
Chapter 11
Recent Advances in Multichannel Source
Separation and Denoising Based on Source
Sparseness

Nobutaka Ito, Shoko Araki and Tomohiro Nakatani

Abstract This chapter deals with multichannel source separation and denoising
based on sparseness of source signals in the time-frequency domain. In this approach,
time-frequency masks are typically estimated based on clustering of source location
features, such as time and level differences between microphones. In this chapter, we
describe the approach and its recent advances. Especially, we introduce a recently
proposed clusteringmethod, observation vector clustering, which has attracted atten-
tion for its effectiveness. We introduce algorithms for observation vector clustering
based on a complex Watson mixture model (cWMM), a complex Bingham mixture
model (cBMM), and a complex Gaussian mixture model (cGMM).We show through
experiments the effectiveness of observation vector clustering in source separation
and denoising.

11.1 Introduction

When a desired sound is recorded by distant microphones, it is mixed with other
sounds, which often degrade speech quality and intelligibility as well as automatic
speech recognition (ASR) performance. To resolve this problem, techniques such
as source separation, denoising, and dereverberation have been studied extensively.
This chapter focuses on source separation and denoising; see [1] for dereverberation.

Figure11.1 illustrates source separation and denoising we deal with in this paper.
Suppose we record N (≥ 1) source signals in the presence of background noise by
using M (≥ 2) microphones. Our goal is to estimate each source signal from the
observed signals.Note that there is not only amultichannel approach [2–5] usingmul-
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Fig. 11.1 Source separation
and denoising we deal with
in this paper

tiple microphones but also a single-channel approach using a single microphone [6–
9]. A main advantage of the multichannel approach is that it can perform source
separation and denoising with little or even no distortion in the desired source signal.

Especially, multichannel source separation and denoising based on source sparse-
ness [10–20] have turned out to be highly effective and robust in the real world [16,
17, 19, 20]. Various signals including speech are known to have sparseness in the
time-frequency domain: a small percentage of the time-frequency components of a
signal capture a large percentage of its overall energy [10]. The source sparseness
is often exploited by assuming that the observed signals are dominated by a single
source signal or by background noise at each time-frequency point. We call this a
sparseness assumption. The dominating source signal or background noise at each
time-frequency point can be represented by masks. Once we have obtained these
masks, we can estimate the source signals either by applying the masks directly to
the observed signals (masking) [10–14, 16, 17, 19, 21] or by applying beamformers
designed based on the masks [15, 18, 20, 22].

The key to the effectiveness of this approach is accurate estimation of the masks,
which is usually performed based on either spatial information [10–20] or spectral
information [21, 22].We focus on the former,which employs source location features
extracted from the observed signals, such as time and level differences between
microphones. The sparseness assumption implies that the source location features
form clusters, each of which corresponds to a source signal or the background noise.
These clusters can be found by clustering the source location features to obtain
the masks. This is typically done by fitting a mixture model to the features, where
the appropriate design of the features and the mixture model is significant to mask
estimation accuracy.

In this chapter, we introduce a recently proposed clustering method, observation
vector clustering, which has attracted attention for its effectiveness [11, 13, 15–20].
This method has been employed in many evaluation campaigns successfully [17,
20]. We introduce algorithms for observation vector clustering based on a complex
Watson mixture model (cWMM), a complex Bingham mixture model (cBMM), and
a complex Gaussian mixture model (cGMM).

The rest of this chapter is organized as follows. Section11.2 overviews source
separation and denoising based on the observation vector clustering. Section11.3
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introduces algorithms for observation vector clustering based on the cWMM, the
cBMM,and the cGMM.Section11.4 describes experiments, andSect. 11.5 concludes
this chapter.

11.2 Source Separation and Denoising Based
on Observation Vector Clustering

This section overviews source separation and denoising based on observation vector
clustering. Figure11.2 shows the overall processing flow of this method. In mask
estimation, masks are estimated from the observed signals. In source signal estima-
tion, source signals are estimated bymasking or beamforming based on the estimated
masks.

11.2.1 Mask Estimation

Figure11.3 shows the processing flow of mask estimation in Fig. 11.2. In feature
extraction, a source location feature vector is extracted from the observed signals. In
frequency-wise clustering, clustering of the extracted feature vector is performed in
each frequency bin. As a result, posterior probabilities are obtained, which indicate
how much the individual clusters contribute to each time-frequency point. In permu-
tation alignment, the masks are obtained from the posterior probabilities; the details
will be explained later.

Fig. 11.2 Overall processing flow of source separation and denoising based on observation vector
clustering
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Fig. 11.3 Processing flow of mask estimation in Fig. 11.2

Feature Extraction

In feature extraction in Fig. 11.3, a source location feature vector is extracted at each
time-frequency point. Conventionally, time and level differences between micro-
phones were often employed as source location features. In contrast, in the obser-
vation vector clustering, we operate directly on an observation vector composed of
multichannel complex spectra.

Let y(m)

tf ∈ C denote the observed signal at the mth microphone in the short-time
Fourier transform (STFT) domain. Here, m ∈ {1, . . . ,M } denotes the microphone
index; t ∈ {1, . . . ,T } the frame index; f ∈ {1, . . . ,F} the frequency bin index; M
the number of microphones in the array; T the number of frames; F the number of
frequency bins up to the Nyquist frequency. We define the observation vector by

ytf �
[
y(1)
tf y(2)

tf . . . y(M )

tf

]T ∈ C
M , where the superscript T denotes transposition.

