
Chapter 4
An Introduction to Multichannel
NMF for Audio Source Separation

Alexey Ozerov, Cédric Févotte and Emmanuel Vincent

Abstract This chapter introduces multichannel nonnegative matrix factorization
(NMF) methods for audio source separation. All the methods and some of their
extensions are introduced within a more general local Gaussian modeling (LGM)
framework. These methods are very attractive since allow combining spatial and
spectral cues in a joint and principal way, but also are natural extensions and gen-
eralizations of many single-channel NMF-based methods to the multichannel case.
The chapter introduces the spectral (NMF-based) and spatial models, as well as the
way to combine them within the LGM framework. Model estimation criteria and
algorithms are described as well, while going deeper into details of some of them.

4.1 Introduction

Nonnegative matrix factorisation (NMF) [1] is a dimensionality reduction technique
that consists in approximating a nonnegative data matrix (a matrix with nonnegative
entries) as a product of two nonnegative matrices of lower rank than the initial
data matrix. This also can be viewed as an approximation of data matrix as a sum
of few rank-1 nonnegative matrices. It was first successfully applied for single-
channel source separation [2], where the nonnegative matrix of magnitude or power
spectrogram is decomposed, and became a state of the art reference. The success
of this method is mainly due to universality of this quite simple modeling (it is
applicable to various types of audio sources including speech [3, 4], music [2, 5],
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environmental sounds [6], etc.) and due to the flexibility of this modeling allowing
adding various constraints to it, such as for example harmonicity of spectral patterns
[7], smoothness of their activation coefficients [2, 5], pre-trained spectral patterns
[8, 9], etc.

Given the success of the NMF for single-channel source separation, there were
several attempts to extend it to the case of multichannel source separation. Earlier
ideas were relying on stacking magnitude or power spectrograms of all channels into
a 3-valence nonnegative tensor and decomposing it with nonnegative tensor factori-
sation (NTF)methods [10] or other NTF-like nonnegative structured approximations
[11, 12]. This gave some interesting results. However, since only nonnegative power
spectrograms are involved, such approaches rely only on the amplitude information,
while completely discarding the phases of the short time Fourier transforms (STFTs).
In other words, these approaches do not allow exploiting the interchannel phase dif-
ferences (IPDs), but only the interchannel level differences (ILDs). However, the
IPDs may be very important for multichannel source separation, and they are indeed
exploited by several clustering-based methods [13, 14]. Using IPDs becomes even
more critical for the far-field case (i.e., when the distances between the microphones
are much smaller than the distances between the sources and microphones), where
the information carried by the ILDs becomes almost non-discriminating.

It is clear that a fully nonnegative (e.g., NTF-like) modeling is unable to model
jointly source power spectrograms, ILDs and IPDs, since the phase information is
discarded in the nonnegative tensor of multichannel mixture power spectrograms. As
such, it was proposed to resort to a semi-nonnegative modeling [8, 12, 15–17], where
the latent source power spectrograms aremodeledwithNMF [8, 12] or NTF [15–17],
while the mixing system is modeled differently, not with a nonnegative model. This
modeling, often referred to as multichannel NMF [12] or multichannel NTF [15]1

depending on the model of the source power spectrograms, is usually achieved via
a Gaussian probabilistic modeling applied directly to the complex-valued STFTs of
all channels.

The multichannel NMF modeling treats the complex-valued STFT coefficients
as realizations of zero-mean circular complex-valued Gaussian random variables
with structured variances (via NMF) and covariances. This leads to the fact that
this modeling reduces to Itakura Saito (IS) NMF in the single channel case (see
Chap.1), thus being its natural extension to the multichannel case. Moreover, it
allows integrating many other NMF-like models (see Chap.1 and [8]) in an easy and
flexible manner. Finally, it combines both spectral and spatial (including ILDs and
IPDs) cues within a unified framework. When one of these two cues does not allow
separating the sources efficiently, the algorithm relies on the other cue, and vice
versa. In our opinion the multichannel NMF is one of the first attempts of combining
these two cues in a systematic and principal way.

1Throughout the chapter we will generally refer to all these methods as multichannel NMF, while
precising when we are speaking about multichannel NTF.

