
Chapter 3
Sources Localization and DOAE
Techniques of Moving Multiple Sources

Estimating the direction of non-stationary moving array as well as moving nar-
rowband sources is considered an active research area. The most cutting-edge
techniques are originated from the maximum likelihood (ML) and expectations
maximization (EM) methods as they have a form of recursive extended Kalman
filters and use built-in source-movement models. For non-stationary speech sources,
nonparametric modeling of the source movements can be employed. Such models
have no mathematical model of the assumed signal, while, parametric approaches
have a mathematical model to define the signal form and to estimate it [1].

Consider the problem of localizing q speech sources by using an array of n
passive sensors. In order to obtain the signal model, where the sources generate a
wave-field traveling through space and sampled by the sensor array. The array
aperture is the space occupied by the array and usually is measured in units of
signal wavelength. For point sources (omnidirectional) in the far field of the array,
the only parameter that characterizes a difference of the signals impinging on the
sensors from a source is a time-delay, which is called angle of arrival (AOA), or
direction of arrival (DOA).

For a uniform linear array, consider the array of n identical sensors uniformly
spaced on a line that receives qðq\nÞ narrowband signals impinging from the
unknown varying directions fh1; . . .; hqg. The n� 1 output vector of the array at
the discrete time t is modeled as [2–7]:

rðt) ¼ Aðt)sðt)þ eðt) ð3:1Þ

where, the n� q time-varying direction matrix is given by:

AðtÞ ¼ aðh1½ ðtÞÞ; aðh2ðtÞÞ; . . .; aðhqðtÞÞ� ð3:2Þ

The AðtÞ matrix is composed of the source direction vectors, which are known as
the steering vectors that defined as follows.

© The Author(s) 2018
N. Dey and A. S. Ashour, Direction of Arrival Estimation and Localization
of Multi-Speech Sources, SpringerBriefs in Speech Technology,
https://doi.org/10.1007/978-3-319-73059-2_3

23



aðhiÞ ¼ 1; expð�j
2p
k

�
d sin hiÞ; . . .; expð�jðn� 1Þ 2p

k
d sin hiÞ

�T
ð3:3Þ

where i ¼ 1; . . .; q , k is the wavelength defined as the distance traveled by the
harmonic carrier signal in one period; d is the equi-spaced inter-element spacing;
sðtÞ is a q� 1 vector of the source waveforms; eðtÞ is n� 1 vector of sensor noise
as the white zero-mean Gaussian random noise with a variance of r2 that has:

EfeðtÞg ¼ 0; EfeðtÞeðtÞHg ¼ r2I;EfeðtÞeðtÞTg ¼ 0 ð3:4Þ

where Efg means the expectation, ð:ÞH refers to the Hermitian conjugation and ð:ÞT
stands for the transpose.

After setting this model, the source location problem is turned into a
time-invariant or time-variant parameter estimation problem.

3.1 Direction of Arrival Estimation Techniques

In many cases, the receiver cannot determine which direction a speech signal will
arrive from. Accordingly, the DOA estimation step becomes essential before beam-
forming. The array-based DOA estimation techniques can be broadly divided into
conventional, subspace-based, maximum likelihood, and integrated techniques [8].

3.1.1 Conventional Beamformer for DOAE

Conventional beamformer approaches are based on the concepts of beamforming
and null steering without exploiting the nature of the received signal model or the
statistical model of the signals/noise. These beamformers are electronically steer the
beams in the possible directions and look for peaks in the output power. The
delay-and-sum methods are considered classical beamformers for DOA estimation.
However, these methods suffer from poor resolution, where the width of the beam
and the height of the side lobes limit the effectiveness when the signals are from
multiple sources. Capon’s Minimum Variance method tries to overawe the poor
resolution problems related to the delay-and-sum technique. Capon’s method has
several disadvantages, namely (i) it fails in the presence of other signals that are
correlated with the Signal-of-Interest (SOI), and (ii) it is expensive for large arrays,
where it requires the computation of matrix inverse.