We employ the observation vector ytf as the feature vector ztf :

ztf = ytf . (11.1)

In this case, ztf lies in the complex linear spaceCM . Alternatively, we can also employ
a normalized observation vector ytf

‖ytf ‖ as the feature vector ztf :

ztf = ytf
‖ytf ‖ , (11.2)

where ‖ · ‖ denotes the Euclidean norm. In this case, ztf lies on the unit hypersphere
SM−1 in CM centered at the origin, because ‖ztf ‖ = 1 (see Fig. 11.4).

In the following, we describe our modeling of the observation vector ytf . We
consider both noiseless and noisy cases.

First, we consider the noiseless case, where N (≥ 2) source signals are recorded
by the microphones without noise. The number of sources,N , is assumed to be given
throughout this chapter. In this noiseless case, ytf is modeled by ytf = ∑N

n=1 s
(n)
tf h(n)

tf .

Here, s(n)tf denotes the nth source signal in the STFT domain, and h(n)
tf denotes the

steering vector for the nth source. The steering vector h(n)
tf represents the acoustic

transfer characteristics from the nth source to the microphones. Under the sparseness
assumption, the above model can be approximated by ytf = s(ν)

tf h(ν)

tf , where ν = dtf
denotes the index of the source signal that dominates ytf at the time-frequency point
(t, f ). Here, both s(n)tf and h(n)

tf are unknown.
Next, we consider the noisy case, where N (≥ 1) source signal(s) are recorded by

the microphones in the presence of background noise. In this case, ytf is modeled
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Fig. 11.4 Example of the
source location feature
vector for two sources. Here,
C
M has been simplified to

R
3 for illustration

by ytf = ∑N
n=1 s

(n)
tf h(n)

tf + vtf , where vtf denotes the contribution of the background
noise to ytf . Under the sparseness assumption, this model can be approximated by

ytf =
{
s(ν)

tf h(ν)

tf + vtf , if dtf = ν ∈ {1, . . . ,N },
vtf , if dtf = 0.

(11.3)

Here,dtf denotes the indexof the source signal or the backgroundnoise that dominates
ytf at the time-frequency point (t, f ), where the case dtf = 0 corresponds to the
background noise and the cases dtf ∈ {1, . . . ,N } to the source signals. Note that the
background noise vtf is assumed to be contained in ytf at all time-frequency points,
because it is usually not sparse. s(n)tf , h(n)

tf , and vtf are all unknown.

In both cases, our goal is to estimate s(n)tf given ytf .

Frequency-Wise Clustering

In frequency-wise clustering in Fig. 11.3, clustering of the feature vector ztf is per-
formed in each frequency bin. As a result, the posterior probability γ̃

(k)
tf is obtained

for each cluster k, which indicates how much the kth cluster contributes to the time-
frequency point (t, f ).

The clustering can be performed by fitting a mixture model

p(ztf |Θf ) =
∑
k

α
(k)
f p

(
ztf

∣∣d̃tf = k,Θf
)

(11.4)

to ztf . Here, d̃tf denotes the index of the cluster that ztf belongs to; α
(k)
f � P

(
d̃tf =

k
∣∣Θf

)
the prior probability of d̃tf = k; p

(
ztf

∣∣d̃tf = k,Θf
)
the conditional probability

density function of ztf under d̃tf = k;
∑

k the sum over all possible values of k
(i.e.,

∑K
k=1 for the noiseless case;

∑K
k=0 for the noisy case); Θf the set of all model

parameters in (11.4). α(k)
f satisfies

∑
k α

(k)
f = 1 and α

(k)
f ≥ 0.
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Θf is estimated by the maximization of the log-likelihood function

L(Θf ) =
T∑
t=1

ln p(ztf |Θf ), (11.5)

which can be done by the expectation-maximization (EM) algorithm. Once Θf has
been estimated,we obtain the posterior probability γ̃

(k)
tf based onBayes’ theorem [23]

as follows:

γ̃
(k)
tf � P

(
d̃tf = k

∣∣ztf ,Θf
)

(11.6)

= α
(k)
f p

(
ztf

∣∣d̃tf = k,Θf
)

∑
l

α
(l)
f p

(
ztf

∣∣d̃tf = l,Θf
) . (11.7)

Here, γ̃ (k)
tf satisfies

∑
k γ̃

(k)
tf = 1 and γ̃

(k)
tf ≥ 0.

Permutation Alignment

In permutation alignment in Fig. 11.3, the masks are obtained by using the posterior
probabilities γ̃

(k)
tf .

The index k of the clusters and the index n of the source signals and the background
noise do not necessarily coincide, but there is permutation ambiguity between them.
This implies that γ̃

(k)
tf for the same k may correspond to different source signals at

different frequencies. Therefore, we need to permute the cluster indexes k so that each
k corresponds to the same source signal or background noise in all frequency bins,
which is called permutation alignment. As a result of the permutation alignment, we
obtain the masks γ

(n)
tf .

Many methods have been proposed for permutation alignment [16, 24–26]. Espe-
cially, Sawada et al. [16] has proposed an effective method based on correlation of
posterior probabilities γ̃

(k)
tf between frequencies.

11.2.2 Source Signal Estimation

In source signal estimation in Fig. 11.2, source signals are estimated by masking or
beamforming based on the estimated masks.

Masking

When masking is employed, the source signals are estimated by multiplying an
observed signal by the estimated masks γ

(n)
tf as follows:

ŝ(n)tf = γ
(n)
tf y(μ)

tf . (11.8)
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Here, μ denotes the index of the reference microphone.

