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Preface

We are surrounded by sounds. Such a noisy environment makes it difficult to hear
desired speech and to converse comfortably. This makes it important to be able to
separate and extract a target speech signal from noisy observations for both human–
machine and human–human communication.

Audio source separation is an approach to estimating source signals using
information about their mixtures observed in each input channel. The estimation is
performed by either spatial filtering based on blind audio source localization or
time–frequency filtering based on audio source modeling, or both. The use of audio
source separation in the development of suitable acoustic communication channels
between humans and machines is widespread.

Some books have been published on audio source separation, independent
component analysis (ICA), and related subjects. ICA-based audio source separation
has been well studied in the fields of statistics and information theory, for appli-
cation to a variety of disciplines. In particular, as speech and audio signal mixtures
in a real reverberant environment are generally convolutive mixtures and are
prevalent in many applications, their separation is a much more challenging task.
Recently, nonnegative matrix factorization (NMF) and deep neural networks
(DNNs) have been extensively exploited as other means of audio source separation,
for which excellent performance has been achieved and useful knowledge about
these methods has been acquired.

The goal of this book is to provide a reference to the fascinating topic of audio
source separation for convolved speech mixtures. The editor believes that this book
is of particular value as it comprises reports on cutting-edge research by interna-
tionally recognized scientists and the state of the art. The topic in the individual
chapters of this book was selected to be tutorial in nature with specific emphasis on
providing an in-depth treatment of recent important results.

This book is organized into three sections that approximately follow the main
areas of audio source separation.

Part 1 presents an account of cutting-edge audio source separation based on
nonnegative matrix factorization (NMF). Even with a single microphone, we can
separate a mixture by using the harmonicity and temporal structure of the sources.
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The single-channel NMF approach utilizes frequency diversity to discriminate
between desired and undesired components. The multichannel NMF approach
utilizes frequency diversity and spatial diversity to discriminate between desired
and undesired components.

Part 2 addresses cutting-edge audio source separation based on a deep neural
network (DNN). This is a fascinating technique and can be applied to audio source
separation problems. Seminal examples of single-channel and multichannel
approaches illustrate the bright future of DNNs.

Part 3 describes state-of-the-art audio source separation based on sparse com-
ponent analysis (SCA). Here, the sparseness of speech sources is very useful and
time–frequency diversity plays a key role. In SCA, we can build a probabilistic
framework by assuming a source model and separate a mixture by maximizing the a
posteriori probability of the sources given the observations.

The authors and the editor hope that this book will serve as a guide for a large
audience, inspire many readers, and be a source of new ideas. We hope that it will
be a useful resource for readers ranging from students and practicing engineers to
advanced researchers.

The editor would like to take this opportunity to express his deep gratitude to all
the contributing authors for making this a unique work. Thanks to their cooperation,
editing this book has turned out to be a very pleasant experience. Finally, he is very
grateful to Tom Spicer and his colleagues from Springer, for their encouragement
and kind support.

Tokyo, Japan Shoji Makino
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Chapter 1
Single-Channel Audio Source Separation
with NMF: Divergences, Constraints
and Algorithms

Cédric Févotte, Emmanuel Vincent and Alexey Ozerov

Abstract Spectral decomposition by nonnegative matrix factorisation (NMF) has
become state-of-the-art practice inmany audio signal processing tasks, such as source
separation, enhancement or transcription. This chapter reviews the fundamentals of
NMF-based audio decomposition, in unsupervised and informed settings. We for-
mulate NMF as an optimisation problem and discuss the choice of the measure of fit.
We present the standard majorisation-minimisation strategy to address optimisation
for NMF with the common β-divergence, a family of measures of fit that takes the
quadratic cost, the generalised Kullback-Leibler divergence and the Itakura-Saito
divergence as special cases. We discuss the reconstruction of time-domain com-
ponents from the spectral factorisation and present common variants of NMF-based
spectral decomposition: supervised and informed settings, regularised versions, tem-
poral models.

1.1 Introduction

Data is often available in matrix form V, where columns vn are data samples and
rows are features. Processing such data often entails finding a factorisation of the
matrix V into two unknown matricesW and H such that

V ≈ V̂ def= WH. (1.1)

In the approximation (1.1), W acts as a dictionary of recurring patterns, which is
characteristic of the data, and every column hn of H contains the decomposition or
activation coefficients that approximate every vn onto the dictionary. In the following

C. Févotte (B)
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E. Vincent
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2 C. Févotte et al.

wewill refer toW as the dictionary and toH as the activationmatrix. The datamatrix
V is of dimensions F × N and the common dimension of W and H is denoted K ,
often referred to as the rank of the factorisation (which might differ from the actual
mathematical rank of V).

In the literature, the problem of obtaining the factorisation (1.1) can appear under
other domain-specific names such as dictionary learning, low-rank approximation,
factor analysis or latent semantic analysis. Many forms of factorisation (1.1) have
been considered. The most notorious and ancient one is Principal Component Anal-
ysis (PCA) [1] which simply minimises the quadratic cost betweenV and its approx-
imate WH, where all matrices are treated as real-valued. Independent Component
Analysis (ICA) [2] is a major variant of PCA in which the rows ofH are constrained
to be mutually independent. Sparse coding [3] and many recent dictionary learning
[4] approaches impose some form of sparsity of the activation matrix. Nonnegative
matrix factorisation (NMF), themain topic of this chapter, is dedicated to nonnegative
data and imposes nonnegativity of the factorsW and H.

Early work on NMF has appeared in applied algebra (under various names) and
more notably in chemometrics [5], but it fully came to maturation with the seminal
paper of Lee and Seung, published in Nature in 1999 [6]. Like PCA, NMF consists
of minimising an error of fit between V and its approximate WH, but subject to
nonnegativity of the values of W and H. The nonnegativity of W ensures the inter-
pretability of the dictionary, in the sense that the extracted patterns wk (the columns
ofW) remain nonnegative, like the data samples. The nonnegativity ofH ensures that
WH is nonnegative, like V, but is also shown to induce a part-based representation,
in stark contrast with plain PCA that leads to more global or holistic representations
(where every pattern attempts to generalise as much as possible the whole dataset).
Because subtractive combinations are forbidden, the approximateWhn to every sam-
ple vn can only be formed from building blocks, and thus the estimated patterns tend
to be parts of data.

Following the work of Lee and Seung, NMF became an increasingly popular data
analysis tool and has been used in many fields. In particular, it has led to impor-
tant breakthroughs in text retrieval (based on the decomposition of a bag-of-words
representation [7]), collaborative filtering (completion of missing ratings in users ×
items matrices [8]) or spectral unmixing. In the latter case, NMF is for example used
in chemical spectroscopy [5], remote sensing (for unmixing of hyperspectral elec-
tromagnetic data) [9] and most notably audio signal processing [10]. The seminal
work of Smaragdis and Brown [10] has initiated an important thread of NMF-based
contributions in music transcription, source separation, speech enhancement, etc.
The common principle of all these works is the nonnegative decomposition of the
spectrogram of the observed signal onto a dictionary of elementary spectral compo-
nents, representative of building sound units (notes, chords, percussive sounds, or
more complex adaptive structures). This general architecture is detailed in Sect. 1.2.
It describes in particular popular NMF models and means of obtaining the factori-
sation, by optimisation of a cost function. Then it describes how to reconstruct ele-
mentary sound components from the nonnegative factorisation of the spectrogram.
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This blind decomposition might fail to return adequate and useful results when deal-
ingwith complexmulti-source signals and the system needs to be “guided”with prior
information. Such advanced decompositions for source separation will be covered
in Sect. 1.3. Section1.4 concludes.

1.2 Signal Decomposition by NMF

The general principle of NMF-based audio spectral analysis is depicted in Fig. 1.1. It
shows how NMF has the capability of unmixing superimposed spectral components.
This is in contrast for example with the Gaussian Mixture Model (GMM), a clus-
tering model that is not designed to handle composite data. In the GMM, each data
sample can only be in one among several states. As such, the occurrence of mixed
frames in the data represented in Fig. 1.1 (3rd to 5th samples) would count as one
state, along the two other states corresponding to pure spectra (red and green). The
nonnegativity of H encourages so-called part-based representations. Because sub-
tractive combinations of dictionary elements are forbidden, the dictionaryW tends to
contain elementary building units. This is a welcome property for analysis tasks such
as music transcription or source separation. In contrast, a method such as PCAwould
instead produce an orthogonal dictionary with a more holistic value, that compresses
more efficiently the entire dataset. The difference between PCA, NMF and vector
quantisation is remarkably illustrated in [6] with comparative experiments using a
set of face images. It is shown that where PCA returns eigenfaces (sort of template
faces), NMF can efficiently capture parts of faces (noise, eyes, etc.). Figure1.2 dis-

≈

time

original temporal signal x(t)

spectrogram V W H

frequency
transform

Fig. 1.1 NMF-based audio spectral analysis. A short-time frequency transform, such as the magni-
tude or power short-time Fourier transform, is applied to the original time-domain signal x(t). The
resulting nonnegative matrix is factorised into the nonnegative matricesW andH. In this schematic
example, the red and green elementary spectra are unmixed and extracted into the dictionary matrix
W. The activation matrix H returns the mixing proportions of each time-frame (a column of W)
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Fig. 1.2 NMF applied to the spectrogram of a short piano sequence composed of four notes. (Data
used from [11])

plays the result of NMF applied to the spectrogram of a short piano sequence; see
[10, 11] for further illustration on small-scale examples.

1.2.1 NMF by Optimisation

The factorisation (1.1) is usually sought after through the minimisation problem

min
W,H

D(V|WH) subject toW ≥ 0,H ≥ 0 (1.2)

where the notationA ≥ 0 expresses nonnegativity of the entries of matrixA (and not
semidefinite positiveness), and where D(V|WH) is a separable measure of fit such
that

D(V|WH) =
F∑

f =1

N∑

n=1

d([V] f n|[WH] f n) (1.3)
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where d(x |y) is a scalar cost function.What we intend by “cost function” is a positive
function of y ∈ R+ given x ∈ R+, with a single minimum for x = y.

The quadratic cost function dQ(x |y) = 1
2 (x − y)2 is a popular choice when deal-

ing with real numbers. It underlies an additive Gaussian noise model and enjoys
convenient mathematical properties for estimation and optimisation problems. For
that same reason, it is a less natural choice for nonnegative data because it may gener-
ate negative values. Many other choices have been considered in the NMF literature,
in particular under the influence of Cichocki et al. Two popular families of NMF
cost functions are the α-divergence [12] and the β-divergence [13–15], themselves
connected to the wider families of Csiszár or Bregman divergences, see, e.g., [13, 16]
in the context of NMF. The β-divergence in particular has enjoyed a certain success
in audio signal processing. It can be defined as [17, 18]

dβ(x |y) def=

⎧
⎪⎨

⎪⎩

1
β (β−1)

(
xβ + (β − 1) yβ − β x yβ−1

)
, β ∈ R\{0, 1}

x log x
y − x + y = dK L(x |y), β = 1

x
y − log x

y − 1 = dI S(x |y), β = 0
(1.4)

The limit cases β = 0 and β = 1 correspond to the Itakura-Saito (IS) and generalised
Kullback-Leibler (KL) divergences, respectively. The case β = 2 corresponds to the
quadratic costdQ(x |y). Theβ-divergence forms a continuous family of cost functions
that smoothly interpolates between the latter three well-known cases. As noted in
[11, 15], a noteworthy property of the β-divergence is its behaviour w.r.t. the scale
of the data, as the following equation holds for any value of β:

dβ(λ x |λ y) = λβ dβ(x |y). (1.5)

As noted in [11], this implies that factorisations obtainedwithβ > 0 (such aswith the
quadratic cost or the KL divergence) will rely more heavily on large data values and
less precision is to be expected in the estimation of the low-power components, and
conversely factorisations obtained with β < 0 will rely more heavily on small data
values. The IS divergence (β = 0) is scale-invariant, i.e., dI S(λ x |λ y) = dI S(x |y),
and is the only one in the family of β-divergences to possess this property. Fac-
torisations with small positive values of β are relevant to decomposition of audio
spectra, which typically exhibit exponential power decrease along frequency f and
also usually comprise low-power transient components such as note attacks together
with higher power components such as tonal parts of sustained notes. For example,
[11] presents the results of the decomposition of a piano power spectrogram with
IS-NMF and shows that components corresponding to very low residual noise and
hammer hits on the strings are extracted with great accuracy, while these components
are either ignored or severely degraded when using Euclidean or KL divergences.
Similarly, the value β = 0.5 is advocated by [19, 20] and has been shown to give
optimal results in music transcription based on NMF of the magnitude spectrogram
by [21].
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1.2.2 Composite Models

NMF with the β-divergence as formulated in the previous section fails to give a
probabilistic understanding of the modelling assumptions. As a matter of fact, the
β-divergence acts as a pseudo-likelihood for the so-called Tweedie distribution, a
member of the exponential family, parametrised with respect to its mean, i.e., such
that [22]

E [V|WH] = WH. (1.6)

In particular, the values β = 0, 1, 2 underlie multiplicative Gamma observation
noise (v f n = [WH] f n.ε f n), Poisson noise (v f n ∼ Po([WH]n)) and Gaussian addi-
tive observation noise (v f n = [WH] f n + ε f n), respectively (see the Appendix for
the definitions of the distributions involved).

These probabilistic models characterise the magnitude or power spectrogram V
but do not explicitly characterise the composite structure of sound that is gener-
ally looked after in NMF-based decomposition. As such, the Gaussian Composite
Model (GCM) was introduced in [11] to remedy this limitation. Denoting by x f n the
complex-valued coefficients of the short-time Fourier transform (STFT), the GCM
is defined by

x f n =
∑

k

ck, f n, (1.7)

ck, f n ∼ Nc(0,w f khkn), (1.8)

where Nc(μ, λ) refers to the circular complex-valued normal distribution defined
in the Appendix. The composite structure of sound (i.e., the superimposition of
elementary components) is made explicit by (1.7). Then, (1.8) states that the kth
elementary component ck, f n is the expression of the kth the spectral template wk

amplitude-modulated in time by the activation coefficient hkn . The latent components
may also be marginalised from the model to yield more simply

x f n ∼ Nc(0, [WH] f n). (1.9)

With the uniform phase assumption that defines the circular complex-valued normal
distribution, (1.9) itself reduces to

v f n = [WH].ε f n, (1.10)

where v f n = |x f n|2 (the power spectrogram) and ε f n has an exponential distribution
with expectation 1 (i.e., using the notations defined in the Appendix, ε f n ∼ G(1, 1)).
As such, the GCM is tightly connected to the multiplicative Gamma noise model,
and we may easily find that
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− log p(X|WH) = DI S(|X|2|WH) + cst. (1.11)

(1.11) shows that factorising the power spectrogramV = |X|2 with the IS divergence
is equivalent to performing maximum likelihood estimation ofW andH in the GCM
model defined by (1.7) and (1.8). Given estimates ofW andH (using for example the
algorithmpresented in the following section), reconstruction of the latent components
ck, f n can be donewith any estimator. For example, theMinimumMean Squares Error
(MMSE) estimator is given by the so-called Wiener filter

ĉk, f n = E
[
ck, f n|W,H

] = w f khkn
[WH] f n x f n (1.12)

By construction, the component estimates satisfy x f n = ∑
k ĉk, f n . The estimated

component STFTs Ĉk = {ck, f n} f n can then be inverse-transformed (using a stan-
dard overlap-add procedure) to yield time-domain estimates ĉk(t) such that x(t) =∑

k ĉk(t).
Besides the GCM, other composite interpretations of known NMF models have

been proposed in the literature [23]. For example, the Poisson-NMF model

v f n ∼ Po([WH] f n) (1.13)

is equivalent to

x f n =
∑

k

ck, f n, (1.14)

ck, f n ∼ Po(w f khkn). (1.15)

It turns out the MMSE estimator of the latent components is again given by (1.12).
It is easily shown that

− log p(V|WH) = DKL(V|WH) + cst (1.16)

so that maximum-likelihood estimation ofW andH in model (1.13) is equivalent to
NMF with the generalised KL divergence [11, 24, 25]. A closely related model is
PLSA [7] /PLCA [26] which writes

vn ∼ M

⎛

⎝
∑

f

v f n,Whn

⎞

⎠ , (1.17)

where M(L ,p) refers to the multinomial distribution defined in the Appendix and
the columns ofW andH are constrained to sum to 1. PLSA/PLCA can also be shown
to be equivalent to a generative model that involves multinomial latent components.
PLCA is equivalent to NMF with a weighted KL divergence, such that



8 C. Févotte et al.

− log p(V|WH) =
∑

n

‖vn‖1DKL

(
vn

‖vn‖1 |Whn

)
. (1.18)

Poisson-NMF and PLCA are also popular models for audio spectrogram decom-
position. This is because the KL divergence (used with the magnitude spectrogram
V = |X|) has been experimentally proven to be also a reasonable measure of fit for
audio spectral factorisation [27, 28]. However, from a probabilistic generative point
of view, the Poisson-NMF and PLCAmodels are unreasonable because they generate
integer values that do not comply with the real-valued nature of spectrograms (as
a matter of fact, Poisson-NMF and PLSA/PLCA have been originally designed for
count data [7, 24]).

1.2.3 Majorisation-Minimisation

The very large majority of NMF algorithms resort to block-coordinate descent to
address problem (1.2). This means the variablesW andH are updated in turn until a
stationary point of C(W,H) = D(V|WH) is reached. Because C(W,H) is jointly
non-convex in W and H, the stationary point may be not a global minimum (and
possibly not even a local minimum). As such, initialisation is an important issue in
NMF and running the algorithm from different starting points is usually advised. It is
also easy to see that the updates ofW andH are essentially the same by transposition
(V ≈ WH ⇔ VT ≈ HTWT ). As such we may restrict our study to the update of H
given W:

min
W,H

C(H)
def= D(V|WH) subject to H ≥ 0 (1.19)

For the divergences considered in Sect. 1.2.1, a standard approach to the condi-
tional updates ofW andH is Majorisation-minimisation (MM). Generally speaking,
MM consists in optimising iteratively an easier-to-minimise tight upper bound of the
original objective function C(H) [29].

Denote by H̃ the estimate of H at current iteration. The first step of MM consists
in building an upper bound G(H|H̃) of C(H)which is tight forH = H̃, i.e., C(H) ≤
G(H|H̃) for all H and C(H̃) = G(H̃|H̃). The second step consists in minimising
the bound w.r.t.H, producing a valid descent algorithm. Indeed, at iteration i + 1, it
holds by construction that C(H(i+1)) ≤ G(H(i+1)|H(i)) ≤ G(H(i)|H(i)) = C(H(i)).
The bound G(H|H̃) is often referred to as auxiliary function. The principle of MM
is illustrated in Fig. 1.3.

The question now boils down to whether the construction of such an upper bound,
which is amenable to optimisation, is possible. Fortunately, the answer is yes formany
divergences, and in particular for the β-divergence discussed in Sect. 1.2.1. The trick
is to decompose C(H) into the sum of a convex part and a concave part and to upper-
bound each part separately (the concave part is actually inexistent for 1 ≤ β ≤ 2
where the β-divergence is convex w.r.t. its second argument). The convex part is
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h(*) h(3) h(2) h(1) h(0)

Fig. 1.3 An illustration of theMMprinciple on a unidimensional problem. Given a current estimate
ofW, the blue curve acts as the objective functionC(H) = D(V|WH) to be minimised with respect
to H. The MM approach relies on the iterative minimisation of tight upper bounds (dashed red
curves). The algorithm is initialised at H(0), at which the first upper bound is minimised during the
first iteration to yield H(1), and so on until convergence. (Reproduced from [30])

majorised using Jensen’s inequality (the definition of convexity) and the concave part
is majorised using the tangent inequality. The two separate bounds are summed and
the resulting (convex) auxiliary function turns out to have a closed-form minimiser.
For illustration, we address the case of NMF with the Itakura-Saito divergence. The
more general β-divergence case is addressed in details in [15].

1.2.3.1 A Special Case: NMF with the Itakura-Saito Divergence

Choosing the IS divergence as the measure of fit and addressing the update ofH, our
goal is to minimise the objective function given by

C(H) =
∑

f n

(
v f n

[WH] f n − log
v f n

[WH] f n − 1

)
(1.20)

=
∑

f n

(
v f n

[WH] f n + log[WH] f n
)

+ cst (1.21)

where cst is a termwhich is constantw.r.t.H. As such,C(H) can bewritten as the sum
of a convex term

�

C(H) = ∑
f n

v f n

[WH] f n and a concave term
�

C(H) = ∑
f n log[WH] f n .

By convexity of f (x) = 1/x for x ≥ 0 and Jensen’s inequality it holds that

f (
∑

k

λk xk) ≤
∑

k

λk f (xk) (1.22)

for any xk, λk ≥ 0 such that
∑

k λk = 1. As such, it holds that
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�

C(H) =
∑

f n

v f n
∑

k
w f khkn
λ f kn

λ f kn

≤
∑

f n

v f n

∑

k

λ2
f kn

w f khkn
, (1.23)

for any λ f kn ≥ 0 such that
∑

k λ f kn = 1. Choosing

λ f kn = w f k h̃kn

[WH̃] f n
(1.24)

and denoting by
�

G(H|H̃) the right-hand side of (1.23), it can be easily checked that
�

G(H|H̃) is an auxiliary function for
�

C(H).
Now, by concavity of

�

C(H) and the tangent inequality applied atH = H̃, we may
write

�

C(H) ≤ �

C(H̃) +
∑

kn

[∇ �

C(H̃)]kn(hkn − h̃kn) (1.25)

Using the chain rule, the gradient term is found to be

[∇ �

C(H̃)]kn =
∑

f

w f k

[WH̃] f n
. (1.26)

By construction, the right hand side of (1.25) defines an auxiliary function
�

G(H|H̃)

of
�

C(H). Assembling
�

G(H|H̃) and
�

G(H|H̃) defines an auxiliary function G(H|H̃)

of C(H). The auxiliary function G(H|H̃) is convex by construction. Computing and
cancelling its gradient leads to

hkn = h̃kn

(∑
f w f kv f n[WH̃]−2

∑
f w f k[WH̃]−1

) 1
2

. (1.27)

Because the new update is found bymultiplying the previous updatewith a correcting
factor, the induced algorithm is coined “multiplicative”. Because the correcting factor
is nonnegative, nonnegativity of the updates is ensured along the iterations, given
positive initialisations. Reference [15] proves that dropping the exponent 1

2 in (1.27)
produces an accelerated descent algorithm. The update (1.27) can then be written in
algorithmic form using matrix operations as

H ← H ◦ WT ((WH)◦[−2] ◦ V)

WT (WH)◦[−1] (1.28)

where thenotation◦denotesMATLAB-like entry-wisemultiplication/exponentiation
and the fraction bar denotes entry-wise division. By exchangeability ofW andH by
transposition, the update rule for W is simply given by
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W ← W ◦ ((WH)◦[−2] ◦ V)HT

(WH)◦[−1] HT
(1.29)

The two updates (1.28) and (1.29) are applied in turn until a convergence criterion
is met. The two updates have linear complexity per iteration, are free of tuning
parameters and are very easily implemented.

As detailed in [15], these derivations can easily be extended to the more general
case of NMF with the β-divergence. The resulting updates generalise (1.28) and
(1.29) and can be written as

H ← H ◦ WT ((WH)◦[β−2] ◦ V)

WT (WH)◦[β−1] (1.30)

W ← W ◦ ((WH)◦[β−2] ◦ V)HT

(WH)◦[β−1] HT
(1.31)

1.3 Advanced Decompositions for Source Separation

In the previous sections, we described the elementary principles of signal decompo-
sition by NMF. The direct application of these principles leads to so-called unsuper-
vised NMF, where both the dictionary and the activation coefficients are estimated
from the signal to be separated. This approach yields interesting and useful results on
toy data. For real audio signals, however, each sound source rarely consists of a sin-
gle NMF component. For instance, a music source typically involves several notes
with different pitches, while a speech source involves several phonemes. Various
techniques have been proposed to classify or to cluster individual NMF components
into sources [31, 32]. Nevertheless, several issues remain: the learned components
may overfit the test signal, several sources may share similar dictionary elements,
and the elegance of NMF is lost. These issues have called for more advanced treat-
ments incorporating prior information about the properties of audio sources in general
and/or in a specific signal [33].

1.3.1 Pre-specified Dictionaries

1.3.1.1 Supervised NMF

So-called supervised NMF is the simplest such treatment. It assumes that each source
is characterised by a fixed source-specific dictionary and only the activation coeffi-
cients must be estimated from the signal to be separated [34]. Let us assume that the
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sources are indexed by j ∈ {1, . . . , J } and denote byW j and H j the dictionary and
the activation matrix associated with source j . The mixture spectrogram V can then
be expressed as in (1.1) where

W = (
W1 · · · WJ

)
(1.32)

H =
⎛

⎜⎝
H1
...

HJ

⎞

⎟⎠ (1.33)

result from the concatenation of the source-specific dictionaries and activation matri-
ces. Given the dictionariesW1, …,WJ of all sources, the activation matricesH1, …,
HJ can be estimated by applying, for instance, the optimisation procedure described
in Sect. 1.2. The standard multiplicative update with the β-divergence can be equiv-
alently rewritten in terms of each H j as

H j ← H j ◦ WT
j ((WH)◦[β−2] ◦ V)

WT
j (WH)◦[β−1] . (1.34)

Note that, becauseW is here fixed, in the casewhen the cost function is strictly convex
(1 ≤ β ≤ 2), the resulting update is guaranteed to converge to a global minimum.
Eventually, the complex-valued spectrogram S j of each source can be estimated by
Wiener filtering as

S j = W jH j

WH
◦ X. (1.35)

This is equivalent to extracting the signal corresponding to all NMF components
in Sect. 1.2.2 and summing the extracted signals associated with each source. A
variant of supervisedNMF called Semi-supervised NMF assumes that a pre-specified
dictionary is available for a subset of sources only and that the remaining sources are
jointly represented by an additional dictionary which is estimated from the signal to
be separated together with the activation matrices of all sources [35].

In order to apply supervised or semi-supervised NMF, one must design source-
specific dictionaries in the first place. This is achieved by learning each dictio-
nary from isolated sounds (e.g., individual notes) or continuous recordings from
the desired source. The amount of training data is typically assumed to be large,
so that large dictionaries containing hundreds or thousands of components can be
trained. Three families of nonnegative dictionary learning methods can be found
in the literature, which operate by applying NMF or selecting exemplars from the
training signals, respectively.

Early dictionary learning methods were based on applying NMF to the training
signals [34, 36]. Denoting by V j the spectrogram resulting from the concatenation
of all training signals for source j , this data can be factorised as

V j ≈ W jH j . (1.36)
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The activation matrix H j is discarded, while the dictionary W j is kept and used
togetherwith the dictionaries for the other sources for separation. Thismethod suffers
from one major limitation: unless regularisation such as sparsity is enforced (see
Sect. 1.3.2), the number of dictionary elements must be smaller than the number of
frequency bins. As a consequence, each dictionary element encodes widely different
source spectra and itmay not accountwell for the source characteristics. For instance,
it has been shown that small dictionaries tend to represent the spectral envelope of
the sources but to discard pitch characteristics, which are essential for separation. In
order to address this issue, it was recently proposed to construct the dictionary from
exemplars, i.e., spectra (columns) selected from the full training set V j . The number
of dictionary elements then becomes unlimited and each element represents a single
spectrum at a time, so that all characteristics of the desired source are preserved. If
the training set is not too large,W j = V j itself might be used as the dictionary [37].
Alternatively, the dictionary may be constructed by selecting [38] or clustering [39]
the columns of V j . The selection can be random or exploit prior information about,
e.g., the phoneme or the note corresponding to each frame.

1.3.1.2 Convolutive NMF

In [36, 40, 41], the concept of nonnegative dictionary learning was extended to
spectrogram patches. The original NMFmodel in (1.1) can be rewritten in each time
frame n as

vn ≈ Whn =
K∑

k=1

wkhkn. (1.37)

After replacing each single-frame spectrumwk by a spectrogram patch consisting of
L consecutive frames

Wk = (
wk,0 · · · wk,L−1

)
, (1.38)

this model can be extended into

vn ≈
K∑

k=1

L−1∑

l=0

wk,l hk,n−l . (1.39)

This convolutive NMF model assumes that all frames of a given patch are weighted
by the same activation coefficient: wk,0 is weighted by hkn in time frame n, wk,1 by
the same hkn in time frame n + 1, wk,2 by the same hkn in time frame n + 2, and
so on. The full spectrogram V is therefore approximated as a weighted sum of the
patches Wk .

The set of patches Wk can be partitioned into source-specific dictionaries of
patches, which can be learned usingNMF, exemplar selection, or exemplar clustering
similarly to above [36, 38, 39]. The patch length L is typically on the order of 100–
300 ms. Figure1.4 illustrates a subset of exemplars learned on speech.



14 C. Févotte et al.

Fig. 1.4 Example convolutive NMF dictionary elements (Wk ) learned by random selection of
200ms exemplars over 500 utterances from a given speaker. Notice how each component represents
the spectrogram of a speech phoneme in context

1.3.1.3 Factoring Fine Structure and Envelope

While supervised NMF makes it possible to account for the characteristics of real
audio sources, it is rather constrained and may lead to poor separation when the
training and test data exhibit some mismatches. This led to the idea of fixing
the source characteristics which remain valid in any circumstances and estimating
the other characteristics from the signal to be separated.

HarmonicNMF is a first step in this direction. The underlying idea is to decompose
each dictionary element wk in (1.37) as the sum of narrowband spectral patterns bkm
weighted by spectral envelope coefficients ekm :

wk =
Mk∑

m=1

bkmekm . (1.40)

The narrowband patterns bkm represent the fine structure of the spectrum and they
can be fixed as either smooth or harmonic spectra. In the former case, the patterns
can be fixed as smooth narrowband spectra in order to represent a transient or noisy
signal with a locally smooth spectrum. In the latter case, each dictionary index k is
associatedwith a given pitch (fundamental frequency) and the corresponding patterns
involve a few successive harmonic partials (i.e., spectral peaks at integer multiples
of the given fundamental frequency). This model illustrated in Fig. 1.5 is suitable for
voiced speech sounds (e.g., vowels) and pitched musical sounds (e.g., violin). The
spectral envelope coefficients ekm are not fixed, but estimated from the signal to be
separated. In other words, this model does not constrain the dictionary elements to
match perfectly the training data, but only to follow a certain fine structure.
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Fig. 1.5 Example narrowband harmonic patterns bkm and resulting dictionary element wk

An alternative approach is to factor each dictionary elementwk into the product of
an excitation spectrum and a filter [42]. This so-called excitation-filtermodel adheres
with the production phenomena of speech and most musical instruments, where an
excitation signal is filtered by the vocal tract or the body of the instrument. The latest
evolution in this direction is the multilevel NMF framework of [43], embodied in the
Flexible Audio Source Separation Toolbox (FASST).1 This framework represents
the observed spectrogram as the product of up to eight matrices, which represent the
fine structure or the envelope of the excitation or the filter on the time axis or the
frequency axis. It makes it possible to incorporate specific knowledge or constraints
in a flexible way and it was shown to outperform conventional NMF in [43].

These extensions ofNMF are sometimes grouped under the banner of nonnegative
tensor factorisation (NTF), a generalisation of NMF to multi-dimensional arrays
[44]. Due to the linearity of the models, the NTF parameters can be estimated using
multiplicative updates similar to the ones for NMF.

1http://bass-db.gforge.inria.fr/fasst/.

http://bass-db.gforge.inria.fr/fasst/
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1.3.2 Penalised NMF

1.3.2.1 Sparsity

The original NMF model and the above extensions are well suited for the separation
of music sources, which typically involve several overlapping notes. Speech sources,
however, consist of a single phoneme at a time. NMF can yield disappointing results
on mixtures of speech because it can confuse overlapping phonemes from different
speakers vs the same speaker. The latter phenomenon cannot occur due to the physical
constraints of speech production, but it is possible according to the model. In order
to improve the modelling of speech sources, sparsity constraints must be set on the
activation matrix H [45].

Sparsity signifies that most activation coefficients are very small, and only a
small proportion is large. Therefore, it enforces the fact that a single dictionary
element predominates in each time frame, and the other dictionary elements are
little activated. Sparsity constraints are typically implemented by adding a penalty
function to the NMF objective function in Sect. 1.2.1. The ideal penalty function
would be the l0 norm ‖H‖0, that is the number of nonzero entries in H. This norm
leads to a combinatorial optimisation problem, though, that is difficult to solve. In
practice, the l1 norm ‖H‖1 = ∑K

k=1

∑N
n=1 hkn is generally used instead:

argmin
W,H

D(V|W,H) + μ‖H‖1 (1.41)

where μ > 0 is a tradeoff parameter.
The penalised objective function (1.41) can be minimised w.r.t. H by adding the

constant μ to the denominator of the original multiplicative update [15]:

H ← H ◦ WT ((WH)◦[β−2] ◦ V)

WT (WH)◦[β−1] + μ
. (1.42)

The greater μ, the sparser the solution. Regarding the dictionary W, the classical
update in Sect. 1.2.3 cannot be used anymore since W must be normalised in some
way in order to avoid scaling indeterminacy, e.g., by assuming each wk has a unit
l2 norm ‖wk‖2 = 1. Rescaling W a posteriori changes the value of the penalised
objective function, so that theW resulting from the classical multiplicative update is
not optimal anymore. A multiplicative update accounting for this l2 norm constraint
was proposed in [46, 47]. Alternative sparsity promoting penalties were explored in
[48, 49].

1.3.2.2 Group Sparsity

Group sparsity is an extension of the concept of sparsity, which enforces simultane-
ous activation of several dictionary elements. It has been used for two purposes: to
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automatically group the dictionary elements corresponding to a given phoneme, note
or source, in the case when each phoneme, note or source is represented by multiple
dictionary elements [50], and to automatically find which sources are active among
a pre-specified set of speakers or musical instruments, when the number of sources
and the identity of the active sources are unknown [51].

In the latter case, the full dictionary W can be partitioned into several source-
specific dictionariesW j as in Sect. 1.3.1.1. Group sparsity means that, if source j is
inactive, all entries of the corresponding activation matrix H j must be estimated as
0. This behaviour can be enforced by using the mixed l1,2 norm as a penalty term:

argmin
W,H

D(V|W,H) + μ

J∑

j=1

‖H j‖2 (1.43)

where the l2 norm is defined by ‖H j‖2 = (
∑K

k=1

∑N
n=1 h

2
jkn)

1/2 andμ > 0 is a trade-
off parameter. Many variants of this penalty can be designed to favour specific acti-
vation patterns. For instance, the penalty

∑J
j=1

∑N
n=1 ‖h jn‖2 favours sparsity both

over the sources and over time, but all the dictionary elements corresponding to a
given source can be activated at a given time. Alternative group sparsity promoting
penalties were explored, for instance in [50].

1.3.2.3 Temporal Dynamics

Another family of NMF models aim to model the dynamics of the activation coef-
ficients over time. The simplest such models account for the temporal smoothness
(a.k.a. continuity) of the activation coefficients by constraining the value of hkn given
hk,n−1 using a suitable penalty function. In [45], the following penalised objective
function was proposed:

argmin
W,H

D(V|W,H) +
K∑

k=1

μk

N∑

n=2

(hkn − hk,n−1)
2. (1.44)

Assuming that μk is constant, this penalised objective function can be minimised
w.r.t. H by the following multiplicative update inspired from [45]:

H ← H ◦ WT ((WH)◦[β−2] ◦ V) + 2M ◦ (
−→
H + ←−

H )

WT (WH)◦[β−1] + 2M ◦ (H + ←→
H )

(1.45)

where
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M =

⎛

⎜⎜⎜⎝

μ1 · · · μ1

μ2 · · · μ2
...

. . .
...

μK · · · μK

⎞

⎟⎟⎟⎠ (1.46)

−→
H =

⎛

⎜⎜⎜⎝

0 h11 h12 · · · h1,N−1

0 h21 h22 · · · h2,N−1
...

...
...

. . .
...

0 hK1 hK2 · · · hK ,N−1

⎞

⎟⎟⎟⎠ (1.47)

←−
H =

⎛

⎜⎜⎜⎝

h12 h13 · · · h1N 0
h22 h23 · · · h2N 0
...

...
. . .

...
...

hK2 hK3 · · · hK N 0

⎞

⎟⎟⎟⎠ (1.48)

←→
H =

⎛

⎜⎜⎜⎝

0 h12 · · · h1,N−1 0
0 h22 · · · h2,N−1 0
...

...
. . .

...
...

0 hK2 · · · hK ,N−1 0

⎞

⎟⎟⎟⎠ . (1.49)

The impact ofμk on the resulting activation coefficients is illustrated in Fig. 1.6. The
greater μk , the smoother the coefficients. Regarding the dictionaryW, once again, a
normalisation constraint is required which results in a modified update compared to
the one in Sect. 1.2.3. Alternative probabilistically motivated smoothness penalties
were proposed in [11, 52].

Building upon this idea, nonnegative continuous-state [53] and discrete-state [34,
54] dynamical models have also been investigated. The latter often limit the number
of active dictionary elements at a time and they can be seen as imposing a form of
group sparsity. These models account not only for the continuity of the activations,
if relevant, but also for typical activation patterns over time due to, e.g., the attack-
sustain-decay structure of musical notes or the sequences of phonemes composing
common words. For a survey of dynamical NMF models, see [30].

1.3.3 User-guided NMF

While the above methods incorporate general knowledge about speech and music
sources, a number of authors have investigated user-guided NMFmethods that incor-
porate specific information about the sources in a given mixture signal. Existing
methods can be broadly categorised according to the nature of this information.

A first category of methods exploit information about the activation patterns of the
sources. This information is provided by the user based on listening to the original
signal or the separated signals and visualising the waveform or the spectrogram.
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Fig. 1.6 Activation coefficients hkn estimated for one dictionary element k in a music signal for
β = 0 and different values of the smoothness tradeoff parameter μk in (1.45)

Given the time intervals when each source is inactive, the corresponding activation
coefficients can be fixed to 0, which improves the estimation of the dictionary and
the activation coefficients in the other time intervals [55]. In [56], a more advanced
method is proposed by which the user can tag a given time-frequency region as
active, inactive, or well-separated. The graphical user interface is shown in Fig. 1.7.
This information is then iteratively exploited in order to refine the source estimates
at each iteration. This method was shown to be effective even without using any
isolated training data.

A second category of user-guided methods rely on a (partial) transcription of the
signal, that can take the form of a fundamental frequency curve [57], a musical score
[58], or the speech transcription. This information can be used to restrict the set of
active atoms at a given time, in a similar way as group sparsity except that the set of
active atoms is known in advance.

Finally, a third category of methods rely on a reference signal for some or all
of the sources to be separated. The user can generate reference signals signal by
humming the melody [59] or uttering the same sentence [60]. Reference signals can
also be obtained by looking for additional data, e.g., the soundtrack of the same
film in a different language, the multitrack cover version of a song, additional data
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Fig. 1.7 Graphical user interface for user annotation. Piano is labelled as active (resp. inactive) in
the red (resp. blue) regions

corresponding to the same speaker or the samemusical instrument, or repeated signals
(e.g., jingles, background music) in large audio archives [61].

Many user-guided NMF methods can be expressed under the general framework
of nonnegative matrix partial co-factorisation (NMPcF), which aims to jointly factor
several input matrices into several factor matrices, some of which are shared [62,
63]. For instance, in the case of score-guided or reference-guided separation, the
spectrogram to be separated and the score or the reference can be jointly factored
using different dictionaries but the same activation matrix.

1.4 Conclusions

In this chapter, we have shown that NMF is a powerful approach for audio source
separation. Starting from a simple unsupervised formulation, it makes it possible
to incorporate additional information about the sources in a principled optimisation
framework. In comparison with deep neural network (DNN) based separation, which
has recently attracted a lot of interest, NMF-based separation remains competitive
in the situations when the amount of data is medium or small, or user guidance is
available. These two situations are hardly handled by DNNs today, due to the need
for a large amount of training data and the difficulty of retraining or adapting the
DNN at test time based on user feedback. It therefore comes as no surprise that
NMF is still the subject of much research today. Most of this research concentrates
on overcoming the fundamental limitation of NMF, namely the fact that it models
spectro-temporal magnitude or power only, and enabling it to account for phase. For
an in-depth discussion of this and other perspectives, see [64].
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On a final note, some aspects of NMF for audio signal processing are also covered
in other chapters of the present book (Chaps. 2, 3, 4, 5, 6) and in Chaps. 8, 9, and 16
of [64].
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Standard Distributions

Poisson

Po(x |λ) = exp(−λ)
λx

x ! , x ∈ {0, 1, . . . ,∞} (1.50)

Multinomial

M(x|N ,p) = N !
x1! . . . xK ! p

x1
1 . . . pxKK , xk ∈ {0, . . . , N },

∑

k

xk = N (1.51)

Circular complex normal distribution

Nc (x |μ,Σ) = |π Σ |−1 exp−(x − μ)H Σ−1 (x − μ), x ∈ C
F (1.52)

Gamma

G(x |α, β) = βα

Γ (α)
xα−1 exp(−β x), x ≥ 0 (1.53)

References

1. C.J.C. Burges, Dimension reduction: a guided tour. Found. TrendsMach. Learn. 2(4), 275–365
(2009)

2. P. Comon, Independent component analysis, a new concept ? Sig. process. 36(3), 287–314
(1994)

3. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature 381(6583), 607–609 (1996)

4. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictio-
naries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

5. P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal
utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

6. D.D. Lee, H.S. Seung, Learning the parts of objects with nonnegative matrix factorization.
Nature 401, 788–791 (1999)

7. T. Hofmann, Probabilistic latent semantic indexing, in Proceedings of the 22nd International
Conference on Research and Development in Information Retrieval (SIGIR) (1999)

http://dx.doi.org/10.1007/978-3-319-73031-8_2
http://dx.doi.org/10.1007/978-3-319-73031-8_3
http://dx.doi.org/10.1007/978-3-319-73031-8_4
http://dx.doi.org/10.1007/978-3-319-73031-8_5
http://dx.doi.org/10.1007/978-3-319-73031-8_6


22 C. Févotte et al.

8. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems.
Computers 42(8), 30–37 (2009)

9. N. Dobigeon, J.-Y. Tourneret, C. Richard, J.C.M. Bermudez, S. McLaughlin, A.O. Hero, Non-
linear unmixing of hyperspectral images: models and algorithms. IEEE Sig. Proccess. Mag.
31(1), 89–94 (2014)

10. P. Smaragdis, J.C. Brown, Non-negative matrix factorization for polyphonic music transcrip-
tion, in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA) (2003)

11. C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito
divergence. With application to music analysis. Neural Comput. 21(3), 793–830 (2009)

12. A. Cichocki, H. Lee, Y.-D. Kim, S. Choi, Non-negative matrix factorization with α-divergence.
Pattern Recognit. Lett. 29(9), 1433–1440 (2008)

13. A. Cichocki, R. Zdunek, S. Amari, Csiszar’s divergences for non-negative matrix factorization:
family of new algorithms, in Proceedings of International Conference on Independent Com-
ponent Analysis and Blind Signal Separation (ICA), Charleston SC, USA (2006), pp. 32–39

14. R. Kompass, A generalized divergence measure for nonnegative matrix factorization. Neural
Comput. 19(3), 780–791 (2007)

15. C. Févotte, J. Idier, Algorithms for nonnegative matrix factorization with the beta-divergence.
Neural Comput. 23(9), 2421–2456 (2011)

16. I.S. Dhillon, S. Sra, Generalized nonnegative matrix approximations with Bregman diver-
gences, in Advances in Neural Information Processing Systems (NIPS) (2005)

17. A. Basu, I.R. Harris, N.L. Hjort, M.C. Jones, Robust and efficient estimation by minimising a
density power divergence. Biometrika 85(3), 549–559 (1998)

18. S. Eguchi, Y. Kano, Robustifyingmaximum likelihood estimation, Institute of StatisticalMath-
ematics, Technical report, June 2001, research Memo. 802

19. D. FitzGerald, M. Cranitch, E. Coyle, On the use of the beta divergence for musical source
separation, in Proceedings of the Irish Signals and Systems Conference (2009)

20. R. Hennequin, R. Badeau, B. David, NMF with time-frequency activations to model non
stationary audio events, in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2010), pp. 445–448

21. E. Vincent, N. Bertin, R. Badeau, Adaptive harmonic spectral decomposition for multiple pitch
estimation. IEEE Trans. Audio Speech Lang. Process. 18, 528–537 (2010)

22. V.Y.F. Tan, C. Févotte, Automatic relevance determination in nonnegative matrix factorization
with the beta-divergence. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1592–1605 (2013)

23. C. Févotte, A.T. Cemgil, Nonnegative matrix factorisations as probabilistic inference in com-
positemodels, inProceedings of the 17th European Signal ProcessingConference (EUSIPCO),
Glasgow, Scotland (2009), pp. 1913–1917

24. J.F. Canny, GaP: a factor model for discrete data, in Proceedings of the ACM International
Conference on Research and Development of Information Retrieval (SIGIR) (2004), pp. 122–
129

25. A.T. Cemgil, Bayesian inference for nonnegative matrix factorisation models. Comput. Intell.
Neurosci. 2009,17 (2009). https://doi.org/10.1155/2009/785152. Article ID 785152

26. P. Smaragdis, B. Raj, M.V. Shashanka, A probabilistic latent variable model for acoustic mod-
eling, in NIPS Workshop on Advances in Models for Acoustic Processing (2006)

27. T. Virtanen, Monaural sound source separation by non-negative matrix factorization with tem-
poral continuity and sparseness criteria. IEEE Trans. Audio Speech Lang. Process. 15(3),
1066–1074 (2007)

28. B. King, C. Févotte, P. Smaragdis, Optimal cost function and magnitude power for NMF-based
speech separation and music interpolation, in Proceedings of the IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), Santander, Spain (2012)

29. D.R. Hunter, K. Lange, A tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004)
30. P. Smaragdis, C. Févotte, G. Mysore, N. Mohammadiha, M. Hoffman, Static and dynamic

source separation using nonnegative factorizations: a unified view. IEEE Sig. Process. Mag.
31(3), 66–75 (2014)

https://doi.org/10.1155/2009/785152


1 Single-Channel Audio Source Separation with NMF … 23

31. T. Virtanen, Sound source separation using sparse coding with temporal continuity objective,
in Proceedings of the International Computer Music Conference (ICMC) (2003), pp. 231–234

32. S. Vembu, S. Baumann, Separation of vocals from polyphonic audio recordings, inProceedings
of the International Conference on Music Information Retrieval (ISMIR) (2005), pp. 337–344

33. E. Vincent, N. Bertin, R. Gribonval, F. Bimbot, From blind to guided audio source separation:
how models and side information can improve the separation of sound. IEEE Sig. Process.
Mag. 31(3), 107–115 (2014)

34. E. Vincent, X. Rodet, Underdetermined source separation with structured source priors, in
Proceedings of the International Conference on Independent Component Analysis and Blind
Source Separation (ICA) (2004), pp. 327–334

35. G.J. Mysore, P. Smaragdis, A non-negative approach to semi- supervised separation of speech
from noise with the use of temporal dynamics, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2011), pp. 17–20

36. P. Smaragdis, Convolutive speech bases and their application to supervised speech separation.
IEEE Trans. Audio Speech Lang. Process. 15(1), 1–12 (2007)

37. P. Smaragdis, M. Shashanka, B. Raj, A sparse non-parametric approach for single channel
separation of known sounds, in Proceedings of the Neural Information Processing Systems
(NIPS) (2009), pp. 1705–1713

38. J.F. Gemmeke, T. Virtanen, A. Hurmalainen, Exemplar-based sparse representations for noise
robust automatic speech recognition. IEEE Trans. Audio Speech Lang. Process. 19(7), 2067–
2080 (2011)

39. T. Virtanen, J. Gemmeke, B. Raj, Active-set Newton algorithm for overcomplete non-negative
representations of audio. IEEE Trans. Audio Speech Lang. Process. 21(11), 2277–2289 (2013)

40. P.D. O’Grady, B.A. Pearlmutter, Discovering speech phones using convolutive non-negative
matrix factorisation with a sparseness constraint. Neurocomputing 72(1–3), 88–101 (2008)

41. W.Wang, A. Cichocki, J.A. Chambers, Amultiplicative algorithm for convolutive non-negative
matrix factorization based on squared Euclidean distance. IEEE Trans. Sig. Process. 57(7),
2858–2864 (2009)

42. J.-L. Durrieu, G. Richard, B. David, C. Févotte, Source/filter model for unsupervised main
melody extraction from polyphonic audio signals. IEEE Trans. Audio Speech Lang. Process.
18(3), 564–575 (2010)

43. A. Ozerov, E. Vincent, F. Bimbot, A general flexible framework for the handling of prior
information in audio source separation. IEEETrans. Audio Speech Lang. Process. 20(4), 1118–
1133 (2012)

44. D. FitzGerald, M. Cranitch, E. Coyle, Extended nonnegative tensor factorisation models for
musical sound source separation. Comput. Intell. Neurosci. 2008 (2008). Article ID 872425

45. T. Virtanen, Monaural sound source separation by nonnegative matrix factorization with tem-
poral continuity and sparseness criteria. IEEE Trans. Audio Speech Lang. Process. 15(3),
1066–1074 (2007)

46. J. Eggert, E. Körner, Sparse coding and NMF, in Proceedings of the IEEE International Joint
Conference on Neural Networks (2004), pp. 2529–2533

47. J. Le Roux, F.J. Weninger, J.R. Hershey, Sparse NMF–half-baked or well done? Mitsubishi
Electric Research Laboratories (MERL), Technical report TR2015-023, 2015

48. C. Joder, F. Weninger, D. Virette, B. Schuller, A comparative study on sparsity penalties for
NMF-based speech separation: beyond Lp-norms, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2013), pp. 858–862

49. Y. Mitsui, D. Kitamura, S. Takamichi, N. Ono, H. Saruwatari, Blind source separation based
on independent low-rank matrix analysis with sparse regularization for time-series activity, in
Proceedings of the IEEE International Conference onAcoustics, Speech, and Signal Processing
(ICASSP) (2017)

50. A. Lefèvre, F. Bach, C. Févotte, Itakura-Saito nonnegative matrix factorization with group
sparsity, inProceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (2011), pp. 21–24



24 C. Févotte et al.

51. D.L. Sun, G.J.Mysore, Universal speechmodels for speaker independent single channel source
separation, in Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2013), pp. 141–145

52. O. Dikmen, A.T. Cemgil, Gamma Markov random fields for audio source modeling. IEEE
Trans. Audio Speech Lang. Process. 18(3), 589–601 (2010)

53. C. Févotte, J. Le Roux, J.R. Hershey, Non-negative dynamical system with application to
speech and audio, in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (2013), pp. 3158–3162

54. G. Mysore, M. Sahani, Variational inference in non-negative factorial hidden Markov mod-
els for efficient audio source separation, in Proceedings of the International Conference on
Machine Learning (ICML) (2012), pp. 1887–1894

55. A. Ozerov, C. Févotte, R. Blouet, J.-L. Durrieu, Multichannel nonnegative tensor factorization
with structured constraints for user-guided audio source separation, in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague
(2011), pp. 257–260

56. N.Q.K. Duong, A. Ozerov, L. Chevallier, J. Sirot, An interactive audio source separation frame-
work based on non-negative matrix factorization, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2014), pp. 1567–1571

57. J.-L. Durrieu, J.-P. Thiran, Musical audio source separation based on user-selected F0 track, in
Proceedings of the International Conference on Latent Variable Analysis and Signal Separation
(LVA/ICA) (2012), pp. 438–445

58. S. Ewert, B. Pardo, M. Müller, M.D. Plumbley, Score-informed source separation for musical
audio recordings: an overview. IEEE Sig. Process. Mag. 31(3), 116–124 (2014)

59. P. Smaragdis, G.J. Mysore, Separation by humming: user-guided sound extraction frommono-
phonic mixtures, in Proceedings of the IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA) (2009), pp. 69–72

60. L. Le Magoarou, A. Ozerov, N.Q.K. Duong, Text-informed audio source separation using
nonnegativematrix partial co-factorization, inProceedings of the IEEE InternationalWorkshop
on Machine Learning for Signal Processing (MLSP) (2013), pp. 1–6

61. N. Souviraà-Labastie, A.Olivero, E.Vincent, F. Bimbot,Multi-channel audio source separation
using multiple deformed references. IEEE/ACM Trans. Audio Speech Lang. Process. 23(11),
1775–1787 (2015)
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Chapter 2
Separation of Known Sources Using
Non-negative Spectrogram Factorisation

Tuomas Virtanen and Tom Barker

Abstract This chapter presents non-negative spectrogram factorisation (NMF) tech-
niques which can be used to separate sources in the cases where source-specific
training material is available in advance. We first present the basic NMF formulation
for sound mixtures and then present criteria and algorithms for estimating the model
parameters. We introduce selected methods for training the NMF source models by
using either vector quantisation, convexity constraints, archetypal analysis, or dis-
criminative methods. We also explain how the learned dictionaries can be adapted
to deal with mismatches between the training data and usage scenario. We present
also how semi-supervised learning can be used to deal with unknown noise sources
within a mixture and finally we introduce a coupled NMFmethod which can be used
to model large temporal context while retaining low algorithmic latency.

2.1 Introduction

In many source separation cases, we know for a mixture which is subject to sepa-
ration, what the expected constituent sources will be. For example, in many speech
related applications that require source separation, we know that the target source
is speech, or even a specific speaker. In music related applications we might be
separating particular musical instruments. It is therefore often possible to acquire
example material representative of the target sources in order to develop the separa-
tion algorithms. Nowadays, many source separation algorithms are based onmachine
learning methods, which allow learning source models or separation models auto-
matically from some provided training material. Combining this example material
of target sources and appropriate machine learning algorithms leads to supervised
methods for source separation. Supervised learning has long been used for in audio
content analysis problems such as automatic speech recognition, but recently it has
also become widely used for source separation.
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One popular class of source separation methods is based on non-negative matrix
factorisation. The term matrix factorisation refers to a model where the magnitude
or power spectrum of mixture signals is factored into source components for sep-
aration. The descriptor non-negative is used since the factors are purely additive,
i.e., subtractive components are not used in the factorisation. The NMF model treats
individual sources are the sum of non-negative factors. This makes it suitable for
representing various sound sources, since many sounds such as speech, music, and
environmental sounds are composed of some elementary units: speech consists of
units such as phonemes, syllables and words; music consists of notes played by indi-
vidual instruments, and environmental sound consists of sound events produced by
various sources. Having an additive model for individual sources leads also to an
additive model for mixtures, which enables separation algorithms that are relatively
simple to implement, use, and extend in various ways.

In this chapter we review the use of NMF for separation of known sources. In
Sect. 2.2 we introduce the basic model for representing sound mixtures. In Sect. 2.3
we discuss various types of dictionaries that are used to model individual sources,
and how they can be adapted in realistic usage scenarios. Section2.4 presents the
semi-supervised extension that allows modeling unknown sources within a mixture.
In Sect. 2.5 we present an approach that can be used to achieve low algorithmic
latency, allowing to use NMF in real-time applications.

2.2 NMF Model for Separation of Known Sounds

The basic NMF model represents the magnitude (or power) spectrum vector s j,t
of source j in frame t = 1, . . . , T as the weighted sum of basis vectors bk, j , k =
1, . . . , K j (where K j is the number of basis vectors) as

s j,t =
K j∑

k=1

wk,t, jbk, j . (2.1)

Above, wk,t, j is the weight of the kth basis vector in frame t . The length of spectrum
vectors and basis vectors is F , the number of frequencies in the spectral representa-
tion.

The magnitude (or power) spectrogram matrix S j consisting of the frame-wise
spectra as S j = [

s j,1, s j,2, . . . , s j,T
]
(where T is the number of frames) can therefore

be expressed as the product of two matrices as

S j = B jW j , (2.2)

where B j = [
b1, j ,b2, j , . . . ,bK , j

]
is the basis matrix and [W j ]kt = wk,t, j is the

weight matrix. In the NMF model, both the basis vectors and the weights, and
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Fig. 2.1 In the NMF model, the magnitude spectrum matrix X modeled as the product of basis
matrixB consisting of basis spectra of components, and weight matrixW consisting of the temporal
activations of the components

therefore also the basis matrix and weight matrix, are entry-wise non-negative. The
model is illustrated in Fig. 2.1.

The magnitude (or power) spectrum of the mixture signal xt in frame is modeled
as the sum of magnitude spectra of sources as

xt =
J∑

j=1

s j,t , (2.3)

where J is the number of sources. Therefore, the model for the mixture magnitude
(or power) spectrum is

xt =
J∑

j=1

K j∑

k=1

wk,t, jbk, j , (2.4)

and the model for the magnitude (or power) spectrogram

X = BW, (2.5)

whereB = [
B1,B2, . . . ,BJ

]
andWT = [

WT
1 ,WT

2 , . . . ,WT
J

]
. This NMFmodel for

sound mixtures is illustrated in Fig. 2.2
In the scenario where sources are known, the basis matrix B is estimated at the

training stage using isolated material from each source, and only weight matrixW is
estimated based on the mixture. There are various methods for estimating the basis
matrix which are discussed in Sect. 2.3, and also also various criteria for estimating
the weights that are discussed in Sect. 2.2.1.

Once the parameters in (2.5) have been estimated, we can design a spectrogram
mask matrix

M j = B jW j

BW
, (2.6)
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Fig. 2.2 When NMF is used to model a mixture of multiple sources, each source is represented by
the NMF model, and the mixture is the sum of the individual source models. This figure illustrates
an example mixture of two sources modeled with NMF

which can be used to separate source j by entry-wisemultiplying the complex-valued
spectrogram of the mixture X̃ as

S̃ j = X̃ ⊗ M j (2.7)

to obtain an estimate of the complex-valued spectrogram S̃ j of source j .
All the above processing is done in the short-time spectrum domain. Typical short-

time spectrum representations are the short-time Fourier transform (STFT) spectrum
and the mel spectrum. The STFT spectrum is obtained by dividing the input signal
into windowed frames, and calculating the discrete Fourier transform (DFT) for
each frame. The magnitude spectra are obtained by taking the absolute value of each
STFT bin. Once complex-valued STFT domain separation has been done using the
masking expressed in (2.7), the masked complex spectrum is converted back to the
time domain by calculating the inverse discrete Fourier transform, where overlap-
add techniques are used to reconstruct audio signal in overlapping frames. NMF can
also be used with other representations. For example, we can do NMF in the mel-
resolution spectral domain. By interpolating the obtained the mel-resolution mask
to linear STFT resolution, source separation on mel-resoultion material can then be
done in the STFT domain.

2.2.1 Estimation Criteria and Algorithms

Various criteria can be used for estimating the NMF model parameters . Generally
the criteria can be formulated as minimisation of an objective function

f (W) = D(X|BW) + h(W) (2.8)
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which consists of divergence D between the observed mixture magnitude spectro-
grammatrixX and the model BW, and an optional regularisation function h that can
impose constraints on W.

The divergence D is calculated entry wise as

D(X|V) =
F∑

f =1

T∑

t=1

d([X] f,t |[V] f,t ), (2.9)

where d is the divergence at an individual time-frequency point. The functions typi-
cally used for d reach their minimum value zero when X f,t = [V] f,t . In audio signal
processing, commonly used divergences include the generalised Kullback-Leibler
divergence

dK L(x, v) = x log(x, v) − x + v (2.10)

and Itakura-Saito divergence

dI S(x, v) = x/y − log(x/yv) − 1 (2.11)

both of which have been found to produce good results in audio processing
[1, 2]. The choice of divergence affects the estimatedweights significantly—different
divergences produce different weights.

In other applications of NMF, the squared Euclidean distance d(x, v) = (x − v)2

is often used, but it is not optimal for audio applications because of the large dynamic
range of sound intensities and non-linearity of perception not mapping well to the
properties of Euclidean distance. There is also a broader family of β-divergences [3],
and the above-mentioned divergences are specific instances it.

A commonly used regularisation function h(W) is the imposition of sparsity,
which means favoring solutions where most of the entries in W are zero. In order
to obtain a function to enforce sparsity which can be easily minimised, the L1-norm
calculated as

||W||1 =
K∑

k=1

T∑

t=1

|[W]k,t | (2.12)

is typically used. Since W is entry-wise non-negative, the absolute value operator
is not needed, but we include it to the above equation to match with the general
definition of L1 norm. L1 is typically weighted by scalar λ, i.e. h(W) = λ||W||1.
This parameter λ needs to be tuned to obtain the desired sparsity.

Within the NMF framework, regulariation functions other than sparsity have also
been used. These are more commonly used at the dictionary learning stage though,
where the basis vectors are also learned. These methods are discussed in more detail
in Sect. 2.3.

There exist various algorithms for minimising the objective function f . The most
commonly used algorithms are based on so-called multiplicative updates, where the
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weights to be estimated are first initialised with positive values, and then iteratively
estimated by an update rule where the previous estimates are multiplied with a non-
negative correction term.

For example in the case of a function that consists of the generalised Kullback-
Leibler divergence and L1 norm, i.e.

f (W) = DKL(X|BW) + λ||W||1, (2.13)

the update rule is given as

W ← W ⊗ BT X
BW

BT 1F×T + λ
, (2.14)

where matrix divisions are done entry-wise, ⊗ is entry-wise product of matrices,
and 1F×T is a all-one matrix of size F times K . The above update rule requires a
large number of iterations (e.g. tens or hundreds) in order to converge, depending on
the sizes of the matrices. Its benefit is the simplicity: the above update rule is very
easy to implement and extend in various ways. It can also be easily sped up by using
parallel computing architectures.

More efficient algorithms forminimising the objective also exist. For example, the
active-set Newton method in [4] is based on the property that most of the activation
weights will be zero, and then iteratively finds the set of optimal components and
estimates their weights using the Newton method. It can produce significantly faster
convergence in comparison to the multiplicative updates, especially when a large
number of basis vectors are used.

2.3 Sound Dictionary Learning and Adaptation

The performance of NMF-based source separation methods is greatly affected by
the basis vectors used to represent each source. There are multiple methods for
obtaining the basis vectors. In source separation, basis vectors should be such that
they present their target sourcewithin themixture, and do not represent other sources.
For example, an identity matrix is not a good basis matrix, since even though it
could perfectly represent the target source, it can also represent all other sources in
the mixture. In addition to the representation capabilities, there may be also other
requirements for the basis matrices. For example, there are typically constraints on
the number of basis vectors, since it directly affects the computational complexity
of algorithms and their memory usage.

In this section we present selected methods for learning basis matrices, or, dic-
tionaries. Sound dictionary learning methods can be roughly divided into two cat-
egories, which we here group into generative and discriminative. Generative dic-
tionaries are developed to efficiently model each target source separately, whereas
discriminativemethods are optimised for their separation capability.We review some
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of the common generative and discriminative methods in the following sections. All
the methods presented assume that the dictionary size, i.e., the number of basis vec-
tors is defined by the developer of the methods. Even though somemethods exists for
automatically estimating the dictionary size, the sizes are most commonly defined
by using some prior knowledge or by developer experimentation with different dic-
tionary sizes.

2.3.1 Generative Dictionaries

Generative sound dictionary learning methods operate by using a set of training
instances of spectrum vectors for the target source. Since generative dictionaries are
trained separately for each source, and in order to simplify the notation, we will not
use the source index j in this section but represent the training spectrum vectors
of the target source with vectors xn , n = 1, . . . , N . The general goal of generative
dictionary learning is to estimate a set of basis vectors bk , k = 1, . . . , K , such that
the NMF model

xn ≈
K∑

k=1

bkwk,n, wk,n ≥ 0 (2.15)

represents the training instances well. Even when generative dictionaries are used,
there are also other requirements for producing the dictionaries, such as minimising
the likelihood that each one represents the other sources.

The simplest possible dictionary learning method is based on randomly selecting
a subset of training spectrum vectors xn , and using them directly as basis vectors, or,
dictionary atoms. Atoms that are instances from the training data are called exem-
plars. Use of exemplars can provide a good separation performance, provided that
a large number of atoms are used [5–7]. In addition to simplicity, exemplar-based
dictionaries can potentially represent the underlying distributionwithin training sam-
ples more accurately: especially if any non-audio information related to the training
data not represented by the training samples is relevant in source separation, any
dictionary learning method other than random sampling is likely to lead to a biased
estimate of the underlying source distributions. A possible benefit of exemplar-based
dictionaries is that each atom corresponds to a real audio spectrum, whereas other
dictionary learning methods may produce basis vectors that do not actually corre-
spond to any realistic spectra. Random sampling has the drawback that it typically
requires significantly larger dictionaries in comparison to other methods to achieve
equivalent source separation performance.

The size of exemplar-based dictionaries can be reduced by applying clustering on
the training samples. Clustering operates by finding a set of cluster center vectors bk
(which correspond to atoms in our cases), and assigning each training instance n to
cluster kn so that the overall distance between training samples and cluster centers
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N∑

n=1

d(xn||bkn ) (2.16)

is minimised. Above, d(xn||bkn ) is a divergence measure between training sample xn
and cluster center bkn . We can for example do clustering with the same criterion as
NMF, and use the Kullback-Leibler divergence as the function d. A clustering algo-
rithm minimising the overall Kullback-Leibler divergence between training samples
and cluster centers is given in Algorithm 1.

Algorithm 1 Clustering algorithm for minimising the Kullback-Leibler divergence
between training samples xn and cluster centers bkn
Require: Input sample vectors xn , n = 1, . . . , N are entry-wise non-negative. The number of clus-
ters K is specified by the developer.

Initialise cluster centers bk , k = 1, . . . , K by choosing a random set of training sample vectors
xn and assigning each of them to be a cluster center.
repeat
for n = 1 to N do
Find cluster index kn which minimises the sample-cluster distance d(xn ||bkn ) in (2.16)

end for
for k = 1 to K do
Calculate new cluster center bk as the mean of training samples xn for which kn = k

end for

until The indexes of the clusters have not changed.
return Cluster centers bk

A natural extension to the clustering criterion in (2.16) is to use a linear combi-
nation of atoms to approximate each training sample, instead of individual cluster
centres. This criterion can be written as

N∑

n=1

d(xn||
K∑

k=1

bkwk,n), wn,k ≥ 0 ∀ k, n (2.17)

wherewk,n are the weights of the linear combination. As we can see,this is equivalent
to the basic NMF model in (2.5). Similarly to the regular NMF, various constrains
can be imposed on the weights w of the linear combination. For example, we can
restrict ourselves to convex combinations by constraining the sum of weights to be
equal to one as

N∑

n=1

d(xn||
K∑

k=1

bkwk,n), wk,n ≥ 0 ∀ n, k;
K∑

k=1

wk,n = 1 ∀ n. (2.18)



2 Separation of Known Sources Using Non-negative Spectrogram Factorisation 33

Dictionary learning with the pure linear combination criterion in (2.17) can be per-
formed with basic NMF. The standard algorithm for minimising the generalised
Kullback-Leibler using multiplicative update rules is given in Algorithm 2, where
we use matrixX = [

x1, . . . , xN
]
to denote all the training samples, dictionary matrix

B = [
b1, . . . ,bK

]
to denote all the basis vectors, and weight matrix [W]kn = wk,n

to denote all the weights. For the case where the generalised Kullback-Leibler

Algorithm 2 NMF algorithm for dictionary learning
Require: Input sample matrix X is entry-wise non-negative. The number of atoms K is specified
by the developer.
Initialise basis matrix B and weight matrixW with random positive values.
repeat

Update weight matrix asW ← W ⊗ BT X
BW

BT 1F×N .