The classical beamforming based methods have fundamental limitations in
resolution. These limitations arise due to the neglecting of the input data model
structure. Generally, these conventional methods need a large number of elements
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to accomplish high resolution. A conventional beamformer as the delay-and-sum
beamformer selects the phases to steer the array in a particular direction, known as
the look direction [3]. It has been introduced as a natural extension of the standard
Fourier-based spectral analysis of the sensor array data. The model of a finite
impulse response spatial filter with the output for the signal model is given by:

yðtÞ ¼
Xn
k¼1

x�
krkðtÞ ¼ WHrðtÞ; W ¼ ðx1; . . .. . .;xnÞT ð3:5Þ

Assume that the waveform sðtÞ and the noise eðtÞ are zero-mean independent
random processes. Given samples rðt), thus, the output power is measured by:

PðWÞ ¼ 1
N

X
t

yðtÞj j2 ¼ WHR̂rW ð3:6Þ

Design a spatial filter suppressing the noise component and preserving the
waveform signal sðtÞ. It can be done by the following optimization problem [4]:

min
W

Wk k2 subject to WHaðhÞ ¼ 1 ð3:7Þ

The optimal weights vector for the spatial filter is expressed by:

W ¼ aðhÞ=n ð3:8Þ

Substitute by these weights, the output power of the spatial filter as a function of
h is obtained as follows:

PconvðhÞ ¼ 1
n2

aHðhÞR̂raðhÞ ð3:9Þ

In order to find h of the unknown DOA, the power pconvðhÞ is maximized on h
using the following expression:

ĥ ¼ argðmax
h

PconvðhÞÞ ð3:10Þ

Several methods including Capon’s beamforming, MUSIC and other
subspace-based methods use the power function analysis as a basic original idea for
the development. However, one can start from the observation model to obtain the
following residual function:

Iðh; sÞ ¼ 1
N

X
t

rðtÞ � aðhÞsðtÞk k2 ð3:11Þ
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The quadratic residual function gives the maximum likelihood estimates of the
angle h and the waveform sðtÞ provided that the random errors are Gaussian [9].
This beamformer deals with stationary sources only, so other beamformers can be
used to handle the non-stationary sources.

3.1.2 Subspace DOA Estimation Methods

It is well known that several super resolution approaches are available for esti-
mating the DOA of signals received by array including MUSIC, and ESPRIT. All
are eigenvalue decomposition problems. The difference between these algorithms is
in how the information is used to determine the DOA.

The MUSIC algorithm is a high resolution technique that provides information
about the number of incident signals, signal DOA, noise power, etc. It can resolve
closely spaced signals that cannot be detected by Capon’s method. In the MUSIC
algorithm, an exhaustive search is performed looking for the signals that are
orthogonal to the noise subspace. Various modifications of the MUSIC algorithm
have been proposed to decrease the computational complexity and increase its res-
olution performance. These modified versions include (i) the Root-MUSIC algo-
rithm, which is based on the polynomial rooting and provides higher resolution. It
reduces the number of calculations by avoiding an exhaustive search [10], however,
it is applicable only to a uniformly spaced linear array. In addition, (ii) the cyclic
MUSIC which is a signal selective direction finding algorithm that exploits the
spectral coherence of the received signal as well as the spatial coherence to improve
the performance of the conventional MUSIC algorithms. By exploiting spectral
correlation along with MUSIC, it is possible to resolve signals spaced more closely
than the resolution threshold of the array when only one of them is the SOI [11].

In this connection, it may be mentioned that the ESPRIT algorithm is another
subspace-based DOA estimation technique that reduces the computational and
storage requirements of MUSIC and does not involve an exhaustive search through
all possible steering vectors to estimate the DOA. Unlike MUSIC, ESPRIT does not
require prior knowledge about the array manifold vectors.