Beamforming

Here we consider the noisy case. Among many types of beamformers, we focus
on the MVDR beamformer. The MVDR beamformer is especially suitable for the
front end of ASR, because it can perform source separation and denoising without
distorting the desired source signal.

The output of the MVDR beamformer is given by

ŝ(n)tf = h(n)H
tf

(
Φ

y
f

)−1
ytf

h(n)H
tf

(
Φ

y
f

)−1
h(n)
tf

. (11.9)

Φ
y
f denotes the covariance matrix of ytf , which can be estimated by

Φ̂
y
f = 1

T

T∑
t=1

ytf yHtf . (11.10)

In the MVDR beamformer, accurate estimation of the steering vector h(n)
tf is crucial.

Conventionally, h(n)
tf was estimated based on the assumptions of planewave prop-

agation and a known array geometry. These assumptions are often violated in the real
world, and lead to degraded performances of the MVDR beamformer and therefore
ASR. Here we present mask-based steering vector estimation, which does not rely
on these assumptions, and therefore is more robust in the real world.

First, a covariance matrix Ψ
(n)
f corresponding to the nth source signal plus the

background noise is estimated by

Ψ
(n)
f =

∑T
t=1 γ

(n)
tf ytf yHtf∑T

t=1 γ
(n)
tf

, (11.11)

and a noise covariance matrix Ψ
(0)
f is estimated by

Ψ
(0)
f =

∑T
t=1 γ

(0)
tf ytf yHtf∑T

t=1 γ
(0)
tf

. (11.12)

The noise contribution to Ψ
(n)
f is reduced by subtracting Ψ

(0)
f from Ψ

(n)
f . The steering

vector h(n)
tf is estimated as a principal eigenvector of the resultant matrixΨ

(n)
f − Ψ

(0)
f .
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11.3 Mask Estimation Based on Modeling Directional
Statistics

Several mixture models for the feature vector ztf have been proposed to estimate the
masks accurately. These mixture models include the cWMM, the cBMM, and the
cGMM, which are specific examples of the general mixture model (11.4).

11.3.1 Mask Estimation Based on Complex Watson Mixture
Model (cWMM)

Sawada et al. [13, 16] and Tran Vu et al. [15] have proposed to estimate masks based
on modeling the feature vector (11.2) by a complex Watson mixture model (cWMM).
The cWMM is composed of complex Watson distributions of Mardia et al. [27],
and the complex Watson distribution is an extension of a real Watson distribution of
Watson [28].

The probability density function (PDF) of the cWMM is given by

p(ztf ;ΘW,f ) =
∑
k

α
(k)
f pW

(
ztf ; a(k)

f , κ
(k)
f

)
, (11.13)

where pW denotes a complex Watson distribution

pW(z; a, κ) � (M − 1)!
2πMK (1,M ; κ)

exp
(
κ
∣∣aHz∣∣2

)
. (11.14)

Both the complex Watson distribution and the cWMM are defined on the unit hyper-
sphere in CM :

SM−1 �
{
z ∈ C

M
∣∣∣‖z‖ = 1

}
, (11.15)

which is illustrated in Fig. 11.4. Each complexWatson distribution in (11.13) models
the distribution of ztf for a cluster. k denotes the cluster index.

ΘW,f �
{
α

(k)
f , a(k)

f , κ
(k)
f

∣∣∣∀k
}

(11.16)

denotes the set of all model parameters of the cWMM (11.13), where α
(k)
f satisfies

α
(k)
f ≥ 0, (11.17)

∑
k

α
(k)
f = 1, (11.18)
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a(k)
f denotes a parameter representing the mean orientation of ztf for the kth cluster
satisfying

∥∥a(k)
f

∥∥ = 1, (11.19)

and κ ∈ R denotes a parameter representing the concentration of the distribution of
ztf for the kth cluster. H denotes conjugate transposition; K the confluent hyper-
geometric function of the first kind, also known as the Kummer function, which is
defined by the following power series:

K (ξ, η; κ) � 1 + ξ

η

κ

1! + ξ(ξ + 1)

η(η + 1)

κ2

2! + . . . . (11.20)

To analyze the behavior of (11.14) as a function of z, note that (11.14) depends
on z through the term

∣∣aHz∣∣ only and increases[decreases] monotonically as
∣∣aHz∣∣

increases when κ > 0[κ < 0]. Note also that

0 ≤ ∣∣aHz∣∣ ≤ 1, (11.21)

which follows from the Cauchy-Schwartz inequality and ‖z‖ = ‖a‖ = 1. Therefore,
for κ > 0[κ < 0], (11.14) has the global minima[maxima] at

{
z ∈ SM−1

∣∣∣
∣∣aHz∣∣ = 0

}
, (11.22)

increases[decreases] monotonically as
∣∣aHz∣∣ increases, and has the global max-

ima[minima] at {
z ∈ SM−1

∣∣∣∣∣aHz∣∣ = 1
}
. (11.23)

Note that (11.22) equals
{z ∈ SM−1|aHz = 0}, (11.24)

and (11.23) equals
{exp(jθ)a|θ ∈ [0, 2π)}. (11.25)

It is straightforward to see that, for κ = 0, (11.14) is constant (i.e., uniform distribu-
tion on SM−1). Based on the above property, we impose a constraint

κ
(k)
f > 0, (11.26)

which is appropriate for our application.
Once the model parameters ΘW,f have been estimated, the posterior probability

γ̃
(k)
tf can be obtained based on Bayes’ theorem [23] by
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γ̃
(k)
tf ←

α
(k)
f pW

(
ztf ; a(k)

f , κ
(k)
f

)