Update dictionary matrix as B ← B ⊗ X
BWWT

1F×NWT .
until The parameters converge.
return Basis matrix B

divergence isminimised, and convexity constraints placed on theweights as in (2.18),
the update rule should be changed and weights projected to fulfill the convexity con-
straints, leading to Algorithm 3. When only a small dictionary is used, NMF and

Algorithm 3 NMF algorithm for dictionary learning with convexity constraints
Require: Input sample matrix X is entry-wise non-negative. The number of atoms K is specified
by the developer.
Initialise basis matrix B and weight matrixW with random positive values.
Normalise each column of W to sum to one by scaling.
repeat

Update weight matrix asW ← W ⊗ BT X
BW +1K×FBW

BT 1F×N+1K×FX
.

Normalise each column of W to sum to one by scaling.

Update dictionary matrix as B ← B ⊗ X
BWWT

1F×NWT

until The parameters converge.
return Basis matrix B

NMF with weight convexity constraints can lead to good separation results. How-
ever, additional constraints must be used when learning large dictionaries, since
without them the approximation error can be minimised with dictionaries such as
B = I which does not perform any separation.

One of the generic problems with generative dictionary models that are based on
linear combinations, is that the learned dictionaries can be too loose, i.e., the convex
hull spanned by the basis vectors is unnecessarily large, and may overlap with the
subspace of other sources. Applying sparsity constraints or other regularisations can
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partially deal with this issue, but fundamentally more restrictive models can also be
used. Specifically, we can constrain the dictionary atoms to convex combinations of
training samples, i.e., by defining them as

bk =
N∑

n=1

xncn,k, cn,k ≥ 0 ∀ n, k;
N∑

n=1

cn,k = 1 ∀ n. (2.19)

where cn,k are theweights of the convex combination. Together with themodel where
each training sample is represented as a linear combination of atoms (2.18), this leads
to approximation of the training data matrix with the model

X ≈ XCW, (2.20)

where matrix [C]nk = cn,k represents the weights of the convex combination of train-
ing samples in (2.19). Both matrices C and W are entry-wise non-negative, and the
sum of each of their columns is constrained to be one. The dictionary matrix is given
simply as B = XC. This model, archetypical analysis originally proposed in [8],
allows the learning of a set of basis vectors which produces a tight convex hull, and
has been shown to produce better separation results than NMF and VQ [9].

Matrices C and W can be again estimated by minimising a criterion such as the
Kullback-Leibler divergence between the observations and the model. The standard
multiplicative update rules [9] that are derived from thepartial derivative of the chosen
divergence with respect to each model parameter do not obey the unity-column-sum
constraints, and we found out that using the normal multiplicative updates rules
followed by a re-scaling to obey to constraint produced suboptimal results. A model
that automatically takes into account the unity-column-sum constraint can be written
as

X ≈ XC · diag(11×NC)−1W · diag(11×KW)−1, (2.21)

where diag(·) is a diagonalmatrix having its input vector values on its diagonal. In this
model, matrices C · diag(11×NC)−1 andW · diag(11×KW)−1 are now automatically
normalised to unity column sum.

By calculating the partial derivative of the Kullback-Leibler divergence with
respect to model parameters C and W in (2.21), distributing the partial derivative
to terms that are either positive or negative as in [1, 10], and by using the identities
11×NC = 11×K and 11×KW = 11×N (because of the normalisations applied within
the algorithm), we obtain Algorithm 4.

Examples of dictionaries learned with different methods discussed above (cluster-
ing, NMF with weight convexity constraints, and archetypical analysis) in a simple
two-dimensional case are illustrated in Fig. 2.3. It can be seen that the atoms learned
by NMF lie outside the subspace of the observations. The convex hull spanned by
the NMF basis vectors covers all the observations, but the hull is rather large, and
when used to represent a mixture of sounds the NMF dictionary may also represent
other sources. The atoms learned by clustering lie within inside the subspace of the
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Algorithm 4 Dictionary learning algorithm based on archetypical analysis
Require: Input sample matrix X is entry-wise non-negative. The number of archetypes K is spec-
ified by the developer.
Initialise observation weight C and atom weight W matrices with random positive values.
Normalise each column of C and W to sum to one by scaling.
repeat
Calculate basis matrix as B = CW.

Update weight matrix asW ← W ⊗ BT X
BW +1K×KBW
BT 1+1K×KX

.
Normalise each column of W to sum to one by scaling.
Calculate basis matrix as B = CW and ratio matrix as R = X

XCW .

Update basis weight matrix as C ← C ⊗ XTRWT +1T×T ((1T×FB)⊗WT )

XT 1F×TWT +1T×T ((RB)⊗WT )
.

Normalise each column of C to sum to one by scaling.
until The parameters converge.
return Basis matrix B = CW.

Fig. 2.3 Illustration of dictionaries learned by different methods in a simple two-dimensional case.
Black dots represent two-dimensional observations x used to learn the dictionaries. Circles and
crosses represent the two-dimensional basis vectors learned by different algorithms, and they are
connected with lines for visualisation. Archetypal analysis learns a convex hull, and almost all the
training samples are inside the hull. The convex hull spanned by the NMF basis vectors contains
all the training samples, but the hull is not tight. Vector quantisation learns basis that are within the
distribution of the training samples



36 T. Virtanen and T. Barker

observations, and they are likely to represent the target source in a mixture, provided
that the target source observations are close to cluster centers. Observations further
away from them may be represented by atoms of another source. The atoms learned
by archetypical analysis form a relatively tight convex hull that contains most of the
observations.

2.3.2 Discriminative Dictionaries

As we saw from the previous subsection, generative dictionaries provide several
alternatives to learn dictionaries to model individual sources, but they are not neces-
sarily optimal for source separation. Discriminative dictionaries offer the possibility
to optimise the dictionaries for the separation task. In order to achieve this, the dic-
tionary learning stage needs to be aware of the competing sources, and the learning
needs to be either jointly for two sources. Discriminative dictionary learning can be
based mixture or isolated sources.

The methods in [11, 12] learned dictionaries using mixtures of sounds. Similarly
to otherNMF approaches, they estimated the parameters byminimising a divergence,
but in their approach the divergence was measured between the ground truth target
source (which is known at the training stage), and a reconstructed source. This kind
of objective is somewhat more difficult to optimise in comparison to the typical
criteria used to estimate NMFmodel parameters, and therefore, [11] used a two-stage
approach, where one set of dictionaries was first used to obtain the weights, and then
another set of dictionaries was used to reconstruct the target source. Sprechmann
et al. [12] used a single-stage approach where a stochastic gradient algorithm was
used to estimate dictionaries.

There are also methods that aim at improving the separation capability of dictio-
naries by enforcing the dissimilarity of dictionaries of two sources by using additional
regularisations such as inter-source dictionary correlation [13]. Here the dictionaries
are trained using isolated material of each source, but the dictionary training stage
needs to have the knowledge about the other source dictionaries.

2.3.3 Dictionary Adaptation

In practical source separation scenarios, there is a mismatch between the audio mate-
rial used to develop a system and the target audio at the actual usage scenario. For
example, the training material may be recorded in different acoustic environment
from the actual usage stage, or different microphones can used. Differences in the
impulse responses between the source and the microphone, as well as differences in
the impulse responses of microphones can be compensated with linear filters, which
are typically assumed to be time-invariant.
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Linear filtering in time-domain corresponds to point-wise multiplication in the
frequency domain. We can modify the basic NMF model for sound mixtures in (2.4)
by adding source-specific compensation matricesH j to get the model, introduced in
[14],

x̂t =
J∑

j=1

H j

K j∑

k=1

wk,t, jbk, j . (2.22)

Above, H j , j = 1, . . . , J are diagonal matrices with the magnitude response of the
compensating filter for source j on the diagonal. The compensation filter does not
need to be known in advance, but it can be estimated using the same principles
with the other NMF models, by minimising a divergence between the model and the
observations. An algorithm that minimises the Kullback-Leibler divergence between
the observations and the model (2.22) is given in Algorithm 5.

Algorithm 5 Algorithm for estimating basis vector weights and channel compensa-
tion filters.
Require: Observation matrix X and basis vector matrix B are entry-wise non-negative.
Initialise weight matricesW j with random positive values. Initialise channel compensationmatri-
ces H j with random positive values on the diagonal, and the rest of the entries to zero.
repeat
Calculate model X̂ according to (2.22)
for j = 1 to J do

Update weight matrix asW j ← W j ⊗ (H jB j )
T X

X̂
(H jB j )

T 1F×T .

end for
Calculate model X̂ according to (2.22)
for j = 1 to J do

Update compensation matrix as H j ← H j ⊗
X
X̂

(B jW j )
T

1F×T (B jW j )
T .

end for
until The parameters converge.
return Estimated weights W and source-specific channel compensation filter matrices H j , j =
1, . . . , J .

Where a high frequency resolution is used, the learned compensation filters have
a relatively high number of parameters. This may cause problems when the amount
of observations used to do the compensation, or the dictionary size is small since
the compensation filter itself may start modeling the source. This problem can be
alleviated somewhat by constraining the compensation filter to a linear, low-rank
model.
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2.4 Semi-supervised Separation

There are often cases where we have information about one source within a mixture,
however can not make assumptions about another. For example, in speech enhance-
ment, we can assume that one source will be speech, but the interfering source could
be any type of unknown noise, so cannot be modelleled explicitly with a pre-existing
dictionary. Here, we can use semi-supervised NMF techniques, which make use of
a pre-learned dictionary for the known source, but estimate the parameters of the
unknown source at the time of separation. We can consider semi-supervised sepa-
ration from the point of view of speech enhancement, where the known source is
speech. We will refer to these unknown sources as noise sources from here in, and
continue the explanation of semi-supervisedNMF from this point of view throughout
the rest of this section. These approaches are however much more general, and can
of course be used in cases with any type of target signal, not just speech.

In NMF for speech enhancement, as with supervised cases, the aim of the factori-
sation is that the dictionary for each source effectively models the true contributions
to the mixture, from that source. Each time-frequency point in the mixture spectro-
gram can then be apportioned to the contributing sources in the correct ratio and
successful enhancement can occur.

Assuming a well-constructed dictionary for the mixture speech, the noise model
should adapt to capture latent structure in only the remaining portion of the mixture,
without over-fitting to represent the mixture entire.

Noise can be modelled in the spectrogram as the spectral atoms adapt to fit the
residual portion of the mixture which is not approximated by the known source dic-
tionary. The portions of a dictionary relating to speech and noise can then be defined
as Bs and Bn respectively. The pre-trained atoms in Bs do not change during fac-
torisation, whilst Bn is randomly initialised, and updated to minimise cost functions
outside of the contributions modelled by Bs (see Fig. 2.4) .

X̂ = Bs Bn Ws

Wn

updated

updated

fixed

•

Fig. 2.4 Initialisation and update of weights and parts of the dictionary in semi-supervised NMF.
Bs is initialised from training material, whilst Bs , Ws and Wn should be initialised with random
non-negative values
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The NMF Model for the target matrix

X̂ = BW (2.23)

in the semi-supervised case described here becomes

X̂ = [
Bs Bn

] [
Ws

Wn

]
(2.24)

to denote portions of each matrix pertaining to either speech or nose components
in the dictionary. where Bs remains fixed, whilst Bn is updated. The weights for
bothWs andWn are updated, to reduce an appropriate cost function, for example as
in (2.8). Ideally, The factors and activations which effectively reduce the error will
reflect the structure present in the sources.

Typically, the number of components used to model noise and speech are quite
different. Only a low number of components should be used when constructing the
noise model, whereas the speech model will in general benefit from having a larger
dictionary. Bn is kept small in order to prevent overfitting since if too many values
are present in Bn and Wn , then the basis functions simply adapt to model the entire
mixture, instead of capturing a low-rank estimation of the noise source structure.

Additionally, sparsity constraints can be imposed on the activations, and the num-
ber of iterations for update equations artificially limited, as techniques to reduce
overfitting. In this instance, an absolute minimisation of the cost function does not
necessarily mean effective source separation, and in fact quite the opposite. We have
seen in [15] and independently in [16] that with an increasing number of iterations
we do not see increasingly improved performance. In [15], separation increased to
a point with a greater number of iterations, then decreased. In [16], for the special
case of online noise estimations, only a single application of updates to the noise
vectors produces greatest separation. In practise, the ideal number of iterations will
be a function of the material, imposed sparsity constraints etc. and as such, some
manual tuning of the number of iterations used can give significant improvements
in the overall enhancement quality. Rather than achieving minimisation of a cost
function, in the semi-supervised case, a reduction in cost is generally sufficient. The
aim of the semi-supervised factorisation is therefore expressed as reduction of a cost
function:

Bn,W f (Bn,W) = KL(X|| [Bs Bn
] [

Ws

Wn

]
) + λ||W||1. (2.25)

The weights matrix W =
[
Ws

Wn

]
is updated across all values, whilst only the noise

portion, Bn within B = [
Bs Bn

]
is updated with the rule

Bn ← Bn ⊗
X
BWWT

n

1F×TWT
n

. (2.26)
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The weights matrix is updated for all values, and can benefit from the inclusion
of sparsity constraints, which can reduce overfitting by keeping the number of acti-
vations low, and hence using only the most structurally relevant atoms. To impose a
penalty based on the L1 norm, W can be updated using the weights matrix update
rule (2.14) which was presented in Sect. 2.2.1.

Practical application considering all of the above leads us to the Algorithm 6 for
use semi-supervised NMF for speech (or other source) enhancement.

Algorithm 6Algorithm for estimating basis vector weights and noise model spectra
for enhancement filter in semi-supervised speech enhancement
Require: Observation matrixX and speech basis vector matrix Bs are entry-wise non-negative. Bs
has been obtained from representative speech material.
Select suitable number of atoms for noise model. Initialise weight matrixWwith random positive
values. Initialise noise dictionarymatrixBn with randompositive values. Initialise sparsity penalty
parameter λ to suitable value.
repeat

Update weight matrix asW ← W ⊗ BT X
BW

BT 1F×T +λ
, using (2.14)

Update noise dictionary matrix, Bn with Bn ← Bn ⊗ X
BWWT

n
1F×TWT

n
, using (2.26)

until Sufficient reduction in cost function
Produce speech enhancementmaskwithM j = BsWs

BsWs+BnWn
, to be applied tomixture spectrogram

as in (2.7).
return M j

2.5 Low-Latency Separation

Many source separation techniques process an entire mixture signal, and perform
separation offline, before producing the separated output. There are cases where this
is neither practical nor feasible, however, and a low-latency separation algorithm
should be used instead. With low-latency separation, as audio samples arrive into the
system, they are processed and outputtedwith a virtually imperceptible delay. Speech
enhancement and separation for telecommunication, musical or artistic performance
and hearing-aid algorithms are all areaswhere low-latency separation is an applicable
constraint.

The acceptable delay in separation depends somewhat on the context. Since audio
delays greater than 20 ms are quite perceivable [17], in order to minimise discomfort
for the listener this can be considered the upper-bound for realtime use. Certain
scenarios have even stricter latency requirements. In hearing-aid applications for
example, even delays lower than 6 ms can even be noticed by the listener, as face-
to-face communication produces an uncomfortable mismatch between auditory and
visual cues as delays exceed this threshold [18].
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Fig. 2.5 Overview of data handling in sliding-window frame-based separation approach. A single
frame of output is produced for each frame of input into the system. The length of this processing
frame defines the latency of the system. An entire frame of samples should be buffered for the
discrete Fourier transform operation before separation can be performed

NMF algorithms can be used within a frame-based audio framework, as each
frame is simply estimated as a sum-of-components for a matrix with only a single
column, i.e. a vector. In frame-based spectral decomposition techniques, the lower
bound for latency within an algorithm is governed by the length of the processing
frame. An entire frame worth of time domain samples needs to be gathered before
the discrete Fourier transform (DFT) can be applied. Figure2.5 shows the basics of
how a single frame of separated audio is produced from a stream of time-varying
audio data.

2.5.1 Algorithmic and Processing Latency

When considering the latency of factorisation techniques, a distinctionmust be drawn
between algorithmic latency and computational latency. Algorithmic latency, Ta ,
refers to the minimal theoretical latency of the proposed method, and is constrained
by the availability, organisation and handling of data within the separation algorithm.
Computational latency Tc, on the other hand, refers to the actual time taken to perform
the calculations required for the separation estimate. On an infinitely fast processor,
thiswould tend towards zero,whereas the algorithmic latency is a fixed value inherent
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to the separation approach. The overall latency of any processing approach is a
function of the two latencies, and for a frame-based method, is roughly the sum

T = Ta + Tc (2.27)

since an entire frame of samples is collected before the processing can start to be
performed.

In non-theoretical applications, Tc should be less than Ta , so that the results of one
frame are ready for output before the next frame is input into the system.With careful
planning and design, factorisation algorithms can be made to satisfy this constraint;
however, where the chosen separation approach is simply too processing intensive,
a compromise may have to be made about the minimal frame length. A longer than
ideal processing frame may be required to allow computation to be completed in
time.

Several factors can affect the value of Tc, included, but not limited to processor type
and architecture, implementation hardware/language etc. As an example, the ASNA
factorisation algorithm [4] provides good performance improvements over other
NMF algorithms on traditional CPU architectures, but can not be parallelised to take
advantage of the increasingly ubiquitous GPU processors. Other matrix factorisation
algorithms could benefit greatly from a GPU-based implementation. The rest of the
discussion in this section will consider primarily the algorithmic component of low-
latency source separation.

2.5.2 Use of Coupled Dictionaries for Very Low Latency
Separation

For very low latency applications, the frame length should be kept very short accord-
ingly. However, the lower the frame length, the lower the potential relative entropy
which can exist between the two dictionaries becomes, and the greater chance of
information distributions within each dictionary overlapping. As the distributions
overlap, the potential for assignment of components to incorrect sources increases,
decreasing separation quality. There is therefore a trade-off between low latency
and the potential for separation performance. To reduce this problem, and produce
greater separation in low-latency factorisation, we propose a model in [19] which
makes use of a pair of dictionaries, containing two different vector lengths. Factori-
sation is performed on larger vectors covering extended prior time context, using
an analysis dictionary. The obtained weights are applied to a dictionary comprised
of shorter reconstruction vectors, to form the Wiener filter for source separation for
each frame. Each atom within a dictionary has a one-to-one relationship with the
atom in the other dictionary. In this context, we refer to the dictionaries as coupled
dictionaries.
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Table 2.1 Summary of symbol notations used in this chapter

Symbol Description

at Time-domain analysis frame

st Time-domain synthesis frame

A Length in samples of at
L Length in samples of st
yt Real-valued feature vector formed from at
s∗ Complex-valued synthesis vector formed from st
A Analysis dictionary

R Reconstruction dictionary

R:,k The k-th column of dictionary R.
w Weights vector for a single output frame

s j The reconstructed frame for the j-th source in a mixture
j Superscript referring to values associated with the j-th source in dictionaries,

weights, or reconstructed frames.

2.5.2.1 System Description and Dictionary Creation

For clarity in the following text, we present here some definitions for frame lengths
and symbols. Symbols are also summarised in Table2.1. Frame data which is pro-
cessed for the purposes of separated source reconstruction is called the synthesis
frame st and is of length L . A buffer at of previous incoming samples, of length
A, is maintained (where A > L and A/L is typically an integer). This buffer forms
the ‘analysis frame’; the temporal context from which filter weights are obtained via
factorisation.

Depending on the choice of overlap-add scheme, the update rate of these frames
can vary. Updating every L/2 samples (50% overlap), though, will achieving an
algorithmic latency of L whilst reducing computational costs whichwould be present
with higher overlap values.

The analysis feature vector, yt , is formed from at by taking the absolute value
of the positive frequencies of the discrete Fourier transform (DFT) of analysis sub-
frames length L and concatenating the resulting ( 2AL − 1) subframe outputs into a
single vector. The overlap ratio and window length can be tailored to the needs of the
system, but the point here is that the analysis frame is obtained from greater previous
context than the synthesis frame. The complex-valued frequency-domain synthesis
vector s∗ is formed by taking absolute values of only positive frequencies from the
DFT data in st , and so has length (L/2) + 1. A Hanning window can be used for
overlap add reconstruction.

In the two-source separation case, source-specific dictionary portions are denoted
with a superscript e.g. the dictionary contribution for Source 1 is A1. The analysis
dictionary A is therefore constructed:
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A = [A1 A2] (2.28)

as is the reconstruction dictionary R,

R = [R1 R2]. (2.29)

Dictionaries are constructed so that pairs of atoms which are coupled across the
dictionaries are derived from very similar temporal context. These coupled atoms
are stored at the same column index within the pair of dictionaries so that the k-th
atom is coupled:

R:,k ⇐⇒ A:,k . (2.30)

Figure2.6 demonstrates the audio context relationship between coupled atoms. Both
share the ultimate time-domain sample, but greater past context is used in the gener-
ation of reconstruction dictionary A, though, resulting in a increased frame length.

If a reduced size coupled dictionary is required, the techniques described early in
this chapter can be applied. However, the pair of dictionaries should be concatenated
prior to processing, and then later split, as shown in Fig. 2.7 for a single source
dictionary.

Fig. 2.6 Overview of data handling for vector creation for both dictionary and factorisation/filtering
for realtime separation, and the relationship between time contexts for synthesis and analysis vec-
tors/dictionaries
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A1

R1

Exemplar Dictionaries

R1

A1

Concatenated Dictionaries

Adaptation

R1

A1

R1

A1

Fig. 2.7 Dictionary adaptation for coupled dictionaries. The coupled dictionaries for a source A1
andR1 should first be concatenated so that each atom pair forms one long vector, prior to adaptation.
Following processing, the reduced size dictionary is split back into two coupled dictionaries, A′

1
and R′

1 which remain coupled

2.5.3 Factorisation

Similarly to the creation of coupled dictionaries from two contexts, factorisation and
filtering are applied across two different contexts, with factorisation vector yt being
produced in the same way as exemplars for dictionaries in Fig. 2.6.

Analysis is performed by learning the weights w which minimise KL-divergence
between analysis vector yt and a weighted sum of atoms from dictionary A

minimize
w

f (w) = KL(yt ||Aw) + λ||W||1 (2.31)

The ASNA algorithm [4] is a good candidate for use in realtime applications due
to its rapid computation time and guaranteed convergence. Sparsity constraints can
also be used.

The learned weightsw are applied to the corresponding coupled dictionary atoms
in dictionary R to form the reconstruction Wiener filters. Filters are applied to the
synthesis vector s∗ at each frame processing step so that the positive frequencies of
each frame the of separated source 1, s1 are reconstructed:

s1 = s∗ ⊗ R1w1

R1w1 + R2w2
. (2.32)

The separated time-domain sources are reconstructed by generating complex con-
jugates of each sn and performing the inverse DFT for each frame to be overlap-add
reconstructed into a continuous time output. The various steps of the approach are
presented and summarised in Algorithm 7.

This method has been shown to improve separation SDR performance signifi-
cantly when the latency is 5 or 10 ms and marginally at 20 ms latency [19]. For a
16 kHz samplerate, these values correspond to dictionary vectors of length 80, 160
and 240 samples. Our experiments showed no tangible benefit to use of couple dic-
tionaries once the vector length, and hence minimum factorisation latency exceeds
these values.
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Algorithm 7 Algorithm for low-latency supervised source separation
Require: Analysis dictionary A and reconstruction dictionary R are entry-wise non-negative and
atoms in each dictionary are coupled to one another.
Select sparsity cost weight, λ.
for each incoming frame of time-domain samples st do
Update samples in analysis and synthesis context buffers
Create analysis vector yt and complex-valued synthesis vector s∗ from most recent samples.
Initialise weight matrixW with random positive values.
Update weight matrix W to minimise KL(y||Aw) + λ||W||1 with ASNA or multiplicative
update rules.
Multiply source specific weights with source specific reconstruction dictionaries, to produce
source-specific filters applied to synthesis vector s∗;
s∗ ⊗ A1W1

A1W1+A2W2 and s∗ ⊗ A2W2

A1W1+A2W2

Convert masked synthesis frames to audio with inverse DFT, and overlap-add reconstruct for
each separated source.

end for

2.6 Conclusions and Discussion

In this chapter we have presented non-negative matrix factorisation techniques that
can be effectively separate known sources in mixtures. NMF is based on a linear
model, which can be easily be used to model sound mixtures. The NMF model
for each source is obtained from training material where the sources are present
in isolation, or using mixtures for which the reference target sources are known.
Because of the simplicity of the linear NMFmodel, the methods used to estimate the
model parameters are relatively simple, and the models can be extended in various
ways.

We have presented selected dictionary learning algorithms that can be used to
model individual sources. Exemplar-based dictionaries are easy to obtain by ran-
domly sampling training data and lead to good separation performance when large
dictionaries are used, but they are computationally expensive. Clustering can be used
to obtain more compact dictionaries can higher computational efficiency with equal
size dictionaries. NMF-based dictionaries can model training samples as the sum of
basis vectors, which corresponds to the actual usage of the learned dictionaries. They
typically provide the best separation performance with very small dictionaries, but
require very tight regularisation to provide meaningful results with larger dictionar-
ies. Archetypical analysis models each dictionary atom as a convex combination of
training samples, leading to a compact convex hull in modeling the training data. It
has the potential to provide better separation quality in comparison to exemplar-based
and clustering-based dictionaries. Discriminative dictionaries are optimised for the
separation task and have therefore the potential to achieve the highest accuracy, but
are more difficult to estimate. We also present compensation methods that can be
used to deal with mismatches between training data and actual test scenario.

Two methods of dictionary-based NMF separation are then described, along with
some practical considerations for their implementation. A semi-supervised approach
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allows one to compensate for parts of a mixture which are not able to be pre-learned,
through the use of a dictionary which is adapted to model unknown sources at the
point of factorisation. Care must be taken to ensure that the adaptive model does not
simply represent the entire mixture, and so we propose the use of limited adaptive
dictionary size, sparsity constraints and a user-tuned number of multiplicative update
applications to minimise this overfitting. For separation of sources at very close to
real time, a low-latency implementation of supervised NMF can be used. In gener-
alised online factorisation, individual incoming frame vectors are factorised as they
arrive, and used as a separation filter. At very low latencies though, due to the short
frame length, the dictionaries which describe each source are not as discriminative as
larger dictionaries would be. Therefore, a coupled-dictionary approach is provided to
overcome this problem. Dictionary weights are estimated from data frames covering
larger temporal context, and applied to a dictionary of short-context frame, providing
desired processing latency.
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Chapter 3
Dynamic Non-negative Models for Audio
Source Separation

Paris Smaragdis, Gautham Mysore and Nasser Mohammadiha

Abstract As seen so far, non-negative models can be quite powerful when it comes
to resolving mixtures of sounds. However, in such models we often ignore temporal
information, instead focusing on resolving each incoming spectrum independently.
In this chapter we will present some methods that learn to incorporate the temporal
aspects of sounds and use that information to perform improved separation. We will
show three such models, a conlvolutive model that learns fixed temporal features,
a hidden Markov model that learns state transitions and can incorporate language
information, and finally a continuous dynamical model that learns how sounds evolve
over time and is able to resolve cases where static information is not enough.

3.1 Introduction

Time is of course one of the most important elements of sound. It is the domain over
which sounds are defined at multiple levels. At the very lowest level, it is the time
ordering of time samples that is essential in representing sound; at a higher level it is
temporal structure that helps us to e.g. distinguish “no” from “on”, and at the highest
level what highlights the difference between “Tom ate a burger” and “a burger ate
Tom”. Although time is clearly recognizable as a major component in sound, it is
often somewhat ignored when performing source separation. As shown in previous
chapters, we can perform fairly good separation using only instantaneous spectra.
Such a feature encapsulates some of the sample-level temporal structure, but clearly
ignores temporal dependencies that take place across spectral frames. In this chapter
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we will how to incorporate such higher-level time dependencies for improving on
source separation.

We will start by defining a probabilistic version of a non-negative sound model,
which will then be extended for use in a convolutive model, a HiddenMarkov model,
and finally a more general dynamical model.

3.2 The PLCA Models

In order to take advantage of standardized dynamical modeling approaches we will
examine Nonnegative Matrix Factorization-style models using a probabilistic for-
mulation. A typical NMF model would look like this:

X ≈ W · H (3.1)

where X would be a matrix representing a magnitude spectrogram, and the two non-
negative factors W and H will represent a set of components. We will say that the
columns ofW will contain a set of spectral bases, and the corresponding rows of H
will contain their respective activations. We will refer to each basis/activation pair
as a component, such a model where W has K columns implies that we have K
components (and also implies that H has K rows).

We will now rewrite this equation as:

P( f, t) ≈
∑

z

P( f |z)P(z)P(t |z) (3.2)

Although it might be a little difficult to see at first, this is the same model as above,
only this time we have reinterpreted all the non-negative values as probabilities.
The input spectrogram, which was previously the non-negative matrix (X) is now
reinterpreted as P( f, t) a distribution of acoustic energy over frequency ( f ) and
time (t). The only difference is that now this quantity has to sum to 1 so that it is a
proper distribution (since sounds are scale invariant this is not a complication in our
representation).

Now for the approximation part, imagine for a moment that the quantify P(z) did
not exist. We would them have:

∑

z

P( f |z)P(t |z) ≡
∑

k

Wi,k Hk, j = W · H (3.3)

So we effectively implement a matrix multiplication, where the latent variable z is a
component index, with P( f |z) being equivalent to the matrix W, and P(t |z) being
equivalent to H.

However, since both P( f |z) and P(t |z) are distributions we need to ensure that
their bases/activations properly sum to 1. This means that unlike NMF we won’t
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have the ability to scale an entire component by scaling the corresponding column
of W or row of H. In order to maintain that flexibility we add the term P(z) which
allows is to manipulate the relative level of each component.

An alternative way to interpret (3.2) would be as a matrix product of three factors:

P( f, t) =
∑

z

P( f |z)P(z)P(t |z) = F · diag(p) · T (3.4)

where the diag() operator creates a diagonal matrix from a vector. Using this view-
point, PLCA looks like some sort of a non-negative SVD decomposition, two factors
multiplied by a diagonal matrix in the middle.

This being a latent variable model, we can easily estimate its parameters using
Expectation-Maximization [1]. The update equations would look as follows. For the
E-step we would estimate the posterior distribution for each component:

P( f, t |z) = P( f |z)P(z)P(t |z)
∑′

z P( f |z′)P(z′)P(t |z′)
(3.5)

And for the M-step we would use that posterior to take a weighted average of the
input to estimate the model parameters:

P( f |z) =
∑

t

P( f, t)P( f, t |z) (3.6)

P(t |z) =
∑

f

P( f, t)P( f, t |z) (3.7)

P(z) =
∑

t, f

P( f, t)P( f, t |z) (3.8)

More details and a detailed derivation of the model and its updates can be found
at [2]. For now we will stop with this intuitive explanation and we will move on to
showing how this model can facilitate temporal extensions.

3.3 Convolutional Models

The first model we will show is that takes into account consistent temporal structure
by employing convolution. We will do so using the following reformulation of the
PLCA model:

P( f, t) =
∑

z

P(z)
∑

τ

P( f, τ |z)P(t − τ |z) (3.9)

The difference in this model is that instead of taking a product of two factors we
now perform a convolution between a set of two-dimensional bases P( f, τ |z) and
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Fig. 3.1 A sound with a specific repetitive temporal structure

one-dimensional activations P(t |z). We can envision P( f, τ |z) as being brief spec-
trograms defined over f and τ that get positioned over time using P(t |z). Once again
we have P(z) to be able to express a relative scale of all the components.

To better understand this model lets consider the case where we have only one
component. This means that the model will look like:

P( f, t) =
∑

τ

P( f, τ |z)P(t |z) (3.10)

This model would be appropriate for decomposing a spectrogram that has a specific
sequence that repeats. As an illustration consider the toy input shown in Fig. 3.1.
In it we see a simple sound repeating over time. This sound has a fixed temporal
structure that repeats throughout. Suppose that we model that sound using the non-
convolutive PLCA model. Asking for one component would result in the estimates
shown in Fig. 3.2. Clearly this is a poor approximation of the input since a single
spectral basis is not sufficient to approximate the constantly varying input. An 8-
component model Fig. 3.3 fares much better, but the temporal structure of the input
is lost in the details of this representation.

Applying a convolutive model (Fig. 3.4) produces a much more satisfying rep-
resentation. The decomposition will be in terms of a time-frequency element that
repeats over time. This is of course a better way to approximate the input, and in
the results we see that this model has found the repeating element in P(F, τ |z) and
makes use of P(t |z) to position it at the right location.

Naturally, using more components can let us extract more interesting structure.
Consider the case in Fig. 3.5. This is a drum loopmade out of three sounds; a sweeping
bass drum (the L-form pattern), a snare drum (the P-like pattern), and a cowbell (the
harmonic sound with the strong midrange peak). During that loop the snare dum
sound is never isolated (sounding once in unison with the bass drum, and once more
with the cowbell). Despite the mixture, a 3-component PLCA analysis allows us to
correctly identify the three sounds in the input.
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Fig. 3.2 1-component analysis of the input in Fig. 3.1. The single spectral basis in P( f ) is not
sufficient to model the input well enough, smearing its temporal structure when approximating it
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Fig. 3.3 8-component analysis of the input in Fig. 3.1. Using 8 components we can approximate
the input much better than with one, but we do not gain any insight on its temporal structure, or the
fact that this is the same repeating element

At this point it is worth noting that there is an inherent ambiguity in this model
which we need to address. Since convolution is commutative, there is sometimes a
possibility that temporal structure from P( f, τ |z) will be reflected in P(t |z) (e.g.
consider for example that P( f, τ |z) has a pattern that repeats twice, this repetition
can also be represented as one instance of the pattern in P( f, τ |z) and the presence
of two peaks in P(t |z)). In order to address this problem, we can use sparsity to force
either P( f, τ |z) or P(t |z) to be sparse, therefore allowing us to specify which of the
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Fig. 3.4 1-component convolutive PLCA analysis of the input in Fig. 3.1. The single spectral basis
in P( f, τ ) is sufficient to model the input. Once convolved with P(t |z) it approximates the input
well. In addition to that we obtain a very useful representation that easily revelas the repetition in
the input and its form
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Fig. 3.5 3-component convolutive PLCA analysis of a simple drum loop with three different types
of drums. Note that there is often overlap between the three time-frequency patterns that correspond
to the three drums. Regardless, this analysis correctly identifies the patterns of the three drum sounds



3 Dynamic Non-negative Models for Audio Source Separation 55

two factors will have a denser structure. Since this issue is outside the general scope
of this paper we refer the interested reader to the discussion in [2]. Likewise, we can
use sparsity on P(z) as a method to perform rank selection. For example, when we
ask for many components but also request a sparse P(z) the model will return many
components with a zero prior, keeping only the components that are needed.

In general, this model is good for extracting fixed time/frequency patterns from
sound mixtures, but it isn’t as powerful for sounds that might not repeat so strictly.
In order to address this case, which is much more realistic, we will develop two new
models that allow us to model sounds better.

3.4 Non-negative Hidden Markov Models

A large class of audio signals, such as speech, exhibit a hidden structure in which
each time frame corresponds to a discrete hidden state. Moreover, there is typically
a relationship between the hidden states at different time frames, in the form of
temporal dynamics. For example, each time frame of a speech signal corresponds
to a subunit of speech such as a phoneme, which can be modeled as a distinct state.
The subunits evolve over time as governed by temporal dynamics. Hidden Markov
Models (HMMs) [3] have been used extensively to model such data.

A thread of literature [4–8] combines these ideas with NMF and PLCA to model
non-negative data with such structure. In some techniques [4, 7], a state corresponds
to a single dictionary element, while in others [5, 6, 8], called non-negative HMMs
(N-HMMs), a state corresponds to an entire dictionary. The advantage the of the latter
case is that each time frame can be modeled by a linear combination of a number
of dictionary elements, which makes it more flexible than using a single dictionary
element per state.

Since these models are based on an HMM structure, one can make use of the
extensive theory of Markov chains to extend these models in various ways. For
example, one can incorporate high level knowledge of a particular class of signals
into the model, use higher order Markov chains, or use various natural language
processing techniques. Language models were incorporated in this framework [9] as
typically done in the speech recognition literature [3]. One could also incorporate
other types of temporal structure like music theory rules when dealing with music
signals.

The above techniques discuss how to model a single source using an HMM struc-
ture. However, in order to perform source separation, we need to model mixtures.
This is typically done by combining the individual source models into a non-negative
factorial HMM (N-FHMM). [4–6, 8, 10], which allows each source to be governed
by a distinct pattern of temporal dynamics. One issue with this strategy is that the
computational complexity of inference is exponential in the number of sources. This
can be circumvented using approximate inference techniques such as variational
inference [11], which makes the complexity linear in the number of sources.



56 P. Smaragdis et al.

3.4.1 Single Source Models

We start from PLCA and build our model from there. This is illustrated in Fig. 3.6.
Consider an example of a piano piece that consists of multiple instances of four
distinct notes. We can consider the spectrogram of this signal, to a reasonable level
of approximation, to have four distinct patterns. If we use PLCA to learn a dictionary
of four dictionary elements, it is likely that each note will closely correspond to a
single dictionary element and therefore be primarily represented by a single spectral
template. Although, this is a reasonable approximation, it will not be able to capture
the variations between multiple instances of a given note.

If we use a larger dictionary, it will be able to better capture the variations andmore
subtle differences between notes because the dictionary will have more expressive
power. However, if the dictionary is too large, it will be less specific to the given
sound source and will be able to explain other sound sources as well. This will
be problematic for source separation as the model is likely to not be sufficiently
discriminative.

(a) Dictionary of four elements learned by
PLCA.

(b) Dictionary with a large number of ele-
ments learned by PLCA.

(c) Four distinct small learned dictionaries.
(d) Four distinct small dictionaries and a
Markov chain jointly learned using the N-
HMM.

Fig. 3.6 Illustration of learned dictionaries. We start with a single small dictionary that is learned
using PLCA and work up to several small dictionaries and a Markov chain jointly learned by the
N-HMM. In the N-HMM, each dictionary corresponds to a state of the Markov chain. An ergodic
(fully-connected) model has been shown for illustration purposes but any kind of Markov chain can
be learned
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Another approach is to model the spectrogram with multiple dictionaries such
that each time frame of the spectrogram is primarily modeled by a single dictionary.
We can model our piano example with four dictionaries, each of which has a number
of dictionary elements. In this model, each time frame will be primarily explained
by a linear combination of dictionary elements from the corresponding dictionary.
This effectively creates block sparsity over all of the dictionary elements [12]. The
advantage of this over using a single dictionary of four elements is that the variations
between multiple instances of a given note can be better modeled since it will be
modeled by a linear combination of a number of dictionary elements, as opposed to
a single dictionary element (spectral template). The advantage of this over a single
large dictionary is that since only a single dictionary is primarily active in a given
time frame, each time frame is modeled by a limited number of dictionary elements.
This will prevent the dictionary elements from being overly general, which helps
during source separation.

With the N-HMM, we also model the temporal dynamics between dictionaries.
This is to say that when a given time frame is explained by a given dictionary, we
learn a transition matrix or a probability distribution that tells us how likely the next
time frame is explained by each of the dictionaries. In this sense each state of the
N-HMM has a one to one correspondence to a dictionary.

Speech is a natural candidate to be modeled by the N-HMM since it tends to have
distinct spectral patterns (i.e. phonemes), with some amount of variation between
multiple instances of a given patterns. It also has distinct temporal patterns that can
be reasonably well explained by temporal dynamics. A subset of the dictionaries
learned by an N-HMM from training data of a given speaker are shown in Fig. 3.7.

We now briefly describe the model of the N-HMM starting with PLCA. In PLCA,
a random variable Z is used denote the dictionary element, which is defined by the
multinomial distribution P( f |z). Each dictionary element is analogous to a column
of theW matrix in NMF. Since the N-HMM has multiple dictionaries, we introduce

Fig. 3.7 Dictionaries were learned from speech data of a given speaker. Shown are the dictionaries
learned for 18 of the 40 states. Each dictionary is comprised of 10 elements that are stacked next to
each other. Each of these dictionaries roughly correspond to a subunit of speech, either a voiced or
unvoiced phoneme
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Fig. 3.8 Graphical model of
the N-HMM
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Qt Qt+1

Ft+1

vt+1vt
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another random variable Q to denote the dictionary (state). Dictionary element z
from dictionary q is therefore represented by a multinomial distribution P( f |z, q).

In a given time frame t , we have a distribution of mixture weights P(zt |qt ) for
each state qt at that time.

The N-HMM has a transition matrix defined by multinomial distributions
P(qt+1|qt ). These distributions together define the temporal dynamics of the model.
The prior P(q1) defines a distribution over states at the first time frame. These dis-
tributions are standard HMM distributions [3].

Finally, each state has a Gaussian energy distribution P(v|q). For a given state q,
this provides a distribution over the number of counts over all frequency bins when
that state is used. This intuitively corresponds to the range of observed loudness of
each state.

The graphical model of the N-HMM is shown in Fig. 3.8. The energy distribution
is not explicitly shown in the figure, but it is implicit as the number of draws vt at
time t is determined by this distribution.

TheN-HMMcanbe learned from the spectrogramof training data of a given sound
source. A detailed derivation of parameter estimation for this model can be found in
[13]. The dictionaries, transition matrix, prior probabilities, and energy distributions
are characteristic of the source. However, the mixture weights are characteristic of
the given instance of the source (i.e. training data), but do not generalize to other
instances of that source. Therefore when an N-HMM of a given source is learned,
the mixture weights are discarded and all other distributions are retained. These
distributions can be used for source separation as shown in the next subsection.

3.4.2 Source Separation

Once N-HMMs for sound sources are learned from training data, they can be com-
bined into a non-negative factorial HMM (N-FHMM) [5] and be used for source
separation. The graphical model of the N-FHMM is shown in Fig. 3.9. Comparing
this to Fig. 3.8, we can roughly see the graphical models of two individual N-HMMs
(one on the top and one of the bottom. The observed variables Ft and the hidden
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Fig. 3.9 Graphical model of the N-FHMM

variables Zt are common to both sources. The new hidden variable St corresponds
to the relative energies of the two sources. The model for two sources is shown to
illustrate the concept, but it can be extended to more sources.

Consider an example in which the goal is to separate two sound sources from the
mixture spectrogram. We first learn the N-HMMs of each source (all distributions
except for the mixture weights) from isolated training data of those sources. We then
combine these learned distributions into anN-FHMM.The parameters of all distribu-
tions of theN-FHMMexcept P(st |q(1)

t , q(2)
t ) and P(zt |st , q(s)

t )will therefore befixed.
These two distributions can be combined into a single distribution P(zt , st |q(1)

t , q(2)
t ).

Intuitively, this corresponds to distributions ofmixtureweights over both sources.We
perform parameter estimation to estimate these mixture weights. A detailed deriva-
tion can be found in [13]. Given the mixture weights and the known parameters, we
can reconstruct the spectrogram of each source. We then performWiener filtering to
obtain the time domain signal of each source. Since we learn N-HMMs from each
source in the mixture, this is supervised source separation.

If we have training data for all but one source, we can perform semi-supervised
source separation [6]. A common application of this is denoising. If we have training
data for speech of a given speaker, we can learn an N-HMM for that speaker. This can
be combined into an N-FHMM in which the second source has a single dictionary
that is learned during separation. This could be used in different instances in which
the second source is for example, different kinds of noise.

Modeling of mixtures using the N-FHMM is illustrated in Fig. 3.10. In this exam-
ple, we have two sources. In the case of supervised separation, each source has two
dictionaries. As shown there are four possible combinations in which they can be
combined. Each time frame corresponds to one of these four combinations. Due to
the number of possible combinations of dictionaries, the complexity of inference
and therefore parameter estimation is exponential in the number of sources. We can
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Fig. 3.10 Illustration of dictionary configurations when using the N-FHMM for source separation

therefore use variational inference to efficiently perform separation [11] with a com-
plexity that is linear in the number of sources. In the case of semi-supervised sepa-
ration with two sources, the complexity of exact inference is is linear in the number
of sources since one source always has a single dictionary (state).

3.4.3 Illustrative Examples

We illustrate source separation using N-FHMMs with a few examples. Our first
example, shown in Fig. 3.11, is a toy example to illustrate supervised source separa-
tion. In this example, we used synthesized saxophone and the input representation is
the Constant-Q transform. Both sources are the exact same notes from the exact same
synthesized saxophone. The only difference between the two sources is the sequence
of notes. It is therefore not possible to disambiguate the two sources without some
sort of source specific temporal information. As shown, this is why PLCA does a
poor job of separation and both separated outputs look largely like the input mixture.
On the other hand, the N-FHMM has learned the temporal dynamics of each source
and is able to preform a fairly clean separation of the two sources.
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(c) Separated Sources using PLCA.
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(d) Separated Sources using the N-FHMM..

Fig. 3.11 Comparison of supervised source separation using PLCA and the N-FHMM. The first
source is an ascending arpeggio played by a synthesized saxophone. The second source is a descend-
ing arpeggio on the same octave played by the same synthesized saxophone

In our second example, shown in Fig. 3.12, we show how temporal dynamics helps
perform semi-supervised separation on toy data. The task is to separate synthetic
data, which we call the target, from noise using semi-supervised source separation.
As shown, the target can be well modeled by two states. In this example, the SNR
is low to the point that it is difficult to visually distinguish the target from the noise.
The N-FHMM is able to use temporal dynamics to help disambiguate the sources,
leading to a significantly higher quality separation than using PLCA.

In Fig. 3.13, we show another example comparing semi-supervised source sepa-
ration using the N-FHMM and PLCA. In this example, the goal is to separate speech
from noise. As shown, the N-FHMM achieves a greater degree of noise suppression.
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(b) Original data corrupted
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(c) Denoised using the
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(d) Denoised using PLCA.

Fig. 3.12 Comparison of semi-supervised source separation using PLCA and the N-FHMM. The
noise source is uniformly distributed random noise

Fig. 3.13 Illustration of
speech denoising using the
N-FHMM and PLCA. The
noise source is ambient noise
in an airport
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(a) Noisy speech.
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(b) Denoised using the N-FHMM.
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(c) Denoised using PLCA.
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3.5 Dynamic PLCA Using Continuous State-Space
Representation

In this section, a method based on continuous state-space representation is presented
to use temporal dependencies in NMF [14]. We assume that the NMF coefficients
are stochastic processes, and that they evolve through a vector autoregressive (VAR)
model over time. Therefore, in addition to the basis matrix, there will be some
regression parameters associated with each signal. The proposed method has two
steps: firstly, we predict the current NMF coefficients given only the past or both past
and future observations, and secondly, the estimates are updated given the current
observation. A multiplicative correction of the estimates are used in the second step.
The proposed scheme introduces a new way of thinking and although it is quite
simple it results in a significant improvement over the baseline PLCA, as will be
shown using examples. Amore rigorous extension of this idea has also been proposed
in [15], where the optimal update rules to estimate the activation vectors as well as
the autoregressive coefficient matrices are derived.

3.5.1 Model Definitions

Let us startwith representingPLCAusingmatrixmultiplication. PLCAapproximates
the normalized magnitude spectrogram of the speech V with elements v( f, t) as:
V ≈ WH where the basis matrix W and the activation matrix H are defined as
follows:

w f (z) = P (V ( f, t) = v ( f, t) |H (t) = z )

hz(t) = P (H (t) = z) ,

where H (t) is the scalar indicator random variable that can take one of the integer
values 1, ...Z . Now we have the two equivalent representations for PLCA [14]:

v ( f, t) ≈
Z∑

H(t)=1

P (V ( f, t) = v ( f, t) |H (t) = z ) P (H (t) = z)

=
Z∑

z=1

w f (z) hz (t) . (3.11)

We assume that the activation vectors are modeled by a T ′ order VAR model as:

h (t) =
T ′∑

t ′=1

D
(
t ′
)
h

(
t − T ′) + σ (t) , (3.12)

v (t) = Wh (t) + ε (t) , (3.13)



64 P. Smaragdis et al.

where D(t ′) is the Z × Z autoregressive coefficient matrix associated at t ′-th lag,
σ (t) is the process noise, and ε(t) is the observation noise in the model.

3.5.2 Estimation Methods

In the following, we assume that the basis matrixW is estimated using some training
data and the PLCA update rules and is kept fixed when estimating the activation
vectors h(t). Two approaches are presented in this section to estimate the activation
vectors, a filtering and a smoothing approaches. The goal of the filtering approach
is to develop an online algorithm to estimate an activation vector h(t) given all the
current and past spectral vectors denoted by vt1 = {v(1), . . . v(t)}. This approach has
a prediction step and an update step, similar to a Kalman filtering. The prediction
of the activation vector h(t), given vt−1

1 , is denoted by ĥ(t |t − 1) and is simply
obtained as:

ĥ (t |t − 1) =
T ′∑

t ′=1

D
(
t ′
)
ĥ

(
t − t ′|t − t ′

)
, (3.14)

where ĥ
(
t − t ′|t − t ′

)
is the updated estimate of h(t − t ′) given vt−t ′

1 . This estimate
is corrected using a correction term; to obtain this correction term, the PLCA update
rule is applied on v(t) to find h̃t while initializing the iterative rule at ĥ (t |t − 1)).
Then, the updated estimate of h(t) is obtained as:

ĥ (t |t) =
(
ĥ (t |t − 1)

)β

h̃ (t)

∑(
ĥ (t |t − 1)

)β

h̃ (t)
, (3.15)

where (·)β is an element-wise power operator, β is the prior strength and might be
taken different than one, and the normalization is performed to ensure that ĥ (t |t) is a
proper probability vector. Themultiplicative update in (3.15) is similar to the forward
algorithm in a hidden Markov model (HMM) where the observation likelihood is
replaced with h̃(t). Therefore, ĥ (t |t) can be also seen as the posterior probability
of the latent variables (hidden states in HMM). Note that there are three different
estimations for the activation vector: (1) the instantaneous estimate h̃ (t), obtained
using the baseline PLCA, (2) forward-predicted estimate ĥ (t |t − 1), and (3) final
estimate ĥ (t |t), obtained by combining both 1 and 2, which will be used in the real
applications when we have access to only past data.



3 Dynamic Non-negative Models for Audio Source Separation 65

The filtering method explained above does not use any future data to refine the
estimate of h(t). The smoothing problem arises whenwe have observed both past and
future data, and we want to estimate the activation vectors h(t), which are denoted
by ĥ(t |T ). For this purpose, first the PLCA algorithm is applied on the magnitude
spectrogramV to obtain the activation matrix H̃, i.e.V ≈ WH̃. Then, a forward pre-
diction matrix with columns given by ĥ(t |t − 1), and a backward prediction matrix
with columns given by h(t |T ) are obtained as:

ĥt |t−1 =
T ′∑

t ′=1

D
(
t ′
)
h̃

(
t − t ′

)
, (3.16)

h(t |T ) =
T ′∑

t ′=1

D� (
t ′
)
h̃

(
t + t ′

)
. (3.17)

In principle, to evaluate (3.16) and (3.17) it suffices to have access to data from
t − T ′ through t + T ′. Therefore, the algorithm will introduce a delay of T ′ short
time frames. Now we can obtain the final estimate of h(t) as below:

ĥ (t |T ) =
(
h(t |T )ĥ (t |t − 1)

)β

h̃ (t)

∑ (
h(t |T )ĥ (t |t − 1)

)β

h̃ (t)
. (3.18)

Note that there are four different estimations for the activation matrix: (1) the
instantaneous estimate h̃ (t), obtained using the baseline static PLCA, (2) forward-
predicted estimate ĥ (t |t − 1), (3) backward-predicted estimate h(t |T ), and (4) final
estimate ĥ (t |T ) combining 1, 2, and 3, which will be used in the enhancement or
separation applications when we have access to both past and future data.

The VAR coefficients D(t ′), t ′ = 1, . . . T ′, can be estimated in different ways,
e.g. [16, ch. 11]. Using a sub-optimal approach, as explained here, was also found
sufficiently good in practice. LetH(t ′) denote the matrixH, in which the columns are
shifted by t ′, i.e. h(t ′)

z (t) = hz(t + t ′). Then, D(t ′) is estimated as: D(t ′) = H(t ′)H�
where� represents thematrix transpose. The columns ofD(t ′) are finally normalized
to sum to one.

Finally, to separate unknown sources from a given mixture, we can learn the
basis matrices and VAR coefficients matrices for all the involved sources offline,
similar to the static PLCA, and then concatenate them properly to explain the mixed
signal. Then, we can use (3.15) or (3.18) to estimate the activation vector h(t) and
consequently use a Wiener-type filter to estimate the source signals. Let x(t) =∑

ks
k(t) be the observed mixture, where sk(t) represents the t-th column of the k-th

source. Each source is estimated using a Wiener-type filter as:

ŝk (t) = Wkhk (t)∑
k Wkhk (t)

x (t) , (3.19)
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where x (t) is the magnitude spectrogram of the mixture andWk is the basis matrix
of the k-th source, and hk(t) is a part of h(t) that is associated with this source. The
separated/enhanced time-domain signals are obtained using the phase of the mixed
input signal.

3.5.3 Illustrative Examples

As the first example, we consider a signal separation task with artificially generated
signals, see Fig. 3.14. We generated one second of a two-tone sinusoidal signal with
incremental frequencies over time as the waveform of the first source. The second
source was generated as the time-reversed version of the first signal. Two sources
were summed to obtain the mixture signal. Discrete Fourier transform (DFT) with
a frame length of 128 ms and 75% overlapped windows using a Hann window was
applied to obtain the magnitude spectrogram of the signals as the input to the PLCA
algorithms.We learned 20 basis vectors for each source, whichwere kept fixed during
the separation. Since the basis matrices for both of the sources are identical, a static
PLCA algorithm can not segregate the input sources, and two extracted sources will
be very similar to the mixture. The smoothing algorithm (3.18) with T ′ = 4 and
β = 1 was applied to extract the sources, and as Fig. 3.14 shows a good separation
is achieved, and the estimated spectrograms are very similar to the original ones.

As the second example, we applied the smoothing algorithm (3.18) to a mixed
signal where the mixture was obtained as the sum of a temporally structured speech
signal (see Fig. 3.15) and its time-reverse version. For this example, the sampling rate
was 8 kHz, and a frame length of 128 ms with 75% overlap was used in computing
the DFT. As mentioned before, since the basis matrices for two source signals are
very similar, the static PLCA algorithm can not separate the sources. Bottom panels
of Fig. 3.15 show the separated spectrograms, which are obtained using 60 trained
basis vectors for each source with parameters set to T ′ = 4, β = 1. This experiment
verifies the benefit of temporal modeling in a difficult separation task. The separation
performance in this case is around 11 dB improvement in source to distortion ratio
(SDR) [17], while the baseline PLCA fails to separate the sources.

Now we consider a more real problem of noise reduction application where the
desired speech signal is corrupted by an additive noise at 0 dB input SNR. A speaker-
dependent approach is followed here in which a separate basis matrix is trained for
each speaker and each noise type beforehand. The experiment was done for 100
randomly chosen speakers with different genders from the TIMIT database, where
9 out of the 10 available sentences were used for training speech model, and the
other sentence was used for test purposes. The denoising algorithms were evaluated
for babble and factory noises taken from NOISEX-92 database. All the signals were
down-sampled to 16 kHz. The frame length and overlap length in the DFT analysis
were set to 64 and 60 ms, respectively. We trained 60 basis vectors for speech while
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Fig. 3.14 An artificial example: the magnitude spectrograms of the original (top) and extracted
signals using the smoothing algorithm (bottom)

for babble and factory noises 20 and 30 basis vectors were learned, respectively.
Since speech and noise signals have different temporal characteristics, it is preferred
to use different powers (β) in (3.18) for speech (βspeech) and noise (βnoise) coefficients,
which are set experimentally.1 The performance is measured using SDR, SIR and
SAR [17]. We also evaluated the perceptual quality of the enhanced speech using
PESQ [18].

Table3.1 shows the results, where it can be seen that applying the temporal dynam-
ics has increased SIR while reducing SAR compared to the baseline PLCA. Nev-
ertheless, the SDR that gives an indication of the overall quality of the speech has
increased significantly for both noise types. In fact, the algorithms have led to a fair
trade off between the removing noise and introducing artifacts in the enhanced signal.
The PESQ values also confirm a very good quality improvement using the proposed
algorithms. Specifically in the case of the factory noise and using the smoothing
algorithm, PESQ is improved by 0.46 MOS compared to the baseline. Additionally,
the evaluation shows that the smoothing algorithm has produced slightly better SDR
and PESQ values than the filtering approach.

1In this experiment,we have usedM = 1,βspeech = 0.5,βnoise = 0.2 for filtering, andβspeech = 0.9,
βnoise = 0.6 for smoothing.
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Fig. 3.15 Magnitude spectrogram of the input (top) and separated sources using the static PLCA
algorithm (middle) and separated sources using the dynamic PLCA (smoothing algorithm, top).
For legibility reasons we only show the frequency range 0–2 kHz

Table 3.1 Results for a denoising problem in the presence of added factory noise at 0 dB input
SNR

Algorithm SDR (dB) SIR (dB) SAR (dB) PESQ (MOS)

Baseline PLCA 3.7 5 11 1.79

Filtering 6.7 12 8.5 2.15

Smoothing 6.9 14.7 7.8 2.25

Finally, let us consider the smoothing approach (3.18) applied to the babble case,
and study the effect of themodel order (M) and prior strength (β) on the performance.
Figure3.16 shows three objective measures as functions of the model order (M =
1, 2, 3, 4), and noise prior strength (βnoise) whileβspeech = 0.9. As it can be seen in the
figure, increasing model order from 1 to 4 has not changed the peak performance,
however, it has made the algorithm more robust to the value of βnoise. Also, the
previously used βnoise = 0.6 falls into the optimal range of βnoise.

It has to be mentioned that adaption of the presented method in this section to a
other types of NMF formulations is straightforward. As shown using different exam-
ples, the presented method is able to effectively capture the temporal dependencies
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Fig. 3.16 Effect of the VAR model order and noise prior strength on the performance of speech
denoising using the smoothing algorithm

and results in substantial improvement in the speech quality in the real applications.
Noticeably, it is shown that the method can lead to satisfactory results in source sep-
aration even when the basis matrices of two underlying sources are identical. This
case is an example where a basic NMF can not separate the sources at all.

3.6 Conclusions

In this chapter we discussed a variety of non-negative models that take advantage of
temporal dependencies in order to achieve better source separation performance. We
have shown three distinct models. First, we derived a static convolutional model that
is well-suited for discovering and extracting sources that exhibit consistent temporal
structure, inwhich non-negative componentswere defined as having both a frequency
and temporal dimension. Secondly, we have shown a hidden Markov non-negative
model, which uses a non-negative state model that models states in a manner that
supports source separation Using this model, we can incorporate state transition
information when extracting a source, and take advantage of temporal consistencies
that we can find in, e.g. language, or musical structure. Finally, we have shown a
non-negative dynamical model, which models lower-level temporal dependencies
than the non-negative HMM, but in a manner that is not as rigid as the convolutional
model, thereby being more flexible and applicable for modeling dynamic sources.

It is important to note, that none of these models is better than the others. They
are all designed to model different temporal attributed of sounds, and depending on
the deployment situation either might be the best choice. As a rule of thumb, the
convolutional model is best at extracting sources with consistent temporal structure
(e.g. drums, or synthetic sounds that repeat verbatim), the Markov model is better
when we have higher-level temporal structure (e.g. in the form of a language—such
as in speech or music), and the dynamical model is best at describing sounds that
exhibit a more stochastic temporal structure.

Using these models as a starting point, one can also derive more elaborate ver-
sions, e.g. convolutional models that employ two-dimensional convolution, thereby
learning invariant structures over the frequency space, more general Markov field
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methods that generalize the non-negative HMM, or even models that combine the
above approaches, e.g. a non-negative HMM model that employs a convolutional
state model. The space of dynamical models can certainly be very broad, and we
expect that the material in this chapter can help you get started with this exciting area
of sound modeling.
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Chapter 4
An Introduction to Multichannel
NMF for Audio Source Separation

Alexey Ozerov, Cédric Févotte and Emmanuel Vincent

Abstract This chapter introduces multichannel nonnegative matrix factorization
(NMF) methods for audio source separation. All the methods and some of their
extensions are introduced within a more general local Gaussian modeling (LGM)
framework. These methods are very attractive since allow combining spatial and
spectral cues in a joint and principal way, but also are natural extensions and gen-
eralizations of many single-channel NMF-based methods to the multichannel case.
The chapter introduces the spectral (NMF-based) and spatial models, as well as the
way to combine them within the LGM framework. Model estimation criteria and
algorithms are described as well, while going deeper into details of some of them.

4.1 Introduction

Nonnegative matrix factorisation (NMF) [1] is a dimensionality reduction technique
that consists in approximating a nonnegative data matrix (a matrix with nonnegative
entries) as a product of two nonnegative matrices of lower rank than the initial
data matrix. This also can be viewed as an approximation of data matrix as a sum
of few rank-1 nonnegative matrices. It was first successfully applied for single-
channel source separation [2], where the nonnegative matrix of magnitude or power
spectrogram is decomposed, and became a state of the art reference. The success
of this method is mainly due to universality of this quite simple modeling (it is
applicable to various types of audio sources including speech [3, 4], music [2, 5],
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environmental sounds [6], etc.) and due to the flexibility of this modeling allowing
adding various constraints to it, such as for example harmonicity of spectral patterns
[7], smoothness of their activation coefficients [2, 5], pre-trained spectral patterns
[8, 9], etc.

Given the success of the NMF for single-channel source separation, there were
several attempts to extend it to the case of multichannel source separation. Earlier
ideas were relying on stacking magnitude or power spectrograms of all channels into
a 3-valence nonnegative tensor and decomposing it with nonnegative tensor factori-
sation (NTF)methods [10] or other NTF-like nonnegative structured approximations
[11, 12]. This gave some interesting results. However, since only nonnegative power
spectrograms are involved, such approaches rely only on the amplitude information,
while completely discarding the phases of the short time Fourier transforms (STFTs).
In other words, these approaches do not allow exploiting the interchannel phase dif-
ferences (IPDs), but only the interchannel level differences (ILDs). However, the
IPDs may be very important for multichannel source separation, and they are indeed
exploited by several clustering-based methods [13, 14]. Using IPDs becomes even
more critical for the far-field case (i.e., when the distances between the microphones
are much smaller than the distances between the sources and microphones), where
the information carried by the ILDs becomes almost non-discriminating.

It is clear that a fully nonnegative (e.g., NTF-like) modeling is unable to model
jointly source power spectrograms, ILDs and IPDs, since the phase information is
discarded in the nonnegative tensor of multichannel mixture power spectrograms. As
such, it was proposed to resort to a semi-nonnegative modeling [8, 12, 15–17], where
the latent source power spectrograms aremodeledwithNMF [8, 12] or NTF [15–17],
while the mixing system is modeled differently, not with a nonnegative model. This
modeling, often referred to as multichannel NMF [12] or multichannel NTF [15]1

depending on the model of the source power spectrograms, is usually achieved via
a Gaussian probabilistic modeling applied directly to the complex-valued STFTs of
all channels.

The multichannel NMF modeling treats the complex-valued STFT coefficients
as realizations of zero-mean circular complex-valued Gaussian random variables
with structured variances (via NMF) and covariances. This leads to the fact that
this modeling reduces to Itakura Saito (IS) NMF in the single channel case (see
Chap.1), thus being its natural extension to the multichannel case. Moreover, it
allows integrating many other NMF-like models (see Chap.1 and [8]) in an easy and
flexible manner. Finally, it combines both spectral and spatial (including ILDs and
IPDs) cues within a unified framework. When one of these two cues does not allow
separating the sources efficiently, the algorithm relies on the other cue, and vice
versa. In our opinion the multichannel NMF is one of the first attempts of combining
these two cues in a systematic and principal way.

1Throughout the chapter we will generally refer to all these methods as multichannel NMF, while
precising when we are speaking about multichannel NTF.

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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4.2 Local Gaussian Model

Multichannel NMF can be formulated as based on a so-called local Gaussian model
(LGM) that is more general itself (than the multichannel NMF) and allows modeling
and combining spatial and spectral cues in a systematic way. In a most general
manner the LGM may be formulated as follows. Let us first assume that we deal
with a multichannel (I -channel) mixture of J sources to be separated. Assuming all
the signals are converted into the STFT domain, this can be written as

x f n =
J∑

j=1

y j f n, (4.1)

where x f n = [
x1, f n, . . . , xI, f n

]T ∈ C
I and y j f n = [

y1, j f n, . . . , xI, j f n
]T ∈ C

I ( j =
1, . . . , J ) are the channel-wise vectors of STFT coefficients of the mixture and of the
j-th source spatial image,2 respectively; and f = 1, . . . , F and n = 1, . . . , N are
the frequency and time indices, respectively. Given the above-introduced notations,
the LGM modeling [18] assumes that each source image (I -length complex-valued
vector y j f n) is modeled as a zero-mean circular complex Gaussian random vector as
follows

y j f n ∼ Nc
(
0,R j f nv j f n

)
, (4.2)

where the complex-valued covariance matrix is positive definite Hermitian, and it is
composed of two factors:

• a spatial covariance R j f n ∈ C
I×I representing the spatial characteristics of the

j-th source image at the time-frequency (TF) point ( f, n), and
• a spectral variance v j f n ∈ R representing the spectral characteristics of the j-th
source image at the TF point ( f, n).

Given the model parameters, i.e., the spatial covariances R j f n and the spectral vari-
ances v j f n , the random vectors y j f n in (4.2) are also assumed mutually independent
in time, frequency and between sources. Note that the LGM modeling was not pro-
posed in [18] for the first time, indeed, its variants were already considered in [19,
20]. However, the formulation from [18] is quite general to cover all the cases, that
is why we have chosen here this formulation.

Given the multichannel mixing equation and the above independence assump-
tions, the mixture STFT coefficients may be shown distributed as

x f n ∼ Nc

⎛

⎝0,
J∑

j=1

R j f nv j f n

⎞

⎠ . (4.3)

2The spatial image of a source means not the source signal itself, but its contribution into the
I -channel mixture.
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The model parameters are usually estimated in the maximum likelihood (ML)
sense from the observed mixture X = {

xi f n
}
i, f,n . However, a direct ML estima-

tion of parameters under the modeling (4.3) would lead to the data overfitting,
since the number of scalar parameters exceeds the number of the mixture STFT
coefficients. As such, various constraints are applied to both spectral variances and
spatial covariances, as it is presented in detail in Sects. 4.3 and 4.4 respectively. In
the case of multichannel NMF we address in this chapter, the spectral variances
are usually represented by low-rank nonnegative matrices or tensors. However, other
approaches consider different models (e.g., such as composite autoregressive models
[21], source-excitation models [8] or hidden Markov models [22]) to structure the
spectral variances, that is why the LGMmodeling ismore general than themultichan-
nel NMF. As it is discussed in Sect. 4.4 below, spectral covariances are usually not
modeled with fully nonnegative structures. This is the reason why we are speaking
about semi-nonnegative modeling in the introduction.