3.1.3 Maximum Likelihood Techniques

Maximum likelihood (ML) techniques are considered effective techniques for DOA
estimation, which are computationally intensive. The ML methods are better than
the subspace based methods, expressly in SNR conditions or in the case of small
number of signal samples [12]. Additionally, the ML techniques deal with corre-
lated signal conditions better than subspace-based techniques.
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Assume n observations that have x1; x2; . . .; xn samples impending with
unidentified probability density function f0ð�Þ from certain distribution. The joint
density function of all observations can be defined as:

f ðx1; x2; . . .; xnjhÞ ¼ f ðx1jhÞ � f ðx2jhÞ � � � � � f ðxnjhÞ ð3:12Þ

For a parametric function, Eq. (3.12) is called the likelihood, which is given by:

Lðh ; x1; . . .; xnÞ ¼ f ðx1; x2; . . .; xnjhÞ ¼
Yn
i¼1

f ðxijhÞ ð3:13Þ

where the following log-likelihood function is employed:

lnLðh; x1; . . .; xnÞ ¼
Xn
i¼1

lnf ðxijhÞ ð3:14Þ

The average log-likelihood estimator is then expressed as follows:

‘̂ ¼ 1
n
lnL ð3:15Þ

In the model, this estimates the predictable log-likelihood of a particular
observation.

In order to estimate the DOA using the ML estimator, the value of h0, which
represents the required DOA is determined by finding the value of the angle that
maximizes ‘̂ðh; xÞ, which describes the maximum likelihood estimator (MLE) of
h0 as follows, if a maximum occurs:

fĥMLEg�fargmax
h2H

‘̂ðh ; x1; . . .; xnÞg ð3:16Þ

This expression represent he estimated DOAE of the speakers in microphone
array problems.

3.1.4 Local Polynomial Approximation Beamformer

Recently, an efficient beamforming technique using local polynomial approxima-
tion (LPA) has been developed and modified for different array geometries.
Undeniably, this nonparametric LPA beamformer technique is first applied to DOA
estimation by Katkovnik and Gershman [13], then it is generalized, modified and
developed by Ashour et al. [2] and Elkamchouchi et al. [3].

It is worth noting that localizing and trackingmultiple narrowbandmoving sources
using a passive array are considered the fundamental problems in communication,
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sonar, radar, and microphone arrays. The conventional beamforming and high-
resolution subspace techniques are established to exploit the benefits of temporal
integration of array data for unmoving arrays and sources [14]. It assumes that only
quite short series of observations are used for beamforming and estimation in
non-stationary moving sources.

Conventional approaches fail and have deteriorated performance with the sce-
narios of moving sources. The LPA beamformer is quite different from the ML and
the conventional beamformer [15]. Definitely, in the standard ML formulation, the
source steering vectors are assumed to be time-invariant leading to different forms
of the beamforming functions. The computational complexity of the LPA beam-
forming is M times higher than that of the conventional beamforming algorithm,
whereM is the number of points in the angular velocity domain. Typically, the LPA
is a sliding window polynomial filtering (transform). The linear first degree LPA
treats the discrete time 1D signal as sampled from an underlying continuous
function within the selected window and uses loss function [16]. For DOA esti-
mation of moving speech sources, the LPA beamformer estimates the time-varying
DOA ĥðtÞ from a finite number N of the array observations rðt). For DOA esti-
mation, let the speech source motion model within the observation interval using
Taylor series [17]:

hðtþ kTÞ ¼ hðtÞþ hð1ÞðtÞðkTÞþ hð2ÞðtÞ
2

ðkTÞ2 þ hð3ÞðtÞ
6

ðkTÞ3 þ � � �
¼ c0 þ c1kT þ c2ðkTÞ2 þ c3ðkTÞ3 þ � � �

ð3:17Þ

where T is the sampling interval, and the parameters c0 and c1 will be used as
estimates of the angle hðtÞ and its derivative hð1ÞðtÞ. The source trajectories are
considered arbitrary functions of time that fit the nonparametric f piecewise con-
tinuous a-differentiable function, which is given by:

Fa ¼ f hðaÞðtÞ
��� ���� La; h

ðaÞðtÞ ¼ dahðtÞ
dta

ð3:18Þ

For a ¼ 0, hðtÞj j is just restricted by the value L0. For a ¼ 1 and 2, the velocity
(first derivative) and the acceleration (second derivative) of hðtÞ exist for almost
every time instants and the absolute values of these derivatives have as upper
bounds L1 and L2, respectively. The word “nonparametric” indicates that nothing is
known about a parametric form of [18]. The source localization is ensured by a
sliding weight-function (window) xh that discounts observations outside a neigh-
borhood of the center t of the approximation.