∑
l

α
(l)
f pW

(
ztf ; a(l)

f , κ
(l)
f

) . (11.27)

To estimate the model parameters ΘW,f , the cWMM (11.13) is fitted to the feature
vector ztf , e.g., based on the maximization of the log-likelihood function

T∑
t=1

ln p(ztf ;ΘW,f ). (11.28)

This is realized by, e.g., an expectation-maximization (EM) algorithm [23], which
consists in alternate iteration of an E-step and an M-step. The E-step consists in
updating the posterior probability γ

(k)
tf by (11.27) using current estimates of themodel

parameters ΘW,f . The M-step consists in updating the model parameters ΘW,f using
the posterior probability γ

(k)
tf , which is realized by applying the following update

rules:

α
(k)
f ← 1

T

T∑
t=1

γ̃
(k)
tf , (11.29)

R(k)
f ←

∑T
t=1 γ̃

(k)
tf ztf zHtf∑T

t=1 γ̃
(k)
tf

, (11.30)

(
λ

(k)
f , a(k)

f

) ← the largest eigenvalue and a corresponding eigenvector of R(k)
f ,

(11.31)

a(k)
f ← a(k)

f∥∥a(k)
f

∥∥ , (11.32)

κ
(k)
f ← Mλ

(k)
f − 1

2λ(k)
f

(
1 − λ

(k)
f

)
[
1 +

√
1 + 4(M + 1)λ(k)

f

(
1 − λ

(k)
f

)

M − 1

]
. (11.33)

See Appendix 1 for derivation of this EM algorithm.
A major limitation of the cWMM lies in that the complex Watson distribution

(11.14) can represent a distribution that is rotationally symmetric about the axis a
(see Fig. 11.5). Indeed, as we have already noted, (11.14) is a function of

∣∣aHz∣∣,
which can be regarded as the cosine of the angle between a and z. However, the
distribution of the feature vector ztf for each cluster is not necessarily rotationally
symmetric, depending on various conditions such as the array geometry and acoustic
transfer characteristics. The cWMM therefore has a limited ability to approximate
the distribution of ztf , which results in degraded mask estimation accuracy and there-
fore degraded performance of source separation and denoising. This motivates us to
consider more flexible distributions, which are described in Sects. 11.3.2 and 11.3.3.
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Fig. 11.5 Illustration of the cWMM and the cBMM for two sources

11.3.2 Mask Estimation Based on Complex Bingham
Mixture Model (cBMM)

To overcome the above limitation of the cWMM, Ito et al. have proposed to estimate
masks based on modeling the feature vector (11.2) by a complex Bingham mixture
model (cBMM) [29]. The cBMM is composed of complex Bingham distributions of
Kent [30], and the complex Bingham distribution is an extension of the real Bingham
distribution of Bingham [31]. The complex Bingham distribution can represent not
only rotationally symmetric but also elliptical distributions on the unit hypersphere
(see Fig. 11.5), and can therefore better approximate the distribution of the feature
vector ztf than the complex Watson distribution. As a result, the cBMM can improve
mask estimation accuracy and therefore source separation anddenoising performance
compared to the cWMM.

The PDF of the cBMM is given by

p
(
ztf ;ΘB,f

) =
∑
k

α
(k)
f pB

(
ztf ;B(k)

f

)
, (11.34)

where pB denotes a complex Bingham distribution

pB
(
z;B)

� c(B)−1 exp
(
zHBz

)
. (11.35)

Here, c(B) denotes the following function defined for a Hermitian matrix B.

c(B) �
[
2πM

M∑
m=1

exp
(
βm

)

∏
l �=m

(
βm − βl

)
]
, (11.36)
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where βm, m = 1, . . . ,M , denote the eigenvalues of B. Both the complex Bingham
distribution and the cBMM are defined on the unit hypersphere SM−1. Each complex
Bingham distribution in (11.34) models the distribution of ztf for a cluster.

ΘB,f �
{
α

(k)
f ,B(k)

f

∣∣∣∀k
}

(11.37)

denotes the set of all model parameters of the cBMM, where B(k)
f is a Hermitian

parameter matrix, which represents not only the location and the concentration, but
also the direction and the shape, of the complex Bingham distribution. Note that the
expression for the normalization factor in (11.35) is valid only when the eigenvalues
of B are all distinct, which is always satisfied in practice.

Once the model parameters ΘB,f have been estimated, the posterior probability
γ̃

(k)
tf can be obtained by

γ̃
(k)
tf ←

α
(k)
f pB

(
ztf ;B(k)

f

)

∑
l

α
(l)
f pB

(
ztf ;B(l)

f

) . (11.38)

As in the cWMM case, ΘB,f can be estimated by the maximum likelihood method
based on the EM algorithm. The E-step consists in updating γ̃

(k)
tf by (11.38) using

the current ΘB,f value. The M-step consists in updating ΘB,f using γ̃
(k)
tf , which is

realized by applying the following update rules:

α
(k)
f ← 1

T

T∑
t=1

γ̃
(k)
tf , (11.39)

R(k)
f ←

∑T
t=1 γ̃

(k)
tf ztf zHtf∑T

t=1 γ̃
(k)
tf

, (11.40)

(
λ

(k)
fm , a(k)

fm

) ← themth largest eigenvalue and a corresponding eigenvector

of R(k)
f , (11.41)

a(k)
fm ← a(k)

fm∥∥a(k)
fm

∥∥ , (11.42)

B(k)
f ←

M∑
m=1

(
− 1

λ
(k)
fm

+ 1

λ
(k)
f 1

)
a(k)
fm a(k)H

fm . (11.43)

See Appendix 2 for derivation of the above algorithm.
Note that the parameter matrix B(k)

f has the following indeterminacy
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pB
(
ztf ;B(k)

f

)
= pB

(
ztf ;B(k)

f + ξI
)
, ∀ξ ∈ R, (11.44)

which follows from ‖ztf ‖ = 1.Here, I denotes theM × M identitymatrix. To remove
this indeterminacy, in the above algorithm, ξ has been determined so that the largest
eigenvalue of B(k)

f equals zero.

