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Abstract Compressed sensing and many research activities associated with it can
be seen as a framework for signal processing of low-complexity structures. A corner-
stone of the underlying theory is the study of inverse problemswith linear or nonlinear
measurements. Whether it is sparsity, low-rankness, or other familiar notions of low
complexity, the theory addresses necessary and sufficient conditions behind the mea-
surement process to guarantee signal reconstruction with efficient algorithms. This
includes consideration of robustness to measurement noise and stability with respect
to signal model inaccuracies. This introduction aims to provide an overall view of
some of the most important results in this direction. After discussing various exam-
ples of low-complexity signal models, two approaches to linear inverse problems
are introduced which, respectively, focus on the recovery of individual signals and
recovery of all low-complexity signals simultaneously. In particular, we focus on
the former setting, giving rise to so-called nonuniform signal recovery problems.
We discuss different necessary and sufficient conditions for stable and robust sig-
nal reconstruction using convex optimization methods. Appealing to concepts from
non-asymptotic random matrix theory, we outline how certain classes of random
sensing matrices, which fully govern the measurement process, satisfy certain suffi-
cient conditions for signal recovery. Finally, we review some of the most prominent
algorithms for signal recovery proposed in the literature.
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1 Introduction

The field of compressed sensing was originally established with the publication of
the seminal papers “Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information” [25] by Terence Tao, Justin Romberg
and Emmanuel Candès, and the aptly titled “Compressed sensing” [40] by David
Donoho. The research activity by hundreds of researchers that followed over time
transformed the field into a mature mathematical theory with far-reaching implica-
tions in applied mathematics and engineering alike. While deemed impossible by the
celebratedShannon–Nyquist sampling theorem, aswell as fundamental facts in linear
algebra, their work demonstrated that unique solutions of underdetermined systems
of linear equations do in fact exist if one limits attention to signal sets exhibiting
some type of low-complexity structure. In particular, Tao, Romberg, Candès, and
Donoho considered so-called sparse vectors containing only a limited number of
nonzero coefficients and demonstrated that solving a simple linear program mini-
mizing the �1-norm of a vector subject to an affine constraint allowed for an efficient
way to recover such signals. While examples of �1-regularized methods as a means
to retrieve sparse estimates of linear inverse problems can be traced back as far as
the 1970s to work in seismology, the concept was first put on a rigorous footing in
a series of landmark papers [25–28, 40]. Today, compressed sensing is considered a
mature field firmly positioned at the intersection of linear algebra, probability theory,
convex analysis, and Banach space theory.

This chapter serves as a concise overview of the field of compressed sensing, high-
lighting some of the most important results in the theory, as well as somemore recent
developments. In light of the popularity of the field, there truly exists no shortage of
excellent surveys and introductions to the topic. We want to point out the following
references in particular: [14, 46, 47, 51, 52, 54], which include extended mono-
graphs focusing on a rigorous presentation of the mathematical theory, as well as
works more focused on the application side, e.g., in the context of wireless commu-
nication [60] or more generally in sparse signal processing [29]. Due to the volume
of excellent references, we decided on a rather opinionated selection of topics for
this introduction. For instance, a notable omission of our text is a discussion on the
so-called Gelfand widths, a concept in the theory of Banach spaces that is commonly
used in compressed sensing to prove the optimality of bounds on the number of mea-
surements required to establish certain properties of random matrices. Moreover, in
the interest of space, we opted to omit most of the proofs in this chapter, and instead
make frequent reference to the excellent material found in the literature.

Organization

Given the typical syllabus of introductions to compressed sensing, we decided to go
a slightly different route than usual by motivating the underlying problem from an
extended view at the problem of individual vector recovery before moving on to the
so-called uniform recovery case which deals with the simultaneous recovery of all
vectors in a particular signal class at once.
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In Sect. 2, we briefly recall a few basic definitions of norms and random variables.
We also define some basic notions about so-called subgaussian random variables as
they play a particularly important role in modern treatments of compressed sensing.

In Sect. 3, we introduce a variety of signal models for different applications and
contexts. To that end, we adopt the notion of simple sets generated by so-called
atomic sets, and the associated concept of atomic norms which provide a convenient
abstraction for the formulation of nonuniform recovery problems in a multitude of
different domains. In the context of sparse recovery, we also discuss the important
class of so-called compressible vectors as a practical alternative to exactly sparse
vectors to model real-world signals such as natural images, audio signals, and the
like.

Equipped with the concept of the atomic norm which gives rise to a tractable
recovery program of central importance in the context of linear inverse problems, we
discuss in Sect. 4 conditions for perfect or robust recovery of low-complexity signals.
We also comment on a rather recent development in the theory which connects the
problem of sparse recovery with the field of conic integral geometry.

Starting with Sect. 5, we finally turn our attention to the important case of uniform
recovery of sparse or compressible vectors where we are interested in establishing
guarantees which—given a particular measurement matrix—hold uniformly over the
entire signal class. Such results stand in stark contrast to the problems we discuss in
Sect. 4 where recovery conditions are allowed to locally depend on the choice of the
particular vector one aims to recover.

In Sect. 6, we introduce a variety of properties of sensing matrices such as the
null space property and the restricted isometry property which are commonly used
to assert that recovery conditions as teased in Sect. 5 hold for a particular matrix.
While the deterministic construction of matrices with provably optimal number of
measurements remains a yet unsolved problem, randommatrices—including a broad
class of structured random matrices—which satisfy said properties can be shown to
exist in abundance. We therefore complement our discussion with an overview of
some of the most important classes of random matrices considered in compressed
sensing in Sect. 7.

We conclude our introduction to the field of compressed sensing with a short
survey of some of the most important sparse recovery algorithms in Sect. 8.

Motivation

At the heart of compressed sensing (CS) lies a very simple question. Given a d-
dimensional vector x̊, and a set of m measurements of the form yi =

〈
ai , x̊

〉
, under

what conditions are we able to infer x̊ from knowledge of

A = (a1, . . . , am)� and y = (y1, . . . , ym)�

alone? Historically, the answer to this question was “as soon as m ≥ d” or more
precisely, as soon as rank(A) = d. In other words, the number of independent obser-
vations of x̊ has to exceed the number of unknowns in x̊, namely, the dimension of
the vector space V containing it. The beautiful insight of compressed sensing is that
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this statement is actually too pessimistic if the information content in x̊ is less than
d. The only exception to this rule that was known prior to the inception of the field
of compressed sensing was when x̊ was known to live in a lower dimensional linear
subspace W ⊂ V with dim(W ) ≤ d. A highly oversimplified summary of the con-
tribution of compressed sensing therefore says that the field extended the previous
observation from single subspaces to unions of subspaces. This interpretation of the
set of sparse vectors is therefore also known as the union-of-subspacesmodel. While
sparsity is certainly firmly positioned at the forefront of CS research, the concept
of low-complexity models encompasses many other interesting structures such as
block- or group-sparsity, as well as low-rankness of matrices to name a few.

We will comment on such signal models in Sect. 3. As hinted at before, the recov-
ery of these signal classes can be treated in a unified way using the atomic norm
formalism (cf. Sect. 4) as long as we are only interested in nonuniform recovery
results. Establishing similar results which hold uniformly over entire signal classes,
however, usually requires more specialized analyses. In the later parts of this intro-
duction, we therefore limit our discussions to sparse vectors. Note that while more
restrictive low-complexity structures such as block- or group-sparsity overlap with
the class of sparse vectors, the recovery guarantees obtained bymerelymodeling such
signals as sparse are generally suboptimal as they do not exploit all latent structure
inherent to their respective class.

Before moving on to a more detailed discussion of the most common signal
models, we briefly want to comment on a particular line of research that deals with
low-complexity signal recovery from nonlinear observations. Consider an arbitrary
univariate, scalar-valued function f acting element-wise on vectors:

y = f (Ax). (1)

An interesting instance of Eq. (1) is when f models the effects of an analog-to-
digital converter (ADC), mapping the infinite-precision observations Ax on a finite
quantization alphabet. Since this extension of the linear observation model gives
rise to its very own set of problems which require specialized tools beyond what is
needed in the basic theory of compressed sensing, we will not discuss this particular
measurement paradigm in this introduction. A good introduction to the general topic
of nonlinear signal recovery can be found in [100]. For a detailed survey focusing on
the comparatively young field of quantized compressed sensing, we refer interested
readers to [16].

2 Preliminaries

Compressed sensing builds on various mathematical tools from linear algebra, opti-
mization theory, probability theory, and geometric functional analysis. In this section,
we review some of the mathematical notions used throughout this chapter. We start
with a few remarks regarding notation.
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Notation

We use lower- and uppercase boldface letters to denote vectors and matrices, respec-
tively. The all ones vector of appropriate dimension is denoted by 1, the zero vector
is 0, and the identity matrix is Id. Given a natural number n ∈ N, we denote by [n]
the set of integers from 1 to n, i.e., [n] := {1, . . . , n} = N ∩ [1, n]. The complement
of a subset A ⊂ B is denoted by A = B\A. For a vector x ∈ C

d and an index set
S ⊂ [d] with |S| = k, the meaning of xS may change slightly depending on context.
In particular, it might denote the vector xS ∈ C

d which agrees with x only on the
index set S, and vanishes identically otherwise. On the other hand, it might represent
the k-dimensional vector restricted to the coordinates indexed by S. The particular
meaning should be apparent from context. Finally, for a, b > 0, the notation a � b
hides an absolute constant C > 0, which does not depend on either a or b, such that
a ≤ Cb holds.

2.1 Norms and Quasinorms

The vectors we consider in this chapter are generally assumed to belong to a finite-
or infinite-dimensional Hilbert spaceH, i.e., a vector space endowed with a bilinear
form 〈·, ·〉 : H×H → R known as inner product, which induces a norm on the
underlying vector space by1

‖x‖ := √〈x, x〉.

The d-dimensional Euclidean spaceRd is an example of a vector space with the inner
product between x, y ∈ R

d defined as

〈x, y〉 := x�y =
d∑

i=1

xi yi .

The norm induced by this inner product corresponds to the so-called �2-norm. In
general, the family of �p-norms on R

d is defined as

‖x‖p :=
{(∑d

i=1 |xi |p
)1/p

, p ∈ [1,∞)

maxi∈[d] |xi |, p = ∞.

Note that the �2-norm is the only �p-norm on Rd that is induced by an inner product
since it satisfies the parallelogram identity. One can extend the definition of �p-norms
to the case p ∈ (0, 1). However, the resulting “�p-norm” ceases to be a norm as it
no longer satisfies the triangle inequality. Instead, the collection of �p-norms for
p ∈ (0, 1) defines a family of quasinorms which satisfy the weaker condition

1Technically, a Hilbert space is an inner product space in which every Cauchy sequence converges
to a point in the same space.
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p = 1
2 p = 1 p = 2 p = ∞

Fig. 1 The �p-unit spheres inR2 for different values of p. The interiors (including their respective
boundaries) correspond to the �p-balls Bd

p

‖x + y‖p ≤ 21/p−1(‖x‖p + ‖y‖p).

Additionally, we will make frequent use of the egregiously termed �0-norm of x
which is defined as the number of nonzero coefficients,

‖x‖0 := lim
p→0

‖x‖p
p = |supp(x)| .

Note that the �0-norm, as a measure of sparsity of a vector, is neither a norm nor a
quasinorm (or even a seminorm) as it is not positively homogeneous, i.e., for t > 0
we have ‖tx‖0 = ‖x‖0 = t ‖x‖0. As we will see later, both the �1-norm, and the
�p-quasinorms are of particular interest in the theory of compressed sensing. The
�p-unit ball, defined as

B
d
p :=

{
x ∈ C

d : ‖x‖p ≤ 1
}
,

forms a convex body for p ≥ 1 and a nonconvex one for p ∈ (0, 1). The boundaries
∂Bd

p = {x : ‖x‖p = 1} correspond to the �p-unit spheres. For p = 2, the boundary
∂Bd

2 of the �2-ball corresponds to the unit Euclidean sphere denoted S
d−1. Some

examples of the �p-unit spheres are given in Fig. 1.
Another commonly used space in compressed sensing is the space of linear trans-

formations from R
d to R

m . This particular function space is isomorphic to the col-
lection of Rm×d matrices and forms a vector space on which we can define an inner
product via

〈A,B〉 := tr(A�B).

The norm induced by this inner product is called the Frobenius norm and is given by

‖A‖F :=
√
tr(A�A) =

√∑

i∈[d]

∑

j∈[m]
a2i j .
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In this context, the inner product above is also known as the so-calledFrobenius inner
product. Another commonly used normdefined on the space of linear transformations
is the operator norm

‖A‖p→q := sup
‖x‖p≤1

‖Ax‖q .

In particular, the operator norm ‖A‖2→2 between two normed spaces equipped with
their respective �2-norm is given by the maximum singular value of A denoted by
σmax(A).

2.2 Random Variables, Vectors, and Matrices

Let (Ω,Σ,P) be a probability space consisting of the sample space Ω , the Borel
measurable event space Σ , and a probability measure P : Σ → [0, 1]. The space
of matrix-valued, Borel measurable functions from Ω to R

m×d are called random
matrices. This space inherits a probabilitymeasure as the pushforward of themeasure
P. For d = 1, we obtain the set of random vectors; the space of random variables
corresponds to the choicem = d = 1.Given a scalar randomvariable X , the expected
value of X is defined as

EX :=
∫

XdP =
∫

Ω

X (ω)dP(ω)

if the integral exists. Moreover, if Eet X exists for all |t | < h for some h ∈ R, then
the map

MX : R → R : t �→ MX (t) = Eet X =
∫

et XdP,

known as the moment generating function (MGF), fully determines the distribution
of X . The pth absolute moment of a random variable X is defined as

E|X |p =
∫

Ω

|X (ω)|pdP(ω).

This leads to the notion of the so-called L p norm

‖X‖L p := (E|X |p)1/p,

which turns the space of random variables equipped with ‖·‖L p into a normed vec-
tor space. A particular class of random variables which finds widespread use in
compressed sensing is the so-called subgaussian random variables whose L p norm
increases at most as

√
p. The name subgaussian is owed to the fact that subgaussian

random variables have tail probabilities which decay at least as fast as the tails of the
Gaussian distribution [99]. This leads to the following definition.
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Definition 1 (Subgaussian random variables) A random variable X is called sub-
gaussian if it satisfies one of the following equivalent properties:

1. The tails of X satisfy

P(|X | ≥ t) ≤ 2 exp(−t2/K 2
1 ) t ≥ 0.

2. The absolute moments of X satisfy

(E|X |p)1/p ≤ K2
√
p ∀p ≥ 1.

3. The super-exponential moment of X satisfies

E exp(X2/K 2
3 ) ≤ 2.

4. If EX = 0, then the MGF of S satisfies

E exp(t X) ≤ exp(K 2
4 t

2) ∀t ∈ R.

The constants K1, . . . , K4 are universal.

Note that the constants Ki > 0 for i = 1, 2, 3, 4 differ from each other by at most a
constant factor, which, in turn, deviate only by a constant factor from the so-called
subgaussian norm ‖ · ‖ψ2 .

Definition 2 (Subgaussian norm) Given a random variable X , we define the sub-
gaussian norm of X as

‖X‖ψ2 := inf {s > 0 : Eψ2(X/s) ≤ 1},

where ψ2(t) := exp(t2) − 1 is called an Orlicz function.

The set of subgaussian random variables defined on a common probability space
equipped with the norm ‖ · ‖ψ2 therefore forms a normed space known as Orlicz
space. Note that some authors instead define the subgaussian norm as

‖X‖ψ2 := sup
p≥1

1√
p
(E|X |p)1/p. (2)

In light ofDefinition1, these definitions are equivalent up to amultiplicative constant.
As a consequence of Eq. (2) and Definition2 above, a random variable is subgaussian
if its subgaussian norm is finite. For instance, the subgaussian norm of a Gaussian
random variable X ∼ N(0,σ2) is—up to a constant—multiplicatively bounded from
above by σ. The subgaussian norm of a Rademacher random variable is given by
‖X‖ψ2 = 1/

√
log 2. Gaussian and Bernoulli random variables are therefore typical

instances of subgaussian randomvariables. Other examples include randomvariables
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following the Steinhaus2 distribution, as well as any bounded random variables in
general.

A convenient property of subgaussian random variables is that their tail probabil-
ities can be expressed in terms of their subgaussian norm:

P(|X | ≥ t) ≤ 2 exp

(

− ct2

‖X‖2ψ2

)

∀t > 0.

If Xi ∼ N(0,σ2
i ) are independentGaussian randomvariables, then due to the rotation

invariance of the normal distribution, the linear combination X =∑i Xi is still
a zero-mean Gaussian random variable with variance

∑
i σ

2
i . This property also

extends to subgaussians barring a dependence a multiplicative constant, i.e., if (Xi )i
is a sequence of centered subgaussian random variables, then

‖
∑

i

Xi‖2ψ2
≤ C

∑

i

‖Xi‖2ψ2
.