For the sake of better understanding, we now give an interpretation to the spatial
covariance matrix R j f n , and relate it to the methods used for multichannel audio
compression. For the sake of simplicity and also since most of audio recording
are stereo (i.e., two channel mixtures), we consider the case of I = 2. The spatial
covariance matrixR j f n is in general a full-rank positive definite Hermitian complex-
valued matrix. An example of a spatial covariance matrix is represented on Fig. 4.1.
Note that this is a rather “fake” (or incomplete) representation, since it is difficult
to represent a 2-dimensional complex-valued covariance matrix on a 2-dimentional
real plane.

Since the spatial covariance matrix R j f n is complex-valued Hermitian, it can be
easily shown that in the 2-dimensional case we consider here it is uniquely encoded

Fig. 4.1 An illustration of a spatial covariance matrix R j f n in the 2-channel case (I = 2). While
dropping the indices j , f and n, the covariance matrix eigendecomposition may be written as
R = U�UH , with U = [u1,u2], u1,u2 ∈ C

2 being the eigenvectors and � = diag ([λ1, λ2]),
λ1, λ2 ∈ R+ being the eigenvalues. This illustration is not fully complete, since a 2D complex-
valued covariance matrix is represented on a 2D real plane
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by only four real scalars. Indeed, its 2 diagonal entries are real and the 2 complex-
valued off-diagonal entries are conjugate. These four real-valued parameters may
be uniquely converted into the following, in a sense more meaningful, real-valued
parameters:

• Loudness,3

• ILD,
• IPD,
• Diffuseness that can be also replaced by interchannel coherence (IC) [23].

It is worth to note that the last three spatial parameters (ILD, IPD and IC) are also
used for parametric coding of stereo audio [23]. This is somehow expected, indeed,
the models that are suitable for compression should be also suitable for sources
separation, since in both cases the models tend to reduce the redundancy in the
signal.

Finally, let us also stress that theLGMmodeling seemsmore general (and thanks to
Gaussian formulationmore principal) than blind source separation (BSS) approaches
based on ILD/IPD clustering [13, 24]. Indeed, the diffuseness or IC is not taken at
all into account within the latter approaches.

4.3 Spectral Models

In this section we present and discuss spectral models used within various multichan-
nel NMF approaches. These models include NMF models, NTF models and their
extensions.

4.3.1 NMF Modeling of Each Source

NMF modeling of each source, which is usually referred to as mutichannel NMF,
consists in structuring the source variances v j f n in (4.2) with NMF structure as in
the single-channel NMF case (see Chap.1):

v j f n =
K j∑

k=1

wj f kh jkn, (4.4)

where the source-dependent K j is usually smaller than both F and N , and wj f k

and h jkn are all nonnegative. By introducing nonnegative matrices (i.e., matrices

3Due to the scale ambiguity between R j f n and v j f n in (4.2), the loudness can be fully attributed to
v j f n .

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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with nonnegative entries) V j = [v j f n] f,n ∈ R
F×N
+ , W j = [wj f k] f,k ∈ R

F×K j

+ , and

H j = [h jkn]k,n ∈ R
K j×N
+ , (4.4) may be rewritten in a matrix form as:

V j = W jH j . (4.5)

A visualization of these NMF spectral models is shown on Fig. 4.2.
This kind of spectralmodels in the case ofmutichannel source separationwere first

introduced in [25, 26], though with more sophisticated NMF-like structures suitable
for harmonic music instruments and with different optimization criteria than those
we discuss in this chapter. Spectral models based on usual NMF, exactly as in (4.5),
were proposed in [12], and then extended/re-considered in many other works [8,
15–17, 27].

A very attractive property of this modeling is that any NMF or NMF-like structure
based on the IS divergence, such as for example harmonic NMF [7], smooth NMF [2,
5] or excitation-filter NMF [28] (see also Chap.1) may be incorporated easily and in
a systematic manner within the framework. This was remarked and addressed in [8],
where a general source separation framework allowing specifying various spectral
and spatial models for each individual source is proposed. The latter research work is
supplied with a software called Flexible Audio Source Separation Toolbox (FASST)
that implements all these possible model variants in a flexible way. Finally, let us
note that many informed or user-assisted/guided audio source separation approaches
were extended to the multichannel case within the same paradigm [15, 29].
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Fig. 4.2 A visualization of spectral models of multichannel NMF. Source variances V j of each
of J (here J = 3) sources are modeled with NMF with K j (here K j = 2) components, which can
be decomposed as a sum of K j rank-1 matrices (w j,k and h j,k are the columns and the lines of
matricesW and H, respectively)
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4.3.2 Joint NTF Modeling of All Sources

One of the shortcomings of the multichannel NMFmodeling presented in Sect. 4.3.1
is the following. While for single-channel NMF one needs fixing an appropriate
number of components K or determining this number automatically, which is not
always easy (see, e.g., [30]), in themultichannel NMF, as presented in Sect. 4.3.1, one
needs determining not only the total number of components K = ∑J

j=1 K j , but also
the number of components K j for each source, which may vary from one source to
another. To overcome this problem the following ideawas introduced in [15], and then
extended in other works [16, 17]. It is now assumed that instead of representing each
source with an individual NMF {W j ,H j } all the sources share the components of
the same NMF {W,H}, where W = [w f k] f,k ∈ R

F×K
+ , and H = [hkn]k,n ∈ R

K×N
+ .

Moreover, in order to specify associations between K NMF components and J
sources, a new (J × K ) nonnegative matrixQ = [q jk] j,k ∈ R

J×K
+ is introduced, and

the source variances v j f n are now structured as:

v j f n =
K∑

k=1

w f khknq jk . (4.6)

Assuming the columns ofQ are normalized to sum to one (i.e.,
∑J

j=1 q jk = 1), which
is always possible to achieve thanks to scale ambiguity between the columns of Q
and that of say W in (4.6), each q jk represents the proportion of association of the
component k to the source j .

By denoting with V = {v j f n} j, f,n a 3-valence tensor of source variances, (4.6)
may be also rewritten in a tensor/vector form as a sum of K rank-1 tensors:

V =
K∑

k=1

wk ◦ hT
k ◦ qk, (4.7)

where “◦” denotes the tensor outer product,wk andqk are the k-th columns ofmatrices
W andQ respectively, and hk is the k-th line of matrixH. The tensor decomposition
as in (4.6) and (4.7) is called parallel factor (PARAFAC) or canonical decomposition
(CANDECOMP) [31]. A visualization of these NTF spectral models is shown on
Fig. 4.3.

We here call this model multichannel NTF, as introduced in [15], though some
authors [16, 17] continue calling it multichannel NMF. Note also that a fully nonneg-
ative NTF modeling [10–12] was applied for multichannel audio source separation
as well. Those approaches apply an NTF decomposition directly to the nonnegative
tensor of power spectrograms of the multichannel mixture, while here it is applied to
the latent nonnegative tensor of power spectrograms of the sources, and the overall
modeling is not fully nonnegative, as mentioned in the introduction.

One can easily note that the NTF decomposition (4.6) generalizes that of (4.4).
Indeed, (4.6) can be reduced to (4.4) by setting for each column ofQ all the values to
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Fig. 4.3 Avisualization of spectral models ofmultichannel NTF. Source variancesV j are stuck in a
common3-valence tensorVmodeledwith PARAFACmodel [31]with K (here K = 6) components,
which can be decomposed as a sum of K rank-1 3-valence tensors

0 except one that is set to 1, and by fixing the values of Q. Finally, the multichannel
NTF modeling has the following potential advantages over the multichannel NMF
modeling:

• One does not need specifying in advance the number of components K j for each
source, but only the total number of components K . The components are then
allocated automatically via the matrix Q, which may be also more optimal than a
manual user-specified allocation.

• Some components may be shared between different sources, which means that the
modeling is more compact. This happens when there are more than one non-zero
entry in one column of matrix Q.

It should be noted however that it is desirable that the matrix Q is quite sparse, i.e.,
that there are few components for which there are more than one non-zero entry
in the corresponding column of matrix Q. Otherwise, the components are not well
allocated between sources, and this may not lead to a good separation result. Thus, it
is possibly desirable to add some sparsity-inducing penalty onQ to the corresponding
optimization criterion.
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4.4 Spatial Models and Constraints

Spatial covariance R j f n might be assumed fully unconstrained, though in that case,
as already mentioned in Sect. 4.2, the parameter estimation would certainly lead to
data overfitting, since there are more parameters than observations, i.e., the STFT
coefficients in the multichannel mixture. In order to cope with that it is necessary to
introduce some constraints on spatial covariances.

First of all, when the sources are static, it is reasonable to assume that the spatial
covariances are time-invariant, i.e., R j f n = R j f are independent of n. This assump-
tion is made in many approaches [8, 12, 16–18] and it allows highly reducing the
number of free parameters to be estimated.We assume the time-invariant case within
this section and the time-varying case will be briefly discussed at the end.

On top of the time-invariance, additional constraints may be introduced as well,
and most often it is achieved either by imposing some particular structure or via
probabilistic priors.

The early works [12, 19, 20] constraint the spatial covariance R j f further and
assume that the rank of the matrix is one, which is refereed to as rank-1 spatial
covariance. This was introduced based on the following reasoning. Let us assume
that the mixture (4.1) is a convolutive mixture of J point sources. In that case the
spatial images y j f n in (4.1) may be approximated as [32]

y j f n = a j f s j f n, (4.8)

where s j f n ∈ C are the STFT coefficients of the point sources and a j f = [
aI j f , . . . ,

aI j f
]T ∈ C

I are the channel-wise vectors of discrete Fourier transforms (DFTs) of
the impulse responses of the convolutive mixing filters. The equality in (4.8) holds
indeed only approximately and becomes more and more accurate when the sizes of
the mixing filters impulse responses are comparable or smaller than the length of
the STFT analysis window [32]. This approximation is referred to as narrowband
approximation. Assuming now that each source STFT coefficient s j f n follows a
zero-mean Gaussian distribution with variance v j f n , one can easily show that source
images y j f n are distributed as in (4.2) with

R j f = a j f aH
j f . (4.9)

We see that the spatial covariance R j f in (4.9) is indeed a rank-1 matrix.
It was proposed in [18] not to constraint the spatial covariance R j f or to

parametrize it in a different way (see [18] for details), but in both cases so as the
matrix remains full rank. This modeling, refereed to as full rank spatial covariance,
allows to go beyond the limits of the narrowband approximation (4.8), thus it is more
suitable than the rank-1 model in case of long reverberation times. It may be also
more suitable in case when the point sources assumption is not fully verified. Indeed,
as explained in Sect. 4.7.2 below, modeling a source image with a full rank model
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Fig. 4.4 Example of a set of
predefined directions in 2D
plane for a given microphone
array

can be recast as a sum of I point sources with different rank-1 spatial covariances
and shared spectral variance.

Another approach [17] consists in assuming that the spatial covariance is a
weighted sum of so-called direction of arrival (DOA) kernels that are rank-1 spa-
tial covariances modeling plane waves coming from several predefined directions.
These directions may be specified in 2D plane or in 3D space (see Fig. 4.4 for a 2D
example). Rank-1 DOA kernels corresponding to these directions θl (l = 1, . . . , L)
are then defined as

K f l = d( f, θl)d( f, θl)
H (4.10)

with d( f, θl) being a relative steering vector for the direction θl defined as

d( f, θl) = [
1, e−2πτ2,1(θl )ν f /c, . . . , e−2πτI,1(θl )ν f /c

]T
, (4.11)

where c is the speed of the sound (343m/s), ν f is the frequency (inHz) corresponding
to the frequency bin f , and τi,i ′(θl) is the time difference of arrival (TDOA) (in
seconds) between microphones i and i ′ from the direction θl . Note that this relative
steering vector is defined without taking into account the ILDs, but only IPDs (see
[33] for a definition taking as well into account ILDs). Finally, the spatial covariance
is defined as a weighted sum of DOA kernels K f l from (4.10) as

R j f =
L∑

l=1

z jlK f l, (4.12)

with z jl being nonnegative weights.
If the DOAs of all or of some sources are known to some extend, it is possible to

introduce this information for example via prior distributions on the spatial covari-
ances. In [34] those priors are defined via inverse Wishart distributions as follows
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p
(
R j f |Ψ j f ,m

) = |Ψ j f |m |R j f |−(m+I )e
−tr

[
Ψ j f R

−1
j f

]

π I (I−1)/2
∏I

i=1 �(m − i + 1)
, (4.13)

with
Ψ j f = (m − I )

(
d( f, θl)d( f, θl)

H + σ 2
revΩ f

)
, (4.14)

where d( f, θl) is a steering vector which may be defined as in (4.11), Ω f =[
sin(2πν f qii ′/c)/(2πν f qii ′/c)

]
i i ′ is a matrix modeling reverberation part (i.e., non-

direct part) of the impulse response, and σ 2
rev is a positive constant depending on the

amount of reverberation as compared to the direct part of impulse response.
There are also othermodels that do not fall into the LGM framework as formulated

here. These models include for example multichannel high-resolution NMF (HR-
NMF) [35] or a method where the source variance prior parametrization is factorized
by NMF [36].

Finally, several approaches [37–39] address time-varying case, where R j f n is not
independent any more on n, though still constrained in different ways.

4.5 Main Steps and Sources Estimation

Let us denote by θ = {R j f n, v j f n} j, f,n the whole set of model parameters, assuming
some constraints from those overviewed in Sects. 4.3 and 4.4 hold. Given a model
θ specified and an estimation criterion (see Sect. 4.6 below) chosen, most of LGM-
based approaches are based on the following main steps:

1. The STFT X of the multichannel mixture signal is computed.
2. The model is estimated with an algorithm (see Sect. 4.7 below) optimizing the

chosen criterion.
3. The source images are estimated in the STFT domain via Wiener filtering as:

ŷ j f n = R j f nv j f n

⎡

⎣
J∑

j=1

R j f nv j f n

⎤

⎦
−1

x f n, (4.15)

whereR j f n and v j f n are the spatial covariances and spectral variances as specified
in (4.2).

4. The source images in time domain are then reconstructed by applying the inverse
STFT to Ŷ = {ŷ j f n} j, f,n .
In the online approaches [40, 41], where the separation must be performed for

every new frame, the same steps are repeated for each frame and themodel estimation
algorithm is modified so as to update the model parameters in an incremental and
causal (i.e., only the passed and current frames are used) manner.



84 A. Ozerov et al.

4.6 Model Estimation Criteria

In order to estimate the model parameters θ from the observed data, i.e., from the
STFT of the multichannel mixture signalX, one needs specifying amodel estimation
criterion.

4.6.1 Maximum Likelihood

One of the most popular choices for model estimation is the maximum likelihood
(ML) criterion that writes

θ = argmax
θ ′ p(X|θ ′). (4.16)

In the case of LGM modeling (4.2) this criterion can be shown [16] equivalent to
minimizing the following cost function:

CIS(θ) =
F,N∑

f,n=1

tr
(
�̂x, f n�

−1
x, f n

)
− log det

(
�̂x, f n�

−1
x, f n

)
− I, (4.17)

where
�̂x, f n = x f nxH

f n and �x, f n = R j f nv j f n. (4.18)

Note that the cost (4.17) is not well defined (i.e., its value is infinite) when I > 1 and
matrices �̂x, f n are not full rank, which is the case in definition (4.18). However, this
is not a problem per se. Indeed, the infinite term − log det

(
�̂x, f n

)
is independent on

θ and can be simply removed from the cost (4.17), since it has no influence on the
optimization over θ . Otherwise, a small regularization term may be added to �̂x, f n ,
which would make it full rank. Also, there exist alternative definitions of �̂x, f n [8,
42], where it might be full rank by construction.

Formulation with the cost (4.17) is interesting, since, as one can note, it is a
generalization of the IS-NMF cost in the single channel case (see Chap. 1). Indeed,
CIS(θ) becomes the single channel IS divergence when I = 1.

4.6.2 Maximum a Posteriori

When a prior distribution p(θ) on model parameters is specified, like for example
the spatial covariance prior in (4.13), the maximum a posteriori (MAP) criterion is
usually used instead of the ML criterion. It writes

θ = argmax
θ ′ p(θ ′|X) = argmax

θ ′ p(X|θ ′)p(θ ′). (4.19)

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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Note that in case of prior in (4.13) we have p(θ) = ∏F
f =1 p

(
R j f |Ψ j f ,m

)N
, since

the prior is applied to each time-frequency bin.
If one tries rewriting (4.19) in a form similar to (4.17), it would result in simply

adding − log p(θ ′) term to (4.17).

4.6.3 Other Criteria

Several other criteria were proposed as well. For example, we have seen that the
ML criterion formulated as in (4.17) generalizes the single channel IS NMF to the
multichannel case, as such it was proposed in [16] to generalize the single-channel
NMFwith Euclidean distance (EUCNMF) to themultichannel case. This is achieved
by replacing the cost function (4.17) with the following one

CFRB(θ) =
F,N∑

f,n=1

∥∥�̂x, f n − �x, f n
∥∥2
F , (4.20)

where ‖A‖F denotes the Frobenius norm of a matrix A, and the data covariance
matrix �̂x, f n is defined slightly differently than in (4.18). Notably, it is defined as
[16, 17]

�̂x, f n =
√∣∣∣x f nxH

f n

∣∣∣× sign
(
x f nxH

f n

)
, (4.21)

where all the operation, i.e., the absolute value |·|, the square root √·, the multiplica-
tion× and the sign (sign (a) = a/|a|), are applied element-wise to the corresponding
matrices.

There is also the variational Bayes (VB) criterion [43], which consists in comput-
ing directly the posterior distribution of the source STFT coefficients whilemarginal-
izing over all possible model parameters.

4.7 Model Estimation Algorithms

There exist several model parameter estimation algorithms [8, 16]. Though, due to
the probabilistic formulation of the LGMmodel (4.2), the expectation-maximization
(EM) algorithm [44] is one of the most popular choices. As we will see below, the
use of the EM algorithm results not in just one algorithm, but it leads to a family
of algorithms. Indeed, each particular implementation of the EM algorithm depends
on several choices, as will be explained below. Because of the EM popularity we
will mostly concentrate here on the different variants of EM and will only mention
briefly other algorithms.
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To present the variants of EM algorithm we consider the LGM model (4.2) with
time-invariant unconstrained full rank spatial covariances R j f and spatial variances
v j f n structured with NTF model (4.6). This is in fact a variant of multichannel NTF
similar to the one described in [15], but with full rank covariances instead of rank-
1 covariances as in [15]. Since no probabilistic priors on parameters are assumed,
the variants of EM algorithm presented below are for the optimization of the ML
criterion (4.16).

4.7.1 Variants of EM Algorithm

In one of its general formulations the EM algorithm [44] to optimize theML criterion
(4.16) consists first in specifying

• so-called observed data X that are usually the multichannel mixture STFT coeffi-
cients in the case of multichannel source separation, as considered here, and

• so-called latent data Z. The choice of latent data may be quite different and dif-
ferent choices would lead to different EM variants.

Assuming that a probabilisticmodel parametrized by θ is specified, the EMalgorithm
is usually applied in the following case. It is applied when it is difficult to optimize
in a closed form the ML criterion (4.16) maximizing log p(X|θ), while it is easy
to maximize in a closed form or via some simplified iterative procedure the log-
likelihood log p(X,Z|θ) of so-called complete data {X,Z}. The choice of latent
data Z is usually done accordingly.

The EM algorithm consists then in iterating the following two steps:

• E-step: Compute an auxiliary function as follows:

Q(θ, θ (	)) = EX|Z,θ (	) log p(X,Z|θ). (4.22)

• M-step: Optimize the auxiliary function to update model parameters according to
the following criterion:

θ (	+1) = argmax
θ

Q(θ , θ (	)), (4.23)

where θ (	) denotes the model parameters estimated at the 	-th iteration.

It is often possible to optimize the criterion (4.23) in a closed form. However,
sometimes, depending on the choice of latent data Z, it is not possible. In that case
either another iterative optimization algorithm may be applied or any algorithm can
be used provided that it assures at each iteration of EM the following non-decreasing
of the auxiliary function:

Q(θ (	+1), θ (	)) ≥ Q(θ (	), θ (	)). (4.24)



4 An Introduction to Multichannel NMF for Audio Source Separation 87

In the latter case the algorithm is called generalized EM (GEM) [44], and the ways
the optimization (4.24) is performed lead again to different variants of the algorithm.

To summarize let us list various choices that lead to different EM algorithm vari-
ants and thus different model parameters estimation results. These choices include:

1. Choice of latent data Z, for example:

• Latent data consist of NMF/NTF components [12] defined as

ck j f n ∼ Nc(0,wj f kh jkn), k = 1, . . . , K j (4.25)

in case of NMF spectral model (4.4), or as

ck j f n ∼ Nc(0,w f khknq jk), k = 1, . . . , K (4.26)

in case of NTF spectral model (4.6).
• Latent data consist of so-called sub-sources [8] (see Sect. 4.7.2 below).
• Latent data consist of point sources [15] s j f n as in the narrowband approxi-
mation (4.8).

• Latent data consist of spatial source images [27] y j f n as in (4.2).
• Latent data consist of binary TF activations of the predominant source (see,
e.g., [45] for details).

2. Choice of maximization step updates in case of GEM algorithm, for example:

• Closed-form updates in case of EM algorithm.
• Alternating closed-form updates over subsets of parameters [27] (each subset
of parameters is updated by a closed-form update, while the other parameters
are fixed).

• Multiplicative update (MU) rules [5] to update NMF/NTF spectral model
parameters [8].

3. Choice of initial parameters θ (0), for example:

• Random parameters initialization [8].
• Parameters initialization using the source separation results obtained by a
different algorithm [12].

4. Choice of number of EM algorithm iterations, for example:

• Fixed number of iterations (the most common choice).
• Iterating till some stopping criterion depending on the likelihood value is
satisfied.

A so-called spatial image EM (SIEM) algorithm, where the latent data are the
spatial source images, is given in details in the Chap.7. In the following section
we present in details a so-called sub-source EM algorithm based on MU rules

http://dx.doi.org/10.1007/978-3-319-73031-8_7
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(SSEM/MU) [8], where the latent data are the sub-sources and MU rules are used
for the NTF spectral model parameters updates within the M-step. Other variants of
the EM and GEM algorithms may be found in the corresponding papers.

4.7.2 Detailed Presentation of SSEM/MU Algorithm

Recall that ourmodel consists of time-invariant unconstrained full rank spatial covari-
ances R j f and spatial variances v j f n structured with NTF model (4.6). Thus, it can
be parametrized as

θ = {{R j f } j, f ,Q,W,H
}
, (4.27)

with nonnegative matrices Q, W and H specified in Sect. 4.3.2.
The SSEM/MU algorithm presented below is a partial case of a more general

algorithm from [8], though applied to a slightly different model (here the spectral
variances are structured with NTF model, while in [8] they are structured with NMF
model).

Each spatial I × I covariance R j f being full rank, its rank equals to I . For each
source j we introduce I so-called point sub-sources s ji, f n ∈ C (i = 1, . . . , I ) that
share the same spectral variance v j f n , in other words they are distributed as

s ji, f n ∼ Nc(0, v j f n). (4.28)

Moreover, each spatial covariance R j f can be non-uniquely represented as

R j f = A j fAH
j f , (4.29)

where A j f is an I × I complex-valued matrix. By introducing a J I -length vector

s f n = [
s11, f n, . . . , s1I, f n, s21, f n, . . . , s2I, f n, · · · , sJ1, f n, . . . , sJ I, f n

]T
, (4.30)

and an I × J I matrix
A f = [

A1 f ,A2 f , . . . ,AJ f
]
, (4.31)

one can show [8] that the LGM modeling (4.3) is equivalent (up to the noise term
b f n) to

x f n = A f ns f n + b f n, (4.32)

with s ji, f n (components of s f n) being mutually independent and distributed as in
(4.28), the noise term b f n being distributed as

b f n ∼ Nc(0,�b, f n), (4.33)
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with an anisotropic covariance matrix �b, f n = σ 2
b, f II . The noise term b f n is needed

for a so-called simulated annealing procedure that is necessary in this case (see [12]
for details), where the noise variance σ 2

b, f is usually decreased over the algorithm
iterations.

Let us now compute the auxiliary function Q(θ , θ (	)) defined in (4.22). Below
we will omit sometimes the indexing of parameters with (	), and it will be clear
from the context what are the parameters estimated on previous step and what are
the parameters to be updated on the current step. The log-likelihood of the complete
data {X,Z} writes4

log p(X,Z|θ) = log p(X|Z, θ) + log p(Z|θ)

c= −
∑

f,n

tr
[
�−1

b, f n

(
�x, f n − A f n�

H
xs, f n − �xs, f nAH

f n + A f n�s, f nAH
f n

)]

−
∑

f,n

log
∣∣�b, f n

∣∣− I
∑

j, f,n

dI S(ξ j f n|v j f n),

(4.34)

where
�x, f n = �̂x, f n = x f nxH

f n (4.35)

is computed as in (4.18),

�xs, f n = x f nsHf n, (4.36)

�s, f n = s f nsHf n, (4.37)

ξ j, f n = 1

I

I∑

i=1

|s ji, f n|2, (4.38)

and dI S(x |y) = x
y − log x

y − 1 is the scalar IS divergence (see Chap.1).

By applying the conditional expectation operatorEX|S,θ (	) [·] the auxiliary function
Q(θ, θ (	)) writes then

Q(θ, θ (	))
c= −

∑

f,n

tr
[
�−1

b, f n

(
�̂x, f n − A f n�̂

H
xs, f n − �̂xs, f nAH

f n + A f n�̂s, f nAH
f n

)]

−
∑

f,n

log
∣∣�b, f n

∣∣− I
∑

j, f,n

dI S(ξ̂ j f n|v j f n),

(4.39)

with �̂xs, f n , �̂s, f n and ξ̂ j f n defined as

4When we write
c=, that means that the equality is up to some constant that is independent on model

parameters θ , and thus has no influence on the optimization over parameters in (4.23).

http://dx.doi.org/10.1007/978-3-319-73031-8_1
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�̂xs, f n = EX|S,θ (	)

[
�xs, f n

]
, (4.40)

�̂s, f n = EX|S,θ (	)

[
�s, f n

]
, (4.41)

ξ̂ j f n = EX|S,θ (	)

[
ξ j f n

]
, (4.42)

and computed as follows:

�̂xs, f n = �̂x, f nΩ
H
s, f n, (4.43)

�̂s, f n = Ωs, f n�̂x, f nΩ
H
s, f n + (IJ I − Ωs, f nA f )�s, f n, (4.44)

ξ̂ j f n = 1

I

j I∑

i=( j−1)I+1

�̂s, f n(i, i), (4.45)

where

Ωs, f n = �s, f nAH
f �−1

x, f n, (4.46)

�x, f n = A f �s, f nAH
f + �b, f n, (4.47)

�s, f n = diag

⎛

⎝[v1, f n, . . . , v1, f n︸ ︷︷ ︸
I times

, v2, f n, . . . , v2, f n︸ ︷︷ ︸
I times

, · · · , vJ, f n, . . . , vJ, f n︸ ︷︷ ︸
I times

]
⎞

⎠ .(4.48)

We now proceed with theM-step (4.23).Maximizing the auxiliary function (4.39)
over A f leads to the following closed-form solution5:

A f = �̂xs, f n�̂
−1
s, f n. (4.49)

Maximization of the auxiliary function (4.39) overQ,W andH, i.e., theminimization
of
∑

j, f,n dI S(ξ̂ j f n|v j f n)with v j f n computed as in (4.6), does not allow a closed-form
solution. As such, to update Q, W and H, several iterations of the following MU
rules [15] are applied:

q jk ← q jk

(∑
f,n w f khkn ξ̂ j f nv

−2
j f n∑

f,n w f khknv
−1
j f n

)
, (4.50)

w f k ← w f k

(∑
j,n hknq jk ξ̂ j f nv

−2
j f n∑

j,n hknq jkv
−1
j f n

)
, (4.51)

hkn ← hkn

(∑
j, f w f kq jk ξ̂ j f nv

−2
j f n∑

j, f w f kq jkv
−1
j f n

)
. (4.52)

5Note that if the spatial covariances R j f are needed, they can be always computed with (4.29).
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Applying these MU rules does not guarantee auxiliary function minimization as
in (4.23), but only its non-decreasing as in (4.24). As such, this is in fact a GEM
algorithm.

Algorithm 1 summarizes one iteration of the SSEM/MU algorithm derived above.

Algorithm 1 One iteration of SSEM/MU algorithm

• E-step: Compute statistics �̂x, f n , �̂xs, f n , �̂s, f n and ξ̂ j f n as in (4.35), (4.40), (4.41) and (4.42).
• M-step:

– Update A f as in (4.49).
– Update Q,W and H iterating (4.50), (4.51) and (4.52) several times.
– Renormalize A f , Q, W and H to remove scale ambiguity (see [12]).

4.7.3 Other Algorithms

Another very popular choice for multichannel NMF model parameters estimation is
the majorization-minimization (MM) algorithm [46], which is used for example in
[16, 17]. Note that the EM algorithm is interpretable as a partial case of the MM
algorithm.

4.8 Conclusion

In this chapter we have introduced multichannel NMF methods for audio source
separation. Potential advantages and disadvantages of these methods are discussed.
Despite a quickly growing popularity of deep learning that is now of a great interest
for audio source separation, multichannel NMF methods remain still an important
area of research and in our opinion cannot be completely replaced by deep learning-
based methods in all situations. Indeed, especially in fully blind settings, where
no training data are available, deep learning is not a suitable path any more, while
multichannel NMF is still applicable.

As for the further research on multichannel NMF we would like highlighting
the following possible paths which have been already started to be explored. One
research direction consists in proposing more sophisticated spatial and spectral mod-
els adapted to the mixing conditions and sources of interest, as well as in proposing
new models going beyond the limitations of the LGM modeling. Another direction
consists in combining some aspects of multichannel NMF with deep learning.
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Chapter 5
General Formulation of Multichannel
Extensions of NMF Variants

Hirokazu Kameoka, Hiroshi Sawada and Takuya Higuchi

Abstract Blind source separation (BSS) is generally a mathematically ill-posed
problem that involves separating out individual source signals from microphone
array inputs. The frequency domain BSS approach is particularly notable in that
it provides the flexibility needed to exploit various models for the time-frequency
representations of source signals and/or array responses. Many frequency domain
BSS approaches can be categorized according to the way in which the source power
spectrograms and/or the mixing process are modeled. For source power spectrogram
modeling, the non-negative matrix factorization (NMF) model and its variants have
recently proved very powerful. For mixing process modeling, one reasonable way
involves introducing a plane wave assumption so that the spatial covariances of each
source can be described explicitly using the direction of arrival (DOA). This chapter
provides a general formulation of the frequency domain BSS that makes it possible
to incorporate the models for the source power spectrogram and the source spatial
covariance matrix. Through this formulation, we reveal the relationship between
the state-of-the-art BSS approaches. We further show that combining these models
allows us to solve the problems of source separation, DOA estimation, dereverbera-
tion, and voice activity detection in a unified manner.

5.1 Introduction

Blind source separation (BSS) is a technique for separating out individual source
signals from microphone array inputs when the transfer characteristics between the
sources and microphones are unknown. Since this problem is mathematically ill-
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posed, it is generally necessary to make certain assumptions about the source signals
and/or the mixing process and formulate an optimization problem using a criterion
designed according to these assumptions. For example, one well-known approach
involves independent component analysis (ICA) [1], which makes separation possi-
ble by estimating a separation matrix (the inverse of the mixing matrix) such that the
separated signals become statistically independent of each other. ICA is known to
work well under certain conditions when the microphones outnumber the sources,
the positions of all the sources are fixed and there is no reverberation. However, when
these conditions are not fully met (such as when the mixing process is underdeter-
mined or time-variant), the independence assumption is too weak to achieve good
separation. To handle more general cases, we must consider further assumptions or
constraints in addition to independence.

The frequency domain BSS approach is particularly notable in that while it
requires us to solve an additional problem called the 1permutation alignment prob-
lem, it allows a fast implementation compared with the time domain approach. It also
provides the flexibility of allowing us to utilize variousmodels for the time-frequency
representations of the source signals and/or the array responses. For example, inde-
pendent vector analysis (IVA) [2, 3] allows us to efficiently solve frequency-wise
source separation and permutation alignment in a joint manner by assuming that the
magnitudes of the frequency components originating from the same source tend to
vary coherently over time. Other frequency domain BSS approaches can be catego-
rized according to the way in which the source signals and/or the mixing process are
modeled.

For power spectrogrammodeling,multichannel extensions of non-negativematrix
factorization (NMF) have attracted a lot of attention in recent years [4–12]. NMFwas
originally applied with notable success to monaural source separation tasks [13, 14].
The idea is to approximate the power (ormagnitude) spectrogram of amixture signal,
interpreted as a non-negative matrix, as the product of two non-negative matrices.
This amounts to assuming that the power spectrum of a mixture signal observed
at each time frame can be approximated by the linear sum of a limited number of
basis spectra scaled by time-varying amplitudes. Multichannel NMF (MNMF) is an
extension of this approach to a multichannel case in order to allow for the use of
spatial information as an additional clue for separation. It can also be viewed as an
extension of frequency domain BSS that allows the use of spectral templates as a
clue for both frequency-wise source separation and permutation alignment. While
MNMF assumes each basis spectrum to be static, many source signals in the real
world are non-stationary and the spectral densities vary over time. To characterize this
nonstationary nature of source signals reasonably,MNMF can be further extended by
describing the transition of the spectral densities and the total power of each source
using a hidden Markov model (HMM) [15–18].

1The permutation alignment problem refers to a problem of grouping together the separated com-
ponents of different frequency bins that originate from the same source to construct a separated
signal.
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For mixing process modeling, several models have been proposed for the spatial
covariance matrix of a source. One popular way of modeling spatial covariances
involves introducing a plane wave assumption. Under a plane wave assumption, the
spatial covariance matrix of each source can be described using the direction of
arrival (DOA). By using a discrete set of pre-defined spatial covariance matrices
each corresponding to an angle in radians, the spatial covariance matrix of each fixed
source can be modeled as either a sum or a mixture of the DOA-related covariance
matrices [8, 16, 18–21]. To handle a time-varying spatial covariance and thus allow
each source to move, the DOA mixture model can be further extended by describing
the transition of the DOAs using an HMM [22].

This chapter provides a general formulation of the frequency domain BSS that
allows us to incorporate the models for the source power spectrogram and the
source spatial covariance matrix. Through this formulation, we reveal the relation-
ship between the state-of-the-art BSS approaches. We further show that combining
these models allows us to solve source separation, DOA estimation, dereverberation,
and voice activity detection in a unified manner.

5.2 Problem Formulation

5.2.1 Mixing Systems

The typical mixing systems used within the frequency domain BSS framework
include determined or underdetermined, time-invariant or time-variant, and instan-
taneous, convolutive or sparse mixtures.

We consider a situation where J source signals are captured by I microphones.
The time domain mixture signal x̃i (t) observed at the i-th microphone is given as a
convolutive mixture of s̃1(t), . . . , s̃J (t)

x̃i (t) =
J∑

j=1

T ′−1∑

t ′=0

ãi, j (t
′)s̃ j (t − t ′) + ũ(t), (5.1)

where ãi, j (t ′) denotes the acoustic impulse response between microphone i and
source j , and ũ(t) denotes background noise. Since this model involves convo-
lution, source separation algorithms based on this model tend to be computation-
ally demanding. Here, let xi ( f, n), s j ( f, n) and ui ( f, n) be the short-time Fourier
transform (STFT) coefficients of x̃i (t), s̃ j (t) and ũ(t) where f = 0, . . . , F − 1 and
n = 0, . . . , N − 1 are the frequency and frame indices, respectively.When the length
T ′ of the acoustic impulse response from a source to a microphone is sufficiently
shorter than the frame length of the STFT, x( f, n) = [x1( f, n), . . . , xI ( f, n)]T can
be approximated fairly well by an instantaneous mixture in the frequency domain
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xi ( f, n) =
J∑

j=1

ai, j ( f )s j ( f, n) + ui ( f, n), (5.2)

where ai, j ( f ) is the Fourier transformof ãi, j (t), namely the transfer function between
microphone i and source j . This approximation is called a narrowband approxima-
tion. (5.2) can be arranged in the following expression

x( f, n) =
J∑

j=1

a j ( f )s j ( f, n) + u( f, n) (5.3a)

= A( f )s( f, n) + u( f, n), (5.3b)

by putting x( f, n) = [x1( f, n), . . . , xI ( f, n)]T, a j ( f ) = [a1, j ( f ), . . . , aI, j ( f )]T,
A( f ) = [a1( f ), . . . , aJ ( f )], s( f, n) = [s1( f, n), . . . , sJ ( f, n)]T, and u( f, n) =
[u1( f, n), . . . , uI ( f, n)]T. The product of a j ( f ) and s j (n, f )

c j ( f, n) = a j ( f )s j ( f, n), (5.4)

is called the spatial image of source j . The BSS framework based on (5.3) is called
frequency domain BSS, which allows for fast implementations compared with meth-
ods based on the time domain convolutive mixture model given in (5.1). According
to several studies such as [23], a reverberation longer than the frame length of the
STFT can be modeled fairly well as a convolution for each frequency-band of the
STFT representation. A frequency-wise convolutive mixture model

x( f, n) =
J∑

j=1

M−1∑

m=0

a j ( f,m)s j ( f, n − m) + u( f, n) (5.5a)

=
M−1∑

m=0

A( f,m)s( f, n − m) + u( f, n), (5.5b)

can thus be a reasonable option especially under highly reverberant conditions. In
a particular case where the mixing systems (5.3) and (5.5) are exactly invertible
(determined) and u(n, f ) = 0, we can also use the following expressions:

WH( f )x( f, n) = s( f, n), (5.6)
M−1∑

m=0

WH( f,m)x( f, n − m) = s( f, n). (5.7)

In this chapter, when we refer to instantaneous/convolutive mixtures, we mean
frequency-wise instantaneous/convolutive mixtures given by (5.3) or (5.6), and (5.5)
or (5.7).
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A sparse mixture refers to a mixing model where only one source is assumed
to be present at each time-frequency point. This assumption is approximately true
particularly for mixtures where the spectrograms of all the sources are sparse. By
using z( f, n) to denote the unknown index of the predominant source at ( f, n), the
sparse mixture model can be expressed as

x( f, n) = az( f,n)( f )sz( f,n)( f, n) + u( f, n). (5.8)

As shown above, the types of mixing systems can be characterized in terms of the
relationship between x( f, n) and s( f, n), which can be summarized as follows:

1. an instantaneous mixing system given by (5.3),
2. a convolutive mixing system given by (5.5),
3. an instantaneous demixing system given by (5.6),
4. a convolutive demixing system given by (5.7), and
5. a sparse mixing system given by (5.8).

Time-variant versions of these systems are obtained by simply replacing WH( f ),
A( f ), WH( f,m), A( f,m) and a j ( f ) with WH

n ( f ), An( f ), WH
n ( f,m), An( f,m)

and a j,n( f ), respectively.

5.2.2 Likelihood Function

Let us now assume that s j ( f, n) independently follows a zero-mean complex Gaus-
sian distribution with variance v j ( f, n) = E[|s j ( f, n)|2]

s j ( f, n) ∼ NC(s j ( f, n)|0, v j ( f, n)). (5.9)

Hence, the spatial image c j ( f, n) follows

c j ( f, n) ∼ Nc(c j ( f, n)|0, v j ( f, n)R j ( f )), (5.10)

whereR j ( f ) = a j ( f )aHj ( f ) expresses the spatial covariance of source j . As shown
above, the rank of the spatial covarianceR j ( f ) becomes exactly 1 when the narrow-
band approximation holds. As we shall see in the following, we can also assume
R j ( f ) to be a full-rank matrix, which is shown to be effective particularly in rever-
berant conditions [24]. We call (5.9) or (5.10) the local Gaussian model (LGM).
The LGM assumes that frequency components with different frequency bins are
independent. In the following, we elaborate on how this assumption can be justified.

Let s̃(0), . . . , s̃(T − 1) be the time-domain samples of a source signal in a par-
ticular time frame. We assume that s̃ = [s̃(0), . . . , s̃(T − 1)]T ∈ R

T has been drawn
from a zero-mean Gaussian random process with an autocorrelation matrix Σ s̃:
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s̃ ∼ N (s̃|0,Σ s̃). (5.11)

The Fourier transform of the sequence s̃, given by s = Fs̃ ∈ C
T , follows a zero-mean

multivariate complex Gaussian distribution with covariance matrix FΣ s̃FH, where
F ∈ C

T×T denotes a discrete Fourier transform matrix. Here, if we assume station-
arity and circularity, the covariance matrix Σ s̃ belongs to the class of nonnegative
definite symmetric Toeplitz circulant matrices. Note that the stationarity assumption
corresponds to assuming that the autocorrelation [Σ s̃]t,t+τ = E[s̃(t)s̃(t + τ)] of s̃(t)
depends only on the time difference |τ |. The circularity assumption further requires
that the autocorrelation is given by [Σ s̃]t,t+τ = E[s̃(t mod T )s̃((t + τ)mod T )]. This
implies that an infinitely repeated version of the finite segment s̃(0), . . . , s̃(T − 1)
is assumed to be stationary. Σ s̃ is then shown to be exactly diagonalized by F so
that we obtain FΣ s̃FH = Diag(v(0), . . . , v(T − 1)) where v(0), . . . , v(T − 1) are
the eigenvalues of Σ s̃, corresponding to the power spectral densities (PSDs) of s̃(t).
This indicates that s( f ) ( f = 0, . . . , F − 1) independently follows a zero-mean
complex Gaussian distribution with variance v( f ):

s( f ) ∼ NC(s( f )|0, v( f )). (5.12)

By adding the frame index n and the source index j to s( f ) and v( f ), and by assuming
that the frequency components within different time frames are independent, we
obtain (5.9).

We further assume that the backgroundnoiseu( f, n) follows a zero-mean complex
Gaussian distribution with covariance Σu( f, n) = E[u( f, n)uH( f, n)]

u( f, n) ∼ NC(u( f, n)|0,Σu( f, n)). (5.13)

Then, x( f, n) follows

x( f, n) ∼ NC (x( f, n)|μx( f, n),Σx( f, n)) , (5.14)

where μx( f, n) and Σx( f, n) are expressed differently according to the choice of
mixing system (5.3), (5.5), (5.6), (5.7), and (5.8), respectively:

μx( f, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (5.15a)

0 (5.15b)

0 (5.15c)

−(WH( f, 0))−1
M−1∑

m=1

WH( f,m)x( f, n − m), (5.15d)

0 (5.15e)
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Σx( f, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

j

v j ( f, n)R j ( f ) + Σu( f, n) (5.16a)

∑

j

∑

m

v j ( f, n − m)R j ( f,m) + Σu( f, n) (5.16b)

(WH( f ))−1Σ s( f, n)W−1( f ) (5.16c)

(WH( f, 0))−1Σ s( f, n)W−1( f, 0) (5.16d)

vz( f,n)( f, n)Rz( f,n)( f ) + Σu( f, n). (5.16e)

Σ s( f, n) is a diagonal matrix whose diagonal entries are v1( f, n), . . . , vJ ( f, n)

Σ s( f, n) = Diag(v1( f, n), . . . , vJ ( f, n)). (5.17)

Given the observation X = [x( f, n)] f,n , BSSproblems can be formulated byusing
(5.14) as the log-likelihood function

log p(X |θ) =
∑

f,n

{ − log detΣx( f, n)

− (x( f, n) − μx( f, n))HΣ−1
x ( f, n)(x( f, n) − μx( f, n))

}
, (5.18)

where θ denotes the entire set ofmodel parameters.Note that for a convolutive demix-
ing system with μx( f, n) and Σx( f, n) given as (5.15d) and (5.16d), (5.14) means a
conditional distribution p(x( f, n)|x( f, n − 1), . . . , x( f, n − M + 1)) so that (5.18)
represents

log p(X |θ) =
∑

f

log p(x( f, 0), . . . , x( f, N − 1))

=
∑

f

∑

n

log p(x( f, n)|x( f, n − 1), . . . , x( f, n − M + 1)). (5.19)

Since all the variables are indexed by frequency f in the log-likelihood func-
tion described above, the optimization problem consists of an independent set of
frequency-wise source separation problems, each of which is ill-posed. In the fol-
lowing sections, we introduce assumptions and constraints that can be incorporated
into the present framework in order to obtain a reasonable solution to the current
optimization problem.

5.3 Spectral and Spatial Models

5.3.1 Spectral Models

With the LGM (5.9), the power and phase of s j ( f, n) follow an exponential dis-
tribution with mean v j ( f, n) and a uniform distribution on the interval [0, 2π),
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respectively. If there is a certain assumption, constraint or structure that we want
to incorporate into the power spectrogram of each source, we can employ a paramet-
ric model or a generative model to represent v j ( f, n) instead of individually treating
v j ( f, n) as a free parameter, or introduce a properly designed prior distribution over
v j ( f, n).

If we can assume that the spectra of a real-world sound source can be described
using a limited number of templates, one way to express the power spectrogram
v j ( f, n) would be

v j ( f, n) = b j,k j (n)( f ), (5.20)

where b j,1( f ), . . . , b j,K j ( f ) denote the spectral templates assigned to source j and
k j (n) denotes the index of a spectral template selected at frame n. If we assume
k j (n) to be a latent variable generated according to a categorical distribution with
probabilities π j,1, . . . , π j,K j such that

∑
k π j,k = 1:

k j (n) ∼ π j,k j (n), (5.21)

the generative process of the spatial image c j ( f, n) of source j is described as a
Gaussian mixture model (GMM) [23]. Note that the spectral templates can be either
pre-trained using training samples or estimated from the mixture signal in a data-
driven manner. While the above model uses each template to represent a different
power spectrum, it would be more reasonable to let each template represent all
the power spectra that are equal up to a scale factor and treat the scale factor as an
additional parameter. Here, we use b j,k( f ) as the k-th “normalized” spectral template
and describe v j ( f, n) as

v j ( f, n) = b j,k j (n)( f )h j (n), (5.22)

where h j (n) denotes the time-varying amplitude. Furthermore, since the probability
of a particular template being selected may depend on the templates selected in the
previous frames, we can describe the generative process of k j (n) using a Markov
chain:

k j (n)|k j (n − 1) ∼ π j,k j (n−1),k j (n), (5.23)

These two extensions lead to the hidden Markov model (HMM) proposed in [15–18,
25] where (5.22) can be seen as the output sequence, k j (n) as the hidden state, and
π j,k,k ′ as the state transition probability from state k to state k ′ (see Fig. 5.1). By
properly designing the state transition network, we can flexibly assign probabilities
to state durations (the durations of the self-transitions). In addition, by incorporating
states associated with speech absence or silence into the state transition network,
assuming the state-dependent generative process of the scale factor h j (n) to be
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h j (n)|k j (n) ∼ G (h j (n)|γk j (n), βk j (n)), (5.24)

whereG (·|γ, β) denotes a gamma distribution with shape parameter γ > 0 and scale
parameter β > 0

G (h|γ, β) = hγ−1e−h/β

Γ (γ )βγ
, (5.25)

and setting the hyperparameters γk and βk so that h j (n) tends to be near zero at the
states associated with speech absence, this model makes it possible to estimate voice
activity segments along with solving the separation problem [15–18].

While the abovemodels assume that only one of the spectral templates is activated
at a time, another way to model the power spectrogram v j ( f, n) is to express it as the
linear sum of the spectral templates b j,1( f ), . . . , b j,K j ( f ) scaled by time-varying
amplitudes h j,1(n), . . . , h j,K j (n):

v j ( f, n) =
K j∑

k=1

b j,k( f )h j,k(n). (5.26)

(5.26) can be interpreted as expressing the matrix V j = [v j ( f, n)] f,n as a product
of two matricesB j = [b j,k( f )] f,k andH j = [h j,k(n)]k,n (see Fig. 5.1). Multichannel
source separation methods using this model or its variants are called “multichannel
non-negativematrix factorization (MNMF)” [4–10].With thismodel, the entire set of
spectral templates are partitioned into subsets associated with the individual sources.
It is also possible to allow all the spectral templates to be shared by every source
and let the contribution of the k-th spectral template to source j be determined in a
data-driven manner [6–10]. To do so, we drop the index j from b j,k( f ) and h j,k(n),
and instead introduce a continuous indicator variable φ j,k ∈ [0, 1] that sums to unity∑

j φ j,k = 1. φ j,k can be interpreted as the expectation of a binary indicator variable
that describes the index of the source to which the k-th template is assigned. The
power spectrogram v j ( f, n) of source j can thus alternatively be modeled as

v j ( f, n) =
K∑

k=1

φ j,kbk( f )hk(n). (5.27)

Another reasonable assumption we can make about source power spectrograms is
spectral continuity. This amounts to an assumption that the magnitudes of the STFT
coefficients in all the frequency bands originating from the same source tend to vary
coherently over time. The most naïve way would be to assume a flat spectrum with
a time-varying scale [26]

v j ( f, n) = h j (n). (5.28)
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Fig. 5.1 Illustration of
spectral models (5.22) and
(5.26)

This is actually a particular case of the NMF model (5.26) where K j = 1 and
b j,1( f ) = 1, which means each source has only one flat-shaped template. Under
this constraint, assuming (5.9) amounts to assuming that the norm ‖[s j (0, n), . . . , s j

(F − 1, n)]T‖2 =
√∑

f |s j ( f, n)|2 follows a Gaussian distribution with a time-

varying variance h j (n). This is analogous to the assumption employed in indepen-
dent vector analysis (IVA) [2, 3] where the norm ‖[s j (0, n), . . . , s j (F − 1, n)]T‖2
is assumed to follow a super-Gaussian distribution, which is shown to be effective in
eliminating the inherent permutation indeterminacy of the frequency-domain ICA.
Other representations ensuring spectral continuity include the autoregressive (AR)
model (also known as the all-pole model) [27, 28]

v j ( f, n) = h j (n)

|g(ej2π f/F ;α j (n))|2 , (5.29)

g(z;α j (n)) = 1 −
Q∑

q=1

α j,q(n)z−q , (5.30)
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where h j (n) and α j (n) = (α j,1(n), . . . , α j,Q(n)) denote the power of the excitation
signal and the AR parameter set of source j at time n, and Q is the number of
poles. Employing this expression is justified by the fact that the power spectrum of
speech can be approximated fairly well by an excitation-filter representation using
an all-pole model as the vocal-tract filter.

A combination of the AR model and the NMF model has also been proposed [5,
29].With this model, the power spectrum of a source is expressed as the linear sum of
all possible pairs of excitation and filter templates scaled by time-varying amplitudes

v j ( f, n) =
∑

k

K ′
j∑

k ′=1

b j,k( f )h j,k,k ′(n)

|g(ej2π f/F ;α j,k ′)|2 , (5.31)

g(z;α j,k ′) = 1 −
Q∑

q=1

α j,k ′,q z
−q , (5.32)

where b j,k( f ), 1/|gk ′(ej2π f/F ;α j,k ′)|2 and h j,k,k ′(n) denote the k-th excitation spec-
tral template, the k ′-th all-pole vocal-tract spectral template and the time-varying
amplitude of the {k, k ′}-th excitation-filter pair of source j , respectively. We can
easily confirm that when K ′

j = 1 and Q = 0, this model reduces to the NMF model
(5.26). Another way of modeling v j ( f, n) using an excitation-filter representation is
to express v j ( f, n) as the product of an excitation spectrogram vexj ( f, n) and a filter
spectrogram vftj ( f, n)

v j ( f, n) = vexj ( f, n)vftj ( f, n), (5.33)

where vexj ( f, n) and vftj ( f, n) are expressed using the NMF models [11, 25]

vexj ( f, n) =
∑

k

bexj,k( f )h
ex
j,k(n), (5.34)

vftj ( f, n) =
∑

k

bftj,k( f )h
ft
j,k(n). (5.35)

Note that these spectral templates can also be either pre-trained using training samples
or estimated from the mixture signal in an unsupervised manner.

A general flexible framework with various combinations of these spectral models
is presented in [25].
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5.3.2 Spatial Models

As with the source power spectrum, there are several ways to model the spatial
covariance R j ( f ) depending on assumptions we make about the properties of wave
propagation.

One widely used way of modeling the spatial covariance R j ( f ) is to constrain it
to be a rank-1 matrix

R j ( f ) = a j ( f )aHj ( f ). (5.36)

As shown in (5.10), this constraint amounts to using the time-invariant instantaneous
mixing system based on the narrowband approximation. We can also assume R j ( f )
to be an unconstrained full-rank matrix, which is shown to be effective particularly
under reverberant conditions [7, 24]. This can be explained by replacing a j ( f )
with a j ( f ) + ε j ( f ) where ε j ( f ) is a random vector with mean 0 and a full-rank
covariancematrix corresponding to the approximation error related to the narrowband
approximation.

Another reasonable way involves describing R j ( f ) as a function of the DOA
of source j . If each source is assumed to be located far from the microphones so
that the signal can be treated approximately as a plane wave, the interchannel time
difference between the microphones depends only on the DOA of the source. Since
the time delay between two microphones corresponds to the phase difference of
the frequency response of the microphone array, the complex array response can be
expressed explicitly by using the DOA. For example, with I = 2 microphones, the
complex array response for a source at direction θ such that 0 ≤ θ < 2π is defined
as a function of f depending on θ

d( f ; θ) =
[

1
ejω f B cos θ/C

]
, (5.37)

whereω f is the angular frequency of the f -th frequency bin, j is the imaginary unit, B
[m] is the distance between the two microphones, and C [m/s] is the speed of sound.
If the DOA θ j of source j is known, the array frequency response a j ( f ) should be
equal to d( f ; θ j ). Since we normally have no information about the DOA, we would
like to estimate a j ( f ) or R j ( f ) in a data-driven manner under this constraint. By
using a discrete set of pre-defined array responses d( f ;ϑl) each corresponding to
an angle ϑl in radians, the array response a j ( f ) of each fixed source can be modeled
as a Gaussian mixture of the DOA-related array responses [20]

a j ( f ) ∼ NC(a j ( f )|d( f ;ϑl j ),Σa) (5.38a)

l j ∼ πl j (5.38b)

or the spatial covariance matrix R j ( f ) can be modeled as a Wishart mixture of the
DOA-related covariance matrices [18, 21]:
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R j ( f ) ∼ WC(R j ( f )|ν,Σd( f ;ϑl j ) + εI) (5.39a)

l j ∼ πl j , (5.39b)

where Σd( f ;ϑl j ) = d( f ;ϑl j )d
H( f ;ϑl j ) and l j ∈ {1, · · · , L} denotes the index of

the predefined DOA assigned to source j , which is assumed to have been drawn from
a categorical distribution π = (π1, . . . , πL) and WC denotes the complex Wishart
distribution

WC(R|ν,Ψ ) ∝ |R|ν−I e−tr(RΨ −1). (5.40)

Here, the term εI is added to ensure that Σd( f ;ϑl j ) + εI is invertible. The spatial
covariance matrixR j ( f ) can also be modeled as a weighted sum of the DOA-related
covariance matrices [8, 17]

R j ( f ) =
∑

l

q j,lΣd( f ;ϑl), (5.41)

where q j,l ≥ 0 denotes the contribution of the l-th predefined DOA to source j .
We call (5.38) and (5.39) the “DOA mixture model” and call (5.41) the “DOA
kernel model”. With the DOA mixture model, l j is treated as a latent variable to be
marginalized out, whereas with the DOA kernel model, q j,l is treated as a parameter
to be estimated subject to non-negativity.

To handle a time-varying spatial covariance and thus allow each source to move,
the DOA mixture model can be further extended by describing the transition of the
DOAs using an HMM [22] (Fig. 5.2):

a j,n( f ) = NC(a j,n( f )|d( f ;ϑl j (n)),Σa), (5.42)

l j (n)|l j (n − 1) ∼ π j,l j (n−1),l j (n). (5.43)

Fig. 5.2 Illustration of
DOA-HMM [22]
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Other approaches include placing an inverse-Wishart chain prior over the sequence
R j,0( f ), . . . ,R j,N−1( f ) [30] or a Gaussian chain prior over the sequence a j,0

( f ), . . . , a j,N−1( f ) [12] in order to ensure that R j,n( f ) and a j,n( f ) vary smoothly
over time.

5.4 Parameter Estimation and Signal Separation

5.4.1 Parameter Estimation

Once the likelihood function is defined according to the choice of mixing system,
source spectralmodel and spatialmodel, there are severalways to estimate θ given the
STFT coefficients of observed signals X = [x( f, n)] f,n . The parameter estimation
problems can be primarily divided into maximum likelihood (or maximum a poste-
riori) estimation and Bayesian inference problems. The aim of the former problem
is to find the estimate of θ that maximizes the likelihood function (or the posterior
distribution) of θ whereas the aim of the latter is to infer the posterior distribution
of θ , given an observation X = [x( f, n)] f,n . In this section, we briefly introduce the
general principles of the majorization-minimization (MM) algorithm (also known as
the auxiliary function-based approach) [31, 32] as a representative example of the
approaches for the former type and the variational inference algorithm as a repre-
sentative example of the approaches for the latter type. Detailed derivations of some
examples of parameter estimation algorithms will be presented in Sect. 5.6.

5.4.1.1 Majorization-Minimization Algorithm

AnMM algorithm refers to an iterative algorithm that searches for a stationary point
of a cost function by iterativelyminimizing an auxiliary function called a “majorizer”
that is guaranteed to never become below the objective function. When constructing
an MM algorithm for a certain minimization problem, the main issue is to design the
majorizer. If amajorizer is properly designed, the algorithm is guaranteed to converge
to a stationary point of the cost function. It should be noted that this concept has been
adopted in many existing algorithms. For example, the expectation-maximization
(EM) algorithm [33] is a special case of the MM algorithm. It is also well known
for its use in an algorithm for NMF [34–36]. In general, if we can build a tight
majorizer/minorizer that is easy to optimize,we can expect to obtain a fast-converging
algorithm.

Suppose C (θ) is a cost function that we want to minimize with respect to θ . A
2majorizer D(θ ,α) is defined as a function satisfying

2If we want to maximize C (θ), we will use a minorizer instead, which is defined as C (θ) =
maxα D(θ ,α).
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C (θ) = min
α

D(θ ,α), (5.44)

where α is an auxiliary variable. C (θ) is then shown to be non-increasing under the
updates,

θ ← argmin
θ

D(θ ,α), (5.45)

α ← argmin
α

D(θ ,α). (5.46)

This can be proved as follows. Let us denote the iteration number by �, set θ

at an arbitrary value θ (�) and define α(�+1) = argminα D(θ (�),α) and θ (�+1) =
argminθ D(θ,α(�+1)). First, it is obvious that C (θ (�)) = D(θ (�),α(�+1)). Next, we
can confirm thatD(θ (�),α(�+1)) ≥ D(θ (�+1),α(�+1)) since θ (�+1) is the minimizer of
D(θ,α(�+1)) with respect to θ . By definition, it is obvious that D(θ (�+1),α(�+1)) ≥
C (θ (�+1)) and so we can finally show that C (θ (�)) ≥ C (θ (�+1)). A sketch of this
proof can be found in Fig. 5.3.

Here,we briefly show that theEMalgorithm is a special case of theMMalgorithm.
Let X be an observed data set, p(X |θ) be a likelihood function that we want to
maximize with respect to a parameter set θ , and Z be a set of hidden or latent
variables. Note that the latent variables can be either discrete or continuous. While
here we consider the discrete case, the following also applies to the continuous case
by simply replacing the summation over all members of Z with an integral. First, we
can show that

log p(X |θ) = log
∑

Z

p(X, Z |θ) = log
∑

Z

λ(Z)
p(X, Z |θ)

λ(Z)
(5.47)

≥
∑

Z

λ(Z) log
p(X, Z |θ)

λ(Z)
, (5.48)

Fig. 5.3 Illustration of the majorization-minimization algorithm
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where λ(Z) is an arbitrary non-negative weight function that is subject to the nor-
malization constraint

∑

Z

λ(Z) = 1. (5.49)

(5.48) follows from Jensen’s inequality by using the fact that the logarithmic func-
tion is a concave function. We can use the right-hand side of this inequality as the
minorizer of the log-likelihood log p(X |θ). Thus, we can show that log p(X |θ) is
non-decreasing under the updates

λ ← argmax
λ

∑

Z

λ(Z) log
p(X, Z |θ)

λ(Z)
= p(Z |X, θ) (5.50)

θ ← argmax
θ

∑

Z

λ(Z) log p(X, Z |θ). (5.51)

(5.50) can be confirmed using the fact that the equality of (5.48) holds when
p(X, Z |θ)/λ(Z) becomes equal for any Z

p(X, Z |θ)

λ(Z)
= ξ(X, θ). (5.52)

Thus, we obtain

λ(Z) = p(X, Z |θ)

ξ(X, θ)
(5.53)

⇒
∑

Z

λ(Z) = 1

ξ(X, θ)

∑

Z

p(X, Z |θ) = 1 (5.54)

⇒ ξ(X, θ) =
∑

Z

p(X, Z |θ) = p(X |θ) (5.55)

⇒ λ(Z) = p(X, Z |θ)

p(X |θ)
= p(Z |X, θ). (5.56)

Dempster et al. called Q(θ, θ ′) = ∑
Z p(Z |X, θ ′) log p(X, Z |θ) the “Q function”

where θ ′ denotes the estimate of θ at the previous iteration. The EM algorithm
consists of computing p(Z |X, θ ′) and maximizing Q(θ , θ ′). We can confirm that
(5.50) and (5.51), respectively, correspond to these steps.

In Sect. 5.6, we show detailed derivations of MM-based BSS algorithms [7, 18].

5.4.1.2 Variational Inference Algorithm

The aim of the variational inference algorithm is to approximate the true posterior
distributions of all the random variables involved in the generative model.
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Let θ = [θm]m be the entire set of the variables of interest and X be an observed
data set. Our goal is to compute the posterior

p(θ |X) = p(θ , X)

p(X)
. (5.57)

The joint distribution p(θ , X) can usually be written explicitly according to the
assumed generative model. However, to obtain the exact posterior p(θ |X), we must
compute p(X), which typically involvesmany intractable integrals. Instead of obtain-
ing the exact posterior, the variational Bayesian approach approximates this posterior
variationally by solving an optimization problem:

q̂(θ) = argmin
q

KL[q(θ)‖p(θ |X)], (5.58)

subject to

∫
q(θ)dθ = 1, (5.59)

where KL[·‖·] denotes the Kullback-Leibler (KL) divergence between its two argu-
ments, i.e.,

KL[q(θ)‖p(θ |X)] =
∫

q(θ) log
q(θ)

p(θ |X)
dθ . (5.60)

By restricting the class of the approximate distributions to those that factorize into
independent factors:

q(θ) =
∏

m

q(θm),

∫
q(θm)dθm = 1, (5.61)

we can use a simple coordinate ascent algorithm to find a local optimum of (5.58).
It can be shown using the calculus of variations that the “optimal” distribution for
each of the factors can be expressed as:

q̂(θm) ∝ expEθ\θm [log p(θ , X)], (5.62)

where θm indicates one of the factors and Eθ\θm [log p(θ , X)] is the expectation of
the joint probability of the data and latent variables, taken over all variables except
θm .
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5.4.2 Signal Separation

Once theparameter set θ is estimated,we canobtain the estimates of the source signals
in different ways according to the assumed mixing systems. With an instantaneous
mixing system, a typical choice would be the minimum mean square error (MMSE)
estimator of s( f, n) [4]:

ŝ( f, n) = E[s( f, n)|x( f, n)] = G( f, n)x( f, n), (5.63)

where

G( f, n) = Σs( f, n)AH
n ( f )(An( f )Σs( f, n)AH

n ( f ) + Σu( f, n))−1 (5.64)

is the well-known multichannel Wiener filter. (5.64) can be derived by using the fact
that with jointly Gaussian random variables

[
x
s

]
∼ N

([
x
s

] ∣∣∣∣

[
μx
μs

]
,

[
Σxx Σxs

Σ sx Σ ss

])
, (5.65)

the conditional expectation E[s|x] is given as [37]

E[s|x] = μs + Σ sxΣ
−1
xx (x − μx), (5.66)

and that

E[x( f, n)xH( f, n)] = An( f )Σs( f, n)AH
n ( f ) + Σu( f, n), (5.67)

E[s( f, n)xH( f, n)] = Σs( f, n)AH
n ( f ). (5.68)

When using the full-rank spatial covariance model, it may be convenient to use the
MMSE estimator of the spatial image ĉ j ( f, n, 0) = a j,n( f, 0)s j ( f, n) [16, 24]:

ĉ j ( f, n, 0) = E[c j ( f, n, 0)|x( f, n)]

= v j ( f, n)R j,n( f, 0)

⎛

⎝
J∑

j ′=1

M−1∑

m=0

v j ′( f, n − m)R j ′,n( f,m) + Σu( f, n)

⎞

⎠
−1

x( f, n).

(5.69)

This estimator can be derived in the sameway using the fact that x( f, n), c j ( f, n,m),
and u( f, n) are jointly Gaussian and

x( f, n) =
J∑

j=1

M−1∑

m=0

c j ( f, n,m) + u( f, n). (5.70)
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With an instantaneous and convolutive demixing systems, we can directly use
(5.6) and (5.7) [5, 9, 10, 27, 28] once we obtain the demixing filter WH( f ) or
WH( f, n).