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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4.2 Local Gaussian Model

Multichannel NMF can be formulated as based on a so-called local Gaussian model
(LGM) that is more general itself (than the multichannel NMF) and allows modeling
and combining spatial and spectral cues in a systematic way. In a most general
manner the LGM may be formulated as follows. Let us first assume that we deal
with a multichannel (I -channel) mixture of J sources to be separated. Assuming all
the signals are converted into the STFT domain, this can be written as

x f n =
J∑

j=1

y j f n, (4.1)

where x f n = [
x1, f n, . . . , xI, f n

]T ∈ C
I and y j f n = [

y1, j f n, . . . , xI, j f n
]T ∈ C

I ( j =
1, . . . , J ) are the channel-wise vectors of STFT coefficients of the mixture and of the
j-th source spatial image,2 respectively; and f = 1, . . . , F and n = 1, . . . , N are
the frequency and time indices, respectively. Given the above-introduced notations,
the LGM modeling [18] assumes that each source image (I -length complex-valued
vector y j f n) is modeled as a zero-mean circular complex Gaussian random vector as
follows

y j f n ∼ Nc
(
0,R j f nv j f n

)
, (4.2)

where the complex-valued covariance matrix is positive definite Hermitian, and it is
composed of two factors:

• a spatial covariance R j f n ∈ C
I×I representing the spatial characteristics of the

j-th source image at the time-frequency (TF) point ( f, n), and
• a spectral variance v j f n ∈ R representing the spectral characteristics of the j-th
source image at the TF point ( f, n).

Given the model parameters, i.e., the spatial covariances R j f n and the spectral vari-
ances v j f n , the random vectors y j f n in (4.2) are also assumed mutually independent
in time, frequency and between sources. Note that the LGM modeling was not pro-
posed in [18] for the first time, indeed, its variants were already considered in [19,
20]. However, the formulation from [18] is quite general to cover all the cases, that
is why we have chosen here this formulation.

Given the multichannel mixing equation and the above independence assump-
tions, the mixture STFT coefficients may be shown distributed as

x f n ∼ Nc

⎛

⎝0,
J∑

j=1

R j f nv j f n

⎞

⎠ . (4.3)

2The spatial image of a source means not the source signal itself, but its contribution into the
I -channel mixture.
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The model parameters are usually estimated in the maximum likelihood (ML)
sense from the observed mixture X = {

xi f n
}
i, f,n . However, a direct ML estima-

tion of parameters under the modeling (4.3) would lead to the data overfitting,
since the number of scalar parameters exceeds the number of the mixture STFT
coefficients. As such, various constraints are applied to both spectral variances and
spatial covariances, as it is presented in detail in Sects. 4.3 and 4.4 respectively. In
the case of multichannel NMF we address in this chapter, the spectral variances
are usually represented by low-rank nonnegative matrices or tensors. However, other
approaches consider different models (e.g., such as composite autoregressive models
[21], source-excitation models [8] or hidden Markov models [22]) to structure the
spectral variances, that is why the LGMmodeling ismore general than themultichan-
nel NMF. As it is discussed in Sect. 4.4 below, spectral covariances are usually not
modeled with fully nonnegative structures. This is the reason why we are speaking
about semi-nonnegative modeling in the introduction.

For the sake of better understanding, we now give an interpretation to the spatial
covariance matrix R j f n , and relate it to the methods used for multichannel audio
compression. For the sake of simplicity and also since most of audio recording
are stereo (i.e., two channel mixtures), we consider the case of I = 2. The spatial
covariance matrixR j f n is in general a full-rank positive definite Hermitian complex-
valued matrix. An example of a spatial covariance matrix is represented on Fig. 4.1.
Note that this is a rather “fake” (or incomplete) representation, since it is difficult
to represent a 2-dimensional complex-valued covariance matrix on a 2-dimentional
real plane.

Since the spatial covariance matrix R j f n is complex-valued Hermitian, it can be
easily shown that in the 2-dimensional case we consider here it is uniquely encoded

Fig. 4.1 An illustration of a spatial covariance matrix R j f n in the 2-channel case (I = 2). While
dropping the indices j , f and n, the covariance matrix eigendecomposition may be written as
R = U�UH , with U = [u1,u2], u1,u2 ∈ C

2 being the eigenvectors and � = diag ([λ1, λ2]),
λ1, λ2 ∈ R+ being the eigenvalues. This illustration is not fully complete, since a 2D complex-
valued covariance matrix is represented on a 2D real plane
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by only four real scalars. Indeed, its 2 diagonal entries are real and the 2 complex-
valued off-diagonal entries are conjugate. These four real-valued parameters may
be uniquely converted into the following, in a sense more meaningful, real-valued
parameters:

• Loudness,3

• ILD,
• IPD,
• Diffuseness that can be also replaced by interchannel coherence (IC) [23].

It is worth to note that the last three spatial parameters (ILD, IPD and IC) are also
used for parametric coding of stereo audio [23]. This is somehow expected, indeed,
the models that are suitable for compression should be also suitable for sources
separation, since in both cases the models tend to reduce the redundancy in the
signal.

Finally, let us also stress that theLGMmodeling seemsmore general (and thanks to
Gaussian formulationmore principal) than blind source separation (BSS) approaches
based on ILD/IPD clustering [13, 24]. Indeed, the diffuseness or IC is not taken at
all into account within the latter approaches.

