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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to pro-
vide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical under-
pinnings. Thus, from our point of view, the interleaving of theory and applications
and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of creative
cross-fertilization with diverse areas. The intricate and fundamental relationship
between harmonic analysis and fields such as signal processing, partial differential
equations (PDEs), and image processing is reflected in our state-of-the-art ANHA
series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analy-
sis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from
abstract harmonic analysis, including von Neumann algebras and the affine
group. This leads to a study of the Heisenberg group and its relationship to Gabor
systems, and of the metaplectic group for a meaningful interaction of signal
decomposition methods. The unifying influence of wavelet theory in the afore-
mentioned topics illustrates the justification for providing a means for centralizing
and disseminating information from the broader, but still focused, area of harmonic
analysis. This will be a key role of ANHA. We intend to publish with the scope and
interaction that such a host of issues demands.
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Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and sci-
entific phenomena, and on the solution of some of the most important problems in
mathematics and the sciences. Historically, Fourier series was developed in the
analysis of some of the classical PDEs of mathematical physics; these series were
used to solve such equations. In order to understand Fourier series and the kinds of
solutions they could represent, some of the most basic notions of analysis were
defined, e.g., the concept of “function.” Since the coefficients of Fourier series are
integrals, it is no surprise that Riemann integrals were conceived to deal with
uniqueness properties of trigonometric series. Cantor’s set theory was also devel-
oped because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of har-
monics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engi-
neering, mathematics, and the sciences. For example, Wiener’s Tauberian theorem
in Fourier analysis not only characterizes the behavior of the prime numbers, but
also provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet

Antenna theory
Biomedical signal processing
Digital signal processing

Fast algorithms
Gabor theory and applications

Image processing
Numerical partial differential

equations

Prediction theory
Radar applications
Sampling theory

Spectral estimation
Speech processing

Time-frequency and time-scale
analysis

Wavelet theory
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theory. The coherent states of mathematical physics are translated and modulated
Fourier transforms, and these are used, in conjunction with the uncertainty prin-
ciple, for dealing with signal reconstruction in communications theory. We are back
to the raison d’être of the ANHA series!

College Park, MD, USA John J. Benedetto
Series Editor

University of Maryland
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Preface

Compressed sensing is an efficient technique to measure and reconstruct
high-dimensional signals. The key idea of this method is that high-dimensional
signals usually admit a lower dimensional structure in the sense that they have a
sparse representation in a basis or a frame.

Since the publication of the first papers in 2006, compressed sensing has
established itself as an independent field of research, and its mathematical foun-
dations are nowadays well understood. Along the way, the area has benefitted and
was driven by its interdisciplinarity. Indeed, compressed sensing is located at the
interface of applied mathematics and engineering with applications in communi-
cation theory, imaging sciences, optics, radar technology, sensor networks, and
tomography.

In this spirit, two MATHEON conferences entitled “Compressed Sensing and its
Applications” were held in December 2013 and December 2015 at the Technische
Universität Berlin. These brought together experts from a variety of research areas
including electrical engineering, mathematics, biology, chemistry, computer sci-
ence, or material scientists. Both workshops were supported by the Matheon, which
is a research center in Berlin for “Mathematics for Key Technologies”, as well as by
the German Research Foundation (DFG).

Due to the overwhelming success of the previous workshops, the editors of this
volume organized a third edition of the conference series in 2017. In addition to the
established field of compressed sensing, we decided to open the conference up to
applications of deep learning in data science as we expected substantial overlap
of these methods and ideas and those prevalent in compressed sensing. Overall, we
welcomed 140 participants from 12 countries with an immense variety of different
backgrounds leading to fruitful and inspiring discussions.

This volume contains a selection of contributions from speakers of this con-
ference. It is aimed at a broad readership including graduate students and
researchers in the areas of mathematics, computer science, and engineering. We
believe it is also accessible to researchers working in any other field requiring
methodologies for data science. Hence, this volume can be used both as a

ix



state-of-the-art monograph on applications of compressed sensing and as a textbook
for graduate students. Here is a brief outline of the contents of each chapter.

Chapter “An Introduction to Compressed Sensing” provides an introduction as
well as a self-contained overview of the main results on the theory and applications
of compressed sensing. Chapters “Quantized Compressed Sensing: A Survey”, “On
Reconstructing Functions from Binary Measurements”, and “Classification
Scheme for Binary Data with Extensions” explore the role of quantization in
data science applications. More specifically, Chapter “Quantized Compressed
Sensing: A Survey” gives a survey on quantized compressed sensing, Chapter “On
Reconstructing Functions from Binary Measurements” analyses reconstruction of
functions from binary measurements and Chapter “Classification Scheme for
Binary Data with Extensions” introduces a classification algorithm from binary
measurements. Chapters “Generalization Error in Deep Learning”, “Deep Learning
for Trivial Inverse Problems”, and “Oracle Inequalities for Local and Global
Empirical Risk Minimizers” discuss aspects of the area of machine learning. To be
precise, Chapter “Generalization Error in Deep Learning” presents a survey on
theoretical results on the generalization error in machine learning techniques.
Chapter “Deep Learning for Trivial Inverse Problems” studies the feasibility of
deep learning techniques to solve inverse problems. Chapter “Oracle Inequalities
for Local and Global Empirical Risk Minimizers” establishes oracle inequalities for
empirical risk minimization. Chapter “Median-Truncated Gradient Descent: A
Robust and Scalable Nonconvex Approach for Signal Estimation” presents a
variation of gradient descent with applications in traditional compressed sensing as
well as machine learning. In the final chapter of this book a practical example of
compressed sensing in single pixel imaging is presented.

This conference certainly would not have been possible without the support of
dedicated volunteers, and we gratefully acknowledge the help of all members of the
Applied Functional Analysis Group at the Technische Universität Berlin Tiep
Dovan, Katharina Eller, Axel Flinth, Ansgar Freyer, Ingo Gühring, Martin Genzel,
Ali Hashemi, Anja Hedrich, Sandra Keiper, Héctor Andrade Loarca, Jan
Macdonald, and Stephan Wäldchen.

Munich, Germany Holger Boche
Durham, USA Robert Calderbank
Berlin, Germany Giuseppe Caire
Berlin, Germany Gitta Kutyniok
Aachen, Germany Rudolf Mathar
Oxford, UK Philipp Petersen
April 2019
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An Introduction to Compressed Sensing

Niklas Koep, Arash Behboodi and Rudolf Mathar

Abstract Compressed sensing and many research activities associated with it can
be seen as a framework for signal processing of low-complexity structures. A corner-
stone of the underlying theory is the study of inverse problemswith linear or nonlinear
measurements. Whether it is sparsity, low-rankness, or other familiar notions of low
complexity, the theory addresses necessary and sufficient conditions behind the mea-
surement process to guarantee signal reconstruction with efficient algorithms. This
includes consideration of robustness to measurement noise and stability with respect
to signal model inaccuracies. This introduction aims to provide an overall view of
some of the most important results in this direction. After discussing various exam-
ples of low-complexity signal models, two approaches to linear inverse problems
are introduced which, respectively, focus on the recovery of individual signals and
recovery of all low-complexity signals simultaneously. In particular, we focus on
the former setting, giving rise to so-called nonuniform signal recovery problems.
We discuss different necessary and sufficient conditions for stable and robust sig-
nal reconstruction using convex optimization methods. Appealing to concepts from
non-asymptotic random matrix theory, we outline how certain classes of random
sensing matrices, which fully govern the measurement process, satisfy certain suffi-
cient conditions for signal recovery. Finally, we review some of the most prominent
algorithms for signal recovery proposed in the literature.
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1 Introduction

The field of compressed sensing was originally established with the publication of
the seminal papers “Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information” [25] by Terence Tao, Justin Romberg
and Emmanuel Candès, and the aptly titled “Compressed sensing” [40] by David
Donoho. The research activity by hundreds of researchers that followed over time
transformed the field into a mature mathematical theory with far-reaching implica-
tions in applied mathematics and engineering alike. While deemed impossible by the
celebratedShannon–Nyquist sampling theorem, aswell as fundamental facts in linear
algebra, their work demonstrated that unique solutions of underdetermined systems
of linear equations do in fact exist if one limits attention to signal sets exhibiting
some type of low-complexity structure. In particular, Tao, Romberg, Candès, and
Donoho considered so-called sparse vectors containing only a limited number of
nonzero coefficients and demonstrated that solving a simple linear program mini-
mizing the �1-norm of a vector subject to an affine constraint allowed for an efficient
way to recover such signals. While examples of �1-regularized methods as a means
to retrieve sparse estimates of linear inverse problems can be traced back as far as
the 1970s to work in seismology, the concept was first put on a rigorous footing in
a series of landmark papers [25–28, 40]. Today, compressed sensing is considered a
mature field firmly positioned at the intersection of linear algebra, probability theory,
convex analysis, and Banach space theory.

This chapter serves as a concise overview of the field of compressed sensing, high-
lighting some of the most important results in the theory, as well as somemore recent
developments. In light of the popularity of the field, there truly exists no shortage of
excellent surveys and introductions to the topic. We want to point out the following
references in particular: [14, 46, 47, 51, 52, 54], which include extended mono-
graphs focusing on a rigorous presentation of the mathematical theory, as well as
works more focused on the application side, e.g., in the context of wireless commu-
nication [60] or more generally in sparse signal processing [29]. Due to the volume
of excellent references, we decided on a rather opinionated selection of topics for
this introduction. For instance, a notable omission of our text is a discussion on the
so-called Gelfand widths, a concept in the theory of Banach spaces that is commonly
used in compressed sensing to prove the optimality of bounds on the number of mea-
surements required to establish certain properties of random matrices. Moreover, in
the interest of space, we opted to omit most of the proofs in this chapter, and instead
make frequent reference to the excellent material found in the literature.

Organization

Given the typical syllabus of introductions to compressed sensing, we decided to go
a slightly different route than usual by motivating the underlying problem from an
extended view at the problem of individual vector recovery before moving on to the
so-called uniform recovery case which deals with the simultaneous recovery of all
vectors in a particular signal class at once.
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In Sect. 2, we briefly recall a few basic definitions of norms and random variables.
We also define some basic notions about so-called subgaussian random variables as
they play a particularly important role in modern treatments of compressed sensing.

In Sect. 3, we introduce a variety of signal models for different applications and
contexts. To that end, we adopt the notion of simple sets generated by so-called
atomic sets, and the associated concept of atomic norms which provide a convenient
abstraction for the formulation of nonuniform recovery problems in a multitude of
different domains. In the context of sparse recovery, we also discuss the important
class of so-called compressible vectors as a practical alternative to exactly sparse
vectors to model real-world signals such as natural images, audio signals, and the
like.

Equipped with the concept of the atomic norm which gives rise to a tractable
recovery program of central importance in the context of linear inverse problems, we
discuss in Sect. 4 conditions for perfect or robust recovery of low-complexity signals.
We also comment on a rather recent development in the theory which connects the
problem of sparse recovery with the field of conic integral geometry.

Starting with Sect. 5, we finally turn our attention to the important case of uniform
recovery of sparse or compressible vectors where we are interested in establishing
guarantees which—given a particular measurement matrix—hold uniformly over the
entire signal class. Such results stand in stark contrast to the problems we discuss in
Sect. 4 where recovery conditions are allowed to locally depend on the choice of the
particular vector one aims to recover.

In Sect. 6, we introduce a variety of properties of sensing matrices such as the
null space property and the restricted isometry property which are commonly used
to assert that recovery conditions as teased in Sect. 5 hold for a particular matrix.
While the deterministic construction of matrices with provably optimal number of
measurements remains a yet unsolved problem, randommatrices—including a broad
class of structured random matrices—which satisfy said properties can be shown to
exist in abundance. We therefore complement our discussion with an overview of
some of the most important classes of random matrices considered in compressed
sensing in Sect. 7.

We conclude our introduction to the field of compressed sensing with a short
survey of some of the most important sparse recovery algorithms in Sect. 8.

Motivation

At the heart of compressed sensing (CS) lies a very simple question. Given a d-
dimensional vector x̊, and a set of m measurements of the form yi =

〈
ai , x̊

〉
, under

what conditions are we able to infer x̊ from knowledge of

A = (a1, . . . , am)� and y = (y1, . . . , ym)�

alone? Historically, the answer to this question was “as soon as m ≥ d” or more
precisely, as soon as rank(A) = d. In other words, the number of independent obser-
vations of x̊ has to exceed the number of unknowns in x̊, namely, the dimension of
the vector space V containing it. The beautiful insight of compressed sensing is that
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this statement is actually too pessimistic if the information content in x̊ is less than
d. The only exception to this rule that was known prior to the inception of the field
of compressed sensing was when x̊ was known to live in a lower dimensional linear
subspace W ⊂ V with dim(W ) ≤ d. A highly oversimplified summary of the con-
tribution of compressed sensing therefore says that the field extended the previous
observation from single subspaces to unions of subspaces. This interpretation of the
set of sparse vectors is therefore also known as the union-of-subspacesmodel. While
sparsity is certainly firmly positioned at the forefront of CS research, the concept
of low-complexity models encompasses many other interesting structures such as
block- or group-sparsity, as well as low-rankness of matrices to name a few.

We will comment on such signal models in Sect. 3. As hinted at before, the recov-
ery of these signal classes can be treated in a unified way using the atomic norm
formalism (cf. Sect. 4) as long as we are only interested in nonuniform recovery
results. Establishing similar results which hold uniformly over entire signal classes,
however, usually requires more specialized analyses. In the later parts of this intro-
duction, we therefore limit our discussions to sparse vectors. Note that while more
restrictive low-complexity structures such as block- or group-sparsity overlap with
the class of sparse vectors, the recovery guarantees obtained bymerelymodeling such
signals as sparse are generally suboptimal as they do not exploit all latent structure
inherent to their respective class.

Before moving on to a more detailed discussion of the most common signal
models, we briefly want to comment on a particular line of research that deals with
low-complexity signal recovery from nonlinear observations. Consider an arbitrary
univariate, scalar-valued function f acting element-wise on vectors:

y = f (Ax). (1)

An interesting instance of Eq. (1) is when f models the effects of an analog-to-
digital converter (ADC), mapping the infinite-precision observations Ax on a finite
quantization alphabet. Since this extension of the linear observation model gives
rise to its very own set of problems which require specialized tools beyond what is
needed in the basic theory of compressed sensing, we will not discuss this particular
measurement paradigm in this introduction. A good introduction to the general topic
of nonlinear signal recovery can be found in [100]. For a detailed survey focusing on
the comparatively young field of quantized compressed sensing, we refer interested
readers to [16].

2 Preliminaries

Compressed sensing builds on various mathematical tools from linear algebra, opti-
mization theory, probability theory, and geometric functional analysis. In this section,
we review some of the mathematical notions used throughout this chapter. We start
with a few remarks regarding notation.
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Notation

We use lower- and uppercase boldface letters to denote vectors and matrices, respec-
tively. The all ones vector of appropriate dimension is denoted by 1, the zero vector
is 0, and the identity matrix is Id. Given a natural number n ∈ N, we denote by [n]
the set of integers from 1 to n, i.e., [n] := {1, . . . , n} = N ∩ [1, n]. The complement
of a subset A ⊂ B is denoted by A = B\A. For a vector x ∈ C

d and an index set
S ⊂ [d] with |S| = k, the meaning of xS may change slightly depending on context.
In particular, it might denote the vector xS ∈ C

d which agrees with x only on the
index set S, and vanishes identically otherwise. On the other hand, it might represent
the k-dimensional vector restricted to the coordinates indexed by S. The particular
meaning should be apparent from context. Finally, for a, b > 0, the notation a � b
hides an absolute constant C > 0, which does not depend on either a or b, such that
a ≤ Cb holds.

2.1 Norms and Quasinorms

The vectors we consider in this chapter are generally assumed to belong to a finite-
or infinite-dimensional Hilbert spaceH, i.e., a vector space endowed with a bilinear
form 〈·, ·〉 : H×H → R known as inner product, which induces a norm on the
underlying vector space by1

‖x‖ := √〈x, x〉.

The d-dimensional Euclidean spaceRd is an example of a vector space with the inner
product between x, y ∈ R

d defined as

〈x, y〉 := x�y =
d∑

i=1

xi yi .

The norm induced by this inner product corresponds to the so-called �2-norm. In
general, the family of �p-norms on R

d is defined as

‖x‖p :=
{(∑d

i=1 |xi |p
)1/p

, p ∈ [1,∞)

maxi∈[d] |xi |, p = ∞.

Note that the �2-norm is the only �p-norm on Rd that is induced by an inner product
since it satisfies the parallelogram identity. One can extend the definition of �p-norms
to the case p ∈ (0, 1). However, the resulting “�p-norm” ceases to be a norm as it
no longer satisfies the triangle inequality. Instead, the collection of �p-norms for
p ∈ (0, 1) defines a family of quasinorms which satisfy the weaker condition

1Technically, a Hilbert space is an inner product space in which every Cauchy sequence converges
to a point in the same space.
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p = 1
2 p = 1 p = 2 p = ∞

Fig. 1 The �p-unit spheres inR2 for different values of p. The interiors (including their respective
boundaries) correspond to the �p-balls Bd

p

‖x + y‖p ≤ 21/p−1(‖x‖p + ‖y‖p).

Additionally, we will make frequent use of the egregiously termed �0-norm of x
which is defined as the number of nonzero coefficients,

‖x‖0 := lim
p→0

‖x‖p
p = |supp(x)| .

Note that the �0-norm, as a measure of sparsity of a vector, is neither a norm nor a
quasinorm (or even a seminorm) as it is not positively homogeneous, i.e., for t > 0
we have ‖tx‖0 = ‖x‖0 
= t ‖x‖0. As we will see later, both the �1-norm, and the
�p-quasinorms are of particular interest in the theory of compressed sensing. The
�p-unit ball, defined as

B
d
p :=

{
x ∈ C

d : ‖x‖p ≤ 1
}
,

forms a convex body for p ≥ 1 and a nonconvex one for p ∈ (0, 1). The boundaries
∂Bd

p = {x : ‖x‖p = 1} correspond to the �p-unit spheres. For p = 2, the boundary
∂Bd

2 of the �2-ball corresponds to the unit Euclidean sphere denoted S
d−1. Some

examples of the �p-unit spheres are given in Fig. 1.
Another commonly used space in compressed sensing is the space of linear trans-

formations from R
d to R

m . This particular function space is isomorphic to the col-
lection of Rm×d matrices and forms a vector space on which we can define an inner
product via

〈A,B〉 := tr(A�B).

The norm induced by this inner product is called the Frobenius norm and is given by

‖A‖F :=
√
tr(A�A) =

√∑

i∈[d]

∑

j∈[m]
a2i j .
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In this context, the inner product above is also known as the so-calledFrobenius inner
product. Another commonly used normdefined on the space of linear transformations
is the operator norm

‖A‖p→q := sup
‖x‖p≤1

‖Ax‖q .

In particular, the operator norm ‖A‖2→2 between two normed spaces equipped with
their respective �2-norm is given by the maximum singular value of A denoted by
σmax(A).

2.2 Random Variables, Vectors, and Matrices

Let (Ω,Σ,P) be a probability space consisting of the sample space Ω , the Borel
measurable event space Σ , and a probability measure P : Σ → [0, 1]. The space
of matrix-valued, Borel measurable functions from Ω to R

m×d are called random
matrices. This space inherits a probabilitymeasure as the pushforward of themeasure
P. For d = 1, we obtain the set of random vectors; the space of random variables
corresponds to the choicem = d = 1.Given a scalar randomvariable X , the expected
value of X is defined as

EX :=
∫

XdP =
∫

Ω

X (ω)dP(ω)

if the integral exists. Moreover, if Eet X exists for all |t | < h for some h ∈ R, then
the map

MX : R → R : t �→ MX (t) = Eet X =
∫

et XdP,

known as the moment generating function (MGF), fully determines the distribution
of X . The pth absolute moment of a random variable X is defined as

E|X |p =
∫

Ω

|X (ω)|pdP(ω).

This leads to the notion of the so-called L p norm

‖X‖L p := (E|X |p)1/p,

which turns the space of random variables equipped with ‖·‖L p into a normed vec-
tor space. A particular class of random variables which finds widespread use in
compressed sensing is the so-called subgaussian random variables whose L p norm
increases at most as

√
p. The name subgaussian is owed to the fact that subgaussian

random variables have tail probabilities which decay at least as fast as the tails of the
Gaussian distribution [99]. This leads to the following definition.



8 N. Koep et al.

Definition 1 (Subgaussian random variables) A random variable X is called sub-
gaussian if it satisfies one of the following equivalent properties:

1. The tails of X satisfy

P(|X | ≥ t) ≤ 2 exp(−t2/K 2
1 ) t ≥ 0.

2. The absolute moments of X satisfy

(E|X |p)1/p ≤ K2
√
p ∀p ≥ 1.

3. The super-exponential moment of X satisfies

E exp(X2/K 2
3 ) ≤ 2.

4. If EX = 0, then the MGF of S satisfies

E exp(t X) ≤ exp(K 2
4 t

2) ∀t ∈ R.

The constants K1, . . . , K4 are universal.

Note that the constants Ki > 0 for i = 1, 2, 3, 4 differ from each other by at most a
constant factor, which, in turn, deviate only by a constant factor from the so-called
subgaussian norm ‖ · ‖ψ2 .

Definition 2 (Subgaussian norm) Given a random variable X , we define the sub-
gaussian norm of X as

‖X‖ψ2 := inf {s > 0 : Eψ2(X/s) ≤ 1},

where ψ2(t) := exp(t2) − 1 is called an Orlicz function.

The set of subgaussian random variables defined on a common probability space
equipped with the norm ‖ · ‖ψ2 therefore forms a normed space known as Orlicz
space. Note that some authors instead define the subgaussian norm as

‖X‖ψ2 := sup
p≥1

1√
p
(E|X |p)1/p. (2)

In light ofDefinition1, these definitions are equivalent up to amultiplicative constant.
As a consequence of Eq. (2) and Definition2 above, a random variable is subgaussian
if its subgaussian norm is finite. For instance, the subgaussian norm of a Gaussian
random variable X ∼ N(0,σ2) is—up to a constant—multiplicatively bounded from
above by σ. The subgaussian norm of a Rademacher random variable is given by
‖X‖ψ2 = 1/

√
log 2. Gaussian and Bernoulli random variables are therefore typical

instances of subgaussian randomvariables. Other examples include randomvariables
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following the Steinhaus2 distribution, as well as any bounded random variables in
general.

A convenient property of subgaussian random variables is that their tail probabil-
ities can be expressed in terms of their subgaussian norm:

P(|X | ≥ t) ≤ 2 exp

(

− ct2

‖X‖2ψ2

)

∀t > 0.

If Xi ∼ N(0,σ2
i ) are independentGaussian randomvariables, then due to the rotation

invariance of the normal distribution, the linear combination X =∑i Xi is still
a zero-mean Gaussian random variable with variance

∑
i σ

2
i . This property also

extends to subgaussians barring a dependence a multiplicative constant, i.e., if (Xi )i
is a sequence of centered subgaussian random variables, then

‖
∑

i

Xi‖2ψ2
≤ C

∑

i

‖Xi‖2ψ2
.

This can easily be shown with the help of the moment generating function of
X =∑i Xi . The rotational invariance alongwith the tail property of subgaussian dis-
tributions makes it possible to generalize many familiar tools such as Hoeffding-type
inequalities to subgaussian distributions, e.g.,

P

(∣∣∣∣∣

∑

i

Xi

∣∣∣∣∣
≥ t

)

≤ 2 exp

(

− ct2
∑

i ‖Xi‖2ψ2

)

∀t > 0.

Oftentimes, it is convenient to extend the notion of subgaussianity from random
variables to random vectors. In particular, we say that a random vector X ∈ R

m is
subgaussian if the random variable X = 〈X, y〉 is subgaussian for all y ∈ R

m . Taking
the supremum of the subgaussian norm of X over all unit directions then leads to the
definition of the subgaussian norm for random vectors.

Definition 3 (Subgaussian vector norm)The subgaussiannormof anm-dimensional
random vector X is

‖X‖ψ2 := sup
y∈Sm−1

‖ 〈X, y〉 ‖ψ2 .

Finally, a random vector X is called isotropic if E| 〈X, y〉 |2 = ‖y‖22 for all y ∈ R
m .

2A Steinhaus random variable is a complex random variable distributed uniformly on the complex
unit circle.
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3 Signal Models

As a basic framework for the types of signals discussed in this introduction, we
decided to adopt the notion of so-called atomic sets as coined by Chandrasekaran
et al. [31]. This serves two purposes. First, it elegantly emphasizes the notion of
low complexity of the signals one aims to recover or estimate in practice. Second,
the associated notion of atomic norm (cf. Definition5) provides a convenient way
to motivate certain geometric ideas in the recovery of low-complexity models. Let
us emphasize that this viewpoint is not necessarily required when discussing so-
called uniform recovery results where one is interested in conditions allowing for
the recovery of entire signal classes given a fixed draw of a measurement matrix
(cf. Sect. 7). However, the concept provides a suitable level of abstraction to discuss
recovery conditions for individual vectors of a variety of different interesting signal
models in a unifiedmanner which were previously studied in isolation by researchers
in their respective fields.

As alluded to in the motivation, one of the most common examples of a “low-
complexity” structure of a signal x̊ ∈ C

d is the assumption that it belongs to a lower
dimensional subspace of dimension k. Given a matrix U ∈ C

d×k whose columns ui
span said subspace, and the linear measurements y = Ax, we may simply solve the
least-squares problem

minimize
c∈Ck

‖y− AUc‖2 (3)

to recover x̊ = Uc� where the solution c� of Problem (3) admits a closed-form expres-
sion in terms of the Moore–Penrose pseudoinverse of AU. Once again, this strategy
succeeds if m ≥ dim span({ui }ki=1), i.e., if we obtain at least as many measurements
as the subspace dimension. As a canonical example, assume that U corresponds to
the identitymatrix Id restricted to the columns indexed by a set S ⊂ [d] of cardinality
|S| = k, i.e., U = IdS . The columns of this matrix form a basis for a k-dimensional
coordinate subspace of Cd . If we lift the restriction that x̊ lives in this particular
subspace, and rather assume instead that x̊ belongs to any of the

(d
k

)
coordinate sub-

spaces of dimension k, we arrive at a special case of the so-called union-of-subspaces
model. In particular, we have

x̊ ∈
⋃

S⊂[d],|S|=k

WS =: Σk,

where WS denotes the coordinate subspace of Cd with basis matrix IdS . The set Σk

therefore corresponds to the set of sparse vectors supported on an index set S of
cardinality at most k. This signal class represents a central object of study in the field
of compressed sensing.

Equipped with the knowledge that x̊ lives in one of the k-dimensional coordinate
subspaces, one could attempt to recover x̊ by solving Problem (3) for each WS
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independently. However, even though the true solution x̊ must be among these least-
squares solutions, there is noway for us to identify the correct one.Moreover, even for
moderately sized problems, the number

(d
k

)
of least-squares projections one needs to

solve becomes unreasonably high. On the other hand, ignoring the information that x̊
lives in k-dimensional subspace, and instead solving the least-squares minimization
problem

minimize
x∈Cd

‖y− Ax‖2

will not help either since the �2-norm we are minimizing tends to spread the signal
energy over the entire support of the minimizer x� (see, e.g., the discussion in [18,
Sect. 6.1.2]). We will discuss in Sect. 5 that all these issues can be resolved by
imposing certain structural constraints on the measurement matrix A, and replacing
the optimization problem (3) with one that explicitly promotes the structure inherent
in x̊.

We will come back to the sparse signal model shortly. First, however, let us intro-
duce a more flexible notion of low-complexity structures which will allow us to talk
about recovery problems of more general signal models in a unified framework. As
outlined above, ifK denotes a k-dimensional subspace, then every vector inK can be
represented as a sum of k basis vectors. To capture a similar notion of dimensionality
for more general sets which do not necessarily form a subspace, we may assume that
every vector in K can at least be represented as a linear combination of a limited
number of elements in amore general generating set.While a finite-dimensional sub-
space is always fully determined by a finite collection of basis vectors, we now lift
this finiteness requirement. The signal models generated in this fashion are simply
referred to as simple sets.

Definition 4 (Simple set) Let A ⊂ C
d be an origin-symmetric set whose convex

hull forms a convex body.3 Let k ∈ N. Then the set

K = conek(A) :=
{

x =
k∑

i=1

ciai ∈ C
d : ci ≥ 0, ai ∈ A

}

(4)

is called a simple set. Since K is generated by the set A, we call A an atomic set.

We will discuss how this notion of simplicity leads to many familiar models in the
literature on linear inverse problems. As a canonical example, however, consider the
case A = {±ei } ⊂ R

d . The simple set K generated by conek(A) then corresponds
to the set Σk(R

d) of k-sparse vectors.
Given an atomic set A, we associate with it the following object.

Definition 5 (Atomic norm) The function

3A convex body is a compact convex set with non-empty interior.
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‖x‖A := inf

{
∑

a∈A
ca : x =

∑

a∈A
caa, ca ≥ 0 ∀a ∈ A

}

associated with an atomic set A ⊂ C
d is called the atomic norm of A at x.

This definition corresponds to the so-called Minkowski functional or gauge of the
set conv(A) [88, Chap. 15],

γconv(A)(x) := inf {t > 0 : x ∈ tconv(A)} = ‖x‖A .

The norm notation ‖·‖A is justified here since we assumedA to be compact and cen-
trally symmetric with conv(A) having non-empty interior. This ensures that conv(A)

is a symmetric convex body which contains an open set around the origin in which
case‖·‖A = γconv(A)(·)defines anormonCd .With this definition inplace, the general
strategy to recover a simple vector x̊ ∈ K = conek(A) from its linear measurements
y = Ax̊ is

minimize
x

‖x‖A
s.t. y = Ax.

(PA)

We will discuss in Sect. 4 why Problem (PA), which we will simply refer to as
atomic norm minimization, allows for the recovery of simple sets from underdeter-
mined linear measurements.

In the remainder of this section, we will introduce some of the most common
low-complexity sets discussed in the literature. We limit our discussion to sparse
vectors, block- and group-sparse vectors, as well as low-rank matrices. Note, how-
ever, that the atomic norm framework allows for modeling many other interesting
signal classes beyond the ones discussed here. These include permutation and cut
matrices, eigenvalue-constrained matrices, low-rank tensors, and binary vectors. We
specifically refer interested readers to [31, Sect. 2.2] for a more comprehensive list
of example applications of atomic sets.

3.1 Sparse Vectors

As we highlighted various times at this point, the most widespread notion of low
complexity at the heart of CS is the notion of sparsity. Even before the advent of
compressed sensing, exploiting low complexities in signals played a key role in
the development of most compression technologies such as MP3, JPEG, or H264.
Ultimately, all these technologies are based on the idea that most signals of interest
usually live in rather low-dimensional subspaces embedded in high-dimensional
vector spaces.4 Two canonical examples of this phenomenon are the superposition

4This idea also extends to signals living on low-dimensional manifolds.
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of sine waves and natural images. In the former case, it is obvious that we are only
able to infer very little information from glancing at a time series plot of a sound
wave recorded at amicrophone. For instance, wemight be able to saywhen a signal is
made up ofmostly low-frequency components if its waveformonly appears to change
very slowly over time, but for most signals we are usually not able to say much
beyond that. The situation changes drastically, however, if we instead inspect the
signal’s Fourier transform. In the example of superimposed sine waves, the inherent
simplicity or low complexity of the signal becomes immediately apparent in the
form of a few isolated peaks in the Fourier spectrum of the signal, revealing the true
low-complexity structure of the signal. A similar observation can bemade for natural
images where periodic structures—say a picture of a garden fence or a brick wall—
or flat, homogeneous textures—say in images featuring a view of the sky or blank
walls—lead to sparse representations in a variety of bases such as the discrete Fourier
transform (DFT) basis, the discrete cosine transform (DCT) basis or the extended
family of x-let systems, e.g., wavelets [68], curvelets [22], noiselets [34], shearlets
[65], and so on.

Formally, the set of sparse vectors is simply defined as the set of vectors inCd with
atmost k nonzero coefficients. For convenience, this ismostly definedmathematically
with the help of the �0-pseudonorm

‖x‖0 := |supp(x)| = |{i ∈ [d] : xi 
= 0}| .

With this definition, the set of all k-sparse vectors can be written as

Σk = {x : ‖x‖0 ≤ k}.

As we discussed in the beginning of Sect. 3, the set Σk is a collection of
(d
k

)
k-

dimensional subspaces, each one spanned by k canonical basis vectors. Since it is a
union and not a sum of subspaces, the set is highly nonlinear in nature, e.g., the sum
of two k-sparse vectors is generally 2k-sparse in case the vectors are supported on
disjoint support sets.

Consider again the linear inverse problem in which we are tasked with infer-
ring x̊ ∈ Σk from its measurements y = Ax̊. As we motivated before, if the sup-
port of the k-sparse vector is known, so is the corresponding subspace, and the
signal can be easily recovered via a least-squares projection. If on the other
hand we assume that the support is not known, the situation becomes dire as
we now have to consider intractably many possible subspaces. To get a feeling
for the complexity of the set of sparse vectors, consider for some c ∈ R the set{
x ∈ R

d : ‖x‖0 = k, xi = c ∀i ∈ supp(x)
} ⊂ Σk , i.e., the set of exactly k-sparse

vectors with identical nonzero entries. A random vector uniformly drawn from this
set has entropy log

(d
k

)
, which means that5 log

(d
k

) ≈ k log (d/k) bits are required for
effective compression of this set [90]. As we will see in Sects. 4 and 7, the expression
k log(d/k) plays a key role in the theory of compressed sensing.

5This follows from the classical bound
( d
k

)k ≤ (dk
) ≤ ( edk

)k
.
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To frame the set of sparse vectors in the language of simple sets as established
in the beginning of Sect. 3, we note that the atomic set corresponding to the set of
sparse vectors in Rd is simply the set of signed unit vectors, i.e., A = {±ei }.6 Since
the convex hull of A clearly corresponds to the �1-unit ball, we have Σk(R

d) =
conek(A). The atomic norm associated with this set is simply the �1-norm on R

d .
This easily follows from expanding a vector in terms of the elements of A as

x =
d∑

i=1

|xi | sign(xi )ei︸ ︷︷ ︸
∈A

.

Then we have with Definition5 that

‖x‖A = inf

{
∑

a∈A
ca :

∑

a∈A
caa, ca ≥ 0

}

=
d∑

i=1

|xi | = ‖x‖1 .

While there are infinitely many ways to express each coordinate xi in terms of
nonnegative linear combinations of the atoms ei and−ei , the infimum in the definition
of ‖·‖A is attained when each coordinate is expressed by exactly one element of A.
This follows immediately from the triangle inequality.

Compressible Vectors

While the concept of sparsity arises naturally in an abundance of contexts and appli-
cations, in many cases it is also a slightly too stringent model for practical purposes.
A canonical example is natural images which certainly exhibit a low-complexity
structure if expressed in a suitable sparsity basis. However, this basis expansion is
usually not perfect. In other words, by close inspection one usually notices that while
the majority of the signal energy concentrates in only a limited number of expansion
coefficients, there usually also existmany coefficientswith non-negligible amplitudes
which carry information about fine structures of images. Nevertheless, a histogram
of the transform coefficients usually reveals that the negligible coefficients quickly
decay such that natural images are still be well approximated by sparse vectors. This
concept, which leads us to the class of so-called compressible vectors, is also heavily
exploited in image compression algorithms which quantize infrequently occurring
transform coefficients more aggressively (i.e., more coarsely) than more dominant
ones such as DC coefficients.

Formally, let x ∈ C
d be a vector whose k largest components in absolute value are

supported on a set S ⊂ [d] of size k, and define for p > 0 the best k-term approxi-
mation error σk(·)p : Cd → R≥0 as

6To define the sparse vectors on C
d , simply replace {±en} by {±en,±ien}.
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σk(x)p := min
z∈Σk

‖x − z‖p. (5)

For any p > 0, the minimum in Eq. (5) is attained by the vector z which agrees with
x on S and vanishes identically on S. The following result characterizes the decay
behavior of the approximation error.

Theorem 1 ([54, Theorem 2.5]) Let q > p > 0. Then for any x ∈ C
d , the best k-

term approximation error w. r. t. the �q -norm is bounded by

σk(x)q ≤ cp,q
k1/p−1/q

‖x‖p (6)

with

cp,q := exp

(
−hb(p/q)

p

)
≤ 1,

and hb(x) := −x log(x) − (1− x) log(1− x) denoting the binary entropy function.
In particular, we have

σk(x)2 ≤ 1

2
√
k
‖x‖1 .

The set of vectors which can be well approximated in terms of σk are called com-
pressible vectors. Informally, this means that a vector x is compressible if σk(x)p
decays quickly as k increases. One particular set of vectors which exhibit such a
rapid error decay is the elements of the �q -quasinorm balls

B
d
q =

{
z ∈ C

d : ‖z‖q ≤ 1
}

with 0 < q ≤ 1. To see why the �q -quasinorm balls are suitable proxies for sparse
vectors, consider the limiting behavior of the quasinorm. For q → 0 we have

lim
q→0

‖x‖qq = lim
q→0

d∑

i=1

|xi |q

=
d∑

i=1

1{xi 
=0}

= |{i ∈ [d] : xi 
= 0}|
= ‖x‖0 .

In the other limiting case, one obtains the set of unit �1-norm vectors. Moreover,
applying Theorem1 to the case of �q -norm balls, we find
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σk(x)2 ≤ cq,2

k
1
q − 1

2

.

Finally, it can be shown that the i th biggest entry of x decays as i−1/q [37].

3.2 Block- and Group-Sparse Vectors

While themodel of sparse and compressible vectors hasmany interesting and justified
applications, many times real-world signals will exhibit even more structure beyond
simple sparsity. One of the most common generalizations of sparse vectors is so-
called block-sparse or more generally group-sparse signals. In the former case, we
assume that the set [d] is partitioned into L disjoint subsets Bl ⊂ [d] of possibly
different sizes |Bl | = bl such that

⋃L
l=1 Bl = [d], and ∑L

l=1 bl = d. If the sets Bl

are allowed to overlap, we refer to them as groups instead. As in the case of sparse
vectors, a vector x ∈ C

d is called k-block-sparse or k-group-sparse if its nonzero
coefficients are limited to at most k nonzero blocks or groups, respectively. Another
closely related cousin of block-sparsity is that of fusion frame sparsity. Assuming
equisized blocks Bl with bl = b, one additionally imposes in this model that each
subvector xBl ∈ C

b belongs to some s-dimensional subspace Wl ⊂ C
b (see, e.g.,

[5, 15], for details). Structured sparsity models as outlined above arise in a variety
of domains in engineering and biology. Some prominent example applications are
audio [1] and image signal processing [102], multi-band reconstruction and spectrum
sensing [70, 81], as well as sparse subspace clustering [48]. Further applications in
which block- and group-sparse signal structures commonly appear are in the context
of measuring gene expression levels [78] and protein mass spectroscopy [93]. For a
more thorough treatment of block-sparse signal modeling, we also refer readers to
[47, Chap. 2].

In the following, we limit our discussion to the case of block-sparsity. A natural
way to express the block-sparsity of a vector mathematically is by introducing for
p, q > 0 the family of mixed (�p, �q)-(quasi)norms

‖x‖p,q :=
(

L∑

l=1

∥∥xBl

∥∥q
p

)1/q

,

where we denote by xBl ∈ C
d the subvector of x restricted to the index set Bl .

Extending the notation to include the case q = 0, we define additionally the mixed
(�p, �0)-pseudonorm

‖x‖p,0 :=
∣∣∣
{∥∥xBl

∥∥
p 
= 0 : l ∈ [L]

}∣∣∣

= ∣∣{xBl 
= 0 : l ∈ [L]}∣∣ ,
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which simply counts the number of nonzero blocks of x w. r. t. {Bl}Ll=1. With this
definition, a vector is called k-block-sparse if ‖x‖p,0 ≤ k. Moreover, the atomic set
which gives rise to the set of k-block-sparse vectors can now be defined as

Ap :=
L⋃

l=1

{
a ∈ C

d : ∥∥aBl

∥∥
p = 1, aBl

= 0
}
. (7)

Note that unlike in the case of sparse vectors where we defined Ã = {±ei }, the set
in Eq. (7) is uncountable. To calculate the atomic norm, recall the definition

‖x‖Ap
= inf

{
∑

a∈A
ca : x =

∑

a∈A
caa, ca ≥ 0

}

.

Since span(Ap) = C
d , there exists a ca ≥ 0 and a ∈ Ap such that for every x ∈ C

d ,
we may express its coefficients in block Bl as xBl = caa. Then we have

∥∥xBl

∥∥
p =‖caa‖p = |ca| · ‖a‖p = ca where the last step simply follows from the fact that ca ≥

0 and a ∈ Ap. Again, we have by the triangle inequality that the infimum in the
definition of the atomic norm must be attained by a decomposition where each block
Bl is represented by exactly one atom. Hence

‖x‖Ap
=

L∑

l=1

∥∥xBl

∥∥
p = ‖x‖p,1 .

Note that a similar argument holds for the group-sparsity case where the sets Bl are
not assumed to be disjoint [84, Lemma 2.1].

Clearly, the atomic norm induced by A is closely related to the �1-norm as dis-
cussed in the previous section. In the edge case with L = d, and |Bl | = 1, we have
Ap = {±ei } such that we immediately arrive again at the set of sparse vectors.

3.3 Low-Rank Matrices

A slightly different linear inverse problem which can still be conveniently modeled
by means of atomic sets is the so-called low-rank matrix recovery problem. Consider
a matrix X ∈ C

d1×d2 of rank at most r which we observe through the linear operator

M : Cd1×d2 → C
m : X �→ M(X) = y.

As usual, our task is to inferX from knowledge of the mapM and the measurements
y by solving the atomic norm minimization problem (PA). In general, there are
of course d1d2 unknown entries in X so that the linear inverse problem is clearly
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ill-posed as long asm < d1d2. However, by exploiting a potential low-rank structure
on X, it turns out to be possible to drastically reduce the number of observations
needed to allow for faithful estimation of low-rank matrices (cf. Table1).

A typical example application of low-rank matrix recovery, known as the matrix
completion problem, is the task of estimating missing entries of a matrix based on
partial observations of X of the form M(X)i = Xkl for some (k, l) ∈ [d1] × [d2].
As before, this problem is clearly hopelessly ill-posed if X is a full-rank or close to
full-rank matrix. However, in many practical situations in the context of collabora-
tive filtering [56], the low-rank assumption on X is justified by the problem domain,
making low-rank matrix recovery a useful prediction tool. The matrix completion
problem was famously popularized by the so-called Netflix Prize [11], an open com-
petition in collaborative filtering to predict user ratings of movies based on partial
knowledge of ratings about other titles in the portfolio. The underlying assumption
is that if two users both share the same opinion about certain titles they saw, then
they are likely to share the same opinion about titles so far only seen or rated by
one of them. In other words, if we collect the user ratings of all available titles in
a database in a matrix X, then we can assume that due to overlapping interests and
opinions, the matrix will exhibit a low-rank structure. This reduction in the degrees
of freedom therefore allows to accurately predict unknown user ratings which can
then be used to provide personalized recommendations on a per-user basis.

To demonstrate how low-rank matrices can be modeled in the context of atomic
sets, consider the set of rank-1 matrices of the form

A = {uv∗ ∈ C
d1×d2 : ‖u‖2 = ‖v‖2 = 1

}

= {uv∗ ∈ C
d1×d2 : ∥∥uv∗∥∥F = 1

}
.

Clearly, a nonnegative linear combination of r elements of A forms a matrix of at
most rank r so that coner (A) generates the set of rank r matrices. To derive the
atomic norm associated with A, consider that for every X ∈ C

d1×d2 we have by the
singular value decomposition of X that

X = U�V∗,

Table 1 Mean width estimates for tangent cones

Signal set Induced norm Upper bound on w(TA(x̊) ∩ S
d−1)2

Sparse vectors in Rd ‖·‖1 2k log(d/k) + 3k/2

Block-sparse vectors in
R
d with L blocks of size

d/L

‖·‖2,1 4k log(L/k) + (1+ 6d/L)k/2

Rank r matrices in
R
d1×d2

‖·‖∗ 3r(d1 + d2 − r)
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where U ∈ C
d1×d1 and V ∈ C

d2×d2 are unitary matrices, and � ∈ C
d1×d2 is a matrix

containing the real-valued, nonnegative singular values on its main diagonal and
zeros otherwise. Hence, we have with d := min {d1, d2},

X =
d∑

i=1

σiuiv∗i

with uiv∗i ∈ A. Again, with Definition5 this yields

‖X‖A = inf

{
∑

a∈A
ca : X =

∑

a∈A
caa, ca ≥ 0

}

=
d∑

i=1

σi (X) =: ‖X‖∗ ,

where in the second step we simply identified ca with the singular values of the
decomposition after using the fact that by the triangle inequality (w. r. t. the Frobenius
norm), the infimummust be attained by a decomposition of atmostd atoms.While the
singular vectors ui and vi whichmake up the atoms a = uiv∗i ∈ A are not necessarily
unique, each X is identified by a unique set of singular values.

The norm ‖·‖∗ is generally known as the nuclear norm and acts as an analog of the
�1-norm in the case of sparse vectors since ‖X‖∗ corresponds to the �1-norm of the
vector of singular values of X. Considering that efficient algorithms for the singular
value decomposition exist, the atomic norm minimization for low-rank matrices
constitutes a tractable convex optimization problem.

Representability of Atomic Norms

While the examples of atomic sets we presented so far all admitted relatively straight-
forward representations of their associated atomic norms, efficient computation of
‖·‖A for arbitrary atomic sets A is by no means guaranteed. A classic example of
where the atomic norm framework fails to yield an efficient way to recover elements
of a simple set generated by conek(A) is the set

A = {zz� : z ∈ {±1}d}.

Similar to the set of low-rank matrices, the simple set generated by A consists of
low-rank matrices but with its elements restricted to the set ±1—a model which
appears, for instance, in the context of collaborative filtering [73]. Considering that
conv(A) corresponds to the so-called cut polytope which does not admit a tractable
characterization, there exists no efficient way of computing ‖·‖A. In this case, one
may turn to a particular approximation scheme of conv(A) known as theta bodies
[58] which are closely related to the theory of sum-of-squares (SOS) polynomials.
We refer interested readers to [31, Sect. 4].

As another example, consider the atomic set
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A = {a f,φ ∈ C
d : f ∈ [0, 1],φ ∈ [0, 2π)

}

with

a f,φ := ei2πφ

⎛

⎜⎜⎜
⎝

1
ei2π f

...

ei2π f (d−1)

⎞

⎟⎟⎟
⎠

.

This set represents a continuous alphabet of atomswhich gives rise to the signal set of
sampled representations of continuous-time superpositions of complex exponentials
[13]. Using results from the theory of SOS polynomials, Bhaskar et al. showed in
[13] that the associated atomic norm can be computed as the solution of the program

minimize
x,u,t

tr T (u)

2d
+ t

2

s.t.

(
T (u) x
x∗ t

)
≥ 0

where the linear operator T : Cd → C
d×d maps a vector u to the Toeplitz matrix

generated by u. The same representation also appears in the context of compressed
sensing off the grid where one aims to recover a sampled representation of a super-
position of complex exponentials from randomly observed time-domain samples
[92].

Both of these examples illustrate that while the atomic norm framework represents
a convenient modeling tool for low-complexity signal sets, it may turn out to be a
nontrivial or in some cases simply impossible task to actually find efficient ways to
compute the atomic norm.

3.4 Low-Complexity Models in Bases and Frames

Up until this point, we have assumed that signals of interest are elements of a sim-
ple set K = conek(A) generated by an atomic set A. Given a vector x̊ ∈ K and its
linear measurements y = Ax̊, the general task is to infer x̊ from knowledge of A
and y. In this context, the measurement process is entirely modeled by A. How-
ever, oftentimes in practical scenarios, we might not have direct access to the signal
exhibiting a low-complexity structure but rather only to its representation in a par-
ticular orthonormal basis or more generally an overcomplete dictionary or frame.
As a classical example, consider the situation in which x̊ ∈ C

d represents the sam-
pled time-domain representation of a band-limited function. If the continuous-time
signal is a superposition of k complex exponentials, the sampled representation x̊
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will generally have dense support. The underlying sparsity structure7 only reveals
itself to us after transforming x̊ into the frequency domain, i.e., z̊ = Fd x̊ ∈ Σk with
Fd = d−1/2(e−i2πμν)0≤μ,ν≤d−1 denoting the DFT matrix. We therefore acquire mea-
surements according to y = Ax̊ = AF∗

d z̊ =: Ãz̊. Reconstruction of x̊ now proceeds
in two steps by first reconstructing the vector z̊, exploiting its underlying low-
complexity structure, and then resynthesizing the estimate of x̊. For this reason, this
model is also known as synthesis model throughout the literature. In general, one
may assume that rather than exhibiting a low-complexity structure in the canonical
basis, applications typically either fix or learn a suitable basis change matrix. More-
over, allowing for the transform matrix to be an overcomplete dictionary or frame
� ∈ C

d×D with D > d such that x̊ = �z̊ where z̊ ∈ C
D exhibits a low-complexity

structure, one may exploit additional advantages stemming from the redundancy of
overcomplete representations [30]. Classical examples of such representation sys-
tems are curvelet transforms [23] and time–frequency atoms arising from the Gabor
transform [49]. For simplicity of presentation, we will assume in the remainder of
this chapter that signals of interest already live in simple sets, i.e., we set� = Id , and
point out that most results presented in the sequel also generalize to low-complexity
models in unitary bases and frames. For more details, we refer interested readers to
[86].

4 Recovery of Individual Vectors

In this section, we address the recovery of individual signals in simple sets K gen-
erated by conek(A). For simplicity, we limit our discussion to the case where the
atomic set A contains only real elements so that K ⊂ R

d .

4.1 Exact Recovery

We begin our discussion by motivating why atomic norm minimization as stated in
Problem (PA) is a suitable strategy for the recovery of simple signals from linear
measurements. To that end, consider again the equality-constrained minimization
problem

minimize ‖x‖A
s.t. Ax̊ = Ax.

(8)

By rewriting the equality constraint in terms of d = x̊ − x ∈ ker(A), we may restate
the problem as

7We assume that the fundamental frequencies of each complex exponential are integer multiples of
the frequency resolution fs/d where fs denotes the sampling rate.
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minimize
d∈ker(A)

∥∥d+ x̊
∥∥
A .

Of course, the above problem is not of any practical interest as it requires knowledge
of the true solution x̊. However, it immediately follows from this representation
that Problem (8) has a unique solution if the null space of A does not contain any
nontrivial directions which reduce the atomic norm anchored at x̊. More precisely,
by introducing the set

DA(x̊) := {d ∈ R
d : ∥∥d+ x̊

∥∥
A ≤ ∥∥x̊∥∥A

} = {z− x̊ : ‖z‖A ≤ ∥∥x̊∥∥A
}

of descent directions of ‖·‖A at x̊, we obtain the condition

DA(x̊) ∩ ker(A) = {0}, (9)

which, if satisfied, guarantees perfect recovery of x̊ via Problem (8).
Alternatively, one may argue as follows. Let x̊ ∈ conek(A) and define the set

X = ∥∥x̊∥∥A conv(A) which clearly contains x̊. Given access to linear measurements
of the form y = Ax̊, one may then attempt to solve the feasibility problem

find x ∈ X
s.t. y = Ax

(10)

to recover x̊. This program has a unique solution if X intersects the affine subspace
Ex̊ :=

{
z ∈ R

d : Az = Ax̊
}
only at the solution x̊, i.e.,

X ∩ Ex̊ =
{
x̊
}

⇐⇒ (X − x̊) ∩ (Ex̊ − x̊) = {0}
⇐⇒ (X − x̊) ∩ ker(A) = {0}. (11)

SinceDefinition4 required conv(A) to be a symmetric convex body, it is also a closed
star domain.8 In this case, we may use a well-known result from functional analysis
that allows us to expressX in terms of the 1-sublevel set of its Minkowski functional
[88]

γX (x) = inf
{
t > 0 : x ∈ t

∥∥x̊
∥∥
A conv(A)

}

= 1
∥∥x̊
∥∥
A
inf {t > 0 : x ∈ tconv(A)} = ‖x‖A∥∥x̊

∥∥
A

.

Thus we have that

8A set K is a closed star domain if K is closed, and t K ⊆ K ∀t ∈ [0, 1].
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X − x̊ = {x ∈ R
d : γX (x) ≤ 1

}− x̊

= {x − x̊ : ‖x‖A ≤ ∥∥x̊∥∥A
}

= DA(x̊),

yielding again the uniqueness condition stated in Eq. (9).
Since ‖·‖A defines a norm on R

d , the set of descent directions is a convex body.
We may therefore replace DA(x̊) in Eq. (9) by its conic hull without changing the
statement. This set, denoted by

TA(x̊) := coneDA(x̊),

is usually referred to as the tangent or descent cone of ‖·‖A at x̊, and represents a
central object in the study of convex analysis. This ultimately leads to the following
result.

Proposition 1 ([13, Proposition 2.1]) The vector x̊ is the unique solution of Problem
(PA) if and only if

TA(x̊) ∩ ker(A) = {0}. (12)

As a typical example application of Proposition1, consider the atomic set A =
{±ei } ⊂ R

d of signed unit vectors. The convex hull of this set is the �1-unit ball
in R

d , and hence ‖·‖A = ‖·‖1; the conic hull is all of Rd . However, if we restrict
attention to nonnegative linear combinations of at most k elements in A, we obtain
the set K = conek(A) = {x ∈ R

d : |supp(x)| ≤ k
} = Σk(R

d) of k-sparse vectors.
As illustrated in Fig. 2a, the 1-sparse vector x̊ can be uniquely recovered via �1-
minimization since its tangent cone TA(x̊) intersects the null space of A only at
{0}. On the other hand, if x̊ is as depicted in Fig. 2b, then the tangent cone of A
at x̊ corresponds to a rotated half-space. Since every 1-dimensional subspace of R2

clearly intersects this half-space at arbitrarily many points, the only way a vector on
a 2-dimensional face of

∥∥x̊
∥∥
1 B

2
1 can be recovered is if ker(A) is the 0-dimensional

subspace {0}, i.e., if A has full-rank. Finally, note that the vector x̊′ in Fig. 2a cannot
be recovered either despite sharing the same sparsity structure as x̊. Conceptually,
this is immediately obvious from the fact that ‖x̊‖1 < ‖x̊′‖1 which implies that even
if we were to observe x̊′, atomic norm minimization would still yield the solution
x� = x̊. In light of Proposition1, this is explained by the fact that the tangent cone
at x̊′ has the same shape as TA(x̊) but rotated 90◦ clockwise so that TA(x̊′) and
ker(A) share a ray, violating the uniqueness condition (12). This example demon-
strates the nonuniform character of the recovery condition of Proposition1 which
locally depends on the particular choice of x̊.

Since the tangent cone is a bigger set than DA(x̊), the condition

TA(x̊) ∩ ker(A) = {0}
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Ex̊ = x̊+ ker(A)

ker(A)

TA(̊x)

‖x̊‖1 B
2
1

x̊

x̊′

Recovery of 1-sparse vectors

Ex̊

ker(A)

‖x̊‖1 B
2
1

TA(̊x)

x̊

Recovery of a 2-sparse vector

Fig. 2 Recovery of vectors in R
2

in a sense represents a stronger requirement thanDA(x̊) ∩ ker(A) frombefore.More-
over, while Proposition1 provides a necessary and sufficient condition for the suc-
cessful recovery of individual vectors via Problem (PA), testing the condition in
practice ultimately requires prior knowledge of the solution x̊ which we aim to
recover. However, as we will see shortly, both issues can be elegantly circumvented
by turning to the probabilistic setting where we assume the elements of the mea-
surement matrix are drawn independently from the standard Gaussian distribution.
This will allow us to draw on a powerful result from asymptotic convex geometry to
assess the success of recovering individual vectors probabilistically. Before stating
this result, we first need to introduce the concept of Gaussian mean width or mean
width for short, an important summary parameter of a bounded set.

Definition 6 (Gaussian mean width) The Gaussian mean width of a bounded set Ω
is defined as

w(Ω) := E sup
x∈Ω

〈g, x〉, (13)

where g ∼ N(0, Id) is an isotropic zero-mean Gaussian random vector.

The Gaussian mean width is closely related to the spherical mean width

wS(Ω) := E sup
x∈Ω

〈η, x〉,

where η is a random d-vector drawn uniformly from the Haar measure on the sphere.
Since length and direction of a Gaussian random vector are independent by rotation
invariance of the Gaussian distribution, we can decompose every standard Gaussian
vector g as g = ‖g‖2 η where η is again drawn from the uniform Haar measure. The
Gaussian and spherical mean width are therefore related by
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w(Ω) = E ‖g‖2 wS(Ω) ≤ √
dwS(Ω),

where the last step follows from Jensen’s inequality. Intuitively, the mean width of
a bounded set measures its average diameter over all directions chosen uniformly
at random. Consider for a moment the mean width w(Ω − Ω) of the Minkowski
difference of Ω with itself. Then we immediately have

w(Ω − Ω) = E sup
d∈Ω−Ω

〈g,d〉
= E sup

x,z∈Ω

〈g, x − z〉

≤ 2E sup
x∈Ω

〈g, x〉 = 2w(Ω)

with equality if Ω is origin-symmetric. Given a realization of the random vector
g, the term supx,z∈Ω 〈g, x − z〉 then corresponds to the distance of two supporting
hyperplanes to Ω with normal g, scaled by ‖g‖2.

With the definition of the mean width in place, we are now ready to state the
following result known as Gordon’s escape through a mesh or simply Gordon’s
escape theorem.Wepresent here a version of the theoremadopted from [31,Corollary
3.3]. The original result was first presented in [57].

Theorem 2 (Gordon’s escape through amesh) Let S ⊂ S
d−1, and let E be a random

(d − m)-dimensional subspace of Rd drawn uniformly from the Haar measure on
the Grassmann manifold G(d, d − m).9 Then

P(S ∩ E = ∅) ≥ 1− exp

(

−1

2

[
m√
m + 1

− w(S)

]2)

provided

m ≥ w(S)2 + 1.

In words, Gordon’s escape through a mesh phenomenon asserts that a randomly
drawn subspace misses a subset of the Euclidean unit sphere with overwhelmingly
high probability if the codimension m of the subspace is on the order of w(S)2.
Moreover, the probability of this event only depends on the codimension m of the
subspace, as well as on the Gaussian width of the sphere patch S. In order to apply
this result to the situation of Proposition1 in the context of the standard Gaussian
measurement ensemble, we merely need to restrict the tangent cone TA(x̊) to the
sphere, i.e., S = TA(x̊) ∩ S

d−1, and choose E = ker(A). This immediately yields
the following straightforward specialization of Theorem2.

9TheGrassmannmanifold orGrassmannian G(d, s) is an abstract Riemannianmanifold containing
all s-dimensional subspaces of Rd .
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Corollary 1 (Exact recovery from Gaussian observations) Let A ∈ R
m×d be a

matrix populated with independent standardGaussian entries, and let x̊ ∈ conek(A).
Then x̊ can be perfectly recovered from its measurements y = Ax̊ via atomic norm
minimization with probability at least 1− η if

m ≥
(
w(TA(x̊) ∩ S

d−1) +√2 log(η−1)
)2

.

So far, we have only concerned ourselves with establishing conditions under
which an arbitrary vector could be uniquely recovered from its linear measurements
by solving Problem (8). In fact, nothing in our discussion so far precludes that this
undertaking might require us to take at least as many measurements as the linear
algebraic dimension of the vector space containing x̊. The power of the presented
approach lies in the fact that for many signal models of interest such as sparse
vectors, group-sparse vectors, and low-rank matrices, the tangent cone at points x̊
lying on low-dimensional faces of a scaled version of conv(A) is narrow (cf. Fig. 2),
and therefore exhibit small mean widths. Coming back to the canonical example of
sparse vectors as discussed before, it can be shown that w(TA(x̊) ∩ S

d−1) roughly
scales like

√
k log(d/k) for any x̊ ∈ Σk(R

d) (see, for instance, [31, 89]). In light
of Corollary1, this requires m to scale linearly in k, and only logarithmically in the
ambient dimension d. For convenience, we list some of the best known bounds for
the mean widths of tangent cones associated with the signal models introduced in
Sect. 3 in Table1 [55].

Without going into too much detail, we want to briefly comment on a few natural
extensions of Corollary1.

Extensions to Noisy Recovery and Subgaussian Observations

An obvious question to ask at this point is what kind of recovery performance we
might expect if we extend our sensing model to include additive noise of the form
y = Ax̊ + w with ‖w‖2 ≤ σ as a more realistic model of observation. Naturally, we
cannot hope to ever recover x̊ exactly in that case unless σ = 0. Nevertheless, one
should still expect to be able to control the recovery quality in terms of the mean
width of the tangent cone and the noise level σ by an appropriate choice of m. The
following result, which was adapted from [31, Corollary 3.3], demonstrates that
this is in fact the case if we solve the noise-constrained atomic norm minimization
problem

minimize ‖x‖A
s.t. ‖y− Ax‖2 ≤ σ.

(14)

Proposition 2 (Robust recovery from Gaussian observations) Let A and x̊ be as in
Corollary1. Assume we observe y = Ax̊ + w with ‖w‖2 ≤ σ. Then with probability
at least 1− η, the solution x� of Problem (14) satisfies
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∥∥x̊ − x�
∥∥
2 ≤ ν

provided

m ≥
(

w(TA(x̊) ∩ S
d−1) +√2 log(η−1)

1− 2σ/ν

)2

.

Note that the reconstruction fidelity ν in Proposition2 is inherently limited by the
noise level σ since we require ν > 2σ for the bound on m to yield sensible values.

In closing, we alsowant tomention a recent extension ofGordon’s escape theorem
tomeasurementmatriceswhose rows are independent copies of subgaussian isotropic
random vectors ai ∈ R

d with subgaussian parameter τ , i.e.,

E(aia�i ) = Id, ‖ai‖ψ2 = sup
θ∈Sd−1

‖ 〈θ, ai 〉 ‖ψ2 ≤ τ . (15)

Based on a concentration result for such matrices acting on bounded subsets of Rd

[66, Corollary 1.5], Liaw et al. proved a general version of the following result which
we state here in the context of signal recovery in the same vein as Corollary1.

Theorem 3 (Exact recovery from subgaussian observations) Let A ∈ R
m×d be a

matrix whose rows are independent subgaussian random vectors satisfying Eq. (15),
and let x̊ ∈ conek(A). Then with probability at least 1− η, x̊ is the unique minimizer
of Problem (8) with y = Ax̊ if

m � τ 4
(
w(TA(x̊) ∩ S

d−1) +√log(η−1)
)2

.

Surprisingly, this bound suggests almost the same scaling behavior as in theGaussian
case (cf. Corollary1), barring the dependence on the subgaussian parameter τ , aswell
as an absolute constant hidden in the notation.

The results mentioned so far are not without their own set of drawbacks. While
robustness against noise was established in Proposition2, the tangent cone character-
ization is inherently susceptible to model deficiencies. For instance, consider again
the example A = {±ei } giving rise to the set of Σk(R

d). If x̊ is not a sparse linear
combination of elements in A (e.g., x̊ may only be compressible rather than exactly
sparse), then the tangent cone of ‖·‖A at x̊may not have a small mean width at all as
we saw in Fig. 2. In fact, in this case,w(TA(x̊) ∩ S

d−1)2 is usually on the order of the
ambient dimension d [80]. Moreover, as we also demonstrated graphically in Fig. 2,
the recovery guarantees presented in this section only apply to individual vectors.
Such results are customarily referred to as nonuniform guarantees in the compressed
sensing literature. Before moving on to the uniform recovery case which provides
recovery conditions for all vectors in a signal class simultaneously, wewant to briefly
comment on an important line of work connecting sparse recovery with the field of
conic integral geometry. This is the subject of the next section.



28 N. Koep et al.

4.2 Connections to Conic Integral Geometry

In an independent line of research [4], the sparse recovery problem was recently
approached from the perspective of conic integral geometry. At the heart of this field
lies the study of the so-called intrinsic volumes of cones. We limit our discussion to
the important class of polyhedral cones10 here, and refer interested readers to [4] for
a treatment of general convex cones.

Definition 7 (Intrinsic volumes) Let C be a polyhedral cone in Rd , and denote by g
a standard Gaussian random vector. Then for i = 0, . . . , d, the i th intrinsic volume
of C is defined as

vi (C) := P(ΠC(g) ∈ Fi (C)),

where ΠC denotes the orthogonal projector on C, and Fi (C) denotes the union of
relative interiors of all i-dimensional faces of C.
If we are given two non-empty convex cones C,D ⊂ R

d , one of which is not a sub-
space, and we draw an orthogonal matrixQ ∈ R

d×d from the uniformHaar measure,
then the probability that C and the randomly rotated cone QD intersect nontrivially
is fully determined by the intrinsic volumes of C and D. The precise statement of
this result is known as the conic kinematic formula.

Theorem 4 (Conic kinematic formula, [4, Fact 2.1]) Let C andD be two non-empty
closed convex cones in Rd of which at most one is a subspace. Denote by Q ∈ O(d)

a matrix drawn uniformly from the Haar measure on the orthogonal group. Then

P(C ∩QD 
= {0}) =
d∑

i=0

(1+ (−1)i+1)

d∑

j=1

vi (C)vd+i− j (D).

To apply this result to the context of sparse recovery as discussed in the previous
section, one simply chooses C = TA(x̊), and D = ker(A), similar to the situation
of Gordon’s escape theorem. While the intrinsic volumes of ker(A), a (d − m)-
dimensional linear subspace, are easily determined by11

vi (ker(A)) =
{
1, i = d − m,

0, otherwise,
(16)

the calculation of the intrinsic volumes of tangent cones is much less straightforward.
Fortunately, there is an elegant way out of this situation which was first demonstrated

10A cone C ⊂ R
d is called polyhedral if it can be expressed as the intersection of finitely many

half-spaces.
11This follows from the fact that ker(A) only has a single face on which Πker(A) projects every
point x ∈ R

d , namely, ker(A) itself.



An Introduction to Compressed Sensing 29

in [4]. Since any vector x ∈ R
d projected on a closed convex cone C must belong to

exactly one of the d + 1 setsFi (C) defined inDefinition7, the collection {vi (C)}di=0 of
intrinsic volumes defines a discrete probability distribution on {0, 1, . . . , d}. More-
over, the distribution can be shown to concentrate sharply around its expectation

δ(C) :=
d∑

i=0

ivi (C),

known as the statistical dimension ofC, which in turn can be tightly estimated inmany
cases of interest by appealing to techniques from convex analysis. In fact, the same
technique was previously used in [31] to derive tight estimates of the mean width of
various tangent cones. Note, however, that this work merely exploited a numerical
relation between the Gaussian mean width and the statistical dimension which we
will comment on below but was not generally motivated by conic integral geometry.
The concentration behavior of intrinsic volumes ultimately allowedAmelunxen et al.
to derive the following remarkable pair of bounds which constitute a breakthrough
result in the theory of sparse recovery.

Theorem 5 (Approximate conic kinematic formula, [4, Theorem II]) Let x̊ ∈
conek(A), and denote by A ∈ R

m×d a standard Gaussian matrix with independent
entries as usual. Given the linear observations y = Ax̊, and denoting by x� the
optimal solution of Problem (8), the following two statements hold for η ∈ (0, 1]:

P(x� = x̊) ≥ 1− η if m ≥ δ(TA(x̊)) + cη

√
d,

P(x� 
= x̊) ≤ η if m ≤ δ(TA(x̊)) − cη

√
d

with cη =
√
8 log(4/η).

Before addressing the problem of estimating the statistical dimension δ of the tangent
cone TA(x̊), let us briefly comment on the above result first. Theorem5 is remarkable
for a variety of reasons. First, as was demonstrated numerically in [4], the two bounds
correctly predict the position of the so-called phase transition. Such results were pre-
viously only known in the asymptotic large-system limit (cf. [43, 45]) where one
considers for d,m, k → ∞ the fixed ratios δ := m/d, and ρ := k/m over the open
unit square (0, 1)2. The phase-transition phenomenon describes a particular behavior
of the system which exhibits a certain critical line ρ� = ρ�(δ) that partitions (0, 1)2

into two distinct regions: one where recovery almost certainly succeeds, and one
where it almost certainly fails. The transition line then corresponds to the 50th per-
centile. Second, it represents the first non-asymptotic result which correctly predicts
a fundamental limit below which sparse recovery will fail with high probability.
This is in stark contrast to previous results based on Gordon’s escape theorem which
were only able to predict that recovery would succeed above a certain threshold but
could not make any assessment of the behavior below it. Finally, as a result of the
second point, Theorem5 represents the first result which quantifies the width of the
transition region where the probability of exact recovery will change from almost
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certain failure to almost certain success. Once again we refer interested readers to
the excellent exposition [4], particularly Sect. 10, for a thorough comparison of their
results to the pertinent literature on the existence of phase transitions in compressed
sensing.

The key ingredient in the application of Theorem5 is the statistical dimension δ
of the tangent cone TA(x̊). As mentioned above, the statistical dimension is defined
as the expected value of the distribution defined by the intrinsic volumes of TA(x̊).
However, it admits two alternative representationswhich can be leveraged to estimate
δ(C), especially when C corresponds to a tangent cone. This is the content of the
following result.

Proposition 3 (Statistical dimension, [4, Proposition 3.1]) Let C be a closed convex
cone in Rd , and let g be a standard Gaussian d-vector. Then

δ(C) =
d∑

i=0

ivi (C) = E
[‖ΠC(g)‖22

] = E
[
dist(g, C◦)2

]
,

where C◦ := {z ∈ R
d : 〈x, z〉 ≤ 0 ∀x ∈ C

}
denotes the polar cone of C.

In particular, we want to focus on the last identity when C = TA(x̊). In fact, in this
situation one may exploit a well-known fact from convex geometry that states that
the polar cone of the tangent cone corresponds to the normal cone [88]

NA(x̊) := {v ∈ R
d : 〈v, x − x̊

〉 ≤ 0 ∀x : ‖x‖A ≤ ∥∥x̊∥∥A
}

= {v ∈ R
d : 〈v,d〉 ≤ 0 ∀d ∈ TA(x̊)

}
,

which in turn can be expressed as the conic hull of the subdifferential of the atomic
norm at x̊,

TA(x̊)◦ = NA(x̊) = cone(∂
∥∥x̊
∥∥
A) =

⋃

t≥0
t∂
∥∥x̊
∥∥
A .

