
Chapter 13
Musical-Noise-Free Blind Speech Extraction
Based on Higher-Order Statistics Analysis

Hiroshi Saruwatari and Ryoichi Miyazaki

Abstract In this chapter, we introduce a musical-noise-free blind speech extrac-
tion method using a microphone array for application to nonstationary noise. In the
recent noise reduction study, it was found that optimized iterative spectral subtrac-
tion (SS) results in speech enhancement with almost nomusical noise generation, but
this method is valid only for stationary noise. The method presented in this chapter
consists of iterative blind dynamic noise estimation by, e.g., independent compo-
nent analysis (ICA) or multichannel Wiener filtering, and musical-noise-free speech
extraction by modified iterative SS, where multiple iterative SS is applied to each
channel while maintaining the multichannel property reused for the dynamic noise
estimators. Also, in relation to the method, we discuss the justification of applying
ICA to signals nonlinearly distorted by SS. From objective and subjective evalua-
tions simulating a real-world hands-free speech communication system, we reveal
that the method outperforms the conventional speech enhancement methods.

13.1 Introduction

In the past few decades, many applications of speech communication systems have
been investigated, but it is well known that these systems always suffer from the
deterioration of speech quality under adverse noise conditions. In a study of speech
enhancement, many types of statistical signal estimation methods have been pro-
posed, e.g., the maximum likelihood estimator of short-time spectral amplitude
(spectral subtraction (SS) [1–4]), the minimum mean-square error estimator of the
complex-valued spectrum (Wiener filtering (WF) [5]), the Bayesian estimator of
short-time spectral amplitude (the minimum mean-square error short-time spec-
tral amplitude (MMSE-STSA) estimator [6] and theminimum mean-square error
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log-spectral amplitude estimator (MMSE-LSA) [7]), and the MAP estimator [8]. SS
is the commonly used noise reduction method that has high noise reduction per-
formance with low computational complexity. However, in this method, artificial
distortion, referred to as musical noise, arises owing to nonlinear signal process-
ing, leading to a serious deterioration of sound quality [9, 10]. Therefore, to assess
and control the generation of musical noise, several studies were conducted using
higher-order statistics [11–13].

To achieve high-quality noise reduction with low musical noise, an iterative SS
method has been proposed [14–16]. This method is performed through signal pro-
cessing, in which weak SS processes are iteratively applied to the input signal. Also,
Inoue et al. have reported the very interesting phenomenon that this method with
appropriate parameters gives equilibrium behavior in the growth of higher-order
statistics with increasing number of iterations [17]. This means that almost no musi-
cal noise is generated even with high noise reduction, which is one of the most
desirable properties of single-channel nonlinear noise reduction methods. Following
this finding, Miyazaki et al. have derived the optimal parameters satisfying the no-
musical-noise-generation condition by analysis based on higher-order statistics [18].
We have defined this method as musical-noise-free speech enhancement, where no
musical noise is generated even for a high signal-to-noise ratio (SNR) in iterative SS.
In this chapter, firstly, we explain the overview of musical-noise-free iterative SS.

In conventional iterative SS, however, it is assumed that the input noise signal
is stationary, meaning that we can estimate the expectation of noise power spectral
density from a time-frequency period of a signal that contains only noise. In con-
trast, under real-world acoustical environments, such as a nonstationary noise field,
although it is necessary to dynamically estimate noise, this is very difficult. There-
fore, in this chapter, secondly, we describe an advanced iterative signal extraction
method using amicrophone array that can be applied to nonstationary noise [19]. This
method consists of iterative blind dynamic noise estimation by independent compo-
nent analysis (ICA) [20–23] and musical-noise-free speech extraction by modified
iterative SS, where multiple iterative SS is applied to each channel while maintaining
the multichannel property reused for ICA.

Thirdly, in relation to the above-mentioned method, we discuss the justification
of applying ICA to signals nonlinearly distorted by SS. We theoretically clarify that
the degradation in ICA-based noise estimation obeys an amplitude variation in room
transfer functions between the target user and microphones. Next, to reduce speech
distortion, we introduce a channel selection strategy into ICA, where we automat-
ically choose less varied inputs to maintain the high accuracy of noise estimation.
Furthermore, we introduce a time-variant noise power spectral density (PSD) estima-
tor [24] instead of ICA to improve the noise estimation accuracy. From objective and
subjective evaluations, it is revealed that the presented method outperforms various
types of the conventional methods.

Note that there exist many investigations for musical noise assessment using
higher-order statistics [25–29] and the study on musical-noise-free speech enhance-
ment was carried out for several methods except for iterative SS, namely, iterative
WF [30], the iterative MMSE-STSA estimator [31] and the iterative generalized



13 Musical-Noise-Free Blind Speech Extraction … 335

MMSE-STSA estimator [32]. In this chapter, however, only SS-based method is
dealt with because of ease in the mathematical derivations and readers’ understand-
ing. Also, the theoretical analysis and results in ICA-based noise estimation are valid
for other independent linear factor analysis algorithms, e.g., independent vector anal-
ysis [33–35] and independent low-rank matrix analysis [36–39]. However, we focus
our attention on only ICA in this chapter owing to its simpleness.

13.2 Single-Channel Speech Enhancement
with Musical-Noise-Free Properties

13.2.1 Conventional Non-iterative Spectral Subtraction

We apply a short-time discrete Fourier transform (DFT) to the observed signal,
which is a mixture of target speech and noise, to obtain the time-frequency signal.
We formulate conventional non-iterative SS [1] in the time-frequency domain as
follows:

Y ( f, τ ) =
⎧
⎨

⎩

√|X ( f, τ )|2 − βE[|N |2] exp( jarg(X ( f, τ )))

(if |X ( f, τ )|2 > βE[|N |2]),
ηX ( f, τ ) (otherwise),

(13.1)

where Y ( f, τ ) is the enhanced target speech signal, X ( f, τ ) is the observed signal,
f denotes the frequency subband, τ is the frame index, β is the oversubtraction
parameter, and η is the flooring parameter. Here, E[|N |2] is the expectation of the
random variable |N |2 corresponding to the noise power spectra. In practice, we can
approximate E[|N |2] by averaging the observed noise power spectra |N ( f, τ )|2 in
the first K -sample frames, where we assume the absence of speech in this period and
noise stationarity.However, this often requires high-accuracyvoice activity detection.
In addition, many methods for dynamic estimation of the expectation of the noise
PSD have been proposed [4], but always suffered from difficulty in rapidly changing
nonstationary noise.