4.3 Spectral Models

In this section we present and discuss spectral models used within various multichan-
nel NMF approaches. These models include NMF models, NTF models and their
extensions.

4.3.1 NMF Modeling of Each Source

NMF modeling of each source, which is usually referred to as mutichannel NMF,
consists in structuring the source variances v j f n in (4.2) with NMF structure as in
the single-channel NMF case (see Chap.1):

v j f n =
K j∑

k=1

wj f kh jkn, (4.4)

where the source-dependent K j is usually smaller than both F and N , and wj f k

and h jkn are all nonnegative. By introducing nonnegative matrices (i.e., matrices

3Due to the scale ambiguity between R j f n and v j f n in (4.2), the loudness can be fully attributed to
v j f n .

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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with nonnegative entries) V j = [v j f n] f,n ∈ R
F×N
+ , W j = [wj f k] f,k ∈ R

F×K j

+ , and

H j = [h jkn]k,n ∈ R
K j×N
+ , (4.4) may be rewritten in a matrix form as:

V j = W jH j . (4.5)

A visualization of these NMF spectral models is shown on Fig. 4.2.
This kind of spectralmodels in the case ofmutichannel source separationwere first

introduced in [25, 26], though with more sophisticated NMF-like structures suitable
for harmonic music instruments and with different optimization criteria than those
we discuss in this chapter. Spectral models based on usual NMF, exactly as in (4.5),
were proposed in [12], and then extended/re-considered in many other works [8,
15–17, 27].

A very attractive property of this modeling is that any NMF or NMF-like structure
based on the IS divergence, such as for example harmonic NMF [7], smooth NMF [2,
5] or excitation-filter NMF [28] (see also Chap.1) may be incorporated easily and in
a systematic manner within the framework. This was remarked and addressed in [8],
where a general source separation framework allowing specifying various spectral
and spatial models for each individual source is proposed. The latter research work is
supplied with a software called Flexible Audio Source Separation Toolbox (FASST)
that implements all these possible model variants in a flexible way. Finally, let us
note that many informed or user-assisted/guided audio source separation approaches
were extended to the multichannel case within the same paradigm [15, 29].

= =

V1

W1

H1 h1,1

w1,1

h1,2

w1,2
+

= =

V2

W2

H2 h2,1

w2,1
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w2,2
+
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V3

W3

H3 h3,1

w3,1
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+

Fig. 4.2 A visualization of spectral models of multichannel NMF. Source variances V j of each
of J (here J = 3) sources are modeled with NMF with K j (here K j = 2) components, which can
be decomposed as a sum of K j rank-1 matrices (w j,k and h j,k are the columns and the lines of
matricesW and H, respectively)

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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4.3.2 Joint NTF Modeling of All Sources

One of the shortcomings of the multichannel NMFmodeling presented in Sect. 4.3.1
is the following. While for single-channel NMF one needs fixing an appropriate
number of components K or determining this number automatically, which is not
always easy (see, e.g., [30]), in themultichannel NMF, as presented in Sect. 4.3.1, one
needs determining not only the total number of components K = ∑J

j=1 K j , but also
the number of components K j for each source, which may vary from one source to
another. To overcome this problem the following ideawas introduced in [15], and then
extended in other works [16, 17]. It is now assumed that instead of representing each
source with an individual NMF {W j ,H j } all the sources share the components of
the same NMF {W,H}, where W = [w f k] f,k ∈ R

F×K
+ , and H = [hkn]k,n ∈ R

K×N
+ .

Moreover, in order to specify associations between K NMF components and J
sources, a new (J × K ) nonnegative matrixQ = [q jk] j,k ∈ R

J×K
+ is introduced, and

the source variances v j f n are now structured as:

v j f n =
K∑

k=1

w f khknq jk . (4.6)

Assuming the columns ofQ are normalized to sum to one (i.e.,
∑J

j=1 q jk = 1), which
is always possible to achieve thanks to scale ambiguity between the columns of Q
and that of say W in (4.6), each q jk represents the proportion of association of the
component k to the source j .

By denoting with V = {v j f n} j, f,n a 3-valence tensor of source variances, (4.6)
may be also rewritten in a tensor/vector form as a sum of K rank-1 tensors:

V =
K∑

k=1

wk ◦ hT
k ◦ qk, (4.7)

where “◦” denotes the tensor outer product,wk andqk are the k-th columns ofmatrices
W andQ respectively, and hk is the k-th line of matrixH. The tensor decomposition
as in (4.6) and (4.7) is called parallel factor (PARAFAC) or canonical decomposition
(CANDECOMP) [31]. A visualization of these NTF spectral models is shown on
Fig. 4.3.

