ¼ ri;rt � Smean pð Þ�� ��
4

ð1Þ

Fig. 1. Overview of the proposed method’s workflow.

586 I. Dematis et al.

• Number of Reviews (NR)

It is a common spammer practice to create multiple reviews for the same product in
order to exert greater influence on public opinion and manipulate the mean rating.

Naturally, the spam score of a review ri created by reviewer aðriÞ should also be
affected by the number of reviews jRa;jj the author has contributed for the same
product:

NR a rið Þð Þ ¼ Ra;j

�� �� ð2Þ

• Content Similarity (CS)

Spammers often reproduce the same review text as authoring original content would
prove time consuming. Therefore, we can detect spammers by considering the overall
content similarity of their reviews. In accordance with the existing literature [5, 17], we
use the cosine similarity for this purpose.

The content similarity score [0, 1] of a reviewer aðriÞ, attributed to review ri, is the
average of the similarities of each review rj 2 Ra;j:

CS a rið Þð Þ ¼ Avg

P Ra;jj j
z¼1 cosine rj; rz

� �
Ra;j

�� ��
0
@

1
A; j 6¼ z ð3Þ

4.2 Burst Pattern Detection

Spammers typically create a large quantity of reviews in a reasonably short time period
in order to quickly negate the effects of and dominate honest opinions. Such excessive
posting can lead to the appearance of sudden increases in a product’s reviewing
activity, creating “bursts” or peaks in certain time intervals. Our model incorporates a
burst pattern detection technique, which has already been used successfully in the past
[9], as a means of narrowing down the most suspicious time intervals and, subse-
quently, the most potentially harmful reviews. While the authors of [9] only considered
these reviews, missing the rest of a product’s reviews, we believe that they should not
be the sole focus of a detection model as spam could also exist outside of bursts as well.
So, we merely subject these reviews, as well as their respective reviewers, to further
analysis with 2 additional spam indicators. Thus, our method investigates all reviews of
a product for the existence of spam, analyzing more thoroughly those created in bursty
time intervals.

Fake Review Detection via Exploitation of Spam Indicators 587

The algorithm for burst pattern discovery is presented below.

Algorithm 1 Algorithm to detect bursty time intervals for a product associated with
n reviews R = { ,…, }. Inputs are the corresponding review creation dates T =
{ ,…, } and the time window dt, which divides the product’s timeline into
intervals { ,…, } of duration dt, where is the number of reviews posted during
the j-th interval. dt is set to 7 days [9]. Output is whether is bursty.
1: Input: T = { ,…, }, dt
2: Output: whether interval is bursty
3: len = – // Measured in days
4: k = #Intervals =
5: I = { ,…, }
6: Avg() = , 1 ≤ j ≤ k // Average number of reviews per interval
7: for j = 1 : k do
8: if > Avg() then
9: if j = 1 & > then ← Bursty
10: else if 1 < j < k & < > then ← Bursty
11: else if j = k & > then ← Bursty
12: end for

We then extract the reviews fallen in bursty intervals and apply the 2 following
spam indicators to them.

• Content Similarity in Burst (CSBu)

A high enough similarity score between a review and other reviews of the same “burst”
could indicate that a review is suspiciously resembling other reviews.

We thus calculate the cosine similarity between ri and all other Ij � 1 reviews of the
same burst:

CSBu rið Þ ¼
PIj

z¼1
cosine ri;rzð Þ
Ij�1 � 0:5;

PIj
z¼1

cosine ri;rzð Þ
Ij�1 [0:5

0; otherwise

(
ð4Þ

Assuming that a similarity score of 0.5 is considered normal, we have modified the
CSBu metric so as to only affect those reviews that display higher similarity than
normal to not penalize reviews simply for being posted in a bursty time interval.

• Bursty Activity (BuA)

A spammer is expected to create large numbers of reviews in small bursts of activity to
quickly manipulate the general opinion. We assume that an honest reviewer would
create at most 2 bursty reviews, so the bursty activity score for a reviewer aðriÞ, and
subsequently for his/her reviews, is measured as:

588 I. Dematis et al.

BuA a rið Þð Þ ¼ 1; bursty reviews [2
0; otherwise

�
ð5Þ

4.3 Reviewer Reputation

There is ample available information in regards to author past reviewing activity, which
could empower our model to better evaluate a reviewer’s overall reputation and,
ultimately, the trustworthiness of his/her review(s), via a reviewer-level analysis. This
leads us to the following definition:

Definition 3 (Author Reputation). Author reputation refers to a reviewer’s general
trustworthiness based on their behavior and activity across their past reviews.

A reviewer a rið Þ is associated with a set of reviews Hista;j, his/her past reviewing
history, across a number of distinct products, which our model exploits by considering
3 addition reviewer history-based spam indicators.

• Extreme Rating (EXR)

Most spammers resort to extreme ratings (e.g. 1 or 5 in a 5-star scale) in order to
rapidly increase or decrease the mean score of a product.

To this end, the amount of extreme ratings on a 5-star scale among all past ratings
RSa;j of an author a rið Þ is collected, and divided by the total number of given ratings
RSa;j
�� �� leading to the reviewer’s ratio [0, 1] of extreme ratings, which ultimately adds to
his/her overall reputation score:

EXR a rið Þð Þ ¼ RSa;j 2 1; 5f g�� ��
RSa;j
�� �� ð6Þ

• Number of Reviews per Product (NRP)

Due to the impact of excessive reviewing, we also consider a reviewer’s relevant
behavior on past reviewed products. To this end, we measure the average number of
reviews a reviewer a rið Þ writes per product by dividing the size of his reviewing history
Hista;j with the number of reviewed products na;p:

NRP a rið Þð Þ ¼ Hista;j
�� ��
na;p

ð7Þ

• Reviewer Burstiness (RBu)

Spammers tend to create all their reviews in great volume and in a short time window
(burst) in order to quickly dominate honest reviews. Examining a time window of
d = 30 days [8], the burstiness score of a reviewer a rið Þ is measured like so:

Fake Review Detection via Exploitation of Spam Indicators 589

RBu a rið Þð Þ ¼ 0; LR a rið Þð Þ � FR a rið Þð Þ [d
1� LR a rið Þð Þ�FR a rið Þð Þ

d ; otherwise

�
ð8Þ

where LR a rið Þð Þ indicates creation date of the reviewer’s last and more recent review,
while FR a rið Þð Þ represents the creation date of the first written review by this reviewer
account.

Taking into consideration the above 3 history-based spam indicators, we propose
measuring a reviewer’s reputation by adding the accumulated indicator scores. Thus,
we introduce the following combined method that models trustworthiness or reputation
for a reviewer a rið Þ. Each generated score is multiplied by a respective weight
according to the desired impact of the indicator on the final score:

Rep a rið Þð Þ ¼ 1
2

EXR a rið Þð Þ þ 1
2
NRP a rið Þð Þ þ RBu a rið Þð Þ ð9Þ

A low score is indicative of good reputation, while a high score is implying sus-
picious behavior.

4.4 Spam Scoring Function

We now introduce our linear weighted scoring function, which combines the individual
scores generated by each previously mentioned indicator and outputs an overall spam
score for each review. Thus, the spam score of a review ri, written by a reviewer a rið Þ,
is measured by the following method:

SðriÞ ¼ RDðriÞ þ 1
3
NRðaðriÞÞ þ 1:5CSðaðriÞÞ þ 2CSBuðriÞ þ BuAðaðriÞÞ þ RepðaðriÞÞ

ð10Þ

The weights of our model’s indicator scores are empirically selected based on
feature significance as well as value range. Content Similarity in Burst (CSBu) has a
value of [0, 0.5] so we give it a weight of 2 to increase its impact, while Extreme Rating
(EXR) is considered the weakest indicator, since an honest reviewer could also resort to
extreme ratings, and is given a smaller weight. The two spam features (NR, NRP)
linked to excessive reviewing are given relatively low weights to counterbalance their
potentially high values. Finally, we believe that reviewer Content Similarity
(CS) provides strong evidence of spam so we increase its weight accordingly.

Finally, a defined threshold separates the fake reviews from the genuine reviews.
After examining the expected score values for honest reviews, as well as for spam
reviews, we set the threshold to 3. Thus, reviews with spam scores exceeding the
threshold are marked as fake, while reviews with spam scores lower than the threshold
are considered genuine.

590 I. Dematis et al.

5 Experimental Analysis

We will now evaluate the effectiveness of the proposed methodology. We conduct
experiments on a dataset of real-world reviews and report our findings.

5.1 Dataset

We procured the Amazon review dataset, crawled by [4], to conduct our experiments.
The initial dataset is comprised of 5.838.041 reviews of 1.230.915 products created by
2.146.057 reviewers. To facilitate experiments, we sample this dataset to acquire a
smaller and easier to evaluate dataset. We exclude from the sampling process those
products with less than 5 reviews as lacking attention from users. Our final dataset is
comprised of 244.882 reviews, 175.146 reviewers and 13.768 Amazon products.

5.2 Evaluation by Supervised Text Classification

Evaluation has always been a significant barrier in developing highly reliable review
spam detection systems. The difficulty stems from the absence of real-world ground
truth data of spam reviews necessary for evaluation and model building. A common
solution is employing human evaluators and experts to annotate review instances.
However, this method includes human subjectivity in the evaluation process.

In this paper, we utilize a different evaluation approach already used successfully in
the past [8, 15]. It relies on supervised text classification of the reviews labeled by our
method, which are used to represent the positive and negative class, respectively. We
iterate over all products in our dataset and score their reviews. Then, all reviews are
ranked in descending order, with the top-2000 representing the positive (spam) class
and the bottom-2000 representing the negative (honest) class. We choose the top-2000
reviews, as they are heavy spam cases and feature more spam-like text. A Naïve Bayes
classifier is then built on these reviews based on UNIGRAM features and the
Bag-of-Words model. We perform 10-fold cross validation and report the results.
Given the limitation that it is sometimes hard to determine review authenticity by
content alone, classification accuracy won’t be completely representative of our actual
accuracy nor will it allow for a safe comparison to other methods. It will however
indicate whether our model is effective and has accurately labeled the evaluation
reviews. Accuracy is measured with the established metrics of precision, recall and
F-score to ensure consistency with other works in the field.

5.3 Experimentation Results

In order to display the impact of all employed techniques of our model, we first
evaluate the effectiveness of the 3 basic review spam indicators. Then, we perform fake
review detection with the addition of burst pattern detection. Finally, we include
reviewer reputation in the detection process and observe its impact.

For the reviewer reputation scoring phase, we use the entire non-sampled Amazon
dataset, which contains ample information regarding reviewer history across a range of
distinct products, as our sample dataset may not feature enough information.

Fake Review Detection via Exploitation of Spam Indicators 591

Table 1 reports the results of our model’s effectiveness after performing 10-fold
cross-validation of the classification of our dataset reviews. Surprisingly, the inclusion
of burst pattern discovery seems to be lowering accuracy by 1% compared to the results
of the basic spam indicators. The difference, however, is small enough to be attributed
to the limitations of review text classification so no real conclusion can be made. The
addition of reviewer reputation though displayed a considerable improvement in
detection accuracy, reporting nearly 75%. Considering again the limitations of our
evaluation method, this is a very positive result, which attests to the importance of
reviewer reputation in discovering spam reviews. This makes us confident that com-
plementing basic spam indicators and burst pattern discovery with analysis of reviewer
past activity allows our model to successfully detect harmful fake reviews.

On top of supervised text classification as an evaluation method, we present a
thorough examination of 5 unique review scoring cases. Table 2 displays the respective
scores of a sample of 5 reviews of our dataset for all 8 employed spam indicators. The
first review has accumulated a very high spam score due to its author’s extensive
reviewing (NR = 37) on the same product. We also observe that the CS score is quite
low, which means that the reviewer created reviews of distinct content to obfuscate
their activity. The second, fourth and fifth reviews on the table feature scores close to
the defined threshold and are mostly the result of duplicated or near-duplicated content
(NR > 1 and CS � 1). Three of the reported reviews are also unreasonably similar to
other reviews of the same bursty time interval (CSBu > 0), which we discover thanks
to our burst pattern technique. Finally, the inclusion of reviewer past history analysis
truly shines with the detection of the second sample review, which is a singleton
review. Owing mostly to the extremely high NRP score, our method revealed the
reviewer’s past spamming activity, which in turn weighs down on their recent review.

Overall, our proposed model has displayed positive detection accuracy on the
Amazon review dataset. We detected 6.168 fake reviews (2.5% of reviews), that

Table 1. Results of 10-fold cross validation for different combinations of indicators.

Method Precision Recall F-score

Basic 67.6 66.2 65.4
Basic + burst pattern 66.9 65.2 64.3
Basic + burst pattern + reviewer reputation 75.2 75 74.9

Table 2. Review scoring examples for 5 spam reviews of the Amazon dataset.

RD CS NR CSBu BuA EXR NRP RBU Spam score

0.03 0.3 37 0.0 1 1.0 1.0 0.26 20.69
0.05 1.0 2 0.0 0 0.68 1.01 0.0 3.06
0.15 0.0 1 0.0 0 1.0 57 0.0 29.48
0.07 0.98 3 0.29 1 1.0 1.0 0.0 5.13
0.06 0.99 2 0.49 0 1.0 1.0 0.0 4.22

592 I. Dematis et al.

constitute both serious and minor cases of review spamming. In reality, spam per-
centage is even higher, due to singleton reviews. While we have detected singletons,
there are more that can only be captured by specialized techniques [14], which are not
our focus. Moreover, we have found that most spam is owed to reviewers reproducing
the same (or marginally altered) review twice or thrice, leading to a spam score close to
the defined threshold. The most extreme cases of spamming, featuring high spam
scores, are those of a reviewer creating multiple reviews for a single product and
putting the effort to author dissimilar content in order to avoid detection.

6 Conclusion

In this paper, we propose a new approach for detecting spam reviews. We exploit a
variety of different spam indicators on a product level relative to both review and
reviewer behavior in order gather and utilize every bit of available information.
Moreover, our model features additional analysis features based on burst pattern dis-
covery, which enables the identification of suspicious time intervals and reviews.
Finally, we measure reviewer reputation, by examining their history of past reviews
and activity, to better determine the authenticity of their more recent reviews. The
evaluation of our proposed method was performed on a dataset of Amazon product
reviews and the experimentation results showed that our combined method is effective
in detecting harmful fake reviews.

As future work, we plan to modify the introduced methodology to better account
for singleton spam reviews. While these reviews as individual pieces of content lack
the influence on a product’s overall rating and popularity, however, in unison they
could pose a real threat to unsuspecting review readers and consumers.

Acknowledgments. The authors acknowledge research funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 691025.

References

1. The Impact of Online Reviews on Customers’ Buying Decisions [Infographic]. http://www.
business2community.com/infographics/impact-online-reviews-customers-buying-decisions-
infographic-01280945#k4Q7iGGLamrml8iA.97

2. Ott, M., Cardie, C., Hancock, J.: Estimating the prevalence of deception in online review
communities. In: Proceedings of the 21st International Conference on World Wide Web,
pp. 201–210. ACM (2012)

3. Wang, Z.: Anonymity, social image, and the competition for volunteers: a case study of the
online market for reviews. B.E. J. Econ. Anal. Policy 10(1), 1–33 (2010)

4. Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 International
Conference on Web Search and Data Mining, pp. 219–230. ACM (2008)

5. Lin, Y., Zhu, T., Wang, X., Zhang, J., Zhou, A.: Towards online anti-opinion spam: spotting
fake reviews from the review sequence. In: 2014 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 261–264. IEEE (2014)

Fake Review Detection via Exploitation of Spam Indicators 593

http://www.business2community.com/infographics/impact-online-reviews-customers-buying-decisions-infographic-01280945#k4Q7iGGLamrml8iA.97
http://www.business2community.com/infographics/impact-online-reviews-customers-buying-decisions-infographic-01280945#k4Q7iGGLamrml8iA.97
http://www.business2community.com/infographics/impact-online-reviews-customers-buying-decisions-infographic-01280945#k4Q7iGGLamrml8iA.97

6. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch
of the imagination. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, Portland, Oregon, USA,
pp. 309–319 (2011)

7. Ott, M., Cardie, C., Hancock, J.T.: Negative deceptive opinion spam. In: Proceedings of the
2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Atlanta, Georgia, USA, pp. 309–319 (2013)

8. Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., Ghosh, R.: Spotting
opinion spammers using behavioral footprints. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 632–640. ACM
(2013)

9. Heydari, A., Tavakoli, M., Salim, N.: Detection of fake opinions using time series. Expert
Syst. Appl. 58, 83–92 (2016)

10. Jindal, N., Liu, B., Lim, E.-P.: Finding unusual review patterns using unexpected rules. In:
Proceedings of the 19th ACM International Conference on Information and Knowledge
Management, pp. 1549–1552. ACM (2010)

11. Lim, E.-P., Nguyen, V.-A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product review
spammers using rating behaviors. In: Proceedings of the 19th ACM International Conference
on Information and Knowledge Management, pp. 939–948. ACM (2010)

12. Savage, D., Zhanga, X., Yua, X., Choua, P., Wang, Q.: Detection of opinion spam based on
anomalous rating deviation. Expert Syst. Appl. 42(22), 8650–8657 (2015)

13. Feng, S., Xing, L., Gogar, A., Choi, Y.: Distributional footprints of deceptive product
reviews. ICWSM 12, 98–105 (2012)

14. Xie, S., Wang, G., Lin, S., Yu, P.S.: Review spam detection via temporal pattern discovery.
In: Proceedings of the 18th ACM International Conference on Knowledge Discovery and
Data Mining, pp. 823–831. ACM (2012)

15. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Exploiting burstiness
in reviews for review spammer detection. ICWSM 13, 175–184 (2013)

16. Ye, J., Kumar, S., Akoglu, L.: Temporal opinion spam detection by multivariate indicative
signals. In: ICWSM, pp. 743–746 (2016)

17. Lau, R.Y., Liao, S., Kwok, R.C.W., Xu, K., Xia, Y., Li, Y.: Text mining and probabilistic
language modeling for online review spam detecting. ACM Trans. Manag. Inf. Syst. 2(4), 1–
30 (2011)

18. Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In:
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2, pp. 171–175. Association for Computational Linguistics (2012)

19. Fusilier, D.H., Montes-y-Gómez, M., Rosso, P., Cabrera, R.G.: Detection of opinion spam
with character n-grams. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 285–294.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18117-2_21

20. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.: Fake review detection: classification
and analysis of real and pseudo reviews. Technical report UIC-CS-2013–03, University of
Illinois at Chicago (2013)

21. Wang, G., Xie, S., Liu, B., Yu, P.S.: Review graph based online store review spammer
detection. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 1242–
1247. IEEE (2011)

22. Fayazbakhsh, S., Sinha, J.: Review spam detection: a network-based approach. Final Project
Report: CSE 590 (2012)

23. Akoglu, L., Chandy, R., Faloutsos, C.: Opinion fraud detection in online reviews by network
effects. ICWSM 13, 2–11 (2013)

594 I. Dematis et al.

http://dx.doi.org/10.1007/978-3-319-18117-2_21

24. Mukherjee, A., Liu, B., Wang, J., Glance, N., Jindal, N.: Detecting group review spam. In:
Proceedings of the 20th International Conference Companion on World Wide Web, pp. 93–
94. ACM (2011)

25. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In:
Proceedings of the 21st International Conference on World Wide Web, pp. 191–200. ACM
(2012)

26. Li, H., Fei, G., Wang, S., Liu, B., Shao, W., Mukherjee, A., Shao, J.: Bimodal distribution
and co-bursting in review spam detection. In: Proceedings of the 26th International
Conference on World Wide Web, pp. 1063–1072. International World Wide Web
Conferences Steering Committee (2017)

Fake Review Detection via Exploitation of Spam Indicators 595

Mining Spatial Gradual Patterns: Application
to Measurement of Potentially Avoidable

Hospitalizations

Tu Ngo1,2, Vera Georgescu2, Anne Laurent3(B), Thérèse Libourel4,
and Grégoire Mercier2

1 Department of Information and Communication Technology,
University of Science and Technology of Hanoi, Hanoi, Vietnam

2 Economic Evaluation Unit, University Hospital of Montpellier, Montpellier, France
3 LIRMM, University of Montpellier, Montpellier, France

laurent@lirmm.fr
4 Espace-Dev, University of Montpellier, Montpellier, France

Abstract. Gradual patterns aim at automatically extracting co-
variations between variables of data sets in the form of “the more/the
less” such as “the more experience, the higher salary”. This data mining
method has been applied more and more in finding knowledge recently.
However, gradual patterns are still not applicable on spatial data while
such information have strong presence in many application domains. For
instance, in our work we consider the issue of potentially avoidable hos-
pitalizations. Their determinants have been studied to improve the qual-
ity, efficiency, and equity of health care delivery. Although the statistical
methods such as regression method can find the associations between
the increased potentially avoidable hospitalizations with its determinants
such as lower density of ambulatory care nurses, there is still a chal-
lenge to identify how the geographical areas follow or not the tendencies.
Therefore, in this paper, we propose to extend gradual patterns to the
management of spatial data. Our work is twofold. First we propose a
methodology for extracting gradual patterns at several hierarchical lev-
els. In addition, we introduce a methodology for visualizing this knowl-
edge. For this purpose, we rely on spatial maps for allowing decision
makers to easily notice how the areas follow or not the gradual pat-
terns. Our work is applied to the measure of the potentially avoidable
hospitalizations to prove its interest.

Keywords: Data mining · Gradual patterns · Spatial maps
Cartography visualization · Potentially avoidable hospitalizations

1 Introduction

1.1 Problem Statement

It is often estimated that over 90% of the information integrate spatial infor-
mation. In many cases, this important component has not yet been taken into
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 596–608, 2018.
https://doi.org/10.1007/978-3-319-73117-9_42

Spatial Gradual Pattern Application 597

account for specific designs and implementations. However, such spatial infor-
mation are currently taking more and more importance with the emergence of
Internet of Things and popular applications integrating spatial information (e.g.,
Google maps).

In this context, it is important to analyze the information at several lev-
els of granularity with upscaling and downscaling features. Public policies are
especially targeted in such analyses as actions can be taken at different levels
of administrative entities (cities, regions, states,...). In our context, we focus on
potentially avoidable hospitalizations. We aim at extracting gradual patterns
so as to analyze the co-variations of descriptors and highlight some actionable
features. Gradual patterns are of the form the more/less A1,..., the more/less
An. Such co-variations can not easily be aggregated through spatial levels of
granularity and some knowledge that could be relevant at some level could be
called into question at some other level. Thus, we aim at helping decision makers
to navigate through the most relevant features and levels of granularity.

In this paper, we introduce a generic method for extracting and analyzing
gradual patterns from spatial data at several levels of granularity. Our method
is based on the extraction of gradual patterns. One key point is then to deal
with aggregation from one level to the upper level.

This method is applied to a real case for analyzing potentially avoidable
hospitalization that are both societal and financial issues in public policies.

1.2 Use Case

The use case we are working on is meant at helping decision makers from the
public health system. Typically, in France, the public health decision makers
can have an impact on the determinants related to health care such as the
density of physicians, nurses, or the density of hospital beds, but they have
no influence on socio-economic determinants such as poverty and education.
Potentially avoidable hospitalizations (PAH) are hospital episodes that could
have been avoided if patients had received timely and effective primary care.
Avoiding these admissions by improving access to primary care could result in a
substantial decrease in costs and could enhance patients’ quality of life [1]. The
main objective for avoiding these hospitalizations is to enhance the health care
services where and when it is feasible by working on actionable features.

In this work, we consider two levels of granularity: geographic code and
department levels where the patients live. This geographic code level corresponds
roughly to the postal code level (n = 5,590) while the department level is similar
to the county level in the United States (n = 96). It should be noted that French
overseas territories were excluded because most data is lacking.

In addition, this research is conducted on the datasets with the age- and sex-
standardized rates of PAH. The standardization for the rates of PAH is necessary
to allow for an unbiased comparison between spatial elements [5]. The datasets
are provided by the Ministry of Health data that is the national hospital dis-
charge database (fr. Programme de Médicalisation des Systèmes d’Information
PMSI). It includes data from all French hospitals, whether public or private, and

598 T. Ngo et al.

for all payers. Discharge data are obtained at the patients’ residence geographic
code level. The reliability and validity of the PMSI are high for various acute and
chronic conditions, especially since 2007 [6]. This research has been approved by
the National Committee on Information Technology and Civil Liberties (Refer-
ence number CNIL/DE-2014-134).

The PAH potential determinants including the rates of ambulatory care
nurses (per 1,000 people), the rates of general practitioners, the rates of spe-
cialist physicians, the annual median patient incomes, percentage of education
level beyond high school, the mortality ratios, and the rates of acute care hospital
beds had been collected from French Ministry of Health and from the National
Institute for Statistics and Economic Studies (INSEE).

This research is the next step of one of the previous finding [1] of a French
national project on PAH funded by the French Ministry of Health. That previous
research has found the associations between the standardized rates of PAH with
higher mortality ratio, lower density of ambulatory care nurses, lower median
income, and lower education levels and other effects [1].

Those findings are useful for policy makers. However, that research does not
help answer which areas to increase the rate of the nurses, for instance, in order
to reduce the numbers of PAH. Hence, another research should be conducted for
the answers and it is the main aim of this research.

1.3 Approach Proposal

The approach proposed in this paper is an extension of [4]. It considers the
extraction of gradual patterns at several spatial granularity levels that are then
compared and plotted on spatial maps. The rest of this paper details this app-
roach. We first detail the methodology proposed, described here as a workflow
integrating the use of a spatial database and spatial maps. We also discuss how
to deal with the extraction and study of gradual patterns at several granularity
levels.

The approach we introduce here is generic. Although it has been tested and
assessed on real data from French public health, it can be used on any data
containing spatial information and which attribute domains are partially ordered
so as to allow gradual patterns to be extracted, as recalled below with the basic
concepts associated to gradual patterns.

2 Related Works

2.1 Around Gradual Patterns

Gradual patterns consider tendencies in terms of correlation of the attribute
variations [2]. A gradual pattern is in the form of “the more/the less A1, ..., the
more/the less An” such as “the more experience, the higher salary” or “the older
a subject, the less his memory”.

A gradual item is defined as a pair (i, v) in which i is an attribute of the
given dataset and v is variation with v ∈ {↑, ↓} in which ↑ stands for increasing

Spatial Gradual Pattern Application 599

variation and ↓ stands for decreasing variation. A gradual pattern is a set of
gradual items denoted by {(i1, v1), ..., (in, vn)}.

For example, given that we have a dataset with three attributes: A, B, and
C as shown in Table 1, (A, ↓) is a gradual item and {(A, ↓), (C, ↑)} is a gradual
pattern.

Table 1. An example dataset

Objects A B C

Obj 1 4 6 12

Obj 2 1 9 13

Obj 3 2 10 10

Obj 4 5 8 11

Obj 5 3 7 14

Support of Gradual Patterns. The support value of a gradual pattern indi-
cates to which extent it is true in a given dataset. There are several ways to
compute such a value [2,3]. In this paper, we consider the approach based on
precedence graphs.

Fig. 1. Precedence graph for the gradual pattern {(A, ↓), (C, ↑)} with the example
dataset.

A precedence graph is considered for one given gradual pattern and represents
the partial order of the objects from the database through paths. For instance,
when considering the data from Table 1 and the gradual pattern {(A,↓), (C,↑)},
then Obj 3 ≺ Obj 2 as 2 > 1 and 10 < 13.

The support value of a gradual pattern is given by the maximum length
of all paths from the precedence graph over the total number of objects.

Returning back to the example precedence graph (Fig. 1), the value of
maxLength is 3 and there are 5 objects. Hence, we have:

Support({(A, ↓), (C, ↑)})= 3
5 = 0.6

600 T. Ngo et al.

A gradual pattern is said to be frequent if its support is higher than a given
support threshold.

Gradual Patterns and Spatial Information. Gradual patterns have been
applied in various application domains, as biology, psychology, etc. They have
also been studied in the framework of spatial information [4] which proposes a
method to visualize on spatial maps the information about to which extent a
geographical object (e.g., a city) participates in each gradual pattern. On the
other hand, each gradual pattern can be represented by a precedence graph that
indicates which paths a spatial object belongs to. For example, on the precedence
graph (Fig. 1), [Obj 2] are on two paths: The first one is [Obj 4] → [Obj 1] →
[Obj 2] and the other one is [Obj 3] → [Obj 2]. The lengths of these paths are
3 and 2 respectively.

Definition. The item support value of an object is the max length of all
the paths the object is on.

Back to the example above, the item support value of [Obj 2] is 3 because
the lengths of all the paths [Obj 2] is on are {3, 2} as mentioned above.

On the other side, since our approach is applied on several hierarchical levels
of the spatial objects, there are insider-level objects and container-level objects
(in our case, they are geographic codes and department codes respectively).

Definition. The follow-gradual pattern (or Follow-GP) insiders of a
container-level object (denoted container) are the insider-level objects (denoted
insiders) in the container having GP item support values that are not smaller
than a user-defined threshold.

Later in this paper, we will present a use case of this definition when we
discuss about aggregation maps.

Spatial Maps. Spatial maps are powerful to highlight information related to
locations [10]. There are several types of spatial maps such as choropleth and
symbol maps [10,13]. However, in the scope of this paper, introduce choropleth
maps. Choropleth maps use colors to represent the data associated with an
area by filling the shape of that area with different colors. The data could be
categorical or numerical. With categorical data, choropleth maps (categorized
maps in QGIS) use a different color for each category. When there are only two
categories, these maps can be called binary maps as the two categories could be
converted into binary values (0 and 1). With numerical data, choropleth maps
(graduated maps in QGIS) use color progression for the different ranges of data
with the principle that the darker colors the higher values of data. In this study,
we use these choropleth maps (with QGIS) for the knowledge visualization.

2.2 Multiple-Level Analysis of Spatial Information

Statistics. Statistical methods have been developed and applied widely in data
analysis in many domains such as health sciences [11,12]. In our previous work

Spatial Gradual Pattern Application 601

[1], a multilevel mixed model (regression model with two hierarchical levels) was
used to assess disparities in PAH in France in 2012 and analyze their determi-
nants. The result of the research has indicated that the increased PAH were
associated with higher mortality, lower density of acute care beds and ambu-
latory care nurses, lower median income, and lower education levels. It also
suggests that primary care organizations play a role in geographic disparities in
PAH [1]. However, this statistical method did not take into account the spatial
information.

SOLAP. While On-Line Analytical Processing (OLAP) technologies allow fast,
easy, and interactive exploration and analysis of data without any expert assis-
tance [7,8], they are not optimized to spatial data. On the other hand, Geo-
graphic Information Systems (GIS) are powerful tools for detailed spatial data
analysis, but they are not meant to support analytical needs which mostly require
summarized information, aggregated data, trends analysis, spatio-temporal com-
parisons, interactive exploration of data, geographic knowledge discovery in large
amounts of data, etc. [9]. The solution of combining the strengths of GIS and the
strengths of OLAP tools gives birth to Spatial OLAP (SOLAP) technologies [8].
Like OLAP, these decision making technologies allow easier and faster naviga-
tion of geo-spatial databases relying on several levels of information granularity,
cross-tabulated data, explicit spacetime integration and more tightly integrated
modes of visualization [7]. As SOLAP technologies are very promising, they have
been applied in many domains such as surveillance of climate-related health vul-
nerabilities [9] or public debate [7]. Related to our work, SOLAP technologies
could be an interesting extension to our project.

3 Extracting Spatial Gradual Patterns

As mentioned in the Introduction section, our goal is to extract associations
between potential determinants and spatial objects and to visualize the results
with spatial maps to help decision makers to navigate through hierarchical levels.

Considering our use case, we aim in particular at retrieving the potential
determinants impacting the rates of PAH by extracting gradual patterns from
different levels of spatial information (geographic codes and department codes).
The patterns are then plotted on spatial maps as a reference for the decision
makers. In this paper, we present our approach to achieve that goal.

3.1 Process Flow

Our implementation approach includes several steps that are described in the
process flow detailed below.

Step 1: Find gradual patterns at several granularity levels. At this
first step of the process the gradual patterns are extracted at all granularity
levels (geographic code and department levels in our use case). Given a support

602 T. Ngo et al.

threshold, the output of this step is a list of frequent gradual patterns for every
level with their support values.

Step 2: Select gradual patterns for mining. At this step, experts help select
some gradual patterns from the output of the first step. A gradual pattern is
selected based on both its relevance and the inclusion of actionable variables and
its high gradual pattern support value.

Step 3: For every selected gradual pattern, find item support values
of spatial objects. At this third step, for every selected gradual pattern, the
item support value is computed of every element from every granularity level
(e.g., every geographic code and every department code).