11.3.3 Mask Estimation Based on Complex Gaussian
Mixture Model (cGMM)

As an alternative method, Ito et al. have proposed to estimate masks based on mod-
eling the feature vector (11.1) by a complex (time-varying) Gaussian mixture model
(cGMM) [32], inspired by Duong et al. [33]. Note that the cGMMmodels the obser-
vation vector itself in (11.1), instead of its normalized version in (11.2). The cGMM
is composed of complex Gaussian distributions, where the covariance matrices are
parametrized by time-invariant spatial covariance matrices and time-variant power
parameters.

The PDF of the cGMM is given by

p(ztf ;ΘG,f ) =
∑
k

α
(k)
f pG

(
ztf ; 0, φ(k)

tf B(k)
f

)
, (11.45)

where pG denotes a complex Gaussian distribution

pG
(
z; g,Σ)

� 1

πM detΣ
exp[−(z − g)HΣ−1(z − g)], (11.46)

with g being the mean and Σ the covariance matrix. Both the complex Gaussian
distribution and the cGMM are defined in CM . Each complex Gaussian distribution
in (11.45) models the distribution of ztf for a cluster.

ΘG,f �
{
α

(k)
f ,B(k)

f

∣∣∣∀k
}

∪
{
φ

(k)
tf

∣∣∣∀k, ∀t
}

(11.47)

denotes the set of all model parameters of the cGMM, where B(k)
f is a scaled covari-

ance matrix modeling the direction of the observation vector in (11.1) (i.e., the
normalized observation vector (11.2)), and φ

(k)
tf is a power parameter modeling the

magnitude of the observation vector.
Once the model parameters ΘG,f have been estimated, the posterior probability

γ̃
(k)
tf can be obtained by
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γ̃
(k)
tf ←

α
(k)
f pG

(
ytf ; 0, φ(k)

tf B(k)
f

)

∑
l

α
(l)
f pG

(
ytf ; 0, φ(l)

tf B
(l)
f

) . (11.48)

As in the cWMM and the cBMM cases, ΘG,f can be estimated by the maximum
likelihood method based on the EM algorithm. The E-step consists in updating γ̃

(k)
tf

by (11.48) using the current ΘG,f value. The M-step consists in updating ΘG,f using
γ̃

(k)
tf , which is realized by applying the following update rules:

α
(k)
f ← 1

T

T∑
t=1

γ̃
(k)
tf , (11.49)

B(k)
f ←

∑T
t=1 γ̃

(k)
tf ytf yHtf /φ

(k)
tf∑T

t=1 γ̃
(k)
tf

, (11.50)

φ
(k)
tf ← 1

M
yHtf

(
B(k)
f

)−1
ytf . (11.51)

See Appendix 3 for derivation of the above algorithm.

11.4 Experimental Evaluation

Weconducted source separation anddenoising experiments to verify the effectiveness
of observation vector clustering introduced in this chapter.

11.4.1 Source Separation

We first describe the source separation experiment. We assumed that the number of
sources was known. We generated observed signals by convolving 8s-long English
speech signals with room impulse responses measured in an experimental room (see
Fig. 11.6). The sampling frequency of the observed signals was 8kHz; the frame
length 1024 points (128ms); the frame shift 256 points (32ms); the number of EM
iterations 100. The permutation problem was resolved by Sawada’s method [16].
Source signal estimates were obtained based on masking as in (11.8).

Figure11.7 shows the signal-to-distortion ratio (SDR) [34] as a function of the
reverberation timeRT60, and Fig. 11.8 shows an example of source separation results.
The SDRswere averaged over 16 trials with eight combinations of speech signals and
two distances between a loudspeaker and the array center. The azimuths of sources
were 70◦ and 150◦ for N = 2, and 70◦, 150◦, and 245◦ for N = 3.
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Fig. 11.6 Configurations in room impulse response measurement
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Fig. 11.7 Signal-to-distortion ratio (SDR) as a function of the reverberation time RT60

11.4.2 Denoising

Now we move on to the denoising experiment. The performance was measured by
the word error rate (WER) of ASR on the CHiME-3 task [35]. The CHiME-3 task
consists in recognition of WSJ-5K prompts read from, and recorded by, a tablet
device equipped with M = 6 microphones in four noisy public areas: on the bus
(BUS), cafe (CAF), pedestrian area (PED), and street junction (STR). For further
details about the data, we refer the readers to [35].
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Fig. 11.8 Example of source separation results for N = 2 and RT60 = 130ms. The horizontal axis
represents the time, and the vertical the frequency. To focus on low frequencies, which contain
most speech energy, only the frequency range of 0 to 2kHz is shown. The temporal range shown
corresponds to 10s
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Denoising was performed by using MVDR beamformers designed using the esti-
mated masks as in Sect. 11.2.2. Assuming that the background noise arrive from all
directions equally (i.e., noise is diffuse), we set κ

(0)
f = 0 for the cWMM, B(0)

f = 0

for the cBMM, and B(0)
f = I for the cGMM. Permutation alignment was performed

by the method proposed in [36], which is based on a common amplitude modulation
property of speech. The frame length and the frame shift were 64ms and 16ms,
respectively, and the window was hann.