The last identity follows from the fact that the subdifferential of a convex function is
always a convex set. In otherwords, given a recipe for the subdifferential of the atomic
norm, the statistical dimension of its associated tangent cone can be estimated by
bounding the expected distance of a Gaussian vector to its convex hull. In many cases
of interest, this turns out to be a comparatively easy task (see, e.g., [31, Appendix
C], [55, Appendix A] and [4, Sect. 4]).

As alluded to before, the statistical dimension also shares a close connection to
the Gaussian mean width. In particular, we have the following two inequalities (cf.
[4, Proposition 10.2]):

w(C ∩ S
d−1)2 ≤ E

[
dist(g, C◦)2

] = δ(C) ≤ w(C ∩ S
d−1)2 + 1.
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This shows that estimating the mean width is qualitatively equivalent to estimating δ.
As previously mentioned, this connection was used in [31] to derive precise bounds
for the mean widths of the tangent cones for sparse vectors, and low-rank matrices,
as well as for block- and group-sparse signals in [55] and [84], respectively. Note
that the connection between mean width and statistical dimension was already used
in the pioneering works of Stojnic [91], as well as Oymak and Hassibi [76], even
if the term statistical dimension was originally coined in [4] where the connection
between the probability distribution induced by the intrinsic volumes and its pro-
jective characterization in Proposition3 was first established. We want to emphasize
again that the fundamental significance of the statistical dimension in the context of
sparse recovery did not become clear until the seminal work of Amelunxen, Lotz,
McCoy, andTroppwho rigorously demonstrated the concentration behavior of intrin-
sic volumes, culminating in the breakthrough result stated in Theorem5. In the same
context, the authors argued that the statistical dimension generally represents a more
appropriate measure of “dimension” of cones than the mean width. For instance, if
C is an n-dimensional linear subspace Ln of Rd , then it immediately follows from
Eq. (16) that δ(Ln) = dim(Ln) = n. Moreover, given a closed convex cone C ⊂ R

d ,
we have δ(C) + δ(C◦) = d (cf. [4, Proposition 3.1]) which generalizes the property
dim(Ln) + dim(L⊥

n ) = d from linear subspaces to convex cones since L◦
n = L⊥

n ,
i.e., the polar cone of a subspace is its orthogonal complement.

The concepts discussed in this section all addressed the problem of recovering or
estimating individual vectors with a low-complexity structure from low-dimensional
linear measurements. In other words, given two vectors x̊ and x̊′ with the same low-
complexity structure, and the knowledge that x̊ can be estimated with a particular
accuracy, we are not able to infer that the same accuracy also holds when we try to
recover x̊′ given a fixed choice of A. Recall, for example, the situation illustrated in
Fig. 2a. If instead of x̊we observe a vector x̊′ positioned on the rightmost vertex of the
scaled �1-ball, the tangent cone at x̊′ now corresponds to the tangent cone at x̊ rotated
90◦ clockwise around the origin. However, since this cone intersects the null space
of A at arbitrarily many points, we are not able to recover x̊ and x̊′ simultaneously.
In the parlance of probability theory, we might say that the results presented in this
section are conditioned on a particular choice of x̊. Such results are therefore known
as nonuniform guarantees as they do not hold uniformly for all signals in a particular
class at once.

In contrast, in the next section,wewill introduce a variety of properties ofmeasure-
ment matrices which will allow us to characterize the recovery behavior uniformly
over all elements in a signal class given the same choice of measurement matrix.
Most importantly, we will focus on a particularly important property which not only
yields a sufficient condition for perfect recovery of sparse vectors but one which
has also proven an indispensable tool in providing stability and robustness condi-
tions in situations where we are tasked with the recovery of signals from corrupted
measurements.
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5 Exact Recovery of Sparse Vectors

In this section, we consider conditions under which the sparse linear inverse problem,
in which we are to infer a d-dimensional vector x̊ ∈ Σk from its linear measurements
y = Ax̊ ∈ R

m , admits a unique solution. In contrast to the situation discussed in
Sect. 4, we are now specifically interested in conditions under which the entire set
Σk can be recovered or at least well approximated by a single measurement matrix
A.

Consider two vectors x, z ∈ Σk , and suppose that both vectors are mapped to the
samepointy = Ax = Az such thatx − z ∈ ker(A).Obviously, unlesswe specifically
ask that x 
= z, there is absolutely no chance that we would ever be able to decide
which element in Σk generated the measurements y. In other words, if there is to be
any hope to ever uniquely identify sparse vectors from their image underA, the most
fundamental condition we must impose is that no two vectors in Σk are mapped
to the same point y in R

m . However, since the difference of two k-sparse vectors
is 2k-sparse, this immediately yields the condition ker(A) ∩ Σ2k = {0}. In words,
the linear inverse problem for sparse vectors is well-posed if and only if the only
2k-sparse vector contained in the null space of A is the zero vector.

Note that this viewpoint differs from thewaywe approached the recovery problem
earlier in Sect. 4wherewemerely asked for a particular optimization problemdefined
in terms of a fixed vector x̊ ∈ K to have a unique solution which ultimately lead us
to the local tangent cone condition in Proposition1. This also explains why, in the
example depicted in Fig. 2a, we were able to recover the 1-sparse vector x̊ ∈ R

2

but not the 1-sparse vector x̊′. As the considerations above show, there simply is no
circumstance under which we would ever be able to uniquely recover every 1-sparse
vector in R

2 from scalar measurements y ∈ R. This is due to the fact that the null
space of any matrixA ∈ R

1×2 (a row vector) either corresponds to a line through the
origin or the entire planeR2 itself ifA = 0. However, since the set of 2-sparse vectors
in R

2 also corresponds to R
2, the subspace ker(A) intersects Σ2 at arbitrarily many

points regardless of the choice of A, violating the condition ker(A) ∩ Σ2 = {0}.
The following theorem, which constitutes a key result in compressed sensing,

formalizes the observations above.

Theorem 6 ([54, Theorem 2.13]) Given a matrix A ∈ C
m×d , the following state-

ments are equivalent:

1. Given a vector x̊ ∈ C
d supported on a set of size at most k, the problem

minimize ‖x‖0
s.t. Ax̊ = Ax

(P0)

has a unique k-sparse minimizer, namely, x� = x̊.
2. Every vector x̊ is the unique k-sparse solution of the system Az = Ax̊.
3. The only 2k-sparse vector contained in the null space of A is the zero vector,

i.e., ker(A) ∩ Σ2k = {0}.
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The key insight of the above result is the equivalence between the condition
ker(A) ∩ Σ2k = {0}, and the existence of sparse minimizers of a particularly impor-
tant nonconvex optimization problem. More precisely, we have by Theorem 1 that
a natural strategy to recover a sparse vector x̊ ∈ Σk given y and A corresponds to a
search for the sparsest element in the affine space

{
x ∈ C

d : Ax = y
}
.

One immediate question arising from Theorem6 is “how underdetermined” the
system y = Ax̊ is allowed to become for there to still be a unique solution. Remark-
ably, Problem (P0) can be shown to uniquely recover the original vector x̊ as soon
as the rank of the measurement matrix A ∈ C

m×d exceeds the critical threshold
rankA ≥ 2k [54]. In other words, every 2k columns of A must be linearly indepen-
dent. Motivated by this observation, some authors refer to the so-called spark of a
matrix—a portmanteau of the words “sparse” and “rank”—as the smallest number of
linearly dependent columns ofA [41]. With this definition, the rank constraint can be
equivalently stated as spark(A) > 2k. Given a measurement matrix A of size m × d
in the regime m < d, perfect recovery of any k-sparse vector is therefore guaran-
teed as soon as sparkA > 2k. Moreover, since rank(A) ≤ m, the rank requirement
rank(A) ≥ 2k ultimately yields the necessary conditionm ≥ 2k for perfect recovery
of all k-sparse vectors via �0-minimization.

As alluded to before, an important distinction between the rank characterization
above, and the tangent cone condition fromProposition1 is that the latter only applies
to individual elements of Σk while the requirement rank(A) ≥ 2k implies perfect
recovery of every k-sparse vector via �0-minimization. If we are only interested in a
nonuniform recovery condition, it turns out that we already get by with m ≥ k + 1
measurements [54, Sect. 2.2]. Note, however, that the condition in Proposition1
is based on a tractable optimization problem. This stands in stark contrast to the
�0-minimization problem (P0) which is provably NP-hard as it can be reduced to
the so-called exact 3-set cover problem which in turn is known to belong to the
class of NP-complete problems [72]. As a result, solving Problem (P0) requires a
combinatorial search over all

∑d
i=0

(d
i

)
possible subproblems if k is unknown and

(d
k

)

otherwise, both of which are intractable for even moderately sized problems. While
there exist certain deterministic matrices which satisfy the rank condition such as
Vandermonde matrices, as well as tractable algorithms such as Prony’s method to
solve the associated �0-minimization problem, the solution of the general problem
remains out of reach unless P = NP. Moreover, another drawback of attempting
to solve the �0-minimization problem directly is that it can be shown to be highly
sensitive to measurement noise and sparsity defects [54, Chap. 2].

While Theorem6 in and of itself already represents a fascinating result in the field
of linear algebra, the story does not end there. Despite the seemingly dire situation
we find ourselves in when attempting to find minimizers of Problem (P0), one of the
key insights in the theory of compressed sensing is that there is a convenient escape
hatch in the form of convex relaxations. In fact, it turns out that under slightly more
demanding conditions on the null space of A, we are still able to faithfully recover
sparse or approximately sparse vectors by turning to a particular relaxation of Prob-
lem (P0). We are, of course, talking about the infamous �1-minimization problem
which we already discussed implicitly in the context of atomic norm minimization
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w. r. t. the atomic setA = {±ei } generating the set of sparse vectors. It is this insight
which elevates the field of compressed sensing from a purely mathematical theory to
a highly desirable tool with far-reaching implications in countless domains of engi-
neering, physics, chemistry, and biology. Before discussing the particular conditions
onAwhich allow for robust andmost importantly efficient recovery of sparse vectors
from underdetermined linear measurements, let us first state and briefly comment on
what is by now probably one of the most well-known and well-studied optimization
problems in mathematics to date.

In light of our discussion of compressible vectors in Sect. 3.1, the following opti-
mization problem, famously known as the basis pursuit (BP) problem, naturally
represents the closest convex relaxation of the nonconvex �0-minimization problem
(P0):

minimize
x

‖x‖1
s.t. Ax = Ax̊.

(P1)

Ignoring for a moment any structural properties on the vector x̊we aim to recover,
as well as the properties of the measurement matrix A ∈ C

m×d , the program can
be shown to yield m-sparse minimizers [54, Theorem 3.1]. This observation alone
already serves as a strong indicator of the deep connection between �1-minimization
and sparse recovery. Moreover, the relaxation can be solved in polynomial time by
so-called interior-point methods, a class of algorithms which is by now considered
a standard tool in the field of convex optimization. In particular, in the real setting,
Problem (P1) belongs to the class of linear programs (LPs), while in the complex
case the problem can be transformed into a second-order cone program (SOCP) over
the Cartesian product of d Lorentz cones KL := {(z, t) ∈ R

2 × R≥0 : ‖z‖2 ≤ t
}
.

6 Characterization of Measurement Matrices

At the beginning of Sect. 4, we presented a necessary and sufficient condition for the
exact recovery of vectors in simple sets from underdetermined linear measurements
(cf. Proposition1). This condition is very much local in nature as it depends on the
particular choice of the vector one aims to recover. To circumvent this issue,we turned
to random matrices which allowed us to draw on powerful probabilistic methods to
bound the probability that, conditioned on the choice of a particular vector, we would
be able to recover it via atomic norm minimization.

It turns out that in a sense, this strategy can be mirrored in the case of uniform
recovery of sparse vectors. However, rather than directly estimating the probability
that the condition in Theorem 3 as established in the previous section holds for a
particular choice of random matrix, we first introduce a few common properties
of general measurement matrices, some of which will enable us to state powerful
recovery guarantees which hold over entire signal classes rather than individual
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vectors. In Sect. 7, we will then present a series of results which assert that for
many different choices of random measurement ensembles, such properties can be
shown to be satisfied with overwhelmingly high probability, provided the number of
measurements is chosen appropriately.

6.1 Null Space Property

As alluded to before, the relaxation of the original �0-minimization problem to a
tractable convex program comes at the price of a critical difference to Problem (P0).
While the only requirement for Problem (P0) to recover the original vector x̊ ∈ Σk

was for the number of measurements to exceed 2k, perfect recovery will now be
dependent on a certain structural property of the null space of A, aptly referred to as
the null space property (NSP), which was first introduced in [33].

Definition 8 (Null space property) A matrixA ∈ C
m×d is said to satisfy the NSP of

order k if, for any set S ⊂ [d] with |S| ≤ k, we have

‖vS‖1 <
∥∥vS
∥∥
1 ∀v ∈ kerA\{0}.

The definition of the null space property admits a few additional observations for
vectors in the null space of A. Consider again an index set S ⊂ [d] of size at most k.
Then for v ∈ kerA \ {0} we have

‖v‖1 =
∥∥vS + vS

∥∥
1 = ‖vS‖1 +

∥∥vS
∥∥
1

<
∥∥vS
∥∥
1 +

∥∥vS
∥∥
1

= 2
∥∥vS
∥∥
1 .

Moreover, if S is the set supporting the largest components of v in absolute value,
one has with the definition of the best k-term approximation error in Eq. (5),

‖v‖1 < 2σk(v)1.

Finally, by the Cauchy–Schwarz inequality, we have that for any v ∈ C
d , it holds

that ‖v‖21 ≤ ‖v‖0 · ‖v‖22. Therefore, one often alternatively finds the condition

‖vS‖2 <
1√
k

∥∥vS
∥∥
1

in the definition of the null space property.
Given a matrix that satisfies the null space property, we can now state the general

result for the recovery of any k-sparse vector x̊ ∈ C
d from its linear measurements
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by solving the basis pursuit (BP) problem (BP) below. In particular, consider a vector
v ∈ kerA ∩ Σ2k supported on an index set S ⊂ [d] of size 2k, and assume further
that v 
= 0. Then for two disjoint sets S1, S2 ⊂ S with S = S1 ∪ S2 and |S1| = |S2| =
k, by the null space property we have ‖vS1‖1 < ‖vS1‖1 = ‖vS\S1‖1 = ‖vS2‖1 and
‖vS2‖1 < ‖vS1‖1 which is a contradiction, and hence v = 0. In other words, the null
space property implies that the null space of A only contains a single 2k-sparse
vector: the zero vector. This implies the condition we previously stated in Theorem
3 which said that �0-minimization can recover any k-sparse vector as long as the
null space of the measurement matrix contains no 2k-sparse vectors save for the
zero vector. Amazingly, the null space property provides a necessary and sufficient
condition for the following recovery guarantee for sparse vectors.

Theorem 7 Let A ∈ C
m×d and k ∈ [d]. Then every k-sparse vector x̊ is the unique

minimizer of the basis pursuit problem

minimize ‖x‖1
s.t. y = Ax

(BP)

with y = Ax̊ iff A satisfies the null space property of order k.

Proof IfAx̊ = Az, then d := x̊ − z ∈ ker(A)with dS = x̊ − zS and dS = zS . Invok-
ing the null space property we have

∥∥x̊
∥∥
1 =

∥∥x̊ − zS + zS
∥∥
1

≤ ‖dS‖1 + ‖zS‖1
<
∥∥dS

∥∥
1 + ‖zS‖1

= ∥∥zS
∥∥
1 + ‖zS‖1 = ‖z‖1 .

This means that x̊ is the unique minimizer of (BP). For the other direction, every
v ∈ ker(A) satisfies AvS = A(−vS). Since vS is the unique minimizer of (BP), we
have ‖vS‖1 < ‖ − vS‖1 which is the null space property. �

Two situations are of particular importance in linear inverse problems, namely, sit-
uations in which x̊ is only approximately sparse, and when the measurements are
corrupted by additive noise. It is therefore generally desirable for a recovery algo-
rithm to be both robust to noise and stable w. r. t. to so-called sparsity defect. To
that end, one can extend the definition of the null space property to provide similar
guarantees to the one stated in Theorem7. We first consider the so-called stable null
space property which can be used to account for sparsity defects of vectors.

Definition 9 (Stable null space property) A matrix A ∈ C
m×d is said to satisfy the

stable null space property of order k with constant 0 < ρ < 1 w. r. t. any set S ⊂ [d]
if

‖vS‖1 ≤ ρ
∥∥vS
∥∥
1 ∀v ∈ kerA
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with |S| ≤ k.

With this definition in place, the following result characterizes the impact of
sparsity defects on the recovery error of the basis pursuit problem.

Theorem 8 ([54, Theorem 4.12]) Let A ∈ C
m×d and k ∈ [d]. Then with y = Ax̊,

the solution x� of Problem (BP) satisfies

∥∥x� − x̊
∥∥
2 ≤

2(1+ ρ)

(1− ρ)
σk(x̊)1

if A satisfies the stable null space property of order k. In particular, if x̊ ∈ Σk then
x� = x̊.

We can extend the definition of the stable null space property once more to also
account for additive noise in the measurements. For reference, we state here the
most general form of the so-called �q -robust null space property. However, instead
of using this definition to state a stable, noise-robust counterpart to Theorem8, we
will instead turn to a more commonly used property of measurement matrices in the
next section to state a guarantee of this type.

Definition 10 (�q -robust null space property) Let q ≥ 1, and denote by ‖·‖ an arbi-
trary norm on C

m . Then the matrix A ∈ C
m×d satisfies the �q -robust null space

property of order k with constants 0 < ρ < 1 and τ > 0 if for all v ∈ C
d ,

‖vS‖q ≤ ρ

k1−1/q

∥∥vS
∥∥
1 + τ ‖Av‖

for all S ⊂ [d], |S| ≤ k.

Theorem7yields a necessary and sufficient condition for thematrixA that answers
the central question whenminimizers of (P0) and (P1) coincide.While this represents
an invaluable result, Theorem7 makes no statement regarding the actual existence
of such matrices. As it turns out, constructing deterministic matrices which directly
satisfy the null space property (or its stable or noise-robust variants) constitutes a
highly nontrivial problem. In fact, even verifying whether a given matrix satisfies
the null space property was eventually shown to be an NP-hard decision problem
[95]. Fortunately, it can be shown that matrices satisfying the null space property
still exist in abundance if one turns to random measurement ensembles. While it is
possible to directly establish the existence of such matrices probabilistically,12 it has
become common practice in the compressed sensing literature to mainly consider
an alternative property of measurement matrices to establish recovery guarantees.
The property in question is of course the infamous restricted isometry property (RIP)
which was introduced in one of the very first papers on compressed sensing [27],
and by now constitutes one of the most well-studied objects in the theory.

12In fact, as we will briefly discuss in Sect. 7, such random constructions are often characterized by
more well-behaved scaling constants.
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6.2 Restricted Isometry Property

The restricted isometry property (RIP) was first introduced in the seminal work by
Candes and Tao [27], and shown in [21] to allow for robust recovery of approximately
sparse vectors in the presence of measurement noise. While this property only yields
a sufficient condition implying the null space property, matrices of this type can be
found—at least in a probabilistic sense—in abundance as various random measure-
ment ensembles can be shown to satisfy the RIP with high probability (cf. Sect. 7).
The property is defined as follows.

Definition 11 A matrix A ∈ C
m×d is said to satisfy the RIP of order k if

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1+ δ) ‖x‖22
for all x ∈ Σk with δ ≥ 0. The smallest δk ≤ δ satisfying this condition is called the
restricted isometry constant (RIC) of A.

Intuitively, this definition states that for any S ⊂ [d] with |S| ≤ k the submatrix AS

obtained by retaining only the columns indexed by S approximately acts like an
isometry on the set of k-sparse vectors which admits an alternative characterization
of the restricted isometry constant δk as

δk = max
S⊂[d],|S|=k

∥∥A∗
SAS − Id

∥∥
2→2 .

This definition of the restricted isometry constant is commonly used in proofs estab-
lishing the restricted isometry property in a probabilistic setting by showing that δk
concentrates sharply around its expectation.

In light of the importance and popularity of the restricted isometry property in
compressed sensing, we will state most recovery conditions of the various algo-
rithms introduced in Sect. 8 exclusively in terms of the restricted isometry constants
associated with the RIP matrices in question.

The restricted isometry property admits a particularly short and concise proof of
why k-sparse vectors have unique measurement vectors y under projections through
A. Assume the matrix A ∈ C

m×d satisfies the RIP condition of order 2k with con-
stant δ2k < 1, and consider two distinct k-sparse vectors x, z ∈ C

d with Ax = Az.
Define now v := x − z ∈ Σ2k , i.e., Av = 0. Then we have by the restricted isometry
property,

0 < (1− δ2k) ‖v‖22 ≤ ‖Av‖22 = 0.

Since this only holds for v = 0, we must have x = z. In other words, if A is an RIP
matrix of order 2k, no two k-sparse vectors are mapped to the same measurement
vector y through A.

In the following, we consider noisy measurements of the form y = Ax̊ + e where
the additive noise term e ∈ C

m is assumed to be bounded according to ‖e‖2 ≤ η.
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Under assumption of the restricted isometry property, one may then establish the
following stable and robust recovery result.

Theorem 9 ([54, Theorem 6.12]) Let A ∈ C
m×d be a matrix satisfying the RIP

of order 2k with restricted isometry constant δ2k < 4/
√
41. For x̊ ∈ C

d , and y =
Ax̊ + e with ‖e‖2 ≤ η, denote by x� the solution of the quadratically constrained
basis pursuit problem

minimize ‖x‖1
s.t. ‖Ax − y‖2 ≤ η.

(QCBP)

Then

∥∥x̊ − x�
∥∥
1 ≤ Cσk(x̊)1 + D

√
kη,

∥∥x̊ − x�
∥∥
2 ≤

C√
k
σk(x̊)1 + Dη,

where C, D > 0 depend only on δ2k .

This result is both stable w. r. t. sparsity defect and robust against additive noise as
the error bounds only depend on the model mismatch quantified by the best k-term
approximation error of x̊, as well as on the extrinsic noise level η. In case of exact
k-sparsity of x̊, and in the absence of measurement noise, Theorem9 immediately
implies perfect recovery.

6.3 Mutual Coherence

Despite the fact that both NSP and RIP allow for the derivation of very strong results
in terms of stability and robustness of general recovery algorithms, checking either of
them in practice remains an NP-hard decision problem [95]. One alternative property
of a measurement matrix A that can easily be checked in practice is the so-called
mutual coherence.

Definition 12 Let A ∈ C
m×d . Then the mutual coherence μ = μ(A) is defined as

μ(A) := max
1≤i 
= j≤d

| 〈ai , a j
〉 |

‖ai‖2
∥∥a j

∥∥
2

,

where ai denotes the i th column of A. Assuming �2-normalized columns of A, this
corresponds to the largest off-diagonal element in absolute value of the Gramian
A∗A of A.

The following proposition presents a fundamental limit on the mutual coherence of
a matrix known as the Welch bound.
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Proposition 4 ([101]) The coherence of a matrix A ∈ C
m×d with �2-normalized

columns satisfies

μ(A) ≥
√

d − m

m(d − 1)
.

The equality is attained for every matrix whose columns form an equiangular tight
frame.

Unfortunately, coherence-based analyses are rather pessimistic in terms of the
number of measurements required to establish robust and stable recovery guarantees.
In fact, it can be shown that conditions for perfect recovery in terms of the mutual
coherence dictate a quadratic scaling m = Ω(k2) of the number of measurements
[96], which is only of interest in practice at low sparsity levels.

6.4 Quotient Property

One drawback of the quadratically constrained basis pursuit (QCBP) problem
(QCBP) is the fact that one has to have access to an estimate of the noise parameter
η ≥ ‖e‖2, which is often not available in practice. Surprisingly, it can be shown,
however, that under an additional condition on the measurement matrix stable and
robust recovery of compressible vectors is still possible without any prior knowledge
of ‖e‖2 ∈ C

m by means of solving the equality-constrained basis pursuit problem.
This condition is given in the form of the so-called quotient property of A.

Definition 13 A matrix A ∈ C
m×d is said to satisfy the �1-quotient property with

constant ν if for any e ∈ C
m there exists a vector u ∈ C

d such that

e = Au with ‖u‖1 ≤ ν
√
k∗ ‖e‖2 ,

where k∗ := m/ log(ed/m).

If a matrix satisfies both the robust null space property and the quotient property, this
allows one to establish the following remarkable result.

Theorem 10 ([54, Theorem 11.12]) Let A ∈ C
m×d be a matrix satisfying the �2-

robust null space property as in Definition10, as well as the �1-quotient property as
in Definition13. Let further x̊ ∈ C

d , e ∈ C
m, and denote by y = Ax̊ + e the noisy

linear measurements of x̊. Then the solution x� of the basis pursuit problem (BP)
satisfies for k ≤ ck∗,

∥∥x̊ − x�
∥∥
2 ≤

C1√
k
σk(x̊)1 + C2 ‖e‖ ,
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where ‖·‖ denotes the norm assumed in the �2-robust null space property. The con-
stants C1 and C2 only depend on ρ, τ , c, and ν, i.e., the parameters of the null space
and quotient property, respectively.

In the next section, we will address the construction of random measurement
matrices which, with high probability, satisfy either the restricted isometry property
and/or null space property, respectively. Note that similar probabilistic results can
also be shown to hold for the quotient property as introduced above. However, we
skip the discussion of this topic for brevity and refer interested readers to [54, Sect.
11.3] instead.

7 Probabilistic Constructions of Measurement Matrices

In this section, we present a series of results which establish the existence of suitable
measurement matrices for compressed sensing in the sense that they satisfy the
restricted isometry property and consequently the null space property with high
probability.

7.1 Restricted Isometries

The first remarkable result we look at in this section concerns the class of subgaussian
ensembles which encompasses many important instances of random measurement
matrices such as Gaussian and Bernoulli matrices, as well as any matrix populated
with independent copies of bounded random variables.

Theorem 11 (Subgaussian restricted isometries, [64, Theorem C.1]) Let the rows of
them × d matrixA be distributed according to an independent isotropic subgaussian
distribution. Then the matrix 1√

m
A satisfies the restricted isometry property of order

k with constant δk ≤ δ if

m ≥ Cδ−2k log

(
ed

k

)

with probability at least 1− 2 exp(−δ2m/C) where the constant C only depends on
the subgaussian norm of the rows of A.

A similar theorem can be stated for the case where the columns instead of rows of A
follow a subgaussian distribution. Due to the isotropy assumption of the distribution,
the random matrix m−1/2A acts as an isometry in expectation as we would expect
from an RIPmatrix, i.e.,E‖m−1/2Ax‖22 = ‖x‖22. The exponential decay of the failure
probability in the above theorem therefore indicates that ‖m−1/2Ax‖22 concentrates
sharply around its mean ‖x‖22 as intended for A to behave like an isometry.



42 N. Koep et al.

The original proof of the restricted isometry property for Gaussian randommatri-
ces goes back to theworkofCandès andTao [27, 28].Ashinted at above, the restricted
isometry property is usually established by means of concentration inequalities that
control the deviation of m−1/2A from its mean. In particular, such concentration
results are usually based on Bernstein’s inequality for subexponential random vari-
ables. In the case of Gaussian random matrices, one can appeal to slightly simpler
methods that characterize the smallest and largest singular values of the Gaussian
random matrices to establish the RIP in that way.

Another possible proof strategy is based on a result due to Gordon which bounds
the expected minimum and maximum gain of a Gaussian random matrix acting
on subsets of the sphere ([57, Corollary 1.2]). This result also lies at the heart of
the proof of Gordon’s escape theorem. Combined with Gaussian concentration of
measure, and a simple bound on the mean width of the set of sparse vectors restricted
to the unit sphere (see, for instance, [79, Lemma2.3]), these arguments admit a simple
concentration bound which implies the restricted isometry property.

Yet another proof of the restricted isometry property for Gaussian matrices is
based on the famous Johnson–Lindenstrauss (JL) lemma [62] (see also [36]). Given a
finite collection of points P := {x1, . . . , xN } ⊂ R

d , and a random matrix A ∈ R
m×d

populated with independent zero-mean Gaussian random variables with standard
deviation 1/

√
m, the JL lemma establishes a bound on the probability that the pair-

wise distances between the projected points AP and P deviate at most by a factor
of ±ε. A matrix A that satisfies the property

(1− ε) ‖x − y‖2 ≤ ‖Ax − Ay‖2 ≤ (1+ ε) ‖x − y‖2 ∀x, y ∈ P

is therefore called a Johnson–Lindenstrauss embedding of P . Note that while this
property looks very similar to the definition of the restricted isometry property, it
only holds for finite point sets. The JL lemma now asserts that the dimension m of
the space has to be at least m � log(N ) for the above property to hold with high
probability. In [8], this result was used in combination with a covering argument for
the set of sparse vectors to provide an alternative RIP proof.

The statement of Theorem11 depends on a yet unspecified constantC that effects
the number of measurements required for a matrix to be an RIP matrix. For Gaussian
matrices, the constant canbe explicitly characterized (see [54,Chap. 9]). For example,
in the asymptotic regime when d/k → ∞, the RIP constant δ2k ≤ 0.6129 can be
achieved with probability at least 1− ε if

m ≥ 54.868

(
k log

(
ed

2k

)
+ 1

2
log(2ε−1)

)
. (17)

Finally, it can be shown using tight bounds on the Gelfand widths of �1-balls that
this bound on m is in fact optimal up to a constant [53, 67].
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7.1.1 Bounded Orthonormal Systems

The randommatrices discussed so far did not possess any discernible structure. How-
ever, in many domains of engineering, this assumption would be quite restrictive as
the type of measurement matrix is often in part dictated by the specific application,
be it due to the particular structure of the problem or for computational purposes. A
typical example is structured random matrices involving the DFT or the Hadamard
transform. In such situations, we may aim to exploit the existence of highly efficient
numerical implementations such as fast Fourier transform (FFT) routines which
might prevent us from incorporating a mixing stage involving random matrices into
the acquisition system.Moreover, if fast implementations of the measurement opera-
tor are available, we can often exploit the operator in the decoding stage to drastically
improve the efficiency of the employed recovery procedure. A canonical example of
where structured random matrices emerge is when a band-limited function is to be
constructed from random time-domain samples. In this case, we consider functions
of the form

f (t) =
d∑

i=1

xiφi (t), (18)

where t ∈ D ⊂ R and the collection {φi }i of functions fromD toC forms a bounded
orthonormal system (BOS) according to the following definition.13

Definition 14 (Bounded orthonormal systems) A collection of complex-valued
functions {φi }di=1 defined on a set D ⊂ R equipped with a probability measure μ
is called a bounded orthonormal system with constant K if

∫

D
φi (t)φ j (t)dμ(t) = δi, j

and
‖φi‖∞ := sup

t∈D
|φi (t)| ≤ K ∀i ∈ [d].

Let f be a functionwith a basis expansion as in Eq. (18)w. r. t. a bounded orthonormal
system defined by the collection {φi }i . If we sample f at m points t1, . . . , tm ∈ D,
we obtain the system of equations

y j := f (t j ) =
d∑

i=1

xiφi (t j ), j ∈ [m].

13The definition can easily be extended to the case where D ⊂ R
n , but we restrict our discussion

to the scalar case here.
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Collecting the samples
{
φi (t j )

}
j of the i th basis function in a vector

φi = (φi (t1), . . . ,φi (tm))� forming a column of the matrix A = [φ1, . . . ,φd

]
of

size m × d, we immediately obtain the familiar form

y = Ax,

where y = (y1, . . . , ym)� and x = (x1, . . . , xd)�. As usual, we assume that x is
sparse or compressible. In this case, the same recovery guarantees w. r. t. to the
equality- or quadratically constrained basis pursuit problem can be established as
soon as A or a scaled version of A can be shown to satisfy the restricted isometry
property as before.

The reason why we endowD with a probability measure is of course that it allows
us to draw the sampling points t j from μ at random to establish the restricted isom-
etry property of matrices defined w. r. t. subsampled bounded orthonormal systems
probabilistically. Such results were first demonstrated in [28] for the case of the par-
tial random Fourier matrix which satisfies the restricted isometry property with high
probability provided we record Ω(k log6(d)) measurements. A nonuniform version
of this result, which reduced the power of the log-term from 6 to 4, was shortly
after proven by Rudelson and Vershynin in [89]. Another improvement was recently
presented in [61] where the required number of measurements was further reduced
to Ω(k log2(k) log(d)) for randomly subsampled Fourier matrices. Under certain
conditions, this bound can further be reduced. For instance, if the dimension d is
an integer multiple of the sparsity level k, Bandeira et al. managed to remove the
second log-factor in the previous bound, proving that Ω(k log(d)) measurements
suffice to establish the restricted isometry property for partial Fourier matrices [7].
In case the measurement matrix corresponds to a subsampled Hadamard matrix,
Bourgain demonstrated in [17] the sufficiency ofΩ(k log(k) log2(d))measurements
to establish the restricted isometry property. A similar bound had previously been
shown to hold by Nelson et al. in [74]. The best general bound to date asserts that
m = Ω(k log3(k) log(d))measurements are required to establish the restricted isom-
etry property for arbitrary subsampled bounded orthonormal systems where the sam-
pling points are drawn from a discrete measure [32, Theorem 4.6]. This includes all
measurement matrices formed by randomly selecting rows of a unitary matrix such
as the DCT or DFT matrix, a Hadamard matrix, etc.

The following theorem records a modern general version of the RIP characteriza-
tion for measurement matrices based on randomly subsampled bounded orthonormal
systems.

Theorem 12 (BOS-RIP, [87, Theorem 4]) Consider a set of complex-valued
bounded orthonormal basis functions

{
φ j
}d
j=1 defined on a measure space D ⊂ R

equipped with the probability measure μ. Define a matrix A ∈ C
m×d with entries

ai j := φ j (ti ), i ∈ [m], j ∈ [d],
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constructed by independently drawing the sampling points ti from the measure μ.
Then with probability at least 1− d−c log3(k), the matrix 1√

m
A is an RIP matrix of

order k with constant δk ≤ δ provided

m ≥ Cδ−2K 2k log3(k) log(d).

The positive constants C and c are universal.

For the existing bounds, the number of necessary measurements m scales with
K 2. For the bound on m in Theorem 12 to be meaningful, the constant K should
therefore either be independent of the dimension d or at least only scale with lower
powers of d.

Finally, let us highlight that results as stated above can be extended to even
more restrictive structured random matrices [6, 85]. For instance, the authors of
[64] applied a novel technique to bound the suprema of chaos processes to obtain
conditions under which random partial circulant matrices would satisfy the RIP. In
this situation, the measurement procedure is of the form

Ax = 1√
m
RΩ(ε ∗ x),

where RΩ : Cd → C
m denotes the operator restricting the entries of a vector to the

setΩ ⊂ [d] of cardinalitym, ε is a Rademacher vector of length d, and ∗ denotes the
circular convolution operator. In general, if m ≥ Cδ−2k log2(k) log2(d), then with
probability at least 1− d− log(d) log2(k) the partial random circulant matrix A satisfies
the RIP of order k with constant δk ≤ δ.

7.2 Random Matrices and the Null Space Property

While probabilistic constructions of RIP matrices have been established for a vari-
ety of random ensembles such as subgaussian distributions, as well as measurement
matrices defined by randomly subsampled basis functions of bounded orthonor-
mal systems as discussed in the previous section, there are some shortcomings to
RIP-based recovery guarantees. For instance, the leading constants involved in the
required scaling for Gaussian matrices to satisfy the RIP are often quite large. While
these constants are usually due to artifacts of the proof strategy, analyses which
establish stable and robust recovery by directly appealing to the null space prop-
erty for Gaussian matrices often have much nicer constants. For instance, for large
d and d/k with moderately large k, establishing the null space property requires
m ≥ 8k log(ed/k) measurements (cf. [54, Theorem 9.29]) which is much smaller
than the constant involved in Eq. (17).

Another shortcoming in RIP-based analyses becomes evident when one tries to
obtain recovery guarantees of the form
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∥∥x̊ − x�
∥∥
q ≤ Ck,pσk(x̊)1 + Dk ‖e‖p ,

where we aim to characterize the reconstruction performance in the presence of �p-
bounded measurement noise for cases other than (p, q) ∈ {1, 2}2. Note that we still
measure the sparsity mismatch in terms of best k-term approximation error w. r. t. the
�1-norm.14 Such guarantees based on restricted isometries require a generalization
of the restricted isometry property as stated in Definition11. In particular, if one is
interested in the recovery of a vector x̊ ∈ C

d from compressive measurements of the
form y = Ax̊ + e with ‖e‖p ≤ ε, we may solve the program

minimize ‖x‖1
s.t. ‖Ax − y‖p ≤ ε.

In order to characterize the reconstruction quality of a minimizer x� of this program,
one may turn to the mixed (�p, �q)-RIP of the form

c ‖x‖q ≤ ‖Ax‖p ≤ C ‖x‖q ∀x ∈ Σk .

However, as was recently addressed in [39], the best known probability bounds to
establish the existence of such matrices for p 
= 1, 2 exhibit significantly worse scal-
ing in the number of required measurements than k log(d/k). In their work, Dirksen
et al. therefore derive concentration results which instead establish the �q -robust
null space property (Definition10), providing near-optimal scaling behavior of m
(up to possible log-factors) [39] for more general heavy-tailed random matrices. In
other words, they demonstrate that recovery guarantees as outlined above, which
require similar scaling compared to the provably optimal regime in the case of the
(�2, �2)-RIP, are not in general outside the realm of possibility. However, their work
demonstrates that one may have to move away from RIP-type conditions, and con-
sider stronger concepts such as the null space property and its generalizations to
establish similar guarantees. Note that to the best of our knowledge, there currently
do not exist any results which establish probabilistic bounds that directly assert the
null space property of subsampled BOS matrices without first establishing the RIP
to imply the null space property.

Finally, we want to point out two examples of measurement ensembles which
provably require more than k log(d/k) measurements to satisfy the RIP but which
nevertheless allow for typical recovery guarantees from k log(d/k) measurements.
The first example is random matrices whose rows follow an isotropic log-concave
distribution. Such matrices satisfy the canonical restricted isometry property, i.e., the
(�2, �2)-RIP, only ifm � k log2(ed/k) but provably allow for exact recovery as soon
asm � k log(ed/k) [2, 3, 63]. The second example concerns a certain combinatorial
construction of sensing matrices based on the adjacency matrix of random left k-
regular bipartite graphs with d left and m right vertices [12]. The corresponding

14This avoids another issue regarding the so-called instance optimality of pairs (A,�) where
� : Cm → C

d denotes an arbitrary reconstruction algorithm (see [54, Chap. 11] for details).
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graph is called a lossless expander and its normalized adjacency matrix 1
sA can

be shown to provide typical recovery guarantees with probability at least 1− η if
s � log(ed/(kη)) andm � k log(ed/(kη)). However, the matrix 1

sA does not satisfy
the (�2, �2)-RIP even though it satisfies the (�1, �1)-RIP.

8 An Algorithmic Primer

In the remainder of this introduction to compressed sensing, we want to turn our
attention to the practical aspects of signal recovery. To that end, we decided to
include a whirlwind tour of recovery algorithms that go beyond the scope of the
quadratically constrained basis pursuit problem. Note, however, that the selection
of algorithms chosen for this survey is not even close to exhaustive, and really only
scratches the surface of what the literature holds in store. An informal search on
the IEEE Xplore database produces upward of 1600 search results for the query
“compressed sensing recovery algorithm.” Naturally, there is no doubt that this list
includes a huge volume of work on specialized algorithms which go beyond the
simple sparsity case that we will discuss in this section, as well as survey papers and
workswhich simply benchmark the performance of existing algorithms in the context
of specific problems. Nevertheless, this informal experiment still demonstrates the
incredibly lively research activity in the field of recovery algorithms in compressed
sensing and related domains. For that reason, we limit attention to only a handful of
some of the most popular methods found in the pertinent literature and leave it up to
the reader to inform him or herself beyond the methods surveyed in this section.

In general, there are multiple criteria by which authors have historically grouped
different recovery algorithms for compressed sensing. Themost generic classification
usually considers three (mostly) distinct classes: convex optimization-based formu-
lations,15 so-called greedy methods, and iterative thresholding algorithms. Another
possible classification could be based on the amount of prior knowledge required
to run a particular algorithm. The most coarse classification in this regard takes the
form of algorithms which require an explicit estimate of the sparsity level, and those
which do not. As is the case for most other surveys on CS recovery algorithms, we
decided to opt for the former here.

Before moving on to more efficient recovery methods (at least from a run time
and computational complexity perspective), we first state some of the most com-
mon variants of convex problems one predominantly finds presented in the relevant
literature.

15We are careful not to call this an algorithm class as optimization programs are technically just
descriptions of problems which still require specialized algorithms such as interior-point methods
to actually solve them.
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8.1 Convex Programming

As usual, we model the measurement process of a perfectly sparse or compressible
signal x̊ ∈ C

d via the affine model y = Ax̊ + e where e ∈ C
m is a norm-constrained

noise term, i.e., ‖e‖p ≤ η with η ≥ 0 and p ≥ 1. If an upper bound, say w. r. t. the
�2-norm, of this error term e is known, we naturally consider the quadratically con-
strained basis pursuit problem that we already discussed in Sect. 6.2:

minimize ‖x‖1
s.t. ‖y− Ax‖2 ≤ η.

(QCBP)

For η = 0, this immediately reduces to the original basis pursuit problem.
Even thoughwe already characterized the recovery behavior of this problemwhen

we introduced the restricted isometry property, we state the result here again for
completeness. If x̊ ∈ C

d is merely approximately sparse, one obtains the following
characterization for minimizers x� of Problem (QCBP): if A ∈ C

m×d satisfies the
restricted isometry property of order 2k with constant δ2k < 4/

√
41, one has [54,

Theorem 6.12]

∥∥x� − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2η, (19)

where C1,C2 > 0 only depend on δ2k . Clearly, this result implies perfect recovery
in the case where we measure strictly k-sparse vectors in a noise-free environment.

For completeness, we also want to briefly highlight a few alternative convex pro-
gramming formulations closely related to Problem (QCBP). A very common variant
of the quadratically constrained basis pursuit program is the following unconstrained
problem:

minimize ‖x‖1 + λ ‖Ax − y‖2 (BPDN)

with λ > 0, often referred to as basis pursuit denoising (BPDN). The BPDN problem
is particularly interesting in situations where no sensible estimate for the noise level
η is available. In this case, one may instead use the parameter λ to control the trade-
off between sparsity and data fidelity. Depending on the type of method used to
solve this unconstrained problem, it might be helpful to replace the data penalty
term ‖Ax − y‖2 with its squared version to remove the differentiability issue. Of
course, the nondifferentiability of the objective function of Problem (BPDN) remains
unchanged by this step. However, if one employs a splitting-type algorithm where
one alternates between optimizing over individual parts of the objective function,
considering a squared �2-penalty enables us to use gradient-based techniques to deal
with the smooth part of the problem.Wewill discuss an example of such an approach
in Sect. 8.2.2 where we present a well-known iterative algorithm to solve a particular
variation of Problem (BPDN).

Another important formulation is the so-called least-absolute shrinkage selection
operator (LASSO) which was originally proposed in the context of sparse model
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selection in statistics:
minimize ‖Ax − y‖2

s.t. ‖x‖1 ≤ σ.
(LASSO)

Since the �1-norm generally functions as a sparsity prior, this formulation might be
of interest in situations where rather than an estimate of the noise level η we might
have access to a suitable estimate of the sparsity level. Recall that for x̊ ∈ Σk we
have by the Cauchy–Schwarz inequality that

∥∥x̊
∥∥
1 ≤

√
k
∥∥x̊
∥∥
2. Depending on the

application of interest, an upper bound on the energy of the original signal x̊ might
be naturally available so that one may simply choose σ = √

k
∥∥x̊
∥∥
2.

Finally, the following program is known as the Dantzig selector:

minimize ‖x‖1
s.t. ‖A∗(Ax − y)‖∞ ≤ τ .

(DS)

The key idea here is to impose a maximum tolerance on the worst-case correlation
between the residuum r := Ax − y and the columns {ai }di=1 of A. In the extreme
case τ = 0, the Dantzig selector reduces to the classic basis pursuit problem since
ker(A∗) = {0}, and thus ‖A∗(Ax − y)‖∞ = 0 if and only if x belongs to the affine
space

{
z ∈ C

d : Az = y
}
.

Conveniently, despite their different formulations and use cases, the problems
(BPDN), (LASSO), and (DS) all share the same recovery guarantee from Eq. (19)
up to nonlinear transformation of the parameters η,λ, and σ [54, Proposition 3.2].
While the Dantzig selector is the odd one out, similar guarantees can still be derived
with relative ease. We refer interested readers to [20].

8.2 Thresholding Algorithms

While the recovery guarantees in the literature are usually strongest for con-
vex optimization-based recovery procedures, generic solving algorithms based on
interior-point methods [18, Chap. 11] as employed by popular optimization tool-
boxes like CVX [59] or CVXPY [38], as well as implementations more specialized
to the particular nature of �1-minimization problems such as �1- MAGIC [19],SPGL1
[97] and YALL1 [105], become less and less practical if problem sizes increase. The
class of thresholding algorithms represents an attractive compromise between strong
theoretical guarantees and highly efficient and predictable running times.

Thresholding algorithms can generally be further subdivided into so-called hard
and soft-thresholding algorithms. In the following, we present the most popular
representatives from each class, namely, iterative hard thresholding (IHT) and hard
thresholding pursuit (HTP) for the former, and the iterative soft-thresholding algo-
rithm (ISTA) and the fast iterative soft-thresholding algorithm (FISTA) for the latter.
Other popular thresholding-based algorithms include subspace pursuit [35], NESTA
[10], and SpaRSA [103].
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8.2.1 Hard Thresholding

At the heart of any hard thresholding algorithm lies the so-called hard thresholding
operator Hk : Cd → Σk defined as

Hk(x) := argmin
z∈Σk

‖x − z‖p,

for p ≥ 1 which projects an arbitrary d-vector on the set of k-sparse vectors. The
value Hk(x) is constructed by identifying the index set G ⊂ [d] of size |G| = k
which supports the largest values of x (in absolute value), and zeroing out any values
supported on G. In other words, the vector Hk(x) achieves the best k-term approx-
imation error σk(x)p for any p ≥ 1. For convenience, we also define the set-valued
operator Lk : Cd → 2[d] with Lk := supp ◦Hk yielding the support set of the best
k-term approximation of x ∈ C

d . Here, 2G denotes the power set of G.
With these definitions in place, we now turn to the first hard thresholding algo-

rithm.

Iterative Hard Thresholding

The key idea of iterative hard thresholding is to reduce the smooth loss function
g(x) := 1

2 ‖Ax − y‖22 with gradient∇g(x) = A∗(Ax − y) at every iteration bymeans
of a gradient descent update before pruning the solution to the set of k-sparse vectors
by means of the hard thresholding operator. The full listing of the algorithm is given
in Algorithm 1.

Algorithm 1: Iterative Hard Thresholding (IHT)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: x0 ← 0, n ← 0
while halting condition is not satisfied do

vn+1 ← xn − A∗(Axn − y) Gradient descent step
xn+1 ← Hk(vn+1) Projection on Σk
n ← n + 1

end
Output: xn

Considering the nonlinearity of the operator Hk , it is not immediately obvious that
Algorithm 1 even converges, let alone to the true solution x̊. The following result
demonstrates both robustness w. r. t. sparsity defect and stability w. r. t. measurement
noise. Consider an arbitrary vector x̊ ∈ C

d which wemeasure according to the model
y = Ax̊ + e. If A satisfies the RIP condition with constant δ6k < 1/

√
3, Algorithm

1 produces iterates (xn)n≥0 satisfying [54, Theorem 6.21]

∥∥xn − x̊
∥∥
2 ≤ 2ρn

∥∥x̊
∥∥
2 + C1k

−1/2σk(x̊)1 + C2 ‖e‖2 ,
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where C1,C2 > 0, and 0 < ρ < 1 are constants which only depend on δ6k . For n →
∞, this sequence converges to a cluster point x� satisfying

∥∥x� − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2 ‖e‖2 . (20)

If the vector x̊ we wish to recover is in reality supported on an index set S ⊂ [d] of
size k, and measurements are not disturbed by noise (e = 0), one has σk(x̊)1 = 0,
and therefore

∥∥x� − x̊
∥∥
2 ≤ 0, implying perfect recovery with x� = x̊.

Hard Thresholding Pursuit

The fundamental difference between IHT and HTP is the fact that HTP merely
uses hard thresholded gradient descent updates to estimate the support set of x̊. In
particular, it propagates least-squares solutions of y = Ax w. r. t. to a submatrix of
A obtained by pursuing the active support set of coefficients in each iteration based
on the operator Lk = supp ◦Hk . A full algorithm listing is given in Algorithm 2.
Surprisingly, the stability and robustness analyses are identical for IHT and HTP

Algorithm 2: Hard Thresholding Pursuit (HTP)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: x0 ← 0, n ← 0
while halting condition is not satisfied do

vn+1 ← xn − A∗(Axn − y) Gradient descent step
Gn+1 ← Lk(vn+1) Support identification
xn+1 ← 0
xn+1
Gn+1

← A†
Gn+1

y Least-squares update
n ← n + 1

end
Output: xn

barring a change of parameters (C1,C2, ρ) for HTP. Most importantly, this change
results in a faster rate of convergence for the HTP algorithm [54].

8.2.2 Soft Thresholding

While the algorithms described in Sect. 8.2.1 rely on explicit hard thresholding
to guarantee a certain sparsity level of solutions, soft-thresholding methods (also
referred to as shrinkage thresholding for reasons which will become clear shortly)
promote sparsity by incorporating an �1-prior in their objective functions, and apply-
ing the so-called proximal gradient algorithm or a variant thereof. In particular, we
aim to solve the unconstrained regularized problem

minimize λ ‖x‖1 + 1

2
‖Ax − y‖22 , (21)
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with λ > 0. Up to rescaling of the objective function, and squaring of the �2-penalty,
this is identical to Problem (BPDN) introduced earlier.

To explain the general idea behind soft thresholding, consider a loss function of the
form f (x) := g(x) + h(x)whereg : Rd ∪ {−∞,∞} → R is a (possibly) nonsmooth
lower semi-continuous extended value function and h : Rd → R is a smooth convex
function. If g were smooth, this problem could be solved by standard optimization
tools such as (conjugate) gradient descent or Newton’s method. However, in order
to promote sparsity one will often choose g = λ ‖·‖1, meaning that such a simple
approach is not applicable. In the proximal gradient method, one therefore replaces
the smooth part h of f bymeans of a second-order approximation, i.e., one considers
an iterative approach of the form

x+ := argmin
v∈Rd

{
g(v) + ĥt (x, v)

}
,

where x and x+ denote the current and next iterate, respectively, and

ĥt (x, v) := h(x) + 〈∇h(x), v − x〉 + 1

2t
‖v − x‖22 (22)

with t > 0 is a second-order approximation of h around the point x. It is easily
verified that the expression for x+ can be rewritten as

x+ = argmin
v∈Rd

{
g(v) + h(x) + 〈∇h(x), v − x〉 + 1

2t
‖v − x‖22

}

= argmin
v∈Rd

{
g(v) + 1

2t
‖v − (x − t∇h(x))‖22

}
. (23)

While this formulation might give the impression that we merely traded one difficult
optimization problem for another, it turns out that the operator in Eq. (23) corresponds
to the so-called proximal operator [77]

proxtg(x) := argmin
v∈Rd

{
g(v) + 1

2t
‖v − x‖22

}
,

applied to the gradient descent update x − t∇h(x). Conveniently, this operator has
a closed-form solution for a variety of different nonsmooth functions g. In partic-
ular, it is easy to check via subdifferential calculus over its individual entries that
proxα‖·‖1(x) = Sα(x) where

Sα(x) :=
{
sign(x)(|x | − α), |x | ≥ α,

0, otherwise,
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is the so-called shrinkage operator that is applied element-wise to x.16 Overall, we
obtain the iteration

x+ = Sλt (x − tA�(Ax − y)) (24)

if we apply this method to the basis pursuit denoising Problem (21). In this particular
formulation, the parameter t acts as a step size which we may choose (e.g.,) via
backtracking line search, while λ > 0 can be used to control the trade-off between
sparsity of the solution x� and the data fidelity term ‖Ax� − y‖2.

This algorithm requires on the order of O(1/ε) iterations to come within an ε-
range | f (x̊) − f (xn)| ≤ ε of optimality, implying a convergence rate ofO(1/n) [9].
According to a celebrated result by Nesterov [75], the best achievable convergence
rate in the class of nonsmooth first-order methods17 is O(1/n2). This rate is achiev-
able by Nesterov’s acceleration method, resulting in the well-known fast iterative
soft-thresholding algorithm (FISTA) due to Beck and Teboulle when applied to the
iterative soft-thresholding algorithm [9]. Informally, the key idea of FISTA is to add
a momentum term depending on the last two iterates to avoid erratic changes in the
search direction, i.e., one updates the iterates according to

vn+1 := xn + n − 2

n + 1
(xn − xn−1),

xn+1 := Stn (v
n+1 − tnA�(Axn − y))

with tn > 0 the step size at iteration n. Note that this formulation, taken from [77],
differs from the original one given in [9] which explicitly depends on the Lipschitz
constant of the gradient of the smooth part of (21). Also note that while this algorithm
obtains the desired convergence rate of O(1/n2), it is not a descent method. In
practice, this means that additional book keeping is required to keep track of the best
current iterate. However, considering that this accelerated scheme virtually comes at
the same computational cost as Eq. (24), the impact of book keeping is negligible if
weighed against the greatly improved convergence behavior.

Both ISTA and FISTA solve the unconstrained problem (21), and provably con-
verge to the global optimum at a linear and super-linear rate, respectively, where
convergence without step size adaptation is determined by the Lipschitz constant
L := ‖A�A‖2→2 of the gradient of h(x) := 1

2 ‖Ax − y‖22. Since our main objec-
tive is the recovery of sparse or more generally compressible vectors from noisy
measurements, we still have to answer the question how closely these algorithms
approximate the true solution x̊, and under which conditions recovery is exact. Con-
veniently, these recovery guarantees can be expressed in terms of the guarantees
obtained for the quadratically constrained basis pursuit problem stated in Sect. 8.1.

16Hence the name shrinkage thresholding.
17Note thatwhilewe used a second-order approximation of h in Eq. (22),we did so by approximating
the Hessian ∇2h(x) as a scaled identity matrix, thereby ignoring the true second-order information
of h.
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This holds because—given a minimizer x�
QCBP of (QCBP)—we can always find a

transformation T (x�
QCBP, η) = λ of the parameter η ≥ 0 of (QCBP) and the param-

eter λ > 0 of the unconstrained problem (21) such that both convex problems have
the same optimal value f � [10]. Note, however, that explicitly finding the mapping
T is generally a nontrivial problem [98].

It remains to showwhen Problem (21) has a unique minimizer such that the corre-
spondence between the solutions x�

QCBP and x
�
BPDN is one-to-one given an appropriate

choice of parameters η and λ. To that end, one seeks conditions when minimizers
of (21) are unique. While there are various publications that address the issue of
uniqueness of solutions to this problem, e.g., [24, 94], none of them is immediately
guaranteed by the RIP or NSP. For instance, [104, Theorem 4.1] establishes the
following condition for minimizers of (21) to be unique.

Theorem 13 Let x� be a minimizer of the basis pursuit denoising problem, and
define S := supp(x�). Then x� is a unique minimizer iff

1. AS has full column-rank,

2. ∃u ∈ R
m such that A�

S u = sign(x�
S) and

∥∥∥A�
S
y
∥∥∥∞

< 1.

Approximate Message Passing

Due to the structural similarity to the iterative soft-thresholding algorithm, we briefly
touch upon another popular development in the field of iterative thresholding algo-
rithms, namely, the so-called approximate message passing (AMP) method. Pio-
neered by Donoho et al. in [44], the general formulation of approximate message
passing (AMP) closely resembles the basic form of ISTA. The difference amounts
to a correction term of the residuum rn = Axn − y stemming from the interpretation
of the measurement model y = Ax̊ in terms of loopy belief propagation in graphical
models. Based on a slight reformulation of Eq. (24), approximate message passing
proceeds via the iterations

xn+1 := Sμn (A
�rn + xn), (25)

rn := y− Axn + 1

δ
rn−1 〈1, S′μn

(A�rn−1 + xn−1)
〉
, (26)

where δ := m/d and S′μ(x) denotes the derivative of Sμ(x) ignoring the nondiffer-
entiability at |x | = μ. Despite this innocent looking correction term in Eq. (26) (also
known asOnsager correction), which barely increases the computational complexity
over ISTA, theperformanceof this algorithm in termsof theobservedphase-transition
diagrams turns out to be highly competitive with the de facto gold standard of �1-
minimization and in certain situations even manages to outperform it [43].

The key ingredient to the success of AMP is the observation that in the large-
system limit m, d → ∞ with δ fixed, and Ai j ∼i.i.d. N(0, 1/m), one has A�rn +
xn = x̊ + vn for the argument of Sμn in Eq. (25) where vn is an i.i.d. zero-mean
Gaussian random vector whose variance σ2

n—and hence the mean squared error
(MSE) of the reconstruction—can be predicted by a state evolution formalism.
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Since its original introduction, a variety of modifications and improvements have
been proposed for the AMP algorithm. These include the denoising-based AMP
(D-AMP) [69] which generalizes the state evolution formalism to general Lipschitz
continuous denoisers other than the soft-thresholding function, vectorAMP(V-AMP)
[83] which extends AMP to more general classes of measurement matrices, and
generalized AMP (GAMP) [82] which extends AMP to arbitrary input and output
distributions and allows for dealing with nonlinearities in the measurement process.
While the general versions of most of these AMP variants require some statistical
knowledge about the parameters involved, there exist several modifications which
estimate these parameters online via expectation maximization (EM).

In closing, we mention that Problem (21) can be tackled by a variety of related
methods such as alternating direction method of multipliers (ADMM), forward–
backward splitting, Douglas–Rachford splitting, or homotopy methods. We refer the
interested reader to the excellent survey [50], as well as to the notes in [54, Chap.
15].

8.3 Greedy Methods

Greedy algorithms are generally characterized by their tendency to act according
to locally optimal decision rules in hopes of eventually arriving at a global optimal
solution. In particular, they never explicitly aim at minimizing a particular (non-
)convex objective. Instead, they treat the collection of columns of the measurement
matrixA as a dictionary of atoms {ai }di=1 andfirst try to identify the atomswhich likely
contributed to the measurement vector y, before estimating the associated weighting
factors. Despite the fact that algorithms of this type had been in use long before
the advent of compressed sensing, particularly in the image processing community,
research into greedy algorithms for sparse recovery experienced a resurgence ever
since the rise of compressed sensing. In this section, we will look at two of the most
popular representatives in this particular class of algorithms, namely, the so-called
orthogonal matching pursuit and compressive sampling matching pursuit methods.

Orthogonal Matching Pursuit

While technically a successor to the lesser used matching pursuit algorithm, orthog-
onal matching pursuit (OMP) remains to this day one of the most popular greedy
algorithms due to the fact that it is one of the methods with the lowest footprint in
terms of computational complexity. As can be seen from Algorithm 3, OMP updates
its estimated support set one atom at a time by identifying the atom ai that exhibits
the strongest correlation with the residuum rn = Axn − y as measured by the inner
product |〈ai , rn〉|.

The atom selection step in each OMP iteration can be interpreted as identifying
the component of xn w. r. t. which the function f (xn) := 1

2 ‖Axn − y‖22 varies the
most. This is due to the fact that the gradient of f at xn reads ∇( 12 ‖Axn − y‖22) =
A∗(Axn − y) = A∗rn . The update step xn → xn+1 on the other hand corresponds
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Algorithm 3: Orthogonal Matching Pursuit (OMP)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: x0 ← 0, G0 ← ∅, n ← 0, r0 ← −A∗y
while halting condition is not satisfied do

jn+1 ← argmin j∈[d] |(A∗rn) j | Atom identification
Gn+1 ← Gn ∪ { jn+1} Support extension
xn+1 ← A†

Gn+1
y Least-squares projection

rn+1 ← Axn+1 − y Calculation of residuum
n ← n + 1

end
Output: xn

to a projection of y on the subspace spanned by the columns of A indexed by the
updated index set Gn+1.

While theoretical guarantees in the noise-free and exactly sparse case exist in
abundance for OMP, robust and stable recovery guarantees are not as well-developed
as one might expect given the maturity of the theory and the popularity of OMP in
general. Oftentimes such results depend on additional regularity conditions on the
class of vectors one aims to recover.

In general, OMP does not require an estimate of the sparsity level of the vector
one aims to recover. The algorithm naturally terminates as soon as the same atom is
selected twice in subsequent iterations. Other halting conditions include the relative
change of estimates xn between iterations and tolerance criteria of data fidelity mea-
sures w. r. t. rn . Considering that OMP updates the support set one index at a time per
iteration, OMP requires at least k iterations to find a k-sparse candidate vector. If the
sparsity level is known a priori, another natural termination condition is therefore
simply given by the number of iterations.

One of the earliest recovery guarantees for OMP was the coherence-based condi-
tion (2k − 1)μ < 1 which allows OMP to recover any k-sparse vector from noiseless
linear measurements in k iterations [42]. In light of the Welch bound (cf. Proposi-
tion4)

μ ≥
√

d − m

m(d − 1)
,

this implies the quadratic scaling in the number of measurements announced in
Sect. 6.3. Currently, one of the best known sufficiency conditions for exact k-sparse
recovery in the noiseless setting in terms of the restricted isometry property requires
δk+1 < 1/

√
k + 1 [71, Theorem III.1].

In the general noise-corrupted settingwith y = Ax̊ + e, one obtains theRIP-based
bound [54, Theorem 6.25]

∥∥x24k − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2 ‖e‖2 (27)
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for iterates of OMP after 24k iterations, where the constantsC1,C2 > 0 only depend
on the RIP constant δ26k < 1/6 of the associated measurement matrix A. In the
noiseless and exactly sparse case, Eq. (27) guarantees perfect recovery after 24k
iterations.Note, however, that in this caseOMPwill already reach the global optimum
after k iterations since the algorithm selects one atom per iteration, after which it
will stall due to the fact that rn = 0 for n > k. Otherwise, the solution returned by
OMP after 24k iterations could not be k-sparse.

These guarantees are a far cry from the recovery conditions one obtains for meth-
ods such as QCBP or IHT seeing how RIP matrices of order 26k are much harder to
construct than matrices of order 2k and 3k, respectively. One possible explanation
for the demanding requirement on the RIP order of A is the fact that OMP in its
presented form has no way to correct possibly erroneous choices of atoms made in
previous iterations. In a sense, this observation can be seen as one of the main moti-
vations of the compressive sampling matching pursuit algorithm we will introduce
in the next section.

Compressive Sampling Matching Pursuit

The compressive sampling matching pursuit (CoSaMP) algorithm shares a lot of
similarities both with theOMP algorithm and the hard thresholding pursuit algorithm
described in Sect. 8.2.While technically also an iterative algorithm that relies on hard
thresholding, it is usually considered an instance of the class of greedy algorithms.
The full procedure is given in Algorithm 4. Given a current estimate xn of x̊,

Algorithm 4: Compressive Sampling Matching Pursuit (CoSaMP)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization x0 ← 0, n ← 0, r0 ← −A∗y
while halting condition is not satisfied do

Gn+1 ← supp(xn) ∪ L2k(A∗rn) Support overestimation
vn+1 ← 0
vn+1
Gn+1

← A†
Gn+1

y Least-squares projection

xn+1 ← Hk(vn+1) “Projection” on Σk
rn+1 ← Axn+1 − y Calculation of residuum
n ← n + 1

end
Output: xn

CoSaMP proceeds by first identifying the 2k columns ofAwhich best correlate with
the residuum rn = Axn − y at iteration n. The algorithm then continues to solve a
least-squares problem w. r. t. to column submatrix defined by the support of xn and
the 2k column indices identified in the previous step. Since the algorithm ultimately
aims to obtain strictly k-sparse solutions, the next estimate xn+1 is finally found via
hard thresholding of the least-squares update vn+1.

Solving the least-squares problem over a column index set of size at most 3k
effectively allows CoSaMP to adaptively correct previous choices of the support set
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of its estimate of x̊. This is one of the main drawbacks of the OMP algorithm, which
will never remove a previously selected atom ai from its dictionary once column i
of A was identified as an element contributing to y.

In accordance with the previous algorithms, we once again state available stability
and robustness results for CoSaMP. Consider a vector x̊ ∈ C

d which we aim to
recover from its linear measurements y = Ax̊ + e whereA ∈ C

m×d satisfies the RIP
of order 8k with δ8k < 0.4782. Then the sequence (xn)n≥0 generated by Algorithm
4 satisfies [54, Theorem 6.28]

∥∥xn − x̊
∥∥
2 ≤ 2ρn

∥∥x̊
∥∥
2 + C1k

−1/2σk(x̊)1 + C2 ‖e‖2 , (28)

where C1,C2 > 0, and 0 < ρ < 1 only depend on δ8k . Once again, Eq. (28) estab-
lishes the existence of cluster points x� satisfying

∥∥x� − x̊
∥∥
2 ≤ C1k

−1/2σk(x̊)1 + C2 ‖e‖2 ,

which implies perfect recovery by convergence to the unique vector x̊ once x̊ ∈ Σk

and e = 0.

8.4 Iteratively Reweighted Least-Squares

Another popular method which does not quite fit into any of the categories discussed
so far is the so-called iteratively reweighted least-squares (IRLS) algorithm. At its
core, IRLS is motivated by the observation that

|x | = |x |−1|x |2

for 0 
= x ∈ C. Assuming for the moment that x̊ ∈ Σk were known, we could rewrite
the basis pursuit problem as

min

{
d∑

i=1

|xi | : y = Ax

}

= min

⎧
⎨

⎩

∑

i∈supp(x̊)
|x̊i |−1|xi |2 : y = Ax

⎫
⎬

⎭
. (29)

The idea now is to treat the term |x̊i |−1 as a weighting factor that we iteratively
update in an alternating fashion in between updates of the variables xi . To that end,
we define the weighting factors as a smooth approximation

wn+1
i := |x2i + τ 2

n+1|−1/2, (30)
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where we require 0 < τn+1 ≤ τn so that wn+1
i → |xi |−1 as τn+1 → 0. Considering

that supp(x̊) is unknown, this approximation has the added advantage that we can
let the summation on the right-hand side of Eq. (29) run through all indices in [d] as
the regularization parameter τn avoids divisions by zero. To proceed, we now define
the functional

F(x,w, τ ) := 1

2

[
d∑

i=1

|xi |2wi +
d∑

i=1

(τ 2wi + w−1
i )

]

. (31)

This definition is motivated by the following observations. Given a fixed weight
vector w and regularizer τ , Eq. (31) corresponds to Eq. (29) with |x̊i |−1 replaced by
wi . Defining Dw := diag {w}, this constitutes a least-squares minimization problem
w. r. t. the induced norm ‖x‖Dw

:= √
x∗Dwx, i.e.,

minimize ‖x‖Dw

s.t. y = Ax,

which admits the closed-form solution

x� = D−1/2
w (AD−1/2

w )†y.

The second observation concerns the update of the weighting vector w given a fixed
x and τ . In that case, it is easily verified for i ∈ [d] that

w�
i = argmin

wi>0
F(x,w, τ ) = 1

√|xi |2 + τ 2
,

which corresponds to the regularization of wi in terms of xi and τ as motivated by
Eq. (30). The full algorithm is listed in Algorithm 5. Note that the update rule for τ
is chosen in such a way that τn is a nonincreasing sequence in n as motivated above.

The following recovery guarantee for the IRLSalgorithm is basedon [54,Theorem
15.15]. LetA ∈ C

m×d satisfy the restricted isometry property of order 2k with δ2k <

7/(4
√
41) ≈ 0.2733, and define18 for αδ :=

√
1− δ22k − δ2k/4,

ρ := δ2k

αδ
and τ :=

√
1+ δ2k

αδ
.

Then the sequence (xn)n≥0 generated by the IRLS algorithm converges to a point x�,
and

18Note that this choice amounts to A satisfying the �2-robust null space property (cf. Definition10)
of order k with constants ρ < 1/3 and τ > 0 [54, Theorem 6.13].
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∥∥x̊ − x�
∥∥
1 ≤

2(3+ ρ)

1− 3ρ
σk(x̊)1

which implies perfect recovery via the IRLS algorithm if x̊ is k-sparse.

Algorithm 5: Iteratively Reweighted Least-Squares (IRLS)

Input: A ∈ C
m×d , y ∈ C

m , k ∈ [d]
Initialization: w0 ← 1, n ← 0, τ0 ← 1
while halting condition is not satisfied do

xn+1 ← D−1/2
wn (AD−1/2

wn )†y
τn+1 ← min

{
τn, (xn)∗k+1/(2d)

}

wn+1
i ←

(
|xn+1

i |2 + τ2n+1

)−1/2 ∀i ∈ [d]
n ← n + 1

end
Output: xn

9 Conclusion

In the years since its inception, the field of compressed sensing has steadily developed
into a mature theory at the intersection of applied mathematics and engineering.
With numerous applications in various domains of science and engineering, it now
constitutes an indispensable tool in the toolboxof signal processing engineerswho are
facedwith the problemof sampling high-dimensional signals in resource-constrained
environments.

In this chapter, we reviewed some of the basic concepts of the theory, focusing on
large part on the problem of nonuniform recovery of low-complexity signals from
linear observations. In particular, wewant to highlight the inclusion of a discussion on
the connection between sparse recovery and conic integral geometry, a rather young
development in the field, as well as a broader discussion of several efficient recovery
algorithms and associated performance guarantees. We hope that the selection of
topics featured in this introduction serves as a useful starting point in the further
study of the theory of compressed sensing and its extensions.

Acknowledgements We would like to thank the anonymous reviewers and contributors to this
book for their invaluable comments regarding this introduction.