Step 4: Find number of follow-GP insiders for every container-level
element. This step is only processed at the insider-level. In this step, for every
selected gradual pattern, a threshold is defined for the item support values.
In addition, a join table contains an insider (e.g., geographic code) is in which
container (e.g., department). The output of this step is a dataset with the number
of follow-GP insiders for every container. This output is used to update the shape
file1 at the container-level.

Step 5: Update findings into the shape files at all levels. At this step, all
the findings found on the previous step for all granularity levels will be updated
into the corresponding shape files (geographic codes and departments for our
use case). The findings include the item support values of the spatial objects
and number of follow-GP insiders for container-level objects.

Step 6: Visualize the findings with the shape files by GIS software. In
this step, any GIS software such as QGIS can be used to visualize the findings
on spatial maps with the shape files.

3.2 Use Case

As mentioned in the Introduction section, we have applied this approach to our
real datasets that have two hierarchical levels: geographic codes (n = 5,590) and
department codes (n = 96). In this section, we present the obtained results. For
this purpose, an R package has been developed.

At the geographic code level, the following PAH potential determinants
are available:

– Rates of general practitioners per 1,000 people (denoted as Generalists)
– Annual median incomes (denoted as Median income)
– Percentage of education level beyond high school (denoted as Education)
– Rates of ambulatory care nurses per 1,000 people (denoted as Nurses)
– The rates of ambulatory care specialists per 1,000 people is also available,

but there are many geographic codes in which there are no specialists, hence
we did not include it when we search for the gradual patterns.

1 Popular geo-spatial vector data format for geographic information system (GIS)
software.

Spatial Gradual Pattern Application 603

At department code level, besides the potential determinants we have at
geographic code level, we also have the data of the followings:

– Standard mortality ratio (denoted as Mortality ratio)
– Number of acute care hospital beds per 1,000 people (denoted as Beds)
– Percentage of CMU-c recipients2 (denoted as CMUc recipients)

Select Gradual Patterns for Mining. The Find Gradual Patterns step
has generated the list of gradual patterns with their support values. From that
list, the experts have selected the following gradual patterns for mining based
on their high support values and their relevance to the purpose of the project.

At the geographic code level:

– {(Median income, ↓), (PAH, ↑)} (denoted as INC in Figs. 7 and 8)
– {(Education, ↓), (PAH,↑)} (denoted as EDU in Figs. 7 and 8)
– {(Nurses, ↓), (PAH, ↑)} (denoted as NUR in Figs. 7 and 8).

At the department level:

– {(Nurses, ↓), (PAH, ↑)}
– {(Mortality ratio, ↑), (PAH, ↑)}
– {(Generalists, ↓), (PAH, ↑)}
– {(Specialists, ↓), (PAH, ↑)}
– {(Education, ↓), (PAH, ↑)}.

Find Item Support Values. In this step, at each hierarchical level, for every
selected gradual pattern, we need to find the item support value of every spatial
element. For the purpose of demonstration, in this paper, we only present the
item support values of the gradual pattern {(Nurses, ↓), (PAH, ↑)}. For the
purpose of visualization, we divided these values into 5 groups for each level, at
both the geographic code (Fig. 2) and department code (Fig. 3) levels.

4 Dealing with Spatial Maps and Hierarchies

4.1 Navigating Through Hierarchical Levels

In this section, we present how hierarchies can be dealt with in the context of
spatial data and gradual patterns. In our approach, we take advantages of the
current GIS software (QGIS in our case) to navigate through hierarchical levels.
In particular, we use choropleth maps to plot the gradual patterns at each level
as layers (as in QGIS). The navigation bar of the GIS software allows us to
easily switch among the maps (rolling up or down between the hierarchical lev-
els). In addition, We can pre-compute the aggregation values for the higher level

2 In France, CMU-c recipients are people who are given special rights for a free com-
plementary health care complementary insurance.

604 T. Ngo et al.

Fig. 2. Item support values of
{(Nurses, ↓), (PAH, ↑)} at geographic
code level

Fig. 3. Item support values of
{(Nurses, ↓), (PAH, ↑)} at department
code level

(department in our case) from the lower level one (geographic codes in our case).
The aggregation values are computed based on the number of follow-GP insid-
ers (step 4 in the process flow). The aggregation values show how insider-level
elements of a container-level object participate in a selected gradual pattern.
Because the gradual patterns are computed independently at each spatial level,
the aggregation values work like the connecting values between the two hierar-
chical levels. Therefore, by visualizing these values, we would find the valuable
information in analysis of hierarchical spatial data.

4.2 Use Case

In our work, we implemented two aggregation values. The first one is to show
percentage of geographic codes inside a department following a selected gradual
pattern. The second one is to display the best gradual patterns in each depart-
ment. The best gradual pattern is simply defined is the gradual pattern whose
number of follow-GP is the biggest compared with the other gradual patterns.

As we have mentioned, for every selected gradual pattern, we need to find
the number of follow-GP geographic codes for every department. In order to do
that, thresholds are needed. In our case, the experts have selected the following
thresholds (Table 2).

Table 2. Thresholds for the numbers of follow-GP insiders

Gradual pattern Threshold

1 {(Median income, ↓), (PAH, ↑)} 165

2 {(Education, ↓), (PAH, ↑)} 161

3 {(Nurses, ↓), (PAH, ↑)} 153

After setting the threshold for each gradual pattern, the number of follow-
GP geographic codes of every department can be obtained as shown in the same
template (Table 3).

Spatial Gradual Pattern Application 605

Table 3. Number of follow-GP geographic codes of department with gradual pattern
{(Nurses, ↓), (PAH, ↑)}

Department code Number of follow-GP

1 01 6

2 13 25

3 02 10

...

4.3 Finding Visualization on Spatial Maps

As mentioned in the process flow, in order to visualize the findings above, we
need to import them into the corresponding shape files at the hierarchical levels.
This step can be conducted by SQL commands on database management system
(DBMS) with spatial extension (postgresql and postgis in our case).

Graduated Maps for Item Support Values. These maps (Figs. 4 and 5)
facilitate the decision makers to find out how an area (geographic code and
department) follows a selected gradual pattern through its item support value,
the higher item support value the better it follows the gradual pattern.

Fig. 4. Graduated map for item sup-
port values of {(Nurses, ↓), (PAH, ↑)}
at geographic code level

Fig. 5. Graduated map for item sup-
port values of {(Nurses, ↓), (PAH, ↑)}
at department code level

Aggregation Maps at Container-Level from the Insider-Level. In these
maps, we visualize the aggregation values on spatial maps. In our case, we imple-
mented two types of the aggregation maps:

606 T. Ngo et al.

Fig. 6. Percentage of geographic codes
inside department codes following
{(Nurses, ↓), (PAH, ↑)}

Fig. 7. Best gradual patterns at each
department code

Fig. 8. Multiple-gradual-pattern map at geographic code level

The first type is to display the percentage of geographic codes inside depart-
ment codes following a selected gradual patterns (Fig. 6).

The second aggregation map is the best gradual pattern map (Fig. 7). For
example, on the map above (Fig. 7), EDU & INC indicates that the departments
have the have the same numbers of follow-GP geographic codes for {(Education,
↓), (PAH, ↑)} and {(Median income, ↓), (PAH, ↑)}.

Spatial Gradual Pattern Application 607

Multiple-Gradual-Pattern Maps. This type of spatial maps (Fig. 8) is to
display multiple gradual patterns on a same map. This type of maps could be
useful for the decision makers as they can analyze the association between many
different determinants on the spatial objects. In particular, in our case, the
decision makers want to see which gradual patterns the geographic codes follow.

5 Conclusions

In this paper, we have presented an approach of using gradual pattern method
to not only find the correlation of the attribute variations as the regression
method does but also to mine geographical data and to identify how an object
participates in the associations between attribute variations through the gradual
pattern item support values of spatial elements. The visualization of the spatial
areas is crucial.

In our work, we have applied our method to study which areas participate
in the association between primary care and PAH. This work is of high interest
to national- and regional-level health authorities. Indeed, the latter might focus
their efforts and investments on these areas in order to maximize the efficiency
at the health system level.

This paper describes the method of using spatial maps with shape files and
GIS software as tools for the decision making people. In particular, this paper
gives some ideas of visualizing the gradual pattern support values of the geo-
graphic codes and the departments the on the spatial maps. These maps might
be the useful references for decision makers at the French Ministry of Health
when they want to reduce the numbers of PAH in France.

Further work includes the integration of these proposals in the context of
Spatial OLAP systems in order to provide end-users with integrated fluid solu-
tions for navigating through the spatial data and hierarchies with such complex
measures (gradual patterns).

Acknowledgements. We would like to thank University of Science and Technology
of Hanoi (USTH) and the DIM department from the CHU of Montpellier for funding
this work.

References

1. Mercier, G., Georgescu, V., Bousquet, J.: Geographic variation in potentially avoid-
able hospitalizations in France. Health Aff. 34, 836–843 (2015)

2. Laurent, A., Lesot, M.-J., Rifqi, M.: GRAANK: exploiting rank correlations
for extracting gradual itemsets. In: Andreasen, T., Yager, R.R., Bulskov, H.,
Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS (LNAI), vol. 5822, pp.
382–393. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04957-
6 33

3. Di-Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from
large databases. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.)
IDA 2009. LNCS, vol. 5772, pp. 297–308. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-03915-7 26

https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/978-3-642-03915-7_26

608 T. Ngo et al.

4. Aryadinata, Y.S., Lin, Y., Barcellos, C., Laurent, A., Libourel, T.: Mining epi-
demiological dengue fever data from Brazil: a gradual pattern based geographical
information system. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R.
(eds.) IPMU 2014. CCIS, vol. 443, pp. 414–423. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08855-6 42

5. Nelson, G.S.: Reporting healthcare data: understanding rates and adjustments. In:
PharmaSUG 2014 Conference Proceedings, San Diego, United States (2014)

6. Goldberg, M., Coeuret-Pellicer, M., Ribet, C., Zins, M.: Epidemiological studies
based on medical and administrative databases : a potential strength in France.
Med. Sci. 28(4), 430–434 (2012)

7. McHugh, R., Roche, S., Bédard, Y.: Towards a SOLAP-based public participation
GIS. J. Environ. Manage. 90(6), 2041–2054 (2008)

8. Rivest, S., Bédard, Y., Proulx, M.-J., Nadeau, M., Hubert, F., Pastor, J.: SOLAP
technology: merging business intelligence with geospatial technology for interactive
spatio-temporal exploration and analysis of data. J. Int. Soc. Photogrammetry
Remote Sens. (ISPRS) 60(1), 17–33 (2005)

9. Bernier, E., Gosselin, P., Badard, T., Bédard, Y.: Easier surveillance of climate-
related health vulnerabilities through a Web-based spatial OLAP application. Int.
J. Health Geographics. 8(18) (2009)

10. Magnuson, L.: Data Visualization: A Guide to Visual Storytelling for Libraries.
Rowman and Littlefield publishers, Maryland (2016)

11. Auget, J.-L., Balakrishnan, N., Mesbah, M., Molenberghs, G.: Advances in sta-
tistical methods for the health sciences: applications to cancer and AIDS studies,
genome sequence analysis, and survival analysis. Statistics for Industry and Tech-
nology. Birkhuser, Basel (2007). https://doi.org/10.1007/978-0-8176-4542-7

12. Ott, L.R., Longnecker, M.: An Introduction to Statistical Methods and Data Anal-
ysis. Duxbury, Australia (2001)

13. Zhang, L., Guo, Q., Jiao, L.: Design and implementation of decision-making sup-
port system for thematic map cartography. Int. Arch. Photogrammetry, Remote
Sens. Spat. Inf. Sci. 37 (2008)

https://doi.org/10.1007/978-3-319-08855-6_42
https://doi.org/10.1007/978-3-319-08855-6_42
https://doi.org/10.1007/978-0-8176-4542-7

Text Searching Algorithms

New Variants of Pattern Matching
with Constants and Variables

Yuki Igarashi(B), Diptarama, Ryo Yoshinaka, and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University,
6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan

{yuki igarashi,diptarama}@shino.ecei.tohoku.ac.jp
{ry,ayumi}@ecei.tohoku.ac.jp

Abstract. Given a text and a pattern over two types of symbols called
constants and variables, the parameterized pattern matching problem is to
find all occurrences of substrings of the text that the pattern matches by
substituting a variable in the text for each variable in the pattern, where
the substitution should be injective. The function matching problem is a
variant of it that lifts the injection constraint. In this paper, we discuss
variants of those problems, where one can substitute a constant or a
variable for each variable of the pattern. We give two kinds of algorithms
for both problems, a convolution-based method and an extended KMP-
based method, and analyze their complexity.

Keywords: Pattern matching · Parameterized pattern matching
Function matching · Parameterized pattern queries

1 Introduction

The parameterized pattern matching problem was proposed by Baker [4] about
a quarter of a century ago. Problem instances are two strings called a pattern
and a text, which are sequences of two types of symbols called constants and
variables. The problem is to find all occurrences of substrings of a given text that
a given pattern matches by substituting a variable in the text for each variable
in the pattern, where the important constraint is that the substitution should
be an injective map. She presented an algorithm for this problem that runs in
O(n log n) time using parameterized suffix trees, where n is the length of text.

By removing the injective constraint from the parameterized pattern match-
ing problem, Amir et al. [1] proposed the function matching problem, where
the same variable may be substituted for different variables. Yet another but
an inessential difference between parameterized pattern matching and function
matching is in the alphabets. The function matching problem is defined to be
constant-free in the sense that patterns and texts are strings over variables. How-
ever, this simplification is inessential, since it is known that the problem with
variables and constants is linear-time reducible to the constant-free case [2]. This
reduction technique works for the parameterized pattern matching as well. Their
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 611–623, 2018.
https://doi.org/10.1007/978-3-319-73117-9_43

612 Y. Igarashi et al.

Table 1. The time complexity of our proposed algorithms

Problem Convolution-based
method

Extended KMP-based method

Preprocessing Query

PVC-matching O(|ΣP |n log m) O(|ΠP ||ΣP |m2) O(|ΠP |�m
w

�n)

FVC-matching O(|ΠP |(|ΣP | + |ΠP |)m2) O(|ΠP |2�m
w

�n)

deterministic algorithm solves this problem in O(|Π|n log m) time, where n and
m are the lengths of the text and pattern, respectively, and |Π| is the number
of different symbols in the pattern. After that, Amir and Nor [3] introduced
the generalized function matching problem, where one can substitute a string
of arbitrary length for a variable. In addition, both a pattern and a text may
contain “don’t care” symbols, which are supposed to match arbitrary strings.

The parameterized pattern matching problem and its extensions have been
of great interest not only to the pattern matching community [13] but also to
the database community. Du Mouza et al. [7] proposed a variant of the function
matching problem, where texts should consist solely of constants and a substi-
tution maps variables to constants, which is not necessarily injective. Let us call
their problem function matching with variables-to-constants, FVC-matching in
short.1 The function matching problem is linear-time reducible to this problem
by simply assuming the variables in a text as constants. Therefore, this problem
can be seen as a generalization of the function matching problem. Unfortunately,
as we will discuss in this paper, their algorithm is in error.

In this paper, we introduce a new variant of the problem by du Mouza et al.
with the injective constraint, which we call parameterized pattern matching with
variables-to-constants mapping (PVC-matching). For each of the FVC-matching
and PVC-matching problems, we propose two kinds of algorithms: a convolution-
based method and an extended KMP-based method. The convolution-based meth-
ods and extended KMP-based methods are inspired by the algorithm of Amir
et al. [1] for the function matching problem and the one by du Mouza et al. [7]
for the FVC-matching problem, respectively. As a result, we fix the flaw of the
algorithm by du Mouza et al. The convolution-based methods for both prob-
lems run in O(|ΣP |n log m) time, where ΣP is the set of constant symbols that
occur in the pattern P . Our KMP-based methods solve the PVC-matching and
FVC-matching problems with O(|ΣP ||ΠP |m2) and O(|ΠP |(|ΣP |+|ΠP |)m2) pre-
processing time and O(|ΠP |�m

w �n) and O(|ΠP |2�m
w �n) query time, respectively,

where Π is the set of variables and w is the word size of a machine (Table 1).
The convolution-based methods and KMP-based methods work more efficiently
than the trivial O(mn) algorithm if the pattern contains few different constants
and few different variables, respectively.

1 They called the problem parameterized pattern queries. However, to avoid misun-
derstanding the problem to have the injective constraint, we refrain from using the
original name in this paper.

New Variants of Pattern Matching with Constants and Variables 613

A full version of this paper [10] includes pseudo codes and experimental
results for these algorithms.2

2 Preliminaries

For any set Z, the cardinality of Z is denoted by |Z|. Let Σ be an alphabet.
We denote by Σ∗ the set of strings over Σ. The empty string is denoted by ε.
The concatenation of two strings X,Y ∈ Σ∗ is denoted by XY . For a string X,
the length of X = X[1]X[2] · · · X[n] is denoted by |X| = n. The substring of X
beginning at i and ending at j is denoted by X[i : j] = X[i]X[i + 1] · · · X[j −
1]X[j]. Any substrings of the form X[1 : j] and X[i : n] are called a prefix and a
suffix of X. For any number k, we define X[k : k−1] = ε. The set of symbols from
a subset Δ of Σ occurring in X is denoted by ΔX = {X[i] ∈ Δ | 1 ≤ i ≤ n }.

This paper is concerned with matching problems, where strings consist of two
kinds of symbols, called constants and variables. Throughout this paper, the sets
of constants and variables are denoted by Σ and Π, respectively. Variables are
supposed to be replaced by another symbol, while constants are not.

Definition 1. For a function π : Π → (Σ ∪Π), we extend it to π̂ : (Π ∪Σ)∗ →
(Π ∪ Σ)∗ by

π̂(X) = π̂(X[1])π̂(X[2]) · · · π̂(X[n]),where π̂(X[i]) =

{
π(X[i]) (X[i] ∈ Π)
X[i] (otherwise)

Parameterized match [4] and function match [1]3 are defined as follows.

Definition 2. Let P and Q be strings over Σ ∪ Π of the same length. String P
is said to parameterized match (resp. function match) string Q if there exists
an injection (resp. function) π : Π → Π, such that π̂(P) = Q.

The parameterized pattern matching problem (resp. function matching problem)
is to find all occurrences of substrings of a given text that a given pattern
parameterized matches (resp. function matches).

The problems we discuss in this paper allow variables to be mapped to con-
stants and variables.

Definition 3. Let P and Q be strings over Σ ∪ Π of the same length. String P is
said to parameterized match with variables-to-constants mapping (resp. function
match with variables-to-constants mapping), shortly PVC-match (resp. FVC-
match), string Q if there exists an injection (resp. function) π : Π → (Σ ∪ Π),
such that π̂(P) = Q.

2 Source codes are available at https://github.com/igarashi/matchingwithvcmap.
3 Amir et al. [1] defined the problem so that strings are over a single type of symbols,

which can be seen as variables. This restriction is inessential [2].

https://github.com/igarashi/matchingwithvcmap

614 Y. Igarashi et al.

Problem 1. Let P and T be strings over Σ ∪ Π of length m and n, respec-
tively. The parameterized pattern matching problem with variables-to-constants
mapping (resp. function matching problem with variables-to-constants mapping),
shortly PVC-matching (resp. FVC-matching) asks for all the indices i where pat-
tern P PVC-matches (resp. FVC-matches) substring T [i : i + m − 1] of text T .

Table 2 summarizes those four problems.

Table 2. Definition of problems

Problems Admissible mappings

Type Injection constraint

PVC-matching Π → (Π ∪ Σ) Yes

FVC-matching[7] No

Parameterized matching [4] Π → Π Yes

Function matching [1] No

We can assume without loss of generality that the text T solely consists of
constants. This restriction is inessential since one can regard variables occurring
in T as constants. Under this assumption, the FVC-matching problem is exactly
parameterized pattern queries [7].

Example 1. Let Σ = {a, b} and Π = {A, B}. Consider pattern P = ABAb and
text T = ababbbb. Then, the answer of PVC-matching problem is {1, 2}, since P
PVC-matches T [1 : 4] = abab, T [2 : 5] = babb. On the other hand, the answer
of FVC-matching problem is {1, 2, 4} since P FVC-matches T [1 : 4] = abab,
T [2 : 5] = babb, T [4 : 7] = bbbb. Note that we have π̂(P) = T [4 : 7] for π with
π(A) = π(B) = b, which is not injective.

Throughout this paper, we arbitrarily fix a pattern P ∈ (Σ ∪ Π)∗ of length m
and a text T ∈ Σ∗ of length n.

3 Convolution-Based Methods

In this section, we show that the FVC-matching problem can be solved in
O(|ΣP |n log m) time by reducing the problem to the function matching problem
and the wildcard matching problem, for which several efficient algorithms are
known. The PVC-matching problem can also be solved using the same reduction
technique with a slight modification.

For strings P of length m over Σ∪Π and T of length n over Σ, we define Π ′ =
ΠP ∪ΣT . Let P∗ ∈ (Σ∪{∗})∗ be a string obtained from P by replacing all variable
symbols in Π with don’t care symbol ∗. Let PΠ ∈ Π ′∗ be a string obtained from
P by removing all constant symbols in Σ. Moreover, for 1 ≤ i < n−m, let T ′

i be
a string defined by T ′

i = v(1)v(2) · · · v(m), where v(j) = T [i + j − 1] if P [j] ∈ Π
and v(j) = ε otherwise. Note that both the lengths of T ′

i and PΠ are equal to
the total number of variable occurrences in P .

New Variants of Pattern Matching with Constants and Variables 615

Example 2. For T = aabcbc and P = AaBBb over Π = {A, B} and Σ = {a, b, c},
we have P∗ = ∗a∗∗b, PΠ = ABB, T ′

1 = abc, and T ′
2 = acb.

For both FVC-matching and PVC-matching problems, the following lemma
is useful to develop algorithms to solve them.

Lemma 1. P FVC-matches (resp. PVC-matches) T [i : i+m− 1] if and only if

1. P∗ wildcard matches T [i : i + m − 1], and
2. PΠ function matches (resp. parameterized matches) T ′

i .

Lemma 1 suggests that the FVC-problem would be reducible to the combination
of wildcard matching problem and function matching problem.

The wildcard matching problem (a.k.a. Pattern matching with don’t care
symbol) [8] is one of the fundamental problems in pattern matching. There
are many algorithms for solving the wildcard matching problem [5,8,11]. For
example, Cole and Hariharan [5] gave an algorithm which runs O(n log m) time
by using convolution.

However, Lemma 1 does not imply the existence of a single string T ′ such that
P FVC-matches T [i : i+m−1] if and only if P∗ wildcard matches T [i : i+m−1]
and PΠ function matches T ′[i : i + m − 1]. A Naive application of Lemma 1 to
compute T ′

i explicitly for each i requires O(mn) time in total.
We will present an algorithm to check whether PΠ function matches (param-

eterized matches) T ′
i for all 1 ≤ i < n − m in O(log |Σ| n log m) time in total.

Without loss of generality, we assume that Σ and Π are disjoint finite sets of pos-
itive integers in this section, and for integers a and b, the notation a ·b represents
the multiplication of a and b but not the concatenation.

Definition 4. For integer arrays A of length n and B of length m, we define
an integer array R by R[j] =

∑m
i=1 A[i + j − 1] · B[i] for 1 ≤ j ≤ n−m+1. We

denote R as A ⊗ B.

In a computational model with word size O(log m), the discrete convolution can
be computed in time O(n log n) by using the Fast Fourier Transform (FFT) [6].
The array R defined in Definition 4 can also be computed in the same time
complexity by just reversing array B.

Amir et al. [1] proved the next lemma for function matching.

Lemma 2 [1]. For any natural numbers a1, · · · , ak, the equation
k ·∑k

i=1 (ai)2 = (
∑k

i=1 ai)2 holds if and only if ai = aj for any 1 ≤ i, j ≤ k.

Let T be the string of length n such that T [i] = (T [i])2 for every 1 ≤ i ≤ n.
For a variable x ∈ ΠP , let cx denote the number of occurrences of x in P , and
let Px be the string of length m such that Px[j] = 1 if P [j] = x and Px[j] = 0
otherwise, for every 1 ≤ j ≤ m. By Lemma 2, we can prove the following lemma.

Lemma 3. All the symbols (values) in T ′
i at every position j satisfying PΠ [j] =

x are the same, if and only if the equation cx·((T⊗Px)[i]) = ((T ⊗Px)[i])2 holds.

616 Y. Igarashi et al.

Thus, PΠ function matches T ′
i if and only if the equation in Lemma 3 holds

for all x ∈ ΠP . Both the convolutions T ⊗ Px and T ⊗ Px can be calculated
in O(n log m) time by simply dividing T into 2 × n

2m overlapping substrings of
length 2m. For parameterized pattern matching problem, we have only to check
additionally whether the value (T ⊗ Px)[i]/cx is unique among all x ∈ ΠP .

Theorem 1. The FVC-matching problem and PVC-matching problem can be
solved in O(|ΣP |n log m) time.

4 KMP-Based Methods

Du Mouza et al. [7] proposed a KMP-based algorithm for the FVC-matching
problem, which, however, is in error. In Sect. 4.1, we propose a correction of their
algorithm, which runs in O(|Π|2�m

w �n) query time with O(|Π|(|ΣP | + |Π|)m2)
preprocessing time, where w denotes the word size of a machine. This algorithm
will be modified in Sect. 4.2 so that it solves the PVC-matching problem in
O(|Π|�m

w �n) query time with O(|Π||ΣP |m2) preprocessing time.
The KMP algorithm [12] solves the standard pattern matching problem in

O(n) time with O(m) preprocessing time. We say that a string Y is a border of
X if Y is simultaneously a prefix and a suffix of X. A border Y is nontrivial
if Y is not X itself. For the preprocessing of the KMP algorithm, we calculate
the longest nontrivial border bk for each prefix P [1 : k] of pattern P , and store
them as border array B[k] = |bk| for each 0 ≤ k ≤ m. Note that b0 = b1 = ε. In
the matching phase, the KMP algorithm compares symbols T [i] and P [k] from
i = k = 1. We increment i and k if T [i] = P [k]. Otherwise we reset the index for
P to be k′ = B[k − 1] + 1 and resume comparison from T [i] and P [k′].

4.1 Extended KMP Algorithm

This subsection discusses an algorithm for the FVC-matching problem. In the
matching phase, our extended KMP algorithm compares the pattern and a sub-
string of the text in the same manner as the classical KMP algorithm except
that we must maintain a function by which prefixes of the pattern match some
substrings of the text. That is, our extended KMP algorithm compares symbols
T [i] and P [k] from i = k = 1 with the empty function π. If P [k] is not in the
domain dom(π̂) of π̂, we expand π by letting π(P [k]) = T [i] and increment i
and k. If π̂(P [k]) is defined to be T [i], we increment i and k. Otherwise, we say
that a mismatch occurs at position k with a function π. Note that the mismatch
position refers to that of P rather than T . When we find a mismatch, we must
calculate the appropriate position j of P and function π′ with which we resume
comparison. If instances are variable-free, the position is solely determined by
the longest border size of P [1 : k] and we have no function. In the case of FVC-
matching, the resuming position depends on the function π in addition to k.

New Variants of Pattern Matching with Constants and Variables 617

Example 3. Let us consider the pattern P = AABaaCbC where Π = {A, B, C} and
Σ = {a, b} in Fig. 1. If the concerned substring of the text is T ′ = bbbaaabb,
a mismatch occurs at k = 8 with a function π such that π(A) = π(B) = b and
π(C) = a. In this case, we can resume comparison with P [7] and T ′[8], since we
have π̂′(P [1 : 6]) = T ′[2 : 7] for π′ such that π′(A) = π′(C) = b and π′(B) = a.
On the other hand, for T ′′ = bbaaaabb, the first mismatch occurs again at k = 8
with a function ρ such that ρ(A) = b and ρ(B) = ρ(C) = a. In this case, one
cannot resume comparison with P [7] and T ′′[8], since there is no ρ′ such that
ρ̂′(P [1 : 6]) = T ′′[2 : 7], since P [1] = P [2] but T ′′[2]
= T ′′[3]. We should resume
comparison between P [4] and T ′′[8] with ρ′ such that ρ′(A) = a and ρ′(B) = b,
for which we have ρ̂′(P [1 : 3]) = T ′′[5 : 7]. Note that ρ′(C) is undefined.

Fig. 1. Examples of possible shifts in the extended KMP algorithm

The goal of the preprocessing phase is to prepare a data structure by which
one can efficiently compute the failure function in the matching phase:

Input: the position k +1 (where a mismatch occurs) and a function π whose
domain is ΠP [1:k],
Output: the largest position j + 1 < k + 1 (at which we will resume com-
parison) and the function π′ with domain ΠP [1:j] such that π̂′(P [1 : j]) =
π̂(P [k − j + 1 : k]).

We call such π a preceding function, π′ a succeeding function and the pair (π, π′)
a (k, j)-shifting function pair. The substrings P [1 : j] and P [k−j+1 : k] may not
be a border of P [1 : k] but under preceding and succeeding functions they play
the same role as a border plays in the classical KMP algorithm. The succeeding
function π′ is uniquely determined by a preceding function π and positions k, j.
The condition for functions π and π′ form a (k, j)-shifting function pair can be
expressed using the (k, j)-shifting graph (on P), defined as follows.

Definition 5. Let Π ′ be a copy of Π and P ′ be obtained from P by replacing
every variable in Π with its copy in Π ′. For two numbers k, j such that 0 ≤ j <
k ≤ m, the (k, j)-shifting graph Gk,j = (Vk,j , Ek,j) is defined by

618 Y. Igarashi et al.

Vk,j = ΣP ∪ ΠP [k−j+1:k] ∪ Π ′
P ′[1:j],

Ek,j = { (P [k − j + i], P ′[i]) | 1 ≤ i ≤ j < k and P [k − j + i]
= P ′[i] } .

We say that Gk,j is invalid if there are distinct p, q ∈ ΣP that belong to the
same connected component. Otherwise, it is valid.

Note that Gk,0 = (ΣP , ∅) is valid for any k. Figure 2 shows the (7, 6)-shifting and
(7, 3)-shifting graphs for P = AABaaCbC in Example 3. Using functions π and π′

Fig. 2. The (7, 6)-shifting graph (a) and (7, 3)-shifting graph (b) on P = AABaaCbC,
which corresponds to Fig. 1(i) and (ii).

whose domains are dom(π) = ΠP [k−j+1:k] and dom(π′) = ΠP [1:j], respectively,
let us label each node p ∈ Σ, x ∈ Π, x′ ∈ Π ′ of Gk,j with p, π(x), π′(x),
respectively. Then (π, π′) is a (k, j)-shifting pair if and only if every node in each
connected component has the same label. Obviously Gk,j is valid if and only if
it admits a (k, j)-shifting function pair.

Thus, the resuming position should be j + 1 for a mismatch at k + 1 with a
preceding function π if and only if j is the largest such that Gk,j is valid and

(a) if x ∈ Π and p ∈ Σ are connected in Gk,j , then π(x) = p,
(b) if x ∈ Π and y ∈ Π are connected in Gk,j , then π(x) = π(y).

In that case, we have π̂′(P [1 : j]) = π̂(P [k − j + 1 : k]) for π′ determined by
(c) π′(x) = π̂(y) if x′ ∈ Π ′

P [1:j] and y ∈ Π ∪ Σ are connected.

We call the conditions (a) and (b) the (k, j)-preconditions and (c) the (k, j)-
postcondition. Note that every element in Π ′

P ′[1:j] is connected to some element
in ΠP [k−j+1:k] ∪ ΣP in Gk,j and thus π′ is well-defined.

Remark 1. The algorithms EdgesConstruction (preprocessing) and Match
(matching) by du Mouza et al. [7] do not treat the condition induced by two
nodes of distance more than 1 correctly. For example, let us consider the pattern
P = AABaaCbC in Example 3. For a text T = bbaaaabbb, the first mismatch
occurs at k = 8, where ρ̂(P [1 : 7]) = bbaaaab for ρ(A) = b and ρ(B) = ρ(C) = a.
To have (ρ, ρ′) a (7, 6)-shifting pair for some ρ′, it must hold ρ(A) = ρ(B). That is,

New Variants of Pattern Matching with Constants and Variables 619

one can resume the comparison at position 7 only when the preceding function
assigns the same constant to A and B. The preceding function ρ in this case
does not satisfy this constraint. However, their algorithm performs this shift
and reports that P matches T at position 2.