Generally speaking, conventional spectral subtraction suffers from the inherent
problem ofmusical noise generation. For example, a large oversubtraction parameter
affords a large noise reduction but considerable musical noise is also generated.
To reduce the amount of musical noise generated, we often increase the flooring
parameter, but this decreases noise reduction; thus, there exists a trade-off between
noise reduction and musical noise generation.

13.2.2 Iterative Spectral Subtraction

In an attempt to achieve high-quality noise reduction with low musical noise, an
improved method based on iterative SS was proposed in previous studies [14–16].
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Fig. 13.1 Block diagram of
iterative SS Noise

Speech

This method is performed through signal processing, in which the followingweak SS
processes are recursively applied to the noise signal (see Fig. 13.1). (I) The average
power spectrum of the input noise is estimated. (II) The estimated noise prototype
is then subtracted from the input with the parameters specifically set for weak sub-
traction, e.g., a large flooring parameter η and a small subtraction parameter β. (III)
We then return to step (I) and substitute the resultant output (partially noise reduced
signal) for the input signal.

13.2.3 Modeling of Input Signal

In this chapter, we assume that the input signal X in the power spectral domain is
modeled using the gamma distribution as

P(x) = xα−1

Γ (α)θα
exp(−x/θ), (13.2)

where x ≥ 0, α > 0, and θ > 0. Here, α is the shape parameter, θ is the scale
parameter, and Γ (α) is the gamma function, defined as

Γ (α) =
∫ ∞

0
tα−1 exp(−t)dt. (13.3)
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If the input signal is Gaussian noise, its complex-valued DFT coefficients also
have the Gaussian distributions in the real and imaginary parts. Therefore, the p.d.f.
of its power spectra obeys the chi-square distribution with two degrees of freedom,
which corresponds to the gamma distribution with α=1. Also, if the input signal is
super-Gaussian noise, the p.d.f. of its power spectra obeys the gamma distribution
with α<1. We make assumption here that θ is assumed to be the deterministically
known noise PSD and estimation artifacts of the noise PSD are not taken into account
in this chapter. Also, the estimation of α for real-world (short-term) data is explained
in, e.g., Ref. [40].

13.2.4 Metric of Musical Noise Generation: Kurtosis Ratio

We speculate that the amount of musical noise is highly correlated with the number
of isolated power spectral components and their level of isolation (see Fig. 13.2).
In this chapter, we call these isolated components tonal components. Since such
tonal components have relatively high power, they are strongly related to the weight
of the tail of their probability density function (p.d.f.). Therefore, quantifying the
tail of the p.d.f. makes it possible to measure the number of tonal components.
Thus, we adopt kurtosis, one of the most commonly used higher-order statistics, to
evaluate the percentage of tonal components among all components. A larger kurtosis
value indicates a signal with a heavy tail, meaning that the signal has many tonal
components. Kurtosis is defined as

kurt = μ4

μ2
2

, (13.4)

where “kurt” is the kurtosis and μm is the mth-order moment, given by

μm =
∫ ∞

0
xm P(x)dx, (13.5)

Fig. 13.2 Example of generation of tonal component after signal processing, where input signal is
speech with white Gaussian noise and output is processed signal by SS
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Fig. 13.3 Relation between
kurtsis ratio (in log scale)
and human-perceptual score
of degree of musical noise
generation [11]

where P(x) is the p.d.f. of the random variable X . Note that μm is not a central
moment but a raw moment. Thus, (13.4) is not kurtosis in the mathematically strict
definition but a modified version; however, we still refer to (13.4) as kurtosis in this
chapter.

In this study, we apply such a kurtosis-based analysis to a time-frequency period
of subject signals for the assessment of musical noise. Thus, this analysis should
be conducted during, for example, periods of silence in speech when we evaluate
the degree of musical noise arising in remaining noise. This is because we aim to
quantify the tonal components arising in the noise-only part, which is the main cause
of musical noise perception, and not in the target-speech-dominant part.

Although kurtosis can be used to measure the number of tonal components, note
that the kurtosis itself is not sufficient to measure the amount of musical noise.
This is obvious since the kurtosis of some unprocessed noise signals, such as an
interfering speech signal, is also high, but we do not recognize speech as musical
noise. Hence, we turn our attention to the change in kurtosis between before and after
signal processing to identify only the musical-noise components. Thus, we adopt the
kurtosis ratio as a measure to assess musical noise [11–13]. This measure is defined
as

kurtosis ratio = kurtproc
kurtorg

, (13.6)

where kurtproc is the kurtosis of the processed signal and kurtorg is the kurtosis of
the original (unprocessed) signal. This measure increases as the amount of generated
musical noise increases. In Ref. [11], it was reported that the kurtosis ratio is strongly
correlatedwith the human perception ofmusical noise. Figure13.3 shows an example
of the relation between the kurtsis ratio (in log scale) and a human-perceptual score
of degree of musical noise generation, where we can confirm the strong correlation.
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13.2.5 Musical Noise Generation in Non-iterative Spectral
Subtraction

In conventional non-iterative spectral subtraction, the long-term-averaged power
spectrum of a noise signal is utilized as the estimated noise power spectrum. Then,
the estimated noise power spectrum multiplied by the oversubtraction parameter β

is subtracted from the observed power spectrum. When a gamma distribution is used
to model the noise signal, its mean is αnθn, where αn and θn are the shape and scale
parameters of noise, respectively (the subscript “n” indicates that the parameters
belong to noise). Thus, the amount of subtraction is βαnθn. The subtraction of the
estimated noise power spectrum in each frequency band can be considered as a shift
of the p.d.f. in the zero-power direction, given by

1

θ
αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{

− z + βαnθn

θn

}

, (13.7)

where z is the random variable of the p.d.f. after spectral subtraction.
As a result, negative-power components with nonzero probability arise. To avoid

this, such negative components are replaced by observations that are multiplied by
a positive value η (flooring parameter). This means that the region corresponding
to the probability of the negative components, which forms a section cut from the
original gamma distribution, is compressed by the effect of the flooring, resulting in

1

(η2θn)αnΓ (αn)
zαn−1 exp

{

− z

η2θn

}

. (13.8)

Note that the flooring parameter η is squared in the p.d.f. because the multiplication
of η is conducted in the amplitude spectrum domain (see the second branch in (13.1))
but we now consider its effect in the power spectrum domain.