ASR was performed by using a DNN-HMM-based acoustic model with a fully
connected DNN (10 hidden layers) and an RNN-based languagemodel. The acoustic
model was trained on 18 hours of multicondition data.

The word error rate (WER) for the real data of the development set, averaged over
all environments, was as follows:

• no denoising: 14.29%,
• denoising with the cWMM: 10.2%,
• denoising with the cBMM: 8.3%,
• denoising with the cGMM: 9.3%.

We see that the WER has been reduced significantly by mask-based MVDR beam-
forming.

11.5 Conclusions

In this chapter, we described multichannel source separation and denoising based
on source sparseness. Particularly, we introduced recently proposed framework of
observation vector clustering, which have been shown to be effective and robust in the
real world. We also introduced specific algorithms for observation vector clustering,
based on the cWMM, the cBMM, and the cGMM.

Appendix 1 Derivation of cWMM-Based Mask Estimation
Algorithm

Here we derive the cWMM-based mask estimation algorithm in Sect. 11.3.1. The
derivation of the E-step is straightforward and omitted. The update rules for the
M-step is obtained by maximizing the following Q-function with respect to ΘW,f :

Q(ΘW,f ) �
T∑
t=1

∑
k

γ̃
(k)
tf ln

[
α

(k)
f pW

(
ztf ; a(k)

f , κ
(k)
f

)]
(11.52)

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln α

(k)
f −

∑
k

( T∑
t=1

γ̃
(k)
tf

)
lnK

(
1,M ; κ

(k)
f

)
(11.53)
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+
∑
k

κ
(k)
f a(k)H

f

( T∑
t=1

γ̃
(k)
tf ztf zHtf

)
a(k)
f + C

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)[
ln α

(k)
f − lnK

(
1,M ; κ

(k)
f

)
+ κ

(k)
f a(k)H

f R(k)
f a(k)

f

]
+ C.

(11.54)

Here, R(k)
f is defined by

R(k)
f �

∑T
t=1 γ̃

(k)
tf ztf zHtf∑T

t=1 γ̃
(k)
tf

, (11.55)

and C denotes a constant independent of ΘW,f .
The update rule for α

(k)
f is obvious: note the constraint (11.18) and apply the

Lagrangian multiplier method.
The update rule for a(k)

f is obtained by maximizing Q(ΘW,f ) subject to (11.19).

Noting (11.26), we see that this is equivalent to maximizing a(k)H
f R(k)

f a(k)
f subject to

(11.19). From the linear algebra, a(k)
f is therefore a unit-norm principal eigenvector

of R(k)
f .

The update rule for κ
(k)
f is obtained by maximizing

−
( T∑

t=1

γ̃
(k)
tf

)
lnK

(
1,M ; κ

(k)
f

)
+

( T∑
t=1

γ̃
(k)
tf

)
κ

(k)
f a(k)H

f R(k)
f a(k)

f . (11.56)

Since a(k)
f is a unit-norm principal eigenvector of R(k)

f , we have

a(k)H
f R(k)

f a(k)
f = λ

(k)
f , (11.57)

where λ
(k)
f is the principal eigenvalue of R(k)

f . Therefore, we have the following

nonlinear equation for κ
(k)
f :

∂

∂κ
(k)
f

K
(
1,M ; κ

(k)
f

)
= λ

(k)
f K

(
1,M ; κ

(k)
f

)
. (11.58)

Using (3.8) in [37], (11.58) is approximately solved as follows:

κ
(k)
f = Mλ

(k)
f − 1

2λ(k)
f

(
1 − λ

(k)
f

)
[
1 +

√√√√
1 +

4(M + 1)λ(k)
f

(
1 − λ

(k)
f

)

M − 1

]
. (11.59)
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Appendix 2 Derivation of cBMM-Based Mask Estimation
Algorithm

Here we derive the cBMM-based mask estimation algorithm in Sect. 11.3.2. The
update rule for the E-step is obvious. The update rules for the M-step is obtained by
maximizing the following Q-function with respect to ΘB,f :

Q(ΘB,f ) �
T∑
t=1

∑
k

γ̃
(k)
tf ln

[
α

(k)
f pB

(
ztf ;B(k)

f

)]
(11.60)

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln α

(k)
f −

∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln c

(
B(k)
f

)
(11.61)

+
∑
k

tr

[
B(k)
f

( T∑
t=1

γ̃
(k)
tf ztf zHtf

)]

=
∑
k

( T∑
t=1

γ
(k)
tf

)[
ln α

(k)
f − ln c

(
B(k)
f

)
+ tr

(
B(k)
f R(k)

f

)]
. (11.62)

Here, c(B) is defined by (11.36), and R(k)
f by (11.55).

The update rule for α
(k)
f is obvious.