This can easily be shown with the help of the moment generating function of
X =∑i Xi . The rotational invariance alongwith the tail property of subgaussian dis-
tributions makes it possible to generalize many familiar tools such as Hoeffding-type
inequalities to subgaussian distributions, e.g.,

P

(∣∣∣∣∣

∑

i

Xi

∣∣∣∣∣
≥ t

)

≤ 2 exp

(

− ct2
∑

i ‖Xi‖2ψ2

)

∀t > 0.

Oftentimes, it is convenient to extend the notion of subgaussianity from random
variables to random vectors. In particular, we say that a random vector X ∈ R

m is
subgaussian if the random variable X = 〈X, y〉 is subgaussian for all y ∈ R

m . Taking
the supremum of the subgaussian norm of X over all unit directions then leads to the
definition of the subgaussian norm for random vectors.

Definition 3 (Subgaussian vector norm)The subgaussiannormof anm-dimensional
random vector X is

‖X‖ψ2 := sup
y∈Sm−1

‖ 〈X, y〉 ‖ψ2 .

Finally, a random vector X is called isotropic if E| 〈X, y〉 |2 = ‖y‖22 for all y ∈ R
m .

2A Steinhaus random variable is a complex random variable distributed uniformly on the complex
unit circle.
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3 Signal Models

As a basic framework for the types of signals discussed in this introduction, we
decided to adopt the notion of so-called atomic sets as coined by Chandrasekaran
et al. [31]. This serves two purposes. First, it elegantly emphasizes the notion of
low complexity of the signals one aims to recover or estimate in practice. Second,
the associated notion of atomic norm (cf. Definition5) provides a convenient way
to motivate certain geometric ideas in the recovery of low-complexity models. Let
us emphasize that this viewpoint is not necessarily required when discussing so-
called uniform recovery results where one is interested in conditions allowing for
the recovery of entire signal classes given a fixed draw of a measurement matrix
(cf. Sect. 7). However, the concept provides a suitable level of abstraction to discuss
recovery conditions for individual vectors of a variety of different interesting signal
models in a unifiedmanner which were previously studied in isolation by researchers
in their respective fields.

As alluded to in the motivation, one of the most common examples of a “low-
complexity” structure of a signal x̊ ∈ C

d is the assumption that it belongs to a lower
dimensional subspace of dimension k. Given a matrix U ∈ C

d×k whose columns ui
span said subspace, and the linear measurements y = Ax, we may simply solve the
least-squares problem

minimize
c∈Ck

‖y− AUc‖2 (3)

to recover x̊ = Uc� where the solution c� of Problem (3) admits a closed-form expres-
sion in terms of the Moore–Penrose pseudoinverse of AU. Once again, this strategy
succeeds if m ≥ dim span({ui }ki=1), i.e., if we obtain at least as many measurements
as the subspace dimension. As a canonical example, assume that U corresponds to
the identitymatrix Id restricted to the columns indexed by a set S ⊂ [d] of cardinality
|S| = k, i.e., U = IdS . The columns of this matrix form a basis for a k-dimensional
coordinate subspace of Cd . If we lift the restriction that x̊ lives in this particular
subspace, and rather assume instead that x̊ belongs to any of the

(d
k

)
coordinate sub-

spaces of dimension k, we arrive at a special case of the so-called union-of-subspaces
model. In particular, we have

x̊ ∈
⋃

S⊂[d],|S|=k

WS =: Σk,

where WS denotes the coordinate subspace of Cd with basis matrix IdS . The set Σk

therefore corresponds to the set of sparse vectors supported on an index set S of
cardinality at most k. This signal class represents a central object of study in the field
of compressed sensing.

Equipped with the knowledge that x̊ lives in one of the k-dimensional coordinate
subspaces, one could attempt to recover x̊ by solving Problem (3) for each WS
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independently. However, even though the true solution x̊ must be among these least-
squares solutions, there is noway for us to identify the correct one.Moreover, even for
moderately sized problems, the number

(d
k

)
of least-squares projections one needs to

solve becomes unreasonably high. On the other hand, ignoring the information that x̊
lives in k-dimensional subspace, and instead solving the least-squares minimization
problem

minimize
x∈Cd

‖y− Ax‖2

will not help either since the �2-norm we are minimizing tends to spread the signal
energy over the entire support of the minimizer x� (see, e.g., the discussion in [18,
Sect. 6.1.2]). We will discuss in Sect. 5 that all these issues can be resolved by
imposing certain structural constraints on the measurement matrix A, and replacing
the optimization problem (3) with one that explicitly promotes the structure inherent
in x̊.

We will come back to the sparse signal model shortly. First, however, let us intro-
duce a more flexible notion of low-complexity structures which will allow us to talk
about recovery problems of more general signal models in a unified framework. As
outlined above, ifK denotes a k-dimensional subspace, then every vector inK can be
represented as a sum of k basis vectors. To capture a similar notion of dimensionality
for more general sets which do not necessarily form a subspace, we may assume that
every vector in K can at least be represented as a linear combination of a limited
number of elements in amore general generating set.While a finite-dimensional sub-
space is always fully determined by a finite collection of basis vectors, we now lift
this finiteness requirement. The signal models generated in this fashion are simply
referred to as simple sets.

Definition 4 (Simple set) Let A ⊂ C
d be an origin-symmetric set whose convex

hull forms a convex body.3 Let k ∈ N. Then the set

K = conek(A) :=
{

x =
k∑

i=1

ciai ∈ C
d : ci ≥ 0, ai ∈ A

}

(4)

is called a simple set. Since K is generated by the set A, we call A an atomic set.

We will discuss how this notion of simplicity leads to many familiar models in the
literature on linear inverse problems. As a canonical example, however, consider the
case A = {±ei } ⊂ R

d . The simple set K generated by conek(A) then corresponds
to the set Σk(R

d) of k-sparse vectors.
Given an atomic set A, we associate with it the following object.

Definition 5 (Atomic norm) The function

3A convex body is a compact convex set with non-empty interior.
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‖x‖A := inf

{
∑

a∈A
ca : x =

∑

a∈A
caa, ca ≥ 0 ∀a ∈ A

}

associated with an atomic set A ⊂ C
d is called the atomic norm of A at x.

This definition corresponds to the so-called Minkowski functional or gauge of the
set conv(A) [88, Chap. 15],

γconv(A)(x) := inf {t > 0 : x ∈ tconv(A)} = ‖x‖A .

The norm notation ‖·‖A is justified here since we assumedA to be compact and cen-
trally symmetric with conv(A) having non-empty interior. This ensures that conv(A)

is a symmetric convex body which contains an open set around the origin in which
case‖·‖A = γconv(A)(·)defines anormonCd .With this definition inplace, the general
strategy to recover a simple vector x̊ ∈ K = conek(A) from its linear measurements
y = Ax̊ is

minimize
x

‖x‖A
s.t. y = Ax.

(PA)

We will discuss in Sect. 4 why Problem (PA), which we will simply refer to as
atomic norm minimization, allows for the recovery of simple sets from underdeter-
mined linear measurements.

In the remainder of this section, we will introduce some of the most common
low-complexity sets discussed in the literature. We limit our discussion to sparse
vectors, block- and group-sparse vectors, as well as low-rank matrices. Note, how-
ever, that the atomic norm framework allows for modeling many other interesting
signal classes beyond the ones discussed here. These include permutation and cut
matrices, eigenvalue-constrained matrices, low-rank tensors, and binary vectors. We
specifically refer interested readers to [31, Sect. 2.2] for a more comprehensive list
of example applications of atomic sets.

3.1 Sparse Vectors

As we highlighted various times at this point, the most widespread notion of low
complexity at the heart of CS is the notion of sparsity. Even before the advent of
compressed sensing, exploiting low complexities in signals played a key role in
the development of most compression technologies such as MP3, JPEG, or H264.
Ultimately, all these technologies are based on the idea that most signals of interest
usually live in rather low-dimensional subspaces embedded in high-dimensional
vector spaces.4 Two canonical examples of this phenomenon are the superposition

4This idea also extends to signals living on low-dimensional manifolds.
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of sine waves and natural images. In the former case, it is obvious that we are only
able to infer very little information from glancing at a time series plot of a sound
wave recorded at amicrophone. For instance, wemight be able to saywhen a signal is
made up ofmostly low-frequency components if its waveformonly appears to change
very slowly over time, but for most signals we are usually not able to say much
beyond that. The situation changes drastically, however, if we instead inspect the
signal’s Fourier transform. In the example of superimposed sine waves, the inherent
simplicity or low complexity of the signal becomes immediately apparent in the
form of a few isolated peaks in the Fourier spectrum of the signal, revealing the true
low-complexity structure of the signal. A similar observation can bemade for natural
images where periodic structures—say a picture of a garden fence or a brick wall—
or flat, homogeneous textures—say in images featuring a view of the sky or blank
walls—lead to sparse representations in a variety of bases such as the discrete Fourier
transform (DFT) basis, the discrete cosine transform (DCT) basis or the extended
family of x-let systems, e.g., wavelets [68], curvelets [22], noiselets [34], shearlets
[65], and so on.

Formally, the set of sparse vectors is simply defined as the set of vectors inCd with
atmost k nonzero coefficients. For convenience, this ismostly definedmathematically
with the help of the �0-pseudonorm

‖x‖0 := |supp(x)| = |{i ∈ [d] : xi = 0}| .

With this definition, the set of all k-sparse vectors can be written as

Σk = {x : ‖x‖0 ≤ k}.

As we discussed in the beginning of Sect. 3, the set Σk is a collection of
(d
k

)
k-

dimensional subspaces, each one spanned by k canonical basis vectors. Since it is a
union and not a sum of subspaces, the set is highly nonlinear in nature, e.g., the sum
of two k-sparse vectors is generally 2k-sparse in case the vectors are supported on
disjoint support sets.

Consider again the linear inverse problem in which we are tasked with infer-
ring x̊ ∈ Σk from its measurements y = Ax̊. As we motivated before, if the sup-
port of the k-sparse vector is known, so is the corresponding subspace, and the
signal can be easily recovered via a least-squares projection. If on the other
hand we assume that the support is not known, the situation becomes dire as
we now have to consider intractably many possible subspaces. To get a feeling
for the complexity of the set of sparse vectors, consider for some c ∈ R the set{
x ∈ R

d : ‖x‖0 = k, xi = c ∀i ∈ supp(x)
} ⊂ Σk , i.e., the set of exactly k-sparse

vectors with identical nonzero entries. A random vector uniformly drawn from this
set has entropy log

(d
k

)
, which means that5 log

(d
k

) ≈ k log (d/k) bits are required for
effective compression of this set [90]. As we will see in Sects. 4 and 7, the expression
k log(d/k) plays a key role in the theory of compressed sensing.

5This follows from the classical bound
( d
k

)k ≤ (dk
) ≤ ( edk

)k
.
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To frame the set of sparse vectors in the language of simple sets as established
in the beginning of Sect. 3, we note that the atomic set corresponding to the set of
sparse vectors in Rd is simply the set of signed unit vectors, i.e., A = {±ei }.6 Since
the convex hull of A clearly corresponds to the �1-unit ball, we have Σk(R

d) =
conek(A). The atomic norm associated with this set is simply the �1-norm on R

d .
This easily follows from expanding a vector in terms of the elements of A as

x =
d∑

i=1

|xi | sign(xi )ei︸ ︷︷ ︸
∈A

.

Then we have with Definition5 that

‖x‖A = inf

{
∑

a∈A
ca :

∑

a∈A
caa, ca ≥ 0

}

=
d∑

i=1

|xi | = ‖x‖1 .

While there are infinitely many ways to express each coordinate xi in terms of
nonnegative linear combinations of the atoms ei and−ei , the infimum in the definition
of ‖·‖A is attained when each coordinate is expressed by exactly one element of A.
This follows immediately from the triangle inequality.

Compressible Vectors

While the concept of sparsity arises naturally in an abundance of contexts and appli-
cations, in many cases it is also a slightly too stringent model for practical purposes.
A canonical example is natural images which certainly exhibit a low-complexity
structure if expressed in a suitable sparsity basis. However, this basis expansion is
usually not perfect. In other words, by close inspection one usually notices that while
the majority of the signal energy concentrates in only a limited number of expansion
coefficients, there usually also existmany coefficientswith non-negligible amplitudes
which carry information about fine structures of images. Nevertheless, a histogram
of the transform coefficients usually reveals that the negligible coefficients quickly
decay such that natural images are still be well approximated by sparse vectors. This
concept, which leads us to the class of so-called compressible vectors, is also heavily
exploited in image compression algorithms which quantize infrequently occurring
transform coefficients more aggressively (i.e., more coarsely) than more dominant
ones such as DC coefficients.

Formally, let x ∈ C
d be a vector whose k largest components in absolute value are

supported on a set S ⊂ [d] of size k, and define for p > 0 the best k-term approxi-
mation error σk(·)p : Cd → R≥0 as

6To define the sparse vectors on C
d , simply replace {±en} by {±en,±ien}.
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σk(x)p := min
z∈Σk

‖x − z‖p. (5)

For any p > 0, the minimum in Eq. (5) is attained by the vector z which agrees with
x on S and vanishes identically on S. The following result characterizes the decay
behavior of the approximation error.

Theorem 1 ([54, Theorem 2.5]) Let q > p > 0. Then for any x ∈ C
d , the best k-

term approximation error w. r. t. the �q -norm is bounded by

σk(x)q ≤ cp,q
k1/p−1/q

‖x‖p (6)

with

cp,q := exp

(
−hb(p/q)

p

)
≤ 1,

and hb(x) := −x log(x) − (1− x) log(1− x) denoting the binary entropy function.
In particular, we have

σk(x)2 ≤ 1

2
√
k
‖x‖1 .

The set of vectors which can be well approximated in terms of σk are called com-
pressible vectors. Informally, this means that a vector x is compressible if σk(x)p
decays quickly as k increases. One particular set of vectors which exhibit such a
rapid error decay is the elements of the �q -quasinorm balls

B
d
q =

{
z ∈ C

d : ‖z‖q ≤ 1
}

with 0 < q ≤ 1. To see why the �q -quasinorm balls are suitable proxies for sparse
vectors, consider the limiting behavior of the quasinorm. For q → 0 we have

lim
q→0

‖x‖qq = lim
q→0

d∑

i=1

|xi |q

=
d∑

i=1

1{xi =0}

= |{i ∈ [d] : xi = 0}|
= ‖x‖0 .

In the other limiting case, one obtains the set of unit �1-norm vectors. Moreover,
applying Theorem1 to the case of �q -norm balls, we find
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σk(x)2 ≤ cq,2

k
1
q − 1

2

.

Finally, it can be shown that the i th biggest entry of x decays as i−1/q [37].

3.2 Block- and Group-Sparse Vectors

While themodel of sparse and compressible vectors hasmany interesting and justified
applications, many times real-world signals will exhibit even more structure beyond
simple sparsity. One of the most common generalizations of sparse vectors is so-
called block-sparse or more generally group-sparse signals. In the former case, we
assume that the set [d] is partitioned into L disjoint subsets Bl ⊂ [d] of possibly
different sizes |Bl | = bl such that

⋃L
l=1 Bl = [d], and ∑L

l=1 bl = d. If the sets Bl

are allowed to overlap, we refer to them as groups instead. As in the case of sparse
vectors, a vector x ∈ C

d is called k-block-sparse or k-group-sparse if its nonzero
coefficients are limited to at most k nonzero blocks or groups, respectively. Another
closely related cousin of block-sparsity is that of fusion frame sparsity. Assuming
equisized blocks Bl with bl = b, one additionally imposes in this model that each
subvector xBl ∈ C

b belongs to some s-dimensional subspace Wl ⊂ C
b (see, e.g.,

[5, 15], for details). Structured sparsity models as outlined above arise in a variety
of domains in engineering and biology. Some prominent example applications are
audio [1] and image signal processing [102], multi-band reconstruction and spectrum
sensing [70, 81], as well as sparse subspace clustering [48]. Further applications in
which block- and group-sparse signal structures commonly appear are in the context
of measuring gene expression levels [78] and protein mass spectroscopy [93]. For a
more thorough treatment of block-sparse signal modeling, we also refer readers to
[47, Chap. 2].

In the following, we limit our discussion to the case of block-sparsity. A natural
way to express the block-sparsity of a vector mathematically is by introducing for
p, q > 0 the family of mixed (�p, �q)-(quasi)norms

‖x‖p,q :=
(

L∑

l=1

∥∥xBl

∥∥q
p

)1/q

,

where we denote by xBl ∈ C
d the subvector of x restricted to the index set Bl .