Finally, the floored components are superimposed on the laterally shifted p.d.f.
Thus, the resultant p.d.f. after spectral subtraction, PSS(z), can be written as

PSS(z) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
θ

αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{
− z+βαnθn

θn

}

+ 1
(η2θn)αnΓ (αn)

zαn−1 exp
{
− z

η2θn

}
(0 ≤ z < βαnη

2θn),

1
θ

αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{
− z+βαnθn

θn

}
(βαnη

2θn ≤ z),

(13.9)

To characterize non-iterative spectral subtraction, the mth-order moment of z is
required. For PSS(z), the mth-order moment is given by
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μSS
m =

∫ ∞

0
zm · PSS(z)dz

=
∫ ∞

0
zm

1

θ
αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{

− z + βαnθn

θn

}

dz

+
∫ βαnη

2θn

0
zm

1

(η2θn)αnΓ (αn)
zαn−1 exp

{

− z

η2θn

}

dz, (13.10)

where z is the random variable of the p.d.f. after spectral subtraction.We now expand
the first term of the right-hand side of (13.10). Here, let t = (z + βαnθn)/θn, then
θndt = dz and z = θn(t − βαn). Consequently,

∫ ∞

0
zm

1

θ
αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{

− z + βαnθn

θn

}

dz

=
∫ ∞

βαn

θm
n (t − βαn)

m 1

θ
αn
n Γ (αn)

(θnt)
αn−1 exp{−t}θndt

= θm
n

Γ (αn)

∫ ∞

βαn

m∑

l=0

(−βαn)
l Γ (m + 1)

Γ (l + 1)Γ (m − l + 1)
tm−l tαn−1 exp{−t}dt

= θm
n

Γ (αn)

m∑

l=0

(−βαn)
l Γ (m + 1)

Γ (l + 1)Γ (m − l + 1)
Γ (αn + m − l, βαn), (13.11)

where we use the binomial theorem given by

(t + a)m =
m∑

l=0

al
Γ (m + 1)

Γ (l + 1)Γ (m − l + 1)
tm−l , (13.12)

and Γ (a, b) is the upper incomplete gamma function defined as

Γ (a, b) =
∫ ∞

b
ta−1 exp{−t}dt. (13.13)

Next we consider the second term of the right-hand side of (13.10). Here, let t =
z/(η2θn), then η2θndt = dz. Thus,

∫ βαnη
2θn

0
zm

1

(η2θn)αnΓ (αn)
zαn−1 exp

{

− z

η2θn

}

dz

=
∫ βαn

0
(η2θnt)

m 1

(η2θn)αnΓ (αn)
(η2θnt)

αn−1 exp {−t} η2θndt
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= η2mθm
n

Γ (αn)

∫ βαn

0
tαn−1+m exp {−t} dt

= η2mθm
n

Γ (αn)
γ (αn + m, βαn), (13.14)

where γ (a, b) is the lower incomplete gamma function defined as

γ (a, b) =
∫ b

0
ta−1 exp{−t}dt. (13.15)

As a result, the mth-order moment after spectral subtraction, μSS
m , is a composite of

(13.11) and (13.14), and is given by [17]

μSS
m = θm

n M (αn, β, η,m), (13.16)

where

M (αn, β, η,m) =S (αn, β, η) + η2mF (αn, β, η), (13.17)

S (αn, β,m) =
m∑

l=0

(−βαn)
l Γ (m+1)Γ (αn+m−l, βαn)

Γ (αn)Γ (l+1)Γ (m−l+1)
, (13.18)

F (αn, β,m) =γ (αn+m, βαn)

Γ (αn)
. (13.19)

From (13.4), (13.16), and (13.17), the kurtosis after SS can be expressed as

kurt = M (αn, β, η, 4)

M 2(αn, β, η, 2)
. (13.20)

Using (13.6) and (13.20), we also express the kurtosis ratio as

kurtosis ratio =M (αn, β, η, 4)/M 2(αn, β, η, 2)

M (αn, 0, 0, 4)/M 2(αn, 0, 0, 2)
. (13.21)

Also, as a measure of the noise reduction performance, the noise reduction rate
(NRR) [41], the output SNR minus the input SNR in dB, can be given in terms of a
1st-order moment as [17]

NRR = 10 log10
αn

M (αn, β, η, 1)
. (13.22)
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13.2.6 Musical-Noise-Free Speech Enhancement

In [18], Miyazaki et al. proposed musical-noise-free noise reduction, where no musi-
cal noise is generated even for a high SNR in iterative SS. In the study, some of the
authors discovered an interesting phenomenon that the kurtosis ratio sometimes does
not change even after SS via mathematical analysis based on (13.21) [17]. This indi-
cates that the kurtosis ratio can be maintained at unity even after iteratively applying
SS to improve the NRR, and thus no musical noise is generated owing to the domino-
toppling phenomenon. Following this finding, the authors derived the optimal param-
eters satisfying the musical-noise-free condition [18] by finding a fixed-point status
in the kurtosis ratio, i.e., by solving

M (αn, 0, 0, 4)

M 2(αn, 0, 0, 2)
= M (αn, β, η, 4)

M 2(αn, β, η, 2)
. (13.23)

The inductive result is that the kurtosis ratio never changes even at a large number
of (ideally “infinite”) iterations. In this situation, sufficient noise reduction can be
gained if the NRR improvement in each iteration is even small but positive. This
corresponds to musical-noise-free noise reduction. In summary, we can formulate a
new theorem on musical-noise-free conditions as follows.
(I) Fixed-point kurtosis condition: The kurtosis should be equal before and after
spectral subtraction in each iteration. This corresponds to a fixed point for the 2nd-
and 4th-order moments.
(II) NRR growth condition: The amount of noise reduction should be larger than
0 dB in each iteration, relating to a change in the 1st-order moment.