An Introduction to Compressed Sensing 61

References

1. S.I. Adalbjörnsson, A. Jakobsson, M.G. Christensen. Estimating multiple pitches using block
sparsity, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(May 2013), pp. 6220–6224

2. R. Adamczak, R. Latała, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Geometry of log-
concave ensembles of randommatrices and approximate reconstruction. C. R. Math. 349(13),
783–786 (2011)

3. R. Adamczak, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Restricted isometry property
of matrices with independent columns and neighborly polytopes by random sampling. Constr.
Approx. 34(1), 61–88 (2011)

4. D. Amelunxen, M. Lotz, M.B. McCoy, J.A. Tropp, Living on the edge: phase transitions in
convex programs with random data. Inf. Inference 3(3), 224–294 (2014)

5. U. Ayaz, S. Dirksen, H. Rauhut, Uniform recovery of fusion frame structured sparse signals.
Appl. Comput. Harmon. Anal. 41(2), 341–361 (2016)

6. W.U. Bajwa, J.D. Haupt, G.M. Raz, S.J.Wright, R.D. Nowak, Toeplitz-structured compressed
sensing matrices, in 2007 IEEE/SP 14th Workshop on Statistical Signal Processing (Aug.
2007), pp. 294–298

7. A.S. Bandeira, M.E. Lewis, D.G. Mixon, Discrete Uncertainty Principles and Sparse Signal
Processing. J. Fourier Anal. Appl. 24(4), 935–956 (2018)

8. R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the restricted isometry
property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

9. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

10. S. Becker, J. Bobin, E.J. Candès, Nesta: A fast and accurate first-order method for sparse
recovery. SIAM J. Imaging Sci. 4, 1–39 (2011)

11. J. Bennett, S. Lanning, The netflix prize (2007)
12. R. Berinde, A.C. Gilbert, P. Indyk, H. Karloff, M.J. Strauss, Combining geometry and combi-

natorics: a unified approach to sparse signal recovery, in200846thAnnualAllertonConference
on Communication, Control, and Computing (Sept. 2008), pp. 798–805

13. B.N. Bhaskar, G. Tang, B. Recht, Atomic norm denoising with applications to line spectral
estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2011)

14. H. Boche,Compressed Sensing and its Applications (Springer Science+BusinessMedia, New
York, 2015)

15. P. Boufounos, G. Kutyniok, H. Rauhut, Sparse recovery from combined fusion frame mea-
surements. IEEE Trans. Inf. Theory 57(6), 3864–3876 (2011)

16. P.T. Boufounos, L. Jacques, F. Krahmer, R. Saab, Quantization and compressive sensing, in
Compressed Sensing and its Applications: MATHEON Workshop 2013, Applied and Numer-
ical Harmonic Analysis, ed. by H. Boche, R. Calderbank, G. Kutyniok, J. Vybíral (Springer
International Publishing, Cham, 2015), pp. 193–237

17. J. Bourgain, An Improved Estimate in the Restricted Isometry Problem, inGeometric Aspects
of Functional Analysis, vol. 2116, ed. by B. Klartag, E. Milman (Springer International Pub-
lishing, Cham, 2014), pp. 65–70

18. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004)
19. E. Candes, J. Romberg, l1-magic: recovery of sparse signals via convex programming, vol. 4

(2005), p. 14. www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
20. E. Candes, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n.

Ann. Stat. 35(6), 2313–2351 (2007)
21. E.J. Candès, The restricted isometry property and its implications for compressed sensing. C.

R. Math. 346(9), 589–592 (2008)
22. E.J. Candes, D.L. Donoho, Curvelets-a surprisingly effective nonadaptive representation for

objects with edges, in Curves and Surfaces Fitting, ed. by L.L. Schumaker, A. Cohen, C.
Rabut (Vanderbilt University Press, Nashville, TN, 1999), p. 16

www.acm.caltech.edu/l1magic/downloads/l1magic.pdf


62 N. Koep et al.

23. E.J. Candès, D.L. Donoho, New tight frames of curvelets and optimal representations of
objects with piecewise c2 singularities. Commun. Pure Appl. Math. J. Issued Courant Inst.
Math. Sci. 57(2), 219–266 (2004)

24. E.J. Candes,Y. Plan,Near-idealmodel selection by �1 minimization.Ann. Stat. 37, 2145–2177
(2009)

25. E.J. Candès, J.K. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

26. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate
measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

27. E.J. Candes, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–
4215 (2005)

28. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encod-
ing strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

29. A.Y. Carmi, L. Mihaylova, S.J. Godsill, Compressed Sensing & Sparse Filtering (Springer,
2016)

30. P.G. Casazza, G. Kutyniok, F. Philipp, Introduction to finite frame theory, in Finite Frames
(Springer, 2013), pp. 1–53

31. V.Chandrasekaran, B.Recht, P.A. Parrilo,A.S.Willsky, The convex geometry of linear inverse
problems. Found. Comput. Math. 12(6), 805–849 (2012)

32. M. Cheraghchi, V. Guruswami, A. Velingker, Restricted isometry of Fourier matrices and list
decodability of random linear codes. SIAM J. Comput. 42(5), 1888–1914 (2013)

33. A. Cohen, W. Dahmen, R. Devore, Compressed sensing and best k-term approximation. J.
Am. Math. Soc. 211–231 (2009)

34. R. Coifman, F. Geshwind, Y. Meyer, Noiselets. Appl. Comput. Harmon. Anal. 10(1), 27–44
(2001)

35. W. Dai, O.Milenkovic, Subspace pursuit for compressive sensing signal reconstruction. IEEE
Trans. Inf. Theory 55, 2230–2249 (2009)

36. S. Dasgupta, A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss.
Random Struct. Algorithms 22(1), 60–65 (2003)

37. R.A. DeVore, Nonlinear approximation. Acta Numer. 7, 51–150 (1998)
38. S.Diamond, S.Boyd,Cvxpy: a python-embeddedmodeling language for convexoptimization.

J. Mach. Learn. Res. 17(1), 2909–2913 (2016)
39. S. Dirksen, G. Lecué, H. Rauhut, On the gap between restricted isometry properties and sparse

recovery conditions. IEEE Trans. Inf. Theory 64(8), 5478–5487 (2018)
40. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
41. D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionar-

ies via �1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)
42. D.L. Donoho, M. Elad, V.N. Temlyakov, Stable recovery of sparse overcomplete representa-

tions in the presence of noise. IEEE Trans. Inf. Theory 52, 6–18 (2006)
43. D.L. Donoho, I. Johnstone, A. Montanari, Accurate prediction of phase transitions in com-

pressed sensing via a connection to minimax denoising. IEEE Trans. Inf. Theory 59, 3396–
3433 (2013)

44. D.L. Donoho, A. Maleki, A. Montanari, Message passing algorithms for compressed sensing.
Proc. Natl. Acad. Sci. U. S. A. 106(45), 18914–9 (2009)

45. D.L.Donoho, J. Tanner, Observed universality of phase transitions in high-dimensional geom-
etry, with implications for modern data analysis and signal processing. Philos. Trans. Ser. A
Math. Phys. Eng. Sci. 367 (1906), 4273–4293 (2009)

46. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. (Springer, New York, 2010). OCLC: ocn646114450

47. Y.C. Eldar, G. Kutyniok (eds.), Compressed Sensing: Theory and Applications (Cambridge
University Press, Cambridge, 2012)

48. E. Elhamifar, R. Vidal, Sparse subspace clustering, in 2009 IEEE Conference on Computer
Vision and Pattern Recognition (June 2009), pp. 2790–2797



An Introduction to Compressed Sensing 63

49. H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications
(Springer Science & Business Media, 2012)

50. M. Fornasier, S. Peter, An overview on algorithms for sparse recovery, in Sparse Reconstruc-
tion and Compressive Sensing in Remote Sensing, ed. by X. Zhu, R. Bamler (Springer, June
2015), p. 76

51. M. Fornasier, H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in
Imaging, ed. by O. Scherzer (Springer, New York, 2011), pp. 187–228. https://doi.org/10.
1007/978-0-387-92920-0_6

52. S. Foucart, Flavors of compressive sensing, in Approximation Theory XV: San Antonio 2016,
ed. by G.E. Fasshauer, L.L. Schumaker (Springer International Publishing, Cham, 2017), pp.
61–104

53. S. Foucart, A. Pajor, H. Rauhut, T. Ullrich, The Gelfand widths of �p-balls for 0<p ≤ 1. J.
Complex. 26(6), 629–640 (2010)

54. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser,
Basel, 2013)

55. R. Foygel, L.W. Mackey, Corrupted sensing: novel guarantees for separating structured sig-
nals. IEEE Trans. Inf. Theory 60, 1223–1247 (2014)

56. D. Goldberg, D. Nichols, B.M. Oki, D. Terry, Using collaborative filtering to weave an infor-
mation tapestry. Commun. ACM 35(12), 61–70 (1992)

57. Y. Gordon, On milman’s inequality and random subspaces which escape through a mesh
in R

n , in Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss, V.D. Milman
(Springer, Berlin, 1988), pp. 84–106

58. J. Gouveia, P.A. Parrilo, R.R. Thomas, Theta bodies for polynomial ideals. SIAM J. Optim.
20, 2097–2118 (2010)

59. M. Grant, S. Boyd, Y. Ye, CVX:Matlab software for disciplined convex programming (2008)
60. Z. Han, H. Li, W. Yin, Compressive Sensing for Wireless Networks (Cambridge University

Press, 2013)
61. I. Haviv, O. Regev, The restricted isometry property of subsampled fourier matrices, in Geo-

metric Aspects of Functional Analysis, LectureNotes inMathematics (Springer, Cham, 2017),
pp. 163–179

62. W.B. Johnson, J. Lindenstrauss, Extensions of lipschitz mappings into a hilbert space. Con-
temp. Math. 26(189–206), 1 (1984)

63. V. Koltchinskii,Oracle inequalities in empirical risk minimization and sparse recovery prob-
lems: École d’été de probabilités de Saint-Flour XXXVIII-2008. Number 2033 in Lecture
notes in mathematics. (Springer, Berlin, 2011). OCLC: ocn733246860

64. F. Krahmer, S.Mendelson, H. Rauhut, Suprema of chaos processes and the restricted isometry
property. Commun. Pure Appl. Math. 67(11), 1877–1904 (2014)

65. G. Kutyniok, D. Labate (eds.), Shearlets: multiscale analysis for multivariate data. Applied
and Numerical Harmonic Analysis (Birkhäuser, New York, 2012). OCLC: ocn794844320

66. C. Liaw, A. Mehrabian, Y. Plan, R. Vershynin, A simple tool for bounding the deviation of
random matrices on geometric sets (2016). CoRR, arXiv:1603.00897

67. G.G. Lorentz, M.V. Golitschek, Y. Makovoz, Constructive Approximation: Advanced Prob-
lems (Springer, Berlin, 2005). OCLC: 903339623

68. S.G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. (Else-
vier/Academic Press, Amsterdam, 2009)

69. C.A.Metzler, A. Maleki, R.G. Baraniuk, From denoising to compressed sensing. IEEE Trans.
Inf. Theory 62, 5117–5144 (2016)

70. M.Mishali, Y.C. Eldar, Blindmultiband signal reconstruction: compressed sensing for analog
signals. IEEE Trans. Signal Process. 57(3), 993–1009 (2009)

71. Q. Mo, A sharp restricted isometry constant bound of orthogonal matching pursuit (2015).
CoRR, arXiv:1501.01708

72. B.K. Natarajan, Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2),
227–234 (1995)

73. S. Nathan, A. Shraibman, Rank, trace-norm and max-norm, in COLT (2005)

https://doi.org/10.1007/978-0-387-92920-0_6
https://doi.org/10.1007/978-0-387-92920-0_6
http://arxiv.org/abs/1603.00897
http://arxiv.org/abs/1501.01708


64 N. Koep et al.

74. J. Nelson, E. Price,M.Wootters,Newconstructions of ripmatriceswith fastmultiplication and
fewer rows, in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics (2014), pp. 1515–1528

75. Y.Nesterov, IntroductoryLectures onConvexOptimization:ABasicCourse, 1st edn. (Springer
Publishing Company, Incorporated, 2014)

76. S. Oymak, B. Hassibi, New null space results and recovery thresholds for matrix rank mini-
mization (Nov. 2010). arXiv:1011.6326 [cs, math, stat]

77. N. Parikh, S.P. Boyd, Proximal algorithms. Found. Trends Optim. 1, 127–239 (2014)
78. F. Parvaresh, H. Vikalo, S. Misra, B. Hassibi, Recovering sparse signals using sparse mea-

surement matrices in compressed dna microarrays. IEEE J. Sel. Top. Signal Process. 2(3),
275–285 (2008)

79. Y. Plan, R. Vershynin, Robust 1-bit compressed sensing and sparse logistic regression: a
convex programming approach. IEEE Trans. Inf. Theory 59(1), 482–494 (2013)

80. Y. Plan, R. Vershynin, The generalized Lasso with non-linear observations. IEEE Trans. Inf.
Theory 62(3), 1528–1537 (2016)

81. Y.L. Polo, Y. Wang, A. Pandharipande, G. Leus, Compressive wide-band spectrum sensing,
in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (Apr.
2009), pp. 2337–2340

82. S. Rangan, Generalized approximate message passing for estimation with random linear
mixing, in2011 IEEE International Symposium on Information Theory Proceedings (2011),
pp. 2168–2172

83. S. Rangan, P. Schniter, A.K. Fletcher, Vector approximate message passing, in 2017 IEEE
International Symposium on Information Theory (ISIT) (2017), pp. 1588–1592

84. N.S. Rao, B. Recht, R.D. Nowak, Universal measurement bounds for structured sparse signal
recovery, in AISTATS (2012)

85. H. Rauhut, Circulant and Toeplitz matrices in compressed sensing, in SPARS 09-Signal Pro-
cessing with Adaptive Sparse Structured Representations (Saint Malo, France, Apr. 2009),
p. 7

86. H. Rauhut, K. Schnass, P. Vandergheynst, Compressed sensing and redundant dictionaries.
IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)

87. H. Rauhut, R. Ward, Sparse recovery for spherical harmonic expansions, in Proceedings of
the SampTA 2011 (2011)

88. R.T. Rockafellar, Convex Analysis (Princeton University Press, 2015)
89. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measure-

ments. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)
90. S. Sarvotham, D. Baron, R.G. Baraniuk, Measurements vs. bits: compressed sensing meets

information theory, inAllertonConferenceonCommunication,Control andComputing (2006)
91. M. Stojnic, �1 optimization and its various thresholds in compressed sensing, in 2010 IEEE

International Conference on Acoustics, Speech and Signal Processing (2010), pp. 3910–3913
92. G. Tang, B.N. Bhaskar, P. Shah, B. Recht, Compressed sensing off the grid. IEEE Trans. Inf.

Theory 59(11), 7465–7490 (2013)
93. R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness via the

fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)
94. R.J. Tibshirani, The lasso problem and uniqueness (2012)
95. A.M. Tillmann, M.E. Pfetsch, The computational complexity of the restricted isometry prop-

erty, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf.
Theory 60, 1248–1259 (2014)

96. J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf.
Theory 50(10), 2231–2242 (2004)

97. E. van den Berg,M.P. Friedlander, Spgl1: a solver for large-scale sparse reconstruction (2007)
98. E. van den Berg, M.P. Friedlander, Probing the pareto frontier for basis pursuit solutions.

SIAM J. Sci. Comput. 31(2), 890–912 (2008)
99. R. Vershynin, Introduction to the non-asymptotic analysis of randommatrices, inCompressed

Sensing, Theory and Applications (Cambridge University Press, Cambridge, 2012), pp. 210–
268

http://arxiv.org/abs/1011.6326


An Introduction to Compressed Sensing 65

100. R. Vershynin, Estimation in High Dimensions: A Geometric Perspective (Springer Interna-
tional Publishing, Cham, 2015), pp. 3–66

101. L. Welch, Lower bounds on the maximum cross correlation of signals (corresp.). IEEE Trans.
Inf. Theory 20(3), 397–399 (1974)

102. J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

103. S.J. Wright, R.D. Nowak, M.A.T. Figueiredo, Sparse reconstruction by separable approxima-
tion. IEEE Trans. Signal Process. 57, 2479–2493 (2008)

104. H. Zhang, W. Yin, L. Cheng, Necessary and sufficient conditions of solution uniqueness in
1-norm minimization. J. Optim. Theory Appl. 164, 109–122 (2015)

105. Y. Zhang, J. Yang, W. Yin, Yall1: your algorithms for l1 (2011). http://yall1.blogs.rice.edu

http://yall1.blogs.rice.edu


Quantized Compressed Sensing:
A Survey

Sjoerd Dirksen

Abstract The field of quantized compressed sensing investigates how to jointly
design a measurement matrix, quantizer, and reconstruction algorithm in order to
accurately reconstruct low-complexity signals from a minimal number of measure-
ments that are quantized to a finite number of bits. In this short survey, we give
an overview of the state-of-the-art rigorous reconstruction results that have been
obtained for three popular quantization models: one-bit quantization, uniform scalar
quantization, and noise-shaping methods.

1 Introduction

In the last 15 years, compressed sensing [8, 9, 23, 29] has matured into a new
paradigm in signal processing. This theory predicts that high-dimensional signals
can be accurately reconstructed from a small number of measurements provided that
the signal has low complexity. Whereas compressed sensing initially focused on the
recovery of signals that can be approximately sparsely represented, many rigorous
reconstruction results have been obtained for other low-complexity models, such as
low-rank matrices and tensors, structured sparse signals, and signals located in a
low-dimensional manifold, see e.g., [2, 15, 17, 24, 29, 50, 56] and the references
therein.

In the standard compressed sensing model, one assumes that one has direct access
to noisy analog linear measurements of the unknown signal x of the form y = Ax +
ν. In reality, these analog measurements need to be quantized to a finite number
of bits before they can be transmitted, stored, and processed. This operation can be
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modeled by the application of a quantizer map Q : Rm → Qm , where Q is a finite
(or sometimes, countable) alphabet. Accordingly, one has access to

q = Q(Ax + ν). (1)

Early works on compressed sensing assumed implicitly that the impact of quan-
tization is negligible in the sense that the error due to the quantization step, i.e.,
η = Q(Ax + ν) − (Ax + ν), is small in �2-norm, say. With this perspective, recov-
ering x from (1) is simply a “usual” noisy compressed sensing problem and one
can use standard methods, e.g., basis pursuit denoising, to recover the signal. This
approach to recovery from quantized measurements, which we will call the agnos-
tic approach, has two downsides. To ensure that the error η is small, one needs to
use a very high-resolution quantizer, which may not be realistic or inefficient in
practice, and even if this is possible, the estimates on the reconstruction error are
pessimistic: the error will not decay beyond the noise floor, in particular not beyond
the quantization error.

The area of quantized compressed sensing has shown that one can substantially
improve over the agnostic approach by designing the triple (A, Q,A ) of measure-
ment matrix A, quantizer Q and reconstruction algorithm A in unison. In the last
few years, many fascinating results have been obtained in this area. The purpose of
this survey is to give an introduction to the main emerging ideas. We do not intend to
give an exhaustive overview of the area, but rather focus on rigorous reconstruction
guarantees that have been obtained for three popularmodels in quantized compressed
sensing: one-bit compressed sensing, uniform scalar quantization, and noise-shaping
methods.

1.1 Notation

Throughout we will use the following notation. We reserve m for the number of
measurements, n for the signal dimension, and ρ for the target reconstruction error.
For any N ∈ Nwe write [N ] = {1, . . . , N }. We let |S| denote the cardinality of a set
S. We use ‖x‖p to denote the �p-norm of a vector and Bn

p = {x ∈ R
n : ‖x‖p ≤ 1}.

We write ‖x‖0 = |{i ∈ [n] : xi �= 0}|. We use Sn−1 to denote the Euclidean unit
sphere. dH is the (unnormalized) Hamming distance on the discrete cube. For a
random variable ξ we let ‖ξ‖L p denote its L p-norm. We call ξ L-subgaussian if

sup
p≥1

‖ξ‖L p√
p‖ξ‖L2

≤ L .

is finite. For a given measurement matrix A ∈ R
m×n we let a1, . . . , am denote its

rows and refer to them as measurement vectors. We use A∗ ∈ R
n×m to denote the

transpose of A. For a given T ⊂ R
n and 1 ≤ p, q ≤ ∞, a matrix A ∈ R

m×n is said
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to satisfy RIPp,q(T, ε) if

(1 − ε)‖x‖q ≤ ‖Ax‖p ≤ (1 + ε)‖x‖q , for all x ∈ T . (2)

We call a matrix A ∈ R
m×n standard Gaussian if all its entries are i.i.d. standard

Gaussian, Bernoulli if its entries are i.i.d. symmetric Bernoulli, or (L-)subgaussian
if its entries are independent, mean-zero, unit variance, and (L-)subgaussian. For
any x ∈ R

n we let Γx ∈ R
n×n be the circulant matrix generated by x , i.e., (Γx )i, j =

x(i− j) mod n . A circulant matrix implements the discrete circular convolution with
x , i.e., Γx z = x ∗ z for all z ∈ R

n . If ξ is a vector with independent, mean-zero,
unit variance, (L-)subgaussian entries, then we call Γξ an (L-)subgaussian circulant
matrix. If the ξi are i.i.d. standard Gaussian or symmetric Bernoulli, then we call Γξ

a standard Gaussian or Bernoulli circulant matrix. A subsampled partial circulant
matrix is obtained by selectingm rows from a circulant matrix. In the literature three
different random selection models are considered, which we will give an explicit
name here in order to distinguish between them. In the row picking model, one
selectsm rows independently of each other. Each row is picked uniformly at random
from the set of [n] rows of Γξ . In the uniformly at random model, one selects a
subset I uniformly at random from the set of all subsets of [n] of cardinality m. One
then considers the measurement matrix RIΓξ , where RI : Rn → R

|I | is the operator
defined by RI z = (zi )i∈I . Finally, in the selector model one picks a vector θ ∈ R

n of
i.i.d. random selectors withmeanm/n, sets I = {i ∈ [n] : θi = 1} and considers the
measurement matrix RIΓξ . Note that E|I | = m, so m corresponds to the expected
number of measurements in this model.

If T is a closed set, then we let PT be the �2-projection operator, which assigns to
an element x ∈ R

n a certain solution of the optimization problem minz∈T ‖x − z‖2.
In general, there is not a unique solution unless T is convex. For instance, if T is
the set Σs = {x ∈ R

n : ‖x‖0 ≤ s} of all s-sparse vectors, then T = Hs is the hard
thresholding operator. Finally, c and C denote absolute constants and their value
many change from line to line. We use cα or c(α) to denote a constant that only
depends on the parameter α. We write a �α b if a ≤ cαb, and a �α b means that
both a �α b and a �α b hold.

2 Key Concepts

Before investigating the three different quantization models, we first introduce some
important general concepts in quantized compressed sensing. We start by specifying
the signals that we try to recover and the measurement matrices that we wish to
analyze.

• Low-complexity signal sets. Any compressed sensing-type scheme exploits the
fact that, even though the signal x that we would like to recover may be high-
dimensional, it is a priori known to belong to a set of low intrinsic dimension or



70 S. Dirksen

complexity. For instance, it is known empirically that many signals are (approx-
imately) sparse in terms of a suitable basis, e.g., natural images can often be
approximately sparsely represented in terms of wavelets. Accordingly, the num-
ber of measurements that need to be collected to ensure accurate reconstruction is
governed by certain parameters that measure the complexity of the signal set. For
our purposes, a suitable complexity measure is the Gaussian width of a bounded
signal set T ⊂ R

n , which is defined by

w(T ) = E sup
x∈T

〈g, x〉,

where g ∈ R
n is standard Gaussian. Another measure that we will use is the ε-

covering number N (T, ε) of T , the minimal number of Euclidean balls of radius ε
needed to cover T . The Gaussian width and covering numbers are closely related
by Sudakov’s and Dudley’s inequality, which are the lower and upper bounds,
respectively, in

sup
ε>0

ε
√
log N (T, ε) � w(T ) �

∫ ∞

0

√
log N (T, ε) dε.

Neither of the two bounds is sharp in general, see e.g., [62] for more details.
Several of the results that we discuss below state rigorous reconstruction guar-
antees for a general signal set T and give a bound on the sufficient number of
measurements for recovery in terms of the Gaussian width and covering numbers.
Other results only concern sparse recovery. To allow for easy comparison, let us
recall the following. If Σs = {x ∈ R

n : ‖x‖0 ≤ s} is the set of sparse signals,
then w2(Σs ∩ Bn

2 ) � s log(en/s) and log N (Σs ∩ Bn
2 , ρ) � s log(en/(sρ)). As a

model for approximate sparsity, we also consider the larger set of s-effectively
sparse signals Σeff

s = {x ∈ R
n : ‖x‖1 ≤ √

s‖x‖2}. If x is s-effectively sparse
and ‖x‖2 ≤ 1, then x belongs to the set of s-compressible signals

√
sBn

1 ∩ Bn
2 .

The latter set is essentially the convex hull of the set of s-sparse vectors in the unit
ball (see [53, Lemma 3.1]):

conv(Σs ∩ Bn
2 ) ⊂ √

sBn
1 ∩ Bn

2 ⊂ 2 conv(Σs ∩ Bn
2 ). (3)

Since the Gaussian width is invariant under taking convex hulls, one finds
w2(

√
sBn

1∩ Bn
2 ) � s log(en/s).

• Random matrices. Similarly to the situation in “unquantized” compressed sens-
ing, the best-known recovery guarantees in quantized compressed sensing have
been obtained for randommeasurement matrices. In particular, in quantized com-
pressed sensing, optimal results have been obtained for standard Gaussian mea-
surement matrices, i.e., matrices with independent standard Gaussian entries.
These results are mostly of theoretical interest, as these matrices are difficult
to realize in a practical measurement setup. On the other hand, it has proven
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very challenging to establish recovery guarantees for deterministic measurement
matrices involving a number of measurements that is close to optimal. As a com-
promise between completely random matrices and deterministic ones, it is of
interest to study structured random matrices, which arise when introducing ran-
domness in (more) realisticmeasurementmodels. Two particularly popular classes
of matrices, which can be considered as the “fruitflies” of compressed sensingwith
structured matrices, are partial random circulant matrices and randomly subsam-
pled bounded orthonormal systems. The former model is connected to SAR radar
imaging, Fourier optical imaging, and channel estimation (see e.g., [58] and the
references therein). The latter model is relevant to many applications, for instance,
models in compressive magnetic resonance imaging [47]. In standard compressed
sensing it has been shown that stable and robust sparse recovery can be achieved
with a near-optimal (i.e., up to logarithmic factors) number of measurements, see
[7, 35, 44, 49, 59] for the best known bounds for the two respective classes of
matrices. Recently, substantial progress has been made on quantized compressed
sensing with structured randommatrices. We will mostly restrict our discussion to
(sub)gaussian matrices and circulant matrices, as results for these matrices have
been obtained for all three quantization models that we consider in this survey.

Let us now discuss some terminology regarding quantization.

• Memoryless versus adaptive schemes. The quantizer Q : Rm → Qm is called
memoryless if it quantizes each entry of its input vector independently of the others.
In contrast, an adaptive quantizer quantizes the i-thmeasurement using knowledge
of previous analog measurements, their quantizations, and in some cases, even
reconstructions of the signal based on the previous i − 1 quantized measurements.
As we will discuss below, adaptive methods can achieve a fundamentally better
error decay rate. Whereas the reconstruction error cannot decay faster than linear
(i.e., as O(1/m)) in terms of the number of measurements if a memoryless scalar
quantization scheme is used, adaptive schemes can achieve a polynomial or even
an optimal exponential error decay rate. This improved rate comes at a price:
the implementation of adaptive schemes generally requires hardware that is more
complicated and consumes more energy in operation. In addition, since by their
very nature adaptive methods require measurements to be acquired sequentially,
their implementation may be difficult or impossible in some sensing scenarios,
e.g., in distributed sensing with a sensor network.

• Dithering. In the engineering literature on quantization, it has been known for a
long time (at least since thework [57], see also [31, 32]) that it is potentially helpful
to add random noise to the analogmeasurements before quantizing. This operation
is called dithering. Note that the term “random noise” is somewhat misleading,
since at least we have the freedom to design the distribution of the dithering vector.
Indeed, as we will see below, it was recently shown rigorously that dithering with
well-chosen distributions can substantially improve reconstruction guarantees in
quantized compressed sensing.

Finally, we formalize some concepts regarding recovery methods.
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• Uniform versus non-uniform recovery. The reconstruction results in quantized
compressed sensing involving random matrices or dithering are guarantees to
reconstruct a signal x or a class of signals with “high probability”, which typically
means that recovery will only fail with a probability that decays exponentially
in terms of the number of measurements. These results can either be uniform,
meaning that a high probability event exists upon which one can reconstruct any
signal x ∈ T (e.g., the set of all sparse vectors with unit norm), or non-uniform,
meaning that the high probability event depends on the specific signal x which is to
be recovered. Accordingly, a uniform guarantee is sometimes informally called a
“for all” guarantee, whereas a non-uniform one is called a “for one” guarantee. To
understand the difference between the two from a practical point of view, suppose
that A = RIU is a randomly subsampled unitary matrix and suppose that T is the
set of all s-sparse vectors on the unit sphere. A uniform recovery guarantee means
that when we draw a random sample of the rows ofU then, with high probability,
we can recover any unit norm s-sparse vector from Q(Ax + ν). Thus, with high
probability, a single random draw of the rows will yield a matrix that can be used
for compressed sensing of any signal from the set T . A non-uniform guarantee is
muchweaker: only for a fixed signal x one shows that with high probability one can
draw a random subset of the rows so that x can be recovered from itsmeasurements.
Hence, in this setting, we only guarantee good reconstruction performance with
high probability if we draw a new random subset of the rows of U each time that
we measure a new signal.

• Quantization consistency. A vector x# is called quantization consistent with the
true signal x if, whenwewere tomeasure and quantize x#, wewould reproduce the
observed quantized measurements. For instance, if we observe q = Q(Ax), then
x# is quantization consistent if q = Q(Ax#). Several successful reconstruction
methods that will be introduced below search for a quantization consistent vector.

• Stability and robustness. A triple (A, Q,A ) can only be expected to perform
satisfactorily if it is stable and robust. We say that it is stable if the reconstruction
performance does not deteriorate sharply if the signal lies “slightly outside of”
the low-complexity set T . For instance, in the context of sparse recovery it is
desirable to be able to accurately recover vectors that are not exactly sparse, but
only effectively sparse or compressible. In addition, we would like to ensure that
(A, Q,A ) is robust with respect to both pre-quantization noise, i.e., the noise ν on
the analog measurements, as well as post-quantization noise, i.e., bit corruptions
occurring during the quantization process.

3 Two Fundamental Limits

To set benchmarks for the reconstruction results for the three different quantization
models, let us first formulate two fundamental lower bounds for the recovery error.
The first concerns a lower bound for (uniform) recovery of signals from a set T in
terms of its covering numbers. Suppose that we wish to quantify how many bits we
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need to collect to ensure that theworst case �2-reconstruction error of a reconstruction
map A over the set T , i.e.,

sup
x∈T

‖x − A (Q(Ax + ν))‖2,

is at most ρ. If this is fulfilled, then the set of Euclidean balls with radii ρ and centers
in the image setA (Q(Ax + ν)) form a covering of T . If our quantization scheme Q
encodes any analog measurement vector Ax + ν into at most B bits, then this cover
has at most 2B elements. Thus, the minimal total number of bits required to attain
worst case error ρ over T satisfies

B ≥ log2 N (T, ρ).

In particular, if we collect L bits per measurement, then at leastm � log2 N (T, ρ)/L
measurements are necessary. As an example, log2 N (T, ρ) � s log2(1/ρ) if T is the
intersection of the Euclidean unit sphere with an s-dimensional subspace, so the
worst case reconstruction error cannot decay faster than exponential in terms of the
number of measurements in this case. In particular, one cannot obtain a better worst
case error decay rate for the set of s-sparse vectors on the sphere.

The second fundamental lower bound concerns non-uniform recovery of sparse
vectors.

Theorem 1 ([21, Theorem 1.3]) Suppose that ν contains i.i.d. centered Gaussian
random variables with variance σ2. Let A be a (random) measurement matrix that
satisfies, with probability at least 0.95,

‖Ax‖2 ≤ κ
√
m‖x‖2, for all x ∈ Σs ∩ Bn

2 . (4)

Let Ψ be any recovery procedure such that, for every fixed x ∈ Σs ∩ Bn
2 , when

receiving as data the measurement matrix A and the noisy linear measurements
Ax + ν, Ψ returns x� that satisfies ‖x� − x‖2 ≤ ρ with probability 0.9. Then

m ≥ cκ−2σ2 s log(en/s)

ρ2
.

Note that the condition (4) is satisfiedbymanypopular randommeasurementmatrices
ifm � s logα(n), in particular by subgaussian matrices, partial subgaussian circulant
matrices and randomly subsampledboundedorthonormal systems. For thesematrices
the sample size required for recovery with accuracy ρ is at least σ2s log(en/s)/ρ2,
even if one receives the noisy analog linear measurements prior to quantization, and
is then free to use those measurements as one sees fit. In particular, in a high noise
setting one cannot hope to achieve a better error decay rate than O(1/

√
m).
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4 One-Bit Compressed Sensing

We start by discussing one-bit compressed sensing, which studies the extreme case
where each measurement is quantized to a single bit. Specifically, we consider
the map Qτ : Rm → {−1, 1}m defined by Qτ (z) = sign(z + τ ), where sign is the
signum function applied element-wise and τ ∈ R

m is a vector of quantization thresh-
olds. This quantizer is memoryless if τ is a fixed or a randomly generated vector. In
this case, the one-bit quantizer can be easily implemented by voltage comparison to
fixed thresholds (τ deterministic) combined with dithering (τ random). Due to the
efficiency of the memoryless one-bit quantizer, one-bit compressed sensing is one of
the most popular quantized compressed sensing models. For a memoryless one-bit
quantizer we cannot expect better than linear decay of the reconstruction error [6,
30, 42]. However, as we will see in Sect. 4.4, optimal error decay can be achieved
by choosing the thresholds adaptively.

In the context of one-bit compressed sensing, post-quantization noise takes the
form of “bit flips”: the quantizer erroneously produces the bit −qi rather than qi =
sign(〈ai , x〉 + τi ). One can either assume that bit corruptions occur in a random
fashion, i.e., one observes a vector qc ∈ {−1, 1}m satisfying (qc)i = fi qi , where
the fi are independent random variables satisfying P( fi = −1) = 1 − P( fi = 1) =
p, i.e., a bit is corrupted with probability p. Alternatively, one can assume that
a small fraction β of the bits are arbitrarily corrupted, i.e., one observes a vector
qc ∈ {−1, 1}m satisfying dH (q, qc) ≤ βm. Clearly, the second noise model is more
challenging to analyze, as bit corruptions can in principle occur in an adversarial
fashion.

4.1 Memoryless One-Bit Compressed Sensing: Zero
Thresholds

One-bit compressed sensing was first considered by Boufounos and Baraniuk [5] in
the completely noiseless case (i.e., neither pre- nor post-quantization noise) and τ =
0. In this case, one simply observes q = sign(Ax). Since the sign function is invariant
under positive scaling, the energy ‖x‖2 of the signal x is lost during quantization
and one can only hope to recover its direction x/‖x‖2. For this reason, it is standard
in this original one-bit compressed sensing model to assume that ‖x‖2 = 1. From
a geometric perspective, the vector q is a rough encoding of the position of x on
Sn−1. To see this, note that each measurement vector ai (i.e., the i-th row of A)
determines a hyperplane Hai = {z ∈ R

n : 〈ai , z〉 = 0} passing through the origin.
The corresponding quantized measurement sign(〈ai , x〉) indicates on which side of
the hyperplane x is located. By taking m measurements, the space Rn is tessellated
into (at most) 2m cells, and the bit sequence q = sign(Ax) = (sign(〈ai , x〉))mi=1 ∈
{−1, 1}m encodes in which cell x is located.
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The original paper [5] considered recovery of a sparse vector from its one-bit
measurements and proposed to reconstruct the signal via

min
z∈Rn

‖z‖0 s.t. q = sign(Az), ‖z‖2 = 1. (5)

The linear constraint q = sign(Az) forces any solution x# to (5) to be quantization
consistent. Geometrically, a vector z is quantization consistent with x precisely when
it is located in the same cell of the hyperplane tessellation induced by the quantized
measurements. To show that one can recover any x ∈ Σs ∩ Sn−1 via (5) up to error
ρ, one therefore needs to ensure that the measurement vectors tessellate Σs ∩ Sn−1

into cells with diameter at most ρ. It was shown in [42, Theorem 2] that standard
Gaussian vectors have this property: if A ∈ R

m×n is standard Gaussian and m �
ρ−1s log(n/ρ) then, with high probability, any s-sparse x, x ′ with ‖x‖2 = ‖x ′‖2 = 1
and sign(Ax) = sign(Ax ′) satisfy ‖x − x ′‖2 ≤ ρ. In particular, any solution x# to (5)
satisfies ‖x# − x‖2 ≤ ρ. The number ofmeasurements needed for this reconstruction
is essentially optimal: in fact, the reconstruction x# of an s-sparse vector produced
by any method using sign(Ax) as its input must satisfy the lower bound ‖x# −
x‖2 � s/(m + s3/2) [42, Theorem 1]. Hence, the reconstruction error cannot decay
faster than linear (i.e., than O(1/m)). This linear decay bottleneck is common to all
memoryless scalar quantization methods, see Sect. 5.

Even though the error of the reconstruction produced by (5) decays essentially
optimally if A is standard Gaussian, this program is hard to solve. Although one can
convexify the objective of (5) by replacing ‖z‖0 by ‖z‖1, the constraint ‖z‖2 = 1 is
problematic (note that the relaxation ‖z‖2 ≤ 1 leads to a trivial program). A solution
to this problem was proposed by Plan and Vershynin [53]: the simple, yet effective,
idea is to observe that if A is standard Gaussian, then for any z ∈ R

n ,

1

m
E‖Az‖1 =

√
2

π
‖z‖2.

This suggests to use the reconstruction program

min
z∈Rn

‖z‖1 s.t. q = sign(Az), ‖Az‖1 = m

√
2

π
, (6)

which is a linear program. Plan andVershynin showed that usingm � ρ−5s log2(n/s)
standard Gaussian measurements one can, with high probability, recover every x ∈
R

n with ‖x‖1 ≤ √
s and ‖x‖2 = 1 via (6) up to reconstruction error ρ. This was the

first uniform reconstruction result for stable recovery of sparse vectors from their
one-bit measurements via a tractable program. Still, the program (6) has a weakness,
which is common to any recovery program that enforces quantization consistency:
the program can easily fail in the presence of post-quantization noise. Indeed, already
a single bit corruption can cause (6) to be infeasible: there will simply be no vector
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z which is consistent with the observed corrupted quantized measurements (see [20]
for a detailed discussion).

In order to handle post-quantization noise, Plan and Vershynin introduced a dif-
ferent program in [54], which can be used to robustly reconstruct signals from an
arbitrary set T ⊂ Sn−1, namely

max
z∈Rn

〈qc, Az〉 s.t. z ∈ T . (7)

That is, we search for a vector that maximizes the correlation between the linear and
observed corrupted quantized measurements. This program is convex if T is convex
and therefore [54] suggested to use this program with T = conv(Σs ∩ Bn

2 ) for stable
sparse recovery. By (3), this leads to the tractable program

max
z∈Rn

〈qc, Az〉 s.t. ‖z‖1 ≤ √
s, ‖z‖2 ≤ 1.

In a non-uniform recovery setting, Plan and Vershynin showed that m � ρ−4w2(T )

measurements suffice to reconstruct a fixed signal in T with high probability up to
error ρ, even if pre-quantization noise is present and quantization bits are randomly
flipped with a probability that is allowed to be arbitrarily close to 1/2. Amuch deeper
result is the following uniform recovery theorem, which proves robustness of (7) to
adversarial post-quantization noise.

Theorem 2 ([54, Theorem 1.3]) Fix 0 < ρ,β ≤ 1, let T ⊂ Bn
2 and let A ∈ R

m×n

be standard Gaussian. Suppose that

m ≥ c2
log3(e/ρ)

ρ12
w2(T ), β

√
log(e/β) = c3ρ

2.

Then with probability at least 1 − e−c1mρ4/ log(e/ρ) the following holds for any x ∈ T
with ‖x‖2 = 1. If we observe qc ∈ {−1, 1}m with dH (qc, sign(Ax)) ≤ βm, then any
solution x# to (7) satisfies ‖x# − x‖2 ≤ ρ.

The results mentioned so far all concern standard Gaussian measurement matrices.
For othermeasurementmatrices, signal recovery from the one-bit measurements q =
sign(Ax) can very easily fail, even if themeasurementmatrix enjoys optimal recovery
guarantees in “unquantized” compressed sensing. For instance, it was pointed out in
[1] that if A ∈ R

m×n is a matrix with entries in {−1, 1} (e.g., a Bernoulli matrix),
then there are already two-sparse vectors that cannot be accurately recovered. For
instance, for any 0 < λ < 1, the vectors

x+λ = (1 + λ2)−1/2(1,λ, 0, . . . , 0), x−λ = (1 + λ2)−1/2(1,−λ, 0, . . . , 0) (8)

produce identical one-bit measurements sign(Ax+λ) = sign(Ax−λ), irrespective of
the draw of A and the number of measurements. Hence, there is no hope to accu-
rately recover these vectors. Nevertheless, in [1] some non-uniform recovery results
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from [54] were generalized to subgaussian matrices by imposing additional restric-
tions. For a fixed x ∈ T ⊂ Sn−1 they showed that m � ρ−4w2(T ) suffice to recon-
struct x up to error ρ via (7) with high probability provided that either ‖x‖∞ ≤ ρ4

(since ‖x‖2 = 1, this means that the energy of the signal must be sufficiently spread
out over its coordinates) or the total variation distance between the subgaussian
distribution of the entries of A and the standard Gaussian distribution is at most ρ16.

Even though one-bit compressed sensing generally fails for subgaussian matrices,
Foucart [27] identified a different class of matrices for which accurate one-bit com-
pressed sensing is possible. He showed that one can accurately recover signals from
one-bit measurements if the measurement matrix satisfies an appropriate RIP-type
property of the form (2).

Theorem 3 ([27, Theorem 8]) If A satisfies RIP1,2(Σ2s, ε), then for every x ∈ R
n

with ‖x‖0 ≤ s and ‖x‖2 = 1, the hard thresholding reconstruction x#HT = Hs(A∗q)

satisfies ‖x − x#HT‖2 ≤ 2
√
5ε.

Let ε ≤ 1/5. If A satisfies RIP1,2(Σ
eff
9s , ε), then for every x ∈ R

n with ‖x‖1 ≤ √
s

and ‖x‖2 = 1, any solution x#LP to (6) satisfies ‖x − x#LP‖2 ≤ 2
√
5ε.

A special case of a result of Schechtman [61] shows that if B is standardGaussian and
A = 1

m

√
π
2 B, then A satisfies RIP1,2(T, ε) with probability at least 1 − 2e−mε2/2 if

m � ε−2w2(Tn), where Tn = {x/‖x‖2 : x ∈ T } (see also [55, Lemma2.1] for a short
proof of this special case). In particular, for T = Σ2s or T = Σeff

9s this is satisfied if
m � ε−2s log(en/s). Hence, the first statement of Theorem 3 shows that in this case
the hard thresholding reconstruction x#HT achieves error ρ if m � ρ−4s log(en/s),
which is slightly better than [41, Propositions 1 and 2]. The second statement shows
that any solution to the linear program (6) achieves reconstruction error ρ if m �
ρ−4s log(en/s), which is a small improvement of the condition originally obtained
in [53].

Theorem 3 can be made robust to a small amount of pre-quantization noise:
if we observe q = sign(Ax + ν), then the first statement holds with error bound
‖x − x#HT‖2 �

√
ε + ‖ν‖1. A similar error bound can be obtained for solutions to

an augmented version of the linear program (6), which accounts for the noise. In
addition, one can prove a result analogous to Theorem 3 for recovery of low-rank
matrices via hard thresholding or a semidefinite program (in the noiseless case, the
latter arises by replacing the objective ‖z‖1 in (6) by the nuclear norm). We refer to
[28] for these extensions and resulting recovery results of low-rank matrices from
one-bit standard Gaussian measurements.

In [18], Theorem 3 was used to derive uniform recovery guarantees for randomly
subsampled standard Gaussian circulant matrices under a small sparsity assumption.
For a target reconstruction accuracy 0 < ρ ≤ 1, it is assumed that the sparsity s is
small enough, i.e.,

s � ρ2
√
n/ log(n). (9)

If 0 < ρ ≤ (log2(s) log(n))−1/4 and

m � ρ−4s log(en/(sρ4))
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then, with high probability, for any x ∈ R
n with ‖x‖0 ≤ s and ‖x‖2 = 1 the hard

thresholding reconstruction x#HT satisfies ‖x − x#HT‖2 ≤ ρ. Under slightly stronger
conditions a similar uniform reconstruction result can be obtained for effectively
sparse vectors on the unit sphere via (6). It is conjectured that a small sparsity
assumption is not necessary for these results.

4.2 Memoryless One-Bit Compressed Sensing With Dithering

Memoryless one-bit quantization with zero thresholds suffers from two downsides.
First, one can only recover signals located on the unit sphere or, viewed differently,
only the direction of signals. Second, it is easy to findmeasurement matrices that per-
form optimally in “unquantized” compressed sensing for which one-bit compressed
sensing fails. These two issues can be resolved by introducing dithering in the quanti-
zation process. Let Qτ : Rm → {−1, 1}m again denote themap Qτ (z) = sign(z + τ )

and consider the measurements q = Qτ (Ax). We can interpret this measurement
vector geometrically in a similar way as before, except that each measurement now
determines a hyperplane Hai ,τi = {z ∈ R

n : 〈ai , z〉 + τi = 0}, which is a parallel
shift of the hyperplane Hai . This immediately explains why dithering can be help-
ful to recover signals outside of the unit sphere: whereas two signals lying on a
straight line cannot be separated by a hyperplane through the origin (and are there-
fore located in the same cell of the tessellation if τ = 0), they can be separated by
shifted hyperplanes. Later we will see that dithering can also greatly extend the class
of measurement matrices for which accurate recovery from one-bit measurements
can be achieved.

In the setting of Gaussian measurement matrices, recovery results for sparse vec-
tors in the unit ball were first obtained in [4, 43]. In particular, [43] used Gaussian
thresholds τi and used a slight modification of the linear program (6) for recovery.
We will discuss a similar result that was obtained in [4] for the second- order cone
program

min
z∈Rn

‖z‖1 s.t. q = sign(Az + τ ), ‖z‖2 ≤ R, (10)

with q = sign(Ax + τ ). The rough idea behind the results in [4, 43] is a reduction to
the ‘standard’ one-bit compressed sensing model of Sect. 4.1: we view the dithered
measurements sign(Ax + τ ) as zero-threshold one-bit measurements sign([A τ

R ]x̄)
of the unit norm vector x̄ = [x, R]/‖[x, R]‖2 ∈ Sn+1, where the vector [x, R] ∈
R

n+1 is obtained from x by appending the scalar R as an extra entry. To find an
approximant of x , it suffices to find an approximant of x̄ of the form z̄: by the
argument in the proof of [4, Corollary 9] one finds ‖x − z‖2 ≤ 2R‖x̄ − z̄‖2 for any
twovectors x, z ∈ RB�n2

. If A is standardGaussian, then a small amount of adversarial
pre-quantization noise can be handled in a similar fashion by using that A satisfies
a simultaneous (�2, �1)-quotient property: with probability at least 1 − e−cm any
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ν ∈ R
m can be written as ν = Au for some u ∈ R

n with ‖u‖2 ≤ c1‖ν‖2/√m and
‖u‖1 ≤ c1‖ν‖2/

√
log(n/m).

Based on the above reasoning and the binary embedding result (16) stated below,
the following was shown.

Theorem 4 ([4, Theorem 2]) There exist absolute constants c0, c1, c2 such that
the following holds. Suppose that A ∈ R

m×n is standard Gaussian, τ1, . . . , τm are
independent N (0, 4R2)-distributed. If

m ≥ c0ρ
−4s log(n/s),

then the following holds with probability at least 1 − 3e−c1mρ4 : for any x ∈ R
n with

‖x‖0 ≤ s and ‖x‖2 ≤ R and q = sign(Ax + ν + τ ) with ‖ν‖∞ ≤ c2Rρ3, any solu-
tion x# to (10) satisfies ‖x − x#‖2 ≤ Rρ.

The linear programming result of [43] and Theorem 4 were extended further to
recovery of (effectively) dictionary sparse signals in [3].

Similarly to Theorem 3, uniform recovery via (10) can be ensured via an appro-
priate RIP1,2-property. Suppose that ν = 0 and consider

min
z∈Rn

‖z‖1 s.t. sign(C[z, R]) = sign(C[x, R]), ‖z‖2 ≤ R, (11)

then (10) is obtained by taking C = [A τ
R ]. It was shown in [18] that if ε < 1/5 and

C satisfies RIP1,2(Σeff
36(

√
s+1)2 , ε), then for any x ∈ R

n satisfying ‖x‖1 ≤ √
s‖x‖2 and

‖x‖2 ≤ R, any solution x# to (11) satisfies ‖x − x#‖2 ≤ 2R
√

ε. To connect this to
Theorem 4, note that if τ contains i.i.d.N (0, R)-distributed entries, then C = [A τ

R ]
is standard Gaussian. By Schechtman’s result, 1

m

√
π
2C satisfies RIP1,2(Σeff

36(
√
s+1)2 , ε)

if m � ε−2s log(en/s) and this immediately implies Theorem 4 (in the case ν =
0). In [18] it was shown that if A is a random partial standard Gaussian circulant
matrix, then 1

m

√
π
2C with high probability satisfies the same RIP property if m �

ε−4s log(en/s) + s log2 s log2 n and a certain small sparsity assumption (similar to
(9)) is satisfied. Thus, the conclusion of Theorem 4 (for ν = 0) remains valid in this
case if m � ρ−8s log(en/s) + s log2 s log2 n.

The program (10) (as well as the linear program in [43]) reconstruct by enforcing
quantization consistency. For this reason, this program can easily fail in the case
of post-quantization noise, as has been discussed in Sect. 4.1. In addition, since
the approaches in [4, 18, 43] essentially reduce to the standard one-bit compressed
sensingmodel, the type of measurement matrices for which results can be obtained is
relatively limited: so far only reconstruction results are known for standard Gaussian
and, under additional restrictions, randomly subsampled standard Gaussian circulant
matrices and subgaussian matrices. These limitations were overcome in [20, 21] by
using uniform dithering, as we will now discuss.

In [20], recovery results were obtained for matrices with i.i.d. subgaussian or
heavy-tailed rows, which are stable and robust with respect to both pre- and post-
quantization noise. Suppose that we observe a vector qc ∈ {−1, 1}m satisfying
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dH (qc, sign(Ax + ν + τ )) ≤ βm,

i.e., at most a fraction β of the bits are arbitrarily corrupted during quantization.
Consider

min
z∈Rn

dH (qc, sign(Az + τ )) s.t. z ∈ T . (12)

This (non-convex) program selects an x# whose noiseless one-bit measurements
minimize the Hamming distance to the corrupted vector of quantized noisy measure-
ments. The following recovery theorem applies to subgaussian random matrices.
A more general version of this result can be proved for heavy-tailed measurement
vectors, see [20].

Theorem 5 ([20, Theorem 1.5]) There exist constants c0, . . . , c4 > 0 depending
only on L such that the following holds. Suppose that A ∈ R

m×n has i.i.d. symmetric,
isotropic, L-subgaussian rows, ν has i.i.d. L-subgaussianentries with variance σ2,
and τ has i.i.d. entries which are uniformly distributed on [−λ,λ]. Let T ⊂ RBn

2 , set
λ ≥ c0(R + σ) + ρ, put r = c1ρ/

√
log(eλ/ρ), and let Tr = (T − T ) ∩ r Bn

2 . Assume
that

m ≥ c2λ

(
w2(Tr )

ρ3
+ logN (T, r)

ρ

)
, (13)

and that |Eν1| ≤ c3ρ, σ ≤ c3ρ/
√
log(eλ/ρ) and β ≤ c3ρ/λ. Then, with probability

at least 1 − 10 exp(−c4mρ/λ), for every x ∈ T , any solution x# of (12) satisfies
‖x# − x‖2 ≤ ρ.

If T ⊂ Bn
2 and σ ≤ 1 then λ is a constant that depends only on L . In this case (see

[20] for details) (13) holds if

m = c(L)
log(e/ρ)

ρ3
w2(T ).

In the special case T = Σs ∩ Bn
2 , a much better estimate is possible:

m = c′(L)ρ−1s log

(
en

sρ

)
.

The latter is optimal in terms of s and n and optimal up to the log-factor in terms
of ρ.

The result in Theorem 5 is still rather sensitive to pre-quantization noise: the mean
and variance of the noise should be of the order of ρ. In addition to this sensitivity to
pre-quantization noise, the program (12) is computationally hard to solve. To resolve
these two issues a different program, which is essentially obtained by convexifying
the objective of (12), was introduced in [20]: for λ > 0 consider

max
z∈Rn

1

m
〈qc, Az〉 − 1

2λ
‖z‖22 s.t. z ∈ U, (14)
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where either U = T or U = conv(T ). In the first case, we can view (14) as a regu-
larized version of (7). As is pointed out in [21], (14) is equivalent to

min
∥∥∥z − λ

m
A∗qc

∥∥∥
2

s.t. z ∈ U, (15)

i.e., it computes an �2-projection PU ( λ
m A∗qc) of λ

m A∗qc onto U . If U = conv(T ),
then (14) is convex, has a unique solution and can be expected to be stable. On
the other hand, if T is “simple”, then it may be advantageous to take U = T . For
instance, if U = T = Σs ∩ Bn

2 , then (14) has a closed-form solution

x# = min
{ λ

m
,

1

‖Hs(A∗qc)‖2
}
Hs(A

∗qc),

where Hs is the hard thresholding operator. The following result is stated for U =
conv(T ) in [20, Theorem 1.7], the case U = T is immediate from the proof.

Theorem 6 ([20, Theorem1.7])There exist constants c0, . . . , c4 that depend only on
L forwhich the following holds. Suppose that eitherU = T and T − T is star-shaped
orU = conv(T ). Suppose that A has i.i.d. symmetric, isotropic, L-subgaussian rows,
ν has i.i.d. mean-zero, L-subgaussian entries with variance σ, and τ has i.i.d. entries
which are uniformly distributed on [−λ,λ]. Let T ⊂ RBn

2 , fix ρ > 0, set Uρ = (U −
U ) ∩ ρBn

2 ,
λ ≥ c0(σ + R)

√
log(c0(σ + R)/ρ)

and let r = c1ρ/ log(eλ/ρ). If m and β satisfy

m ≥ c2

((
λw(Uρ)

ρ2

)2

+ λ2 logN (T, r)

ρ2

)

, β
√
log(e/β) = c3

ρ

λ
,

then, with probability at least 1 − 8 exp(−c4mρ2/λ2), for any x ∈ T any solution
x# of (14) satisfies ‖x# − x‖2 ≤ ρ.

If T is the set of sparse or compressible vectors in RBn
2 , then Theorem 6 can be

extended to randomly subsampled subgaussian circulantmatrices (with rows selected
according to the selector model). The only difference is that some additional loga-
rithmic factors appear in the result. We refer to [21, Theorem 1.1] for details.

If T = Σs ∩ Bn
2 and σ ≥ 1, then we can take λ = c(L)σ

√
log(c(L)σ/ρ) and

m = c′(L)
σ2

ρ2
s log

(σ

ρ

)(
log

(en
sρ

)
+ log log

(eσ
ρ

))
,

which is optimal up to logarithmic factors by Theorem 1.
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4.3 Relation to Binary Embeddings

The robust recovery result in Theorem 2 relies on a beautiful geometric result due
to Plan and Vershynin [55]. They showed that if T ⊂ Sn−1, m � ρ−6w2(T ), and
A ∈ R

m×n is a standard Gaussian matrix then, with probability at least 1 − 2e−cmρ2 ,
for all x, y ∈ T ,

dSn−1(x, y) − ρ ≤ 1

m
dH (sign(Ax), sign(Ay)) ≤ dSn−1(x, y) + ρ. (16)

In other words, if x and y are “separated enough”, then the fraction of the random
Gaussian hyperplanes Hai = {z ∈ R

n : 〈
ai , z

〉 = 0} that separate x and y approxi-
mates their geodesic distance in a very sharp way. It was later shown in [52] that
(16) remains true if m � ρ−4w2(T ). Moreover, for certain “simple” sets (e.g., if T
is the set of unit norm sparse vectors) it is known that m � ρ−2w2(T ) suffices for
(16) (see [42, 52, 55] for examples).

In a similar way, the reconstruction results in Theorems 5 and 6 are connected to
“isomorphic” versions of (16). To give a concrete example from [20], suppose that
A has i.i.d. symmetric, isotropic, L-subgaussian rows and that the entries of τ are
i.i.d. uniformly distributed on [−λ,λ]. If T ⊂ RBn

2 , λ = c0R and

m ≥ c1
R log(eR/ρ)

ρ3
w2(T ),

then with probability at least 1 − 8 exp(−c2mρ/R), for any x, y ∈ conv(T ) such that
‖x − y‖2 ≥ ρ, one has

c3
‖x − y‖2

R
≤ 1

m
dH (sign(Ax + τ ), sign(Ay + τ )) ≤ c4

√
log(eR/ρ) · ‖x − y‖2

R
,

(17)
where c0, . . . , c4 depend only on L . Hence, if x and y are separated enough, then the
fraction of the hyperplanes Hai ,τi = {v ∈ R

n : 〈ai , v〉 + τi = 0} that separate x and
y accurately approximates their Euclidean distance.

4.4 Exponential Error Decay Via Adaptive Thresholds

Let us now briefly discuss how one can achieve optimal, exponential error decay in
terms of the number of measurements by using adaptive thresholds, following the
idea put forward in [4]. Interestingly, this scheme completely integrates the analog
measurement, quantization, and reconstruction procedures. Our presentation follows
[22].

To sketch the high-level idea, recall that in memoryless one-bit compressed sens-
ing, by taking measurements we geometrically produce hyperplanes through the
origin (if τ = 0) or shifted versions thereof (τ �= 0). In both cases, the origin is our
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“reference point” for producing hyperplanes. Intuitively, this is a good strategy to
locate x if x happens to lie close to the origin, but relatively ineffective if x is far
away. This is reflected by the appearance of the radius R of the signal set in the recon-
struction results discussed in Sect. 4.2. To improve the error decay, we can proceed
as follows: we first take a small batch of memoryless quantized measurements and
run a reconstruction algorithm to obtain a rough estimate x̂ of the location of x . In the
next round, we use x̂ as a new reference point to produce hyperplanes. Continuing
in this fashion, we “move in” on the target signal x and are able to produce more
informative measurements in each round.

Formally, fix a closed signal set K ⊂ R
n with 0 ∈ K and let PK be the �2-

projection onto this set. We set Ii = {(i − 1)m/B + 1, . . . , im/B} and divide the
measurement matrix A into the submatrices A(i) = RIi A, 1 ≤ i ≤ B, each contain-
ing m/B consecutive rows of A. We let ν(i) = RIi ν, τ(i) = RIi τ and Ri = 2−i R.
Suppose that we have an algorithm Ai which, with probability at least 1 − η, sat-
isfies the following for any w ∈ K − K with ‖w‖2 ≤ Ri−1: based on the input
(A(i), τ(i), (qc)(i), Ri−1), with (qc)(i) ∈ {−1, 1}m/B satisfying for a certain τ̄(i) =
τ̄(i)(A(i), τ(i), Ri−1) ∈ R

m/B

dH ((qc)(i), sign(A(i)w + ν(i) + τ̄(i))) ≤ βm/B, (18)

Ai produces a w# ∈ R
n so that ‖w − w#‖2 ≤ Ri−1/4. We can then produce partial

reconstructions (x̄(i))
B
i=1 of x iteratively as follows. Suppose that we produced an

x̄(i−1) ∈ K satisfying ‖x − x̄(i−1)‖2 ≤ Ri−1. We acquire corrupted measurements
(qc)(i) satisfying (18) for w = x − x̄(i−1). Since

sign(A(i)w + ν(i) + τ̄(i)) = sign(A(i)x + ν(i) + μ(i) + τ̄(i)),

with μ(i) = −A(i) x̄(i−1), the desired (qc)(i) can be acquired by measuring x with A(i)

and using Q(μ(i)+τ̄(i)) as a quantizer.
We now input (A(i), τ(i), (qc)(i), Ri−1) into the algorithm Ai and let x#(i) be its

output. Define x̄(i) = PK (x̄(i−1) + x#(i)). Clearly, since x ∈ K ,

‖x − x̄(i)‖2 ≤ ‖x − x̄(i−1) − x#(i)‖2 + ‖x̄(i−1) + x#(i) − PK (x̄(i−1) + x#(i))‖2
≤ 2‖x − x̄(i−1) − x#(i)‖2 ≤ 2

Ri−1

4
= Ri .

Hence, if ‖x‖2 ≤ R and we set x̄(0) = 0, then by induction we find ‖x − x̄(i)‖2 ≤
R2−i for all 1 ≤ i ≤ B. In summary, if we set B = log2(R/ρ) then, with probability
at least 1 − Bη, ‖x − x̄(B)‖2 ≤ ρ for any x ∈ K .

In the original paper [4], recovery results with exponential error decay were
obtained via the above scheme for s-sparse vectors and standard Gaussian measure-
ment matrices using either hard thresholding operations or Gaussian dithering and
the second-order cone program (10) to produce partial reconstructions. In [28], these
results were extended to recovery of low-rank matrices, using either hard threshold-
ing or a semidefinite program. In [21, 22], an exponential decay scheme was derived
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for sparse vectors and randomly subsampled subgaussian circulant matrices using
uniform dithering and hard thresholding for partial reconstruction.

As a variation of the result in [21, 22], we will derive a general result valid for any
signal set K which is a closed cone, any A ∈ R

m×n with i.i.d. symmetric, isotropic,
L-subgaussian rows, and uniform dithering. We only need to specify the “base algo-
rithms”Ai .We consider aw ∈ (K − K ) ∩ Ri−1Bn

2 and acquiremeasurements (qc)(i)
satisfying

dH ((qc)(i), sign(A(i)w + ν(i) + τ̄(i))) ≤ βm/B

with A(i) = RIi A, ν(i) = RIi ν, τ(i) = RIi τ , and τ̄(i) = Ri−1τ(i), where τ has i.i.d.
entries which are uniformly distributed on [−λ,λ]. Clearly,

dH ((qc)(i), sign(A(i)w + ν(i) + τ̄(i)))

= dH ((qc)(i), sign(A(i)(w/Ri−1) + ν(i)/Ri−1 + τ(i))).

Define w̃ = P(K−K )∩Bn
2
( λ
m A∗

(i)(qc)(i)). Since K is a cone, w/Ri−1 ∈ (K − K ) ∩ Bn
2 .

Hence, Theorem 6 (applied with T = (K − K ) ∩ Bn
2 , ρ = 1/4, and R = 1) shows

that ifwe assume thatν contains i.i.d.mean-zero, L-subgaussian entrieswith variance
σ2 ≤ ρ2 ≤ R2

i−1 and set

m/B ≥ c1w
2((K − K ) ∩ Bn

2 ), λ = c2, β
√
log(e/β) = c3,

then, with probability at least 1 − 8 exp(−c4m/B), for all w ∈ (K − K ) ∩ Ri−1Bn
2

the vector w̃ satisfies ‖ w
Ri−1

− w̃‖2 ≤ 1/4. Hence, the vector w# = Ri−1w̃ has the
desired properties.

Our considerations lead to the following algorithm and result.

Algorithm 1: exponentially decaying scheme

Input: A ∈ R
m×n , B ∈ N, τ ∈ R

m , R > 0
Initialization: x̄(0) = 0.
for i=1,…,B do

A(i) = RIi A
μ(i) = −A(i) x̄(i−1)

ν(i) = RIi ν
τ(i) = μ(i) + R2−(i−1)RIi τ
Produce corrupted quantized measurements (qc)(i) ∈ {−1, 1}m/B with

dH ((qc)(i), sign(A(i)x + ν(i) + τ(i))) ≤ βm/B

x#(i) = R2−(i−1)P(K−K )∩Bn
2

(
λ
m A∗

(i)(qc)(i)
)

x̄(i) = PK (x̄(i−1) + x#(i))
end
Output: x# = x̄(B)
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Theorem 7 There exist constants c1, c2, c3, c4 depending only on L such that the
following holds. Let K ⊂ R

n be a closed cone, fix 0 < ρ ≤ 1 and R > 0, set B =
log2(R/ρ), λ = c1, m ≥ c2Bw2((K − K ) ∩ Bn

2 ), β = c3. Suppose that A has i.i.d.
symmetric, isotropic, L-subgaussian rows, ν has i.i.d. mean-zero, L-subgaussian
entries with variance σ ≤ ρ, τ has i.i.d. entries which are uniformly distributed on
[−λ,λ], and A, ν, τ are independent. Then with probability at least 1 − Be−c4m/B

the following holds: for any x ∈ K with ‖x‖2 ≤ R, the output x# of Algorithm 1
satisfies ‖x − x#‖2 ≤ ρ.

The decay of the reconstruction error in Theorem 7 is clearly superior to the error
decay in Theorem 6. The total number of measurements generated in Algorithm 1 is

m ∼ log(R/ρ)w2((K − K ) ∩ Bn
2 ),

so the reconstruction error decays exponentially in terms of the number of measure-
ments, which is optimal (see the discussion in Sect. 2). In addition, the total number
of adversarial bit corruptions is βm, a constant fraction of m.

The price to pay for this superior scheme ismore complicated hardware and higher
energy consumption in operation. The quantizer needs to be equipped with memory
and the capability to compute and set new thresholds in each round.

5 Memoryless Multi-bit Compressed Sensing

Let us now consider memoryless multi-bit quantization schemes. A memoryless
scalar quantizer is defined by fixing a quantization alphabetQ ⊂ R and setting, for
a given z ∈ R

m and i ∈ [m],

QMSC(z)i = min{argmint∈Q |zi − t |}.

For example, by taking the alphabetQ = {−1, 1} we find the one-bit quantizer with
zero thresholds studied in Sect. 4.1. Before discussing specific recovery algorithms,
let us first point out that the best reconstruction error decay in terms of the number of
measurements that any reconstruction algorithm can achieve when receiving mem-
oryless scalar quantized measurements as input is, in general, linear. Specifically, it
was shown in [6, 30] that if A ∈ R

m×n and E ⊂ R
n is a k-dimensional subspace, then

supx∈E ‖x − A (QMSC(Ax))‖2 ≥ c k
m for any reconstruction map A : Rm → R

n .
The most studied memoryless multi-bit compressed sensing model involves the

memoryless scalar quantizer with alphabet Q = δZ, i.e., the quantizer Qδ : Rm →
(δZ)m defined by

Qδ(z) = (
δ�zi/δ�

)m
i=1.

For brevity, we will call this map the uniform scalar quantizer. Geometrically, Qδ

divides Rm into half-open cubes with side lengths equal to δ and maps any vector
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z ∈ R
m to the corner of the cube in which it is located. From a practical point of view,

this quantizer is somewhat idealized: in a realistic implementation the range of the
quantizer is limited and measurements 〈ai , x〉 which exceed the quantizer’s range
incur a potentially unbounded quantization error. One calls such measurements satu-
rated. The work [46] analyzes some strategies to deal with saturated measurements.
We will restrict ourselves to the idealized uniform scalar quantizer.

Let us first consider the “agnostic” approach to reconstruct x from uniformly
scalar quantized measurements q = Qδ(Ax), i.e., we simply treat the error due to
quantization as additive noise. Note that the �∞-distance of Ax to the center of its
quantization cell, i.e., q + (δ/2)1 where 1 ∈ R

m is the vector which has all entries
equal to 1, is at most δ/2. Hence, we can reconstruct the signal x via the linear
program

min
z∈Rn

‖z‖1 s. t. ‖Az − (q + (δ/2)1)‖∞ ≤ δ/2. (19)

Note that thismethod is very close tominimizing the �1-norm under a quantization
consistency constraint, i.e., to solving

min ‖z‖1 s. t. y = Qδ(Az). (20)

Indeed, whereas z is feasible for (20) if and only if Az lies in the same quantization
cell as Ax , z is feasible for (19) precisely when it lies in the closure of that cell.

From the standard theory of compressed sensing, it is easy to extract (see [18, The-
orem A.1]) that if A ∈ R

m×n is such that 1√
m
A satisfies RIP2,2(Σs, c) with constant

c < 4/
√
41, then for any x ∈ R

n and y = Qδ(Ax) any solution x# to (19) satisfies

‖x − x#‖2 � δ + s−1/2 inf
z∈Σs

‖x − z‖1. (21)

In particular, this applies to partial subgaussian circulant matrices (with determinis-
tically selected rows) if m � s log2 s log2 n [44] and randomly subsampled discrete
bounded orthonormal systems ifm � s log2 s log n [35]. A different argument, which
relies onMendelson’s small ballmethod [48] instead of anRIP-based analysis, shows
that even for a variety of heavy-tailed random matrices the reconstruction guarantee
(21) holds in the optimal regime m � s log(en/s) (see [19, Section V] for several
results).

Although these results exhibit the same dependence ofm on s and n as in “unquan-
tized” compressed sensing, they have a clear downside: by treating the quantization
error as noise, the reconstruction error does not decay beyond the resolution δ of
the quantizer, which corresponds to the noise floor. Intuitively, one could hope to be
able to decrease the reconstruction error even beyond the resolution δ by taking more
measurements. In a series of works by L. Jacques and co-authors [37, 39, 40, 63], this
is shown to be possible if one introduces appropriate dithering at the quantizer. Let
us denote by Qδ,τ = Qδ(· + τ ) the uniform scalar quantizer with dithering vector
τ ∈ R

m . It was first observed in [37] (see also [63, Appendix A]) that if the entries
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τi of τ are i.i.d. uniformly distributed on [0, δ], then for any y ∈ R
m , EQδ,τ (y) = y.

Hence, at least in expectation, dithering that matches the resolution can “cancel out”
the error caused by the uniform scalar quantizer. This fact can be exploited to prove
recovery results for general signals sets and a large class of measurement matrices.
We start by describing a result from [63]. Let T ⊂ R

n be a closed set of signals. For
x ∈ T consider its quantized measurements q = Qδ,τ (Ax) and define

x#PBP = PT
( 1

m
A∗q

)
.

Since A∗q is usually called the back projection of q, this reconstruction is coined the
projected back projection in [63]. If T = Σs , then the projected back projection is
up to scaling the same as the hard thresholding map in Theorem 3. To give the flavor
of the recovery results in [63], we state a recovery result if T is a union of subspaces.
Further results are obtained for low-rank matrices and star-shaped convex sets.

Theorem 8 ([63]) Let T = ∪N
i=1Ti ⊂ R

n be a union of subspaces. Suppose that the
entries of τ are i.i.d. uniformly distributed on [0, δ]. Let A ∈ R

m×n be a random
matrix that, for any fixed 0 < ε < 1, satisfies

∣∣∣
1

m
‖Az‖22 − ‖z‖22

∣∣∣ ≤ ε, for all z ∈ T ∩ Bn
2

with probability at least 1 − η if

m � ε−2w2(T ∩ Bn
2 ) polylog(m, n, 1/η).