To efficiently compute the failure function, our algorithm constructs another
data structure instead of shifting graphs. The shifting condition table is a col-
lection of functions Ak,j : ΠP [k−j+1:k] → ΠP [k−j+1:k] ∪ΣP and A′

k,j : Π ′
P ′[1:j] →

ΠP [k−j+1:k] ∪ ΣP for 1 ≤ j < k ≤ m such that Gk,j is valid. The functions Ak,j

can be used to quickly check the (k, j)-preconditions (a) and (b) and A′
k,j is for

the (k, j)-postcondition (c). Those functions satisfy the following property: for
each connected component α ⊆ Vk,j , there is a representative uα ∈ α such that

– if α ∩ Σ
= ∅, then uα ∈ Σ,
– if α ∩ Σ = ∅, then uα ∈ Π,
– for all x ∈ α ∩ Π, Ak,j(x) = uα,
– for all x′ ∈ α ∩ Π ′, A′

k,j(x
′) ∈ α ∩ (Π ∪ Σ).

Note that Gk−1,j−1 is a subgraph of Gk,j , where the difference is at most two
nodes and one edge. Hence, we can compute Ak,j and A′

k,j from Ak−1,j−1 and
A′

k−1,j−1 in O(log |Π|) worst-case time and O(A(|Π|)) amortized time, where
A(n) is the inverse-Ackermann function, by using Union-Find data structure [14].
Moreover, when computing Ak,j and A′

k,j , we can verify the validity of Gk,j .

Lemma 4. The shifting condition table can be calculated in O(log |Π|m2) time.

Suppose that we have a mismatch at position k +1 with a preceding function π.
By using the shifting condition table, a naive algorithm may compute the failure
function in O(k|Π|2) time by finding the largest j such that π satisfies the (k, j)-
precondition and then compute a function π′ satisfying the (k, j)-postcondition
with which we resume comparison at j + 1. The calculation of π′ can be done in
O(|Π|) time just by referring to the array A′

k,j . We next discuss how to reduce
the computational cost for finding j by preparing an elaborate data structure in
the preprocessing phase.

Du Mouza et al. [7] introduced a bitmap data structure concerning the pre-
condition (a), which can be constructed using Ak,j in the shifting condition table
as follows. Here we extend the domain of Ak,j to Π by defining Ak,j(x) = x for
each x ∈ Π \ ΠP [k−j+1:k].

Definition 6 [7]. For every 0 ≤ j < k ≤ m, x ∈ Π and p ∈ ΣP , define

rk
x,p[j] =

{
0 (Gk,j is invalid or Ak,j(x) ∈ Σ \ {p})
1 (otherwise)

Lemma 5 [7]. A preceding function π satisfies the (k, j)-precondition (a) if and
only if

∧
x∈Π rk

x,π(x)[j] = 1.

We define a data structure corresponding to the (k, j)-precondition (b) as follows.

620 Y. Igarashi et al.

Definition 7. For every 0 ≤ j < k ≤ m and x, y ∈ Π, define

sk
x,y[j] =

{
0 (Gk,j is invalid orAk,j(x) = y)
1 (otherwise)

Lemma 6. A preceding function π satisfies the (k, j)-precondition (b) if and
only if

∧x,y∈Π
π(x) �=π(y) sk

x,y[j] = 1 .

Therefore, we should resume comparison at j + 1 for the largest j that satisfies
the conditions of Lemmas 5 and 6. To calculate such j quickly, the preprocessing
phase computes the following bit sequences. For every x ∈ Π, p ∈ ΣP and
1 ≤ k ≤ m, let rk

x,p be the concatenation of rk
x,p[j] in ascending order of j:

rk
x,p = rk

x,p[0]rk
x,p[1] · · · rk

x,p[k − 1] ,

and for every x, y ∈ Π and 1 ≤ k ≤ m, let

sk
x,y = sk

x,y[0]sk
x,y[1] · · · sk

x,y[k − 1] .

Calculating rk
x,p and sk

x,y for all x, y ∈ Π, p ∈ ΣP and 1 ≤ k ≤ m in the prepro-
cessing phase requires O(|Π|(|ΣP | + |Π|)m2) time in total. When a mismatch
occurs at k + 1 with a preceding function π, we compute

J =
∧

x∈Π

rk
x,π(x) ∧

∧
x,y∈Π

π(x) �=π(y)

sk
x,y .

Then the desired j is the right-most position of 1 in J . This operation can be
done in O(�m

w �|Π|2) time, where w denotes the word size of a machine. That
is, with O(|Π|(|ΣP | + |Π|)m2) preprocessing time, the failure function can be
computed in O(|Π|2�m

w �) time. For most applications, we can assume that m is
smaller than the word size w, i.e. �m

w � = 1.

Theorem 2. The FVC-matching problem can be solved in O(|Π|2�m
w �n) time

with O(|Π|(|ΣP | + |Π|)m2) preprocessing time.

4.2 Extended KMP Algorithm for PVC-Match

In this subsection, we consider the PVC-matching problem. We redefine the
(mis)match and failure function in the same manner as described in the previous
section except that all the functions are restricted to be injective. We define
Gk,j exactly in the same manner as in the previous subsection. However, the
condition represented by that graph should be strengthened in accordance with
the injection constraint on matching functions. We say that Gk,j is injectively
valid if for each Δ ∈ {Σ,Π,Π ′}, any distinct nodes from Δ are disconnected.
Otherwise, it is injectively invalid. There is a (k, j)-shifting injection pair if and
only if Gk,j is injectively valid.

New Variants of Pattern Matching with Constants and Variables 621

For P = AABaaCbC in Example 3 (see Fig. 2), the (7, 6)-shifting graph G7,6

for P = AABaaCbC is valid but injectively invalid, since A and B are connected.
On the other hand, G7,3 is injectively valid.

In the PVC-matching, the condition for an injection pair (π, π′) to be (k, j)-
shifting is described using the graph labeling by (π, π′) as follows:

– two nodes are assigned the same label if and only if they are connected.

Under the assumption that Gk,j is injectively valid, the (k, j)-precondition on a
preceding function π is given as

(a) if x ∈ Π and p ∈ Σ are connected, then π(x) = p,
(b’) if x ∈ Π and x′ ∈ Π ′ are connected and y′ ∈ Π ′ \ {x′} and p ∈ Σ are

connected, then π(x)
= p.

Since each connected component of an injectively valid shifting graph Gk,j has
at most 3 nodes, it is cheap to compute the function Fk,j : Vk,j → 2Vk,j such that
Fk,j(u) = { v ∈ Vk,j | uandvare connected inGk,j }. For technical convenience,
we assume Fk,j(u) = ∅ for u ∈ Π \ Vk,j . Using P [k], P [j], and Fk−1,j−1, one
can decide whether Gk,j is injectively valid and can compute Fk,j (if Gk,j is
injectively valid) in constant time.

Suppose that we have a preceding function π at position k. By using the
function Fk,j , a naive algorithm can compute the failure function in O(k|Π|)
time. We define a bitmap tkx,p[j] to check if π satisfies preconditions (a) and (b’).

Definition 8. For every 0 ≤ j < k ≤ m, x ∈ Π and p ∈ ΣP , define

tkx,p[j] =

⎧⎪⎨
⎪⎩

0 (Gk,j is injectively invalid or Fk,j(x) ∩ Σ � {p}
or |(Fk,j(x) ∪ Fk,j(p)) ∩ Π ′| = 2)

1 (otherwise)

The conditions Fk,j(x) ∩ Σ � {p} and |Fk,j(x) ∩ Fk,j(p) ∩ Π ′| = 2 in Definition 8
for p = π(x) correspond to the (k, j)-preconditions (a) and (b’), respectively.

Lemma 7. Suppose that Gk,j is injectively valid. The preceding function π sat-
isfies the (k, j)-preconditions (a) and (b’) if and only if

∧
x∈Π tkx,π(x)[j] = 1.

Proof. Suppose that π violates the (k, j)-precondition (a). There are x ∈ Π and
q ∈ Σ which are connected in Gk,j such that π(x)
= q. Then q ∈ Fk,j(x) ∩ Σ �
{π(x)} and tkx,π(x)[j] = 0. Thus

∧
y∈Π tky,π(y)[j] = 0. Suppose that π violates the

(k, j)-precondition (b’). There are x ∈ Π, x′ ∈ Π ′, and y′ ∈ Π ′ \ {x′} such that
x′ ∈ Fk,j(x) and y′ ∈ Fk,j(π(x)). Then (Fk,j(x)∪Fk,j(π(x)))∩Π ′ = {x′, y′} and
thus

∧
y∈Π tky,π(y)[j] = tkx,π(x)[j] = 0.

Suppose that
∧

y∈Π tky,π(y)[j] = 0. Then there is x ∈ Π for which tkx,π(x)[j] =
0, and either Fk,j(x) ∩ Σ � {π(x)} or |(Fk,j(x) ∪ Fk,j(π(x))) ∩ Π ′| = 2. In the
former case, there is p ∈ (Fk,j(x) ∩ Σ) \ {π(x)}, which means that x and p are
connected but π(x)
= p. This violates the (k, j)-precondition (a). In the latter

622 Y. Igarashi et al.

case, there are distinct x′, y′ ∈ Π ′ such that x′ ∈ Fk,j(x) and y′ ∈ Fk,j(π(x)).
That is, x and x′ are connected and y′ and π(x) are connected, which violates
the (k, j)-precondition (b’). ��

In the preprocessing phase, we calculate

tkx,p = tkx,p[0]tkx,p[1] · · · tkx,p[k − 1]

for all x ∈ Π, p ∈ ΣP and 1 ≤ k ≤ m, which requires O(|Π||ΣP |m2) time. When
a mismatch occurs at k + 1 with a function π, we compute

J =
∧

x∈Π

tkx,π(x)

where the desired j is the right-most position of 1 in J . We resume comparison
at j + 1. The calculation of the failure function can be done in O(|Π|�m

w �) time,
where w denotes the word size of a machine.

Theorem 3. The PVC-matching problem can be solved in O(|Π|�m
w �n) time

with O(|Π||ΣP |m2) preprocessing time.

5 Concluding Remarks

In this paper, we proposed efficient algorithms for the FVC-matching and
PVC-matching problems. The FVC-matching problem has been discussed by
du Mouza et al. [7] as a generalization of the function matching problem, while
the PVC-matching problem is newly introduced in this paper, which can be
seen as a generalization of the parameterized pattern matching problem. We
have fixed a flaw of the algorithm by du Mouza et al. for the FVC-matching
problem. Moreover, the experimental results [10] show that our algorithms run
more effecient than the trivial O(mn) algorithm.

There can be further variants of matching problems. For example, one may
think of a pattern with don’t care symbols in addition to variables and con-
stants. This is not interesting when don’t care symbols appear only in a pattern
in function matching, since don’t care symbols can be assumed to be distinct
variables. However, when imposing the injection condition on a matching func-
tion, don’t care symbols play a different role from variables. This generalization
was tackled in [9]. We can consider an even more general problem by allowing
texts to have variables, where two strings P and S are said to match if there is
a function π such that π̂(P) = π̂(S). This is a special case of the word equation
problem, where a string instead of a symbol can be substituted, and word equa-
tions are very difficult to solve in general. Another interesting restriction of word
equations may allow to use different substitutions on compared strings, i.e., P
and S match if there are functions π and ρ such that π̂(P) = ρ̂(S). Those are
interesting future work.

Acknowledgements. This work is supported by Tohoku University Division for
Interdisciplinary Advance Research and Education, ImPACT Program of Council for
Science, Technology and Innovation (Cabinet Office, Government of Japan), and JSPS
KAKENHI Grant Number JP15H05706.

New Variants of Pattern Matching with Constants and Variables 623

References

1. Amir, A., Aumann, Y., Lewenstein, M., Porat, E.: Function matching. SIAM J.
Comput. 35(5), 1007–1022 (2006)

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994)

3. Amir, A., Nor, I.: Generalized function matching. J. Discrete Algorithms 5(3),
514–523 (2007)

4. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

5. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 592–601. ACM (2002)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to algo-
rithms, vol. 44, pp. 97–138. MIT Press, Cambridge (1990)

7. Du Mouza, C., Rigaux, P., Scholl, M.: Parameterized pattern queries. Data Knowl.
Eng. 63(2), 433–456 (2007)

8. Fischer, M.J., Paterson, M.S.: String-matching and other products. Technical
report, DTIC Document (1974)

9. Igarashi, Y.: A study on the parameterized pattern matching problems for real
data (in Japanese). Bachelor thesis, Tohoku University (2017)

10. Igarashi, Y., Diptarama, Yoshinaka, R., Shinohara, A.: New variants of pattern
matching with constants and variables. CoRR abs/1705.09504 (2017)

11. Iliopoulos, C.S., Rahman, M.S.: Pattern matching algorithms with don’t cares. In:
Proceedings of the 33rd SOFSEM, pp. 116–126. Citeseer (2007)

12. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

13. Mendivelso, J., Pinzón, Y.J.: Parameterized matching: solutions and extensions.
In: Stringology, pp. 118–131. Citeseer (2015)

14. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
(JACM) 22(2), 215–225 (1975)

Duel and Sweep Algorithm for Order-Preserving
Pattern Matching

Davaajav Jargalsaikhan(B), Diptarama, Yohei Ueki, Ryo Yoshinaka,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University,
6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan

{davaajav,ry,ayumi}@ecei.tohoku.ac.jp,
{diptarama,yohei ueki}@shino.ecei.tohoku.ac.jp

Abstract. Given a text and a pattern over an alphabet, the classic
exact matching problem searches for all occurrences of the pattern in the
text. Unlike exact matching, order-preserving pattern matching (OPPM)
considers the relative order of elements, rather t han their real values.
In this paper, we propose an efficient algorithm for the OPPM problem
using the “duel-and-sweep” paradigm. For a pattern of length m and a
text of length n, our algorithm runs in O(n + m logm) time in general,
and in O(n + m) time under an assumption that the characters in a
string can be sorted in linear time with respect to the string size. We
also perform experiments and show that our algorithm is faster than the
KMP-based algorithm.

Keywords: Order-preserving pattern matching · Duel-and-sweep

1 Introduction

The exact string matching problem is one of the most widely studied problems.
Given a text and a pattern, the exact matching problem searches for all occur-
rence positions of the pattern in the text. Many pattern matching algorithms
have been proposed such as the well-known Knuth-Morris-Pratt algorithm [15],
Boyer-Moore algorithm [2], and Horspool algorithm [13]. These algorithms pre-
process the pattern first and then match the pattern from its prefix or suffix
when comparing it with the text. Vishkin proposed two algorithms for pattern
matching, pattern matching by duel-and-sweep [18] and pattern matching by
sampling [19]. Both algorithms match the pattern to a substring of the text from
some positions which are determined by the property of the pattern, instead of
its prefix or suffix. These algorithms are developed also for parallel processing.

Furthermore, variants of Vishkin’s duel-and-sweep algorithm have been
developed for other types of pattern matching. Amir et al. [1] proposed a duel-
and-sweep algorithm for the two-dimensional pattern matching problem. Cole
et al. [7] generalized it for two-dimensional parameterized pattern matching. The
aim of this paper is to show that the duel-and-sweep paradigm is also useful for
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 624–635, 2018.
https://doi.org/10.1007/978-3-319-73117-9_44

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 625

another variant of pattern matching, namely, order-preserving pattern matching
(OPPM).

Unlike the exact matching problem, OPPM considers the relative order of
elements, rather than their real values. Order-preserving matching has gained
much interest in recent years, due to its applicability in problems where the
relative order matters, such as share prices in stock markets, weather data or
musical notes. The difficulty of OPPM mainly comes from the fact that we
cannot determine the isomorphism by comparing the symbols in the text and
the pattern on each position independently; instead, we have to consider their
respective relative orders in the pattern and in the text.

Kubica et al. [16] and Kim et al. [14] independently proposed the same solu-
tion for OPPM based on the KMP algorithm. Their KMP-based algorithm runs
in O(n + m log m) time. Cho et al. [6] brought forward another algorithm based
on the Horspool algorithm that uses q-grams, which was proven to be experi-
mentally fast. Crochemore et al. [8] proposed useful data structures for OPPM.
On the other hand, Chhabra and Tarhio [5], Faro and Külekci [10] proposed fil-
tration methods which are practically fast. Moreover, faster filtration algorithms
using SIMD (Single Instruction Multiple Data) instructions were proposed by
Cantone et al. [3], Chhabra et al. [4] and Ueki et al. [17]. They showed that
SIMD instructions are effective in speeding up their algorithms.

In this paper, we propose a new algorithm for OPPM based on the duel-and-
sweep technique. Our algorithm runs in O(n + m log m) time which is as fast
as the KMP based algorithm. Moreover, we perform experiments to compare
those algorithms, which show that our algorithm is faster than the KMP-based
algorithm.

The rest of the paper is organized as follows. In Sect. 2, we give preliminaries
on the problem. We describe our algorithm for the OPPM problem in Sect. 3.
Section 4 shows some experimental results that compare the performance of our
algorithm with the KMP-based algorithm. In Sect. 5, we conclude our work and
discuss future directions.

2 Preliminaries

We use Σ to denote an alphabet of integer symbols such that the comparison
of any two symbols can be done in constant time. Σ∗ denotes the set of strings
over the alphabet Σ. For a string S ∈ Σ∗, we will denote the i-th element of
S by S[i] and the substring of S that starts at the location i and ends at j as
S[i :j]. We say that two strings S and T of equal length n are order-isomorphic,
written S ≈ T , if

S[i] ≤ S[j] ⇐⇒ T [i] ≤ T [j] for all 1 ≤ i, j ≤ n.

For instance, (12, 35, 5) ≈ (25, 30, 21) �≈ (11, 13, 20).

626 D. Jargalsaikhan et al.

In order to check the order-isomorphism of two strings, Kubica et al. [16]
defined useful arrays1 LmaxS and LminS by

LmaxS [i] = j (j < i) if S[j] = max
k<i

{S[k] | S[k] ≤ S[i]}, (1)

LminS [i] = j (j < i) if S[j] = min
k<i

{S[k] | S[k] ≥ S[i]}. (2)

We use the rightmost (largest) j if there exist more than one such j. If there is no
such j then we define LminS [i] = 0 and LmaxS [i] = 0. From the definition, we
can easily observe the following properties. Unless LmaxS [i] = 0 or LminS [i] = 0,

S[LmaxS [i]] = S[i] ⇐⇒ S[i] = S[LminS [i]], (3)
S[LmaxS [i]] < S[i] ⇐⇒ S[i] < S[LminS [i]]. (4)

Lemma 1 [16]. For a string S, let sort(S) be the time required to sort the
elements of S. LmaxS and LminS can be computed in O(sort(S) + |S|) time.

Thus, LmaxS and LminS can be computed in O(|S| log |S|) time in general.
Moreover, the computation can be done in O(|S|) time under a natural assump-
tion [16] that the characters of S are elements of the set {1, . . . , |S|O(1)}. By
using LmaxS and LminS , the order-isomorphism of two strings can be decided
as follows.

Lemma 2 [6]. For two strings S and T of length n, assume that S[1 :j] ≈ T [1 :j]
for some j < n. Moreover assume that LmaxS [j + 1] �= 0 and LminS [j + 1] �= 0.
Let imax = LmaxS [j +1] and imin = LminS [j +1]. Then S[1 :j +1] ≈ T [1 :j +1]
if and only if either of the following two conditions holds.

S[imax] = S[j + 1] = S[imin] ∧ T [imax] = T [j + 1] = T [imin], (5)
S[imax] < S[j + 1] < S[imin] ∧ T [imax] < T [j + 1] < T [imin]. (6)

Corollary 1. Suppose that P [1 : j − 1] ≈ Q[1 : j − 1] and P [1 : j] �≈ Q[1 : j]
for two strings P and Q of length at least j. For imax = LmaxP [j] and imin =
LminP [j], if imax , imin �= 0, we have

P [j] = P [imax] ∧ Q[j] �= Q[imax]
∨ P [j] = P [imin] ∧ Q[j] �= Q[imin]
∨ P [j] > P [imax] ∧ Q[j] ≤ Q[imax]
∨ P [j] < P [imin] ∧ Q[j] ≥ Q[imin].

The order preserving-pattern matching problem is defined as follows.

1 Similar arrays PrevS and NextS are introduced in [12].

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 627

Definition 1 (OPPM problem).

Input: A text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m ≤ n.
Output: All occurrence positions of substrings of T that are order-isomorphic

to P .

Hasan et al. [12] proposed a modification to Z-function, which Gusfield [11]
defined for ordinary pattern matching, to make it useful from the order-
preserving point of view. For a string S, the (modified) Z-array of S is defined
by

ZS [i] = max
1≤j≤|S|−i+1

{j | S[1 : j] ≈ S[i : i + j − 1]} for each 1 ≤ i ≤ |S|.

In other words, ZS [i] is the length of the longest substring of S that starts at
position i and is order-isomorphic to some prefix of S. An example of Z-array is
illustrated in Table 1.

Table 1. Z-array of a string S = (18, 22, 12, 50, 10, 17). For instance, ZS [3] = 3
because S[1 : 3] = (18, 22, 12) ≈ (12, 50, 10) = S[3 : 5] and S[1 : 4] = (18, 22, 12, 50) �≈
(12, 50, 10, 17) = S[3 :6]. LmaxS and LminS are also shown.

1 2 3 4 5 6

S 18 22 12 50 10 17

ZS 6 1 3 1 2 1

LmaxS 0 1 0 2 0 3

LminS 0 0 1 0 3 1

Lemma 3 [12]. For a string S, the Z-array ZS can be computed in O(|S|) time,
assuming that LmaxS and LminS are already computed.

Note that in their original work, Hasan et al. [12] assumed that each character
in S is distinct. However, we can extend their algorithm by using Lemma 2 to
verify order-isomorphism even when S contains duplicate characters.

In the remainder of this paper, we fix a text T of length n and a pattern P
of length m.

3 Duel-and-sweep Algorithm for Order-Preserving
Matching

In this section, we will propose an algorithm for OPPM based on the “duel-and-
sweep” paradigm [1,18]. The duel-and-sweep paradigm screens all substrings
of length m of the text, called candidates, in two stages, called the dueling
and sweeping stages. Suppose when P is superimposed on itself with the offset

628 D. Jargalsaikhan et al.

a < m, the two overlapped substrings of P are not order-isomorphic. Then it
is impossible that two candidates with offset a are both order-isomorphic to P .
The dueling stage lets each pair of candidates with such an offset a “duel” and
eliminates one based on this observation. This test is quick but not perfect. This
stage can remove many candidates, although there would still remain candidates
which are actually not order-isomorphic to the pattern. On the other hand, it
is guaranteed that if distinct candidates that survive the dueling stage overlap,
their prefixes of certain length are order-isomorphic. The sweeping stage takes
the advantage of this property when checking the order-isomorphism between
surviving candidates and the pattern so that this stage can be done also quickly.

Prior to the dueling stage, the pattern is preprocessed to construct a wit-
ness table based on which the dueling stage decides which pair of overlapping
candidates should duel and how they should duel.

3.1 Pattern Preprocessing

For each offset 0 < a < m, the original duel-and-sweep algorithm [18] saves a
position i such that P [i] �= P [i + a]. However, in order-preserving pattern match-
ing, the order-isomorphism of two strings cannot be determined by comparing a
symbol in one position. We need two positions as a witness to say that the two
strings are not order-isomorphic. Therefore, for each offset 0 < a < m, when the
overlapped regions obtained by superimposing P on itself with offset a are not
order-isomorphic, we use a pair 〈i, j〉 of locations called a witness pair for the
offset a if either of the following holds:

• P [i] = P [j] and P [i + a] �= P [j + a],
• P [i] > P [j] and P [i + a] ≤ P [j + a],
• P [i] < P [j] and P [i + a] ≥ P [j + a].

Next, we describe how to construct a witness table for P , that stores witness
pairs for all possible offsets a (0 < a < m). The witness table WITP is an
array of length m − 1, such that WITP [a] is a witness pair for offset a. In the
case when there are multiple witness pairs for offset a, we take the pair 〈i, j〉
with the smallest value of j and some i < j. When the overlap regions are order-
isomorphic for offset a, which implies that no witness pair exists for a, we express
it as WITP [a] = 〈0, 0〉. Table 2 shows an example of a witness table.

Table 2. Witness table WITP for a string P = (18, 22, 12, 50, 10, 17). For instance, the
witness pair WITP [2] for offset 2 is 〈2, 4〉, due to P [2] = 22 < 50 = P [4] and P [2 + 2] =
50 > 17 = P [4 + 2]. On the other hand, WITP [4] = 〈0, 0〉, since P [1 : 2] ≈ P [5 : 6].

1 2 3 4 5 6

P 18 22 12 50 10 17

WITP 〈1, 2〉 〈2, 4〉 〈1, 2〉 〈0, 0〉 〈0, 0〉 –

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 629

Algorithm 1. Algorithm for constructing the witness table WITP

1 Function Witness(P) /* Construct the witness table WITP */

2 compute the Z-array ZP for the pattern P ;
3 for a = 1 to m − 1 do
4 j = ZP [a + 1] + 1, imin = LminP [j] and imax = LmaxP [j];
5 if j = m − a + 1 then WITP [a] = 〈0, 0〉;
6 else if imax = 0 then WITP [a] = 〈imin , j〉;
7 else if imin = 0 then WITP [a] = 〈imax , j〉;
8 else if P [imin] = P [j] ∧ P [imin + a] �= P [j + a]
9 ∨ P [imin] > P [j] ∧ P [imin + a] ≤ P [j + a] then

10 WITP [a] = 〈imin , j〉
11 else
12 WITP [a] = 〈imax , j〉

Lemma 4. For a pattern P of length m, Algorithm 1 constructs WITP in O(m)
time assuming that ZP is already computed.

Proof. Clearly the algorithm runs in O(m) time.
We show that for each 1 ≤ a < m, Algorithm 1 computes WITP [a] correctly.

Recall that ZP [a + 1] is the length of the longest prefix of P [a + 1 : m] that is
order-isomorphic to a prefix of P . Let j = ZP [a + 1] + 1, for which we have
P [1 :j − 1] ≈ P [1 + a :j − 1 + a]. Suppose that j = m − a + 1. This means that
P [1 : j − 1] ≈ P [1 + a : j − 1 + a] = P [1 + a :m], i.e., there is no witness pair for
the offset a. Indeed Algorithm 1 gets WITP [a] = 〈0, 0〉 for this case.

Otherwise, we have P [1 : j] �≈ P [1 + a : j + a]. Let imax = LmaxP [j] and
imin = LminP [j]. If imax = 0, P [j] < P [k] for all k < j. Note that imin �= 0 by
j ≥ 2. Since P [1 : j − 1] ≈ P [1 + a : j − 1 + a] and P [1 : j] �≈ P [1 + a : j + a],
there exists 1 ≤ k < j such that P [j + a] ≥ P [k + a]. By P [imin] ≤ P [k] and
(P [imin], P [k]) ≈ (P [imin + a], P [k + a]), we have P [imin + a] ≤ P [k + a] ≤
P [j + a]. Therefore, 〈imin , j〉 is a witness pair for the offset a. The case where
imin = 0 can be discussed in the exactly symmetric way.

Let us assume imin �= 0 and imax �= 0. If P [imin] = P [j] ∧ P [imin + a] �=
P [j + a] or P [imin] > P [j] ∧ P [imin + a] ≤ P [j + a], clearly 〈imin , j〉 is a witness
pair for a. Otherwise, by Corollary 1, either P [imax] = P [j] ∧ P [imax + a] �=
P [j +a] or P [imax] < P [j]∧P [imax +a] ≥ P [j +a] holds, in which case 〈imax , j〉
is a witness pair for a. �

3.2 Dueling Stage

Let us denote the candidate that starts at the location x as Tx = T [x :x+m−1].
In the dueling stage, we “duel” all pairs of overlapping candidates Tx and Tx+a

such that WITP [a] �= 〈0, 0〉. Witness pairs are used in the following manner.
Suppose that WITP [a] = 〈i, j〉, where P [i] < P [j] and P [i + a] ≥ P [j + a], for
example. Then, it holds that

630 D. Jargalsaikhan et al.

Algorithm 2. Dueling
1 Function Dueling(x, a) /* Duel between candidates Tx and Tx+a */

2 〈i, j〉 = WITP [a];
3 if P [i] = P [j] then
4 if T [x + a + i − 1] �= T [x + a + j − 1] then return x;
5 else return x + a;

6 if P [i] < P [j] then
7 if T [x + a + i − 1] ≥ T [x + a + j − 1] then return x;
8 else return x + a;

9 if P [i] > P [j] then
10 if T [x + a + i − 1] ≤ T [x + a + j − 1] then return x;
11 else return x + a;

• if T [x + a + i − 1] ≥ T [x + a + j − 1], then Tx+a �≈ P ,
• if T [x + a + i − 1] < T [x + a + j − 1], then Tx �≈ P .

Based on this observation, we can safely eliminate either candidate Tx or Tx+a

without looking into other locations. We can perform this process similarly for
other equality/inequality cases. This process is called dueling. The procedure for
all cases of the dueling is described in Algorithm 2.

On the other hand, if Tx and Tx+a do not overlap or the offset a has no
witness pair, i.e. P [1 : m − a] ≈ P [a + 1 : m], no dueling is performed on them.
We say that a position x is consistent with x + a if either 0 < a < m and
WITP [a] = 〈0, 0〉 or a ≥ m. Note that the consistency property is determined by
a and P only, and x and T are irrelevant. The consistency property is transitive.

Lemma 5. For any a, b and x such that 1 ≤ a < a + b < m and 1 ≤ x <
m − a − b, if x is consistent with x + a and x + a is consistent with x + a + b,
then x is consistent with x + a + b.

Proof. Since x is consistent with x + a, it follows that P [1 :m−a] ≈ P [a+1:m],
so that P [b + 1:m − a] ≈ P [(a + b) + 1 :m]. Moreover, since x + a is consistent
with x + a + b, it follows that P [1 :m−b] ≈ P [b+1:m], so that P [1 :m−b−a] ≈
P [b + 1:m − a]. Thus, P [1 :m − (a + b)] ≈ P [(a + b) + 1:m], which implies that
x is consistent with x + a + b. �

The whole process of the dueling stage is shown in Algorithm 3, which follows
Amir et al. [1] for ordinary pattern matching. This stage eliminates candidates
until all surviving candidates are pairwise consistent. The algorithm uses a stack
to maintain candidates which are consistent with each other. A new candidate
y will be pushed to the stack if the stack is empty. Otherwise y is checked
by comparing it to the topmost element x of the stack. By Lemma 5, if x is
consistent with y, all the other elements in the stack are consistent with y, too.
Thus we can push y to the stack. On the other hand, if x is not consistent with
y, we should exclude one of the candidates by dueling them. If x wins the duel,

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 631

Algorithm 3. The dueling stage algorithm
1 Function DuelingStage(P, T)
2 create stack ;
3 for y = 1 to n − m + 1 do
4 while stack is not empty do
5 pop x from stack ;
6 if y − x ≥ m or WITP [y − x] = 〈0, 0〉 then
7 push x and y to stack ;
8 break;

9 else
10 z = Dueling(x, y − x);
11 if z = x then
12 push x to stack ;
13 break;

14 if stack is empty then
15 push y to stack ;

we put x back to the stack, discard y, and get a new candidate. If y wins the
duel, we exclude x and continue comparison of y with the top element of the
stack unless the stack is empty. If the stack is empty, y will be pushed to the
stack. Figure 1 gives an example run of the dueling stage.

Lemma 6 [1]. The dueling stage can be done in O(n) time by using WITP .

3.3 Sweeping Stage

The goal of the sweeping stage is to prune inconsistent candidates until all
remaining candidates are order-isomorphic to the pattern P . Suppose that we
need to check whether some surviving candidate Tx is order-isomorphic to P .
It suffices to successively check the conditions (5) and (6) in Lemma 2, starting
from the leftmost location in Tx. If the conditions are satisfied for all locations
in Tx, then Tx ≈ P . Otherwise, Tx �≈ P , and obtain a mismatch position j.

A Naive implementation of sweeping requires O(n2) time. Algorithm 4 takes
advantage of the fact that all the remaining candidates are pairwise consistent,
we can reduce the time complexity to O(n) time. Suppose there is a mismatch
at position j when comparing P with Tx, that is, Tx[1 : j − 1] ≈ P [1 : j − 1]
and Tx[1 : j] �≈ P [1 : j]. If the next candidate is Tx+a with a < j, since P [1 :
j − a − 1] ≈ P [a + 1 : j − 1] ≈ Tx[a + 1 : j − 1] = Tx+a[1 : j − a − 1], we can
start comparison of P and Tx+a from the position where the mismatch with Tx

occurred. If P ≈ Tx, the above discussion holds for j = m + 1. Therefore, the
total number of comparison is bounded by O(n), by applying the same argument
on the complexity of the KMP algorithm for exact matching.