Although the parameters to be optimized are η and β, we hereafter derive the
optimal η given a fixed β for ease of closed-form analysis. First, we change (13.20)
for

kurt(αn, β, η) = S (αn, β, 4) + η8F (αn, β, 4)
(
S (αn, β, 2) + η4F (αn, β, 2)

)2 . (13.24)

Next, the fixed-point kurtosis condition corresponds to the kurtosis being equal before
and after spectral subtraction, thus

S (αn, β, 4) + η8F (αn, β, 4)
(
S (αn, β, 2) + η4F (αn, β, 2)

)2 = (αn + 3)(αn + 2)

(αn + 1)αn
. (13.25)

Let H = η4, and (13.25) yields the following quadratic equation inH .

(
F (αn, β, 4)(αn+1)αn−F 2(αn, β, 2)(αn+3)(αn+2)

)
H 2

−2S (αn, β, 2)F (αn, β, 2)(αn+3)(αn+2)H

+S (αn, β, 4)(αn+1)αn−S 2(αn, β, 2)(αn+3)(αn+2)=0. (13.26)
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Thus, we can derive a closed-form estimate ofH from the given noise shape param-
eter αn and oversubtraction parameter β as

H ={F (αn, β, 4)(αn+1)αn−F 2(αn, β, 2)(αn+3)(αn+2)}−1

[

S (αn, β, 2)F (αn, β, 2)(αn+3)(αn+2)

±
[
{S (αn, β, 2)F (αn, β, 2)(αn+3)(αn+2)}2

− {
F (αn, β, 4)(αn+1)αn−F 2(αn, β, 2)(αn+3)(αn+2)

}

{
S (αn, β, 4)(αn+1)αn−S 2(αn, β, 2)(αn+3)(αn+2)

} ] 1
2

]

. (13.27)

Finally, η = H 1/4 is the resultant flooring parameter that satisfies the fixed-point
kurtosis condition.

From (13.22), the NRR growth condition is expressed as

NRR=10 log10
αn

S (αn, β, 1) + η2F (αn, β, 1)
>0. (13.28)

Here, since η > 0, we can solve the inequality as

0 < η <

√
αn − S (αn, β, 1)

F (αn, β, 1)
. (13.29)

In summary, we can choose the parameters simultaneously satisfying the fixed
kurtosis point condition and NRR growth condition using (13.27) and (13.29).
Figure13.4 shows an example of the kurtosis ratio in optimized iterative SS, where
Gaussian noise is assumed. We can confirm the flat trace of the kurtosis, indicating
no musical noise generation.

Fig. 13.4 Relation between
NRR and kurtosis ratio
obtained from theoretical
analysis for case of Gaussian
noise
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13.3 Extension to Multichannel Blind Signal Processing

13.3.1 Blind Spatial Subtraction Array

In the previous section, we assumed that the input noise signal is stationary, meaning
that we can estimate the expectation of a noise signal from a time-frequency period
of a signal that contains only noise, i.e., speech absence. However, in actual environ-
ments, such as a nonstationary noise field, it is necessary to dynamically estimate
the noise PSD.

To solve this problem, Takahashi et al. previously proposed blind spatial subtrac-
tion array (BSSA) [42], which involves accurate noise estimation by ICA followed
by a speech extraction procedure based on SS (see Fig. 13.5). BSSA improves the
noise reduction performance, particularly in the presence of both diffuse and nonsta-
tionary noises; thus, almost all the environmental noise can be dealt with. However,
BSSA always suffers from musical noise owing to SS. In addition, the output signal
of BSSA degenerates to a monaural (not multichannel) signal, meaning that ICA
cannot be reapplied; thus, we cannot iteratively estimate the noise power spectra.
Therefore, it is impossible to directly apply iterative SS to the conventional BSSA.

13.3.2 Iterative Blind Spatial Subtraction Array

In this section, we introduce a multi-iterative blind signal extraction method inte-
grating iterative blind noise estimation by ICA and iterative noise reduction by SS.
As mentioned previously, the conventional BSSA cannot iteratively and accurately
estimate noise by ICA because the conventional BSSA performs a delay and sum
(DS) operation before SS. To solve this problem, Takahashi et al. have proposed an
improved BSSA structure that performs multiple independent SS in each channel
before DS; we call this structure channelwise SS [43–45]. Using this structure, we
can equalize the number of channels of the observed signal to that of the signals after

D
F
T

θU Σ
Phase

compensation

FD-
ICA

User’s
speech

Noise

Spectral
subtraction

+

θU

Projection
back0 θU Σ

-θU

Fig. 13.5 Block diagram of BSSA [42]
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Fig. 13.6 Block diagram of iterative BSSA [19]

channelwise SS. Therefore, we can iteratively apply noise estimation by ICA and
speech extraction by SS (see Fig. 13.6). Also, the advantage of the structure is that
ICA has the possibility of adaptively estimating the distorted wavefront of a speech
signal to some extent even after SS, because ICA is a blind signal identification
method that does not require knowledge of the target signal direction. Details of this
issue will be discussed in Sect. 13.3.3. Hereafter, we refer to this type of BSSA as
iterative BSSA.

We conduct iterative BSSA in the following manner, where the superscript [i]
represents the value in the i th iteration of SS (initially i = 0).

(I) The observed signal vector of the K -channel array in the time-frequency
domain, X[0]( f, τ ), is given by

X[0]( f, τ ) = H( f )S( f, τ ) + N( f, τ ), (13.30)

whereH( f ) = [H1( f ), H2( f ) . . . , HK ( f )]T is a column vector of the transfer
functions from the target signal position to each microphone, S( f, τ ) is the
target speech signal, and N( f, τ ) is a column vector of the additive noise.