With a sparse mixing system, we can use the posterior source presence probability
γ j ( f, n) [20, 38]

ŝ j ( f, n) = γ j ( f, n)
aHj ( f, n)Σ−1

u ( f, n)x( f, n)

aHj ( f, n)Σ−1
u ( f, n)a j ( f, n)

. (5.71)

5.5 Categorization of State-of-the-art Approaches

Many state-of-the-art approaches can be categorized according to the choice of mix-
ing system, source spectral model, and spatial model. Tables5.1 and 5.2 show the

Table 5.1 Different approaches categorized according to μx( f, n) and Σx( f, n) in (5.14)

Method μx( f, n) Σx( f, n)

Attias (2003) 0
∑

j
∑

m v j ( f, n −
m)R j ( f,m)

Izumi et al. (2007) az( f,n)( f )μ( f, n) Σu

Ozerov & Févotte
(2010)

0
∑

j v j ( f, n)R j ( f ) + Σu

Duong et al. (2010) 0
∑

j v j ( f, n)R j ( f )

Kameoka et al. (2010) W−1( f, 0)
∑M−1

m=1 WH( f,m)x( f, n −
m)

(WH( f, 0))−1Σ sW−1( f, 0)

Yoshioka et al. (2011) W−1( f, 0)
∑M−1

m=1 WH( f,m)x( f, n −
m)

(WH( f, 0))−1Σ sW−1( f, 0)

Ozerov et al. (2011) 0
∑

j v j ( f, n)R j ( f ) + Σu

Ono et al. (2012) 0 (WH( f ))−1Σ sW−1( f )

Kameoka et al. (2012) az( f,n)( f )μ( f, n) Σu

Sawada et al. (2013) 0
∑

j v j ( f, n)R j ( f )

Higuchi et al. (2014a) az( f,n)( f )μ( f, n) Σu

Higuchi et al. (2014b) 0
∑

j
∑

m v j ( f, n)R j ( f )

Higuchi et al. (2014c) 0
∑

j
∑

m v j ( f, n −
m)R j ( f,m)

Otsuka et al. (2014) 0 vz( f,n)( f, n)Rz( f,n)( f )

Higuchi & Kameoka
(2015)

0
∑

j
∑

m v j ( f, n −
m)R j ( f,m)

Kitamura et al. (2015) 0 (WH( f ))−1Σ sW−1( f )

Adiloğlu & Vincent
(2016)

0
∑

j v j ( f, n)R j ( f )

Kounades-Bastian et al.
(2016)

0
∑

j v j ( f, n)R j ( f, n)
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Table 5.2 Different approaches categorized according to the constraints on v j ( f, n) andR j,n( f,m)

Method v j ( f, n) R j,n( f,m)

Attias (2003) b j,k j (n)( f ) a j ( f,m)aHj ( f,m)

Izumi et al. (2007) none a j ( f ) = d( f ; ϑl j )

Ozerov & Févotte (2010)
∑

k b j,k( f )h j,k(n) a j ( f )aHj ( f )

Duong et al. (2010) v j ( f, n) R j ( f )

Kameoka et al. (2010)
∑

k,r
b j,k ( f )h j,k,r (n)

|1−∑
q α j,r,q e−j2π f q/F |2 a j ( f,m)aHj ( f,m)

Duong et al. (2011) v j ( f, n) R j,n( f ) ∼
IW C(ν,R j,n−1( f ))

Yoshioka et al. (2011)
η j (n)

|1−∑
q αq (n)e−j2π f q/F |2 a j ( f,m)aHj ( f,m)

Ozerov et al. (2011)
∑

k φ j,kbk( f )hk(n) R j ( f )

Ono et al. (2012) h j (n) a j ( f )aHj ( f )

Kameoka et al. (2012) none a j ( f ) ∼ NC(d( f ; ϑl j ),Σa)

Sawada et al. (2013)
∑

k φ j,kbk( f )hk(n) R j ( f )

Higuchi et al. (2014a) none a j,n( f ) ∼
NC(d( f ; ϑl j (n)),Σa)

Nikunen & Virtanen (2014)
∑

k φ j,kbk( f )hk(n)
∑

l q j,lΣd( f ; ϑl)

Higuchi et al. (2014b) b j,k j (n)( f )h j (n) R j ( f )

Higuchi et al. (2014c) b j,k j (n)( f )h j (n) R j ( f, 0) ∼
WC(ν,

∑
l q j,lΣd( f ; ϑl ) + εI)

Otsuka et al. (2014) ‖x( f, n)‖22 (fixed) R j ( f ) ∼
WC(ν,Σd( f ; ϑl j ) + εI)

Higuchi & Kameoka (2015) b j,k j (n)( f )h j (n) R j ( f, 0) ∼
WC(ν,Σd( f ; ϑl j ) + εI)

Kitamura et al. (2015)
∑

k φ j,kbk( f )hk(n) a j ( f )aHj ( f )

Adiloğlu & Vincent (2016) vexj ( f, n)vftj ( f, n) a j ( f )aHj ( f )

Kounades-Bastian et al. (2016)
∑

k b j,k( f )h j,k(n) a j,n( f ) ∼ NC(a j,n−1( f ),Σa)

relationships between the state-of-the-art methods according to the definitions of
μx( f, n) and Σx( f, n) in (5.14) and the constraints on v j ( f, n) and R j,n( f,m).
Here, R j,n( f,m) represents the covariance matrix of a j,n( f,m) + ε j,n( f,m) where
ε j,n( f,m) denotes the approximation error related to the narrowband approxima-
tion, which we assume to be a random vector with mean 0 and a full-rank covari-
ance matrix. If we assume that the narrowband approximation holds such that
ε j,n( f,m) = 0, R j,n( f,m) becomes equal to a j,n( f,m)a j,n( f,m)H. If we assume
the mixing system to be time-invariant, the index n in R j,n( f,m) can be dropped,
i.e.,R j,n( f,m) = R j ( f,m). If we assume an instantaneous mixing model, the index
m in R j,n( f,m) can be dropped, i.e., R j,n( f,m) = R j,n( f ). Table5.3 categorizes
the state-of-the-art methods according to the type of inference algorithm where EM,
CD, MM, VB and GS stand for the EM algorithm, the coordinate descent algorithm,
theMM algorithm, the variational inference algorithm, and the Gibbs sampling algo-
rithm, respectively.
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Table 5.3 Different
approaches categorized
according to the types of
inference algorithms. EM,
CD, MM, VB and GS stand
for the EM algorithm, the
coordinate descent algorithm,
the MM algorithm, the
variational inference
algorithm, and the Gibbs
sampling algorithm,
respectively

Method Algorithms

Attias (2003) EM

Izumi et al. (2007) EM

Ozerov & Févotte (2010) EM

Duong et al. (2010) EM

Kameoka et al. (2010) EM

Duong et al. (2011) EM

Yoshioka et al. (2011) CD

Ozerov et al. (2011) EM

Ono et al. (2012) MM

Kameoka et al. (2012) VB

Sawada et al. (2013) MM

Higuchi et al. (2014a) VB

Nikunen & Virtanen (2014) MM

Higuchi et al. (2014b) MM

Higuchi et al. (2014c) MM

Otsuka et al. (2014) GS

Higuchi & Kameoka (2015) MM

Kitamura et al. (2015) MM

Adiloğlu & Vincent (2016) VB

Kounades-Bastian et al.
(2016)

VB

5.6 Derivations of MNMF and MFHMM Algorithms

5.6.1 MNMF Algorithm

Here, we give a detailed description of the MM-based algorithm for MNMF, which
we presented in [7]. This algorithm is an extension of the MM-based algorithm
originally developed for solving general model-fitting problems using the Itakura-
Saito (IS) divergence [39]. First we show the basic idea behind obtaining the MM-
based algorithm for the single-channel NMF with the IS divergence and then show
how it can be extended to a multichannel case.

The cost function for the single-channel NMF with the IS divergence is

CNMF(θ) =
∑

n, f

( |x( f, n)|2
v( f, n)

+ log v( f, n)

)
, (5.72)
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where x( f, n) is the observed STFT coefficient, v( f, n) = ∑
k bk( f )hk(n) and θ is a

set consisting of B = [bk( f )]k, f and H = [hk(n)]k,n [14]. Although it is difficult to
obtain an analytical expression of the global optimum solution, an auxiliary function
ofCNMF(θ) can be obtained by following the idea in [39] as follows. First, by using the
fact that a reciprocal function f (x) = 1/x is convex for x > 0, we can use Jensen’s
inequality to obtain

|x( f, n)|2
v( f, n)

≤
∑

k

ρk( f, n)
|x( f, n)|2

bk( f )hk(n)/ρk( f, n)
=

∑

k

ρ2
k ( f, n)

|x( f, n)|2
bk( f )hk(n)

,

(5.73)

where 0 ≤ ρk( f, n) ≤ 1 is an arbitrary weight that must satisfy
∑

k ρk( f, n) = 1. It
can be shown that the equality of this inequality holds when

ρk( f, n) = bk( f )hk(n)∑
k ′ bk ′( f )hk ′(n)

. (5.74)

Next, since the logarithmic function f (x) = log x is concave for x > 0, the tangent
line to f (x) is guaranteed never to lie below f (x). Thus, we have

log v( f, n) ≤ v( f, n) − κ( f, n)

κ( f, n)
+ log κ( f, n), (5.75)

for any κ( f, n) > 0. The equality of this inequality holds when

κ( f, n) = v( f, n). (5.76)

By combining these inequalities, we have

CNMF(θ) ≤
∑

f,n

(
∑

k

ρ2
k ( f, n)

|x( f, n)|2
bk( f )hk(n)

+ v( f, n) − κ( f, n)

κ( f, n)
+ log κ( f, n)

)
.

(5.77)

Hence, we can use the right-hand side of this inequality as a majorizer for CNMF(θ)

where ρ = [ρk( f, n)]k, f,n and κ = [κ( f, n)] f,n are auxiliary variables. Here, (5.74)
and (5.76) correspond to the update rules for the auxiliary variables. What is par-
ticularly notable about this majorizer is that while CNMF(θ) involves the nonlinear
interaction of b1( f )h1(n), . . . , bK ( f )hK (n), it is given in a separable form expressed
as the linear sum of the 1/bk( f )hk(n) and bk( f )hk(n) terms, which is relatively easy
to optimize with respect to bk( f ) and hk(n). By differentiating this majorizer with
respect to bk( f ) and hk(n), and setting the results at zero, we obtain the following
update rules for bk( f ) and hk(n):
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bk( f ) =

√√√√√

∑
n

ρ2
k ( f, n)|x( f, n)|2/hk(n)

∑
n
hk(n)/κ( f, n)

, (5.78)

hk(n) =

√√√√√√

∑
f

ρ2
k ( f, n)|x( f, n)|2/bk( f )
∑
f
bk( f )/κ( f, n)

. (5.79)

Now, let us turn to the objective function for MNMF. By substituting μx( f, n) =
0, Σx( f, n) = ∑

j v j ( f, n)R j ( f ), and v j ( f, n) = ∑
k φ j,kbk( f )hk(n) into the log-

likelihood (5.18), reversing the sign and neglecting the constant terms, we obtain the
objective function to be minimized as

CMNMF(θ) =
∑

f,n

{
tr
(
Σ̂x( f, n)Σ−1

x ( f, n)
) + log detΣx( f, n)

}
, (5.80)

where

Σ̂x( f, n) = x( f, n)xH( f, n), (5.81)

Σx( f, n) =
∑

j

∑

k

φ j,kbk( f )hk(n)R j ( f ). (5.82)

We can confirm that when the number of channels and sources is I = 1 and J = 1,
respectively, and φ j,k = 1, this objective function reduces to the objective (5.72). We
can obtain an auxiliary function given in a separable form in the same way as the
single channel case. By analogy with (5.73), we have

tr
(
Σ̂x( f, n)Σ−1

x ( f, n)
) ≤

∑

j,k

tr(Σ̂x( f, n)P j,k( f, n)R−1
j ( f )P j,k( f, n))

φ j,kbk( f )hk(n)
, (5.83)

for the first term with an arbitrary complex matrix P j,k( f, n) ∈ C
I×I such that∑

j,k P j,k( f, n) = I where I is an identity matrix, and

log det (Σx( f, n)) ≤ tr(K−1( f, n)Σx( f, n)) + log detK( f, n) − I, (5.84)

for the second term with a positive definite matrixK( f, n) [7, 22]. We can show that
the equalities of (5.83) and (5.84) hold when

P j,k( f, n) = φ j,kbk( f )hk(n)R j ( f )Σ
−1
x ( f, n), (5.85)

K( f, n) = Σx( f, n). (5.86)

By combining these inequalities, we have
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CMNMF(θ) ≤
∑

f,n

{∑

j,k

tr(Σ̂x( f, n)P j,k( f, n)R−1
j ( f )P j,k( f, n))

φ j,kbk( f )hk(n)

+ tr(K−1( f, n)Σx( f, n)) + log detK( f, n) − I

}
. (5.87)

Hence, we can use the right-hand side of this inequality as a majorizer for CMNMF(θ)

where P = [P j,k( f, n)] j,k, f,n and K = [K( f, n)] f,n are auxiliary variables. Here,
(5.85) and (5.86) correspond to the update rules for the auxiliary variables. As in the
single channel case, this majorizer is given in a separable form, which is relatively
easy to optimize with respect to Φ = [φ j,k] j,k , B = [bk( f )]k, f , H = [hk(n)]k,n and
R = [R j ( f )] j, f . By differentiating this majorizer with respect to bk( f ) and hk(n),
and setting the results at zero, we obtain the following update rules for bk( f ) and
hk(n):

bk( f ) =

√√√√√√

∑
n, j

1
φ j,khk (n)

tr(Σ̂x( f, n)P j,k( f, n)R−1
j ( f )P j,k( f, n))

∑
n, j

φ j,khk(n)tr(K−1( f, n)Σx( f, n))
, (5.88)

hk(n) =

√√√√√√

∑
f, j

1
φ j,kbk ( f )

tr(Σ̂x( f, n)P j,k( f, n)R−1
j ( f )P j,k( f, n))

∑
f, j

φ j,kbk( f )tr(K−1( f, n)Σx( f, n))
. (5.89)

As regards φ j,k , although it is necessary to take account of the unit sum constraint,
here we update φ j,k at

φ j,k =

√√√√√√

∑
n, f

1
bk ( f )hk (n)

tr(Σ̂x( f, n)P j,k( f, n)R−1
j ( f )P j,k( f, n))

∑
n, f

bk( f )hk(n)tr(K−1( f, n)Σx( f, n))
, (5.90)

which minimizes the majorizer, project it onto the constraint space φ j,k ← φ j,k/∑
j ′ φ j ′,k , and rescale bk( f ) and hk(n). As regards R j ( f ), the optimal update is

given as the solution to an algebraic Riccati equation

R j ( f )Ψ j ( f )R j ( f ) = Ω j ( f ), (5.91)

where the coefficient matrices are given as
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Ψ j ( f ) =
∑

k,n

φ j,kbk( f )hk(n)K−1( f, n), (5.92)

Ω j ( f ) =
∑

k,n

P j,k( f, n)Σ̂x( f, n)P j,k( f, n)

φ j,kbk( f )hk(n)
. (5.93)

Since there is a scale indeterminacy between R j ( f ) and φ j,kbk( f )hk(n), a conve-
nient way to eliminate the indeterminacy would be to update R j ( f ) using the above
equation and then perform unit-trace normalization: R j ( f ) ← R j ( f )/tr(R j ( f )).

Comparisons of the convergences of the EM algorithm and the MM algorithm for
MNMF can be found in [7].

5.6.2 MFHMM Algorithm

In [18], we proposed a method that makes it possible to simultaneously perform
source separation, DOA estimation, dereverberation and voice activity detection
(VAD) by using a composite model of the convolutive mixing model, the HMM-
based spectral model and the DOA mixture model. Since this model can be viewed
as an extension of the factorial hidden Markov model (FHMM) [37] for modeling
multichannel signals,we call it themultichannel FHMM(MFHMM).Wedescribe the
generative process of v j ( f, n) as (5.22), (5.23), and (5.24), and the generative process
of R j ( f, 0) as (5.39). By substituting μx( f, n) = 0, Σx( f, n) = ∑

j

∑
m v j ( f, n −

m)R j ( f,m), and v j ( f, n) = b j,k j (n)( f )h j (n) into the log-likelihood (5.18), adding
the log-prior terms

log p(H) =
∑

j

log
∑

K j

p(Hj |K j )p(K j ), (5.94)

log p(R) =
∑

j

log
∑

z j

p(R j |z j )p(z j ), (5.95)

where Hj = [h j (n)]n , K j = [k j (n)]n , and R j = [R j ( f, 0)] f , reversing the sign and
neglecting the constant terms, we obtain the objective function to be minimized as

CMFHMM(θ) =
∑

f

∑

n

{
tr
(
Σ̂x( f, n)Σ−1

x ( f, n)
) + log detΣx( f, n)

}

−
∑

j

log
∑

K j

p(Hj |K j )p(K j ) −
∑

j

log
∑

z j

p(R j |z j )p(z j ). (5.96)

Here, p(Hj |K j ), p(K j ), p(R j |z j ) and p(z j ) are given by
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p(Hj |K j ) =
N−1∏

n=0

p(h j (n)|k j (n)) (5.97)

p(h j (n)|k j (n)) = G (h j (n)|γ j,k j (n), β j,k j (n)), (5.98)

p(K j ) = p(k j (0))
N−1∏

n=1

p(k j (n)|k j (n − 1)) (5.99)

p(k j (n)|k j (n − 1)) = π j,k j (n−1),k j (n), (5.100)

p(R j |z j ) =
∏

f

p(R j ( f, 0)|z j ) (5.101)

p(R j ( f, 0)|z j ) = WC(R j ( f, 0)|ν,Σd( f ;ϑz j ) + εI), (5.102)

p(z j ) = ψz j . (5.103)

Since the logarithmic function is concave, we can use Jensen’s inequality to obtain
majorizers for the log-prior terms

− log
∑

K j

p(Hj |K j )p(K j ) ≤ −
∑

K j

λh(K j ) log
p(Hj |K j )p(K j )

λh(K j )
, (5.104)

− log
∑

z j

p(R j |z j )p(z j ) ≤ −
∑

z j

λR(z j ) log
p(R j |z j )p(z j )

λR(z j )
, (5.105)

where λh(K j ) and λR(z j ) are non-negative weights that must satisfy

∑

K j

λh(K j ) = 1,
∑

z j

λR(z j ) = 1. (5.106)

A majorizer for the first term of CMFHMM(θ) can be obtained in the same way as the
previous section using (5.83) and (5.84). By combining these majorizers, we obtain
a majorizer for the objective CMFHMM(θ), which allows us to obtain closed-form
update equations for the model parameters [18].

5.6.3 Demixing Filter Estimation Algorithm

For the instantaneous demixing system (5.6), one popular way of estimating the
demixing filtersWH( f ) involves the natural gradient method [40]. For the convolu-
tive case (5.7), the log-likelihood function can be written equivalently as
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log p(X |θ) =
∑

f,n

{
2 log detWH( f, 0) −

∑

j

log v j ( f, n)

− y( f, n)HW( f, 0)Σ−1
s ( f, n)WH( f, 0)y( f, n)

}
, (5.107)

where

y( f, n) = x( f, n) −
M−1∑

m=1

DH( f,m)x( f, n − m), (5.108)

DH( f,m) = −(WH( f, 0))−1WH( f,m). (5.109)

Once y( f, n) and WH( f, 0) are obtained, s( f, n) can be obtained by

s( f, n) = WH( f, 0)y( f, n). (5.110)

Here, (5.108) can be seen as the dereverberation process of the observed mixture
signal x( f, n) described as a multichannel autoregressive (AR) system with regres-
sion matrices D = [DH( f,m)] f,m whereas (5.110) can be seen as the instantaneous
demixing process of the dereverberated mixture signal y( f, n). When WH( f, 0) is
fixed, it can be shown that the log-likelihood function of D becomes equal up to
a sign to the objective function of a vector version of the linear prediction (multi-
channel linear prediction), which can be maximized with respect to D by solving a
Yule-Walker equation. On the other hand, when D is fixed, the log-likelihood func-
tion (5.107) can be locally maximized with respect to WH( f, 0) using the natural
gradient method. Thus, we can find the estimates ofWH( f, 0) and D by sequentially
optimizing one at a time while keeping the other fixed [5, 28].

5.7 Conclusion

This chapter introduced a general formulation of the frequency domain BSS that
allows the incorporation of a composite model combining a mixing process model, a
source spectral model, and a spatial model. We showed that combining these models
allows us to design various BSS methods with different properties and characteris-
tics including multichannel extensions of NMF variants. Through this formulation,
we revealed the relationship between the state-of-the-art BSS approaches. We also
showed the derivations of the MNMF and MFHMM algorithms.
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Chapter 6
Determined Blind Source Separation
with Independent Low-Rank Matrix
Analysis

Daichi Kitamura, Nobutaka Ono, Hiroshi Sawada,
Hirokazu Kameoka and Hiroshi Saruwatari

Abstract In this chapter, we address the determined blind source separation prob-
lem and introduce a new effective method of unifying independent vector analysis
(IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art tech-
nique that utilizes the statistical independence between source vectors. However,
since the source model in IVA is based on a spherically symmetric multivariate dis-
tribution, IVA cannot utilize the characteristics of specific spectral structures such as
various sounds appearing in music signals. To solve this problem, we introduce NMF
as the source model in IVA to capture the spectral structures. Since this approach
is a natural extension of the source model from a vector to a low-rank matrix rep-
resented by NMF, the new method is called independent low-rank matrix analysis
(ILRMA). We also reveal the relationship between IVA, ILRMA, and multichannel
NMF (MNMF), namely, IVA and ILRMA are identical to a special case of MNMF,
which employs a rank-1 spatial model. Experimental results show the efficacy of
ILRMA compared with IVA and MNMF in terms of separation accuracy and con-
vergence speed.
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6.1 Introduction

Blind source separation (BSS) is a technique for separating specific sources from a
recorded sound without any information about the recording environment, mixing
system, or source locations. In a determined or overdetermined situation (number of
microphones ≥ number of sources), independent component analysis (ICA) [1–5]
is the method most commonly used to solve the BSS problem, and many ICA-based
techniques have been proposed [6–10]. On the other hand, for an underdetermined
situation (number of microphones< number of sources) including monaural record-
ing, nonnegative matrix factorization (NMF) [11–13] with both blind and informed
source separation techniques has received much attention [14–18]. BSS is generally
used to solve speech separation problems, but recently the use of BSS for music
signals has also become an active research area [19–22].

ICA-based BSS assumes independence between the sources to estimate a demix-
ing matrix. In frequency domain ICA (FDICA), the permutation ambiguity of ICA
in each frequency bin must be aligned so that a separated signal in the time domain
contains frequency components of the same source signal. This problem is called
the permutation problem, for which many solvers have been proposed (e.g., [8, 9,
23–26]). Independent vector analysis (IVA) [27–29] is a popular method simultane-
ously solving the separation and permutation problems. IVA assumes source vector
variables and their generative model with a spherically symmetric multivariate dis-
tribution to ensure higher-order correlations between frequency bins in each source.
This generative source model does not include any specific information on the spec-
tral structures of sources, meaning that it can be generally used for various types of
sound. However, some sources have specific spectral structures such as the harmonic
structure of instrumental sounds or music tones. Therefore, the introduction of a bet-
ter source model has the potential to improve the source separation performance. In
this chapter, we only focus on the BSS problem in the determined situation, and intro-
duce a new effective method of unifying IVA and NMF [30, 31]. The new method
exploits NMF decomposition to capture the spectral structures of each source as
the generative source model in IVA. Since this approach is a natural extension of
the source model from a vector to a low-rank matrix represented by NMF, we call
the new method independent low-rank matrix analysis. Intriguingly, the formulation
of the new method coincides with a special case of the multichannel extension of
NMF [32–36]. This fact reveals the relationship between a multichannel extension
of NMF, IVA, and ILRMA.

The contents in this chapter are partially based on [30, 31] written by the authors.
Note that ILRMA was called determined rank-1 multichannel NMF in these papers.
We have renamed the method to clarify that ILRMA is a natural extension of the
source model in IVA.
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6.2 Generative Source Models in IVA and NMF Based
on Itakura–Saito Divergence

In this section,we explain and compare the generative sourcemodels in IVAandNMF
based on Itakura–Saito divergence (hereafter referred to as Itakura–Saito NMF).

6.2.1 Formulation

Let the numbers of sources and microphones (channels) be N and M , respectively.
The source, observed, and separated signals in each time-frequency slot are described
as

si j = (si j,1 · · · si j,N )T, (6.1)

xi j = (xi j,1 · · · xi j,M)T, (6.2)

yi j = (yi j,1 · · · yi j,N )T, (6.3)

where i = 1, · · · , I ; j = 1, · · · , J ; n = 1, · · · , N ; andm = 1, · · · , M are the inte-
gral indexes of the frequency bins, time frames, sources, and channels, respectively, T

denotes the vector transpose, and all the entries of these vectors are complex values.
When the window length in a short-time Fourier transform (STFT) is sufficiently
long compared with the impulse responses between sources and microphones, the
instantaneous mixture in the frequency domain becomes valid while deriving the
following expression for the mixing system:

xi j = Ai si j , (6.4)

whereAi = (ai,1 · · · ai,N ) is anM×N mixingmatrix and ai,n = (ai,n1 · · · ai,nM)T is
the steering vector for each source. In the case of an overdetermined signal (M > N ),
a standard approach is to apply principal component analysis (PCA) in advance to
reduce the dimension of xi j so that M = N . If the mixing matrix Ai is invertible and
M = N , we can define the demixing matrix Wi = (wi,1 · · · wi,N )H as the inverse
of the mixing matrix, and the separated signal can be represented as

yi j = Wixi j , (6.5)

where wi,n = (wi,n1 · · · wi,nM)T is the demixing filter for each source and H denotes
the Hermitian transpose. In this chapter, hereafter, we only focus on the determined
situation (N = M) and we use indexes n and m to distinguish sources and channels,
respectively.
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6.2.2 IVA

IVA [27–29] is a multivariate extension of FDICA and can solve the BSS problem
while avoiding the permutation problem. ICA-basedmethods including IVA can only
be applied to the determined situation (M = N ) with the mixing assumption (6.4)
because they estimate the demixing matrix Wi for the separation. In IVA, we assume
the multivariate source vector s j,n , observed vector x j,m , and separated vector y j,n ,
which consist of all the frequency bins, as

s j,n = (s1 j,n · · · sI j,n)T, (6.6)

x j,m = (x1 j,m · · · xI j,m)T, (6.7)

y j,n = (y1 j,n · · · yI j,n)
T. (6.8)

Figure6.1 shows the mixing and demixing model in IVA, where N = M = 2.
In IVA, all the source, observed, and separated signals are represented as fre-
quency vector variables, whereas FDICA independently models each of the fre-
quency components resulting in the permutation problem. In addition, higher-order
correlations between the frequency components in each source (or separated) vector
are introduced by assuming spherically symmetric multivariate source distributions
p(s j,n) ≈ p(y j,n) = p(y1 j,n, · · · , yI j,n), where the spherically symmetric property
means that the distribution is a function of only the norm of multivariate vector
variable, i.e., p(y j,n) = f (‖y j,n‖).

In the literature [27–29], a spherically symmetric multivariate Laplace distribu-
tion [37, 38] was exploited as a super-Gaussian source distribution for modeling
speech sources. This distribution is shown in Fig. 6.2 and is defined as

p(s j,n) ≈ p(y j,n) = ρ exp

⎛
⎝−

√√√√∑
i

∣∣∣∣
yi j,n
ri,n

∣∣∣∣
2
⎞
⎠ , (6.9)

whereρ is a normalization term and ri,n is the scale, which determines the signal scale
of yi j,n . Since the source distribution has a spherically symmetric property, higher-
order correlations between the frequency components in each source are assumed,
which results in avoiding the permutation problem. Hereafter, IVA based on the
source distribution (6.9) is referred to as Laplace IVA.

From the generative source model p(s j,1, · · · , s j,N ) ≈ p(y j,1, · · · , y j,N ) and
the demixing system (6.5), p(x j,1, · · · , x j,M) can be obtained by multiplying
p(y j,1, · · · , y j,N ) by the Jacobian

∂(y j,1, · · · , y j,N )

∂(x j,1, · · · , x j,M)
=

∏
i

| det Wi |2; (6.10)

note that the Jacobian for a complex-valued variable is the square of the Jacobian for a
real-valued variable [39]. Therefore, the likelihood functionL (W) of the parameter
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Fig. 6.1 Mixing and
demixing model in IVA,
where N = M = 2

Fig. 6.2 Spherically
symmetric multivariate
Laplace distribution, where
s∗
i j,n can be considered as
either real or imaginary part
of si j,n and I = 2. Two
frequency components s1 j,n
and s2 j,n are uncorrelated but
have mutual dependences,
which is called higher-order
correlation

set W = {Wi |i = 1, · · · , I } is given as

L (W) =
∏
j

p(x j,1, · · · , x j,M |W)

=
∏
j

[
p(y j,1, · · · , y j,N ) ·

∏
i

| det Wi |2
]

=
∏
j

{[∏
n

p(y j,n)

]
·
∏
i

| det Wi |2
}

, (6.11)

where p(y j,1, · · · , y j,N ) = ∏
n p(y j,n) is obtained by assuming mutual indepen-

dence between y j,n for all the sources. The negative log-likelihood function can be
calculated as

− logL (W) = −
∑
i, j

log | det Wi |2 −
∑
j,n

log p(y j,n)

= −2J
∑
i

log | det Wi | +
∑
j,n

G(y j,n), (6.12)
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where G(y j,n) = − log p(y j,n) is called the contrast function, which depends on the
source distribution p(y j,n). Note that since yi j,n = wH

i,nxi j , the separated signal y j,n

includes the optimization variableWi . Themaximum log-likelihood (ML) estimation
based on (6.12) is equivalent to the well-known estimation [3, 5] that maximizes the
independence between all the sources with the Kullback–Leibler divergence DKL as
follows:

∑
j

DKL

(
p(y j,1, · · · , y j,N )‖

∏
n

p(y j,n)

)

=
∑
j

∫
p(y j,1, · · · , y j,N ) log

p(y j,1, · · · , y j,N )∏
n p(y j,n)

dy j,1 · · · dy j,N

= const. − 2J
∑
i

log | det Wi | +
∑
j,n

G(y j,n). (6.13)

On the basis of the source distribution (6.9), the contrast function G(y j,n) and the
cost function in Laplace IVA can be obtained as follows:

G(y j,n) = − log ρ + ‖y j,n‖2, (6.14)

− logL (W) = const. − 2J
∑
i

log | det Wi | +
∑
j,n

‖y j,n‖2, (6.15)

where ‖ · ‖2 denotes the �2 norm. Also, the scale is set to ri,n = 1 for all i and n
because the scales of separated signals cannot be determined by ICA or IVA, and
they can be recovered by a back-projection technique [24] after the separation. For
the minimization of (6.15), fast and stable update rules called iterative projection
(IP) based on the auxiliary function technique have been proposed [40–42].

6.2.3 Time-Varying Gaussian IVA

Laplace IVA employs the spherically symmetric Laplace distribution as a super-
Gaussian source distribution. The model ensures that all the frequency components
in the same source have higher-order correlation. As another super-Gaussian source
model with the higher-order correlation, in [43], the circularly symmetric complex
Gaussian distribution with time-varying variance r j,n is introduced to conventional
IVA instead of the stationary distribution:

p(y1,n, · · · , yJ,n) =
∏
j

p(y j,n)

=
∏
j

1

πr j,n
exp

(
−‖y j,n‖22

r j,n

)
, (6.16)
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where the time-varying variance r j,n is shared over the frequency bins in each time
frame. Similar to (6.9), the distribution (6.16) has the spherically symmetric prop-
erty for the multivariate vector y j,n because p(y j,n) only depends on the vector norm
‖y j,n‖2. Also, the distribution is assumed to be mutually independent for time frames
and sources. Whereas the temporal source model p(y j,n) is based on the Gaussian
distribution, the global source model p(y1,n, · · · , yJ,n) becomes the super-Gaussian
distribution because of the time-varying variance r j,n [42]. This time-varying Gaus-
sian source model has been adopted for many techniques, e.g., BSS [44, 45] and
dereverberation of speech signals [46]. Hereafter, IVA based on the source distribu-
tion (6.16) is referred to as time-varying Gaussian IVA.

6.2.4 Itakura–Saito NMF

When we apply NMF to an acoustic signal, the power spectrogram obtained via
STFT is considered as an observed nonnegative matrix and can be decomposed into
two nonnegative matrices as

|D|.2 ≈ TV, (6.17)

whereD ∈ C
I×J is a complex-valued spectrogram, and the absolute value | · | and the

dotted exponent for matrices denote the entrywise absolute value and the entrywise
exponent, respectively, T ∈ R

I×L
≥ 0 is a basis matrix, which includes bases (frequently

appearing spectral patterns in |D|.2) as column vectors, andV ∈ R
L×J
≤ 0 is an activation

matrix, which involves time-varying gains of each basis in T as row vectors. Also,
L is the number of bases, which should be set to a much smaller value than I or
J . Figure6.3 depicts the decomposition model of NMF, where L is set to two. In
this figure, the basis matrix includes two types of spectral pattern as the bases to
represent the observed matrix using time-varying gains in the activation matrix. In
the decomposition of NMF, the variables T and V are optimized by minimizing the
cost function based on the divergence between the nonnegative observation |D|.2
and the model TV. In particular, Itakura–Saito NMF has a special generative model,
which has been given by Févotte et al. [47], as described below.

Fig. 6.3 Decomposition
model of simple NMF, where
L = 2. Basis matrix involves
representative spectral
patterns, and activation
matrix represents
time-varying gains for each
basis
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Fig. 6.4 Circularly
symmetric complex
Gaussian distribution.
Probability does not depend
on phase arg(qi jl ) but only
depends on amplitude |qi jl |
or power |qi jl |2 because of
circularly symmetric
property

Let us assume that L complex-valued spectrograms qi j1, · · · , qi j L are generated
from circularly symmetric (isotropic) complex Gaussian distribution [48], which are
independently defined in each time-frequency slot as follows:

p(qi jl) = 1

πri jl
exp

(
−|qi jl |2

ri jl

)
, (6.18)

where l = 1, · · · , L is the integral index of L components and ri jl is the nonnegative
variance of each distribution. Figure6.4 shows the circularly symmetric complex
Gaussian distribution. Since the distribution has a circularly symmetric property in
the complex plane, the probability does not depend on the phase arg(qi jl) and only
depends on the amplitude |qi jl |or power |qi jl |2.Note that the variance ri jl corresponds
to the expectation value of the power spectrum |qi jl |2, namely, ri jl = E[|qi jl |2].When
the variance ri jl is large, the distribution becomes wider, and the complex-valued
spectrum qi jl with a large power can easily be generated, while the phase of qi jl
is always uniformly distributed. In addition, if we assume that the observation di j ,
which is the complex-valued entry of D, is the sum of the components qi jl , namely,
di j = ∑

l qi jl , the following generative model can also be assumed because of the
reproductive property in complex Gaussian distributions:

p(D) =
∏
i, j

p(di j )

=
∏
i, j

1

πri j
exp

(
−|di j |2

ri j

)
, (6.19)

where ri j = ∑
l ri jl . This fact means that the additivity of power spectra |qi jl |2 is

held only in the expectation sense. Now, the likelihood function of T and V can be
obtained as follows by putting ri jl = til vl j ;
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L (T, V) = p(D|T, V)

=
∏
i, j

1

π
∑

l til vl j
exp

(
− |di j |2∑

l til vl j

)
, (6.20)

where til and vl j are the nonnegative entries of T and V, respectively. The negative
log-likelihood function is

− logL (T, V) =
∑
i, j

(
logπ + log

∑
l

til vl j + |di j |2∑
l til vl j

)
. (6.21)

It is clear that the ML estimation based on (6.21) is equivalent to the minimization
of the Itakura–Saito divergence DIS [49] between |D|.2 and TV:

DIS
(|D|.2‖TV

) =
∑
i, j

( |di j |2∑
l til vl j

− log
|di j |2∑
l til vl j

− 1

)

= const. +
∑
i, j

(
|di j |2∑
l til vl j

+ log
∑
l

til vl j

)
. (6.22)

Thus, when Itakura–Saito NMF is applied to the observed power spectrogram |D|.2,
it is assumed that di j follows the generative model (6.19) and the components qi jl
are mutually independent. The multiplicative update rules for T and V that minimize
(6.21) or (6.22) are given by [50]

til ← til

√∑
j |di j |2vl j(∑l′ til′ vl′ j)

−2

∑
j vl j(

∑
l′ til′ vl′ j)

−1 , (6.23)

vl j ← vl j

√∑
i |di j |2til(∑l′ til′ vl′ j)

−2

∑
i til(

∑
l′ til′ vl′ j)

−1 . (6.24)

These update rules are called the multiplicative update (MU) and guarantee a mono-
tonic decrease in cost function.

Figure6.5a shows the sourcemodel (variance structure in a time-frequency region)
assumed in time-varying Gaussian IVA. Since the variance r j,n is shared over the
frequency bins, it can be interpreted as an uniform (flat) spectral basis. On the other
hand, Itakura–Saito NMF has a more flexible source model because the variance ri j
is independently defined in each time-frequency slot as shown in Fig. 6.5b. It allows
us to model the specific time-frequency structure with limited numbers of bases and
activations.
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(a)

(b)

Fig. 6.5 Comparison of source models (variance structures) in a time-varying Gaussian IVA and b
Itakura–Saito NMF, where grayscale in each time-frequency slot indicates scale of variance. Time-
varying Gaussian IVA has uniform variance over frequency bins, and all the frequency bins have
the same activations (time-varying gains), whereas Itakura–Saito NMF employs limited number of
bases to capture low-rank structure, resulting in more flexible source model

6.3 Independent Low-Rank Matrix Analysis: A Unification
of IVA and Itakura–Saito NMF

6.3.1 Motivation and Strategy

For speech signal separation, Laplace IVA or time-varying Gaussian IVA can achieve
better performance than FDICA. However, since only the higher-order correlation
defined in (6.9) or (6.16) is utilized as a spectral structure in the source model, IVA
cannot treat the specific harmonic structures of each source and lacks flexibility, as
shown in Fig. 6.5. For this reason, IVA is not suitable for sources that have charac-
teristic (specific) spectral structures, such as instrumental sounds or music signals.
NMF decomposition is suitable for modeling the spectrogram ofmusic or instrumen-
tal signals because such signals typically consist of a limited number of components,
for example, steady musical tones, discrete pitches, and discrete notes. This property
means that the spectrogram of a music signal tends to be a low-rankmatrix compared
with a speech spectrogram.

In [43], the temporal power variation of sources provided by a user is exploited
as the prior distribution of the time-varying gain r j,n , which is defined as an inverse
gamma distribution. In [51], a new multichannel source separation method with
external model information has been proposed, which is called model-based IVA. In
this approach, we consider that the time-frequency variance ri j,n for each source is
given by another technique (e.g., single-channel spectral subtraction, voice activity
detection, or time-frequency binary masking) applied in advance. The demixing
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matrix Wi is estimated on the basis of the independence between sources taking the
given variance ri j,n into account. These approaches show that the estimation of Wi

based on a correct and precise variance will provide better separation performance.
On the basis of these ideas, in this chapter,we introduce Itakura–SaitoNMF to IVA

for decomposing the sourcewise variance ri j,n using a limited number of NMF bases,
where the demixingmatrixWi and the sourcemodel p(y j,1, · · · , y j,N )with theNMF
variables are simultaneously estimated in a fully blind manner. This approach is a
natural extension of time-varying Gaussian IVA because we extend the vector source
model (frequency-uniform variance) to the low-rank matrix source model (NMF
decomposition) as shown in Fig. 6.5. For this reason, hereafter, we call this method
independent low-rankmatrix analysis (ILRMA). Similarly to standardFDICAor IVA,
ILRMA is applicable to the determined case (M = N ). In the overdetermined case
(M > N ), dimensionality reduction using PCA should be applied so that M = N .

6.3.2 Derivation of Cost Function

In ILRMA, similarly to Itakura–SaitoNMF, the circularly symmetric complexGaus-
sian distribution is independently assumed to be as follows in each time-frequency
slot as the source model of the separated signal;

p(y j,1, · · · , y j,N ) =
∏
n

p(y j,n)

=
∏
n,i

1

πri j,n
exp

(
−|yi j,n|2

ri j,n

)
, (6.25)

where ri j,n is the sourcewise variance that corresponds to the expectation of the
power spectrogram, namely, ri j,n = E[|yi j,n|2]. The contrast function and the negative
log-likelihood function of the parameter set W and R = {ri j,n|i = 1, · · · , I ; j =
1, · · · J ; n = 1, · · · N } are given as

G(y j,n) =
∑
i

(
logπri j,n + |yi j,n|2

ri j,n

)

= I logπ +
∑
i

(
log ri j,n + |yi j,n|2

ri j,n

)
, (6.26)

− logL (W, R) = const. − 2J
∑
i

log | det Wi |

+
∑
i, j,n

(
log ri j,n + |yi j,n|2

ri j,n

)
. (6.27)
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Here, we consider two types of ri j,n decomposition depending on the presence of a
partitioning function:

ri j,n =
∑
l

til,nvl j,n, (6.28)

ri j,n =
∑
k

znk tikvk j , (6.29)

where til,n and vl j,n are the nonnegative entries of Tn ∈ R
I×L
≥ 0 and Vn ∈ R

I×L
≥ 0 that

are the sourcewise basis and activation matrices, and tik and vk j are the nonnegative
entries of T and V that include K bases and activations, respectively. Moreover,
znk ∈ [0, 1] is the entry ofZ = (z1 · · · zN )T ∈ R

N×K
[0,1] ,which is a partitioning function

that clusters K bases into N sources and satisfies
∑

n znk = 1, and k = 1, · · · , K is
the new basis index. In (6.28), a fixed number of bases, L , is utilized to decompose
each separated source spectrogram |yi j,n|2. On the other hand, we can adaptively
determine the number of bases for each separated source spectrogram by employing
the partitioning function znk as (6.29). In this model, we only set the total number of
bases to K . This approach is reasonable because the optimal number of bases will
depend on the time-frequency structure of each source. For a source that consists
of a low-rank power spectrogram, such as an instrumental signal, the number of
bases should be small, whereas a speech or vocal spectrogram may require more
bases for its precise representation. The cost function in ILRMA can be obtained by
substituting (6.28) or (6.29) into (6.27).

In Laplace IVA, the variance ri,n is uniformly set to unity over the frequency bins,
and is not estimated. This is because the variance only determines the signal scale
of yi j,n , and it can be restored by the back-projection technique. In time-varying
Gaussian IVA, only the activation for the uniform variance is estimated based on the
prior information given by users. On the other hand, the variance in ILRMA, ri j,n , is
blindly estimated by low-rank decomposition using NMF (6.28) or (6.29) to capture
the time-frequency structure as shown in Fig. 6.5b. It is clear that when the number
of bases is set to one for every source and all bases have a flat spectrum, the source
models in time-varying Gaussian IVA and ILRMAbecome identical. This fact shows
that ILRMA includes time-varying Gaussian IVA as a special case.

6.3.3 Update Rules

For the optimization of ICA or IVA, update rules based on the auxiliary function
technique have been proposed [40–43, 51, 52], and it has been reported that these
update rules are faster and more stable than those for a conventional update scheme
(e.g., natural gradientmethod [53, 54]) and that the step size parameter can be omitted
in each iteration. Regarding the estimation of Wi , the differential of (6.27) w.r.t. Wi

becomes equivalent to that of the auxiliary bounding function in Laplace IVA [40].
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For this reason, the update rules of Wi based on IP can easily be derived as follows:

Ui,n = 1

J

∑
j

1

ri j,n
xi jxH

i j , (6.30)

wi,n ← (
WiUi,n

)−1
en, (6.31)

wi,n ← wi,n
(
wH

i,nUi,nwi,n
)− 1

2 , (6.32)

where en denotes the N × 1 unit vector with the nth element equal to unity. After
the update of Wi , the separated signal yi j should be updated as

yi j,n ← wH
i,nxi j . (6.33)

If we eliminate the partitioning function znk , which is ILRMA with (6.28), the
differential of (6.27) w.r.t. til,n or vl j,n becomes identical to the differential of the cost
function in Itakura–Saito NMF (6.22). Therefore, the update rules of til,n and vl j,n
are given as

til,n ← til,n

√√√√
∑

j |yi j,n|2vl j,nr−2
i j,n∑

j vl j,nr
−1
i j,n

, (6.34)

vl j,n ← vl j,n

√√√√
∑

i |yi j,n|2til,nr−2
i j,n∑

i til,nr
−1
i j,n

. (6.35)

The estimated source model ri j,n should be updated by (6.28) after each update of
til,n and vl j,n . Alternatively, if we employ the partitioning function znk to cluster
K bases into N specific sources, which is ILRMA with (6.29), we can derive the
auxiliary-function-based update rules of znk , tik , and vk j by minimizing (6.27) in a
similar way to in [12, 50] as

znk ← znk

√√√√
∑

i, j |yi j,n|2tikvk jr−2
i j,n∑

i, j tikvk j r
−1
i j,n

, (6.36)

znk ← znk∑
n′ zn′k

, (6.37)

tik ← tik

√√√√
∑

j,n |yi j,n|2znkvk jr−2
i j,n∑

j,n znkvk jr
−1
i j,n

, (6.38)

vk j ← vk j

√√√√
∑

i,n |yi j,n|2znktikr−2
i j,n∑

i,n znk tikr
−1
i j,n

, (6.39)
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where (6.37) is calculated to ensure
∑

n znk = 1. The estimated source model ri j,n
should be updated by (6.29) after each update of znk , tik , and vk j . The derivation of
(6.36)–(6.39) is described in [31].

Thus, we can estimate all the variables that minimize (6.27) by iterating these
update rules. Note that a scale ambiguity exists between Wi and ri j,n because both
of them can determine the scale of the separated signal yi j,n . Therefore, Wi or ri j,n
has a risk of diverging during the optimization. To avoid this problem, the following
normalization should be applied at each iteration:

wi,n ← wi,nλ
−1
n , (6.40)

yi j,n ← yi j,nλ
−1
n , (6.41)

ri j,n ← ri j,nλ
−2
n , (6.42)

and

til,n ← til,nλ
−2
n , (6.43)

should be applied for ILRMA without a partitioning function, or

tik ← tik
∑
n

znkλ
−2
n , (6.44)

znk ← znkλ−2
n∑

n′ zn′kλ
−2
n′

, (6.45)

should be applied for ILRMA with a partitioning function, where λn is an arbitrary
sourcewise normalization coefficient, such as the sourcewise average power λn =
[(I J )−1 ∑

i, j |yi j,n|2](1/2). These normalizations do not change the value of the cost
function (6.27). The scale of the separated signal yi j,n can be restored by applying
the following back-projection technique [24] after the optimization:

ŷi j,n = W−1
i

(
en ◦ yi j

)
, (6.46)

where ŷi j,n = (ŷi j,n1 · · · ŷi j,nM)T is a separated source image whose scale is fitted
to the observed signals at each microphone and ◦ denotes the Hadamard product
(entrywise multiplication).

6.3.4 Summary of Algorithm

The detailed algorithm of ILRMA is summarized in Algorithms 1 and 2, where
max(·, ·) returns a matrix with the larger elements taken from two inputs in each
entry, ε denotes the machine epsilon, 1(size) denotes matrix of ones whose size is
denoted as the superscript, the quotient symbol for matrices denote the entrywise
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division, and X ∈ C
I×J×M , Y ∈ C

I×J×N , P ∈ R
I×J×N , and R ∈ R

I×J×N are third-
order tensors whose entries are xi j,m , yi j,n , pi j,n , and ri j,n , respectively. In addition,
the third-order tensor with a subscript denotes the sliced matrix or the fiber vector in
the original tensor [55]. For example, Xi ::, X: j :, and X::m denote the J × M , I × M ,
and I × J sliced matrices in X, respectively. Also, Xi j :, Xi :m , and X: jm denote the
M × 1, J × 1, and I × 1 fiber (column) vectors in X, respectively. To avoid division
by zero, flooring with the machine epsilon is performed in the update of the NMF
variables.

Algorithm 1 ILRMA without partitioning function
1: Initialize Wi with identity matrix and Tn and Vn with nonnegative random values
2: Calculate yi j = Wixi j for all i and j
3: Calculate P::n = |Y::n |.2 and R::n = TnVn for all n, respectively
4: repeat
5: for n = 1 to N do

6: Tn ← max

(
Tn ◦

[ (
P::n◦R.−2::n

)
VT
n

R.−1::n VT
n

]. 12

, ε

)

7: R::n = TnVn

8: Vn ← max

(
Vn ◦

[
TT
n
(
P::n◦R.−2::n

)

TT
nR

.−1::n

]. 12

, ε

)

9: R::n = TnVn
10: for i = 1 to I do

11: Ui,n = 1
J

{
XH
i ::
[
Xi :: ◦

(
R.−1
i :n 1(1×M)

)]}T

12: wi,n ← (WiUi,n)
−1en

13: wi,n ← wi,n(wH
i,nUi,nwi,n)

− 1
2

14: end for
15: end for
16: Calculate yi j = Wixi j for all i and j
17: Calculate P::n = |Y::n |.2 for all n
18: for n = 1 to N do
19: λn =

√
1
I J

∑
i, j pi j,n

20: for i = 1 to I do
21: wi,n ← wi,nλ

−1
n

22: end for
23: P::n ← P::nλ−2

n
24: R::n ← R::nλ−2

n
25: Tn ← Tnλ

−2
n

26: end for
27: until converge
28: Calculate ŷi j,n = W−1

i

(
en ◦ yi j

)
for all i , j , and n
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Algorithm 2 ILRMA with partitioning function
1: Initialize Wi with identity matrix, T and V with nonnegative random values, and Z with random

values in range [0, 1]
2: Z ← Z ◦ (

1(N×N )Z
).−1

3: Calculate yi j = Wixi j for all i and j
4: Calculate P::n = |Y::n |.2 and R::n = [(

1(I×1)zTn
) ◦ T

]
V for all n, respectively

5: repeat
6: for n = 1 to N do

7: b(Z)
n =

({[
TT

(
P::n◦R.−2::n

)]◦V
}
1(J×1)

[(
TTR.−1::n

)
◦V

]
1(J×1)

). 12

8: end for
9: Z ← max

(
Z ◦ B(Z), ε

)
, where B(Z) = (b(Z)

1 · · · b(Z)
N )T

10: Z ← Z ◦ (
1(N×N )Z

).−1

11: Calculate R::n = [(
1(I×1)zTn

) ◦ T
]

V for all n
12: for i = 1 to I do

13: b(T)
i =

({[
V
(
Pi ::◦R.−2

i ::
)]

◦ZT
}

1(N×1)

[(
VR.−1

i ::
)
◦ZT

]
1(N×1)

). 12

14: end for
15: T ← max

(
T ◦ B(T), ε

)
, where B(T) = (b(T)

1 · · · b(T)
I )T

16: Calculate R::n = [(
1(I×1)zTn

) ◦ T
]

V for all n
17: for j = 1 to J do

18: b(V)
j =

({[
TT

(
P: j :◦R.−2

: j :
)]

◦ZT
}

1(N×1)

[(
TTR.−1

: j :
)
◦ZT

]
1(N×1)

). 12

19: end for
20: V ← max

(
V ◦ B(V), ε

)
, where B(V) = (b(V)

1 · · · b(V)
J )

21: Calculate R::n = [(
1(I×1)zTn

) ◦ T
]

V for all n
22: for n = 1 to N do
23: for i = 1 to I do

24: Ui,n = 1
J

{
XH
i ::
[
Xi :: ◦

(
R.−1
i :n 1(1×M)

)]}T

25: wi,n ← (WiUi,n)
−1en

26: wi,n ← wi,n(wH
i,nUi,nwi,n)

− 1
2

27: end for
28: end for
29: Calculate yi j = Wixi j for all i and j
30: Calculate P::n = |Y::n |.2 for all n
31: for n = 1 to N do
32: λn =

√
1
I J

∑
i, j pi j,n

33: for i = 1 to I do
34: wi,n ← wi,nλ

−1
n

35: end for
36: P::n ← P::nλ−2

n
37: R::n ← R::nλ−2

n
38: end for
39: Calculate tik ← tik

∑
n znkλ

−2
n for all i and k

40: Calculate znk ← znk
λ−2
n∑

n′ zn′kλ−2
n′

for all n and k

41: until converge
42: Calculate ŷi j,n = W−1

i

(
en ◦ yi j

)
for all i , j , and n
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6.4 Relationship Between Time-Varying Gaussian IVA,
ILRMA, and Multichannel NMF

In NMF-based source separation, the decomposed bases and activations must be
clustered in every source to achieve source separation. One effective way of achiev-
ing this is to utilize a sample sound of the target signal [16–18]. However, such
supervision cannot be utilized in BSS. To solve this problem, multichannel NMF
(MNMF) has been proposed [32, 34–36, 56–58]. In particular, MNMFmethods [32,
34–36] treat convolutive mixtures similarly to FDICA, IVA, and ILRMA and esti-
mate a mixing system for the sources, which is utilized for the clustering of bases. In
these MNMFs, the spatial covariance [59, 60], which is the covariance matrix of a
zero-mean multivariate Gaussian distribution, has been utilized to model the mixing
conditions of the recording environment. In this section, the relationship between
time-varying Gaussian IVA, ILRMA, and MNMF is revealed from the viewpoint of
their assumed generative models.

6.4.1 Generative Model in MNMF and Spatial Covariance

InMNMF [32, 34–36] and its relatedmethods [59, 60], the probability distribution of
multichannel STFT coefficients xi j ismodeled by a circularly symmetricmultivariate
complex Gaussian distribution with a time-frequency-variant covariance matrix as
follows:

p(xi j ) = 1

πM det R(x)
i j

exp
(
−xH

i jR
(x)
i j

−1
xi j

)
, (6.47)

where R(x)
i j is called the spatial covariance [59, 60] of the observed multichannel

signal xi j , namely, R(x)
i j = E[xi jxH

i j ]. This spatial covariance can be decomposed into

the time-invariant source covariance R(s)
i,n , the time-variant scalar variance ri j,n , and

the time-invariant noise covariance R(n)
i that contributes to additional noise ni j , as

R(x)
i j =

∑
n

ri j,nR(s)
i,n + R(n)

i . (6.48)

The spatial covariance R(s)
i,n represents the spatial position and the spatial spread of

the nth source. In particular, if the mixing system can be modeled by the mixing
matrix Ai as (6.4) with a noiseless assumption, the spatial covariance R(s)

i,n is equal
to the rank-1 matrix

R(s)
i,n = ai,naH

i,n. (6.49)
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This mixing model is the called rank-1 spatial model, which is identical to the
assumption of an instantaneous mixture in the frequency domain. In contrast, if the
mixing system cannot be modeled by (6.4) owing to, for example, strong reverber-
ation in the recording environment, the rank of R(s)

i,n increases so that it becomes a
full-rank spatial covariance [59, 60].

6.4.2 Existing MNMF Models

Existing MNMF models and their related works can be characterized in terms of
two features: models of spatial covariance R(x)

i j and source spectrograms. Table6.1
summarizes the existing methods. The models proposed in [59, 60] have the most
general representations. Several types of R(s)

i,n have been investigated including rank-
1 and full-rank matrices. MNMF in [34] (hereafter referred to as Ozerov’s MNMF)
was the first method to model a power spectrogram ri j,n using NMF decomposition.
In this method, the sourcewise spatial covariance R(s)

i,n is constrained by a rank-1
matrix, and an additive noise component ni j is also assumed. The update rules of the
variables based on both expectation-maximization (EM) and MU algorithms have
been derived. Ozerov’s MNMF was extended to a full-rank spatial model in [32].
Also, a more flexible source model with a partitioning function znk was introduced
in [35]. As another optimization scheme, an MU algorithm based on an auxiliary
function technique was proposed in [36] (hereafter referred to as Sawada’s MNMF).
It also employs the full-rank R(s)

i,n and the flexible source model with znk and NMF
variables. Note that all the existing MNMFs estimate the sourcewise mixing system
R(s)

i,n to achieve separation via multichannel Wiener filtering [61], whereas ILRMA
estimates the demixing matrix Wi .

6.4.3 Equivalence Between ILRMA and MNMF with Rank-1
Spatial Model

From (6.47), the likelihood function of the observed spatial covariance R(x) =
{R(x)

i j |i = 1, · · · , I ; j = 1, · · · , J } is given as

L (R(x)) =
∏
i, j

p(xi j |R(x)
i j )

=
∏
i, j

1

πM det R(x)
i j

exp
(
−xH

i jR
(x)
i j

−1
xi j

)
, (6.50)

and the negative log-likelihood function is
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Table 6.1 Models of mixing system, spatial covariance, power spectrogram, and their optimization
in each method

Literature Model of R(x)
i j Spatial

covariance
Power
spectrogram

Optimization

Ozerov and
Févotte [34]

∑
n,l til,nvl j,nR(s)

i,n+R(n)
i

(xi j =Ai si j +ni j )
Rank-1 matrix
R(s)
i,n and

diagonal
matrix R(n)

i

NMF w/o
partitioning
function

EM and MU
for Ai , R(n)

i ,
Tn , and Vn

Arberet et
al. [32]

∑
n,l til,nvl j,nR(s)

i,n+R(n)
i Full-rank

matrix R(s)
i,n

and diagonal
matrix R(n)

i

NMF w/o
partitioning
function

EM for R(s)
i,n ,

R(n)
i , Tn , and

Vn

Duong et
al. [60]

∑
n ri j,nRi,n Several types

of R(s)
i,n

including
rank-1 and
full-rank
matrices

ri j,n (w/o
NMF)

EM for R(s)
i,n

Ozerov et
al. [35]

∑
n R(s)

i,n

∑
k znk tikvk j +R(n)

i
(xi j =Ai si j +ni j )

Rank-1 matrix
R(s)
i,n and

diagonal
matrix R(n)

i

NMF with
partitioning
function

EM and MU
for Ai , R(n)

i ,
Z, T, and V

Sawada et
al. [36]

∑
n R(s)

i,n

∑
k znk tikvk j Full-rank

matrix R(s)
i,n

NMF with
partitioning
function

MU for R(s)
i,n ,

Z, T, and V

Kitamura et
al. [30, 31]

∑
n R(s)

i,n

∑
k znk tikvk j

(xi j =Ai si j )
Rank-1 matrix
R(s)
i,n

NMF with
partitioning
function

IP for
Wi =A−1

i MU
for Z, T, and
V

− logL (R(x)) =
∑
i, j

[
M logπ + log det R(x)

i j + xH
i jR

(x)
i j

−1
xi j

]

= const. +
∑
i, j

[
log det R(x)

i j + tr
(

Xi jR
(x)
i j

−1
)]

, (6.51)

where Xi j = xi jxH
i j is an observed instantaneous covariance matrix. Similar to

Itakura–Saito NMF in Sect. 6.2.4, the ML estimation based on (6.51) is identical
to the multichannel Itakura–Saito divergence DMIS [36], which is known as Stein’s
loss [62] in the statistics field or the log-determinant divergence [63] in the machine
learning field:
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∑
i, j

DMIS(Xi j‖R(x)
i j ) =

∑
i, j

[
tr
(

Xi jR
(x)
i j

−1
)

− log det Xi jR
(x)
i j

−1 − M
]

= const. +
∑
i, j

[
log det R(x)

i j + tr
(

Xi jR
(x)
i j

−1
)]

. (6.52)

In FDICA, IVA, and ILRMA, the mixing model (6.4) with a noiseless assump-
tion is used, which results in the rank-1 spatial model (6.49). On the basis of this
assumption, the covariance matrix R(x)

i j can be rewritten using the mixing matrix Ai

as

R(x)
i j =

∑
n

ri j,nai,naH
i,n

= AiDi jAH
i , (6.53)

where

Di j =

⎛
⎜⎜⎜⎜⎝

ri j,1 0 · · · 0

0 ri j,2
. . .

...
...

. . .
. . . 0

0 · · · 0 ri j,N

⎞
⎟⎟⎟⎟⎠

. (6.54)

If we substitute (6.53) into the cost function in MNMF (6.51), we obtain

− logL (R(x)) = const. +
∑
i, j

[
log det AiDi jA

H
i + tr

(
Xi j

(
AH
i

)−1
D−1
i j A−1

i

)]

= const. +
∑
i, j

[
log(det Ai )(det Di j )(det Ai )

H

+ tr

(
W−1

i yi jy
H
i j

(
W−1

i

)H
WH

i D−1
i j Wi

)]

= const. +
∑
i, j

[
log | det Ai |2 + log det Di j

+ tr
(

WiW
−1
i yi jy

H
i jD

−1
i j

)]

= const. − 2J
∑
i

log | det Wi |

+
∑
i, j

[
log

∏
n

ri j,n + tr
(

yi jy
H
i jD

−1
i j

)]

= const. − 2J
∑
i

log | det Wi | +
∑
i, j,n

[
log ri j,n + |yi j,n |2

ri j,n

]
, (6.55)
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where we used xi j = W−1
i yi j and Wi = A−1

i to transform the variables. Thus, it is
revealed that the cost function in MNMF with the rank-1 spatial model is identical
to (6.27), the cost function in ILRMA, because the same spatial and source models
are assumed.

Figure6.6 shows the relationship between IVA, ILRMA, and MNMF. MNMF
with a rank-1 spatial model, which assumes an instantaneous mixture in the fre-
quency domain, is essentially equivalent to ILRMA, which is IVA with a flexible
source model using NMF decomposition. Therefore, ILRMA can be considered as
an intermediate model between IVA and MNMF in terms of the model flexibility.
From the IVA side, we introduced the source model using NMFwith bases to capture
the specific spectral patterns, and from the MNMF side, a rank-1 spatial model was
introduced to transform the variable Ai into Wi and to make the optimization more
efficient.

6.5 Experiments on Speech and Music Separation

In this section, we evaluate the separation performance of Laplace IVA [40],
ILRMA [31] without and with a partitioning function, Ozerov’s MNMF [34], and
Sawada’s MNMF [36] for a convolutive mixture of a speech or music signal. Note
that a more substantial evaluation of ILRMA compared with other methods can be
found in [31].

6.5.1 Datasets

We investigated two cases: speech signal and music signal cases. In the speech
signal case, we used live recorded mixture signals obtained from an underdeter-
mined BSS task in SiSEC2011 [19]. This dataset includes 12 mixture signals (dev1
and dev2 datasets) with female and male speech, where the reverberation time is
130/250 ms and the microphone spacing is 1 m/5cm. Details of the other conditions
for this dataset can be found in [19]. Note that since this dataset is for underdeter-

Fig. 6.6 Relationship
between IVA, ILRMA, and
MNMF from viewpoint of
flexibility of spatial and
source models
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(a) (b)

Fig. 6.7 Recording conditions of impulse responses a E2A and b JR2

Table 6.2 Music sources

ID Song name Source (1/2)

1 bearlin-roads acoustic_guit_main/vocals

2 another_dreamer-the_ones_we_love guitar/vocals

3 fort_minor-remember_the_name violins_synth/vocals

4 ultimate_nz_tour guitar/synth

Table 6.3 Experimental conditions

Sampling frequency 16 kHz

FFT length 256 ms in speech signal case and 512 ms in music signal case

Window shift length 128 ms in both speech and music signal cases

Initialization Wi : identity matrix

NMF variables: uniform random values [ε, 1]
Number of iterations 200

mined BSS, three sources (N = 3) are provided as stereo recordings (M = 2). In
this experiment, we used only the first and second speech sources to make the task
determined (N = M = 2). In the music signal case, the observed signals were pro-
duced by convoluting the impulse responseE2A or JR2, which was obtained from the
RWCP database [64], with each source. Figure6.7 shows the recording conditions
of impulse responses E2A and JR2. As the music sources, we used professionally
produced music obtained from a music separation task in SiSEC2011. The titles of
the music and the instruments used are shown in Table6.2.
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(a) (b)

Fig. 6.8 Average SDR improvements for a dev1 female speech with 1m microphone spacing and
130 ms reverberation time and b song ID4 with impulse response E2A

6.5.2 Experimental Analysis of Optimal Number of Bases
for ILRMA

We first give an experimental analysis of the optimal number of bases for ILRMA.
Since NMF decomposition is more suitable for music than speech because of the
stable pitch of instruments, we expect that the optimal number of bases will be
different between them. For this reason, we evaluated the separation performance
of ILRMA without a partitioning function using various numbers of bases for each
source, where thismethodmodels all the sourceswith the same fixed number of bases
L . The experimental conditions used are shown in Table6.3. As the evaluation score,
we used the improvement of the signal-to-distortion ratio (SDR) proposed in [65],
which indicates the total separation performance including the degree of separation
and the quality of the separated sources.

Figure6.8 shows the average SDR improvements and their deviations in 10 tri-
als with different various pseudorandom seeds. From these results, we confirm that
ILRMA cannot achieve a good separation performance for speech signals when the
number of bases is large. This is due to the structural complexity of the speech spec-
trogram. Figure6.9 shows cumulative singular values of each source spectrogram in
the speech and music signals. The speech sources require more than 50 bases to rep-
resent the spectrogram while the music sources are saturated with 25 bases. Because
of the time-varying pitch, it is difficult to capture speech spectrograms using NMF
decomposition. If ILRMA fails to capture the correct spectrogram of each speech in
the optimization, the demixing matrix will be trapped at a poor solution (local min-
imum). On the other hand, owing to the low rank of music spectrograms, ILRMA
gives a better performance formusic separation even if the number of bases increases.
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Fig. 6.9 Cumulative
singular values of each
source spectrogram in dev1
female speech and song ID4
music, where all sources are
truncated to be the same
signal length

Fig. 6.10 Average SDR
improvements for female
speech (dev1) with 1m
microphone spacing, where
reverberation time is a
130 ms and b 250 ms

(a)

(b)

6.5.3 Comparison of Separation Performance

We next compare the separation performance of each method. In Ozerov’s MNMF,
we used the experimental conditions described in [34]. In the other methods, the
experimental conditions shown in Table6.3 were used. On the basis of the results
in Sect. 6.5.2, we set the number of bases of each source to L = 2 for the speech
signals and L = 30 for the music signals in ILRMA without a partitioning function.
In ILRMAwith a partitioning function and Sawada’sMNMF,we set the total number
of bases to K = 2 × N for the speech signals and K = 30 × N for themusic signals.
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Fig. 6.11 Average SDR
improvements for music
signal song ID3 with impulse
response a E2A and b JR2

(a)

(b)

Figures6.10 and 6.11 respectively show typical examples of results for speech
and music signals given by the average SDR improvements and their deviations in
10 trials with different pseudorandom seeds. The total average scores are shown in
Tables6.4 and 6.5. From these results, we confirm that Laplace IVA cannot achieve
satisfactory separation because the source model in Laplace IVA is not flexible.
Ozerov’s MNMF outperforms Laplace IVA for the music signals, but the separation
performance for speech signals is inferior to that of Laplace IVA. Sawada’s MNMF
gives better performance than Laplace IVA and Ozerov’s MNMF for the music
signals. ILRMA achieves a high and stable performance. For the speech signals, the
partitioning function causes instability in the separation. This might be due to the
sensitivity of the performance to the number of bases, as discussed in Sect. 6.5.2. In
contrast, for the music signals, ILRMA with a partitioning function exhibits slightly
higher performance than ILRMAwithout a partitioning function. This improvement
is achieved by modeling the sources with the optimal number of bases using the
partitioning function znk . For music signals with impulse response JR2, the SDRs
of ILRMA are markedly degraded compared with those with impulse response E2A
because the reverberation time is longer than impulse response E2A and close to
the length of the window function in the STFT. Even if Sawada’s MNMF has the
potential to model such a mixing system by employing a full-rank spatial model, it
is a very difficult problem to find the optimal R(s)

i,n . Figure6.12 shows an example
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Table 6.4 Averaged SDR improvements (dB) over various speech signals and sources with same
recording conditions

Recording
conditions
(rev. time and
mic. spacing)

Laplace IVA Ozerov’s
MNMF

Sawada’s
MNMF

ILRMA w/o
partitioning
function

ILRMA with
partitioning
function

130 ms and
1 m

2.98 1.35 0.68 11.91 4.88

130 ms and
5cm

2.86 2.13 1.13 8.97 3.48

250 ms and
1 m

2.03 0.49 0.48 7.34 2.09

250 ms and
5cm

2.43 0.91 0.47 6.43 1.91

Table 6.5 Averaged SDR improvements (dB) over various music signals and sources with same
impulse response

Impulse
response

Laplace IVA Ozerov’s
MNMF

Sawada’s
MNMF

ILRMA w/o
partitioning
function

ILRMA with
partitioning
function

E2A 5.72 5.73 10.32 12.29 12.29

JR2 1.77 2.37 6.11 6.62 7.40

of the SDR convergence and the actual computational time for each method in the
case of a music signal, where the calculations were performed using MATLAB 8.3
(64-bit) with an Intel Core i7-4790 (3.60 GHz) CPU. Both Laplace IVA and ILRMA
show much faster convergence than MNMFs. Sawada’s MNMF requires a longer
computational time because the eigenvalue decomposition of a 2M × 2M matrix is
required for each update iteration of R(s)

i,n .
Figure6.13 shows the result of a subjective evaluation, where we presented 48

pairs of separated speech and 48 pairs of separated music signals in random order
to 14 examinees, who selected which signal they preferred from the viewpoint of
the total quality of the separated sounds. We can confirm that Laplace IVA is better
than MNMF for the speech signals. In contrast, Sawada’s MNMF achieves a better
result for music signals owing to the suitable representation using NMF. ILRMA
is the most preferable method for the high-quality separation of both speech and
music signals. Similarly to FDICA and Laplace IVA, ILRMA employs the demixing
matrix Wi for the separation, which is essentially equivalent to the spatial linear
filter [66] in beamforming techniques [67, 68], and it is more difficult for such
linear filtering to generate artificial noise than for time-frequency mask separation
techniques including MNMF with multichannel Wiener filtering. Thus, the quality
of separated sources via ILRMA from the viewpoint of human perception might be
better than that via MNMF.
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Fig. 6.12 SDR convergence and examples of actual calculation time for guitar source in song
ID4 with impulse response E2A, where signal length is 18.6 s. In Laplace IVA and ILRMA, SDR
instantly converges with better performance owing to fast and stable optimization of demixing
matrix, whereas Sawada’s MNMF requires many iterations for separation

Fig. 6.13 Results of subjective scores obtained by Thurstone pairwise comparison method, where
we presented 48 pairs of separated speech and 48 pairs of separated music signals in random order
to 14 examinees, who selected which signal they preferred from the viewpoint of total quality of
separated sound. Scores show relative tendency of selection

6.6 Conclusions

In this chapter, we introduced a new determined BSS technique that extends a source
model in IVA from a vector to a low-rank matrix using the NMF representation.
Also, the relationship between conventional MNMF and IVA was revealed: ILRMA
is equivalent to MNMF with a rank-1 spatial model, and time-varying Gaussian IVA
can be thought of as a special case of ILRMA, namely, ILRMA can be thought of
as IVA with increased flexibility of the model. ILRMA can be optimized using fast
update rules based on the auxiliary function technique. The experimental results show
that ILRMAachieves faster convergence and better results than the conventional BSS
techniques. A further extension of ILRMA can be found in [69], which relaxes the
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rank-1 constraint of the spatial covariance in ILRMA using extra observations for
overdetermined cases such as when M = 2N or 3N .
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Chapter 7
Deep Neural Network Based Multichannel
Audio Source Separation

Aditya Arie Nugraha, Antoine Liutkus and Emmanuel Vincent

Abstract This chapter presents a multichannel audio source separation framework
where deep neural networks (DNNs) are used to model the source spectra and com-
bined with the classical multichannel Gaussian model to exploit the spatial informa-
tion. The parameters are estimated in an iterative expectation-maximization (EM)
fashion and used to derive a multichannel Wiener filter. Different design choices and
their impact on the performance are discussed. They include the cost functions for
DNN training, the number of parameter updates, the use of multiple DNNs, and the
use of weighted parameter updates. Finally, we present its application to a speech
enhancement task and a music separation task. The experimental results show the
benefit of the multichannel DNN-based approach over a single-channel DNN-based
approach and the multichannel nonnegative matrix factorization based iterative EM
framework.