Let T (4) = ∑4
i=1 T . If m � ρ−2(1 + δ)2w2(T (4) ∩ Bn

2 ) polylog(m, n, δ, 1/ρ, 1/η),
thenwith probability at least 1 − η, for any x ∈ T ∩ Bn

2 the projected back projection
x#PBP satisfies ‖x − x#‖2 ≤ ρ.

In the special case T = Σs , the assumption of Theorem 8 is e.g. satisfied if
A is subgaussian, a partial subgaussian circulant matrix or a randomly subsam-
pled discrete bounded orthonormal system. Hence, for these matrices, one can
uniformly recover all s-sparse vectors from their projected back projections if
m � ρ−2(1 + δ)2s log(en/s) polylog(m, n, δ, 1/ρ, 1/η).

The reconstruction error in Theorem 8 does not decrease to zero as the bin width
δ goes to zero, as e.g. in (21). In fact, this cannot be expected as x#PBP will, loosely
speaking, start behaving as Hs(

1
m A∗Ax) as δ → 0, i.e., as the first step of the iter-

ative hard thresholding algorithm in “unquantized” compressed sensing. Therefore,
it is of interest to derive a “best of both worlds” result that exhibits both a decaying
reconstruction error in terms of the number of measurements and, at the same time,
a reconstruction error decaying to zero if δ → 0 once m exceeds the threshold of
Cs log(en/s) measurements, which are needed for uniform recovery from unquan-
tized measurements. One can get very close to such a result by using a relation
between uniform scalar quantization and so-called quantized Johnson-Lindenstrauss



88 S. Dirksen

embeddings. This relation is analogous to the connectionbetweenone-bit compressed
sensing and binary embeddings sketched in Sect. 4.3. For concreteness, we consider
the following embedding result.

Theorem 9 ([40, Proposition 1]) If m � ε−2 log N (T, δε2) and 1
m A ∈ R

m×n satis-
fies RIP1,2(T − T, θ), then for certain absolute constants c,C > 0, with probability
at least 1 − Ce−cmε2 the map f (x) = Qδ,τ (Ax) satisfies

(1 − θ)‖x − y‖2 − cδε ≤ 1

m
‖ f (x) − f (y)‖1 ≤ (1 + θ)‖x − y‖2 + cδε (22)

for all x, y ∈ T .

By the lower bound in (22), for anygiven signal x ∈ T , any x# ∈ T that is quantization
consistent with x satisfies ‖x − x#‖2 ≤ cδε/(1 − θ). Thus, under the conditions of
Theorem 9 we can recover x via a program that finds a quantization consistent vector
in T . In particular, if T = Σs ∩ Bn

2 then we can use the non-convex program

min ‖z‖0 s.t. q = Qδ,τ (Az), ‖z‖2 ≤ 1. (23)

If B is standard Gaussian and A = √
π
2 B, then

1
m A satisfies RIP1,2(Σ2s, θ) with

probability at least 1 − 2e−cmθ2 if m � θ−2s log(en/s). Combining this fact with
Theorem 9 and the estimate log N (Σs ∩ Bn

2 , δε
2) � s log(en/(sδε2)), we find that

if m � ε−2s log(en/(sδε2)), then with probability at least 1 − Ce−cmε2 , for any x ∈
Σs ∩ Bn

2 , any solution x# to (23) satisfies ‖x − x#‖2 ≤ δε.
This result can still be improved, since to derive a recovery result it suffices to

prove a much weaker property than (22). In [38, 39] a direct analysis was made of
the required property

Qδ,τ (Az) = Qδ,τ (Ax) ⇒ ‖x − z‖2 ≤ θ, for all x, z ∈ T . (24)

If (24) holds for T = Σs ∩ Bn
2 and θ = δε, then for any x ∈ Σs ∩ Bn

2 any solu-
tion x# to (23) satisfies ‖x# − x‖2 ≤ δε. It was shown in [38, Theorem 2] that a
standard Gaussian matrix A ∈ R

m×n satisfies this property with high probability if
m � ε−1s log(en/(

√
sδε)). Since for a fixed δ the reconstruction error cannot decay

faster than linear in m, the dependence of m on ε is near-optimal in this result.
We refer to [39, 40] for further results onquantized Johnson-Lindenstrauss embed-

dings, in particular versions involving RIP2,2-matrices and subgaussianmatrices, and
to [38, 39] for further results concerning the property (24). The latter results are used
in [51] to derive reconstruction guarantees for generalizations of (23) in which ‖z‖0
is replaced by an atomic norm.

In [18], Theorem 9 was used to prove a uniform recovery result for effectively
s-sparse vectors in the unit ball from randomly subsampled Gaussian circulant mea-
surements (with rows selected according to the selector model) via a convex program
that enforces quantization consistency. Loosely speaking, [18, Theorem 6.2] shows
that with high probability one can achieve a reconstruction error εδ2/3 using roughly
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m ∼ ε−6s log(en/s) measurements, provided that a small sparsity condition is satis-
fied. Interestingly, this result uses a combination of Gaussian and uniform dithering
in the quantizer.

6 Noise-Shaping Methods

Finally, we discuss quantized compressed sensing with a family of adaptive quanti-
zation methods called noise-shaping methods. The most prominent example in this
family are ΣΔ-quantization methods, which are very popular in practice. Noise-
shaping quantizers were first studied mathematically in the context of analog-to-
digital conversion of bandlimited functions (see e.g., [14, 33]) and afterwards have
been successfully extended to the frameworks of finite frames and compressed sens-
ing (see e.g., the survey [13] and the references therein). In the setting of compressed
sensing, the first reconstruction results for exactly sparse signals were obtained via a
two-stage approach [25, 34, 45]. First, one estimates only the support of the original
sparse signal via a traditional compressed sensing method for noisy measurements.
Once the support is known, one can use reconstruction methods developed in the
framework of finite frames to fully reconstruct the signal, e.g., by using an appropri-
ate Sobolev dual frame. For the sake of brevity, we will not discuss this approach and
refer to the survey [13] for details. We will only discuss a recent one-stage recov-
ery approach via a convex program, which was developed in [10, 13, 26, 36, 60].
In contrast to the two-stage approach sketched above, this method is proven to be
stable with respect to approximate sparsity, robust with respect to (a small amount
of) pre-quantization noise and has been successfully applied to structured random
measurement matrices [26, 36].

A noise-shaping quantizer Q : Rm → Qm associated with a noise transfer oper-
ator H , is defined so that for each y ∈ R

m the quantization q = Q(y) satisfies the
noise-shaping relation

y − q = Hu (25)

where u = u(y, Q) ∈ R
m is an auxiliary vector called the internal state vector. The

matrix H ∈ R
m×m is chosen to be a lower triangular Toeplitz matrix with unit diago-

nal, so that the quantization scheme can be implemented via a recursion. The noise-
shaping quantizer is called stable if, for all y ∈ R

m with ‖y‖∞ ≤ μ, ‖u‖∞ ≤ CQ,μ,
where CQ,μ is a constant independent of m called the stability constant. The most
important examples of noise-shaping quantizers are ΣΔ-quantizers, which com-
pute a solution to the noise-shaping relation (25) for H = Dr , where D ∈ R

m is the
first-order difference matrix defined by

Di j =

⎧
⎪⎨

⎪⎩

1 if i = j

−1 if i = j + 1

0 else.
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We call r the order of the scheme. The construction of a stable r -th orderΣΔ-scheme
is non-trivial. It was shown in [16] that for any L ∈ N and δ > 0 there exists a stable
r -th order ΣΔ-scheme with a fixed alphabet Qδ,L = {±(2� − 1)δ : 1 ≤ � ≤ L}
and constant

CQ,μ ≤ Cδ

(
er

π

⌈
π2

(cosh−1(2L − μ
δ
))2

⌉)r

.

In particular, taking L = 1, δ = 1, we find an r -th order scheme with the one-bit
alphabet Q = {−1, 1} which is stable in the sense that ‖u‖∞ ≤ Ccrμr

r whenever
‖y‖∞ ≤ μ < 1.

Let us now turn to the compressed sensing scenario, where y = Ax and the noise-
shaping relation is

Ax − q = Hu.

To see how we could recover x , multiply both sides by a designed preconditioning
matrix V ∈ R

p×m to obtain

V Ax − Vq = V Hu.

Sincewe observe Vq, we can interpret this equation as a linearmeasurement equation
Vq = V Ax + e, where V A is the measurement matrix and e = −V Hu is the noise
on the measurements. To recover x , we can then use methods for recovery from
“unquantized” noisy measurements. For instance, we can use basis pursuit denoising

min
z∈Rn

‖z‖1 s.t. ‖V Az − Vq‖2 ≤ η. (26)

By a standard result in compressed sensing, one can recover any s-sparse x via (26)
if V A satisfies RIP2,2(Σs, c) for c a small enough absolute constant and ‖e‖2 ≤ η
(see e.g., [29, Chapter 9]). To satisfy the latter condition, if we assume that the
quantization scheme is stable and ‖Ax‖∞ ≤ μ, it suffices to ensure that ‖V H‖�∞→�2

is small.
In the presence of pre-quantization noise, the noise-shaping relation changes to

V (Ax + ν) − Vq = V Hu.

It was suggested in [60] to replace the program (26) by

min
(z,w)∈Rn+m

‖z‖1 s.t. ‖V (Az + w) − Vq‖2 ≤ η, ‖w‖2 ≤ κ. (27)

The following result summarizes two reconstruction results for subgaussian [60] and
randomly subsampled subgaussian circulant matrices [26].
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Theorem 10 ([60, Theorem 9]) and [26, Theorem 5]) Let Q be the stable r-th order
ΣΔ-scheme with the one-bit alphabet Q = {−1, 1} as above and let CQ,μ be its
stability constant. Let A ∈ R

m×n be a subgaussian matrix. Suppose that

m ≥ p ≥ Cs log(en/s).

Then the following holds with probability at least 1 − e−cp. For any x ∈ R
n satisfying

‖Ax‖∞ ≤ μ < 1 and q = Q(Ax + ν) with ‖ν‖∞ ≤ ε < 1 − μ, any solution x# to
(26) with V = D−r , η = CQ,μ

√
m, κ = ε

√
m satisfies

‖x# − x‖2 �μ,r

( p

m

)r− 1
2 + σs(x)1√

s
+

√
m

p
ε, (28)

where σs(x)1 = minz∈Σs ‖x − z‖1.
If A is a randomly subsampled subgaussian circulant matrix (with rows selected

according to the uniformly at random model), then the same result holds with prob-
ability at least 1 − e−t provided that, for some 0 ≤ α < 1/2,

m � t1/(1−2α)s log2/(1−2α)(s) log2/(1−2α)(n)

and p = m( s
m )α.

The result in Theorem 10 essentially relies on proving that the matrix D−r A satis-
fies RIP2,2(Σs, c), which has proven to be difficult for structured random matrices.
To overcome this problem, [36] constructed a different preconditioner V for ΣΔ-
schemes as follows. For p < m let λ = m/p. For simplicity, we assume that λ ∈ N

and that there is a λ̃ ∈ N such that λ = r λ̃ − r + 1. Suppose that u ∈ R
λ contains

the coefficients of the polynomial (1 + z + . . . + zλ̃−1)r . Define V ∈ R
p×m by

VΣΔ = 1√
p‖u‖2 Ip ⊗ uT = 1√

p‖u‖2

⎡

⎢⎢⎢
⎣

uT 0 · · · 0
0 uT · · · 0
...

...
. . .

...

0 0 · · · uT

⎤

⎥⎥⎥
⎦

. (29)

Using this construction, [36] obtained the following result for partial Bernoulli cir-
culant matrices with randomized row signs. It can be easily modified in the case
of pre-quantization noise to produce an error bound similar to (28). In addition, a
similar result was obtained for randomly subsampled discrete bounded orthonormal
systems (again with randomized row signs).

Theorem 11 ([36, Theorem 6.1]) Let Q be the stable r-th order ΣΔ-scheme with
the one-bit alphabet Q = {−1, 1} as above. Let B be a partial Bernoulli circulant
matrix (with rows selected according to the row picking model), let Dξ be a diagonal
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matrix with i.i.d. symmetric Bernoulli random variables on its diagonal which are
independent of B and let A = DξB. Fix θ > 0, s ∈ [n] and suppose that

m ≥ p ≥ Cs log4 n.

Then the following holds with probability at least 1 − e−cp2/(sm). For any x ∈ R
n

satisfying ‖Ax‖∞ ≤ μ < 1 and q = Q(Ax), any solution to (26) with V = VΣΔ

satisfies

‖x# − x‖2 �μ,r

( p

m

)r− 1
2 + σs(x)1√

s
.

The reconstruction error in Theorems 10 and 11 decays polynomially in terms of
the number of measurements. If x is s-sparse (σs(x)1 = 0) and there is no pre-
quantization noise (ε = 0), then one can optimize the bound (28) (including the
implicit constant depending on r ) in terms of r . This yields an r depending on s
andm for which the reconstructions error decays root-exponentially, i.e., as e−√

m , in
terms of the number ofmeasurements (see e.g., [60, Corollary 11]). Exponential error
decay can be achieved by using a different noise-shaping method, called distributed
noise-shaping quantization [11, 12]. For such recovery results with partial Bernoulli
circulant matrices and randomly subsampled discrete bounded orthonormal systems
(both with randomized row signs), see [36].
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1 Introduction

A classical problem in sampling theory is to reconstruct a function f , that is typically
in L2([0, 1]d), from linear measurements in the form of inner products. One of the
most famous problems of this type is to reconstruct f from its Fourier coefficients,
where one can view the Fourier coefficients as values obtained from inner products
of f with the basis of complex exponentials. In a more general abstract form, the
problem is as follows.

Problem 1 An element f ∈ H, whereH is a separable Hilbert space, is to be recon-
structed frommeasurements with linear functionals (li )i∈N : H → C that can be rep-
resented by elements ζi ∈ H as li ( f ) = 〈 f, ζi 〉. The key issue is that the li cannot be
chosen freely, but are dictated by the modality of the sampling device.

Classical Fourier sampling problems in applications include magnetic resonance
imaging (MRI), radio interferometry, etc., which is a natural consequence of the fre-
quent appearance of the Fourier transform in the sciences. However, there is another
important form of measurements, namely binary sampling. By binary sampling, we
mean sampling with inner products of functions {ζi }i∈N ⊂ L2([0, 1]d) that only take
the values 0 and 1. Just as Fourier sampling occurs naturally in many sampling
devices, binary sampling is a phenomenon that occurs as a consequence of a sam-
pling apparatus being ‘on’ or ‘off’, which occurs in digital signal processing, such
as ΣΔ quantization, or newer forms of compressed measurements in microscopy or
imaging.

There is a standard trick to convert binary sampling to measurements to functions
that take the values {−1, 1} rather than {0, 1}, by multiplying every measurement by
2 and subtracting the sample done with the constant function. Thus, onemay assume,
if one is willing to accept a potential change in the statistical noise model, that the
measurements are donewith {−1, 1} valued functions. Onemotivation for converting
from {0, 1} valued sampling to {−1, 1} is that the latter allows for the use of Walsh
functions. These functions have very similar qualities to the complex exponentials in
Fourier, and theWalsh transform is a close cousin of the Fourier transform.Moreover,
the classical discrete Fourier transform obeys a fast implementation. This is also
existent for the Walsh case via the Hadamard transform.

Given the extensive theory of Walsh functions and the benefits listed above, we
will from now on assume that the sampling functions {ζi }i∈N ⊂ L2([0, 1]d) are the
Walsh functions. A bonus property of the Walsh functions is that when combined
with wavelets ϕ j , j ∈ N, spanning L2([0, 1]d), in a change of basis matrix

U = {〈ϕ j , ζi 〉}i, j∈N, (1)

one obtains a very structured infinite matrix. This infinite matrix shares many struc-
tural similarities with the change of basis matrix obtained by combining complex
exponentials and wavelets. In particular, both types of infinite matrices become
almost block diagonal, a feature that will be highly useful as we will see below.
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In this paper, wewill address threemethods for Problem1, two linear and one non-
linear method.We choose the two linear ones because of their optimality with respect
to the reconstruction error. The first is optimal in the class of linear methods that are
consistent with the measurement and the second is optimal for linear algorithms that
map into the reconstruction space. The non-linear method is the algorithm which
takes the most structure into account and hence allows very good reconstruction
guarantees. In all cases, we assume sampling withWalsh functions. The methods are
as follows:

(i) The parameterized-background data-weak (PBDW) method (linear),
(ii) Generalized sampling (linear),
(iii) Infinite-dimensional compressed sensing (non-linear).

The PBDWmethod originated with the work byMaday, Patera, Penn and Yano in
[51], and was further developed and analysed by by Binev, Cohen, Dahmen, DeVore,
Petrova, and Wojtaszczyk [10, 13, 22]. Generalized sampling has been studied by
Adcock, Hansen, Hrycak, Gröchenig, Kutyniok, Ma, Poon, Shadrin and others [1,
2, 4, 6, 40, 43, 50], and the predecessor; consistent sampling, has been analysed by
Aldroubi, Eldar, Unser and others [8, 29–32, 64]. Infinite-dimensional compressed
sensing has been developed and studied by Adcock, Hansen, Kutyniok, Lim, Poon
and Roman [5, 7, 47, 55].

The successful use of the two first methods when reconstructing in a wavelet basis
is completely dependent on the stable sampling rate which is defined below in terms
of subspace angles between sampling and reconstruction spaces. It dictates the size
of the sampling space as a function of the dimension of the reconstruction space in
order to ensure accurate reconstructions. The main question we want to answer is

What is the stable sampling rate when given Walsh samples and a wavelet recon-
struction basis?

The key issue is that the error bounds for these methods depend (sharply) on the
subspace angle, and fortunately, we can provide sharp results on the stable sampling
rate. In the case of infinite-dimensional compressed sensing, one cannot directly use
the stable sampling rate, however, we provide estimates on the size of the sampling
space as well as recovery guaranties from subsampled data.

To define the stable sampling rate we need to introduce some notation. The goal
is to reconstruct f from the finite number of samples {li ( f )}Mi=1 for some M ∈ N.
The space of the functions ζi is called the sampling space and is denoted by S =
span{ζi : i ∈ N}, meaning the closure of the span. In practice, one can only acquire
a finite number of samples. Therefore, we denote by SM = span{ζi : i = 1, . . . , M}
the sampling space of the first M elements. The reconstruction is typically done via a
reconstruction space denoted byR and spanned by reconstruction functions (ϕi )i∈N,
i.e. R = span{ϕi : i ∈ N}. As in the case of the sampling space, it is impossible to
acquire and save an infinite number of reconstruction coefficients. Hence, one has
to restrict to a finite reconstruction space, which is denoted byRN = span{ϕi : i =
1, . . . , N }.
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One of the main questions in reconstruction theory is how many samples are
needed to guarantee a stable and accurate recovery? In the first part of this paper, we
want to analyse this question for linear methods. The stable sampling rate captures
the number of samples necessary to obtain a stable and accurate reconstruction of
a certain number of coefficients in the reconstruction space. More precisely, we are
interested in the dimension of the sampling space SM in relation to the reconstruction
space RN . Section 4 talks about the linear reconstruction method, and there we see
that the accuracy and stability of the methods depend on the subspace angle between
RN and SM . In particular,

cos(ω(RN ,SM)) := inf
r∈RN ,‖r‖=1

‖PSM r‖, (2)

where PSM is the orthogonal projection onto the sampling space. Mainly, one is
interested in the reciprocal value

σ(RN ,SM) = 1/ cos(ω(RN ,SM)) ∈ [1,∞], (3)

which, as we will see later, plays a key role in all the error estimates of the two linear
algorithms discussed here. Due to the definition of cosine, σ takes values in [1,∞].
The stable sampling rate is then given by

Θ(N , θ) = min {M ∈ N : σ(RN ,SM) ≤ θ} . (4)

This function was analysed for different reconstruction methods in the Fourier case.
We know that the stable sampling rate is linear for Fourier-wavelet [6] and Fourier-
shearlet [50] reconstructions. This is the best one can wish for as it allows to recon-
struct nearly as well from Fourier samples as sampling directly in the wavelet or
shearlet system. However, this is not always the case. In the Fourier polynomial
reconstruction, we get that the stable sampling rate is polynomial which leads to
a large number of necessary samples and makes this only feasible for very sparse
signals. For the Walsh case, it was shown in [41] that the stable sampling rate is also
linear in the Walsh-wavelet case and it is even possible to determine the slope for
Walsh–Haar wavelets [60].

The analysis for the non-linear reconstruction is a bit more involved and needs a
detailed analysis of the change of basis matrix as well as the reconstruction space.
It is common to use the sparsity of the coefficients in the wavelet space of natural
images. However, it is known that this can be described more detailed with struc-
tured sparsity. This reduces the size of the class and hence allows better reconstruction
guarantees. Similarly, we have that the change of basis matrix is not incoherent but
asymptotically incoherent. This leads to a new version of CS with highly improved
reconstruction quality from fewer samples. We will see that the impact of elements
outside the diagonal boxes decays exponentially. This allows us to use more subsam-
pling than previously described by the classical CS literature. We are here as well
mainly interested in the reconstruction from Walsh samples with wavelets.
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This paper is structured as follows. First, we discuss in Sect. 2 theWalsh functions,
which are the building blocks of the sampling space. Then we revise the basics about
boundary corrected wavelets in Sect. 3. With this information at hand, we are able
to present the linear reconstruction methods and their analysis in Sect. 4. We then
continue with the non-linear change of basis matrix including the classical theory,
different problems type and then a detailed comparison between the new theory and
the older versions. This is underlined by some numerical examples.

2 Walsh Functions

In this section, we introduce Walsh functions, which span the sampling space SM .
First, we want to discuss the use of multi-indices. This is important because we
want to deal with one- and d-dimensional functions. A multi-index j is commonly
defined by j = ( j1, . . . , jd) ∈ N

d , d ∈ N. The basic operations such as addition and
multiplication are understood pointwise, i.e. j � r = ( j1 � r1, . . . , jd � rd). This can
also be done with a natural number n which is then interpreted as a multi-index
with the same entry n = (n, . . . , n). Finally, the sum over a vector indexed by a
multi-index is given by

r∑

j=k

x j :=
r1∑

j1=k1

. . .

rd∑

jd=kd

x j1,..., jd , (5)

where k, r ∈ N
d .

The multi-indices can be used to define functions in higher dimensions by the
tensor product of the one-dimensional functions. The tensor product of f : R → R

is given by
f (x) = f (x1) · . . . · f (xd), (6)

where {xi }i=1,...,d = x ∈ R
d with xi ∈ R. Hence, the input parameter defines the

dimensions. This simplifies the transition between the one- and d-dimensional case.

2.1 Definition

It is important to notice that Walsh functions behave very similarly to the complex
exponential functions when the setting is changed from the decimal to the dyadic
analysis. Dyadic analysis is a framework where functions are analysed for the sit-
uation where decimal addition is replaced by dyadic addition. Therefore, we start
with a short review of the dyadic representation and addition. Let x ∈ R+, the dyadic
representation is given by
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x =
∑

i∈Z
xi2

i , (7)

where xi ∈ {0, 1} for all i ∈ Z. To make this representation unique, we use the one
that ends in 0 instead of 1 if there is a choice. The dyadic addition of two numbers
x, y ∈ R+ is given by

x ⊕ y =
∑

i∈Z
(xi ⊕2 yi )2

i , (8)

where xi ⊕2 yi is addition modulo two, i.e. 0 ⊕2 0 = 0, 0 ⊕2 1 = 1, 1 ⊕2 0 = 1,
1 ⊕2 1 = 0. This definition can also be extended to allR and works as in the decimal
case. We use the convention to denote negative numbers with a −.

With this information at hand, we can now define theWalsh functions, which span
the sampling space SM .

Definition 1 ([36]) Let t ∈ N and x ∈ [0, 1) with the dyadic representation (t0, . . .)
and (. . . , x−1). Then there exists a unique n = n(t) ∈ N such that t = ∑n−1

i=0 ti2
i ,

in particular tn �= 0 and tk = 0 for all k ≥ n. Let tn = (t0, . . . , tn) and for x =∑−1
i=−∞ xi2i define xn = (x−n, . . . , x−1), and CW : Rn 
→ R

n by

CW =

⎛

⎜⎜⎜⎜⎜⎝

0 · · · 0 1 1
... . .

.
. .

. 1 0

0 . .
.

. .
.

. .
. ...

1 1 . .
. ...

1 0 · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎠
. (9)

The Walsh functions are then given by

wal(t; x) = (−1)t
n ·CW xn . (10)

This definition is a bit longer to write, however, it gives an interesting insight
into the ordering of the Walsh functions. There are a lot of different orderings of the
Walsh functions available. The first choice for the matrix CW might be the identity.
The functions are then called Walsh–Kronecker functions. The problem with this
ordering is that the functions change completely if the maximal element n(t) is
changed. Therefore, they are seldom used in practice. One attempt to overcome this
problem is the Walsh–Paley ordering which is given by the reversal matrix:

CWP =

⎛

⎜⎜⎜⎜⎜⎝

0 · · · 0 0 1
... . .

.
. .

. 1 0

0 . .
.
. .

.
. .

. 0

0 1 . .
.
. .

. ...

1 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
. (11)



On Reconstructing Functions from Binary Measurements 103

In this scenario, the functions stay the samewith changingn(t).Hence, theyovercome
one drawback of theWalsh–Kronecker ordering. However, they are not ordered with
increasing number of zero crossing. This would be a desirable property because,
first, it makes them similar to exponential functions and second, it relates well to the
level ordering of the wavelets. Therefore, we use the presented definition as it obeys
none of the discussed drawbacks.

It is also possible to extend the classical Walsh functions to inputs in R+ × R+,
i.e.

Wal(t, x) = (−1)t0x0 wal([t] ; x)wal([x] ; t), (12)

where t and x have the dyadic representation (ti )i∈Z and (xi )i∈Z, t0, x0 are the corre-
sponding elements of the sequence and [·] denotes the rounding down operation. We
get the same functions if CW is defined over N instead of {1, . . . , n(t)}. For negative
inputs, we take the same definition as in [36]

Wal(−t, x) := −Wal(t, x) (13)

Wal(t,−x) := −Wal(t, x). (14)

With the presentation of the multi-indices and the generalized Walsh functions, it
is now easy to define them in higher dimensions with the tensor product by

Wal(t, x) =
d⊗

k=1

Wal(tk, xk), (15)

where t = {tk}k=1,...,d , x = {xk}k=1,...,d ∈ R
d . These function then span the sampling

space, i.e.
S = span

{
Wal(t, ·), t ∈ N

d
} ⊂ L2([0, 1]d) (16)

and for M = md for some m ∈ N we have

SM = span {Wal(t, ·), ti ≤ m, i = 1, . . . , d} ⊂ L2([0, 1]d) (17)

For discrete signals inCN , the orthogonal projection onto the sampling space is often
denoted by Ψ , which we shall discuss later on.

Finally, we define a continuous and a discrete transform. For the definition of
the continuous transform, we have to ensure that the integral exists. Therefore, let
f ∈ L2([0, 1]d) then the generalized Walsh transform is given almost everywhere
by

f
∧

W

(t) = W { f (·)} (t) = 〈 f (·),Wal(t, ·)〉 =
∫

[0,1]d
f (x)Wal(t, x)dx, t ∈ R

d .

(18)
The restrictions to functions which are supported in [0, 1]d leads to the use of bound-
ary corrected wavelets which are presented in Sect. 3. For the discrete transform,
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let N = 2n , n ∈ N and x = {x0, . . . , xN−1} ∈ R
N then the one-dimensional discrete

Walsh transform of x is given by X = {X0, . . . , XN−1} with

X j = 1

N

N−1∑

k=0

xk Wal
(
j,

k

N

)
. (19)

As discussed before, the Walsh functions are desirable because of the fast transform.
It can be seen here, that this indeed corresponds to the Hadamard transform and
therefore, the Walsh functions are its kernel.

In higher dimensions, we get for x ∈ R
N1×...×Nd where xki ∈ R, k = {ki }i=1,...,d ,

ki = 0, . . . , Ni − 1 the discrete Walsh transformed X = {
X j
} ∈ R

N1×...×Nd , where
X ji ∈ R, j = { ji }i=1,...,d , ji = 0, . . . , Ni − 1, with

X j = 1
∏d

i=1 Ni

N−1∑

k=0

xk Wal( j,
k

N
). (20)

2.2 Properties

In this section, we recall the most important and useful properties of the Walsh
functions and transfer them to the continuous transform. The Walsh functions are
symmetric,

Wal(t, x) = Wal(x, t)∀t, x ∈ R, (21)

and they obey the scaling property as well as the multiplicative identity, i.e.

Wal(2k t, x) = Wal(t, 2k x)∀t, x ∈ R, k ∈ N (22)

and
Wal(t, x)Wal(t, y) = Wal(t, x ⊕ y)∀t, x, y ∈ R. (23)

Due to the tensor product definition, these properties also hold in the d-dimensional
case. Moreover, we have for the transform, that it is linear:

W {a f (x) + bg(x)} = aW { f (x)} + bW {g(x)} ∀ a, b ∈ R, f, g ∈ L2([0, 1]d),
(24)

obeys the following shift and scaling property, i.e.

W { f (x ⊕ y)} (t) = W { f (y)} (t)Wal(x, t)∀x ∈ R
d , f ∈ L2([0, 1]d) (25)

and

W
{
f (2mx)

}
(t) = 1

2m
W { f (x)} (

t

2m
)∀m ∈ N

d , f ∈ L2([0, 1]d). (26)
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3 Reconstruction Space

The reconstruction space should be chosen appropriately for the given data. For image
and audio signals,wavelets haveproven to bevery useful as they are able to present the
data sparsely. In the following,wewill dealwithDaubechieswavelets.Normally, they
are defined on the wholeRd . However, we need to have thatS⊥

M ∩ RN = {0} because
otherwise there are elements in the reconstruction space which cannot be captured
with the sampling space and makes it impossible to a have unique solution to the
reconstruction problem. Hence, we have to restrict ourselves to wavelets that are only
defined on the cube [0, 1]d . For this sake, we use boundary corrected wavelets and
in higher dimensions separable boundary corrected wavelets which are constructed
by tensor products. We follow the construction as in [20].

For a smoother outline of boundary wavelets, we start with the one-dimensional
case. We denote the mother wavelet with ψ and the corresponding scaling function
with φ, which is equal to the common literature in this area. The corresponding
wavelet and scaling spaces are spanned by the scaled and translated versions

ψr, j (x) := 2r/2ψ(2r x − j) and φr, j (x) := 2r/2φ(2r x − j), (27)

where r, j ∈ Z. With this, we obtain the wavelet spaceWr := span
{
ψr, j : j ∈ Z

}
at

level r and accordingly, the scaling space Vr := span
{
φr, j : j ∈ Z

}
. As discussed at

the beginning of the chapter and in the previous chapter we have to restrict ourselves
to functions defined on [0, 1]d . Therefore, we take boundary-corrected Daubechies
wavelets which are introduced in Sect. 4 in [20]. They have two major advantages.
The first is the maintained smoothness and compactness properties of the original
wavelet. Second, they also keep the multi-resolution analysis. This is important for
the definition of the higher dimensional wavelets. It allows us to keep the structure
also in higher dimensions. We can still represent the reconstruction space with the
scaling space in only one level.

We start with the scaling function at the level J0 such that the functions can only
intersect with one boundary at a time. The scaling space is then given by

V b
J0 = span

{
φJ0, j : j = 0, . . . , 2J0 − p − 1,φ#

J0, j : j = 2J0 − p, . . . , 2J0 − 1
}
,

(28)
where φ# is the scaling function reflected at 1. The definition for higher levels
r > J0 works accordingly. We denote the boundary wavelets by ψb and ψb

j,m(x) =
2 j/2ψ(2 j x − m) for j ≥ J0. We are only interested in the smoothness properties of
the wavelet, which stay the same to the generating wavelet ψ. Therefore, we do not
get into the details about the construction of the ψb. Interested readers should seek
out for [20] for a detailed explanation. The wavelet space is then given by

Wb
r = span

{
ψb
r, j : j = 0, . . . , 2r

}
. (29)
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For the linear reconstruction methods, it suffices to only consider the reconstruction
space as a whole. Therefore, we exploit the multi-resolution analysis and we can
represent the wavelet spaces up to level R − 1 by the scaling space at level R, i.e.

⋃

r<R

Wb
r = V b

R . (30)

This allows us for a number of coefficients related to the levels, i.e. N = 2R to
represent the reconstruction space as

RN := V b
R . (31)

This has the positive byproduct that we do not have to deal with the internal ordering.
For the non-linear methods, this internal ordering becomes more important. We

then let
RN := V b

J0 ⊕ Wb
J0 . . . ⊕ Wb

R−1. (32)

We now get to the definition in higher dimensions. The scaling space is defined
by the tensor product, i.e.

RN = V b,d
R := V b

R ⊗ . . . ⊗ V b
R (d-times) (33)

for N = 2dR . It is important to note that the wavelet space in higher dimensions is
not simply the tensor product of the one-dimensional wavelets, but the combination
of wavelets and scaling functions, i.e.

V b,d
j = V b

j ⊗ . . . ⊗ V b
j = (V b

j−1 ⊕ Wb
j−1) ⊗ . . . ⊗ (V b

j−1 ⊕ Wb
j−1) = V b,d

j−1 ⊕ Wb,d
j−1.

(34)
And hence,

Wb,d
j−1 := (V b

j−1 ⊕ Wb
j−1) ⊗ . . . ⊗ (V b

j−1 ⊕ Wb
j−1) � V b,d

j−1. (35)

Let φb,d
J0,m

= ⊗d
i=1 φb

J0,mi
and ψb,d

j,m = ⊗d
i=1 ψb

j,mi
, where φb can stand for φ or φ#

depending on m. For the reconstruction space this results in

R =
{
φb,d
J0,m

,m = (m1, . . . ,md),mi = 0, . . . , 2J0 − 1 (36)

φb,d−1
j,m ⊗ ψ j,m, . . . ,φb

j,m ⊗ ψb,d−1
j,m ,ψb,d

j,m, (37)

j ≥ J0,m = (m1, . . . ,md),mi = 0, . . . , 2 j − 1
}
. (38)

Note the abuse of notation in φb,d−r
j,m ⊕ ψb,r

j,m . Only the parts of the multi-index
m = (m1, . . . ,md) related to the position of the function in the tensor product are
used for the shift of the function. Moreover, we have 2d different possibilities to
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combine the scaling function and the wavelets by the tensor product. Hence, there are
2d j (2d − 1) elements at every level j . In case of doubt of the dimension, we will use
an upper index d to make the distinction clear, i.e. for udi, j . For the discrete setting
the orthogonal projection onto the reconstruction space is often denoted byΦ, which
will be discussed in more details with the numerical experiments.

4 Linear Reconstruction Methods

In this section, we are concerned with two different linear reconstructionmethods the
PBDW method and generalized sampling. They both have in common that they are
linear and share the same condition number and that the accuracy is highly dependent
on the stable sampling rate which is analysed in the last subsection.

4.1 PBDWMethod

The PBDW method as introduced in [51] and analysed in [10, 13, 22] is based
on the following idea. Given the measurements l := PSM f , where PSM denotes the
orthogonal projection onto the subspaceSM , one tries to find an approximation that is
consistent with the measurements and close to the reconstruction spaceRN , which is
measured with the distance dist( f,RN ) = min {|| f − ϕ||2 : ϕ ∈ RN } and bounded
by a sequence {εN }N∈N. Mathematically, one tries to approximate f by f ∗ ∈ Kl

where we define

K = { f ∈ H : dist( f,RN ) ≤ εN } and Hl = {
f ∈ H : PSM f = l

}
, (39)

and the space of possible approximation is then the intersectionKl := K ∩ Hl . Obvi-
ously, we try to find the closest element f ∗ ∈ Kl to the true solution f , hence, we
solve the minimization problem

g∗ = argming∈RN
||l − PSM g||2. (40)

The outcome g∗ is then adjusted to be consistent with the measurements by

f ∗ = l + PS⊥
M
g∗. (41)

Then f ∗ is the solution to the PBDW method and was analysed in [13] and shown
to be optimal with respect to the distance to the true function for all functions that
are consistent with the measurements. We have the error estimate

|| f − f ∗|| ≤ σ(RN ,SM) dist( f,RN ). (42)



108 R. Calderbank et al.

This error estimate was then improved in [51] to

|| f − f ∗|| ≤ σ(RN ,SM) dist( f,RN ⊕ (SM ∩ R⊥
N )). (43)

However, it was shown in [13] that the factor of the subspace angle σ(RN ,SM)

cannot be removed or improved.
This underlines again that it is important to make sure that RN ∩ S⊥

M = {0}.
Moreover, it underlines the importance of the stable sampling rate and estimates
of the relation between the number of samples M and the number of reconstructed
coefficients N to get a stable and accurate reconstruction. In the next section, we
discuss the concept of generalized sampling and see that the condition number of the
PBDW method also equals the subspace angle, which underlines its importance.

4.2 Generalized Sampling

We now study a different linear reconstruction technique: generalized sampling.
Unlike PBDW, it forces the solution to stay in the reconstruction space. In particular,
for very sparse data in the reconstruction space, it improves the reconstruction quality.

The method is an extension of the finite section methods [14, 38, 39, 48]. In
important cases like Fourier-wavelet or Walsh-wavelet the finite section method is
very unstable. The advantage of generalized sampling is that it allows a different
number of samples than reconstructed coefficients, which makes the method stable
and accurate. The question of how to choose the number of measurements with
respect to the number of coefficients is answered by the stable sampling rate. We
give thismethod now, and then explain how it can be cast into a least squares problem.

Definition 2 ([1]) For f ∈ H and N , M ∈ N we define the reconstruction method
of generalized sampling GN ,M : H → RN by

〈PSMGN ,M( f ),ϕi 〉 = 〈PSM f,ϕi 〉, i = 1, . . . , N , (44)

where ϕi , i = 1, . . . , N spanRN . We refer to GN ,M( f ) as the generalized sampling
reconstruction of f .

Equation (44) can be rewritten as the following least squares problem: We search
for a solution α[N ] ∈ R

N of

U [N ,M]α[N ] = l( f )[M], (45)

where

U [N ,M] =
⎛

⎝
u11 . . . u1N
...

. . .
...

uM1 . . . uMN

⎞

⎠ (46)
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Θ(N ; 5) for DB2 with Nmax
Mmax

= 1.249 Reconstruction matrix U for DB2 - Walsh

Θ(N ; 2) for Haar with Nmax
Mmax

= 1 Reconstruction matrix U for Haar-Walsh

Fig. 1 Stable sampling rate and change of basis matrix for different wavelets with Walsh functions

and ui j = 〈ϕ j , ζi 〉, l( f )[M] = (l1( f ), . . . , lM( f )) ∈ R
M . The solution of themethod

is then given by GN ,M( f ) = ∑N
i=1 αiϕi . The change of basis matrix U can be seen

in Fig. 1 for Walsh measurements and different wavelets.
Generalized sampling was widely studied and it was shown that (44) yields a

solution if the number of samples is large enough.

Theorem 1 ([2]) Let N ∈ N. Then, there exists M0 ∈ N such that for every f ∈ H
Eq. (44) has a unique solution GN ,M( f ) for all M ≥ M0. Moreover, the smallest M0

is the least number such that cos(ω(RN ,SM0)) > 0.

Additionally, the condition number and optimality was analysed. Here it is
interesting to notice, that the generalized sampling as well as the PBDW method
are optimal in their setting and that in both cases the performance depends on the
subspace angle between the sampling and reconstruction space σ(RN ,SM).

Theorem 2 ([2]) Retaining the definitions and notations from this section, for all
f ∈ H we have

||GN ,M( f )|| ≤ σ(RN ,SM)|| f ||, (47)
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and
|| f − PRN f || ≤ || f − GN ,M( f )|| ≤ σ(RN ,SM)|| f − PRN f ||. (48)

In particular, these bounds are sharp.

Remark that the same least square problem is solved for the PBDW method and
generalized sampling. Therefore, the analysis of the condition number κ(RN ,SM)

of the generalized sampling approach in [4] translates directly to the PBDWmethod.
We get

κ(RN ,SM) = σ(RN ,SM). (49)

Hence, the stable sampling rate is important to analyse the accuracy and also the
stability.

4.3 The Stable Sampling Rate for the Walsh-Wavelet Case

In this section, we recall the results from [41] about the stable sampling rate for the
Walsh-wavelet case.

Theorem 3 ([41])LetS andRbe the sampling and reconstruction space spannedby
the d-dimensional Walsh functions and separable boundary wavelets, respectively.
Moreover, let N = 2dR with R ∈ N. Then for all θ ∈ (1,∞), there exists Sθ such
that for all M ≥ 2dR Sθ, we have σ(RN ,SM) ≤ θ. In particular, one gets Θ ≤ SθN.
Hence, the relation Θ(N ; θ) = O(N ) holds for all θ ∈ (1,∞).

In Fig. 1, the stable sampling rate is displayed for different Daubechies wavelets.
One can see that the slope Sθ is smaller for wavelets with a more block-diagonal
change of basis matrix. A direct relation between the number of vanishing moments
and the value of Sθ is not knowndue to the very different behaviour ofWalsh functions
and wavelets.

One should note that for the case of Haar wavelets, the slope Sθ = 1 for all
θ ∈ (1,∞). This relation was analysed in more detail in [60].

Theorem 4 ([60]) Let the sampling space S be spanned by the Walsh functions
and the reconstruction spaceR by the Haar wavelets in L2([0, 1]d). If N = 2dR for
some R ∈ N, then for every θ ∈ (1,∞) we have that the stable sampling rate is the
identity, i.e. Θ(N , θ) = N.

These results show that sampling with Walsh functions is nearly as good as sam-
pling directly with wavelets. Hence, the presented algorithms allow to improve the
recovery quality. This can be seen in the comparison with direct inversion where
one gets a lot of block artefacts from Walsh functions or the Gibbs phenomena with
Fourier samples. These are mostly removed after the reconstruction method. We can
analyse mathematically the approximation rate in the different bases.
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4.3.1 Approximation Qualities

Approximation theory provides a useful tool for comparing the representation qual-
ities of different bases. Let {ϕi }i∈N be an orthonormal basis for L2([0, 1]), hence
every f ∈ L2([0, 1]) can be represented by

f =
∑

i∈N
〈 f,ϕi 〉ϕi . (50)

In practice, this is not a feasible representation approach. This is due to the fact
that we can only access and store a finite number of coefficients. Hence, instead of
the true f we can only have an approximation fN = ∑N

i=1〈 f,ϕi 〉ϕi . The resulting
approximation error is given by

ε(N , f ) = || f − fN ||22 =
∫

| f − fN |2dx =
∑

i>N

|〈 f,ϕi 〉|2. (51)

In approximation theory, one compares bases and representation systems in terms of
the decay of ε(N , f ) with respect to N for functions f in some specified function
class. A very fast decaywith N is desirable, because this allows a good representation
from only a few coefficients, which then results in less measurements.

The decay rate of the Walsh transform of Lipschitz continuous functions is anal-
ysed in [9]. It was shown that

〈 f,Wal(n, ·)〉 = W
∧

f (n) ≤ 2−p, (52)

where 2p ≤ n < 2p+1. With this we get for the approximation error

ε(N , f ) ≤
∑

i>N

1

2i2
≤ 1

2N

which then lies inO(N−1). In contrast to the Fourier transform this does not improve
if the function gets smoother or periodic. The resulting artefacts can be seen in Fig.
2. Therefore, the reconstruction techniques as the PBDW method or generalized
sampling are very useful because they allow to change the basis inwhichwe represent
our data. We then use a basis such as wavelets with a much faster decay rate. The
decay rate is analysed in [52]. Daubechies wavelets of order p represent functions
f in the Sobolev space W γ([0, 1]) for some γ < p with an approximation rate of

ε(N , f ) = O(N−2γ). (53)

This underlines the advantage of representing smooth functions with Daubechies
wavelets instead of Walsh functions. Due to the findings in Theorem 3 it is pos-
sible to highly improve the reconstruction quality from binary measurements. In
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Truncated Walsh series Generalized sampling with 64 reconstructed
wavelet coefficients

Fig. 2 Reconstruction from 77 binary measurements, where both examples use exactly the same
samples. The figure illustrates the change in approximation rate when converting theWalsh samples
to wavelet coefficients via generalized sampling

particular, because of the linearity of the stable sampling rate and a reasonable slow
slope, for example S2 = 2 for Daubechies wavelets of order 8, we get an improved
representation from O(N−1) to O(N−2γ).

5 Non-linear Reconstruction Methods

In the previous section, we have seen linear reconstruction methods and discussed
their convergence properties in view of subspace angles and the stable sampling rate.
Even though they offer good results and fast computations, they are rather restrictive
in terms of adaptivity to the problem at hand, in particular, they do not allow for sub-
sampling. Hence, we want to extend our analysis to the non-linear methods where we
focus on compressed sensing (CS) and the structure binary measurements provide
that allows for substantial undersampling. The main issue with this extension is that
classical compressed sensing considers finite-dimensional signals. However, we are
dealing with infinite-dimensional ones. Hence, the classic compressed needs to be
extended to infinite-dimensional compressed sensing introduced in [5, 7]. Never-
theless, we start this chapter with a quick review of the standard finite-dimensional
compressed sensing.

5.1 Classical Compressed Sensing

Compressed sensing (CS) was introduced by Candès et al. [19] and Donoho [24]
and is formulated in the finite-dimensional setting, stating that under appropriate
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conditions one can overcome the Nyquist sampling barrier and recover signals using
far fewer samples than dictated by the classical Shannon theory.

A traditional CS setup is as follows. The aim is to recover a signal f from an
incomplete (subsampled) set of measurements y. Here, f is represented as a vector
in C

N and is assumed to be s-sparse in some orthonormal basis Φ ∈ C
N×N (e.g.

wavelets) called the reconstruction or sparsity basis. This means that its vector of
coefficients x = Φ f has atmost s non-zero entries. LetΨ ∈ C

N×N be anorthonormal
basis, called sensing or sampling basis, and write U = Ψ Φ∗ = (ui j ), which is an
isometry and the discrete version of U in (46). The coherence of U is

μ(U ) = max
i, j

|ui j |2 ∈ [1/N , 1]. (54)

and U is said to be perfectly incoherent if μ(U ) = 1/N .
Let the subsampling pattern be the set Ω ⊆ {1, . . . , N } of cardinality m with

its elements chosen uniformly at random. This is one of the main differences to the
previous discussed linear reconstruction methods. For the linear methods, we restrict
ourselves to the first N measurements instead of choosing the most beneficial ones.
Owing to a result by Candès and Plan [16] and Adcock and Hansen [5], if we have
access to the subset of noisy measurements y = PΩΨ f + e then f can be recovered
from y exactly (up to the noise level) with probability at least 1 − ε if

m � μ(U ) · N · s · (1 + log(1/ε)) · log(N ), (55)

where PΩ ∈ {0, 1}N×N is the diagonal projectionmatrix with the j th entry 1 if j ∈ Ω

and 0 otherwise, and the notation a � b means that a ≥ C b where C > 0 is some
constant independent of a and b. Then, f is recovered by solving

min
z∈CN

‖z‖1 subject to ‖y − PΩUz‖ ≤ η. (56)

where η is chosen according to the noise level, i.e. ‖e‖ ≤ η. The key estimate (55)
shows that the number of measurements m required is, up to a log factor, on the
order of the sparsity s, provided the coherence μ(U ) = O (1/N ). This is the case,
for example,whenU is theDFT,whichwas studied in someof thefirstCSpapers [19].

The main reason why we want to consider infinite dimensional CS is threefold.
First, our signal is defined in a continuous setting in L([0, 1]d) instead of Rn , hence
it is sensible to adapt the reconstruction problem accordingly. Second, the discrete
setting leads to the measurement mismatch and wavelet crime. The measurement
mismatch comes from the fact that the discrete Hadamard transform leads to an
approximation of the signal by step function, which always results in an additional
approximation error for our method. The wavelet crime describes the error which
results from assuming that the discrete inverse of the wavelet coefficients leads to
the point evaluations of the signal. This is an approximation, which uses the fact
that for high order scaling function the support is nearly pointwise. However, as this
is only an approximation we also add up this error. Finally, we want to analyse the
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change of basis matrix. For the analysis, it is easier to consider the inner products
of the wavelets and the Walsh function than to work with the discrete matrices. This
allows us to develop a rich analysis.

5.2 Types of Compressed Sensing Problems

CS problems can be roughly divided into two types. Type I are problems where
the physical device imposes the sampling operator, but allows some limited free-
dom to design the sampling strategy. This category is vast, with examples includ-
ing magnetic resonance imaging (MRI), electron microscopy (EM), computerized
tomography, seismic tomography and radio interferometry. Type II are problems
where the sensing mechanism offers freedom to design both the sampling operator
and the strategy. Examples include fluorescence microscopy (FM) and compressive
imaging (CI) (e.g. single pixel and lensless cameras). In these two examples, many
practical setups still impose some restrictions regarding the sampling operator, e.g.
measurements must typically be binary.

In a simplified view, traditional CS assumes three main principles: sparsity (there
are s important coefficients in the vector to be recovered, however, the location is
arbitrary), incoherence (the values in the measurements matrix should be uniformly
spread out) and sampling is performed with some degree of randomness.

In many Type I practical problems, some of the above principles as introduced in
the traditionalCSmodel are lacking. For example,manyType I problems are coherent
due to the physics of the underlying sensing mechanism. However, CS was used
successfully in such problems, though with very different sampling techniques than
uniform random subsampling. For Type II problems, the traditional CS framework
is applicable, e.g. in compressive imaging or fluorescence microscopy one can use
randomBernoullimatrices.However, aswe shall see, the use of complete randomness
does not allowone to exploit the structure of the signal during the sampling procedure;
it can still be taken into account after sampling (during recovery) but not as efficiently.

5.3 Taking Structure and Infinite Dimensionality into
Account

The problem considered in this paper is a Type II problem, and there are several
ways one can choose the sampling. However, the finite-dimensional setup in Sect.
5.1 must be extended in order to address Problem 1. The first question one may ask
oneself is: how should one carry out the subsampling? Indeed, would choosing some
M ∈ N and then, as suggested in Sect. 5.1, choosing uniformly at random m indices
from {1, . . . , M} be a reasonable idea?
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Fig. 3 Colour plot of the
absolute values of the first
1024 × 1024 matrix
elements of the infinite
matrix U in (57) for
two-dimensional Haar
wavelets and Walsh
functions. White colour
denotes 1, whereas black
illustrates 0

In order to answer this question, it may be of interest to investigate the relationship
between the sampling space of Walsh functions and the reconstruction space of, for
example, wavelets. Consider the infinite change of basis matrix

U =
⎛

⎝
〈ϕ1, ζ1〉 〈ϕ2, ζ1〉 · · ·
〈ϕ1, ζ2〉 〈ϕ2, ζ2〉 · · ·

...
...

. . .

⎞

⎠ , (57)

where the ϕ j s are the Haar wavelets and the ζ j s are the Walsh functions. In Fig.
3, the absolute values of the matrix elements (the 1024 × 1024 finite section of U )
are displayed in a greyscale for the two-dimensional Walsh and Haar functions. It is
evident from the figure that there is a very clear block-diagonal structure. Moreover,
in Fig. 1, we can see the stable sampling rate and the absolute values of U for
Daubechies 2 and Haar wavelets given sampling with Walsh functions in the one-
dimensional case. It is clear that the matrixU obeys a lot of structure. Indeed, for the
Walsh–Haar case, we observe perfect block diagonality, which leads to a slope of the
stable sampling rate of 1. These observations can be made rigorous in the following
results.

Proposition 1 Let ψ = X[0,1/2] − X(1/2,1] be the Haar wavelet. Then, we have that

|〈ψR, j ,Wal(n, ·)〉| =
{
2−R/2 2R ≤ n < 2R+1, 0 ≤ j ≤ 2R − 1

0 otherwise,
(58)

where we recall the wavelet notation with subscripts from (27).

Note that the Haar wavelet is only defined on [0, 1] and hence does not need to
be boundary corrected in contrast to higher order Daubechies wavelets.
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Proposition 2 ([60]) Let φ = X[0,1] be the Haar scaling function. Then, we have
that the Walsh transform obeys the following block and decay structure

|〈φR, j ,Wal(n, ·)〉| =
{
2−R/2 n < 2R, 0 ≤ j ≤ 2R − 1

0 otherwise,
(59)

where we recall the wavelet notation with subscripts from (27).

These results can be combined into a theorem describing the situation in two
dimensions. Indeed, recall the standard two-dimensional setup for the Haar wavelet:

ψR, j1, j2,l(x1, x2) =

⎧
⎪⎨

⎪⎩

φR, j1(x1)ψR, j2(x2) l = 1

ψR, j1(x1)φR, j2(x2) l = 2

ψR, j1(x1)ψR, j2(x2) l = 3.

(60)

We then get the theoretical justification for the observed structure in the change of
basis matrix in Fig. 3.

Theorem 5 ([60]) Let ψR, j1, j2,l be the Haar wavelet defined as in (60). Then, the
Walsh transform has the following property. For 0 ≤ j1, j2 ≤ 2R − 1,

|〈ψR, j1, j2,1,Wal(n1, n2, ·, ·)〉| =
{
2−R n1 ≤ 2R, 2R ≤ n2 < 2R+1

0 otherwise,
(61)

|〈ψR, j1, j2,2,Wal(n1, n2, ·, ·)〉| =
{
2−R 2R ≤ n1 < 2R+1, n2 ≤ 2R

0 otherwise
(62)

and for the third version

|〈ψR, j1, j2,3,Wal(n1, n2, ·, ·)〉| =
{
2−R 2R ≤ n1 < 2R+1, 2R ≤ n < 2R+1

0 otherwise.
(63)

Theorem 5 describes the block-diagonal structure visualized in Fig. 3. These find-
ings suggest that also for the compressed sensing approach it is sensible to take addi-
tional structure that can be observed for wavelets and Walsh functions into account.
This motivated the introduction of an extended framework for CS [3] by generalizing
the traditional CS principles of incoherence and sparsity into asymptotic incoherence
and asymptotic sparsity, proposing a matched sampling procedure called multilevel
sampling. In Sect. 5.4, we shall also discuss structured sampling in contrast with
structured recovery, and implications regarding sampling operators in the context of
binary measurements.
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5.3.1 Multilevel Sampling

High coherence in the first few rows ofU means that important information about the
signal to be recovered is likely to be contained in the corresponding measurements,
and thus we should fully sample these rows. Once outside this region, as coherence
starts decreasing, we can subsample gradually. This is also the wisdom behind the
various variable density sampling strategies, which were first introduced in [49].

Definition 3 (Multilevel sampling) Let r ∈N, M=(M0, . . . , Mr )∈N
r+1 with 1≤

M1<. . .<Mr , m=(m1, . . . ,mr )∈N
r , with mk ≤Mk − Mk−1, k = 1, . . . , r , and

that Ωk ⊆{Mk−1+1, . . . , Mk}, |Ωk |=mk , are chosen uniformly at random, where
M0=0. We refer to the set Ω =ΩM,m=⋃r

k=1 Ωk as an (M,m)-multilevel sampling
scheme (using r levels).

Briefly, for a vector x , the sampling amount mk needed in each sampling band
Ωk is determined by the sparsity of x in the corresponding sparsity band Δk and the
asymptotic coherence μ(P⊥

Mk
U ).

5.3.2 Asymptotic Sparsity

Let us consider awavelet basis indexedbyonevariable in the canonicalwayaccording
to the different scales {ϕn}n∈N. There is a natural decomposition of N into finite
subsets according to the wavelet scales, N=⋃k∈N{Nk−1+1, . . . , Nk}, where 0=
N0<N1<N2<. . . and {Nk−1+1, . . . , Nk} is the set of indices corresponding to the
kth scale. For the boundary wavelets, we have Ni = 2d(J0+i). Let x ∈ l2(N) be the
coefficients of a function f in this basis, ε ∈ (0, 1] and define the global sparsity, s,
and the sparsity at the kth level, sk as follows:

s = s(ε) = min
{
n :
∥∥∥
∑

i∈Nn

xiϕi

∥∥∥ ≥ ε
∥∥∥

∞∑

j=1

x jϕ j

∥∥∥
}
,

sk = sk(ε) = ∣∣Ns(ε) ∩ {Nk−1 + 1, . . . , Nk}
∣∣ ,

(64)

where Nn is the set of indices of the largest n coefficients in absolute value and |·|
is the set cardinality. Figure 4 shows that besides being sparse, images have more
structure, namely asymptotic sparsity, i.e. the relative per-level sparsity

sk/(Nk − Nk−1) −→ 0 (65)

rapidly as k→∞ for any fixed ε∈(0, 1]. In particular, images are far sparser at fine
scales (large k) than at coarse scales (small k). This also holds for other function
systems, e.g. curvelets [15], contourlets [23] or shearlets [21]. Note that asymptotic
sparsity is a rather different, and much more general structure than the connected
tree structure of wavelet coefficients [53]. (64) and (65) do not assume such a tree
structure, but only different local sparsities sk at different levels.
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Fig. 4 Sparsity of Daubechies 4 coefficients of an MRI image, courtesy of Siemens AG. Levels
correspond to wavelet scales and sk(ε) is given by (64). Each curve shows the relative sparsity at
level k as a function of ε. Their decreasing nature for increasing k confirms asymptotic sparsity (65)

Given the structure of function systems such as wavelets and their generalizations,
we instead consider the notion of sparsity in levels:

Definition 4 (Sparsity in levels) Let x be an element of either CN or l2(N). For
r ∈ N let N = (N0, . . . , Nr ) ∈ N

r and s = (s1, . . . , sr ) ∈ N
r , with sk ≤ Nk − Nk−1,

k = 1, . . . , r , where N0 = 0. We say that x is (s,N)-sparse if, for each k = 1, . . . , r
we have |Δk | ≤ sk , where

Δk := supp(x) ∩ {Nk−1 + 1, . . . , Nk}.

We write Σs,N for the set of (s,N)-sparse vectors.

5.3.3 Asymptotic Incoherence

In contrast with random matrices, such as Gaussian or Bernoulli, many sampling
and sparsifying operators typically found in practice yield fully coherent problems,
such as the Hadamard with wavelets case discussed earlier. Indeed, Fig. 1 shows the
absolute values of the entries of the matrixU with Haar and Daubechies 2 wavelets.
Although there are large values of U in both cases (since U is coherent as per (54)),
these are isolated to a leading submatrix. Values get asymptotically smaller once we
move away from this region. This motivates the following definition.

Definition 5 (Asymptotic incoherence) Let {UN } be a sequence of isometries with
UN ∈ C

N×N . Then {UN } is asymptotically incoherent if both μ(P⊥
K UN ), μ(UN P⊥

K )

→ 0 when K → ∞ with N/K = c, for all c ≥ 1. Conversely, if U ∈ B(l2(N)),
(i.e. U belongs to the space of bounded operators on l2(N)) then we say that U is
asymptotically incoherent if μ(P⊥

K U ), μ(U P⊥
K ) → 0 when K → ∞.
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In brief, U is asymptotically incoherent if the coherences of the matrices formed
by removing either the first K rows or columns of U are small. As Fig. 1 shows
the change of basis matrix U in (57) when considering Walsh functions and Haar
wavelets is clearly asymptotically incoherent. However, asymptotic incoherencemay
not be refined enough to capture the finesses of the fine structures in the change of
basis matrixU . In particular, we need the concept of local coherence, which is much
more of a scalpel that allows for precise recovery guarantees.

Definition 6 (Local coherence) Let U be an isometry of either CN or l2(N). If
M = (M0, . . . , Mr ) ∈ N

r+1 and N = (N0, . . . , Nr ) ∈ N
r+1 with 1 ≤ M1 < . . . Mr

and 1 ≤ N1 < . . . < Nr the (k, l)th local coherence ofU with respect toM and N is
given by

μM,N(k, l) =
√

μ(PMk−1
Mk

U PNl−1
Nl

) · μ(PMk−1
Mk

U ), k, l = 1, . . . , r,

where N0 = M0 = 0 and Pa
b denotes the projection matrix corresponding to indices

{a + 1, . . . , b}. In the case where U ∈ B(l2(N)), we also define

μM,N(k,∞) =
√

μ(PMk−1
Mk

U P⊥
Nr−1

) · μ(PMk−1
Mk

U ), k = 1, . . . , r.

By estimating the local coherence of U in (57) for arbitrary wavelets, we can
obtain recovery guaranties for infinite-dimensional compressed sensing. These are
presented in the next section.

5.3.4 Recovery Guarantees

We are stating the recovery guarantees for Walsh functions and wavelets. For this,
we consider the ordering of the levels of the sampling and the reconstruction space.
We get

N = (Nd
0 , Nd

1 , . . . , Nd
r ) = (0, 2d(J0+1), 2d(J0+2), . . . , 2d(J0+r)) (66)

and

M = (Md
0 , Md

1 , . . . , Md
r−1, M

d
r ) (67)

= (0, 2d(J0+1), 2d(J0+2), . . . , 2d(J0+r−1), 2d(J0+r+q)).

Theorem 6 ([59]) Let the notation be as before, i.e. let the sampling space be given
by Walsh functions and the reconstruction space spanned by boundary corrected
Daubechies wavelets. Additionally, let ε > 0 and Ω = ΩM,m be a multilevel sam-
pling scheme such that the following holds:

1. Let M = Mr, K = maxk=1,...,r

{
Mk−Mk−1

mk

}
, N = Nr , s = s1 + . . . + sr such that
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M ≥ CN 2 · log2(4NK
√
s). (68)

2. For each k = 1, . . . , r ,

mk ≥ C log(ε−1) log
(
K 2sM

) · Mk − Mk−1

Mk−1
·
(

r∑

l=1

2−d|k−l|sl

)
. (69)

Then with probability exceeding 1 − sε, any minimizer ξ ∈ 	1(N) of (56) satisfies

||ξ − x || ≤ C ·
(
δ
√
K (1 + L

√
s) + σs,N ( f )

)
,

for some constant C, where L = C ·
(
1 +

√
log2(6ε−1)

log2(4K N
√
s)

)
. If mk = Mk − Mk−1 for

1 ≤ k ≤ r then this holds with probability 1.

We see that the impact of the off block parts is exponentially decreasing. This
allows us to exploit the asymptotic sparsity and reduce heavily the number of samples.

Remark 1 In Eq. (68), we see that the relation between the number of samples and
coefficients is squared with an additional log factor. This quadratic term is likely to
be an artefact of the proof and not sharp. In [7], it was shown that for the Fourier
wavelet case this can be reduced to a linear relation, if the wavelet decays fast under
the Fourier transform, i.e. if it is smooth. Unfortunately, there is no direct relation
between the smoothness of the wavelet and the decay under the Walsh transform.
Therefore, these results are not directly transferable and hence still open research.

5.3.5 Relation to Previous Work

It has long been known that wavelet coefficients possess additional structure beyond
sparsity. In the CS context, this is the basis for structured recovery algorithms, such as
model-based CS [11], Bayesian CS [42] and TurboAMP [57]. We discuss these later
on.These algorithms exploit the connected tree structure ofwavelet coefficients based
on the ‘persistence across scales’ phenomenon [53]. Asymptotic sparsity assumes
only asymptotic decrease of the local sparsities in the individual levels to zero.
Asymptotic sparsity is more general, as the levels chosen need not correspond to the
*-let (for example, wavelets or shearlets, curvelets) levels and itmakes no assumption
about dependencies between coefficients such as a connected tree.

A number of different characterizations of non-flat coherence patterns have been
introduced in CS previously [25, 33, 61, 62]. What differentiates asymptotic inco-
herence is that it allows one to capture (near) block-diagonal structure inherent to
*-let bases, by defining a vector of local coherence values for blocks of the coherence
matrix, and specifically incorporates the asymptotic decrease of these values and the
boundaries of each block. As we shall show, this is key to the practical recovery
performance.
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The idea of sampling the low-order coefficients of an image differently goes back
to the early days of CS. In particular, Donoho considers a two-level approach for
recovering wavelet coefficients in his seminal paper [24], based on acquiring the
coarse scale coefficients directly. This was later extended by Tsaig & Donoho to
so-called ‘multiscale CS’ in [63], where distinct subbands were sensed separately.
See also the works by Candès and Romberg [18] and Romberg [56]. We note that
the sampling schemes of [24, 56], and more recently, the ‘half-half’ scheme of [58]
proposed for the application of CS to fluorescence microscopy are examples of two-
level sampling strategies within our general framework and were analysed in detail
in [3]. Our multilevel sampling extends these ideas as part of a formal framework
for CS.

5.4 Points of Discussion Regarding Structure

Structured sampling and Structured Recovery. In this work, we exploit the sparsity
structure at the sampling stage, by sampling asymptotically incoherent matrices,
and use standard 	1 minimization algorithms. Alternatively, sparsity structure can
be exploited by using universal sampling matrices (e.g. random Gaussian/Bernoulli)
and modified recovery algorithms which exploit the structure at the recovery stage.

Structure or Universality. The universality property of random sensing matrices
(e.g. Gaussian, Bernoulli), explained later on, is a reason for their popularity in
traditional CS. But is universality desirable when the signal sparsity is structured?
Should one use universal matrices when there is freedom to choose the sampling
operator, i.e. in Type II problems? Randommatrices are largely inapplicable in Type I
problems where the sampling operator yields coherent operators.

Storage and speed.Randommatrices,while popular, require either large storage or
are otherwise slow to generate (from a pseudorandomgenerator point of view), which
yields slow recovery and limits the maximum signal size, which adversely affects
computations. However, there exist ways to perform CS using fast transforms that
emulate the usage of random matrices. Nevertheless, is addressing the speed/speed
problems via fast transforms or non-random matrices sufficient?

5.4.1 Structured Sampling and Structured Recovery

The asymptotic CS framework takes into account the sparsity structure during the
sampling stage via multilevel sampling of non-universal sensing matrices. Sparsity
structure can also be taken into account in the recovery algorithm. A well-known
example of such an approach is model-based CS [11], which assumes the signal
is piecewise smooth and exploits the connected tree structure (persistence across
scales) of wavelet coefficients [53] to reduce the search space of the matching pursuit
algorithm [54]. The same tree structure is exploited by the class of message passing
and approximate message passing algorithms [12, 27]. This can be coupled with
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hiddenMarkov trees to model the wavelet structure, such as in the Bayesian CS [42]
and TurboAMP [57] algorithms. Another approach is to assign non-uniform weights
to the sparsity coefficients [45], to favour the important coefficients during 	1 recovery
by assuming some typical decay rate of the coefficients. Another approach assumes
the signal (not its representation in a sparsity basis) is sparse and random, and shows
promising theoretical results when using spatially coupled matrices [26, 46, 65],
yet it is unclear how a practical setup can be realized where signals are sparse in a
transform domain.

Themain difference is that the former approach, i.e.multilevel sampling of asymp-
totically incoherent matrices, incorporates sparsity structure in the sampling strategy
and can use standard 	1 minimization algorithms, whereas the latter approaches
exploit structure by modifying the recovery algorithm and use universal sampling
operators which yield uniform incoherence, e.g. random Gaussian or Bernoulli.

By using universal operators and assuming a sparsity basis, structured recovery is
typically restricted to Type II problems, where the sensing operator can be designed
(see also the remark below), and is limited by the choice of the representation system,
whose structure is exploited by the modified algorithm.

Structured sampling is flexibility with regards to the representation system and
are applicable in both Type I and Type II problems.

To compare performance, we ran a set of simulations of Compressive Imaging
[34, 44], which is a Type II problem, and has utilized universal sensing matrices.
Binary measurements y are taken, typically using a {−1, 1}N×N sensing matrix. Any
matrix with only two values fits this setup, such as Hadamard, random Bernoulli,
Sum-To-One [37], hence we can directly compare the two approaches. Figure 5
shows a representative example from our set of simulations. One can notice that
asymptotic incoherence combined with multilevel sampling of highly non-universal
sensing matrices (e.g. Hadamard, Fourier) allows structured sparsity to be better
exploited than universal sensing matrices, even when the structure is accounted for
in the recovery algorithm. The figure also shows the added benefit of being able to
use a better sparsifying system, in this case curvelets.

Is it possible to combine the two approaches to leverage further gains? The struc-
tured recovery algorithms we have encountered expect the sampling operator to be
incoherent with the recovery basis. Replacing those with asymptotically incoherent
operators such as Hadamard or Fourier resulted in poorer performance, sometimes
failing to produce a result, which isn’t totally surprising given that the aforementioned
structured recovery algorithms make certain assumptions about the sampling oper-
ator. Nevertheless, the successful combination of the two approaches is a promising
line of investigation and is the subject of ongoing research.

5.4.2 Structure and Universality: Is Universality Desirable?

Universality is a reason for the popularity in traditional CS of random sensing matri-
ces, e.g. Gaussian or Bernoulli. A random matrix A ∈ C

m×N is universal if for every
isometry Ψ ∈ C

N×N , the matrix AΨ satisfies the restricted isometry property [19]



On Reconstructing Functions from Binary Measurements 123

Fig. 5 Compressive Imaging example. 12.5% subsampling at 256×256
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with high probability. For images, a common choice isΨ = Ψ ∗
dwt, the inverse wavelet

transform. Universality is a key feature when the signal is sparse but possesses no
further structure.

But is universality desirable in a sensing matrix when the signal is structured?
First, random matrices are applicable mostly in Type II problems, where there is
freedom to design the sampling operator. Hence also universal matrices are possible
from a practical perspective. But should one use universal matrices there? We argue
that universal matrices offer little room to exploit extra structure the signal may have,
even in Type II problems.

Typical signals in practice exhibit far more structure than sparsity alone: their
sparsity is asymptotic in some basis. Thus, an alternative is to use a non-universal
sensingmatrix, such as Hadamard,ΦHad. As previously discussed and shown in Figs.
1 and 3, U =ΦHadΨ

∗
dwt is completely coherent with all wavelets yet asymptotically

incoherent, and thus perfectly suitable for a multilevel sampling scheme which can
exploit the inherent asymptotic sparsity. This is precisely what we see in Fig. 5:
a multilevel sampled Hadamard matrix can markedly outperform universal matri-
ces in Type II problems. In Type I problems, many imposed sensing operators are
non-universal and asymptotically incoherent with popular sparsity bases, and thus
exploitable using multilevel sampling.

The reasons for the superior results are rooted in the incoherence structure. Uni-
versal and close to universal sensing matrices typically provide a relatively low and
flat coherence pattern. This allows sparsity to be exploited by sampling uniformly
at random but, by definition, these matrices cannot exploit the distinct asymptotic
sparsity structure when using a typical (	1 minimization) CS reconstruction.