(II) Next, we perform signal separation using ICA as [20]

O[i]( f, τ ) =W[i]
ICA( f )X[i]( f, τ ), (13.31)

W[i][p+1]
ICA ( f ) =μ[I − 〈ϕ(O[i]( f, τ ))(O[i]( f, τ ))H〉τ ]

· W[i][p]
ICA ( f ) + W[i][p]

ICA ( f ), (13.32)

whereW[i][p]
ICA ( f ) is a demixing matrix,μ is the step-size parameter, [p] is used

to express the value of the pth step in the ICA iterations, I is the identity matrix,
〈·〉τ denotes a time-averaging operator, and ϕ(·) is an appropriate nonlinear
vector function. Then, we construct a noise-only vector,

O[i]
noise( f, τ ) =[O [i]

1 ( f, τ ), . . . , O [i]
U−1, 0,

O [i]
U+1( f, τ ), . . . , O [i]

K ( f, τ )]T, (13.33)

where U is the signal number for speech, and we apply the projection back
operation to remove the ambiguity of the amplitude and construct the estimated
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noise signal, Z[i]( f, τ ), as

Z[i]( f, τ ) = W[i]
ICA( f )−1O[i]

noise( f, τ ). (13.34)

(III) Next, we perform SS independently in each input channel and derive the mul-
tiple target-speech-enhanced signals. This procedure can be given by

X [i+1]
k ( f, τ ) =

⎧
⎪⎨

⎪⎩

√

|X [i]
k ( f, τ )|2 − β|Z [i]

k ( f, τ )|2 exp( j arg(X [i]
k ( f, τ )))

(if |X [i]
k ( f, τ )|2 > β|Z [i]

k ( f, τ )|2),
ηX [i]

k ( f, τ ) (otherwise),

(13.35)

where X [i+1]
k ( f, τ ) is the target-speech-enhanced signal obtained by SS at a

specific channel k. Then we return to step (II) with X[i+1]( f, τ ). When we
obtain sufficient noise reduction performance, we proceed to step (IV).

(IV) Finally, we obtain the resultant target-speech-enhanced signal by applying DS
to X[∗]( f, τ ), where ∗ is the number of iterations after which sufficient noise
reduction performance is obtained. This procedure can be expressed by

Y ( f, τ ) = WT
DS( f )X

[∗]( f, τ ), (13.36)

WDS( f ) = [W (DS)
1 ( f ), . . . ,W (DS)

K ( f )], (13.37)

W (DS)
k ( f ) = 1

K
exp(−2π j ( f/M) fsdk sin θU/c), (13.38)

θU = sin−1

arg

( [
W[∗]

ICA( f )−1
]

kU[
W[∗]

ICA( f )−1
]

k′U

)

2π fsc−1(dk − dk ′)
, (13.39)

where Y ( f, τ ) is the final output signal of iterative BSSA, wDS is the filter
coefficient vector of DS, M is the DFT size, fs is the sampling frequency,
dk is the microphone position, c is the sound velocity, and θU is the estimated
direction of arrival of the target speech obtained by ICA’s demixingmatrix [46].
Moreover, [A]l j represents the entry in the lth row and j th column of A.

13.3.3 Accuracy of Wavefront Estimated by Independent
Component Analysis After Spectral Subtraction

In this subsection, we discuss the accuracy of the estimated noise signal in each
iteration of iterative BSSA. In actual environments, not only point-source noise
but also non-point-source (e.g., diffuse) noise often exists. It is known that ICA
is proficient in noise estimation rather than speech estimation under such a noise
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condition [42, 47, 48]. This is because the target speech can be regarded as a point-
source signal (thus, the wavefront is static in each subband) and ICA acts as an
effective blocking filter of the speech wavefront even in a time-invariant manner,
resulting in good noise estimation. However, in iterative BSSA, we should address
the inherent question of whether the distorted speech wavefront after nonlinear noise
reduction such as SS can be blocked by ICA or not; thus, we determine whether the
speech component after channelwise SS can become a point source again.

Hereafter, we quantify the degree of point-source-likeness for SS-applied speech
signals. For convenience of discussion, a simple two-channel arraymodel is assumed.
First, we define the speech component in each channel after channelwise SS as

Ŝ1( f, τ ) = H1( f )S( f, τ ) + ΔS1( f, τ ), (13.40)

Ŝ2( f, τ ) = H2( f )S( f, τ ) + ΔS2( f, τ ), (13.41)

where S( f, τ ) is the original point-source speech signal, Ŝk( f, τ ) is the speech com-
ponent after channelwise SS at the kth channel, and ΔSk( f, τ ) is the speech com-
ponent distorted by channelwise SS. Also, we assume that S( f, τ ), ΔS1( f, τ ), and
ΔS2( f, τ ) are uncorrelated with each other. Obviously, Ŝ1( f, τ ) and Ŝ2( f, τ ) can be
regarded as being generated by a point source if ΔS1( f, τ ) and ΔS2( f, τ ) are zero,
i.e., a valid static blocking filter can be obtained by ICA as

[WICA( f )]11 Ŝ1( f, τ ) + [WICA( f )]12 Ŝ2( f, τ )

= ([WICA( f )]11H1( f ) + [WICA( f )]12H2( f ))S( f, τ )

= 0, (13.42)

where we assume U = 1 and, e.g., [WICA( f )]11 = H2( f ) and [WICA( f )]12 =
−H1( f ). However, if ΔS1( f, τ ) and ΔS2( f, τ ) become nonzero as a result of SS,
ICA does not have a valid speech-blocking filter with a static (time-invariant) form.