Extending the notation to include the case q = 0, we define additionally the mixed
(�p, �0)-pseudonorm

‖x‖p,0 :=
∣∣∣
{∥∥xBl

∥∥
p = 0 : l ∈ [L]

}∣∣∣

= ∣∣{xBl = 0 : l ∈ [L]}∣∣ ,
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which simply counts the number of nonzero blocks of x w. r. t. {Bl}Ll=1. With this
definition, a vector is called k-block-sparse if ‖x‖p,0 ≤ k. Moreover, the atomic set
which gives rise to the set of k-block-sparse vectors can now be defined as

Ap :=
L⋃

l=1

{
a ∈ C

d : ∥∥aBl

∥∥
p = 1, aBl

= 0
}
. (7)

Note that unlike in the case of sparse vectors where we defined Ã = {±ei }, the set
in Eq. (7) is uncountable. To calculate the atomic norm, recall the definition

‖x‖Ap
= inf

{
∑

a∈A
ca : x =

∑

a∈A
caa, ca ≥ 0

}

.

Since span(Ap) = C
d , there exists a ca ≥ 0 and a ∈ Ap such that for every x ∈ C

d ,
we may express its coefficients in block Bl as xBl = caa. Then we have

∥∥xBl

∥∥
p =‖caa‖p = |ca| · ‖a‖p = ca where the last step simply follows from the fact that ca ≥

0 and a ∈ Ap. Again, we have by the triangle inequality that the infimum in the
definition of the atomic norm must be attained by a decomposition where each block
Bl is represented by exactly one atom. Hence

‖x‖Ap
=

L∑

l=1

∥∥xBl

∥∥
p = ‖x‖p,1 .

Note that a similar argument holds for the group-sparsity case where the sets Bl are
not assumed to be disjoint [84, Lemma 2.1].

Clearly, the atomic norm induced by A is closely related to the �1-norm as dis-
cussed in the previous section. In the edge case with L = d, and |Bl | = 1, we have
Ap = {±ei } such that we immediately arrive again at the set of sparse vectors.

3.3 Low-Rank Matrices

A slightly different linear inverse problem which can still be conveniently modeled
by means of atomic sets is the so-called low-rank matrix recovery problem. Consider
a matrix X ∈ C

d1×d2 of rank at most r which we observe through the linear operator

M : Cd1×d2 → C
m : X �→ M(X) = y.

As usual, our task is to inferX from knowledge of the mapM and the measurements
y by solving the atomic norm minimization problem (PA). In general, there are
of course d1d2 unknown entries in X so that the linear inverse problem is clearly
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ill-posed as long asm < d1d2. However, by exploiting a potential low-rank structure
on X, it turns out to be possible to drastically reduce the number of observations
needed to allow for faithful estimation of low-rank matrices (cf. Table1).

A typical example application of low-rank matrix recovery, known as the matrix
completion problem, is the task of estimating missing entries of a matrix based on
partial observations of X of the form M(X)i = Xkl for some (k, l) ∈ [d1] × [d2].
As before, this problem is clearly hopelessly ill-posed if X is a full-rank or close to
full-rank matrix. However, in many practical situations in the context of collabora-
tive filtering [56], the low-rank assumption on X is justified by the problem domain,
making low-rank matrix recovery a useful prediction tool. The matrix completion
problem was famously popularized by the so-called Netflix Prize [11], an open com-
petition in collaborative filtering to predict user ratings of movies based on partial
knowledge of ratings about other titles in the portfolio. The underlying assumption
is that if two users both share the same opinion about certain titles they saw, then
they are likely to share the same opinion about titles so far only seen or rated by
one of them. In other words, if we collect the user ratings of all available titles in
a database in a matrix X, then we can assume that due to overlapping interests and
opinions, the matrix will exhibit a low-rank structure. This reduction in the degrees
of freedom therefore allows to accurately predict unknown user ratings which can
then be used to provide personalized recommendations on a per-user basis.

To demonstrate how low-rank matrices can be modeled in the context of atomic
sets, consider the set of rank-1 matrices of the form

A = {uv∗ ∈ C
d1×d2 : ‖u‖2 = ‖v‖2 = 1

}

= {uv∗ ∈ C
d1×d2 : ∥∥uv∗∥∥F = 1

}
.

Clearly, a nonnegative linear combination of r elements of A forms a matrix of at
most rank r so that coner (A) generates the set of rank r matrices. To derive the
atomic norm associated with A, consider that for every X ∈ C

d1×d2 we have by the
singular value decomposition of X that

X = U�V∗,

Table 1 Mean width estimates for tangent cones

Signal set Induced norm Upper bound on w(TA(x̊) ∩ S
d−1)2

Sparse vectors in Rd ‖·‖1 2k log(d/k) + 3k/2

Block-sparse vectors in
R
d with L blocks of size

d/L

‖·‖2,1 4k log(L/k) + (1+ 6d/L)k/2

Rank r matrices in
R
d1×d2

‖·‖∗ 3r(d1 + d2 − r)
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where U ∈ C
d1×d1 and V ∈ C

d2×d2 are unitary matrices, and � ∈ C
d1×d2 is a matrix

containing the real-valued, nonnegative singular values on its main diagonal and
zeros otherwise. Hence, we have with d := min {d1, d2},

X =
d∑

i=1

σiuiv∗i

with uiv∗i ∈ A. Again, with Definition5 this yields

‖X‖A = inf

{
∑

a∈A
ca : X =

∑

a∈A
caa, ca ≥ 0

}

=
d∑

i=1

σi (X) =: ‖X‖∗ ,

where in the second step we simply identified ca with the singular values of the
decomposition after using the fact that by the triangle inequality (w. r. t. the Frobenius
norm), the infimummust be attained by a decomposition of atmostd atoms.While the
singular vectors ui and vi whichmake up the atoms a = uiv∗i ∈ A are not necessarily
unique, each X is identified by a unique set of singular values.

The norm ‖·‖∗ is generally known as the nuclear norm and acts as an analog of the
�1-norm in the case of sparse vectors since ‖X‖∗ corresponds to the �1-norm of the
vector of singular values of X. Considering that efficient algorithms for the singular
value decomposition exist, the atomic norm minimization for low-rank matrices
constitutes a tractable convex optimization problem.

Representability of Atomic Norms

While the examples of atomic sets we presented so far all admitted relatively straight-
forward representations of their associated atomic norms, efficient computation of
‖·‖A for arbitrary atomic sets A is by no means guaranteed. A classic example of
where the atomic norm framework fails to yield an efficient way to recover elements
of a simple set generated by conek(A) is the set

A = {zz� : z ∈ {±1}d}.

Similar to the set of low-rank matrices, the simple set generated by A consists of
low-rank matrices but with its elements restricted to the set ±1—a model which
appears, for instance, in the context of collaborative filtering [73]. Considering that
conv(A) corresponds to the so-called cut polytope which does not admit a tractable
characterization, there exists no efficient way of computing ‖·‖A. In this case, one
may turn to a particular approximation scheme of conv(A) known as theta bodies
[58] which are closely related to the theory of sum-of-squares (SOS) polynomials.
We refer interested readers to [31, Sect. 4].

As another example, consider the atomic set
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A = {a f,φ ∈ C
d : f ∈ [0, 1],φ ∈ [0, 2π)

}

with

a f,φ := ei2πφ

⎛

⎜⎜⎜
⎝

1
ei2π f

...

ei2π f (d−1)

⎞

⎟⎟⎟
⎠

.

This set represents a continuous alphabet of atomswhich gives rise to the signal set of
sampled representations of continuous-time superpositions of complex exponentials
[13]. Using results from the theory of SOS polynomials, Bhaskar et al. showed in
[13] that the associated atomic norm can be computed as the solution of the program

minimize
x,u,t

tr T (u)

2d
+ t

2

s.t.

(
T (u) x
x∗ t

)
≥ 0

where the linear operator T : Cd → C
d×d maps a vector u to the Toeplitz matrix

generated by u. The same representation also appears in the context of compressed
sensing off the grid where one aims to recover a sampled representation of a super-
position of complex exponentials from randomly observed time-domain samples
[92].

Both of these examples illustrate that while the atomic norm framework represents
a convenient modeling tool for low-complexity signal sets, it may turn out to be a
nontrivial or in some cases simply impossible task to actually find efficient ways to
compute the atomic norm.

3.4 Low-Complexity Models in Bases and Frames

Up until this point, we have assumed that signals of interest are elements of a sim-
ple set K = conek(A) generated by an atomic set A. Given a vector x̊ ∈ K and its
linear measurements y = Ax̊, the general task is to infer x̊ from knowledge of A
and y. In this context, the measurement process is entirely modeled by A. How-
ever, oftentimes in practical scenarios, we might not have direct access to the signal
exhibiting a low-complexity structure but rather only to its representation in a par-
ticular orthonormal basis or more generally an overcomplete dictionary or frame.
As a classical example, consider the situation in which x̊ ∈ C

d represents the sam-
pled time-domain representation of a band-limited function. If the continuous-time
signal is a superposition of k complex exponentials, the sampled representation x̊
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will generally have dense support. The underlying sparsity structure7 only reveals
itself to us after transforming x̊ into the frequency domain, i.e., z̊ = Fd x̊ ∈ Σk with
Fd = d−1/2(e−i2πμν)0≤μ,ν≤d−1 denoting the DFT matrix. We therefore acquire mea-
surements according to y = Ax̊ = AF∗

d z̊ =: Ãz̊. Reconstruction of x̊ now proceeds
in two steps by first reconstructing the vector z̊, exploiting its underlying low-
complexity structure, and then resynthesizing the estimate of x̊. For this reason, this
model is also known as synthesis model throughout the literature. In general, one
may assume that rather than exhibiting a low-complexity structure in the canonical
basis, applications typically either fix or learn a suitable basis change matrix. More-
over, allowing for the transform matrix to be an overcomplete dictionary or frame
� ∈ C

d×D with D > d such that x̊ = �z̊ where z̊ ∈ C
D exhibits a low-complexity

structure, one may exploit additional advantages stemming from the redundancy of
overcomplete representations [30]. Classical examples of such representation sys-
tems are curvelet transforms [23] and time–frequency atoms arising from the Gabor
transform [49]. For simplicity of presentation, we will assume in the remainder of
this chapter that signals of interest already live in simple sets, i.e., we set� = Id , and
point out that most results presented in the sequel also generalize to low-complexity
models in unitary bases and frames. For more details, we refer interested readers to
[86].

4 Recovery of Individual Vectors

In this section, we address the recovery of individual signals in simple sets K gen-
erated by conek(A). For simplicity, we limit our discussion to the case where the
atomic set A contains only real elements so that K ⊂ R

d .

4.1 Exact Recovery

We begin our discussion by motivating why atomic norm minimization as stated in
Problem (PA) is a suitable strategy for the recovery of simple signals from linear
measurements. To that end, consider again the equality-constrained minimization
problem

minimize ‖x‖A
s.t. Ax̊ = Ax.

(8)

By rewriting the equality constraint in terms of d = x̊ − x ∈ ker(A), we may restate
the problem as

7We assume that the fundamental frequencies of each complex exponential are integer multiples of
the frequency resolution fs/d where fs denotes the sampling rate.
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minimize
d∈ker(A)

∥∥d+ x̊
∥∥
A .

Of course, the above problem is not of any practical interest as it requires knowledge
of the true solution x̊. However, it immediately follows from this representation
that Problem (8) has a unique solution if the null space of A does not contain any
nontrivial directions which reduce the atomic norm anchored at x̊. More precisely,
by introducing the set

DA(x̊) := {d ∈ R
d : ∥∥d+ x̊

∥∥
A ≤ ∥∥x̊∥∥A

} = {z− x̊ : ‖z‖A ≤ ∥∥x̊∥∥A
}

of descent directions of ‖·‖A at x̊, we obtain the condition

DA(x̊) ∩ ker(A) = {0}, (9)

which, if satisfied, guarantees perfect recovery of x̊ via Problem (8).
Alternatively, one may argue as follows. Let x̊ ∈ conek(A) and define the set

X = ∥∥x̊∥∥A conv(A) which clearly contains x̊. Given access to linear measurements
of the form y = Ax̊, one may then attempt to solve the feasibility problem

find x ∈ X
s.t. y = Ax

(10)

to recover x̊. This program has a unique solution if X intersects the affine subspace
Ex̊ :=

{
z ∈ R

d : Az = Ax̊
}
only at the solution x̊, i.e.,

X ∩ Ex̊ =
{
x̊
}

⇐⇒ (X − x̊) ∩ (Ex̊ − x̊) = {0}
⇐⇒ (X − x̊) ∩ ker(A) = {0}. (11)

SinceDefinition4 required conv(A) to be a symmetric convex body, it is also a closed
star domain.8 In this case, we may use a well-known result from functional analysis
that allows us to expressX in terms of the 1-sublevel set of its Minkowski functional
[88]

γX (x) = inf
{
t > 0 : x ∈ t

∥∥x̊
∥∥
A conv(A)

}

= 1
∥∥x̊
∥∥
A
inf {t > 0 : x ∈ tconv(A)} = ‖x‖A∥∥x̊

∥∥
A

.

Thus we have that

8A set K is a closed star domain if K is closed, and t K ⊆ K ∀t ∈ [0, 1].
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X − x̊ = {x ∈ R
d : γX (x) ≤ 1

}− x̊

= {x − x̊ : ‖x‖A ≤ ∥∥x̊∥∥A
}

= DA(x̊),

yielding again the uniqueness condition stated in Eq. (9).
Since ‖·‖A defines a norm on R

d , the set of descent directions is a convex body.
We may therefore replace DA(x̊) in Eq. (9) by its conic hull without changing the
statement. This set, denoted by

TA(x̊) := coneDA(x̊),

is usually referred to as the tangent or descent cone of ‖·‖A at x̊, and represents a
central object in the study of convex analysis. This ultimately leads to the following
result.

Proposition 1 ([13, Proposition 2.1]) The vector x̊ is the unique solution of Problem
(PA) if and only if

TA(x̊) ∩ ker(A) = {0}. (12)

As a typical example application of Proposition1, consider the atomic set A =
{±ei } ⊂ R

d of signed unit vectors. The convex hull of this set is the �1-unit ball
in R

d , and hence ‖·‖A = ‖·‖1; the conic hull is all of Rd . However, if we restrict
attention to nonnegative linear combinations of at most k elements in A, we obtain
the set K = conek(A) = {x ∈ R

d : |supp(x)| ≤ k
} = Σk(R

d) of k-sparse vectors.
As illustrated in Fig. 2a, the 1-sparse vector x̊ can be uniquely recovered via �1-
minimization since its tangent cone TA(x̊) intersects the null space of A only at
{0}. On the other hand, if x̊ is as depicted in Fig. 2b, then the tangent cone of A
at x̊ corresponds to a rotated half-space. Since every 1-dimensional subspace of R2

clearly intersects this half-space at arbitrarily many points, the only way a vector on
a 2-dimensional face of

∥∥x̊
∥∥
1 B

2
1 can be recovered is if ker(A) is the 0-dimensional

subspace {0}, i.e., if A has full-rank. Finally, note that the vector x̊′ in Fig. 2a cannot
be recovered either despite sharing the same sparsity structure as x̊. Conceptually,
this is immediately obvious from the fact that ‖x̊‖1 < ‖x̊′‖1 which implies that even
if we were to observe x̊′, atomic norm minimization would still yield the solution
x� = x̊. In light of Proposition1, this is explained by the fact that the tangent cone
at x̊′ has the same shape as TA(x̊) but rotated 90◦ clockwise so that TA(x̊′) and
ker(A) share a ray, violating the uniqueness condition (12). This example demon-
strates the nonuniform character of the recovery condition of Proposition1 which
locally depends on the particular choice of x̊.

Since the tangent cone is a bigger set than DA(x̊), the condition

TA(x̊) ∩ ker(A) = {0}
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Ex̊ = x̊+ ker(A)

ker(A)

TA(̊x)

‖x̊‖1 B
2
1

x̊

x̊′

Recovery of 1-sparse vectors

Ex̊

ker(A)

‖x̊‖1 B
2
1

TA(̊x)

x̊

Recovery of a 2-sparse vector

Fig. 2 Recovery of vectors in R
2

in a sense represents a stronger requirement thanDA(x̊) ∩ ker(A) frombefore.More-
over, while Proposition1 provides a necessary and sufficient condition for the suc-
cessful recovery of individual vectors via Problem (PA), testing the condition in
practice ultimately requires prior knowledge of the solution x̊ which we aim to
recover. However, as we will see shortly, both issues can be elegantly circumvented
by turning to the probabilistic setting where we assume the elements of the mea-
surement matrix are drawn independently from the standard Gaussian distribution.
This will allow us to draw on a powerful result from asymptotic convex geometry to
assess the success of recovering individual vectors probabilistically. Before stating
this result, we first need to introduce the concept of Gaussian mean width or mean
width for short, an important summary parameter of a bounded set.

Definition 6 (Gaussian mean width) The Gaussian mean width of a bounded set Ω
is defined as

w(Ω) := E sup
x∈Ω

〈g, x〉, (13)

where g ∼ N(0, Id) is an isotropic zero-mean Gaussian random vector.