7.1 Introduction

Audio source separation aims to recover the underlying constitutive source signals of
an observed mixture signal [1–5]. Related research can be divided into speech sep-
aration and music separation. Speech separation aims to recover the speech signal
from a mixture containing multiple background noise sources with possibly interfer-
ing speech. This is important for speech enhancement (including in hearing aids) and
noise-robust automatic speech recognition (ASR). Music separation aims to recover
singing voice and musical instruments from amixture. This has various applications,
including music editing (remixing, upmixing, etc.), music information retrieval, and
dialogue extraction (e.g. from a mixture containing music accompaniment).

A. A. Nugraha (B) · E. Vincent
Inria Nancy, Grand Est, 54600 Villers-lès-Nancy, France
e-mail: aditya.nugraha@inria.fr

A. Liutkus
Inria Sophia Antipolis, Mèditerranèe, 34392 Montpellier, France
e-mail: antoine.liutkus@inria.fr

© Springer International Publishing AG 2018
S. Makino (ed.), Audio Source Separation, Signals and Communication
Technology, https://doi.org/10.1007/978-3-319-73031-8_7

157



158 A. A. Nugraha et al.

Acquiring (recording) audio using a single microphone and performing single-
channel separation on the acquired signal is practical, especially for speech in real-
world environments. However, along with the technology development, it is getting
easier and cheaper to acquire audio using multiple microphones. The acquired mul-
tichannel signal captures additional information useful for separation. As a simple
analogy, humans are able to predict the direction from which a sound comes based
on the difference of amplitude and phase between the signals captured by the left and
right ears. These inter-channel differences are related to the position of the sound
sources relative to the microphones and can be exploited in multichannel separation
to provide better results than single-channel separation. Multichannel separation is
also preferable for music since most professionally-produced recordings available
nowadays are in stereo (two-channel) format. If we consider the application on film
audio tracks, we will deal with either six- or eight-channel surround sound formats.

Recent studies have shown that deep neural networks (DNNs) are able to model
complex functions and perform well on various tasks, notably ASR [6, 7]. DNNs
also have been applied to single-channel speech enhancement and shown to provide
a significant increase in ASR performance compared to earlier approaches based on
beamforming or nonnegative matrix factorization (NMF) [8]. The DNNs typically
operate on magnitude or log-magnitude spectra in the Mel domain or the short time
Fourier transform (STFT) domain. Various other features have been studied [9].
The DNNs can be used either to predict the source spectrograms [10–15] whose
ratio yields a time-frequency mask or directly to predict a time-frequency mask
[16–22]. The estimated source signal is then obtained as the product of the input
mixture signal and the estimated time-frequency mask. Various DNN architectures
and training criteria have been investigated and compared [19, 21, 23]. Although the
authors in [13] considered both speech and music separation, most studies focused
either on speech separation [10, 12, 14, 16–22] or on music separation [11, 15].
The approaches above considered single-channel source separation, where the input
signal is either one of the channels of the original multichannel mixture signal or
the result of delay-and-sum (DS) beamforming [19]. As a result, they do not fully
exploit the benefits of multichannel data as achieved by multichannel filtering [1, 4].

There also exist a few approaches exploitingmultichannel data. These approaches
can be divided into three categories: (1) the ones deriving DNN input features from
multichannel data for estimating a single-channel mask [14, 18]; (2) the ones esti-
mating multichannel filters directly from time-domain signals using DNNs [24]; and
(3) the ones estimating mask or spectra using DNNs which then are used to derive
multichannel filters [25, 26].

In this chapter, we discuss the DNN-based multichannel source separation frame-
work proposed in [26] which belongs to the third category. In this framework, DNNs
are used to model the source spectra and combined with the classical multichannel
Gaussian model to exploit the spatial information. These spectral and spatial param-
eters are then re-estimated in an iterative expectation-maximization (EM) fashion
and used to derive a multichannel Wiener filter. This framework is built upon the
classical iterative EM framework in [27], which was also used up to some variants
in [28–33]. This chapter summarizes and reuses the materials from our works in [26,
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34, 35]. This chapter presents a brief study of the impact of different design choices
on the performance of the DNN-based framework, including the cost function used
for the DNN training, the number of spatial parameter updates, the number of EM
iterations, the use of weighted parameter updates, and the use of multiple DNNs.
Finally, this chapter also presents the application of the DNN-based framework to a
speech enhancement task and a music separation task.

The rest of this chapter is organized as follows. Section7.2 formulates the prob-
lem of multichannel audio source separation and describes the classical iterative EM
framework, which is the basis for the DNN-based iterative framework described in
Sect. 7.3. Section7.4 presents the application of the framework to a speech enhance-
ment task and a music separation task. We also present the impact of different design
choices and the comparison to other separation techniques in these sections. Finally,
Sect. 7.5 concludes the chapter.

7.2 Background

In this section, the problem of multichannel audio source separation is formulated.
Following this formulation, the classical iterative EM framework is then described.

7.2.1 Problem Formulation

Let I denote the number of channels, J the number of sources, x(t) ∈ R
I×1 the

observed I -channel mixture signal, and c j (t) ∈ R
I×1 the I -channel spatial image of

source j . This source spatial image c j (t) is a version of the signal of source j which
presents in the observed mixture x(t). Both x(t) and c j (t) are in the time domain
and related by

x(t) =
J∑

j=1

c j (t). (7.1)

Figure7.1 shows an example of studio music production where a song consists of
vocal, guitars, and drums. As defined by (7.1), this stereo song is composed by the
stereo spatial images of vocals, guitars, and drums. These stereo spatial images are
not necessarily the original recordings. In most cases, sound engineers modify and
mix the original sources. Since they can do downmixing (combining several channels
to get fewer channels) or upmixing (splitting few channels to get more channels), the
number of channels of the spatial images and the mixture may be chosen freely. In
contrast, for the cases of speech recordings in real-world environments or live music
recordings, the number of channels of the spatial images and themixture corresponds
to the number of microphones. Each channel of a source spatial image is the signal
captured by each microphone after traveling from the source.
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Fig. 7.1 Illustration of a studio music production

Multichannel audio source separation aims to recover the multichannel source
spatial images c j (t) from the observed multichannel mixture signal x(t).

7.2.2 Multichannel Gaussian Model

Let x( f, n) ∈ C
I×1 and c j ( f, n) ∈ C

I×1 denote the STFT coefficients [36] of x(t)
and c j (t), respectively, for frequency bin f and time frame n. Also, let F be the
number of frequency bins and N the number of time frames.

We assume that c j ( f, n) are independent for different j , f , or n and follow a
multivariate complex-valued zero-mean isotropic Gaussian distribution [27, 37]

c j ( f, n) ∼ Nc
(
0, v j ( f, n)R j ( f )

)
, (7.2)

where v j ( f, n) ∈ R+ denotes the power spectral density (PSD) of source j for fre-
quency bin f and time frame n, and R j ( f ) ∈ C

I×I is the spatial covariance matrix
of source j for frequency bin f . This I × I matrix represents spatial information by
encoding the spatial position and the spatial width of the corresponding source [27].
Since the mixture x( f, n) is the sum of c j ( f, n), it is consequently distributed as

x( f, n) ∼ Nc

⎛

⎝0,
J∑

j=1

v j ( f, n)R j ( f )

⎞

⎠ . (7.3)

Given the PSDs v j ( f, n) and the spatial covariance matricesR j ( f ) of all sources,
the spatial source images can be estimated in the minimummean squared error sense
using multichannel Wiener filtering [27]
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ĉ j ( f, n) = W j ( f, n)x( f, n), (7.4)

where the Wiener filter W j ( f, n) is given by

W j ( f, n) = v j ( f, n)R j ( f )

⎛

⎝
J∑

j ′=1

v j ′( f, n)R j ′( f )

⎞

⎠
−1

. (7.5)

Finally, the time-domain source estimates ĉ j (t) are recovered from ĉ j ( f, n) by
inverse STFT.

Following this formulation, source separation becomes the problem of estimating
the PSDs v j ( f, n) and the spatial covariance matrices R j ( f ) of all sources.

7.2.3 General Iterative EM Framework

The general iterative EM framework for estimating the PSDs v j ( f, n) and the spatial
covariance matrices R j ( f ) of all sources is summarized in Algorithm 1. For the
following discussions, the term ‘spectral parameters’ refers to the PSDs and they
are used interchangeably. Further, they are also used interchangeably with ‘spectro-
grams’, which are the graphical loosely represent PSD estimates. Likewise, the term
‘spatial parameters’ refers to the spatial covariance matrices.

In the beginning, the estimated PSDs v j ( f, n) are initialized in the spectrogram
initialization step. This can be done, for instance, by computing the PSD of the
mixture and then dividing it with the number of sources, which implies each source
contributes equally to the mixture. Initialization is also done for the estimated spatial
covariance matrices R j ( f ), for instance by assigning I × I identity matrices.

The following iterations can be divided into E-step and M-step. In the E-step,
given the estimated parameters v j ( f, n) and R j ( f ) of each source, the source image
estimates ĉ j ( f, n) are obtained by multichannel Wiener filtering (7.4) and the poste-
rior second-order raw moments of the spatial source images R̂c j ( f, n) are computed
as

R̂c j ( f, n) = ĉ j ( f, n)̂cHj ( f, n) + (
I − W j ( f, n)

)
v j ( f, n)R j ( f ), (7.6)

where I denotes the I × I identity matrix and ·H is the Hermitian transposition.
In the M-step, the spatial covariance matrices R j ( f ) are updated as

R j ( f ) = 1

N

N∑

n=1

1

v j ( f, n)
R̂c j ( f, n). (7.7)

The source PSDs v j ( f, n) are first estimated without constraints as
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Algorithm 1 General iterative EM framework [27]
Inputs:

STFT of mixture x( f, n)

Number of channels I and number of sources J
Number of EM iterations L
Spectral models M0, M1, . . . , MJ

1: for each source j of J do
2: Initialize the spectrogram: v j ( f, n) ← spectrogram initialization
3: Initialize the spatial covariance matrix: R j ( f ) ← I × I identity matrix
4: end for

5: for each EM iteration l of L do
6: Compute the mixture covariance matrix:

Rx( f, n) ← ∑J
j=1 v j ( f, n)R j ( f )

7: for each source j of J do
8: Compute the Wiener filter gain:

W j ( f, n) ← Eq. (7.5) given v j ( f, n), R j ( f ), Rx( f, n)

9: Compute the spatial image:
ĉ j ( f, n) ← Eq. (7.4) given x( f, n), W j ( f, n)

10: Compute the posterior second-order raw moment of the spatial image:
R̂c j ( f, n) ← Eq. (7.6) given v j ( f, n), R j ( f ), W j ( f, n), ĉ j ( f, n)

11: Update the spatial covariance matrix:
R j ( f ) ← Eq. (7.7) given v j ( f, n), R̂c j ( f, n)

12: Compute the unconstrained spectrogram:
z j ( f, n) ← Eq. (7.8) given R j ( f ), R̂c j ( f, n)

13: Update the spectrogram:
v j ( f, n) ← spectrogram fitting given z j ( f, n), M j

14: end for
15: end for

16: for each source j of J do
17: Compute the final spatial image:

ĉ j ( f, n) ← Eq. (7.4) given all v j ( f, n), all R j ( f ), x( f, n)

18: end for

Outputs:
All spatial source images [̂c1( f, n), . . . , ĉJ ( f, n)]

z j ( f, n) = 1

I
tr

(
R−1

j ( f )R̂c j ( f, n)
)

, (7.8)

where tr(·) denotes the trace of a matrix. Then, they are updated according to a
given spectral model by fitting v j ( f, n) from z j ( f, n) in the spectrogram fitting step.
The spectrogram initialization and the spectrogram fitting steps depend on how the
spectral parameters are modeled. Spectral models used in this context (denoted by
M0, M1, . . . , MJ in Algorithm 1) may include NMF [29], which is a linear model
with nonnegativity constraints, kernel additive model (KAM) [32, 33], which relies
on the local regularity of the sources, and continuity models [28]. In this chapter, we
present the use of DNNs for this purpose.
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7.3 DNN-Based Multichannel Source Separation

In this section, the DNN-based multichannel source separation framework is pre-
sented. The cost functions for DNN training are also discussed. Finally, the weighted
spatial parameter updates is introduced.

7.3.1 Algorithm

As indicated in the end of previous section, in this DNN-based framework, DNNs
are used to model the source specta v j ( f, n). This framework works with a single
DNN or multiple DNNs. In the single DNN case, the DNN is used for spectrogram
initialization (without any following spectrogramfitting). In themultiple DNNs case,
one DNN is used for spectrogram initialization and one or more DNNs are used for
spectrogram fitting. We can train different DNNs for spectrogram fitting at different
iterations. Thus, the maximum number of DNNs for spectrogram fitting is equal to
the number of iterations L . Let DNN0 and DNNl be the DNNs used for spectrogram
initialization and spectrogramfitting, respectively.DNN0 estimates the source spectra
from the observed mixture and DNNl aims to improve the source spectra estimated
at iteration l. DNN0 and DNNl estimate the spectra of all sources simultaneously.
This is similar to the DNNs used in the context of single-channel source separation
in [10, 12, 13]. Besides, DNNl is similar to the DNNs used in the context of single-
channel speech enhancement in [38, 39] since they estimate clean spectra from the
corresponding noisier spectra.

In this chapter, we consider features in the magnitude STFT domain as the inputs
and outputs of DNNs. The inputs of DNN0 and DNNl are denoted by

√
zx ( f, n) and√

z j ( f, n), respectively. The outputs of both types ofDNNs are denoted by
√
v j ( f, n)

and the training targets are denoted by
√
ṽ j ( f, n). DNN0 takes the magnitude spec-

trum
√
zx ( f, n) and yields the initial magnitude spectra

√
v j ( f, n) for all sources

simultaneously. Then, DNNl takes the estimated magnitude spectra
√
z j ( f, n) of

all sources and yields the improved magnitude spectra
√
v j ( f, n) for all sources

simultaneously.
Instead of alternately doing spatial and spectral parameter updates as in classical

EM iterations (see Algorithm 1), the spatial parameters are updated several times
before the spectral parameters are updated. This is motivated by the use of DNN
for spectrogram initialization. The initial spectrograms should be close to the targets
already, while the initial spatial covariance matrices are far.

The DNN-based iterative framework is described in Algorithm 2.
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7.3.2 Cost Functions

In this chapter, we present the use of the following cost functions for the DNN
training. These cost functions measure the difference between the target

√
ṽ j ( f, n)

and the estimate
√
v j ( f, n).

Algorithm 2 DNN-based iterative framework
Inputs:

STFT of mixture x( f, n)

Number of channels I and number of sources J
Number of spatial updates K and number of EM iterations L
DNN spectral models DNN0, DNN1, …, DNNL

1: Do pre-processing on the observed mixture:√
zx ( f, n) ← preprocess(x( f, n))

2: Initialize all source spectrograms simultaneously:

[v1( f, n), . . . , vJ ( f, n)] ← DNN0
(√

zx ( f, n)
)2

3: for each source j of J do
4: Initialize the spatial covariance matrix: R j ( f ) ← I × I identity matrix
5: end for

6: for each EM iteration l of L do
7: for each spatial update k of K do
8: Compute the mixture covariance matrix:

Rx( f, n) ← ∑J
j=1 v j ( f, n)R j ( f )

9: for each source j of J do
10: Compute the Wiener filter gain:

W j ( f, n) ← Eq. (7.5) given v j ( f, n), R j ( f ), Rx( f, n)

11: Compute the spatial image:
ĉ j ( f, n) ← Eq. (7.4) given x( f, n), W j ( f, n)

12: Compute the posterior second-order raw moment of the spatial image:
R̂c j ( f, n) ← Eq. (7.6) given v j ( f, n), R j ( f ),W j ( f, n), ĉ j ( f, n)

13: Update the spatial covariance matrix:
R j ( f ) ← Eq. (7.7) given v j ( f, n), R̂c j ( f, n)

14: end for
15: end for
16: for each source j of J do
17: Compute the unconstrained source spectrogram:

z j ( f, n) ← Eq. (7.8) given R j ( f ), R̂c j ( f, n)

18: end for
19: Update all source spectrograms simultaneously:

[v1( f, n), . . . , vJ ( f, n)] ← DNNl
([√

z1( f, n), . . . ,
√
z J ( f, n)

])2
20: end for

21: for each source j of J do
22: Compute the final spatial image:

ĉ j ( f, n) ← Eq. (7.4) given all v j ( f, n), all R j ( f ), x( f, n)

23: end for

Outputs:
All spatial source images [̂c1( f, n), . . . , ĉJ ( f, n)]
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1. The Itakura-Saito (IS) divergence [40] is expressed as

DIS = 1

J FN

∑

j, f,n

(
ṽ j ( f, n)

v j ( f, n)
− log

ṽ j ( f, n)

v j ( f, n)
− 1

)
. (7.9)

Since this metric is known to yield signals with good perceptual quality, it
becomes a popular metric in the audio processing community, including for
NMF-based audio source separation [40–42]. From the theoretical point of view
of the framework presented in this chapter, this metric is attractive because it
results inmaximum likelihood (ML) estimation of the spectra [40] and the whole
Algorithm 2 then achieves ML estimation.

2. The (generalized) Kullback-Leibler (KL) divergence [43] is expressed as

DKL = 1

J FN

∑

j, f,n

(
√
ṽ j ( f, n) log

√
ṽ j ( f, n)

√
v j ( f, n)

− √
ṽ j ( f, n) + √

v j ( f, n)

)
.

(7.10)
This metric is also a popular choice for NMF-based audio source separation [40]
and has been shown to be effective for DNN training [11].

3. The Cauchy cost function is expressed as

DCau = 1

J FN

∑

j, f,n

(
3

2
log

(
ṽ j ( f, n) + v j ( f, n)

) − log
√
v j ( f, n)

)
. (7.11)

This metric has been proposed recently for NMF-based audio source separation
and advocated as performing better than the IS divergence in some cases [44].

4. The phase-sensitive (PS) cost function is defined as

DPS = 1

2J FN

∑

j, f,n

|m j ( f, n)̃x( f, n) − c̃ j ( f, n)|2, (7.12)

where m j ( f, n) = v j ( f, n)/
∑

j ′ v j ′( f, n) is the single-channel Wiener filter [8,
23], while x̃( f, n) and c̃ j ( f, n) are the single-channel versions of the multichan-
nel mixture x( f, n) and the multichannel ground truth source spatial images
c j ( f, n), respectively. These single-channel signals can be obtained, for instance,
by DS beamforming [45, 46]. This metric minimizes the error in the complex-
valued STFT domain, as opposed to the error in the magnitude STFT domain as
the other cost functions considered here.

5. The mean squared error (MSE) [40] is expressed as

DMSE = 1

2J FN

∑

j, f,n

(√
ṽ j ( f, n) − √

v j ( f, n)
)2

. (7.13)
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This metric is the most widely used cost function for various optimization pro-
cesses, including DNN training for regression tasks.

7.3.3 Weighted Spatial Parameter Updates

We also consider a general form of spatial parameter update as

R j ( f ) =
(

N∑

n=1

ω j ( f, n)

)−1 N∑

n=1

ω j ( f, n)

v j ( f, n)
R̂c j ( f, n), (7.14)

whereω j ( f, n) denotes theweight of source j for frequency bin f and frame n.When
ω j ( f, n) is set to be equal for all time-frequency (TF) bins ( f, n), e.g. ω j ( f, n) = 1,
it reduces to the exact EM formulation (7.7). When ω j ( f, n) = v j ( f, n), as used in
[33, 34], it reduces to

R j ( f ) =
(

N∑

n=1

v j ( f, n)

)−1 N∑

n=1

R̂c j ( f, n). (7.15)

Experience shows that these weights are able to handle bad estimates v j ( f, n). This
weighting trick mitigates the importance of problematic underestimated TF bins.
When v j ( f, n) for a specific TF bin ( f, n) is very low, its value of v j ( f, n)−1R̂c j ( f, n)

will be very big and cause a detrimental effect to the following computations (e.g.
R j ( f ) becomes ill-conditioned) and, ultimately, the performance. This weight-
ing trick also increases the importance of high energy TF bins, whose value of
v j ( f, n)−1R̂c j ( f, n) is closer to the true R j ( f ) on average.

7.4 Experimental Evaluation

In this section, we present the application of the DNN-based iterative framework for
speech enhancement in the context of the CHiME-3 Challenge [47] and music sepa-
ration in the context of the SiSEC-2016 Campaign [48]. Section7.4.1 describes the
general systemdesignwhich applies to both experiment categories. Then, Sects. 7.4.2
and 7.4.3 present the specific framework settings and the experimental results for
speech and music separation, respectively.
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7.4.1 General System Design

7.4.1.1 Framework

The framework can be divided into three main successive steps as follows.

Pre-processing This step is required to prepare the real-valued input of DNN0√
zx ( f, n) by deriving it from the complex-valued STFT coefficients of the mul-

tichannel mixture signal x( f, n).
Initialization In this step, the initial source PSDs are estimated simultaneously

by DNN0 given the input prepared above. Besides, the source spatial covariance
matrices are initialized as I × I identity matrix.

Multichannel filtering The source PSDs and spatial covariance matrices are then
re-estimated and updated using the iterative framework (Algorithm 2), in which
DNNl is employed for spectrogramfitting at iteration l. In order to avoid numerical
instabilities due to the use of single precision, the PSDs v j ( f, n) are floored to
10−5 in the parameter update iterations.

7.4.1.2 DNN spectral models

Four design aspects are discussed below: the architecture, the inputs and outputs, the
training criterion, and the training algorithm.

Architecture
The DNNs follow a fully-connected feedforward network architecture. The number
of hidden layers and the number of units in each input or hidden layer may vary.
The number of units in the output layer equals the dimension of spectra multiplied
by the number of sources. The activation functions of the hidden and output layers
are rectified linear units (ReLUs) [49]. Other network architectures, e.g. recurrent
neural network and convolutional neural network, may be used instead of the one
used here. The performance comparison with different architectures is beyond the
scope of this chapter.

Inputs and outputs
In order to provide temporal context, the input frames are concatenated into super-
vectors consisting of a center frame, left context frames, and right context frames. In
choosing the context frames, we use every second frame relative to the center frame
in order to reduce the redundancies caused by the windowing of STFT. Although
this causes some information loss, this enables the supervectors to represent a longer
context [15, 50]. In addition, we do not use the magnitude spectra of the context
frames directly, but the difference of magnitude between the context frames and
the center frame. These differences act as complementary features similar to delta
features [26].

The dimension of the supervectors is reduced by principal component analy-
sis (PCA) to the dimension of the DNN input. Dimensionality reduction by PCA
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Fig. 7.2 Illustration of the inputs and outputs of the DNN for spectrogram initialization. Inputs:
magnitude spectrum of the mixture (left). Outputs: magnitude spectra of the sources (right)

Fig. 7.3 Illustration of the inputs and outputs of the DNNs for spectrogram fitting. Inputs: stack of
magnitude spectra of all sources (left). Outputs: magnitude spectra of the sources (right)

significantly minimizes the computational cost of DNN training with a negligible
effect on the performance of DNN provided enough components are kept [51]. Stan-
dardization (zero mean, unit variance) is done element-wise before and after PCA
over the training data. The standardization factors and the PCA transformationmatrix
are then kept for pre-processing of any input. Thus, strictly speaking, the inputs of
DNNs are not the supervectors of magnitude spectra Z0( f, n) and Zl( f, n) (see
Figs. 7.2 and 7.3), but their transformation into reduced dimension vectors.

Figures7.2 and 7.3 illustrate the inputs and outputs of the DNNs for spectrogram
initialization and spectrogram fitting, respectively. F denotes the dimension of the
spectra,C = 2c + 1 the context length, and J the number of sources. In this chapter,
we considered c = 2, so the supervectors for the input of the DNNs were composed
by 5 time frames (2 left context, 1 center, and 2 right context frames).
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Training criterion
Beside using a cost function from Sect. 7.3.2, an �2 weight regularization term is
used to prevent overfitting [52]. It can be expressed as

D�2 = λ

2

∑

q

w2
q (7.16)

wherewq are theDNNweights and the regularization parameter is fixed to λ = 10−5.
No regularization is applied to the biases.

In order to avoid numerical instabilities, our implementation used regularized
formulations of IS, KL, and Cauchy costs by adding the regularization parameter
δc f = 10−3 in the logarithm computation. It should be noted that the use of regular-
ization in this case is a common practice to avoid instabilities [42, 53]. In addition,
geometric analysis on the PS cost function by considering that m j ( f, n) ∈ R

F×N
+

leads to a simplified formula as

DPS = 1

2J FN

∑

j, f,n

(
m j ( f, n) |̃x( f, n)| − ∣∣̃c j ( f, n)

∣∣ cos
(
∠x̃( f, n) − ∠c̃ j ( f, n)

))2
,

(7.17)
where ∠· denotes the angle of complex-valued STFT spectra. See [26] for further
implementation details.

Training algorithm
Following [54], the weights are initialized randomly from a zero-mean Gaussian
distribution with standard deviation of

√
2/nl , where nl is the number of inputs to

the neuron and, in this case, equals to the size of the previous layer. The biases are
initialized to zero.

The DNNs are trained by greedy layer-wise supervised training [55] where the
hidden layers are added incrementally. In the beginning, a network with one hidden
layer is trained after random weight initialization. The output layer of this trained
network is then substituted by new hidden and output layers to form a new network,
while the parameters of the existing hidden layer are kept. Thus, we can view this
as a pre-training method for the training of a new deeper network. After random
initialization for the parameters of new layers, the new network is entirely trained.
This procedure is done iteratively until the target number of hidden layers is reached.

Training is done by backpropagation with minibatches size of 100 and the
ADADELTA parameter update algorithm [56]. Compared to standard stochastic gra-
dient descent (SGD), ADADELTA employs adaptive dimension-wise learning rates
and does not require manual setting of the learning rate. The hyperparameters of
ADADELTA are set to ρ = 0.95 and ε = 10−6 following [56]. The validation error
is computed every epoch and the training is stopped after 10 consecutive epochs failed
to obtain better validation error. The latest model which yields the best validation
error is kept. Besides, the maximum number of training epochs is set to 100.
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7.4.2 Application: Speech Enhancement

7.4.2.1 Task and dataset

We consider the problem of speech enhancement in the context of the CHiME-3
Challenge. This speech separation and recognition challenge considers the use of
ASR in real-world noisy environments for a multi-microphone tablet device. The
challenge provides real and simulated 6-channel microphone array data in 4 varied
noise settings (bus, cafe, pedestrian area, and street junction) divided into training,
development, and test sets. The training set consists of 1,600 real and 7,138 simulated
utterances (tr05_real and tr05_simu), the development set consists of 1,640
real and 1,640 simulated utterances (dt05_real and dt05_simu), while the
test set consists of 1,320 real and 1,320 simulated utterances (et05_real and
et05_simu). The utterances are taken from the 5k vocabulary subset of the Wall
Street Journal corpus [57]. All data are sampled at 16 kHz. For further details, please
refer to [47]. In short, we deal with the separation of two sources (J = 2), namely
speech and noise, from a 6-channel mixture (I = 6).

We used the source separation performance metrics defined in the BSS Eval
toolbox 3.01 [58] in most of the experiments presented in this section. The met-
rics include signal-to-distortion ratio (SDR), source-image-to-spatial-distortion ratio
(ISR), signal-to-interference ratio (SIR), and signal-to-artifacts ratio (SAR). In addi-
tion, at the end of this section, we use the best speech enhancement system as the
front-end, combine it with the best back-end in [34], and evaluate the ASR perfor-
mance in terms of word error rate (WER).

The multichannel ground truth speech and noise signals for the real data were
extracted using the baseline simulation tool provided by the challenge organizers
[47]. These signals are not perfect because they are extracted based on an estimation
of the impulse responses between the close-talking microphone and the microphones
on the tablet device. Since the resulting source separation performancemetrics for the
real data are unreliable,we evaluate the separation performance on the simulated data,
which has reliable ground truth signals, for studying the impact of the different design
choices. Nevertheless, since the ground truth transcriptions for ASR are reliable, we
evaluate the ASR performance on real data.

7.4.2.2 Algorithm settings

TheDNN-basedmultichannel speech enhancement framework is depicted in Fig. 7.4.
Following [19], the input of DNN0

√
zx ( f, n) = |̃x( f, n)| was the magnitude of

single-channel signals obtained from the multichannel noisy signals x( f, n) by DS
beamforming [45, 46]. In doing so, the time-varying time difference of arrivals
(TDOAs) between the speaker’s mouth and each of the microphones are first mea-
sured using the provided baseline speaker localization tool [47], which relies on a

1http://bass-db.gforge.inria.fr/bss_eval/.

http://bass-db.gforge.inria.fr/bss_eval/
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Fig. 7.4 DNN-based multichannel speech enhancement framework

nonlinear variant of steered response power using the phase transform (SRP-PHAT)
[59, 60]. All channels are then aligned with each other by shifting the phase of STFT
of the input noisy signal x( f, n) in all time-frequency bins ( f, n) by the opposite
of the measured delay. This preprocessing is required to satisfy the model in (7.2)
which assumes that the sources do not move over time. Finally, a single-channel
signal is obtained by averaging the realigned channels together. On the output side,
the estimated speech spatial image are averaged over channels to obtain a single-
channel signal for the speech recognition evaluation, which empirically provided
better ASR performance than the use of one of the channels. Likewise, the training
target

√
ṽ j ( f, n) = |̃c j ( f, n)|was themagnitude ofDS beamforming outputs applied

on the multichannel ground truth speech and noise signals c j ( f, n). Recall that the
ground truth signals for the real data are unreliable, thus the training target for the
real data is not as clean as it should be.

The STFT coefficients were computed using a Hamming window of length 1024
and hopsize 512 resulting in F = 513 frequency bins.DNN0 andDNNl have a similar
architecture. They have an input layer, three hidden layers, and an output layer. Both
types of DNNs have hidden and output layer size of F × J = 1026. DNN0 has an
input layer size of F = 513 and DNNl of F × J = 1026.

The DNNs for the source separation experiment were trained on both the real
and simulated training sets (tr05_real and tr05_simu) with the real and sim-
ulated development sets (dt05_real and dt05_simu) as validation data. Con-
versely, we trained the DNNs for the speech recognition experiment on the real
training set only (tr05_real) and validated them on the real development set only
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(dt05_real). The same DNNs were also used for the performance comparison to
the NMF-based iterative EM framework discussed in the end of this subsection. See
[34] for the perfomance comparison between these two different training settings.

7.4.2.3 Impact of cost functions and spatial parameter updates

Figure7.5 shows the performance comparison for different cost functions and also
different numbers of spatial updates. In this case, the spectral parameters v j ( f, n) are
initialized by DNN0 and kept fixed during the iterative procedure. In other words,
the iteration only updates the spatial parameters. The performance metrics were
computed on the resulting 6-channel estimated speech signals. The x-axis of each
chart corresponds to the number of spatial updates k. Thus, k = 0 is equivalent to
single-channel source separation since separation is done independently for each
channel.

In general, the performance increases along spatial updates. We observe that
different cost functions behave differently along these updates. The performance
of the PS cost is the best according to most metrics for the first few updates, but
then it saturates quickly. On the contrary, the other cost functions are still getting
better. Interestingly, after many updates (in this case, after k = 20), we can observe
that some cost functions are better than the others for some metrics. Thus, the cost
function selection should depend on the task (e.g. fewer artifacts are preferable to low
interference) and the computational constraints (e.g. only few updates can be done).
For general purposes, KL is the most reasonable choice because it improved all of
the metrics well. Although IS is theoretically-motivated, there are better alternatives.

7.4.2.4 Impact of spectral parameter updates

Figure7.6 shows the performance comparison for different numbers of iterations
after fixing the number of spatial updates K = 20. We trained two additional DNNs
for spectrogram fitting, i.e. DNN1 and DNN2 for l = 1 and l = 2, respectively. This
figure shows that generally the iterative spectral and spatial updates improve the per-
formance, although we can observe that Cauchy and IS tend to saturate more quickly
than other costs. Overall, the performance saturates after few iterations. Finally, the
multichannel approach outperformed the single-channel DNN-based approach even
when using DNN0 only. Additional experiments where one DNN (namely DNN1)
was used for spectrogram fitting of multiple iterations are presented in [26].

7.4.2.5 Comparison to NMF-based iterative EM framework

In this subsection, we compare the performance of DNN-based framework described
in this chapter to that of NMF-based framework [29]. We used the implementation
of the latter framework found in the Flexible Audio Source Separation Toolbox
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Fig. 7.5 Performance comparison for various numbers of spatial updates with the DNNs trained
using different cost functions. The PSDs v j ( f, n) are estimated by DNN0 and the spatial covariance
matrices R j ( f ) are updated in the iterative procedure. The evaluation was done on the simulated
test set (et05_simu). The figures show the mean value. Higher is better
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Fig. 7.6 Performance comparison for each update of the EM iterationswith theDNNs trained using
different cost functions. Different DNNs are used for each EM iteration. The spatial covariance
matrices R j ( f ) are updated with K = 20. The evaluation was done on the simulated test set
(et05_simu). The figures show the mean value. Higher is better
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Table 7.1 Performance comparison in terms of source separation metrics (in dB). The evaluation
was done on the simulated test set (et05_simu). The table shows the mean value. Higher is better

Enhancement method SDR ISR SIR SAR

NMF-based iterativeEM [29] 7.72 10.77 13.29 12.29

Proposed: KL (3 DNNs) 13.25 24.25 15.58 18.23

Table 7.2 Average WERs (%) using the DNN+sMBR back-end trained with enhanced multi-
condition data followed by 5-gram KN smoothing and RNN-LM rescoring. The evaluation was
done on the real sets. Boldface numbers show the best performance for each dataset. Lower is better

Enhancement method EM iter. Update type Dev Test

Observed – – 9.65 19.28

DS beamforming – – 6.35 13.70

NMF-based [29] 50 – 6.10 13.41

DNN-based: KL (3 DNNs) 0 – 6.64 15.18

1 spatial 5.37 11.46

spectral 5.19 11.46

2 spatial 4.87 10.79

spectral 4.99 11.12

3 spatial 4.88 10.14

(FASST)2 and followed the settings used in [61]. The speech spectral and spatial
models for this framework were trained on the real training set (tr05_real).
Besides, the noise spectral and spatial models were initialized for each mixture using
5 s of background noise context based on the available annotation. This setting is
favourable to the NMF-based framework. However, because of this, the comparison
is not completely fair since the DNN-based framework does not exploit this context
information. As described earlier, the DNNs used in this evaluation were also trained
on the real training set only. The separation results from this evaluation were then
used for the following speech recognition evaluation.

Table7.1 compares the performance of the NMF-based framework after 50 EM
iterations and the performance of the DNN-based framework after the spatial update
of the EM iteration l = 3. TheDNN-based framework is clearly better than theNMF-
based iterative EM framework for all metrics. This confirms that DNNs are able to
model spectral parameters much better than NMF does.

Table7.2 shows the speech recognition evaluation results in terms of WER. This
evaluation followed the Kaldi setup distributed by the CHiME-3 challenge organiz-
ers3 [47, 62]. It includes the use of (a) feature-space maximum likelihood regression
features [63]; (b) acousticmodels basedonGaussianMixtureModel andDNNtrained
with the cross entropy criterion followed by state-level minimumBayes risk (sMBR)

2http://bass-db.gforge.inria.fr/fasst.
3https://github.com/kaldi-asr/kaldi/tree/master/egs/chime3.

http://bass-db.gforge.inria.fr/fasst
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime3
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criterion [64]; and (c) language models with 5-gram Kneser-Ney (KN) smoothing
[65] and rescoring using recurrent neural network-based languagemodel (RNN-LM)
[66]. The acoustic models are trained on enhanced multi-condition real and simu-
lated data. See [62] for the further details of the methods used in the evaluation. It
should be noted that we did not do any further optimization on the speech recognition
back-end.

The evaluation results include the baseline performance (observed), DS beam-
forming, and NMF-based iterative EM framework [29]. The baseline performance
was measured using only channel 5 of the observed 6-channel mixture. This channel
is considered as themost useful channel because the correspondingmicrophone faces
the user and is located at the bottom-center of the tablet device. DS beamforming
was performed on the 6-channel mixture. For both the NMF-based and DNN-based
frameworks, we compute the average over channels of the separation results from
the earlier source separation evaluation.

For the DNN-based single-channel enhancement (see EM iteration l = 0), the
WER on the real test set decreases by 21% relative w.r.t. the observed WER. This
single-channel enhancement takes the output of DS beamforming on the 6-channel
mixture. However, this single-channel enhancement did not provide better perfor-
mance compared to the DS beamforming alone. It indicates that proper exploitation
of multichannel information is crucial. The DNN-based multichannel enhancement
then decreases the WER on the real test set by 33% relative w.r.t. the correspond-
ing single-channel enhancement, 26% relative w.r.t. the DS beamforming alone, and
24% relative w.r.t. the NMF-based iterative EM framework [29].

7.4.3 Application: Music Separation

7.4.3.1 Task and dataset

Wealso consider the problemofmusic separation in the context of the professionally-
produced music recordings task (labeled as ‘MUS’) of SiSEC 2016. In this task, we
want to separate music recordings into their constitutive sources, namely vocals,
bass, drums, and other. The dataset, called Demixing Secrets Dataset (DSD100),4

comprises 100 full-track songs of diverse music genres by various artists with their
corresponding sources. All mixtures and sources are stereo signals sampled at 44.1
kHz. The dataset is divided evenly into development and evaluation sets. In short,
we deal with the separation of four sources (J = 4) from a stereo mixture (I = 2).

4See MUS 2016 task on http://sisec.inria.fr.

http://sisec.inria.fr
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Fig. 7.7 DNN-based multichannel music separation framework

7.4.3.2 Algorithm settings

The DNN-based music separation framework is depicted in Fig. 7.7. In this evalua-
tion, we used one DNN for spectrogram initialization and another DNN for spectro-
gram fitting, namely DNN0 and DNN1, respectively.

The STFT coefficients were computed using a Hamming window of length 2048
and hopsize 1024 resulting in F = 1025 frequency bins. DNN0 has an input layer
size of 2050 with three hidden layers, while DNN1 has an input layer size of 4100
with two hidden layers. These settings are chosen based on preliminary experiments
and computational considerations. The hidden layers and output layers of bothDNNs
have a size of F × J = 4100. Dropout [67] with a rate 0.5 is implemented for all
hidden layers.

The input of DNN0
√
zx ( f, n) was derived from the multichannel mixture signal

x( f, n) as
√
zx ( f, n) =

√
1

I
‖x( f, n)‖2. (7.18)

The training target
√
ṽ j ( f, n)was derived from the true source spatial image c j ( f, n)

as
√
ṽ j ( f, n) =

√
1

I
tr

(
R̃ j ( f )−1c j ( f, n)cHj ( f, n)

)
, (7.19)

where R̃ j ( f ) is an estimate of the true spatial covariance matrix computed as
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R̃ j ( f ) = I

N

N∑

n=1

c j ( f, n)cHj ( f, n)

‖c j ( f, n)‖2 . (7.20)

Compared to thatwas done in the speech enhancement task (Sect. 7.4.2), this provides
better targets for the sources which are not mixed to the center (corresponding to
R̃ j ( f ) = I), e.g. drums and other, and consequently allows the DNN to provide
better estimates.

We randomly divided the supervectors (Z0( f, n) and Zl( f, n) in Figs. 7.2 and
7.3) of each song from the development set into training and validation sets with a
ratio of 8 to 2. By doing so, these two sets contains different parts of the same set
of songs. However, the fact that these parts come from the same set of songs makes
the DNN training prone to overfitting. Another data splitting scheme is by dividing
the available 50 development songs, for example, into 40 songs for training and 10
songs for validation (note that, we keep the training-validation ratio of 8 to 2). Using
this scheme, we observed that the early stopping mechanism of the DNN training
was triggered too early resulting a DNN with poor performance. The cost function
used for DNN training is MSE with an �2 regularization term.

In addition, after every spatial parameter update in the multichannel iteration
procedure, the parameter is normalized and regularized with δR = 10−5 as

R j ( f ) = I

tr(R j ( f ))
R j ( f ) + δRI. (7.21)
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Fig. 7.8 Performance comparison on the development set for various numbers of spatial updates
with different parameter updates. The PSDs v j ( f, n) are initialized by DNN0 and the spatial covari-
ance matrices R j ( f ) are updated in the iterative procedure. Higher is better
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7.4.3.3 Impact of weighted spatial parameter updates

Figure7.8 shows the impact of different spatial parameter update strategies, namely
‘exact’, ‘weighted’, and ‘weighted+simplified’, on the performance in terms of SDR.
The performance is computed on all songs on 30 s excerpts, taken every 15 s. The
differences between these strategies are listed below.

• ‘exact’: R̂c j ( f, n) ← (7.6),R j ( f ) ← (7.7) (as in [27, 29] and the speech enhance-
ment experiment discussed in Sect. 7.4.2)

• ‘weighted’: R̂c j ( f, n) ← (7.6), R j ( f ) ← (7.15)
• ‘weighted+simplified’: R̂c j ( f, n) = ĉ j ( f, n)̂c j ( f, n)H ; R j ( f ) ← (7.15) (as in
[33, 34])

The results show that the ‘exact’ strategy fails to improve the performance. It
should be noted that in the oracle setting, in which v j ( f, n) is computed from the
true source image, this ‘exact’ strategy works well. Hence, it does not work in this
case probably because of v j ( f, n) is badly estimated by the DNN. Following this rea-
soning, the ‘weighted’ and ‘weighted+simplified’ strategies show that the weighted
spatial parameter updates handle bad estimation of v j ( f, n) effectively. We observe
that ‘weighted’ is more robust to the setting of K than ‘weighted+simplified’. This
also shows that the inclusion of prior information in the computation of R̂c j ( f, n)

allows the system to be more stable.
It is also worth mentioning that the ‘exact’ strategy works for our speech enhance-

ment task (Sect. 7.4.2). This might be because, in that task, we dealt with fewer
sources, fewer frequency bins, and more training data which lead to better DNNs
providing better estimation of v j ( f, n). In addition, when the ‘weighted’ strategy is
used in that speech enhancement task followed by the speech recognition evaluation,
we observed an improvement of WER up to 2% absolute.

7.4.3.4 Comparison to various music separation techniques

Figure7.9 shows the performance comparison between four systems based on the
framework described in this chapter (NUG{1,2,3,4}) and other music separa-
tion techniques. NUG1 and NUG3 correspond to ‘weighted+simplified’ after spatial
updates of EM iterations 1 and 2 with K = 2, respectively. Similarly, NUG2 and
NUG4 correspond to ‘weighted’ with K = 4. To be clear, NUG3 and NUG4 used
additional DNNs for spectrogram fitting. These systems are compared to the other
techniques listed below. See [68] for the implementation details of these techniques.

• Matrix factorization systems include OZE [29], DUR [69], and HUA[70]
• KAM{1,2} are variants of KAM [32]
• RAF{1,2,3} are variants of REPET [71–73]
• UHL{1,2} are variants of the DNN-based method in [15]

Among these other techniques, UHL{1,2} are also DNN-based ones. We
can observe that DNN-based techniques performed better than the classical tech-
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niques. At a glance, the performance of NUG{1,2,3,4} is comparable to that of
UHL{1,2}. However, we could provide lower spatial error (NUG{3,4}), interfer-
ence (NUG3), or artifact NUG{1,2}. The most important difference between these
systems is that UHL{1,2} do single-channel filtering, instead of multichannel fil-
tering. This shows that we can also benefit from multichannel filtering in a music
separation task.

Fig. 7.9 Performance comparison on the vocals of evaluation set. The numbers shown above
boxplots indicate the median values. Higher is better. The systems shown inside the red boxes are
based on DNNs. NUG{1,2,3,4} are multichannel separation systems based on the framework
described in this chapter, while UHL{1,2} are single-channel separation systems as in [15]
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7.5 Closing Remarks

This chapter focused on the use of DNNs for multichannel audio source separa-
tion. The separation framework combines DNNs to model the source spectra and
the classical multichannel Gaussian model to exploit the spatial information. Exper-
imental results demonstrated the effectiveness of this framework for both speech
enhancement andmusic separation tasks. Beside assessing the source separation per-
formance, the speech recognition performance was also evaluated for the first task.
Several design choices and their comparative importance are presented. Finally, the
results show the benefit of the presented DNN-based multichannel approach over a
single-channel DNN-based approach and multichannel NMF.
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Chapter 8
Efficient Source Separation Using Bitwise
Neural Networks

Minje Kim and Paris Smaragdis

Abstract Efficiency is one of the key issues in single-channel source separation
systems due to the fact that they are often employed for real-time processing. More
computationally demanding approaches tend to produce better results, but often not
fast enough to be deployed in practical systems. For example, as opposed to the itera-
tive separation algorithms using source-specific dictionaries, a DeepNeural Network
(DNN) performs separation via an iteration-free feedforward process. However, even
the feedforward process can be very complex depending on the size of the network.
In this chapter, we introduce Bitwise Neural Networks (BNN) as an extremely com-
pact form of neural networks, whose feedforward pass uses only efficient bitwise
operations (e.g. XNOR instead of multiplication) on binary weight matrices and
quantized input signals. As a result, we show that BNNs can perform denoising with
a negnigible loss of quality as compared to a corresponding network with the same
structure, while reducing the network complexity significantly.

8.1 Introduction

A real-world monophonic audio signal, i.e. an observation made by a single mi-
crophone, often contains more than one source, which makes it difficult for a com-
puter system to understand it. In contract to visual objects, which when aligned
occlude each other, audio sources observed by the same microphone superimpose,
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necessitating the ability to perform selective attention. This process has long been
the main challenge of source separation systems.

It was discovered that various Latent Variable Analysis (LVA) techniques are
effective to resolve this issue, when it comes to analyzing a polyphonic audio source
and learning a set of templates [1]. Using a matrix representation of audio, e.g.
magnitude spectrograms after applying Short-Time Fourier Transform (STFT), the
goal is to seek a low-rank approximation whose basis vectors form a dictionary,
while their encodings hold the amount of the contribution of all the dictionary items.
NonnegativeMatrix Factorization (NMF) [2, 3] and its probabilistic correspondence,
Probabilistic Latent Semantic Indexing (or Probabilistic Latent Semantic Analysis)
[4, 5], are common choices for this task.

A source separation scheme has also evolved from this low-rank approximation
by learning source-specific dictionaries in advance during the training time, and
then decompose the test mixture by using the learned dictionaries as templates [6].
Now the test-time decomposition is different from the usual matrix factorization
procedure as one of the factor matrices, the dictionaries, is fixed and free from any
further updates, while we focus only on the encodingmatrix. Yet, we need to estimate
at least some of the parameters to approximate a mixture during runtime, so a few
EM-like iterations are inevitable.

Since the main issue of this chapter is efficiency of source separation algorithms
during runtime, we consider these iterative updates as a disadvantage, although they
are common in the dictionary-based systems. The complexity usually depends on
the size of the dictionary and the number of iterations required until convergence.
However, when it comes to the semi-supervised case the efficiency issue becomes
more complicated, because it assumes that only a part of the dictionaries is available
from the known source, while the other parts and all their encoding values have to be
estimated during the test time from the mixture. Therefore, in the semi-supervised
separation due to the lack of stopping criteria overfitting can take place. Likewise,
efficiency of semi-supervised approaches to single-channel source separation needs
improvement. Although there has been an effort to speed up the EM procedure by
replacing the floating-point operations for nearest neighbor searches with binary
operations using hashing techniques [7, 8], it still results in an iterative process,
something that we would rather avoid for a real-time implementation.

Neural networks, on the other hand, can serve as an alternative solution, most
of whose variants are free from iterations during runtime. The basic idea of a neu-
ral network-based source separation is to build a network that learns the mapping
between themixture signal and its source components as the input and output, respec-
tively. Once the mapping is learned, the network can predict the source components
from the unseen mixture signals (if the mixture is somewhat similar to the train-
ing data). Moreover, one can construct a Deep Neural Network (DNN) for this job,
which tends to benefit from a large amount of training data when modeling compli-
cated mapping functions. A DNN is indeed one of the very successful approaches
to monaural source separation [9–13], which still retains the desirable iteration-free
runtime process.
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However, we would like to raise another efficiency issue that can be caused by
introducing a very large and deep neural network into the procedure. Although it is
clear that the complexity of a DNN does not depend on the number of iterations,
the sheer number of parameters involved in the feedforward process can become an
issue. For example, for a network with three hidden layers, each of which has 1,000
units, the number of floating-point operations is easily over a fewmillions, which can
sometimes exceed the amount of computation for an NMF-based method with all
its necessary iterations. This high computational cost during runtime can seriously
limit the wide spread use of a DNN-based system especially for the implementations
with limited resources. One can optimize this network by using fixed-point repre-
sentations, but the quantization process is not straightforward, still necessitating a
fair amount of computation during runtime.

In this chapter, we introduce Bitwise Neural Networks (BNN) to achieve goals
in both efficiency and accuracy [14, 15]. As one of the recently proposed neural
network architectures that use an extreme quantization schemes [16–18], BNNs are
a highly condensed form of neural networks, where we represent all the parameters
and variables with bipolar binaries (i.e. +1 and −1), so that the operations on them
are defined in a bitwise manner as well. Our goal is to train such a bitwise network
whose performance catches up its corresponding real-valued network even with the
same network structure. By doing so, we can replace all the floating-point operations
with cheaper bitwise ones, e.g. an XNOR gate instead of multiplication, which will
be very efficient both in software and hardware implementations. We reformulate
the DNN-based separation scheme to accommodate this BNN architecture, and show
that the BNN-based methods are performing well enough considering their sensibly
cheaper feedforward process.

8.2 A Basic Neural Network for Source Separation

In this section, we briefly review a neural network-based source separation system
which will serve as a baseline system for the following BNNs. Although there are
many other choices in terms of its structure, for example using Recurrent Neural
Networks (RNN) [10], Long Short-TermMemory (LSTM) [19], and deep unfolding
networks [12], for simplicity we will focus on the basic fully-connected structure.

There are also many possible choices when it comes to the input and output rep-
resentations. Raw magnitude Fourier coefficients can be a straightforward feature
[9, 10], but there are more speech-specific features, such as cochleagrams [20] and
Mel-Frequency Cepstrum Coefficients (MFCC) [21, 22] as well for speech denois-
ing applications. As for the output representation, once again the network can be
formulated as a Denoising AutoEncoder (DAE) that tries to predict clean magnitude
spectra from their noisy versions [9, 23]. Or, a DNN can also predict the masking
values (e.g. 1 for speech and 0 for noise) for all the time-frequency bins so that they
can be used to mask out the uninterested sources. Ideal Binary Masks (IBM) [11,
20] and Ideal Ratio Masks (IRM) [21, 22] are common choice along with phase
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Fig. 8.1 The baseline DNN
separation system

information as well [24]. All the various choices have their pros and cons, but the
variety of feature representations calls for another consideration when building a
BNN for source separation as to how we can come up with a scheme to effectively
convert all those real-valued features into bitstrings. We will revisit this problem in
Sect. 8.3.

Figure8.1 illustrates theDNN-based separation procedure.Among all the choices,
we use raw Fourier magnitudes and masks as our input and output representations
without loss of generality. Let xd denote d-th element of the Fourier spectrum at
a given time frame, x ∈ C

D . We also define the ground-truth masks by td .1 If we
assume two sources, e.g. speech sd and noise nd , we get the speech component by
masking the input:

sd ≈ td xd = |sd |
|sd + nd | xd (8.1)

We also define a weight matrix per layer, W(l) ∈ R
K (l+1)×K (l)

, and the bias terms,
b(l) ∈ R

K (l+1)
, where K (l) is the number of input units for l-th layer. With these, the

forwardpropagation procedure for a tanh network with L hidden layers is defined
recursively as follows:

1Since we would like to target on real-valued masks defined between 0 and 1, we use this approxi-
mated version of masks td rather than the more proper complex-valued one.
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z(0)
d = |xd |, d ∈ {1, . . . , D}, (8.2)

a(l)
j =

∑

i∈{1,...,K (l)}
W (l)

j i · z(l)
i + b(l)

j , (8.3)

z(l+1)
j = tanh

(
a(l)
j

)
, (8.4)

a(L)
j =

∑

i∈{1,...,K (L)}
W (L)

j i · z(L)
i + b(L)

j , (8.5)

z(L+1)
j = tanh

(
a(L)
j

)
. (8.6)

Note that the first layer inputs are the magnitudes of the input mixture spectra (there-
fore, K (0) = D). Throughout this chapter we use tanh(·) as our activation function
for all layers.

A sum-of-squared error function for the IRM target variables are defined as fol-
lows:

E (z(L+1)||t′) =
∑

d∈{1,...,D}

1

2

(
t ′d − z(L+1)

d

)2
. (8.7)

Note that we rescale td and create a new variable t ′d = 2(td − 0.5) to make it range
between −1 to+1 and to match it the output of the tanh network. We will revisit this
particular choice of the activation function later as it is related to the use of bipolar
binaries. We can easily scale back the network outputs for masking the test signals,
i.e. 0.5 · z(L+1)

d + 0.5.
Alternatively, we can define an IBM target variable, which can be more conve-

niently converted into binary variables2:

td =
{
0 if |sd |

|sd+nd | < 0
1 otherwise

(8.8)

Based on the error function, we recursively define the SGD-based backpropaga-
tion procedure as usual:

δ
(L)
d = (1 − tanh2

(
a(L)
d

)) · (
t ′d − z(L+1)

d

)
, (8.9)

δ
(l)
i = (1 − tanh2

(
a(l)
d

)) ·
∑

j

δ
(l+1)
j · W (l)

j i , (8.10)

∇W (l)
j i = δ

(l)
j · z(l)

i , (8.11)

∇b(l)
j = δ

(l)
j . (8.12)

2We call this procedure binarization.
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There are also various options to train this kind of networks. We found that some
commonly used techniques, such as Stochastic Gradient Descent (SGD), dropout
[25], and momentum, are also effective.

8.3 Binary Features for Audio Signals

Before delving into the details about BNNs, wewould like to discuss themeanings of
binary features for audio signals. Since BNNs will eventually replace the real-valued
variables and logic with bitwise arithmetic, they can be seen as a way to approximate
a Boolean mapping function whose input and output are bit strings. Hence, in order
to make this argument complete, we need to ensure that the input and output of the
network have their corresponding binary representations as well. Since most of the
time the original signals are real-valued, we need a way to convert them into bit
patterns without affecting the performance of the source separation system.

There are two important criteria we can use when choosing a binary feature
extraction method: whether it is efficient and invertible. First, since the conversion
from the raw input (e.g.magnitudes ofFourier spectra) to anybit string is an additional
procedure, it should not take up too much resources for the system-wide efficiency.
Second, once the BNN produces bit strings as its output, the conversion from the
output to the original signal domainmust be efficient and not as lossy as possible, too.
There are such binary feature extraction methods that also defines its corresponding
decoding procedure, which automatically converts the bit string back to the raw
signal domain. Otherwise, we need to construct a scheme that finds the most similar
bit string from the database (e.g. in terms of Hamming distance), and then take the
signal that has generated the matching bit pattern as the output of the network.3 In
any ways, the inversion procedure should be able to recover the original signal with
least error, and as efficiently as possible.

Note that IBMs are naturally binary variables, so they can serve as the binary
target variables as they are. If the system needs to use IRM or any other real-valued
target variables, we need to binarize the target variables as well, which are supposed
to be converted back to the raw signal using an appropriate conversion process.

In the following sections we review some existing hashing techniques to discuss
their pros and cons as our candidate binary feature extraction methods.

8.3.1 Winner-Take-All Hashing

Winner-Take-All (WTA) hashing [26] is a fast and effective hashing techniquewhose
original usage in object recognition [27] was very successful. As a follow-up it has

3Note that this searching task in the binary feature space is very similar to the information retrieval
process using hashing.
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Fig. 8.2 AWTA hashing example

been also shown that WTA hashing is useful to convert audio spectra into bit patterns
for the source separation applications [7, 8]. The WTA hash function consists of
simple comparison-based operations and is based on random projections.

WTA hashing first defines a M × N permutation table H with random indices,
each of which addresses one of the elements of the input vector. For a magnitude
spectrum y ∈ R

D , we first choose N << D elements based on the indices written
in the first row of the permutation table. Then, we find the winner, the maximum of
the N randomly chosen elements to encode its position. For example, when N = 4
suppose that the four chosen elements are {1.98, 8.2, 3.56, 0.11}. Since the second
chosen element (8.2) is the maximum, we write down 014 on the hash code. In the
next round, we see the second row of the permutation table and pick up another four
values from the input to elect the maximum. We repeat this procedure for M such
comparisons. Figure8.2 shows this procedure on an input vector of 8 elements. Note
that we use bipolar binaries to encode the final hash code.

For two different input vectors, if pairwise relationships between one’s elements
are all the same with those of the other vector, we can consider that they are very
similar to each other. For example, the vector used in Fig. 8.2 has a similar shape with
another vector, [0.5, 19.7, 1.2, 81.9, 50.2, 34.4, 23.1, 1.8]�, although their scales are
quite different. WTA hashing approximates these pairwise relationships and encodes
them as a bit string.

WTA hashing is convenient and fast because the procedure consists of indexing
and comparison. Although its approximation performance is acceptable as a locality
sensitive hashing family [28], it does not learn any mapping from the input to the
hash codes, e.g. on the contrary to the other machine learning based ones [29].
Another disadvantage of WTA hashing for our regression purpose is the fact that
its inverted conversion from the hash code back to the original input is not defined.
Once again, we can prepare a dictionary of averaged spectra that share the same hash
code, the conversion can be expensive due to the suboptimal, yet required Hamming
distance-based search.

4[−1,+1] when we use bipolar binaries.
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8.3.2 Semantic Hashing

On the other hand, semantic hashing is a data-driven method [30]. It learns a deep
AutoEncoder (AE), which is a DNN that learns an identity function between the
training samples and themselves. The details about training this kind of network are
not very different from training an ordinary networks for classification or regression
except the fact that the target variables are defined by the input. However, the big
difference of this AE for semantic hashing comes from the fact that wewant to use the
hidden unit outputs of a hidden layer as our hash codes. See Fig. 8.3 for an example.

Although real-valued, hidden unit outputs are not very far from binarization, once
we choose to use sigmoid functions as the activation,which can be seen as a smoothed
version of the step function (e.g. tanh versus sign). For example, if we want to use
z(2) in Fig. 8.3 as our hash codes, they can be simply rounded to have discrete values,
e.g. sign(z(2)

d ). Semantic hashing is more careful in binarizing the hidden unit outputs
as there is no guarantee that their distribution is extreme, i.e. most of the values are
either near −1 or +1. To this end, semantic hashing perturb the input with Gaussian
noise by turning the AE model into a denoising AE, whose job is to predict the clean
input given its noisy version. Since the network has to be robust to this additive noise,
its intermediate variables, i.e. hidden unit outputs, tend to have extreme values.

We would like to point out that semantic hashing can suffer from the efficiency
issue, although its deep structure has a lot of potential in terms of learning the optimal
embedding for the particular data set. Since it is aDNN, in order to learn a high quality
hash function it may need to involve a large amount of parameters. Therefore, during
the encoding procedure we are expected to run a feedforward step in this network

Fig. 8.3 A semantic hashing
example



8 Efficient Source Separation Using Bitwise Neural Networks 195

up to the hidden layer of interest, which is nothing but adding a few more floating-
point layers underneath the BNN we would like to construct. This computationally
heavy nature of semantic hashing is not a desired characteristics for our purpose,
because we have to minimize the cost of this binarization phase.

8.3.3 Quantization and Dispersion

Quantization-and-Dispersion (QaD) is an alternative binarization technique we can
use to quickly convert any real-valued signals into bit strings [15]. It first converts
any real value into a fixed-point representation, i.e. an integer, by using a traditional
population-based quantization scheme. Lloyd-Max algorithm can be used for this
purpose [31]. Figure8.4 shows the QaD procedure. For an N -bit encoding, first, we
assign an integer to each of the 2N ranges. Based on the sample distribution, we try
to divide the sample space with regions that contain as equal amount of samples as
possible (the topmost figure in Fig. 8.4). Usually, the average of the samples allocated
in the same range is the corresponding representative value of the integer. We could

Fig. 8.4 The QaD process.
Some figures are from [15]
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go ahead and use these integers (or their representative values) as our input as in
the middle figure, but then the input to the BNN is not binary. Instead, we represent
each integer with its corresponding N -bit bit string, and then disperse them into N
input units (the bottom figure). Therefore, the network needs to enlarge the size of
its input layer by N times than usual to accommodate these dispersed binary values.
We hope that the enlarged input layer does not increase the complexity of the BNN
significantly, because it is only for the first layer and the additional weights are all
binary as well.

The procedure does introduce some quantization error, but the amount of error is
predictable, because it is dependent on howmany bits we use to divide the sample dis-
tribution. Also, its inversion is straightforward and fast, as the Lloyd-Max algorithm
produces not only the boundaries, but the range-specific averages. Furthermore, since
it is a scalar quantization technique, the training part is trivial (finding the boundaries
from the sample distribution for the even quantization). Therefore, we employ this
technique for our universal binarization technique for BNNs.

8.4 BNN Feedforward

In this section we first introduce the feedforward operations for BNN, and then
discuss about the linear separability.

8.4.1 The Feedforward Procedure

For a given C-dimensional bit string input vector, x̄ ∈ {−1,+1}C , we can define the
feedforward procedure similar to (8.2)–(8.6). However, now we can define it in a
more efficient way by replacing all the multiplication with an XNOR operation, ⊗,
because XNOR between bipolar binaries are equivalent to their multiplication (see
Table8.1 for an XNOR table). Moreover, the tanh activation function is now replaced
with the sign function, too.

z̄(0)
d = x̄d , d ∈ {1, . . . , D}, (8.13)

ā(l)
j =

∑

i∈{1,...,K (l)}
W̄ (l)

j i ⊗ z̄(l)
i + b̄(l)

j , (8.14)

z̄(l+1)
j = sign

(
ā(l)
j

)
, (8.15)

ā(L)
j =

∑

i∈{1,...,K (L)}
W̄ (L)

j i ⊗ z̄(L)
i + b̄(L)

j , (8.16)

z̄(L+1)
j = sign

(
ā(L)
j

)
. (8.17)
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Table 8.1 The truth table for the XNOR operation

Input Output

True (+1) True (+1) True (+1)

True (+1) False (−1) False (−1)

False (−1) True (+1) False (−1)

False (−1) False (−1) True (+1)

Note that now we introduce some new notations with bars on top of the symbols
to distinguish them from the variables used in the DNN feedforward process (8.2)–
(8.6). In practice, the sign function can be implemented by counting the number of
+1’s in the summation (8.14) and (8.16) checking if it exceeds a certain threshold,
e.g. (K (l) + 1)/2.

8.4.2 Linear Separability

Figure8.5 shows some classification problems that can illustrate the performance of
BNNs. First, in Fig. 8.5a we can see that the traditional XOR problem can be solved
with two hyperplanes. If we are allowed to use real-valued coefficients to define the
hyperplanes, there are infinitely many solutions to this problem. Interestingly, there
is a BNN solution for this, where we can define two hyperplanes only with bipolar
binary coefficients. In (b) we see a corresponding multilayer perceptron defined with
bipolar binaries and sign functions. From this example, we see that a BNN can solve
non-linear problems.

On the other hand, Fig. 8.5c shows a simple linearly separable problem that BNNs
fail to solve due to the lack of flexibility to define necessary hyperplanes. Conse-
quently, it requires two hyperplane to solve this linearly separable problem. Zero
weights in BNNs can get around this problem (d), which add additional rotation
options and eventually solve the problem with a single hyperplane.