Second, the cosine distance between speech power spectra |Ŝ1( f, τ )|2 and
|Ŝ2( f, τ )|2 is introduced in each frequency subband to indicate the degree of point-
source-likeness as

COS( f ) =
∑

τ |Ŝ1( f, τ )|2|Ŝ2( f, τ )|2
√

∑
τ |Ŝ1( f, τ )|4

√
∑

τ |Ŝ2( f, τ )|4
. (13.43)

From (13.43), the cosine distance reaches its maximum value of unity if and only if
ΔS1( f, τ ) = ΔS2( f, τ ) = 0, regardless of the values of H1( f ) and H2( f ), mean-
ing that the SS-applied speech signals Ŝ1( f, τ ) and Ŝ2( f, τ ) can be assumed to be
produced by the point source. The value of COS( f ) decreases with increasing mag-
nitudes of ΔS1( f, τ ) and ΔS2( f, τ ) as well as with increasing difference between
H1( f ) and H2( f ); this indicates the non-point-source state.

Third, we evaluate the degree of point-source-likeness in each iteration of iterative
BSSA by using COS( f ). We statistically estimate the distorted speech component
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of the enhanced signal in each iteration. Here, we assume that the original speech
power spectrum |S( f, τ )|2 obeys a gamma distribution with a shape parameter of
0.1 (this is a typical value for speech [49–54]) as

|S( f, τ )|2 ∼ x−0.9

Γ (0.1)θ0.1
s

exp(−x/θs), (13.44)

where θs is the speech scale parameter. Regarding the amount of noise to be sub-
tracted, the 1st-order moment of the noise power spectra is equal to θnαn when the
number of iterations, i , equals zero. Also, the value of αn does not change in each
iteration when we use the specific parameters β and η that satisfy the musical-noise-
free condition because the kurtosis ratio does not change in each iteration. If we
perform SS only once, the rate of noise decrease is given by

M (αn, β, η, 1)/αn, (13.45)

and thus, the amount of residual noise after the i th iteration is given by

μ
[i]
1 = θnαn {M (αn, β, η, 1)/αn}i

= θnM
i (αn, β, η, 1)α1−i

n . (13.46)

Next, we assume that the speech and noise are disjoint, i.e., there are no overlaps
in the time-frequency domain, and that speech distortion is caused by subtracting
the average noise from the pure speech component. Thus, the speech component
|Ŝ[i+1]

k ( f, τ )|2 at the kth channel after the i th iteration is represented by subtracting
the amount of residual noise (13.46) as

|Ŝ[i+1]
k ( f, τ )|2 =

⎧
⎨

⎩

|Ŝ[i]
k ( f, τ )|2 − βθnM i (αn, β, η, 1)α1−i

n

(if |Ŝ[i]
k ( f, τ )|2 > βθnM i (αn, β, η, 1)α1−i

n ),

η2|Ŝ[i]
k ( f, τ )|2 (otherwise).

(13.47)

Here, we define the input SNR as the average of both channel SNRs,

ISNR( f ) = 1

2

(
0.1|H1( f )|2θs

αnθn
+ 0.1|H2( f )|2θs

αnθn

)

= 0.1θs
2αnθn

(|H1( f )|2 + |H2( f )|2). (13.48)

If we normalize the speech scale parameter θs to unity, from (13.48), the noise scale
parameter θn is given by
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θn = 0.1(|H1( f )|2 + |H2( f )|2)
2αnISNR( f )

, (13.49)

and using (13.49), we can reformulate (13.47) as

|Ŝ[i+1]
k ( f, τ )|2 =

⎧
⎪⎨

⎪⎩

|Ŝ[i]
k ( f, τ )|2−β

0.1(|H1( f )|2+|H2( f )|2)
2ISNR( f ) M i (αn, β, η, 1)α−i

n

(if |Ŝ[i]
k ( f, τ )|2>β

0.1(|H1( f )|2+|H2( f )|2)
2ISNR( f ) M i (αn, β, η, 1)α−i

n ),

η2|Ŝ[i]
k ( f, τ )|2 (otherwise).

(13.50)

Furthermore, we define the transfer function ratio (TFR) as

TFR( f ) = |H1( f )/H2( f )|2, (13.51)

and if we normalize |H1( f )|2 to unity in each frequency subband, |H1( f )|2 +
|H2( f )|2 becomes 1 + 1/TFR( f ). Finally, we express (13.50) in terms of the input
SNR ISNR( f ) and the transfer function ratio TFR( f ) as

|Ŝ[i+1]
k ( f, τ )|2 =

⎧
⎪⎨

⎪⎩

|Ŝ[i]
k ( f, τ )|2−β

0.1(1+1/TFR( f ))
2ISNR( f ) M i (αn, β, η, 1)α−i

n

(if |Ŝ[i]
k ( f, τ )|2>β

0.1(1+1/TFR( f ))
2ISNR( f ) M i (αn, β, η, 1)α−i

n ),

η2|Ŝ[i]
k ( f, τ )|2 (otherwise).

(13.52)

As can be seen, the speech component is subjected to greater subtraction and distor-
tion as ISNR( f ) and/or TFR( f ) decrease.

Figure13.7 shows the relation between the TFR and the corresponding value
of COS( f ) calculated by (13.43) and (13.52). In Fig. 13.7, we plot the average of
COS( f ) over whole frequency subbands. The noise shape parameter αn is set to 0.2
with the assumption of super-Gaussian noise (this corresponds to the real noises used
in Sect. 13.5), the input SNR is set to 10, 5, or 0 dB, and the noise scale parameter
θn is uniquely determined by (13.49) and the previous parameter settings. The TFR
is set from 0.4 to 1.0 (|h1( f )| is fixed to 1.0). Note that the TFR is highly correlated
to the room reverberation and the interelement spacing of the microphone array; we
determined the range of the TFRby simulating a typicalmoderately reverberant room
and the array with 2.15cm interelement spacing used in Sect. 13.5 (see the example
of the TFR in Fig. 13.8). For the internal parameters used in iterative BSSA in this
simulation, β and η are 8.5 and 0.9, respectively, which satisfy themusical-noise-free
condition. In addition, the smallest value on the horizontal axis is 3 dB in Fig. 13.7
because DS is still performed even when i = 0.