We here call this model multichannel NTF, as introduced in [15], though some
authors [16, 17] continue calling it multichannel NMF. Note also that a fully nonneg-
ative NTF modeling [10–12] was applied for multichannel audio source separation
as well. Those approaches apply an NTF decomposition directly to the nonnegative
tensor of power spectrograms of the multichannel mixture, while here it is applied to
the latent nonnegative tensor of power spectrograms of the sources, and the overall
modeling is not fully nonnegative, as mentioned in the introduction.

One can easily note that the NTF decomposition (4.6) generalizes that of (4.4).
Indeed, (4.6) can be reduced to (4.4) by setting for each column ofQ all the values to
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Fig. 4.3 Avisualization of spectral models ofmultichannel NTF. Source variancesV j are stuck in a
common3-valence tensorVmodeledwith PARAFACmodel [31]with K (here K = 6) components,
which can be decomposed as a sum of K rank-1 3-valence tensors

0 except one that is set to 1, and by fixing the values of Q. Finally, the multichannel
NTF modeling has the following potential advantages over the multichannel NMF
modeling:

• One does not need specifying in advance the number of components K j for each
source, but only the total number of components K . The components are then
allocated automatically via the matrix Q, which may be also more optimal than a
manual user-specified allocation.

• Some components may be shared between different sources, which means that the
modeling is more compact. This happens when there are more than one non-zero
entry in one column of matrix Q.

It should be noted however that it is desirable that the matrix Q is quite sparse, i.e.,
that there are few components for which there are more than one non-zero entry
in the corresponding column of matrix Q. Otherwise, the components are not well
allocated between sources, and this may not lead to a good separation result. Thus, it
is possibly desirable to add some sparsity-inducing penalty onQ to the corresponding
optimization criterion.
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4.4 Spatial Models and Constraints

Spatial covariance R j f n might be assumed fully unconstrained, though in that case,
as already mentioned in Sect. 4.2, the parameter estimation would certainly lead to
data overfitting, since there are more parameters than observations, i.e., the STFT
coefficients in the multichannel mixture. In order to cope with that it is necessary to
introduce some constraints on spatial covariances.

First of all, when the sources are static, it is reasonable to assume that the spatial
covariances are time-invariant, i.e., R j f n = R j f are independent of n. This assump-
tion is made in many approaches [8, 12, 16–18] and it allows highly reducing the
number of free parameters to be estimated.We assume the time-invariant case within
this section and the time-varying case will be briefly discussed at the end.

On top of the time-invariance, additional constraints may be introduced as well,
and most often it is achieved either by imposing some particular structure or via
probabilistic priors.

The early works [12, 19, 20] constraint the spatial covariance R j f further and
assume that the rank of the matrix is one, which is refereed to as rank-1 spatial
covariance. This was introduced based on the following reasoning. Let us assume
that the mixture (4.1) is a convolutive mixture of J point sources. In that case the
spatial images y j f n in (4.1) may be approximated as [32]

y j f n = a j f s j f n, (4.8)

where s j f n ∈ C are the STFT coefficients of the point sources and a j f = [
aI j f , . . . ,

aI j f
]T ∈ C

I are the channel-wise vectors of discrete Fourier transforms (DFTs) of
the impulse responses of the convolutive mixing filters. The equality in (4.8) holds
indeed only approximately and becomes more and more accurate when the sizes of
the mixing filters impulse responses are comparable or smaller than the length of
the STFT analysis window [32]. This approximation is referred to as narrowband
approximation. Assuming now that each source STFT coefficient s j f n follows a
zero-mean Gaussian distribution with variance v j f n , one can easily show that source
images y j f n are distributed as in (4.2) with

R j f = a j f aH
j f . (4.9)

We see that the spatial covariance R j f in (4.9) is indeed a rank-1 matrix.
It was proposed in [18] not to constraint the spatial covariance R j f or to

parametrize it in a different way (see [18] for details), but in both cases so as the
matrix remains full rank. This modeling, refereed to as full rank spatial covariance,
allows to go beyond the limits of the narrowband approximation (4.8), thus it is more
suitable than the rank-1 model in case of long reverberation times. It may be also
more suitable in case when the point sources assumption is not fully verified. Indeed,
as explained in Sect. 4.7.2 below, modeling a source image with a full rank model
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Fig. 4.4 Example of a set of
predefined directions in 2D
plane for a given microphone
array

can be recast as a sum of I point sources with different rank-1 spatial covariances
and shared spectral variance.