Eventually, however, BNN needs more hyperplanes than a real-valued network.
Figure8.5e depicts another linearly separable case (e.g. with the red hyperplane), but
there is no BNN that solves this problem with a single hyperplane even if we allow
zero weights.

8.4.3 Efficiency

As a result, we might need to expect a larger network topology for a BNN to perform
as good as a corresponding DNN. This fact involves more parameters to train. On
top of that, the sheer number of XNOR and bit counting operations increase as
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(a)

(c)

(e)

(d)

(b)

Fig. 8.5 Figures are from [15]. a The XOR problem and binary hyperplanes that solve it. b A
corresponding BNN. c A linearly separable problem for which BNN needs a least two hyperplanes.
d A BNN with zero weights that can define hyperplanes more flexibly and solve the problem. e
A linearly separable problem which BNN cannot solve with a single hyperplane even with zero
weights
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well. However, since those operations are much cheaper than their corresponding
floating-point or N -bit fixed-point operations, the increased network size does not
always mean a more complex feedforward process.

Overall, in the big O notation we see the same order of complexity for both DNN
and BNN once their structures are the same. However, if we compare the floating-
point or fixed-point multiplications with XNOR for example, we expect that the latter
spends much less amount of power. As for the spatial complexity, in theory BNN
spends only one bit (or up to two bits depending on how we represent zero weights)
per parameter, while an optimized fixed-point DNN calls for N bits to encode a the
parameter.

8.5 BNN Training

Training BNN consists of two passes of backpropagation. The main BNN training
part is the second round where we use noisy feedforward and the sparsity concept.
Since, the second round (final) results rely greatly on the quality of initialization, we
first train a regular network in the first round, and then use the results to initialize the
actual parameters for BNN training in the second round.

8.5.1 The First Round: Weight Compressed DNN

In the first round, we train an ordinary DNN with tanh activation functions as dis-
cussed in Sect. 8.2. The only additional step in this part is weight compression, with
which we can ensure that the weights and biases are bound between−1 and+1. The
weight compression is done by wrapping the parameters with tanh, and the use the
wrapped versions during feedforward. Therefore, feedforward works as follows:

z̃(0)
q = x̄q , q ∈ {1, . . . , Q}, (8.18)

ã(l)
j =

∑

i∈{1,...,K (l)}
tanh

(
W̃ (l)

j i

) · z̃(l)
i + tanh

(
b̃(l)
j

)
, (8.19)

z̃(l+1)
j = tanh

(
ã(l)
j

)
, (8.20)

ã(L)
j =

∑

i∈{1,...,K (L)}
tanh

(
W̃ (L)

j i

) · z̃(L)
i + tanh

(
b̃(L)
j

)
, (8.21)

z̃(L+1)
j = tanh

(
ã(L)
j

)
. (8.22)

Here for the first round, we use a different notation scheme with tilde on top of the
symbols to distinguish them from the parameters of an ordinary DNN and the binary
ones of BNN. Note that we cannot reuse an existing DNN due to the mandatory use
of binarized input x̄, which has replaced the original real-valued vector. Because of
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the chain rule for this additional wrapping function, now backpropagation has some
additional terms, i.e. the derivatives of tanh:

δ̃
(L)
d = (1 − tanh2

(
ã(L)
d

)) · (
t ′d − z̃(L+1)

d

)
, (8.23)

δ̃
(l)
i = (1 − tanh2

(
ã(l)
d

)) ·
∑

j

δ̃
(l+1)
j · tanh (

W̃ (l)
j i

)
, (8.24)

∇W̃ (l)
j i = δ̃

(l)
j · z̃(l)

i ·
(
1 − tanh2

(
W̃ (l)

j i

))
, (8.25)

∇b̃(l)
j = δ̃

(l)
j ·

(
1 − tanh2

(
b̃(l)
j

))
. (8.26)

Through the first round, we construct a real-valued neural network whose input
vectors are the same bipolar binaries as in the following BNN. Also, we can make
sure that the weights and biases used in the feedforward process are bound between
−1 and +1.

8.5.2 The Second Round: Noisy Feedforward and Sparsity

Although there is always a trivial solution to this problem by simply enumerating all
the mappings of the training set [32], learning a compact and reasonable approxima-
tion model to this kind of Boolean mapping functions through BNN is basically an
NP-complete combinatorial optimization problem [33]. There has been some early
effort, such as μ-perceptron networks, whose network structure is quite limited by
allowing an input unit to be connected to only one hidden unit [34]. More recently,
Expectation BackPropagation (EBP) algorithm was proposed as a probabilistic
approach to the problem, which estimates the posterior probabilities of the discrete
weights given the data [16].

The main part of BNN training is done by a procedure called noisy feedforward,
which has been known in the literature for the fixed-point implementations of neural
networks [35, 36]. It is done by using the discrete version of the real-valued net-
work parameters during the feedforward process, while backpropagation does the
update on the real-valued ones. In other words, we keep two sets of parameters,
real-valued and binary, and use them for backpropagation and forwardpropagation
during training, respectively. This intervention during feedforward can reduce the
additional error introduced from the noisy nature of the quantized parameters, be-
cause the network is aware of it and tries to fix it during training. On the contrary, a
naïve quantization cannot, because it discretizes the parameters once all the training
is done. The two sets of parameters have relationships as follows:

W̄ (l)
j i = sign

(
W (l)

j i

)
(8.27)

b̄(l)
j = sign

(
b(l)
j

)
. (8.28)
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The reason why we keep these two sets is because of the use of the non-
differentiable step function, (8.15), (8.17), (8.27), and (8.28). Therefore, we use an
approximation, the derivative of tanh, assuming that tanh is a smooth approximation
of the step function:

δ
(L)
d = (1 − tanh2

(
a(L)
d

)) · (
t ′d − z̄(L+1)

d

)
, (8.29)

δ
(l)
i = (1 − tanh2

(
a(l)
d

)) ·
∑

j

δ
(l+1)
j · W̄ (l)

j i , (8.30)

∇W (l)
j i = δ

(l)
j · z̄(l)

i ·
(
1 − tanh2

(
W (l)

j i

))
, (8.31)

∇b(l)
j = δ

(l)
j ·

(
1 − tanh2

(
b(l)
j

))
. (8.32)

Note that W (l)
j i and b(l)

j have been initialized with the tanh wrapped ones we trained

in the first round, e.g. W (l)
j i = tanh

(
W̃ (l)

j i

)
.

Another important factor in trainingBNNs is enforcing the sparsity of theweights.
For a desired sparsity ρ of the l-th layer weight matrix, before we apply the bina-
rization steps (8.27) and (8.28) we find the boundary u that satisfies the following
condition:

ρ =
∑

j J
(l)
j + ∑

j i I
(l)
j i(

K (l) + 1
) · K (l+1)

(8.33)

I (l)
j i =

{
1 if − u < W (l)

j i < u
0 otherwise

(8.34)

J (l)
j =

{
1 if − u < b(l)

j < u
0 otherwise

(8.35)

In other words, the weights that are within the boundaries should be turned off to be
zero, which will add an additional rotation option for the hyperplanes:

W (l)
j i =

{
0 if − u < W (l)

j i < u

sign
(
W (l)

j i

)
otherwise

(8.36)

b(l)
j =

{
0 if − u < b(l)

j < u

sign
(
b(l)
j

)
otherwise

(8.37)

Another way to view this is to consider these additional zeros as another quantiza-
tion level so that the weights are now ternary not binary. However, we would like to
think of this matrix as a sparse bipolar binary matrix, because then the feedforward
procedure can benefit from the sparse coding, e.g. by skipping the zero weights.
Indeed, we found that for the speech enhancement experiments the weight matrices
are very sparse to produce the optimal separation results.
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8.6 Experimental Results

This section presents some experimental results on single-channel speech denoising
tasks, where we compare the performance of the fully bitwise neural networks and
their corresponding floating-point networks.5 Because the goal of the comparison
is to see if BNNs can catch up the performance of a proper DNN, we focus on a
relatively small, but big enough data set to showcase the merit of BNN. We consider
the first round training results as our baseline DNN networks although their input
is not a real-valued spectrum, but a bit string from the Quantization-and-Dispersion
procedure. It is a fair comparison in the sense that we have to do our best to produce
good first round results to guarantee the performance of the final BNNs from the
second round, which are using the first round results to initialize their parameters.
However, a comprehensive DNN without the QaD procedure will be slightly better
than our baseline.

8.6.1 The Data Set

We construct a dataset from the TIMIT corpus and the ten non-stationary noise types
used in [37]. For training, we randomly chose five utterances from a speaker in the
training set. We repeat this for ten female speakers. For each of the 50 randomly
chosen clean speech utterances like this, we mix it up with one of the ten noise types
to build a set of 500 noisy utterances in total. As for the test signals, we go through the
same procedure with only five random speakers. It is made sure that the section of the
noise signal used for training mixtures does not overlap with that for test mixtures.
The Signal-to-Noise Ratio (SNR) is set to be 0 dB.

8.6.2 Pre-processing

All signals go through Short-Time Fourier Transform (STFT) with a Hann window
of 1024 points and a 75% overlap between frames. The magnitudes of a mixture
spectrum are used as the input vector after converting them using a QaD procedure
with 4 bits per magnitude. Therefore, the total number of binary input variables is
513 × 4 = 2052. We calculate IBMs from (8.8), and then convert their range from
between 0 and 1 to between −1 and +1. The neural networks are trained to predict
a 513-dimensional IBM vector from a 2052-dimensional QaD binary vector.

5The results of this section are mostly from [15].



8 Efficient Source Separation Using Bitwise Neural Networks 203

8.6.3 The Setup for the First Round

• Structure: We build two weight-compressed networks with two hidden layers, but
one has 1024 hidden units per layer (1024 × 2) and the other has 2048 (2048 × 2)

• Dropout: Dropout parameters are set to be 0.95 for the input layer and 0.8 for the
other hidden layers.

• Mini batch: 100 samples
• Momentum: 0.95
• Learning rate: 10−7

• Number of epoch: 5,000

8.6.4 The Setup for the Second Round

For the second round we stick to the same setup with the first round except the
following ones:

• Sparsity ρ: 0.98
• Learning rate: 10−6

8.6.5 Discussion

Figure8.6 compares the first-round results (as our DNN baseline) and the second-
round results, which starts from the first-round, but then turns all the parameters into
bipolar binaries or zeros (BNN). We use the popular source separation quality mea-
surements as proposed in [38]. First, in (a) we see that the separation quality in terms
of Signal-to-Interference Ratio (SIR) for both DNN andBNN are very good although
DNN clearly outperforms BNN by more than 3.5 dB. However, usually a higher SIR
does not always mean a better separation, because the separation algorithm tends
to introduce artifacts along the way, which can be measured by Signal-to-Artifiacts
Ratio (SAR). As seen in (a) the SAR difference between DNN and BNN are not very
significant. Eventually, the overall separation measure, Signal-to-Distortion Ratio
(SDR), says that the difference between BNN and DNN is 0.6 dB when they share
the same network structure, which is acceptable considering the amount of saving
BNN introduces.

In Fig. 8.6b we compare the results from larger networks where we double the
number of hidden units. Clearly, we see that the SIR value of DNN does not really
change, although BNN catches up. Once again, we have to be careful about the over-
all separation performance which can be deteriorated by a too aggressive separation,
but in (b) we see that SAR values go up, too. Consequently, we see that the perfor-
mance of BNNwith a larger network structure is comparable to that of smaller DNN
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Fig. 8.6 Speech
enhancement results using
two different network
structures (a) 1024 × 2 (b)
2048 × 2

(a)

(b)

(8.55 versus 8.60 dB in SDR). Of course the number of the weights in the larger net-
work is roughly four times of the smaller one, but since BNNs are based on sparse
bitwise computation, we believe that this does not mean that the large BNN is more
complex than the smaller DNN.

8.7 Conclusion

In this chapter we presented a new efficient way to perform feedforward in DNNs
by using their bitwise versions, where we replace multiplication and addition with
bitwise XNOR and bit counting operations. In order to convert a real-valued network
into a BNN, we define these operations on bit string input and outputs, which can
be seen as binary features extracted from the original raw signals. During training,
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these bitwise logic along with the binary versions of the signal inject additional
quantization noise so that the network is aware of the drastic quantization noise
and tries to fix it through backpropagation. We shared some preliminary speech
enhancement results where BNN shows a convincing performance while ensuring
promising improvement in terms of efficiency. A detailed complexity analysis on
real hardware implementations will follow as future work.
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Chapter 9
DNN Based Mask Estimation for Supervised
Speech Separation

Jitong Chen and DeLiang Wang

Abstract This chapter introduces deep neural network (DNN) based mask estima-
tion for supervised speech separation. Originated in computational auditory scene
analysis (CASA), we treat speech separation as a mask estimation problem. Given
a time-frequency (T-F) representation of noisy speech, the ideal binary mask (IBM)
or ideal ratio mask (IRM) is defined to differentiate speech-dominant T-F units from
noise-dominant ones. Mask estimation is then formulated as a problem of super-
vised learning, which learns a mapping function from acoustic features extracted
from noisy speech to an ideal mask. Three main aspects of supervised learning are
learning machines, training targets, and features, which are discussed in separate
sections. Subsequently, we describe several representative supervised algorithms,
mainly for monaural speech separation. For supervised separation, generalization
to unseen conditions is a critical issue. The generalization capability of supervised
speech separation is also discussed.

9.1 Speech Separation Problem

The human auditory system has the remarkable ability in separating one sound source
from others. In an acoustic environment like a cocktail party, we are able to follow
one speakerwhile filtering out otherswithoutmuch effort. Speech separation is called
the “cocktail party problem” by Cherry in his 1953 paper [1]. The ability to separate
speech from background noise is crucial for our daily communication. The speech
of interest is usually corrupted by additive noises from other sound sources and
reverberation from surface reflections. Although humans perform speech separation
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with ease, it has been very challenging to construct an automatic system to match
the human auditory system in this fundamental task.

Speech separation has a wide range of applications such as robust automatic
speech and speaker recognition, noise reduction for hearing aids and cochlea
implants, and enhanced mobile communication. Driven by these applications,
researchers have developedmany techniques over the past decades. Depending on the
number of sensor recordings, we categorize these techniques into multi-microphone
speech separation and monaural speech separation. The dominant approach for
array-based processing is beamforming [2]. Compared to array processing, monaural
processing is more flexible but potentially more challenging as it operates without
spatial cues. Two traditional approaches formonaural processing are speech enhance-
ment [3] and computational auditory scene analysis (CASA) [4]. The former analyzes
general statistics of speech and noise, and typically requires a noise estimate. The
latter is based on auditory scene analysis principles [5] and exploits perceptual cues,
such as pitch and onset.

A emerging approach is to use supervised learning to address speech separation,
where the discriminative characteristics of speech and noise are learned from training
data. The concept of time-frequency masking in CASA [6] has led to the original for-
mulation of speech separation as a supervised learning problem. Supervised speech
separation represents a data-driven approach and benefits from the rapid advances in
machine learning.

Supervised speech separation started from the concept of the ideal binary mask.
Inspired by the masking phenomenon in auditory perception and the exclusive allo-
cation principle in auditory scene analysis [5], in 2001 Hu and Wang first suggested
the ideal binary mask (IBM) as a main goal of CASA [7] (see also [8, 9]). The
idea is to retain parts of a mixture where the target sound is stronger than the back-
ground noise and discard the rest. The IBM is defined from the time-frequency (T-F)
representation of a mixture as follows:

IBM (t, f ) =
{
1, if SNR(t, f ) > LC

0, otherwise
(9.1)

where t denotes time and f denotes frequency. The IBM assigns the value 1 to a T-F
unit if the local SNR within the unit exceeds a local criterion (LC), and 0 otherwise.
Ideal binary masking as a way of speech separation is illustrated in Fig. 9.1. Ideal
binary masking has been shown to dramatically improve speech intelligibility for
normal-hearing (NH) listeners and hearing-impaired (HI) listeners [10–13].

With the IBM as the computational goal, speech separation can be naturally for-
mulated as a binary classification problem. This formulation of the speech separation
problem as supervised learning has proven to be consequential, as it now opens the
separation problem to treatment by a variety of pattern classification and function
approximation (or regression) algorithms. The first study in supervised speech sep-
aration was conducated in the binaural domain by Roman et al. [14, 15].
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Fig. 9.1 IBM illustration. The top left plot shows a cochleagram of a target utternce, the top right
shows an interfering utterance, the bottom left shows the mixture, and the bottom right shows the
IBM-masked mixture

Like any supervised learning problem, supervised speech separation has three
main aspects: learning machines, training targets, and features. These topics will be
discussed in the next three sections. For learning machines, we will focus on DNNs
(including recurrent neural networks). Section9.5 presents representative algorithms,
with a focus on monaural speech separation, and discusses the generalization issue.
Section9.6 concludes the chapter. We should note that speech separation and speech
enhancement are used interchangeably in this chapter, particularly for separating
speech from nonspeech interference.

9.2 Classifiers and Learning Machines

Recent advances in machine learning and neural networks have demonstrated the
power of deep neural networks (DNNs) in many tasks such as image classification,
automatic speech recognition and machine translation. In this section we introduce
two types of deep neural networks that are effective for mask estimation in super-
vised speech separation. They are feedforward multilayer perceptrons (MLPs) and
recurrent networks based on long short-term memory (LSTM).
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9.2.1 Multilayer Perceptrons

Multiplayer perceptrons, exemplifying feedforward networks, are extended from
Rosenblatt’s perceptrons (or simple perceptrons). Multilayer perceptrons are power-
ful learning machines and can approximate any nonlinear function. A two-hidden-
layerMLP is shown in Fig. 9.2. AnMLP is typically trainedwith the backpropagation
algorithm where the network weights are adjusted to minimize the prediction error,
which is measured by a cost (loss) function. For example, when an MLP is used for
regression, a common cost function is mean square error (MSE):

E(n) = 1

2

∑
k

[dk(n) − yk(n)]2 (9.2)

where E(n), dk(n) and yk(n) denote the cost, desired output and predicted output
at iteration n, respectively. The output layer is indexed by k. To run the backpropa-
gation algorithm, activations are computed successively from the first hidden layer
to the output layer where the prediction error is measured by (9.2). Then the error
is backpropagated to adjust the weights. The backpropagation algorithm performs
gradient descent over the weights to minimize the error or cost at the output layer.

The representational power of anMLP increases as the number of layers increases.
However, a deep MLP is usually difficult to train from random initialization because
of the gradient vanishing problem.With vanishing (small) gradients, the lower layers
(near the input end) do not change their weights much during backpropagation and
therefore do not perform feature learning effectively. One remedy is to perform
layer-wise unsupervised pretraining with unlabeled data to properly initialize the
network and then fine-tune it with labeled data. Hinton et al. [16] proposed restrictive
Boltzmann machines (RBMs) to pretrain DNNs layer by layer and found that it
improves subsequent supervised learning [16]. Another remedy is to use rectified
linear unit (ReLU) [17] to replace the traditional sigmoid activation function. The

Fig. 9.2 Diagram of a multilayer perceptron



9 DNN Based Mask Estimation for Supervised Speech Separation 211

ReLU is defined as follows:

f (x) =
{
x, if x > 0

0, otherwise
(9.3)

Unlike the sigmoid function, which has a small gradient when the input value is large,
the ReLU has the derivative of 1 for all positive values, and therefore alleviates the
gradient vanishing problem. Recent practice suggests that DNNs with the ReLU
can be successfully trained without unsupervised pretraining when sufficiently large
training data sets are available.

9.2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) allow recurrent (feedback) connections, typically
between hidden units. Unlike feedforward networks, which process each input sam-
ple independently, RNNs treat input samples as a sequence and model the changes
over time. For a speech signal, a current frame is influenced by the previous ones.
Therefore, RNNs may be employed to naturally learn the temporal dynamics of
speech. To illustrate the information flow, we show a standard RNN unrolled over
two time steps in Fig. 9.3. Clearly, the features extracted from the previous time step
are used to compute the hidden activations at the current time step.

The recurrent connections are typically trainedwith backpropagation through time
(BPTT). However, such RNN training is susceptible to the vanishing or exploding
gradient problem [19]. To alleviate this problem, long short-term memory (LSTM)

Fig. 9.3 An RNN unrolled over two time steps. The dashed lines indicate recurrent connections



212 J. Chen and D. Wang

introduces memory cells to store information from the past. As shown in Fig. 9.4,
an LSTM block has three gates, namely input gate, forget gate and output gate. The
input gate and forget gate control how the memory cell should be updated, and the
output gate modulates the output of the block. The mechanism of an LSTM block
can be described by the following equations:

it = σ(Wixxt + Wihht−1 + bi) (9.4)

ft = σ(Wfxxt + Wfhht−1 + bf ) (9.5)

ot = σ(Woxxt + Wohht−1 + bo) (9.6)

zt = g(Wzxxt + Wzhht−1 + bz) (9.7)

ct = ft � ct−1 + it � zt (9.8)

ht = ot � g(ct) (9.9)

σ(s) = 1

1 + e−s
(9.10)

g(s) = es − e−s

es + e−s
(9.11)

where it , ft and ot denote the input gate, forget gate and output gate at time t, respec-
tively. xt , zt , ct , ht respectively represent input, block input, memory cell, and hidden
activation. W ’s and b’s represent weights and biases, respectively, and � denotes
element-wise multiplication or the gating operation.

The combination of gates and memory cells facilitates the information flow over
time. When LSTM is properly trained, the input gates and forget gates maintain rele-
vant contextual information in memory cells to improve target estimation. LSTM has
been shown to be successful in learning long-term dependencies in many applica-
tions such as languagemodeling [20], machine translation [21] and automatic speech
recognition [22]. We will revisit LSTM later in Sect. 9.5.1.

Fig. 9.4 Diagram of an
LSTM block (from [18]). A
circled cross denotes
element-wise multiplication
or gating operation, and a
circled wave denotes
hyperbolic tangent function
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Fig. 9.5 Supervised speech separation based on classification for IBM estimation

9.3 Training Targets

In supervised speech separation, it is important to define a training target properly.
Different training targets lead to different mapping functions from noisy features
to separated speech. They may also lead to different levels of generalization. There
are primarily two categories of training targets: masking-based targets and mapping-
based targets.

Among masking-based targets, the IBM is the first and the most commonly used
one. As we mentioned in Sect. 9.1, the IBM notion has led to the original formula-
tion of speech separation as supervised learning. The IBM is typically defined on a
cochleagram representation. To compute the cochleagram of a signal, we typically
pass an input signal to a gammatone filterbank and compute energies in T-F units
with a 20-ms window length and a 10-ms window shift [4]. To mimic human cochlea
filtering, the center frequencies of a gammatone filterbank are uniformly spaced on
the equivalent rectangular bandwidth (ERB) scale, leading to higher resolutions at
low frequencies. The IBM can also be defined on a spectrogram or any other time-
frequency representation. IBM estimation amounts to classifying T-F units of noisy
speech as noise-dominant or speech-dominant. For separation, the noise-dominant
T-F units are removed to suppress the background noise. An example of the IBM
is shown with a 64-channel filterbank in Fig. 9.6a. A supervised speech separation
system using classification-based IBM estimation is illustrated in Fig. 9.5. Acoustic
features are first extracted from noisy speech (see Sect. 9.4) and sent to a classifier to
produce an IBM estimate, which is then used to weight the responses from the gam-
matone filterbank. Finally, separated speech is resynthesized by summing processed
signals across frequency channels. IBM estimation has been shown to be effective
in separating target speech from background noise [23–25]. Besides the IBM, the
target binary mask (TBM) has also been shown to improve speech intelligibility [26]
and suggested to be a training target [27]. The TBM is a binary mask computed by
comparing the target speech energy in each T-F unit with a reference speech-shaped
noise. An example of the TBM is shown in Fig. 9.6b.

Instead of a binary target label on each T-F unit, a soft target label is provided by
the ideal ratio mask (IRM) [28–30]:
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Fig. 9.6 Illustration of several training targets for a TIMIT utterance mixed with a factory noise at
−5 dB SNR

IRM (t, f ) =
√

S(t, f )2

S(t, f )2 + N (t, f )2
=

√
SNR(t, f )

SNR(t, f ) + 1
(9.12)

where S(t, f )2 andN (t, f )2 denote speech energy and noise energy within a T-F unit,
respectively. Note that instead of a square root, other roots can be used in the IRM
definition. An example of the IRM is shown in Fig. 9.6c. Different from the IBM,
the IRM partially preserves a T-F unit according to the unit SNR. A recent study has
shown that ratio masking leads to better speech quality than binary masking [30],
and the IRM has been argued to be a better target than the IBM [30, 31].

Ideal masks can be similarly defined on a spectrogram or the short-time Fourier
transform (STFT) domain. To compute the STFT, we typically use a 20-ms window
length and a 10-ms window shift. With the STFT of clean speech and noisy speech,
the FFT-MASK is defined as follows:

FFT -MASK(t, f ) = SFFT (t, f )

YFFT (t, f )
(9.13)

where, within a T-F unit, SFFT (t, f ) and YFFT (t, f ) denote clean and noisy spectral
magnitudes, respectively. For speech separation, the clean spectral magnitude is
estimated by applying the estimated FFT-MASK, a ratio mask, to the noisy spectral
magnitude. The estimated magnitude is then combined with noisy phase to derive
separated speech.

In themapping-based approach, the training targets are typically spectral represen-
tations of clean speech. A simple target is the STFT spectral magnitude (FFT-MAG)
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of clean speech. While the FFT-MAG is based on the spectrogram representation,
another such training target called gammatone frequency power spectrum (GF-POW)
is based on a cochleagram representation. Examples of the FFT-MAG and GF-POW
are shown in Figs. 9.6d, e, respectively.

Wang et al. [30] have compared masking-based and mapping-based training tar-
gets in terms of speech separation performance. To benchmark the performance,
they also compared with a speech enhancement algorithm [32] and a supervised
non-negative matrix factorization (NMF) algorithm called ASNA-NMF [33]. In this
systematic examination of training targets, training and testmixtures are created from
TIMIT utterances [34] and five noises at −5 dB, 0 dB and 5 dB SNR. A DNN with
three hidden layers (each layer has 1024 units) was trained and tested on different
utterances and different segments of the same noises. Separated speech was evalu-
ated using the short-time objective intelligibility (STOI) score [35] and the perceptual
evaluation of speech quality (PESQ) score [36]. STOI predicts speech intelligibility
by comparing envelopes of separated speech and clean speech and has a value range
of [0, 1], roughly corresponding to percent correct. PESQ measures the quality of
separated speech and has a value range of [−0.5, 4.5] (higher is better). We show
the STOI and PESQ scores for a factory noise in Figs. 9.7 and 9.8, respectively. For
the two binary masks, IBM estimation performs better in PESQ than TBM estima-
tion. Compared to binary masking, ratio masking performs better in speech quality.
Furthermore, the FFT-MASK is better than the FFT-MAG in terms of both speech
intelligibility and quality. This is due to the observation that FFT-MASK estimation
mainly involves a one-to-one mapping, whereas FFT-MAG estimation involves a
many-to-one mapping as the FFT-MAG is insensitive to interference and mixture
SNR. Many-to-one mapping appears harder to learn than one-to-one mapping.

Fig. 9.7 Comparison of training targets in terms of STOI. Clean speech is mixed with a factory
noise at −5 dB, 0 dB and 5 dB SNR. Results for different kinds of targets as well as a speech
enhancement (SPEH) algorithm and an NMF method are highlighted for 0 dB mixtures
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Fig. 9.8 Comparison of training targets in terms of PESQ. Clean speech is mixed with a factory
noise at −5 dB, 0 dB and 5 dB SNR. See Fig. 9.7 caption for further explanations

Besides the above targets, we introduce three more recently proposed training
targets (see also [37]). The first one is signal approximation which uses the following
cost function [38]:

SA(t, f ) = [RM (t, f )YFFT (t, f ) − SFFT (t, f )]2 (9.14)

whereYFFT (t, f ),SFFT (t, f )denote noisy and clean spectralmagnitudes, respectively.
RM (t, f ) can be viewed as an estimate of the IRM, which is defined on the STFT
domain instead of the cochleagram domain. With signal approximation as the target,
a learning machine is typically trained in two stages. In the first stage, the IRM is
used as the training target to initialize the learning machine. In the second stage,
the difference of masked noisy magnitude and clean magnitude is minimized. The
goal is to obtain a mask estimator which leads to a good estimate of clean spectral
magnitudes. Signal approximation has been shown to give some improvement over
direct IRM estimation [38].

The second training target is the phase-sensitive (PS) ideal ratio mask, which is
defined as follows [39]:

FFT -MASKPS(t, f ) = SFFT (t, f )

YFFT (t, f )
cos θ (9.15)

where θ is the phase difference between clean speech and noisy speech within the
corresponding T-F unit. Experimental results have shown that the phase sensitive
target leads to a better estimate of clean speech than FFT-MASK [39].

The third training target is the complex ideal ratio mask (cIRM). The idea is to
define an ideal mask that perfectly reconstructs clean speech from noisy speech:
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S = M ∗ Y (9.16)

where M denotes the ideal mask to be sought for. S and Y are clean and noisy
FFT signals, respectively, and ∗ represents multiplication in the complex domain.
To reveal the structure in the complex data, the cIRM is defined in the Cartesian
complex domain instead of the magnitude-phase domain:

M = YrSr + YiSi
Y 2
r + Y 2

i

+ i
YrSi − YiSr
Y 2
r + Y 2

i

(9.17)

where Sr and Si are real and imaginary components of clean speech, respectively, and
Yr and Yi denote the real and imaginary components of noisy speech, respectively.
Since M has an unbounded value, not favorable for training, the real and imagi-
nary components are compressed to the range of [−K,K] with hyperbolic tangent
function:

cIRMx = K
1 − e−cMx

1 + e−cMx
, x ∈ {r, i} (9.18)

where c controls steepness andK controls the value range. cIRM estimation has been
shown to improve speech quality over IRM estimation [40].

9.4 Features

Features are clearly important for supervised speech separation. Mask estimation
depends on the discriminative power of acoustic features. Early studies use a few
features such as interaural time differences (ITD) and interaural intensity differ-
ences (IID) [41] in binaural spearation, and pitch-based features [23] and ampli-
tude modulation spectrogram (AMS) [24] in monaural separation. A subsequent
study [42] explores more monaural features including mel-frequency cepstral coef-
ficient (MFCC), gammatone frequency cepstral coefficient (GFCC) [43, 44], per-
ceptual linear prediction (PLP) [45], and relative spectral transform PLP (RASTA-
PLP) [46].

We have carried out a study to evaluate an extensive list of acoustic features
for speech separation at low SNRs [47]. The features have been previously used
for robust automatic speech recognition and classification-based speech separation.
The feature list includes two mel-domain features, two linear prediction features,
three gammatone-domain features, one zero-crossing feature, three autocorrelation
features, two medium-term filtering features, two modulation features and a set of
pitch-based features. The two mel-domain features are MFCC and delta-spectral
cepstral coefficient (DSCC) [48], which is similar to MFCC except that a delta oper-
ation is applied to mel-spectrum. The two linear predication features are PLP and
RASTA-PLP. The three gammatone-domain features are gammatone feature (GF),
GFCC, and gammatone frequency modulation coefficient (GFMC) [49]. GF is com-
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Table 9.1 Performance of a list of acoustic features in terms of classification accuracy (in %) for
six noises with ARMA post-processing at −5 dB SNR. Boldface indicates best result (from [47])

Factory Babble Engine Cockpit Vehicle Tank Average

MRCG 88.0 79.5 92.2 92.4 89.9 90.5 88.8

GF 87.6 77.4 91.9 92.1 89.9 90.2 88.2

GFCC 87.7 78.3 91.3 91.9 89.2 89.7 88.0

DSCC 86.6 77.2 90.5 90.9 88.8 88.8 87.1

MFCC 86.5 77.5 90.2 91.1 88.8 88.6 87.1

PNCC 86.6 77.2 90.1 90.9 88.6 88.3 87.0

PLP 86.9 77.4 89.5 90.9 88.7 88.2 87.0

AC-MFCC 86.7 77.0 89.3 90.5 88.7 88.1 86.7

RAS-MFCC 86.9 76.9 89.4 90.9 87.8 88.1 86.7

GFB 86.3 74.5 89.3 90.9 87.6 87.6 86.0

ZCPA 85.4 75.2 89.6 90.5 87.4 87.7 86.0

SSF 85.7 75.6 89.0 89.5 88.2 87.4 85.9

RASTA-PLP 85.9 75.9 88.2 89.7 87.9 86.8 85.7

GFMC 84.1 74.3 87.5 89.1 83.5 83.7 83.7

PITCH 85.5 69.6 84.8 88.9 79.2 82.3 81.7

AMS 82.5 74.0 84.8 87.8 75.4 79.1 80.6

PAC-MFCC 77.9 69.8 78.1 81.1 70.8 67.9 74.3

puted by passing an input signal to a gammatone filterbank and applying a decimation
operation on subband signals. The zero-crossing feature, called zero-crossings with
peak-amplitudes (ZCPA) [50], computes zero-crossing intervals and corresponding
peak amplitudes from subband signals derived using a gammatone filterbank. The
three autocorrelation features are relative autocorrelation sequence MFCC (RAS-
MFCC) [51], autocorrelation sequence MFCC (AC-MFCC) [52] and phase autocor-
relation MFCC (PAC-MFCC) [53], all of which apply the MFCC procedure in the
autocorrelation domain. The two medium-term filtering features are power normal-
ized cepstral coefficients (PNCC) [54] and suppression of slowly-varying compo-
nents and the falling edge of the power envelope (SSF) [55]. The two modulation
features are Gabor filterbank (GFB) [56] and AMS features. Pitch-based (PITCH)
features calculate T-F level features based on pitch tracking and use periodicity
and instantaneous frequency to discriminate speech-dominant T-F units from noise-
dominant ones. In addition to existing features, we have introduced a new feature
called Multi-Resolution Cochleagram (MRCG) [47], which computes four cochlea-
grams at different spectrotemporal resolutions to provide both local information and
a broader context.

The features are post-processed with an auto-regressive moving average (ARMA)
filter and then fed to a fixed MLP for IBM estimation. ARMA processing is found
to improve the robustness of features in noise for automatic speech recognition [57].
The features are evaluated in terms of classification accuracy and the HIT−FA rate,
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Table 9.2 Performance of a list of acoustic features in terms of HIT−FA (in %) for six noise types
with ARMA post-processing at −5 dB SNR, where FA is shown in parentheses (from [47])

Factory Babble Engine Cockpit Vehicle Tank Average

MRCG 63 (7) 49 (13) 77 (4) 73 (4) 80 (10) 77 (6) 70 (7)

GF 61 (7) 45 (15) 75 (4) 71 (3) 80 (10) 76 (6) 68 (8)

GFCC 61 (6) 46 (14) 73 (4) 70 (3) 78 (11) 74 (6) 67 (7)

DSCC 56 (7) 42 (14) 70 (5) 66 (3) 77 (11) 73 (6) 64 (8)

MFCC 57 (7) 43 (14) 69 (5) 67 (4) 77 (11) 72 (7) 64 (8)

PNCC 56 (6) 44 (14) 69 (5) 66 (4) 77 (11) 71 (7) 64 (8)

PLP 56 (6) 41 (12) 68 (5) 66 (4) 77 (11) 71 (7) 63 (8)

AC-MFCC 56 (6) 42 (14) 67 (5) 65 (4) 77 (11) 71 (7) 63 (8)

RAS-MFCC 57 (6) 41 (14) 68 (5) 66 (4) 76 (11) 71 (7) 63 (8)

GFB 57 (7) 41 (18) 67 (5) 66 (4) 75 (12) 70 (7) 63 (9)

ZCPA 55 (8) 40 (16) 68 (5) 65 (4) 75 (13) 70 (8) 62 (9)

SSF 54 (7) 39 (15) 67 (5) 60 (4) 76 (11) 69 (7) 61 (8)

RASTA-PLP 52 (6) 38 (15) 64 (5) 61 (4) 76 (12) 67 (7) 60 (8)

GFMC 48 (7) 35 (15) 61 (6) 60 (5) 67 (17) 59 (9) 55 (10)

PITCH 46 (3) 29 (22) 50 (5) 50 (2) 59 (16) 53 (7) 48 (9)

AMS 40 (6) 27 (9) 49 (5) 52 (4) 50 (31) 45 (11) 44 (11)

PAC-MFCC 17 (5) 11 (8) 30 (9) 29 (7) 40 (48) 21 (17) 25 (16)

where HIT denotes the percent of speech-dominant T-F units in the IBM correctly
classified and FA (false-alarm) refers to the percent of noise-dominant units incor-
rectly classified. The HIT−FA rate is found to be well correlated with speech intelli-
gibility [24]. The training mixtures are created with 480 IEEE sentences [58] and the
first halves of six nonstationary NOISEX noises [59]. The test set is created using
50 different IEEE sentences and the second halves of the six noises. The evaluation
SNR is set to −5 dB. The experimental results are shown in classification accuracy
and the HIT−FA in Tables9.1 and 9.2, respectively. The MRCG feature performs
the best, and gammatone-domain features (MRCG, GF and GFCC) outperform oth-
ers. In addition, cepstral compaction (i.e. applying discrete cosine transform) does
not help; for example, GF is better than GFCC. Furthermore, modulation-domain
features are not effective. For example, GFCC performs better than GMFC, with
the latter derived from the former. Finally, pitch-based features do not perform well,
largely because of pitch estimation errors at the low test SNR of −5 dB.

9.5 Speech Separation Algorithms

In this section, we introduce representative DNN based algorithms for speech-
nonspeech separation as well as some other speech separation or enhancement tasks.
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9.5.1 Speech-Nonspeech Separation

Deep learning was introduced to the domain of speech separation/enhancement by
Wang andWang in 2013 [60]. They used DNN for subband classification to estimate
the IBM. As shown in Fig. 9.9, noisy speech is first passed to a gammatone filterbank
to drive subband signals, from which T-F unit-level acoustic features are extracted.
These raw features are then fed to subband DNNs to learn more discriminative
features. Both raw features and high-level features of the last hidden layer are used
by linear support vector machines (SVMs) to efficiently estimate the subband IBM.
To perform feature learning, a subband DNN is pretrained with RBM and then fine-
tuned with the subband IBM as the target. With feature learning by a DNN, one
can replace a kernel-based SVM, that scales badly with the training set size, with a
much faster linear SVM. Therefore this system can be trained on larger training data
efficiently.

To create a training set, 200 randomly chosen utterances from both male and
female IEEE speakers [58] were mixed with 100 environmental noises at 0 dB SNR
to produce six million training samples in each channel, with 64 channels in total.
The DNN based system was tested on 20 unseen speakers mixed with 20 unseen
noises at 0 dB SNR. With extensive training, the DNN based system substantially
outperforms a representative speech enhancement algorithm by Hendriks et al. [32].
The SNR improvement is shown in Fig. 9.10 for 20 unseen test noises. With clean
speech as the ground truth, the DNN based system gives 7.9 dB SNR gain while the
speech enhancement algorithm gives 5.4 dB SNR gain. With IBM separated speech
as the reference signal, the DNN based system obtains 10.5 dB SNR gain.

The above DNN based separation system was subsequently modified and then
evaluated with human listeners by Healy et al. [61]. The evaluated system employs a
two-stage DNN to incorporate T-F context for better IBM estimation. The first stage
follows the DNN introduced in [60], both feature extraction and DNN classification

Fig. 9.9 DNN based supervised speech separation (modified from [60])



9 DNN Based Mask Estimation for Supervised Speech Separation 221

Fig. 9.10 SNR comparison between a DNN based classification algorithm and Hendriks et al.’s
algorithm. “IBM-SNR” denotes the SNR with the IBM separated signal as the ground-truth
(from [60])

are performed at the T-F unit level. In the second stage, a window of the output units
from the first stage centered at a current T-F unit is input to another subband DNN
classifier to re-estimate the IBM for that unit. The window spans five time frames
and 17 (of the 64) frequency channels. Since nearby T-F units are correlated, incor-
porating the T-F context this way leads to improved IBM estimation. The systemwas
trained with 100 HINT sentences [62] and tested with 160 different HINT sentences.
Both training and test mixtures are created with randomly selected noise segments
from a speech-shaped noise (SSN) and amulti-talker babble noise. Figure9.11 shows
the examples of clean speech, noisy speech, the IBM, the estimated mask and sep-
arated speech. The DNN estimated IBM highly resembles the IBM. The results of
subject tests are shown in Fig. 9.12. Both HI and NH listeners showed substantial
intelligibility improvements, with HI listeners benefiting more. It is worth stressing
that HI subjects with separation outperformed NH subjects without separation. This
DNN classification algorithm is the first monaural algorithm to provide demonstrated
speech intelligibility improvements for HI listeners in background noise. DNN based
IBM estimation has also been found to improve pitch estimation, which in turn helps
speech separation [63].

For any supervised learning tasks, generalizing to unseen conditions is critical.
In supervised speech separation, noise generalization and speaker generalization are
two important aspects. We have conducted a recent study to address noise general-
ization with large scale training [64]. Our system is illustrated in Fig. 9.13, which is
different from the previous systems in three major aspects. First, feature extraction
is performed on a full-band signal instead of subband signals, leading to much faster
processing. Second, the IRM instead of the IBM is used as the training target. Third,
the DNN estimates both a current frame and neighboring frames of the IRM, leading
to a smoother mask estimate. The DNN has five hidden layers with 2048 ReLUs in
each layer. The input features are 64-channel gammatone filterbank energies. The
training set includes 640,000 mixtures created from 560 IEEE sentences and 10,000
noises from a sound effect library (www.sound-ideas.com) at the fixed SNR of −2
dB. The total duration of the noises is about 125 hours, and the total duration of
training mixtures is about 380 hours. The test set is created using 160 different IEEE
sentences and two highly non-stationary noises (cafeteria and babble) at −5 dB,

www.sound-ideas.com
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Fig. 9.11 Illustration of separating a HINT utterance from speech-shaped noise at −5 dB SNR. a
Cochleagram of clean speech. b Cochleagram of noisy speech (c) The IBM. d Estimated IBM. e
Cochleagram of separated speech after applying the estimated IBM (from [61])

−2 dB, 0 dB and 5 dB SNR. Note that neither test sentences nor test noises are used
during training.

To illustrate DNN feature learning capability, we visualize the weights of the first
100 neurons in the first hidden layer.As shown inFig. 9.14, the neurons appear to have
acquired speech-specific features. For example, some neurons seem to be activated
by harmonic structure (e.g., the tenth filter in the last row), while some others seem to
be sensitive to formant transitions (e.g., the fifth filter in the third row). By encoding
fundamental characteristics of the speech signal, the DNN learns to separate speech
from unseen noises. To evaluate the effect of the number of training noises on noise
generalization, we also train the same DNN with 100 environmental noises instead
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Fig. 9.12 Percent correct word recognition scores and standard errors for HINT sentences mixed
with speech-shaped noise (upper panels) and multi-talker babble (lower panels), at the SNRs indi-
cated. Intelligibility results are shown for normal-hearing and hearing-impaired listeners, both
before and after algorithm processing (from [61])

Fig. 9.13 DNN based IRM estimation with large scale training for noise generalization (from [64])

of the 10,000 noises described above, and evaluate both models with four unseen
noises. As shown in Table9.3, the 10,000-noise model substantially outperforms the
100-noise model and matches noise-dependent models, which are trained and tested
on different segments of the same noise. This indicates that exposing the DNN to a
large variety of noises during training is crucial for noise generalization. To evaluate
SNR generalization, we additionally train a model with −5 dB mixtures, and test
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Fig. 9.14 Illustraion of 100 learned filters in the first hidden layer of a DNN trained on mixtures
created using 10,000 noises. Filters orweightmatrices are displayed in twodimensions: The abscissa
represents time (23 frames) and the ordinate represents frequency (64 channels) (from [64])

Table 9.3 Separation performance for four unseen noises in terms of STOI at −2 dB SNR
(from [64])

Babble Cafeteria Factory Babble2 Average

Unprocessed 0.612 0.596 0.611 0.611 0.608

100-noise model 0.683 0.704 0.750 0.688 0.706

10K-noise model 0.792 0.783 0.807 0.786 0.792

Noise-dependent
model

0.833 0.770 0.802 0.762 0.792

both −2 and −5 dB models in both matched and unmatched SNR conditions. These
test results are shown in Fig. 9.15. The DNN achieves very similar performance
in matched and unmatched SNR conditions, indicating good SNR generalizability.
Furthermore, we have evaluated the noise-independent model with human listeners.
As shown in Fig. 9.16, both NH and HI listeners benefit from algorithm processing
in all conditions, with larger benefits for HI listeners. This is the first demonstration
that supervised speech separation improves speech intelligibility in completely new
noises.

Besides noise generalization, speaker generalization is also an important issue. In
practice, a separation system trained on a specific speaker would not work well for
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Fig. 9.15 Evaluation of SNR generalization in terms of STOI (from [64]). A model trained with
−2 dB mixtures and one trained with −5 dB mixtures are tested in both matched and unmatched
SNR conditions

Fig. 9.16 Percent correct word recognition and standard errors for HI and NH listeners hearing
unprocessed and processed noisy speech. The top and bottom show the scores for a babble noise
and a cafeteria noise, respectively, at given SNRs (from [64])

an unseen speaker. A straightforward attempt for speaker generalization is to train
with a large number of speakers. However, our experimental results show that feed-
forward DNN appears to be incapable of modeling a large number of speakers [18].
Such a DNN typically takes a window of acoustic features for mask estimation at
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Fig. 9.17 LSTM based IRM estimation for speaker generalization (from [18])

a central frame, without using the long-term context. Unable to focus on a target
speaker, a feedforward network trained on many speakers may pick up interfering
speech fragments in the background noise. To better differentiate target speech from
noise, a learning machine should figure out the speaker of interest from long-term
observations. Therefore, RNNs, which naturally model temporal dependencies, are
expected to be more suitable for speaker generalization than feedforward DNN.

We have conducted a recent study that employs an RNN with LSTM to address
speaker generalization for noise-independent speech separation [18]. The separation
system is illustrated in Fig. 9.17. First, the raw acoustic features are sent to a feedfor-
ward layer for feature transformation. The transformed features are then fed to three
LSTM layers for temporal modeling. Finally, the IRM is estimated by a few more
feedfordward layers. With LSTM layers, the network learns the characteristics of a
target speaker from past observations and focuses on it during separation. To evaluate
speaker generalization, we create a training set of 3,200,000 mixtures using 10,000
noises and 77 speakers from the WSJ0 corpus at random SNRs sampled from {−5,
−4, −3, −2, −1, 0} dB. Two test sets are created using unseen noises (cafeteria and
babble) and 6 unseen speakers from the WSJ0 corpus at −5 dB and −2 SNR. Simi-
larly, we create another two test sets with 6 seen speakers. To benchmark the LSTM
based system, we evaluate a baseline system using a five-hidden-layer feedforward
DNN. We compare the DNN and LSTM in terms of STOI improvement for both
seen and unseen speakers at −5 dB SNR in Figs. 9.18 and 9.19, respectively. For
seen speakers, the performance of the feedforward DNN degrades and that of LSTM
improves as the number of training speakers increases. Exposed to many speakers
during training, the DNN becomes more likely to mistake the background noise as
target speech, while LSTM appears to focus on a target speaker by exploiting the
temporal dynamics of speech. Similarly, for unseen speakers, LSTM substantially
outperforms the DNN. We illustrate the estimated masks by the feedforward DNN
and LSTM in Fig. 9.20. Compared to the DNN, LSTM significantly reduces false-
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Fig. 9.18 STOI improvements of a feedforward DNN and LSTM for seen speakers at −5 dB SNR
(from [18])

Fig. 9.19 STOI improvements of a feedforward DNN and LSTM for unseen speakers at −5 dB
SNR (from [18])

alarm errors. The LSTM-based RNNs represent a promising approach for speaker-
and noise-independent speech separation.

Whilemasking-based separation algorithms lead to speech intelligibility improve-
ment, mapping-based algorithms have been shown to improve speech quality. A
recent study trains a DNN to map log power spectra of noisy speech to those of
clean speech, and improves speech quality measured in PESQ [65]. However, in
low SNR conditions, speech intelligibility is a more pronounced issue than speech
quality. Our experimental results suggest that masking-based algorithms outperform
mapping-based algorithms in terms of intelligibility, and they perform similarly in
terms of speech quality, consistent with Figs. 9.7 and 9.8.

9.5.2 Other Separation/Enhancement Tasks

Supervised processing goes beyond monaural speech-nonspeech separation. In this
section,we describeDNN-based algorithms for related speech separation or enhance-
ment tasks.
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Fig. 9.20 Illustration of
estimated masks by a
feedforward DNN (top) and
LSTM (middle) and the IRM
(bottom). To create the
mixture, the concatenation of
a male utterance and a
female utterance is mixed
with babble noise at −5 dB
SNR (from [18])
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The first task is speech dereverberation and denoising. Reverberation is common
in our daily life. For example, in a room, our ears receive both direct sound and
reflections from the walls and other surfaces. Reverberation has adverse effects on
speech processing such as speech communication, automatic speech recognition
and speaker identification, especially when noise is also present. While traditional
methods apply inverse filtering for speech dereverberation [68, 69], a recent study
uses a DNN to estimate the spectral magnitudes of clean or anechoic speech from
those of reverberant speech [66]. This simple spectral mapping approach has proven
to be quite effective for dereverberation. This system is shown in Fig. 9.21. The DNN
takes 11 frames of reverberant speech features (a current frame and 5 neighboring
frame on each side) as the input, and learns to map to the current frame of anechoic
speech. It is straightforward to extend the spectral mapping approach to perform
dereverberation and denoising at the same time [67]. In [67], a DNN was trained
on multiple T60’s (0.3, 0.6 and 0.9 s) and noises (babble, factory and SSN). The
test set was created using both seen noises (babble, factory and SSN) and unseen
noises (white, cocktail party and playground). Experimental results have shown that
the DNN based spectral mapping algorithm improves objective speech intelligibility
and quality for both seen and unseen noises. An example of speech dereverberation
and denoising is shown in Fig. 9.22. Both background noise and reverberation are
significantly reduced following algorithm processing.

The second task is two-talker separation, where the goal is to extract two speech
signals, one for each speaker, from a mixture containing both speakers. DNN
based systems have been proposed to separate a target speaker from a competing
speaker [70–72]. As shown in Fig. 9.23, a DNN is trained to estimate the log-power
spectra of both the target speaker and interfering speaker. Experimental results have
shown that this approach significantly improves objective speech intelligibility and
quality. Huang et al. [73] address two-talker separation using a DNN as well as an
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Fig. 9.21 A DNN based dereverberation system (from [66])

Clean

Reverberant + factory 
noise (T60 = 0.6 s, 
SNR = 0 dB)

Dereverberated 
and denoised

Fig. 9.22 An example of speech dereverberation and denoising using the DNN based spectral
mapping method (modified from [67])
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Fig. 9.23 A two-talker
separation system using
DNN based spectral mapping

RNN. The authors argue that directly predicting two sources ŷ1t and ŷ2t does not guar-
antee that the summation of two estimated sources equals to the mixture. Therefore,
a masking layer is added to the network, which produces two final outputs shown in
the following equations:

ỹ1t =
∣∣ŷ1t ∣∣∣∣ŷ1t ∣∣ + ∣∣ŷ2t ∣∣ � zt (9.19)

ỹ2t =
∣∣ŷ2t ∣∣∣∣ŷ1t ∣∣ + ∣∣ŷ2t ∣∣ � zt (9.20)

where ŷ1t and ŷ2t denote the estimated magnitude spectra for speaker 1 and speaker
2 at time t, respectively. zt denotes the mixture magnitude spectra. This is a sig-
nal approximation training target introduced in Sect. 9.3. In addition, discriminative
training is applied to maximize the difference between one speaker and the esti-
mated version of the other speaker. During training, the following cost function is
minimized:

1

2

∑
t

(
∥∥y1t − ỹ1t

∥∥2 + ∥∥y2t − ỹ2t
∥∥2 − γ

∥∥y1t − ỹ2t
∥∥2 − γ

∥∥y2t − ỹ1t
∥∥2

) (9.21)

where y1t and y2t denote speaker 1 and speaker 2, respectively. γ is a tunable param-
eter. Experimental results have shown that both incorporation of a masking layer and
discriminating training improve two-talker separation [73].

The third task is binaural speech separation, where spatial cues are used for sepa-
ration. The classification framework can be readily extended to the binaural domain
where features will be extracted from binaural inputs [15]. A recent study employs
interaural time difference (ITD) and interaural level difference (ILD) cues and DNN
for IBM estimation to perform binaural separation [74]. As shown in Fig. 9.24, the
signals from two ears (or microphones) are passed to two corresponding auditory
filterbanks. ITD and ILD features are extracted from T-F unit pairs and sent to a
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Fig. 9.24 DNN based IBM estimation for binaural speech separation (from [74])

Fig. 9.25 HIT−FA rate for two-source separation at various trained and untrained azimuths in a
reverberant condition (T60 = 0.3 s) with babble noise at 0 dB SNR (from [74])

subband DNN for IBM estimation. This is the first DNN based system for location-
based speech separation. As shown in Fig. 9.25, the trained DNN generalizes well
to unseen spatial configurations. It is also observed that incorporating a monaural
feature improves separation performance, especially when the target and interfering
sources are co-located or close to each other.

9.6 Conclusion

This chapter introduces supervised methods for speech separation or enhancement,
which use DNN based mask estimation. The formulation of speech separation as a
supervised learning task has enabled the use of powerful deep learning techniques
and large training data. This new framework has advanced the state-of-the-art perfor-
mance in speech separation by considerable margins, including the first demonstra-
tion of substantial speech intelligibility improvements in noise for hearing-impaired
listeners, an achievement that has eluded traditional speech enhancement and CASA
for decades.

The use of supervised learning in signal processing goes beyond speech separa-
tion and recognition, including multipitch tracking [75], voice activity detection [76]
and even SNR estimation [77]. We believe that signal processing provides an impor-
tant domain for supervised learning, and it in turn benefits from rapid advances
in machine learning. The learning or data-driven framework will continue to push
speech separation and other signal processing tasks to new performance levels in the
years to come.
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Chapter 10
Informed Spatial Filtering Based
on Constrained Independent Component
Analysis

Hendrik Barfuss, Klaus Reindl and Walter Kellermann

Abstract In this work, we present a linearly constrained signal extraction algorithm
which is based on a Minimum Mutual Information (MMI) criterion that allows to
exploit the three fundamental properties of speech and audio signals: Nonstation-
arity, Nonwhiteness, and Nongaussianity. Hence, the proposed method is very well
suited for signal processing of nonstationary nongaussian broadband signals like
speech. Furthermore, from the linearly constrained MMI approach, we derive an
efficient realization in a (GSC) structure. To estimate the relative transfer functions
between the microphones, which are needed for the set of linear constraints, we use
an informed time-domain independent component analysis algorithm,which exploits
some coarse direction-of-arrival information of the target source.As a decisive advan-
tage, this simplifies the otherwise challenging control mechanism for simultaneous
adaptation of the GSC’s blocking matrix und interference and noise canceler coeffi-
cients. Finally, we establish relations between the proposed method and other well-
known multichannel linear filter approaches for signal extraction based on second-
order-statistics, and demonstrate the effectiveness of the proposed signal extraction
method in a multispeaker scenario.
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LCMV Linearly Constrained Minimum Variance
DOA Direction of Arrival
RTF Relative Transfer Functions
SOS Second Order Statistics

MVDR Minimum Variance Distortionless Response
FIR Finite Impulse Response
AIR Acoustic Impulse Response
GSC Generalized Sidelobe Canceler
MMI Minimum Mutual Information
STFT Short-Time Fourier Transform
VAD Voice Activity Detection
SPP Speech Presence Probability

TRINICON TRIple-N Independent component analysis for CONvolutive
mixtures

SE Signal Extraction
NRE Normalized RTF Estimation Error
SIR Signal-to-Interference Ratio

10.1 Introduction

In most scenarios where signals are captured by distant microphones the desired
signal components are corrupted by unwanted signal components, e.g., additional
simultaneously active speakers, background noise, and often also loudspeaker signals
from sound reproduction equipment. In acoustic enclosures, echoes and reverberation
of all source signals add to these impairments, as illustrated in Fig. 10.1. For such
scenarios, the task of extracting an ideally undistorted and interference-free version
of a single desired source signal is addressed in the following.

In this chapter, we focus on the aspect of spatial filtering, i.e., the suppression of
interfering point sources and background noise by amultichannel linear filter. A vari-
ety of multichannel linear filtering methods are already known from literature, see,
e.g., [2, 3] and references therein. In general, the set of multichannel linear filtering
methods can be divided into data-independent and data-dependent approaches [4].
In the following, we focus on data-dependent approaches, which can be further cat-
egorized into supervised and unsupervised methods, depending on whether certain
reference information, e.g., a reference signal, is available.

The filter coefficients of unsupervised methods are adapted without the need of a
reference signal, exploiting only the statistics of the sensor array data. Here, Indepen-
dent Component Analysis (ICA) techniques [5], which are based on the underlying
assumption of mutual statistically independent source signals, are employed to solve
the problem of Blind Source Separation (BSS). As an advantage, no knowledge of
source andmicrophone positions is required.When employed for acoustic signal pro-
cessing, convolutive mixing and demixing systems need to be considered, see, e.g.,
[6–9]. Other methods like nonnegative matrix factorization or Bayesian approaches
could also be used for BSS, see, e.g., [9, 10].
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Fig. 10.1 Illustration of a
typical signal extraction
scenario: The desired source
signal may be corrupted by
interfering point sources,
background noise, and sound
reproduction signals
(adapted from [1])

Sound
reproduction

signals

Acoustic signal
processing

Desired source
signal

for further processing (e.g.,
transmission, storage, etc.)

On the other hand, for supervised algorithms a reference signal must be given,
defined or estimated: For the Multichannel Wiener Filter (MWF) and its variants,
typically one of the microphone signals is used as a reference signal [11–13], or
for Linearly Constrained Minimum Variance (LCMV)-type algorithms a reference
signal is created by a data-independent beamformer which requires source position
information [14, 15].

Although multichannel linear filters provide a very powerful basis for signal
extraction, for application to broadband and nonstationary speech signal extraction
under real acoustic conditions they exhibit specific limitations: Unsupervised meth-
ods such as BSS techniques [8, 9, 16] usually can track position changes of the
sources only slowly, and are either restricted to determined situations or yield unsat-
isfactory performance in underdetermined scenarios. Supervised approaches such as
the LCMV filter and its equivalent Generalized Sidelobe Canceler (GSC) realization
are very sensitive to errors in the steering vector or linear constraints. These errors
typically lead to an undesired cancellation of the desired signal components. More-
over, in time-varying environments the Blocking Matrix (BM) of the GSC needs to
be adapted, which requires a sophisticated adaptation control mechanism for jointly
adapting BM and Interference and Noise Canceler (INC), see, e.g., [17–19]. When
using the MWF for signal extraction, accurate estimates of the desired signal and
noise power spectral densities are crucial for an adequate performance. Unfortu-
nately, adequate estimates are hard to obtain during simultaneous activity of both
desired and undesired sources and especially if the sources are nonstationary, see,
e.g., [20, 21].
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To overcome thesewell-known limitations, relevant information about the specific
signal extraction problem can be incorporated into the design of signal extraction
algorithms, leading to improved performance. Methods exploiting prior knowledge
are also referred to as informed spatial processing approaches [22]. The exploited
knowledge could be of varying character, e.g., position information of sources in
terms of Direction of Arrival (DOA) and/or Time Difference of Arrival (TDOA),
coherence or diffuseness of the underlying sound field, knowledge of source activ-
ity, etc., and may be a priori known or may have to be estimated from the acquired
sensor data. For example, in order to improve the performance of LCMV filtering
in its equivalent GSC realization under reverberant acoustic conditions, in [23, 24],
information about the acoustic environment was incorporated into the realization of
the GSC, leading to the so-called Transfer Function GSC (TF-GSC). In [25, 26]
prior knowledge on the activity patterns of desired speech and undesired interfer-
ence signals was exploited, making it possible to estimate the required constraints
for the GSC realization in the presence of nonstationary speech interference. As
another example, for BSS techniques, prior knowledge on the DOA of the sources
can be exploited to improve convergence speed and separation performance, see,
e.g., [27, 28].

In this work, we present a signal extraction algorithm which is based in a Min-
imum Mutual Information (MMI) criterion that allows to exploit the three funda-
mental properties of speech and audio signals: Nonstationarity, Nonwhiteness, and
Nongaussianity and, exploiting some coarse source position information, overcomes
several limitations of both unsupervised and supervised algorithms. The MMI crite-
rion is complemented with linear constraints analogous to LCMV filtering, which,
as in [23, 29], depend on the Relative Transfer Functions (RTFs) between the micro-
phones with respect to the desired source components. Hence, we aim at extracting
the desired source signal as observed by a reference microphone. From the Linearly
Constrained Minimum Mutual Information (LCMMI) approach, an efficient real-
ization in a GSC structure is derived. To obtain a robust and reliable estimate of
the required RTFs we use an informed time-domain ICA algorithm, which exploits
some coarse DOA information of the target source [27, 30]. As an additional advan-
tage, this simplifies the otherwise challenging control mechanism for simultaneously
updating the BM und INC coefficients of the GSC. We establish relations between
the proposed LCMMI method and other well-known Second Order Statistics (SOS)-
based multichannel linear filter approaches for signal extraction, and demonstrate
the effectiveness of the proposed LCMMI method in a noisy multispeaker scenario.

The remainder of this chapter is structured as follows: In Sect. 10.2, we intro-
duce the system model underlying this chapter. Then, in Sect. 10.3, we review the
well-known LCMV filter including the special case of a Minimum Variance Dis-
tortionless Response (MVDR) filter, and its efficient realization in a GSC structure,
and discuss their limitations in realistic scenarios. Subsequently, we introduce the
LCMMI approach in Sect. 10.4 and establish relations to well-known signal extrac-
tion algorithms presented in the previous section. Finally, we demonstrate the effec-
tiveness of the LCMMI approach in a realistic acoustic scenario in Sect. 10.5, and
give conclusions in Sect. 10.6.
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10.2 Signal Model

Throughout this chapter, vectors and matrices are represented by boldface lower
case and upper case letters, respectively, whereas scalars are written in italic font.
Moreover, operator (·)T denotes the transposition of a vector or matrix. Additional
less frequently used operators are introduced when needed.

The general linear Multiple-Input Multiple-Output (MIMO) system model con-
sidered in the following is illustrated in Fig. 10.2 analogously to [31, 32].

The acoustic mixing system is modeled by a set of generally time-varying Finite
Impulse Response (FIR) filters hqp[k] = [hqp,0[k], hqp,1[k], . . . , hqp,M−1[k]]T of
length M ,with time index k,modeling theAcoustic ImpulseResponse (AIR) between
the q-th source and p-th microphone. The length-L + D − 1 vector xp[k], where
L is the length of the FIR filters of the demixing system, and D is the number of
samples used to exploit nonwhiteness in Sect. 10.4, of the p-th microphone signal is
given as:

xp[k] =
Q∑

q=1

HT
qp[k]sq [k] + np[k], p ∈ {1, . . . , P} (10.1)

where vectors

xp[k] = [
x p[k] x p[k − 1] . . . x p[k − L − D + 2]]T , (10.2)

np[k] = [
n p[k] n p[k − 1] . . . n p[k − L − D + 2]]T , (10.3)

are of length L + D − 1 and contain the p-the microphone signal and the noise
components therein, respectively, and length-M + L + D − 2 vector

Fig. 10.2 Linear system model comprising the linear acoustic mixing system denoted by the time-
varying FIR filters hqp[k] and the MIMO processing for signal extraction, represented by the
time-varying FIR filters wpo[k]
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sq [k] = [
sq [k] sq [k − 1] . . . sq [k − M − L − D + 3]]T , (10.4)

contains the q-th source signal. Moreover, in (10.1), Q is the number of active point
sources, and the linear convolution is expressed as the multiplication of the source
signal vectors sq [k] with the transpose of a convolution matrix Hqp[k] of dimension
M + L + D − 2 × L + D − 1, which is defined as

Hqp[k] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hqp,0[k] 0 . . . 0

hqp,1[k] hqp,0[k] . . .
...

... hqp,1[k] . . . 0

hqp,M−1[k] ...
. . . hqp,0[k]

0 hqp,M−1[k] . . . hqp,1[k]
...

. . .
. . .

...

0 . . . 0 hqp,M−1[k]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.5)

Using a more compact matrix/vector notation, (10.1) can be written as

x[k] = HT[k]s[k] + n[k], (10.6)

with vectors

x[k] = [
xT1 [k], xT2 [k], . . . xTP [k]]T , (10.7)

s[k] = [
sT1 [k], sT2 [k], . . . sTQ[k]]T , (10.8)

n[k] = [
nT1 [k], nT2 [k], . . . nTP [k]]T (10.9)

of length P(L + D − 1), Q(M + L + D − 2), and P(L + D − 1), respectively, and
with the block-convolution matrix

H[k] =
⎡

⎢⎣
H11[k] . . . H1P [k]

...
. . .

...

HQ1[k] . . . HQ P [k]

⎤

⎥⎦ (10.10)

of dimension Q(M + L + D − 2) × P(L + D − 1).
The demixing system comprises O output channels in general and is defined by

the P L × O MIMO coefficient matrix:

W̌[k] = [
w1[k] w2[k] . . . wO [k]] =

⎡

⎢⎣
w11[k] . . . w1O [k],

...
. . .

...

wP1[k] . . . wP O [k]

⎤

⎥⎦ , (10.11)
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where the length-L demixing filters wpok are defined analogously to hqp[k], i.e.,
wpo[k] = [wpo,0[k], wpo,1[k], . . . , wpo,L−1[k]]T. Note that we use the ·̌ sign to indi-
cate the difference between a coefficientmatrix and its corresponding extendedblock-
convolution matrix used for expressing linear convolution in matrix notation, c.f.
W̌[k] and W[k] in (10.11) and (10.18), respectively. This distinction will become
important in Sect. 10.4. The o-th length-D output vector

yo[k] = [
yo[k] yo[k − 1] . . . yo[k − D + 1]]T (10.12)

containing the current and the D − 1 previous samples can be written as

yo[k] =
P∑

p=1

WT
po[k]xp[k], o ∈ {1, . . . , O}, (10.13)

where the L + D − 1 × D-dimensional convolution matrix Wpo[k], defined analo-
gously to Hqp[k] in (10.5), is given by

Wpo[k] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpo,0[k] 0 . . . 0

wpo,1[k] wpo,0[k] . . .
...

... wpo,1[k] . . . 0

wpo,L−1[k] ...
. . . wpo,0[k]

0 wpo,L−1[k] . . . wpo,1[k]
...

. . .
. . .

...

0 . . . 0 wpo,L−1[k]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.14)

Using a compact notation, the length-O D signal vector

y[k] = [
yT1 [k] yT2 [k] . . . yTO [k]]T (10.15)

containing all length-D output signal vectors yo[k] can be written as

y[k] = WT[k]x[k], (10.16)

where vector x[k] of length P(L + D − 1) is defined as

x[k] = [
xT1 [k] xT2 [k] . . . xTP [k]]T , (10.17)

and the block-convolution matrix
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W[k] =
⎡

⎢⎣
W11[k] . . . W1O [k],

...
. . .

...