In contrast, when the sensing matrix provides a coherence pattern that aligns with
the signal sparsity pattern, one can fruitfully exploit such structure. A multilevel
sampling scheme is likely to give superior results by sampling more in the coherent
regions, where the signal is also typically less sparse. The optimum sampling strategy
is signal dependent. However, real-world signals, particularly images, share a fairly
common structure in the wavelet domain and also in wavelet inspired representation
systems. This structure allows to design variable density sampling strategies. An
added benefit when this alignment exists, is that the sampling procedure allows for
tailoring of the sampling pattern to target application-specific features rather than an
all-round approach, e.g. recovering contours better, trading overall quality.

5.4.3 Storage and Speed: Are Non-random or Orthogonality Enough?

Random matrices require (large) storage and lack fast transforms. This limits the
maximum signal resolution and yields slow recovery. For example, a 1024×1024
recovery with 25% subsampling of a random Gaussian matrix would require 2 Ter-
abytes of free memory and O(1012) time complexity, making it impractical. The
storage issue could be addressed naively, by storing only the initial seed and gener-
ating the matrix on the fly, but that makes the process orders of magnitude slower.



On Reconstructing Functions from Binary Measurements 125

Both the storage and speed issues were, in fact, addressed to various extents, e.g.
pseudorandom column permutations of the columns of orthogonal matrices such
as (block) Hadamard or Fourier [17, 35], Kronecker products of random matrix
stencils [28], or even fully orthogonal matrices such as the Sum-To-One (STOne)
matrix1 [37] which allows for a fast O(N log N ) transform. All these solutions in
the CS context yield similar statistics to a random matrix: they become universal
sampling operators.

Another solution to the storage and speed problem is to instead use structured
matrices like Hadamard, DCT or DFT. These have fast transforms but also provide
asymptotic incoherence with most sparsity bases, thus a multilevel subsampling
scheme can be used. This yields significantly better CS recovery when compared
to universal matrices, as witnessed previously, and it is also applicable to Type I
problems, which impose the sensing operator.

In conclusion, the sensing matrix should contain additional structure besides sim-
ply being non-random and/or orthogonal in order to provide asymptotic incoherence.
Typically, sensing and sparsifyingmatrices that are discrete versions of integral trans-
forms, e.g. Fourier, wavelets etc., will provide asymptotic incoherence, but other
orthogonal and structured matrices like Hadamard will do so too.

6 Conclusion

This work concerns the recovery of functions from binary measurements, that is the
measurements are inner products with functions on {0, 1}N , in the context of linear
recovery using either PBDW or generalized sampling, and non-linear recovery using
infinite dimensional compressed sensing.Weconsidered the use ofWalsh functions in
the sampling domain andwavelets in the reconstruction domain. In the linear case, we
showed that themethods rely on knowing the stable sampling rate, andwe established
its linearity and that it is sharp. Furthermore, we showed that generalized sampling
keeps the solution in the reconstruction space which allows for improvements over
PBDW in the case of highly sparse functions. In the non-linear case, we derived
recovery guarantees and discussed the advantages of using Walsh functions (via the
Hadamard transform) over incoherent sampling.

Acknowledgements RC acknowledges support from the Air Force Office of Scientific Research
through grant FA 9550-17-1-0291. AH acknowledges support from Royal Society UK, and EPSRC
UK through grant EP/L003457/1. BR acknowledges support from EPSRC UK through grants
EP/N014588/1 and EP/R008272/1. LT acknowledges support from EPSRC UK through grant
EP/L016516/1.

1TheSTOnematrix is an orthogonalmatrix that provides universality like randommatrices do.How-
ever, it was invented for many other purposes. It has a fastO(N log N ) transform and allows multi-
scale image recovery from compressive measurements: low-resolution previews can be quickly
generated by applying the fast transform on the measurements directly, and high-resolution recov-
ery is possible from the same measurements via CS solvers. In addition, it allows efficient recovery
of compressive videos when sampling in a semi-random manner.



126 R. Calderbank et al.

References

1. B. Adcock, A. Hansen, G. Kutyniok, J. Ma, Linear stable sampling rate: optimality of 2d
wavelet reconstructions from fourier measurements. SIAM J. Math. Anal. 47(2), 1196–1233
(2015)

2. B. Adcock, A. Hansen, C. Poon, Beyond consistent reconstructions: optimality and sharp
bounds for generalized sampling, and application to the uniform resampling problem. SIAM
J. Math. Anal. 45(5), 3132–3167 (2013)

3. B. Adcock, A. Hansen, C. Poon, B. Roman, Breaking the coherence barrier: a new theory for
compressed sensing. Forum Math. Sigma 5 (2017)

4. B.Adcock,A.C.Hansen,Ageneralized sampling theorem for stable reconstructions in arbitrary
bases. J. Fourier Anal. Appl. 18(4), 685–716 (2010)

5. B. Adcock, A.C. Hansen, Generalized sampling and infinite-dimensional compressed sensing.
Found. Comput. Math. 16(5), 1263–1323 (2016)

6. B. Adcock, A.C. Hansen, C. Poon, On optimal wavelet reconstructions from Fourier samples:
linearity and universality of the stable sampling rate. Appl. Comput. Harmon. Anal. 36(3),
387–415 (2014)

7. B. Adcock, A. C. Hansen, C. Poon, B. Roman, Breaking the coherence barrier: a new theory
for compressed sensing, in Forum of Mathematics, Sigma, volume 5. Cambridge University
Press (2017)

8. A. Aldroubi, M. Unser, A general sampling theory for nonideal acquisition devices. IEEE
Trans. Signal Process. 42(11), 2915–2925 (1994)

9. V. Antun, Coherence estimates between hadamard matrices and daubechies wavelets. Master’s
thesis, University of Oslo (2016)

10. M. Bachmayr, A. Cohen, R. DeVore, G. Migliorati, Sparse polynomial approximation of para-
metric elliptic pdes. part ii: lognormal coefficients. ESAIM:Math.Modell. Numer. Anal. 51(1),
341–363 (2017)

11. R. Baraniuk, V. Cevher, M. Duarte, C. Hedge, Model-based compressive sensing. IEEE T Inf.
Th. 56(4) (2010)

12. D. Baron, S. Sarvotham, R. Baraniuk, Bayesian compressive sensing via belief propagation.
IEEE T Sig. Proc. 58(1) (2010)

13. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Data assimilation in
reduced modeling. SIAM/ASA J. Uncertain. Quantif. 5(1), 1–29 (2017)

14. A. Böttcher, Infinite matrices and projection methods: in lectures on operator theory and its
applications, fields inst. monogr. Amer. Math. Soc. (3), 1–72 (1996)

15. E. Candès, D. Donoho, Recovering edges in ill-posed inverse problems: optimality of curvelet
frames. Ann. Statist. 30(3) (2002)

16. E. Candès, Y. Plan, A probabilistic and RIPless theory of compressed sensing. IEEE T Inf. Th.
57(11) (2011)

17. E. Candès, J. Romberg, Robust signal recovery from incomplete observations, in IEEE Inter-
national Conference on Image Processing (2006)

18. E. Candès, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Problems
23(3) (2007)

19. E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE T Inf. Th. 52(2) (2006)

20. A. Cohen, I. Daubechies, P. Vial,Wavelets on the interval and fast wavelet transforms. Comput.
Harmon. Anal. 1(1), 54–81 (1993)

21. S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, G. Teschke, The uncertainty principle
associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process.
6(2) (2008)

22. R. DeVore, G. Petrova, P. Wojtaszczyk, Data assimilation and sampling in banach spaces.
Calcolo 54(3), 963–1007 (2017)

23. M. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image
representation. IEEE T Image Proc. 14(12) (2005)



On Reconstructing Functions from Binary Measurements 127

24. D. Donoho, Compressed sensing. IEEE T Inf. Th. 52(4) (2006)
25. D. Donoho, M. Elad, Optimally sparse representation in general (non-orthogonal) dictionaries

via 	1 minimization. Proc. Natl. Acad. Sci. USA 100 (2003)
26. D. Donoho, A. Javanmard, A. Montanari, Information-theoretically optimal compressed sens-

ing via spatial coupling and approximate message passing. IEEE T Inf. Th. 59(11) (2013)
27. D. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing.

Proc. Natl Acad. Sci. USA 106(45) (2009)
28. M. Duarte, R. Baraniuk, Kronecker compressive sensing. IEEE T Image Proc. 21(2) (2012)
29. T. Dvorkind, Y.C. Eldar, Robust and consistent sampling. IEEE Signal Process. Lett. 16(9),

739–742 (2009)
30. Y.C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame

vectors. J. Fourier Anal. Appl. 9(1), 77–96 (2003)
31. Y.C. Eldar, Sampling without Input Constraints: Consistent Reconstruction in Arbitrary Spaces

(Sampling, Wavelets and Tomography, 2003)
32. Y.C. Eldar, T. Werther, General framework for consistent sampling in hilbert spaces. Int. J.

Wavelets Multiresolut. Inf. Process. 3(4), 497–509 (2005)
33. S. Foucart , H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhäuser

(2013)
34. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer Sci-

ence+Business Media, New York, 2013)
35. L. Gan, T. Do, and T. Tran, Fast compressive imaging using scrambled hadamard ensemble.

Proc. Eur. Signal Proc. Conf. (2008)
36. E. Gauss, Walsh Funktionen für Ingenieure und Naturwissenschaftler (Springer Fachmedien,

Wiesbaden, 1994)
37. T. Goldstein, L. Xu, K. Kelly, R. Baraniuk, The stone transform: multi-resolution image

enhancement and real-time compressive video. arXiv:1311.3405 (2013)
38. K. Gröchenig, Z. Rzeszotnik, T. Strohmer, Quantitative estimates for the finite section method

and banach algebras of matrices. Integr. Equ. Oper. Theory 2(67), 183–202 (2011)
39. A. Hansen, On the approximation of spectra of linear operators on hilbert spaces. J. Funct.

Anal. 8(254), 2092–2126 (2008)
40. A.C. Hansen, On the solvability complexity index, the n-pseudospectrum and approximations

of spectra of operators. J. Amer. Math. Soc. 24(1), 81–124 (2011)
41. A. C. Hansen, L. Thesing, On the stable sampling rate for binary measurements and wavelet

reconstruction. preprint (2017)
42. L. He, L. Carin, Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE T

Sig. Proc. 57(9) (2009)
43. T. Hrycak, K. Gröchenig, Pseudospectral fourier reconstruction with the modified inverse

polynomial reconstruction method. J. Comput. Phys. 229(3), 933–946 (2010)
44. G. Huang, H. Jiang, K. Matthews, P. Wilford, Lensless imaging by compressive sensing. IEEE

Intl. Conf. Image Proc. (2013)
45. M. Khajehnejad, W. Xu, A. Avestimehr, B. Hassibi, Analyzing weighted 	1 minimization for

sparse recovery with nonuniform sparse models. IEEE T Sig Proc. 59(5) (May 2011)
46. F. Krzakala, M. Mézard, F. Sausset, Y. Sun, L. Zdeborová, Statistical-physics-based recon-

struction in compressed sensing. Phys. Rev. X 2 (May 2012)
47. G. Kutyniok, W.-Q. Lim, Optimal compressive imaging of fourier data. SIAM J. Imaging Sci.

11(1), 507–546 (2018)
48. M. Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator

Method (Birkhäuser Verlag, Basel, 2006)
49. M. Lustig, D. Donoho, J. Pauly, Sparse MRI: the application of compressed sensing for rapid

MRI imaging. Magn. Reson. Imaging 58(6) (2007)
50. J. Ma, Generalized sampling reconstruction from fourier measurements using compactly sup-

ported shearlets. Appl. Comput. Harmon. Anal. (2015)
51. Y.Maday,A.T. Patera, J.D. Penn,M.Yano,Aparameterized-backgrounddata-weak approach to

variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer.
Methods Eng. 102(5), 933–965 (2015)

http://arxiv.org/abs/1311.3405


128 R. Calderbank et al.

52. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1998)
53. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3nd edn. (Academic Press,

2009)
54. D. Needell, J. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate sam-

ples. Appl. Comput. Harmonic Anal. 26(3) (2009)
55. C. Poon, Structure dependent sampling in compressed sensing: theoretical guarantees for tight

frames. Appl. Comput. Harmonic Anal. 42(3), 402–451 (2017)
56. J. Romberg, Imaging via compressive sampling. IEEE Sig. Proc. Mag. 25(2) (2008)
57. S. Som, P. Schniter, Compressive imaging using approximate message passing and a markov-

tree prior. IEEE T Sig. Proc. 60(7) (2012)
58. V. Studer, J. Bobin,M. Chahid, H.S.Mousavi, E. Candes,M. Dahan, Compressive fluorescence

microscopy for biological and hyperspectral imaging. Proc. Natl Acad. Sci. 109(26), E1679–
E1687 (2012)

59. L. Thesing, A. Hansen. Non uniform recovery guarantees for binarymeasurements andwavelet
reconstruction. To appear

60. L. Thesing, A. Hansen, Linear reconstructions and the analysis of the stable sampling rate.
Sampl. Theory Image Process. 17(1), 103–126 (2018)

61. J. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE T Inf. Th. 50(10)
(2004)

62. J. Tropp, Just relax: convex programmingmethods for identifying sparse signals in noise. IEEE
T Inf. Th. 52(3) (2006)

63. Y. Tsaig, D. Donoho, Extensions of compressed sensing. Signal Process 86, 3 (2006)
64. M. Unser, J. Zerubia, A generalized sampling theory without band-limiting constraints. IEEE

Trans. Circuits Syst. II. 45(8), 959–969 (1998)
65. Y. Wu, S. Verdu, Rényi information dimension: fundamental limits of almost lossless analog

compression. IEEE T Inf. Th. 56(8) (2010)



Classification Scheme for Binary Data
with Extensions

Denali Molitor, Deanna Needell, Aaron Nelson, Rayan Saab
and Palina Salanevich

Abstract In this chapter, we present a simple classification scheme that utilizes
only 1-bit measurements of the training and testing data. Our method is intended to
be efficient in terms of computation and storage while also allowing for a rigorous
mathematical analysis. After providing somemotivation, we present our method and
analyze its performance for a simple data model. We also discuss extensions of the
method to the hierarchical data setting, and include some further implementation
considerations. Experimental evidence provided in this chapter demonstrates that
our methods yield accurate classification on a variety of synthetic and real data.

1 Introduction

In this work, we discuss the problem of classification. More precisely, a supervised
learning problem where one is given labeled training data, and from that data one
wishes to determine a rule with which to accurately assign labels to unlabeled future
test data points is considered. We focus on the setting where either by design or by
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application, the data is only available in a binary representation. Such representations
may be obtained through compressive sampling, as in applications that have restricted
bandwidth or energy constraints [19], or may be utilized to take advantage of simpler,
faster, and cheaper hardware implementations [31, 37]. In general, compression
and coarse quantization can be appealing due to efficient storage and computation.
Additionally, such representations can still be utilized when performing inference
tasks, e.g., see preliminarywork of [4, 22, 26, 27]. This chapter presents a framework
for learning inferences from highly quantized (single bit) data representations, with
the key example being classification. Let us begin with some mathematical tools and
notation.

1.1 Notation and Setup

Let {xi }pi=1 ⊂ R
n be a data set represented in matrix form

X = [x1 x2 . . . xp] ∈ R
n×p.

Let A : Rn → R
m be a linear map, and denote by sign : R → R the sign operator

defined by

sign(a) :=
{
1 a ≥ 0

−1 a < 0.

We generalize this operator for matrices elementwise, where for an m by p matrix
M , and (i, j) ∈ [m] × [p], we define sign(M) as the m × p matrix with entries

(sign(M))i, j := sign(Mi, j ).

We now consider the setting where our method has access to training data of the
form Q = sign(AX), along with the labels b = (b1, . . . , bp) ∈ {1, . . . ,G}p, that
identify each point xi as belonging to one of the G possible classes. The rows of the
m × n matrix A correspond to m hyperplanes in R

n and the sign information in Q
captures on which side of the hyperplane each data point lies.

Throughout this chapter, A is assumed to have independent identically distributed
standard Gaussian entries. We will present an approach from [41] that, given Q and
b, allows for classification of a new unlabeled data point x ∈ R

n from its binary
measurements sign(Ax), and we will discuss various extensions and open problems
associated with it.
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1.2 Related Work and Background

We briefly mention here a few related topics that motivated the method proposed in
[41]. We encourage the reader to see included references and others therein for more
thorough background and details of these large areas of work.

Support vector machines (SVM) [3, 14, 24, 32, 47] are a popular method for
classification. From labeled training data, SVMs seek an optimal hyperplane (or
multiple hyperplanes) that separates the data or maximizes the geometric margin
between the classes in the case where the data is not linearly separable. The approach
described in this chapter is similar in flavor, but instead of optimizing hyperplane
parameters to fit the data, it uses many random hyperplanes to identify separation of
the data, and aggregates that information to decide upon a label.

The use of dimension reduction, that is the transformation of high dimensional
data into geometrically similar lowdimensional representations, appears in numerous
contexts. The Johnson–Lindenstrauss Lemma guarantees the existence of a map
that embeds p points into O(ε−2 log(p)) dimensions while approximately (up to ε)
preserving the geometry [30]. In fact, a Johnson–Lindenstrauss map can be linear
and can be obtained (with high probability) via a random draw from an appropriate
distribution. Such random linear maps include those associated with Gaussian or
subgaussian matrices and those resulting from selecting random rows of the discrete
Fourier transform [1, 2, 5, 15, 35, 46]. Constructions of suchmaps play a crucial role
in the field of compressed sensing, where they are used to sample high dimensional
signals, yielding effective sampling rates that break the traditional Nyquist bounds
[12, 13, 16]. Mathematically, for a signal x ∈ R

n , one uses a measurement matrix
A ∈ R

m×n to acquire (possibly noisy) measurements of the form y = Ax + z, and
the goal is to recover the signal x . For Johnson–Lindenstrauss type matrices A, the
assumption that turns this ill-posed highly underdetermined problem into a well-
posed problem is that the signal x is s-sparse, meaning that ‖x‖0 := | supp(x)| =
s � n.

For any digital compression scheme to be practical, one must consider the need
to quantize, that is, to restrict data to a discrete set of values. Pushing quantiza-
tion to the extreme in compressed sensing, the so-called 1-bit compressed sensing
problem captures only a single bit per measurement and asks to recover the mea-
sured signal x [4]. Formulated mathematically, one acquires measurements of the
form y = sign(Ax), possibly with pre- or post-quantization noise. Clearly the nor-
malization of x is lost under such scalar-invariant measurements, but under a norm
assumption, efficient methods have been developed that accurately recover x [21,
29, 31, 42, 43, 55]. This normalization assumption can be overcome by introducing
dithers to the measurements and modifying the methods [6, 34]. These branches of
work have sparked recent interest in binary embeddings, those that map vectors to
the binary cube while preserving angular information among the mapped vectors
[7, 17, 20, 44, 53, 54]. The 1-bit compressed sensing problem and these binary
embeddings motivate the work presented in this chapter, although the end goal of
our consideration is classification rather than reconstruction.
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Lastly, no modern chapter on classification would be complete without mention-
ing the burgeoning work on deep learning, which learns data representations using
multiple levels of abstraction, usually referred to as layers or levels. Each layer can be
viewed as a function that learns its parameters from the training data, so that its input
data is transformed into a slightly more abstract and composite representation. From
the composition of these functions, a (neural) network is constructed that solves the
desired learning task (e.g., classification) by extracting relevant features of data.With
the abundance of large data sets, these neural networks have become state of the art,
yielding often astoundingly good results and techniques that continue to improve
[33, 45, 50, 51]. On the other hand, although there is theoretical analysis (see e.g.,
[38, 40]), their success is often difficult to quantitatively analyze and interpret [56].
While the work presented in this chapter may be similar in flavor at a high scale, the
aim is quite different—we intend to develop a simple approach to classification that
allows for quantitative success bounds and simple geometric interpretability.

1.3 Organization

The remainder of the chapter is organized as follows. Section2 motivates and
describes the classificationmethod. Section2.1 provides an analysis for a simple data
model, bounding the probability that a new test point is correctly labeled. Section2.2
presents experimental results for the method on several synthetic and real exam-
ples. Section3 extends the method to the setting of hierarchical classification, where
the class labels have additional structure. Section4 proposes several implementation
variants that help guide parameter selection. We conclude with some final remarks
in Sect. 5.

2 Simple Classification Approach

We next turn to a description of the classification method put forth in [41]. Let us
first build some intuition for the approach. Consider the two-dimensional data X
shown in the left plot of Fig. 1, consisting of three labeled classes (green, blue, red),
and suppose we only have access to the binary data Q = sign(AX). Note that Q
contains information giving the side of each hyperplane (corresponding to the rows
of A) on which each data point lies. Consider the four hyperplanes shown in the same
plot, and suppose that we are given the new test point x (which visually appears to
belong to the blue class) and its binary data q = sign(Ax). Then, at first glance, a
reasonable algorithm is to simply cycle through the hyperplanes and decide which
class x matches most often. For example, for the hyperplane colored purple in the
plot, x has the same sign (i.e., lies on the same side) as the blue and green classes.
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Fig. 1 Two motivating examples for the classification method

For the black hyperplane, x only matches the blue class, and so on. For this example,
x will clearly match the blue class most often, and we could correctly assign it that
label.

However, this may not work well for more complicated data. As an example,
consider data as shown in the right plot of Fig. 1. Assuming that each point cloud has
(approximately) the same cardinality, we have that for the blue and red hyperplanes,
2
3 of the points lying in the same half-space as x are from the blue class. At the same
time, for the purple and green hyperplanes 2

3 of the points lying in the same half-space
as x are from the red class. Thus, it is not possible to correctly classify x using just
the information provided by individual hyperplanes. If we now consider hyperplane
pairs, and find the class label that x most often agrees with (that is, we we find the
class with points that most often share cones bounded by the pairs of hyperplanes
with x), we are able to correctly classify x . Indeed, we have the following:

Pair Blue class in the cone Red class in the cone

Blue and red 2
3

1
3

Blue and purple 1 0

Blue and green 1
2

1
2

Red and purple 1 0

Red and green 1
2

1
2

Purple and green 1
2

1
2

Overall 25
6

11
6

We now describe the approach more formally. Again, denote by X ∈ R
n×p the

matrix whose columns contain the data points. Let A ∈ R
m×n have rows correspond-

ing to the normal vectors of m randomly oriented hyperplanes that pass through the
origin (e.g., A could have i.i.d. Gaussian entries), and Q = sign(AX) denote the
binary sign information. Then, the training algorithm proceeds in L “levels”. In the
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�th level, m index sets Λ�,i ⊂ [m], |Λ�,i | = �, i = 1, . . . ,m, are randomly selected,
and each index set corresponds to an �-tuple of hyperplanes. Let QΛ�,i ∈ R

�×p be the
submatrix consisting of the rows of Q whose indices belong to Λ�,i . Each column
of QΛ�,i then gives a sign pattern of length � corresponding to a training data point
and the � hyperplanes contained in Λ�,i . Let us denote the number of different sign
patterns of training points corresponding toΛ�,i (that is, number of different columns
of QΛ�,i ) by T�i .

At a given level �, for the t th sign pattern and gth class, amembership index param-
eter r(�, i, t, g) that uses knowledge of the number of training points in class g hav-
ing the t th sign pattern, is calculated for every �-tuple Λ�,i . Below, Pg|t= Pg|t (Λ�,i )

denotes the number of training points from the gth class with the t th sign pattern at
the i th set selection in the �th level:

r(�, i, t, g) = Pg|t∑G
j=1 Pj |t

∑G
j=1 |Pg|t − Pj |t |∑G

j=1 Pj |t
. (1)

Note that the first fraction in (1) indicates the proportion of training points in class
g out of all points with sign pattern t (at the �th level and i th set selection). The second
fraction in (1) is a balancing term that gives more weight to group g when that group
is much different in size than the others with the same sign pattern. Intuitively, larger
values of r(�, i, t, g) suggest that the t th sign pattern is more heavily dominated by
class g; thus, if a signal with unknown label corresponds to the t th sign pattern, we
will be more likely to classify it into the gth class. With this intuition, we can then
assign a label to a new test point x using its binary data q = sign(Ax). For each class
g, we simply sum the membership index function values over all �, i , and t , for those
sign patterns t that match the sign pattern of the new test point x (which is known
via the data q). Thus, we obtain a value for each class g and the label for x is then
decided by simply taking the class g corresponding to the largest sum. The training
and classification portions of this method are summarized in Algorithms 1 and 2.

Algorithm 1: Training
Input: binary training data Q, training labels b, number of classes G, number of layers L
for � from 1 to L, i from 1 to m do

select: Randomly select Λ�,i ⊂ [m], |Λ�,i | = �

determine: Determine the T�,i ∈ N unique column sign patterns in QΛ�,i

for t from 1 to T�,i , g from 1 to G do
compute: Compute r(�, i, t, g) by (1)

end
end
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Algorithm 2: Classification
Input: binary data q, number of classes G, number of layers L , learned parameters

r(�, i, t, g), T�,i , and Λ�,i from Algorithm 1
Initialize: r̃(g) = 0 for g = 1, . . . ,G.
for � from 1 to L, i from 1 to m do

identify: Identify the pattern t� ∈ [T�,i ] to which qΛ�,i corresponds
for g from 1 to G do

update: r̃(g) = r̃(g) + r(�, i, t�, g)

end
end

scale: Set r̃(g) = r̃(g)
Lm for g = 1, . . . ,G

classify: b̂x = argmaxg∈{1,...,G} {r̃(g)}

2.1 Analytical Justification

One of the benefits of this simple approach to classification is that it can be mathe-
matically analyzed and understood. Indeed, we present here a result from [41] that
bounds the probability of accurate classification for a simple data model, showcas-
ing the potential of this method to be rigorously supported mathematically. Here, we
focus on the setting where the signals are two-dimensional, belonging to one of two
classes, and consider a single level (i.e., L = 1, n = 2, and G = 2). For simplicity
of analysis, we consider the continuous setting and assume the true classes G1 and
G2 are two disjoint cones in R

2 in which the training data lies in a uniform density.
See Fig. 2 for a visualization of the setup; we will describe the relevant parameters
next.

Let A1 denote the angular measure of G1 and define A2 similarly for G2. Also,
define A12 as the angle between classes G1 and G2. Assume all angles are such that
no hyperplane will intersect both classes at once, i.e., A12 + A1 + A2 ≤ π. Suppose

Fig. 2 Visualization of the
analysis setup for two classes
in two dimensions
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that the test point x ∈ G1, partitioning A1 into two disjoint pieces, yielding angles
θ1 and θ2, where A1 = θ1 + θ2 (see Fig. 2).

The membership index parameter (1) is still used; however, in this continuous
setting, we use the analogous formula with angles instead of numbers of training
points:

r(�, i, t, g) = Ag|t∑G
j=1 A j |t

∑G
j=1 |Ag|t − A j |t |∑G

j=1 A j |t
, (2)

where Ag|t denotes the angle of class g with the t th sign pattern for the i th �-tuple
of hyperplanes in the �th layer. Denote by t�i the sign pattern of the test point x
with the i th hyperplane at the first level (i.e., � = 1). Let b̂x denote the classification
label assigned to x by Algorithm 2. Then Theorem 1 below describes the probability
that x is classified correctly with b̂x = 1. For simplicity, Theorem 1 is stated under
the assumption that A1 = A2 and the test point x lies in the middle of class G1

(i.e., θ1 = θ2). The analysis follows similarly for the general case, with more tedious
computations and messier results, see [41] for the proof details.

Theorem 1 (From [41]) Let the classes G1 and G2 be two cones in R
2 defined by

angular measures A1 and A2, respectively, and suppose regions of the same angular
measure have the same density of training points. Suppose A1 = A2, θ1 = θ2, and
A12 + A1 + A2 ≤ π. Then, the probability that a data point x ∈ G1 gets classified
in class G1 by Algorithms 1 and 2 using a single level and a measurement matrix
A ∈ R

m×2 with independent standard Gaussian entries is bounded as follows,

P[̂bx = 1] ≥ 1 −
m∑
j=0

m∑
k1,θ1=0

m∑
k1,θ2=0

m∑
k2=0

m∑
k=0

j+k1,θ1+k1,θ2+k2+k=m, k1,θ2≥9( j+k1,θ1 )

(
m

j, k1,θ1 , k1,θ2 , k2, k

)

×
(
A12

π

) j ( A1

2π

)k1,θ1+k1,θ2
(
A1

π

)k2 (
π − 2A1 − A12

π

)k

. (3)

Although the bound on the probability given in this theorem is quite cumbersome,
some useful properties are immediate. For example, this probability bound tends to 1
asm grows large. Indeed, the following two corollaries show precisely this behavior.

Corollary 1 Consider the setup of Theorem 1. Suppose A12 ≥ A1 and A12 ≥ π −
2A1 − A12. Then P[̂bx = 1] → 1 as m → ∞.

Corollary 2 Consider the setup of Theorem 1. Suppose A1 + A12 > 0.58π and
A12 + 3

4 A1 ≤ π
2 . Then P[̂bx = 1] → 1 as m → ∞.

These asymptotic results are noteworthy, but of course one more importantly
would like to know at what rate this probability increases to 1 as a function of the
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Fig. 3 P[̂bx = 1] versus the number of hyperplanesm when A12 is varied (see legend), A1 = A2 =
15◦, and θ1 = θ2 = 7.5◦. The solid lines indicate the true (simulated) probability and the dashed
lines indicate the bound (3) provided in Theorem 1

number m of hyperplanes. Indeed, it can be seen from the proofs in [41] that the
probability converges to 1 exponentially in m. To illustrate this, the rates of the
bound provided by Theorem 1 are displayed in Fig. 3 along with the (simulated) true
value of P[̂bx = 1]. Although the bound is clearly not sharp, it exhibits the same
overall behavior as the true probability of accurate classification.

2.2 Experimental Results

We present here a small collection of experimental results for the classification
method that show its performanceon synthetic and real data. Thefirst experiment con-
siders synthetic data consisting of eight Gaussian clouds, belonging to four classes.
A new test point is drawn according to one of these distributions and is then classified
by the method. The average correct classification rate (where the “correct” label is
deemed to be the label matching the point cloud from which the test point x was
drawn) is calculated over 50 trials and displayed. Figure4 showcases the classifica-
tion accuracy for various numbers of levels L , showing that as one expects, more
levels are needed for accurate classification for complicated data geometries.

Next, we test themethod on several real data sets. First, Fig. 5 shows average accu-
racy results for classifying the “0” versus “1” handwritten digits from the MNIST
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Fig. 4 Data (top) is eight Gaussian clouds and four classes (G = 4), L = 1, . . . , 4, n = 2, 50 test
points per group, and 30 trials of randomly generating A. Average correct classification rate versus
m and for the indicated number of training points per class for: (middle left) L = 1, (middle right)
L = 2, (bottom left) L = 3, (bottom right) L = 4
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Training Data

Fig. 5 Classification experiment using the handwritten “0” and “1” digit images from the MNIST
data set, with 50 test points per group, L = 1, n = 28 × 28 = 784, and 30 trials of randomly
generating A. Left: example data. Right: average correct classification rate versus m and for the
indicated number of training points per class

data set [36]. For this data, we only needed one level to get accurate results, perhaps
because the images of the “0” and “1” digits are well separated in space. Not sur-
prisingly, when classifying all ten digits, more levels are needed in order to obtain
decent accuracy; see Fig. 6.

We also tested the method on the problem of facial classification, using the YaleB
data set [8–10, 28]. Figure7 shows classification results using six layers. Note that
the results appear noisier due to the smaller size of the data set.

Lastly, we tested the method on recently acquired survey data from patients with
Lyme disease, from theMyLymeData project hosted by lymedisease.org that nowhas
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Fig. 6 Correct classification rate (right) versus m when using all ten (0–9) handwritten digits
from the MNIST data set (left) with 1,000, 3,000, and 5,000 training points per group, L = 18,
n = 28 × 28 = 784, 800 test points per group (8,000 total), and a single instance of randomly
generating A
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over 10,000 patients enrolled. Figure8 shows classification results using the survey
responses for the symptom-related questions as our data matrix. This matrix consists
of 3686 “unwell” patients and 362 “well” patients (4048 patients in total), that each
answered 12 symptom-related questions (the “well” patients were asked about their

Fig. 7 Classification experiment using two individuals from the extended YaleB data set (top),
L = 6, n = 32 × 32 = 1024, 30 test points per group, and 30 trials of randomly generating A.
Bottom: average correct classification rate versus m and for the indicated number of training points
per class

Fig. 8 Left: Results from classification approach on symptom data using 5 layers for various
numbers of randomly selected training points (patients). Right: Means on the survey questions for
these groups
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worst symptoms while being sick). We randomly select a number of those patients
from each group to serve as our training data, and the remaining as our test data. The
left plot of Fig. 8 demonstrates the ability to accurately identify well versus unwell
patients from the symptoms (current or past) that they report. Since the “well” patients
were asked about their worst prior symptoms, one might ask whether it is simply
the case that “well” patients showcase higher (or lower) symptom levels in general,
making classification easy. However, the right plot of the figure demonstrates this is
not the case, and that perhaps more intricate and complex symptom patterns are at
work.

3 Hierarchical Classification

Next, we extend the classification approach described in the previous sections to the
problem of hierarchical or multi-scale classification. In this setting, the class labels
have additional structure, often taking the formof a tree. For example, in image classi-
fication problems, the datamay contain images of inanimate and living objects. Then,
within each of those classes the data may be further identified as images of vehi-
cles and toys, or humans and animals. The data could then be further subdivided into
classes of various animal types, and so on.Visualized as a tree,we view the children of
each node as corresponding to its subclasses. Each data point in this casewould have a
label corresponding to a leaf of the tree, but also possesses the characteristics of all the
labels of its ancestors. Hierarchical classification makes use of this information and
structure between groups in classifying the data [23, 49]. Extensions of popular clas-
sification methods such as the support vector machine (SVM) to the hierarchical set-
ting are not straightforward, and such approaches often decompose the problem into
many subproblems leading to higher computational complexities [11, 52]. Here, we
apply the simple classificationmethod discussed in Sect. 2 to this hierarchical setting,
and show that computational advantages are often possible. In particular, the method
is likely to be particularly useful for hierarchical data in which certain subclasses of
data are more or less difficult to classify than others.

We now describe the proposed adjustment for handling hierarchical classifica-
tion, based on [39], where the labels possess some sort of tree structure. We use the
same notation as for the methods described in previous sections. The key observation
for the modification is that, if we know in advance that certain classes may require
fewer levels for classification with sufficient accuracy, we may isolate these classes
in an initial classification that uses fewer levels and then further classify among the
remaining classes using more levels, as needed. This strategy leads to computational
savings without sacrificing accuracy when some classes are more easily discerned
from the others. Fortunately, this type of structure occurs naturally in many applica-
tions. For example, in medical brain imaging, it is typically much easier to classify
patients with tumors than patients with various types of dementia [18, 25]. In cases
like this, the method may utilize fewer levels for the easier classification steps. This
approach is described formally in Algorithms 3 and 4.
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Algorithm 3: Proposed adjustment for hierarchical classification (training).
Input: binary training data Q, training labels b, set of class groupings Sc for each node Hc in

the tree of classifications H , number of levels L = (L1, . . . LC ) to be used in each
classification.

for Hc ∈ H do
identify: Qc, the submatrix of rows of Q corresponding to training labels of b contained
in some set in Sc.
define: b̃ as labels indicating to which set of Sc a given row of Qc corresponds.
train: a classifier as in Algorithm 1 with training data Qc, labels b̃, number of groups
|Sc| and number of levels Lc as input.

end

Algorithm 4: Proposed adjustment for hierarchical classification (testing).
Input: binary testing data q, set of class groupings Sc, learned parameters r(�, i, t, g), T�,i

and Λl,i for the classification associated to each node Hc in the tree of classifications
H , number of levels L = (L1, . . . LC ) to be used in each classification.

set: Hc = H1, the root classification.
while Hc is not null, do

classify: q into one of the sets contained in Sc, as in Algorithm 2, with learned
parameters r(�, i, t, g), Tl,i , Λl,i from Hc.
if q is predicted to belong to a single class then

set: Hc to be null.
else

set: Hc to the node corresponding to the predicted set of classes within Sc.
end

end

3.1 Experimental Results

In this section, we showcase experiments from [39] that demonstrate the computa-
tional gains achieved by Algorithms 3 and 4 compared with direct classification into
each individual group via “flat multiclass classification” as in Algorithms 1 and 2
(see Fig. 9). We first consider a simple two-dimensional example to aid in visual-
ization; the data is shown in Fig. 10, where each color represents a different class
from six classes in total. Since we expect classifying points from the red and yellow
classes to be easier, we may use fewer levels than in classifying points as green,
black, blue or cyan. Therefore, we first predict whether a test point is red or yellow
versus green, black, blue or cyan using only one level. If the test point was predicted
to be red or yellow, we then discern between these two classes again using only
a single level. If the test point was predicted to be green, black, blue or cyan, we
then predict among these classes by using varying numbers of levels. Accuracy and
computational results are shown in Fig. 10 for varying numbers of measurements m.
We see a significant reduction in computational cost using the hierarchical strategy
without sacrificing accuracy. Note that the computational savings are realized for the
test points predicted to belong to the red or yellow class, since classifying into these
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H1
S1 = {{red, yellow}, {green, black, blue, cyan}}

H2
S2 = {red, yellow}

H3
S3 = {green, black, blue, cyan}

Fig. 9 Hierarchical classification tree used to classify two-dimensional synthetic data as shown in
Fig. 10

Fig. 10 For the data distributed as given in the upper left plot, where each color represents a different
class, we classify test data either by flat multiclass classification or our proposed hierarchical
classification strategy where the first classification discerns between red or yellow versus green,
black, blue or cyan. Accuracy and testing flops required are given in the subsequent plots using
varying numbers of levels and m = 20, 50 and 100 respectively. Results are averaged over 10 trials

groups requires fewer levels and thus fewer calculations. The computational savings
of the hierarchical strategy are thus highly dependent on the distribution of the test
data. In this experiment, we classify 200 test points from each of the red and yellow
classes and 100 test points from each of the green, black, blue, and cyan classes, so
that there are an equal number of test points from the “arc” and from the Gaussian
clusters.
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Although not inherently hierarchical in nature, we demonstrate that our hierarchi-
cal strategy can lead to computational savings on the MNIST data set of handwritten
digits [36]. Consider the digits 1–5. Intuitively and in practice, the digit 1 tends to be
easier to classify correctly than the other digits. For example, if we apply the mul-
ticlass classification from [41] to classify the digits 1–5 using 1000 training points
for each class, 10 levels and testing on 200 training points from each class, we find
that 98.5% of the 1s are classified correctly, whereas the overall accuracy of classify-
ing the digits 1–5 was 89.2% (the accuracy for classifying digits 2–5 was 86.88%).
Thus, it is reasonable to expect that fewer levels are required for sufficiently accurate
classification of the 1s than are required to classify the remaining digits.

Considering the digits 1–5, we can thus induce hierarchical structure by first
classifying into 1s (which tend to be easier) versus the other digits, followed by clas-
sification into the digits 2, 3, 4, and 5. Five levels are used for the first classification
into 1s versus 2–5s and a varying number of levels (5–10) are used for the subsequent
classification. We again see a reduction in the total testing flops required to achieve
a given accuracy. Since this tree is fairly “shallow,” as expected the improvements
are mild. We would expect a more significant reduction in computation via a hier-
archical strategy for real data that has a larger and more imbalanced tree structure.
Additionally, the test data includes an equal number of points corresponding to each
digit, so we see computational savings for approximately 1/5 of the test points. If we
expected the frequency of the digit 1 to be higher, wewould expect the computational
savings to be more significant as well.

4 Implementation Considerations

Here, we consider some implementation details and remarks for future work in this
direction.

4.1 Parameter Selection

The key parameters the user must select in this simple classification approach are the
number ofmeasurementsm and the number of levels L . The relationship between the
number ofmeasurementsm and the performance of themethod (seeCorollaries 1 and
2) conforms with their analogous relationship in other settings like 1-bit compressed
sensing and binary hashing (see e.g., [4, 22, 48]).Namely, increasingm exponentially
improves the success probability of the method at hand. Henceforth, we focus here
on the choice of levels L . We propose a simple scheme that uses the membership
index function values on the training data to decide how many levels L are sufficient
for accurate classification. This scheme can be viewed as a simple analog of cross-
validation (Fig. 11).



Classification Scheme for Binary Data with Extensions 145

Fig. 11 Accuracy and testing flops required for flat multiclass classification versus the proposed
hierarchical classification strategy in classifying digits 1–5 in the MNIST data set are given using
m = 50, 100, 200, and 500, respectively. Results are averaged over 10 trials

Intuitively, the membership index values correspond to the level of confidence
that a point belongs to a certain class. Thus ideally, for a fixed data point, we hope
to see a single large membership value for one class and small values for the other
classes. This motivates a scheme where examining the largest membership function
value across classes, averaged over all the data, dictates an appropriate choice of L .
More precisely, for a given level �, one could consider running the testing method
Algorithm 2 over all (or part of) the training data and computing the functions r̃(g)

for all represented classes g. Doing this at level � for a data point with sign pattern t
yields a value r̃(g) for each class g, which we will now write as r̃�,t (g). We may then
consider the average over all sign patterns at the level � of the largest membership
indices that is given by

μ� := 1

T

∑
t∈T

max
g

r̃�,t (g),

where T is a set containing all represented sign patterns in the training data. We
view large values of μ� as informing us that level � is providing strong classification
accuracy. Thus, if we view these values over various �, we could stop using more
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levels once these values plateau or start decreasing. To verify this approach, we test
this scheme onMNISTdata for classifying 0–1 digits or 0–5 digits (with p = 500 and
m = 50), see Figs. 12 and 13. Here, we notice that there appears to be a correlation
between the level � that yields maximal value μ� (right) and the point where using
more levels does not lead to significant more accuracy (left).

Investigating this correlation quantitatively and theoretically will be an interesting
direction for future work. For example, if we assume that the angle between any two
classes is at least θ, we conjecture that after L ≤ O

(
1

θn−1

)
levels (where n is the

ambient dimension of the problem), the plateau begins, as adding more hyperplanes
will create empty cones with high probability. Of course, a better bound should also
depend on the total numberm of hyperplanes out of which we select, and the number
of test points p. Drawing such connections would be fruitful future directions of
work.

Fig. 12 MNIST 0–1 digits (single trial). Left: Average classification rate as function of levels.
Right: Mean membership index function

Fig. 13 MNIST 0 and 5 digits. Left: Average classification rate as function of levels. Right: Mean
membership index function



Classification Scheme for Binary Data with Extensions 147

4.2 Dynamic Hyperplane Selection

Another implementation concern and possible direction for future research is the
optimal choice of hyperplanes on each layer. In the presented implementation of
the classification algorithm, for each layer � ∈ {1, . . . , L}, the collections Λ�,i of
hyperplanes are selected uniformly at random out of all possible �-tuples. While this
approach allows one to derive nice theoretical bounds such as Theorem 1, it might
be beneficial for reconstruction if one instead chooses sets Λ�,i in a data-dependent
way, so that hyperplanes in Λ�,i together provide a good separation of the training
data. One might achieve this by using cross-validation or an approach similar to that
described in Sect. 4.1, so that for each layer � we reuse information obtained from
the previous levels to decide which �-tuples of hyperplanes could potentially allow
for good class separation.

For instance, in the example described in Fig. 1 (right), we can see that for the
blue and red hyperplanes, we have that in one half-space 2

3 of all point are blue and
1
3 are red, and in the other half-space all the points are red. Similarly, for the purple
and green hyperplanes, we have that in both half-spaces, 1

3 of all points are blue and
2
3 are red. We can deduce that these pairs of points are “similar” in the sense that they
divide the training data in similar ways. Thus it may be more beneficial to consider
pairs of hyperplanes from different groups for the next level, that is {red, purple},
{blue, green}, {red, green}, and {blue, purple}. One can see that these pairs are
indeed enough to separate clusters of training points. Alternatively, one could simply
ignore hyperplane tuples that produce empty cones, which could happen frequently
especially in high dimensions. Such dynamic selection of hyperplane tuples could
lead to improved performance but perhaps more challenging analysis.

4.3 Efficient Representations

Next, we consider settings where the data in raw form is either not available or is
too large to measure. Often, such data is instead available only by its adjacency
graph, capturing distance measures between points. Such graphs arise naturally in
many applications such aswireless communications, sensor networks and astronomy.
Alternatively, we may wish to use such a representation to improve the classification
accuracy. In this section, we demonstrate empirically that our approach is also robust
to this type of data representation. In our first experiment, we use the MNIST 0–1
handwritten digit data but rather than measuring this data directly, we select a subset
of training data and compute its adjacency matrix X where Xi j is the (Euclidean)
distance between the i th and j th image.We thenmeasure Q = sign(AX) andproceed
as usual. The results are shown in Fig. 14 (left), where actuallywe see an improvement
in classification accuracy. We conjecture the improvement arises from the fact that
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Fig. 14 Graph representations, average classification rate as function of levels. Left: MNIST 0–1
digits. Right: MNIST 0–9 digits

the adjacency columns are more linearly separable than the original raw data. Next,
we use all ten digits of the MNIST data and create the adjacency matrix. Since the
adjacency matrix scales with the number of training points, we are no longer free to
use as many as we wish without bogging down computation. Thus, we are forced
to use a smaller number of training points than in Fig. 6, and unsurprisingly, we see
less accurate classification results, as shown in Fig. 14 (right). It would be interesting
futurework to study the geometry of such adjacency data and to develop an analogous
analysis.

5 Conclusion

We have presented a simple classification method from [41] that can be applied to
data represented in binary form. We have provided experimental results showcasing
its classification accuracy on real and synthetic data as well as supporting theoretical
analysis. In addition, we have demonstrated that the classification algorithm can be
readily adapted to classify data in a hierarchical way that improves computational
efficiency. In addition, we present some preliminary implementation modifications
that can yield both computational and accuracy gains, and point out interesting direc-
tions for future work.
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Generalization Error in Deep Learning

Daniel Jakubovitz, Raja Giryes and Miguel R. D. Rodrigues

Abstract Deep learning models have lately shown great performance in various
fields such as computer vision, speech recognition, speech translation, and natural
language processing. However, alongside their state-of-the-art performance, it is still
generally unclear what is the source of their generalization ability. Thus, an important
question is whatmakes deep neural networks able to generalizewell from the training
set to new data. In this chapter, we provide an overview of the existing theory and
bounds for the characterization of the generalization error of deep neural networks,
combining both classical and more recent theoretical and empirical results.

1 Introduction

Deep neural networks (DNNs) have lately shown tremendous empirical performance
in many applications in various fields such as computer vision, speech recognition,
speech translation, and natural language processing [1]. However, alongside their
state-of-the-art performance in these domains, the source of their success and the
reason for their being a powerful machine learning model remains elusive.

A deep neural network is a complex nonlinear model, whose training involves the
solution of a non-convex optimization problem, usually solved with some variation
of the stochastic gradient descent (SGD) algorithm. Even though convergence to
a minimum with good performance is not guaranteed, it is often the case that the
training ofDNNs achieves both a small training error and good generalization results.
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This chapter focuses on the characterizationof thegeneralization abilities of neural
networks. Indeed, there are various recent theoretical advances that aim to shed light
on the performance of deep neural networks, borrowing from optimization theory,
approximation theory, and related fields (e.g., see [2, 3] and others). Yet, due to
space constraints, we concentrate here on over-viewing recent prominent approaches
of statistical learning theory for understanding the generalization of deep neural
networks.

The generalization error of a machine learning model is the difference between
the empirical loss of the training set and the expected loss of a test set. In practice,
it is measured by the difference between the error of the training data and the one of
the test data. This measure represents the ability of the trained model (algorithm) to
generalize well from the learning data to new unseen data. It is typically understood
that good generalization is obtained when a machine learning model does not mem-
orize the training data, but rather learns some underlying rule associated with the
data generation process, thereby being able to extrapolate that rule from the training
data to new unseen data and generalize well.

Therefore, the generalization error of DNNs has been the focus of extensive
research, mainly aimed at better understanding the source of their capabilities and
deriving key rules and relations between a network’s architecture, the used opti-
mization algorithm for training and the network’s performance on a designated task.
Bounds on the generalization error of deep learning models have also been obtained,
typically under specific constraints (e.g., a bound for a two-layer neural network with
ReLU activations). Recent research also focuses on new techniques for reducing a
network’s generalization error, increasing its stability to input data variability and
increasing its robustness.

The capabilities of deep learning models are often examined under notions of
expressivity and capacity: their ability to learn a function of some complexity from a
given set of examples. It has been shown that deep learningmodels are capable of high
expressivity, and are hence able to learn any function under certain architectural con-
straints. However, classical measures of machine learning model expressivity (such
as Vapnik–Chervonenkis (VC) dimension [4], Rademacher complexity [5], etc.),
which successfully characterize the behavior of many machine learning algorithms,
fail to explain the generalization abilities of DNNs. Since DNNs are typically over-
parameterized models with substantially less training data than model parameters,
they are expected to overfit the training data and obtain poor generalization as a
consequence [6]. However, this is not the case in practice. Thus, a specific line of
work has been dedicated to study the generalization of these networks.

Several different theories have been suggested to explain what makes a DNN
generalize well. As a result, several different bounds for the generalization error of
DNNs have been proposed along with techniques for obtaining better generalization
in practice. These rely on measures such as the PAC-Bayes theory [7–9], algorithm
stability [10], algorithm robustness [11] and more.

In the following sections, we survey the theoretical foundations of the general-
ization capabilities of machine learning models with a specific emphasis on deep
neural networks, the corresponding bounds on their generalization error, and several
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insights and techniques for reducing this error in practice. Namely, we review both
classical and more recent theoretical works and empirical findings related to the gen-
eralization capabilities of machine learning algorithms, and specifically deep neural
networks.

2 The Learning Problem

Machine learning is a field which employs statistical models in order to learn how
to perform a designated task without having to explicitly program for it. It is closely
related to and inspired by other domains in applied mathematics, computer science,
and engineering such as optimization, data mining, pattern recognition, statistics
and more. Accordingly, machine learning models and methods are inspired by the
prominent techniques, models and algorithms of these fields [1, 12].

Core to the field of machine learning is the learning (training) process, in which
an algorithm is given a training dataset in order to learn how to perform a desired
task by learning some underlying rule associated with the data generation process.
After the learning phase is done, a good algorithm is expected to perform its task
well on unseen data drawn from the same underlying rule. This phase is commonly
referred to as the test phase, in which an algorithm performs its designated task on
new data. In general, machine learning can be divided into two categories. The first
category is supervised learning, in which there is a ground truth value (label) for
each data sample. This ground truth value is supplied to the algorithm as part of its
training dataset, and is expected to be correctly predicted by the algorithm during
the test phase for new unseen data. The second category is unsupervised learning, in
which there are no ground truth labels that characterize the data, and it is up to the
algorithm itself to characterize the data correctly and efficiently in order to perform
its task.

Some of the most prominent machine learning algorithms are the Support Vector
Machine (SVM), K -Nearest Neighbors (K -NN), K -Means, decision trees, deep
neural networks, etc. [12]. These algorithms are used to perform a variety of different
tasks such as regression, classification, clustering, and more. Deep neural networks,
which are the subject of this chapter, are a particular model (algorithm) that has
attracted much interest in the past several years due to its astonishing performance
and generalization capabilities in a variety of tasks [1].

The following notation is used throughout this chapter. The input space of a
learning algorithm is the D-dimensional subspace X ⊆ R

D and x ∈ X is an input
sample to the algorithm. The output space is the K -dimensional subspace Y ⊆ R

K .
The label of the input sample x is y ∈ Y . The sample set is denoted as Z , where
Z = Y × X .

We will concentrate predominantly on classification tasks. Consequently, K cor-
responds to the number of possible classes and k∗ ∈ {1, . . . , K } is the correct class of
the input sample x . Accordingly, the label vector y ∈ Y is a one-hot vector, meaning
all its elements are equal to zero except for the element in the k∗th index which is
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equal to one. The function fW is the learned function of a model with parameters
W ∈ W (where W is the parameter space), i.e., fW : RD → R

K . The kth value of
the vector fW (x) is denoted by fW (x)[k]. In most cases we omit theW symbolizing
the network’s parameters for convenience.

We assume a training dataset has N training examples, such that the set sN =
{si |si ∈ Z}Ni=1 = {(xi , yi ) ∈ X × Y}Ni=1 is the algorithm’s training set. The sam-
ples are independently drawn from a probability distribution D. The set tNtest =
{ti |ti ∈ Z}Ntest

i=1 = {(xi , yi ) ∈ X × Y}Ntest
i=1 is the algorithm’s test set, which consists of

Ntest test examples. The hypothesis set, which consists of all possible functions fW ,
is denoted asH. Therefore, a learning algorithmA is a mapping from ZN toH, i.e.,
A : ZN → H.

The loss function, which measures the discrepancy between the true label y and
the algorithm’s estimated label f (x) is denoted by � (y, f (x)). In some cases, when
referring to the loss of a specific learning algorithm A trained on the set sN and
evaluated on the sample s, we denote �(AsN , s) instead.

For a general loss function �, an algorithm’s empirical loss on the training set
(train loss) sN is

�emp( f, sN ) = �emp(AsN ) � 1

N

N∑

i=1

� (yi , f (xi )) , {(xi , yi )}Ni=1 ∈ sN ,

and the expected loss of the algorithm is

�exp( f ) = �exp(AsN ) � E(x,y)∼D [�(y, f (x))] .

Accordingly, an algorithm’s generalization error is given by

GE( f, sN ) �
∣∣�emp( f, sN ) − �exp( f )

∣∣ .

The empirical test loss is often used to approximate the expected loss since the
distribution D is unknown to the learning algorithm. The test loss of an algorithm is
given by

�test ( f, tNtest ) � 1

Ntest

Ntest∑

i=1

�(yi , f (xi )), {(xi , yi )}Ntest
i=1 ∈ tNtest ,

and the corresponding approximation of the generalization error is given by

GE( f, sN , tNtest ) �
∣∣�emp( f, sN ) − �test ( f, tNtest )

∣∣ .

The output classification margin γ of a data sample x is defined by the difference
between the value of the correct class and the maximal value over all other classes:
γ = f (x)[k∗] − maxk �=k∗ f (x)[k], where as mentioned earlier, k∗ corresponds to the



Generalization Error in Deep Learning 157

index associated with the correct class of the data sample x , i.e., y[k∗] = 1 and
y[k] = 0 ∀k �= k∗. The margin loss is defined as follows.

The empirical margin loss for an output margin γ is

�emp,γ( f, sN ) � 1

N

N∑

i=1

1

{
f (xi )[k∗

i ] − max
k �=k∗

i

f (xi )[k] ≤ γ

}
, {(xi , yi )}Ni=1 ∈ sN ,

where 1 signifies the indicator function that gets the value one if the inequality holds
and the value zero otherwise. The expected margin loss for an output margin γ is

�exp,γ( f ) � Pr(x,y)∼D

[
f (x)[k∗] − max

k �=k∗ f (x)[k] ≤ γ

]
.

We denote the Frobenius, �1, �2 and �∞ norms by || · ||F , || · ||1, || · ||2 and || · ||∞
respectively.

The training of machine learning algorithms relies on the Empirical Risk Min-
imization (ERM) principle. Since a learning algorithm only has access to a finite
amount of samples drawn from the probability distribution D, which is unknown,
it aims at minimizing the empirical risk represented by the training loss �emp(AsN ).
This practice can be suboptimal, as it is subject to the risk of overfitting the specific
training samples. The term “over-fitting” refers to a phenomenon in which a learning
algorithm fits the specifics of the training samples “too well”, thereby representing
the underlying distribution D poorly.

Throughout this chapter the notion of model (algorithm) capacity is used. This
is a general term that relates to the capability of a model to represent functions of a
certain complexity. It is evaluated in different ways in different contexts. A formal
and accurate definition is given where relevant along this chapter.

Two classical metrics which are used to evaluate the capacity (or expressivity) of
learning algorithms are the VC-dimension [4] and the Rademacher complexity [5].
The VC-dimension measures the classification capacity of a set of learned functions.

Definition 1 (VC-dimension)Aclassification function f with parametersW shatters
a set of data samples {xi }Ni=1 if for all possible corresponding labels {yi }Ni=1 there
exist parameters W such that f makes no classification errors on this set. The VC-
dimension of f is the maximum amount of data samples N such that f shatters
the set {xi }Ni=1. If no such maximal value exists then the VC-dimension is equal to
infinity.

To gain intuition as to the meaning of the VC-dimension, let us consider the
following example.

Example 1 Let us consider a linear function in the space R2. The function α1x1 +
α2x2 + b = 0, which is parameterized by W = (α1,α2, b) ∈ R

3, defines a classifi-
cation decision for any sample x = (x1, x2) ∈ R

2 according to the following rule:
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Three samples in R2 correctly classified
by a linear function.

Four samples in R2 which cannot be cor-
rectly classified by a linear function.

Fig. 1 Linear classification of samples in R2

f (x) =
{

+1, if α1x1 + α2x2 + b ≥ 0

−1, otherwise

Thismeans that any sample above or on the line is classified as positive (+1), whereas
any sample under the line is classified as negative (−1). Let us define the hypothesis
set:

H = { fW |W = (α1,α2, b) ∈ R
3},

then VCdim(H) = 3.

Proof sketch. Note that in this case, any three samples inR2 (which are not colinear)
can be shattered by a linear classifier. However, four samples in R

2 can be easily
chosen such that no linear function can represent the correct classification rule. See
Fig. 1 for an illustration of these cases.

The Rademacher complexity measures the richness of a set of functions with
respect to some probability distribution. Essentially, it measures the ability of a set
of functions to fit random ±1 labels.

Definition 2 (Rademacher complexity)Given a dataset sx = {(xi )}Ni=1, and a hypoth-
esis set of functions H, the empirical Rademacher complexity ofH given sx is

RN (H) = Eσ

[
sup
h∈H

1

N

N∑

i=1

σi h(xi )

]
, (1)

where σi ∈ {±1} , i = 1, . . . , N are independent and identically distributed uniform
random variables, i.e., Pr(σi = 1) = Pr(σi = −1) = 1

2 , i = 1, . . . , N .

Note that since h(xi ) ∈ {±1}, if σi h(xi ) = 1 the classification is correct and if
σi h(xi ) = −1 the classification is wrong, and therefore we seek to maximize the
sum in (1). To gain intuition as to the meaning of the Rademacher complexity, let us
consider the following example of linear classifiers.
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Example 2 Let H be the class of linear classifiers with an �2 norm of the weights
bounded byα: {{wT xi }Ni=1, ||w||2 ≤ α}. Let us assume that the �2 normof the samples
in the dataset sx = {xi }Ni=1 is upper bounded by β, i.e., ||xi ||2 ≤ β,∀i = 1, . . . , N .
Then the Rademacher complexity of H is upper bounded as

RN (H) ≤ αβ√
N

.

Proof According to the definition of the Rademacher complexity,

RN (H) = Eσ

[
sup

w:||w||2≤α

1

N

N∑

i=1

σiw
T xi

]

= 1

N
Eσ

[
sup

w:||w||2≤α
wT

(
N∑

i=1

σi xi

)]
≤ α

N
Eσ

[
||

N∑

i=1

σi xi ||2
]

≤ α

N

√√√√
Eσ

[
||

N∑

i=1

σi xi ||22
]

= α

N

√√√√
Eσ

[
||

N∑

i=1

xi ||22
]

(2)

= αβ√
N

,

where in (2) we used Jensen’s inequality.
As described throughout this chapter, bounds on these measures of complexity of

a learned function are generally unable to explain the generalization capabilities of
deep neural networks, and are therefore more suited for the analysis of classical, less
complex machine learning algorithms such as the support vector machines (SVM),
K -NN, and others [12, 13].

Another commonly used framework for the analysis of machine learning algo-
rithms is the PAC-Bayes theorem (ProbablyApproximatelyCorrect), which is used to
bound the generalization error of stochastic classifiers [7–9]. The PAC-Bayes frame-
work provides a generalization bound which relates a prior distribution P , postulated
before any data was seen, and a posterior distribution Q, which depends on the data
(i.e., the training set). Unlike the VC-dimension and Rademacher complexity, the
PAC-Bayes framework refers to the distribution of the hypothesis set of learned
functions rather than a specific classification function. One should keep in mind that
this is a general framework for the analysis of machine learning algorithms, from
which several different bounds and mathematical formulations have been derived.
We present hereafter one of its core theorems.
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Theorem 1 (PAC-Bayes theorem) Let D be a distribution over Y × X from which
examples are drawn independently. Let P and Q denote probability distributions over
the hypothesis set of classifiersH. In addition, let ErrD(Q) = E f ∼Q[Pr(x,y)∼D(y �=
f (x))] be the expected test probability of error and let Errs(Q) = 1

N

∑N
i=1 E f ∼Q

[1{yi �= f (xi )}] , {(xi , yi )}Ni=1 ∈ sN be the expected empirical training probability
of error of the stochastic classifier Q over the training set sN sampled fromD. Then
for any Q and any δ ∈ (0, 1), we have with probability at least 1 − δ that over N
randomly drawn training samples,

K L (Errs(Q)||ErrD(Q)) ≤ K L(Q||P) + ln( N+1
δ

)

N

holds for all distributions P.

In the above, K L(·||·) denotes the Kullback–Leibler divergence between two
probability distributions and 1 denotes the indicator function which gets the value
one if the inequality holds and zero otherwise. Note that P is an a priori distribution
and Q is a posterior distribution given the training dataset sN .

The notion of algorithm robustness was introduced in [11]. A learning algorithm
is said to be robust if for a training sample and a test sample that are close to each
other, a similar performance is achieved. The following is the formal definition of a
robust learning algorithm.

Definition 3 (Robustness) Algorithm A is (K , ε(s)) robust if Z can be partitioned
into K disjoint sets, denoted as {Ci }Ki=1, such that ∀s ∈ s,

s, z ∈ Ci ,⇒ |�(As, s) − �(As, z)| ≤ ε(s). (3)

Note that �(As, s) is the loss on the sample s of the algorithmAs which was trained
on the set s. A weaker definition of robustness, pseudo-robustness, is also useful
for the analysis of the generalization error of learning algorithms, and is given in
Sect. 4.5.

The notion of sharpness of the obtained solution to the minimization problem
of the training of DNNs, i.e., the minimizer of the training loss, has lately become
key in the analysis of the generalization capabilities of DNNs. Though several dif-
ferent definitions exist, we rely on the definition from [14] which is in wide use.
Formally, the sharpness of the obtained minimizer is determined by the eigenvalues
of the Hessian matrix ∇2�emp(AsN ) evaluated at the minimizer. However, since the
computation of the Hessian matrix of DNNs is computationally expensive, an alter-
native measure is used. This measure relies on the evaluation of the maximal value
of ∇2�emp(AsN ) in the environment of the examined solution. The maximization is
done both on the entire input space R

D and on P-dimensional random manifolds,
using a random matrix AD×P .

Definition 4 (Sharpness) Let Cε denote a box around the solution over which the
maximization of � is performed. The constraint Cε is defined by
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Cε = {z ∈ R
P : −ε(|(A†x)i | + 1) ≤ zi ≤ ε(|(A†x)i | + 1) ∀i ∈ {1, . . . , P}}

where A† denotes the pseudoinverse of A. The value of ε > 0 controls the size of the
box. Given x ∈ R

D , ε > 0 and A ∈ R
D×P , the (Cε, A)-sharpness of � at x is defined

by

φx,�(ε, A) � (maxy∈Cε
�(x + Ay)) − �(x)

1 + �(x)
× 100.

In a recent work [15], a compression- based approach is used to derive bounds on
the generalization error of a classifier. A compressible classifier is defined as follows.

Definition 5 (Compressibility) Let f be a classifier and GW = {gW |W ∈ W} be
a class of classifiers such that gW is uniquely determined by W . Then f is (γ, s)-
compressible via GW with an output margin γ > 0, if there existsW ∈ W such that
for any sample in the dataset x ∈ s we have for all k

| f (x)[k] − gW (x)[k]| ≤ γ. (4)

Note that f (x)[k] is the kth entry in the K -dimensional vector f (x).

3 Deep Neural Networks

In this section, we give the definition of a deep neural network and explain several
aspects of its architecture. Readers familiar with deep neural networks can skip
directly to Sect. 4.

Deep neural networks, often abbreviated as simply “networks”, are a machine
learning model which generally consists of several concatenated layers. The net-
work processes the input data by propagating it through its layers for the purpose of
performing a certain task. When a network consists of many layers it is commonly
referred to as a “deep neural network”. A conventional feedforward neural network,
which is the focus of the works we survey hereafter, has the following structure. It
consists of L layers, where the first L − 1 layers are referred to as “hidden layers”
and the Lth layer represents the network’s output. Each layer in the network consists
of several neurons (nodes). An illustration of a neural network is given in Fig. 2.

Feedforward neural networks are networks in which the data propagates in a
single direction, as opposed to other neural networkmodels such as Recurrent Neural
Networks (RNNs) in which the network connections form internal cycles. Though
many different variations of feedforward neural networks exist, classically they either
have fully connected layers or convolutional layers. A feedforward neural network
with at least one convolutional layer, in which at least one convolution kernel is used,
is referred to as a Convolutional Neural Network (CNN). In standard fully connected
networks, every neuron in every layer is connected to each neuron in the previous
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Fig. 2 A deep neural network. Some of the connections are omitted for simplicity

Table 1 Nonlinear activation functions

Name Function: φ(x) Derivative: dφ(x)
dx Function output range

ReLU max{0,x} 1 if x > 0; 0 if x ≤ 0 [0, ∞)

Sigmoid 1
1+e−x φ(x)(1 − φ(x)) =

e−x

(1+e−x )2

(0,1)

Hyperbolic tangent ex−e−x

ex+e−x 1 − φ(x)2 =
1 −

(
ex−e−x

ex+e−x

)2
(−1,1)

layer. Such a connection is mathematically defined as a linear transformation using
a weight matrix followed by the addition of a bias term, which is then followed by
a nonlinear activation function. The most commonly used activation functions are
the Rectified Linear Unit (ReLU), the sigmoid function and the hyperbolic tangent
(tanh) function. These activation functions are described in Table1. There are other
nonlinearities that can be applied to a layer’s output, for example, pooling which
decreases the layer’s dimensions by aggregating information.

We use the index l = 1, . . . , L to denote a specific layer in the network, and hl to
denote the amount of neurons in the lth layer of the network. Accordingly, h0 = D
and hL = K represent the network’s input and output dimensions, respectively. The
hl-dimensional output of the lth layer in the network is represented by the vector zl .
The output of the last layer, zL is also denoted by f � zL , representing the network’s
output. The weight matrix of the lth layer of a network is denoted by Wl ∈ R

hl×hl−1 .
We denote the element in the i th row and the j th column in the weight matrix of
the lth layer in the network by wl

i j . The bias vector of the lth layer is denoted by
bl ∈ R

hl . In addition, vec
({Wl}Ll=1

)
is the column-stack vector representation of all of

the network’s weights. The activation function applied to every neuron in this layer is
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denoted byφl , which is applied element-wisewhen its input is a vector. Consequently,
the relation between two consecutive layers in a fully connected DNN is given by

zl = φl (Wlzl−1 + bl) .

In most cases, the same nonlinear activation function is chosen for all the layers of
the network.

In classification tasks, a neural network can be used to classify an input to one of
K discrete classes, denoted using the index k = 1, . . . , K . A common choice for the
last layer of a network performing a classification task is the softmax layer, which
transforms the output range to be between 0 and 1:

f [k] = zL [k] = softmax{zL−1[k]} = ezL−1[k]
∑hL−1

j=1 ezL−1[ j]
.

The predicted class k∗ for an input x is determined by the index of the maximal value
in the output function obtained for this input sample, i.e.,

k∗ = argmaxk f [k].

Since for any k = 1, . . . , K the output range is f [k] ∈ (0, 1), the elements of f ∈
R

K (the network’s output) are usually interpreted as probabilities assigned by the
network to the corresponding class labels, and accordingly the class with the highest
probability is chosen as the predicted class for a specific input. The usage of the
softmax layer is usually coupled with the cross-entropy loss function defined by

�(y, f (x)) = −
K∑

k=1

y[k] log ( f (x)[k]) = − log
(
f (x)[k∗]) ,

where k∗ is the index of the correct class of the input x .
The training of a neural network involves the solution of an optimization problem

which encapsulates the discrepancy between the true labels and the estimated labels
of the training dataset, computed using a loss function.

Typically used loss functions are the cross-entropy loss defined above, the squared
error loss (using the �2 norm) defined by

�(y, f (x)) = ||y − f (x)||22 =
K∑

k=1

(y[k] − f (x)[k])2 ,

the absolute error loss (using the �1 norm) defined by
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�(y, f (x)) = ||y − f (x)||1 =
K∑

k=1

|y[k] − f (x)[k]| ,

etc. In many cases, a closed-form solution is unobtainable, whereas in other cases
it is too computationally demanding. Therefore, the optimization problem is usually
solved using some variant of the gradient descent algorithm, which is an iterative
algorithm. In every iteration, a step is taken in the direction of the negative gradient
vector of the loss function, i.e., the direction of the steepest descent, and the model
parameters are updated accordingly. The size of the taken step is tuned using a scalar
hyperparameter, most commonly referred to as the “learning rate”. The update of the
model parameters in every iteration is given by

Wn = Wn−1 − α∇W�emp( f, s), (5)

where n represents the training iteration and α represents the learning rate. In most
cases, in every iteration only a subset of the training dataset is used to compute the
gradient of the loss function. This subset is commonly referred to as a training “mini-
batch”.Note thatwhen the entire training dataset is used to evaluate the gradient of the
loss, the optimization algorithm is usually referred to as “Batch Gradient Descent”,
whereas when a subset of the training dataset is used the optimization algorithm
is referred to as “Stochastic Gradient Descent” (SGD). The usage of training mini-
batches is computationally beneficial as it requires the usage of less data in each
training iteration. It has other advantages as well, as will be detailed later in this
chapter.

The computation of the gradient of the loss function with respect to the model
parameters, which is necessary to perform an optimization step, is typically a costly
operation as the relation between the input and the output of a DNN is quite complex
and cannot be expressed in a closed-form expression. In most implementations this
computation is based on the “back-propagation” algorithm, which is based on the
chain rule for the derivation of the composition of functions [1]. This algorithm
essentially computes the product of the partial derivatives along the different layers
of the networks, propagating from the network’s output to its input.