Another approach [17] consists in assuming that the spatial covariance is a
weighted sum of so-called direction of arrival (DOA) kernels that are rank-1 spa-
tial covariances modeling plane waves coming from several predefined directions.
These directions may be specified in 2D plane or in 3D space (see Fig. 4.4 for a 2D
example). Rank-1 DOA kernels corresponding to these directions θl (l = 1, . . . , L)
are then defined as

K f l = d( f, θl)d( f, θl)
H (4.10)

with d( f, θl) being a relative steering vector for the direction θl defined as

d( f, θl) = [
1, e−2πτ2,1(θl )ν f /c, . . . , e−2πτI,1(θl )ν f /c

]T
, (4.11)

where c is the speed of the sound (343m/s), ν f is the frequency (inHz) corresponding
to the frequency bin f , and τi,i ′(θl) is the time difference of arrival (TDOA) (in
seconds) between microphones i and i ′ from the direction θl . Note that this relative
steering vector is defined without taking into account the ILDs, but only IPDs (see
[33] for a definition taking as well into account ILDs). Finally, the spatial covariance
is defined as a weighted sum of DOA kernels K f l from (4.10) as

R j f =
L∑

l=1

z jlK f l, (4.12)

with z jl being nonnegative weights.
If the DOAs of all or of some sources are known to some extend, it is possible to

introduce this information for example via prior distributions on the spatial covari-
ances. In [34] those priors are defined via inverse Wishart distributions as follows
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p
(
R j f |Ψ j f ,m

) = |Ψ j f |m |R j f |−(m+I )e
−tr

[
Ψ j f R

−1
j f

]

π I (I−1)/2
∏I

i=1 �(m − i + 1)
, (4.13)

with
Ψ j f = (m − I )

(
d( f, θl)d( f, θl)

H + σ 2
revΩ f

)
, (4.14)

where d( f, θl) is a steering vector which may be defined as in (4.11), Ω f =[
sin(2πν f qii ′/c)/(2πν f qii ′/c)

]
i i ′ is a matrix modeling reverberation part (i.e., non-

direct part) of the impulse response, and σ 2
rev is a positive constant depending on the

amount of reverberation as compared to the direct part of impulse response.
There are also othermodels that do not fall into the LGM framework as formulated

here. These models include for example multichannel high-resolution NMF (HR-
NMF) [35] or a method where the source variance prior parametrization is factorized
by NMF [36].

Finally, several approaches [37–39] address time-varying case, where R j f n is not
independent any more on n, though still constrained in different ways.

4.5 Main Steps and Sources Estimation

Let us denote by θ = {R j f n, v j f n} j, f,n the whole set of model parameters, assuming
some constraints from those overviewed in Sects. 4.3 and 4.4 hold. Given a model
θ specified and an estimation criterion (see Sect. 4.6 below) chosen, most of LGM-
based approaches are based on the following main steps:

1. The STFT X of the multichannel mixture signal is computed.
2. The model is estimated with an algorithm (see Sect. 4.7 below) optimizing the

chosen criterion.
3. The source images are estimated in the STFT domain via Wiener filtering as:

ŷ j f n = R j f nv j f n

⎡

⎣
J∑

j=1

R j f nv j f n

⎤

⎦
−1

x f n, (4.15)

whereR j f n and v j f n are the spatial covariances and spectral variances as specified
in (4.2).

4. The source images in time domain are then reconstructed by applying the inverse
STFT to Ŷ = {ŷ j f n} j, f,n .
In the online approaches [40, 41], where the separation must be performed for

every new frame, the same steps are repeated for each frame and themodel estimation
algorithm is modified so as to update the model parameters in an incremental and
causal (i.e., only the passed and current frames are used) manner.
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4.6 Model Estimation Criteria

In order to estimate the model parameters θ from the observed data, i.e., from the
STFT of the multichannel mixture signalX, one needs specifying amodel estimation
criterion.

4.6.1 Maximum Likelihood

One of the most popular choices for model estimation is the maximum likelihood
(ML) criterion that writes

θ = argmax
θ ′ p(X|θ ′). (4.16)

In the case of LGM modeling (4.2) this criterion can be shown [16] equivalent to
minimizing the following cost function:

CIS(θ) =
F,N∑

f,n=1

tr
(
�̂x, f n�

−1
x, f n

)
− log det

(
�̂x, f n�

−1
x, f n

)
− I, (4.17)

where
�̂x, f n = x f nxH

f n and �x, f n = R j f nv j f n. (4.18)

Note that the cost (4.17) is not well defined (i.e., its value is infinite) when I > 1 and
matrices �̂x, f n are not full rank, which is the case in definition (4.18). However, this
is not a problem per se. Indeed, the infinite term − log det

(
�̂x, f n

)
is independent on

θ and can be simply removed from the cost (4.17), since it has no influence on the
optimization over θ . Otherwise, a small regularization term may be added to �̂x, f n ,
which would make it full rank. Also, there exist alternative definitions of �̂x, f n [8,
42], where it might be full rank by construction.

Formulation with the cost (4.17) is interesting, since, as one can note, it is a
generalization of the IS-NMF cost in the single channel case (see Chap. 1). Indeed,
CIS(θ) becomes the single channel IS divergence when I = 1.