WP1[k] . . . WP O [k]

⎤

⎥⎦ (10.18)

is of dimension P(L + D − 1) × O D.
For the review of well-known SOS-based multichannel signal extraction algo-

rithms, the model above is specialized to O = 1 and D = 1 in Sect. 10.3. In this
case, the output signal at time index k is given as y[k] = wT

1 [k]x[k], where x[k]
reduces to a length-P L vector, c.f. (10.7). An overview over the Multiple-Input
Single-Output (MISO) and the general MIMO system models used in Sects. 10.3
and 10.4 is given in Fig. 10.3.

10.3 Multichannel Linear Filtering for Signal Extraction

In this section, we review the well-known SOS-based LCMVfiltering concept and its
efficient realization in a GSC structure. Then, we discuss their limitations in practical
applications and possible countermeasures. As described above, this can be based
on a simplified MISO system model (i.e., O = 1) with D = 1. For brevity, we omit
the index o = 1 indicating the single output channel in this section.

Sect. 10.4

Sect. 10.3

Fig. 10.3 Overview over the general MIMO system model introduced in Sect. 10.2 and used in
Sect. 10.4, and the MISO system model used in Sect. 10.3
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10.3.1 Linearly Constrained Minimum Variance Filter

The LCMV filter is a very prominent multichannel linear filtering approach to signal
extraction. The FIR filterswp[k] of length L are designed to minimize the total noise
signal power (including background noise and interfering speakers) at the output of
the LCMV filter, subject to a set of linear constraints.1 The LCMV filter coefficients
can be obtained by solving the following optimization problem [14, 33]:

wLCMV[k] = arg min
w[k]

wT[k]Rññ[k]w[k] s.t. Cw[k] = d. (10.19)

The left-hand term in (10.19) represents the noise signal power (including inter-
fering speakers and background noise) at the output of the LCMV filter, and Rññ[k]
denotes the P L × P L-dimensional correlation matrix of all interfering signal com-
ponents ñ in the microphone signals, which are not directly suppressed at the beam-
former output by one of the linear constraints. Matrix Rññ[k] is defined as

Rññ[k] = E
{
ñ[k]ñT[k]

}
, (10.20)

where E {·} represents the expectation operator. The right-hand term in (10.19) with
the C(M + L − 1) × P L constraint matrix C and vector d of length C(M + L − 1)
represents the set of C linear constraints which can be used to, e.g., preserve the
desired source source components at the output and/or to suppress other interfering
point sources.

The closed-form solution of (10.19) for the LCMV filter coefficients reads [14,
31, 34]:

wLCMV[k] = R−1
ññ [k]CT(CR−1

ññ [k]CT)−1d. (10.21)

Minimizing the total output signal power of the filter instead of minimizing the
noise output power, i.e., using the correlationmatrixRxx[k] = E

{
x[k]xT[k]} instead

of Rññ[k] in (10.19), yields to the so-called Linearly Constrained Minimum Power
(LCMP) filter [14, 33]. If the linear constraints preserve the desired signal compo-
nents and if desired signal and interfering signal components are orthogonal, mini-
mizing the total output power (LCMP) is equivalent to minimizing the noise output
power (LCMV) [14]. In the following we only consider the LCMV filter, but all
statements for LCMV hold for LCMP as well if these assumptions hold.

The number of degrees of freedom of the LCMV filter equals P L , which implies
that, ifC(M+L−1) equals P L , the LCMVfilter coefficients are fully determined by
the set of linear constraints. Then, no degrees of freedom could be used to minimize
the output power.

If only a distortionless response constraint with respect to the desired source is
imposed on the filter coefficients, i.e., C=1, the LCMV and LCMP filters specialize

1The approach of minimizing the output power in the presence of linear constraints was originally
presented by Frost in [14] for use with antenna arrays, assuming free-field propagation.
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to the well-known Minimum Variance Distortionless Response (MVDR) and the
Minimum Power Distortionless Response (MPDR) filter, respectively [14, 33].

10.3.2 The Generalized Sidelobe Canceler

The closed-form solutions of the LCMV/LCMP filters (10.21) require the inversion
of P L × P L correlation matrices, which is computationally expensive [35].

Linearly constrained iterative algorithm after Frost

To reduce computational complexity, Frost presented a linearly constrained iterative
algorithm for minimizing the constrained cost function of the LCMV/LCMP filter,
which does not require an inversion of the correlation matrix. It follows a first-order
gradient-descent procedure. The constrained update equation of the LCMV filter can
be derived to [14]

w[k + 1] = P⊥
C (w[k] − μRññ[k]w[k]) + v, (10.22)

where the P L × P L-dimensional matrix

P⊥
C = IP L×P L − CT (CCT)−1

C, (10.23)

is the projector onto the left nullspace of CT, see, e.g., [36], and vector

v = CT
(
CCT

)−1
d, (10.24)

in (10.24) is the minimum norm vector meeting the set of linear constraints. A
geometrical interpretation of Frost’s constrained update (for a two-dimensional case)
is given in Fig. 10.4: The unconstrained update (denoted by �w[k] in the figure) in
parentheses of (10.22) changes the filter vector w[k] at time instant k towards a
direction minimizing the output power, which does not generally satisfy the set of
linear constraints (denoted by the green line). The update filter vector is then projected
onto the left nullspace (red line) of CT by multiplying the updated filter vector with
P⊥
C . Finally, the projected filter vector is complemented by v (blue arrow) so that the

resulting vector w[k + 1] meets the constraints again.

Generalized sidelobe canceler (GSC)

An alternative and efficient realization of Frost’s constrained optimization problem,
the GSC, was proposed in [15, 37, 38]. In Fig. 10.5, a block diagram of the GSC is
illustrated. The key idea of the GSC is to divide the filter vector w[k + 1] into two
mutually orthogonal components [15]:

w[k + 1] = v − BCu⊥
C [k + 1]. (10.25)
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The first component in (10.25), i.e., the upper branch in Fig. 10.5, is the fixed filter
vector v, which can be calculated as projection of w[k + 1] onto the column space
of CT:

v = PCw[k + 1] = CT
(
CCT

)−1
d, (10.26)

where
PC = CT

(
CCT

)−1
C. (10.27)

The result in (10.26) is equal to (10.24). Hence, the first component of the GSC
ensures that the set of linear constraints of the LCMV optimization problem is ful-
filled. The second component in (10.25), which corresponds to the lower branch of
the GSC structure in Fig. 10.5, consists of the P L × P L −C(M +L −1)-dimensional
matrix BC and a filter vector u⊥

C [k + 1] of length P L − C(M + L − 1). The columns
of BC form a basis of the left nullspace of CT, which is orthogonal to the column
space of CT [36]:

CBC = 0C(M+L−1)×P L−C(M+L−1). (10.28)

Therefore, if for example only a distortionless response constraint is imposed on the
LCMV filter vector, BC will block the desired source components, and its output

Fig. 10.4 Geometrical interpretation of Frost’s linearly constrained update rule (10.22) for a two-
dimensional case (after [14])

Fig. 10.5 The GSC as
equivalent realization of an
LCMV filter (adapted from
[18]). Desired signal
cancellation at the output of
the GSC due to desired
signal leakage into the BM is
indicated by the green
dashed arrows
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will only contain a filtered version of the interference components which are present
at the microphones. Hence, BC is also referred to as Blocking Matrix (BM). It is
assumed that P L > C(M + L − 1) or equivalently, the filter length L fulfills
L > C(M − 1)/(P − C), such that the nullspace of CT is not equal to zero and the
GSC structure exists. The BM can be constructed by orthonormalizing P⊥

C (10.23)
and then choosing the P L − C(M + L − 1) columns of the orthonormalized matrix
[33], or by applying an orthonormalization procedure to CT, e.g., using singular
value decomposition [4]. The coefficients of the filter vector u⊥

C [k] are then used to
minimize the overall output signal power. Since the linear constraints are ensured by
the fixed filter vector in the upper branch of the GSC, an unconstrained Least Mean
Square (LMS)-type update strategy can be used to update u⊥

C :

u⊥
C [k + 1] = u⊥

C [k] − μBT
Cx[k]y[k], (10.29)

which leads to a less complicated and faster adaptation compared to Frost’s con-
strained adaptive algorithm. The LCMV filter and its GSC realization are strictly
equivalent, as was shown in, e.g., [39].

Application of the GSC to acoustic real-world problems and related work

Although the original GSC is a very efficient and practically relevant realization of
LCMV filters, it suffers from certain limitations in acoustic real-world scenarios:
There, the desired source, typically a human speaker, cannot be expected to remain
at the same position. If the desired source’s DOA changes, the BM has to be adapted
to compensate for this change. Otherwise, the BMwill not fully suppress the desired
source any more, leading to leakage of desired source components into its output,
which, ultimately, will lead to a cancellation of desired signal components at the
output of theGSC, as illustrated in Fig. 10.5. Reverberation, which is due tomultipath
propagation of sound waves, is another issue: the BM should not just suppress the
direct path but also reflections originating from the desired source. If this is not the
case, leakage of desired signal components into theBMoutput and, as a consequence,
cancellation of desired signal components in the GSC output will occur. In addition,
the BMhas to be able to adapt to a changing acoustic environment. If an adaptive BM
is employed, a sophisticated adaptation control mechanism is necessary to control
the adaptation of the BM and INC. More specifically, the BM should be adapted
when only the desired source is active, whereas the INC should be adapted when
only interfering signals are active, in order to further minimize the risk of desired
signal cancellation in the GSC output [18].

Numerous methods have been proposed to mitigate the aforementioned problems
of the GSC. In [40–42], the GSC with an adaptive BM was investigated for the first
time. A robust GSC with spatio-temporal constraints instead of spatial constraints
has then been proposed in [18, 35, 43]. To render the robust GSC more reliable to
multi-speaker conditions, the adaptation of the filter coefficients of BM and INC
was extended to robust statistics in [44–46], based on the Huber M-estimator [47].
In [48, 49], ICA-based techniques were exploited for adaptation of the INC, simpli-
fying the adaptation control. To cope with the problem of reverberation, the linear
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constraints of the LCMV or MVDR filter should take the acoustic environment into
account. Since knowledge of the AIRs cannot be assumed and their estimation is
not trivial, a practically relevant approach to this is the so-called TF-GSC, where
the LCMV problem is reformulated to estimate the desired signals as observed by
one of the microphones [23, 29]. As a consequence, the set of linear constraints
only depends on the so-called Relative Impulse Responses (RIRs) (or their Discrete-
Time Fourier Transform (DTFT)-domain counterpart, the RTFs), which describe the
linear dependency between microphone signals with respect to the desired source
component in the reference signal. An extension of the TF-GSC to multiple linear
constraints can be found in [28, 50–53], requiring theRTFs of not only the desired but
also all interfering sources. A TF-GSC formulation in the signal subspace domain is
given in [25, 26]. To cope with long AIRs (much longer than the block length of the
Short-Time Fourier Transform (STFT)), themultiplicative model of the time-domain
convolution in the STFT domain was replaced by a convolutive model in the STFT
domain in [54, 55].

Although easier than estimating acoustic transfer functions (ATFs), robust and
reliable estimation of RTFs is still a complicated task. Several procedures for esti-
mating RTFs exist. SOS-based RTF estimation as multiplicative model in the STFT
domain was proposed in, e.g., [23, 56–58], and explicitly exploits the nonstation-
arity of the speech signal for estimating the RTFs. An extension to a convolutive
model in the STFT domain can be found in [54, 59, 60]. Furthermore, subspace-
based RTF estimation approaches were proposed in, e.g., [25, 61, 62]. However,
these approaches usually require knowledge of the activity of desired and interfer-
ing sources which is difficult to obtain in a practical multispeaker scenario. In order
to avoid this dependency on Voice Activity Detection (VAD) or Speech Presence
Probability (SPP) estimation (see, e.g., [63, 64]), an identification of RTFs for a
determined scenario with two sources and two microphones was first addressed in
[65]. In [66], an RIR estimation approach based on a constrained BSS algorithm was
proposed, which does not require knowledge of the activity of the sources and can
also be applied to underdetermined scenarios. This approach will be described in
more detail in Sect. 10.4.7.

To summarize, the BM has to be able to cope with a reverberant acoustic environ-
ment. Incorporating information on the acoustic conditions as in [23, 29] still requires
a robust and reliable estimation procedure for the RTFs needed for the linear con-
straints of the LCMV filter. Moreover, adaptive versions of the GSC for application
to nonstationary broadband signals such as speech require an intelligent and robust
adaptation control mechanism for BM and INC, in order to minimize desired signal
cancellation [18, 42] and provide sufficient noise and interference suppression.

In the following, we provide an LCMMI signal extraction criterion, realized in
a GSC structure, which directly accounts for multipath propagation in real acous-
tic environments analogously to [23, 29], and exploits fundamental properties of
speech and audio signals: Nonstationariy, Nonwhiteness, Nongaussianity. Moreover,
by incorporating knowledge of the DOA of the desired source, we present a robust
and reliable RTF estimation procedure based on a spatially informed BSS algorithm,
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which can naturally cope with multiple simultaneously active sources and therefore
does not rely on VAD or SPP estimation.

10.4 Linearly Constrained Minimum Mutual
Information-Based Signal Extraction

In this section, we present an LCMMI-based signal extraction method, which has
been published in [34, 67, 68] in more general form. It is based on theMIMO system
model as introduced in Sect. 10.2. Figure10.6 provides an overview of the deriva-
tion of the MMI-based GSC from the LCMMI cost function, as it is presented in
the following. In Sect. 10.4.1 we discuss the generic LCMMI optimization criterion
for signal extraction. Subsequently, we derive a constrained gradient-descent update
rule for minimizing the generic cost function in Sect. 10.4.2. Via specifying the set of
constraints and interpreting the constrained update rule in Sects. 10.4.3 and 10.4.4,
respectively, we arrive an efficient realization of the LCMMI criterion in a GSC
structure in Sect. 10.4.5. For practical use of the resulting MMI-based GSC, an effi-
cient realization of its adaptive BM and the RTF estimates with respect to the desired
source are required. This is developed in Sects. 10.4.6 and 10.4.7. Finally, Higher-
Order Statistics (HOS)- and SOS-based realizations of the proposed MMI-based
GSC are presented in Sect. 10.4.8. To conclude this section, links to some generic
linear signal extraction methods based on second-order statistics are established in
Sect. 10.4.9. Note that in the following, we assume the number of inputs being equal
to the number of outputs in our system model, i.e., O = P .

10.4.1 Generic Optimization Criterion

The MMI-based cost function, which forms the basis of the presented signal extrac-
tion approach, is based on Shannon’s mutual information [69]. It has already been
used as a basis for the definition of the TRIple-N Independent component analysis
for CONvolutive mixtures (TRINICON) framework, which was efficiently exploited
for convolutive BSS in [8, 16] and extensively analyzed in [70]. In [71], it was
described in a more general form for broadband MIMO filtering, and was origi-
nally complemented with constraints incorporating prior knowledge into the MMI-
based cost function in [72]. Linear constraints were then reconsidered in [67, 68],
leading to the LCMMI cost function for signal extraction in the time domain,
defined as [34, 67, 68, 72]:
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Fig. 10.6 Overview of derivation of MMI-based GSC from LCMMI cost function, as presented in
Sect. 10.4

JMMI(m,W) =
∞∑

i=0

β(i, m)
1

N

i L+N−1∑

k=i L

log

{
f̂y,P D(y[k])
f̂ys,P D(y[k])

}

︸ ︷︷ ︸
ˆJMMI(i,W)

subject to c(W̌) = 0PC(M+L−1),

(10.30)

where ĴMMI(i,W) is an estimate of the Kullback-Leibler Divergence (KLD)
between an estimate of the P D × 1-dimensional multivariate joint Probability Den-
sity Function (PDF) f̂y,P D(y[k]) of the output signal vector y[k] (10.15), and an
estimate of the multivariate source model PDF f̂ys,P D(y[k]).

When exploiting the cost function for BSS as in [8, 16, 70, 71], the following
source model PDF is used:
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f̂ ICAys,P D(y[k]) =
P∏

o=1

f̂yo,D(yo[k]). (10.31)

In this work, we do not aim at separating all sources from each other, but at separating
the desired source components from all remaining interfering signal components. To
this end, we use the following source model PDF for Signal Extraction (SE) [67,
68]:

f̂ SEys,P D(y[k]) = f̂y1,D(y1[k]) f̂y2:P ,(P−1)D(y2:P [k]), (10.32)

where
y2:P [k] = [

yT2 [k] yT3 [k] . . . yTP [k]]T (10.33)

of length(P − 1)D comprises the remaining P − 1 output channels contain-
ing the undesired signal components. The differences between SOS-based ver-
sions of the cost function for the two different source model PDFs is illustrated
in Fig. 10.7: The matrix on the left-hand side illustrates the general P D × P D-
dimensional block-correlation matrix Ryy which contains the D × D-dimensional
correlation matrices Rypyq

, p, q ∈ {1, . . . , P} of the P output channels without any
processing. If the source model PDF for signal extraction (10.32) is used, the cross-
correlations between the first output channel y1[k] and all other output channels
yp[k], p ∈ {2, . . . , P} will be minimized, as illustrated in the center of Fig. 10.7.
For the application to BSS, the source model PDF in (10.31) is used. Consequently,
the cross-correlations between all output channels are minimized, leading to a block-
diagonal correlation matrix at the output of the MIMO system, as illustrated in the
right-hand side of Fig. 10.7.

The set of constraints c(W̌) = 0PC(M+L−1) in (10.30) is given as [66, 67, 72]:

CW̌ = D

⇒ c
(
W̌
)

= vec
(
CW̌ − D

)
= 0PC(M+L−1),

(10.34)

Fig. 10.7 Fundamental difference between the SOS-based versions ofMMI-based signal extraction
(SE) using the source model PDF in (10.32), and BSS using the source model PDF in (10.31),
resulting in a specific decorrelation of the output channel signals
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where C represents the general constraint matrix of size C(M + L − 1) × P L , D
denotes theC(M +L−1)× P-dimensional desired responsematrix, and 0PC(M+L−1)

is a vector of zeros of length PC(M + L −1). The operator vec(·) yields the stacked
columns of a matrix. Analogously to LCMV filtering, the constraints can be used to
preserve the desired signal components in a specific output channel, and to explicitly
suppress interfering speakers.

The generic LCMMI cost function for signal extraction (10.30) accounts for the
three fundamental signal properties of speech and audio signals, i.e., Nongaussianity,
Nonwhiteness and Nonstationarity, as follows [8, 16]:

(a) Nongaussianity can be exploited by using nongaussian PDFs in the cost func-
tion, which will be discussed in Sect. 10.4.8.

(b) Nonwhiteness is accounted for by considering output cross-relations over D
consecutive samples for all P outputs, summarized in the length-P D output
signal vector y[k] (10.15) (10.16). In general, the number of consecutive output
samples D is chosen as 1 ≤ D ≤ L . If D = 1, then only a single sample per
output channel is considered, which will lead to an optimization criterion that
disregards the nonwhiteness property of the underlying signals. When choos-
ing D > 1, temporal statistical dependencies are accounted for. The statistical
properties are modeled by the joint P D-variate PDF, which describes both intra-
channel, i.e., temporal dependencies, and inter-channel dependencies.

(c) Nonstationarity of the signals is taken into account by averaging over multi-
ple blocks of length N , each weighted by the weighting function β(i, m) with
finite support. Within the individual blocks, ergodicity is assumed and ensemble
averaging typically required to estimate the KLD is replaced by time averag-
ing over these N blocks. The weighting function β(i, m) is normalized so that∑∞

i=0 β(i, m) = 1, and allows for offline, online, and block-online realizations
of the signal extraction algorithm [8]. The block indices i and m refer to the
blocks, which are used for estimating the multivariate PDFs.

10.4.2 Constrained Natural Gradient-Descent for Iterative
Optimization Update Rule

The LCMMI cost function can be minimized using a gradient-descent approach. The
demixing filter matrix W̌[m + 1] at update step m + 1 is given as

W̌[m + 1] = W̌[m] − μ∇W̌L (m,λ,W), (10.35)

where μ is the stepsize parameter, ∇W̌L (m,λ,W) is the gradient of the Lagrangian
of the LCMMI cost function with respect to W̌, and λ is a vector of Lagrange
multipliers.
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For an improved convergence behavior, we use a natural gradient-based update,
which was originally presented in [8, 16, 73]. Applying the results therein to the
problem at hand yields the natural gradient for the linearly constrained optimization
problem [34, 68, 72]:

∇W̌L (m,λ,W) =
∞∑

i=0

β(i, m)SC
{
WWT∇WĴMMI(i,W)

}
+ CTΛ, (10.36)

where CTΛ is the partial derivative of c
(
W̌
)
with respect to W̌ and Λ represents a

matrix of Lagrange multipliers of sizeC(M + L −1)× P . TheS ylvesterC onstraint
operator SC {·} [8, 74] relates the P(L + D − 1) × P D-dimensional gradient of
the Lagrangian with respect to matrixW to the P L × P-dimensional gradient of the
Lagrangian with respect to matrix W̌ [34, 68]:

∇W̌ĴMMI(i,W) = SC
{
∇WĴMMI(i,W)

}
. (10.37)

A mathematical definition ofSC {·} can be found in, e.g., [70]. It corresponds to a
sum of the diagonal elements of the L + D−1× D sub-matrices of∇WĴMMI(i,W),
as illustrated in Fig. 10.8.

The gradient ∇WĴMMI(i,W) of the KLD estimate with respect to W, which is
required for (10.36), can be derived to [34, 67, 68]

∇WĴMMI(i,W) = 1

N

i L+N−1∑

k=i L

x[k]ΦT
SE(y[k]) − ∂log f̂y,P D(y[k])

∂W
, (10.38)

Fig. 10.8 Illustration of the S ylvester C onstraint operator for the gradient ∇WĴMMI(i,W) with
respect to the po-th submatrix Wpo (after [68, 70, 71])
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where the multivariate score function ΦSE, consisting of the stacked multivari-
ate score functions of the first (ΦT

1,D(y1[k])) and the remaining output channels
(ΦT

2:P,(P−1)D(y2:P [k])), is defined as [34, 67, 68, 70]

ΦSE(y[k]) = [
ΦT

1,D(y1[k]) ΦT
2:P,(P−1)D(y2:P [k])]T

=
[(

− ∂ log f̂y1 ,D(y1[k])
∂y1[k])

)T (
− ∂ log f̂y2:P ,(P−1)D(y2:P [k])

∂y2:P [k])

)T]T (10.39)

and corresponds to the source model PDF for signal extraction f̂ SEys,P D(y[k]) in
(10.32). As already indicated above, we will discuss the choice of the PDF and,
therefore, the choice of the corresponding multivariate score function in Sect. 10.4.8.

10.4.3 Definition of the Set of Constraints

In this work, we assume knowledge of the DOA of only the desired source. We
impose one constraint, i.e., C = 1, to each MISO subsystem wo[k], o ∈ {1, . . . , P}
creating the o-th output yo[k]. We aim at extracting the desired source components
as observed by a reference microphone (here: the first microphone) in the first output
channel, while the desired signal components should be suppressed in all remaining
output channels, as illustrated schematically in Fig. 10.9. This can be formulated as

yd,1[k] = wT
1 [k]HT

d [k]sd[k] != HT
d1[k]sd[k] (10.40)

yd,o[k] = wT
o [k]HT

d [k]sd[k] != 0, o ∈ {2, . . . , P}, (10.41)

where yd,o[k], o ∈ {1, . . . , P} represents the desired signal components in the o-th
output channel, wo[k] is defined in (10.11), and vector sd[k] of length M + L − 1
contains the desired source signal components. Moreover, matrix

Fig. 10.9 Schematic illustration of the set of constraints defined in (10.40) and (10.41)
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Hd[k] = [
Hd1[k] Hd2[k] . . . HdP [k]] (10.42)

of dimension M + L − 1 × P L , where sub-matrices Hdp[k], p ∈ {1, . . . , P} of
dimension M + L − 1× L are defined analogously to Hqp[k] in (10.5), and capture
all AIRs from the desired source to the microphones.

Equation (10.40) represents a distortionless response constraint with respect to
the desired signal components in the reference microphone channel, similar to the
one used for MVDR filtering. In combination with the nullbeamformers with respect
to the desired signal components for the remaining P − 1 output signals, this can be
seen as the BSS solution for the desired signal components. If also DOA information
on other interfering point sources is available, multiple constraints could be imposed
on each output channel, as presented in [75].

Equations (10.40) and (10.41) correspond to the following choice of constraint
matrixC and desired response matrixD, defining the set of linear constraints (10.34)
of the LCMMI optimization criterion [34, 68]:

C = H̃d[k] =
[[

IL×L

0M−1×L

]
H̃d,12[k] . . . H̃d,1P [k]

]
, (10.43)

D = E = [
e1 0 . . . 0

]
, (10.44)

where sub-matrices H̃d,1p[k] of dimension M + L −1× L are defined analogously to
Hqp[k] in (10.5) and represent convolution matrices constructed from the RIRs h̃d,1p,
which relate the desired signal components in the reference microphone channel
to those contained in the p-th microphone channel. Moreover, matrices IL×L and
0M−1×L in (10.43) represent an identity matrix of dimension L × L and an all-zero
matrix of dimension M −1×L , respectively, vector e1 is a vector of length M +L −1
with a 1 as its first element and zeros elsewhere, and vectors 0 in (10.44) contain
zeros and are of length M + L − 1. Since we construct the constraint matrix from
RIRs, in analogy to [23–25, 76], the focus is on undesired signal suppression only,
and no equalization of the ATF between desired source and reference microphone
is performed. This has the advantage that all remaining degrees of freedom can be
used for the suppression of interfering signal components, which results in optimum
performance of undesired signal suppression [77–79].

10.4.4 Geometrical Interpretation of the Constrained
Update Rule

From the gradient ∇W̌L (m,λ,W) (10.36) and the constraint set defined in (10.43)
and (10.44), a constrained gradient-descent update rule, similar to Frost’s constrained
update rule (10.22)–(10.24), for the MIMO coefficient matrix W̌[k] can be derived
[34, 67, 68]:
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W̌[m + 1] = P⊥
H̃d

(
W̌[m] − μ

∞∑

i=0

β(i, m)SC
{
WWT∇WĴMMI(i,W)

})
+ V,

(10.45)
with

P⊥
H̃d

= IP L×P L − H̃
T
d

(
H̃dH̃

T
d

)−1
H̃d, (10.46)

V = H̃
T
d

(
H̃dH̃

T
d

)−1
E. (10.47)

Analogously to the geometrical interpretation given in Sect. 10.3.2, Fig. 10.4, after
each update step m, the updated filter coefficientswo, o ∈ {1, . . . , P} of each MISO

system are projected into the left nullspace of H̃
T
d by a multiplication with the pro-

jection matrix P⊥
H̃d
. Afterwards, the projected filter coefficients are augmented with

a vector vo such that the linear constraints in (10.43) and (10.44) are met. Vectors
vo, o ∈ {1, . . . , P} are the columns of matrix V in (10.45,), i.e., V = [v1, . . . , vP ].

As can be seen from the constraint set in (10.43) and (10.44), a distortionless
response constraint with respect to the desired source is imposed on theMISO system
w1[k] creating the first output channel, whereas the desired signal is to be suppressed
in all remaining output channels. Therefore, v1 is given analogously to the result in
(10.24) for the LCMVfilter. Hence, after augmentationwith v1,w1[m+1]will satisfy
the linear constraint H̃dw1 = e1. On the other hand, since H̃dwo = 0, o ∈ {2, . . . , P}
according to (10.44), the filter vectors vo, o ∈ {2, . . . , P} are zero, and the MISO
filter vectors wo, o ∈ {2, . . . , P} will always be projected into the left nullspace of

H̃
T
d . In this case, the constrained filter update for w1[m] in (10.45) can be simplified

to [34, 67, 68]

w1[m + 1] = P⊥
H̃d

⎛

⎝w1[m] − μ

∞∑

i=0

β(i, m)SC

⎧
⎨

⎩
1

N

i L+N−1∑

k=i L

x[k]ΦT
1,D(y1[k])

⎫
⎬

⎭

⎞

⎠+ v1 (10.48)

Sincewe are only interested in the desired signal components, it is sufficient to realize
the constrained update for w1 (10.48) in a GSC structure.

10.4.5 Realization as Minimum Mutual Information-Based
Generalized Sidelobe Canceler

In the following, the principles in [15, 38] are applied to the gradient-descent update
rule for the MISO system w1[k] in (10.48), analogously to Sect. 10.3.2, in order
to derive an MMI-based GSC realization of the LCMMI signal extraction scheme
[34, 67, 68]. The filter vector w1[m + 1] is divided into two mutually orthogonal
components as follows:

w1[m + 1] = v1 + BH̃d
u⊥
H̃d,MMI

[m + 1]. (10.49)
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The first term in (10.49), i.e., the filter vector v1 is obtained by the projection of

w1[m + 1] onto the column space of H̃
T
d :

v1 = PH̃d
w1[m + 1] = H̃

T
d

(
H̃dH̃

T
d

)−1
e1 (10.50)

with projection matrix

PH̃d
= H̃

T
d

(
H̃dH̃

T
d

)−1
H̃d. (10.51)

Analogously to (10.28), the second term in (10.49) is a linear combination of the
columns of the P L × (P − 1)L − M + 1 BM BH̃d

. Its columns are chosen to form

a basis of the left nullspace of H̃
T
d , which is orthogonal to the column space of H̃

T
d :

H̃dBH̃d
= 0M+L−1×(P−1)L−M+1. (10.52)

In analogy to Sect. 10.3.2, P L > M + L −1 is required or, equivalently, the filter

length L has to fulfill L > (M −1)/(P −1) such that the nullspace of H̃
T
d is not equal

to zero and the GSC structure exists. From the set of linear constraints in (10.40)
and (10.41), it can be seen that the first filter vector w1 of the coefficient matrix
W̌ provides a distortionless desired signal estimate (as received by the reference
microphone), and the remaining filter vectors wo, o ∈ {2, . . . , P} provide P − 1
estimates of all undesired signal components. As a consequence, the P − 1 filter
vectorswo, o ∈ {2, . . . , P} can be directly used as BM in theGSC structure realizing
w1 [34]. Correspondingly, we can decompose the MIMO coefficient matrix W̌ as

W̌ = [
w1|B̌

]
, (10.53)

where the P L×P−1 dimensional coefficientmatrix B̌ = [w2, . . . ,wP ] summarizes
the filter coefficients of the blockingmatrix [34]. Finally, the filter vectoru⊥

H̃d,MMI
[m+

1] in (10.49) of length (P −1)L − M +1 = (P −1)L INC is used to minimize mutual
information between the signal components in the output of the BM and in the output
of the GSC by the general unconstrained gradient-descent optimization procedure

u⊥
H̃d,MMI

[m + 1] = u⊥
H̃d,MMI

[m] − μ

∞∑

i=0

β(i, m)SC

{
1

N

i L+N−1∑

k=i L

BTx̃[k]ΦT
1,D(y1[k])

}
, (10.54)

where B is a block-convolution matrix extension of B̌, and the P − 1-channel signal
BTx̃[k] represents an estimate of all undesired signal components at the output of
the BM. In practical applications, the filter length of the INC is approximated as
L INC ≈ L , as the true filter length M of the AIRs is not known [34].
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10.4.6 Realization of the Blocking Matrix

For efficiently minimizingMMI, we resort to two-channel subunits well-investigated
for ICA-based blind source separation and realize the BM by a set of P − 1 parallel
two-channel MIMO subsystems B̌ζ , ζ ∈ {1, . . . , P −1}, as illustrated in Fig. 10.10.
The ζ -th subsystem is applied to the reference microphone (here: the first micro-
phone) and the ζ +1-th microphone, and creates one of the P −1 BM output signals
yn̂,ζ [k], ζ ∈ {1, . . . , P −1} containing the noise reference. A detailed illustration of
the ζ -th two-channel MIMO subsystem, which is described by the 2L ×2 coefficient
matrix

B̌ζ [k] =
[
bζ,11[k] bζ,12[k]
bζ,21[k] bζ,22[k]

]
, ζ ∈ {1, . . . , P − 1} (10.55)

is given in Fig. 10.11. The length-L FIR filters bζ,ρ2[k], ρ ∈ {1, 2}, which create the
second output signal, suppress the desired source components as illustrated by the
red arrows in Fig. 10.11, and, hence, create the noise reference signal yn̂,ζ [k]. Note
that only the filter vectors creating the second output signal of each subsystem are
relevant for the realization of the entire BM. However, the filter vectors creating the
first output channel are still required for calculating the update for the filter vectors,
as presented in the following.

Fig. 10.10 Realization of the BM (green box) of the MMI-based GSC by P − 1 two-channel
MIMO subsystems B̌ζ , ζ ∈ {1, . . . , P − 1} running in parallel (adapted from [34])
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Fig. 10.11 Illustration of
one of the P − 1 two-channel
MIMO subsystems B̌ζ , used
to realize the BM of the
MMI-based GSC

The FIR filters bζ,ρo, ρ, o ∈ {1, 2} are determined based on an Geometrically
ConstrainedMinimumMutual Information (GC-MMI) criterion [30], which exploits
prior knowledge on the desired sourceDOA for a two-channelMMI-based BSS algo-
rithm for estimating noise and interference components in underdetermined scenar-
ios. The method of exploiting TDOA/DOA information for the BSS application in
determined scenarios was originally proposed by [27] and further analyzed in [80–
82]. The GC-MMI cost function to be minimized is given as [30]

J GC
MMI(m,Bζ ) =

∞∑

i=0

β(i, m)
1

N

i L+N−1∑

k=i L

log

{
f̂zζ ,2D(zζ [k])
f̂ SEzs,2D(zζ [k])

}
+ η

1

2

∥∥F̃dB̌ζ − E
∥∥2

F
,

(10.56)
where block-convolution matrix Bζ of dimension 2(L + D − 1) × 2D is defined
analogously to W[k] in (10.18), F̃d is a free-field approximation of H̃d in (10.43),
E is defined as in (10.44), and

∥∥·∥∥
F represents the Frobenius norm of a matrix.

The scalar η denotes the weight of the penalty term, and is typically in the range
0.4 < η < 0.6 [30]. The first part of (10.56) is equal to the estimate of the KLD
between an estimate of the multivariate joint PDF fzζ ,2D(zζ [k]) of the length-2D
output signal vector zζ [k], defined analogously to y[k] in (10.15):

zζ [k] = [
zTζ,1[k] zTζ,2[k]]T (10.57)

zζ,ρ[k] = [
zζ,ρ[k] zζ,ρ[k − 1] . . . zζ,ρ[k − D + 1]]T , ρ ∈ {1, 2}, (10.58)

and an estimate of the multivariate source model PDF f̂ SEzs,2D(zζ [k]) for signal extrac-
tion (10.32). In contrast to the LCMMI criterion, theGC-MMI criterion only incorpo-
rates a soft constraint on the filter coefficients instead of the set of hard constraints of
the LCMMI criterion in (10.34). The importance of the soft constraint can be adjusted
by the scalar η. The soft constraint is used to suppress the direct path components
of the desired source in the second output of each two-channel MIMO subsystem.
Minimizing the GC-MMI cost function enforces statistical independence between
the two output signals. As a consequence, also correlated echoes of the desired
source signal will be identified and removed from the second output channel, which
makes this approach superior to nullbeamformers which only suppress the direct
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path components as shown in [30, 83]. To realize the penalty term, knowledge of the
direct path TDOA of the desired source at the respective microphones is sufficient,
since this is required to construct matrix F̃d. Since we only aim at suppressing the
desired signal components in one output at this stage, we can achieve this goal even
in underdetermined scenarios with more than two sources.

Equivalently to the LCMMI update, we use a gradient-descent strategy for updat-
ing the filter coefficients of each two-channel subsystem B̌ζ :

B̌ζ [m + 1] = B̌ζ [m] − μ∇B̌ζ
J GC

MMI(m,Bζ ). (10.59)

The gradient ∇B̌ζ
J GC

MMI(m,Bζ ) of the GC-MMI criterion can be derived to [34, 66,
68]:

∇B̌ζ
J GC

MMI(m,Bζ ) =
∞∑

i=0

β(i, m)SC
{
BζBT

ζ ∇Bζ
ĴMMI(i,Bζ )

}
+

ηF̃
T
d

(
F̃dB̌ζ − E

)
,

(10.60)

where ∇Bζ
ĴMMI(i, B̌ζ ) is defined in analogously to (10.38).

10.4.7 Estimation of the Set of Constraints

In addition to an adaptive BMwhich can cope with multipath propagation, estimates
of the RIRs between the desired source components in the reference microphone
and in all other microphones are required for realizing the MMI-based GSC. More
specifically, the RIRs are required to construct the constraint matrix H̃d in (10.43)
which is needed to realize the fixed beamformer v1 (10.50).

As proposed in [66], the RIR between the first and ζ +1-thmicrophone can be esti-
mated from the filter vectors bζ,12[k] and bζ,22[k] of the ζ -th two-channel subsystem
B̌ζ (10.55), as explained in the following. For ease of presentation, the explanation
will be given here in the DTFT domain, where RTFs are estimated as DTFT trans-
forms of RIRs. In the following, DTFT-transformed quantities are indicated with an
underscore. For example, Bζ,12(e

jΩ) is the DTFT transform of bζ,12[k], with normal-
ized angular frequency Ω = 2π f/ fs, frequency f , and sampling frequency fs. The
soft constraint in (10.56) requires the desired source to be suppressed in the second
output channel. Hence, the signal path from the desired signal to the second output
channel of the ζ -th subsystem, highlighted by red arrows in Fig. 10.11, has to be
equal to zero:

H d,1(e
jΩ)Bζ,12(e

jΩ) + H d,ζ+1(e
jΩ)Bζ,22(e

jΩ)
!= 0, (10.61)
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Reformulating (10.61), the RTF H̃ d,1(ζ+1) between the reference (here: first) and the
ζ + 1-th microphone can be estimated from the DTFT-transformed FIR filters of the
ζ -th two-channel MIMO subsystem B̌ζ [k] as follows [34, 66]:

ˆ̃H d,1(ζ+1)(e
jΩ) = H d,ζ+1(e

jΩ)

H d,1(ejΩ)
= − Bζ,12(e

jΩ)

Bζ,22(ejΩ)
. (10.62)

The corresponding RIR ˆ̃hd,1(ζ+1) can then be obtained by an inverse DTFT transform

of ˆ̃H d,1(ζ+1) in (10.62).
The fact that we require the RIRs between the desired source components in the

first and in all other microphones with respect to the desired source to realize the
fixed beamformer, and the fact that we can estimate these RIRs from the two-channel
subsystems, are the reasons for using the first microphone channel as common input
to the P − 1 two-channel MIMO subsystems realizing the BM of the MMI-based
GSC.

The important advantage of this method over other existing RIR/RTF estimation
methods is that it does not require access to time segments in which only the desired
source is active [66], i.e., it is well-suited for multi-speaker scenarios in which a reli-
able detection of these segments is difficult if not impossible. A detailed investigation
of the GC-MMI-based RTF estimation technique can be found in [34, 66].

As the RIRs are estimated from the FIR filters of the two-channel MIMO subsys-
tems realizing the BM, the following sequence of steps is necessary to realize the
MMI-based GSC: First, all P − 1 two-channel MIMO subsystems B̌ζ are updated
according to (10.59) and (10.60). Second, the RTFs are estimated from the BM filter
vectors according to (10.62), transformed into the time domain and the fixed beam-
former v1 (10.50) is realized. Finally, the filter coefficients of the INC are updated
using the noise reference at the output of the BM according to (10.54) and the noise
estimate is subtracted from the output of the fixed beamformer, yielding the final
output signal.

10.4.8 Special Source Models

Both, the update term of the BMfilter vectors (10.60) as well as the update term of the
INC filter vectors (10.54) requires a multivariate score function Φo,D(yo[k]) defined
in (10.39), which depends on the source model PDF. By choosing a nongaussian
source model PDF, HOS can be exploited for signal extraction.

In this work, two different source model PDFs are used for SOS- and HOS-based
realizations of the MMI-based GSC. Both source model PDFs are derived from
the general model of a zero-mean nonwhite Spherically Invariant Random Process
(SIRP) [84], which has the advantage that the estimation of the multivariate PDFs
reduces to an estimation of correlation matrices only. For brevity, we only present
the final results. For a detailed derivation, see, e.g., [8, 16, 34, 70].
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Higher-Order Statistics (HOS)-based MMI-GSC realization

For a HOS-based realization of the MMI-based GSC, a multivariate Laplacian PDF
is used as source model PDF. The corresponding score function Φo,D(yo[k]) for
yo[k] is derived to [8, 16, 70, 71]:

Φo,D(yo[k]) = 2
1√

2ro[k]
ID/2

(√
2ro[k])

ID/2−1
(√

2ro[k])
︸ ︷︷ ︸

:=φyo (ro[k])

R̂
−1
yoyo

[i]yo[k], (10.63)

where Iξ (·) denotes the ξ -th order modified Bessel function of the second kind, and
ro[k] is defined as

ro[k] = yTo [k]R̂−1
yoyo

[i]yo[k]. (10.64)

Matrix R̂yoyo
[i] in (10.64) represents the D × D correlation matrix estimate of the

output signal vector yo[k], k = i L + j, j ∈ {0, ..., N − 1} of length D, defined in
(10.12). Now, let us define a D × D cross-relation matrix between the output signal
vector yp[k] and a nonlinearly weighted output signal vector yo[k] as [8, 16]:

R̂ypφy(yo)
[i] = 1

N

i L+N−1∑

k=i L

yp[k]φyo
(ro[k])yTo [k] (10.65)

with nonlinear weight φyo
(ro[k]) defined in (10.63), and ro[k] defined in (10.64).

Inserting Φo,D(yo[k]) (10.63) into the gradient of the two-channel BM subsystems
(10.60) and applying the definition of the cross-relation matrices in (10.65) leads to
the HOS-based update term for B̌ζ [34, 67, 68]:

∇HOS
B̌ζ

J GC
MMI(m,Bζ ) =

∞∑

i=0

β(i, m)SC
{
Bζ boff

{
R̂zζ φz(zζ )[i]

}
bdiag−1

{
R̂zζ zζ [i]

}}
+

ηF̃
T
d

(
F̃dB̌ζ − E

)
,

(10.66)

where the operators boff{·} and bdiag{·} set the diagonal sub-matrices and the
off-diagonal sub-matrices, respectively, of a block matrix to zero. The 2D × 2D
matrix R̂zζ φz(zζ )[i] summarizes the D × D-dimensional estimated channel-wise

cross-relation matrices R̂zζ,ρφz(zζ,ρ )[i] which are defined analogously to R̂ypφy(yo)
[i]

in (10.65). Vectors zζ [k] and zζ,ρ[k] are defined in (10.57) and (10.58), respectively.
Analogously, specializing the score function in the update for the INC (10.54),

the HOS-based update for the INC is obtained [34, 68]:

�u⊥
H̃d,HOS

[m] =
∞∑

i=0

β(i, m)SC
{
R̂yn̂φy(y1)[i]R̂

−1
y1y1

[i]
}

, (10.67)
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where R̂yn̂φy(y1)[i],of dimension (P−1)(L+D−1)×D summarizes the L+D−1×D

channel-wise cross-relation matrices R̂yn̂,ζ φy(y1)[i], ζ ∈ {1, . . . , P − 1} between the
noise reference signal vector yn̂,ζ [k], of length L+D−1 and the nonlinearlyweighted
output signal vector y1[k]. The required signal vectors yn̂[k] = BTx̃[k] and yn̂,ζ [k]
are defined as:

yTn̂ [k] = [
yTn̂,1[k] yTn̂,2[k] . . . yTn̂,P−1[k]]T (10.68)

yn̂,ζ [k] = [
yn̂,ζ [k] yn̂,ζ [k − 1] . . . yn̂,ζ [k − L INC − D + 2]]T , ζ ∈ {1, . . . , P − 1}

(10.69)

second order statistics (SOS)-based MMI-GSC realization

If Gaussian source models are used, SOS-based updates are obtained. In this case,
the multivariate score function is given as [8, 16, 70, 71]

Φo,D(yo[k]) = R̂
−1
yoyo

[i]yo[k], (10.70)

and the scalar, generally nonlinear, weight simplifies to φyo
(ro[k]) = 1/2. The SOS-

based update term for the two-channel MIMO subsystems is given as [34, 68]

∇SOS
B̌ζ

J GC
MMI(m,Bζ ) =

∞∑

i=0

β(i, m)SC
{
Bζboff

{
R̂zζ zζ

[i]
}
bdiag−1

{
R̂zζ zζ

[i]
}}

+

ηF̃
T
d

(
F̃dB̌ζ − E

)
,

(10.71)
where the 2D × 2D correlation matrices R̂zζ zζ

[i] summarize the D × D cross-

correlation matrices R̂zζ,ρzζ,ρ
[i] of the two output signal vectors zζ,ρ[k], ρ ∈ {1, 2}.

The SOS-based update for the INC coefficients can be derived to [34, 68]:

�u⊥
H̃d,SOS

[m] =
∞∑

i=0

β(i, m)SC
{
R̂yn̂y1[i]R̂

−1
y1y1

[i]
}

, (10.72)

where the correlation matrix R̂yn̂y1 [i] represents the channel-wise cross-relation
matrices R̂yn̂,ζ y1 [i], estimated from the individual BM output signal vectors yn̂,ζ [k],
ζ ∈ {1, . . . , P − 1} and the output signal vector y1[k]. Note that as opposed to the
HOS-based realizations no nonlinear weighting is applied any more to the signal
vectors before estimating the cross-relation matrices for calculating the SOS-based
update terms.



10 Informed Spatial Filtering Based on Constrained Independent Component Analysis 265

10.4.9 Links to Some Generic Linear Signal Extraction
Methods Based on Second-Order Statistics

To conclude this section, relations between the presented MMI-based GSC and the
SOS-based signal extraction algorithms presented in Sect. 10.3.1 are established.

Starting point for this discussion is the SOS-based realization of the MMI-based
GSC as introduced above. If we specialize to white source signals, i.e., if we approx-
imate the source signals sq [k] and correspondingly the output signal y1[k] as nor-
mally distributed, stationary white signals, then the output signal vector reduces
to y1[k] = y1[k], and the correlation matrix R̂y1y1 [k] can be written as a diagonal
matrix R̂y1y1[k] = σ 2

y1I, where σ 2
y1 denotes the power of y1[k]. Moreover, due to the

assumption of a stationary white output signal with R̂y1y1[k] = σ 2
y1I and D = 1, the

SC -operator can be omitted. Additionally, the window function β(i, m) reduces
to a rectangular window, since with the given assumptions, any pair of input sig-
nal vector and output signal sample is processed independently of any other pair.
Finally, by replacing averaging over N blocks by the current estimate and assuming
unit variance for y1[k], the original supervised LMS-based update rule [85, 86] for
the INC coefficients results from (10.54) and (10.72):

u⊥
H̃d,LMS

[k + 1] = u⊥
H̃d,LMS

[k] − μy̌n̂[k]y1[k], (10.73)

where y̌n̂[k] is a truncated version of yn̂[k] and y1[k] represents the error signal [86].
If we further specialize from reverberant to anechoic, i.e., free-field, acoustic

conditions and assume that a delay compensation for the phase differences of the
desired source is applied to the microphone signals as in [14, 15], the AIR vectors
h1p, p ∈ {1, . . . , P} simplify to unit vectors. As a consequence, the quiescent vector
v1 (10.50) results in a delay-and-sum beamformer, and the BM can be realized by a
set of pairwise delay-and-subtract beamformers. Hence, the MMI-based realization
of the GSC reduces to the original GSC structure proposed in [15].

Similarly, considering the constrainedMMI-type update rule for theMISO system
w1[k] in (10.48) and approximating the source signals sq [k] (and consequently the
output signal y1[k]) as normally distributed stationary white signals with unit vari-
ance, and replacing the average over N blocks by the current estimate, the original
linearly constrained LMS update (10.22) as proposed in [14] is obtained:

w1[k + 1] = P⊥
H̃d

(w1[k] − μx[k]y1[k]) + v1. (10.74)

From these obtained relations, we can draw the following conclusion: Existing
methods for signal extraction are based on simplistic adaptation rules,which facilitate
a practical realization. However, from an MMI-based perspective, these approaches
are only optimum for normally distributed and stationary white source signals, which
does not reflect the characteristic properties of speech and audio signals. Accounting
for these fundamental properties leads to more general and complex adaptation rules
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as derived above. Nevertheless, efficient realizations of the derived update rules
exist [70, 87, 88]. Therefore, the LCMMI approach for signal extraction is very
attractive for speech and audio signal processing applications. Future work might be
the application of the proposed approach to adaptive array geometries as in, e.g., [89],
as well as incorporating multiple constraints into the LCMMI cost function [75].

10.5 Experiments

In this section, we demonstrate the effectiveness of the proposed MMI-based GSC.
To this end, we first describe the experimental setup in Sect. 10.5.1. Then, we demon-
strate our RIR estimation method in Sect. 10.5.2, followed by an investigation of the
signal enhancement performance of the proposed MMI-based GSC in Sect. 10.5.3.

10.5.1 Experimental Setup

For the evaluation, we employ a uniform linear six-element microphone array with
inter-element spacing of d = 0.042m and a total array aperture of 0.21m, as illus-
trated in Fig. 10.12. As test scenario, we consider a two-speaker scenario, where
the desired source, a male speaker, is located to the right of the microphone array
(φ = −45◦), and the interfering source, a female speaker, is located to the left of the
array at an angle of φ = 45◦. The source-sensor distance is 1m for both speakers.

The microphone signals were created by convolving the clean speech signals of
length 10 s and sampling rate fs = 16 kHz with AIRs which were measured in an
acoustic environment of dimensions 272 cm × 253 cm × 237 cm with reverberation
time T60 ≈ 50ms.2 The two source signals were of the same power.

Fig. 10.12 Illustration of the
employed six-channel
uniform linear microphone
array

0.
04
2m

0.
21
m

6

2

1

−45◦

45◦

2Note that we chose this reverberation time in order to demonstrate the advantage of the HOS-based
realization over the SOS-based realization of the MMI-based GSC.
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For this evaluation, we realize the algorithm as an offline or so-called batch algo-
rithm. Then, the weighting function β(i, m) corresponds to a rectangular window,
which is described by, e.g., [8, 70]:

β(i, m) = 1

Ksig
ε0,(Ksig−1)(i), (10.75)

where εa,b(i) is a rectangular window function, i.e., εa,b = 1 for a ≤ i ≤ b, and

εa,b(i) = 0 elsewhere. To calculate the update for the coefficient matrix W̌
l
, where

superscript l indexes the current offline iteration, the following steps are carried out:
First, the input signal is segmented into Ksig blocks of length N . For each block,
an individual gradient ∇W̌J (i, W̌) is calculated. After this, all Ksig gradients are
averaged, and the coefficient matrix is updated according to:

W̌
l+1 = W̌

l − μ
1

Ksig

Ksig−1∑

i=0

∇W̌J (i, W̌
l
), (10.76)

where due to the offline processing, the update does not depend on the block-time
index m any more, but on the iteration l. This procedure is repeated lmax times. Since
in each update step, the offline algorithm uses the entire data, it will lead to the most
precise estimate of the filter coefficients [8, 34]. We use here lmax = 200 offline
iterations for updating the filter coefficients of the BM and of the INC.

For both, BM and INC, a filter length of L = 1024 taps was used and the length
of the offline blocks was set to N = 2L = 2048. For exploiting the nonwhiteness
property, D = L = 1024 samples were used for adapting the BM filter coefficients.
For updating the INC filter coefficients L = 1024 and D = 2 or D = 1024 was used.
Furthermore, the stepsize parameterµwas set individually for eachmicrophone pair,
with values between µ = 2.5 · 10−5 and µ = 5 · 10−5, to reach convergence of each
HOS-based BM two-channel subsystem. For the update of the INC coefficients, an
adaptive stepsize control, with initial stepsize µinit in the range between 5 · 10−6 and
5 · 10−4 was used for the different realizations. The main idea behind the stepsize
control is to increase the stepsize if the value of the cost functionJ (m) is decreased
compared to J (m − 1) (indicating convergence of the algorithm), and to decrease
µ(m) if J (m) exceeds J (m − 1) by more than a specified ratio (indicating local
divergence of the algorithm) [87]:

μ(m + 1) =

⎧
⎪⎨

⎪⎩

a · μ(m) ifJ (m) < J (m − 1)

b · μ(m) ifJ (m) ≥ c · J (m − 1)

μ(m) otherwise,

(10.77)

where a, b, and c were set to a = c = 1.005 and b = 0.85 in this work, respectively.
Moreover, to avoid instabilities, we restricted the stepsize to a finite range 10 ·μinit ≤
μ ≤ μinit/100. To avoid the additional complexity of evaluatingJ (m) directly, we
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calculated the Frobenius norm of the output cross-correlation matrices instead. We
set the weight for the penalty term of the geometric constraint to η = 0.5. As in
[34, 66, 68], this weight is only used for initialization of the BM as a delay-and-
subtract beamformer suppressing the direct propagation path, and is removed after
the first offline iteration, i.e., the weight is set to η = 0 for all other offline iterations,
since the evaluated scenario is a static scenario. If the weight for the penalty term
is kept constant during the entire adaptation process, the adaptation rule needs to
compromise between the MMI criterion and the penalty term in each update step,
whichwill prevent the BM from converging to a better solution. If a dynamic scenario
is evaluated, the penalty term should only be applied during runtime if the direction
of the spatial null of the BM starts converging towards an interfering source [34].
For comparability, all parameter settings were used for both SOS- and HOS-based
realizations of the MMI-based GSC, and are summarized in Table 10.1.

It should be noted that, for computational efficiency,we approximate the inverse of
the D×D auto-correlationmatrices by a narrowband approximation in the frequency
domain as proposed in [88].

10.5.2 Estimation of Relative Impulse Responses

To evaluate the estimation accuracy of the required RTFs, we calculate the Normal-
ized RTF Estimation Error (NRE) between the true RTF H̃ d,1p (calculated from the

ATFs) and the estimated RTF ˆ̃H d,1p (estimated from the BM FIR filters as presented
in Sect. 10.4.7), which is defined as

NREp(e
jΩ) = 10log10

| ˆ̃H d,1p(e
jΩ) − H̃ d,1p(e

jΩ)|2
|H̃ d,1p(ejΩ)|2 . (10.78)

As an example, we illustrate the RTF estimation accuracy for the microphone
pair consisting of microphones 1 and 6 (c.f. Fig. 10.12) with a spacing of 0.21m.

Table 10.1 Summary of the parameters of the setting for the evaluated offline time-domain algo-
rithms

BM INC

Filter length L 1024 1024

Block length N N = 2L = 2048 N = 2L = 2048

Number of output samples D D = L = 1024 D = L = 1024, D = 2

Stepsize µ 2.5 · 10−5 . . . 5 · 10−5 5 · 10−6 . . . 5 · 10−4

Penalty term η 0.5 –

Number offline iterations lmax 200 200
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In Fig. 10.13, the blue and red curves represent the NRE calculated from the RTFs
estimated using theHOS-based and theSOS-based offline realization of theGC-MMI
algorithm, respectively. Moreover, the dashed black curve shows the NRE estimated
from a white noise signal using the HOS-based offline realization. Looking at the
performance of the HOS-based realization, the results show that the RTFs can be
estimated successfully,with anNREbelow−20 dB formost frequencies below6 kHz
using the HOS-based realization. For frequencies f > 6 kHz, a larger estimation
error is visible, which is attributed to the limited support due to speech signal energy
in this frequency range. When using white noise as desired signal (dashed black
curve), this effect vanishes and an NRE lower or equal to −40 dB can be obtained.

Looking at the SOS-based GC-MMI realization, it can be seen that it yields
an inferior RTF estimate than the HOS-based GC-MMI realization. Whereas for
f < 3.5 kHz, the estimation error of the SOS-based GC-MMI realization is still
relatively close to that of the HOS-based GC-MMI realization, which changes for
higher frequencies.Wewould like to point out that this is due to the fact that the SOS-
based realization simply did not yet converge to a good solution given the available
number of iterations. This is illustrated in Fig. 10.14, which shows the desired signal
cancellation DCl

5 after each of the lmax of offline iterations, indexed by l. The desired
signal cancellation DCζ , ζ ∈ {1, . . . , P − 1} is calculated as

DCζ = 10log10
E
{

x2
1,d[k]}

E
{

y2n̂,ζ,d[k]
} , (10.79)
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Fig. 10.13 Illustration of Normalized RTF Estimation Error (NRE) between microphones 1 and 6
with spacing d = 0.21m after 200 offline iterations. The RTFs were estimated from a male speech
signal using an HOS-based (blue curve) and a SOS-based (red curve) offline realization of the
GC-MMI algorithm. The black curve represents the NRE calculated from an HOS-based algorithm
and white noise as desired signal
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Fig. 10.14 Illustration of the desired signal cancellation DC5 between microphones 1 and 6 with
spacingd = 0.21mover 200 offline iterations. The desired signal cancellationwas obtained using an
HOS-based (blue curve) and a SOS-based (red curve) offline realization of the GC-MMI algorithm

where x1,d[k] denotes the desired signal components in the reference microphone
channel (here: the first microphone channel), and yn̂,ζ,d[k] represents the desired
signal components in the ζ -th output of the BM. As the BM should provide reference
signals of all undesired signal components with no desired speech components, DCζ

should be as large as possible. Asymptotically, the quality of the SOS-based RTF
estimate will be similar to that obtained with the HOS-based realization. We chose
this example to explicitly show the faster convergence of the HOS-based realization.

The visual expression is also confirmed by means of the averaged NRE values
NRE6 which are summarized in Table10.2. As in [66], NRE6 was obtained by taking
the arithmetic average of NRE6( f ) for frequencies 300Hz ≤ f ≤ 6 kHz.

To summarize, these results confirm the reliability and effectiveness of the pre-
sented RTF estimation approach in a realistic double-talk scenario. For a more
detailed evaluation of the RTF estimation performance, we refer to [34, 66].

Table 10.2 Mean NRE values NRE6 obtained with SOS- and HOS-based GC-MMI realizations

NRE6/dB

SOS-based realization, speech −15.3

HOS-based realization, speech −27.0

HOS-based realization, white noise −43.3
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10.5.3 Signal Enhancement

In the following, we evaluate the signal enhancement performance of theMMI-based
GSC. To demonstrate the effect of exploiting the fundamental properties of speech,
we evaluate the following realizations of the BM:

I SOS-based realization of the BM with DBM = 1024 combined with SOS-based
realization of the INC with DINC = 2, i.e., nonwhiteness of speech signals is
practically not exploited for updating the coefficients of the INC. The initial
stepsize was set to µinit = 5 · 10−4.

II SOS-based realization of the BMwith DBM = 1024, combined with SOS-based
realization of the INC with DINC = 1024, i.e., nonwhiteness of speech signals is
exploited for updating the coefficients of both the BM and the INC . The initial
stepsize was set to µinit = 5 · 10−5.

III HOS-based realization of the MMI-GSC with DBM = DINC = 1024, i.e., non-
gaussianity and nonwhiteness are exploited for updatingBMand INC. The initial
stepsize was set to µinit = 5 · 10−6.

Realization I only exploits nonwhiteness for calculating the update for the BM filter
coefficients, whereas for the update of the INC, this is practically not the case,
since DINC = 2. Note that we chose DINC = 2 instead of DINC = 1 to be able
to use the same framework as for DINC = L and, therefore, produce comparable
results. In contrast to this, Realization II also exploits the nonwhiteness property
for updating the INC coefficients, by taking the inter- and intra-channel correlations
over DINC = 1024 time lags into account. Nonstationarity is always exploited. Thus,
by comparing Realizations I and II, we can demonstrate the effect of exploiting
nonwhiteness for calculating the INC update. In addition to this, Realization III also
exploits nongaussianity by considering amultivariate Laplacian PDFas sourcemodel
PDF, as explained in Sect. 10.4.8. Since Realization III exploits all three fundamental
properties of wideband speech signals, it should yield the best signal enhancement
performance.

To investigate the signal enhancement performance, we evaluate three different
performancemeasures,which are explained in the following.At first, we calculate the
desired signal cancellation DCζ , ζ ∈ {1, . . . , P −1}, defined in (10.79), in each out-
put signal of the BM. For brevity, we show the mean desired signal cancellation DC,
i.e., averaged over all DCζ . Furthermore, we investigate the Signal-to-Interference
Ratio (SIR) and the speech distortion (SD) obtained at the output of the GSC. The
SIR is defined as

SIR = 10log10
E
{

y2d [k]}

E
{

y2int[k]} , (10.80)

where yd[k] and yint[k] represent the desired and undesired signal components,
respectively, at the output of theGSC.As for the desired signal cancellation, high SIR
values are desirable. After convolution with the AIRs, an input SIR at the reference
microphone of 0.4 dB was obtained. The speech distortion is defined as
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Table 10.3 Desired signal cancellation (DC), speech distortion (SD), and signal-to-interference
ratio (SIR) obtained at the output of the BM and at the output of the MMI-based GSC, using
Realizations I, II, and III, respectively

DC/dB SD/dB SIR/dB

I: SOS, DBM = L , DINC = 2 23.7 −24.7 19.6

II: SOS, DBM = DINC = L 23.7 −24.4 23.2

III: HOS, DBM = DINC = L 30.5 −26.2 26.4

SD = 10log10
E
{(

yd[k] − x1,d[k])2
}

E
{

x2
1,d[k]} , (10.81)

and should be as low as possible, since the desired speech signal components should
be preserved at the GSC output.

In Table10.3, the results obtained with the three different realizations of theMMI-
based GSC are summarized.

As can be seen, theHOS-based realization of theBMyields amuch higher average
desired signal cancellation than the SOS-based realization, which demonstrates the
effectiveness of exploiting the nongaussianity property of speech signals. When
looking at the speech distortion and the output SIR, one can see that both SOS-based
realizations (I and II) yield approximately the same speech distortion. However, due
to exploitation of the nonwhiteness, the output SIR of Realization II is increased
by 3.6 dB, which demonstrates the efficacy of exploiting nonwhiteness. By further
exploiting nongaussianity for updating the filter coefficients of the INC, the output
SIRcould be further increasedby another 3.2 dB, and speechdistortionwas decreased
by 1.8 dB.

Note that the advantage of HOS-based over SOS-based methods will decrease
for higher reverberation times, which is attributed to the fact that the distribution
of reverberated speech comes closer to a Gaussian distribution for an increasing
reverberation time, see, e.g., [48, 90].

10.6 Conclusion

In this chapter, the focus was on desired signal enhancement in the presence of other
interfering point sources by a multichannel linear filter. After a brief recapitulation
of the well-known LCMV filter and the GSC as its efficient realization, problems of
these approaches in real-world applications and countermeasures were discussed.

Afterwards, an LCMMI signal extraction algorithm which allows to exploit the
three fundamental properties of speech and audio signals: Nonstationarity, Non-
whiteness, and Nongaussianity, was presented. Analogously to previously published
methods, e.g., [23, 29], the set of linear constraints depends on the RTFs between the
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desired signal components contained in the microphone signals. Hence, the focus of
the presented algorithm is to extract the desired signal components as contained in
one of the microphone channels, i.e., a reference microphone.

Subsequently, an efficient realization of the general LCMMI approach in a GSC
structure was derived, where the BM is realized by multiple two-channel geometri-
cally constrained ICA algorithms, which require only some coarse DOA information
of the desired source. Furthermore, it was shown that estimates of the desired source
RTFs, required for the linear constraints, i.e., to realize the fixed beamformer of the
GSC, can be obtained from the filter vectors of the two-channel subsystems real-
izing the BM. Since these filter vectors are determined based on an ICA criterion,
adaptation, and, hence, RTF estimation, can also be performed during double-talk
situations without relying on activity monitoring, such as VAD or estimating SPP.
Since identifying periods of target-only activity in multispeaker scenarios is a chal-
lenging task, rendering it unnecessary is a highly attractive feature of the LCMMI
algorithm. As an additional advantage, this also simplifies the otherwise challenging
control mechanism for simultaneously updating the BM und INC coefficients of the
GSC.

Finally, we established relations between the proposed LCMMI method and
other well-known SOS-based multichannel linear filter approaches for signal extrac-
tion. Establishing these relations made it obvious that, unlike the proposed LCMMI
method, these approaches do not exploit nongaussianity and nonwhiteness of speech
signals, and are therefore not optimum for enhancement of speech signals. We eval-
uated the proposed MMI-based GSC in a two-speaker scenario with respect to accu-
racy of RTF estimates and signal enhancement performance. The results showed
that by exploiting nongaussianity and nonwhiteness in addition to nonstationarity,
RTF estimation accuracy and signal enhancement performance could be increased
substantially, confirming the effectiveness of the proposed LCMMI framework for
signal extraction.
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Chapter 11
Recent Advances in Multichannel Source
Separation and Denoising Based on Source
Sparseness

Nobutaka Ito, Shoko Araki and Tomohiro Nakatani

Abstract This chapter deals with multichannel source separation and denoising
based on sparseness of source signals in the time-frequency domain. In this approach,
time-frequency masks are typically estimated based on clustering of source location
features, such as time and level differences between microphones. In this chapter, we
describe the approach and its recent advances. Especially, we introduce a recently
proposed clusteringmethod, observation vector clustering, which has attracted atten-
tion for its effectiveness. We introduce algorithms for observation vector clustering
based on a complex Watson mixture model (cWMM), a complex Bingham mixture
model (cBMM), and a complex Gaussian mixture model (cGMM).We show through
experiments the effectiveness of observation vector clustering in source separation
and denoising.

11.1 Introduction

When a desired sound is recorded by distant microphones, it is mixed with other
sounds, which often degrade speech quality and intelligibility as well as automatic
speech recognition (ASR) performance. To resolve this problem, techniques such
as source separation, denoising, and dereverberation have been studied extensively.
This chapter focuses on source separation and denoising; see [1] for dereverberation.

Figure11.1 illustrates source separation and denoising we deal with in this paper.
Suppose we record N (≥ 1) source signals in the presence of background noise by
using M (≥ 2) microphones. Our goal is to estimate each source signal from the
observed signals.Note that there is not only amultichannel approach [2–5] usingmul-
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Fig. 11.1 Source separation
and denoising we deal with
in this paper

tiple microphones but also a single-channel approach using a single microphone [6–
9]. A main advantage of the multichannel approach is that it can perform source
separation and denoising with little or even no distortion in the desired source signal.

Especially, multichannel source separation and denoising based on source sparse-
ness [10–20] have turned out to be highly effective and robust in the real world [16,
17, 19, 20]. Various signals including speech are known to have sparseness in the
time-frequency domain: a small percentage of the time-frequency components of a
signal capture a large percentage of its overall energy [10]. The source sparseness
is often exploited by assuming that the observed signals are dominated by a single
source signal or by background noise at each time-frequency point. We call this a
sparseness assumption. The dominating source signal or background noise at each
time-frequency point can be represented by masks. Once we have obtained these
masks, we can estimate the source signals either by applying the masks directly to
the observed signals (masking) [10–14, 16, 17, 19, 21] or by applying beamformers
designed based on the masks [15, 18, 20, 22].