From Figs. 13.7a and b, which correspond to relatively high input SNRs, we can
confirm that the degree of point-source-likeness, i.e., COS( f ), is almost maintained
when the TFR is close to 1 even if the speech components are distorted by iterative
BSSA. Also, it is worth mentioning that the degree of point-source-likeness is still
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Fig. 13.8 Typical examples of TFR( f ) (|H1( f )/H2( f )|2) in each frequency subband

above 0.9 even when the TFR is decreased to 0.4 and i is increased to 6. This means
that almost 90% of the speech components can be regarded as a point source and thus
can be blocked by ICA. In contrast, from Fig. 13.7c, which shows the case of a low
input SNR, when the TFR is dropped to 0.4 and i is more than 3, the degree of point-
source-likeness is lower than 0.6. Thus, less than 60% of the speech components can
be regarded as a point source, and this leads to poor noise estimation.
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13.4 Improvement Scheme for Poor Noise Estimation

13.4.1 Channel Selection in Independent Component
Analysis

In this subsection, we introduce a channel selection strategy in ICA for achieving
high accuracy of noise estimation. As mentioned previously, speech distortion is
subjected to ISNR( f ) and TFR( f ), and the accuracy of noise estimation is degraded
along with speech distortion. Figure13.8 shows typical examples of the TFR. From
Fig. 13.8, we can confirm that the TFRs in different combinations of microphones
are not the same in each frequency subband; at a specific frequency, one microphone
pair has higher TFR( f ) than another pair, and vice versa at another frequency. Thus,
we are able to select an appropriate combination of microphones to obtain a higher
TFR.

Therefore, we introduce the channel selection method into ICA in each frequency
subband, wherewe automatically choose less varied inputs tomaintain high accuracy
of noise estimation. Hereafter, we describe the detail of the channel selectionmethod.
First, we calculate the average power of the observed signal Xk( f, τ ) at the kth
channel as

Eτ [|Xk( f, τ )|2]=Eτ [|S( f, τ )|2]|Hk( f )|2+Eτ [|Nk( f, τ )|2]. (13.53)

Here, Eτ [|S( f, τ )|2] is a constant, and if we assume a diffuse noise field,
Eτ [|Nk( f, τ )|2] is also a constant. Thus,we can estimate the relative order of |Hk( f )|2
by comparing (13.53) for every k.

Next, we sort Eτ [|Xk( f, τ )|2] in descending order and select the channels corre-
sponding to a high amplitude of |Hk( f )|2 satisfying the following condition:

max
k

Eτ [|Xk( f, τ )|2] · ξ ≤ Eτ [|Xk( f, τ )|2], (13.54)

where ξ(< 1) is the threshold for the selection.
Finally, we perform noise estimation based on ICA using the selected channels in

each frequency subband, and we apply the projection back operation to remove the
ambiguity of the amplitude and construct the estimated noise signal.

13.4.2 Time-Variant Noise Power Spectral Density Estimator

In the previous section, we revealed that the speech components cannot be regarded
as a point source, and this leads to poor noise estimation in iterative BSSA. To solve
this problem, we introduce a time-variant noise PSD estimator [24] instead of ICA
to improve the noise estimation accuracy. This method has been developed for future
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high-end binaural hearing aids and performs a prediction of the left noisy signal from
the right noisy signal via theWiener filter, followed by an auto-PSD of the difference
between the left noisy signal and the prediction. By applying the noise PSD estimated
from this estimator to (13.35), we can perform speech extraction. The procedure of
this noise PSD estimator is described in Appendix.

13.5 Experiments in Real World

13.5.1 Experimental Conditions

Weconducted objective and subjective evaluation experiments to confirm the validity
of iterative BSSA under the diffuse and nonstationary noise condition. The size
of the experimental room was 4.2 × 3.5 × 3.0 m3 and the reverberation time was
approximately 200 ms. We used a two-, three-, or four-element microphone array
with an interelement spacing of 2.15 cm, and the direction of the target speech was
set to be normal to the array. All the signals used in this experiment were sampled at
16 kHz with 16-bit accuracy. The DFT size was 1024, and the frame shift length was
256. We used 5 male and 5 female speakers (one utterance per speaker) as sources
of the original target speech signal. The input SNR was -5, 0, 5, and 10 dB.

13.5.2 Objective Evaluation

We conducted an objective experimental evaluation under the same NRR condi-
tion. First, Figs. 13.9, 13.10, 13.11, and 13.12 show the kurtosis ratio and cepstral
distortion obtained from the experiments with real traffic noise and railway station
noise, where we evaluate 10-dB NRR (i.e., output SNRs = 5, 10, 15, and 20 dB) sig-
nals processed by five conventional methods, namely, the MMSE-STSA estimator,
the Log MMSE estimator incorporating speech-presence uncertainty [55], single-
channel musical-noise-free iterative spectral subtraction, the multichannel speech
enhancement method integrating the minimum variance beamformer and the Log
MMSE estimator for postfiltering, and BSSA, in addition to several types of iterative
BSSAs (using ICA or a time-variant noise estimator with/without channel selec-
tion). Here, we did not apply the channel selection method to the two-microphone
case because ICA or time-variant noise estimation requires at least two-channel
signals. Also, we applied a minimum statistics noise PSD estimator [4] to theMMSE
STSA estimator and musical-noise-free iterative spectral subtraction, and we use the
decision-directed approach for a priori SNR estimation in the MMSE STSA estima-
tor and the log MMSE estimator. From Figs. 13.9 and 13.11, we can confirm that the
iterative BSSA methods outperform the MMSE STSA estimator, the Log MMSE
estimator, and the conventional BSSA in terms of kurtosis ratio. In particular, the
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Fig. 13.13 Subjective evaluation results for a traffic noise and b railway station noise

kurtosis ratios of the iterative BSSA methods are mostly close to 1.0. This means
that the iterative methods did not generate any musical noise. However, the iterative
BSSA methods lead to greater speech distortion compared with the conventional
BSSA (see Figs. 13.10 and 13.12). Therefore, a trade-off exists between the amount
of musical noise generation and speech distortion in the conventional BSSA and
iterative BSSA methods. This result implies the disadvantage of iterative BSSA,
i.e., large speech distortion, which has been theoretically predicted in Sect. 13.3.3.
However, since the speech distortion of the proposed iterative BSSA with channel
selection is lower than that of the original iterative BSSA, we can confirm the validity
of the channel selection method.