Different kind of windows can be used, for example, the rectangular windows
have equal weights for observations in the window. Nonrectangular windows, such
as triangular, quadratic, usually prescribe higher weights to observations which are
closer to the center t.
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The window function can be expressed by:

xhðkTÞ ¼ ðT
h
ÞxðkT

h
Þ ð3:19Þ

where xðvÞ is a real symmetric function ½xðvÞ ¼ xð�vÞ� satisfying the following
conventional properties:

xðvÞ	 0;xð0Þ ¼ max
v

xðmÞ;
Z1
�1

xðvÞdv ¼ 1 ð3:20Þ

where the scaling parameter h determines the window length.
For linear 1D LPA beamformer, assume sufficiently short window, conse-

quently, the third and later terms in Eq. (3.17) are insignificant, hence, the fol-
lowing model is obtained:

hðtþ kTÞ ¼ c0 þ c1kT ð3:21Þ

here c0 ¼ hðtÞ and c1 ¼ hð1ÞðtÞ represent the instantaneous source DOA and
angular velocity, respectively. So, the problem is to find the estimate ĉ of the vector
c ¼ ðc0; c1ÞT for each speech source of interest from a finite number of
non-stationary array observations.

The loss function of the LPA using the weighted least squares approach in order
to estimate the angle and its derivative is given by [6]:

Gðt; cÞ ¼ 1P
k
xhðkTÞ

X
k

xhðkTÞ rðtþ kTÞ � aðc; kTÞsðtþ kTÞkk 2 ð3:22Þ

where aðc; kTÞ ¼ aðc0 þ c1kTÞ and eðtþ kTÞ ¼ rðtþ kTÞ � aðc; kTÞsðtþ kTÞ is a
residual of fitting the output rðtþ kTÞ of the sensor by the corresponding output
aðc; kTÞsðtþ kTÞ of the steering vector and xhðkTÞ is the window.

The minimization of Gðt; cÞ with respect to the unknown deterministic waveform
sðtþ kTÞ is expressed by:

@G
@s�ðtþ kTÞ ¼

�xhðkTÞP
k
xhðkTÞ a

Hðc; kTÞ rðtþ kTÞ � aðc; kTÞsðtþ kTÞg ¼ 0f ð3:23Þ

Therefore, the estimate of the waveform sðtþ kTÞ is given by:

ŝðtþ kTÞ ¼ aHðc; kTÞrðtþ kTÞ
n

ð3:24Þ
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where the property aHðc; kTÞaðc; kTÞ ¼ n is exploited. By substituting from
Eq. (3.19) in Eq. (3.17), thus,

Gðt; cÞ ¼ 1P
k
xhðkTÞ

X
k

xhðkTÞ rHðtþ kTÞrðtþ kTÞ � aHðc; kTÞrðtþ kTÞj j2
n

)(

ð3:25Þ

This function should be minimized over the vector parameter c. Since, only the
second term depends on c, hence, the minimization of Gðt; cÞ is equivalent to the
maximization of the LPA beamformer function, which is given by:

Pðt; cÞ ¼ 1
n
P
k
xhðkTÞ

X
k

xhðkTÞ aHðc; kTÞrðtþ kTÞ�� ��2 ð3:26Þ

This function is independent of the nature of sðtÞ, thus, if the transmitted signal is
unknown, it will not affect this term in the algorithm. The maximization of Pðt; cÞ
can be performed using the two-dimensional (2D) search over c0 and c1.
Subsequently, this LPA beamformer can be protracted to multiple sources situations
using direct superposition of particular responses to each source.