The Gaussian mean width is closely related to the spherical mean width

wS(Ω) := E sup
x∈Ω

〈η, x〉,

where η is a random d-vector drawn uniformly from the Haar measure on the sphere.
Since length and direction of a Gaussian random vector are independent by rotation
invariance of the Gaussian distribution, we can decompose every standard Gaussian
vector g as g = ‖g‖2 η where η is again drawn from the uniform Haar measure. The
Gaussian and spherical mean width are therefore related by
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w(Ω) = E ‖g‖2 wS(Ω) ≤ √
dwS(Ω),

where the last step follows from Jensen’s inequality. Intuitively, the mean width of
a bounded set measures its average diameter over all directions chosen uniformly
at random. Consider for a moment the mean width w(Ω − Ω) of the Minkowski
difference of Ω with itself. Then we immediately have

w(Ω − Ω) = E sup
d∈Ω−Ω

〈g,d〉
= E sup

x,z∈Ω

〈g, x − z〉

≤ 2E sup
x∈Ω

〈g, x〉 = 2w(Ω)

with equality if Ω is origin-symmetric. Given a realization of the random vector
g, the term supx,z∈Ω 〈g, x − z〉 then corresponds to the distance of two supporting
hyperplanes to Ω with normal g, scaled by ‖g‖2.

With the definition of the mean width in place, we are now ready to state the
following result known as Gordon’s escape through a mesh or simply Gordon’s
escape theorem.Wepresent here a version of the theoremadopted from [31,Corollary
3.3]. The original result was first presented in [57].

Theorem 2 (Gordon’s escape through amesh) Let S ⊂ S
d−1, and let E be a random

(d − m)-dimensional subspace of Rd drawn uniformly from the Haar measure on
the Grassmann manifold G(d, d − m).9 Then

P(S ∩ E = ∅) ≥ 1− exp

(

−1

2

[
m√
m + 1

− w(S)

]2)

provided

m ≥ w(S)2 + 1.

In words, Gordon’s escape through a mesh phenomenon asserts that a randomly
drawn subspace misses a subset of the Euclidean unit sphere with overwhelmingly
high probability if the codimension m of the subspace is on the order of w(S)2.
Moreover, the probability of this event only depends on the codimension m of the
subspace, as well as on the Gaussian width of the sphere patch S. In order to apply
this result to the situation of Proposition1 in the context of the standard Gaussian
measurement ensemble, we merely need to restrict the tangent cone TA(x̊) to the
sphere, i.e., S = TA(x̊) ∩ S

d−1, and choose E = ker(A). This immediately yields
the following straightforward specialization of Theorem2.

9TheGrassmannmanifold orGrassmannian G(d, s) is an abstract Riemannianmanifold containing
all s-dimensional subspaces of Rd .
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Corollary 1 (Exact recovery from Gaussian observations) Let A ∈ R
m×d be a

matrix populated with independent standardGaussian entries, and let x̊ ∈ conek(A).
Then x̊ can be perfectly recovered from its measurements y = Ax̊ via atomic norm
minimization with probability at least 1− η if

m ≥
(
w(TA(x̊) ∩ S

d−1) +√2 log(η−1)
)2

.

So far, we have only concerned ourselves with establishing conditions under
which an arbitrary vector could be uniquely recovered from its linear measurements
by solving Problem (8). In fact, nothing in our discussion so far precludes that this
undertaking might require us to take at least as many measurements as the linear
algebraic dimension of the vector space containing x̊. The power of the presented
approach lies in the fact that for many signal models of interest such as sparse
vectors, group-sparse vectors, and low-rank matrices, the tangent cone at points x̊
lying on low-dimensional faces of a scaled version of conv(A) is narrow (cf. Fig. 2),
and therefore exhibit small mean widths. Coming back to the canonical example of
sparse vectors as discussed before, it can be shown that w(TA(x̊) ∩ S

d−1) roughly
scales like

√
k log(d/k) for any x̊ ∈ Σk(R

d) (see, for instance, [31, 89]). In light
of Corollary1, this requires m to scale linearly in k, and only logarithmically in the
ambient dimension d. For convenience, we list some of the best known bounds for
the mean widths of tangent cones associated with the signal models introduced in
Sect. 3 in Table1 [55].

Without going into too much detail, we want to briefly comment on a few natural
extensions of Corollary1.

Extensions to Noisy Recovery and Subgaussian Observations

An obvious question to ask at this point is what kind of recovery performance we
might expect if we extend our sensing model to include additive noise of the form
y = Ax̊ + w with ‖w‖2 ≤ σ as a more realistic model of observation. Naturally, we
cannot hope to ever recover x̊ exactly in that case unless σ = 0. Nevertheless, one
should still expect to be able to control the recovery quality in terms of the mean
width of the tangent cone and the noise level σ by an appropriate choice of m. The
following result, which was adapted from [31, Corollary 3.3], demonstrates that
this is in fact the case if we solve the noise-constrained atomic norm minimization
problem

minimize ‖x‖A
s.t. ‖y− Ax‖2 ≤ σ.

(14)

Proposition 2 (Robust recovery from Gaussian observations) Let A and x̊ be as in
Corollary1. Assume we observe y = Ax̊ + w with ‖w‖2 ≤ σ. Then with probability
at least 1− η, the solution x� of Problem (14) satisfies



An Introduction to Compressed Sensing 27

∥∥x̊ − x�
∥∥
2 ≤ ν

provided

m ≥
(

w(TA(x̊) ∩ S
d−1) +√2 log(η−1)

1− 2σ/ν

)2

.

Note that the reconstruction fidelity ν in Proposition2 is inherently limited by the
noise level σ since we require ν > 2σ for the bound on m to yield sensible values.

In closing, we alsowant tomention a recent extension ofGordon’s escape theorem
tomeasurementmatriceswhose rows are independent copies of subgaussian isotropic
random vectors ai ∈ R

d with subgaussian parameter τ , i.e.,

E(aia�i ) = Id, ‖ai‖ψ2 = sup
θ∈Sd−1

‖ 〈θ, ai 〉 ‖ψ2 ≤ τ . (15)

Based on a concentration result for such matrices acting on bounded subsets of Rd

[66, Corollary 1.5], Liaw et al. proved a general version of the following result which
we state here in the context of signal recovery in the same vein as Corollary1.

Theorem 3 (Exact recovery from subgaussian observations) Let A ∈ R
m×d be a

matrix whose rows are independent subgaussian random vectors satisfying Eq. (15),
and let x̊ ∈ conek(A). Then with probability at least 1− η, x̊ is the unique minimizer
of Problem (8) with y = Ax̊ if

m � τ 4
(
w(TA(x̊) ∩ S

d−1) +√log(η−1)
)2

.

Surprisingly, this bound suggests almost the same scaling behavior as in theGaussian
case (cf. Corollary1), barring the dependence on the subgaussian parameter τ , aswell
as an absolute constant hidden in the notation.

The results mentioned so far are not without their own set of drawbacks. While
robustness against noise was established in Proposition2, the tangent cone character-
ization is inherently susceptible to model deficiencies. For instance, consider again
the example A = {±ei } giving rise to the set of Σk(R

d). If x̊ is not a sparse linear
combination of elements in A (e.g., x̊ may only be compressible rather than exactly
sparse), then the tangent cone of ‖·‖A at x̊may not have a small mean width at all as
we saw in Fig. 2. In fact, in this case,w(TA(x̊) ∩ S

d−1)2 is usually on the order of the
ambient dimension d [80]. Moreover, as we also demonstrated graphically in Fig. 2,
the recovery guarantees presented in this section only apply to individual vectors.
Such results are customarily referred to as nonuniform guarantees in the compressed
sensing literature. Before moving on to the uniform recovery case which provides
recovery conditions for all vectors in a signal class simultaneously, wewant to briefly
comment on an important line of work connecting sparse recovery with the field of
conic integral geometry. This is the subject of the next section.
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4.2 Connections to Conic Integral Geometry

In an independent line of research [4], the sparse recovery problem was recently
approached from the perspective of conic integral geometry. At the heart of this field
lies the study of the so-called intrinsic volumes of cones. We limit our discussion to
the important class of polyhedral cones10 here, and refer interested readers to [4] for
a treatment of general convex cones.

Definition 7 (Intrinsic volumes) Let C be a polyhedral cone in Rd , and denote by g
a standard Gaussian random vector. Then for i = 0, . . . , d, the i th intrinsic volume
of C is defined as

vi (C) := P(ΠC(g) ∈ Fi (C)),

where ΠC denotes the orthogonal projector on C, and Fi (C) denotes the union of
relative interiors of all i-dimensional faces of C.
If we are given two non-empty convex cones C,D ⊂ R

d , one of which is not a sub-
space, and we draw an orthogonal matrixQ ∈ R

d×d from the uniformHaar measure,
then the probability that C and the randomly rotated cone QD intersect nontrivially
is fully determined by the intrinsic volumes of C and D. The precise statement of
this result is known as the conic kinematic formula.

Theorem 4 (Conic kinematic formula, [4, Fact 2.1]) Let C andD be two non-empty
closed convex cones in Rd of which at most one is a subspace. Denote by Q ∈ O(d)

a matrix drawn uniformly from the Haar measure on the orthogonal group. Then

P(C ∩QD = {0}) =
d∑

i=0

(1+ (−1)i+1)

d∑

j=1

vi (C)vd+i− j (D).

To apply this result to the context of sparse recovery as discussed in the previous
section, one simply chooses C = TA(x̊), and D = ker(A), similar to the situation
of Gordon’s escape theorem. While the intrinsic volumes of ker(A), a (d − m)-
dimensional linear subspace, are easily determined by11

vi (ker(A)) =
{
1, i = d − m,

0, otherwise,
(16)

the calculation of the intrinsic volumes of tangent cones is much less straightforward.
Fortunately, there is an elegant way out of this situation which was first demonstrated

10A cone C ⊂ R
d is called polyhedral if it can be expressed as the intersection of finitely many

half-spaces.
11This follows from the fact that ker(A) only has a single face on which Πker(A) projects every
point x ∈ R

d , namely, ker(A) itself.



An Introduction to Compressed Sensing 29

in [4]. Since any vector x ∈ R
d projected on a closed convex cone C must belong to

exactly one of the d + 1 setsFi (C) defined inDefinition7, the collection {vi (C)}di=0 of
intrinsic volumes defines a discrete probability distribution on {0, 1, . . . , d}. More-
over, the distribution can be shown to concentrate sharply around its expectation

δ(C) :=
d∑

i=0

ivi (C),

known as the statistical dimension ofC, which in turn can be tightly estimated inmany
cases of interest by appealing to techniques from convex analysis. In fact, the same
technique was previously used in [31] to derive tight estimates of the mean width of
various tangent cones. Note, however, that this work merely exploited a numerical
relation between the Gaussian mean width and the statistical dimension which we
will comment on below but was not generally motivated by conic integral geometry.
The concentration behavior of intrinsic volumes ultimately allowedAmelunxen et al.
to derive the following remarkable pair of bounds which constitute a breakthrough
result in the theory of sparse recovery.

Theorem 5 (Approximate conic kinematic formula, [4, Theorem II]) Let x̊ ∈
conek(A), and denote by A ∈ R

m×d a standard Gaussian matrix with independent
entries as usual. Given the linear observations y = Ax̊, and denoting by x� the
optimal solution of Problem (8), the following two statements hold for η ∈ (0, 1]:

P(x� = x̊) ≥ 1− η if m ≥ δ(TA(x̊)) + cη

√
d,

P(x� = x̊) ≤ η if m ≤ δ(TA(x̊)) − cη

√
d

with cη =
√
8 log(4/η).

Before addressing the problem of estimating the statistical dimension δ of the tangent
cone TA(x̊), let us briefly comment on the above result first. Theorem5 is remarkable
for a variety of reasons. First, as was demonstrated numerically in [4], the two bounds
correctly predict the position of the so-called phase transition. Such results were pre-
viously only known in the asymptotic large-system limit (cf. [43, 45]) where one
considers for d,m, k → ∞ the fixed ratios δ := m/d, and ρ := k/m over the open
unit square (0, 1)2. The phase-transition phenomenon describes a particular behavior
of the system which exhibits a certain critical line ρ� = ρ�(δ) that partitions (0, 1)2

into two distinct regions: one where recovery almost certainly succeeds, and one
where it almost certainly fails. The transition line then corresponds to the 50th per-
centile. Second, it represents the first non-asymptotic result which correctly predicts
a fundamental limit below which sparse recovery will fail with high probability.
This is in stark contrast to previous results based on Gordon’s escape theorem which
were only able to predict that recovery would succeed above a certain threshold but
could not make any assessment of the behavior below it. Finally, as a result of the
second point, Theorem5 represents the first result which quantifies the width of the
transition region where the probability of exact recovery will change from almost
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certain failure to almost certain success. Once again we refer interested readers to
the excellent exposition [4], particularly Sect. 10, for a thorough comparison of their
results to the pertinent literature on the existence of phase transitions in compressed
sensing.

The key ingredient in the application of Theorem5 is the statistical dimension δ
of the tangent cone TA(x̊). As mentioned above, the statistical dimension is defined
as the expected value of the distribution defined by the intrinsic volumes of TA(x̊).
However, it admits two alternative representationswhich can be leveraged to estimate
δ(C), especially when C corresponds to a tangent cone. This is the content of the
following result.

Proposition 3 (Statistical dimension, [4, Proposition 3.1]) Let C be a closed convex
cone in Rd , and let g be a standard Gaussian d-vector. Then

δ(C) =
d∑

i=0

ivi (C) = E
[‖ΠC(g)‖22

] = E
[
dist(g, C◦)2

]
,

where C◦ := {z ∈ R
d : 〈x, z〉 ≤ 0 ∀x ∈ C

}
denotes the polar cone of C.

In particular, we want to focus on the last identity when C = TA(x̊). In fact, in this
situation one may exploit a well-known fact from convex geometry that states that
the polar cone of the tangent cone corresponds to the normal cone [88]

NA(x̊) := {v ∈ R
d : 〈v, x − x̊

〉 ≤ 0 ∀x : ‖x‖A ≤ ∥∥x̊∥∥A
}

= {v ∈ R
d : 〈v,d〉 ≤ 0 ∀d ∈ TA(x̊)

}
,

which in turn can be expressed as the conic hull of the subdifferential of the atomic
norm at x̊,

TA(x̊)◦ = NA(x̊) = cone(∂
∥∥x̊
∥∥
A) =

⋃

t≥0
t∂
∥∥x̊
∥∥
A .

The last identity follows from the fact that the subdifferential of a convex function is
always a convex set. In otherwords, given a recipe for the subdifferential of the atomic
norm, the statistical dimension of its associated tangent cone can be estimated by
bounding the expected distance of a Gaussian vector to its convex hull. In many cases
of interest, this turns out to be a comparatively easy task (see, e.g., [31, Appendix
C], [55, Appendix A] and [4, Sect. 4]).

As alluded to before, the statistical dimension also shares a close connection to
the Gaussian mean width. In particular, we have the following two inequalities (cf.
[4, Proposition 10.2]):

w(C ∩ S
d−1)2 ≤ E

[
dist(g, C◦)2

] = δ(C) ≤ w(C ∩ S
d−1)2 + 1.
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This shows that estimating the mean width is qualitatively equivalent to estimating δ.
As previously mentioned, this connection was used in [31] to derive precise bounds
for the mean widths of the tangent cones for sparse vectors, and low-rank matrices,
as well as for block- and group-sparse signals in [55] and [84], respectively. Note
that the connection between mean width and statistical dimension was already used
in the pioneering works of Stojnic [91], as well as Oymak and Hassibi [76], even
if the term statistical dimension was originally coined in [4] where the connection
between the probability distribution induced by the intrinsic volumes and its pro-
jective characterization in Proposition3 was first established. We want to emphasize
again that the fundamental significance of the statistical dimension in the context of
sparse recovery did not become clear until the seminal work of Amelunxen, Lotz,
McCoy, andTroppwho rigorously demonstrated the concentration behavior of intrin-
sic volumes, culminating in the breakthrough result stated in Theorem5. In the same
context, the authors argued that the statistical dimension generally represents a more
appropriate measure of “dimension” of cones than the mean width. For instance, if
C is an n-dimensional linear subspace Ln of Rd , then it immediately follows from
Eq. (16) that δ(Ln) = dim(Ln) = n. Moreover, given a closed convex cone C ⊂ R

d ,
we have δ(C) + δ(C◦) = d (cf. [4, Proposition 3.1]) which generalizes the property
dim(Ln) + dim(L⊥

n ) = d from linear subspaces to convex cones since L◦
n = L⊥

n ,
i.e., the polar cone of a subspace is its orthogonal complement.

The concepts discussed in this section all addressed the problem of recovering or
estimating individual vectors with a low-complexity structure from low-dimensional
linear measurements. In other words, given two vectors x̊ and x̊′ with the same low-
complexity structure, and the knowledge that x̊ can be estimated with a particular
accuracy, we are not able to infer that the same accuracy also holds when we try to
recover x̊′ given a fixed choice of A. Recall, for example, the situation illustrated in
Fig. 2a. If instead of x̊we observe a vector x̊′ positioned on the rightmost vertex of the
scaled �1-ball, the tangent cone at x̊′ now corresponds to the tangent cone at x̊ rotated
90◦ clockwise around the origin. However, since this cone intersects the null space
of A at arbitrarily many points, we are not able to recover x̊ and x̊′ simultaneously.
In the parlance of probability theory, we might say that the results presented in this
section are conditioned on a particular choice of x̊. Such results are therefore known
as nonuniform guarantees as they do not hold uniformly for all signals in a particular
class at once.