When training a neural network, and other machine learning algorithms as well,
it is common practice to incorporate the usage of regularization techniques. This
is effectively equivalent to making a prior assumption on the model itself or its
input data. Using regularization techniques introduces several benefits. First, these
techniques discourage the learned algorithm from overfitting the training data, i.e.,
they encourage the learning algorithm to learn the underlying rule of the training
data rather than memorize the specifics of the training dataset itself. This purpose
is achieved by essentially penalizing the learned algorithm for being too complex
and “artificially” fitting the specifics of the training data. Second, regularization
techniques promote the stability of the learned algorithm, in the sense that a small
change to the input would not incur a large change to the output [13].
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Regularization techniques can generally be categorized as either explicit or
implicit. Explicit regularization techniques traditionally incorporate an additional
loss function into the training objective function directly aimed at adapting themodel
to the assumed prior. When an additional regularization loss is used, the balance
between the regularization term and the objective loss function is tuned using a mul-
tiplicative scalar hyperparameter. Commonly used explicit regularization techniques
include the incorporation of an additional loss in the form of the norm of the model
weights (parameters), the usage of dropout, in which any neuron in the network is
zeroed during training with a certain probability, and more. Implicit regularization
techniques have a more indirect influence on the learned function, and include a vari-
ety of techniques such as early stopping, data augmentation, and also model choices
such as the used network architecture and optimization algorithm [1].

4 Generalization Error in Deep Learning

An important open question in machine learning research is what is the source of
the generalization capabilities of deep neural networks. A better understanding of
what affects this generalization error is essential toward obtaining reliable and robust
deep neural network architectures with good performance. Throughout the following
subsections we review different theories, insights and empirical results that shed light
on this topic. Several lines of work aim at bounding the generalization error of neural
networks, whereas others seek for complexitymeasures that correlate to this error and
explain what affects it. In addition, we review both works that characterize different
aspects of the training phase, ranging from the size of the training mini-batch to the
number of training iterations, and works that characterize the solution of the training
optimization problem. These works represent the most prominent lines of research
in this field.

4.1 Understanding Deep Learning Requires Rethinking
Generalization

As described in Sect. 3, regularization techniques such as weight decay and dropout
have been shown to improve the generalization capabilities of machine learning
algorithms and specifically deep neural networks by preventing overfitting to the
training dataset. Data overfitting is a common problem when training deep neural
networks since they are highly over-parameterized models, which are usually trained
using a small amount of data compared to the number of parameters in the model.
Regularization helps to reduce the model’s complexity and thereby achieve a lower
generalization error. For this reason, using regularization techniques is a common
practice in the training of machine learning models.
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In [6] some insight is given into the role of explicit and implicit regularization in
reducing a network’s generalization error. Different explicit regularization methods
(such as data augmentation, weight decay and dropout) are empirically compared
and the conclusion that follows is that explicit regularization is neither a sufficient nor
a necessary technique to control the generalization error of a deep neural network.
Namely, not using regularization during training does not necessarily mean a larger
generalization error will be obtained.

As previously mentioned in Sect. 2, the Rademacher complexity is a complexity
measure of a hypothesis set H. It is shown that adding explicit regularization to
the training phase (e.g., dropout, weight decay) effectively reduces the Rademacher
complexity of the hypothesis space of the possible solutions by confining it to a
subspace of the original hypothesis space which has lower complexity. However,
this does not necessarily imply a better generalization error, as in most cases, the
Rademacher complexity measure is not powerful enough to capture the abilities of
deep neural networks.

Similarly, implicit regularization techniques, such as the usage of the SGD algo-
rithm for training, early stopping and batch normalization [16], may also play an
important role in improving the generalization capabilities of deep neural networks.
Yet, empirical findings show that they are not indispensable for obtaining good gen-
eralization.

Deep neural networks can achieve a zero training error even when trained on a
random labeling of the training data, meaning deep neural networks can easily fit
random labels, which is indicative of very high model capacity. Expanding the scope
of this premise, the relation to Convolutional Neural Networks (CNNs) is made by
showing that state-of-the-art CNNs for image classification can easily fit a random
labeling of the training data, giving further support to the notion that deep neural
networks are powerful enough tomemorize the training data, since randomly labeled
data does not encapsulate any actual underlying rule.

These empirical findings are explained using a theoretical result, which shows
that a two-layer neural network already has perfect expressivity when the number of
parameters exceeds the number of data samples. Specifically, there exists a two-layer
neural network with ReLU activations and 2N + D weights that can represent any
function on a sample of size N in D dimensions.

It follows that training remains a relatively easy task, even for random labels and
for data that has been subject to different kinds of random shuffling and permutations,
i.e., training is easy even when the model does not generalize well. In addition, it
has been empirically established that training on random labels only increases the
training time by a small constant factor.

In this context it is important to note that extensive research efforts are still aimed
at classical complexity measures such as the Rademacher complexity. For example,
[17] provides a bound for the Rademacher complexity of DNNs assuming norm con-
straints on their weight matrices. Under several assumptions this bound is indepen-
dent of the network size (width and depth). According to this bound, the Rademacher
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complexity is upper bounded by1

Õ

⎛

⎝R

√
log{ R

Γ
}√

N

⎞

⎠ ,

where R is an upper bound on the product of the Frobenius norms of the network’s
weight matrices and Γ is a lower bound on the product of the spectral norms of the
network’s weight matrices.

The work in [6] generally emphasizes the need for a different approach in exam-
ining the generalization of DNNs. One specific incentive is the refuted common
notion that the widely used regularization techniques are a necessary condition for
obtaining good generalization. Moreover, even though several measures have been
shown to be correlated with the generalization error of DNNs (as shown in [18] and
discussed in Sect. 4.2), there is still a need for tighter bounds and more explanations
for the generalization capabilities of DNNs. Therefore, a more comprehensive theory
is necessary to explain why DNNs generalize well even though they are capable of
memorizing the training data.

4.2 Exploring Generalization in Deep Learning

In [18], several different measures and explanations for the generalization capabil-
ities of DNNs are examined. The examined measures include norm-based control,
robustness and sharpness, for which a connection to the PAC-Bayes theory is drawn.
The different measures are evaluated based on their theoretical ability to guarantee
generalization and their performance when empirically tested.

The capacity of a model for several given metrics (e.g., �2 distance), which is
examined throughout the work in [18], represents the number of training examples
necessary to ensure generalization, meaning that the test error is close to the training
error.

With similarity to commonly established notions on the matter, it is claimed that
using aVC-dimensionmeasure to provide a bound on the capacity of neural networks
is insufficient to explain their generalization abilities. Relying on the works in [19,
20], a bound is proposed on the VC-dimension of feedforward neural networks with
ReLU activations in terms of the number of parameters in the network. This bound
is given by

VCdim = Õ(L · dim(W )),

where dim(W ) is the number of parameters in the network and L is the amount
of layers in the network. This bound is very loose and therefore fails to explain

1Õ is the upper bound to the complexity up to a logarithmic factor of the same term.
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Table 2 Norm-based capacity measures for the analysis of the generalization of DNNs

Capacity type Capacity order

�2-norm 1
γ2margin

∏L
l=1 4||Wl ||2F

�1 path-norm 1
γ2margin

(∑
j∈∏L

k=0[hk ]
∣∣∣
∏L

l=1 2Wl [ jl , jl−1]
∣∣∣
)2

�2 path-norm 1
γ2margin

∑
j∈∏L

k=0[hk ]
∏L

l=1 4hlW
2
l [ jl , jl−1]

Spectral-norm 1
γ2margin

∏L
l=1 hl ||Wl ||22

the generalization behavior of these networks. Neural networks are highly over-
parameterized models, but they can fit a desired function almost perfectly with a
training set much smaller than the amount of parameters in the model. For this
reason, a bound which is linear in the amount of parameters in the model is too weak
to explain the generalization behavior of deep neural networks. We refer the reader
to [21] for some earlier work on the VC-dimension of neural networks.

Norm-based complexity measures for neural networks with ReLU activations
are presented as well. These measures do not explicitly depend on the amount of
parameters in the model and therefore have a better potential to represent its capacity.

Relying on the work in [22], four different norm-based measures are used to
evaluate the capacity of deep neural networks. These measures use the following
lenient version of the definition of a classification margin: γmargin is the lowest value
of γ such that �εN� data samples have a margin lower than γ, where ε > 0 is some
small value and N is the size of the training set. The four measures are given in
Table2.

[hk] is the set {h1, ..., hk} and
∏L

k=0[hk] is the Cartesian product over the sets
[hk]. We remind the reader that hk is the amount of neurons in the kth layer of the
network, and accordingly h0 = D where D is the network’s input dimension and
hL = K where K is the network’s output dimension. Note that the �1 and �2 path-
norms (see Table2) sum over all possible paths going from the input to the output
of the network, passing through one single neuron in each layer. Accordingly, the
index j represents a certain path consisting of one neuron in each layer, jl denotes
the neuron in the lth layer in the j th path and Wl [ jl, jl−1] is the weight parameter
(scalar) relating the jl−1 and the jl neurons.

The results of empirical tests are presented in [18]. These show that the training
error is zero and all the aforementioned norm measures are larger for networks
trained to fit random labels than for networks trained to fit the true labels of the data
(specifically, the VGG network is used along with the CIFAR-10 dataset). These
findings indicate that these norm-based measures can explain the generalization of
DNNs, as the complexity of models trained on random labels is always higher than
the complexity of models trained on the true labels, corresponding to the favorable
generalization abilities of the latter.

Another capacity measure, which is examined is the Lipschitz constant of a net-
work. The question whether controlling the Lipschitz constant of a network with
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respect to its input can lead to controlling its capacity is investigated, relying on
the relation between the weights of a network and its Lipschitz constant. Different
bounds on models’ complexity based on their Lipschitz constants are reviewed. The
relation between a network’s Lipschitz constant and the norm of its weights is made,
and it is shown that all the bounds relying on the Lipschitz constant result in very
loose capacity bounds which are exponential in both the input dimension and the
depth of the network. The conclusion is that simply bounding the Lipschitz constant
of a network is not enough to obtain a reasonable capacity control for a neural net-
work, and that these bounds are merely a direct consequence of bounding the norm
of the network’s weights.

In addition, another capacity measure which has been linked to the generalization
abilities of DNNs is addressed: the sharpness of the obtained minimizer to the opti-
mization problem of the training of DNNs. It is claimed that the notion of sharpness,
which was formulated in [14] (see Definition 4), cannot by itself capture the general-
ization behavior of neural networks. Instead, a related notion of expected sharpness
in the context of the PAC-Bayes theorem, combined with the norm of the network’s
weights, does yield a capacity control that offers good explanations to the observed
phenomena.

In a recent related paper [23], a new complexity measure based on unit-wise
capacities is proposed. A unit’s capacity is defined by the �2 norm of the difference
between the input weights associated with this unit and the initialization values of
these weights. These input weights are themultiplicative weights whichwere applied
to the values of the units of the previous layer in order to obtain the value of this
unit (i.e., the row that corresponds to this specific unit in the weight matrix of this
unit’s layer). This complexity measure results in a tighter generalization bound for
two-layer ReLU networks.

In another recent work [24] a bound for the statistical error (test error) is given
for networks with �1 constraints on their weights and with ReLU activations. In this

setting, the test error is shown to be upper bounded by
√

L3 log D
N , where in this context,

D is themaximal input dimension to a layer in the network.With this bound, the input
dimension can be much larger than the amount of samples, and the learned algorithm
would still be accurate if the target function has the appropriate �1 constraints and
N is large compared to L3 log d.

Following the above, it can be concluded that even though various measures of
the capacity of DNNs exist in the literature, some exhibiting good correlation with
the generalization abilities of DNNs, a comprehensive theoretical formulation with
adequate empirical results that explain the generalization abilities of DNNs is still
an active field of research.
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4.3 A PAC-Bayesian Approach to Spectrally Normalized
Margin Bounds for Neural Networks

In a more recent work [25] a generalization bound for neural networks with ReLU
activations is presented in terms of the product of the spectral norm and the Frobenius
norm of their weights. A bound on the changes in a network’s output with respect to a
perturbation in its weights is used to derive a generalization bound. The perturbation
bound relies on the following constraint on the input domain:

XB,D =
{
x ∈ R

D|
D∑

i=1

x2i ≤ B2

}
,

and is formulated in the following lemma.

Lemma 1 (Perturbation Bound) For any B, L > 0, let fW : XB,D → R
K be an L-

layer neural network with ReLU activations. Then for any W = vec({Wl}Ll=1), and
x ∈ XB,D, and any perturbation U = vec({Ul}Ll=1) such that ||Ul ||2 ≤ 1

L ||Wl ||2, the
change in the output of the network can be bounded as follows:

|| fW+U (x) − fW (x)||2 ≤ eB

(
L∏

l=1

||Wl ||2
)

L∑

l=1

||Ul ||2
||Wl ||2 .

This boundmakes a direct relation between a perturbation in themodel parameters
and its effect on the network’s output. Therefore, it leads to an upper bound on the
allowed perturbation in themodel parameters for a desiredmargin γ. The consequent
generalization bound for neural networks with ReLU activations is given in the
following theorem.

Theorem 2 For any B, L ,α > 0, let fW : XB,D → R
K be an L-layer feedforward

network with ReLU activations. Then, for any constant δ, margin γ > 0, network
parameters W = vec({Wl}Ll=1) and training set of size N, we have with probability
exceeding 1 − δ that

�exp,0( fW ) ≤�emp,γ( fW ) (6)

+ O

⎛

⎜⎝

√√√√ B2L2α ln(Lα)
∏L

l=1 ||Wl ||22
∑L

l=1
||Wl ||2F
||Wl ||22 + ln LN

δ

γ2N

⎞

⎟⎠ ,

where α is an upper bound on the number of units in each layer in the network.

The proof of this theorem relies on the PAC-Bayes theory. We refer the reader to [25]
for the full proofs of both Lemma 1 and Theorem 2.

As would have been expected, the bound in (6) becomes tighter as the margin γ
increases. In addition, the bound is looser as the number of layers in the network L
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increases and for a domain with a larger parameter B, as it encapsulates a larger input
domain. With similarity to other generalization error bounds, this bound becomes
tighter as the size of the training set increases.

This bound takes a step further toward a comprehensive explanation to the gener-
alization capabilities of DNNs, as unlike many other bounds it incorporates several
different measures that define a DNN: the number of layers in the network, the spec-
tral norm of the layers’ weights, the number of neurons in each layer, the size of the
input domain, the required classification margin and the size of the training set.

Another prominent work [26] provides a margin-based bound for the generaliza-
tion error of DNNs which scales with their spectral complexity, i.e., their Lipschitz
constant (the product of the spectral norms of the weight matrices) times a correction
factor. This bound relies on the following definition for the spectral complexity of a
network.

Definition 6 (Spectral Complexity) A DNN with reference matrices (M1, . . . , ML)

with the same dimensions as the weight matricesW1, . . . ,WL , for which the nonlin-
earities φi are ρi -Lipschitz, respectively, has spectral complexity

RW =
(

L∏

i=1

ρi ||Wi ||2
)⎛

⎝
L∑

i=1

||WT
i − MT

i || 2
3
2,1

||Wi ||
2
3
2

⎞

⎠

3
2

,

where here || · ||2 represents the spectral norm and the (p, q)-matrix norm is defined
by || · ||p,q = ||(||A:,1||p, . . . , ||A:,m ||p)||q for some matrix A ∈ R

d×m .

Note that the spectral complexity depends on the chosen reference matrices. This
leads to the following margin-based generalization bound. For a DNN with train-
ing set {(xi , yi )}Ni=1 drawn i.i.d. from some distribution D, with weight matrices
W1, . . . ,WL , for every margin γ > 0, with probability at least 1 − δ it holds that

�exp,0( f ) ≤ �emp,γ( f, x) + Õ
(

||X ||2RW

γN
log(max

i
hi ) +

√
log(1/δ)

N

)

where ||X ||2 =
√∑

i ||xi ||22, and maxi hi represents the maximal amount of neurons
in any layer in the DNN. The proof is left to the paper [26].

The PAC-Bayes frameworkwas also examined in [27], where a PAC-Bayes bound
on a network’s generalization error is optimized in order to obtain non-vacuous (tight,
nontrivial) generalization bounds for deep stochastic neural network classifiers. It
is hypothesized that the SGD optimization algorithm obtains good solutions only if
these solutions are surrounded by a relatively large volume of additional solutions
that are similarly good. This leads to the notion that the PAC-Bayes bound has the
potential to provide non-vacuous bounds on the generalization error of deep neural
networks when it is used optimize the stochastic classifier. As shown in Sect. 2,
the PAC-Bayes theorem bounds the expected loss of a stochastic classifier using
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the Kullback–Leibler divergence between an a priori probability distribution P and
a posterior probability distribution Q, from which a classifier is chosen when the
training data is available.

An optimization is performed over the distributions Q, in order to find the distri-
bution that minimizes the PAC-Bayes bound. This is done using a variation of the
stochastic gradient descent algorithm and using a multivariate Gaussian posterior
Q on the network parameters. In each step the network’s weights and their corre-
sponding variances are updated by a step in the direction of an unbiased estimate
of the gradient of an upper bound on the PAC-Bayes bound. Using this approach,
a finer bound on the generalization error of neural networks is obtained. We refer
the reader to [27] for the exact mathematical formulation. This approach relates to
similar notions examined in other works (such as [14, 28]), that make a connection
between the sharpness of the solution obtained using the SGD algorithm and its
ability to generalize well.

4.4 Stability and Generalization

The stability of a learning algorithm is an important characteristicwhich represents its
ability to maintain similar generalization results when a training example is excluded
or replaced in the training dataset. In [10], a sensitivity-driven approach is used to
derive generalization error bounds. The sensitivity of learning algorithms to changes
in the training set, which are caused by sampling randomness and by noise in the
sampled measurements, is formally defined and analyzed throughout [10].

A stable learning algorithm is an algorithmwhich is not sensitive to small changes
in the training set, i.e., an algorithm for which a small change in its training set results
in a small change in its output. As mentioned earlier, such a small change can be the
exclusion or replacement of a certain training example.

Statistical tools of concentration inequalities lead to bounds on the generalization
error of stable learning algorithms when the generalization error is essentially treated
as a randomvariablewhose expected value is zerowhen it is constrained to be roughly
constant.

The following are several useful definitions for the examination of the influence
of changes in the training set s which consists of N samples independently drawn
from the distribution D.

• By excluding (removing) the i th sample in the training set the following set is
obtained s\i = {s1, . . . , si−1, si+1, . . . , sN }.

• By replacing the i th sample in the training set, the following set is obtained
si = {s1, . . . , si−1, s ′

i , si+1, . . . , sN }, where the new sample s ′
i is drawn from the

same distribution D and is independent from s.

The following analysis is based on inequalities that relate moments of multidi-
mensional random functions to their first order finite differences. Let us present the
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following four definitions for the stability of a learning algorithm. These definitions
will be later used to derive generalization bounds.

Definition 7 An algorithm A has hypothesis stability β with respect to the loss
function � if the following holds:

∀i ∈ {1, . . . , N },Es,s [|�(As, s) − �(As\i , s)|] ≤ β.

The hypothesis stability relates to the average change caused by the exclusion of
one training sample. In order to limit the change at every specific training point, the
following definition of point-wise hypothesis stability is presented.

Definition 8 An algorithm A has point-wise hypothesis stability β with respect to
the loss function � if the following holds:

∀i ∈ {1, . . . , N },Es[|�(As, si ) − �(As\i , si )|] ≤ β.

For measuring the change in the expected error of an algorithm instead of the
point-wise change, the following definition of error stability, which satisfies a weaker
notion of stability, is presented.

Definition 9 An algorithm A has error stability β with respect to the loss function
� if the following holds:

∀s ∈ ZN ,∀i ∈ {1, . . . , N }, |Es[�(As, s)] − Es[�(As\i , s)]| ≤ β.

Lastly, the uniform stability, which is a stronger definition of stability, leads to
tight bounds.

Definition 10 An algorithmA has uniform stability β with respect to the loss func-
tion � if the following holds:

∀s ∈ ZN ,∀i ∈ {1, . . . , N }, ||�(As, s) − �(As\i , s)||∞ ≤ β.

Using these four definitions of the stability of learning algorithms, the follow-
ing bounds on the relation between the empirical loss and the expected loss are
derived. Let us denote the leave-one-out loss on the training set by �loo(As) �
1
N

∑N
i=1 � (As\i , si ). This loss is of importance when discussing an algorithm’s sta-

bility since it represents its average test loss on a specific sample when it is excluded
from its training set.

The following are polynomial bounds on the expected loss.

Theorem 3 For any learning algorithm A with hypothesis stability β1 and point-
wise hypothesis stabilityβ2with respect to a loss function� such that0 ≤ �( f (x), y) ≤
M, we have with probability 1 − δ,
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�exp(As) ≤ �emp(As) +
√

M2 + 12MNβ2

2Nδ
,

and

�exp(As) ≤ �loo(As) +
√

M2 + 6MNβ1

2Nδ
.

We refer the reader to [10] for the proofs. Specifically, for the regression and
classification cases, bounds based on the uniform stability of learning algorithms
are derived. The bounds for the latter case are left to the original paper, whereas the
bounds for the former case are as follows.

Theorem 4 Let A be an algorithm with uniform stability β with respect to a loss
function � such that 0 ≤ �(As, s) ≤ M, for all s ∈ Z and all sets s. Then, for any
N ≥ 1, and any δ ∈ (0, 1), the following bounds hold (separately) with probability
at least 1 − δ over the random draw of the sample s:

�exp(As) ≤ �emp(As) + 2β + (4Nβ + M)

√
ln(1/δ)

2N
,

and

�exp(As) ≤ �loo(As) + β + (4Nβ + M)

√
ln(1/δ)

2N
.

This theorem gives tight bounds when the stability β scales as 1
N , which is the case

for several prominent algorithms such as the K -NNclassifierwith respect to the {0,1}
loss function, and the SVM classifier with respect to the Hinge loss function. Bounds
for the case when regularization is used can be controlled by the regularization
parameter (a scalar hyperparameter, usually denoted by λ, which controls the weight
of the regularization term in the objective loss function) and can therefore be very
tight. These bounds are left to the original paper [10].

The specific relation to deep neural networks was made in [29], where several
theorems regarding the stability of deep neural networks are given. It is shown that
stochastic gradientmethods, which are themost commonly usedmethods for training
DNNs, are stable. Specifically, the following theorem establishes that stochastic
gradient methods are uniformly stable.

Theorem 5 Assume that �(x) ∈ [0, 1] is an M-Lipschitz and ε − smooth loss func-
tion for every x. Suppose that we run the stochastic gradient method for T steps
with monotonically nonincreasing step sizes αt ≤ c

t . Then, the stochastic gradient
method applied to � has uniform stability with

βstabili t y ≤ 1 + 1
εc

N − 1
(2cM2)

1
εc+1 T

εc
εc+1 ,
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where a function �(x) is M-Lipschitz if for all points x in the domain of � it holds
that ||∇�(x)||2 ≤ M, and a function �(x) is ε − smooth if for all x, x̂ in the domain
of � it holds that ||∇�(x) − ∇�(x̂)||2 ≤ ε||x − x̂ ||2.

Specifically, if the constant factors that depend on ε, c and M are omitted, the
bound on the uniform stability is given by

βstabili t y � 1

N
T 1− 1

εc+1 .

This bound implies that under certain assumptions on the loss function the uniform
stability β scales as 1

N for deep neural networks, and in this case, the same bounds
from Theorem 4 are tight for deep neural networks as well. We refer the reader to
[29] for the formal proof of this theorem.

The notion of stability has therefore been shown to be of importance in the evalua-
tion of a learning algorithm’s generalization error. It has been established that stable
algorithms yield a lower expected loss and therefore a lower generalization error,
particularly for deep neural networks which in many cases can obtain a training loss
of zero (as shown in [6]). A comprehensive overview of [29] is given in Sect. 4.7.

4.5 Robustness and Generalization

In a later work [11], a notion from robust optimization theory is used to examine the
generalization capabilities of learning algorithms with respect to their robustness.
An algorithm is said to be robust if it achieves similar performance on a test sample
and a training sample which are close in some sense, i.e., if a test sample is similar
to a training sample, then its corresponding test error is close to the corresponding
training error. This means that a robust learning algorithm is not sensitive to small
perturbations in the training data. This notion applies to general learning algorithms,
not only deep neural networks. The formal definition of algorithm robustness is
given in Sect. 2. The following is the generalization error bound for a robust learning
algorithm.

Theorem 6 If s consists of N i.i.d. samples, andA is (K , ε(s))-robust, then for any
δ > 0, with probability at least 1 − δ,

|�exp(As) − �emp(As)| ≤ ε(s) + M

√
2K ln 2 + 2 ln (1/δ)

N
.

This holds under the assumption that �(As) is nonnegative and upper bounded uni-
formly by the scalar M .

A new relaxed definition of pseudo-robustness (weak robustness) is proposed.
Pseudo-robustness is both a necessary and sufficient condition for asymptotic gen-
eralizability of learning algorithms in the limit superior sense (as shown in Defini-
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tions 12 and13 hereafter). Under the definition of pseudo-robustness, the condition
for robustness as mentioned in (3) in the preliminaries, only has to hold for a subset
of the training samples. The definition of pseudo-robustness is as follows.

Definition 11 Algorithm A is (K , ε(s), N̂ ) pseudo-robust if Z can be partitioned
into K disjoint sets, denoted as {Ci }Ki=1, and a subset of training samples ŝ with
|ŝ| = N̂ such that ∀s ∈ ŝ,

s, z ∈ Ci ,⇒ |�(As, s) − �(As, z)| ≤ ε(s).

The following theorem gives a bound on the generalization error of pseudo-robust
learning algorithms.

Theorem 7 If s consists of N i.i.d. samples, and A is (K , ε(s), N̂ ) pseudo-robust,
then for any δ > 0, we have that with a probability at least 1 − δ,

∣∣�exp(As) − �emp(As)
∣∣ ≤ N̂

N
ε(s) + M

(
N − N̂

N
+
√
2K ln 2 + 2 ln (1/δ)

N

)
.

This holds under the assumption that �(As) is nonnegative and upper bounded uni-
formly by a scalar M . The proof is offered in its entirety in [11].

Robustness is an essential property for successful learning. In particular, pseudo-
robustness (weak robustness) is indicative of the generalization abilities of a learning
algorithm. A learning algorithm generalizes well if and only if it is pseudo-robust.
This conclusion is formalized by the following definitions.

Definition 12 1. A learning algorithm A generalizes w.r.t. s if

lim sup
N

{
Et
(
�(AsN , t)

)− 1

N

N∑

i=1

�(AsN , si )

}
≤ 0.

2. A learning algorithmA generalizes with probability 1 if it generalizes w.r.t. almost
every s.

Definition 13 1. A learning algorithm A is weakly robust w.r.t. s if there exists a
sequence of {DN ⊆ ZN } such that Pr (tN ∈ DN ) → 1, and

lim sup
N

{
max
ŝN∈DN

[
1

N

N∑

i=1

�(AsN , ŝi ) − 1

N

N∑

i=1

�(AsN , si )

]}
≤ 0. (7)

2. A learning algorithmA is asymptotically weakly robust if it is robust w.r.t. almost
every s.

Note that AsN is the learning algorithm A trained on the set sN = {s1, . . . , sN }, and
ŝN = {ŝ1, . . . , ŝN } ∈ DN is the sequence of samples. It follows from (7) that if for
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a large subset of ZN the test error is close to the training error, then the learning
algorithm is pseudo-robust (weakly robust). The thorough proof is offered in [11].

The following theorem is given to make a general relation between pseudo-
robustness of a learning algorithm and its generalization capabilities.

Theorem 8 An algorithmA generalizes w.r.t. s if and only if it is weakly robust w.r.t.
s.

The following corollary stems from the aforementioned theorem and further for-
malizes the discussed relation.

Corollary 1 An algorithmA generalizes with probability 1 if and only if it is asymp-
totically weakly robust.

Therefore, it has been established thatweak robustness is a fundamental characteristic
for learning algorithms to be able to generalize well.

In order to make a relation between the above theorems and feedforward neural
networks, we introduce the covering number term as defined in [30].

Definition 14 (Covering number) For a metric space S with metric d andX ⊂ S, it
is said that X̂ ⊂ S is a ρ-cover of X if ∀x ∈ X , ∃x̂ ∈ X̂ such that d(x, x̂) ≤ ρ. The
ρ-covering number of the space X with d-metric balls of radius ρ is

N (ρ,X , d) = min{|X̂ |s.t. X̂ is a ρ−cover ofX }.

Accordingly, the term N (
γ
2 ,Z, || · ||∞), which is used in the following example,

represents the γ
2 -covering number of the space Z with the metric || · ||∞.

The following example makes the relation to deep neural networks.

Example 3 Let Z be compact and the loss function on the sample s = (x, y) be
�(As, s) = |y − As(x)|. Consider the L-layer neural network trained on s, which is
the following predicting rule given an input x ∈ X

∀l = 1, . . . , L − 1 : xli � φ

⎛

⎝
hl−1∑

j=1

wl−1
i j xl−1

j

⎞

⎠ ; i = 1, . . . , hl; (8)

As(x) � φ

⎛

⎝
hL−1∑

j=1

wL−1
j x L−1

j

⎞

⎠ . (9)

If there exist α, β such that the L-layer neural network satisfies that |φ(a) − φ(b)| ≤
β|a − b|, and ∑hl

j=1 |wl
i j | ≤ α for all l, i , then it is

(
N (

γ
2 ,Z, || · ||∞),αLβLγ

)
-

robust, for all γ > 0.

Note that x0 � x represents the network’s input, and Eqs. (8), (9) depict standard
data propagation through the network. An interesting result is that the number of
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neurons in each layer does not affect the robustness of the algorithm, and as a result
the test error.

In [31], the notion of robustness from [11] is used to derive a bound on the gener-
alization error of DNN classifiers trained with the 0–1 loss, where the sample space
X is a subset of a CM regular D-dimensional manifold whose covering number is
upper bounded byN (ρ,X , d) ≤ (CM

ρ
)D . In this case, the advantage of the robustness

framework is that it provides a connection between the generalization error of the
classifier and the data model. Yet, the bound provided in [31] scales exponentially
with the intrinsic dimension of the data. Therefore, it is a rather loose bound and
a tighter bound is required to better explain the generalization capabilities of DNN
classifiers.

4.6 Stronger Generalization Bounds for Deep Nets
via a Compression Approach

Acompression-based approach has recently been proposed to derive tight generaliza-
tion bounds for deep neural networks [15]. This proposed compression is essentially
a re-parameterization of the trained neural network, which relies on compression
algorithms for reducing the effective number of parameters in deep neural networks.
Using noise stability properties a theoretical analysis of this compression-based
approach leads to tight generalization bounds. Generalization bounds that apply to
Convolutional Neural Networks (CNNs) are also drawn for these compressed net-
works, and the correlation to their generalization capabilities is empirically estab-
lished.

First, it is shown in [15] that Gaussian noise injected to different layers in a neural
network has a rapidly decaying impact on the following layers. This attenuation of the
noise as it propagates through the network layers implies a noise stability that allows
the compression of individual layers of the network. The definition of a compressible
classifier is given in Sect. 2.

Incorporating the use of a “helper string” s, which is essentially a vector of
fixed arbitrary numbers, enables the compression of the difference between the final
weights and the helper string, instead of the weights themselves. The usage of a
helper string yields tighter generalization bounds, such as in [27].

Definition 15 Let GW,s = {gW,s |W ∈ W} be a class of classifiers with trainable
parametersW and a helper string s. A classifier f is (γ, s)-compressible with respect
to GW,s if there existsW ∈ W such that for any sample in the dataset x ∈ s, we have
for all k

| f (x)[k] − gW,s(x)[k]| ≤ γ.

Note that f (x)[k] is the kth entry in the K -dimensional vector f (x). The aforemen-
tioned definition leads to the following theorem for a general classifier.
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Theorem 9 Suppose GW,s = {gW,s |W ∈ W}, where W is a set of q parameters,
each of which can have at most r discrete values, and s is a helper string. Let s be
a training set with N samples. If the trained classifier f is (γ, s)-compressible with
GW,s , then there exists W ∈ W for which with high probability over the training set,

�exp,0(gW,s) ≤ �emp,γ( f, s) + O
(√

q log r

N

)
.

This theorem formalizes the generalization abilities of the compression of a clas-
sifier f . Relying on this finding, a compression algorithm which yields a bounded
generalization error on the output of deep neural networks is proposed in [15]. This
compression algorithm changes theweights of the neural network using a variation of
matrix projection.We refer the reader to [15] for the corresponding bound for CNNs,
along with the empirical findings that establish that it is tighter than the familiar ones
based on the product of the weight matrix norms, which are shown to be quite loose.

Another recent work [32] also takes a compression-based approach to examining
the generalization of DNNs, and provides some interesting complementary insights.
A generalization bound for compressed networks based on their compressed size is
given, and it is shown that the compressibility of models that tend to overfit is limited,
meaning more bits would be necessary to save a trained network which overfits its
training dataset.

4.7 Train Faster, Generalize Better: Stability of Stochastic
Gradient Descent

The approach of examining generalization through the lens of the commonly used
stochastic gradient optimization methods is taken in [29]. It is essentially claimed
that any model trained with a stochastic gradient method for a reasonable amount of
time would exhibit a small generalization error.

Much insight is given into why the usage of stochastic gradient methods yields
good generalization in practice, along with a formal foundation as to why popular
techniques for training deep neural networks promote the stability of the obtained
solution. It is argued that stochastic gradient methods are useful in achieving a low
generalization error since as long as the objective function is smooth and the number
of taken steps is sufficiently small these methods are stable. Relying on the defini-
tions and bounds for algorithm stability from [10], stability bounds for both convex
and non-convex optimization problems are derived under standard Lipschitz and
smoothness assumptions.

An interesting aspect is the relation between an algorithm’s generalization error
and the amount of training epochs used during its optimization process. When an
algorithm is trained for an arbitrarily long training time, it could achieve a small
training error bymemorizing the training dataset, yet with no generalization abilities.
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However, an algorithm’s ability to fit the training data rapidly, with a reasonably small
amount of training iterations, is indicative of its ability to generalize well.

It is shown that stochastic gradient methods are uniformly stable. In the convex
case, the stability measure decreases as a function of the sum of the optimization step
sizes, meaning that these methods reach a solution that generalizes well as long as
the optimization steps are sufficiently small and the number of iterations is not too
large. Moreover, for strictly convex loss functions, these methods are stable for an
arbitrarily long training time. Relating to the non-convex case of neural networks, it
is shown that the number of training steps of stochastic gradient methods can grow as
fast as Nc for N training samples and a small c > 1, and good generalization would
still be achieved. This sheds light on the superior generalization abilities of neural
networks, which are trained with many optimization steps.

The following theorem gives a bound for convex lossminimizationwith a stochas-
tic gradient method.

Theorem 10 Let the loss function � be ε-smooth, convex and M-Lipschitz. Then
a stochastic gradient method with step sizes αt ≤ 2

ε
for T steps satisfies uniform

stability with

βstabili t y ≤ 2M2

N

T∑

t=1

αt .

We leave the formal proof of this theorem to [29]. We refer the reader to the corre-
sponding stability bound for the non-convex case given in Sect. 4.4.

Moreover, as long as the number of training iterations is linear in the number of
data points in the training set, the generalization error is bounded by a vanishing
function of the sample size. This means that a short training time by itself can be
sufficient to prevent overfitting, even for models with a large amount of trainable
parameters and no explicit regularization.

In addition, a theoretical affirmation is given to the familiar role of regulariza-
tion in reducing overfitting and improving the generalization capabilities of learning
algorithms. The advantages of using methods such as weight decay regularization,
gradient clipping, dropout, projection, etc., are formulated and explained.

For instance, the popular technique of dropout decreases the effective Lipschitz
constant of the objective function, thus decreasing the bound on the generalization
error, as formalized in the following theorem.

Theorem 11 A randomized map D : Ω → Ω is a dropout operator with rate r if
for every v ∈ D it holds that E{||Dv||2} = r ||v||2. For a differentiable function f :
Ω → Ω , which is M-Lipschitz, the dropout gradient update defined byαD(∇ f (v)),
with learning rate α is (rαM)-bounded.

Proof Since f is assumed to be differentiable and M-Lipschitz, using the linearity
of the expectation operator we get that

E{||αD(∇ f (v))||} = αrE||∇ f (v)|| ≤ αrM.
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This obtained upper bound to the gradient update implies an enhanced stability of
the learning algorithm according to the dependency on the Lipschitz constant M ,
which appears in various generalization bounds.

Many other works analyze the characteristics of the loss function and the SGD
optimization algorithm used for the training of DNNs as well. A recent work [33]
shows that even without explicit regularization, for linearly separable logistic regres-
sion problems the SGD algorithm converges to the same direction as the max-margin
solution, i.e., the solution of the hard margin SVM.

Another recent work [34] studies the problem of two-layer neural networks with
ReLU or Leaky ReLU activations when the data is linearly separable. In the specific
examined setting, the parameters of the first layer are updatedwhereas the parameters
of the second layer are fixed throughout the training process. Convergence rates of the
SGD algorithm to a global minimum are introduced and generalization guarantees
for this minimum, which are independent of the network size, are given as well.

Another related work [35] examines why DNN architectures that have multiple
branches (e.g., Inception, SqueezeNet, Wide ResNet and more) exhibit improved
performance in many applications. It is claimed that one cause for this phenomenon
is the fact that multi-branch architectures are less non-convex in terms of the dual-
ity gap of the optimization problem in comparison to other commonly used DNN
architectures. This may explain why the usage of stochastic gradient methods yields
improved generalization results for these networks, as it may contribute to their
improved stability.

4.8 On Large Batch Training for Deep Learning:
Generalization Gap and Sharp Minima

In [14], another point of view on stochastic gradient methods is taken through the
examination of the effect of the size of the training mini-batch on the generalization
capabilities of the obtained solution. Though this point of view is mostly empirical,
it offers thought-provoking explanations to an interesting phenomenon.

SGD based algorithms perform an optimization step using the gradient of the
objective function which is computed on a subset of the training dataset, commonly
referred to as a training “mini-batch”. In deep learning, typical mini-batch sizes for
training are between several tens to several hundreds of training samples per mini-
batch. It has been empirically observed that training using a larger mini-batch, i.e.,
more training samples are used to make an optimization step in each iteration, leads
to a larger generalization error of the obtained solution.

In [14], an explanation to this phenomenon is given by the notion that the usage
of large mini-batches encourages convergence to sharp minima solutions to the opti-
mization problem of the training of DNNs (i.e., minimizers of the training loss func-
tion), thus obtaining worse generalization. Contrastingly, the usage of small mini-
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batches tends to lead to solutions with flat minima which yield better generalization.
For the exact definition of the term sharpness in this context, see Definition 4.

Much light is shed on the aforementioned phenomenon by examining the sharp-
ness of the obtained solutions (minimizers). It is empirically shown that using large
mini-batches during training leads to convergence to a solution with large sharpness,
whereas training with small mini-batches leads to a solution with small sharpness
(large flatness), which has been linked to better generalization. The value of the min-
imum itself (the value of the objective function at the minimizer) in both cases is
often very similar, despite the difference in sharpness.

One explanation is that using smaller mini-batches for gradient based steps is
essentially equivalent to using a noisy approximation of the gradient, a property that
generally leads to convergence to a flatter minimum. Other conjectures claim that
large mini-batches encourage overfitting, are attracted to saddle points, or simply
lack the “explorative” characteristic of small mini-batches.

It is shown in [14] that the usage of large mini-batches leads to convergence to
sharp minimizers of the objective function, i.e., the Hessian matrix ∇2�emp(AsN )

has a significant amount of large positive eigenvalues, whereas small mini-batches
lead to convergence to flat minimizers, withmany small eigenvalues in∇2�emp(AsN ).
This leads to the conclusion that large mini-batches effectively prevent the stochastic
gradient optimization method from evading undesired basins of attractions.

For the empirical analysis of this phenomenon, an analysis of the Hessian matrix
∇2�emp(AsN ) is required.Due to the significant computational overheadof computing
the Hessian matrix in deep learning models, an alternative sharpness measure is
employed. We again refer the reader to Definition 4 in the preliminaries for the
specifics.

Using this metric of sharpness, it is shown on six different networks that there is
a strong correlation between the usage of small training mini-batches and flatness
(i.e., low sharpness) of the obtained solution which leads to a small generalization
error (empirically evaluated by the difference between the test and training errors).
Returning to the notion of the usage of small mini-batches being equivalent to noisy
approximation of the gradient of the loss function, it is presumed that during training
this noise effectively encourages the objective function to exit basins of attraction
of sharp solutions toward the ones belonging to flat solutions. Contrastingly, large
mini-batches do not have sufficient noise in the gradient to escape sharp minimizers,
thus leading to convergence to a worse solution in the sense of a larger generalization
error.

Training using a larger mini-batch is highly beneficial, as it allows an increased
parallelization of the performed computations, and faster training as a result. For
this reason, several mitigation methods for this phenomenon, that will allow the
usage of larger mini-batches during training without compromising the generaliza-
tion capabilities of the obtained solution, are presented. These methods improve the
performance of solutions which are obtained using large mini-batch training. Such
methods are data augmentation, conservative training, robust training and others.
However, these methods exhibit a limited influence on the sharpness of the attained
solution and thereby a limited influence on the generalization error.
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4.9 Sharp Minima Solutions to the Training of DNNs Can
Generalize for Deep Nets

In [28], the notion that the flatness of the minima of the loss function obtained
using SGD-based optimization algorithms is key in achieving good generalization is
examined. The relation between the geometry of the loss function in the environment
of a solution and the obtained generalization error is examined, and through the
exploration of different definitions of “flatness” substantial insight is provided into
the conjecture that flat minima lead to better generalization.

With contrast to other prominent works, it is argued that most notions of flatness
cannot be directly used to explain generalization. It is specifically shown that for
DNNs with ReLU activations it is possible to apply model re-parameterization and
obtain arbitrarily sharper minima. This essentially means that the notion of flatness
can be abstract, and different interpretations of it could lead to very different conclu-
sions. The reason for this contradiction stems from Bayesian arguments regarding
the KL divergence, which are used to explain the superior generalization ability
of flat minima. Since the KL divergence is invariant to parameter change, and the
notion of flatness is not characterized by such invariance, arguments of flatness can
be mistakenly made when more context regarding the definition of flatness is absent.

In this aspect, the work in [28] nicely exhibits that even though empirical evi-
dence points to a correlation between flat minima and good generalization, the exact
definition of “flatness” in this context is important, as different definitions can lead
to very different results and subsequent conclusions.

Several related properties of the Hessian of deep neural networks, their general-
ization capabilities and the role of the SGD-based optimization are also examined
in [36].

4.10 Train Longer, Generalize Better: Closing the
Generalization Gap in Large Batch Training of Neural
Networks

In an attempt to tackle the phenomenon of degraded generalization error when large
mini-batch training is used, a different theoretical explanation, along with a conse-
quent technique to overcome the phenomenon, is suggested in [37]. It is shown that
by adjusting the learning rate and using batch normalization during training, the gen-
eralization gap between small and large mini-batches can be significantly decreased.
In addition, it is claimed that there is no actual generalization gap between these
two cases; large mini-batch training can generalize just as well as small mini-batch
training by adapting the number of training iterations to the mini-batch size.

This claim relies on the conjecture that the initial training phase of a neural network
using a stochastic gradient method can be described as a high-dimensional “random
walk on a random potential” process with “ultra-slow” logarithmic increase in the
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distance of the weights from their initialization values. Empirical results show that
small mini-batch training produces network weights that are further away from their
initial values, compared to the case of large mini-batch training. Consequently, by
adjusting the learning rate and adding batch normalization to the training algorithm,
the generalization gap between small and large mini-batch training can be substan-
tially decreased. This also implies that the initial training phase with a high learning
rate is crucial in obtaining good generalization. Training longer in the initial high
learning rate regime enables the model to reach farther environments in the objective
function space, which may explain why it allows the optimization algorithm to find
a flatter minima which is correlated with better generalization.

This leads to the conclusion that there is no inherent generalization gap in this
case: adapting the amount of training iterations can mitigate the generalization gap
between small and large mini-batch training. Based on these findings, the “Ghost
Batch Normalization” algorithm for training using large mini-batches is presented.

Algorithm: (Ghost Batch Normalization) Inputs: activation values x over a large
mini-batch Blarge = {x1, . . . , xm} of size |Blarge|, size of virtual small mini-batch |Bsmall |
(where |Bsmall | < |Blarge|). γ,β, η are learned algorithm parameters, where η represents the
learning momentum.

Training Phase:
Scatter Blarge s.t.

{X1, X2, . . . , X
|Blarge |
|Bsmall | } = {x1,...,|Bsmall |, x|Bsmall |+1,...,2|Bsmall |, . . . , x|Blarge |−|Bsmall |,...,m}

μl
B ← 1

|Bsmall |
∑|Bsmall |

i=1 Xl
i for l = 1, 2, 3, . . . (ghost mini-batch means)

σl
B ←

√
1

|Bsmall |
∑|Bsmall |

i=1

(
Xl
i − μl

B

)2 + ε for l = 1, 2, 3, . . . (ghost mini-batch std’s)

μrun = (1 − η)|Bsmall | · μrun +∑
|Blarge |
|Bsmall |
i=1 (1 − η)i · η · μl

B

σrun = (1 − η)|Bsmall | · σrun +∑
|Blarge |
|Bsmall |
i=1 (1 − η)i · η · σl

B

return γ · Xl−μl
B

σl
B

+ β

Test Phase:

return γ · Xl−μl
run

σl
run

+ β (scale & shift)

This algorithm enables a decrease in the generalization error without increasing
the overall number of parameter updates as it acquires the necessary statistics on
small virtual (“ghost”) mini-batches instead of the original larger mini-batches.

In addition, common practice instructs that during training, when the test error
plateaus, one should decrease the learning rate or stop training all together to avoid
overfitting. However, in [37] it has been empirically observed that continuing to
train, even when the training error decreases and the test error stays roughly the
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same, results in a test error decrease at a later stage of training when the learning rate
is decreased, which is indicative of better generalization.

These results provided the incentive to make the relation to the mini-batch size in
[37], supporting the idea that the problem is not in the mini-batch size but rather in
the number of training updates. By prolonging the training time for larger mini-batch
training by a factor of |Blarge|

|Bsmall |e, where |Blarge| and |Bsmall | are the sizes of the large
and small training mini-batches respectively and e is the amount of training epochs
in the original regime, it is empirically shown how the generalization gap between
the two cases can be completely closed.

4.11 Generalization Error of Invariant Classifiers

In [38], the generalization error of invariant classifiers is studied. A common case
in the field of computer vision is the one in which the classification task is invariant
to certain transformations of the input such as viewpoint, illumination variation,
rotation, etc. The definition of an invariant algorithm is as follows.

Definition 16 (Invariant Algorithm) A learning algorithm A is invariant to the set
of transformations T if its embedding is invariant:

f (ti (x), sN ) = f (t j (x), sN ) ∀x ∈ X , ti , t j ∈ T .

where X is the algorithm’s input space and ti , t j are transformations.

It is shown that invariant classifiers may have a much smaller generalization error
than non-invariant classifiers, and a relation to the size of the set of transformations
that a learning algorithm is invariant to is made. Namely, it is shown that given a
learning method invariant to a set of transformations of size T , the generalization
error of this method may be up to a factor

√
T smaller than the generalization error

of a non-invariant learning method. We leave the details of the proof to [38].
Many other works examine invariant classifiers, as utilizing the property of invari-

ance can lead to improved algorithm performance. Another prominent work that
examines invariant image representations for the purpose of classification is [39].

4.12 Generalization Error and Adversarial Attacks

It has lately been shown that even though deep neural networks typically obtain
a low generalization error, and therefore perform their designated tasks with high
accuracy, they are highly susceptible to adversarial attacks [40, 41], with similarity
to other machine learning algorithms. An adversarial attack is a perturbation in the
model’s input which results in its failure. Adversarial attacks have been shown to be
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very effective: even when the change in the input is very small they are likely to fool
the model, and are usually unnoticeable to the human eye. On top of that, very little
knowledge of the attacked network is necessary for an efficient attack to be crafted,
and once an adversarial example is obtained it is highly transferable, meaning it is
very likely to fool other DNNs as well.

The existence of adversarial attacks exposes an inherent fault in DNNmodels and
their ability to generalize well: although DNNs can generalize very well, they can
be very easily fooled. One should keep in mind that this fault is not unique to deep
neural networks and characterizes other machine learning models as well.

In [31], a new regularization technique is suggested using the regularization of
the Frobenius norm of a network’s Jacobian matrix. It is shown that bounding the
Frobenius norm of the network’s Jacobianmatrix reduces the obtained generalization
error. In [42], it is shown that neural networks aremore robust to input perturbations in
the vicinity of the training data manifold, as measured by the norm of the network’s
Jacobian matrix. The correlation between the aforementioned robustness and the
network’s generalization capabilities is also noted. In [43], this notion is taken further.
It is shown that this Jacobian regularization also improves the robustness of DNNs to
adversarial attacks, thus showing that reducing a network’s generalization error has
also collateral benefits. In [44], it is shown that the sample complexity (the number
of training samples necessary to learn the classification function) of robust learning
can be significantly larger than that of standard learning.

A comprehensive survey on the threat of adversarial attacks on deep learning
models is given in [45].

5 Open Problems

Given the above overview of generalization error in deep learning, we provide here
a list of open problems we have identified that we believe will have an important
future impact on the field.

5.1 Problem 1: Generalization and Memorization

As reviewed in Sect. 4.1, understanding the capabilities and method of operation
of deep neural networks requires a deeper understanding of the interplay between
memorization and generalization. It has been shown that DNNs are powerful enough
to memorize a random training dataset, yet with no actual generalization. It would
be expected from a model that overfits any training data so well to obtain poor
generalization, yet in practice DNNs generalize very well. It follows that currently
existing theories are lacking since they are unable to explain this phenomenon, and a
new comprehensive theory is required. Furthermore, an algorithm’s ability to obtain
a low generalization error strongly depends on the provided training dataset and
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not just on the model architecture. In order for effective learning to take place, the
training dataset must be sufficiently large and well spread over the sample space in
order to avoid the curse of dimensionality, a termwidely used to refer to the need of a
large amount of training data in high-dimensional problems. It follows that obtaining
prior knowledge on the training dataset or the test dataset, e.g., the distributions from
which theywere drawn, would be highly beneficial in obtaining better generalization.

Several works make a relation between the generalization capabilities of DNNs
and the underlying data model. For example, [46] examines which architecture is
better for learning different functions. It is shown that deep neural networks, as
opposed to shallow networks, are guaranteed to avoid the curse of dimensionality
for an important class of problems: when the learned function is compositional. A
thorough review of the abilities of shallow and deep neural networks to learn different
kinds of compositional functions is done. Another recent work [47] examines the
relationship between the classification performed by DNNs and the K -NN algorithm
applied at the embedding space of these networks. The results suggest that a DNN
generalizes by learning a new metric space adapted to the structure of the training
dataset.

Following this track, we believe that better generalization bounds for learning
algorithms are obtainable when an assumption on the data model is made. For
instance, a sparsity assumption on the data model may be useful in this context,
as can be observed in several prominent works such as [48–54].

5.2 Problem 2: Generalization and Robustness

Another prominent and interesting open problem is understanding the robustness
properties of DNNs. A deep neural network is trained on a specific training dataset,
which is sampled from some probability distribution. A good model, which has been
adequately trained on a sufficiently large and balanced training dataset, is expected
to generalize well on unseen test data which is drawn from the same distribution.

However, the question arises—how well would this DNN generalize to test data
which was drawn from a different distribution? Can constraints on the relationship
between the training distribution and the test distribution be imposed to guarantee
good generalization? An example for this problem can be taken from the field of
computer vision. Let us assume aDNN is trained to classify imageswhichwere taken
of a scene in daylight. How well would this DNN generalize for images of the same
scene taken at night? This is an important problem with implications for numerous
applications, for example, autonomous vehicles.Networks trained to recognize issues
on roads in sunny Silicon Valley may not work well in rainy and foggy London.

Another related and interesting question is how good is the cross-task adaptation
of deep neural networks. How well can a DNN, which was trained to perform a
certain task, perform another task? How beneficial would incremental learning [55]
(a continuous “online” training of the model with new data) and transfer learning
[56] (a wide term which in the implementational case is typically used to refer to
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the training of several layers of a network, which have been previously trained for
performing a different task or on a different training dataset, for the purpose of
performing a new task or to work well with a different data source) be in this case?
How adaptive is a neural network between different tasks, and are there key design
guidelines for obtaining better generalization, robustness and transferability for a
network? How is the necessary information for good generalization embedded in
the learned features, and in what sense is the network essentially learning a new
metric?We refer the reader to [57] for a comprehensive survey of the field of transfer
learning.

All of these questions represent highly important areas of researchwith substantial
significance to the design of better DNN architectures with better generalization,
robustness, and transferability.

5.3 Problem 3: Generalization and Adversarial Examples

A special case of the previous problem is the one of adversarial examples, which we
have presented in Sect. 4.12. The counterintuitive vulnerability of DNNs to adver-
sarial examples opens the door to a new angle in the research of the generalization
of deep neural networks. It is of high importance to have a comprehensive theory
dedicated to this type of examples. Some theories for explaining this phenomenon
have been suggested, such as in [40, 41, 58]. However, this still remains an active
field of research.

5.4 Problem 4: Generalization Error of Generative Models

An important lens throughwhich the generalization capabilities ofDNNs is examined
is that of generative models. Generative models are models which are used to learn
the underlying distribution fromwhich the data is drawn, and thus manufacture more
data from the same probability distribution, which can be used for training.

For example, Generative Adversarial Networks (GANs) [59] are a model which
consists of two networks, a generative network G that captures the data distribution,
and a discriminative network D that estimates the probability of a training sample
being either genuine or fake (i.e., manufactured by G). In this minimax problem, the
training phase results in G learning the underlying distribution of the training data.
The work in [60] provided initial results regarding the generalization properties of
GANs.

Another generative model which has gained much traction in the past years is
the Variational Autoencoder (VAE) [61]. Classical VAEs are based on two neural
networks, an encoder network and a decoder network. The encoder is used to learn
a latent variable, from which the decoder generates a sample which is similar to
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the original input to the encoder, i.e., which is approximately drawn from the same
distribution.

The question arises—which probability distributions can be learned under which
conditions? How beneficial to the generalization capabilities would training on addi-
tional manufactured data be? These questions represent additional substantial paths
for research with a promising impact on the field of deep learning.

5.5 Problem 5: Generalization Error and the Information
Bottleneck

Recently, the information bottleneck has been introduced to explain generalization
and convergence in deep neural networks [62, 63]. By characterizing the DNN Infor-
mation Plane—the plane of the mutual information values that each layer preserves
on the input and output variables—it is suggested that a network attempts to optimize
the information bottleneck trade-off between compression and prediction for each
layer.

It is also known that the information bottleneck problem is related to the
information-theoretic noisy lossy source coding problem (a variation of the lossy
source coding problem) [64]. In particular, a noisy lossy source coding problem with
a specific loss function gives rise to the information bottleneck. Therefore, it is of
interest to explore links between information theory, representation learning and the
information bottleneck, in order to cast insights onto the performance of deep neural
networks under an information-theoretic lens. Preliminary steps in this direction are
taken in [65, 66].

6 Conclusions

Even though deep neural networks were shown to be a promising and powerful
machine leaning tool which is highly useful in many tasks, the source of their capa-
bilities remains somewhat elusive. Deep learningmodels are highly expressive, over-
parameterized, complex, non-convex models, which are usually trained (optimized)
with a stochastic gradient method.

In this chapter, we reviewed the generalization capabilities of these models, shed-
ding light on the reasons for their ability to generalize well from the training phase to
the test phase, thus maintaining a low generalization error. We reviewed some of the
fundamental works on this subject and also provided some more recent findings and
theoretical explanations to the generalization characteristics of deep neural networks
and the influence of different parameters on their performance.

We also reviewed various emerging open problems in deep learning, ranging from
the interplay between robustness, generalization, and memorization, to robustness
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to adversarial attacks, the generalization error of generative models and the relation
between the generalization error and the information bottleneck. These open prob-
lems require a deeper understanding to fully unlock the potential applicability of deep
learning models in real environments. Beyond these open problems there are various
other interesting learning settings that require much additional theoretical research,
such as multi-modal learning, multi-task learning, incremental learning, the capacity
of neural networks, the optimization of deep networks and more. While the current
state of research in this field is promising, we believe that much room remains for
further work to provide more comprehensive theories and a better understanding of
this important subject as outlined throughout this chapter.
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Deep Learning for Trivial Inverse
Problems

Peter Maass

Abstract Deep learning is producingmost remarkable results when applied to some
of the toughest large-scale nonlinear problems such as classification tasks in computer
vision or speech recognition. Recently, deep learning has also been applied to inverse
problems, in particular, inmedical imaging. Some of these applications aremotivated
by mathematical reasoning, but a solid and at least partially complete mathematical
theory for understanding neural networks and deep learning is missing. In this paper,
we do not address large-scale problems but aim at understanding neural networks for
solving some small and rather naive inverse problems.Nevertheless, the results of this
paper highlight the particular complications of inverse problems, e.g., we show that
applying a natural network design for mimicking Tikhonov regularization fails when
applied to even themost trivial inverse problems. The proofs of this paper utilize basic
andwell-known results from the theory of statistical inverse problems.We include the
proofs in order to provide somematerial ready to be used in student projects or general
mathematical courses on data analysis.Weonly assume that the reader is familiarwith
the standard definitions of feedforward networks, e.g., the backpropagation algorithm
for training such networks.We also include—without proof—numerical experiments
for analyzing the influence of the network design, which include comparisons with
learned iterative soft-thresholding algorithm (LISTA).

1 Motivation and Outline

No matter in which field of science we are working and no matter which type of
conferences or meetings we are attending, one of the hottest topics being discussed
over the last few years is neural networks for large data applications. The success of
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such deep learning (DL) applications are stunning indeed in terms of their apparent
success for large-scale real-life applications, see, e.g., [12, 18], but also with respect
to the almost complete lack of theoretical justification.

While arguing and having experimental results is a sufficient foundation in some
fields of sciences, it is not satisfactory in mathematics, where the concept of having
a strict proof is essential. Some mathematical concepts for analyzing deep learning
approaches are slowly emerging [1, 3, 7, 19, 23] and we want to add some basic
results for the particular case of DL for inverse problems on the low and almost trivial
side of complexity.

Our starting point is numerical experiments for linear systems Ax = y with given
noisy data yδ . Surprisingly, even small two by two examples cannot be solved reli-
ably by straightforward neural networks. Here, we employ minimal networks which
are capable of learning a matrix–vector multiplication, i.e., such networks should be
able to learn classical Tikhonov regularizers (A∗A + αI )−1A∗ or even better approx-
imations. This small-scale setting allows a somewhat complete analysis of the neural
network, in particular, we can prove the shortcomings of such neural networks if
the condition number of the matrix and the noise level in the data are in a critical
relation. The extension to linear systems of arbitrary dimension is straightforward.

On a conceptual level, when comparing inverse problems defined by analytical
models A : Z → V with data-driven approaches such as deep learning, one would
expect the data-driven approaches to have certain advantages if, e.g., A is an incom-
plete model of the underlying physical or engineering system or if the search for
parameter x is actually restricted to a characteristic subset Zd ⊂ Z , which, however,
escapes precise mathematical modeling. In both situations, the missing information
is implicitly contained in sufficiently large sets of experimentally measured pairs of
data (xi , yi )i=1,..,n . The assumption that A is only an incomplete model is not rele-
vant for our small examples. However, we can test the potential of neural networks
for learning the underlying structure or prior distribution of restricted parameter
sets. Hence, we extend our experiments to the nonlinear problem of solving linear
inverse problems with sparsity constraints [2, 4, 9, 15]. Here, we compare the results
obtained by classical ISTA (iterated soft thresholding) with its learned counterpart
LISTA [13]. The experimental results demonstrate that LISTA is not better than ISTA
if one takes any set of sparse vectors as inputs. However, it performs significantly
better if we assume structured sparsity of the inputs, i.e., if we restrict them to a low-
dimensional subspace. In this case, the performance of ISTA does not change, but
LISTA seems to unveil the underlying subspace and produces significantly improved
results.

2 Basic Example

We consider the basic inverse problem given by an operator A : Z → V and some
noisy data yδ = Ax + η.We further assume that a set of training data (x (i), y(i))i=1,..,n

is available for training a neural network. We will use this for training the forward
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operator, i.e., the set of x (i)’s is input and y(i)’s are the output, as well as for training
the inverse problem, i.e., the set of y(i)’s is input and x (i)’s are the output.

To be precise, in our most basic example, we set Z = V = IR2 and

Aε =
(
a11 a12
a21 a22

)
=

(
1 1
1 1 + ε

)
.

This matrix has an orthogonal basis of eigenvectors u1 =
(
1
1

)
+ O(ε2) , u2 =(

1
−1

)
+ O(ε2) and eigenvalues λ1 = 2 + ε

2 + O(ε2) , λ2 = ε
2 + O(ε2). The ill-

posedness of the problem—or rather the condition number of A—is controlled by
1/ε; typical values are ε = 10−k , k = 0, ..., 10.

As training data we draw n vectors x (i), i = 1, .., n, where each coefficient is i.i.d.
N (0, 1) normally distributed. The corresponding data vectors Ax (i) are corrupted
with noise vectors η(i) where each coefficient of η(i) is drawn independently from a
N (0,σ2) normal distribution, i.e.,

y(i) = Ax (i) + η(i) . (1)

For later use, we define 2 × n matrices X (parameter matrix), Y (data matrix), and
Θ (noise matrix) by storing column wise the vectors x (i), y(i), η(i), i.e.,

Y = AX + Θ . (2)

We now compare twomethods for solving the inverse problem. The first one is the
classical Tikhonov regularization, which only uses information about the operator A,
i.e., for given data y we estimate the parameter x by x̂T ik = (A∗A + σ2 I )−1A∗y. The
second inversion is based on a neural networkΦW , which depends on aweight matrix
W .W is obtained by training the neural network with respect to a so-called loss func-
tion.We use the standard least squares loss function L1(W ) = 1

n

∑n
i=1 ‖ΦW (x (i)) −

y(i)‖2 for training a net with parametersWFP = argmin L1(W ) for the forward prob-
lem and

L2(W ) = 1

n

n∑
i=1

‖ΦW (y(i)) − x (i)‖2 (3)

for training WI P = argmin L2(W ) for solving the inverse problem. That is, this
approach does not use any knowledge about the operator A. After training the inverse
problem is solved by simply applying the inverse net x̂Φ = ΦWI P (y).

The training is followed by an evaluation using a different set of test data. We
compare these methods by computing the mean error for the test data

ETik := 1

n

n∑
i=1

‖x̂ (i)
T ik − x (i)‖2 resp. EΦ := 1

n

n∑
i=1

‖x̂ (i)
Φ − x (i)‖2
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Fig. 1 The network design with eight parameters, setting w1 = −w3 = w11, w2 = −w4 =
w12, w5 = −w7 = w21, w6 = −w8 = w22 yields a matrix–vector multiplication of the input

The design of the network is crucial. For our first tests, we use a minimal network
which allows to reproduce a matrix–vector multiplication. Hence, the network is
capable—in principle—to recover the Tikhonov regularization operator or even an
improvement of it. Here, we use a networkwith a single hidden layerwith 4 nodes and
the standard ReLU -activation function, i.e., ReLU (z) = max{z, 0} (Rectified linear
units, z ∈ IR). For the motivation of our network design, we observe ReLU (z) −
ReLU (−z) = z.We restrict the eight weights connecting the input variables with the
first layer by settingw1 = −w3 = w11, w2 = −w4 = w12, w5 = −w7 = w21, w6 =
−w8 = w22 as depicted in Fig. 1. We obtain a neural network depending on four
variables w11, w12, w21, w22 and the networks acts as multiplication with matrix

W =
(

w11 w12

w21 w22

)
on the input vector z = (z1, z2) . We denote the output of such a

neural network by φW (z) = Wz.
The training of such a network for modeling the forward problem is equivalent

(using the Frobenius norm for matrices) to minimizing the expected mean square
error

min
W∈IR2×2

1

n

n∑
i=1

‖Wx (i) − y(i)‖2 = minW
1

n
‖WX − Y‖2 (4)

and training a model for the inverse problem is done by

min
W

1

n

n∑
i=1

‖Wy(i) − x (i)‖2 = min
W

1

n
‖WY − X‖2 . (5)
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In the next subsection, we report some numerical examples before we analyze these
networks.

2.1 Testing Error Convergence for Various Values of ε

We train these networks using a set of training data (x (i), y(i))i=1,..n with n = 10.000,
i.e., y(i) = Aεx (i) + η(i). The network design with restricted coefficients as described
above has four degrees of freedom w = (w11, w12, w21, w22) . The corresponding
loss function is minimized by a gradient descent algorithm, i.e., the gradient of the
loss function with respect tow is computed by backpropagation [5, 20, 22]. We used
3.000 iterations (epochs) of this gradient descent for minimizing the loss function
of a network for the forward operator using (4), respectively, for training a network
for solving the inverse problem using (5). The MSE errors on the training data were
close to zero in both cases.

After training, we tested the resulting networks by drawing n = 10.000 new data
vectors x (i) as well as errors vectors η(i). The y(i) were computed as above.

In the following table, we show the resulting values using this set of test data
NMSE f orward = 1

n

∑n
i=1 ‖Wx (i) − y(i)‖2 for the network trained for the forward

problem, respectively, NMSEinverse
1
n

∑n
i=1 ‖Wy(i) − x (i)‖2 for the network trained

for the inverse problem.

Error/choice of ε 1 0.1 0.01 0.0001
NMSE (direct problem) 0.002 0.013 0.003 0.003
NMSE (inverse problem) 0.012 0.8 10 10

The errors of the inverse net are large and the computed reconstructions with the
test data are meaningless. We have also evaluated the mean squared errors after each
iteration of the training as depicted in Fig. 2a, b. Here, the values of the errors are
shown for the first 3.000 iterates and for data produced with different values of ε.

We observe that the training of the forward operator produces reliable results as
well does the network for the inverse problem with ε ≥ 0.1. However, training a
network for the inverse problem with an ill-conditioned matrix Aε with ε ≤ 0.01
fails.

This is confirmed by analyzing the values of w and of the resulting matrix W
after training: We would assume that in training the forward problem we produce
values for w such that W ∼ Aε and that training the inverse problems leads to W ∼
(A∗A + σ2)−1A∗. For the forward problem, the difference between W and A is of
the order 10−3 or below, but for ε ≤ 0.01 the training of the inverse problem leads
to a matrix, which has no similarity with the Tikhonov regularized inverse. Using a
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Fig. 2 History of the values of the loss function during training of the forward map (left, a) and
the inverse problem (right, b). ε is set to 1, 0.1, 0.01, 0.0001

network with a single internal layer, but with more nodes and no restriction on the
structure of the weights, did not yield any significant improvements.

3 Analysis of Trivial Neural Networks for Inverse Problems

The numerical examples indicate that training even a most simple neural network for
a well-posed matrix–vector multiplication (forward operator) yields good results.
However, the natural approach for training a network for an inverse problem by
reversing inputs and outputs fails in certain cases. In this section, we aim to analyze
why this approach has its limitations for inverse problems.
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3.1 Matrix Case

We consider the training of the trivial network, see Fig. 1, for solving an inverse
problem with matrix A = Aε. That is, y(i) = Ax (i) + η(i) are inputs to the network
and the loss function is the mean squared error between the outputs of the network
and the exact solutions x (i).

Hence, in this section, we analyze the special case, where the application of the
neural network is strictly equivalent to a matrix–vector multiplication. In our test
example, this refers to restricting the coefficients of the neural network to four coef-
ficients w̃11, w̃12, w̃21, w̃22 and setting w1 = −w3 = w̃11, w2 = −w4 = w̃12, w5 =
−w7 = w̃21, w6 = −w8 = w̃22. The output of the network yields

φ(W, y) = Wy where W =
(

w̃11 w̃12

w̃21 w̃22

)
.

Training of the network is equivalent to determining a matrix W which minimizes

min
W

1

n
‖WY − X‖2 .

Analyzing this discrepancy functional is the classical situation in statistical inverse
problems theory [8, 16, 21], where trainingW is equivalent to determining the MAP
(maximum a posteriori) estimator.

The optimal W is obtained as

WT = (YY T )−1Y XT . (6)

We analyze W by using (1) and obtain the following expression for YY T :

YY T = (AX + Θ)(AX + Θ)T = AXXT AT + AXΘT + ΘXT AT + ΘΘT . (7)

Lemma 1 For a given A, we denote by Y thematrix of training data, by X thematrix
containing the parameters in the training set, and by Θ a noise matrix as defined in
Sect. 2. Then

1

n
YY T = (AAT + σ2 I ) + R with R = AB1A

T + B2 + AB3 + B4A
T ,

where B1 = 1
n X XT − I , B2 = 1

nΘΘT − σ2 I , B3 = 1
n XΘT , B4 = 1

nΘXT .
Then

0 = IE(B1) = IE(B2) = IE(B3) = IE(B4)
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var(B1) = 1

n

(
2 1
1 2

)
, var(B2) = σ4

n

(
2 1
1 2

)
, var(B3) = var(B4) = σ2

n

(
1 1
1 1

)
.

Remark 1 We will use some basic results for normally distributed random variables
Z ∼ N (0,σ2), see, e.g., [10, 11]:

IE(Z) = 0 , var(Z) = IE(Z2) = σ2 , var(Z2) = IE(Z4) − IE(Z2)2 = 2σ4 .

If Z (i) are i.i.d. (not necessarily normally distributed), then

IE(

n∑
i=1

Z (i)) =
n∑

i=1

IE(Z (i)) , var(
n∑

i=1

Z (i)) =
n∑

i=1

var(Z (i)) .

If Z , Z̃ are i.i.d. N (0,σ2) random variables, then

IE(Z Z̃) = 0 , var(Z Z̃) = IE(Z2 Z̃2) = IE(Z2)IE(Z̃2) = σ4 .

Proof By definition we have η(i)
1 , η(i)

2 , i = 1, .., n are i.i.d. N (0,σ2) random vari-
ables and Θ is the corresponding 2 × n matrix. Then

ΘΘT =
(∑n

i=1 (η(i)
1 )2

∑n
i=1 η(i)

1 η(i)
2∑n

i=1 η(i)
1 η(i)

2

∑n
i=1 (η(i)

2 )2

)
= n(σ2 I + B2)

with B2 = 1
n

(−nσ2 + ∑n
i=1 (η(i)

1 )2
∑n

i=1 η(i)
1 η(i)

2∑n
i=1 η(i)

1 η(i)
2 −nσ2 + ∑n

i=1 (η(i)
2 )2

)
.