4.6.2 Maximum a Posteriori

When a prior distribution p(θ) on model parameters is specified, like for example
the spatial covariance prior in (4.13), the maximum a posteriori (MAP) criterion is
usually used instead of the ML criterion. It writes

θ = argmax
θ ′ p(θ ′|X) = argmax

θ ′ p(X|θ ′)p(θ ′). (4.19)

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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Note that in case of prior in (4.13) we have p(θ) = ∏F
f =1 p

(
R j f |Ψ j f ,m

)N
, since

the prior is applied to each time-frequency bin.
If one tries rewriting (4.19) in a form similar to (4.17), it would result in simply

adding − log p(θ ′) term to (4.17).

4.6.3 Other Criteria

Several other criteria were proposed as well. For example, we have seen that the
ML criterion formulated as in (4.17) generalizes the single channel IS NMF to the
multichannel case, as such it was proposed in [16] to generalize the single-channel
NMFwith Euclidean distance (EUCNMF) to themultichannel case. This is achieved
by replacing the cost function (4.17) with the following one

CFRB(θ) =
F,N∑

f,n=1

∥∥�̂x, f n − �x, f n
∥∥2
F , (4.20)

where ‖A‖F denotes the Frobenius norm of a matrix A, and the data covariance
matrix �̂x, f n is defined slightly differently than in (4.18). Notably, it is defined as
[16, 17]

�̂x, f n =
√∣∣∣x f nxH

f n

∣∣∣× sign
(
x f nxH

f n

)
, (4.21)

where all the operation, i.e., the absolute value |·|, the square root √·, the multiplica-
tion× and the sign (sign (a) = a/|a|), are applied element-wise to the corresponding
matrices.

There is also the variational Bayes (VB) criterion [43], which consists in comput-
ing directly the posterior distribution of the source STFT coefficients whilemarginal-
izing over all possible model parameters.

4.7 Model Estimation Algorithms

There exist several model parameter estimation algorithms [8, 16]. Though, due to
the probabilistic formulation of the LGMmodel (4.2), the expectation-maximization
(EM) algorithm [44] is one of the most popular choices. As we will see below, the
use of the EM algorithm results not in just one algorithm, but it leads to a family
of algorithms. Indeed, each particular implementation of the EM algorithm depends
on several choices, as will be explained below. Because of the EM popularity we
will mostly concentrate here on the different variants of EM and will only mention
briefly other algorithms.
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To present the variants of EM algorithm we consider the LGM model (4.2) with
time-invariant unconstrained full rank spatial covariances R j f and spatial variances
v j f n structured with NTF model (4.6). This is in fact a variant of multichannel NTF
similar to the one described in [15], but with full rank covariances instead of rank-
1 covariances as in [15]. Since no probabilistic priors on parameters are assumed,
the variants of EM algorithm presented below are for the optimization of the ML
criterion (4.16).

4.7.1 Variants of EM Algorithm

In one of its general formulations the EM algorithm [44] to optimize theML criterion
(4.16) consists first in specifying

• so-called observed data X that are usually the multichannel mixture STFT coeffi-
cients in the case of multichannel source separation, as considered here, and

• so-called latent data Z. The choice of latent data may be quite different and dif-
ferent choices would lead to different EM variants.

Assuming that a probabilisticmodel parametrized by θ is specified, the EMalgorithm
is usually applied in the following case. It is applied when it is difficult to optimize
in a closed form the ML criterion (4.16) maximizing log p(X|θ), while it is easy
to maximize in a closed form or via some simplified iterative procedure the log-
likelihood log p(X,Z|θ) of so-called complete data {X,Z}. The choice of latent
data Z is usually done accordingly.

The EM algorithm consists then in iterating the following two steps:

• E-step: Compute an auxiliary function as follows:

Q(θ, θ (	)) = EX|Z,θ (	) log p(X,Z|θ). (4.22)

• M-step: Optimize the auxiliary function to update model parameters according to
the following criterion:

θ (	+1) = argmax
θ

Q(θ , θ (	)), (4.23)

where θ (	) denotes the model parameters estimated at the 	-th iteration.

It is often possible to optimize the criterion (4.23) in a closed form. However,
sometimes, depending on the choice of latent data Z, it is not possible. In that case
either another iterative optimization algorithm may be applied or any algorithm can
be used provided that it assures at each iteration of EM the following non-decreasing
of the auxiliary function:

Q(θ (	+1), θ (	)) ≥ Q(θ (	), θ (	)). (4.24)
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In the latter case the algorithm is called generalized EM (GEM) [44], and the ways
the optimization (4.24) is performed lead again to different variants of the algorithm.