To derive the update rule for B(k)
f , let us denote the mth largest eigenvalue of R(k)

f

by λ
(k)
fm and a corresponding unit-norm eigenvector by v(k)

fm . We assume that λ
(k)
fm ,

m = 1, . . . ,M , are all distinct and positive, which is always true in practice. R(k)
f is

represented as

R(k)
f =

M∑
m=1

λ
(k)
fm v(k)

fm v(k)H
fm . (11.63)

From a result in [38], v(k)
fm , m = 1, . . . ,M , are also the eigenvectors of B(k)

f . Hence,

B(k)
f is represented in the form

B(k)
f =

M∑
m=1

β
(k)
fm v(k)

fm v(k)H
fm . (11.64)

Substituting (11.63) and (11.64) into (11.62) and disregarding terms independent of
β

(k)
fm ,m = 1, . . . ,M , we have

( T∑
t=1

γ
(k)
tf

)[
− ln c

(
B(k)
f

)
+

M∑
m=1

λ
(k)
fm β

(k)
fm

]
. (11.65)
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Therefore, we have
∂ ln c

(
B(k)
f

)

∂β
(k)
fm

= λ
(k)
fm . (11.66)

Using an approximation in [38], this nonlinear equation can be approximately solved
as follows:

β
(k)
fm ∼ − 1

λ
(k)
fm

. (11.67)

Substituting (11.67) into (11.64) and adding amatrix of the form ξI so that the largest
eigenvalue of B(k)

f is zero, we obtain the following update rule for B(k)
f :

B(k)
f ←

M∑
m=1

(
− 1

λ
(k)
fm

+ 1

λ
(k)
f 1

)
v(k)
fm v(k)H

fm . (11.68)

Appendix 3 Derivation of cGMM-Based Mask Estimation
Algorithm

Here we derive the cGMM-based mask estimation algorithm in Sect. 11.3.3. The
derivation of the E-step is straightforward and omitted. The update rules for the
M-step is obtained by maximizing the following Q-function with respect to ΘG,f :

Q(ΘG,f ) �
T∑
t=1

∑
k

γ̃
(k)
tf ln

[
α

(k)
f pG

(
ytf ; 0, φ(k)

tf B(k)
f

)]
(11.69)

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln α

(k)
f − M

T∑
t=1

∑
k

γ̃
(k)
tf ln φ

(k)
tf (11.70)

−
∑
k

( T∑
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γ̃
(k)
tf

)
ln detB(k)

f −
T∑
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∑
k

γ̃
(k)
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φ
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yHtf
(
B(k)
f

)−1
ytf + C

=
∑
k

( T∑
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γ̃
(k)
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)
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(k)
f − M
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∑
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γ̃
(k)
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(k)
tf (11.71)

−
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln detB(k)

f −
∑
k

tr

[(
B(k)
f

)−1
( T∑

t=1

γ̃
(k)
tf

φ
(k)
tf

ytf yHtf

)]
+ C.

Here, C denotes a constant independent of ΘG,f .
The update rule for α

(k)
f is obvious.

From (11.70), the update rule for φ
(k)
tf is given by
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φ
(k)
tf = 1

M
yHtf

(
B(k)
f

)−1
ytf . (11.72)

As for B(k)
f , it should satisfy

−
( T∑

t=1

γ̃
(k)
tf

)(
B(k)
f

)−1 +
(
B(k)
f

)−1
( T∑

t=1

γ̃
(k)
tf

φ
(k)
tf

ytf yHtf

)(
B(k)
f

)−1 = 0. (11.73)

Therefore, the update rule for B(k)
f is

B(k)
f =

∑T
t=1 γ̃

(k)
tf ytf yHtf /φ

(k)
tf∑T

t=1 γ̃
(k)
tf

. (11.74)

References

1. P.A. Naylor, N.D. Gaubitch, Speech Dereverberation. (Springer, 2009)
2. M. Brandstein, D. Ward,Microphone Arrays: Signal Processing Techniques and Applications.

(Springer, 2001)
3. R. Zelinski, A microphone array with adaptive post-filtering for noise reduction in reverberant

rooms, in Proceeding of ICASSP (1988), pp. 2578–2581
4. S. Gannot, D. Burshtein, E. Weinstein, Signal enhancement using beamforming and nonsta-

tionarity with applications to speech. IEEE Trans. SP 49(8), 1614–1626 (2001)
5. S. Doclo, M. Moonen, GSVD-based optimal filtering for single and multimicrophone speech

enhancement. IEEE Trans. SP 50(9), 2230–2244 (2002)
6. S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEETrans. ASSP

ASSP-27(2), 113–120 (1979)
7. Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean square error short-time

spectral amplitude estimator. IEEE Trans. ASSP 32(6), 1109–1121 (1984)
8. R. Miyazaki, H. Saruwatari, T. Inoue, Y. Takahashi, K. Shikano, K. Kondo, Musical-noise-

free speech enhancement based on optimized iterative spectral subtraction. IEEE Trans. ASLP
20(7), 2080–2094 (2012)

9. P. Smaragdis, Probabilistic decompositions of spectra for sound separation, in Blind Speech
Separation, ed. by S. Makino, T.-W. Lee, H. Sawada (Springer, 2007), pp. 365–386

10. Ö. Yılmaz, S. Rickard, Blind separation of speech mixtures via time-frequency masking. IEEE
Trans. SP 52(7), 1830–1847 (2004)

11. S. Araki, H. Sawada, R. Mukai, S. Makino, Underdetermined blind sparse source separation
for arbitrarily arranged multiple sensors. Signal Process. 87(8), 1833–1847 (2007)

12. Y. Izumi, N. Ono, S. Sagayama, Sparseness-based 2ch BSS using the EM algorithm in rever-
berant environment, in Proceeding of WASPAA (2007), pp. 147–150

13. H. Sawada, S.Araki, S.Makino,A two-stage frequency-domain blind source separationmethod
for underdetermined convolutive mixtures, in Proceeding of WASPAA (2007), pp. 139–142

14. M.I. Mandel, R.J. Weiss, D.P.W. Ellis, Model-based expectation-maximization source separa-
tion and localization. IEEE Trans. ASLP 18(2), 382–394 (2010)