Lemma 7. The sweeping stage can be completed in O(n) time.

632 D. Jargalsaikhan et al.

Fig. 1. An example run of the dueling stage for T = (8, 13, 5, 21, 14, 18, 20, 25, 15, 22),
P = (12, 50, 10, 17), and WITP = (〈1, 2〉, 〈0, 0〉, 〈0, 0〉). First, the position 1 is pushed
to the stack. Next, T2 duels with T1 and then T2 loses because P [1] < P [2] and
T2[1] > T2[2]. The next position 3 is pushed to the stack by WITP [3 − 1] = 〈0, 0〉.
Similarly, T4 loses against T3, and 5 is accepted to the stack. For y = 6, T5 is removed
and T6 is added because P [1] < P [2], T6[1] < T6[2], and 3 is consistent with 6. Finally
T7 defeats T6 and the contents of the stack become 1, 3, and 7.

By Lemmas 4, 6, and 7, we summarize this section as follows.

Theorem 1. Given a text T of length n and a pattern P of length m, the
duel-and-sweep algorithm solves the OPPM Problem in O(n + m log m) time.
Moreover, the running time is O(n + m) under the natural assumption that the
characters of P can be sorted in O(m) time.

4 Experiments

In order to compare the performance of proposed algorithm with the KMP-
based algorithm [14,16] on solving the OPPM problem, we performed two sets
of experiments. In the first experiment set, the pattern size m is fixed to 10, while
the text size n is changed from 100000 to 1000000. In the second experiment set,
the text size n is fixed to 1000000 while the pattern size m is changed from 5 to
100. We measured the average of running time and the number of comparisons
for 50 repetitions on each experiment. We used randomly generated texts and
patterns with alphabet size |Σ| = 1000. Experiments are executed on a machine
with Intel Xeon CPU E5-2609 8 cores 2.40 GHz, 256 GB memory, and Debian
Wheezy operating system.

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 633

Algorithm 4. The sweeping stage algorithm
1 Function SweepingStage()

2 while there are unchecked candidates to the right of Tx do
3 let Tx be the leftmost unchecked candidate;
4 if there are no candidates overlapping with Tx then
5 if Tx �≈ P then eliminate Tx;
6 else
7 let Tx+a be the leftmost candidate that overlaps with Tx;
8 if Tx ≈ P then start checking Tx+a from the location m − a + 1;
9 else

10 let j be the mismatch position;
11 eliminate Tx;
12 start checking Tx+a from the location j − a;

The results of our experiments are shown in Figs. 2 and 3. We can see that
our algorithm is better than the KMP-based algorithm in running time and the
number of comparisons when the pattern size and text size are large. However,
our algorithm was slower when the pattern is very short, namely m = 5. The
reason why the proposed algorithm makes fewer comparisons than the KMP-
based algorithm may be explained as follows. The KMP-based algorithm relies
on Lemma 2, which compares symbols at three positions2 to check the order-
isomorphism between a prefix of the pattern and a substring of the text when
the prefix is extended by one. On the other hand, the dueling stage of our
algorithm compares only two positions determined by the witness table. By
pruning candidates in the dueling phase, the number of precise tests of order-
isomorphism in the sweeping stage is reduced.

Fig. 2. Running time of the algorithms with respect to (a) text length, and (b) pattern
length.

2 Each of (5) and (6) of Lemma 2 involves four (in)equalities but checking three is
enough thanks to the properties (3) and (4).

634 D. Jargalsaikhan et al.

Fig. 3. Number of comparisons in the algorithms with respect to (a) text length, and
(b) pattern length.

5 Discussion

We proposed a new algorithm for the OPPM problem by extending Vishkin’s
duel-and-sweep algorithm [18] for the exact matching problem. Our algorithm
runs in linear time, that is theoretically fast. The experimental results showed
that our algorithm is practically faster than the KMP-based algorithm [14,16],
which has the same theoretical running time. Actually, our algorithm makes
fewer comparisons than the KMP-based algorithm.

Since Vishkin’s algorithm has been designed for parallel computing [18], we
expect that our duel-and-sweep algorithm for order preserving pattern match-
ing could also be extended for parallel computing. This extension is not trivial
because the periodicity property of a string in order preserving pattern matching
is different from the one in ordinary pattern matching.

Another potential of the duel-and-sweep paradigm is in solving two-
dimensional pattern matching problems. Amir et al. [1] and Cole et al. [7]
have designed duel-and-sweep algorithms for solving two-dimensional exact and
parameterized pattern matching problems, respectively. Currently no fast algo-
rithm for the two-dimensional order-preserving pattern matching problem has
been proposed. Actually we have already developed a dueling algorithm for two-
dimensional OPPM that runs in linear time with respect to the input text size [9].
However, we do not have a linear time algorithm for the sweeping stage yet. We
hope the two-dimensional OPPM problem can be solved more efficiently by find-
ing a more sophisticated method based on some combinatorial properties, like
Cole et al. did for the two-dimensional parameterized matching problem. This
is left for future work.

Acknowledgements. This work is supported by Tohoku University Division for
Interdisciplinary Advance Research and Education, ImPACT Program of Council for
Science, Technology and Innovation (Cabinet Office, Government of Japan), and JSPS
KAKENHI Grant Number JP15H05706.

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 635

References

1. Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two-
dimensional pattern matching. SIAM J. Comput. 23(2), 313–323 (1994)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

3. Cantone, D., Faro, S., Külekci, M.O.: An efficient skip-search approach to the
order-preserving pattern matching problem. In: PSC, pp. 22–35 (2015)

4. Chhabra, T., Külekci, M.O., Tarhio, J.: Alternative algorithms for order-preserving
matching. In: PSC, pp. 36–46 (2015)

5. Chhabra, T., Tarhio, J.: A filtration method for order-preserving matching. Inf.
Process. Lett. 116(2), 71–74 (2016)

6. Cho, S., Na, J.C., Park, K., Sim, J.S.: A fast algorithm for order-preserving pattern
matching. Inf. Process. Lett. 115(2), 397–402 (2015)

7. Cole, R., Hazay, C., Lewenstein, M., Tsur, D.: Two-dimensional parameterized
matching. ACM Trans. Algorithms 11(2), 12:1–12:30 (2014)

8. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving indexing. Theor.
Comput. Sci. Pattern Matching 638, 122–135 (2016). Text Data Structures and
Compression

9. Davaajav, J.: A study on the two-dimensional order-preserving matching problem.
Bachelor thesis, Tohoku University (2017)

10. Faro, S., Külekci, M.O.: Efficient algorithms for the order preserving pattern match-
ing problem. In: Dondi, R., Fertin, G., Mauri, G. (eds.) AAIM 2016. LNCS, vol.
9778, pp. 185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41168-2 16

11. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

12. Hasan, M.M., Islam, A.S., Rahman, M.S., Rahman, M.S.: Order preserving pattern
matching revisited. Pattern Recogn. Lett. 55, 15–21 (2015)

13. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Experience 10(6),
501–506 (1980)

14. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79
(2014)

15. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

16. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear
time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013)

17. Ueki, Y., Narisawa, K., Shinohara, A.: A fast order-preserving matching with q-
neighborhood filtration using SIMD instructions. In: SOFSEM (Student Research
Forum Papers/Posters), pp. 108–115 (2016)

18. Vishkin, U.: Optimal parallel pattern matching in strings. In: Brauer, W. (ed.)
ICALP 1985. LNCS, vol. 194, pp. 497–508. Springer, Heidelberg (1985). https://
doi.org/10.1007/BFb0015775

19. Vishkin, U.: Deterministic sampling - a new technique for fast pattern matching.
SIAM J. Comput. 20(1), 22–40 (1991)

https://doi.org/10.1007/978-3-319-41168-2_16
https://doi.org/10.1007/978-3-319-41168-2_16
https://doi.org/10.1007/BFb0015775
https://doi.org/10.1007/BFb0015775

Longest Common Prefixes with k-Mismatches
and Applications

Hayam Alamro, Lorraine A. K. Ayad, Panagiotis Charalampopoulos(B),
Costas S. Iliopoulos, and Solon P. Pissis

Department of Informatics, King’s College London, London, UK
{hayam.alamro,lorraine.ayad,panagiotis.charalampopoulos,

costas.iliopoulos,solon.pissis}@kcl.ac.uk

Abstract. We propose a new algorithm for computing the longest prefix
of each suffix of a given string of length n over a constant-sized alphabet
of size σ that occurs elsewhere in the string with Hamming distance
at most k. Specifically, we show that the proposed algorithm requires
time O(n(σR)k log log n(log k + log log n)) on average, where R = �(k +
2)(logσ n+1)�, and space O(n). This improves upon the state-of-the-art
average-case time complexity for the case when k = 1 [23] by a factor of
log n/ log3 log n. In addition, we show how the proposed technique can
be adapted and applied in order to compute the longest previous factors
under the Hamming distance model within the same complexities. In
terms of real-world applications, we show that our technique can be
directly applied to the problem of genome mappability.

1 Introduction

The longest common prefix (LCP) array is a commonly used data structure
alongside the suffix array (SA). The LCP array stores the length of the longest
common prefix between two adjacent suffixes of a given string as they are stored
(in lexicographical order) in the SA [22]. A typical use of the combination of the
SA and the LCP array is to simulate the suffix tree [30] functionality using less
space [1]. This use has inspired many researchers to focus on engineering the
construction of the LCP array [17].

However, there are many practical scenarios where the LCP array may be
applied without making use of the SA. The LCP array provides us with essential
information regarding repetitiveness in a given string and is therefore a useful
data structure for analysing textual data in areas such as molecular biology,
musicology, or natural language processing.

It is also quite common to account for potential alterations within sequences.
For example, they can be the result of DNA replication or sequencing errors in
DNA sequences. Alterations may also be introduced in the scope of plagiarism

P. Charalampopoulos—Supported by the Graduate Teaching Scholarship scheme of
the Department of Informatics at King’s College London and by the A.G. Leventis
Foundation.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 636–649, 2018.
https://doi.org/10.1007/978-3-319-73117-9_45

Longest Common Prefixes with k-Mismatches and Applications 637

attempts in natural languages. In this context, it is natural to define the longest
common prefix with k-mismatches. Given a string x[0 . . n − 1], the longest com-
mon prefix with k-mismatches for every suffix x[i . . n − 1] is the length of the
longest common prefix of x[i . . n − 1] and any x[j . . n − 1], where j �= i, with
up to k mismatches. Note that for the mismatches we make use of the Hamming
distance model throughout.

Molecular Biology. Repeated sequences are a common characteristic of genomes.
One type in particular, namely interspersed repeats, are known to occur in all
eukaryotic genomes. These repeats have no repetitive pattern and appear irregu-
larly within DNA sequences [20]. Occurrences of single nucleotide polymorphism
exist within genomes, where a mutation of a single nucleotide takes place during
cell division. This results in the existence of interspersed repeats that are not
identical [21]. Identifying the positions of where these repeats occur has been
linked to genome folding locations and phylogenetic analysis [27].

Computational Musicology. Sequential patterns of varying length are a key fea-
ture of musical compositions. Chords are made up of three or more simultane-
ously played notes and a chord progression is made up of two or more chords,
where the order plays a significant role in determining the tone of a musical
piece. Minor changes can exist in the transitions between chords. The analysis
of these harmonic progressions contributes to the analysis and categorisation of
musical genres [6]. Another example is ostinato, a motif that persistently repeats
in the same musical voice; it is used to define the tone of a piece of music [8]. It
commonly refers to exact repetition, but also covers repetition with variations.

Natural Language Processing. Natural language text collections are increasing
rapidly and massively, thus becoming a source of several analysis tasks such as
text classification. For instance, an important task is to identify similar or dupli-
cate documents in large text collections for detecting plagiarism or for obtaining
more realistic text statistics. To this end, many repetition-based strategies have
been suggested. One of these approaches is based on computing the common
repeated lengths of a document’s text in other documents of the collection to
derive whether the document is repeated in the text collection or not [19].

State of the Art. The problem of computing the longest common prefixes with
k-mismatches was introduced by Manzini in [23]; an algorithm was presented to
solve the problem only for k = 1 in time O(nLave log n/ log log n) using O(n)
extra space for a string of length n over a constant-sized alphabet, where Lave

is the average value in the LCP array. We show that this value is Ω(log n)
(see Lemma 3). This value is known to be O(log n) [18] on average, and so the
algorithm of [23] works in time O(n log2 n/ log log n) on average for k = 1.

Our Contribution. Due to our motivational applications we focus on linear-space
solutions. Given a string x of length n over a constant-sized alphabet of size σ
and an integer 0 < k < n, and setting R = �(k + 2)(logσ n + 1)�, we make the
following threefold contribution:

638 H. Alamro et al.

1. We improve upon the result of [23] by presenting an algorithm for
computing the longest common prefixes with 1-mismatch requiring time
O(n log n log2 log n) on average using O(n) extra space. In fact we show how
our technique can be generalised to work for arbitrary k; the average-case time
complexity then becomes O(n(σR)k log log n(log k + log log n)) using O(n)
extra space.

2. We apply our technique to compute the related longest previous factor (LPF)
with k-mismatches for every suffix of x within the same complexities. The
LPF with k-mismatches of the suffix x[i . . n − 1] is the length of the longest
prefix of x[i . . n − 1] that occurs before i in x with at most k mismatches.

3. We also apply our technique to construct a data structure of size O(n) in
average-case time O(n(σR)k log log n(log k+log log n)) using O(n) extra space
that answers queries of the following type in O(1) time per query: return the
smallest m such that at least α of the substrings of x of length m do not
occur more than once in x with at most k mismatches. This data structure
is a more general solution to the genome mappability problem [12].

2 Preliminaries

2.1 Strings

We begin with some basic definitions and notation. Let x = x[0]x[1] . . . x[n−1] be
a string of length |x| = n over a finite ordered alphabet Σ of size |Σ| = σ = O(1).
For two positions i and j on x, we denote by x[i . . j] = x[i] . . . x[j] the substring
(sometimes called factor) of x that starts at position i and ends at position j.
By ε we denote the empty string of length 0. We recall that a prefix of x is a
substring that starts at position 0 (x[0 . . j]) and a suffix of x is a substring that
ends at position n − 1 (x[i . . n − 1]).

Let y be a string of length m with 0 < m ≤ n. We say that there exists an
occurrence of y in x, or, more simply, that y occurs in x, when y is a substring
of x. Every occurrence of y can be characterised by a starting position in x. We
thus say that y occurs at the starting position i in x when y = x[i . . i + m − 1].

The Hamming distance between two strings x and y, with |x| = |y|, is defined
as dH(x, y) = |{i : x[i] �= y[i], i = 0, 1, . . . , |x|−1}|. If |x| �= |y|, we set dH(x, y) =
∞. If two strings x and y are at Hamming distance at most k, we write x ≈k y,
and we say that x and y have k-mismatches or have at most k mismatches.

Let x be a string of length n > 0. The suffix tree T (x) of x is a compact
trie representing all suffixes of x. The nodes of the trie which become nodes of
the suffix tree are called explicit nodes, while the other nodes are called implicit.
Each edge of the suffix tree can be viewed as an upward maximal path of implicit
nodes starting with an explicit node. Moreover, each node belongs to a unique
path of that kind. Thus, each node of the trie can be represented in the suffix
tree by the edge it belongs to and an index within the corresponding path. We
let L(v) denote the path-label of a node v, i.e., the concatenation of the edge
labels along the path from the root to v. We say that v is path-labelled L(v).
Additionally, D(v) = |L(v)| is used to denote the string-depth of node v. Node v

Longest Common Prefixes with k-Mismatches and Applications 639

is a terminal node if its path-label is a suffix of x, that is, L(v) = x[i . . n− 1] for
some 0 ≤ i < n; here v is also labelled with index i. It should be clear that each
substring of x is uniquely represented by either an explicit or an implicit node of
T (x), called its locus. In standard suffix tree implementations, we assume that
each node of the suffix tree is able to access its parent. Once T (x) is constructed,
it can be traversed in a depth-first manner to compute D(v) for each node v. The
suffix tree of a string of length n can be computed in time and space O(n) [30].

We denote by SA the suffix array of x. SA is an integer array of size n storing
the starting positions of all (lexicographically) sorted non-empty suffixes of x,
i.e. for all 1 ≤ r < n we have x[SA[r − 1] . . n − 1] < x[SA[r] . . n − 1] [22]. Let
lcp(r, s) denote the length of the longest common prefix between x[SA[r] . . n−1]
and x[SA[s] . . n − 1] for positions r, s on x. We denote by LCP the longest
common prefix array of x defined by LCP[r] = lcp(r − 1, r) for all 1 ≤ r < n, and
LCP[0] = 0. The inverse iSA of the array SA is defined by iSA[SA[r]] = r, for all
0 ≤ r < n. It is known that SA, iSA, and LCP of a string of length n, over a
constant-sized alphabet, can be computed in time and space O(n) [13,26].

The permuted LCP array, denoted by PLCP, has the same contents as the
LCP array but in different order. Let i− denote the starting position of the
lexicographic predecessor of x[i . . n−1]. For i = 0, . . . , n−1, we define PLCP[i] =
LCP[iSA[i]] = lcp(iSA[i−], iSA[i]]), that is, PLCP[i] is the length of the longest
common prefix between x[i . . n − 1] and its lexicographic predecessor. For the
starting position j of the lexicographically smallest suffix we set PLCP[j] = 0.
For any k ≥ 0, we define lcpk(y, z) as the largest � ≥ 0 such that y[0 . . �− 1] and
z[0 . . � − 1] exist and are at Hamming distance at most k, that is, have at most
k mismatches; note that lcpk is defined for a pair of strings. We analogously
define the permuted LCP array with k-mismatches, denoted by PLCPk. For i =
0, . . . , n − 1, we have that

PLCPk[i] = max
j=0,...,n−1, j �=i

lcpk(x[i . . n − 1], x[j . . n − 1]).

The computational problem in scope can be formally stated as follows.

PLCP with k-mismatches
Input: A string x of length n and an integer 0 < k < n
Output: PLCPk and Pk; Pk[i] �= i, for i = 0, . . . , n − 1, is such that x[i . . i +
� − 1] ≈k x[Pk[i] . .Pk[i] + � − 1], where � = PLCPk[i]

Example 1. Consider the string acababbac and k = 1. The following table gives
arrays PLCP1 and P1.

i 0 1 2 3 4 5 6 7 8

PLCP1[i] 4 3 4 3 3 3 3 2 1

P1[i] 2 3 0 1 2 2 3 0 1

640 H. Alamro et al.

Our Analysis Model. When we state average-case time complexities for our
algorithms, we assume that the input is a string x of length n over a constant-
sized alphabet Σ of size σ > 1 with the letters of x being independent and
identically distributed random variables, uniformly distributed over Σ.

2.2 Advanced Data Structure Tools

Let T be a rooted tree of size n with integer weights on nodes each of magnitude
at most n. We require that the root weight is zero and the weight of any other
node is strictly larger than its parent’s weight. A node v is a weighted ancestor
of a node u at depth � if v is the highest ancestor of u with weight at least �.

Lemma 1 [4]. After O(n)-time preprocessing, weighted ancestor queries of
nodes of a tree T can be answered in O(log log n) time per query.

The following corollary applies Lemma1 to the suffix tree of a string x of
length n.

Corollary 1. After O(n)-time preprocessing, the locus of any substring x[i . . j]
in T (x) can be found in O(log log n) time.

Definition 1. Given a string x and a substring y of x, we denote by range(x, y)
the range in the SA of x that represents the suffixes of x that have y as a prefix.

Every node u in T (x) corresponds to an SA range range(x,L(u)). We can
precompute range(x,L(u)) for all explicit nodes u in T (x) in O(n) time while
performing a depth-first traversal of the tree. We also make use of the following
lemma for a string x of length n.

Lemma 2 [14]. Let y and z be two substrings of x. Given the SA and the iSA of
x, as well as range(x, y) and range(x, z), range(x, yz) can be computed in time
O(log log n) after O(n log log n)-time and O(n)-space preprocessing.

3 Longest Common Prefixes with k-Mismatches

We first show the following lower bound which is related to the time complexity
of the algorithm in [23].

Lemma 3. The average value in the LCP array of any string x of length n over
an alphabet Σ of size σ is Ω(logσ n).

Proof. First note that
∑

i LCP[i] ≤
∑

i max{LCP[i], LCP[i + 1]} ≤ 2
∑

i LCP[i].
We thus consider max{LCP[i], LCP[i + 1]} (i.e. the length of the longest common
prefix of x[i . . n − 1] with any other suffix of x) instead of LCP[i] to simplify the
proof. We know that max{LCP[i], LCP[i + 1]} is equal to the string-depth of the
parent of the leaf with path-label x[i . . n − 1]$, $ /∈ Σ, in the suffix tree of x$.

Consider the suffix tree of x$. Each node can have at most σ + 1 leaves
attached to it. We have at most σr non-leaf nodes at depth r. Hence we can

Longest Common Prefixes with k-Mismatches and Applications 641

obtain a brute force lower bound by assuming that we have a complete tree—of
the required depth so that it has n + 1 leaves in total—with σ + 1 leaves in all
of its nodes (note that this is impossible). This required depth is the smallest t
such that (σ +1)(1+σ + . . .+σt) ≥ n; t = Ω(logσ n). It is then clear that nodes
in the two deepest levels have attached to them at least half of the n + 1 leaves;
this concludes the proof.
�

We next present an algorithm for the problem PLCP with 1-mismatch
and then explain how it can be extended to solve problem PLCP with
k-mismatches. The proposed algorithm essentially consists of two different
parts:

1. Computing long PLCPs in average-case time O(n);
2. Computing short PLCPs in worst-case time O(n log n log2 log n).

Notably, both parts use O(n) extra space for arbitrary k.
We initialize PLCP1 and P1 for each i based on the longest common prefix of

x[i . . n − 1] (i.e. not allowing any mismatches) that occurs elsewhere using the
SA and the LCP array; this can be done in O(n) time.

Computing Long PLCPs. The first part is a slight modification of the algorithm
presented in Sect. 3 of [3] for the problem of 1-mappability. In this problem, we
are asked to compute for each substring of length m of a given string of length
n the number of other occurrences of this substring in the string with at most 1
mismatch. The algorithm of [3] was shown to solve this problem in average-case
time O(n) for values of m greater than or equal to 3 logσ n+3 using space O(n).

The algorithm presented in [3] computes all pairs of suffixes that share a
prefix of length at least m with at most 1 mismatch. When such a pair is consid-
ered, the algorithm has already precomputed enough information (using longest
common extension queries) that allows us to retrieve the longest common prefix
with 1-mismatch of these two suffixes in O(1) time. This is merely because a
longest common extension query may extend beyond length m: it is interrupted
only by the second mismatch (or the ends of the string).

Hence, if we set m = R = �3 logσ n� + 3, it is trivial to store, within the
same complexities, PLCP1[i] and P1[i] for every i for which x[i . . i + R − 1] has
1-mappability greater than 0 (i.e. x[i . . i + R − 1] occurs elsewhere in x with at
most 1 mismatch). Note that these are the positions i for which we have that
PLCP1[i] ≥ R. We thus arrive at the following lemma.

Lemma 4. We can compute PLCP1[i] and P1[i] for each i for which PLCP1[i] ≥
R in average-case time O(n) using O(n) extra space.

Computing Short PLCPs. Let S be the set of starting positions of m-length
substrings that have 1-mappability 0 for m = R. For each i ∈ S, we have that
PLCP1[i] < R = O(log n). We proceed to compute PLCP1[i] and P1[i] for each
i ∈ S as follows; see also Fig. 1 for an illustration.

We first locate the node v in T (x) with path-label x[i . . n − 1]—this is a
terminal node. We then consider each explicit ancestor u of v in T (x); note that

642 H. Alamro et al.

Fig. 1. Illustration; binary search along the shown path for the longest common prefix
with 1 mismatch of L(v) and L(u)bx[i + D(u) + 1 . . i + �(R + D(u) − 1)/2�].

for each such u we have that D(u) < R − 1 since PLCP1[i] < R. For each such u
we perform the following. Suppose that the first edge label of the outgoing edge
from u that lies on the path from the root to v is a ∈ Σ. For each other outgoing
edge from u, say with first edge label b ∈ Σ, b �= a, we wish to find the longest
prefix of L(u)bx[i + D(u) + 1 . . i + s], where s = min{R − 2, n − 1 − i}, that is a
substring of x and the starting position of one of its occurrences. The longest of
these strings is precisely the longest prefix of x[i . . n − 1] that occurs elsewhere
in x with at most 1 mismatch.

We will find this by performing binary search on the subpath of the path
from the root to v that corresponds to x[i+D(u)+ 1 . . i+ s] as follows. We first
compute range(x, y) for y = L(u)bx[i + D(u) + 1 . . i + �(s + D(u) + 1)/2]. If
range(x, y) = [p, q] �= ∅ we set PLCP1[i] = max{PLCP1[i], |y|} (and P1[i] = SA[p]
if PLCP1 has changed) and go down the path; else, the range is empty and we
thus go up the path. We proceed with binary search in the same manner.

We can move along the path and find auxiliary ranges (e.g. range(x, x[i +
D(u)+1 . . i+�(s+D(u)+1)/2])) stored in explicit nodes of T (x) using weighted
ancestor queries in time O(log log n) per query due to Corollary 1. Note that the
range of an implicit node z along an edge (f, g) is equal to that of the explicit
node g. We can then merge these ranges in time O(log log n) due to Lemma 2.
Hence, each step of the binary search requires time O(log log n). The path-label
of the considered path has length O(log n) because R = �3 logσ n� + 3, and
hence we do O(log log n) iterations for the binary search. Thus, each binary
search takes time O(log2 log n) in total. We formalise the described algorithm in
the pseudocode presented below.

Lemma 5. Given the set of positions S = {i|PLCP1[i] < R}, we can compute
PLCP1[i] and P1[i], for all i ∈ S, in worst-case time O(n log n log2 log n) using
O(n) extra space.

Longest Common Prefixes with k-Mismatches and Applications 643

Proof. The outer loop of PLCP1Short iterates through positions of x that have
1-mappability 0 for m = R; these are at most n. For each of these, the algorithm
considers its explicit ancestors; there are O(log n) of them. For each such ancestor
u it performs deg(u) = O(σ) = O(1) binary searches, each of which takes time
O(log2 log n) as described above. Thus, algorithm PLCP1Short takes worst-case
time O(n log n log2 log n). The extra space used is clearly O(n).
�

PLCP1Short(x, n, S, R)

1 T (x) ← SuffixTree(x)
2 for each explicit node u ∈ T (x) do
3 D(u) ← string-depth of u
4 I(u) ← range(x, L(u))
5 Preprocess T (x) for weighted ancestor queries
6 for i ∈ S do
7 v ← node with path-label x[i . . n − 1]
8 for each explicit node u ancestor of v in T (x) do
9 a ← x[i + D(u)]

10 for each outgoing edge from u with first edge label b �= a do
11 PathBinarySearch(i, u, b, D(u) + 1, min{R − 2, n − 1 − i})

PathBinarySearch(i, u, b, j1, j2)
1 w ← Node(i + D(u) + 1, i + �(j1 + j2)/2)
2 [p, q] ← range(x,L(u)bL(w))
3 if [p, q] �= ∅ then
4 � ← |L(u)bL(w)|
5 if PLCP1[i] < � then
6 PLCP1[i] ← �
7 P1[i] ← SA[p]
8 if j1 �= j2 then
9 PathBinarySearch(i, u, b, �(j1 + j2)/2, j2)

10 else if j1 �= j2 then
11 PathBinarySearch(i, u, b, j1, �(j1 + j2)/2)

By combining Lemmas 4 and 5 we arrive at the following result.

Theorem 6. Problem PLCP with 1-mismatch can be solved in average-case
time O(n log n log2 log n) using O(n) extra space.

Theorem 6 improves upon the state-of-the-art average-case time complexity
for the case where only 1 mismatch is allowed by a factor of log n/ log3 log n
(see Lemma 3 and [23]). Notably, our technique can be extended to work for
arbitrary k as follows. We first set R = �(k +2)(logσ n+1)� so that the adapted
algorithm from [3] requires time O(kn) on average. Then for each position i with
PLCPk[i] < R we have O(k log n) branching nodes for the first mismatch—similar
to the above. Suppose that for some explicit node u, ancestor of v, where L(v) =
x[i . . n − 1] and u has an outgoing edge with first edge label b �= x[i + D(u)], the
longest prefix of L(u)bx[i + D(u) + 1 . . i + s], where s = min{R − 2, n − 1 − i},
that occurs in x is x[p . . q]. In order to allow for a second mismatch, we consider
every ancestor of node ub, where L(ub) = x[p . . q], with string-depth larger than
D(u) + 1, and proceed in a similar fashion.

644 H. Alamro et al.

Each branching step allows for an extra mismatch. We only consider T (x)
up to string-depth R and hence the possible branching options are O((σR)k).
Each binary search is now performed on a path with path-label of length
O(k log n). Each iteration of the binary search takes time O(log log n) for the
level ancestor query and for merging the ranges. We thus arrive at the following
result.

Theorem 7. Problem PLCP with k-mismatches can be solved in average-case
time O(n(σR)k log log n(log k+log log n)), where R = �(k+2)(logσ n+1)�, using
O(n) extra space.

Remark 1. Alternatively, in the second part of our algorithm (Computing Short
PLCPs), we can perform the binary search with the aid of the data structure
presented by Cole et al. in [9]. This data structure is of size O(n (c1 log n)k

k!)

and can be built in time O(n (c1 log n)k

k!), where c1 > 1 is a constant. We
can then answer whether a given substring of x occurs elsewhere in x with
at most k mismatches (as well as the starting position of one of its occur-
rences) in time O((c2 log n)k log log n

k!), where c2 > 1 is another constant. With
this modification, the average-case time required by our algorithm becomes
O(n (log n)k

k! (ck
1 + ck

2(log log n(log k + log log n)))). The ω(n) space required for
this data structure is however impractical for real-world datasets. Note that the
efficient solutions of Thankachan et al. for the related longest common factor
with k-mismatches problem also require space ω(n) when k = ω(1) [28,29].

4 Longest Previous Factors with k-Mismatches

The longest previous factor (LPF) array gives, for each position i in a string x,
the length of the longest factor of x that occurs both at i and to the left of i in
x. The LPF array is central in many text compression techniques as well as in
the most efficient algorithms for detecting motifs and repetitions occurring in a
text [11]. A time-space optimal (linear) algorithm that computes the LPF array
is known for some time [10].

In this section, we present how the algorithm presented in Sect. 3 can be
adapted to compute the LPF array with k-mismatches within the same com-
plexities. We naturally define the LPF array with k-mismatches, denoted by
LPFk, as follows. We set LPFk[0] = −1 and for i = 1, . . . , n − 1, we have that

LPFk[i] = max
j=0,...,i−1

lcpk(x[i . . n − 1], x[j . . n − 1]).

The problem in scope can be formally defined as follows.

LPF with k-mismatches
Input: A string x of length n and an integer 0 < k < n
Output: LPFk and Pk; Pk[0] = −1 and Pk[i] < i, for i = 1, . . . , n− 1, is such
that x[i . . i + � − 1] ≈k x[Pk[i] . .Pk[i] + � − 1], where � = LPFk[i]

Longest Common Prefixes with k-Mismatches and Applications 645

Example 2. Consider the string acababbac. The following table gives arrays
LPF1 and P1.

i 0 1 2 3 4 5 6 7 8

LPF1[i] -1 1 4 3 3 3 3 2 1

P1[i] -1 0 0 1 2 2 3 0 1

First, let us recall that a range minimum query (RMQ) data structure over
an array of size n can be constructed in time and space O(n), and can then
answer range minimum queries in O(1) time per query (see [7] for the details).

The following two modifications to the algorithm presented in Sect. 3 suffice
to transform it to an algorithm that solves problem LPF with k-mismatches:

1. When running the average-case k-mappability algorithm and considering a
pair of suffixes starting at positions r, q, r < q, LPFk[r] remains unchanged,
while we only update LPFk[q] (along with Pk[q]) if LPFk[q] < lcpk(x[r . . n −
1], x[q . . n − 1]).

2. In the second part of the algorithm described above, while processing the
suffix starting at position i, if at any step of the algorithm the obtained SA
range [p, q] (corresponding to node z in T (x)) is not empty, we also have to
check whether it contains a position smaller than i. We do this by employing
the RMQ data structure over the suffix array. If SA[RMQSA(p, q)] > i, we treat
the range as if it were empty and go up the path. If SA[RMQSA(p, q)] < i,
we go down the path after checking whether LPFk[i] < D(z); if yes, we set
LPFk[i] = D(z) and Pk[i] = SA[RMQSA(p, q)].