At the time instant t, the estimates of hðtÞ and hð1ÞðtÞ as well as the value of the
waveform sðtÞ constitute a solution of the optimization problem:

ðĥðtÞ ; ĥð1ÞðtÞ; ŝðtÞÞ ¼ argðmin
c;sðtÞ

Gðt; cÞÞ ð3:27Þ

or

ðĥðtÞ ; ĥð1ÞðtÞÞ ¼ argðmax
c

Pðt; cÞÞ ð3:28Þ

From the preceding procedure, the DOA, and the velocity of the moving speaker
can be estimated accurately using the LPA beamformer technique.

3.2 Optimization Algorithms in DOAE

In the near-field, numerous algorithms were implemented in the recent years for
source localization. Several algorithms are based on subspace approaches, while,
others use evolutionary computing methods. Practically, near-field case arises in
innumerable situations, including microphone arrays for speech enhancement,
seismic exploration, under water source localization, and ultrasonic imaging. For
near-field source localization, several researchers proposed many approaches, such
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as the 2D MUSIC technique; high-order spectra (HOS) based algorithms; the
weighted linear prediction technique; the ESPRIT technique; and the ML technique
[19, 20]. However, in practical conditions, these proposed procedures are compu-
tationally heavy, some require extra computations for parameters pairing in case of
multiple sources, in addition, closely spaced sources’ localization suffer from poor
estimation in low Signal to Noise Ratio (SNR).

Optimization algorithms and evolutionary computing methods, such Particle
Swarm Optimization (PSO), Genetic algorithm (GA), Differential Evolution (DE),
and Genetic programming (GP) proved their significance recently [21–27]. These
methods achieve commanding global optimizers with avoiding being stuck in local
minima. In addition, they can be hybridized to provide reliable and effective
optimized solutions.

Using an array antenna for DOAE from the received signal is a critical topic
in sonar, radar, communication systems, and microphone array systems.
Traditional DOAE techniques including ML, MUSIC, root-MUSIC, ESPRIT have
been used. Recently, the ML estimation using particle swarm optimization
(PSO) [28], the genetic algorithm (GA)-based technique [29], and the evolutionary
programming (EP)-based method [30] are developed. Choi [31] implemented a new
DOAE scheme using PSO-based SPECC (Signal Parameter Extraction via
Component Cancellation), where the optimization method supports the extraction
process of the signal sources’ amplitudes and incident angles that impinge on the
sensor array. Sheikh et al. [32] employed differential evolution algorithm for range
and DOAE of near-field narrow band sources that impose on a uniform linear array
(ULA). During the optimization steps, the mean square error (MSE) is used as a
fitness function. The results of DE are compared with the results of Genetic
Algorithm (GA).

3.3 Time of Arrival Estimation Techniques

Speaker localization is concerned with locating the speaker position in a certain
place according to the received sound signals from the MA. This process supports
several real world applications including speech recognition, video conferencing
[33], speech acquisition [34], hands-free voice communication [35], acoustic
surveillance devices that require high quality of captured speech from the speakers
[36]. Acoustical situation is degraded by background/additive noise, and distortion
due to the speech signal reverberation from a speaker. In order to overwhelm such
problem, the speech is recorded using microphones set, which require moving
speaker’s localization and tracking. Once the real speaker position is known, the
MA can be electronically steered for high-quality speech acquisition. Moreover, the
speaker localization is vital in the multi-speaker scenario. Time of arrival estimation
(TDOA) localization scheme calculates the time delay estimation between each
microphone’s pair and the source using several techniques including the general-
ized cross correlation of maximum likelihood (GCC-ML), the generalized
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cross-correlation of phase transform (GCCPHAT), the Hilbert envelope of the LP
residual and the linear prediction (LP) residual [37, 38].

The TDOA is considered the superior technique to compute the time delay
estimation between each pair of microphones and the source. It is essential to
acquire decent estimate of the time-delay even with corrupted signals by rever-
beration and noise. For TDE, the spectral features of speech signals are processed,
which are affected by the speech degradations due to noise and reverberation
[39, 40].
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