For fixed n, we obtain

IE(−nσ2 +
n∑

i=1

(η(i)
1 )2) = −nσ2 +

n∑
i=1

IE
(
(η(i)

1 )2
)

= 0 and

var

(
−σ2 + 1

n

n∑
i=1

(η(i)
1 )2

)
= 1

n2

n∑
i=1

var
(
(η(i)

1 )2
)

= 2

n
σ4 .

Similarly, by using the rules above and by defining the variance of a matrix compo-
nentwise, we obtain

IE(
1

n
ΘΘT ) = σ2 I , IE(B2) = 0 and var(B2) = var

(
1

n
ΘΘT

)
= σ4

n

(
2 1
1 2

)
.

Similarly, with x (i)
1 ∼ N (0, 1), we obtain XXT = n(I + B1) and

IE(
1

n
X XT ) = I and var(

1

n
X XT ) = 1

n

(
2 1
1 2

)
.
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Setting B3 := 1
n XΘT and B4 := BT

3 yields

IE(XΘT ) = IE(ΘXT ) = 0 and var(B3) = var(B4) = σ2

n

(
1 1
1 1

)
.

We now analyze WT = ( 1n YY
T )−1 1

n Y XT . With the notation for B1, .., B4 as in
the lemma above and assuming that the reminder term R is small enough, we obtain
by using Neumann series

(
1

n
YY T )−1 = (AAT + σ2 I )−1 + (AAT + σ2 I )−1

∑
k≥1

Qk . (8)

with

Q = (AAT + σ2 I )−1R = (AAT + σ2)−1(AB1A
T + B2 + AB3 + B4A

T ) . (9)

This gives the expected result, namely, that training our specific network for the
inverse problems tries to mimic Tikhonov regularization. However, this is only valid
if Q is indeed small. We analyze the norms of Q and R in a series of lemmata. First,
we analyze the deterministic part of Q and R.

Lemma 2 Let A = Aε be defined as above. Then

‖(AAT + σ2 I )−1‖ = O
(

1

ε2 + σ2

)
= O

(
min(1/ε2, 1/σ2)

)
,

‖(AAT + σ2 I )−1A‖ = O
(

ε

ε2 + σ2

)
.

Proof We use the specific form of our matrix A and the values of its eigenvalues as
computed above. Classical arguments using the singular value decomposition of A
show that the eigenvalues ν1, ν2 of (AAT + σ2 I )−1, resp. of (AAT + σ2 I )−1A, are
given by

ν1 = 1

λ2
1 + σ2

= 1

4
+ O(ε + σ2) and ν2 = 1

λ2
2 + σ2

= 1

ε2/4 + σ2
(1 + O(ε)) ,

resp. ν1 = λ1

λ21 + σ2
= 1

2
+ O(ε + σ2) and ν2 = λ2

λ22 + σ2
= ε/2

ε2/4 + σ2
(1 + O(ε)) .

For symmetric matrices, the spectral radius is equivalent to matrix norms. Hence,
for small values of ε and σ, we obtain the asymptotic estimate of the norm of these
matrices, which is determined by the value of the second eigenvalue λ2 of A, i.e.,
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‖(AAT + σ2 I )−1‖ = O
(

1

ε2 + σ2

)
= O

(
min(1/ε2, 1/σ2)

)
,

‖(AAT + σ2 I )−1A‖ = O
(

ε

ε2 + σ2

)
.

Estimating the spectral radius of products of normally distributed randommatrices
with variable variances is the topic on ongoing research, see, e.g., [17, 24].Motivated
by the results and conjectures stated in these papers, we take the expectation values
of the individual entries of our random matrices as representative values for their
respective norms. That is, we take the componentwise estimates as an estimate for
the spectral radius of B. These values are the square roots of the variances computed
in Lemma 3.1. and we obtain the following corollary.

Corollary 1 We define the “pseudo spectral” radius ρ̃(B) for B ∈ {Bi , i = 1, .., 4},
where Bi is defined as above by

ρ̃(B) = maxi, j
(√

IE(b2i j )
)

,

where bi, j are the entries of the matrix B. Then Lemma 3.1 implies

ρ̃(B1) =
√
2

n
, ρ̃(B2) =

√
2σ4

n
, ρ̃(B3) =

√
2σ2

n
, ρ̃(B4) =

√
2σ2

n
.

Combining the last two statements allows us to obtain an estimate of the norm of the
four terms of Q in (9), e.g., we obtain for two of these expressions:

‖(AAT + σ2 I )−1AB1A
T ‖ ≤ ‖(AAT + σ2 I )−1A‖‖B1‖‖AT ‖ = O

(
ε√

n(ε2 + σ2)

)

‖(AAT + σ2 I )−1B4A
T ‖ ≤ ‖(AAT + σ2 I )−1‖‖B4‖‖AT ‖ = O

(
σ√

n(ε2 + σ2)

)
.

Similarly, we obtain estimates for the other terms, hence, componentwise

IE(‖Q‖) = O
(

ε + σ√
n(ε2 + σ2)

)
= O

(
1√

n(ε + σ)

)
. (10)

As we will see in the next lemma, this is actually a sharp estimate under rather weak
assumptions. We only need to ensure that the eigenvectors of the random matrices
B1, .., B4 are in random position and do not align with the eigenvectors of A. We
state the result only for the first term in the expression for Q the estimates for the
other terms follows equivalently.

Lemma 3 Letλ1,λ2, u1, u2, resp. ν1, ν2, v1, v2, denote eigenvalues and normalized
eigenvectors of A, resp. B1, such that the spectral radius is given by ρ(A) = λ1, resp.
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ρ(B1) = ν1. Assume that there exist constants c, c̃ > 0 such that

| < u1, v1 > | ≥ c , | < u1, v2 > | ≥ c and |1 − ν2/ν1| ≥ c̃ .

Then

‖(AAT + σ2 I )−1AB1A
T ‖ ≥ c̃c2ρ(AAT + σ2 I )−1A)ρ(B1)ρ(A)

= O
(

ε√
n(ε2 + σ2)

)
.

Proof A and B1 are symmetric matrices; hence, the respective eigenvalues are real,
the eigenvectors form an orthonormal basis, and u1, u2 are also eigenvectors of
(AAT + σ2 I )−1A. However, the spectral radius of this matrix is given by the eigen-
value for u2.

We considerC = (AAT + σ2 I )−1AB1AT and obtain a lower estimate by comput-
ingCu1, where u1 is an eigenvector corresponding to the largest eigenvalue of A, i.e.,
Au1 = λ1u1 = ρ(A)u1. We use the expansion u1 =< u1, v1 > v1+ < u1, v2 > v2
and obtain

B1u1 = ν1 < u1, v1 > v1 + ν2 < u1, v2 > v2 .

We now expand v1, v2 in {u1, u2} and observe the orthogonality of the eigenfunc-
tions implies< u1, v2 >< v2, u2 >= − < u1, v1 >< v1, u2 >. Rearranging some
terms, we finally obtain

‖Cu1‖ ≥ | < Cu1, u2 > | ≥ c̃c2ρ(AAT + σ2 I )−1A)ρ(B1)ρ(A) .

This leads to the final result on the structure of W , which just summarizes the
previous statements.

Theorem 1 Let W, Q be defined as in Lemma 3.1 and (9). If ‖Q‖ < 1, then

WT = (
1

n
YY T )−1 1

n
Y XT

= (AAT + σ2 I )−1A + (AAT + σ2 I )−1
∑
k≥1

Qk A(I + B1) + (AAT + σ2 I )−1A

and IE(W ) = (AT A + σ2 I )−1AT .
The coefficients of the matrix Q satisfy componentwise

IE(‖Q‖) = O
(

1√
n(ε + σ)

)
.

Proof By definition Y XT = A + AB1, hence, the claim for WT follows directly
from (9). The second part of the theorem follows from (10). �
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Table 1 Analysis of absolute error rates. Errors are computed as err = 1/n
∑n

i=1 ‖ΦW (yi ) − xi‖2
Error for σ\ε 1 1e − 1 1e − 2 1e − 3 1e − 4

1 0.00889 0.01063 0.01082 0.01090 0.01076

1e-1 0.00548 0.06605 0.08061 0.08008 0.07962

1e-2 0.00058 0.03269 0.64470 0.79562 0.80357

1e-3 0.00006 0.00334 0.30427 6.36951 7.96213

1e-4 0.00001 0.00033 0.03193 3.03402 64.84077

1e-5 0.00000 0.00003 0.00320 0.31916 30.81500

Table 2 Analysis of relative error rates. Errors are computed as err = 1/n
∑n

i=1 ‖ΦW (yi ) −
xi‖2/‖xi‖2
Error for σ\ε 1 1e − 1 1e − 2 1e − 3 1e − 4

1 0.01881 0.02704 0.02682 0.02708 0.02682

1e-1 0.00220 0.01625 0.11276 0.15959 0.16173

1e-2 0.00022 0.00166 0.01590 0.15882 1.12600

1e-3 0.00002 0.00016 0.00159 0.01595 0.16058

1e-4 0.00000 0.00002 0.00016 0.00159 0.01601

1e-5 0.00000 0.00000 0.00002 0.00016 0.00158

Remark 2 The neural network will train amatrixW = (YY T )−1Y XT , whose expec-
tation values coincide with the Tikhonov regularizers= (AAT + σ2)−1A. This is not
a surprising result since T coincides with the classical MAP estimator of statistical
inverse problems, see [16]. However, analyzing its variance IE(‖W − T ‖2) we are
lead to analyze the spectral radius or norm of Q, which determines the convergence
of the Neumann series in (8). Its behavior is characterized in (10), which reflects the
ill-posedness of the problem. No matter how many data points we have (fixed n), the
deviation of W from T will be arbitrarily large if ε and σ are both small. Of course,
we can also give this a positive meaning, e.g., the noise level acts as a regularizer,
large σ yields more stable matrices W .

This 2 × 2 problem is only a toy problem. If dealing with approximations to
infinite-dimensional inverse problems, then ε will tend to zero with increasing accu-
racy of any numerical approximation. In this case, we cannot expect that simple
neural networks as described above will yield meaning full results.

The above-described derivations are validated by numerical experiments with
variable ε and σ (Tables1 and 2).

These tests demonstrate that there exists a critical linear relation between ε and σ,
which leads to large error rates. For fixed ε, the error rates can get smaller if the noise
level σ is increased. This might be counterintuitive, since large noise levels should
lead to less quality in the reconstructions. This is actually also the case here, but the
table states the deviation from the Tikhonov matrix T , which depends itself on σ.
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4 Further Numerical Tests

The findings of the previous section should be understood as a warning that inverse
problems do have their rather specific complications and just applying seemingly
suitable networks for solving inverse problems can fail miserably. Hence, investigat-
ing neural networks specifically for inverse problems makes sense and, of course,
this has been done for all kinds of inverse problems already. Some most remarkable
papers address unrolling of iteration schemes for solving inverse problems [1, 13],
optimizing proximal mappings [14], or on constructing suitable penalty terms by
neural networks [6, 7]. However, they lack a thorough convergence analysis.

Nevertheless, one has to admit that these more advanced schemes perform well
for large-scale applications and also for our small toy problem. We just report on
some of our numerical experiments for sparsity constrained matrix equations using
ISTA (iterated soft thresholding) and LISTA (learned ISTA). We start with defining
the algorithms.

ISTA: Let y ∈ IRd2 , A ∈ IRd2×d1 be given, choose λ,α and set x0 = 0.
For k = 1, ... do

xk = Sα

(
(I − λAT A)xk−1

)

until stopping criterion.

Here, Sα(x) is defined componentwise by

Sα(x) j = sign(x j )max{|x j | − α, 0}.

One can reformulate the iteration step as

xk = Sα

(
(I − λAT A)xk−1 + λAT Ay

) = Sα

(
Wxk−1 + By

)
, (11)

where B = λAT ∈ IRd1×d2 and W = I − BA ∈ IRd1×d1 .
This is exactly the structure of the computations performed by a neural network

ΦW,B with activation function Sα. Hence, one can determine two matrices W , B by
training a fully connected feedforward neural network with K internal layers using
the loss function L2 for the inverse problem as above. Applying the trained network
on an input yδ , one expects ΦW,B(yδ) ∼ x .

LISTA: Let ΦW,B denote a fully connected feedforward network with K internal
layers with d1 nodes in each layer. The linear maps as in (11) are optimized during
training , Sα is kept fixed as activation function, and the identity is used as output
layer. Let (y(i) ∈ IRd2 , x (i))i=1,..,n, y(i), x (i) ∈ IRd

1 denote a set of training data and
determine

(W ∗, B∗) = argminW,B

∑
i=1,n

‖ΦW,B(y(i) − x (i)‖2 .
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Table 3 Comparison of error rates for ISTA and LISTA

ISTA LISTA

MSE 0.6672 1.6274

Table 4 Comparison of error rates for ISTA and LISTA with low-dimensional input data

Sparsity /MSE ISTA LISTA

70% (unstructured) 0.6578 0.6642

70% (structured) 0.5439 0.0786

80% (unstructured) 0.4471 0.4778

80% (structured) 0.3083 0.0196

After training, we use a separate set of test data for evaluation by the same procedure
as above. ISTA is initialized with α = σ and λ = 0.01, and the stopping criterion is
xk − xk−1 ≤ 10−6. Even for the small 2 × 2 example, this leads to 100 iterations or
more before convergence. For LISTA, we set K = 10, i.e., it optimizes 10 iterations.
Using more internal layers does not improve performance. Using uniformly sampled
input data, i.e., the data are drawn uniformly form a ball around 0, the performance
of LISTA is stable but does not improve, when compared with ISTA (Table3).

This comparison is somewhat unfair, as it compares a fully converged ISTA with
many iterations with a partially converged LISTA mimicking K iterations. Other
papers, see [13], compare LISTA with K internal layers with ISTA with K steps,
which—at least for K not too large—shows an advantage for LISTA.

In order to exploit the potential of neural networks for discovering prior distri-
butions of the training data, we have changed the setup of the experiment. We did
choose 10-dimensional input and output vectors and a singular matrix A. Moreover,
the test data were drawn from a 2-or 3−dimensional linear subspace. In this case,
ISTA performs as before, which is not surprising. ISTA is built just using A and
does not incorporate any knowledge about the input data. LISTA, however, performs
much better, as it seems to discover the underlying low-dimensional structure.

Let A =
⎛
⎜⎝
1 · · · 1
...

...

1 · · · 1 + ε

⎞
⎟⎠ and ε = 1. Let x ∈ [0, 1]10 be sparse. The feedforward

neural network is trained for 50 epochs and has K = 15 layers. We observe the
following error rates (Table4).
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Oracle Inequalities for Local and Global
Empirical Risk Minimizers

Andreas Elsener and Sara van de Geer

Abstract The aim of this chapter is to provide an overview of general frameworks
used to derive (sharp) oracle inequalities. Two extensions of a general theory for
convex norm penalized empirical riskminimizers are summarized. The first one is for
convex nondifferentiable loss functions. The second is for nonconvex differentiable
loss functions. Theoretical understanding is required for the growing number of
algorithms in statistics, machine learning, and, more recently, deep learning that are
based on (combinations of) these types of loss functions. To motivate the importance
of oracle inequalities, the problem of model misspecification in the linear model is
first discussed. Then, the sharp oracle inequalities are stated. Finally, we show how to
apply the general theory to problems from regression, classification, and dimension
reduction.

1 Introduction

1.1 Model Misspecification

Often, one is faced with the problem of choosing a model for a given set of data
and for a given purpose (typically prediction for new data points). This choice then
influences the types of estimators and statistical analyses one carries out. The cases
where a chosen model exactly explains the data are very rare. Nevertheless, despite
the “wrongmodel”, one fortunately observes that the chosenmodel is not completely
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far-off the underlying truth. Our interest lies in the quantification of this intuition.
The goal is to discuss new and already known theoretical tools to analyze specific
classes of statistical estimation problems under possible model misspecification.

Before providing the exact framework, it is worth discussing the linear model
as done in Rigollet’s lecture notes [26]. The situation described in the previous
paragraph should become more tangible. The measurements/data consist of n pairs
(Yi , Xi ) where Yi ∈ R is the response and Xi ∈ R

p a p-dimensional row vector. For
some unknown but fixed real-valued function f , the dependency is then assumed to
be

Yi = f (Xi ) + εi ,

where for all i = 1, . . . , n the errors εi are assumed to be i.i.d. and independent of
Xi . One way to model the function f is to assume that it is linear in the parameters
(β0

1 , . . . ,β
0
p) =: β0 ∈ R

p, where the vector β0 is assumed to be a column vector
throughout the chapter:

Yi = Xiβ
0 + εi .

This is usually not exactly true but it may be a good approximation. After estimating
β0, it provides among other properties a powerful tool to predict the outcome for new
data points. An attempt to understand and explain why it might be sensible to use a
“wrong” linear model is made in this chapter. To estimate the unknown parameter
vector β0 in a linear regression setting, a plethora of methods have been proposed
starting from Gauss’ least squares. In particular, we focus on the case where the
data are possibly high-dimensional (p > n) or have additional structure that needs
to be accounted for in the estimation procedure. In order to consistently estimate the
unknown parameter vector β0, it is often necessary to assume sparsity or one of its
modifications depending on the specific problem. The (sharp) oracle inequalities are
a theoretical instrument to measure the performance of an estimator for β0.

1.2 Penalized Empirical Risk Minimization

From now on, we restrict the attention to parametric models. A commonly used class
of methods to estimate the unknown parameters is empirical risk minimization. We
assume that the distribution of the data {Zi } depends on a parameter β ∈ C ⊆ R

p.
The loss function is then a function such that

ρ : Z × C → R.

The “best” fit to the data is obtained byminimizing the empirical riskwhich is defined
as:
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Rn(β) = 1

n

n∑

i=1

ρ(Zi ,β).

The population counterpart, the risk, is defined as

R(β) = ERn(β).

The quantity we are interested in computing is assumed to be

β0 = argmin
β∈C

R(β).

In a high-dimensional setting, when the number of unknown parameters p exceeds
the sample size n, we need to impose some additional structure in order to be able to
compute a solution. This goal is usually achieved by adding a norm penalty Ω(·) :
R

p → R≥0 to the empirical risk. In total one seeks to

minimize Rn(β) + λΩ(β), (1)

for β ∈ C, where λ > 0 is a tuning parameter. This optimization problem bears some
intrinsic challenges. Depending on the choice of the loss, it might be nonconvex
and/or nondifferentiable. From a computational point of view, choosing a norm as a
penalty has the advantage that one might use (proximal) gradient descent algorithms.
Often, the only hope is to obtain a stationary point of the optimization problem
(1) instead of the minimizer. Stationary points are vectors that satisfy first-order
necessary optimality conditions. A point β̃ ∈ C is said to be a stationary point if for
all β ∈ C we have

(
Ṙn(β̃) + λz̃

)T
(β − β̃) ≥ 0, (2)

where Ṙn(β̃) = ∂
∂β′ Rn(β

′)|β′=β̃ and z̃ is in the sub-differential∂Ω(β̃). If Rn is convex,

the condition (2) is also sufficient for optimality of β̃.
The theoretical instrumentwe extend and/or newly derive for a variety of statistical

estimation problems are sharp oracle inequalities. An oracle inequality compares
the risk of an estimator β̂ with the risk of an oracle. An oracle can be primarily any
non-random vector β∗ ∈ R

p. A sharp oracle inequality is an inequality of the type

R(β̂) ≤ R(β∗) + estimation error.

The sharpness is referred to the constant one in front of R(β∗). Rewriting the above
inequality, we see that
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Table 1 General frameworks to derive sharp oracle inequalities

Convex Nonconvex

Differentiable �
Chapter 7 in [30]

�
[10]

Nondifferentiable �
Section 2.1

?

R(β̂) − R(β0) ≤ R(β∗) − R(β0)︸ ︷︷ ︸
approximation error

+ estimation error.

If an inequality of this type holds, it can be interpreted as follows: the approximation
error does not have a large influence on the statistical performance of the estimator.
In case of model misspecification, there will clearly be a component due to the
approximation error that cannot be neglected.

In Chapter 7 of [30], a general framework for convex estimation problems is
proposed for deriving sharp oracle inequalities. This general framework is extended
to the case of nonconvex differentiable loss functions in [10]. In addition, in the
present chapter, sharp oracle inequalities are shown to hold also for convex but non-
differentiable loss functions. There has been an increasing interest in methodologies
leading to nonconvex optimization problems. We will therefore present applications
of our theory to regression and classification-type problems as well as to principal
component analysis.

A main novelty in this chapter is the sharp oracle inequality for minimizers of
nondifferentiable convex loss functions as given in Sect. 2.1.

We summarize the types of loss functions to which the different frameworks can
be applied in Table1.

1.3 Conditions on the Risk

To guarantee a sufficient identifiability of the quantity of interest β0, it is required
that the risk is sufficiently curved/convex. For our results to hold, we make use of
two very similar notions of strong convexity of the risk.

Condition 1 Let G be an increasing strictly convex function G : R≥0 → R≥0 such
that G(0) = 0. Let τ be a semi-norm on Rp. For all β1,β2 ∈ C it holds that

R(β1) − R(β2) − Ṙ(β2)
T (β1 − β2) ≥ G(τ (β1 − β2)).

The quantity on the left-hand side of the inequality is also calledBregman divergence.
It measures the “distance” between any two points β1,β2 ∈ C in terms of the vertical
blue line in Fig. 1. By requiring that this “distance”, which is actually not a proper
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Fig. 1 The distance between
β1 and β2 is expressed in
terms of the vertical blue
line. The requirement that
this “distance” should always
be nonnegative around β0

translates to a requirement
on the convexity of the risk

distance as it is not symmetric, is always nonnegative one automatically imposes a
condition on the curvature of the risk.

A similar condition is needed for the case of nondifferentiable but convex loss
functions. Despite the fact that the expectation “smooths” the nondifferentiable loss,
we need to impose a condition on a difference quotient. Indeed, we have for a
univariate real-valued differentiable function h that

lim
t→0

h((1 − t)x0 + t x) − h(x0)

t
= ḣ(x0).

Aswe need to consider differences of nondifferentiable averages (Rn) and to describe
their concentration behavior around their expectation (R), we need a different notion
of strong convexity given in the following condition.

Condition 2 (G-convexity) For the same assumptions on G as in Condition 1 we
say that G-convexity holds if ∃ 0 < t < 1 such that

(1 − t)R(b) + t R(β) − tG

(
τ (β − b)

)
≥ R

(
(1 − t)b + tβ

)

for all b ∈ C.

1.4 Norm Penalties

As far as the penalty term is concerned, it is required to satisfy weak decomposability
which might be seen as an inverse triangle inequality. Depending on the context, the
notation βS refers to the entries of the vector β whose indices are in S and otherwise
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zeros or only the entries of β whose indices are in S. It will be clear from the context
if βS ∈ R

p or βS ∈ R
s .

Definition 1 (Definition 4.1 in [29]) The norm Ω(·) on R
p is said to be weakly

decomposable if for some set S ⊆ {1, . . . , p} with cardinality s there is another
norm Ω Sc(βSc) on Rp−s so that

Ω(β) ≥ Ω(βS) + Ω Sc(βSc) =: Ω(β)

for all β ∈ R
p. In particular Ω(·) is a norm on R

p.

The �1-norm trivially satisfies the weak decomposability. Indeed, for all β ∈ R
p and

all S ⊆ {1, . . . , p} we have

‖β‖1 :=
p∑

j=1

|β j | =
∑

j∈S
|β j | +

∑

j∈Sc
|β j |.

An additional concept that is needed to derive the sharp oracle inequalities is effec-
tive sparsity. The effective sparsity quantifies (in the linear model) the influence of
the design (i.e., the distribution of the Xi ’s) on the estimation performance. It is a
“comparison” of the chosen penalty with the semi-norm τ (·) in Conditions 1 and 2
which is typically induced by the design. It also depends on the noise present in the
estimation problem. Often, more noise leads to a larger effective sparsity as the sets
S and Sc are more difficult to distinguish.

Definition 2 (Adapted from Definition 4.3 in [29]) The Ω-effective sparsity for
S ⊆ {1, . . . , p} is defined as

Γ (τ , L , S) = min
{
τ (βS − βSc) : β ∈ R

p,Ω(βS) = 1,Ω Sc (βSc) ≤ L
}−1

.

In the examples considered here, the bounds on the effective sparsity Γ (τ , L , S)

will be independent of L . In this case, the effective sparsity can be interpreted also
as a scaling factor that inflates the sparsity (e.g., the cardinality of the active set S0)
by taking into account the identifiability of β0. The following example shows how
to compute/upper bound the effective sparsity for the �1-norm and the semi-norm
τ (·) = ‖ΣX (·)‖2, where ΣX ∈ R

p×p is chosen to be a positive definite covariance
matrix as it will be the case in some of the applications.

Example 1 We denote the cardinality of S by s := |S|. By Hölder’s inequality, we
have

‖βS‖1 ≤ √
s‖βS‖2 ≤ √

s‖β‖2
≤

√
s

Λmin(ΣX )
‖ΣXβ‖2,
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where we interpret βS as an element of Rp. Therefore,

‖βS‖1
‖ΣXβ‖2 ≤

√
s

Λmin(ΣX )
.

We then have the following upper bound for the effective sparsity:

Γ (τ , L , S) ≤
√

s

Λmin(ΣX )

with τ (·) = ‖ΣX (·)‖2.

1.5 Related Literature

Sparsity oracle inequalities were derived in particular for the �1-penalized least
squares estimator and its modifications. The works [4, 7, 8, 25] derive inequali-
ties of this type. The book [6] is devoted to �1-norm penalized estimators ranging
from estimation error bounds to support recovery and oracle inequalities. The book
[15] gives a very precise description of the techniques used to derive oracle inequali-
ties for convex penalized empirical risk minimization. The terminology sharp oracle
inequality was coined in the context of penalized empirical risk minimization for
matrix completion and �1-penalized regression in [16]. The �1-penalized framework
is further extended to include structured sparsity (i.e., a norm penalty different from
the �1-norm) [1, 2, 13, 22, 24]. This is further extended to square root loss in [27]
so that to account for unknown error variances. In [30], general loss functions and
more general norm penalties are considered. However, the treatment of the empiri-
cal processes is mostly done by a dual norm inequality which is too rough for loss
functions whose derivatives depend on the parameter value.

As far as matrix regression models are concerned, sharp oracle inequalities have
been first derived in [16] for an estimator involving a quadratic loss function with
nuclear norm penalty. In [9], a sharp oracle inequality for the Huber loss with nuclear
norm penalty has been derived.

The interest in the (statistical) properties of stationary points has recently increased
due to the plethora of methods used in subjects such as deep learning and neural
networks. As a matter of fact, it is not possible to compute the global minima of the
optimization problems (see for example [11]). From a statistical point of view, the
properties of stationary points of regularized empirical risk minimization problems
were studied in [19]. For the linear model with errors in variables, an estimator is
obtained by replacing the sample covariance matrix with an unbiased estimator of
the population version an estimator is proposed. This estimator is nonconvex in a
high-dimensional (p > n) setting. A gradient descent-type algorithm is shown to
converge to first-order optimal points. Upper bounds on the statistical performance
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of the stationary points are derived. The bounds on the estimation error depend on a
term stemming from the algorithm and on the statistical estimation error.

A general framework to derive purely statistical error bounds for stationary points
of penalized M-estimators is given in [20]. The notion of restricted strong convexity
allows one to derive near-optimal statistical rates. The general theory can be applied
also to nonconvex penalties. Nonconvex penalties are important as theymight be used
to diminish for example the bias of the Lasso estimates. In [21], the role of nonconvex
penalties in support recovery is further examined. In particular, it is shown that
stationary points stemming from estimators penalized with appropriate nonconvex
functions require less assumptions than the Lasso to succeed with support recovery.

The work [18] further examines nonconvex robust loss functions. It is described in
detail that some properties of nonconvex robust loss functions indeed outperform the
convex losses such as the Huber loss. The statistical properties are shown to hold in a
neighborhood of the target vector. To justify this assumption, a two-stage procedure
based on an initial convex estimator is proposed.

In [23], the “landscape”of nonconvexM-estimators is considered.This framework
requires different assumptions on the distribution of the observations than in the
previously cited works on stationary points.

Finally, [10] provides a novel framework to derive sharp oracle inequalities for
stationary points. It extends the estimation error rates obtained in the previously cited
papers on the statistical properties of stationary points.

1.6 Organization

In Sect. 2, we give deterministic versions of the sharp oracle inequalities. In Sect. 3,
the general deterministic theorems are applied to the specific examples from regres-
sion, classification, and dimension reduction. The following main ingredients are
needed to obtain the sharp oracle inequalities:

(i) The convexity of the set C on which the optimization problem is solved.
(ii) The strong convexity of the risk R on C or alternatively the G-convexity of R.
(iii) The weak decomposability of the penalty.
(iv) The effective sparsity.
(v) A uniform bound on the random part of the estimation problem.

In the examples, the properties (i)–(v) will be verified.

2 Sharp Oracle Inequalities

For the sake of a clearer description, we first discuss purely deterministic theorems.
The random part then needs to be accounted for in the specific applications. In this
section, the random part is assumed to be bounded by what we call the “noise level”
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λε. The subscript ε does not necessarily mean that the quantity depends on (the
distribution of) the (additive) noise. It should rather be seen as a general dependence
on “some” random noise in the statistical estimation problem. In the applications of
the general framework, the noise level will be chosen depending on the distributional
assumptions of the data and the errors.

From now on, we use the notation S∗ = { j ⊆ {1, . . . , p} : β∗
j �= 0} and s∗ = |S∗|

to denote the support set of the vector β∗ and its respective cardinality s∗.

2.1 Convex and Nondifferentiable

In this section, we describe a deterministic sharp oracle inequality for nondifferen-
tiable convex loss functions.

Theorem 1 Suppose that Rn(·) is convex and let β̂ be the minimizer of (1). Assume
G-convexity (Condition 2) and let H be the convex conjugate of G. Let γn ≥ 0 and
assume there exists λε > 0 such that

λε ≥

∣∣∣∣

[
Rn − R

](
(1 − t)β̂ + tβ∗

)
−

[
Rn − R

]
β̂

∣∣∣∣

t (Ω(β̂ − β∗) + γn)
. (3)

Then for λ > λε and defining for some 0 ≤ δ < 1

λ = λ − λε, λ = λ + λε + δλ, L = λ

(1 − δ)λ

we have

δλΩ(β̂ − β∗) + R(β̂) ≤ R(β∗) + H

(
λΓ (τ , L , S∗)

)
+ 2λΩ(β∗

S∗c ) + λ∗,

where λ∗ = λεγn.

Due to the convexity of Rn , there is only one stationary point β̂ which is also
the global minimizer of the objective function (1). The proof of Theorem 1 can be
found in the appendix. Assumption (3) ensures that the difference between averages
and expectations in the estimation problem is bounded. To be able to measure the
estimation error also in the Ω(·) norm, the parameter 0 ≤ δ < 1 is introduced.
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2.2 Nonconvex and Differentiable

The following theorem states the deterministic sharp oracle inequality for nonconvex
differentiable loss functions.

Theorem 2 (Theorem 2.1 in [10]) Let β̃ be a stationary point of (1). Suppose that
Condition 1 is satisfied. Let H be the convex conjugate of G. Let for 0 ≤ γ < 1,
λ∗ ≥ 0, λε > 0 and for all β′ ∈ C

∣∣∣
(
Ṙn(β

′) − Ṙ(β′)
)T

(β∗ − β′)
∣∣∣ ≤ λεΩ(β∗ − β′) + γG(τ (β∗ − β′)) + λ∗ (4)

and λ > λε. For some 0 ≤ δ < 1 define

λ = λ − λε, λ = λ + λε + δλ, L = λ

(1 − δ)λ
.

Then we have

δλΩ(β̃ − β∗)+R(β̃)

≤R(β∗) + (1 − γ)H

(
λΓ (τ , L , S∗)

(1 − γ)

)
+ 2λΩ(β∗

S∗c ) + λ∗.
(5)

Remark 1 Theorem 2 applies to any stationary point of the objective function. We
make use of the definition of stationary point as given in [3] and further used in [20]
in a statistical context. This definition also comprises local maxima. Any point β̃
satisfying a sharp oracle inequality is shown to have a prediction performance on
new unseen “testing” data that is almost as good as the prediction performance R(·)
of an oracle. The oracle might be chosen as a vector that minimizes the upper bound
in inequality (5).

Remark 2 The quantity λε is to be seen as an upper bound on the stochastic part of
an estimation problem. In the linear regression setting with predictors X ∈ R

n×p and
independent errors ε ∈ R

n λε is an upper bound on ‖XT ε‖∞/n. For this reason, it is
often named “noise level”.

2.3 Asymptotic Interpretation

An asymptotic interpretation of Theorems 1 and 2 under an appropriate scaling of
the sample size, dimension, sparsity, and (non-)sparsity of the problem can be read
as
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R(β̃) = R(β∗) + O

(
H

(
λΓ (τ , L , S∗)

(1 − γ)

))
.

This means that the risk/performance of the estimator is almost as good as the perfor-
mance of an oracle β∗. It may be chosen to optimally trade off the approximation and
estimation errors. The oraclemay be chosen as the vector β∗ that minimizes the upper
bounds of the sharp oracle inequality. As a consequence, the points β̃ satisfying the
sharp oracle inequalities will have a risk/prediction performance that is comparable
to the best approximation within the model. The first term is a constant, whereas the
second term is the estimation error in the specific applications that decreases with
increasing sample size.

3 Applications

The nonconvexity of the optimization problems obviously appears in the second
derivatives of the (empirical) risk. In the following applications, one therefore needs
to more closely consider the properties of the Hessian matrices. In particular, one
needs to verify either Conditions 1 or 2. As far as the empirical part is concerned, a
considerable amount of work goes into showing that the empirical processes (3) and
(4) are bounded with high probability. In particular, this involves bounding (sparse)
randomquadratic forms. For each application, wewill go through a standard recipe in
order to establish the conditions and assumptions needed in the general frameworks.

3.1 Regression

The most classical field of application of (sharp) oracle inequalities is regression.
Many of the examples are therefore related to it.

3.1.1 Sparse Corrected Linear Regression

We consider the linear model
Y = Xβ0 + ε,

where for all i = 1, . . . , n it is assumed that εi ∈ R are i.i.d. sub-Gaussian. Thematrix
X ∈ R

n×p is assumed to have i.i.d. sub-Gaussian rows Xi ∈ R
p with positive definite

covariance matrix ΣX for all i = 1, . . . , n independent of ε. The matrix W ∈ R
n×p

is assumed to have i.i.d. sub-Gaussian rows Wi ∈ R
p for all i = 1, . . . , n, to have a

known positive definite covariance matrixΣW and to be independent of X and ε. We
define
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Z = X + W.

It is assumed that the pair (Y, Z) ∈ R
n × R

n×p is observed and that (ε,W, X) ∈
R

n × R
n×p × R

n×p is unobserved.
An estimator for β0 is then given by

β̂ = argmin
β∈Rp :‖β‖1≤Q

1

2
βT

(
ZT Z

n
− ΣW

)
β − Y T Z

n
β

︸ ︷︷ ︸
=Rn(β)

+λ‖β‖1, (6)

where λ > 0 and Q > 0 are tuning parameters. Note that this estimator very much
resembles the convex estimator Lasso (see [28]): The matrix (ZT Z/n − ΣW ) is an
unbiased estimator for ΣX and Y T Z/n is an unbiased estimator for β0T ΣX . The
second derivative of the empirical risk is given by

R̈n(β) = ZT Z

n
− ΣW .

The sample version is therefore nonconvex for p > n. We now verify the conditions
needed to apply Theorem 2:

(i) The set C = {β ∈ R
p : ‖β‖1 ≤ Q} is convex.

(ii) Condition 1 is satisfiedwithG(·) = (·)2 and τ (·) =
∥∥∥Σ

1/2
X (·)

∥∥∥
2
. For allβ1,β2 ∈

R
p we have

R(β1) − R(β2) − Ṙ(β2)
T (β1 − β2) = (β1 − β2)

TΣX (β1 − β2)

=
∥∥∥Σ

1/2
X (β1 − β2)

∥∥∥
2

2

= G(τ (β1 − β2)).

(iii) The penalty is the �1−norm: Ω(·) = ‖ · ‖1.
(iv) The effective sparsity can be bounded as follows

Γ (‖Σ1/2(·)‖2, L , S∗) ≤
√

s∗

Λmin(ΣX )
.

(v) With probability at least 1 − 5 exp(− log(2p)) and with λε = C
√

log p
n and

assuming n ≥ c log p, we have

∣∣∣
(
Ṙn(β

′) − Ṙ(β′)
)T

(β∗ − β′)
∣∣∣ ≤ λε‖β∗ − β′‖1 + γ‖Σ1/2

X (β∗ − β′)‖22,

for all β′ ∈ C as shown in Lemma 16 in [10].
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Having verified all the conditions of Theorem 2, we have the following corollary for
all stationary points of the optimization problem (6).

Corollary 1 (Corollary 3.1 in [10]) Let β̃ be a stationary point of (6). We then have
with probability at least 1 − 5 exp(− log(2p))

δλ‖β̃ − β∗‖1 + R(β̃) ≤ R(β∗) + λ
2
s∗

4Λmin(ΣX )(1 − γ)
+ 2λ‖β∗

S∗c ‖1.

3.1.2 Sparse Robust Regression

The linear regression model
Y = Xβ0 + ε

is considered with β0 ∈ R
p, X = (X1, . . . , Xn)

T ∈ R
n×p and Xi ∈ R

p i.i.d. sub-
Gaussian with positive definite covariance matrix ΣX and noise vector ε ∈ R

n inde-
pendent of X and possibly heavy-tailed. An estimator for β0 restricted on the set
B = {

β ∈ R
p : ‖β − β0‖2 ≤ η

}
for some constant η > 0 is then given by

β̂ = argmin
β∈B

1

n

n∑

i=1

ρ(Yi − Xiβ) + λ‖β‖1, (7)

where λ > 0 is a tuning parameter.
Convex nondifferentiable loss function
We consider

Rn(b) := 1

n

n∑

i=1

ρ(Yi − Xib),

with ρ(z) := |z|, z ∈ R and a sparsity-inducing estimator

β̂ = argmin
β∈B

Rn(β) + λ‖β‖1. (8)

Remark 3 Because Rn(·) is convex one only needs conditions in a convex neighbor-
hood B of β0 (i.e., local conditions). We do not detail this to avoid digressions.

The distributional assumptions in this case are as follows:

(1) For all b ∈ B and all i = 1, . . . , n, it holds that |Xi (b − β0)| ≤ K for some
constant K > 0.

(2) The errors ε1, . . . , εn are i.i.d. with median zero and a positive density fε near
zero: for some positive constants K and C

C2 ≤ fε(z) ≤ C̄2, ∀ |z| ≤ K .
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To apply Theorem 1, we need to verify the properties i) – v):

(i) The set C = B is convex.
(ii) The G-convexity of R holds.

Lemma 1 Let [a, b] be an interval in R and g : [a, b] → R be a function with, for
some positive constants C̄2 and C2,

1/C2 ≤ g̈(v) ≤ C̄2, ∀ v ∈ [a, b].

Then for t ≤ 1/(2C̄2C2) it holds that

g((1 − t)u + tv) ≤ (1 − t)g(u) + tg(v) − 1
4 t (v − u)2/C2.

A proof of Lemma 1 is given in the appendix.
Then for b and β ∈ R

p and for

ri (b) := E

(
|Yi − Xib|

∣∣∣∣Xi

)
,

we have with t ≤ 1/(2C̄2C2) the inequality

ri ((1 − t)b + tβ) ≤ (1 − t)ri (b) + tri (β) − 1
4 t (Xi (b − β))2/C2.

Therefore, for b and β in B

R((1 − t)b + tβ) ≤ (1 − t)R(b) + t R(β) − 1
4 t‖Σ1/2

X (b − β)‖22/C2.

Thus, G-convexity holds with τ (b) = ‖Σ1/2
X b‖2 and G(u) = 1

4 u2/C2. Moreover,

the constant t can be chosen as t = 1/(2C̄2C2).

(iii) The penalty is the �1-norm: Ω(·) = ‖ · ‖1.
(iv) The effective sparsity can be bounded as follows

Γ (‖Σ1/2
X (·)‖2, L , S∗) ≤

√
s∗

Λmin(ΣX )
.

(v) Choosing the noise level for some absolute constant C > 0 as λε = C
√

log p
n ,

we have for all β ∈ B with probability at least 1 − c′ exp(−c log p) that
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λε ≥

∣∣∣∣

[
Rn − R

](
(1 − t)β̂ + tβ

)
−

[
Rn − R

]
β̂

∣∣∣∣

t (‖β̂ − β‖1 + γn)
.

Remark 4 Condition (v) can be checked using the Lipschitz property of the absolute
value loss. This allows one to apply the contraction inequality (see for example Chap.
4 in [17], the version that is referred to here is given in Theorem 16.2 in [30]).

Hence, Theorem 1 can be applied to the global minimum β̂.

Corollary 2 Let β̂ be the solution of the optimization problem (8). We then have
with probability at least 1 − c′ exp(−c log p)

δλ‖β̂ − β∗‖1 + R(β̂) ≤ R(β∗) + C2λ
2
s∗

Λmin(ΣX )
+ 2λ‖β∗

S∗c ‖1 + λ∗.

Nonconvex differentiable loss functions

In this section, we define C = B ∩ {β ∈ R
p : ‖β‖1 ≤ Q}. The estimator is then given

by optimizing the following penalized empirical risk:

β̂ = argmin
β∈C

1

n

n∑

i=1

ρ(Yi − Xiβ) + λ‖β‖1. (9)

Here, in contrast to the convex case, the restriction to the neighborhood B corre-
sponds to assuming that a good initialization is available. The initial point is assumed
to be sufficiently close to β0. In this case, one might, for instance, choose the Huber
loss as done, e.g., in [18].

The assumptions on the loss function are as follows:

1. The loss function ρ : R → R is at least twice continuously differentiable.
2. The loss function is Lipschitz continuous: there exists a constant κ1 > 0 such

that for all x ∈ R

|ρ̇(x)| ≤ κ1.

3. The first derivative of the loss function is Lipschitz continuous: there exists a
constant κ2 > 0 such that for all x ∈ R

|ρ̈(x)| ≤ κ2.

We now verify the assumptions needed for Theorem 2:

(i) The set C = B ∩ {β ∈ R
p : ‖β‖1 ≤ Q} is convex.

(ii) For all β1,β2 ∈ C we have for some constant C > 0 that depends on the distri-
bution of the noise
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R(β1) − R(β2) − Ṙ(β2)
T (β1 − β2) ≥ C‖Σ1/2

X (β1 − β2)‖22︸ ︷︷ ︸
=G(τ (β1−β2))

.

(iii) The penalty is given by Ω(·) = ‖ · ‖1.
(iv) The effective sparsity can be bounded as follows

Γ (‖Σ1/2
X (·)‖2, L , S∗) ≤

√
s∗

Λmin(ΣX )
.

(v) With probability at least 1 − c exp(−c′ log p), a noise level λε = C
√

log p
n , and

a sufficiently large sample size n ≥ cs∗ log p, we have

(
Ṙn(β

′) − Ṙ(β′)
)T

(β∗ − β′) ≤ λε‖β∗ − β′‖1 + γG(τ (β∗ − β′)),

for all β′ ∈ C as done in Lemma 31 of [10].

Corollary 3 (Corollary 3.3 in [10]) Let β̃ be a stationary point of (9). Then we have
with probability at least 1 − c exp(−c′ log p) that

δλ‖β̃ − β∗‖1 + R(β̃) ≤ R(β∗) + λ
2
s∗

CΛmin(ΣX )(1 − γ)
+ 2λ‖β∗

S∗c ‖1.

3.1.3 Robust SLOPE

We propose a new estimator named robust Sorted �1-penalized estimator (SLOPE)
that is inspired by the estimator SLOPE proposed in [5]. The aim of this example is
to demonstrate how the general framework can be applied to penalties different from
the vector �1-norm. With μ1 ≥ μ2 ≥ · · · ≥ μp > 0, the sorted �1-norm is defined as

Jμ(β) =
p∑

j=1

μ j |β|( j),

where |β|(1) ≥ · · · ≥ |β|(p) are the ordered absolute values of the entries of the vector
β. In [27], it is shown that the sorted �1-norm is indeed weakly decomposable: for
some S ⊆ {1, . . . , p} and all β ∈ R

p, we have

Jμ(β) ≥ Jμ(βS) +
r∑

l=1

μp−r+l |β|(l,Sc) =: Ω(β),
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where r = p − s. The robust SLOPE estimator is then given by

β̂ = argmin
β∈B:‖β‖1≤Q

1

n

n∑

i=1

ρ(Yi − Xiβ) + λJμ(β), (10)

where λ > 0 and Q > 0 are tuning parameters. As far as the loss function is con-
cerned, we require the same conditions as in Sect. 3.1.2. The only part that changes
is the part on the penalty. The following holds:

(iii) The penalty is given by the norm Jμ(β).
(iv) The effective sparsity can be bounded as follows

Γ (‖Σ1/2
X (·)‖2, L , S∗) ≤ μ1

√
s∗

Λmin(ΣX )
.

A sharp oracle inequality for the stationary points of (10) is given in the following
corollary.

Corollary 4 (Corollary 3.5 in [10]) Let β̃ be a stationary point of (10). Then we
have with probability at least 1 − c exp(−c′ log p) that

δλΩ(β̃ − β∗) + R(β̃) ≤ R(β∗) + λ
2
s∗

CΛmin(ΣX )(1 − γ)
+ 2λJμ(β

∗
S∗c ).

3.2 Classification

In classification, the aim is to assign a label to a given set of observations. For
simplicity, we code the labels Yi to take values in {0, 1}. The conditional probabilities
can be modeled as

P (Yi = 1|Xi = xi ) = exp(xiβ0)

1 + exp(xiβ0)
=: σ(xiβ

0).

For some η > 0 define B = {
β′ ∈ R

p : ‖β′ − β0‖ ≤ η
}
. We consider the follow-

ing sparsity-inducing estimator for β0:

β̂ = argmin
β∈B

1

n

n∑

i=1

(Yi − σ(xiβ))2 + λ‖β‖1, (11)

whereλ > 0 is a tuning parameter. The assumptions on the distribution of the features
Xi are as follows:
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1. The features Xi are assumed to be i.i.d. sub-Gaussian with constant CX > 0 and
positive definite covariance matrix ΣX for all i = 1, . . . , n.

2. It is assumed that for all i = 1, . . . , n and for the oracle β∗ ∈ B : |Xiβ
∗| ≤ K

almost surely, where K is some positive constant.

We have the following properties of the estimation problem:

(i) The set C = B is convex.
(ii) If min

s∈[−K ,K ]
σ′(s) > C3

XηΛmin(ΣX )−1 we have for all β1,β2 ∈ C

R(β1) − R(β2) − Ṙ(β2)
T (β1 − β2) ≥ C(K , η, ΣX )‖β1 − β2‖22 =: G(τ (β1 − β2)).

(iii) The penalty is the �1-norm: Ω(·) = ‖ · ‖1.
(iv) The effective sparsity can be bounded as follows

Γ (‖ · ‖2, L , S∗) ≤ √
s∗.

(v) Withprobability at least 1 − c log2(p) exp(− log p) and choosingλε = C
√

log p
n

we have for all β′ ∈ B
∣∣∣
(
Ṙn(β

′) − Ṙ(β′)
)T

(β∗ − β′)
∣∣∣ ≤ λε‖β′ − β∗‖1 + C ′ log p

n
,

which is shown to hold in Lemma 37 in [10].

Corollary 5 (Corollary 3.4 in [10]) Let β̃ be a stationary point of (11). Then we
have with probability at least 1 − c log2(p) exp(− log p) that

δλ‖β̃ − β∗‖1 + R(β̃) ≤ R(β∗) + λ
2
s∗

CΛmin(ΣX )2
+ 2λ‖βS∗c ‖1 + C ′ log p

n
.

3.3 Dimension Reduction

In this section, we demonstrate that the general framework can be applied also to an
estimation problem from unsupervised learning. Dimension reduction is important
to enhance interpretability and to summarize the information contained in a given
data set. The probably most prominent method is Principal Component Analysis
(PCA). In the sequel, it is demonstrated how to case PCA as a (penalized) empirical
risk minimization problem and how to apply the general framework to derive a sharp
oracle inequality.
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3.3.1 Sparse Principal Component Analysis

Principal Component Analysis (PCA) is used to represent data in a concise way.
To obtain an estimate of the loadings of the first Principal Component (PC), one
maximizes the sample variance subject to a constraint on the length. The subse-
quent principal components are computed similarly by imposing additional orthog-
onality constraints. More precisely, given a data matrix X ∈ R

n×p with i.i.d. rows
X1, . . . , Xn ∈ R

p. The sample covariance matrix is then given by Σ̂ = XT X/n. For
convenience, we assume that the observations stem from a distribution with mean
zero and positive definite covariance matrixΣX = EΣ̂ . To estimate the first PC, one
solves the following optimization problem with respect to β ∈ R

p:

maximize βT Σ̂β subject to ‖β‖2 = 1.

One can also think of this optimization problem as of computing the best rank one
approximation in squared Frobenius norm of the sample covariance matrix Σ̂ :

minimize
1

4
‖Σ̂ − ββT ‖2F .

These two approaches are equivalent up to a normalizing constant. From the lat-
ter representation of the optimization problem, it can be seen that it is nonconvex.
Despite the nonconvexity and when n > p, PCA produces a consistent estimator:
the eigenvector corresponding to the largest eigenvalue of Σ̂ . When the dimension of
the parameter vector exceeds the sample size (p ≥ n), it has been shown in [14] that
the first principal component cannot be consistently estimated. Assuming sparsity
of the first principal component enables to consistently estimate it by means of a
sparsity-inducing estimator. The estimator under study is given by

β̂ = argmin
β∈C

1

4
‖Σ̂ − ββT ‖2F + λ‖β‖1

= argmin
β∈C

Rn(β) + λ‖β‖1,
(12)

where λ > 0 is a tuning parameter. The optimization problem (12) is nonconvex
and it cannot be solved explicitly. Gradient descent-type algorithms applied to the
optimization problem (12) are guaranteed to “output” a stationary point in the sense
of equation (2).

This estimation problem exhibits a twofold nonconvexity: the population version
as well as the empirical version are nonconvex. In order to match our framework, it is
therefore necessary to first decidewhichβ0 should be estimated. In PCA, themultiple
minima are the same up to sign changes. In Fig. 2, it is demonstrated bymeans of a toy
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Fig. 2 Left: Risk function using a 2 × 2 positive definite covariancematrix. The red points represent
the first principal component vector (up to a sign flip). Right: Contour plot of the same risk function
as in the left figure. The circles around the red points represent the neighborhoods B. The remaining
dots represent other stationary points

example as done in [12] how the risk function looks like. To guarantee a sufficiently
large curvature around the optima, it is necessary to impose certain conditions on the
singular values of the population covariance matrix.

The eigendecomposition of ΣX shall be given by

ΣX = QΦ2QT ,

where Φ = diag(φ1, . . . ,φp), φmax = φ1 ≥ · · · ≥ φp > 0 and QT Q = QQT

= Ip×p. In order to guarantee a sufficient curvature aroundβ0, the difference between
a so-called spikiness condition needs to be imposed. It says that the largest and sec-
ond largest singular values of the population covariance matrix must be sufficiently
well separated: let ξ > 0 be the “eigengap”. It is assumed that

φmax ≥ φ j + ξ, for all j �= 1.

The following lemma shows that for η > 0 the risk is convex on the set B :={
β ∈ R

p : ‖β − β0‖2 ≤ η
}
.

Lemma 2 (Lemma 12.7 in [30]) Assume that ξ > 3η. Then we have for all β ∈ B

Λmin(R̈(β)) ≥ 2φmax(ξ − 3η),

where Λmin(R̈(β)) is the smallest eigenvalue of R̈(β).

The conditions to apply Theorem 2 are

(i) The set C := {
β ∈ R

p : ‖β − β0‖2 ≤ η
} ∩ {β ∈ R

p : ‖β‖1 ≤ Q} is convex.
(ii) Condition 1 is satisfied assuming that ξ > 3η. We have for all β1,β2 ∈ C
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R(β1) − R(β2) − Ṙ(β2)
T (β1 − β2) ≥ 2(ξ − 3η)φmax‖β1 − β2‖22︸ ︷︷ ︸

=G(τ (β1−β2))

.

(iii) The penalty is the �1-norm: Ω(·) = ‖ · ‖1.
(iv) The effective sparsity can be bounded as follows

Γ (‖ · ‖2, L , S∗) ≤ √
s∗.

(v) With probability at least 1 − 2 exp(− log(2p)), with λε = C
√

log p
n and assum-

ing a sufficiently large sample size n ≥ c log p we have for all β′ ∈ C that

∣∣∣
(
Ṙn(β

′) − Ṙ(β′)
)T

(β∗ − β′)
∣∣∣ ≤ λε‖β′ − β∗‖1 + γG(τ (β′ − β∗))

as shown in Lemma 25 in [10].

Corollary 6 (Corollary 3.2 in [10]) Let β̃ ∈ C be a stationary point of (12). Then
we have with probability at least 1 − 2 exp(− log(2p))

δλ‖β̃ − β∗‖1 + R(β̃) ≤ R(β∗) + λ
2
s∗

8(ξ − 3η)φmax(1 − γ)
+ 2λ‖β∗

S∗c ‖1.

4 Discussion

We have described the concept of (sharp) oracle inequality by means of the linear
model and summarized two extensions of a general framework to derive this type of
inequalities. The first extension is for nondifferentiable convex loss functions. There,
a slightly differently stated strong convexity requirement on the risk functionmakes it
possible to extend the sharp oracle inequalities also to this case. The second extension
is concerned with nonconvex loss functions. As a matter of fact, the minimum of a
nonconvex loss function is almost impossible to compute via the known (proximal)
gradient descent-type algorithms. On the other hand, these algorithms are guaranteed
to stop at points satisfying first-order necessary optimality conditions (i.e., stationary
points). For these points of nonconvex loss functions, we have demonstrated how to
apply a general theorem to some specific estimation problems. The examples include
a convex and nondifferentiable loss function as well as nonconvex and differentiable
loss functions from regression, classification, and dimension reduction.



232 A. Elsener and S. van de Geer

5 Appendix

Proof of Theorem 1

Let β̂t := (1 − t)β̂ + tβ∗. It holds that

Rn(β̂) + λΩ(β̂) ≤ Rn(β̂t ) + λΩ(β̂t )

≤ Rn(β̂t ) + (1 − t)λΩ(β̂) + tλΩ(β∗).

Thus
Rn(β̂) − Rn(β̂t )

t
≤ λΩ(β∗) − λΩ(β̂).

By the G-convexity

R(β̂t ) ≤ (1 − t)R(β̂) + t R(β∗) − tG

(
τ (β∗ − β̂)

)
.

Therefore

R(β∗) − R(β̂) ≥ R(β̂t ) − R(β̂)

t
+ G

(
τ (β∗ − β̂)

)
.

• If
R(β̂t ) − R(β̂)

t
≥ −λεγn − 2λΩ(β∗

S∗c ) + δλΩ(β̂ − β)

we see from the G-convexity

R(β) − R(β̂) ≥ −λεγn − 2λΩ(β∗
S∗c ) + δλΩ(β̂ − β∗) + G

(
τ (β∗ − β̂)

)

≥ −λεγn − 2λΩ(β∗
S∗c ) + δλΩ(β̂ − β∗)

and thus
δλΩ(β̂ − β∗) + R(β̂) ≤ R(β∗) + λεγn + 2λΩ(β∗

S∗c )

and we are done.
• From now on we assume

R(β̂t ) − R(β̂)

t
≤ −λεγn − 2λΩ(β∗

S∗c ) + δλΩ(β̂ − β∗).

Since
Rn(β̂) − Rn(β̂t )

t
≤ λΩ(β∗) − λΩ(β̂)
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we know that

λεγn + 2λΩ(β∗
S∗c )

≤ R(β̂) − R(β̂t )

t
+ δλΩ(β̂ − β∗)

= Rn(β̂) − Rn(β̂t )

t
−

[
Rn − R

]
β̂ −

[
Rn − R

]
β̂t

t
+ δλΩ(β̂ − β∗)

≤ −

[
Rn − R

]
β̂ −

[
Rn − R

]
β̂t

t
+ λΩ(β∗) − λΩ(β̂) + δλΩ(β̂ − β∗)

≤ λεΩ(β̂ − β∗) + λεγn + λΩ(β∗) − λΩ(β̂) + δλΩ(β̂ − β∗)

≤ λε(Ω(β̂S∗ − β∗
S∗) + Ω S∗c

(β̂S∗c − β∗
S∗c ))

+ λΩ(β̂S∗ − β∗
S∗) + λΩ(β∗

S∗c ) − λΩ S∗c
(β̂S∗c )

+ λεγn + δλΩ(β̂ − β∗)

≤ λε(Ω(β̂S∗ − β∗
S∗) + Ω S∗c

(β̂S∗c − β∗
S∗c ))

+ λΩ(β̂S∗ − β∗
S∗) + λΩ(β∗

S∗c ) − λΩ S∗c
(β̂S∗c − β∗

S∗c ) + λΩ Sc(β∗
S∗c )

+ λεγn + δλΩ(β̂ − β∗)

≤ λε(Ω(β̂S∗ − β∗
S∗) + Ω S∗c

(β̂S∗c − β∗
S∗c ))

+ λΩ(β̂S∗ − β∗
S∗) − λΩ S∗c

(β̂S∗c − β∗
S∗c ) + 2λΩ(β∗

S∗c )

+ λεγn + δλΩ(β̂ − β∗).

This gives

Ω S∗c
(β̂S∗c − βS∗c ) ≤ LΩ(β̂S∗ − β∗

S∗)

and hence

Ω(β̂S∗ − β∗
S∗) ≤ Γ (τ , L , S∗)τ (β̂S∗ − β∗

S∗).

But then applying the dual conjugate inequality
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λεγn + 2λΩ(β∗
S∗c )

≤ R(β̂) − R(β̂t )

t
+ δλΩ(β̂ − β∗)

≤ λΓ (τ , L , S∗)τ (β̂S∗ − β∗
S∗) + λεγn + 2λΩ(β∗

S∗c )

≤ G

(
τ (β∗ − β̂)

)
+H

(
λΓ (τ , L , S∗)

)
+ λεγn + 2λΩ(β∗

S∗c)

≤ R(β∗) − R(β̂) + R(β̂) − R(β̂t )

t
+ H

(
λΓ (L ,β∗

S∗ , τ )

)

+ λεγn + 2λΩ(β∗
S∗c ),

where in the last step we used the G-convexity. In other words then

δλΩ(β̂ − β∗) + R(β̂) ≤ R(β∗) + H

(
λΓ (τ , L , S∗)

)
+ λεγn + 2λΩ(β∗

S∗c ).

Proof of Lemma 1

By a two-term Taylor expansion

g((1 − t)u + tv) = g(u) + t (v − u)ġ(u) + 1
2 t

2(v − u)2g̈(ũ),

where ũ is an intermediate point. Similarly

g(v) = g(u) + (v − u)ġ(u) + 1
2 (v − u)2g̈(ū),

where ū is another intermediate point. Therefore

(1 − t)g(u) + tg(v) = g(u) + t (g(v) − g(u)) + (v − u)ġ(u) + 1
2 t (v − u)2g̈(ū).

Taking the difference yields

g((1 − t)u + tv) − (1 − t)g(u) + tg(v) = 1
2 t

2(v − u)2g̈(ũ) − 1
2 t (v − u)2g̈(ū)

≤ − 1
2 (1/C2 − C̄2t)t (v − u)2

= − 1
4 t (v − u)2/C2.
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Median-Truncated Gradient Descent:
A Robust and Scalable Nonconvex
Approach for Signal Estimation

Yuejie Chi, Yuanxin Li, Huishuai Zhang and Yingbin Liang

Abstract Recent work has demonstrated the effectiveness of gradient descent for
directly estimating high-dimensional signals via nonconvex optimization in a glob-
ally convergent manner using a proper initialization. However, the performance is
highly sensitive in the presence of adversarial outliers that may take arbitrary val-
ues. In this chapter, we introduce the median-Truncated Gradient Descent (median-
TGD) algorithm to improve the robustness of gradient descent against outliers, and
apply it to two celebrated problems: low-rank matrix recovery and phase retrieval.
Median-TGD truncates the contributions of samples that deviate significantly from
the sample median in each iteration in order to stabilize the search direction. Encour-
agingly, when initialized in a neighborhood of the ground truth known as the basin
of attraction, median-TGD converges to the ground truth at a linear rate under Gaus-
sian designs with a near-optimal number of measurements, even when a constant
fraction of the measurements are arbitrarily corrupted. In addition, we introduce a
new median-truncated spectral method that ensures an initialization in the basin of
attraction. The stability against additional dense bounded noise is also established.
Numerical experiments are provided to validate the superior performance of median-
TGD.
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1 Introduction

For many problems in science and engineering, one collects measurements {yi }mi=1
of some unknown object x, and aims to recover the object via solving an empirical
risk minimization problem:

x̂ = argminz
1

2m

m∑

i=1

�(z; yi ), (1)

where �(z; yi ) is the sample loss function, for example, the negative log-likelihood
function. This problem often is nonconvex, making it challenging to solve in a glob-
ally optimal manner in general. Indeed, it is known that even for optimizing a single-
neuron model with the squared loss and the logistic activation function, there may
exist exponentially many local minima [1]. Recently, there has been a surge of activi-
ties for studying the performance of simple iterativemethods such as gradient descent
for statistical estimation with nonconvex objective functions. Encouragingly, with
the help of certain statistical models of data, strong global convergence guarantees
may be possible by analyzing the average-case performance for certain benign non-
convex problems, including but not limited to, low-rank matrix recovery/completion
[2], phase retrieval [3], dictionary learning [4], and blind deconvolution [5], to name
a few. A typical result states that gradient descent with a proper initialization is guar-
anteed to converge to the ground truth with high probability, as soon as the sample
size is large enough, under certain statistical models of data generation.

In practice, it is quite typical that measurements may suffer from outliers that
need to be addressed carefully. There are many situations where outliers arise, such
as detector failures, recording errors, and missing data, possibly in an adversar-
ial fashion with outliers taking arbitrary values. Unfortunately, the vanilla gradient
descent algorithm, though adopted widely, is very sensitive to the presence of even
a single outlier, as the outliers can perturb the search directions arbitrarily. There-
fore, it is greatly desirable to develop fast and robust alternatives that are globally
convergent in a provable manner even with a large number of adversarial outliers.

This chapter introduces amedian truncation strategy to robustify the vanilla gradi-
ent descent approach, which includes careful modifications on both the initialization
and the local search procedures. As it is widely known, the sample median is a more
robust quantity vis-à-vis outliers, compared with the sample mean. It requires half of
the samples to be outliers in order to perturb the samplemedian arbitrarily, while only
one sample suffices to perturb the sample mean [6]. Therefore, the median becomes
an ideal quantity to illuminate which samples are likely to be outliers and therefore
should be eliminated during the gradient descent updates. The new approach, called
median-Truncated Gradient Descent (median-TGD), starts with formulating an ini-
tialization using a truncated spectral method, where only samples whose absolute
values are not too deviated from the sample median, are included. Next, it follows by
a truncated gradient update, where only sampleswhosemeasurement residuals evalu-
ated at the current estimate are not too deviated from the samplemedian are included.
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This leads to an adaptive and iteration-varying strategy to mitigate the effects of out-
liers. The effectiveness of median-TGD is illustrated on two important problems,
low-rank matrix recovery [7, 8] and phase retrieval [9], where median-TGD prov-
ably tolerates a constant fraction of outliers at a near-optimal sample complexity up to
some logarithmic factors. Computationally, because the sample median can be com-
puted in a linear time [10], median-TGD shares a similar attractive computational
cost as the vanilla gradient descent while being a lot more robust.

The remainder of this chapter is organized as follows. Section2 describes the
general recipe of median-TGD. Section3 adopts median-TGD to low-rank matrix
recovery and describes its performance guarantee. Section4 adopts median-TGD to
phase retrieval and describes its performance guarantee. Section5 discusses the main
ingredients for analysis and highlights a few properties of median. Section6 provides
numerical evidence on the superior performance of median-TGD in the presence of
outliers. Section7 reviews the related literature. Finally, we conclude the chapter in
Sect. 8.

Notations:We denote vectors by boldface lowercase letters andmatrices by boldface
uppercase letters. The notations AT , ‖A‖, and ‖A‖F represent the transpose, the
spectral norm, and the Frobenius norm of a matrix A, respectively. We denote the
kth singular value of A as σk(A), and the kth eigenvalue as λk(A). For a vector
y ∈ R

n , med(y) denotes the median of the entries in y, and |y| denotes the vector that
contains its entry-wise absolute values. The (k, t)th entry of a matrix A is denoted
as Ak,t . Besides, the inner product between two matrices A and B is defined as
〈A,B〉 = Tr

(
BTA

)
, where Tr(·) denotes the trace of a matrix. The indicator function

of an event A is denoted as IA, which equals 1 if A is true and 0 otherwise. In addition,
we use C , c1, c2, . . .with different subscripts to represent universal constants, whose
values may change from line to line. The notation f (n) = Ω(g(n)) or f (n) � g(n)

means that there exists a constant c > 0 such that | f (n)| ≥ c|g(n)| for all sufficiently
large n.

2 Median-Truncated Gradient Descent

In this section, we describe a unified framework to outline the approach of median-
TGD. Consider that one collects measurements yi ’s that are modeled as

yi ≈ fi (x), 1 ≤ i ≤ m,

where fi (x)’s are independent and identically distributed (i.i.d.) given x, and the ran-
domness can be due to the sampling of measurement operators. Denote the index set
of corrupted measurements by S, and correspondingly, the index set of clean mea-
surements is given as the complementary set Sc. Mathematically, the measurements
y = {yi }mi=1 are given as
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yi =
{
fi (x) + wi , if i ∈ Sc;
ηi + wi , if i ∈ S,

(2)

where η = {ηi }i∈S is the set of outliers that can take arbitrary values. Denote the
cardinality of S as |S| = s · m, where 0 ≤ s < 1 is the fraction of outliers. Further-
more, w = {wi }mi=1 is the additional deterministic dense bounded noise that satisfies
‖w‖∞ ≤ cw for some small cw.1

A natural strategy for estimating x is to solve (1) with a carefully selected loss
function. For simplicity, we limit our discussions to the quadratic loss function, i.e.,
�(z; yi ) = [yi − fi (x)]2, but the approach extends to other loss functions as well.
Due to the presence of outliers, the signal of interest may no longer be the global
optima of (1). Therefore, an ideal approach is to minimize an oracle loss function,

foracle(z) = 1

2m

∑

i∈Sc

�(z; yi ), (3)

which aims to minimize the quadratic loss over only the clean measurements. Nev-
ertheless, it is impossible to minimize foracle(z) directly, since the oracle information
regarding the support of outliers is absent.Moreover, the loss function can be noncon-
vex for many interesting choices of fi (x), adding difficulty to its global optimization.

Our key strategy is to prune the bad samples adaptively and iteratively, using a
gradient descent procedure that proceeds as follows:

z(t+1) = z(t) − μ

m

∑

i∈Tt+1

∇�(z(t); yi ). (4)

where z(t) denotes the t th iterate of gradient descent, ∇�(z(t); yi ) is the gradient of
�(z(t); yi ), and μ is the step size, for t = 0, 1, . . .. In each iteration, only a subset Tt+1

of data-dependent and iteration-varying samples contributes to the search direction.
But how to select the set Tt+1?

Note that the gradient of the loss function typically contains the term (yi −
fi (z(t))), which measures the residual using the current iterate. With yi being cor-
rupted by arbitrarily large outliers, the gradient can deviate the search direction from
the signal arbitrarily. Inspired by the utility of median to combat outliers in robust
statistics [6], we prune samples whose gradient components ∇�(z(t); yi ) are much
larger than the median to control the search direction of each update. This yields
the main ingredient of themedian-truncated gradient descent (median-TGD) update
rule, i.e., for each iterate t ≥ 0:

Tt+1 := {
i : |yi − fi (z(t))| � med({|yi − fi (z(t))|}mi=1)

}
,

1It is straightforward to handle stochastic noise such as Gaussian noise, by noticing that its infinity
norm is bounded with high probability.
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where med(·) denotes the sample median. The robust property of median lies in the
fact that the median cannot be arbitrarily perturbed unless the outliers dominate the
inliers [6]. This is in sharp contrast to the samplemean, which can bemade arbitrarily
large even by a single outlier. Thus, using the sample median in the truncation rule
can effectively remove the impact of outliers. Finally, there still left the question of
initialization, which is critical to the success of the algorithm. We use the spectral
method, i.e., initialize z(0) with the help of a certain surrogate data matrix,

Y = 1

m

∑

i∈T0
yiBi , (5)

for some choice of Bi that depends on the form of fi (x). Again, the set T0 includes
only a subset of samples whose values are not excessively large compared with the
sample median of the measurements in terms of absolute values, given as

T0 = {
i : |yi | � med({|yi |}mi=1)

}
.

Putting things together (the update rule (4) and the initialization (5)), we obtain the
new median-TGD algorithm, based on applying the median truncation strategy. The
median-TGD algorithm does not assume a priori knowledge of the outliers, such as
their existence or the number of outliers, and therefore can be used in an oblivious
fashion. In the next two sections, we apply median-TGD to two important prob-
lems, low-rank matrix recovery and phase retrieval, respectively, and demonstrate
the appealing theoretical properties.

3 Robust Low-Rank Matrix Recovery

In this section, we apply median-TGD to the problem of robust low-rank matrix
recovery. Low-rank matrix recovery is a problem of great interest in applications
such as collaborativefiltering, signal processing, and computer vision.Aconsiderable
amount ofwork has been done on low-rankmatrix recovery in recent years,where it is
shown that low-rank matrices can be recovered accurately and efficiently frommuch
fewer observations than their ambient dimensions [11–16]. An extensive overview
of low-rank matrix recovery can be found in [17].

Let M ∈ R
n×n be a rank r positive semidefinite matrix that can be written as

M = XXT , (6)

where X ∈ R
n×r is the low-rank factor of M.2 Define the condition number and the

average condition number ofM asκ = λ1(M)/λr (M), and κ̄ = ‖M‖F/(
√
rλr (M)).

Clearly, κ̄ ≤ κ. Also, as a useful fact, we have λi (M) = σ2
i (X), i = 1, . . . , r .