13.5.3 Subjective Evaluation

Since we found the above-mentioned trade-off, we next conducted a subjective eval-
uation for setting the performance competition. In the evaluation, we presented a
pair of 10-dB NRR signals processed by the conventional BSSA and four of iterative
BSSAs (using ICA or a time-variant noise estimator with/without channel selection)
in random order to 10 examinees, who selected which signal they preferred from the
viewpoint of total sound quality, e.g., less musical noise, less speech distortion, and
so forth.

The result of this experiment is shown in Fig. 13.13 for (a) traffic noise and (b)
railway station noise. It is found that the output signals of some iterative BSSAs are
preferred to that of the conventional BSSA, indicating the higher sound quality of
the iterative methods in terms of human perception. This result is plausible because
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(a)

(b)

(c)

(d)

Fig. 13.14 Spectrogram for a clean signal, b observed signal, c signal extracted by BSSA, and
d signal extracted by iterative BSSA
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humans are oftenmore sensitive tomusical noise than to speechdistortion as indicated
in past studies, e.g., [12].

To visually understand the above-mentioned result, Fig. 13.14 shows part of the
spectrograms of (a) a clean signal, (b) an observed signal, (c) a signal extracted by
BSSA, and (d) a signal extracted by iterative BSSA, where the input SNR is set to
5 dB with real traffic noise and the NRR is 10 dB. From Fig. 13.14, it is confirmed
that iterative BSSA reduces the number of isolated components in time-frequency
domain sequences, which is a factor contributing to musical noise, compared with
BSSA. Also, there are no major differences in the speech components of the clean
signal, the signal processed by BSSA, and the signal processed by iterative BSSA;
thus, we can conclude that the intelligibility of iterative BSSA is no less than that of
BSSA.

13.6 Conclusions and Remarks

In this chapter, we addressed a musical-noise-free blind speech extraction method
using a microphone array that can be applied to nonstationary noise. Firstly, we
introduced iterative BSSA using a new BSSA structure, which generates almost no
musical noise even with increasing noise reduction performance.

Secondly, in relation to themethod, we discussed the justification of applying ICA
to signals nonlinearly distorted by SS. We theoretically clarified that the degradation
in ICA-based noise estimation obeys an amplitude variation in room transfer func-
tions between the target user and microphones. Therefore, we gave the introduction
of a channel selection strategy in ICA and a time-variant noise PSD estimator to
improve the noise estimation accuracy.

Finally, from the objective evaluation experiments, we confirmed a trade-off
between the amount of musical noise generation and speech distortion in the conven-
tional and iterative BSSA. However, in a subjective preference test, iterative BSSA
obtained a higher preference score than the conventional BSSA.Thus, iterativeBSSA
is advantageous to the conventional BSSA in terms of sound quality.

Implementation on a small hardware still receives much attention in industrial
applications. Due to the limitation of space, however, the authors skip the discussion
on this issue. Instead, several studies [56–60] have dealt with the issue of real-time
implementation of ICA and BSSA, which would be helpful for the readers.
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Appendix

This appendix provides a brief review of the time-variant nonlinear noise estimator.
For more detailed information, Ref. [24] is available.

Let X1( f, τ ) and X2( f, τ ) be noisy signals received at the microphones in the
time-frequency domain, defined as

X1( f, τ ) = H1( f )S( f, τ ) + N1( f, τ ), (13.55)

X2( f, τ ) = H2( f )S( f, τ ) + N2( f, τ ), (13.56)

where H1( f ) and H2( f ) are the transfer functions from the target signal position
to each microphone. Next, the auto-power PSDs in each microphone, Γ11( f ) and
Γ22( f ), can be expressed as follows:

Γ11( f, τ ) = |H1( f )|2ΓSS( f, τ ) + ΓNN( f, τ ), (13.57)

Γ22( f, τ ) = |H2( f )|2ΓSS( f, τ ) + ΓNN( f, τ ), (13.58)

where ΓSS( f, τ ) is the PSD of the target speech signal and ΓNN( f, τ ) is the PSD of
the noise signal. In this chapter, we assume that the left and right noise PSDs are
approximately the same, i.e., ΓN1N1( f, τ ) 
 ΓN2N2( f, τ ) 
 ΓNN( f, τ ).

Next,we consider theWiener solution between the left and right transfer functions,
which is defined as

HW( f, τ ) = Γ12( f, τ )

Γ22( f, τ )
, (13.59)

where Γ12( f ) is the cross-PSD between the left and right noisy signals. The cross-
PSD expression then becomes

Γ12( f, τ ) = ΓSS( f, τ )H1( f )H
∗
2 ( f ). (13.60)

Therefore, substituting (13.60) into (13.59) yields

HW( f, τ ) = ΓSS( f, τ )H1( f )H∗
2 ( f )

Γ22( f, τ )
. (13.61)

Furthermore, using (13.57) and (13.58), the squared magnitude response of the
Wiener solution in (13.61) can also be expressed as

|HW( f, τ )|2= (Γ11( f, τ )−ΓNN( f, τ ))(Γ22( f, τ )−ΓNN( f, τ ))

Γ 2
22( f, τ )

. (13.62)

Equation (13.62) is rearranged into the following quadratic equation:
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Γ 2
NN( f, τ ) − ΓNN( f, τ ) (Γ11( f, τ ) + Γ22( f, τ ))

+ ΓEE( f, τ )Γ22( f, τ ) = 0, (13.63)

where

ΓEE( f, τ ) = Γ11( f, τ ) − Γ22( f, τ )|HW( f )|2. (13.64)

Consequently, the noise PSD ΓNN( f ) can be estimated by solving the quadratic
equation in (13.63) as follows:

ΓNN( f, τ ) = 1

2
(Γ11( f, τ ) + Γ22( f, τ )) − Γavg( f, τ ), (13.65)

Γavg( f, τ ) = 1

2
{(Γ11( f, τ ) + Γ22( f, τ ))2

− 4ΓEE( f, τ )Γ22( f, τ )}0.5. (13.66)
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