In contrast, in the next section,wewill introduce a variety of properties ofmeasure-
ment matrices which will allow us to characterize the recovery behavior uniformly
over all elements in a signal class given the same choice of measurement matrix.
Most importantly, we will focus on a particularly important property which not only
yields a sufficient condition for perfect recovery of sparse vectors but one which
has also proven an indispensable tool in providing stability and robustness condi-
tions in situations where we are tasked with the recovery of signals from corrupted
measurements.
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5 Exact Recovery of Sparse Vectors

In this section, we consider conditions under which the sparse linear inverse problem,
in which we are to infer a d-dimensional vector x̊ ∈ Σk from its linear measurements
y = Ax̊ ∈ R

m , admits a unique solution. In contrast to the situation discussed in
Sect. 4, we are now specifically interested in conditions under which the entire set
Σk can be recovered or at least well approximated by a single measurement matrix
A.

Consider two vectors x, z ∈ Σk , and suppose that both vectors are mapped to the
samepointy = Ax = Az such thatx − z ∈ ker(A).Obviously, unlesswe specifically
ask that x = z, there is absolutely no chance that we would ever be able to decide
which element in Σk generated the measurements y. In other words, if there is to be
any hope to ever uniquely identify sparse vectors from their image underA, the most
fundamental condition we must impose is that no two vectors in Σk are mapped
to the same point y in R

m . However, since the difference of two k-sparse vectors
is 2k-sparse, this immediately yields the condition ker(A) ∩ Σ2k = {0}. In words,
the linear inverse problem for sparse vectors is well-posed if and only if the only
2k-sparse vector contained in the null space of A is the zero vector.

Note that this viewpoint differs from thewaywe approached the recovery problem
earlier in Sect. 4wherewemerely asked for a particular optimization problemdefined
in terms of a fixed vector x̊ ∈ K to have a unique solution which ultimately lead us
to the local tangent cone condition in Proposition1. This also explains why, in the
example depicted in Fig. 2a, we were able to recover the 1-sparse vector x̊ ∈ R

2

but not the 1-sparse vector x̊′. As the considerations above show, there simply is no
circumstance under which we would ever be able to uniquely recover every 1-sparse
vector in R

2 from scalar measurements y ∈ R. This is due to the fact that the null
space of any matrixA ∈ R

1×2 (a row vector) either corresponds to a line through the
origin or the entire planeR2 itself ifA = 0. However, since the set of 2-sparse vectors
in R

2 also corresponds to R
2, the subspace ker(A) intersects Σ2 at arbitrarily many

points regardless of the choice of A, violating the condition ker(A) ∩ Σ2 = {0}.
The following theorem, which constitutes a key result in compressed sensing,

formalizes the observations above.

Theorem 6 ([54, Theorem 2.13]) Given a matrix A ∈ C
m×d , the following state-

ments are equivalent:

1. Given a vector x̊ ∈ C
d supported on a set of size at most k, the problem

minimize ‖x‖0
s.t. Ax̊ = Ax

(P0)

has a unique k-sparse minimizer, namely, x� = x̊.
2. Every vector x̊ is the unique k-sparse solution of the system Az = Ax̊.
3. The only 2k-sparse vector contained in the null space of A is the zero vector,

i.e., ker(A) ∩ Σ2k = {0}.
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The key insight of the above result is the equivalence between the condition
ker(A) ∩ Σ2k = {0}, and the existence of sparse minimizers of a particularly impor-
tant nonconvex optimization problem. More precisely, we have by Theorem 1 that
a natural strategy to recover a sparse vector x̊ ∈ Σk given y and A corresponds to a
search for the sparsest element in the affine space

{
x ∈ C

d : Ax = y
}
.

One immediate question arising from Theorem6 is “how underdetermined” the
system y = Ax̊ is allowed to become for there to still be a unique solution. Remark-
ably, Problem (P0) can be shown to uniquely recover the original vector x̊ as soon
as the rank of the measurement matrix A ∈ C

m×d exceeds the critical threshold
rankA ≥ 2k [54]. In other words, every 2k columns of A must be linearly indepen-
dent. Motivated by this observation, some authors refer to the so-called spark of a
matrix—a portmanteau of the words “sparse” and “rank”—as the smallest number of
linearly dependent columns ofA [41]. With this definition, the rank constraint can be
equivalently stated as spark(A) > 2k. Given a measurement matrix A of size m × d
in the regime m < d, perfect recovery of any k-sparse vector is therefore guaran-
teed as soon as sparkA > 2k. Moreover, since rank(A) ≤ m, the rank requirement
rank(A) ≥ 2k ultimately yields the necessary conditionm ≥ 2k for perfect recovery
of all k-sparse vectors via �0-minimization.

As alluded to before, an important distinction between the rank characterization
above, and the tangent cone condition fromProposition1 is that the latter only applies
to individual elements of Σk while the requirement rank(A) ≥ 2k implies perfect
recovery of every k-sparse vector via �0-minimization. If we are only interested in a
nonuniform recovery condition, it turns out that we already get by with m ≥ k + 1
measurements [54, Sect. 2.2]. Note, however, that the condition in Proposition1
is based on a tractable optimization problem. This stands in stark contrast to the
�0-minimization problem (P0) which is provably NP-hard as it can be reduced to
the so-called exact 3-set cover problem which in turn is known to belong to the
class of NP-complete problems [72]. As a result, solving Problem (P0) requires a
combinatorial search over all

∑d
i=0

(d
i

)
possible subproblems if k is unknown and

(d
k

)

otherwise, both of which are intractable for even moderately sized problems. While
there exist certain deterministic matrices which satisfy the rank condition such as
Vandermonde matrices, as well as tractable algorithms such as Prony’s method to
solve the associated �0-minimization problem, the solution of the general problem
remains out of reach unless P = NP. Moreover, another drawback of attempting
to solve the �0-minimization problem directly is that it can be shown to be highly
sensitive to measurement noise and sparsity defects [54, Chap. 2].

While Theorem6 in and of itself already represents a fascinating result in the field
of linear algebra, the story does not end there. Despite the seemingly dire situation
we find ourselves in when attempting to find minimizers of Problem (P0), one of the
key insights in the theory of compressed sensing is that there is a convenient escape
hatch in the form of convex relaxations. In fact, it turns out that under slightly more
demanding conditions on the null space of A, we are still able to faithfully recover
sparse or approximately sparse vectors by turning to a particular relaxation of Prob-
lem (P0). We are, of course, talking about the infamous �1-minimization problem
which we already discussed implicitly in the context of atomic norm minimization
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w. r. t. the atomic setA = {±ei } generating the set of sparse vectors. It is this insight
which elevates the field of compressed sensing from a purely mathematical theory to
a highly desirable tool with far-reaching implications in countless domains of engi-
neering, physics, chemistry, and biology. Before discussing the particular conditions
onAwhich allow for robust andmost importantly efficient recovery of sparse vectors
from underdetermined linear measurements, let us first state and briefly comment on
what is by now probably one of the most well-known and well-studied optimization
problems in mathematics to date.

In light of our discussion of compressible vectors in Sect. 3.1, the following opti-
mization problem, famously known as the basis pursuit (BP) problem, naturally
represents the closest convex relaxation of the nonconvex �0-minimization problem
(P0):

minimize
x

‖x‖1
s.t. Ax = Ax̊.

(P1)

Ignoring for a moment any structural properties on the vector x̊we aim to recover,
as well as the properties of the measurement matrix A ∈ C

m×d , the program can
be shown to yield m-sparse minimizers [54, Theorem 3.1]. This observation alone
already serves as a strong indicator of the deep connection between �1-minimization
and sparse recovery. Moreover, the relaxation can be solved in polynomial time by
so-called interior-point methods, a class of algorithms which is by now considered
a standard tool in the field of convex optimization. In particular, in the real setting,
Problem (P1) belongs to the class of linear programs (LPs), while in the complex
case the problem can be transformed into a second-order cone program (SOCP) over
the Cartesian product of d Lorentz cones KL := {(z, t) ∈ R

2 × R≥0 : ‖z‖2 ≤ t
}
.

6 Characterization of Measurement Matrices

At the beginning of Sect. 4, we presented a necessary and sufficient condition for the
exact recovery of vectors in simple sets from underdetermined linear measurements
(cf. Proposition1). This condition is very much local in nature as it depends on the
particular choice of the vector one aims to recover. To circumvent this issue,we turned
to random matrices which allowed us to draw on powerful probabilistic methods to
bound the probability that, conditioned on the choice of a particular vector, we would
be able to recover it via atomic norm minimization.

It turns out that in a sense, this strategy can be mirrored in the case of uniform
recovery of sparse vectors. However, rather than directly estimating the probability
that the condition in Theorem 3 as established in the previous section holds for a
particular choice of random matrix, we first introduce a few common properties
of general measurement matrices, some of which will enable us to state powerful
recovery guarantees which hold over entire signal classes rather than individual
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vectors. In Sect. 7, we will then present a series of results which assert that for
many different choices of random measurement ensembles, such properties can be
shown to be satisfied with overwhelmingly high probability, provided the number of
measurements is chosen appropriately.

6.1 Null Space Property

As alluded to before, the relaxation of the original �0-minimization problem to a
tractable convex program comes at the price of a critical difference to Problem (P0).
While the only requirement for Problem (P0) to recover the original vector x̊ ∈ Σk

was for the number of measurements to exceed 2k, perfect recovery will now be
dependent on a certain structural property of the null space of A, aptly referred to as
the null space property (NSP), which was first introduced in [33].

Definition 8 (Null space property) A matrixA ∈ C
m×d is said to satisfy the NSP of

order k if, for any set S ⊂ [d] with |S| ≤ k, we have

‖vS‖1 <
∥∥vS
∥∥
1 ∀v ∈ kerA\{0}.

The definition of the null space property admits a few additional observations for
vectors in the null space of A. Consider again an index set S ⊂ [d] of size at most k.
Then for v ∈ kerA \ {0} we have

‖v‖1 =
∥∥vS + vS

∥∥
1 = ‖vS‖1 +

∥∥vS
∥∥
1

<
∥∥vS
∥∥
1 +

∥∥vS
∥∥
1

= 2
∥∥vS
∥∥
1 .

Moreover, if S is the set supporting the largest components of v in absolute value,
one has with the definition of the best k-term approximation error in Eq. (5),

‖v‖1 < 2σk(v)1.

Finally, by the Cauchy–Schwarz inequality, we have that for any v ∈ C
d , it holds

that ‖v‖21 ≤ ‖v‖0 · ‖v‖22. Therefore, one often alternatively finds the condition

‖vS‖2 <
1√
k

∥∥vS
∥∥
1

in the definition of the null space property.
Given a matrix that satisfies the null space property, we can now state the general

result for the recovery of any k-sparse vector x̊ ∈ C
d from its linear measurements
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by solving the basis pursuit (BP) problem (BP) below. In particular, consider a vector
v ∈ kerA ∩ Σ2k supported on an index set S ⊂ [d] of size 2k, and assume further
that v = 0. Then for two disjoint sets S1, S2 ⊂ S with S = S1 ∪ S2 and |S1| = |S2| =
k, by the null space property we have ‖vS1‖1 < ‖vS1‖1 = ‖vS\S1‖1 = ‖vS2‖1 and
‖vS2‖1 < ‖vS1‖1 which is a contradiction, and hence v = 0. In other words, the null
space property implies that the null space of A only contains a single 2k-sparse
vector: the zero vector. This implies the condition we previously stated in Theorem
3 which said that �0-minimization can recover any k-sparse vector as long as the
null space of the measurement matrix contains no 2k-sparse vectors save for the
zero vector. Amazingly, the null space property provides a necessary and sufficient
condition for the following recovery guarantee for sparse vectors.

Theorem 7 Let A ∈ C
m×d and k ∈ [d]. Then every k-sparse vector x̊ is the unique

minimizer of the basis pursuit problem

minimize ‖x‖1
s.t. y = Ax

(BP)

with y = Ax̊ iff A satisfies the null space property of order k.

Proof IfAx̊ = Az, then d := x̊ − z ∈ ker(A)with dS = x̊ − zS and dS = zS . Invok-
ing the null space property we have

∥∥x̊
∥∥
1 =

∥∥x̊ − zS + zS
∥∥
1

≤ ‖dS‖1 + ‖zS‖1
<
∥∥dS

∥∥
1 + ‖zS‖1

= ∥∥zS
∥∥
1 + ‖zS‖1 = ‖z‖1 .

This means that x̊ is the unique minimizer of (BP). For the other direction, every
v ∈ ker(A) satisfies AvS = A(−vS). Since vS is the unique minimizer of (BP), we
have ‖vS‖1 < ‖ − vS‖1 which is the null space property. �

Two situations are of particular importance in linear inverse problems, namely, sit-
uations in which x̊ is only approximately sparse, and when the measurements are
corrupted by additive noise. It is therefore generally desirable for a recovery algo-
rithm to be both robust to noise and stable w. r. t. to so-called sparsity defect. To
that end, one can extend the definition of the null space property to provide similar
guarantees to the one stated in Theorem7. We first consider the so-called stable null
space property which can be used to account for sparsity defects of vectors.

Definition 9 (Stable null space property) A matrix A ∈ C
m×d is said to satisfy the

stable null space property of order k with constant 0 < ρ < 1 w. r. t. any set S ⊂ [d]
if

‖vS‖1 ≤ ρ
∥∥vS
∥∥
1 ∀v ∈ kerA
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with |S| ≤ k.

With this definition in place, the following result characterizes the impact of
sparsity defects on the recovery error of the basis pursuit problem.

Theorem 8 ([54, Theorem 4.12]) Let A ∈ C
m×d and k ∈ [d]. Then with y = Ax̊,

the solution x� of Problem (BP) satisfies

∥∥x� − x̊
∥∥
2 ≤

2(1+ ρ)

(1− ρ)
σk(x̊)1

if A satisfies the stable null space property of order k. In particular, if x̊ ∈ Σk then
x� = x̊.

We can extend the definition of the stable null space property once more to also
account for additive noise in the measurements. For reference, we state here the
most general form of the so-called �q -robust null space property. However, instead
of using this definition to state a stable, noise-robust counterpart to Theorem8, we
will instead turn to a more commonly used property of measurement matrices in the
next section to state a guarantee of this type.

Definition 10 (�q -robust null space property) Let q ≥ 1, and denote by ‖·‖ an arbi-
trary norm on C

m . Then the matrix A ∈ C
m×d satisfies the �q -robust null space

property of order k with constants 0 < ρ < 1 and τ > 0 if for all v ∈ C
d ,

‖vS‖q ≤ ρ

k1−1/q

∥∥vS
∥∥
1 + τ ‖Av‖

for all S ⊂ [d], |S| ≤ k.

Theorem7yields a necessary and sufficient condition for thematrixA that answers
the central question whenminimizers of (P0) and (P1) coincide.While this represents
an invaluable result, Theorem7 makes no statement regarding the actual existence
of such matrices. As it turns out, constructing deterministic matrices which directly
satisfy the null space property (or its stable or noise-robust variants) constitutes a
highly nontrivial problem. In fact, even verifying whether a given matrix satisfies
the null space property was eventually shown to be an NP-hard decision problem
[95]. Fortunately, it can be shown that matrices satisfying the null space property
still exist in abundance if one turns to random measurement ensembles. While it is
possible to directly establish the existence of such matrices probabilistically,12 it has
become common practice in the compressed sensing literature to mainly consider
an alternative property of measurement matrices to establish recovery guarantees.
The property in question is of course the infamous restricted isometry property (RIP)
which was introduced in one of the very first papers on compressed sensing [27],
and by now constitutes one of the most well-studied objects in the theory.

12In fact, as we will briefly discuss in Sect. 7, such random constructions are often characterized by
more well-behaved scaling constants.
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6.2 Restricted Isometry Property

The restricted isometry property (RIP) was first introduced in the seminal work by
Candes and Tao [27], and shown in [21] to allow for robust recovery of approximately
sparse vectors in the presence of measurement noise. While this property only yields
a sufficient condition implying the null space property, matrices of this type can be
found—at least in a probabilistic sense—in abundance as various random measure-
ment ensembles can be shown to satisfy the RIP with high probability (cf. Sect. 7).
The property is defined as follows.

Definition 11 A matrix A ∈ C
m×d is said to satisfy the RIP of order k if

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1+ δ) ‖x‖22
for all x ∈ Σk with δ ≥ 0. The smallest δk ≤ δ satisfying this condition is called the
restricted isometry constant (RIC) of A.