Theorem 8. Problem LPF with k-mismatches can be solved in average-case
time O(n(σR)k log log n(log k + log log n)), where R = �(k + 2)(logσ n + 1)�,
using O(n) extra space.

5 Application of LCP with k-Mismatches to Genome
Mappability

The focus of this section is directly motivated by the well-known and challenging
application of genome re-sequencing—the assembly of a genome directed by a ref-
erence sequence. New developments in sequencing technologies [25] allow whole-
genome sequencing to be turned into a routine procedure, creating sequencing
data in massive amounts. Short sequences, known as reads, are produced in huge
amounts (tens of gigabytes); and in order to determine the part of the genome
from which a read was derived, it must be mapped (aligned) back to some ref-
erence sequence that consists of a few gigabases. A wide variety of short-read
alignment techniques and tools have been published in the past years to address
the challenge of efficiently mapping tens of millions of reads to a genome, focus-
ing on different aspects of the procedure: speed, sensitivity, and accuracy [15].
These tools allow for a small number of errors in the alignment.

646 H. Alamro et al.

The re-sequencing method starts with matching a seed of each read to the
genome. This, for example, could be a short prefix of the read (the accuracy is
usually higher in the prefix of the read). We then extend this match until the total
number of errors exceeds a predefined threshold or until a match is found [2].
Considering errors is necessary due to genetic variation as well as sequencing
errors; most of these errors are single-base substitutions [24]. It is suitable to
allow for a small number k of errors in the seed part.

The k-mappability problem was first introduced in the context of genome
analysis in [12] (and in some sense earlier in [5]), where a heuristic algorithm
was proposed to approximate the solution. The aim from a biological perspective
is to compute the mappability of each region of a genome sequence; i.e. for every
substring of a given length of the sequence, we are asked to count how many
other times it occurs in the genome with up to a given number of errors. This
is particularly useful in the application of genome re-sequencing. By computing
the mappability of the reference genome, we can then assemble the genome of
an individual with greater confidence by first mapping the segments of the DNA
that correspond to regions with low mappability. Interestingly, it has been shown
that genome mappability varies greatly between species and gene classes [12].

Formally, we are given a string x of length n and integers m < n and k < m,
and we are asked to count, for each length-m substring y of x, the number occ
of other length-m substrings of x that are at Hamming distance at most k from
y. We then say that this substring has k-mappability equal to occ. Hence, a
more general question to ask is the following: What is the minimal value of m
that forces at least α of the starting positions in the reference genome to have
k-mappability equal to 0? We formalise this question as a data structure problem.

Genome Mappability
Input: A string x of length n and an integer 0 < k < n
Query: LENx,k(α) that represents the smallest m such that at least α > 0
of the substrings of x of length m do not occur more than once in x with at
most k mismatches

We can solve this problem by first making the following crucial observation.

Observation 9. A substring x[i . . i + m − 1] of a string x does not occur more
than once in x with at most k mismatches if and only if m > PLCPk[i].

Our construction works as follows. We first compute the PLCPk array for x.
We then sort its elements in ascending order using bucket sort in time O(n) and
store them in a new array Ak. Based on Observation 9, LENx,k(α) is given by
the smallest m for which Ak[α+m−2]+1 ≤ m. We show the following property
on the values of Ak.

Property 1. Ak[i + 1] ≤ Ak[i] + 1.

Proof. Note that either PLCPk[i+1] ≥ PLCPk[i] or PLCPk[i+1] = PLCPk[i]−1.
Thus considering the values in the PLCPk array from the left to the right they

Longest Common Prefixes with k-Mismatches and Applications 647

start from PLCPk[0] and then as we move one position to the right, this value
either increases or stays the same or drops by 1. PLCPk[n−1] is equal to either 0
or 1. Hence, for every integer d ∈ [mini{PLCPk[i]},maxi{PLCPk[i]}] there exists
a j, 0 ≤ j ≤ n − 1, such that PLCPk[j] = d and thus the lemma follows. (Note
that Ak is just the sorted PLCPk array.)
�

For each α, 0 < α ≤ n − 1, we denote by mα ∈ [k + 1, n − α + 1] the smallest
integer—if it exists—for which Ak[α+mα −2]+1 ≤ mα holds. In fact, we know
by Property 1 that if such an mα exists, then

Ak[α + r − 2] + 1 ≤ r, for all mα ≤ r ≤ n − α + 1.

Moreover, we have that mα ≤ mα+1, since

Ak[α + mα+1 − 2] + 1 ≤ Ak[α + 1 + mα+1 − 2] + 1 ≤ mα+1.

We can thus precompute mα, for all 0 < α ≤ n − 1, and store them in an array
Bk[α] = mα in time O(n) while scanning array Ak from left to right: we start by
computing m1 and apply the inequality mα ≤ mα+1 to obtain m2, . . . ,mn−1. If
such an integer mα does not exist, we set Bk[α] = 0. We can then answer query
LENx,k(α) in time O(1): the answer is Bk[α].

Example 3. Consider the string x = acababbac and k = 1. The following table
gives arrays PLCP1, A1, and B1. For α = 3, we have that LENx,k(3) = B1[3] = 4.

i 0 1 2 3 4 5 6 7 8

PLCP1[i] 4 3 4 3 3 3 3 2 1

A1[i] 1 2 3 3 3 3 3 4 4

B1[i] - 4 4 4 4 5 0 0 0

We thus obtain the following result.

Theorem 10. Array Bk can be computed in time O(n) from array PLCPk.

Corollary 2. We can construct an O(n)-sized data structure in average-case
time O(n(σR)k log log n(log k + log log n)), where R = �(k + 2)(logσ n + 1)�,
using O(n) extra space that answers Genome Mappability queries in O(1)
time per query.

6 Final Remarks

We have presented a new algorithm for computing the longest prefix of each
suffix of a given string of length n over a constant-sized alphabet of size σ that
occurs elsewhere in the string with Hamming distance at most k. The proposed
algorithm requires time O(n(σR)k log log n(log k + log log n)) on average, where
R = �(k + 2)(logσ n + 1)�, and O(n) extra space.

648 H. Alamro et al.

We have then shown that the proposed technique can be adapted and applied
for computing the longest previous factors under the Hamming distance model
within the same complexities. Finally, we have shown that our technique can
be applied to construct an O(n)-sized data structure that can answer queries
related to genome mappability [12] in O(1) time per query.

We anticipate that this new technique would be applicable in several contexts
where we have to compute longest repeating factors under the Hamming distance
model subject to some additional requirements. For instance, one such problem
is computing the longest factor of a string occurring in another string with k-
mismatches, also known as the LCF with k-mismatches problem [16,28].

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discret. Algorithms 2(1), 53–86 (2004)

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

3. Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P., Radoszewski,
J., Sung, W.-K.: Faster algorithms for 1-mappability of a sequence. In: COCOA.
LNCS, vol. 10628, pp. 109–121. Springer International Publishing (2017). https://
doi.org/10.1007/978-3-319-71147-8 8

4. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorrithms 3(2), 19 (2007)

5. Antoniou, P., Daykin, J.W., Iliopoulos, C.S., Kourie, D., Mouchard, L., Pissis,
S.P.: Mapping uniquely occurring short sequences derived from high throughput
technologies to a reference genome. In: ITAB, pp. 1–4. IEEE Computer Society
(2009)

6. Barthet, M., Plumbley, M.D., Kachkaev, A., Dykes, J., Wolff, D., Weyde, T.: Big
chord data extraction and mining. In: CIM (2014)

7. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

8. Bufe, C.: Understandable Guide to Music Theory: The Most Useful Aspects of
Theory for Rock, Jazz, and Blues Musicians. See Sharp Press, Tucson (1994)

9. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: STOC 2004, pp. 91–100. ACM (2004)

10. Crochemore, M., Ilie, L., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.:
Computing the longest previous factor. Eur. J. Comb. 34(1), 15–26 (2013)

11. Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the
Lempel Ziv factorization. In: DCC, pp. 482–488. IEEE Computer Society (2008)

12. Derrien, T., Estellé, J., Sola, S.M., Knowles, D., Raineri, E., Guigó, R., Ribeca,
P.: Fast computation and applications of genome mappability. PLoS ONE 7(1),
e30377 (2012)

13. Fischer, J.: Inducing the LCP-array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22300-6 32

14. Fischer, J., Köppl, D., Kurpicz, F.: On the benefit of merging suffix array intervals
for parallel pattern matching. In: CPM 2016. LIPIcs, vol. 54, pp. 26:1–26:11. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

https://doi.org/10.1007/978-3-319-71147-8_8
https://doi.org/10.1007/978-3-319-71147-8_8
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-642-22300-6_32
https://doi.org/10.1007/978-3-642-22300-6_32

Longest Common Prefixes with k-Mismatches and Applications 649

15. Fonseca, N.A., Rung, J., Brazma, A., Marioni, J.C.: Tools for mapping high-
throughput sequencing data. Bioinformatics 28(24), 3169–3177 (2012)

16. Grabowski, S.: A note on the longest common substring with k-mismatches prob-
lem. Inf. Process. Lett. 115(6–8), 640–642 (2015)

17. Kärkkäinen, J., Kempa, D.: Faster external memory LCP array construction. In:
ESA. LIPIcs, vol. 57, pp. 61:1–61:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016)

18. Karlin, S., Ghandour, G., Ost, F., Tavare, S., Korn, L.J.: New approaches for
computer analysis of nucleic acid sequences. Proc. Natl. Acad. Sci. U.S.A. 80(18),
5660–5664 (1983)

19. Khmelev, D.V., Teahan, W.J.: A repetition based measure for verification of text
collections and for text categorization. In: ACM SIGIR 2003, pp. 104–110. ACM
(2003)

20. Kolpakov, R., Bana, G., Kucherov, G.: MREPS: efficient and flexible detection of
tandem repeats in DNA. Nucleic Acids Res. 31(13), 3672–3678 (2003)

21. Liang, K.-H.: Bioinformatics for Biomedical Science and Clinical Applications.
Woodhead Publishing Series in Biomedicine. Woodhead Publishing, Cambridge
(2013)

22. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

23. Manzini, G.: Longest common prefix with mismatches. In: Iliopoulos, C., Puglisi,
S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 299–310. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23826-5 29

24. Médigue, C., Rose, M., Viari, A., Danchin, A.: Detecting and analyzing DNA
sequencing errors: toward a higher quality of the bacillus subtilis genome sequence.
Genome Res. 9(11), 1116–1127 (1999)

25. Metzker, M.L.: Sequencing technologies - the next generation. Nat. Rev. Genet.
11(1), 31–46 (2010)

26. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: DCC, pp. 193–202. IEEE (2009)

27. Smit, A.F.A.: Interspersed repeats and other mementos of transposable elements
in mammalian genomes. Curr. Opin. Genet. Dev. 9(6), 657–663 (1999)

28. Thankachan, S.V., Apostolico, A., Aluru, S.: A provably efficient algorithm for the
k-mismatch average common substring problem. J. Comput. Biol. 23(6), 472–482
(2016)

29. Thankachan, S.V., Chockalingam, S.P., Liu, Y., Apostolico, A., Aluru, S.:
ALFRED: a practical method for alignment-free distance computation. J. Comput.
Biol. 23(6), 452–460 (2016)

30. Weiner, P.: Linear pattern matching algorithms. In: SWAT 1973, pp. 1–11. IEEE
Computer Society (1973)

https://doi.org/10.1007/978-3-319-23826-5_29

Data and Model Engineering

Managing Reduction in Multidimensional
Databases

Franck Ravat1, Jiefu Song1(&), and Olivier Teste2

1 IRIT – Université Toulouse I Capitole, 2 Rue du Doyen Gabriel Marty,
31042 Toulouse Cedex 09, France
{ravat,song}@irit.fr

2 IRIT – Université Toulouse II Jean Jaurès, 1 Place Georges Brassens,
31703 Blagnac Cedex, France

teste@irit.fr

Abstract. Dealing with large amount of data has always been a key focus of
the Multidimensional Database (MDB) community, especially in the current era
when data volume increases more and more rapidly. In this paper, we outline a
conceptual modeling solution allowing reducing data in MDBs. A MDB after
reduction is modeled with multiple states. Each state is valid during a period of
time and aggregates data from a more recent state. We propose three alternatives
of reduced MDB modeling at the logical level: (i) the flat modeling integrates all
states into one single table, (ii) the horizontal modeling converts each state into a
fact table and some dimension tables associated with a temporal interval and
(iii) the vertical modeling breaks down a reduced MDB into separate tables,
each table includes data from one or several states. We evaluate query execution
efficiency in MDBs with and without data reduction. The result shows data
reduction is an interesting solution, since it significantly decreases execution
costs by 98.96% during our experimental assessments.

Keywords: Data reduction � Relational multidimensional design
Experimental assessments

1 Introduction

Multidimensional Databases (MDBs) are widely used in decision-support systems.
A MDB organizes data according to analysis subjects (i.e. facts) and analysis axes (i.e.
dimensions). A fact includes a set of numeric indicators (i.e. measures), while a
dimension contains one or several granularities (i.e. levels). In today’s highly com-
petitive business context, data coming from both inside and outside a company are
periodically added and then permanently stored in a MDB [1, 6]. The huge amount of
data in a MDB slows down query execution, not to mention that decision-makers may
easily get lost while facing all detailed data during analyses. Meanwhile, all data do not
keep the same informative value over time. While detailed information is important for
recent data, it may be of less interest for older data [11].

Reducing data can avoid an overly large MDB. It allows decreasing the amount of
useless data and thus increasing query execution efficiency [13]. As detailed data lose

© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 653–666, 2018.
https://doi.org/10.1007/978-3-319-73117-9_46

their informative value over time, a data reduction solution should allow selectively
deleting useless data in a MDB. Moreover, it is necessary to aggregate data progres-
sively, so that information is not lost after reduction but represented in a summarized
form for comparative or trend analyses. This is achieved by eliminating a MDB’s
content deprecated for business analyses.

Our aim is to support effective and efficient decision-making by storing only data of
high informative value over time in a MDB. In our previous work [9], we proposed a
conceptual modeling solution for MDBs with data reduction (i.e. reduced MDBs). As
modeling solutions at the logical level are seldom studied for MDBs whose schema
changes over time, this paper focuses on the relational modeling of reduced MDBs.
Some algorithms are proposed to automatically transform a conceptual reduced MDB
into different relational forms. We carry out some experimental assessments to compare
query execution efficiency in reduced and unreduced MDBs.

The paper is organized as follows: Sect. 2 discusses the representative work related
to data reduction; Sect. 3 describes three relational modeling solutions and a schema
design process for reduced MDBs; Sect. 4 illustrates the benefits of reduced MDBs
through some experimental assessments.

2 Related Work

Data reduction is a technique originally used in the data mining field [7]. In this
context, data reduction aims at improving the accuracy of mining results by extracting
significant and relevant features of sources. In the database field, data reduction is
adapted to automatically delete expired data which are no longer of interest. We can
cite the work [3] which enables data reduction by deleting content in materialized
views. In the MDB field, related work focuses on reducing data in a fact. The authors of
[12] describe a solution for the progressive aggregation and deletion of data in a fact.
A set of criteria is proposed to summarize data according to higher granularities. The
authors of [5] present a complete data reduction process. They study the conception,
implementation, and influence of data reduction in a MDB’s fact.

The above-mentioned work only allows reducing a fact. Our previous work [9]
generalizes the reduction to a complete MDW. Consequently, both facts and dimen-
sions can be reduced. Moreover, unlike some automatic reduction solutions, our pro-
posed approach involves decision-makers in a reduction process. A designer
determines with a decision-maker within which temporal interval a MDB schema is
valid. As detailed information is often irrelevant to analyses over an old period, a MDB
schema includes different contents over time. The further we look back in time, the
fewer detailed data a MDB schema contains.

Specifically, a reduced MDB is composed of a set of states E ¼ fE1; . . .;Eng. The
state En is the latest state including the most complete schema, while the other states
consist of a succession of reduced schemas over time. Each state EiðEi 2 EÞ corresponds
to a star schema including a fact Fi and a set of dimensionsDi with necessarily a temporal
dimension. The state Ei is stamped with a validation period Ti = [tistart; t

i
end] defined on the

temporal dimension. The fact Fi contains a set ofmeasures,MFi ¼ fm1; . . .;mpgwhile a

654 F. Ravat et al.

dimension DkðDk 2 DiÞ includes a set of attributes ADk ¼ fa1; . . .; aqg organized in
different levels. We distinguish two types of attributes: a parameter pxðpx 2 ADkÞ is an
attribute allowing identifying an unique level on the dimension Dk, while aweak attribute
is a non-identifier attribute providing descriptive information to a parameter.

Based on this conceptual reduced MDB modeling, our previous work [9] extends
the work [10] by proposing some operators for multidimensional analyses on reduced
data. These operators allow (i) choosing analysis subjects and axes (i.e. Display),
(ii) aggregating data (i.e. Drilldown and Rollup), (iii) changing analysis axes (i.e.
Rotate), and (iv) filtering analysis results (i.e. Select).

In this paper, we complete our work [9] by studying modeling alternatives at the
logical level. The efficiency of each alternative will be studied through some experi-
mental assessments.

3 Relational Modeling of MDBs with Data Reduction

In this section, we describe the logical modeling of reduced MDBs. This modeling is
based on three relational modeling alternatives. An algorithm is proposed for each
alternative to automate the transformation from a conceptual reduced MDB into a
relational reduced MDB.

3.1 Case Study

A MDB contains a fact, named Sales, which includes one measure named Amount. The
measure can be calculated along three dimensions, namely Products, Customers and
Times. The current MDB contains all sale data from 1990 to 2017. However, since
most today’s products and customers did not exist before, the MDB is reduced by
creating three states as follows: (i) the latest state E3 contains all detailed data within all
dimensions from 2010 to 2017; (ii) the second state E2 includes aggregated data
starting from products’ Range, customers’ Town and sale date IDTime between 2000 to
2010; (iii) the oldest state E1 supports historical sales analyses by products’ Sector and
Year from 1900 to 2000. Figure 1 shows the reduced MDB’s states according to the
graphical notation proposed in [4].

Fig. 1. Reduced MDB schema evolutions over time

Managing Reduction in Multidimensional Databases 655

3.2 Flat Modeling of a Reduced MDB

The first alternative is called flat modeling. It integrates all states into one single flat
table. All attributes and all measures before data reduction constitute the columns of a
flat table. We propose the following algorithm for the flat modeling.

After creating the structure of a flat table (cf. lines 1 and 2), the algorithm extracts
data from each state and loads the flat table. Specifically, if the attribute ak (or the
measure ms) from the flat table does not exist in the state Ei, the algorithm assigns the
NULL value to its instances (cf. lines 3–9). Then, measure instances and related
attribute instances from each state are loaded in the flat table (cf. line 10). The time span
of a flat table corresponds to the union of all states’ temporal intervals.

Example. We apply the algorithm 1 to the reduced MDB of our case study. The
relational schema of the output flat table is as follows.

A snapshot1 of instances in the flat table is shown in the Fig. 2. Instances from the
latest state E3 are directly loaded in the flat table (cf. lines 3 and 10), while the other two

1 For the sake of simplicity, all snapshots in this section include only the dimension Products.

656 F. Ravat et al.

states E2 and E1 are loaded with NULL value as placeholder for the deleted attributes’
instances (cf. lines 3–6 and 10).

3.3 Horizontal Modeling of a Reduced MDB

The second relational modeling alternative is named horizontal. Each state is imple-
mented through a fact table and a set of dimension tables. The algorithm of the
horizontal modeling is as follows.

Fig. 2. A snapshot of instances organized according to the flat modeling

Managing Reduction in Multidimensional Databases 657

The horizontal modeling creates a fact table TFi for each state Ei. Each fact table
includes all measures from the fact Fi and a set of foreign keys (cf. lines 1 and 2). Each
foreign key consists of the parameter on the lowest granularity of a dimension from the
state Ei (cf. line 5). Each dimension Dj is converted into a dimension table as follows:
the parameter p1 of the lowest granularity on Dj is used as a primary key, while other
attributes on the dimension (i.e. ADinfp1g) are directly added in the dimension table
(cf. lines 3–6). Consequently, the time span of a fact table and a dimension table
corresponds to the temporal interval of the involved state.

Example. According to the algorithm 2, the reduced MDB of the case study is
implemented through 3 fact tables and 8 dimension tables.

E3_TIMES (IDTIME, MONTH, YEAR)
E3_CUSTOMERS (IDCUSTOMERS, LASTNAME, FIRSTNAME, TOWN, DEPARTMENT,

REGION, TYPE)
E3_PRODUCTS (IDPRODUCTS, LABEL, RANGE, SECTOR, BRAND)
E3_SALES (SYNKEY, IDTIME#, IDCUSTOMERS#, IDPRODUCTS#, AMOUNT)
E2_TIMES (IDTIME, MONTH, YEAR)
E2_CUSTOMERS (TOWN, DEPARTMENT, REGION)
E2_PRODUCTS (RANGE, SECTOR)
E2_SALES (SYNKEY, IDTIME#, TOWN#, RANGE#, AMOUNT)
E1_TIMES (YEAR)
E1_PRODUCTS (SECTOR)
E1_SALES (SYNKEY, YEAR#, SECTOR#, AMOUNT)

Figure 3 displays a snapshot of instances in the reduced MDB implemented
according to the horizontal modeling.

3.4 Vertical Modeling of a Reduced MDB

The third alternative is named vertical modeling. It gathers common components
among states into separate tables called vertical tables. Each vertical table includes

Fig. 3. A snapshot of instances organized according to the horizontal modeling

658 F. Ravat et al.

measures and attributes shared by some states. We propose the following algorithm for
the vertical modeling.

Algorithm 3. Vertical Modeling
Input:
Output:

a set of
Begin
1. For each i from 1 to n (n=|E|)

4. Insert
5.
6. End For
7. E←E\{Ei};
8. End for
End

According to the definition of the data reduction, attributes and measures from an
old state Ei must exist in a more recent state Ej (i < j). Therefore, to gathers common
components in a subset of states {Ei, …, En} (1 � i � n), the ith vertical table TVi

groups together attributes and measures from the ith state (cf. lines 1 and 2). Then, for
each state Ex in {Ei, …, En}, instances of each attribute in Ai are retrieved from the
state Ex and then loaded in TVi . Based on the attribute instances, values of each
measure in Mi from Ex are aggregated and then inserted into TVi (cf. lines 3–6).
Consequently, each vertical table TVi covers a time span from the state Ei to the latest
state En.

Example. After applying the algorithm 3 to our case study, we obtain the following
three vertical tables.

VTABLE1 (SYNKEY, YEAR, SECTOR, AMOUNT)
VTABLE2 (SYNKEY, IDTIME, MONTH, YEAR, TOWN, DEPARTMENT, REGION,

RANGE, SECTOR, AMOUNT)
VTABLE3 (SYNKEY, IDTIME, MONTH, YEAR, IDCUSTOMERS, LASTNAME,

FIRSTNAME, TOWN, DEPARTMENT, REGION, TYPE, IDPRODUCTS,
LABEL, RANGE, SECTOR, BRAND, AMOUNT)

Managing Reduction in Multidimensional Databases 659

The snapshot presented in Fig. 4 indicates a state of reduced MDB is implemented
through one or several vertical tables. For instance, data from the latest state E3 are
found within all vertical tables: (i) VTABLE3 includes the sale amount from 2010 to
2017 by IDProducts; (ii) VTABLE2 aggregates the amount from the state E3 according
to products’ range; (iii) VTABLE3 further aggregates the amount from the state E3

according to product’s sector.

3.5 Comparison Among Relational Modeling Alternatives

A conceptual reduced MDB can be transformed into various relational schemas.
Extracting the same data requires applying different queries to different relational
schemas with different data redundancy ratios.

The flat modeling consists of a simplistic way which converts the whole reduced
MDB into one relation. It frees queries from joins, regardless of the number of involved
dimensions. However, the flat modeling causes high data redundancy: attribute
instances are repetitively stored in the relation with related measure instances.

The horizontal modeling is a more complex method which converts measures and
attributes from one state into independent relations. It minimizes data redundancy by
associating attribute instances with related measure instances through primary key -
foreign key relationships. However, the horizontal modeling requires joins in queries
involving dimension tables.

The vertical modeling converts measures and attributes shared by several states into
separate relations. This modeling has multiple advantages. On one hand, queries
involving several dimensions do not have to include joins. On the other hand, data
redundancy is reduced to attribute instances within some high levels on dimensions.

To accurately and quantitatively study the influences of different relational mod-
eling alternatives on query execution efficiency, the remainder of this paper focuses on
some experimental assessments.

Fig. 4. A snapshot of instances organized according to the vertical modeling

660 F. Ravat et al.

4 Experimental Assessments

In this section, we carry out some experimental assessments by executing queries in
reduced and unreduced MDBs populated with data according to different volumes.

4.1 Protocol

The objective of our experimental assessments is twofold: (i) studying if all relational
modeling alternatives for reduced MDBs help improving query execution efficiency
and (ii) identifying the most efficient relational modeling of reduced MDBs. Existing
multidimensional data benchmarks (e.g. TPC-DS2 and SSB [8]) are designed to
measure a system’s performance [2]. They do not allow testing the effect of different
reduced modeling solutions, since the included MDB is composed of only one state.

Facing this issue, we have to generate our own data during the experimental
assessments. The MDB of our case study is used and populated with synthetic data.
Three reduced MDB implementations, namely flat, horizontal and vertical, are built
according to the relational modeling alternatives (cf. Sect. 3). Two unreduced MDBs
are used as baseline to assess the impact of data reduction: (i) the unreduced flat MDB
integrates all attributes and measures before reduction into one table and (ii) the
unreduced horizontal MDB includes one fact table and three dimension tables without
reduction. The number of tuples as well as redundancy ratio of attribute instances
according to MDB implementation and scale factor is shown in Table 1.

During the experimental assessment, we consider only queries producing full
answers in MDBs before and after data reduction. Meanwhile, different queries should
involve different dimensions in different states during querying. Table 2 shows our
proposed 12 queries. Specifically, queries Q1–Q3 involve one dimension in one state;
queries Q4–Q7 involve multiple dimensions in one state; queries Q8 and Q9 involve
different dimensions in two states; Q10–Q12 involve different dimensions in all states.

Table 1. Scale factors and number of tuples with attribute instance redundancy ratio.

Relational
modeling

Number of tuples and redundancy ratio of attribute instances

SF1 SF2 SF3 SF4

Unreduced flat 106 ð99:0%Þ 2:5� 107ð99:6%Þ 108ð99:9%Þ 4� 108ð99:9%Þ
Unreduced
horizontal

106 ð�0%Þ 2:5� 107ð�0%Þ 108ð�0%Þ 4� 108ð�0%Þ

Flat 3:2� 105 ð97:8%Þ 8� 106ð99:9%Þ 3:2� 107ð99:9%Þ 1:27� 108ð99:9%Þ
Horizontal 3:2� 105 ð�0%Þ 8� 106ð�0%Þ 3:2� 107ð�0%Þ 1:27� 108ð�0%Þ
Vertical 3:4� 105 ð91:6%Þ 8:4� 106ð92:4%Þ 3:4� 107ð92:5%Þ 1:34� 108ð92:5%Þ

2 http://www.tpc.org/tpcds/.

Managing Reduction in Multidimensional Databases 661

http://www.tpc.org/tpcds/

For each query, we record the execution costs provided by the Explain Plan
command of the Oracle 12c DBMS without any optimization techniques (e.g. index
and table partitioning). The hardware configuration is as follows: 2 � CPU@2.33 GHz
with 2 cores, 128 GB RAM and 1 TB SSD Disk in RAID6.

4.2 Observations and Discussions

In this section, we study the query execution costs in reduced and unreduced MDBs of
different scale factors.

Observation. From Fig. 5, we can see the same trend is found in MDBs of different
scale factors. The lowest execution costs of the twelve queries come from different
implementations of reduced MDB. Specifically, for queries covering a time span within
the temporal interval of one state, regardless of the scale factor and the number of
dimensions included, (i) the lowest execution costs of Q1, Q4 and Q6 (within the
temporal interval of E3) are found within the vertical MDB; (ii) the lowest execution
costs of Q2, Q5 and Q7 (within the temporal interval of E2) are produced by the
horizontal MDB; (iii) both the vertical and the horizontal MDBs are cost-efficient for
Q3 (within the temporal interval of E1). All queries involving multiple states are more
efficiently computed within the vertical MDB (from Q8 to Q12), regardless of the
MDB volume and the number of states as well as dimensions involved.

Table 2. 12 queries involving different dimensions and time spans.

Query No. of
dimensions

Time span and state

Q1: Annual sale amount for the last three years 1 [2014, 2017] E3

Q2: Annual sale amount in 2008 1 [2008, 2008] E2

Q3: Annual sale amount before 2000 1 [1990, 2000] E1

Q4: Sale amount by customer from 2010 to 2012 2 [2010, 2012] E3

Q5: Monthly sale amount by town from 2000 to 2005 2 [2000, 2005] E2

Q6: Monthly sale amount by town and sector in 2012 3 [2012, 2012] E3

Q7: Annual sale amount by town and sector from 2000
to 2005

3 [2000, 2005] E2

Q8: Monthly sale amount since 2000 1 [2000, 2017] E2, E3

Q9: Annual sale amount per town from 2002 to 2012 2 [2002, 2012] E2, E3

Q10: Annual sale amount 1 [1990, 2017] E1, E2,
E3

Q11: Annual sale amount per sector 2 [1990, 2017] E1, E2,
E3

Q12: Total sale amount n/a [1990, 2017] E1, E2,
E3

662 F. Ravat et al.

Discussion. Based on the above observations, we can conclude that regardless of the
scale factor, reduced MDBs always produce lower execution costs than unreduced
MDBs. The execution costs in reduced MDBs (i) are not significantly influenced by the
number of dimensions involved in a query but (ii) highly depend on the time span
involved in a query. The more a query and a reduced MDB implementation share in
terms of time span, the lower the execution costs become. When a query only involves
old states, the influence of time span is weakened by the small volume of data within
the horizontal and the vertical MDBs.

Fig. 5. Query execution costs in reduced and unreduced MDBs of different scale factors

Managing Reduction in Multidimensional Databases 663

Observation. Figure 6 shows the average query execution costs in MDBs of the scale
factor SF1 according to query type. No matter how many states are involved in queries,
the average execution costs in reduced MDBs are always lower than in unreduced
MDBs. The highest average execution costs are found within the unreduced flat MDB,
while the lowest one is obtained by the vertical MDB. Comparing with unreduced
MDBs, reduced MDBs significantly decrease the execution costs: from 54.4% to
98.96%.

As we can see from Fig. 7, the same trend is found in MDBs of larger scale factors.
From the unreduced flat MDB to the vertical MDB, the average execution costs
decrease significantly: over 100 times (cf. the vertical axis on the left in Fig. 7).
Moreover, the differences between the average execution costs in unreduced and
reduced MDBs keep increasing as the data volume grows; i.e. from SF1 to SF4, the gap
has widened about 513 times (cf. the vertical axis on the right in Fig. 7).

In reduced MDBs, the decrease in execution costs is directly reflected in the gain in
query runtime. Figure 8 shows the average runtime in MDBs of the scale factor 4
according to query type.

Discussion. All reduced MDBs allow significantly saving the query execution costs,
regardless of the scale factor and the query type. More importantly, the results of our
experimental assessments show the scalability of our proposal: the larger the MDB is,

Fig. 6. Average execution costs by query type and MDB implementation of SF1

Fig. 7. Average execution costs of all queries in MDBs of different scale factors

664 F. Ravat et al.

the more significant the decrease in execution costs becomes after data reduction. The
most efficient relational modeling is the vertical MDB. It groups measure instances and
related attribute instances from one state together and implements them in one table.
Consequently, data redundancy is reduced, while queries involving multiple dimen-
sions are freed from joins in a vertical reduced MDB.

5 Conclusion

Our aim is to support effective and efficient decision-making by storing only data of
high informative value over time in a MDB. In this paper, we outline a conceptual
modeling solution allowing reducing both facts and dimensions in MDBs. A reduced
MDB is modeled with multiple states. Each state is valid for a period of time.

Three relational modeling alternatives are proposed for reduced MDBs. The flat
modeling integrates all measures and attributes from all states into one single flat table.
The horizontal modeling converts each state into a fact table and a set of dimension
tables. The vertical modeling gathers common measures and attributes shared by states
into vertical tables. Different relational modeling alternatives (i) require different num-
bers of joins in analysis queries and (ii) bring in different degrees of data redundancy.