To summarize let us list various choices that lead to different EM algorithm vari-
ants and thus different model parameters estimation results. These choices include:

1. Choice of latent data Z, for example:

• Latent data consist of NMF/NTF components [12] defined as

ck j f n ∼ Nc(0,wj f kh jkn), k = 1, . . . , K j (4.25)

in case of NMF spectral model (4.4), or as

ck j f n ∼ Nc(0,w f khknq jk), k = 1, . . . , K (4.26)

in case of NTF spectral model (4.6).
• Latent data consist of so-called sub-sources [8] (see Sect. 4.7.2 below).
• Latent data consist of point sources [15] s j f n as in the narrowband approxi-
mation (4.8).

• Latent data consist of spatial source images [27] y j f n as in (4.2).
• Latent data consist of binary TF activations of the predominant source (see,
e.g., [45] for details).

2. Choice of maximization step updates in case of GEM algorithm, for example:

• Closed-form updates in case of EM algorithm.
• Alternating closed-form updates over subsets of parameters [27] (each subset
of parameters is updated by a closed-form update, while the other parameters
are fixed).

• Multiplicative update (MU) rules [5] to update NMF/NTF spectral model
parameters [8].

3. Choice of initial parameters θ (0), for example:

• Random parameters initialization [8].
• Parameters initialization using the source separation results obtained by a
different algorithm [12].

4. Choice of number of EM algorithm iterations, for example:

• Fixed number of iterations (the most common choice).
• Iterating till some stopping criterion depending on the likelihood value is
satisfied.

A so-called spatial image EM (SIEM) algorithm, where the latent data are the
spatial source images, is given in details in the Chap.7. In the following section
we present in details a so-called sub-source EM algorithm based on MU rules

http://dx.doi.org/10.1007/978-3-319-73031-8_7
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(SSEM/MU) [8], where the latent data are the sub-sources and MU rules are used
for the NTF spectral model parameters updates within the M-step. Other variants of
the EM and GEM algorithms may be found in the corresponding papers.

4.7.2 Detailed Presentation of SSEM/MU Algorithm

Recall that ourmodel consists of time-invariant unconstrained full rank spatial covari-
ances R j f and spatial variances v j f n structured with NTF model (4.6). Thus, it can
be parametrized as

θ = {{R j f } j, f ,Q,W,H
}
, (4.27)

with nonnegative matrices Q, W and H specified in Sect. 4.3.2.
The SSEM/MU algorithm presented below is a partial case of a more general

algorithm from [8], though applied to a slightly different model (here the spectral
variances are structured with NTF model, while in [8] they are structured with NMF
model).

Each spatial I × I covariance R j f being full rank, its rank equals to I . For each
source j we introduce I so-called point sub-sources s ji, f n ∈ C (i = 1, . . . , I ) that
share the same spectral variance v j f n , in other words they are distributed as

s ji, f n ∼ Nc(0, v j f n). (4.28)

Moreover, each spatial covariance R j f can be non-uniquely represented as

R j f = A j fAH
j f , (4.29)

where A j f is an I × I complex-valued matrix. By introducing a J I -length vector

s f n = [
s11, f n, . . . , s1I, f n, s21, f n, . . . , s2I, f n, · · · , sJ1, f n, . . . , sJ I, f n

]T
, (4.30)

and an I × J I matrix
A f = [

A1 f ,A2 f , . . . ,AJ f
]
, (4.31)

one can show [8] that the LGM modeling (4.3) is equivalent (up to the noise term
b f n) to

x f n = A f ns f n + b f n, (4.32)

with s ji, f n (components of s f n) being mutually independent and distributed as in
(4.28), the noise term b f n being distributed as

b f n ∼ Nc(0,�b, f n), (4.33)
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with an anisotropic covariance matrix �b, f n = σ 2
b, f II . The noise term b f n is needed

for a so-called simulated annealing procedure that is necessary in this case (see [12]
for details), where the noise variance σ 2

b, f is usually decreased over the algorithm
iterations.

Let us now compute the auxiliary function Q(θ , θ (	)) defined in (4.22). Below
we will omit sometimes the indexing of parameters with (	), and it will be clear
from the context what are the parameters estimated on previous step and what are
the parameters to be updated on the current step. The log-likelihood of the complete
data {X,Z} writes4

log p(X,Z|θ) = log p(X|Z, θ) + log p(Z|θ)

c= −
∑

f,n

tr
[
�−1

b, f n

(
�x, f n − A f n�

H
xs, f n − �xs, f nAH

f n + A f n�s, f nAH
f n

)]

−
∑

f,n

log
∣∣�b, f n

∣∣− I
∑

j, f,n

dI S(ξ j f n|v j f n),

(4.34)

where
�x, f n = �̂x, f n = x f nxH

f n (4.35)

is computed as in (4.18),

�xs, f n = x f nsHf n, (4.36)

�s, f n = s f nsHf n, (4.37)

ξ j, f n = 1

I

I∑

i=1

|s ji, f n|2, (4.38)

and dI S(x |y) = x
y − log x

y − 1 is the scalar IS divergence (see Chap.1).