Intuitively, this definition states that for any S ⊂ [d] with |S| ≤ k the submatrix AS

obtained by retaining only the columns indexed by S approximately acts like an
isometry on the set of k-sparse vectors which admits an alternative characterization
of the restricted isometry constant δk as

δk = max
S⊂[d],|S|=k

∥∥A∗
SAS − Id

∥∥
2→2 .

This definition of the restricted isometry constant is commonly used in proofs estab-
lishing the restricted isometry property in a probabilistic setting by showing that δk
concentrates sharply around its expectation.

In light of the importance and popularity of the restricted isometry property in
compressed sensing, we will state most recovery conditions of the various algo-
rithms introduced in Sect. 8 exclusively in terms of the restricted isometry constants
associated with the RIP matrices in question.

The restricted isometry property admits a particularly short and concise proof of
why k-sparse vectors have unique measurement vectors y under projections through
A. Assume the matrix A ∈ C

m×d satisfies the RIP condition of order 2k with con-
stant δ2k < 1, and consider two distinct k-sparse vectors x, z ∈ C

d with Ax = Az.
Define now v := x − z ∈ Σ2k , i.e., Av = 0. Then we have by the restricted isometry
property,

0 < (1− δ2k) ‖v‖22 ≤ ‖Av‖22 = 0.

Since this only holds for v = 0, we must have x = z. In other words, if A is an RIP
matrix of order 2k, no two k-sparse vectors are mapped to the same measurement
vector y through A.

In the following, we consider noisy measurements of the form y = Ax̊ + e where
the additive noise term e ∈ C

m is assumed to be bounded according to ‖e‖2 ≤ η.
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Under assumption of the restricted isometry property, one may then establish the
following stable and robust recovery result.

Theorem 9 ([54, Theorem 6.12]) Let A ∈ C
m×d be a matrix satisfying the RIP

of order 2k with restricted isometry constant δ2k < 4/
√
41. For x̊ ∈ C

d , and y =
Ax̊ + e with ‖e‖2 ≤ η, denote by x� the solution of the quadratically constrained
basis pursuit problem

minimize ‖x‖1
s.t. ‖Ax − y‖2 ≤ η.

(QCBP)

Then

∥∥x̊ − x�
∥∥
1 ≤ Cσk(x̊)1 + D

√
kη,

∥∥x̊ − x�
∥∥
2 ≤

C√
k
σk(x̊)1 + Dη,

where C, D > 0 depend only on δ2k .

This result is both stable w. r. t. sparsity defect and robust against additive noise as
the error bounds only depend on the model mismatch quantified by the best k-term
approximation error of x̊, as well as on the extrinsic noise level η. In case of exact
k-sparsity of x̊, and in the absence of measurement noise, Theorem9 immediately
implies perfect recovery.

6.3 Mutual Coherence

Despite the fact that both NSP and RIP allow for the derivation of very strong results
in terms of stability and robustness of general recovery algorithms, checking either of
them in practice remains an NP-hard decision problem [95]. One alternative property
of a measurement matrix A that can easily be checked in practice is the so-called
mutual coherence.

Definition 12 Let A ∈ C
m×d . Then the mutual coherence μ = μ(A) is defined as

μ(A) := max
1≤i = j≤d

| 〈ai , a j
〉 |

‖ai‖2
∥∥a j

∥∥
2

,

where ai denotes the i th column of A. Assuming �2-normalized columns of A, this
corresponds to the largest off-diagonal element in absolute value of the Gramian
A∗A of A.

The following proposition presents a fundamental limit on the mutual coherence of
a matrix known as the Welch bound.
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Proposition 4 ([101]) The coherence of a matrix A ∈ C
m×d with �2-normalized

columns satisfies

μ(A) ≥
√

d − m

m(d − 1)
.

The equality is attained for every matrix whose columns form an equiangular tight
frame.

Unfortunately, coherence-based analyses are rather pessimistic in terms of the
number of measurements required to establish robust and stable recovery guarantees.
In fact, it can be shown that conditions for perfect recovery in terms of the mutual
coherence dictate a quadratic scaling m = Ω(k2) of the number of measurements
[96], which is only of interest in practice at low sparsity levels.

6.4 Quotient Property

One drawback of the quadratically constrained basis pursuit (QCBP) problem
(QCBP) is the fact that one has to have access to an estimate of the noise parameter
η ≥ ‖e‖2, which is often not available in practice. Surprisingly, it can be shown,
however, that under an additional condition on the measurement matrix stable and
robust recovery of compressible vectors is still possible without any prior knowledge
of ‖e‖2 ∈ C

m by means of solving the equality-constrained basis pursuit problem.
This condition is given in the form of the so-called quotient property of A.

Definition 13 A matrix A ∈ C
m×d is said to satisfy the �1-quotient property with

constant ν if for any e ∈ C
m there exists a vector u ∈ C

d such that

e = Au with ‖u‖1 ≤ ν
√
k∗ ‖e‖2 ,

where k∗ := m/ log(ed/m).

If a matrix satisfies both the robust null space property and the quotient property, this
allows one to establish the following remarkable result.

Theorem 10 ([54, Theorem 11.12]) Let A ∈ C
m×d be a matrix satisfying the �2-

robust null space property as in Definition10, as well as the �1-quotient property as
in Definition13. Let further x̊ ∈ C

d , e ∈ C
m, and denote by y = Ax̊ + e the noisy

linear measurements of x̊. Then the solution x� of the basis pursuit problem (BP)
satisfies for k ≤ ck∗,

∥∥x̊ − x�
∥∥
2 ≤

C1√
k
σk(x̊)1 + C2 ‖e‖ ,
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where ‖·‖ denotes the norm assumed in the �2-robust null space property. The con-
stants C1 and C2 only depend on ρ, τ , c, and ν, i.e., the parameters of the null space
and quotient property, respectively.

In the next section, we will address the construction of random measurement
matrices which, with high probability, satisfy either the restricted isometry property
and/or null space property, respectively. Note that similar probabilistic results can
also be shown to hold for the quotient property as introduced above. However, we
skip the discussion of this topic for brevity and refer interested readers to [54, Sect.
11.3] instead.

7 Probabilistic Constructions of Measurement Matrices

In this section, we present a series of results which establish the existence of suitable
measurement matrices for compressed sensing in the sense that they satisfy the
restricted isometry property and consequently the null space property with high
probability.

7.1 Restricted Isometries

The first remarkable result we look at in this section concerns the class of subgaussian
ensembles which encompasses many important instances of random measurement
matrices such as Gaussian and Bernoulli matrices, as well as any matrix populated
with independent copies of bounded random variables.

Theorem 11 (Subgaussian restricted isometries, [64, Theorem C.1]) Let the rows of
them × d matrixA be distributed according to an independent isotropic subgaussian
distribution. Then the matrix 1√

m
A satisfies the restricted isometry property of order

k with constant δk ≤ δ if

m ≥ Cδ−2k log

(
ed

k

)

with probability at least 1− 2 exp(−δ2m/C) where the constant C only depends on
the subgaussian norm of the rows of A.

A similar theorem can be stated for the case where the columns instead of rows of A
follow a subgaussian distribution. Due to the isotropy assumption of the distribution,
the random matrix m−1/2A acts as an isometry in expectation as we would expect
from an RIPmatrix, i.e.,E‖m−1/2Ax‖22 = ‖x‖22. The exponential decay of the failure
probability in the above theorem therefore indicates that ‖m−1/2Ax‖22 concentrates
sharply around its mean ‖x‖22 as intended for A to behave like an isometry.



42 N. Koep et al.

The original proof of the restricted isometry property for Gaussian randommatri-
ces goes back to theworkofCandès andTao [27, 28].Ashinted at above, the restricted
isometry property is usually established by means of concentration inequalities that
control the deviation of m−1/2A from its mean. In particular, such concentration
results are usually based on Bernstein’s inequality for subexponential random vari-
ables. In the case of Gaussian random matrices, one can appeal to slightly simpler
methods that characterize the smallest and largest singular values of the Gaussian
random matrices to establish the RIP in that way.

Another possible proof strategy is based on a result due to Gordon which bounds
the expected minimum and maximum gain of a Gaussian random matrix acting
on subsets of the sphere ([57, Corollary 1.2]). This result also lies at the heart of
the proof of Gordon’s escape theorem. Combined with Gaussian concentration of
measure, and a simple bound on the mean width of the set of sparse vectors restricted
to the unit sphere (see, for instance, [79, Lemma2.3]), these arguments admit a simple
concentration bound which implies the restricted isometry property.

Yet another proof of the restricted isometry property for Gaussian matrices is
based on the famous Johnson–Lindenstrauss (JL) lemma [62] (see also [36]). Given a
finite collection of points P := {x1, . . . , xN } ⊂ R

d , and a random matrix A ∈ R
m×d

populated with independent zero-mean Gaussian random variables with standard
deviation 1/

√
m, the JL lemma establishes a bound on the probability that the pair-

wise distances between the projected points AP and P deviate at most by a factor
of ±ε. A matrix A that satisfies the property

(1− ε) ‖x − y‖2 ≤ ‖Ax − Ay‖2 ≤ (1+ ε) ‖x − y‖2 ∀x, y ∈ P

is therefore called a Johnson–Lindenstrauss embedding of P . Note that while this
property looks very similar to the definition of the restricted isometry property, it
only holds for finite point sets. The JL lemma now asserts that the dimension m of
the space has to be at least m � log(N ) for the above property to hold with high
probability. In [8], this result was used in combination with a covering argument for
the set of sparse vectors to provide an alternative RIP proof.

The statement of Theorem11 depends on a yet unspecified constantC that effects
the number of measurements required for a matrix to be an RIP matrix. For Gaussian
matrices, the constant canbe explicitly characterized (see [54,Chap. 9]). For example,
in the asymptotic regime when d/k → ∞, the RIP constant δ2k ≤ 0.6129 can be
achieved with probability at least 1− ε if

m ≥ 54.868

(
k log

(
ed

2k

)
+ 1

2
log(2ε−1)

)
. (17)

Finally, it can be shown using tight bounds on the Gelfand widths of �1-balls that
this bound on m is in fact optimal up to a constant [53, 67].
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7.1.1 Bounded Orthonormal Systems

The randommatrices discussed so far did not possess any discernible structure. How-
ever, in many domains of engineering, this assumption would be quite restrictive as
the type of measurement matrix is often in part dictated by the specific application,
be it due to the particular structure of the problem or for computational purposes. A
typical example is structured random matrices involving the DFT or the Hadamard
transform. In such situations, we may aim to exploit the existence of highly efficient
numerical implementations such as fast Fourier transform (FFT) routines which
might prevent us from incorporating a mixing stage involving random matrices into
the acquisition system.Moreover, if fast implementations of the measurement opera-
tor are available, we can often exploit the operator in the decoding stage to drastically
improve the efficiency of the employed recovery procedure. A canonical example of
where structured random matrices emerge is when a band-limited function is to be
constructed from random time-domain samples. In this case, we consider functions
of the form

f (t) =
d∑

i=1

xiφi (t), (18)

where t ∈ D ⊂ R and the collection {φi }i of functions fromD toC forms a bounded
orthonormal system (BOS) according to the following definition.13

Definition 14 (Bounded orthonormal systems) A collection of complex-valued
functions {φi }di=1 defined on a set D ⊂ R equipped with a probability measure μ
is called a bounded orthonormal system with constant K if

∫

D
φi (t)φ j (t)dμ(t) = δi, j

and
‖φi‖∞ := sup

t∈D
|φi (t)| ≤ K ∀i ∈ [d].

Let f be a functionwith a basis expansion as in Eq. (18)w. r. t. a bounded orthonormal
system defined by the collection {φi }i . If we sample f at m points t1, . . . , tm ∈ D,
we obtain the system of equations

y j := f (t j ) =
d∑

i=1

xiφi (t j ), j ∈ [m].

13The definition can easily be extended to the case where D ⊂ R
n , but we restrict our discussion

to the scalar case here.
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Collecting the samples
{
φi (t j )

}
j of the i th basis function in a vector

φi = (φi (t1), . . . ,φi (tm))� forming a column of the matrix A = [φ1, . . . ,φd

]
of

size m × d, we immediately obtain the familiar form

y = Ax,

where y = (y1, . . . , ym)� and x = (x1, . . . , xd)�. As usual, we assume that x is
sparse or compressible. In this case, the same recovery guarantees w. r. t. to the
equality- or quadratically constrained basis pursuit problem can be established as
soon as A or a scaled version of A can be shown to satisfy the restricted isometry
property as before.

The reason why we endowD with a probability measure is of course that it allows
us to draw the sampling points t j from μ at random to establish the restricted isom-
etry property of matrices defined w. r. t. subsampled bounded orthonormal systems
probabilistically. Such results were first demonstrated in [28] for the case of the par-
tial random Fourier matrix which satisfies the restricted isometry property with high
probability provided we record Ω(k log6(d)) measurements. A nonuniform version
of this result, which reduced the power of the log-term from 6 to 4, was shortly
after proven by Rudelson and Vershynin in [89]. Another improvement was recently
presented in [61] where the required number of measurements was further reduced
to Ω(k log2(k) log(d)) for randomly subsampled Fourier matrices. Under certain
conditions, this bound can further be reduced. For instance, if the dimension d is
an integer multiple of the sparsity level k, Bandeira et al. managed to remove the
second log-factor in the previous bound, proving that Ω(k log(d)) measurements
suffice to establish the restricted isometry property for partial Fourier matrices [7].
In case the measurement matrix corresponds to a subsampled Hadamard matrix,
Bourgain demonstrated in [17] the sufficiency ofΩ(k log(k) log2(d))measurements
to establish the restricted isometry property. A similar bound had previously been
shown to hold by Nelson et al. in [74]. The best general bound to date asserts that
m = Ω(k log3(k) log(d))measurements are required to establish the restricted isom-
etry property for arbitrary subsampled bounded orthonormal systems where the sam-
pling points are drawn from a discrete measure [32, Theorem 4.6]. This includes all
measurement matrices formed by randomly selecting rows of a unitary matrix such
as the DCT or DFT matrix, a Hadamard matrix, etc.

The following theorem records a modern general version of the RIP characteriza-
tion for measurement matrices based on randomly subsampled bounded orthonormal
systems.

Theorem 12 (BOS-RIP, [87, Theorem 4]) Consider a set of complex-valued
bounded orthonormal basis functions

{
φ j
}d
j=1 defined on a measure space D ⊂ R

equipped with the probability measure μ. Define a matrix A ∈ C
m×d with entries

ai j := φ j (ti ), i ∈ [m], j ∈ [d],
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constructed by independently drawing the sampling points ti from the measure μ.
Then with probability at least 1− d−c log3(k), the matrix 1√

m
A is an RIP matrix of

order k with constant δk ≤ δ provided

m ≥ Cδ−2K 2k log3(k) log(d).

The positive constants C and c are universal.

For the existing bounds, the number of necessary measurements m scales with
K 2. For the bound on m in Theorem 12 to be meaningful, the constant K should
therefore either be independent of the dimension d or at least only scale with lower
powers of d.

Finally, let us highlight that results as stated above can be extended to even
more restrictive structured random matrices [6, 85]. For instance, the authors of
[64] applied a novel technique to bound the suprema of chaos processes to obtain
conditions under which random partial circulant matrices would satisfy the RIP. In
this situation, the measurement procedure is of the form

Ax = 1√
m
RΩ(ε ∗ x),

where RΩ : Cd → C
m denotes the operator restricting the entries of a vector to the

setΩ ⊂ [d] of cardinalitym, ε is a Rademacher vector of length d, and ∗ denotes the
circular convolution operator. In general, if m ≥ Cδ−2k log2(k) log2(d), then with
probability at least 1− d− log(d) log2(k) the partial random circulant matrix A satisfies
the RIP of order k with constant δk ≤ δ.

7.2 Random Matrices and the Null Space Property

While probabilistic constructions of RIP matrices have been established for a vari-
ety of random ensembles such as subgaussian distributions, as well as measurement
matrices defined by randomly subsampled basis functions of bounded orthonor-
mal systems as discussed in the previous section, there are some shortcomings to
RIP-based recovery guarantees. For instance, the leading constants involved in the
required scaling for Gaussian matrices to satisfy the RIP are often quite large. While
these constants are usually due to artifacts of the proof strategy, analyses which
establish stable and robust recovery by directly appealing to the null space prop-
erty for Gaussian matrices often have much nicer constants. For instance, for large
d and d/k with moderately large k, establishing the null space property requires
m ≥ 8k log(ed/k) measurements (cf. [54, Theorem 9.29]) which is much smaller
than the constant involved in Eq. (17).

Another shortcoming in RIP-based analyses becomes evident when one tries to
obtain recovery guarantees of the form
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∥∥x̊ − x�
∥∥
q ≤ Ck,pσk(x̊)1 + Dk ‖e‖p ,

where we aim to characterize the reconstruction performance in the presence of �p-
bounded measurement noise for cases other than (p, q) ∈ {1, 2}2. Note that we still
measure the sparsity mismatch in terms of best k-term approximation error w. r. t. the
�1-norm.14 Such guarantees based on restricted isometries require a generalization
of the restricted isometry property as stated in Definition11. In particular, if one is
interested in the recovery of a vector x̊ ∈ C

d from compressive measurements of the
form y = Ax̊ + e with ‖e‖p ≤ ε, we may solve the program

minimize ‖x‖1
s.t. ‖Ax − y‖p ≤ ε.