We carry out some experimental assessments to evaluate query execution efficiency
in reduced and unreduced MDBs. The result shows the data reduction is a scalable
solution: the larger the MDB is, the more significant the improvement in query exe-
cution efficiency becomes after the data reduction. During our experimental assess-
ments, the improvement in terms of query execution costs ranges from 54.4% to
98.96%. The most significant decrease in query execution costs is found in the vertical
MDB, which makes it the most efficient relational modeling of reduced MDBs.

In the future, we intend to study the performance of our proposed relational
modeling alternatives in other types of DBMS. As more and more NoSQL systems
nowadays are adopted to deal with large amount of data, it would be necessary to study
new data reduction strategies in the context of NoSQL. One of our ongoing work
focuses on reducing data in graph databases and triple store (RDF) databases.

Fig. 8. Average runtime of queries involving different states in the largest MDBs

Managing Reduction in Multidimensional Databases 665

References

1. Berkani, N., Bellatreche, L., Benatallah, B.: A value-added approach to design bi
applications. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 361–
375. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_24

2. Darmont, J., Bentayeb, F., Boussaid, O.: Benchmarking data warehouses. Int. J. Bus. Intell.
Data Min. 2, 79–104 (2007)

3. Garcia-Molina, H., Labio, W., Yang, J.: Expiring data in a warehouse. In: 24rd International
Conference on Very Large Data Bases, New York, pp 500–511. Morgan Kaufmann
Publishers Inc. (1998)

4. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R schemes.
In: Thirty-First Annual Hawaii International Conference on System Sciences, Kohala Coast,
HI, pp. 334–343. IEEE Computer Society (1998)

5. Iftikhar, N., Pedersen, T.B.: A rule-based tool for gradual granular data aggregation. In:
International Workshop on Data Warehousing and OLAP, Glasgow, United Kingdom,
pp. 1–8. ACM Press (2011)

6. Nebot, V., Berlanga, R., Pérez, J.M., Aramburu, M.J., Pedersen, T.B.: Multidimensional
integrated ontologies: a framework for designing semantic data warehouses. In: Spaccapi-
etra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530,
pp. 1–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03098-7_1

7. Okun, O., Priisalu, H.: Unsupervised data reduction. Signal Process. 87, 2260–2267 (2007).
https://doi.org/10.1016/j.sigpro.2007.02.006

8. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented
fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 237–252. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10424-4_17

9. Ravat, F., Song, J., Teste, O.: OLAP analysis operators for multi-state data warehouses. Int.
J. Data Warehous. Min. 12, 20–53 (2016)

10. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP
manipulations. Int. J. Data. Warehous. Min. 4, 17–46 (2008)

11. Skyt, J., Jensen, C.S., Pederson, T.B.: Specification-based data reduction in dimensional data
warehouses. In: 18th International Conference on Data Engineering, p. 278. IEEE Computer
Society (2002)

12. Udo, I.J., Afolabi, B.: Hybrid data reduction technique for classification of transaction data.
J. Comput. Sci. Eng. 6, 12–16 (2011)

666 F. Ravat et al.

http://dx.doi.org/10.1007/978-3-319-43946-4_24
http://dx.doi.org/10.1007/978-3-642-03098-7_1
http://dx.doi.org/10.1016/j.sigpro.2007.02.006
http://dx.doi.org/10.1007/978-3-642-10424-4_17

UML2PROV: Automating Provenance Capture
in Software Engineering

Carlos Sáenz-Adán1(B), Beatriz Pérez1, Trung Dong Huynh2, and Luc Moreau3

1 Department of Mathematics and Computer Science, University of La Rioja,
Logroño, La Rioja, Spain

{carlos.saenz,beatriz.perez}@unirioja.es
2 Department of Electronics and Computer Science, University of Southampton,

Southampton, UK
tdh@ecs.soton.ac.uk

3 Department of Informatics, King’s College London, London, UK
luc.moreau@kcl.ac.uk

Abstract. In this paper we present UML2PROV, an approach address-
ing the gap between application design, through UML diagrams, and
provenance design, using PROV-Template. PROV-Template is a declar-
ative approach that enables software engineers to develop programs that
generate provenance following the PROV standard. The main contri-
butions of this paper are: (i) a mapping strategy from UML diagrams
(UML State Machine and Sequence diagrams) to templates, (ii) a code
generation technique that creates libraries, which can be deployed in
an application by creating suitable artefacts for provenance generation,
and (iii) a demonstration of the feasibility of UML2PROV implemented
with Java, and a preliminary quantitative evaluation that shows benefits
regarding aspects such as design, development and provenance capture.

Keywords: Provenance data modeling and capture
PROV-Template · UML

1 Introduction

Over the last few years, there has been a growing interest in the origin of data,
in order to enable its rating, validation, and reproducibility. In this context,
the term provenance has emerged to refer to “the information about entities,
activities, and people involved in producing a piece of data or thing, which can
be used to form assessments about its quality, reliability or trustworthiness” [1].

This interest in provenance has led to various point solutions developed to
capture provenance (such as PASS [2], PERM [3], Taverna [4], Vistrails [5] or
Kepler [6]). The need for interoperability between systems has been a driver
for the creation of the PROV standard [1,7,8], a conceptual data model for
provenance, and its serialization to various Web technologies. Since PROV’s
aim is the interoperable exchange of provenance information, toolkits support-
ing PROV [9,10] have been facilitating the software engineer’s task of creating,
storing, reading and exchanging provenance; however, such toolkits do not help
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 667–681, 2018.
https://doi.org/10.1007/978-3-319-73117-9_47

668 C. Sáenz-Adán et al.

decide what information should be included in provenance, and how software
should be designed to allow for its capture. Therefore, the ability to consider
the use of provenance, specially during the software engineering design phase,
has become critically important to support the software designer in making
provenance-enabled systems. PrIMe [11], the Provenance Incorporation Method-
ology, is the first provenance-focused methodology for adapting applications to
make them provenance-aware. Although the application of this methodology has
demonstrated promising results, PrIMe is standalone, and does not integrate
with existing software engineering methodologies, which makes it challenging to
use in practice.

In contrast, design techniques have been proposed to shorten the develop-
ment time of software products, as well as to increase their quality, avoiding
developers from expending extra time and efforts during subsequent phases.
Among such techniques, the Unified Modelling Language (UML) [12] is widely
accepted as the de-facto method for designing object-oriented software systems.
However, the UML design methodology offers no specific support for provenance.
Specifically, UML does not provide the means to express elements of response
to provenance questions, such as the activity that lead to a specific result, or
the elements involved in its creation. In fact, our experience in developing soft-
ware applications augmented with support for provenance is that the inclusion
of provenance within the design phase can entail significant changes to an appli-
cation design [11]. This is a cumbersome task for the designers and programmers
alike, since they have to be knowledgeable about provenance, to deal with com-
plex diagrams, and to maintain an application’s provenance-specific code base.
In short, the gap between software engineering design methodologies and prove-
nance engineering can result in applications generating provenance that is not
aligned with what the application actually does, or that is not fit for purpose.
Against this background, PROV-Template [13] is a recent development allowing
the structure of provenance to be described declaratively: a provenance template
is a document containing placeholders (referred as variables). An expansion algo-
rithm instantiates a template with values, which are contained in bindings asso-
ciating variables with concrete values. Although this approach reduces the devel-
opment and maintenance effort, separating responsibilities between software and
provenance designers, it still requires designers with provenance knowledge.

The aim of this paper is to propose UML2PROV, an approach that addresses
the gap between application design, through UML diagrams, and provenance
design, by means of PROV-Template. The contributions of this paper are as
follows: (i) a mapping of UML diagrams (UML State Machine and Sequence
diagrams) to templates according to a set of transformation rules, (ii) a code
generation technique that creates libraries, that need to be linked with the
application to generate provenance, and (iii) a demonstration of the feasibility
of UML2PROV by implementing it with Java, whose preliminary quantitative
evaluation shows significant benefits of the approach. These benefits, which will
appeal to designers in early stages of the development process, are mainly: (1)
design/development, since we provide a way to include provenance capabilities

UML2PROV: Automating Provenance Capture 669

Fig. 1. PROV UML Class Diagram with graphical and textual PROV notation [7,8]

during the design phase without changing the way in which software designers
use UML (provenance generation is handled automatically from such UML), and
(2) capturing provenance, since the provenance capture is performed automati-
cally thanks to UML2PROV’s code generation technique, which provides clear
benefits over the more traditional approach of provenance capture.

This paper is organized as follows. We outline the background of this research
in Sect. 2. In Sect. 3, we give an overview of UML2PROV. Sections 4 and 5
describe our approach, while Sect. 6 presents a complete implementation of it.
A quantitative evaluation is provided in Sect. 7, while Sect. 8 discusses related
work. Finally, conclusions and further work are set out in Sect. 9.

2 Background

In this section, we first introduce the PROV standard for provenance and provide
an overview of the main insights concerning the use of PROV-Template. Second,
we highlight key aspects of the UML diagrams used in this work.

2.1 The PROV Standard and PROV-Template

PROV [1] is a World Wide Web Consortium (W3C) standard that aims to facil-
itate the publication and interchange of provenance among applications. PROV
is fully specified in a family of documents, which cover various of its aspects
such as modeling, serialization, access, interchange, translation and ways to rea-
son over it. For the purpose of our paper, we illustrate PROV focusing on the
PROV Data Model (PROV-DM) [7], which is a conceptual model that forms the
basis for the remainder PROV family of specifications, and the PROV Notation
(PROV-N) [8], a textual representation suitable for human consumption.

PROV is based around three concepts, together with their relationships which
are depicted in the left part of Fig. 1. In the right part, we also show the PROV-
N representation of these concepts, together with their graphical notation. More
specifically, an Entity is a physical, digital, conceptual or other kind of thing.
An Activity is a set of actions that act upon or with entities during a specific
time frame. Finally, an Agent refers to something which takes responsibilities of
entities or activities through attribution or association, respectively.

As shown in Fig. 1, these concepts are associated through relationships such
as usage (used), which represents an activity beginning to utilize an entity, gener-
ation (wasGeneratedBy) used when an activity produces a new entity, derivation

670 C. Sáenz-Adán et al.

Fig. 2. The UML2PROV approach. The red and blue colours are used to refer to design
time and runtime aspects of the approach, respectively. (Color figure online)

(wasDerivedFrom) which denotes an entity update, invalidation (wasInvalidat-
edBy) used when an activity starts the destruction or invalidation of an entity,
association (wasAssociatedWith) which indicates that an agent had a role in an
activity, attribution (wasAttributedTo) which shows an agent bearing the respon-
sibility for an entity, and specialization (specializationOf) used when an entity
shares the aspects of another entity, but also has more specific aspects.

PROV-Template [13] is a declarative approach to creating PROV compliant
provenance-enabled applications. It consists of three main key elements: prove-
nance templates, bindings, and a provenance template expansion algorithm. The
overall process supported by PROV-Template is as follows. The provenance tem-
plates are firstly designed and embedded in the application’s code, which logs the
values in the form of bindings during its execution. Finally, provenance is auto-
matically generated by template expansion. For further details regarding PROV
and PROV-Templates, the reader is referred to [1,7,8] and [13], respectively.

2.2 UML Diagrams

UML [12] distinguishes two major categories of diagrams: structural diagrams are
concerned with the static structure of a system, whereas behavioural diagrams
capture the behavioural features of a system, including aspects concerning its
runtime execution. This latter type of diagrams describes the dynamics between
objects of a system in terms of states, interactions, collaborations, etc. Since
provenance bears a strong relation with all the data taken part in producing a
final item (that is, information related to involved entities together with the dif-
ferent states they go through over time, conducted activities, interactions among
such entities, etc.), we considered UML Sequence Diagrams (Sq Diagrams) and
UML State Machine Diagrams (SM Diagrams), to be the most suitable ones for
our purpose. Briefly speaking, Sq Diagrams are used to model the interactions
among collaborating objects in terms of messages exchanged from a sender to
a receiver’s lifeline. SM Diagrams specify the various states that an object goes
through during its lifecycle. They mainly consist of states, transitions and other
types of vertexes called pseudostates. For the sake of brevity, we do not delve
into more detail regarding Sq and SM Diagrams; we refer the reader to [12].

UML2PROV: Automating Provenance Capture 671

Fig. 3. On the left side, a Sq diagram showing the interaction between Student,
Seminar and Course. On the right side, the SM diagram of the Seminar class.

3 Overview: Generating PROV Templates from UML

In this section, we provide an overview of the UML2PROV approach identifying
its key facets, and distinguishing its different stakeholders: software designers
and provenance consumers. We illustrate our explanations by means of Fig. 2,
where design time elements (red) are distinguished from runtime elements (blue).
Design time facets are the Sq/SM diagrams, the associated PROV templates
generated from those, and the bindings generation module. In particular, this
module is composed by two main components: a context-independent component,
which contains the bindings’s generation code that is common to all applications,
and a context-dependent component, which is generated from the system’s UML
diagrams and includes the bindings’s generation code specific to the concrete
application. The runtime execution facets consist of the values logged by the
application, in the form of bindings, and the PROV documents.

Software designers are responsible for creating the Sq and SM diagrams based
on the concrete domain’s requirements (see upper part of Fig. 2). Since UML
Sq and SM diagrams show interconnected behavioural views of an overall sys-
tem, before applying our approach, those diagrams must satisfy a set of Object
Constraint Language (OCL) [14] rules we have defined to ensure that those dia-
grams are consistent with each other (for details about these rules, we refer
to [15]). UML2PROV takes as input the UML diagrams satisfying such rules,
and automatically generates: PROV templates, as defined by the UML to tem-
plates mapping (Sect. 4), and the context-dependent component in the bindings
generation module (Sect. 5). UML2PROV determines (1) what provenance infor-
mation is considered from the Sq/SM diagrams to be captured, and (2) how the
application is wrapped with the functionality needed to allow such a capture
(i.e. the functionality implemented by the bindings generation module).

Finally, the provenance consumer uses the provenance template expander to
generate PROV documents from both the templates and the bindings. By distin-
guishing among the different stakeholders, we allow them having clearly defined
roles and focusing on their specific responsibilities, avoiding task collision.

4 From UML Diagrams to Provenance Templates

In this section, we present the mapping from Sq and SM diagrams satisfying our
OCL constraints, to provenance templates. We have defined a set of patterns

672 C. Sáenz-Adán et al.

that identify commonly appearing structures on both Sq and SM diagrams and
a set of translation rules that translate each single UML element involved in
such patterns to PROV elements. We only outline the patterns due to space
constraints, whereas a complete description of the rules is provided in [15]. To
illustrate our explanations, we use a case study of a system that manages the
enrolment and attendance of students to seminars of a University course. Figure 3
shows two Sq and SM diagrams defined for such a case study.

4.1 From Sequence Diagrams to Templates

We illustrate our translation approach by means of the SeqP1-SeqP4 patterns
presented in Fig. 4, together with the template of Fig. 5 which shows the trans-
lation of the message m1 from the case study’s Sq diagram in Fig. 3.

Fig. 4. Sq diagrams’ patterns and their provenance templates

Fig. 5. An extract of a template generated from the case study’s Sq diagram.

For each pattern identified, the sender object lifeline is mapped to a
prov:Agent (identified by var:lifeline) that assumes the responsibility of such
an object (e.g. in line 1 of Fig. 5 we show how the object Student is trans-
lated into a prov:Agent). The message sent is modelled as a prov:Activity (identi-

fied by var:message) that represents the invocation of the message’s operation (e.g.

the message enrolStudent is mapped to the prov:Activity showed in lines 2–3 of

Fig. 5). Additionally, when an object lifeline sends a message to another lifeline, a

new prov:wasAssociatedWith relationship is generated between the message iden-
tified by var:message, and the sender lifeline identified by var:lifeline (e.g. the
statement in line 6 of Fig. 5 shows this relationship).

Patterns SeqP2 and SeqP4 depict the communication between two lifelines
through a reply asynchronous/synchronous message with arguments. Each mes-
sage’s argument is modelled as a prov:Entity, identified by var:input... Addi-
tionally, to assert that the argument is a parameter of the request message,
the relationship prov:used links the message var:message and the argument

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used

UML2PROV: Automating Provenance Capture 673

Fig. 6. Patterns identified in SM diagrams

var:input... Focusing on the message m1 in Fig. 3, the argument st is translated
into the prov:Entity showed in line 4 of Fig. 5, together with the link between
the identifiers of both the argument and the message, shown in line 7.

SeqP4 additionally encompasses a reply message with an output argument.
Additionally, the output argument is modelled as a prov:Entity (identified by
var:output...) that was “generated” as part of the reply. Thus, the relationship
prov:wasGeneratedBy is created between the message identified by var:message

and the argument var:output... Regarding the reply message m4 in Fig. 3, the
output argument is translated into the prov:Entity showed in line 5 of Fig. 5,
while its relation with the message prov:Activity is shown in lines 8–9.

We note that in PROV two relationships of the form (B, prov:used, A) and (C,
prov:wasGeneratedBy, B) are usually enriched with (C, prov:wasDerivedFrom, A)
to express the dependency of C on A. This structure refers to a provenance con-
struction called Use-generate-derive triangle [16] which includes the three ele-
ments involved. SeqP4 in Fig. 4 depicts such a situation between the request’s
and the response’s arguments: when both request and reply messages have argu-
ments, we use the prov:wasDerivedFrom relationship. In line 10 of Fig. 5 we
reflect such a situation between the input and output arguments of enrolStudent.

4.2 From State Machine Diagrams to Templates

We now present the mapping from SM diagrams to provenance templates. Our
explanation is illustrated by using the StP1-StP6 patterns presented in Fig. 6
and the provenance template showed in Fig. 7, which depicts an extract of the
translation resulted from the case study’s SM diagram in Fig. 3.

SM Diagrams represent the evolution of an object using transitions between
states. In fact, among the patterns depicted in Fig. 6, we can identify four com-
mon UML elements shared by all of them. (1) The object whose behaviour
is modelled by the SM diagram is translated into a prov:Agent identified by
var:object (e.g. in line 1 of Fig. 7 the object Seminar whose behaviour is modelled
by the SM diagram in Fig. 3 is translated into a prov:Agent). (2) The object ’s
state machine is represented as a prov:Entity (identified by var:objectSMD).

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used,
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom,
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity

674 C. Sáenz-Adán et al.

Fig. 7. An extract of a template generated from the case study’s SM diagram.

Additionally, var:objectSMD is related to the object, identified by var:object,
using prov:wasAttributedTo relationship (e.g. the object ’s state machine of Fig. 3
is translated into the prov:Entity in line 2, which is associated with the cor-
responding object by means of line 11). (3) The event that triggers a state
change is translated into a prov:Activity identified by var:event (e.g. the event
enrolStudent is represented by the prov:Activity in lines 3–4 of Fig. 7). Finally,
(4) the state, simple or composite, which denotes the object ’s situation is mapped
to a prov:Entity identified by var:source, var:target or var:compState. For
example, the source state, the target state, and the composite state involved in the
transition t3 of Fig. 3 are translated into the prov:Entity showed in lines 5–6,
7–8, 9–10 of Fig. 7, respectively. To represent that the source state influences
the outcome of a transition, we adopt the prov:used relationship between the
source state identified by var:source and the event identified by var:event.

Additionally, to represent that the object is no longer in the source state, the
relationship prov:wasInvalidatedBy links the source state var:source and the
event var:event. Finally, to represent that the target state results from the trig-
gering of the transition, a prov:wasGeneratedBy relationship links the target
state var:target and the event var:event. For instance, focusing on the transi-
tion t3 in Fig. 3, the source state Enroling represented by a prov:Entity and the
event enrolStudent represented by a prov:Activity are linked by the relation-
ships prov:used and prov:wasInvalidtedBy depicted in lines 12 and 13 of Fig. 7.
In addition, the target state Enroling represented by a prov:Entity is related to
the event enrolStudent represented by a prov:Agent by means of the relationship
prov:wasGenereatedBy shown in line 14.

Although these patterns share the previous cited aspects, the complete trans-
lation of all the elements within a SM diagram depends on the particular nuances
such as the target/composite elements and the type of transition (internal or
external). Whenever the transition is not enclosed within a composite state
(StP1-StP3), its source and target states are related to the state machine, iden-
tified by var:objectSMD, through prov:specializationOf. In contrast, if the transi-
tion is enclosed within a composite state (StP4-StP6), its source and target states
(identified by var:source and var:target, respectively) are related to the compos-
ite state (identified by var:compState) through prov:hadMember. Additionally,
the composite state is related to the state machine using prov:specializationOf.
For instance, since the transition t3 in Fig. 3 is enclosed in a composite state, it
follows the pattern StP6. Thus, its source and target states are related to the

http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#specializationOf

UML2PROV: Automating Provenance Capture 675

composite state by the statements in lines 17 and 18 of Fig. 7, while the composite
state is linked to the state machine by line 16.

Finally, similarly to Sect. 4.1, StP3 and StP6 exploit the Use-generate-derive
triangle [16] among the source state var:source, the event var:event and the
target state var:target. Thus, we define a direct relationship between both the
var:source and the var:target by means of the prov:wasDerivedFrom relation-
ship, representing the fact that the target state is a consequence of the triggering
of the transition from the source state. In line 15 of Fig. 6 we reflect such a sit-
uation between the source and target states of transition t3.

5 Bindings Generation Strategy

As explained in Sect. 2, the PROV-Template approach takes a provenance tem-
plate together with a set of bindings as input of the template expansion process.
Such a process replaces variables in the provenance templates by real values in
the bindings, producing PROV documents. Obtaining the bindings becomes a
key focus of the runtime execution, requiring adaptation of existing application
code. Although a manual adaptation of the source code is a valid option to
extract bindings, software engineers would need to expend a great deal of effort
on traversing the overall application’s source code, and adding suitable instruc-
tions to generate the bindings structures. Thus, it would constitute a tedious,
time-consuming and error prone process. To avoid that, PROV2UML creates
bindings automatically by applying the Proxy Pattern [17], thus requiring minor
modifications, without obfuscating the existing code with new statements.

Briefly speaking, the Proxy Pattern provides a surrogate for another object
to control its behaviour. It is mainly intended to manage the access to objects’
methods, allowing us to modify their behaviour. This benefit has led to a wide
use of this pattern in, for example, Aspect-Oriented Programming (AOP)-based
frameworks. The Proxy Pattern is composed of the following four elements. (1)
The Subject Interface includes all the methods implemented by the Real Sub-
ject. (2) The Real Subject is the object whose behaviour we want to modify, must
implement the Subject Interface. (3) The Proxy element also implements the Sub-
ject Interface so that it can be used in any location where the Real Subject can be
used. The Proxy element maintains a reference to the Real Subject and executes
its own code before and after the Real Subject ’s usual execution. (4) The Client
element is in charge of invoking the Subject, which allows the Client to interact
with the Proxy as though it were the Real Subject. Thus, the Proxy constitutes
the intermediary between the Client and the Real Subject. This pattern helps
us collect suitable information to construct the bindings before and after the
usual execution of the objects’ methods. Harnessing the potential of this pattern
to generate the bindings has two main advantages: (1) we deal with the con-
cept of proxy independently of any programming language, and (2) this solution
is suitable for both already developed applications, and applications yet to be
developed. In particular, the Proxy element wraps the Real Subject allowing us to
extract provenance information for each method defined in the Subject Interface.

http://www.w3.org/ns/prov#wasDerivedFrom

676 C. Sáenz-Adán et al.

Fig. 8. Example of bindings collected from the method enrolStudent in Fig. 3

When a method is called, the Proxy intercepts the method invocation and gath-
ers concrete information about the system execution (e.g. time) and specific
information about the method (such as the parameters). We note that each cap-
tured value is directly related to a variable included in a provenance template
(e.g. var:message value is given by the name of the method).

In Fig. 8, we show an example of bindings in JSON format representing the
bindings captured when the transition t3 in Fig. 3 is triggered. More specifically,
it shows the bindings between several variables appearing in the provenance
templates of Fig. 7 and their corresponding values; for example, the variable
event is associated with the concrete value exe:enrolStudent 1.

6 Implementation

In this section, we discuss a reference implementation of UML2PROV in Java.
Regarding the translation of UML to provenance templates, we have chosen
Extensible Stylesheet Language Transformations (XSLT) [18] to implement the
patterns. More specifically, we have defined two XSLT transformation files, each
one tackling a type of diagram (Sq and SM diagrams). The diagrams are expected
to be encoded in XMI format, a standardized XML representation for UML
diagrams supported by mainstream UML designers such as UML 2 Eclipse plug-
in, Modelio [19] or Papyrus [20]. We use Papyrus which not only is able to
represent UML diagrams graphically, serialising them into XMI, but it is also
able to check OCL constraints on UML diagrams, that is, it allows us to verify
our OCL constraints on the source diagrams before applying UML2PROV. The
XMI files are taken as input by each XSLT transformation, which automatically
generates the corresponding provenance templates in PROV-N.

Aiming at generating bindings for Java applications, we provide a Java class
named as ProxyProvGenerator which relies on the java.lang.reflect package.
Basically, this class has a method which receives a subject object implementing its
corresponding subject interface and then, the method returns the subject object ’s
proxy. Such a proxy is created with all the bindings generation instructions
within. The ProxyProvGenerator is application independent since it is agnostic
about the subject object given. Providing the ProxyProvGenerator to the software
developer is enough to automatically generate a proxy for each subject object
with provenance capturing capabilities. Thus, this class constitutes the context-
independent component in the bindings generation module.

UML2PROV: Automating Provenance Capture 677

Fig. 9. Expanded PROV document

We have applied the UML2PROV implementation to the case study in Fig. 3
obtaining 3 and 6 templates from the Sq diagram and the SM diagram, respec-
tively (Figs. 5 and 7 show actual extracts of such provenance templates). Figure 9
depicts the PROV document generated from the set of bindings shown in Fig. 8
and the template from Fig. 7, by applying the template expander.

7 Quantitative Evaluation and Discussion

This section evaluates the strengths and weaknesses of UML2PROV. More
specifically, we have applied it to five case studies and analysed the results in the
light of several criteria pertaining to design time: (1) the number of generated
provenance template elements, (2) the time that took to generate the templates,
and (3) the amount of automatically generated code. As for runtime execution,
we discuss (4) how much provenance is being generated after expansion.

Table 1 depicts the results given by applying UML2PROV to the five case
studies, organized depending on the type of diagram. The first case study (CS1)
corresponds to the complete seminars’ system. The remainder case studies, which
have been selected from Internet because their diagrams are varied in size, are
associated to a water system (CS2), a system representing the Model-View-
Controller pattern (CS3), a phone call system (CS4), and an elevator system
(CS5). The relevant documents related to the case studies can be found on [15].

Regarding the analysis of (1) the number of provenance template elements
that are generated, and (2) the time that took to generate such templates,
we study the relation between the number of UML elements and the number
of PROV elements, as well as, the relation between the number of UML ele-
ments and the translation time taken. With this study we check the capability
of UML2PROV to handle the growing amount of UML elements and its poten-
tial to accommodate such a growth. In particular, we observe that the average
time (in Sq and SM diagrams) is significantly larger for the CS5 case study, but
likewise, the average size of generated PROV elements for this application is
larger. This confirms that the cost per UML element remains constant. To vali-
date this, we applied Pearson’s correlation test and obtained a ρ-value of 0.9978
(relating to Sq diagrams’ elements) and a ρ-value of 0.9713 (relating to SM dia-
grams’ elements) showing a strong correlation. Similarly, we have computed the
Pearson’s correlation coefficient to measure the strength of the linear association
between the number of source UML elements and the generated PROV elements,

678 C. Sáenz-Adán et al.

Table 1. Results obtained from the cases studies using a personal computer, Intel (R)
CoreRTM i7 CPU, 3.6GHz, with 16GB RAM, running Windows 10 Enterprise.

obtaining a ρ-value of 0.9660 (for Sq diagrams’ elements) and a ρ-value of 0.9996
(for SM diagrams’ elements), which demonstrates good performance results.

As for the code required to be created for bindings generation, as explained in
Sect. 5, UML2PROV only requires the Subject Interfaces to be created, which are
used together with the ProxyProvGenerator class. Since such interfaces are auto-
matically generated by UML2PROV from the source UML diagrams, software
developers do not have to develop them manually, and thus, they do not need to
write the number of lines of code presented in Table 1 (see column “Interf. code
lines”). Without using UML2PROV, software developers would have to write
additional code within the application to create bindings. Typically, for each
variable in a template, a method call is needed to assign a value to it, thus, a
developer would need to write one line of code for each variable in a template.
In our five case studies, although being relatively small, these number of lines
of code are presented in column “Var. Num.” in Table 1. With UML2PROV,
writing such code is not required, since the proxy constructs that automatically.

Finally, regarding the provenance obtained after expansion, we would like to
note that, in case of a repetitive cycle or sequence of actions in the Sq diagrams,
the number of PROV documents obtained after the expansion process grows
proportionally to the length of these cycles or sequences.

8 Related Work

Although provenance has been widely addressed from different perspectives
[21–24], to the best of our knowledge, it has been scarcely investigated from
the point of view of determining the provenance to be generated as software is
being designed. In contrast to our proposal, other works undertake the develop-
ment of provenance-aware systems by means of weaving provenance generation
instructions into programs, which makes code maintenance a cumbersome task.
Examples of these include PASS [25], which is a storage system which supports
the automatic collection and maintenance of provenance; PERM [3], which is
a provenance database middleware that enables provenance computation; and
finally, workflow systems such as Taverna [4], Vistrails [5] and Kepler [6] which
incorporate provenance capabilities into the workflow system.

UML2PROV: Automating Provenance Capture 679

Alternatively, there are different approaches that include provenance gen-
eration instructions into source code. For instance, Ghosal et al. [26] extract
provenance from log files, Cheney et al. [27,28] use statistic analysis to create
executables that produce provenance information, and Brauer et al. [29] use
an Aspect-Oriented Architecture to interweave aspects generating provenance.
This approach bears relationship with our work since, as discussed previously,
the Proxy Pattern used in our approach is widely applied in AOP. However,
UML2PROV not only gives a general solution to include provenance with min-
imum interferences with the original system, but it also addresses the design of
the provenance to be generated using PROV-Template [11].

Finally, it is worth mentioning the standalone methodology PrIMe [11]. It
could be said that UML2PROV complements PrIMe, since UML2PROV inte-
grates the design of provenance by means of PROV-Templates with the design
of applications using the well-known de-facto standard notation UML.

9 Conclusions and Future Work

Bridging the gap between application design and provenance design remains
an adoption hurdle for provenance technology. In this paper, we present
UML2PROV that addresses such a challenge for the particular case of Sq and
SM Diagrams, taken as design methodology, and PROV-Template, used as prove-
nance design. Our contributions are as follows: (i) a mapping of UML diagrams
to provenance templates, (ii) a code generation technique that creates libraries to
be linked with the application to generate provenance, and (iii) a demonstration
of the feasibility of UML2PROV by providing an implementation, and a pre-
liminary quantitative evaluation that shows significant benefits of the approach.
Our evaluation shows that our approach significantly reduces efforts in design
time, resulting in an increased productivity. The automated provenance capture
also provides clear benefits over the traditional approach of provenance capture,
showing the amount of code that software developers will need to write with-
out UML2PROV. The experiments also confirm that the approach is tractable,
requiring milliseconds for generating PROV templates.

Although our proposal takes into account two of the most used UML
behavioural diagrams, considering a wider number of UML elements, includ-
ing other kind of UML Diagrams (such as UML Activity Diagrams), and other
elements (such as SM Diagram’s pseudostates, not considered in our patterns) to
constitute a more complete provenance-aware methodology, is a line of further
work. Additionally, using a strategy based on, for example, UML stereotypes, to
monitoring only concrete messages, constitutes an interesting direction of further
work. We use XSLT as a first attempt to implement our patterns; other app-
roach of future work is to consider using a Model Driven Development (MDD)
tool chain based on MDD-based tools such as ATL [30] and XPand [31]. Finally,
performing a systematic quantitative evaluation of the approach and a study of
the quality of provenance being generated from a real situation (involving users,
designers or developers) constitute another line of future work.

680 C. Sáenz-Adán et al.

Acknowledgements. This work was partially supported by the spanish MINECO
project EDU2016-79838-P, and by the University of La Rioja (grant FPI-UR-2015).