2Our discussions can be extended to the rectangular case, see [8].
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Let m be the number of measurements, and the set of sensing matrices is
given as {Ai }mi=1, where Ai ∈ R

n×n is the i th symmetric sensing matrix. In par-
ticular, each Ai is generated i.i.d. from Gaussian orthogonal ensemble (GOE), with
(Ai )k,k ∼ N (0, 2), (Ai )k,t ∼ N (0, 1) for k < t , and (Ai )k,t = (Ai )t,k . Specialize
the measurement model (2) to low-rank matrix sensing, we have

yi =
{ 〈Ai ,M〉 + wi , if i ∈ Sc

ηi + wi , if i ∈ S . (7)

To simplify notations, we define the linear maps Ai (W) = {Rn×n 
→ R : 〈Ai ,W〉},
and A(W) = {Rn×n 
→ R

m : {Ai (W)}mi=1}.
Instead of recoveringM, we aim to directly recover its low-rank factorX from the

corrupted measurements y, without a priori knowledge of the outliers, in a compu-
tationally efficient and provably accurate manner. It is straightforward to see that for
any orthonormal matrix P ∈ R

r×r , we have (XP)(XP)T = XXT , and consequently,
X can be recovered only up to orthonormal transformations. Hence, we measure the
estimation accuracy by taking this into consideration. Given U ∈ R

n×r , the distance
between U and X is measured as

dist (U,X) = min
P∈Rr×r ,PPT =I

‖U − XP‖F .

3.1 Median-TGD for Robust Low-Rank Matrix Recovery

We instantiate the approach of median-TGD to low-rank matrix recovery, by setting
the sample loss function as

�(U; yi ) := ∣∣yi − Ai (UUT )
∣∣2 ,

where U ∈ R
n×r . In each iteration, only a subset of the samples contribute to the

search direction:
U(t+1) := U(t) − μt

‖U(0)‖2 ∇ ftr (U(t)), (8)

where we denote ∇ ftr (Ut ) = 1
m

∑
i∈E t ∇�(U(t); yi ) as the truncated gradient. In (8),

μt denotes the step size, U(0) is the initialization, and ∇�(U; yi ) is the gradient of
�(U; yi ) given as

∇�(U; yi ) = (Ai (UUT ) − yi )AiU.

Importantly, the set E t is set adaptively to rule out outliers. Denote the residual of
the i th measurement at the t th iteration as

r (t)
i = yi − Ai (U(t)U(t)T ), i = 1, 2, . . . ,m,
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and r(t) = [r (t)
1 , r (t)

2 , . . . , r (t)
m ]T = y − A(U(t)U(t)T ). Then the set E t is defined as

E t =
{
i
∣∣∣|r (t)

i | ≤ αh · med{|r(t)|}
}

,

where αh is some constant. In other words, only samples whose current absolute
residuals are not too deviated from the sample median of the absolute residuals are
included in the gradient update. As the estimate U(t) gets more accurate, we expect
that the set E t gets closer to the oracle set Sc, and hence the gradient search is more
accurate. Note that the set E t varies per iteration, and therefore can adaptively prune
the outliers.

For initialization, we adopt a truncated spectral method, which uses the top eigen-
vectors of a sample-weighted surrogate matrix, where again only the samples whose
absolute values do not significantly digress from the sample median are included.
To avoid statistical dependence in the theoretical analysis, we split the samples by
using the sample median of m2 samples to estimate ‖M‖F , and then using the rest
of the samples to construct the truncated surrogate matrix to perform a spectral ini-
tialization. In practice, we find that this sample split is unnecessary, as demonstrated
in the numerical simulations.

The details of median-TGD are provided in Algorithm 1, where the stopping
criterion is simply set as reaching a presetmaximumnumber of iterations. In practice,
it is also possible to set the stopping criteria by examining the progress between
iterations.

3.2 Theoretical Guarantees

Encouragingly, when initialized in a basin of attraction close to the ground truth,
median-TGD converges globally at a linear rate under the GOE model with an order
ofO(nr log n) measurements, even when a constant fraction of the measurements is
arbitrarily corrupted, which is near-optimal up to a logarithmic factor. In addition, the
truncated spectral method ensures an initialization in the basin of attraction with an
order of O(nr2 log n log2 r) measurements when a fraction of 1/

√
r measurements

are arbitrarily corrupted. In the case when the rank is a small constant, median-TGD
provably tolerates a constant fraction of outliers with O(n log n) measurements,
which is much smaller than the ambient dimension n2 of the matrix. Furthermore, the
stability of median-TGD against additional dense bounded noise is also established.

Theorem1 summarizes the performanceguarantee ofmedian-TGD inAlgorithm1
for low-rank matrix recovery in the presence of both sparse arbitrary outliers and
dense bounded noise when initialized around a proper neighborhood around the
ground truth. The proof can be found in [8].
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Algorithm 1: median-TGD for robust low-rank matrix recovery
Parameters: Thresholds αy and αh , step size μt , average condition number bound κ̄0, and
rank r .
Input: The measurements y = {yi }mi=1, and the sensing matrices {Ai }mi=1.
Initialization:
(1) Set y1 = {yi }m1

i=1 and y2 = {yi }mi=m1+1, where m1 = �m/2� and m2 = m − m1.

(2) Initialize U(0) = Z�, where the columns of Z contain the normalized eigenvectors
corresponding to the r largest eigenvalues in terms of absolute values, i.e.
|λ1(Y)| ≥ |λ2(Y)| ≥ · · · ≥ |λr (Y)|, of the matrix

Y = 1

m1

m1∑

i=1

yiAi I{|yi |≤αy ·med(|y2|)}, (9)

and � is an r × r diagonal matrix, with �i,i = √|λi (Y)| /2, i = 1, 2, . . . , r .
Gradient Loop: For t = 0 : 1 : T − 1 do

U(t+1) = U(t) − μt∥∥U(0)
∥∥2

· 1

m

m∑

i=1

(
Ai (U(t)U(t)T ) − yi

)
AiU(t)

IE t
i
, (10)

where
E t
i =

{∣∣∣yi − Ai (U(t)U(t)T )

∣∣∣ ≤ αh · med
(∣∣∣y − A

(
U(t)U(t)T

)∣∣∣
)}

. (11)

Output: X̂ = U(T ).

Theorem 1 Consider the measurement model (7) with ‖w‖∞ ≤ cwλr (M) for a
sufficiently small constant cw. Suppose that the initialization U(0) satisfies

dist
(
U(0),X

) ≤ 1

12
σr (X) .

Set αh = 6. There exist some constants 0 < s0 < 1, c0 > 1, c1 > 1 such that with
probability at least 1 − e−c1m, if s ≤ s0, and m ≥ c1nr log n, then there exists a
constant μ ≤ 1

600 , such that with μt ≤ μ, the estimates of median-TGD satisfy

dist
(
U(t),X

)
� ‖w‖∞

σr (X)
+

(
1 − 2μ

5κ

)t/2

dist
(
U(0),X

)
.

Theorem 1 suggests that if the initialization U(0) lies in the basin of attraction,
then median-TGD converges to the ground truth at a linear rate as long as the number
m of measurements is in the order of O(nr log n), even when a constant fraction of
measurements are corrupted arbitrarily. In comparisons, the vanilla gradient descent
algorithm by Tu et al. [18] achieves the same convergence rate in a similar basin of
attraction, with an order of O(nr) measurements using outlier-free measurements.
Therefore, median-TGD achieves robustness up to a constant fraction of outliers
with a slight price of an additional logarithmic factor in the sample complexity.
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Furthermore, Theorem 1 justifies the stability of median-TGD when the noise level
‖w‖∞ is not too large.

Theorem 2 provides that the truncated spectral method provides an initialization
in the basin of attraction with high probability.

Theorem 2 Assume the measurement model (7) with ‖w‖∞ ≤ cmλr (M) for a suf-
ficiently small constant cm, and κ̄ ≤ κ̄0. Set αy = 2 log (r1/4κ̄1/2

0 + 20). There exist
some constants 0 < s1 < 1 and c2, c3, c4 > 1 such that with probability at least
1 − n−c2 − exp(−c3m), if s ≤ s1√

r κ̄
, and m ≥ c4α2

yκ̄
2nr2 log n, then we have

dist
(
U(0),X

) ≤ 1

12
σr (X) .

Theorem2 suggests that the proposed initialization scheme is guaranteed to obtain
a valid initialization in the basin of attraction with an order of O(nr2 log n log2 r)
measurements when a fraction of 1/

√
r measurements are arbitrarily corrupted,

assuming the condition number κ is a small constant. In comparisons, in the outlier-
free setting, Tu et al. [18] requires an order ofO(nr2κ2)measurements for a one-step
spectral initialization, which is closest to our scheme. Therefore, our initialization
achieves robustness to a 1/

√
r fraction of outliers at a slight price of additional loga-

rithmic factors in the sample complexity. Finally, we note that the parameter bounds
in all theorems, including αh , αy , and μ, are not optimized for performance, but
mainly selected to establish the theoretical guarantees.

4 Robust Phase Retrieval

In this section, we apply median-TGD to the problem of robust phase retrieval. Phase
retrieval is a classical problem in signal processing, optics, and machine learning that
has a wide range of applications such as X-ray crystallography [19], ptychography,
and astronomical imaging [20]. Mathematically, it is formulated as recovering a sig-
nal x ∈ R

n from the magnitudes of its linear measurements.3 Consider the following
model for phase retrieval, where the measurements are corrupted by not only sparse
arbitrary outliers but also dense bounded noise. Under such a model, the measure-
ments are given as

yi = ∣∣aTi x
∣∣ + wi + ηi , i = 1, . . . ,m, (12)

wherex ∈ R
n is the unknown signal,ai ∈ R

n is the i thmeasurement vector composed
of i.i.d. Gaussian entries distributed as N (0, 1), and ηi ∈ R for i = 1, . . . ,m are
outliers with arbitrary values satisfying ‖η‖0 ≤ s · m, where s is the fraction of
outliers, and w = {wi }mi=1 is the bounded noise satisfying ‖w‖∞ ≤ c‖x‖ for some
universal constant c.

3The algorithm can be used to estimate complex-valued signals as well.
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It is straightforward to observe that changing the sign of the signal does not affect
the measurements. The goal is to recover the signal x, up to a global sign difference,
from themeasurements y = {yi }mi=1 and themeasurement vectors {ai }mi=1. To this end,
we define the Euclidean distance between two vectors up to a global sign difference
as the performance metric,

dist(z, x) := min{‖z + x‖, ‖z − x‖}. (13)

4.1 Median-TGD for Robust Phase Retrieval

We instantiate the approach of median-TGD to phase retrieval, by setting the sample
loss function as the quadratic loss of the amplitudes:

�(z; yi ) = (
yi − |aTi z|

)2
. (14)

Though (14) is not smooth everywhere, it has been argued in [21] that the loss function
(14) resembles more closely to the quadratic loss when the phase information is
available, and has a more amenable curvature for the convergence of the gradient
descent algorithms.

In each iteration, only a subset of the samples contributes to the search direction:

z(t+1) := z(t) − μt

‖z(0)‖∇ ftr (z(t)), (15)

where∇tr f (Ut ) = ∑
i∈E t �(z(t); yi ) denotes the truncated gradient. In (8),μt denotes

the step size, and z(0) denotes the initialization. Moreover, ∇�(z; yi ) is the gradient
of �(z; yi ) given as

∇�(z; yi ) =
(
aTi z

(t) − yi · aTi z
(t)

|aTi z(t)|
)
ai .

Importantly, the set E t is set adaptively to rule out outliers. Denote the residual of
the i th measurement at the t th iteration as

r (t)
i = yi − |aTi z(t)|, i = 1, 2, . . . ,m,

and r(t) = [r (t)
1 , r (t)

2 , . . . , r (t)
m ]T = y − |Az(t)|. Then the set E t is defined as

E t =
{
i
∣∣∣|r (t)

i | ≤ αh · med{|r(t)|}
}

,
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where αh is some constant. Similarly, as the estimate z(t) gets more accurate, we
expect that the set E t gets closer to the oracle set Sc, and hence the gradient search
is more accurate.

For initialization, we adopt a truncated spectral method, which uses the rescaled
top eigenvectors of a sample-weighted surrogate matrix, where again only the sam-
ples whose absolute values do not significantly digress from the sample median are
included. The details of the median-TGD algorithm are described in Algorithm 2.
The tuning parameters can be set as μt := μ = 0.8 and the truncation threshold as
αh = 5.

Algorithm 2: median-TGD for robust phase retrieval
Input: y = {yi }mi=1, {ai }mi=1;
Parameters: threshold αh , and step size μ;
Initialization: Let z(0) = λ0z̃, where λ0 = med(y)/0.455 and z̃ is the leading eigenvector
of

Y := 1

m

m∑

i=1

yi ai aTi I{|yi |≤αyλ0}. (16)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − μ

‖z(0)‖ · 1

m

m∑

i=1

(
aTi z

(t) − yi · aTi z
(t)

|aTi z(t)|

)
ai IE t

i
, (17)

where

E t
i :=

{
i
∣∣
∣∣∣yi − |aTi z(t)|

∣∣∣ ≤ αh · med
({∣∣∣yi − |aTi z(t)|

∣∣∣
}m
i=1

)}
.

Output zT .

4.2 Performance Guarantees

We characterize the performance guarantees of median-TGD for robust phase
retrieval. We first show that if initialized in a basin of attraction, median-TGD con-
verges to the ground truth at a linear rate under the Gaussian model with an order
of O(n log n) measurements, even when a constant fraction of measurements are
arbitrarily corrupted, which is order-wise optimal. In addition, the truncated spectral
method ensures an initialization in the basin of attraction with an order ofO(n)mea-
surements even when a constant fraction of measurements are arbitrarily corrupted.
Furthermore, the stability of median-TGD against additional dense bounded noise is
also established.

Theorem1 summarizes the performanceguarantee ofmedian-TGD inAlgorithm2
for phase retrieval in the presence of both sparse arbitrary outliers and dense bounded
noise when initialized around a proper neighborhood around the ground truth. The
proof can be found in [9].
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Theorem 3 Consider the phase retrieval problem given in (12). Suppose that the
initialization z(0) satisfies

dist
(
z(0), x

) ≤ 1

12
‖x‖.

There exist constants μ0, s0 > 0, 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥
c0n log n, s < s0, μ ≤ μ0, then with probability at least 1 − c1 exp(−c2m), median-
TGD yields

dist(z(t), x) � ‖w‖∞ + (1 − ρ)t‖x‖, ∀t ∈ N,

simultaneously for all x ∈ R
n\{0}.

Theorem 4 provides that the truncated spectral method provides an initialization
in the basin of attraction with high probability.

Theorem 4 Fix δ > 0 and x ∈ R
n, and consider the model given by (12). Suppose

that ‖w‖∞ ≤ cw‖x‖ for some sufficiently small constant cw > 0 and that ‖‖0 ≤ sm
for some sufficiently small constant s. With probability at least 1 − exp(−Ω(m)),
the initialization given by the median-truncated spectral method obeys

dist (z(0), x) ≤ δ‖x‖,

provided that m > c0n for some constant c0 > 0.

Theorem 3, together with Theorem 4, indicates that median-TGD admits exact
recovery for all signals in the presence of only sparse outliers with arbitrary magni-
tudes even when the number of outliers scales linearly with the number of measure-
ments, as long as the sample complexity satisfies m � n log n. Moreover, median-
TGD converges at a linear rate using a constant step size, with per-iteration cost
O(mn). To reach ε-accuracy, i.e., dist(z(t), x) ≤ ε, only O(log 1/ε) iterations are
needed, yielding the total computational cost as O(mn log 1/ε), which is highly
efficient. With both sparse arbitrary outliers and dense bounded noises, Theorem 3
implies that median-TGD achieves the same convergence rate and the same level of
estimation error as the model with only bounded noise. Moreover, it can be seen that
applying median-TGD does not require the knowledge of the existence of outliers.
When there do exist outliers, median-TGD achieves almost the same performance
as if outliers do not exist.

5 Highlights of Theoretical Analysis

Broadly speaking, the theoretical analysis of median-TGD for both problems follow
the same roadmap. The crux is to use the statistical properties of the median to show
that the median-truncated gradients satisfy the so-called Regularity Condition (RC)
[3], which guarantees the linear convergence of the update, provided the initialization
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provably lands in a small neighborhood of the true signal. We first develop a few
statistical properties ofmedian that will be useful throughout our analysis in Sect. 5.1.
Section5.2 explains the RC and how it leads to geometric convergence.

5.1 Useful Properties of Median

The sample median, and the order statistics, possesses a few useful properties that
we list here for reference [22]. To begin, we define below the quantile function of a
population distribution and its corresponding sample version.

Definition 1 (Generalized quantile function [22]) Let 0 < τ < 1. For a cumulative
distribution function (CDF) F(x), the generalized quantile function is defined as

F−1 (τ ) = inf {x ∈ R : F (x) ≥ τ }.

For simplicity, denote θτ (F) = F−1 (τ ) as the τ -quantile of F . Moreover, for a
sample collection y = {yi }mi=1, the sample τ -quantile θτ (y) means θτ (F̂), where F̂
is the empirical distribution of the samples y. Specifically, med (y) = θ1/2 (y).

Lemma1 shows that as long as the sample size is large enough, the sample quantile
concentrates around the population quantile.

Lemma 1 Suppose F(·) is cumulative distribution function (i.e., nondecreasing and
right-continuous) with continuous density function f (·). Assume the samples {Xi }mi=1
are i.i.d. drawn from f . Let 0 < p < 1. If there exist lower and upper bounds l, L
such that l < f (θ) < L for all θ in {θ : ∣∣θ − θp

∣∣ ≤ ε}, then
∣∣θp({Xi }mi=1) − θp(F)

∣∣ < ε

holds with probability at least 1 − 2 exp (−2mε2l2).

Lemma 2 bounds the distance between the median of two sequences.

Lemma 2 Given a vector X = (X1, X2, ..., Xn), where we order the entries in
a nondecreasing manner X(1) ≤ X(2) ≤ ... ≤ X(n−1) ≤ X(n). Given another vector
Y = (Y1,Y2, ...,Yn), then

|X(k) − Y(k)| ≤ ‖X − Y‖∞

holds for all k = 1, ..., n.

As an example, consider two sequencesX = (1, 3, 5,−6, 8), andY = (2, 1,−9,
5, 3), we have the ordered sequences, respectively, as
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X̃ = (−6, 1, 3, 5, 8),

Ỹ = (−9, 1, 2, 3, 5).

It is easy to verify that max1≤k≤5 |X(k) − Y(k)| = 3 ≤ ‖X − Y‖∞ = 14.
Lemma 3, as a key robustness property of median, suggests that in the presence of

outliers, one can bound the sample median from both sides by neighboring quantiles
of the corresponding clean samples.

Lemma 3 Consider clean samples {X̃i }mi=1. If a fraction s (s < 1
2 ) of them are cor-

rupted by outliers, one obtains contaminated samples {Xi }mi=1 which contain sm
corrupted samples and (1 − s)m clean samples. Then for a quantile p such that
s < p < 1 − s, we have

θp−s({X̃i }) ≤ θp({Xi }) ≤ θp+s({X̃i }).

5.2 Regularity Condition

Once the initialization is guaranteed to be within a small neighborhood of the ground
truth, we only need to show that the truncated gradients (8) and (15) satisfy the
Regularity Condition (RC) [3, 23], which guarantees the geometric convergence of
median-TGD once the initialization lands into this neighborhood. For conciseness,
we write the definition of RC when z is a vector, and it is straightforward to extend
it to the matrix case.

Definition 2 The gradient ∇�(z) is said to satisfy the Regularity Condition RC(μ,

λ, c) if

〈∇�(z), z − x〉 ≥ μ

2
‖∇�(z)‖2 + λ

2
‖z − x‖2 (16)

for all z obeying ‖z − x‖ ≤ c‖x‖.
The above RC guarantees that the gradient descent update z(t+1) = z(t) − μ∇�(z)
converges to the true signal x geometrically [23] if μλ < 1. This is due to the fol-
lowing argument:

dist2(z − μ∇�(z), x) ≤ ‖z − μ∇�(z) − x‖2
= ‖z − x‖2 + ‖μ∇�(z)‖2 − 2μ 〈z − x,∇�(z)〉
≤ ‖z − x‖2 + ‖μ∇�(z)‖2 − μ2‖∇�(z)‖2 − μλ ‖z − x‖2
= (1 − μλ) dist2(z, x).

Therefore, it boils down to establish that RC holds with high probability for
the truncated gradients (8) and (15). However, the analysis of median-TGD is more
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involved due to the truncation procedure in the gradient descent updates. In particular,
certain restricted isometry properties (RIP) of the sample median for the class of
signals of interest need to be established, which can be thought as an extension of
the RIP for the sample mean in compressed sensing literature [11, 24]. We remark
that such a result might be of independent interest, and its establishment is nontrivial
due to the nonlinear character of the median operation. We refer interested readers
to [8, 9] for details.

6 Numerical Experiments

In this section, we provide several numerical experiments to evaluate the perfor-
mance of the proposed median-TGD algorithms for robust low-rank matrix recovery
and robust phase retrieval, respectively. In particular, we examine the robustness of
median-TGD with respect to both sparse outliers and dense noise.

6.1 Median-TGD for Low-Rank Matrix Recovery

We first examine the performance of median-TGD, summarized in Algorithm 1, for
robust low-rank matrix recovery. As mentioned earlier, for the initialization step,
empirically we observe it is not necessary to split the samples into two parts, and
hence the matrix in (9) is instead changed to

Y = 1

m

m∑

i=1

yiAi I{|yi |≤αy ·med(|y|)}.

We randomly generate the ground truth as a rank r matrix as M = XXT , where
X ∈ R

n×r is composed of i.i.d. standard Gaussian random variables. The i th sensing
matrix Ai is generated as Ai = (Bi + Bi )/

√
2, where Bi ∈ R

n×n consists of i.i.d.
standard Gaussian random variables, i = 1, . . . ,m. The outliers are i.i.d. randomly
generated following 102 ‖M‖F · N (0, 1). Moreover, we set αy = 12 and αh = 6,
and pick a constant step size μt = 0.4. In all experiments, the maximum number of
iterations is set as T = 103. Denote the solution to the algorithm under examination

by X̂, and then the normalized estimate error is defined as
∥∥∥X̂X̂T − M

∥∥∥
F

/ ‖M‖F .

A trial is deemed a success if the normalized estimate error is less than 10−6.
Fix n = 150, r = 5, and the percentage of outliers as s = 5%. Figure1 shows the

success rates of median-TGD, averaged over 20 trials, with respect to the number
of measurements. As a comparison, Fig. 1 also shows the success rates of vanilla-
GD [18] in the same setting except for using outlier-free measurements. It can be
observed that median-TGD provides comparable performance to that of vanilla-GD
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Fig. 1 The success rate of
median-TGD for low-rank
matrix recovery with respect
to the number of
measurements, when 5% of
measurements are corrupted
by outliers, which is similar
to that of vanilla-GD using
outlier-free measurements.
Here, n = 150, and r = 5
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under outlier-free measurements, whose performance dramatically degrades when
the measurements are corrupted by outliers. Therefore, median-TGD can deal with
outliers in a much more robust manner.

Furthermore, we examine the performance of median-TGD when the measure-
ments are contaminated by both sparse outliers and dense noise. Specifically, the
dense noise is generated with i.i.d. random entries following 0.05σr (M) · U[−1, 1],
and the sparse outliers are generated in the same manner as in Fig. 1. We exam-
ine the performance of median-TGD with the true rank r and an inaccurate rank
r + 1 using outlier-corrupted measurements, and vanilla-GD with true rank r using
outlier-corrupted measurements and outlier-free measurements. Figure2 shows the
normalized estimate error with respect to the iteration count, when the percentage of
outliers is, respectively, s = 0, 0.1% and 10%. In the outlier-free scenario, both algo-
rithms work well and have comparable convergence rates. However, even with a few
outliers, vanilla-GD suffers from a dramatic performance degradation, as shown in
Fig. 2b. On the other hand, median-TGD shows robust performance against outliers
and can still converge to an accurate estimate even with a large fraction of outliers, as
shown in Fig. 2c. Finally, the performance of median-TGD is stable to misspecified
rank information as long as an upper bound of the truth rank is provided.

6.2 Median-TGD for Phase Retrieval

We now examine the performance of median-TGD, summarized in Algorithm 2, for
robust phase retrieval. The ground truth is generated as x ∼ N (0, In×n), and themea-
surement vectors are i.i.d. randomly generated as ai ∼ N (0, In×n), for i = 1, . . . ,m.
The outliers are i.i.d. randomly generated from a uniform distribution U[0, 103 ‖x‖].
In all experiments, a fixed number of iterations is set as T = 103. Denote the solution
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(c) s = 10%

Fig. 2 Normalized estimate error with respect to the iteration count usingmedian-TGD and vanilla-
GD in different outlier-corruption scenarios for low-rank matrix recovery, when n = 150, r = 5,
and m = 1800
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Fig. 3 Success rates of
median-TGD for robust
phase retrieval. a Success
rates with respect to the
number of measurements m
and the percent of outliers s,
when the signal dimension
n = 1000. b Success rates
with respect to the signal
dimension n and the ratio of
the number of measurements
to the signal dimension m/n,
when s = 5% of
measurements are corrupted
by outliers
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to the algorithm under examination as x̂, and then the normalized estimate error is
defined as dist(x̂, x)/ ‖x‖. A trial is declared successful if the normalized estimate
error is less than 10−8.

Figure3a shows the success rates of median-TGD, averaged over 20 trials, with
respect to the number of measurements, and the percentage of outliers when the sig-
nal dimension is fixed as n = 1000. The performance of median-TGD degenerates
smoothly with the increase in the percentage of outliers. Under the same setup as
Fig. 3a, b shows the success rate of median-TGDwith respect to the signal dimension
n and the oversampling ratio m/n, when 5% of measurements are corrupted by out-
liers. It can be seen that exact recovery can be achieved as soon as the oversampling
ratio is above 4.5.

We next examine the performance of median-TGD in the presence of both sparse
outliers and dense noise. In particular, we consider the case when the measurements
are corrupted by both outliers and the Poisson noise, modeling photon detection in
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Fig. 4 Performance of
median-TGD for robust
phase retrieval with sparse
outliers and Poisson noise.
a Averaged normalized
estimate error with respect to
the number of measurements
in different outlier-corruption
scenarios, when n = 1000.
b Normalized estimate error
with respect to the iteration
count with m = 7000 and
n = 1000
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optical imaging applications, where each noise-contaminated measurement is i.i.d.
randomly generated as yi ∼ Poisson(

∣∣aTi x
∣∣), for i = 1, . . . ,m. The measurements

are then further corrupted by outliers that are i.i.d. randomly generated following
U[0, 103 ‖x‖], rounded to the nearest integers. Figure4a depicts the averaged nor-
malized estimate errors over 20 trials with respect to the number of measurements
in various outlier-corruption scenarios, where n = 1000, and the percent of outliers
is set as s = 0, s = 5%, s = 10%, and s = 15%, respectively. The performance of
TGD is robust against a large fraction of outliers, and median-TGD leads to stable
recovery of the underlying signal. The convergence rates of median-TGD are further
depicted in Fig. 4b under the same setting of Fig. 4a with m = 7000. Finally, under
the same setting of Fig. 4b, we compare the performance of median-TGD and mean-
TGD [23] using outlier-corrupted measurements and outlier-free measurements.
Figure5 depicts the normalized estimate error with respect to the iteration count,
when the percentage of outliers is, respectively, s = 0, s = 1%, and s = 10%. In the
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Fig. 5 Normalized estimate error with respect to the iteration count using median-TGD and mean-
TGD in different outlier-corruption scenarios for phase retrieval, when m = 7000 and n = 1000
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outlier-free scenario, both algorithmsworkwell and achieve comparable convergence
rates. Nevertheless, even with a few outliers, mean-TGD suffers from a dramatic per-
formance degradation, as shown in Fig. 5b, whilemedian-TGD is able to still robustly
work and converge to an accurate estimate even with a large fraction of outliers, as
shown in Fig. 5c. It can be seen that median-TGD under both outliers and Poisson
noise has almost the same accuracy as, if not better than, mean-TGD under only the
Poisson noise.

7 Related Works

Developing nonconvex methods with provable global convergence guarantees has
attracted intensive research interest recently [25].Apartial list of these studies include
phase retrieval [3, 21, 23, 26–31], matrix completion [29, 32–39], low-rank matrix
recovery [18, 40–46], robust PCA [47, 48], robust tensor decomposition [49], dictio-
nary learning [50, 51], community detection [52], phase synchronization [53], blind
deconvolution [5, 29, 54], and joint alignment [55], to name a few. Themedian-TGD
algorithmprovides a new instance in this list that emphasizes robust high-dimensional
signal estimation with possibly adversarial outliers.

The concept of median has been adopted in machine learning in various contexts,
for example, K -median clustering [56] and resilient data aggregation for sensor
networks [57]. The median-TGD algorithm presented here further extends the appli-
cations of median to robust high-dimensional estimation problems with theoretical
guarantees. Another popular approach in robust estimation is to use the trimmed
mean [6], which has found success in robustifying sparse regression [58], subspace
clustering [59], etc. However, using the trimmed mean requires knowledge of an
upper bound on the number of outliers, whereas median does not require such infor-
mation. Very recently, geometric median is also adopted for robust empirical risk
minimization [60–62].

For the phase retrieval problem, median-TGD is closely related to the truncated
Wirtinger flow (TWF) algorithm [23], which is also a truncated gradient descent
algorithm for phase retrieval. However, the truncation rule in TWF is based on the
sample mean, which is very sensitive to outliers. In [63–65], the problem of phase
retrieval with outliers is investigated, but the algorithms therein either lack perfor-
mance guarantees or are computationally too expensive. For the low-rank matrix
recovery problem, median-TGD is closely related to the outlier-free models studied
in [18, 42] as a robust counterpart.

To handle outliers, existing convex optimization approaches are often based on
sparse and low-rank decompositions, using semidefinite programming [63, 66].
However, the computational cost is very expensive. It is worth mentioning that other
nonconvex approaches for robust low-rankmatrix completion have been presented in
[48, 67, 68], where the goal is to separate a low-rank matrix and sparse outliers from
a small number of direct or linear measurements of their sum. The approaches typ-
ically use thresholding-based truncation for outlier removal and projected gradient
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descent for low-rank matrix recovery, which are somewhat similar to median-TGD
albeit with different truncation rules. However, this line of work requires stronger
assumptions on the outliers such as spreadness conditions.

Central to the proof of the theoretical performance guarantees is a regularity con-
dition [3] that the proposed median-truncated gradient satisfies, which is a sufficient
condition for establishing the linear convergence to the ground truth, and has been
employed successfully in the analysis of phase retrieval [3, 21–23], blind deconvo-
lution [5], and low-rank matrix recovery [18, 42, 43] in the recent literature, to name
a few.

8 Conclusion

In this chapter, we presented median-TGD as a general technique to improve the
robustness of vanilla gradient descent for nonconvex statistical estimation in the
presence of outliers. The effectiveness of median-TGD is probably guaranteed by
theoretical analysis, and validated through numerical experiments, for two important
case studies—low-rankmatrix recovery and phase retrieval.We expect median-TGD
might be useful to other nonconvex estimation problems such as blind deconvolution
and matrix completion; however, new techniques might be needed to develop its
theoretical performance, since much less randomness is present in the measurement
process of those problems.
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Reconstruction Methods in THz
Single-Pixel Imaging

Martin Burger, Lea Föcke, Lukas Nickel, Peter Jung and Sven Augustin

Abstract The aim of this paper is to discuss some advanced aspects of image
reconstruction in single-pixel cameras, focusing in particular on detectors in the
THz regime. We discuss the reconstruction problem from a computational imag-
ing perspective and provide a comparison of the effects of several state-of-the-art
regularization techniques. Moreover, we focus on some advanced aspects arising in
practice with THz cameras, which lead to nonlinear reconstruction problems: the
calibration of the beam reminiscent of the Retinex problem in imaging and phase
recovery problems. Finally, we provide an outlook to future challenges in the area.

1 Introduction

Imaging science has been a strongly evolving field in the past century, with a lot of
interesting developments concerning devices, measurement strategies and computa-
tional approaches to obtain high-quality images. A current focus concerns imaging
from undersampled data in order to allow novel developments toward dynamic and
hyperspectral imaging, where time restrictions forbid to acquire full samplings. In
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order to compensate for the sampling either physicalmodels (e.g., concerningmotion
in dynamic imaging, cf. [8]) or a priori knowledge about the images to be recon-
structed are used. In applications, where one has sufficient freedom to choose the
undersampling patterns, the paradigm of compressed sensing is particularly popu-
lar. It is based on minimizing the coherence between measurements (cf. [22]), often
achieved by random sampling (cf. [5])

Single-pixel imaging, or more precisely single-detector imaging, is one of the
most interesting developments in compressed sensing (cf. [15, 23, 26, 57]). It is
based on using a single detector with multiple random masks in order to achieve the
desired resolution. The ideal model is to have the mask realize a grid on the detector
regionwith subpixels of the desired image resolution, which are either open or closed
with a certain probability. The detector integrates the light passing through the open
subpixels in the mask. Note that the image at desired resolution might be acquired by
scanning in a deterministic way, in the easiest setting with a single subpixel open at
each shot. However, the light intensity obtained from a single subpixel might not be
sufficient to obtain a reasonable signal-to-noise ratio and obviously, the mechanical
scanning timesmay strongly exceed the potential times of undersamplingwithmasks
having multiple open subpixels.

This idea is particularly relevant in applications, where detectors are expensive
or difficult to miniaturize such as imaging in the THz range (cf. [2, 3, 15, 59]),
which is our main source of motivation. The random masks are achieved by a spatial
light modulator, which may, however, deviate from the ideal setting in practical
applications due to the following effects:

• Beam calibration: as in many practical imaging approaches, the lighting beam is
not homogeneous and needs to be corrected, a problem reminiscent of the classical
Retinex problem (cf. [46]).

• Diffraction: deviations between the object and image plane may cause the need to
consider diffraction and take care of out-of-phase effects, which complicates the
inversion problem and

• Motion: The object to be imaged may move between consecutive shots, i.e., while
changing the masks, which leads to well-known motion blur effects in reconstruc-
tions.

In the following, we will discuss such issues in image reconstruction arising in
THz single-pixel cameras. We start with the basic modeling of the image formation
excluding calibration and further effects in Sect. 2, where we also discuss several
regularization models. In Sect. 3, we discuss some computational methods to effi-
ciently solve the reconstruction problem and in particular, compare the results of
some state-of-the-art regularization techniques. Then, we discuss the challenges that
arise when applying the single-pixel imaging approach in a practical setup with THz
detectors and proceed to calibration models for beams in Sect. 5, where we provide
a relation to the classical Retinex problem and discuss the particular complications
arising due to the combination with the single-pixel camera. In Sect. 6 we discuss
the phase reconstruction problem and compare several state-of-the-art approaches
for such. Finally, we conclude and discuss further challenges in Sect. 7.
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Fig. 1 Sketch of the setup of imaging planes in THz single-pixel imaging (from [50])

2 Compressed Sensing and Reconstruction in Single-Pixel
Cameras

In the following, we discuss some basic aspects of the image reconstruction in single-
pixel cameras. We are interested in reconstructing a two-dimensional image on the
subpixel grid of size d1 × d2, i.e., p ∈ R

n where n = d1 · d2. The simplest model of
the image formation process is to have each measurement yi , i = 1, . . . ,m, as the
sum of subpixel values p j for those j corresponding to the open subpixels in the i th
mask. This means we can write

y = Ap,

with a matrix A ∈ R
m×n whose entries are only zeros and ones. Again the nonzero

entries in each row of A correspond to the open subpixels of the respective mask
(compare Fig. 1 for a schematic overview of such a setup).

Choosingm ≥ n deterministic masks appropriately one could guarantee thatA is
invertible and simply solve the linear reconstruction problem. However, in practice,
one would like to reconstruct a reasonable image p from a number of measurements
m significantly smaller than n. Single- pixel cameras are hence developed in the
paradigm of compressed sensing and the natural way to realize appropriate measure-
ments is to choose themasks randomly. In most systems such as the ones we consider
here, each entry ofA is chosen independently as a binary random variable with fixed
expectation. Combining such approaches with appropriate prior information in terms
of sparsity leads to compressed sensing schemes that can be analyzed rigorously (cf.
[17, 44]).

2.1 Compressed Sensing Techniques

A key motivation for compressed sensing comes from the fact that in many cases
d1 × d2 images are compressible and can be (approximately) sparsely represented as
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p = �α with α ∈ R
n and a particular basis � ∈ R

n×n , e.g., wavelets or overcom-
plete systems � ∈ R

n×N with N > n such as shearlets (cf. [33]). By this, we mean
that

‖α‖�0 = |{k : αk �= 0}|,

respectively
|{k : |αk | ≥ ε}|,

for small ε > 0, is considerably smaller then the ambient dimension n. Ideally, one
would thus solve the problem of minimizing ‖α‖�0 subject to the linear constraint
A�α = y, which is, however, an NP-hard combinatorial problem.

One of the fundamental results that initiated the field of compressed sensing (cf.
[19, 25, 28, 30]) is that under additional assumptions on the map A� the convex
relaxation

min
α

‖α‖�1 s.t. y = A�α (1)

recovers exactly (in the noiseless setting) the unknown α yielding the correct image
p. A common additional assumption is that the image itself has nonnegative pixel
intensities, p ≥ 0 such that problem (1) is extended to

min
α

‖α‖�1 s.t. y = A�α and �α ≥ 0. (2)

If � = Id and if the row span of A intersects the positive orthant, meaning that
there exists a vector t such that A∗t > 0, the measurement matrix A itself already
assures that the �1-norm ‖p‖�1 of a feasible p = α in (2) is equal (or close in the
noisy case) to ‖p0‖�1 where p

0 is the unknown image to recover. To see this, let us
assume exemplary that we find a vector t such that A∗t = 1 is the all-one vector and
y = Ap0. Then

‖p‖�1 − ‖p0‖�1 = 〈1,p − p0〉 = 〈t,A(p − p0)〉
= 〈t,Ap − y〉 ≤ ‖t‖�2‖Ap − y‖�2

and hence, it is enough to minimize the residual over p ≥ 0 and replace (2) by a
simple non-negative least squares (NNLS) problem:

min
p≥0

‖y − Ap‖2�2 . (3)

Indeed, that under these assumptions �1-minimization reduces to a feasibility prob-
lem has observed already in prior work [9, 60]. In particular, the setting of random
binary masks has been investigated in [40, 56] and a considerably (partially-) deran-
domized result based on orthogonal arrays is discussed in [37].Although this explains
to some extent why nonnegativity and NNLS are very useful in certain imaging prob-
lems this does not easily extends to generic dictionaries �.
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Hence, coming back to (2), in the case of noisy data knowledge about the expected
solution should be included. Hence, one usually rather solves

min
α

1

2
‖y − A�α‖2�2 + λ‖α‖�1 s.t. �α ≥ 0,

where λ > 0 is an appropriate regularization parameter.

2.2 Total Variation Regularization and Related Methods

While simple �1-regularization is a common approach used for the theory of com-
pressed sensing, for image reconstruction this choice as data fitting term has some
drawbacks in practice, e.g., in wavelets the reconstructions may suffer from arti-
facts due to rectangular structures in their constructions. In more advanced models
like shearlets (cf. [42]), the visual quality of reconstructions is improved, but the
computational overhead in such large dictionaries may become prohibitive. A much
more popular approach in practical image reconstructions are total variation based
methods such as minimizing

min
p

‖∇p‖�1 s.t. y = Ap (4)

or the penalty version

min
p

1

2
‖y − Ap‖2�2 + λ‖∇p‖�1 ,

potentiallywith additional nonnegativity constraints. Total variationmethods in com-
pressed sensing have been investigated recently in further detail (cf. [21, 41, 52–54]).

As in wavelet systems, simple approaches in total variation may suffer from rect-
angular grid artifacts. This is the case in particular if the straight �1-norm of ∇p is
used in the regularization (namely, ‖∇p‖�1,1 ), which corresponds to an anisotropic
total variation. It is well known that such approaches promote rectangular structures
aligned with the coordinate axis (cf. [14]), but destroy round edges. An improved
version is the isotropic version, which considers ∇p ∈ R

n×2 (the rows correspond-
ing to partial derivatives) and computes ‖∇p‖�2,1 as total variation. The isotropic
total variation promotes round structures that are visually more appealing in natural
images, which can be made precise in a continuum limit.

A remaining issue of total variation regularization in applications is the so-called
stair-casing phenomenon, which means that piecewise constant structures are pro-
moted too strongly and thus gradual changes in an image are rather approximated
by piecewise constants in a stair-like fashion. In order to cure such issues infimal
convolutions of total variation and higher order functionals are often considered, the
most prominent one being the total generalized variation (TGV) model (cf. [11])

min
p,w

‖∇p − w‖�1 + β‖∇w‖�1 s.t. y = Ap, (5)
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where β > 0 is a parameter to be chosen appropriately. Again, in practice, suitable
isotropic variants of the �1-norm are used, and in most approaches only the sym-
metrized gradient of the vector field w is used instead of the full gradient.

In the penalized form for noisy data used in practice, the models above can be
written in the unified form

min
p

1

2
‖y − Ap‖2�2 + λR(�p),

with R being an appropriately chosen seminorm and a suitable matrix �, e.g., the
gradient or � = �−1 in the case of using a basis, or � = �∗ for analysis sparsity.
A common issue in problems of this form that aim to reduce variance is an increase
of bias, which, e.g., leads to a loss of contrast and small structures in total variation
regularization. In order to improve upon this issue, iterative regularization (cf. [6,
12]) can be carried out, in the simplest case by theBregman iteration,which computes
each iteration pk+1 as the minimizer of

min
p

1

2
‖y − Ap‖2�2 + λ̃(R(�p) − qk · p)

with subgradient qk ∈ ∂R(�pk). In this way in each iteration, a suitable distance to
the last iterate is penalized instead of the original functional R, which is effectively
a distance to zero. The parameter λ̃ is chosen much larger than the optimal λ in the
above problem, roughly speaking when carrying out K iterations we have λ̃ = Kλ.

Observing from the optimality condition that qk = μA∗rk with μ = 1
λ̃
, the Bregman

iteration can be interpreted equivalently as the augmented Lagrangian method for
the constrained problem of minimizing R(�p) subject to y = Ap, i.e.,

pk+1 ∈ argmin
p

μ

2
‖y − Ap‖2�2 + R(�p) + rk · (y − Ap)

and
rk+1 = rk + y − Apk+1.

While single-pixel cameras are naturally investigated from a compressed sensing
point of view, let us comment on some aspects of the problem when viewed as an
inverse problem as other image reconstruction tasks in tomography or deblurring.
First of all, we can see some common issues in computational techniques, which
are needed due to the indirect relation between the image and the measurements
and the fact that the matrix A is related to the discretization of an integral operator.
On the other hand, there is a significant difference between the single-pixel setup
and other image reconstruction problems in the sense that the adjoint operator is not
smoothing, i.e., A∗ has no particular structure. Thus, the typical source condition
A∗w ∈ �∗∂R(�p) for some w that holds for solutions of the variational problems
(cf. [6]) does not imply smoothness of the subgradients as in other inverse problems.
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3 Computational Image Reconstruction

In the following, we discuss the effects of different regularization models on the
image reconstruction quality. In order to efficiently compute solutions of the arising
variational problems at reasonable image resolution, appropriate schemes to han-
dle the convex but nondifferentiable terms are needed. It has become a standard
approach in computational imaging of such problems to employ first-order splitting
methods based on proximal maps that can be computed exactly, we refer to [13]
for an overview. The key idea is to isolate matrix-vector multiplications and local
nonlinearities, for which the proximal map can be computed exactly or numerically
efficient. A standard example is the �1-norm, whose �2-proximal map

prox�1
( f ) = argmin

x

1

2
‖x − f ‖2�2 + ‖x‖�1

is given by soft shrinkage. A very popular approach in current computational imag-
ing are first-order primal-dual methods (cf. [18, 61]) for computing minimizers of
problems of the form

min
p

F(p) + G(Lp),

with convex functionals F and G and a linear operator L. The primal-dual approach
reformulates the minimization as a saddle point problem

min
p

max
q

F(p) + 〈Lp,q〉 − G∗(q),

with G∗ being the convex conjugate of G. Then one iterates primal minimization
with respect to p and dual maximization with respect to q with additional damping
and possible extrapolation steps. Here, we use a toolbox by Dirks [24] for rapid
prototyping with such methods to implement the models of the previous section.

We will use synthetic data to investigate the regularization methods described
above. With this, we can fully explore and understand the effects of named methods
for different types of images. Here we consider the multiple regularization operators,
namely Tikhonov, �1- regularization, total variation (TV), and total generalized vari-
ation (TGV) [11]. Moreover, we compare the approach with a simple nonnegative
least squares approach that only enforces nonnegativity of the image. Each dataset
is composed of a ground truth structural image and a Gaussian kernel beam that is
used as an illumination source. In this work, we will explore two different ground
truth images, that are illuminated by the shown beam. Structural images, beam, and
illuminated structures are shown in Fig. 2.

An overview of basic reconstructions in the single-detector framework using ran-
dom binary masks is shown in Fig. 3. Here, we use two phantoms and two different
sampling ratios.Wedisplay reconstructionswith regularizationparameters optimized
for SSIM and observe the impact of the regularization for both choices of the sam-
pling rate. In particular, we see that for total variation type regularizations there is a
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Fig. 2 Grayscale images of synthetic data, synthetic illumination beam with values between 0
(black) and 1 (white); top left: Gaussian beam; top center: x phantom ground truth; bottom center:
x phantom with applied beam; top right: gradient phantom ground truth; bottom right: gradient
phantom with applied beam

Fig. 3 Reconstruction the x and gradient phantom for multiple sampling rates (rows) and recon-
struction frameworks (columns)

strong improvement in visual image quality and that there is hardly any loss when
going from full sampling to undersampling.
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4 Challenges in Practical THz Single-Pixel Imaging

If compared to the visible region of the electromagnetic spectrum (VIS) the THz
region is quite demanding from a physical point of view. Due to the large wavelength
that is 2–3 orders of magnitude larger than for VIS radiation, the THz region is
plagued by coherence effects and diffraction. This has to be mitigated already on the
physical level by using specifically designed optical elements and techniques. As a
rule of thumb, techniques and methods from the VIS region can be used but they
need to be adapted. Also, lenses and mirrors are used but they are made of different
materials or they tend to be bigger. For this reason, the THz region is also sometimes
called the quasi-optical or Gaussian region. It is called the Gaussian region because
beams in the THz region almost always are of Gaussian shape. This, in turn, means
that in the THz region the illumination conditions are non-homogeneous with an
exponential decrease of illuminating signal strength towards the edges of the field of
view.Due to the large coherence length in this regionof the electromagnetic spectrum,
one can not simply make the illuminating beam larger and use only the center portion
for imaging. This will cause interference effects that appear as dominating artifacts
in images (see Fig. 4), which limit image quality and spatial resolution. So, without
calibration one either has to livewith a limited field of view or one has to accept image
artifacts and limited spatial resolution. Therefore, calibration for nonhomogeneous
illumination is essential for a practical THz single-pixel imaging system. We will
discuss this issue and possible solutions in the next section. Note that for a practical
imaging system the calibration of the illuminating beam is very important and also
leads to challenges related to the used masks. This is also exemplified in Fig. 5,
which shows a 0.35 THz single-pixel camera measurement of a nonmetallic Siemens
Star test target reconstructed using a convolution approach with a nonnegative least
squares approach, i.e., we use convolutional masks leading to 2D circulant matrices.

In a modulated illumination setting of a THz single-pixel camera, the quality and
fidelity of the masks/illumination patterns determine the achievable spatial resolu-

Fig. 4 Mechanically
scanned 0.35THz image of a
metal Siemensstar test target
with a diameter of 50mm.
The image acquisition took
several hours (12h)
depending on the number of
steps but still scanning
artifacts are very prominent.
The inset shows a photo of
the metal Siemens Star target



272 M. Burger et al.

Fig. 5 Megapixel 0.35THz image using a convolution approach (i.e., a binary circulant matrix).
Labels show the pixel numbers in both directions, about 10 pixel correspond to 5mm. The spatial
resolution in the image is still limited by suboptimal illumination patterns but the image shows that
the resolution is reasonable using the convolution approach, while being very fast (more than one
FPS can be achieved). The inset shows again a photo of the imaged object

tion, the signal-to-noise ratio, the achievable undersampling ratio, and even more.
The physical process of implementing the masks is, therefore, very important and
potentially introduces deviations into the masks already on the physical level. These
potential deviations can be simple blurring effects, the introduction of an offset or
the reduction in the so-called modulation depth. As introduced, for binary masks
the modulation depth is essentially the difference between ones and zeros. So, the
ideal value is of course, 1 or 100% but in a practical system the modulation depth
can be several 10% below the ideal value. Depending on the chosen reconstruction
approach, this will severely influence the image fidelity of reconstructed images (see
Fig. 5 for an example). The example in Fig. 5 shows what happens when the mod-
ulation depth is only 40% and the masks are not optimized in an undersampling
modality. Due to the fact that the spatial resolution and the signal-to-noise ratio in
the image are severely limited the image appears blurry and noisy.

All the aforementioned issues have to be considered on the software level in order
to harness the potential power of a THz single-pixel camera and, therefore, often
robustness is an important consideration when choosing the reconstruction method.
As mentioned, the reconstruction approach used in this example was based on the
idea of convolutionalmask,which offers strong simplifications in the design ofmasks
and the memory consumptions, moreover the reconstruction algorithms can be made
more efficient. Hence, such an approach has a lot of potential for THz single-pixel
cameras, but there is still a lot of effort necessary in order to optimize the imaging
process.

5 Calibration Problems

In the previous section,we have seen the difficulties to calibrate the illumination beam
directly, hence it seems necessary to perform a self-calibration approach during the
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reconstruction.We hence look for a multiplicative decomposition of the image p into
a smooth light field d and a normalized target structure x, i.e.,

p = d � x,

where � denotes pointwise multiplication. A simple approach would be to first
reconstruct the image and then use standard decomposition ideas. However, this
approach seems suboptimal for undersampled measurements, since better a-priori
knowledge on light and the target is available than for their composition.

5.1 Self-calibration and Bilinear Inverse Problems

A very recent trend in compressed sensing is to include the calibration task into the
recovery step as well. This approach has been termed also as self-calibration. In the
case of unknown illumination, this yields a bilinear inverse problem. In particular,
for sparsity promoting regularizers, this falls in the category of biconvex compressed
sensing [47]. In this work, the lifting approach has been adopted to transform the
task to an convex formulation, see here also the seminal work on Phaselift [20].
Unfortunately, this approach does scale for imaging problems.

Here, we are confronted with the generic problem:

min
x∈[0,1]n ,d≥0

‖y − A(d � x)‖2�2 + λ · r(x,d)

with an appropriate regularization functional r for both structures, the illumination
d and the target x. This problem is a particular case of a bilinear inverse problem and
linked to compressive blind deconvolution. Indeed, let us formalize this by using the
2D fast Fourier transform (FFT):

d � x = 1√
n
F−1[(Fd) ∗ (Fx)] = 1√

n
F−1[l ∗ r]

where F : Rn → C
n defines the Fourier transform operator and l, r ∈ C

n . and there-
fore the observation y = 1√

n
AF−1(l ∗ r) is a compressed circular 2D convolution of

l and r. Obviously, without further assumptions this type of inverse problem cannot
be solved uniquely.

Let us discuss the case A = Id that usually corresponds to an image scanning
approach (and not the single-pixel setup). Here, the measurement image is p and the
goal is to factorize it into light d and a normalized target x using the program:

min
x∈[0,1]n ,d≥0

‖p − d � x‖2�2 + λ · r(x,d).
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Note that this formulation is a non-convex problem since it is not jointly convex in
(d, x). To make this problem more well-posed from a compressed viewpoint, further
assumptions on d and x are necessary. In the case of random subspace assumptions
for either d or x and some additional incoherence conditions, recovery guarantees for
the convexified (lifted) formulation of blind deconvolution have been established in
[4]. This framework even extends to the more involved problem of blindly demixing
convolutionalmixtures, called as also blinddemixing anddeconvolution, and recently
almost-optimal sampling rates could be established here under similar assumptions
[38]. However, the analysis of the original non-convex problem (without lifting) is
often difficult, requires a priori assumptions and sufficient randomization and the
performance of iterative decent algorithms often depends on a good initialization.
First results in this direction appeared here for example in [45].

A further way to convexify a related problem is based on a formulation for strictly
positive gains

min
x∈[0,1]n ,g>ε

‖p − g � Ax‖2�2 + λ · r(x, g).

In this problem, the image x is unknown and each measurement has an unknown
strictly positive gain g > ε. This problem occurs exactly in our setting when A = Id
and then g = d. Thus, under the additional prerequiste of d ≥ ε > 0 one could write
a constraint p = d � x also as d−1 � p = x which is jointly convex in (d−1, x) [31,
48]. This approach is also interesting if x = �α itself is a compressed representation.
Unfortunately, this approach does not apply to the single- pixel imaging setup due
to matrix A, which cannot be interchanged with the division by d.

5.2 Single-Pixel and Retinex Denoising

A related classical problem in imaging is the so-called Retinex approach. The corre-
sponding problemwas first investigated byLand (cf. [43, 46]) in the context of human
visual studies and provide a first entry in the developing Retinex theory. The human
eye is able to compensate lack of illumination, hence it is able to filter for structural
information in the field of view. From a more general perspective, this translates to
the question of how to separate an image into a structural and an illumination part.
Here, we focus on the approach ofKimmel et al. [39] and further developments of this
approach. By defining s := log(p), r := log(x) and l := log(d) we move the image
into the logarithmic domain. Again in the case A = Id this allows for the usage of a
convex variational model as proposed in [39]. The basic assumptions are as follows:

• spatial smoothness of illumination,
• l is greater than s: Since x ∈ [0, 1]n and d ≥ x � d it is l ≥ s due to the monotone
nature of the logarithmic map,

• non trivial illumination: resemblance to the original image, hence l − s small,
• soft smoothing on structure reconstruction and
• smooth boundary condition.
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These result in the variation approach proposed by Kimmel et al.:

min
l≥s

1

2
‖l − s‖2�2 + α

2
‖∇(l − s)‖2�2 + β

2
‖∇l‖2�2 . (6)

However, this applies a smoothing on l and l − s, which is basically r . Then this
boils down to the data fitting term and two smoothing regularization operators that
are balanced using the respective parameters α and β. In a later paper by Ng and
Wang [51], the usage of TV regularization for the structural image was introduced.
The proposed model is

min
l≥s,r≤0

1

2
‖l − s + r‖2�2 + α‖∇r‖�1 + β

2
‖∇l‖2�2 . (7)

This equationmakes sense from a Retinex point of view. One has given an image p or
log(p) = s, respectively, and wants to separate reflection log(x) = r and log(d) = l.

A comparison of both Retinex models are shown in Fig. 7, with an interesting
parameter dependent behavior. The regularization and weighting parameters α and
β have been determined using a parameter test, shown in Fig. 6.We see that choosing
parameters optimizing the SSIM measure for the target, respectively, its logarithm
r (α = 100, β = 102 in the Kimmel model, respectively, α = 101, β = 102 for the
Ng and Wang model) yields a strange result with respect to the illumination, which
still has quite some of the target structure included, in addition to the full beam. This
can be balanced by different parameter choices (α = 100, β = 103 in the Kimmel
model, respectively, α = 101, β = 103 for the Ng and Wang model) displayed in
the lower line respectively, which eliminates most structure from the reconstructed
illumination, but also leaves some beam effects in the target.

However in the framework of single-pixel camera approaches, one does not have
the fully recovered image at hand. Instead we only have measured data, hence the
data fidelity term in (7) is replaced by a reconstruction based data fidelity term based
on the forward operator A and measured data y:

L2 based (see (9.6)) TV based (see (9.7))
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Fig. 6 Overview of PSNR value and SSIM index for systematic parameter test for the synthetic
x phantom dataset. Map of regularization parameters in respect to given pair of regularization
parameters α and β: α in Y axes with values 10−3 (top), 10−2, ..., 102, 103 (bottom) and β in X
axis with values 100 (left), 100.5, ..., 102.5, 103 (right)
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Fig. 7 Comparison of the L2-based Retinexmodel byKimmel and the total variation based Retinex
model by Ng and Wang for both datasets

Fig. 8 Reconstruction results for an alternating reconstruction and Retinex scheme

min
l≥s,r≤0

‖y − A(el+r)‖2�2 + α‖∇r‖�1 + β

2
‖∇l‖2�2 .

A simple approach is to apply a two-step idea: In the first step, one can compute
standard reconstruction of p, e.g., by (4) and subsequently apply the Retinex model
with s = logp. Since in this case the first reconstruction step does not use prior
knowledge about the structure of illumination, it is to be expected that the results
are worse compared to a joint reconstruction when the number of measurements
decreases.

In order to construct a computational approach for the calibration problem, we
still formulate the problem in the logarithmic variables

min
r≤0,l∈Rn

1

2
‖y − Aer+l‖2�2 + λ · r̃(r, l)
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and derive a forward–backward splitting algorithm in these variables: The forward
step is simply given by

rk+1/2 = rk + τer
k+lk � AT (y − Aer

k+lk )

lk+1/2 = lk + τer
k+lk � AT (y − Aer

k+lk )

and the backward step then computes rk+1 as a minimizer of

1

2τ
‖r − rk+1/2‖2�2 + λr‖∇r‖�1

and lk+1 as a minimizer of

1

2τ
‖l − lk+1/2‖2�2 + λl‖∇l‖2�2 .

Note that by adding the two equations in the forward stepwe can directly formulate
it as an update for s as

sk+1/2 = sk + τes
k � AT (y − Aes

k
).

This induces a simple idea for the two-step approach: we can iterate s with the
above scheme and directly apply the above Retinex model to data sk+1/2. From
the resulting minimizers rk+1 and lk+1, we can compute sk+1 = rk+1 + lk+1. The
resulting reconstructions are shown in Fig. 8, which are clearly suboptimal since too
much of the random structure from the matrix A is propagated into sk+1/2, which
is not reduced enough in the Retinex step. The results of the forward–backward
splitting approach are shown in Fig. 9, which are clearly improving the separation
of illumination beam and target and yield robustness with respect to undersampling,
although still not providing perfect smoothing of the images. This might be expected
from improved regularization models for the decomposition to be investigated in the
future.

Fig. 9 Reconstruction results for Forward–Backward Splitting including the L1-based model pro-
posed by Ng and Wang
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6 Phase Retrieval in Single-Pixel Cameras

In the following, we discuss another aspect of reconstruction in single-pixel cameras,
namely, phase reconstruction problems caused by diffraction effects. This problem
is a particular instance of the difficult phase retrieval problem. Compared to blind
deconvolution, as a (non-convex) bilinear inverse problem, phase retrieval is the
corresponding quadratic (non-convex) case and thereforemost analytical results here
are based on lifting the problem to a convex formulation [20]. For some overview,
further references and due to limited space we refer here exemplary to the overview
article [36]. Interestingly also, first works already appeared where phase retrieval and
blind deconvolution are combined using lifting [1]. However, already for imaging
problems at moderate resolution these approaches usually not scale and require a
priori random subspace assumptions which are difficult to fulfill in practice. In the
following we will discuss how to setup the phase reconstruction problem in the
diffraction case.

The propagation of light waves can—after some approximation—be represented
by the Fresnel diffraction integral, we refer to [50] and references cited therein for a
detailed treatment of the discretization problem. In the single-pixel setup (compare
Fig. 1), we consider that the diffraction has to be taken into account in two ways,
namely, between the object and mask plane and the mask and detector plane. This
means that the measurement matrix is further changed by the introduction of the
masks. In addition to this, only the magnitude of the combined complex signals is
obtained. Let Dom be a matrix discretizing the diffraction integral from object to
mask plane and Dmd be a matrix discretizing the diffraction from mask to detector
plane. Then the complex signal arriving at the detector plane is

zi = 1TDmd diag(Ai )Domp,

wherep is the complex image,Ai denotes the i th rowofA, and1 a vector filledwith all
entries equal to one. Note that in the absence of diffraction, i.e., Dmd = Dom = Id,
this reduces to the standard single- pixel camera approach discussed above. The
measured intensity is then the absolute value of zi , or rather its square, i.e.,

yi = |zi |2 = |1TDmd diag(Ai )Domp|2.

Defining a matrix B with rows

Bi = 1TDmd diag(Ai )Dom,

the phase reconstruction problem can be written in compact notation as

y = |Bp|2. (8)
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It is apparent that (8) is a nonlinear problem compared to the linear phase- and diffrac-
tionless problem, where both the matrixA and the image p can be modeled to be real
nonnegative (hence the absolute value does not lead to a loss of information). For
this reason, the iterative solution of (8), respectively, least-squares versions thereof
is a problem of central importance, which we will discuss in the next section.

6.1 Algorithms for Phase Retrieval

Phase retrieval is a classical problem in signal processing, which has been revived by
compressed sensing approaches in the past decade, cf. [7, 29, 35, 49] for an overview
of classical and recent methods. A famous early algorithm is the Gerchberg–Saxton
(GS) algorithm (cf. [32]). However, a version of theGS algorithm has been developed
by Fienup (cf. [29]) that works with amplitude measurements only and is using a
multiplicative update scheme of the form

yk+1 = |y|
|Bpk | Bpk, pk+1 = B+yk+1,

where B+ defines the commonly used pseudoinverse of B (cf. [27]). In the case
of additional constraints on p, those are applied to modify yk+1 in an additional
projection step. Note that the original Gerchberg–Saxton algorithm is formulated for
Fourier measurements only, where B is invertible by its adjoint. The algorithm can
be used in particular to compute real images, where

pk+1 = Re (B+yk+1).

Another approach that can be found at several instances in literature (cf. [10, 34,
55]) is based on the application of (variants of) Gauss–Newton methods to the least
squares problem of minimizing

L(p) = ‖y − |Bp|2‖2.

This amounts to linearizing the residuals around the last iterate and to obtain pk+1

as the minimizer of

m∑

i=1

|yi − |Bi · pk |2 + 2(Re(Bi)Re(Bi) · pk + Im(Bi)Im(Bi ) · pk) · (p − pk)|2.

Several variants are used to stabilize the Gauss–Newton iteration and to account for
the ill-conditioning of the Jacobian matrix

Jk = 2 ((Re(Bi)Re(Bi) · pk + Im(Bi)Im(Bi) · pk))i=1,...,m .
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A popular one, which we will also use in our numerical tests, is the Levenberg–
Marquardt method, which computes pk+1 as the minimizer of

‖y − |Bpk |2 + Jk(p − pk)‖2 + αk‖p − pk‖2,

with αk a decreasing sequence of positive parameters.
A recently popular approach to solve the non-convex least-squares problem is

the Wirtinger flow (cf. [16]). Its main ingredient is just gradient descent on the least
squares functional L , i.e.,

pk+1 = pk − μk+1

2m‖p0‖2 ∇L(pk)

= pk + μk+1

m‖p0‖2
m∑

i=1

(yi − |Bi · pk |2)(Re(BiBT
i ) + Im(BiBT

i )).

For the choice of the step size, an increasing strategy likeμk ∼ 1 − e−k/k0 is proposed.
Obviously, the gradient descent as well as the Levenberg–Marquardt method above
rely on appropriate initializations in order to converge to a global minimum. For
this sake a spectral initialization has been proposed, which chooses p0 as the first
eigenvector of the positive semidefinite matrix

M0 =
m∑

i=1

yi (Re(BiBT
i ) + Im(BiBT

i ),

corresponding to the data sensitivity in the least squares functional. For practical
purposes, the first eigenvector can be approximated well with the power method.

A very recent approach is the truncated amplitude flow (cf. [58]), whose building
block is gradient descent on the alternative least squares functional

L̃(p) =
m∑

i=1

|√yi − |BT
i p||2,

which is however not differentiable for BT
i p = 0. In the case the derivative exists we

find

L̃(p) = −
m∑

i=1

(
√
yi − |BT

i p|) 1

|BT
i p|BiBT

i p.

The truncated amplitude flow now only selects a part of the gradient in order to avoid
the use of small |BT

i p| (compared to
√
yi ), i.e.,

pk+1 = pk + μk

∑

i∈Ik

( √
yi

|BT
i pk |

− 1

)
BiBT

i pk,
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with index set

Ik =
{
i ∈ {1, . . . ,m} |

√
yi

|BT
i pk |

≤ 1 + γ

}

with some γ > 0. For the truncated amplitude flow, another initialization strategy has
been proposed in [58], which tries to minimize the angles of p0 to the measurement
vectors Bi for a subset of indices I0. This is equivalent to computing the eigenvector
for the smallest eigenvalue of the matrix

M̃0 =
∑

i∈I0

1

‖Bi‖2BiBT
i .

Since computing such an eigenvector is a problem of potentially high effort, it is
approximated by computing the largest eigenvalue of a matrix built of the remaining
rows of B (cf. [58] for further details).

In order to introduce some regularization into any of the flows above, we can
employ a forward–backward splitting approach. For example, we can produce the
Wirtinger flow to produce the forward estimate and use an additional backward
proximal step

pk+1/2 = pk − μk+1

2m‖p0‖2 ∇L(pk)

pk+1 = proxλk+1R(pk+1/2)

with the regularization functional R and a parameter λk+1 chosen appropriately in
dependence of μk+1. The proximal map p = proxλk+1R(pk+1/2) is given as the unique
minimizer of

1

2
‖p − pk+1/2‖2 + λk+1R(p).

Finally, we mention that in addition to the non-convex minimization approaches
there has been a celebrated development toward convexifying the problem, the so-
called PhaseLift approach, which can be shown to yield an exact convex relaxation
under appropriate conditions (cf. [20]). The key idea is to embed the problem into
the space of n × n matrices and to find ppT as a low rank solution of a semidefinite
optimization problem. The squared absolute value is rewritten as

|Bip|2 = B∗
i PBi

with the positive semidefinite rank-one matrix P = pp∗. The system of quadratic
equations |Bip|2 = yi then is rewritten as the problem of finding the semidefinite
matrix of lowest rank that solves the linear matrix equations B∗

i PBi = yi . Under
appropriate condition, this problem can be exactly relaxed to minimizing the nuclear
norm of P, a convex functional, subject to linear equation and positive semidefinite-
ness. The complexity of solving the semidefinite problem in dimension n2 makes
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this approach prohibitive for applications with large n however, hence we will not
use it in our computational study in the next section.

6.2 Results

In the following, we present some results obtained from the algorithms discussed
above when applied to our single-pixel setup and compare their performance. We
start by using the algorithms from the previous section for reconstructing a real-
valued image showing the figure π (n = 900) without noise in the measurements.
For this sake, we consider different types of undersampling and three different initial-
izations: a random initial value (rand), the spectral initialization proposed originally
for the Wirtinger flow (spec) and the orthogonality promoting initialization orig-
inally proposed for the truncated amplitude flow (amp). The results for the four
different methods are shown in Figs. 10 and 11. The results clearly demonstrate the

Fig. 10 Reconstructions of π-image with the Fienup-variant of the Gerchberg–Saxton algorithm
and the Wirtinger flow (from [50])
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Fig. 11 Reconstructions of π-image with the truncated amplitude flow and the Levenberg–
Marquardt method (from [50])

dependence of solutions on the initial value, in particular we see the improvement
of the two new initialization strategies with respect to the random one (except in the
case of the algorithm by Fienup, which however yields inferior results in all cases).
We observe that the Levenberg–Marquardt method performs particularly well for
larger sampling rates and yields an almost perfect reconstruction, but also produces
suitable reconstructions for stronger undersampling. A more quantitative evaluation
is given in Fig. 12, which provides plots of the relative mean-square error versus the
sampling rate, surprisingly the Levenberg–Marquardt method outperforms the other
schemes for most rates.

The positive effect of regularization and its necessity for very strong undersam-
pling is demonstrated in Fig. 13, where we display the reconstruction results obtained
with the forward–backward splitting strategy and the total variation as regularization
functional. We see that both approaches yield similar results and in particular allow
to proceed to very strong undersampling with good quality results. The effect of
noise in the data, here for a fixed sampling ratio m

n = 0.7 is demonstrated in Fig. 14
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Fig. 12 Plot of relative mean-square error to ground truth versus sampling rate for reconstructions
of π-image (from [50])

for different signal-to-noise ratios. Again, not surprisingly, the regularized version of
the flows yields stable reconstructions of good quality even for data of lower quality.

Let us finally turn our attention to the reconstruction of the phase in a complex
image. The ground truth for the amplitude and phase of the complex signal are shown
in Fig. 15. For brevity, we only provide visualizations of reconstructions for the trun-
cated amplitude flow and the Levenberg–Marquardt method in Fig. 16, which clearly
indicates that the truncated amplitude flow outperforms the Levenberg–Marquardt
method, which is the case for all conducted experiments. Again, a more quantitative
evaluation is given in Fig. 17, which provides a plot of the relative mean-square error
(made invariant to a global phase that is not identifiable) versus the sampling rate.
We see that the Wirtinger flow can obtain the same reconstruction quality for very
low sampling rates, but is outperformed by the truncated amplitude flow at higher
sampling rates.
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Fig. 13 Reconstructions of π-image with the regularized version of the truncated amplitude flow
and the Wirtinger flow (from [50])

Fig. 14 Reconstructions of π-image from noisy data with different signal-to-noise ratios (SNR)
(from [50])
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Fig. 15 Ground truth for amplitude (left) and phase (right, from [50])

Fig. 16 Reconstructions of amplitude (left) and phase (right, from [50]) with truncated amplitude
flow and Levenberg–Marquardt method with different initializations and sampling rates
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Fig. 17 Relative
mean-square error in the
reconstructions of the
complex image (from [50])

7 Conclusion

We have seen that the compressed sensing approach based on single-pixel imaging
has great potential to decrease measurement time and effort in THz imaging, but
the application in practice depends on several further challenges to be mastered.
First of all appropriate regularization models and numerical algorithms are needed
for the image reconstruction problem in order to obtain higher image resolution
at reasonable computational times. Moreover, in several situations it is crucial to
consider auto-calibration issues in particular related to the fact that the illuminating
beam is difficult to be characterized, and in some cases also diffraction becomes
relevant, which effectively yields a phase retrieval problem. Both effects change
the image reconstruction from a problem with a rather simple and incoherent linear
forward model to a nonlinear problem with a more coherent forward model, which
raises novel computational and also theoretical issues, since the assumptions of the
existing compressed sensing theory are not met.

Besides the above-mentioned issues several further aspects of practical imaging
are foreseen to become relevant for THz single- pixel imaging, examples being
motion correction for imaging in the field or of moving targets and the reconstruction
of multi- or hyperspectral images, which is a natural motivation in the THz regime.
In the latter case, it will become a central question how to combine as few masks as
possible in different spectral locations.
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