In order to characterize the reconstruction quality of a minimizer x� of this program,
one may turn to the mixed (�p, �q)-RIP of the form

c ‖x‖q ≤ ‖Ax‖p ≤ C ‖x‖q ∀x ∈ Σk .

However, as was recently addressed in [39], the best known probability bounds to
establish the existence of such matrices for p = 1, 2 exhibit significantly worse scal-
ing in the number of required measurements than k log(d/k). In their work, Dirksen
et al. therefore derive concentration results which instead establish the �q -robust
null space property (Definition10), providing near-optimal scaling behavior of m
(up to possible log-factors) [39] for more general heavy-tailed random matrices. In
other words, they demonstrate that recovery guarantees as outlined above, which
require similar scaling compared to the provably optimal regime in the case of the
(�2, �2)-RIP, are not in general outside the realm of possibility. However, their work
demonstrates that one may have to move away from RIP-type conditions, and con-
sider stronger concepts such as the null space property and its generalizations to
establish similar guarantees. Note that to the best of our knowledge, there currently
do not exist any results which establish probabilistic bounds that directly assert the
null space property of subsampled BOS matrices without first establishing the RIP
to imply the null space property.

Finally, we want to point out two examples of measurement ensembles which
provably require more than k log(d/k) measurements to satisfy the RIP but which
nevertheless allow for typical recovery guarantees from k log(d/k) measurements.
The first example is random matrices whose rows follow an isotropic log-concave
distribution. Such matrices satisfy the canonical restricted isometry property, i.e., the
(�2, �2)-RIP, only ifm � k log2(ed/k) but provably allow for exact recovery as soon
asm � k log(ed/k) [2, 3, 63]. The second example concerns a certain combinatorial
construction of sensing matrices based on the adjacency matrix of random left k-
regular bipartite graphs with d left and m right vertices [12]. The corresponding

14This avoids another issue regarding the so-called instance optimality of pairs (A,�) where
� : Cm → C

d denotes an arbitrary reconstruction algorithm (see [54, Chap. 11] for details).
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graph is called a lossless expander and its normalized adjacency matrix 1
sA can

be shown to provide typical recovery guarantees with probability at least 1− η if
s � log(ed/(kη)) andm � k log(ed/(kη)). However, the matrix 1

sA does not satisfy
the (�2, �2)-RIP even though it satisfies the (�1, �1)-RIP.

8 An Algorithmic Primer

In the remainder of this introduction to compressed sensing, we want to turn our
attention to the practical aspects of signal recovery. To that end, we decided to
include a whirlwind tour of recovery algorithms that go beyond the scope of the
quadratically constrained basis pursuit problem. Note, however, that the selection
of algorithms chosen for this survey is not even close to exhaustive, and really only
scratches the surface of what the literature holds in store. An informal search on
the IEEE Xplore database produces upward of 1600 search results for the query
“compressed sensing recovery algorithm.” Naturally, there is no doubt that this list
includes a huge volume of work on specialized algorithms which go beyond the
simple sparsity case that we will discuss in this section, as well as survey papers and
workswhich simply benchmark the performance of existing algorithms in the context
of specific problems. Nevertheless, this informal experiment still demonstrates the
incredibly lively research activity in the field of recovery algorithms in compressed
sensing and related domains. For that reason, we limit attention to only a handful of
some of the most popular methods found in the pertinent literature and leave it up to
the reader to inform him or herself beyond the methods surveyed in this section.

In general, there are multiple criteria by which authors have historically grouped
different recovery algorithms for compressed sensing. Themost generic classification
usually considers three (mostly) distinct classes: convex optimization-based formu-
lations,15 so-called greedy methods, and iterative thresholding algorithms. Another
possible classification could be based on the amount of prior knowledge required
to run a particular algorithm. The most coarse classification in this regard takes the
form of algorithms which require an explicit estimate of the sparsity level, and those
which do not. As is the case for most other surveys on CS recovery algorithms, we
decided to opt for the former here.

Before moving on to more efficient recovery methods (at least from a run time
and computational complexity perspective), we first state some of the most com-
mon variants of convex problems one predominantly finds presented in the relevant
literature.

15We are careful not to call this an algorithm class as optimization programs are technically just
descriptions of problems which still require specialized algorithms such as interior-point methods
to actually solve them.
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8.1 Convex Programming

As usual, we model the measurement process of a perfectly sparse or compressible
signal x̊ ∈ C

d via the affine model y = Ax̊ + e where e ∈ C
m is a norm-constrained

noise term, i.e., ‖e‖p ≤ η with η ≥ 0 and p ≥ 1. If an upper bound, say w. r. t. the
�2-norm, of this error term e is known, we naturally consider the quadratically con-
strained basis pursuit problem that we already discussed in Sect. 6.2:

minimize ‖x‖1
s.t. ‖y− Ax‖2 ≤ η.

(QCBP)

For η = 0, this immediately reduces to the original basis pursuit problem.
Even thoughwe already characterized the recovery behavior of this problemwhen

we introduced the restricted isometry property, we state the result here again for
completeness. If x̊ ∈ C

d is merely approximately sparse, one obtains the following
characterization for minimizers x� of Problem (QCBP): if A ∈ C

m×d satisfies the
restricted isometry property of order 2k with constant δ2k < 4/

√
41, one has [54,

Theorem 6.12]

∥∥x� − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2η, (19)

where C1,C2 > 0 only depend on δ2k . Clearly, this result implies perfect recovery
in the case where we measure strictly k-sparse vectors in a noise-free environment.

For completeness, we also want to briefly highlight a few alternative convex pro-
gramming formulations closely related to Problem (QCBP). A very common variant
of the quadratically constrained basis pursuit program is the following unconstrained
problem:

minimize ‖x‖1 + λ ‖Ax − y‖2 (BPDN)

with λ > 0, often referred to as basis pursuit denoising (BPDN). The BPDN problem
is particularly interesting in situations where no sensible estimate for the noise level
η is available. In this case, one may instead use the parameter λ to control the trade-
off between sparsity and data fidelity. Depending on the type of method used to
solve this unconstrained problem, it might be helpful to replace the data penalty
term ‖Ax − y‖2 with its squared version to remove the differentiability issue. Of
course, the nondifferentiability of the objective function of Problem (BPDN) remains
unchanged by this step. However, if one employs a splitting-type algorithm where
one alternates between optimizing over individual parts of the objective function,
considering a squared �2-penalty enables us to use gradient-based techniques to deal
with the smooth part of the problem.Wewill discuss an example of such an approach
in Sect. 8.2.2 where we present a well-known iterative algorithm to solve a particular
variation of Problem (BPDN).

Another important formulation is the so-called least-absolute shrinkage selection
operator (LASSO) which was originally proposed in the context of sparse model
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selection in statistics:
minimize ‖Ax − y‖2

s.t. ‖x‖1 ≤ σ.
(LASSO)

Since the �1-norm generally functions as a sparsity prior, this formulation might be
of interest in situations where rather than an estimate of the noise level η we might
have access to a suitable estimate of the sparsity level. Recall that for x̊ ∈ Σk we
have by the Cauchy–Schwarz inequality that

∥∥x̊
∥∥
1 ≤

√
k
∥∥x̊
∥∥
2. Depending on the

application of interest, an upper bound on the energy of the original signal x̊ might
be naturally available so that one may simply choose σ = √

k
∥∥x̊
∥∥
2.

Finally, the following program is known as the Dantzig selector:

minimize ‖x‖1
s.t. ‖A∗(Ax − y)‖∞ ≤ τ .

(DS)

The key idea here is to impose a maximum tolerance on the worst-case correlation
between the residuum r := Ax − y and the columns {ai }di=1 of A. In the extreme
case τ = 0, the Dantzig selector reduces to the classic basis pursuit problem since
ker(A∗) = {0}, and thus ‖A∗(Ax − y)‖∞ = 0 if and only if x belongs to the affine
space

{
z ∈ C

d : Az = y
}
.

Conveniently, despite their different formulations and use cases, the problems
(BPDN), (LASSO), and (DS) all share the same recovery guarantee from Eq. (19)
up to nonlinear transformation of the parameters η,λ, and σ [54, Proposition 3.2].
While the Dantzig selector is the odd one out, similar guarantees can still be derived
with relative ease. We refer interested readers to [20].

8.2 Thresholding Algorithms

While the recovery guarantees in the literature are usually strongest for con-
vex optimization-based recovery procedures, generic solving algorithms based on
interior-point methods [18, Chap. 11] as employed by popular optimization tool-
boxes like CVX [59] or CVXPY [38], as well as implementations more specialized
to the particular nature of �1-minimization problems such as �1- MAGIC [19],SPGL1
[97] and YALL1 [105], become less and less practical if problem sizes increase. The
class of thresholding algorithms represents an attractive compromise between strong
theoretical guarantees and highly efficient and predictable running times.

Thresholding algorithms can generally be further subdivided into so-called hard
and soft-thresholding algorithms. In the following, we present the most popular
representatives from each class, namely, iterative hard thresholding (IHT) and hard
thresholding pursuit (HTP) for the former, and the iterative soft-thresholding algo-
rithm (ISTA) and the fast iterative soft-thresholding algorithm (FISTA) for the latter.
Other popular thresholding-based algorithms include subspace pursuit [35], NESTA
[10], and SpaRSA [103].
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8.2.1 Hard Thresholding

At the heart of any hard thresholding algorithm lies the so-called hard thresholding
operator Hk : Cd → Σk defined as

Hk(x) := argmin
z∈Σk

‖x − z‖p,

for p ≥ 1 which projects an arbitrary d-vector on the set of k-sparse vectors. The
value Hk(x) is constructed by identifying the index set G ⊂ [d] of size |G| = k
which supports the largest values of x (in absolute value), and zeroing out any values
supported on G. In other words, the vector Hk(x) achieves the best k-term approx-
imation error σk(x)p for any p ≥ 1. For convenience, we also define the set-valued
operator Lk : Cd → 2[d] with Lk := supp ◦Hk yielding the support set of the best
k-term approximation of x ∈ C

d . Here, 2G denotes the power set of G.
With these definitions in place, we now turn to the first hard thresholding algo-

rithm.

Iterative Hard Thresholding

The key idea of iterative hard thresholding is to reduce the smooth loss function
g(x) := 1

2 ‖Ax − y‖22 with gradient∇g(x) = A∗(Ax − y) at every iteration bymeans
of a gradient descent update before pruning the solution to the set of k-sparse vectors
by means of the hard thresholding operator. The full listing of the algorithm is given
in Algorithm 1.

Algorithm 1: Iterative Hard Thresholding (IHT)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: x0 ← 0, n ← 0
while halting condition is not satisfied do

vn+1 ← xn − A∗(Axn − y) Gradient descent step
xn+1 ← Hk(vn+1) Projection on Σk
n ← n + 1

end
Output: xn

Considering the nonlinearity of the operator Hk , it is not immediately obvious that
Algorithm 1 even converges, let alone to the true solution x̊. The following result
demonstrates both robustness w. r. t. sparsity defect and stability w. r. t. measurement
noise. Consider an arbitrary vector x̊ ∈ C

d which wemeasure according to the model
y = Ax̊ + e. If A satisfies the RIP condition with constant δ6k < 1/

√
3, Algorithm

1 produces iterates (xn)n≥0 satisfying [54, Theorem 6.21]

∥∥xn − x̊
∥∥
2 ≤ 2ρn

∥∥x̊
∥∥
2 + C1k

−1/2σk(x̊)1 + C2 ‖e‖2 ,
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where C1,C2 > 0, and 0 < ρ < 1 are constants which only depend on δ6k . For n →
∞, this sequence converges to a cluster point x� satisfying

∥∥x� − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2 ‖e‖2 . (20)

If the vector x̊ we wish to recover is in reality supported on an index set S ⊂ [d] of
size k, and measurements are not disturbed by noise (e = 0), one has σk(x̊)1 = 0,
and therefore

∥∥x� − x̊
∥∥
2 ≤ 0, implying perfect recovery with x� = x̊.

Hard Thresholding Pursuit

The fundamental difference between IHT and HTP is the fact that HTP merely
uses hard thresholded gradient descent updates to estimate the support set of x̊. In
particular, it propagates least-squares solutions of y = Ax w. r. t. to a submatrix of
A obtained by pursuing the active support set of coefficients in each iteration based
on the operator Lk = supp ◦Hk . A full algorithm listing is given in Algorithm 2.
Surprisingly, the stability and robustness analyses are identical for IHT and HTP

Algorithm 2: Hard Thresholding Pursuit (HTP)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: x0 ← 0, n ← 0
while halting condition is not satisfied do

vn+1 ← xn − A∗(Axn − y) Gradient descent step
Gn+1 ← Lk(vn+1) Support identification
xn+1 ← 0
xn+1
Gn+1

← A†
Gn+1

y Least-squares update
n ← n + 1

end
Output: xn

barring a change of parameters (C1,C2, ρ) for HTP. Most importantly, this change
results in a faster rate of convergence for the HTP algorithm [54].

8.2.2 Soft Thresholding

While the algorithms described in Sect. 8.2.1 rely on explicit hard thresholding
to guarantee a certain sparsity level of solutions, soft-thresholding methods (also
referred to as shrinkage thresholding for reasons which will become clear shortly)
promote sparsity by incorporating an �1-prior in their objective functions, and apply-
ing the so-called proximal gradient algorithm or a variant thereof. In particular, we
aim to solve the unconstrained regularized problem

minimize λ ‖x‖1 + 1

2
‖Ax − y‖22 , (21)
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with λ > 0. Up to rescaling of the objective function, and squaring of the �2-penalty,
this is identical to Problem (BPDN) introduced earlier.

To explain the general idea behind soft thresholding, consider a loss function of the
form f (x) := g(x) + h(x)whereg : Rd ∪ {−∞,∞} → R is a (possibly) nonsmooth
lower semi-continuous extended value function and h : Rd → R is a smooth convex
function. If g were smooth, this problem could be solved by standard optimization
tools such as (conjugate) gradient descent or Newton’s method. However, in order
to promote sparsity one will often choose g = λ ‖·‖1, meaning that such a simple
approach is not applicable. In the proximal gradient method, one therefore replaces
the smooth part h of f bymeans of a second-order approximation, i.e., one considers
an iterative approach of the form

x+ := argmin
v∈Rd

{
g(v) + ĥt (x, v)

}
,

where x and x+ denote the current and next iterate, respectively, and

ĥt (x, v) := h(x) + 〈∇h(x), v − x〉 + 1

2t
‖v − x‖22 (22)

with t > 0 is a second-order approximation of h around the point x. It is easily
verified that the expression for x+ can be rewritten as

x+ = argmin
v∈Rd

{
g(v) + h(x) + 〈∇h(x), v − x〉 + 1

2t
‖v − x‖22

}

= argmin
v∈Rd

{
g(v) + 1

2t
‖v − (x − t∇h(x))‖22

}
. (23)

While this formulation might give the impression that we merely traded one difficult
optimization problem for another, it turns out that the operator in Eq. (23) corresponds
to the so-called proximal operator [77]

proxtg(x) := argmin
v∈Rd

{
g(v) + 1

2t
‖v − x‖22

}
,

applied to the gradient descent update x − t∇h(x). Conveniently, this operator has
a closed-form solution for a variety of different nonsmooth functions g. In partic-
ular, it is easy to check via subdifferential calculus over its individual entries that
proxα‖·‖1(x) = Sα(x) where

Sα(x) :=
{
sign(x)(|x | − α), |x | ≥ α,

0, otherwise,
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is the so-called shrinkage operator that is applied element-wise to x.16 Overall, we
obtain the iteration

x+ = Sλt (x − tA�(Ax − y)) (24)

if we apply this method to the basis pursuit denoising Problem (21). In this particular
formulation, the parameter t acts as a step size which we may choose (e.g.,) via
backtracking line search, while λ > 0 can be used to control the trade-off between
sparsity of the solution x� and the data fidelity term ‖Ax� − y‖2.