References

1. Groth, P., Moreau, L. (eds.): PROV-Overview. An Overview of the PROV Family
of Documents. W3C Working Group Note NOTE-prov-overview-20130430, World
Wide Web Consortium, April 2013. http://www.w3.org/TR/2013/NOTE-prov-
overview-20130430/

2. Holland, D., Braun, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Choosing a data model and query language for provenance. In: Proceedings of
the International Provenance and Annotation Workshop, IPAW 2008, pp. 98–115
(2008)

3. Glavic, B., Alonso, G.: Perm: processing provenance and data on the same data
model through query rewriting. In: Proceedings of the 25th IEEE International
Conference on Data Engineering, ICDE 2009, pp. 174–185 (2009)

4. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The Taverna workflow
suite: designing and executing workflows of Web Services on the desktop, web or
in the cloud. Nucleic Acids Res. 41, 557–561 (2013). Oxford University Press

5. Silva, C.T., Anderson, E., Santos, E., Freire, J.: Using vistrails and provenance for
teaching scientific visualization. Comput. Graph. Forum 30(1), 75–84 (2011)

6. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006). https://doi.org/10.
1007/11890850 14

7. Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens,S.,
Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S.,
Myers, J., Sahoo, S., Tilmes, C. (eds.): PROV-DM: The PROV Data Model.
W3CRecommendation REC-prov-dm-20130430, World Wide Web Consortium
(2013). http://www.w3.org/TR/2013/REC-prov-dm-20130430/

8. Moreau, L., Missier, P., Cheney, J., Soiland-Reyes, S. (eds.): PROV-N: The Prove-
nance Notation. W3C Recommendation REC-prov-n-20130430, World Wide Web
Consortium, April 2013. http://www.w3.org/TR/2013/REC-prov-n-20130430/

9. A library for W3C Provenance Data Model supporting PROV-JSON, PROV-XML
and PROV-O (RDF), October 2017. https://pypi.python.org/pypi/prov. Accessed
Oct 2017

10. ProvToolbox: Java library to create and convert W3C PROV data model repre-
sentations. http://lucmoreau.github.io/ProvToolbox/. Accessed Oct 2017

11. Miles, S., Groth, P.T., Munroe, S., Moreau, L.: Prime: a methodology for devel-
oping provenance-aware applications. ACM Trans. Softw. Eng. Methodol. 20(3),
8:1–8:42 (2011)

12. OMG.: Unified Modeling Language (UML). Version 2.5 (2015). http://www.omg.
org/spec/UML/2.5/. Accessed 1 Mar 2015

13. Moreau, L., Batlajery, B.V., Huynh, T.D., Michaelides, D., Packer, H.: A tem-
plating system to generate provenance. IEEE Trans. Softw. Eng. (2017, in Press).
http://eprints.soton.ac.uk/405025/

14. OMG: Object Constraint Language, Version 2.4 (2014). http://www.omg.org/
spec/OCL/2.4/PDF. Accessed 3 Feb 2014

http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/11890850_14
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-n-20130430/
https://pypi.python.org/pypi/prov
http://lucmoreau.github.io/ProvToolbox/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://eprints.soton.ac.uk/405025/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF

UML2PROV: Automating Provenance Capture 681

15. Supplementary material of UML2PROV (October 2017). https://uml2prov.github.
io/. Accessed Oct 2017

16. Kwasnikowska, N., Moreau, L., Bussche, J.V.D.: A formal account of the open
provenance model. ACM Trans. Web 9(2), 10:1–10:44 (2015)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison Wesley, Boston (1995)

18. XSL Transformations (XSLT) Version 3.0: W3C Recommendation 8 June 2017,
February 2017. https://www.w3.org/TR/xslt-30/

19. Modelio, UML modeling tool: Version 3.6, February 2017. http://www.modeliosoft.
com/. Accessed Oct 2017

20. Papyrus, Modeling environment: Version 2.0.2 (Neon release), January 2017.
https://eclipse.org/papyrus/. Accessed Oct 2017

21. Tan, W.C.: Provenance in databases: past, current, and future. IEEE Data Eng.
Bull. 30(4), 3–12 (2007)

22. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and
opportunities. In: Proceedings of the 2008 ACM SIGMOD International Confer-
ence on Management of Data, MOD 2008, pp. 1345–1350. ACM, New York (2008)

23. Moreau, L.: The foundations for provenance on the Web. Found. Trends Web Sci.
2(2–3), 99–241 (2010)

24. Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance Techniques.
Technical report 612 Extended version of SIGMOD Record (2005). http://www.
cs.indiana.edu/pub/techreports/TR618.pdf

25. Glavic, B., Dittrich, K.R.: Data Provenance: A Categorization of Existing
Approaches. In: Proceedings of Datenbanksysteme in Büro, Technik und Wis-
senschaft, BTW 2007, pp. 227–241 (2007)

26. Ghoshal, D., Plale, B.: Provenance from log files: a bigdata problem. In: Proceed-
ings of the Joint EDBT/ICDT 2013 Workshops, pp. 290–297. ACM (2013)

27. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Math.
Struct. Comput. Sci. 21(6), 1301–1337 (2011). Cambridge University Press, Cam-
bridge

28. Cheney, J.: Program slicing and data provenance. IEEE Data Eng. Bull. 30(4),
22–28 (2007)

29. Brauer, P.C., Fittkau, F., Hasselbring, W.: The aspect-oriented architecture of
the CAPS framework for capturing, analyzing and archiving provenance data. In:
Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 223–225. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16462-5 19

30. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MODELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006).
https://doi.org/10.1007/11663430 14

31. XPand: Eclipse platform (2017). https://wiki.eclipse.org/Xpand. Accessed Oct
2017

https://uml2prov.github.io/
https://uml2prov.github.io/
https://www.w3.org/TR/xslt-30/
http://www.modeliosoft.com/
http://www.modeliosoft.com/
https://eclipse.org/papyrus/
http://www.cs.indiana.edu/pub/techreports/TR618.pdf
http://www.cs.indiana.edu/pub/techreports/TR618.pdf
https://doi.org/10.1007/978-3-319-16462-5_19
https://doi.org/10.1007/11663430_14
https://wiki.eclipse.org/Xpand

Validating Data from Semantic Web Providers

Jacques Chabin1, Mirian Halfeld-Ferrari1, Béatrice Markhoff2,
and Thanh Binh Nguyen1(B)

1 Université d’Orléans, INSA CVL, LIFO, Orléans, France
binh@univ-orleans.fr

2 Université Francois Rabelais de Tours, LI, Tours, France

Abstract. As the Linked Open Data and the number of semantic web
data providers hugely increase, so does the critical importance of the
following question: how to get usable results, in particular for data mining
and data analysis tasks? We propose a query framework equiped with
integrity constraints that the user wants to be verified on the results
coming from semantic web data providers. We precise the syntax and
semantics of those user quality constraints. We give algorithms for their
dynamic verification during the query computation, we evaluate their
performance with experimental results, and discuss related works.

Keywords: Semantic web data · User quality constraint
Query rewriting

1 Introduction

There exist now very large knowledge bases on the web of Linked Open Data,
as DBpedia, Yago or BabelNet. The largest ones contain millions of entities and
billions of facts about them (attribute values and relationships with other enti-
ties) [20]. Applications are needed to help humans exploring this huge knowledge
network, performing data analysis and data mining tasks. Promising recent pro-
posals are currently experimented on only one semantic web data source [7,10],
and these processes can be expected to be even more helpful when they will
deal with several linked open data sets. One crucial point for such applications,
and in particular for data mining algorithms, is that the data collection and
pre-processing steps have to be safe and sound.

In order to help semantic web data mining tool designers for performing
the data collection and pre-processing steps, we propose a semantic web data
validator [4]. The idea is to extend a query environment over semantic graph
databases with a mechanism for filtering answers according to a user customized
context. In this paper, we use the term “user” for the query-writer. The user
context is composed of (i) the view she/he has defined on the needed semantic
web data and (ii) a set of personalization tools, such as integrity constraints,
confidence degrees, etc. In this paper, we only deal with integrity constraints,

This work is supported by Girafon Project, funded by Region Centre Val de Loire.

c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 682–695, 2018.
https://doi.org/10.1007/978-3-319-73117-9_48

Validating Data from Semantic Web Providers 683

that we call user quality constraints, leaving the other kinds of personalization
tools for other discussions (see [4,6]).

User quality constraints are restrictions imposed on query results. Both the
constraints and the queries are expressed in terms of the user’s view of data.
The constraint verification is triggered by a query and consists in filtering its
answers. In this way, there may be some inconsistencies within sources, but the
answers given to the user are filtered to ensure their consistency w.r.t. her/his
constraints. The following example illustrates the kind of constraints a user can
define and what are their effects on query answers.

Example 1. Let us consider a query q1(X) ← teacherOf(X,Y) in a context with
two constraints:

cp : teacherOf(X,Y) → professor(X).

cn : teacherOf(X,Y), takesCourse(X,Y) → ⊥.

The first constraint is to verify that each teacher of a course is a professor. The
second constraint disallows to accept, in the query answers, a person who teaches
a course while she/he is enrolled in the same course. Suppose the database is as in
Fig. 1. Although {Bob, Tom,Alice,Ann} are answers to query q1, {Alice,Ann}
are invalid w.r.t. cp, while {Tom} causes a violation of constraint cn. Only {Bob}
satisfies all constraints. Thus, the answer to q1 in the user context consisting of
{cp, cn} is {Bob}.

teacherOf(Bob, DB) professor(Bob)
teacherOf(Bob, Java) professor(Tom)
teacherOf(Tom, Java) takesCourse(Tom, Java)
teacherOf(Alice, DB) takesCourse(Bob, Java)
teacherOf(Ann, DB) reasearchesIn(Ann, DB)

reasearchesIn(Bob, DB)

Fig. 1. Database instance

From Example 1, it can be noticed
that when a constraint is trig-
gered by instantiated atoms in
the query’s body, it requires aux-
iliary appropriate queries to ver-
ify its side effect. For instance,
the fact teacherOf(Bob,DB) trig-
gers both cp and cn, thus queries like
q11() ← professor(Bob) and q12() ←
takesCourse(Bob,DB) are produced
to verify whether Bob is a professor and whether Bob is registered in the
Database course. It is easy to see that, when dealing with a big amount of
data, the impact of such auxiliary queries may be important. Even though most
of them are simple queries, they can lead to a system overloading. A solution
to avoid such issue is to integrate as much as possible the constraints into the
query, in such a way that the answers will not only satisfy the initial query, but
they will also respect all integrated constraints.

This paper is organized as follows: in Sect. 2, we present the overall query
framework with user context, and precise the syntax and semantics of user qual-
ity constraints. In Sect. 3 we give algorithms for their dynamic verification during
the query computation. In Sect. 4 we evaluate their performance with experimen-
tal results, and discuss related works.

684 J. Chabin et al.

2 A Querying Framework with Constraints

2.1 Querying Environment

Fig. 2. Query system overview

Our query processing framework
is depicted in Fig. 2. It comprises
two distinct parts which commu-
nicate: Data validation, responsi-
ble for checking constraints satisfac-
tion, and Data providers for com-
puting answers to the queries issued
from the data validation part. The
later may actually integrate several
end-data-providers, or it may con-
nect only one provider. For ensuring
that the final answers to the user’s
queries satisfy all user constraints,
a dialogue between the two parts
is established, for getting interme-
diate results and sending subsidiary
queries.

The user defines her/his con-
text by setting her/his view on the
queried sources, a set of datalog
predicates as explained in next section, and a set of quality constraints involv-
ing these predicates. The user’s query involves these predicates, so quality con-
straints can be used as rewriting-rules to reformulate each query q, resulting in
a union of conjunctive queries whose answers, contained in q’s answers, are valid
w.r.t. the user quality constraints.

Afterwards, these conjunctive queries are sent to the Data providers part,
which evaluates them against data stored on sources. The query evaluation pro-
cess is transparent to the validation step, in particular, answers that are entailed
are treated in the same way as those that actually exist in sources. We respect
the potential ontological dimension of semantic web sources, while interpreting
the user constraints using the closed-world assumption. Indeed, as it deals with
semantic data, the evaluating process performed by the Data providers part relies
on the open-world assumption, where ontological constraints are used to deduce
new information. Ontological constraints are used as rewriting-rules to reformu-
late a query into a set of new conjunctive queries, for taking into account integra-
tion information (OBDA/OBDI Systems [3,18]), or for dealing with incomplete
information issues [3,11,12,15]. But such rewritings are performed by the Data
providers part, independently from the Data validation part.

Our system may be deployed with various data management systems by using
a module that translates datalog+− queries [5] (used by Graal1) into SPARQL
for FedX [19], and HIVE-SQL for MapReduce (as proposed in [4]).
1 https://graphik-team.github.io/graal/.

https://graphik-team.github.io/graal/

Validating Data from Semantic Web Providers 685

2.2 Constraints

Our constraints are expressed in a first-order logic formalism. We consider an
alphabet made up of three disjoint sets const, var and pred, of constants, variables
and predicate names, respectively. A term t is either a variable or a constant and
an atom is a formula p(x1, x2, . . . , xn) where p is a predicate name and each xi

is a term. A substitution is a total mapping σ : var → T from variables to terms.
A homomorphism from a set of atoms A1 to a set of atoms A2, all over the same
schema R, is a substitution h from the set of terms of A1 to the set of terms of
A2 such that: (i) if t is a constant, then h(t) = t, and (ii) if r(t1, ..., tn) is in A1,
then h(r(t1, ..., tn)) = r(h(t1), ..., h(tn)) is in A2. The notion of homomorphism
naturally extends to conjunctions of atoms. Two atoms A1 and A2 are unifiable
if and only if there exists a substitution σ s.t. σ(A1) = σ(A2). Furthermore,
if two atoms A1 and A2 are unifiable then there exists a most general unifier
(mgu) θ s.t. θ(A1) = θ(A2).

A conjunctive query (CQ) q of arity n over a given schema is a logical rule
of the form q(X) ← φ(X,Y), where φ(X,Y) is a conjunction of atoms over the
schema, q is a n-ary predicate and X,Y are sequences of terms. Given a logical
rule r, we denote by body(r) the rule’s antecedent by head(r) its consequent.

Our user quality constraints [4] are also logical rules. We define a user context
as a set Cof constraints, composed of three subsets, as follows:

Positive constraints (CP): Each positive constraint has the form
∀X,Y L1(X,Y) → ∃Z L2(X,Z)

L1(X,Y) and L2(X,Z) are atoms and Z are existential variables.

Negative constraints (CN): Each negative constraint is a rule having the form

∀X φ(X) → ⊥
where φ(X) is an atom L1(X) or a conjunction of two atoms L1(X1), L2(X2),
which have a non-empty intersection between the terms in X1 and X2. We refer
to CN1 and CN2 as sets of negative constraints having only one atom and two
atoms, respectively. Negative constraint is a special case of denial constraint with
at most two occurrences of database literals.

Equality-generating dependency constraints without nulls (CK): each
EGD is a rule having the general form

∀X1,X2,Y,Z1,Z2 L1(Y,X1,Z1), L2(Y,X2,Z2) → X1 = X2.

where Y is a sequence of common terms of L1 and L2 that has at least one
element. Notice that EGD include functional dependency (and thus, key con-
straints) having the form L1(Y,X1,Z1), L1(Y,X2,Z2) → X1 = X2.

In the rest of this paper, for simplicity, we will omit the quantifiers. We say
that a constraint c is triggered by an atom A when there is a homomorphism h
from body(c) to A. Positive constraints are a special case of linear tuple generat-
ing dependency (TGD [2]) which contain only one atom in the head. When Z is
not empty, the homomorphism h is extended to h′ such that, for each existential
variable z ∈ Z, h′(z) is a new fresh variable. It is well-known that facts from a
database instance may trigger such constraints, and the chase procedure [17] is

686 J. Chabin et al.

the standard process for the generation of new facts from a database instance
and a set of dependencies (TGD or EGD) [2]. It can also be used to decide
containment of conjunctive queries in the presence of constraints [14]. In this
paper, we consider that the set of positive constraints is weakly acyclic, which
guarantees the decidability of query containment [9]. In Example 1, cp and cn
are illustrations for the definitions of positive and negative constraints above.
An example of EGD constraints can be as follows:

ck : worksFor(X,Y,Z), headOf(X,W) → Z = W.

It states that if a person X is the head of W and if she is working for organization
Y in department Z then W must be the department Z.

3 Validating Semantic Web Query Outputs

Given a user’s query q, the validation of its result on the basis of user’s qual-
ity constraints in Ccan be performed in two ways: by rewriting q to take into
account the constraints in C, or by the evaluation of auxiliary queries, composed
on the basis of initial results obtained for q. Even if the choice between these two
processes depends on the query evaluation power of data providers, it is impor-
tant to study their costs and benefits in a common framework. To do so, in this
paper, we use Graal [1] as conjunctive query evaluator for both techniques. More
precisely, we focus on testing and comparing the performance of our validation
approach in the following two scenarios: (1) the rewriting of q on the basis of
constraints in C, followed by the rewritten-query evaluation, and (2) what we
call the naive solution, i.e. evaluate q, then build and evaluate multiple auxiliary
queries on the basis of q’s answers. This section summarizes these two scenarios,
and in Sect. 4 we analyse in details their respective validation performance.

3.1 Query Rewriting with Constraints

Given a CQ q and a set of constraints C, let us consider examples to illustrate
the situations our query rewriting algorithm tackles with.

Example 2. Query q1 below looks for professors who were born in a foreign coun-
try. Constraints establish a user’s context imposing a professor to be associated
with a course (cpa

) offered by a department (cpb
). Moreover, the user is interested

only in professors working in the public sector (cpc
).

q1(X1) ← professor(X1), placeOfBirth(X1, Z1), foreignCountry(Z1).

cpa
: professor(X) → teacherOf(X,Y).

cpb
: teacherOf(X,Y) → offeredCourseIn(Y,Z).

cpc
: professor(X) → employeeGov(X).

In this context, we see body(q1) as a set of atoms capable of triggering constraints
and producing new atoms that should be added to the query’s body. This oper-
ation corresponds to a chase computation [17], which starts with the atoms in
body(q1). Special attention is required in the use of variable renaming. The new
rewritten query, that the system should send to data providers, is:

Validating Data from Semantic Web Providers 687

q′
1(X1) ←professor(X1), teacherOf(X1, Y1), offeredCourseIn(Y1, Y2),

employeeGov(X1), placeOfBirth(X1, Z1), foreignCountry(Z1). �

When the query, or the constraints, contain constants, the above rewriting
technique should be revised, as illustrated by the following example.

Example 3. Consider query q2, and constraint cp2 imposing restrictions on
database teachers - they should do research in the database domain:

q2(X) ← teacherOf(X,Y).
cp2 : teacherOf(Z,DB) → researchesIn(Z,DB).

Notice that no restriction is imposed on teachers in other domains. Here
we cannot apply the chase as in Example 2, because a query q′

2(X) ←
teacherOf(X,DB), researchesIn(Z,DB) would ignore the teachers of all other
domains. In this case, our proposal is to replace q2 by the union of the two fol-
lowing queries:

q2.1(X) ← teacherOf(X,Y),¬teacherOf(X,DB).
q2.2(X) ← teacherOf(X,Y), teacherOf(X,DB), researchesIn(X,DB). �

Algorithm 1 summarizes our rewriting solution. In this algorithm the input is
composed of a conjunctive query, and positive and negative constraints. However,
negative constraints in CN2, i.e., those having the form L1(X1), L2(X2) → ⊥ are
transformed into two equivalent formulas: L1(X1) → ¬L2(X2) and L2(X2) →
¬L1(X1). In this way, negative constraints receive a similar treatment as positive
constraints. For instance, from Example 1, the constraint cn can be written as
cn1 : teacherOf(X,Y) → ¬takesCourse(X,Y) and cn2 : takesCourse(X,Y) →
¬teacherOf(X,Y). Query q1 is then rewritten as q1(X) ← teacherOf(X,Y),
¬takesCourse(X,Y).

In Algorithm 1, Function RewriteWithConstraints is the main program, which
ensures that each query is rewritten by taking into account all positive and
negative constraints in C. It calls Function Integrate, the kernel of our rewriting
method, which computes the new queries that replace the given query q, by
integrating in q the restrictions imposed by the given constraint c.

The instantiation of constraints w.r.t. the atoms L in q’s body is done on
line 15 by using a mgu θ, and c′ is the resulting constraint, instantiated with
constants in q. Then, on line 18, we consider the cases where c′ can be triggered
by L. This happens when θ is a variable renaming, or, when it replaces variable
in c by constants in L (afterwards, there may still exists a homomorphism ν
from body(c′) to L). For instance, consider query q3 and constraint c3 as follows:

q3(X) ← professor(Bob), teacherOf(Bob,X)
c3 : professor(X) → inDept(X,Y)

With L = professor(Bob) and θ = {X/Bob}, we obtain c′
3 : professor(Bob) →

inDept(Bob, Y1), where Y1 is a new variable resulting from variable renam-
ing performed by createRule (line 19). Similarly, in Example 2, for L =
professor(X1) and θ = {X/X1} we obtain c′

pa
: professor(X1) →

teacherOf(X1, Y1).

688 J. Chabin et al.

When the homomorphism ν exists, the query’s body is completed with the
head of c′ (line 19). The loop on line 5 ensures that the query’s body will be
completed with all the atoms obtained by triggered constraints. Notice that
the idea here is to use a chase procedure applied to rules that respect some
syntactic restrictions. Indeed, our current implementation deals with a set of
weakly acyclic TGD [9]. Roughly, a set of TGD is acyclic if it does not allow
for cascading of labelled null creation during the chase. Example 2 illustrates a
rewritten query obtained by following the above steps.

Algorithm 1. RewriteWithConstraint

Input: A conjunctive query q and a set of constraints C = CP ∪ CN

Output: A set of queries Q s.t. each q′ ∈ Q does not contain explicit
contradictions and the answers of q′ respect CP ∪ CN . Notice that we
can get Q = ∅ as output.

1 Function RewriteWithConstraint(q, C):
2 Q = {q};
3 repeat
4 hasChanged = false;
5 foreach c ∈ C do
6 foreach q ∈ Q do
7 Q′ = Integrate(q, c);
8 if (|Q′| = 1 and q′ ∈ Q′ is more restricted than q) or (|Q′| > 1)

then
9 Q = Q\{q} ∪ Q′;

10 hasChanged = true;

11 until not hasChanged ;
12 return Q;

13 Function Integrate(q, c):
14 Q′ = {q};
15 foreach L ∈ body(q) s.t. ∃mgu θ : θ(L) = θ(body(c)) and not tested(L, c)

do
16 c′ = createRule(θ(head(c)), θ(body(c)));
17 foreach q′ ∈ Q′ do
18 if ∃ homomorphism ν from body(c′) to L then
19 q1 = createRule(head(q′), body(q′) ∧ ν(head(c′))) ;
20 Q′′ = {q1} ;

21 else
22 q1 = createRule(head(q′), body(q′) ∧ ¬θ(body(c′))) ;
23 q2 = createRule(head(q′), body(q′) ∧ θ(body(c′)) ∧ θ(head(c′)));
24 Q′′ = {q1, q2};

25 Q′′ = Simplify V erify(Q′′);

26 if (|Q′′| = 1 and q′′ ∈ Q′′ is more restricted than q′) or (|Q′′| > 1) then
27 Q′ = Q′\{q′} ∪ Q′′;

28 markTested(L,c);
29 //Mark L as already tested w.r.t. c, i.e. tested(L, c) = true

30 return Q’;

Validating Data from Semantic Web Providers 689

When the homomorphism ν does not exist, we are dealing with constants that
cannot map to variables or with different constants. Let us consider Example 3,
after executing line 15 of Algorithm1 with L = teacherOf(X,Y). We have
c′
p2 : teacherOf(Z,DB) → researchesIn(Z,DB) (no changes w.r.t. cp2). No

homomorphism from body(c′) to L is possible. Line 22 deals with results that
are not concerned by the constraint. In this case, the query body is completed
with the negation of the constraint’s body. Thus, in our Example 3, q2.1 selects
people who do not teach DB. With the database instance of Fig. 1, the answer for
q2.1 is Tom. Then, on line 23, we deal with results concerned by the constraint. In
Example 3, q2.2 selects two kinds of people: (i) those who are database researchers
and only teach DB and (ii) those who teach and do research in the database
domain but also teach other subjects. Continuing with our example, the desired
answers for q2 are Bob, Ann and Tom. With our algorithm, Bob and Ann are
not answers for q2.1, but they are answers to q2.2. The result of q2 is the union
of the answers for q2.1 and q2.2.

Rewritten queries, put in the set Q′′, are sent to function Simplify Verify
(line 25) that, for each query, removes redundant atoms. This function also
ensures that Q′′ does not contain queries with explicit contradiction. In other
words, the function checks whether: (i) there is no two atoms having the form
L(X) and ¬L(X) in the query body and (ii) atoms in the query body cannot
trigger a negative constraint.

We use query containment (see, for instance [2] for a revision on the subject)
to decide whether a rewritten query replaces a given one. On line 27, notice that
at each iteration step, the set Q′ contains the most restricted rewritten queries
obtained so far. Each iteration step considers an atom in the query body and
one single constraint. The output of the Integrate function is the set Q′, which
contains the most restricted rewritten queries obtained for one query w.r.t. one
constraint c. Then, on line 9, the replacement of the original query q is considered.
If only one query q′ results from Integrate, q is replaced by q′ only when q′ is
more restricted than q. Otherwise, when more than one rewritten queries result
from Integrate, q is replaced by them.

The query obtained after only chasing the original query w.r.t. positive con-
straints corresponds to the universal plan of [8]. However, when dealing with
negative constraints, even when Integrate performs only lines 17–20 to rewrite a
given query, the rewritten query may contain negative atoms.

3.2 Building Auxiliary Queries

Given a query q, to ensure its answer consistency w.r.t. user’s quality constraints,
instead of dealing with query rewriting, one can consider the generation of sub-
queries from the initial answers obtained from q. Let ht be the homomorphism
used to produce tuple t as an answer to the query q. We want to check whether
t is valid w.r.t. constraints. Tuple t is considered valid only when all constraints
triggered during the validation process are satisfied.

Let L(X) be an atom of body(q). The instantiated atom ht(L(X)) may trigger
a constraint c. According to the type of c, an auxiliary query q′ is created:

690 J. Chabin et al.

– For c ∈ CP the auxiliary boolean query is q′() ← ht(L0(X0)) where
L0(X0) = head(c). The resulting tuple t is valid w.r.t. c if the answer of q′ is
positive. Notice however that each fact f resulting from the instantiation of
ht(L0(X0)) on the database may trigger another constraint. The validation
process continues until no constraint is triggered and corresponds to a chase
procedure, establishing a dialogue between the validator and the providers.

– For c ∈ CN and assuming that c has the form L(X), L0(X0) → ⊥ the auxiliary
boolean query is q′() ← ht(L0(X0)). Tuple t is valid w.r.t. c if the answer
of q′ is negative. Clearly, if c has the form L(X) → ⊥, the verification is
straightforward.

– For c ∈ CK , assuming that c has form L(Y,X1,Z1), L0(Y, X2,Z2) → X1 =
X2 and X = Y∪X1 ∪Z1, the auxiliary query is q′(X2) ← ht(L0(Y,X2, Z2)).
Tuple t is valid w.r.t. c if the answer set is a singleton containing the tuple
value ht(X1).

3.3 Complete Validation

Finally, Algorithm2 is responsible for validating the result of a query q w.r.t.
a set of constraints C. Algorithm 1 rewrites the query only w.r.t. positive and
negative constraints. Then it must be completed by the generation of auxiliary
queries, from the answers of the rewritten queries, at least for dealing with EGD
constraints in C. On line 2 of Algorithm2, Function RewriteWithConstraint
returns a set Q of rewritten queries. Afterwards, Function Eval evaluates all
queries in Q (line 3), and answers are stored in the set Solutions. On line 5,
Ccheck is the set of the constraints which are not addressed by Algorithm1.
Function Valid verifies whether an answer sol is valid w.r.t. Ccheck by generating
corresponding auxiliary queries, as sketched in Sect. 3.2.

Algorithm 2.
Input: A conjunctive query q and a set of constraints C.
Output: Answers of q respecting C.

1 AnsSet = ∅;
2 Q = RewriteWithConstraint(q, C);
3 Solutions = Eval(Q);
4 Cache = CreateCache();
5 Ccheck = remainingConstraints(C);
6 foreach sol ∈ Solutions where sol = (t, ht) do
7 if Valid(sol, Ccheck,Cache) then
8 AnsSet := AnsSet ∪ {t};

9 return AnsSet;

4 Experimental Results and Related Works

Our main goal is to compare the overall performance between (i) our first sce-
nario, i.e. the query rewriting approach performed by Algorithm2 when only the

Validating Data from Semantic Web Providers 691

EGD constraints are not considered by Function RewriteWithConstraint, and
(ii) our second scenario, the naive approach, performed by Algorithm2 when
Function RewriteWithConstraint is simply not applied. Both approaches com-
pute the same valid answers (whose number is given in column 5 and 6 in
Table 1(a) for the given conjunctive query, i.e. answers that satisfy the given
set of quality constraints. Another important goal of experiments is to analyze
features that affect the computation efficiency, such as the size of datasets, the
size of queries, the number and type of constraints, etc.

Table 1. Rewriting approach

Trig.
cons.

Num.Rew.Que. Max num.
atoms

Valid answers
w.opt. wo.opt. 1 univ. 5 univ.

Q1 4 1 4 7 523 3331
Q2 1 1 1 2 7861 36682
Q3 2 2 2 5 3599 23749
Q4 0 1 1 2 10735 67702
Q5 6 6 8 14 50 59
Q6 8 2 8 13 6631 36538
Q7 6 2 8 13 21 220

(a) Queries and Rewritten Queries

1 university 5 universities
RewTime EvalTime Total EvalTime Total

Q1 0.043 0.372 0.415 0.492 0.535
Q2 0.001 0.429 0.430 6.388 6.389
Q3 0.007 0.124 0.131 0.804 0.811
Q4 0 0.111 0.111 0.692 0.692
Q5 0.048 0.702 0.75 0.773 0.821
Q6 0.011 20.522 20.533 122.285 122.296
Q7 0.01 3.193 3.203 162.105 162.115

(b) Rewriting, Evaluation-Verification (s)

Table 2. Evaluation and verification in the Naive approach (s)

1 university 5 universities
Eval. Verif. Total Init.ans. Num.Que. Eval. Verif. Total Init.ans. Num.Que.

Q1 0.965 1.172 2.137 1548 2072 1.191 7.14 8.331 10095 13426
Q2 0.153 49.952 50.105 7861 7861 1.038 t/o t/o 36682 -
Q3 0.041 1.515 1.556 3599 3599 2.59 10.709 13.299 23749 23749
Q4 0.026 0.072 0.098 10735 0 0.166 0.43 0.596 67702 0
Q5 0.227 1.704 1.931 50 200 0.735 1.363 2.098 59 236
Q6 9.205 57.948 67.153 6631 39786 16.108 t/o t/o 36538 -
Q7 4.772 0.535 5.307 96 159 292.216 0.712 292.928 645 1305

We performed experiments using a HP ZBook laptop equipped with a quad-
core Intel i7-4800MQ processors at 2.7 GHz and 16 Gb of RAM. We developed
Java programs using Graal, a Java toolkit dedicated to knowledge-base query-
ing within the framework of existential rules (e.g. Datalog+−). We used the
LUBM2 benchmark, which describes the organizational structure of universi-
ties with 43 classes and 32 properties, and provides a generator of synthetic
data with varying size. For analyzing the impact of the size of databases on
the tested solutions, we created two versions of datasets containing data of 1
and 5 universities, containing 86, 165 and 515, 064 triples, respectively. These
datasets are loaded and managed directly by Graal, which converts them from
RDF/XML to Dlgp, its supported data format. Inspired by the 14 test queries
of LUBM, we devised 7 queries and 12 constraints written in Dlgp (4 positive,

2 Lehigh University: http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/

692 J. Chabin et al.

5 negative, and 3 keys)3. The queries spread from simple queries with few atoms
(Q1, Q2) to more complex queries (Q6, Q7), and may contain constants (Q5).
Some constraints also involve constants (Cp2, Cp3, Cp4). Column 1 in Table 1(a)
contains the number of constraints triggered by each query. The second and third
columns present the number of rewritten queries either applying the simplifica-
tion query-containment test (Function Simplify V erify), or not. Theoretically,
a query that involves n constraints can be rewritten into 2n reformulations in the
worst case. Experimental results show that in some cases (Q1, Q6, Q7), Func-
tion Simplify V erify significantly reduces the number of rewritings. Column 4
shows the maximum number of atoms in rewritten queries, which demonstrates
that the more constraints are used in the rewriting procedure, the more complex
are the rewritings (number atoms or joins).