By applying the conditional expectation operatorEX|S,θ (	) [·] the auxiliary function
Q(θ, θ (	)) writes then

Q(θ, θ (	))
c= −

∑

f,n

tr
[
�−1

b, f n

(
�̂x, f n − A f n�̂

H
xs, f n − �̂xs, f nAH

f n + A f n�̂s, f nAH
f n

)]

−
∑

f,n

log
∣∣�b, f n

∣∣− I
∑

j, f,n

dI S(ξ̂ j f n|v j f n),

(4.39)

with �̂xs, f n , �̂s, f n and ξ̂ j f n defined as

4When we write
c=, that means that the equality is up to some constant that is independent on model

parameters θ , and thus has no influence on the optimization over parameters in (4.23).

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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�̂xs, f n = EX|S,θ (	)

[
�xs, f n

]
, (4.40)

�̂s, f n = EX|S,θ (	)

[
�s, f n

]
, (4.41)

ξ̂ j f n = EX|S,θ (	)

[
ξ j f n

]
, (4.42)

and computed as follows:

�̂xs, f n = �̂x, f nΩ
H
s, f n, (4.43)

�̂s, f n = Ωs, f n�̂x, f nΩ
H
s, f n + (IJ I − Ωs, f nA f )�s, f n, (4.44)

ξ̂ j f n = 1

I

j I∑

i=( j−1)I+1

�̂s, f n(i, i), (4.45)

where

Ωs, f n = �s, f nAH
f �−1

x, f n, (4.46)

�x, f n = A f �s, f nAH
f + �b, f n, (4.47)

�s, f n = diag

⎛

⎝[v1, f n, . . . , v1, f n︸ ︷︷ ︸
I times

, v2, f n, . . . , v2, f n︸ ︷︷ ︸
I times

, · · · , vJ, f n, . . . , vJ, f n︸ ︷︷ ︸
I times

]
⎞

⎠ .(4.48)

We now proceed with theM-step (4.23).Maximizing the auxiliary function (4.39)
over A f leads to the following closed-form solution5:

A f = �̂xs, f n�̂
−1
s, f n. (4.49)

Maximization of the auxiliary function (4.39) overQ,W andH, i.e., theminimization
of
∑

j, f,n dI S(ξ̂ j f n|v j f n)with v j f n computed as in (4.6), does not allow a closed-form
solution. As such, to update Q, W and H, several iterations of the following MU
rules [15] are applied:

q jk ← q jk

(∑
f,n w f khkn ξ̂ j f nv

−2
j f n∑

f,n w f khknv
−1
j f n

)
, (4.50)

w f k ← w f k

(∑
j,n hknq jk ξ̂ j f nv

−2
j f n∑

j,n hknq jkv
−1
j f n

)
, (4.51)

hkn ← hkn

(∑
j, f w f kq jk ξ̂ j f nv

−2
j f n∑

j, f w f kq jkv
−1
j f n

)
. (4.52)

5Note that if the spatial covariances R j f are needed, they can be always computed with (4.29).
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Applying these MU rules does not guarantee auxiliary function minimization as
in (4.23), but only its non-decreasing as in (4.24). As such, this is in fact a GEM
algorithm.

Algorithm 1 summarizes one iteration of the SSEM/MU algorithm derived above.

Algorithm 1 One iteration of SSEM/MU algorithm

• E-step: Compute statistics �̂x, f n , �̂xs, f n , �̂s, f n and ξ̂ j f n as in (4.35), (4.40), (4.41) and (4.42).
• M-step:

– Update A f as in (4.49).
– Update Q,W and H iterating (4.50), (4.51) and (4.52) several times.
– Renormalize A f , Q, W and H to remove scale ambiguity (see [12]).

4.7.3 Other Algorithms

Another very popular choice for multichannel NMF model parameters estimation is
the majorization-minimization (MM) algorithm [46], which is used for example in
[16, 17]. Note that the EM algorithm is interpretable as a partial case of the MM
algorithm.

4.8 Conclusion

In this chapter we have introduced multichannel NMF methods for audio source
separation. Potential advantages and disadvantages of these methods are discussed.
Despite a quickly growing popularity of deep learning that is now of a great interest
for audio source separation, multichannel NMF methods remain still an important
area of research and in our opinion cannot be completely replaced by deep learning-
based methods in all situations. Indeed, especially in fully blind settings, where
no training data are available, deep learning is not a suitable path any more, while
multichannel NMF is still applicable.

As for the further research on multichannel NMF we would like highlighting
the following possible paths which have been already started to be explored. One
research direction consists in proposing more sophisticated spatial and spectral mod-
els adapted to the mixing conditions and sources of interest, as well as in proposing
new models going beyond the limitations of the LGM modeling. Another direction
consists in combining some aspects of multichannel NMF with deep learning.
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