This algorithm requires on the order of O(1/ε) iterations to come within an ε-
range | f (x̊) − f (xn)| ≤ ε of optimality, implying a convergence rate ofO(1/n) [9].
According to a celebrated result by Nesterov [75], the best achievable convergence
rate in the class of nonsmooth first-order methods17 is O(1/n2). This rate is achiev-
able by Nesterov’s acceleration method, resulting in the well-known fast iterative
soft-thresholding algorithm (FISTA) due to Beck and Teboulle when applied to the
iterative soft-thresholding algorithm [9]. Informally, the key idea of FISTA is to add
a momentum term depending on the last two iterates to avoid erratic changes in the
search direction, i.e., one updates the iterates according to

vn+1 := xn + n − 2

n + 1
(xn − xn−1),

xn+1 := Stn (v
n+1 − tnA�(Axn − y))

with tn > 0 the step size at iteration n. Note that this formulation, taken from [77],
differs from the original one given in [9] which explicitly depends on the Lipschitz
constant of the gradient of the smooth part of (21). Also note that while this algorithm
obtains the desired convergence rate of O(1/n2), it is not a descent method. In
practice, this means that additional book keeping is required to keep track of the best
current iterate. However, considering that this accelerated scheme virtually comes at
the same computational cost as Eq. (24), the impact of book keeping is negligible if
weighed against the greatly improved convergence behavior.

Both ISTA and FISTA solve the unconstrained problem (21), and provably con-
verge to the global optimum at a linear and super-linear rate, respectively, where
convergence without step size adaptation is determined by the Lipschitz constant
L := ‖A�A‖2→2 of the gradient of h(x) := 1

2 ‖Ax − y‖22. Since our main objec-
tive is the recovery of sparse or more generally compressible vectors from noisy
measurements, we still have to answer the question how closely these algorithms
approximate the true solution x̊, and under which conditions recovery is exact. Con-
veniently, these recovery guarantees can be expressed in terms of the guarantees
obtained for the quadratically constrained basis pursuit problem stated in Sect. 8.1.

16Hence the name shrinkage thresholding.
17Note thatwhilewe used a second-order approximation of h in Eq. (22),we did so by approximating
the Hessian ∇2h(x) as a scaled identity matrix, thereby ignoring the true second-order information
of h.
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This holds because—given a minimizer x�
QCBP of (QCBP)—we can always find a

transformation T (x�
QCBP, η) = λ of the parameter η ≥ 0 of (QCBP) and the param-

eter λ > 0 of the unconstrained problem (21) such that both convex problems have
the same optimal value f � [10]. Note, however, that explicitly finding the mapping
T is generally a nontrivial problem [98].

It remains to showwhen Problem (21) has a unique minimizer such that the corre-
spondence between the solutions x�

QCBP and x
�
BPDN is one-to-one given an appropriate

choice of parameters η and λ. To that end, one seeks conditions when minimizers
of (21) are unique. While there are various publications that address the issue of
uniqueness of solutions to this problem, e.g., [24, 94], none of them is immediately
guaranteed by the RIP or NSP. For instance, [104, Theorem 4.1] establishes the
following condition for minimizers of (21) to be unique.

Theorem 13 Let x� be a minimizer of the basis pursuit denoising problem, and
define S := supp(x�). Then x� is a unique minimizer iff

1. AS has full column-rank,

2. ∃u ∈ R
m such that A�

S u = sign(x�
S) and

∥∥∥A�
S
y
∥∥∥∞

< 1.

Approximate Message Passing

Due to the structural similarity to the iterative soft-thresholding algorithm, we briefly
touch upon another popular development in the field of iterative thresholding algo-
rithms, namely, the so-called approximate message passing (AMP) method. Pio-
neered by Donoho et al. in [44], the general formulation of approximate message
passing (AMP) closely resembles the basic form of ISTA. The difference amounts
to a correction term of the residuum rn = Axn − y stemming from the interpretation
of the measurement model y = Ax̊ in terms of loopy belief propagation in graphical
models. Based on a slight reformulation of Eq. (24), approximate message passing
proceeds via the iterations

xn+1 := Sμn (A
�rn + xn), (25)

rn := y− Axn + 1

δ
rn−1 〈1, S′μn

(A�rn−1 + xn−1)
〉
, (26)

where δ := m/d and S′μ(x) denotes the derivative of Sμ(x) ignoring the nondiffer-
entiability at |x | = μ. Despite this innocent looking correction term in Eq. (26) (also
known asOnsager correction), which barely increases the computational complexity
over ISTA, theperformanceof this algorithm in termsof theobservedphase-transition
diagrams turns out to be highly competitive with the de facto gold standard of �1-
minimization and in certain situations even manages to outperform it [43].

The key ingredient to the success of AMP is the observation that in the large-
system limit m, d → ∞ with δ fixed, and Ai j ∼i.i.d. N(0, 1/m), one has A�rn +
xn = x̊ + vn for the argument of Sμn in Eq. (25) where vn is an i.i.d. zero-mean
Gaussian random vector whose variance σ2

n—and hence the mean squared error
(MSE) of the reconstruction—can be predicted by a state evolution formalism.
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Since its original introduction, a variety of modifications and improvements have
been proposed for the AMP algorithm. These include the denoising-based AMP
(D-AMP) [69] which generalizes the state evolution formalism to general Lipschitz
continuous denoisers other than the soft-thresholding function, vectorAMP(V-AMP)
[83] which extends AMP to more general classes of measurement matrices, and
generalized AMP (GAMP) [82] which extends AMP to arbitrary input and output
distributions and allows for dealing with nonlinearities in the measurement process.
While the general versions of most of these AMP variants require some statistical
knowledge about the parameters involved, there exist several modifications which
estimate these parameters online via expectation maximization (EM).

In closing, we mention that Problem (21) can be tackled by a variety of related
methods such as alternating direction method of multipliers (ADMM), forward–
backward splitting, Douglas–Rachford splitting, or homotopy methods. We refer the
interested reader to the excellent survey [50], as well as to the notes in [54, Chap.
15].

8.3 Greedy Methods

Greedy algorithms are generally characterized by their tendency to act according
to locally optimal decision rules in hopes of eventually arriving at a global optimal
solution. In particular, they never explicitly aim at minimizing a particular (non-
)convex objective. Instead, they treat the collection of columns of the measurement
matrixA as a dictionary of atoms {ai }di=1 andfirst try to identify the atomswhich likely
contributed to the measurement vector y, before estimating the associated weighting
factors. Despite the fact that algorithms of this type had been in use long before
the advent of compressed sensing, particularly in the image processing community,
research into greedy algorithms for sparse recovery experienced a resurgence ever
since the rise of compressed sensing. In this section, we will look at two of the most
popular representatives in this particular class of algorithms, namely, the so-called
orthogonal matching pursuit and compressive sampling matching pursuit methods.

Orthogonal Matching Pursuit

While technically a successor to the lesser used matching pursuit algorithm, orthog-
onal matching pursuit (OMP) remains to this day one of the most popular greedy
algorithms due to the fact that it is one of the methods with the lowest footprint in
terms of computational complexity. As can be seen from Algorithm 3, OMP updates
its estimated support set one atom at a time by identifying the atom ai that exhibits
the strongest correlation with the residuum rn = Axn − y as measured by the inner
product |〈ai , rn〉|.

The atom selection step in each OMP iteration can be interpreted as identifying
the component of xn w. r. t. which the function f (xn) := 1

2 ‖Axn − y‖22 varies the
most. This is due to the fact that the gradient of f at xn reads ∇( 12 ‖Axn − y‖22) =
A∗(Axn − y) = A∗rn . The update step xn → xn+1 on the other hand corresponds
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Algorithm 3: Orthogonal Matching Pursuit (OMP)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: x0 ← 0, G0 ← ∅, n ← 0, r0 ← −A∗y
while halting condition is not satisfied do

jn+1 ← argmin j∈[d] |(A∗rn) j | Atom identification
Gn+1 ← Gn ∪ { jn+1} Support extension
xn+1 ← A†

Gn+1
y Least-squares projection

rn+1 ← Axn+1 − y Calculation of residuum
n ← n + 1

end
Output: xn

to a projection of y on the subspace spanned by the columns of A indexed by the
updated index set Gn+1.

While theoretical guarantees in the noise-free and exactly sparse case exist in
abundance for OMP, robust and stable recovery guarantees are not as well-developed
as one might expect given the maturity of the theory and the popularity of OMP in
general. Oftentimes such results depend on additional regularity conditions on the
class of vectors one aims to recover.

In general, OMP does not require an estimate of the sparsity level of the vector
one aims to recover. The algorithm naturally terminates as soon as the same atom is
selected twice in subsequent iterations. Other halting conditions include the relative
change of estimates xn between iterations and tolerance criteria of data fidelity mea-
sures w. r. t. rn . Considering that OMP updates the support set one index at a time per
iteration, OMP requires at least k iterations to find a k-sparse candidate vector. If the
sparsity level is known a priori, another natural termination condition is therefore
simply given by the number of iterations.

One of the earliest recovery guarantees for OMP was the coherence-based condi-
tion (2k − 1)μ < 1 which allows OMP to recover any k-sparse vector from noiseless
linear measurements in k iterations [42]. In light of the Welch bound (cf. Proposi-
tion4)

μ ≥
√

d − m

m(d − 1)
,

this implies the quadratic scaling in the number of measurements announced in
Sect. 6.3. Currently, one of the best known sufficiency conditions for exact k-sparse
recovery in the noiseless setting in terms of the restricted isometry property requires
δk+1 < 1/

√
k + 1 [71, Theorem III.1].

In the general noise-corrupted settingwith y = Ax̊ + e, one obtains theRIP-based
bound [54, Theorem 6.25]

∥∥x24k − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2 ‖e‖2 (27)
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for iterates of OMP after 24k iterations, where the constantsC1,C2 > 0 only depend
on the RIP constant δ26k < 1/6 of the associated measurement matrix A. In the
noiseless and exactly sparse case, Eq. (27) guarantees perfect recovery after 24k
iterations.Note, however, that in this caseOMPwill already reach the global optimum
after k iterations since the algorithm selects one atom per iteration, after which it
will stall due to the fact that rn = 0 for n > k. Otherwise, the solution returned by
OMP after 24k iterations could not be k-sparse.

These guarantees are a far cry from the recovery conditions one obtains for meth-
ods such as QCBP or IHT seeing how RIP matrices of order 26k are much harder to
construct than matrices of order 2k and 3k, respectively. One possible explanation
for the demanding requirement on the RIP order of A is the fact that OMP in its
presented form has no way to correct possibly erroneous choices of atoms made in
previous iterations. In a sense, this observation can be seen as one of the main moti-
vations of the compressive sampling matching pursuit algorithm we will introduce
in the next section.

Compressive Sampling Matching Pursuit

The compressive sampling matching pursuit (CoSaMP) algorithm shares a lot of
similarities both with theOMP algorithm and the hard thresholding pursuit algorithm
described in Sect. 8.2.While technically also an iterative algorithm that relies on hard
thresholding, it is usually considered an instance of the class of greedy algorithms.
The full procedure is given in Algorithm 4. Given a current estimate xn of x̊,

Algorithm 4: Compressive Sampling Matching Pursuit (CoSaMP)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization x0 ← 0, n ← 0, r0 ← −A∗y
while halting condition is not satisfied do

Gn+1 ← supp(xn) ∪ L2k(A∗rn) Support overestimation
vn+1 ← 0
vn+1
Gn+1

← A†
Gn+1

y Least-squares projection

xn+1 ← Hk(vn+1) “Projection” on Σk
rn+1 ← Axn+1 − y Calculation of residuum
n ← n + 1

end
Output: xn

CoSaMP proceeds by first identifying the 2k columns ofAwhich best correlate with
the residuum rn = Axn − y at iteration n. The algorithm then continues to solve a
least-squares problem w. r. t. to column submatrix defined by the support of xn and
the 2k column indices identified in the previous step. Since the algorithm ultimately
aims to obtain strictly k-sparse solutions, the next estimate xn+1 is finally found via
hard thresholding of the least-squares update vn+1.

Solving the least-squares problem over a column index set of size at most 3k
effectively allows CoSaMP to adaptively correct previous choices of the support set
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of its estimate of x̊. This is one of the main drawbacks of the OMP algorithm, which
will never remove a previously selected atom ai from its dictionary once column i
of A was identified as an element contributing to y.

In accordance with the previous algorithms, we once again state available stability
and robustness results for CoSaMP. Consider a vector x̊ ∈ C

d which we aim to
recover from its linear measurements y = Ax̊ + e whereA ∈ C

m×d satisfies the RIP
of order 8k with δ8k < 0.4782. Then the sequence (xn)n≥0 generated by Algorithm
4 satisfies [54, Theorem 6.28]

∥∥xn − x̊
∥∥
2 ≤ 2ρn

∥∥x̊
∥∥
2 + C1k

−1/2σk(x̊)1 + C2 ‖e‖2 , (28)

where C1,C2 > 0, and 0 < ρ < 1 only depend on δ8k . Once again, Eq. (28) estab-
lishes the existence of cluster points x� satisfying

∥∥x� − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2 ‖e‖2 ,

which implies perfect recovery by convergence to the unique vector x̊ once x̊ ∈ Σk

and e = 0.

8.4 Iteratively Reweighted Least-Squares

Another popular method which does not quite fit into any of the categories discussed
so far is the so-called iteratively reweighted least-squares (IRLS) algorithm. At its
core, IRLS is motivated by the observation that

|x | = |x |−1|x |2

for 0 = x ∈ C. Assuming for the moment that x̊ ∈ Σk were known, we could rewrite
the basis pursuit problem as

min

{
d∑

i=1

|xi | : y = Ax

}

= min

⎧
⎨

⎩

∑

i∈supp(x̊)
|x̊i |−1|xi |2 : y = Ax

⎫
⎬

⎭
. (29)

The idea now is to treat the term |x̊i |−1 as a weighting factor that we iteratively
update in an alternating fashion in between updates of the variables xi . To that end,
we define the weighting factors as a smooth approximation

wn+1
i := |x2i + τ 2

n+1|−1/2, (30)
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where we require 0 < τn+1 ≤ τn so that wn+1
i → |xi |−1 as τn+1 → 0. Considering

that supp(x̊) is unknown, this approximation has the added advantage that we can
let the summation on the right-hand side of Eq. (29) run through all indices in [d] as
the regularization parameter τn avoids divisions by zero. To proceed, we now define
the functional

F(x,w, τ ) := 1

2

[
d∑

i=1

|xi |2wi +
d∑

i=1

(τ 2wi + w−1
i )

]

. (31)

This definition is motivated by the following observations. Given a fixed weight
vector w and regularizer τ , Eq. (31) corresponds to Eq. (29) with |x̊i |−1 replaced by
wi . Defining Dw := diag {w}, this constitutes a least-squares minimization problem
w. r. t. the induced norm ‖x‖Dw

:= √
x∗Dwx, i.e.,

minimize ‖x‖Dw

s.t. y = Ax,

which admits the closed-form solution

x� = D−1/2
w (AD−1/2

w )†y.

The second observation concerns the update of the weighting vector w given a fixed
x and τ . In that case, it is easily verified for i ∈ [d] that

w�
i = argmin

wi>0
F(x,w, τ ) = 1

√|xi |2 + τ 2
,

which corresponds to the regularization of wi in terms of xi and τ as motivated by
Eq. (30). The full algorithm is listed in Algorithm 5. Note that the update rule for τ
is chosen in such a way that τn is a nonincreasing sequence in n as motivated above.

The following recovery guarantee for the IRLSalgorithm is basedon [54,Theorem
15.15]. LetA ∈ C

m×d satisfy the restricted isometry property of order 2k with δ2k <

7/(4
√
41) ≈ 0.2733, and define18 for αδ :=

√
1− δ22k − δ2k/4,

ρ := δ2k

αδ
and τ :=

√
1+ δ2k

αδ
.

Then the sequence (xn)n≥0 generated by the IRLS algorithm converges to a point x�,
and

18Note that this choice amounts to A satisfying the �2-robust null space property (cf. Definition10)
of order k with constants ρ < 1/3 and τ > 0 [54, Theorem 6.13].
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∥∥x̊ − x�
∥∥
1 ≤

2(3+ ρ)

1− 3ρ
σk(x̊)1

which implies perfect recovery via the IRLS algorithm if x̊ is k-sparse.

Algorithm 5: Iteratively Reweighted Least-Squares (IRLS)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: w0 ← 1, n ← 0, τ0 ← 1
while halting condition is not satisfied do

xn+1 ← D−1/2
wn (AD−1/2

wn )†y
τn+1 ← min

{
τn, (xn)∗k+1/(2d)

}

wn+1
i ←

(
|xn+1

i |2 + τ2n+1

)−1/2 ∀i ∈ [d]
n ← n + 1

end
Output: xn

9 Conclusion

In the years since its inception, the field of compressed sensing has steadily developed
into a mature theory at the intersection of applied mathematics and engineering.
With numerous applications in various domains of science and engineering, it now
constitutes an indispensable tool in the toolboxof signal processing engineerswho are
facedwith the problemof sampling high-dimensional signals in resource-constrained
environments.

In this chapter, we reviewed some of the basic concepts of the theory, focusing on
large part on the problem of nonuniform recovery of low-complexity signals from
linear observations. In particular, wewant to highlight the inclusion of a discussion on
the connection between sparse recovery and conic integral geometry, a rather young
development in the field, as well as a broader discussion of several efficient recovery
algorithms and associated performance guarantees. We hope that the selection of
topics featured in this introduction serves as a useful starting point in the further
study of the theory of compressed sensing and its extensions.
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