We now turn our attention to the time of rewriting and complete evaluation-
verification, reported in Table 1(b), which contains the following information:
(i) the time needed for rewriting, indicated in Column RewTime; (ii) the time
needed for evaluating all queries obtained from the rewriting step, shown in col-
umn EvalT ime, for the two tested datasets; (iii) the total time for performing
these two steps (Column Total). Rewritings are very fast and the evaluation
time is clearly the major part in the total time, in all cases. Furthermore, the
evaluation time is directly proportional to the size of the tested dataset. More-
over, the rewritten-query complexity affects the evaluation time, for instance,
Q6 and Q7 have 13 atoms in their body and their evaluation times on 5 uni-
versities are the biggest ones. Interestingly, Q5 has 14 atoms and does not need
so much time for the evaluation. The reason is that Q5 contains a constant,
which highly reduces its querying space. In summary, these first experiments
demonstrate how the dataset size, the query complexity, the number of involved
constraints and the presence of constants in initial and rewritten queries, impact
the overall time of the rewriting-and-evaluating approach for processing a query
with user-constraints.

Concerning now the experimental results for the naive approach, shown in
Table 2, we have, for each dataset: (i) the time needed for evaluating the initial
query in Column Eval.; (ii) the time necessary for generating and executing
auxiliary queries to verify all answers obtained from the previous evaluation step,
in Column V erif.; (iii) the overall processing time in Column Total. (iv) the
number of answers before constraint verification in Column Init.Ans.; and (v)
the number of auxiliary queries generated, in Column Num. Queries. Naturally,
the dataset size has a similar effect as in the rewriting approach. However, the
number of generated auxiliary queries plays an even more significant role in the
total processing time. Intuitively, this number depends (i) on the size of the initial
answer set and (ii) on the number of involved constraints. We can notice that,
contrary to the rewriting approach, the complexity of the query has little effects
on the total execution time in the naive approach. See, for instance, Q6 and Q7
which have similar complexity. However, Q6 has many answers, provoking the

3 Details in the technical report: http://www.univ-orleans.fr/lifo/rapports.php?
annee=2017.

http://www.univ-orleans.fr/lifo/rapports.php?annee=2017
http://www.univ-orleans.fr/lifo/rapports.php?annee=2017

Validating Data from Semantic Web Providers 693

generation of many sub-queries. Indeed, the verification step is carried out by
generating simple sub-queries for each answer w.r.t. each constraint.

Perhaps one of the most meaningful observation provided by our experiments
is that, when the dataset size increases, the rewriting approach is clearly far more
efficient than the naive approach. This is specially the case when the initial query
gives a large number of answers, no matter if it is a simple or a complex query,
and these answers trigger a lot of constraints: Q2 and Q6 are typical examples
of such cases, which induce a time-out for 5 universities. For Q4, which triggers
no constraint, the naive approach is better or similar to the rewriting one.

Related Works. We already mentioned the main works related to our proposal
in Sect. 2.1. Firstly, ontological-constraints-based query-rewritings in Ontology-
Based Data Access (OBDA) systems [3,18] and rewritings in incomplete informa-
tion querying systems [11,12,15] inspired our solution. In [16] we also find differ-
ent semantics for query answering over inconsistent Datalog± ontologies. Their
goal is to propose corrections to the database, while ours is to avoid answering
on the basis of inconsistent data. Indeed, we designed our solution with tradi-
tional database constraints that must be verified, while in those works ontological
constraints are seen as inference rules. Our user constraints allows us to verify
answer sets and eleminate those answers that do not comply with the user needs.
For instance, coming back to cp given in Introduction, which enforces that all
person who teaches is a professor, the answer teacherOf(Bob,DB) is valid only
if professor(Bob) is true in the provided answers, i.e. the fact professor(Bob)
is not inferred from the user constraints.

For this reason, our rewriting algorithm is based on traditional results in the
database domain already cited in Sect. 2.2 [2,14,17]. We are currently studying
to what extent our proposed user-context is covered by the traditional frame-
work of answering queries using views, for which a general rewriting algorithm is
presented in [8], and further improved in [13]. We already mentioned this algo-
rithm, called C & B for its two phases (Chase and BackChase), at the end of
Sect. 3.1. It first constructs a canonical rewriting called UniversalP lan by using
TGDs rules, which play the same role as our positive constraints, and then it
searches minimal reformulations among the candidates in the UniversalP lan,
using EGDs rules. But how it could apply to our context is not obvious, because
we already mentioned that, in general, the Chase can not be directly used with
constraints containing constants, excepted when there exists a homomorphism
from the constraint’s atoms to the query’s atom (see Lines 17–20 in Algorithm 1).

5 Conclusion

We presented a solution for validating a set of user quality constraints when
performing query evaluation, in the semantic web context. A naive way to verify
them is to generate auxiliary queries after having got the result set from the
evaluation of the user query. Our experiments have put in evidence that these
auxiliary queries, generally simple but performed on huge data sets, sometimes
lead to overload the system. Integrating as much as possible the constraints into

694 J. Chabin et al.

the original user query can help to overcome this drawback. We presented an
algorithm for such a constraint-query integration, and provided experimental
results that demonstrate its benefits regarding total query-with-constraints pro-
cessing time. Both techniques are correct and complete. In other words, given
the query Q and the constraints C, (i) there is no answer to Q that satisfies C,
but is not in the answer set of both methods (completeness); (ii) all the answers
produced by both algorithms are answers to Q that respect C (correction). Our
immediate future works will concern extending our experiments to take into
account the data provider features and capabilities (e.g. not all of them can
evaluate complex queries).

References

1. Graal. https://graphik-team.github.io/graal/
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-

Wesley, Reading (1995)
3. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.-C., Senellart, P.: Web Data

Management. Cambridge University Press, New York (2011)
4. Bamha, M., Chabin, J., Halfeld-Ferrari, M., Markhoff, B., Nguyen, T.B.: Personal-

ized environment for querying semantic knowledge graphs: a mapreduce solution.
Technical report, LIFO- Université d’Orléans, RR-2017-06 (2017)

5. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

6. Chabin, J., Halfeld-Ferrari, M., Nguyen, T.B.: Querying semantic graph databases
in view of constraints and provenance. Technical report, LIFO- Université
d’Orléans, RR-2016-02 (2016)

7. d’Amato, C., Tettamanzi, A.G.B., Minh, T.D.: Evolutionary discovery of multi-
relational association rules from ontological knowledge bases. In: Blomqvist, E.,
Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024,
pp. 113–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5 8

8. Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIGMOD
Rec. 35(1), 65–73 (2006)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005). Database Theory

10. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting complete-
ness in knowledge bases. In: WSDM, pp. 375–383 (2017)

11. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: rewriting and optimization.
In: ICDE, pp. 2–13 (2011)

12. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological
databases. CoRR, abs/1405.2848 (2014)

13. Ileana, I., Cautis, B., Deutsch, A., Katsis, Y.: Complete yet practical search for
minimal query reformulations under constraints. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2014. ACM,
New York, pp. 1015–1026 (2014)

14. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

15. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. Web Semant. Sci. Serv. Agents
World Wide Web 33, 3–29 (2015)

https://graphik-team.github.io/graal/
https://doi.org/10.1007/978-3-319-49004-5_8

Validating Data from Semantic Web Providers 695

16. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in
datalog+/− ontologies. In: ECAI 2012–20th European Conference on Artificial
Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-
2012) System Demonstrations Track, Montpellier, France, 27–31 August, 2012,
pp. 558–563 (2012)

17. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics
X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-77688-8 5

19. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25073-6 38

20. Weikum, G., Hoffart, J., Suchanek, F.M.: Ten years of knowledge harvesting:
lessons and challenges. IEEE Data Eng. Bull. 39(3), 41–50 (2016)

https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-642-25073-6_38
https://doi.org/10.1007/978-3-642-25073-6_38

Author Index

Abdellatif, Safa 569
Ablayev, Farid 197
Alamro, Hayam 636
Ambainis, Andris 197
Anselmo, Marcella 552
Ayad, Lorraine A. K. 636

Babenko, Maxim 295
Beck, Harald 87
Bellomarini, Luigi 3
Ben Hassine, Mohamed Ali 569
Ben Yahia, Sadok 569
Boreale, Michele 442
Bouzeghoub, Amel 569
Breu, Ruth 153
Broy, Manfred 19
Brunet, João 255
Burda, Kamil 459
Burjons, Elisabet 396

Chabin, Jacques 682
Charalampopoulos, Panagiotis 636
Chaudron, Michel R. V. 47
Chuangpishit, Huda 367
Chuda, Daniela 459
Corradini, Flavio 321
Czyzowicz, Jurek 367, 381

Dal Corso, Alice 337
Damaschke, Peter 525
Dao-Tran, Minh 87
de Figueiredo, Jorge C. A. 255
Dematis, Ioannis 581
Diptarama 611, 624
Dony, Christophe 180
Doty, David 212
Dreier, Jan 125

Eiter, Thomas 87

Farwick, Matthias 153
Fernandes-Saez, Ana 47

Gąsieniec, Leszek 367
Geissmann, Barbara 508
Georgescu, Vera 596
Georgiou, Konstantinos 367
Giammarresi, Dora 552
Godon, Maxime 381
Gogoglou, Antonia 94
Gottlob, Georg 3

Hadj Kacem, Ahmed 180
Haeusler, Martin 153
Halfeld-Ferrari, Mirian 682
Hartmann, Tim A. 137
Hasan, Osman 241
Hebig, Regina 47
Henzinger, Monika 40
Hnatkowska, Bogumiła 269
Hoffmann, Clemens 111
Ho-Quang, Truong 47
Hrešková, Miroslava 469
Huynh, Trung Dong 667

Igarashi, Yuki 611
Iliopoulos, Costas S. 636

Jalonen, Joonatan 227
Jargalsaikhan, Davaajav 624
Jolak, Rodi 47
Jurdziński, Tomasz 305, 367

Kallel, Sahar 180
Kamali, Mojgan 337
Karapistoli, Eirini 581
Kari, Jarkko 227
Kessler, Johannes 153
Khadiev, Kamil 197
Khadieva, Aliya 197
Khan, Shahid 241
Kolesnichenko, Ignat 295
Komm, Dennis 396
Kranakis, Evangelos 367, 381
Krötzsch, Markus 413
Kuinke, Philipp 125

Labourel, Arnaud 381
László, Tímea 351
Laurent, Anne 596
Libourel, Thérèse 596
Lorenz, Jan-Hendrik 493
Luna Freire, Victor da C. 255

Machová, Kristína 469
Madonia, Maria 552
Manolopoulos, Yannis 94
Markhoff, Béatrice 682
Markou, Euripides 381
Martinez, Manuel Perez 351
Mashkoor, Atif 241
Masopust, Tomáš 413
Mercier, Grégoire 596
Merro, Massimo 337
Mlynčár, Andrej 168
Molter, Hendrik 111
Momège, Benjamin 285
Moreau, Luc 667
Muzi, Chiara 321

Ngo, Tu 596
Nguyen, Thanh Binh 682
Nowakowski, Emmanuel 153
Nowicki, Krzysztof 305

Pataki, Norbert 351
Penna, Paolo 508
Pérez, Beatriz 667
Pieris, Andreas 3
Pissis, Solon P. 636

Ramachandran, Gowri Sankar 67
Rástočný, Karol 168
Ravat, Franck 653
Re, Barbara 321

Rossi, Lorenzo 321
Rossmanith, Peter 125
Rotter, Csaba 351

Sáenz-Adán, Carlos 667
Sallinger, Emanuel 3
Schliep, Alexander 525
Schöngens, Marcel 396
Shinohara, Ayumi 611, 624
Singh, Ritesh Kumar 67
Song, Jiefu 653
Sorge, Manuel 111
Szabados, Michal 539
Szalai, Csaba 351

Tamm, Hellis 428
Teste, Olivier 653
Tibermacine, Chouki 180
Tiezzi, Francesco 321
Tomás, Ana Paula 479
Trojer, Thomas 153
Tsikrika, Theodora 94

Ueki, Yohei 624

Vakali, Athena 581
Veanes, Margus 428

Weyns, Danny 67
Woroniecki, Paweł 269

Xuan, Ba Le 125

Yoshinaka, Ryo 611, 624

Zhu, Shaopeng 212

698 Author Index

	Preface
	Organization
	Contents
	Keynote Talk
	Swift Logic for Big Data and Knowledge Graphs
	1 Introduction
	2 Desiderata for a KGMS
	3 Overview of the VADALOG Language and System
	3.1 Core Language
	3.2 Extensions

	4 Conclusion
	References

	Foundations of Computer Science
	On Architecture Specification
	Abstract
	1 Introduction
	2 A Formal Model of Interfaces
	2.1 Data Models
	2.2 Syntactic Interfaces and Interface Behavior

	3 Specifying Contracts
	3.1 Interface Assertions for Assumption/Commitment Contracts
	3.2 Contracts in Architectures

	4 On Systems, Their Interfaces and Properties
	4.1 About Architecture
	4.2 On the Essence of Architecture: Architecture Design is Architecture Specification
	4.3 Logical Sub-system Architectures

	5 Interfaces and Their Composition
	5.1 Export Interfaces
	5.2 Import Interfaces
	5.3 Assumption/Commitment Specifications
	5.4 Using Different Types of Interfaces Side by Side

	6 Composition: Interfaces in Architectures
	6.1 Interaction Assertions
	6.2 Layered Architectures

	7 Concluding Remarks and Future Work
	Acknowledgement
	References

	The State of the Art in Dynamic Graph Algorithms
	References

	Software Engineering: Advanced Methods, Applications, and Tools
	Diversity in UML Modeling Explained: Observations, Classifications and Theorizations
	1 Introduction
	2 Classifications of Software Models and Their Uses
	2.1 A Classification of Models by Abstraction Level
	2.2 A Classification of Models by Stage of Development
	2.3 Syntactic Characterization of Software Design Models
	2.4 A Classification of the Uses of Software Design Models

	3 A Theory for Explaining the Plethora of Approaches to Modeling
	4 Modeling Pathways
	5 Observations on Modeling in Open Source Projects
	6 Future Directions
	6.1 Aligning the Tools with the Tasks and the Process
	6.2 A Promising Future: Domain Specific Architecture- and Modeling
	6.3 Practical Guidelines for Tailoring Modeling Approaches

	7 Summary and Conclusions
	References

	Self-managing Internet of Things
	1 Introduction
	2 Background on Self-adaptation
	3 Why Do We Need Self-management in IoT?
	4 Initial Contributions to Self-management in IoT
	4.1 Autonomous Bandwidth Allocation Using Dawn
	4.2 Self-adaptation Across Layers with Hitch Hiker
	4.3 Area Security Surveillance

	5 Open Problems for Self-management in IoT
	References

	Data, Information and Knowledge Engineering
	LARS: A Logic-Based Framework for Analytic Reasoning over Streams
	1 Introduction
	2 The LARS Framework
	3 Relation to Other Formalisms
	4 Theoretical Aspects and Applications
	5 Conclusion
	References

	Network Analysis of the Science of Science: A Case Study in SOFSEM Conference
	1 Introduction
	2 Data Acquisition
	3 Bibliometric Analysis
	4 Temporal Dynamics of Scholarly Impact
	4.1 Publication Profiles
	4.2 Publication Recognition: Timing and Aging

	5 Conclusions
	References

	Network Science and Parameterized Complexity
	The Parameterized Complexity of Centrality Improvement in Networks
	1 Introduction
	2 Closeness Centrality
	3 Betweenness Centrality
	4 Outlook
	References

	Local Structure Theorems for Erdős–Rényi Graphs and Their Algorithmic Applications
	1 Introduction
	2 Preliminaries
	3 Local Structure and Algorithmic Applications
	3.1 Bounded Expansion
	3.2 Locally Simple Structure

	4 Algorithm for Subgraph Isomorphism
	5 Experimental Evaluation of Barabási–Albert-Graphs
	5.1 Barabási–Albert Graphs are Empirically Dense

	6 Conclusion
	References

	Target Set Selection Parameterized by Clique-Width and Maximum Threshold
	1 Introduction
	2 Preliminaries
	3 Dynamic Program
	4 Conclusion
	References

	Model-Based Software Engineering
	Combining Versioning and Metamodel Evolution in the ChronoSphere Model Repository
	1 Introduction
	2 Requirements Overview
	3 Proposed Solution
	3.1 Metamodel Evolution
	3.2 Transaction and Versioning Concepts

	4 Related Work
	5 Outlook and Future Work
	6 Summary
	References

	Automated Change Propagation from Source Code to Sequence Diagrams
	Abstract
	1 Introduction
	2 Related Work
	3 Architecture for Automated Change Propagation
	3.1 UML Analyzer
	3.2 KDM Analyzer
	3.3 Graph Transformation Module
	3.4 Comparison Module
	3.5 Strategy Analyzer
	3.6 Synchronization Module
	3.7 Interpreter Module

	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgement
	References

	Multi-paradigm Architecture Constraint Specification and Configuration Based on Graphs and Feature Models
	1 Introduction
	2 Architecture Constraint Specification and Configuration
	2.1 A Meta-model of Graphs
	2.2 Feature Models

	3 Multi-paradigm Architecture Constraints
	3.1 Constraint Configuration
	3.2 Constraint Transformation

	4 Case Study
	4.1 Configuring the Constraint by the Feature Model
	4.2 Transforming the Constraint

	5 Related Work
	6 Conclusion
	References

	Computational Models and Complexity
	Lower Bounds and Hierarchies for Quantum Memoryless Communication Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test
	1 Introduction
	2 Communication Model
	3 Lower Bounds for Communication Model
	3.1 Proof of Theorem1

	4 Application to Ordered Binary Decision Diagrams
	5 Hierarchy Results
	References

	Computational Complexity of Atomic Chemical Reaction Networks
	1 Introduction
	1.1 Summary of Results and Connection with Existing Work

	2 Preliminaries
	3 Definitions of ``Atomic''
	4 Mass-Conservation and Primitive Atomicity
	5 Complexity of Subset Atomic
	5.1 Subset-Fixed-Atomic and Subset-Atomic are in NP
	5.2 Subset-Fixed-Atomic is NP-hard

	6 Complexity of Reachably Atomic
	6.1 Reachably-Atomic is in P
	6.2 Reachable-Reach is PSPACE-complete

	7 Open Problems
	References

	Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable
	1 Introduction
	2 Preliminaries
	2.1 Symbolic Dynamics
	2.2 Cellular Automata

	3 Main Result
	4 Other Results
	4.1 Decidable Cases
	4.2 Conjugacy of Subshifts

	5 Conclusion
	References

	Software Quality Assurance and Transformation
	Formal Verification and Safety Assessment of a Hemodialysis Machine
	1 Introduction
	2 Preliminaries
	2.1 Model Checking and nuXmv Model Checker
	2.2 eXtended Safety Assessment Platform

	3 Proposed Approach
	4 Hemodialysis Machine
	5 Formal Functional Verification and Safety Assessment
	5.1 Self Test Pass
	5.2 Temperature Control
	5.3 Stoppage of Blood Pump
	5.4 Hemolysis

	6 Conclusion
	References

	Automatic Decomposition of Java Open Source Pull Requests: A Replication Study
	1 Introduction
	2 Motivating Example
	3 ClusterChanges
	3.1 Evaluation by Barnett et al.

	4 JClusterChanges
	5 Replication
	5.1 Data Collection
	5.2 Pull Request Sizes
	5.3 Partitions
	5.4 Pull Requests with 1 Non-Trivial Partitions
	5.5 Pull Requests with >10 Trivial Partitions
	5.6 Discussion

	6 Related Work
	7 Conclusion
	References

	Transformation of OWL2 Property Axioms to Groovy
	Abstract
	1 Introduction
	2 Related Works
	3 OWL2 to Groovy Basic Class Transformations
	3.1 Classes and Class (Multiple) Inheritance
	3.2 Equivalence of Classes
	3.3 Union of Classes
	3.4 Disjoint Classes

	4 Transformation of Properties
	5 Transformation of Property Axioms
	5.1 Symmetry
	5.2 Asymmetry
	5.3 Transitivity
	5.4 Functionality
	5.5 Inverse Functionality
	5.6 Reflexivity
	5.7 Irreflexivity

	6 Case Study
	7 Summary
	References

	Graph Structure and Computation
	Simple Paths and Cycles Avoiding Forbidden Paths
	1 Introduction
	2 Preliminary Definitions
	3 The Algorithms for the SPAFP and HPAFP Problems
	4 The Algorithm for the HCAFT Problem
	References

	External Memory Algorithms for Finding Disjoint Paths in Undirected Graphs
	1 Introduction
	2 Preliminaries
	2.1 Flows and Packings
	2.2 Flow Augmentation

	3 Efficient External Memory Augmentation
	3.1 Ladder Graph
	3.2 Finding Augmenting Paths

	4 External Memory Sparsification
	4.1 Sparse Connectivity Certificates
	4.2 Incremental Construction of Sparse Certificates
	4.3 Sparse Certificates in External Memory

	5 Conclusions
	References

	On Range and Edge Capacity in the Congested Clique
	1 Introduction
	2 Graph Terminology and Tools for Capacity/Range Reduction
	3 Deterministic Rcast Algorithm for MSF
	3.1 Generic MSF Algorithm
	3.2 Minimum Spanning Forest Algorithm in rcast(n,2)

	4 Randomized Rcast Algorithm for Connected Components
	4.1 Linear Sketches
	4.2 Ghaffari-Parter O(log* n) Connected Components Algorithm
	4.3 Range Efficient Algorithm for Connected Components
	4.4 Reduction of Total Edge Capacity

	References

	Business Processes, Protocols, and Mobile Networks
	Global vs. Local Semantics of BPMN 2.0 OR-Join
	1 Introduction
	2 BPMN 2.0 Overview
	3 Towards the OR-Join Formal Definition
	4 Formalisation of the OR-Join Global Semantics
	5 Formalisation of the OR-Join Local Semantics
	6 Concluding Remarks
	References

	AODVv2: Performance vs. Loop Freedom
	1 Introduction
	2 DYMO and AODVv2-16: Two Evolutions of AODV
	2.1 Degrading Performance to Avoid Routing Loops

	3 Uppaal Models of AODVv2-16 and DYMO
	4 Performance Analysis on Static Grids
	4.1 Successful Route Requests
	4.2 Number of Route Entries
	4.3 Optimal Routes
	4.4 Packet Delivery

	5 Loop Analysis on Grids with Link Breakage
	6 Conclusions and Related Work
	References

	Multivendor Deployment Integration for Future Mobile Networks
	1 Introduction
	2 Problems of Integration
	3 Enablers
	4 Our Technique
	4.1 Approaches
	4.2 Proposed Workflow

	5 Measurements
	6 Conclusion
	References

	Mobile Robots and Server Systems
	Patrolling a Path Connecting a Set of Points with Unbalanced Frequencies of Visits
	1 Introduction
	2 Problem Statement and Definitions
	3 Summary of Results and Paper Organization
	4 Characterization of (Some) Feasible PUF Instances
	5 A Simple 4-Approximation Patrolling Schedule
	6 A 3-Approximation Patrolling Schedule
	6.1 Useful Observations for Feasible PUF Instances
	6.2 (1+2)-Approximate Patrolling Schedules (Proof of Lemma2)
	6.3 2+1+-Approximate Patrolling Schedules (Proof of Lemma3)

	7 Conclusion
	References

	Exploring Graphs with Time Constraints by Unreliable Collections of Mobile Robots
	1 Introduction
	1.1 Preliminaries and Notation
	1.2 Related Work
	1.3 Outline and Results of the Paper

	2 Single Robot on the Line
	2.1 The Snapshot Graph
	2.2 Given Initial Position of the Robot
	2.3 Arbitrary Starting Position

	3 Multiple Robots on the Line
	3.1 Given Initial Positions
	3.2 Arbitrary Initial Positions

	4 Line Exploration with Unreliable Collections of Robots
	5 The Ring Environment
	6 NP-Hardness for Star Graphs
	7 Conclusion and Open Problems
	References

	The k-Server Problem with Advice in d Dimensions and on the Sphere
	1 Introduction
	2 From Two Dimensions to Three Dimensions
	3 From Three Dimensions to d Dimensions
	4 From None to Some Curvature
	4.1 The Far Case
	4.2 The Close Case
	4.3 Putting It Together

	References

	Automata, Complexity, Completeness
	Deciding Universality of ptNFAs is PSPACE-Complete
	1 Introduction
	2 Preliminaries
	3 Complexity of Universality for ptNFAs
	References

	Theoretical Aspects of Symbolic Automata
	1 Introduction
	2 Symbolic Regular Languages and Symbolic Finite Automata
	3 Brzozowski's Theorem for Symbolic Automata
	4 Minterms of Symbolic Automata
	5 Quotients and Atoms of Symbolic Languages
	6 Generating Symbolic Automata
	6.1 Generating Minimal s-NFAs

	7 Generalization of Brzozowski's Theorem
	8 Related and Future Work
	References

	Complete Algorithms for Algebraic Strongest Postconditions and Weakest Preconditions in Polynomial ODE'S
	1 Introduction
	2 Preliminaries
	3 Algebraic Safety Assertions and Invariants
	4 Strongest Postconditions
	5 Weakest Preconditions
	6 Experiments
	7 Further and Related Work
	References

	Recognition and Generation
	Influence of Body Postures on Touch-Based Biometric User Authentication
	1 Introduction
	2 Related Work
	3 Method for User Authentication Under Different Body Postures
	3.1 Data Pre-processing and Transformation
	3.2 Feature Processing
	3.3 Estimator Selection and Method Evaluation

	4 Evaluation
	4.1 Results

	5 Conclusions and Future Work
	References

	Michiko: Poem Models used in Automated Haiku Poetry Generation
	Abstract
	1 Introduction
	2 Poetry
	2.1 Haiku Poetry [3, 4]
	2.2 Basic Properties of Poetry

	3 Related Works
	3.1 Chinese Poetry Generation with Recurrent Neural Networks
	3.2 Constraint Satisfaction-Based Generator of Topical Indonesian Poetry
	3.3 Automatic Analysis of Rhythmic Poetry with Applications to Generation and Translation
	3.4 Computational Creativity for Automatic Generation of Poetry in Bengali
	3.5 Automated Haiku Generation Using Vector Space Model

	4 Poem Models in Michiko Poetry Generation System
	4.1 Words in Dictionary
	4.2 Gathering Metadata
	4.3 Haiku Generation Testing

	5 Conclusion
	Acknowledgment
	References

	Optimization, Probabilistic Analysis, and Sorting
	House Allocation Problems with Existing Tenants and Priorities for Teacher Recruitment
	1 Introduction
	2 Problem Definition and Notation
	3 Polynomial Time Complexity
	4 TRP for Strict Preferences and Unit Capacities
	5 TRP with Ties and Unit Capacities
	6 Extensions to the Capacitated TRP with Ties
	7 Conclusion
	References

	Runtime Distributions and Criteria for Restarts
	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Effective Restarts
	3.2 Optimal Restarts
	3.3 Scale Parameter
	3.4 Log-Normal
	3.5 Generalized Pareto
	3.6 Weibull
	3.7 Location Parameter

	4 Discussion
	References

	Inversions from Sorting with Distance-Based Errors
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Preliminaries

	2 Inversions of Insertion Sort
	2.1 Useful Definitions
	2.2 Bound the Number of Inversions (Proof of Theorem1)
	2.3 The Case =1

	3 Inversions of Quicksort
	3.1 Proof of Theorem2

	4 Runs in Insertion Sort
	4.1 Relation Between the Number of Blocks and Runs
	4.2 Consecutive Trivial Blocks (Proof of Theorem3)

	5 Conclusion and Open Questions
	References

	Filters, Configurations, and Picture Encoding
	An Optimization Problem Related to Bloom Filters with Bit Patterns
	1 Introduction
	1.1 Blocked Bloom Filters with Bit Patterns
	1.2 Specific Problems and Our Contributions

	2 Preliminaries
	3 False Positive Rate for One Element
	4 Weak Antichains
	5 Some Special Cases
	6 Using Almost Disjunct Matrices
	7 Concluding Remarks
	References

	Nivat's Conjecture Holds for Sums of Two Periodic Configurations
	1 Introduction
	2 Symbolic Dynamics and Subshifts
	3 Geometric Notation and Terminology
	4 Non-expansiveness and One-Sided Non-expansiveness
	5 Balanced Sets
	6 Main Result
	References

	Encoding Pictures with Maximal Codes of Pictures
	1 Introduction
	2 Preliminaries
	2.1 Two-Dimensional Codes

	3 Completeness for Sets of Strings
	4 Completeness for Sets of Pictures
	5 The Extension Tree and the Encoding Algorithm
	References

	Machine Learning
	ARCID: A New Approach to Deal with Imbalanced Datasets Classification
	1 Introduction
	2 Background and Related Work
	2.1 Classification Based on Association Rules
	2.2 Imbalanced Data Sets Classification

	3 Proposed Approach: ARCID
	3.1 Rule Generation
	3.2 Ranking, Pruning and Selecting Relevant CAR Rules
	3.3 Class Prediction

	4 Experimental Evaluation
	4.1 Data Collection and Experimental Setup
	4.2 Results of the Experiments

	5 Conclusion
	References

	Fake Review Detection via Exploitation of Spam Indicators and Reviewer Behavior Characteristics
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Model
	4.1 Basic Spam Indicators
	4.2 Burst Pattern Detection
	4.3 Reviewer Reputation
	4.4 Spam Scoring Function

	5 Experimental Analysis
	5.1 Dataset
	5.2 Evaluation by Supervised Text Classification
	5.3 Experimentation Results

	6 Conclusion
	Acknowledgments
	References

	Mining Spatial Gradual Patterns: Application to Measurement of Potentially Avoidable Hospitalizations
	1 Introduction
	1.1 Problem Statement
	1.2 Use Case
	1.3 Approach Proposal

	2 Related Works
	2.1 Around Gradual Patterns
	2.2 Multiple-Level Analysis of Spatial Information

	3 Extracting Spatial Gradual Patterns
	3.1 Process Flow
	3.2 Use Case

	4 Dealing with Spatial Maps and Hierarchies
	4.1 Navigating Through Hierarchical Levels
	4.2 Use Case
	4.3 Finding Visualization on Spatial Maps

	5 Conclusions
	References

	Text Searching Algorithms
	New Variants of Pattern Matching with Constants and Variables
	1 Introduction
	2 Preliminaries
	3 Convolution-Based Methods
	4 KMP-Based Methods
	4.1 Extended KMP Algorithm
	4.2 Extended KMP Algorithm for PVC-Match

	5 Concluding Remarks
	References

	Duel and Sweep Algorithm for Order-Preserving Pattern Matching
	1 Introduction
	2 Preliminaries
	3 Duel-and-sweep Algorithm for Order-Preserving Matching
	3.1 Pattern Preprocessing
	3.2 Dueling Stage
	3.3 Sweeping Stage

	4 Experiments
	5 Discussion
	References

	Longest Common Prefixes with k-Mismatches and Applications
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Advanced Data Structure Tools

	3 Longest Common Prefixes with k-Mismatches
	4 Longest Previous Factors with k-Mismatches
	5 Application of LCP with k-Mismatches to Genome Mappability
	6 Final Remarks
	References

	Data and Model Engineering
	Managing Reduction in Multidimensional Databases
	Abstract
	1 Introduction
	2 Related Work
	3 Relational Modeling of MDBs with Data Reduction
	3.1 Case Study
	3.2 Flat Modeling of a Reduced MDB
	3.3 Horizontal Modeling of a Reduced MDB
	3.4 Vertical Modeling of a Reduced MDB
	3.5 Comparison Among Relational Modeling Alternatives

	4 Experimental Assessments
	4.1 Protocol
	4.2 Observations and Discussions

	5 Conclusion
	References

	UML2PROV: Automating Provenance Capture in Software Engineering
	1 Introduction
	2 Background
	2.1 The PROV Standard and PROV-Template
	2.2 UML Diagrams

	3 Overview: Generating PROV Templates from UML
	4 From UML Diagrams to Provenance Templates
	4.1 From Sequence Diagrams to Templates
	4.2 From State Machine Diagrams to Templates

	5 Bindings Generation Strategy
	6 Implementation
	7 Quantitative Evaluation and Discussion
	8 Related Work
	9 Conclusions and Future Work
	References

	Validating Data from Semantic Web Providers
	1 Introduction
	2 A Querying Framework with Constraints
	2.1 Querying Environment
	2.2 Constraints

	3 Validating Semantic Web Query Outputs
	3.1 Query Rewriting with Constraints
	3.2 Building Auxiliary Queries
	3.3 Complete Validation

	4 Experimental Results and Related Works
	5 Conclusion
	References

	Author Index