15. D.H. Tran Vu, R. Haeb-Umbach, Blind speech separation employing directional statistics in
an expectation maximization framework, in Proceeding of ICASSP (2010), pp. 241–244

16. H. Sawada, S. Araki, S. Makino, Underdetermined convolutive blind source separation via
frequency bin-wise clustering and permutation alignment. IEEE Trans. ASLP 19(3), 516–527
(2011)



300 N. Ito et al.

17. M.Delcroix, K.Kinoshita, T.Nakatani, S. Araki, A.Ogawa, T.Hori, S.Watanabe,M. Fujimoto,
T. Yoshioka, T. Oba, Y. Kubo, M. Souden, S.-J. Hahm, A. Nakamura, Speech recognition in the
presence of highly non-stationary noise based on spatial, spectral and temporal speech/noise
modeling combined with dynamic variance adaptation, in Proceeding of CHiME 2011 Work-
shop on Machine Listening in Multisource Environments (2011), pp. 12–17

18. M. Souden, S. Araki, K. Kinoshita, T. Nakatani, H. Sawada, A multichannel MMSE-based
framework for speech source separation and noise reduction. IEEE Trans. ASLP 21(9), 1913–
1928 (2013)

19. T. Nakatani, S. Araki, T. Yoshioka, M. Delcroix, M. Fujimoto, Dominance based integration of
spatial and spectral features for speech enhancement. IEEE Trans. ASLP 21(12), 2516–2531
(2013)

20. T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita, M. Fujimoto, C. Yu, W.J. Fabian,
M. Espi, T. Higuchi, S. Araki, T. Nakatani, The NTT CHiME-3 system: Advances in speech
enhancement and recognition for mobile multi-microphone devices, in Proceeding of ASRU
(2015), pp. 436–443

21. Y. Wang, D. Wang, Towards scaling up classification-based speech separation. IEEE Trans.
ASLP 21(7), 1381–1390 (2013)

22. J. Heymann, L. Drude, R. Haeb-Umbach, Neural network based spectral mask estimation for
acoustic beamforming, in Proceeding of ICASSP (2016), pp. 196–200

23. C. Bishop, Pattern Recognition and Machine Learning. (Springer, 2006)
24. N. Murata, S. Ikeda, A. Ziehe, An approach to blind source separation based on temporal

structure of speech signals. Neurocomputing 41(1–4), 1–24 (2001)
25. H. Sawada, R. Mukai, S. Araki, S. Makino, A robust and precise method for solving the

permutation problem of frequency-domain blind source separation. IEEE Trans. SAP 12(5),
530–538 (2004)

26. H. Sawada, S. Araki, S. Makino, Measuring dependence of bin-wise separated signals for per-
mutation alignment in frequency-domainBSS, inProceeding of IEEE International Symposium
on Circuits and Systems (ISCAS) (2007), pp. 3247–3250

27. K.V. Mardia, I.L. Dryden, The complex Watson distribution and shape analysis. J. Roy. Stat.
Soc.: Ser. B (Stat. Methodol.) 61(4), 913–926 (1999)

28. G. Watson, Equatorial distributions on a sphere. Biometrika 52, 193–201 (1965)
29. N. Ito, S. Araki, T. Nakatani, Modeling audio directional statistics using a complex Bingham

mixture model for blind source extraction from diffuse noise, in Proceeding of ICASSP (2016),
pp. 465–468

30. J.T. Kent, The complex Bingham distribution and shape analysis. J. Roy. Stat. Soc.: Ser. B
(Methodol.) 56(2), 285–299 (1994)

31. C. Bingham, An antipodally symmetric distribution on the sphere. Ann. Stat. 2, 1201–1205
(1974)

32. N. Ito, S. Araki, T. Yoshioka, T. Nakatani, Relaxed disjointness based clustering for joint blind
source separation and dereverberation, in Proceeding of IWAENC (2014), pp. 268–272

33. N.Q.K. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separa-
tion using a full-rank spatial covariance model. IEEE Trans. ASLP 18(7), 1830–1840 (2010)

34. E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separa-
tion. IEEE Trans. ASLP 14(4), 1462–1469 (2006)

35. J. Barker, R. Marxer, E. Vincent, S. Watanabe, The third ‘CHiME’ speech separation and
recognition challenge: Dataset, task and baselines, in Proceeding of ASRU (2015), pp. 504–
511

36. N. Ito, S. Araki, T. Nakatani, Permutation-free clustering of relative transfer function features
for blind source separation, in Proceeding of EUSIPCO (2015), pp. 409–413

37. S. Sra, D. Karp, The multivariate Watson distribution: maximum-likelihood estimation and
other aspects. J. Multivar. Anal. 114, 256–269 (2013)

38. K.V. Mardia, P.E. Jupp, Directional Statistics. (Wiley, 1999)


	11 Recent Advances in Multichannel Source Separation and Denoising Based on Source Sparseness
	11.1 Introduction
	11.2 Source Separation and Denoising Based  on Observation Vector Clustering
	11.2.1 Mask Estimation
	11.2.2 Source Signal Estimation

	11.3 Mask Estimation Based on Modeling Directional Statistics
	11.3.1 Mask Estimation Based on Complex Watson Mixture Model (cWMM)
	11.3.2 Mask Estimation Based on Complex Bingham Mixture Model (cBMM)
	11.3.3 Mask Estimation Based on Complex Gaussian Mixture Model (cGMM)

	11.4 Experimental Evaluation
	11.4.1 Source Separation
	11.4.2 Denoising

	11.5 Conclusions
	References