The key to the effectiveness of this approach is accurate estimation of the masks,
which is usually performed based on either spatial information [10–20] or spectral
information [21, 22].We focus on the former,which employs source location features
extracted from the observed signals, such as time and level differences between
microphones. The sparseness assumption implies that the source location features
form clusters, each of which corresponds to a source signal or the background noise.
These clusters can be found by clustering the source location features to obtain
the masks. This is typically done by fitting a mixture model to the features, where
the appropriate design of the features and the mixture model is significant to mask
estimation accuracy.

In this chapter, we introduce a recently proposed clustering method, observation
vector clustering, which has attracted attention for its effectiveness [11, 13, 15–20].
This method has been employed in many evaluation campaigns successfully [17,
20]. We introduce algorithms for observation vector clustering based on a complex
Watson mixture model (cWMM), a complex Bingham mixture model (cBMM), and
a complex Gaussian mixture model (cGMM).

The rest of this chapter is organized as follows. Section11.2 overviews source
separation and denoising based on the observation vector clustering. Section11.3
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introduces algorithms for observation vector clustering based on the cWMM, the
cBMM,and the cGMM.Section11.4 describes experiments, andSect. 11.5 concludes
this chapter.

11.2 Source Separation and Denoising Based
on Observation Vector Clustering

This section overviews source separation and denoising based on observation vector
clustering. Figure11.2 shows the overall processing flow of this method. In mask
estimation, masks are estimated from the observed signals. In source signal estima-
tion, source signals are estimated bymasking or beamforming based on the estimated
masks.

11.2.1 Mask Estimation

Figure11.3 shows the processing flow of mask estimation in Fig. 11.2. In feature
extraction, a source location feature vector is extracted from the observed signals. In
frequency-wise clustering, clustering of the extracted feature vector is performed in
each frequency bin. As a result, posterior probabilities are obtained, which indicate
how much the individual clusters contribute to each time-frequency point. In permu-
tation alignment, the masks are obtained from the posterior probabilities; the details
will be explained later.

Fig. 11.2 Overall processing flow of source separation and denoising based on observation vector
clustering
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Fig. 11.3 Processing flow of mask estimation in Fig. 11.2

Feature Extraction

In feature extraction in Fig. 11.3, a source location feature vector is extracted at each
time-frequency point. Conventionally, time and level differences between micro-
phones were often employed as source location features. In contrast, in the obser-
vation vector clustering, we operate directly on an observation vector composed of
multichannel complex spectra.

Let y(m)

tf ∈ C denote the observed signal at the mth microphone in the short-time
Fourier transform (STFT) domain. Here, m ∈ {1, . . . ,M } denotes the microphone
index; t ∈ {1, . . . ,T } the frame index; f ∈ {1, . . . ,F} the frequency bin index; M
the number of microphones in the array; T the number of frames; F the number of
frequency bins up to the Nyquist frequency. We define the observation vector by

ytf �
[
y(1)
tf y(2)

tf . . . y(M )

tf

]T ∈ C
M , where the superscript T denotes transposition.

We employ the observation vector ytf as the feature vector ztf :

ztf = ytf . (11.1)

In this case, ztf lies in the complex linear spaceCM . Alternatively, we can also employ
a normalized observation vector ytf

‖ytf ‖ as the feature vector ztf :

ztf = ytf
‖ytf ‖ , (11.2)

where ‖ · ‖ denotes the Euclidean norm. In this case, ztf lies on the unit hypersphere
SM−1 in CM centered at the origin, because ‖ztf ‖ = 1 (see Fig. 11.4).

In the following, we describe our modeling of the observation vector ytf . We
consider both noiseless and noisy cases.

First, we consider the noiseless case, where N (≥ 2) source signals are recorded
by the microphones without noise. The number of sources,N , is assumed to be given
throughout this chapter. In this noiseless case, ytf is modeled by ytf = ∑N

n=1 s
(n)
tf h(n)

tf .

Here, s(n)tf denotes the nth source signal in the STFT domain, and h(n)
tf denotes the

steering vector for the nth source. The steering vector h(n)
tf represents the acoustic

transfer characteristics from the nth source to the microphones. Under the sparseness
assumption, the above model can be approximated by ytf = s(ν)

tf h(ν)

tf , where ν = dtf
denotes the index of the source signal that dominates ytf at the time-frequency point
(t, f ). Here, both s(n)tf and h(n)

tf are unknown.
Next, we consider the noisy case, where N (≥ 1) source signal(s) are recorded by

the microphones in the presence of background noise. In this case, ytf is modeled
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Fig. 11.4 Example of the
source location feature
vector for two sources. Here,
C
M has been simplified to

R
3 for illustration

by ytf = ∑N
n=1 s

(n)
tf h(n)

tf + vtf , where vtf denotes the contribution of the background
noise to ytf . Under the sparseness assumption, this model can be approximated by

ytf =
{
s(ν)

tf h(ν)

tf + vtf , if dtf = ν ∈ {1, . . . ,N },
vtf , if dtf = 0.

(11.3)

Here,dtf denotes the indexof the source signal or the backgroundnoise that dominates
ytf at the time-frequency point (t, f ), where the case dtf = 0 corresponds to the
background noise and the cases dtf ∈ {1, . . . ,N } to the source signals. Note that the
background noise vtf is assumed to be contained in ytf at all time-frequency points,
because it is usually not sparse. s(n)tf , h(n)

tf , and vtf are all unknown.

In both cases, our goal is to estimate s(n)tf given ytf .

Frequency-Wise Clustering

In frequency-wise clustering in Fig. 11.3, clustering of the feature vector ztf is per-
formed in each frequency bin. As a result, the posterior probability γ̃

(k)
tf is obtained

for each cluster k, which indicates how much the kth cluster contributes to the time-
frequency point (t, f ).

The clustering can be performed by fitting a mixture model

p(ztf |Θf ) =
∑
k

α
(k)
f p

(
ztf

∣∣d̃tf = k,Θf
)

(11.4)

to ztf . Here, d̃tf denotes the index of the cluster that ztf belongs to; α
(k)
f � P

(
d̃tf =

k
∣∣Θf

)
the prior probability of d̃tf = k; p

(
ztf

∣∣d̃tf = k,Θf
)
the conditional probability

density function of ztf under d̃tf = k;
∑

k the sum over all possible values of k
(i.e.,

∑K
k=1 for the noiseless case;

∑K
k=0 for the noisy case); Θf the set of all model

parameters in (11.4). α(k)
f satisfies

∑
k α

(k)
f = 1 and α

(k)
f ≥ 0.
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Θf is estimated by the maximization of the log-likelihood function

L(Θf ) =
T∑
t=1

ln p(ztf |Θf ), (11.5)

which can be done by the expectation-maximization (EM) algorithm. Once Θf has
been estimated,we obtain the posterior probability γ̃

(k)
tf based onBayes’ theorem [23]

as follows:

γ̃
(k)
tf � P

(
d̃tf = k

∣∣ztf ,Θf
)

(11.6)

= α
(k)
f p

(
ztf

∣∣d̃tf = k,Θf
)

∑
l

α
(l)
f p

(
ztf

∣∣d̃tf = l,Θf
) . (11.7)

Here, γ̃ (k)
tf satisfies

∑
k γ̃

(k)
tf = 1 and γ̃

(k)
tf ≥ 0.

Permutation Alignment

In permutation alignment in Fig. 11.3, the masks are obtained by using the posterior
probabilities γ̃

(k)
tf .

The index k of the clusters and the index n of the source signals and the background
noise do not necessarily coincide, but there is permutation ambiguity between them.
This implies that γ̃

(k)
tf for the same k may correspond to different source signals at

different frequencies. Therefore, we need to permute the cluster indexes k so that each
k corresponds to the same source signal or background noise in all frequency bins,
which is called permutation alignment. As a result of the permutation alignment, we
obtain the masks γ

(n)
tf .

Many methods have been proposed for permutation alignment [16, 24–26]. Espe-
cially, Sawada et al. [16] has proposed an effective method based on correlation of
posterior probabilities γ̃

(k)
tf between frequencies.

11.2.2 Source Signal Estimation

In source signal estimation in Fig. 11.2, source signals are estimated by masking or
beamforming based on the estimated masks.

Masking

When masking is employed, the source signals are estimated by multiplying an
observed signal by the estimated masks γ

(n)
tf as follows:

ŝ(n)tf = γ
(n)
tf y(μ)

tf . (11.8)
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Here, μ denotes the index of the reference microphone.

Beamforming

Here we consider the noisy case. Among many types of beamformers, we focus
on the MVDR beamformer. The MVDR beamformer is especially suitable for the
front end of ASR, because it can perform source separation and denoising without
distorting the desired source signal.

The output of the MVDR beamformer is given by

ŝ(n)tf = h(n)H
tf

(
Φ

y
f

)−1
ytf

h(n)H
tf

(
Φ

y
f

)−1
h(n)
tf

. (11.9)

Φ
y
f denotes the covariance matrix of ytf , which can be estimated by

Φ̂
y
f = 1

T

T∑
t=1

ytf yHtf . (11.10)

In the MVDR beamformer, accurate estimation of the steering vector h(n)
tf is crucial.

Conventionally, h(n)
tf was estimated based on the assumptions of planewave prop-

agation and a known array geometry. These assumptions are often violated in the real
world, and lead to degraded performances of the MVDR beamformer and therefore
ASR. Here we present mask-based steering vector estimation, which does not rely
on these assumptions, and therefore is more robust in the real world.

First, a covariance matrix Ψ
(n)
f corresponding to the nth source signal plus the

background noise is estimated by

Ψ
(n)
f =

∑T
t=1 γ

(n)
tf ytf yHtf∑T

t=1 γ
(n)
tf

, (11.11)

and a noise covariance matrix Ψ
(0)
f is estimated by

Ψ
(0)
f =

∑T
t=1 γ

(0)
tf ytf yHtf∑T

t=1 γ
(0)
tf

. (11.12)

The noise contribution to Ψ
(n)
f is reduced by subtracting Ψ

(0)
f from Ψ

(n)
f . The steering

vector h(n)
tf is estimated as a principal eigenvector of the resultant matrixΨ

(n)
f − Ψ

(0)
f .
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11.3 Mask Estimation Based on Modeling Directional
Statistics

Several mixture models for the feature vector ztf have been proposed to estimate the
masks accurately. These mixture models include the cWMM, the cBMM, and the
cGMM, which are specific examples of the general mixture model (11.4).

11.3.1 Mask Estimation Based on Complex Watson Mixture
Model (cWMM)

Sawada et al. [13, 16] and Tran Vu et al. [15] have proposed to estimate masks based
on modeling the feature vector (11.2) by a complex Watson mixture model (cWMM).
The cWMM is composed of complex Watson distributions of Mardia et al. [27],
and the complex Watson distribution is an extension of a real Watson distribution of
Watson [28].

The probability density function (PDF) of the cWMM is given by

p(ztf ;ΘW,f ) =
∑
k

α
(k)
f pW

(
ztf ; a(k)

f , κ
(k)
f

)
, (11.13)

where pW denotes a complex Watson distribution

pW(z; a, κ) � (M − 1)!
2πMK (1,M ; κ)

exp
(
κ
∣∣aHz∣∣2

)
. (11.14)

Both the complex Watson distribution and the cWMM are defined on the unit hyper-
sphere in CM :

SM−1 �
{
z ∈ C

M
∣∣∣‖z‖ = 1

}
, (11.15)

which is illustrated in Fig. 11.4. Each complexWatson distribution in (11.13) models
the distribution of ztf for a cluster. k denotes the cluster index.

ΘW,f �
{
α

(k)
f , a(k)

f , κ
(k)
f

∣∣∣∀k
}

(11.16)

denotes the set of all model parameters of the cWMM (11.13), where α
(k)
f satisfies

α
(k)
f ≥ 0, (11.17)

∑
k

α
(k)
f = 1, (11.18)
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a(k)
f denotes a parameter representing the mean orientation of ztf for the kth cluster
satisfying

∥∥a(k)
f

∥∥ = 1, (11.19)

and κ ∈ R denotes a parameter representing the concentration of the distribution of
ztf for the kth cluster. H denotes conjugate transposition; K the confluent hyper-
geometric function of the first kind, also known as the Kummer function, which is
defined by the following power series:

K (ξ, η; κ) � 1 + ξ

η

κ

1! + ξ(ξ + 1)

η(η + 1)

κ2

2! + . . . . (11.20)

To analyze the behavior of (11.14) as a function of z, note that (11.14) depends
on z through the term

∣∣aHz∣∣ only and increases[decreases] monotonically as
∣∣aHz∣∣

increases when κ > 0[κ < 0]. Note also that

0 ≤ ∣∣aHz∣∣ ≤ 1, (11.21)

which follows from the Cauchy-Schwartz inequality and ‖z‖ = ‖a‖ = 1. Therefore,
for κ > 0[κ < 0], (11.14) has the global minima[maxima] at

{
z ∈ SM−1

∣∣∣
∣∣aHz∣∣ = 0

}
, (11.22)

increases[decreases] monotonically as
∣∣aHz∣∣ increases, and has the global max-

ima[minima] at {
z ∈ SM−1

∣∣∣∣∣aHz∣∣ = 1
}
. (11.23)

Note that (11.22) equals
{z ∈ SM−1|aHz = 0}, (11.24)

and (11.23) equals
{exp(jθ)a|θ ∈ [0, 2π)}. (11.25)

It is straightforward to see that, for κ = 0, (11.14) is constant (i.e., uniform distribu-
tion on SM−1). Based on the above property, we impose a constraint

κ
(k)
f > 0, (11.26)

which is appropriate for our application.
Once the model parameters ΘW,f have been estimated, the posterior probability

γ̃
(k)
tf can be obtained based on Bayes’ theorem [23] by
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γ̃
(k)
tf ←

α
(k)
f pW

(
ztf ; a(k)

f , κ
(k)
f

)

∑
l

α
(l)
f pW

(
ztf ; a(l)

f , κ
(l)
f

) . (11.27)

To estimate the model parameters ΘW,f , the cWMM (11.13) is fitted to the feature
vector ztf , e.g., based on the maximization of the log-likelihood function

T∑
t=1

ln p(ztf ;ΘW,f ). (11.28)

This is realized by, e.g., an expectation-maximization (EM) algorithm [23], which
consists in alternate iteration of an E-step and an M-step. The E-step consists in
updating the posterior probability γ

(k)
tf by (11.27) using current estimates of themodel

parameters ΘW,f . The M-step consists in updating the model parameters ΘW,f using
the posterior probability γ

(k)
tf , which is realized by applying the following update

rules:

α
(k)
f ← 1

T

T∑
t=1

γ̃
(k)
tf , (11.29)

R(k)
f ←

∑T
t=1 γ̃

(k)
tf ztf zHtf∑T

t=1 γ̃
(k)
tf

, (11.30)

(
λ

(k)
f , a(k)

f

) ← the largest eigenvalue and a corresponding eigenvector of R(k)
f ,

(11.31)

a(k)
f ← a(k)

f∥∥a(k)
f

∥∥ , (11.32)

κ
(k)
f ← Mλ

(k)
f − 1

2λ(k)
f

(
1 − λ

(k)
f

)
[
1 +

√
1 + 4(M + 1)λ(k)

f

(
1 − λ

(k)
f

)

M − 1

]
. (11.33)

See Appendix 1 for derivation of this EM algorithm.
A major limitation of the cWMM lies in that the complex Watson distribution

(11.14) can represent a distribution that is rotationally symmetric about the axis a
(see Fig. 11.5). Indeed, as we have already noted, (11.14) is a function of

∣∣aHz∣∣,
which can be regarded as the cosine of the angle between a and z. However, the
distribution of the feature vector ztf for each cluster is not necessarily rotationally
symmetric, depending on various conditions such as the array geometry and acoustic
transfer characteristics. The cWMM therefore has a limited ability to approximate
the distribution of ztf , which results in degraded mask estimation accuracy and there-
fore degraded performance of source separation and denoising. This motivates us to
consider more flexible distributions, which are described in Sects. 11.3.2 and 11.3.3.
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Fig. 11.5 Illustration of the cWMM and the cBMM for two sources

11.3.2 Mask Estimation Based on Complex Bingham
Mixture Model (cBMM)

To overcome the above limitation of the cWMM, Ito et al. have proposed to estimate
masks based on modeling the feature vector (11.2) by a complex Bingham mixture
model (cBMM) [29]. The cBMM is composed of complex Bingham distributions of
Kent [30], and the complex Bingham distribution is an extension of the real Bingham
distribution of Bingham [31]. The complex Bingham distribution can represent not
only rotationally symmetric but also elliptical distributions on the unit hypersphere
(see Fig. 11.5), and can therefore better approximate the distribution of the feature
vector ztf than the complex Watson distribution. As a result, the cBMM can improve
mask estimation accuracy and therefore source separation anddenoising performance
compared to the cWMM.

The PDF of the cBMM is given by

p
(
ztf ;ΘB,f

) =
∑
k

α
(k)
f pB

(
ztf ;B(k)

f

)
, (11.34)

where pB denotes a complex Bingham distribution

pB
(
z;B)

� c(B)−1 exp
(
zHBz

)
. (11.35)

Here, c(B) denotes the following function defined for a Hermitian matrix B.

c(B) �
[
2πM

M∑
m=1

exp
(
βm

)

∏
l �=m

(
βm − βl

)
]
, (11.36)
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where βm, m = 1, . . . ,M , denote the eigenvalues of B. Both the complex Bingham
distribution and the cBMM are defined on the unit hypersphere SM−1. Each complex
Bingham distribution in (11.34) models the distribution of ztf for a cluster.

ΘB,f �
{
α

(k)
f ,B(k)

f

∣∣∣∀k
}

(11.37)

denotes the set of all model parameters of the cBMM, where B(k)
f is a Hermitian

parameter matrix, which represents not only the location and the concentration, but
also the direction and the shape, of the complex Bingham distribution. Note that the
expression for the normalization factor in (11.35) is valid only when the eigenvalues
of B are all distinct, which is always satisfied in practice.

Once the model parameters ΘB,f have been estimated, the posterior probability
γ̃

(k)
tf can be obtained by

γ̃
(k)
tf ←

α
(k)
f pB

(
ztf ;B(k)

f

)

∑
l

α
(l)
f pB

(
ztf ;B(l)

f

) . (11.38)

As in the cWMM case, ΘB,f can be estimated by the maximum likelihood method
based on the EM algorithm. The E-step consists in updating γ̃

(k)
tf by (11.38) using

the current ΘB,f value. The M-step consists in updating ΘB,f using γ̃
(k)
tf , which is

realized by applying the following update rules:

α
(k)
f ← 1

T

T∑
t=1

γ̃
(k)
tf , (11.39)

R(k)
f ←

∑T
t=1 γ̃

(k)
tf ztf zHtf∑T

t=1 γ̃
(k)
tf

, (11.40)

(
λ

(k)
fm , a(k)

fm

) ← themth largest eigenvalue and a corresponding eigenvector

of R(k)
f , (11.41)

a(k)
fm ← a(k)

fm∥∥a(k)
fm

∥∥ , (11.42)

B(k)
f ←

M∑
m=1

(
− 1

λ
(k)
fm

+ 1

λ
(k)
f 1

)
a(k)
fm a(k)H

fm . (11.43)

See Appendix 2 for derivation of the above algorithm.
Note that the parameter matrix B(k)

f has the following indeterminacy
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pB
(
ztf ;B(k)

f

)
= pB

(
ztf ;B(k)

f + ξI
)
, ∀ξ ∈ R, (11.44)

which follows from ‖ztf ‖ = 1.Here, I denotes theM × M identitymatrix. To remove
this indeterminacy, in the above algorithm, ξ has been determined so that the largest
eigenvalue of B(k)

f equals zero.

11.3.3 Mask Estimation Based on Complex Gaussian
Mixture Model (cGMM)

As an alternative method, Ito et al. have proposed to estimate masks based on mod-
eling the feature vector (11.1) by a complex (time-varying) Gaussian mixture model
(cGMM) [32], inspired by Duong et al. [33]. Note that the cGMMmodels the obser-
vation vector itself in (11.1), instead of its normalized version in (11.2). The cGMM
is composed of complex Gaussian distributions, where the covariance matrices are
parametrized by time-invariant spatial covariance matrices and time-variant power
parameters.

The PDF of the cGMM is given by

p(ztf ;ΘG,f ) =
∑
k

α
(k)
f pG

(
ztf ; 0, φ(k)

tf B(k)
f

)
, (11.45)

where pG denotes a complex Gaussian distribution

pG
(
z; g,Σ)

� 1

πM detΣ
exp[−(z − g)HΣ−1(z − g)], (11.46)

with g being the mean and Σ the covariance matrix. Both the complex Gaussian
distribution and the cGMM are defined in CM . Each complex Gaussian distribution
in (11.45) models the distribution of ztf for a cluster.

ΘG,f �
{
α

(k)
f ,B(k)

f

∣∣∣∀k
}

∪
{
φ

(k)
tf

∣∣∣∀k, ∀t
}

(11.47)

denotes the set of all model parameters of the cGMM, where B(k)
f is a scaled covari-

ance matrix modeling the direction of the observation vector in (11.1) (i.e., the
normalized observation vector (11.2)), and φ

(k)
tf is a power parameter modeling the

magnitude of the observation vector.
Once the model parameters ΘG,f have been estimated, the posterior probability

γ̃
(k)
tf can be obtained by
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γ̃
(k)
tf ←

α
(k)
f pG

(
ytf ; 0, φ(k)

tf B(k)
f

)

∑
l

α
(l)
f pG

(
ytf ; 0, φ(l)

tf B
(l)
f

) . (11.48)

As in the cWMM and the cBMM cases, ΘG,f can be estimated by the maximum
likelihood method based on the EM algorithm. The E-step consists in updating γ̃

(k)
tf

by (11.48) using the current ΘG,f value. The M-step consists in updating ΘG,f using
γ̃

(k)
tf , which is realized by applying the following update rules:

α
(k)
f ← 1

T

T∑
t=1

γ̃
(k)
tf , (11.49)

B(k)
f ←

∑T
t=1 γ̃

(k)
tf ytf yHtf /φ

(k)
tf∑T

t=1 γ̃
(k)
tf

, (11.50)

φ
(k)
tf ← 1

M
yHtf

(
B(k)
f

)−1
ytf . (11.51)

See Appendix 3 for derivation of the above algorithm.

11.4 Experimental Evaluation

Weconducted source separation anddenoising experiments to verify the effectiveness
of observation vector clustering introduced in this chapter.

11.4.1 Source Separation

We first describe the source separation experiment. We assumed that the number of
sources was known. We generated observed signals by convolving 8s-long English
speech signals with room impulse responses measured in an experimental room (see
Fig. 11.6). The sampling frequency of the observed signals was 8kHz; the frame
length 1024 points (128ms); the frame shift 256 points (32ms); the number of EM
iterations 100. The permutation problem was resolved by Sawada’s method [16].
Source signal estimates were obtained based on masking as in (11.8).

Figure11.7 shows the signal-to-distortion ratio (SDR) [34] as a function of the
reverberation timeRT60, and Fig. 11.8 shows an example of source separation results.
The SDRswere averaged over 16 trials with eight combinations of speech signals and
two distances between a loudspeaker and the array center. The azimuths of sources
were 70◦ and 150◦ for N = 2, and 70◦, 150◦, and 245◦ for N = 3.
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Fig. 11.6 Configurations in room impulse response measurement
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Fig. 11.7 Signal-to-distortion ratio (SDR) as a function of the reverberation time RT60

11.4.2 Denoising

Now we move on to the denoising experiment. The performance was measured by
the word error rate (WER) of ASR on the CHiME-3 task [35]. The CHiME-3 task
consists in recognition of WSJ-5K prompts read from, and recorded by, a tablet
device equipped with M = 6 microphones in four noisy public areas: on the bus
(BUS), cafe (CAF), pedestrian area (PED), and street junction (STR). For further
details about the data, we refer the readers to [35].
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Fig. 11.8 Example of source separation results for N = 2 and RT60 = 130ms. The horizontal axis
represents the time, and the vertical the frequency. To focus on low frequencies, which contain
most speech energy, only the frequency range of 0 to 2kHz is shown. The temporal range shown
corresponds to 10s
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Denoising was performed by using MVDR beamformers designed using the esti-
mated masks as in Sect. 11.2.2. Assuming that the background noise arrive from all
directions equally (i.e., noise is diffuse), we set κ

(0)
f = 0 for the cWMM, B(0)

f = 0

for the cBMM, and B(0)
f = I for the cGMM. Permutation alignment was performed

by the method proposed in [36], which is based on a common amplitude modulation
property of speech. The frame length and the frame shift were 64ms and 16ms,
respectively, and the window was hann.

ASR was performed by using a DNN-HMM-based acoustic model with a fully
connected DNN (10 hidden layers) and an RNN-based languagemodel. The acoustic
model was trained on 18 hours of multicondition data.

The word error rate (WER) for the real data of the development set, averaged over
all environments, was as follows:

• no denoising: 14.29%,
• denoising with the cWMM: 10.2%,
• denoising with the cBMM: 8.3%,
• denoising with the cGMM: 9.3%.

We see that the WER has been reduced significantly by mask-based MVDR beam-
forming.

11.5 Conclusions

In this chapter, we described multichannel source separation and denoising based
on source sparseness. Particularly, we introduced recently proposed framework of
observation vector clustering, which have been shown to be effective and robust in the
real world. We also introduced specific algorithms for observation vector clustering,
based on the cWMM, the cBMM, and the cGMM.

Appendix 1 Derivation of cWMM-Based Mask Estimation
Algorithm

Here we derive the cWMM-based mask estimation algorithm in Sect. 11.3.1. The
derivation of the E-step is straightforward and omitted. The update rules for the
M-step is obtained by maximizing the following Q-function with respect to ΘW,f :

Q(ΘW,f ) �
T∑
t=1

∑
k

γ̃
(k)
tf ln

[
α

(k)
f pW

(
ztf ; a(k)

f , κ
(k)
f

)]
(11.52)

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln α

(k)
f −

∑
k

( T∑
t=1

γ̃
(k)
tf

)
lnK

(
1,M ; κ

(k)
f

)
(11.53)
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+
∑
k

κ
(k)
f a(k)H

f

( T∑
t=1

γ̃
(k)
tf ztf zHtf

)
a(k)
f + C

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)[
ln α

(k)
f − lnK

(
1,M ; κ

(k)
f

)
+ κ

(k)
f a(k)H

f R(k)
f a(k)

f

]
+ C.

(11.54)

Here, R(k)
f is defined by

R(k)
f �

∑T
t=1 γ̃

(k)
tf ztf zHtf∑T

t=1 γ̃
(k)
tf

, (11.55)

and C denotes a constant independent of ΘW,f .
The update rule for α

(k)
f is obvious: note the constraint (11.18) and apply the

Lagrangian multiplier method.
The update rule for a(k)

f is obtained by maximizing Q(ΘW,f ) subject to (11.19).

Noting (11.26), we see that this is equivalent to maximizing a(k)H
f R(k)

f a(k)
f subject to

(11.19). From the linear algebra, a(k)
f is therefore a unit-norm principal eigenvector

of R(k)
f .

The update rule for κ
(k)
f is obtained by maximizing

−
( T∑

t=1

γ̃
(k)
tf

)
lnK

(
1,M ; κ

(k)
f

)
+

( T∑
t=1

γ̃
(k)
tf

)
κ

(k)
f a(k)H

f R(k)
f a(k)

f . (11.56)

Since a(k)
f is a unit-norm principal eigenvector of R(k)

f , we have

a(k)H
f R(k)

f a(k)
f = λ

(k)
f , (11.57)

where λ
(k)
f is the principal eigenvalue of R(k)

f . Therefore, we have the following

nonlinear equation for κ
(k)
f :

∂

∂κ
(k)
f

K
(
1,M ; κ

(k)
f

)
= λ

(k)
f K

(
1,M ; κ

(k)
f

)
. (11.58)

Using (3.8) in [37], (11.58) is approximately solved as follows:

κ
(k)
f = Mλ

(k)
f − 1

2λ(k)
f

(
1 − λ

(k)
f

)
[
1 +

√√√√
1 +

4(M + 1)λ(k)
f

(
1 − λ

(k)
f

)

M − 1

]
. (11.59)
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Appendix 2 Derivation of cBMM-Based Mask Estimation
Algorithm

Here we derive the cBMM-based mask estimation algorithm in Sect. 11.3.2. The
update rule for the E-step is obvious. The update rules for the M-step is obtained by
maximizing the following Q-function with respect to ΘB,f :

Q(ΘB,f ) �
T∑
t=1

∑
k

γ̃
(k)
tf ln

[
α

(k)
f pB

(
ztf ;B(k)

f

)]
(11.60)

=
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln α

(k)
f −

∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln c

(
B(k)
f

)
(11.61)

+
∑
k

tr

[
B(k)
f

( T∑
t=1

γ̃
(k)
tf ztf zHtf

)]

=
∑
k

( T∑
t=1

γ
(k)
tf

)[
ln α

(k)
f − ln c

(
B(k)
f

)
+ tr

(
B(k)
f R(k)

f

)]
. (11.62)

Here, c(B) is defined by (11.36), and R(k)
f by (11.55).

The update rule for α
(k)
f is obvious.

To derive the update rule for B(k)
f , let us denote the mth largest eigenvalue of R(k)

f

by λ
(k)
fm and a corresponding unit-norm eigenvector by v(k)

fm . We assume that λ
(k)
fm ,

m = 1, . . . ,M , are all distinct and positive, which is always true in practice. R(k)
f is

represented as

R(k)
f =

M∑
m=1

λ
(k)
fm v(k)

fm v(k)H
fm . (11.63)

From a result in [38], v(k)
fm , m = 1, . . . ,M , are also the eigenvectors of B(k)

f . Hence,

B(k)
f is represented in the form

B(k)
f =

M∑
m=1

β
(k)
fm v(k)

fm v(k)H
fm . (11.64)

Substituting (11.63) and (11.64) into (11.62) and disregarding terms independent of
β

(k)
fm ,m = 1, . . . ,M , we have

( T∑
t=1

γ
(k)
tf

)[
− ln c

(
B(k)
f

)
+

M∑
m=1

λ
(k)
fm β

(k)
fm

]
. (11.65)
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Therefore, we have
∂ ln c

(
B(k)
f

)

∂β
(k)
fm

= λ
(k)
fm . (11.66)

Using an approximation in [38], this nonlinear equation can be approximately solved
as follows:

β
(k)
fm ∼ − 1

λ
(k)
fm

. (11.67)

Substituting (11.67) into (11.64) and adding amatrix of the form ξI so that the largest
eigenvalue of B(k)

f is zero, we obtain the following update rule for B(k)
f :

B(k)
f ←

M∑
m=1

(
− 1

λ
(k)
fm

+ 1

λ
(k)
f 1

)
v(k)
fm v(k)H

fm . (11.68)

Appendix 3 Derivation of cGMM-Based Mask Estimation
Algorithm

Here we derive the cGMM-based mask estimation algorithm in Sect. 11.3.3. The
derivation of the E-step is straightforward and omitted. The update rules for the
M-step is obtained by maximizing the following Q-function with respect to ΘG,f :

Q(ΘG,f ) �
T∑
t=1

∑
k

γ̃
(k)
tf ln

[
α

(k)
f pG

(
ytf ; 0, φ(k)

tf B(k)
f

)]
(11.69)
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∑
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tf (11.70)
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−
∑
k

( T∑
t=1

γ̃
(k)
tf

)
ln detB(k)

f −
∑
k

tr

[(
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φ
(k)
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ytf yHtf

)]
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Here, C denotes a constant independent of ΘG,f .
The update rule for α

(k)
f is obvious.

From (11.70), the update rule for φ
(k)
tf is given by
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φ
(k)
tf = 1

M
yHtf

(
B(k)
f

)−1
ytf . (11.72)

As for B(k)
f , it should satisfy

−
( T∑

t=1

γ̃
(k)
tf
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Therefore, the update rule for B(k)
f is

B(k)
f =

∑T
t=1 γ̃

(k)
tf ytf yHtf /φ

(k)
tf∑T

t=1 γ̃
(k)
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. (11.74)
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Chapter 12
Multimicrophone MMSE-Based Speech
Source Separation

Shmulik Markovich-Golan, Israel Cohen and Sharon Gannot

Abstract Beamforming methods using a microphone array successfully utilize
spatial diversity for speech separation and noise reduction. Adaptive design of the
beamformer based on various minimummean squared error (MMSE) criteria signifi-
cantly improves performance compared to fixed, and data-independent design. These
criteria differ in their considerations to noise minimization and desired speech dis-
tortion. Three common data-dependent beamformers, namely, matched filter (MF),
MWF and LCMV are presented and analyzed. Estimation methods for implement-
ing the various beamformers are surveyed. Simple examples of applying the various
beamformers to simulated narrowband signals in an anechoic environment and to
speech signals in a real-life reverberant environment are presented and discussed.

12.1 Introduction

In this chapter we introduce multimicrophone methods for speech separation and
noise reduction methods, which are based on beamforming. Traditionally, beam-
forming methods are adopted from classical array processing techniques, in which
a beam of high response is steered towards the desired source, while suppressing
other directions. These methods were mainly applied in communications and radar
domains. They usually assume free-field propagation, i.e., the angle-of-arrival ful-
ly determines the source position, although several design methods take multi-path
propagation into account.
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Statistically optimal beamformers are powerful multichannel filtering tools that
optimize a certain design criteria while adapting to the received data, hence usu-
ally referred to as data-dependent approaches. A plethora of optimization criteria
were proposed. The MVDR beamformer, also referred to as Capon beamformer [1],
minimizes the noise power at the output of the beamformer subject to a unit gain
constraint in the look direction. Frost [2] presented an adaptive implementation of the
MVDR beamformer for wideband signals. Griffiths and Jim [3] proposed the GSC
which is an efficient decomposition of the MVDR beamformer into two branches:
one satisfying the constraint on the desired source, and the other for minimizing the
noise (and interference).

Several researchers, e.g. [4] (see also Van Veen and Buckley [5]) have proposed
modifications to the MVDR beamformer to deal with multiple linear constraints,
denoted linearly constrained minimum variance (LCMV). Their work was motivat-
ed by the desire to apply further control to the array beampattern, beyond that of
a steer-direction gain constraint. Hence, the LCMV can be applied to construct a
beampattern satisfying certain constraints for a set of directions, while minimizing
the array response in all other directions. Breed and Strauss [6] proved that the LCMV
extension has also an equivalent GSC structure, which decouples the constraining
and the minimization operations. The multichannel Wiener filter (MWF) is another
important beamforming criterion, which minimizes the minimum mean squared er-
ror (MMSE) between the desired signal and the array output. It can be shown that
the MWF decomposes into an MVDR beamformer followed by a single-channel
Wiener post-filter [7]. A comprehensive analysis of beamformer criteria can be found
in [5, 8].

Speech signals usually propagate in acoustic enclosures, e.g., rooms, and not in
free-field. In the presence of obstacles, the sound wave is subject to diffractions
and reflections, depending on its wavelength. Due to the typically small absorbtion
coefficients of the obstacles, many successive wave reflections occur before their
power decay. This induces multiple propagation paths between each source and each
microphone, each with a different delay and attenuation factor. This phenomenon is
often referred to as reverberation. The AIR (and its respective ATF) encompasses
all these reflections and is usually a very long (few thousands taps) and time-varying
filter.

Due to this intricate propagation regime, resorting to beampatterns as a function
of the angle-of-arrival implies a reduction of a complex multi-parameter problem to
an arbitrary single parameter problem. Classical beamformers, that construct their
steering-vector under the assumption of free-field propagation, are often prone to
performance degradation when applied in reverberant environments. It is therefore
very important to take the reverberation effects into account while designing beam-
formers.

To circumvent the simplified free-field assumption, it was proposed [9, 10] to sub-
stitute the delay-only steering vector by the (normalized) ATFs relating the source
and the microphones. This concept was later extended to the multiple sources sce-
nario for extracting the desired source(s) from a mixture of desired and interference
sources [11].
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The MWF is also widely applied for speech enhancement, especially in its more
flexible form, the speech distortion weighted-MWF (SDW-MWF) [12], which intro-
duces a tradeoff factor that controls the amount of speech distortion versus the level
of the residual noise.

A recent review paper [13] surveys many beamforming design criteria and their
relation to BSS techniques.

12.2 Background

In this section we formulate the problem of speaker separation using spatial filtering
methods. The signals and their propagation models are defined in Sect. 12.2.1. The
following Sects. 12.2.2 and 12.2.3 are dedicated to defining spatial filters and criteria
for evaluating their performances, respectively.

12.2.1 Generic Propagation Model

The speech sources are typically modeled in the STFT as quasi-stationary complex
random processes with zero mean and time-varying variance, with stationarity time
of the order of tens of milliseconds. Let us consider the case of J speech sources,
denoted:

s j (n, f ) ∼ N
(
0, φs j (n, f )

)
(12.1)

for j = 1, . . . , J where φs j (n, f ) denotes the time-varying signals spectra, and
the indices n = 0, 1, . . . , and f = 0, 1, . . . , F − 1 stand for the time-frame and
frequency-bin index, and F denotes the STFT window length.

Given a microphone array comprising M microphones, the received microphone
signals are given in an M × 1 vector notation by

x(n, f ) =
J∑

j=1

c j (n, f ) + u(n, f ) (12.2)

where c j (n, f ) for j = 1, . . . , J denotes the J vectors of speech sources as received
by themicrophone array andu(n, f ) denotes theM × 1 dimensional vector compris-
ing the noise components received at the microphones. Modeling the speech sources
as coherent point sources and modeling the AIR as time-invariant convolution sys-
tem, the speech components at the microphones are modeled in the STFT domain as
a simple multiplication

c j (n, f ) � a j ( f )s j (n, f ) (12.3)
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where

a j ( f ) = [
a j1( f ), · · · a j I ( f )

]T
(12.4)

denotes the M × 1 dimensional vector of ATFs relating the j-th source and the mi-
crophone array. Note that we assume that the STFT length is longer than the effective
length of the AIR, such that convolution in the time-domain can be approximated
as multiplication in the STFT domain (theoreticaly, only cyclic-convolution in the
time-domain transforms to multiplication in the STFT domain [14]). Note that we
assume that the AIR are time-invariant, i.e., the sources and the enclosure are static.
This assumption can be relaxed to slowly time-varying environments, in which case
the separating algorithm needs to adapt faster than the the system variations. How-
ever, for brevity we consider here time-invariant systems. The covariance matrices
of the sources are given by:

Φc j (n, f ) � E
[
c j (n, f )cHj (n, f )

] = a j ( f )aH
j ( f )φs j (n, f ). (12.5)

The noise-field is also assumed stationary, and the covariance matrix of its compo-
nents at the microphone array is defined as:

Φu( f ) = E
[
u(n, f )uH (n, f )

]
. (12.6)

Note that the noise-stationarity assumption can be relaxed to slowly time-varying
statistics, however, for ease of notation and derivation we assume that the noise is
stationary.

12.2.2 Spatial Filtering

The spatial filter which is designed to extract the j-th speech source is denoted by
w j (n, f ). Its corresponding output is defined by:

y j (n, f ) � wH
j (n, f )x(n, f ). (12.7)

Note that generally the spatial filter may vary over time. By substituting (12.2) into
(12.7), the output of the j-th spatial filter is decomposed into different components:

y j (n, f ) =
J∑

j ′=1

d j, j ′(n, f ) + v j (n, f ) (12.8)

where

d j, j ′(n, f ) � wH
j (n, f )c j ′(n, f ) (12.9)
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is the component that corresponds to the j ′-th source at the output of the j-th spatial
filter and

v j (n, f ) � wH
j (n, f )u(n, f ) (12.10)

is the noise component at the j-th output. The aim of the j-th spatial filter is to main-
tain the j-th speech source, i.e., d j, j (n, f ) ≈ s j (n, f ), attenuate the other speech
sources, i.e., d j, j ′(n, f ) ≈ 0 for j ′ �= j , and reduce the noise, i.e., v j (n, f ) ≈ 0.
Note that aiming to obtain the dry signal of the j-th source (the original source be-
fore the convolution with the AIR) is a cumbersome task, and that in many practical
scenarios obtaining the desired source as picked up by one of themicrophones, which
is denoted the referencemicrophone, is sufficient. Let us assume that the first micro-
phone is selected as the reference microphone, and therefore the desired source at
the output of the j-th spatial filter is d j, j (n, f ) = a j1( f )s j (n, f ). The RTFs relating
the received components of the j ′-th source at all microphones with its component
at the reference microphone is defined as [10]:

ã j ′( f ) � a j ′( f )

a j ′1( f )
(12.11)

for j ′ = 1, . . . , J . In the following sections, for the sake of clarity, we present the
derivations of the various spatial filtering criteria using the ATF vectors rather than
the RTF vectors.

12.2.3 Second-Order Moments and Criteria

Let us consider the output of the j-th spatial filter which aims to extract the j-th
source while reducing noise and other interfering speakers, and define criteria to
evaluate its performance. The difference between the output of the spatial filter and
the desired signal is denoted as the error signal. The variance of the error signal,
also known as the mean squared error (MSE) which we denote as χ j (n, f ), can be
decomposed to its various components:

χ j (n, f ) �E
[∣∣y j (n, f ) − s j (n, f )

∣∣2
]

= δ j (n, f ) +
∑

j ′ �= j

ψd j, j ′ (n, f ) + ψv j (n, f ) (12.12)

where

δ j (n, f ) � E
[∣
∣s j (n, f ) − d j, j (n, f )

∣
∣2

]
= |1 − wH

j (n, f )a j ( f )|2φs j (n, f )

(12.13)
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is the distortion of the j-th source component,

ψd j, j ′ (n, f ) � E
[∣∣d j, j ′(n, f )

∣∣2
]

= ∣∣wH
j (n, f )a j ′( f )

∣∣2 φs j ′ (n, f ) (12.14)

is the variance of the residual j ′-th signal component, for j ′ �= j and

ψv j (n, f ) � E
[∣∣v j (n, f )

∣∣2
]

= wH
j (n, f )Φu( f )w j (n, f ) (12.15)

is the variance of the residual noise component.
For evaluating the distortion level at the enhanced j-th signal, we define the signal-

to-distortion ratio (SDR) as the power ratio of the desired speech component and its
distortion:

SDRo, j (n, f ) �
φs j (n, f )

δ j (n, f )

= 1
∣∣
∣1 − wH

j (n, f )a j ( f )
∣∣
∣
2 . (12.16)

To evaluate the noise reduction of the spatial filter we define the signal-to-noise
ratio (SNR) improvement, denoted ΔSNR j , which is the ratio of the SNR at the
output and at the input, denoted SNRo, j and SNRi, j :

SNRi, j (n, f ) �
trace

(
Φc j (n, f )

)

trace (Φu( f ))
(12.17a)

SNRo, j (n, f ) �ψd j, j (n, f )

ψv j ( f )
(12.17b)

ΔSNR j (n, f ) �SNRo, j (n, f )

SNRi, j (n, f )

=
∣∣∣wH

j (n, f )a j ( f )
∣∣∣
2
/wH

j (n, f )Φu( f )w j (n, f )

‖a j ( f )‖2/trace (Φu( f ))
. (12.17c)

Note that the last expression of ΔSNR j is obtained by substituting the expressions
from (12.5), (12.14), (12.15), (12.17a), and (12.17b).

The interfering speakers reduction is evaluated by using the SIR improvement,
denoted as ΔSIR j j ′ , defined for pairs of desired speaker and interfering speaker,
denoted j and j ′ respectively, as the ratio the output SIR and the input SIR, denoted
as SIRo, j j ′ and SIRi, j j ′ :
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SIRi, j j ′(n, f ) �
trace

(
Φc j (n, f )

)

trace
(
Φc j ′ (n, f )

) (12.18a)

SIRo, j j ′(n, f ) � ψd j j (n, f )

ψd j j ′(n, f )
(12.18b)

ΔSIR j j ′(n, f ) �SIRo, j j ′(n, f )

SIRi, j j ′(n, f )

=
∣∣∣wH

j (n, f )a j ( f )
∣∣∣
2
/

∣∣∣wH
j (n, f )a j ′( f )

∣∣∣
2

‖a j ( f )‖2/‖a j ′( f )‖2 . (12.18c)

Note that the last expression of ΔSIR j j ′ is obtained by substituting the expressions
from (12.5), (12.14), (12.18a) and (12.18b).

Finally, in order to evaluate the total interference and noise reduction, the signal-
to-interference-and-noise ratio (SINR) improvement, denoted ΔSINR j , is defined
as the ratio of the SINR at the output and at the input, denoted SINRo, j and SINRi, j :

SINRi, j (n, f ) = ‖a j ( f )‖2φs j (n, f )
∑

j ′ �= j ‖a j ′( f )‖2φs j ′ (n, f ) + trace (Φu( f ))
(12.19a)

SINRo, j (n, f ) = ψd j, j (n, f )
∑

j ′ �= j ψd j, j ′ (n, f ) + ψv j ( f )
(12.19b)

ΔSINR j (n, f ) =
∣
∣∣wH

j (n, f )a j ( f )
∣
∣∣
2

‖a j ( f )‖2
·

·
∑

j ′ �= j ‖a j ′( f )‖2φs j ′ (n, f ) + trace (Φu( f ))

∑
j ′ �= j

∣∣
∣wH

j (n, f )a j ′( f )
∣∣
∣
2
φs j ′ (n, f ) + wH

j (n, f )Φu( f )w j (n, f )
.

(12.19c)

12.3 Matched Filter

In this section, the matched filter spatial filtering method is presented. Its design
criterion is defined and explained in Sect. 12.3.1, and its performance is analyzed in
Sect. 12.3.2. The MF based spatial filter was first introduced in [15], where it was
implemented in the time domain.

12.3.1 Design

As suggested by its name, the matched filter is designed to match the ATFs of the
desired source (here denoted as the j-th source). Formally, it is defined as:
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wMF
j ( f ) � a j ( f )

‖a j ( f )‖2 (12.20)

where the scaling is designed tomaintain a distortionless response towards the desired
source, i.e.,

(
wMF

j ( f )
)H

a j ( f ) = 1 (12.21)

and therefore d j j ′(n, f ) = s j (n, f ).
This criterion, can be shown optimal in the sense of maximizing the SNR at the

output for the case of a single source contaminated by spatially white noise. Themain
advantage of this spatial filter lies in its simplicity as it is independent of the noise
and interferences properties. In the special case of a desired source signal arriving
from the far-field regime in an anechoic environment, the matched filter reduces to
the well known delay-and-sum (DS) beamformer.

12.3.2 Performance

As stated in the previous section, thematched filter is designed to pass the j-th source
undistorted. Hence, by substituting (12.21) in (12.13) we obtain that the distortion
equals zero

δMF
j (n, f ) = 0 (12.22)

and by following (12.16) the SDR of the j-th source is infinite, i.e.:

SDRMF
o, j (n, f ) → ∞. (12.23)

Since theMF is designed independently of the noise and interference sound fields,
the SIR and SNR improvements are accidental. The spectrogram of the j ′-th inter-
fering source at the output of the j-th output,ψMF

d j, j ′ (n, f ), and the corresponding SIR
improvement of the j-th source with respect to the j ′-th interfering source are:

ψMF
d j, j ′ (n, f ) =‖a j ′( f )‖2

‖a j ( f )‖2
∣∣ρ j j ′( f )

∣∣2 φs j ′ (n, f ) (12.24a)

ΔSIRMF
j j ′ ( f ) = 1

∣
∣ρ j j ′( f )

∣
∣2

(12.24b)

where ρ j j ′( f ) is defined as the normalized projection of the desired source ATF onto
the interfering source ATF (per frequency-bin):
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ρ j j ′( f ) �
aH
j ( f )a j ′( f )

‖a j ( f )‖ · ‖a j ′( f )‖ . (12.25)

Note that from the Cauchy-Schwarz inequality the reciprocal of the SIR improve-
ment expression is bounded by 0 ≤ |ρ j j ′( f )|2 ≤ 1, therefore the SIR improvement is
bounded by 1 ≤ ΔSIRMF

j j ′ ( f ) < ∞. The SIR improvementwill reach its upper-bound
with the j ′-th source being nulled by theMF of the j-th source if their corresponding
ATFs are orthogonal (i.e., ρ j j ′( f ) = 0).

By substituting (12.20) in (12.15) and (12.17c) the spectrum of the noise at the
j-th output, and the corresponding SNR improvement are given by:

ψMF
v j ( f ) =aH

j ( f )Φu( f )a j ( f )

‖a j ( f )‖4 (12.26a)

ΔSNRMF
j ( f ) =‖a j ( f )‖2 · trace (Φu( f ))

aH
j ( f )Φu( f )a j ( f )

. (12.26b)

12.4 Multichannel Wiener Filter

In this section we present the MWF and analyze its performance.

12.4.1 Design

Considering the problem of enhancing the j-th source, recall that the MSE of an ar-
bitrary spatial filter w( f ) is denoted χ j (n, f ) and is defined by (12.12). The MSE is
comprised of the following components: (a) distortion (denoted δ j (n, f )); (b) resid-
ual interferers spectra (denoted ψd j, j ′ (n, f ), for j ′ �= j); (c) residual noise spectrum
(denoted ψv j (n, f )). The MWF is designed to minimize the MSE expression:

wWF
j (n, f ) �argminwχ j (n, f )

=
(∑

j ′ �= j Φc j ′ (n, f ) + Φu( f )
)−1

a j ( f )

aH
j ( f )

(∑
j ′ �= j Φc j ′ (n, f ) + Φu( f )

)−1
a j ( f ) + 1/φs j (n, f )

.

(12.27)

Note that computing the MWF in (12.27) requires knowledge of: (a) power spec-
tral density (PSD) of the desired source (denoted φs j (n, f )); (b) ATFs of the desired
source (denoted a j ( f )); (c) PSD matrices of the interferes (denoted Φc j ′ (n, f ) for
j ′ �= j); (d) PSD matrix of the noise (denoted Φu( f )). The estimation of these pa-
rameters is discussed in details in Sect. 12.6.
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Although, practical methods exist for estimating the required parameters and
implementing the MWF for the single source case, some relaxation is required when
considering the multiple sources case. The long-term averaged SOSMWF is defined
similarly to (12.27) by replacing the instantaneous PSD and PSD matrices of the
desired source and interferers, respectively, with long-term averages:

wWF
j ( f ) =

(∑
j ′ �= j Φc j ′ ( f ) + Φu( f )

)−1
a j ( f )

aH
j ( f )

(∑
j ′ �= j Φc j ′ ( f ) + Φu( f )

)−1
a j ( f ) + 1/φs j ( f )

(12.28)

where

φ̄s j ( f ) � 1
∑

n 1s j (n, f )

∑

n

1s j (n, f )E
[|s j (n, f )|2] (12.29a)

Φc j ′ � 1
∑

n 1s j ′ (n, f )

∑

n

1s j ′ (n, f )E
[
c j ′(n, f )cHj ′ (n, f )

]
(12.29b)

and 1s j ′ (n, f ) denotes an indicator function which equals 1 for time-frequency bins
in which the j ′-th source is active, for j ′ ∈ {1, . . . , J }.

12.4.2 Performance

By substituting (12.27) in (12.19c), the SINR improvement of the MWF can be
shown to be

ΔSINRWF
j (n, f ) = 1

‖a j ( f )‖2

⎛

⎝
∑

j ′ �= j

‖a j ′( f )‖2φs j ′ (n, f ) + trace (Φu( f ))

⎞

⎠

× aH
j ( f )

⎛

⎝
∑

j ′ �= j

φs j ′ (n, f )a j ′( f )aH
j ′ ( f ) + Φu( f )

⎞

⎠

−1

a j ( f ).

(12.30)

Note that the MWF allows to introduce distortion to the desired source, as long as
it minimizes the variance of the total error between the desired source and the MWF
output. The latter distortion may become high for example in low SIR cases when
the number of interfering speech sources is larger than the number of microphones,
i.e., J − 1 > M .
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12.5 Multichannel LCMV

The criterion for designing the LCMV spatial filter is defined in Sect. 12.5.1, and its
performance is analyzed in Sect. 12.5.2.

12.5.1 Design

Let us consider the design of the LCMV spatial filter which enhances the j-th speech
source. The LCMV is designed to satisfy a set of J linear constraints, one for each
speech source, that are defined by:

AH ( f )wLCMV
j ( f ) = g j (12.31)

where

A( f ) �
[
a1( f ), · · · , aJ ( f )

]
(12.32)

is the source ATFs matrix and

g j �
[
01×( j−1) 1 01×(J− j)

]T
(12.33)

is the desired response for each of the sources and wLCMV
j ( f ) denotes the LCMV

spatial filter at the f -th frequency-bin. Note that the desired response for the j-th
source is g j, j = 1, i.e., pass the j-th source undistorted, and the desired response for
all other sources is g j, j ′ = 0 for j ′ �= j , i.e., null all other source.

The LCMV spatial filter is defined as the optimal solution of the following crite-
rion:

wLCMV
j ( f ) �argminww

HΦu( f )w; s.t. AH ( f )w = g j (12.34)

which aims to minimize the power of the noise at the output of the spatial filter
(defined by (12.15)) while satisfying the linear constraints set, defined in (12.31).
The closed-form solution of the optimization problem in (12.34) is given by:

wLCMV
j ( f ) = Φ−1

u ( f )A( f )
(
AH ( f )Φ−1

u ( f )A( f )
)−1

g j . (12.35)

An alternative form for implementing the LCMV, denoted GSC [3], conveniently
separates the tasks of constraining the spatial filter andminimizing the noise variance.
Additionally, the GSC can be efficiently implemented as a time-recursive procedure
which tracks the noise statistics and, adapts to it, and converges to the optimal LCMV
solution.
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The performance and behavior of the LCMV are different than those of theMWF.
On the one hand, theMWF gives equal weight to the three sources of error, i.e. distor-
tion, interfering speakers and noise, when designing the spatial filter the sum of the
three is minimized at the output. On the other hand, the LCMVmaintains the desired
signal undistorted and nulls (zero response) towards the interfering speech signals
at the output. The remaining degrees of freedom (DoF) are designed to minimize
the noise at the output. By doing so, conceptually, the LCMV gives significantly
higher weights to the distortion and interfering speech components compared to the
weight of the noise component. In [16] the multiple speech distortion weighted-
MWF (MSDW-MWF) criterion which generalizes both MWF and LCMV criteria is
defined. The latter enables component specific weights to each of the error sources
at the output of the spatial filter. It extends the SDW-MWF to the multiple speakers
case.

12.5.2 Performance

By design, the LCMV satisfies a set of J linear constraints, one per speech source.
The constraint that corresponds to the j-th desired source is designed to maintain a
distortionless response towards this source, and therefore the distortion equals zero

δLCMV
j (n, f ) = 0 (12.36)

and correspondingly the SDR is infinite

SDRLCMV
o, j (n, f ) → ∞. (12.37)

Similarly, as the rest of the J − 1 constraints are associated with interfering speech
sources and are designed to null them out, their corresponding SIRs are infinite:

ΔSIRLCMV
j j ′ ( f ) → ∞. (12.38)

By substituting (12.35) in (12.15) the noise variance at the output of the LCMV
and the corresponding SNR improvement are:

ψLCMV
v j ( f ) =gH

j

(
AH ( f )Φ−1

u A( f )
)−1

g j (12.39a)

ΔSINRLCMV
j ( f ) = gH

j

(
AH ( f )Φ−1

u A( f )
)−1

g j
∑

j ′ �= j ‖a j ′( f )‖2φs j ′ (n, f ) + trace (Φu( f ))
. (12.39b)
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12.6 Parameters Estimation

12.6.1 Multichannel SPP Estimators

Speech presence probability (SPP) is a fundamental and crucial component of many
speech enhancement algorithms, among them are the spatial filters described in the
previous sections. In the latter, SPP governs the adaptation of various components
which contribute to the calculation of the spatial filter. Specifically, it can be used to
govern the estimation of noise and speech covariance matrices (see Sect. 12.6.2) and
of RTFs (see Sect. 12.6.3).

The problem of estimating SPP is derived from the classic detection problem, also
known as the radar problem, and its goal is to identify the temporal-spectral activity
pattern of speech contaminated by noise. Explicitly, determining if a time-frequency
bin contains a noisy speech component or just noise. Contrary to the VAD problem
where low resolution is sufficient, high-resolution activity estimation in both time
and frequency is required here for proper enhancement. Most single-channel SPP
estimators are based on non-stationarity of speech as opposed to the stationarity of
the noise. However, in low SNR cases the accuracy of the estimation degrades.

When utilized for controlling the gain in single-channel postfiltering, the esti-
mated SPP is “tuned” to have a tendency towards speech. This relates to the single-
channel processing tradeoff between speech distortion and noise reduction, and to the
common understanding that speech distortion and artifacts are more detrimental for
human listeners than increased noise level. In difference to its use for single-channel
enhancement, where the effect of SPP errors (i.e., false-alarms and miss-detections)
is short-term (in time), in spatial processing the consequences of such errors can be
grave and spreads over a longer period. Miss-detections of speech, and its false clas-
sification as noisemight lead to amajor distortion, also known as the self cancellation
phenomenon. On the other hand false-alarms, i.e., time-frequency bins containing
noise which are mistakenly classified as desired speech, result in increased noise
level at the output of the spatial filter, since it is designed to pass them through.

Several contributions extend SPP estimation to utilize spatial information when
using an array of microphones. Here we present some of these methods. In [17]
which is presented in Sect. 12.6.1.1, the single channel Gaussian signalmodel of both
speech and noise is extended to multichannel input, yielding a multichannel SPP. In
Sect. 12.6.1.2, the work of [18], suggesting to incorporate the spatial information
embedded in the direct-to-reverberant ratio (DRR) into the speech a priori probability
(SAP), is presented. Thereby utilizing the coherence property of the speech source,
assuming diffuse noise. Multichannel SPP incorporating spatial diversity can be
utilized to address complex scenarios of multiple speakers. In [19, 20], the authors
extend the previous DRR based SAP and incorporate estimated speaker positions to
distinguish between different speakers, see Sect. 12.6.1.3.
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12.6.1.1 Multichannel Gaussian Variables Model Based SPP

All derivations in this section refer to a specific time-frequency bin (n, f ) and are
replicated for all time-frequency bins. For brevity, the time and frequency indexes
are omitted in the rest of this section. The received microphone signals

x = c + u (12.40)

and the speech and noise components thereof, are modeled as Gaussian random
variables:

c ∼Nc (0,Φc) (12.41a)

u ∼Nc (0,Φu) (12.41b)

where Φc = φsaaH is the covariance matrix of the speech image at the microphone
signals. Consequently, a multichannel Gaussian model is adopted for the noise only,
and noisy speech hypothesis:

x|Hu ∼Nc (0,Φu) (12.42a)

x|Hs ∼Nc (0,Φc + Φu) . (12.42b)

It can be shown [17] that the SPP, defined as:

p � P (Hs |x) (12.43)

can be formulated as

p = Λ

1 + Λ
(12.44)

where Λ is the generalized likelihood ratio, which in our case equals

Λ = 1 − q

q
· 1

1 + tr
{
Φ−1

u Φc
} · exp

{
xHΦ−1

u ΦcΦ
−1
u x

1 + tr
{
Φ−1

u Φc
}

}

. (12.45)

and q is the a priori speech absence probability. Define the multichannel SNR as

ξ � tr
{
Φ−1

u Φc
}

(12.46)

and also define

β � xHΦ−1
u ΦcΦ

−1
u x. (12.47)
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Substituting (12.45), (12.46) and (12.47) in (12.44) yields the multichannel SPP:

p =
{
1 + q

1 − q
· (1 + ξ) · exp

{
− β

1 + ξ

}}−1

. (12.48)

Note that the single-channel SPP (of the first microphone) can be derived as a special
case of the multichannel SPP by substituting

ξ1 =Φc,11

Φu,11
(12.49a)

β1 =γ1 · ξ1 (12.49b)

with γ1 � |x1|2
Φu,11

defined as the posterior SNR and Φc,11, Φu,11 denote the speech and
noise variances at the first microphone, respectively. The multichannel SPP can be
interpreted as a single channel SPP applied to the output of an MVDR spatial filter
designed to minimize the noise while maintaining a distortionless response towards
the speech, with corresponding covariance matrices of Φu and Φc, respectively.

The improvement of using the multichannel SPP depends on the spatial properties
of the noise and of the speech. Two interesting special cases are the spatially white
noise case and the coherent noise case. In the first case of a spatially white noise, the
noise covariance matrix equalsΦu = φuIwhere I is the identity matrix. For this case
the multichannel SNR equals M · ξ1 and is higher than the single-channel SNR by
a factor of the number of microphones (assuming that the SNRs at all microphones
are equal). In the second case of a coherent noise, the noise covariance matrix equals
Φu = auaH

u φu,c + φu,ncI, where au and φu,c are the vector of ATFs relating the coher-
ent interference and the microphone signals and its respective variance. It is further
assumed that the microphones also contain spatially white noise components with
variance φu,nc. In this case, perfect speech detection is obtained, i.e., p|Hs → 1 and
p|Hu → 0 regardless of the coherent noise power, assuming that the ATFs vectors
of the speech and the coherent noise are not parallel and that the spatially white
sensors noise power φu,nc is sufficiently low.

12.6.1.2 Coherence Based SAP

As presented in Sect. 12.6.1.1, computing the SPP requires the speech a priori prob-
ability (SAP), denoted q. The SAP can be either set to a constant [21] or derived
from the received signals and updated adaptively according to past estimates of SPP
and SNR [22, 23] (also known as the decision-directed approach). In [19] the mul-
tichannel generalization of the SPP (see Sect. 12.6.1.1 and [17]) is adopted and it is
proposed to incorporate coherence information in the SAP.

Let us consider a scenario where a single desired speech component contami-
nated by a diffuse noise is received by a pair of omnidirectional microphones. The
diffuse noise field can be modeled as an infinite number of equal power statistically
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independent interferences uniformly distributed over a sphere surrounding the mi-
crophone array. A well known result [24] is that the coherence of diffuse noise
components received by a pair of microphones is

γdiff(, λ) = sinc

(
2π

λ

)
(12.50)

were λ is the wavelength and  is the microphones spacing. The direct to diffuse
ratio (DDR) is defined as the SNR in this case, i.e., the power ratio of the directional
speech received by the microphone and the diffuse noise. Heuristically, high and low
DDR values are transformed into low and high SAP, respectively. The estimation of
the DDR is based on a sound field model where the sound pressure at any position
and time-frequency bin is modelled as a superposition of a direct sound represented
by a single monochromatic plane wave and an ideal diffuse field, for more details
please refer to [19, 25]. The DDR is estimated by:

Γ = Re

{
γdiff − γ̂

γ̂ − exp(jθ̂ )

}
(12.51)

where

γ �
E

[
x1x∗

2

]

√
E

[|x1|2
] · E [|x2|2

] (12.52)

is the coherence between the microphone signals and θ � ∠
(
c1 · c∗

2

)
is the phase

between the speech components received by the microphones. The coherence is
computed from estimates of the auto-PSDs and cross-PSD of the microphones (see
Sect. 12.6.2), and the phase θ is approximated from the phase of the cross-PSD by:

θ̂ = ∠
(
E

[
x1x

∗
2

])
(12.53)

assuming that both SNR and DDR are high.

12.6.1.3 Multiple Speakers Position Based SPP

Consider the J speakers scenario in which the microphone signals can be formulated
as:

x =
J∑

j=1

c j + u. (12.54)
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In [26], the authors propose to use a MWF for extracting a desired source from a
multichannel convolutive mixture of sources. By incorporating position estimates
into the SPP and classifying the dominant speaker per time-frequency point, the
“interference” components’ PSD matrix, comprising noise and interfering speakers,
and the desired speaker components’ PSD matrix are estimated and utilized for
constructing a spatial filter. Speaker positions are derived by triangulation of DOA
estimates obtained fromdistributed sub-arrays ofmicrophoneswith knownpositions.

Individual sources SPPs are defined as:

p j � p
(
Hs j |x

) = p
(
Hs j |x,Hs

)
p (12.55)

whereHs j denotes the hypothesis that the j-th speaker is active (per time-frequency
point), and p is the previously defined SPP (for any speaker activity).

The conditional SPPs given the microphone signals are replaced by conditional
SPPs given an estimate position of the dominant active speaker, denoted Θ̂ , i.e., it
is assumed that:

p
(
Hs j |Θ̂,Hs

)
≈ p

(
Hs j |x,Hs

)
. (12.56)

The estimated position, given that a specific speaker is active, is modeled as amixture
of Gaussian variables centered at the sources’ positions:

p
(
Θ̂|Hs

)
=

J∑

j=1

π jN
(
Θ̂;μ j ,Ω j

)
(12.57)

where μ j , Ω j and π j are the mean, covariance and mixing coefficient of Gaussian
vector distribution which corresponds to the estimated position of the j-th source, for
j = 1, . . . , J . The parameters of the distribution of Θ̂ are estimated by an expectation
maximization (EM) procedure given a batch of estimated positions. For a detailed
explanation please refer to [26].

This work is further extended in [19], where aMWF is designed to extract sources
arriving from a predefined “spot”, i.e., a bounded area, while suppressing all other
sources outside of the spot. This method is denoted by spotforming.

12.6.2 Covariance Matrix Estimators

The noise covariancematrix can be estimated by recursively averaging instantaneous
covariance matrices weighted according to the SPP:

̂Φu (n, f ) =λ′
u(n, f )̂Φu (n − 1, f )

+ (
1 − λ′

u(n, f )
)
x(n, f )xH (n, f ). (12.58)
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where

λ′
u(n, f ) � (1 − p(n, f )) λu + p(n, f ) (12.59)

is a time-varying recursive averaging factor and λu is selected such that its corre-
sponding estimation period ( 1

1−λu
frames) is shorter than the stationarity time of the

noise. Alternatively, a hard binary weighting, obtained by applying a threshold to the
SPP, can be used instead of the soft weighting.

The hypothesis that speaker j is present and the corresponding SPP are denot-
ed in Sect. 12.6.1.1 as Hs j (n, f ) and p j (n, f ), respectively. Similarly to (12.58),
the covariance matrix of the spatial image of source j , denoted Φc j (n, f ), can be
estimated by

̂Φc j (n, f ) = λ′
c j (n, f )̂Φc j (n − 1, f )

+ (1 − λ′
c j (n, f ))(x(n, f )xH (n, f ) − ̂Φu (n − 1, f )) (12.60)

where

λ′
c j (n, f ) �

(
1 − p j (n, f )

)
λc + p j (n, f ) (12.61)

is a time-varying recursive-averaging factor, and λc is selected such that its cor-
responding estimation period ( 1

1−λc
frames) is shorter than the coherence time of

the AIRs of speaker j , i.e. the time period over which the AIRs are assumed to be
time-invariant. Note that: (1) usually the estimation period is longer than the speech
nonstationarity time, therefore, although the spatial structure of Φc j (n, f ) is main-
tained, the estimated variance is an average of the speech variances over multiple
time periods, denoted φ̄s j (n, f ), rather than φs j (n, f ), the actual time-varying vari-

ance of the speaker ; (2) the estimate ̂Φc j (n, f ) keeps its past value when speaker j
is absent.

12.6.3 Procedures for Semi-blind RTF Estimation

Two common approaches for RTF estimation are the covariance subtraction [27, 28]
and the covariance whitening [11, 29] methods. Here, for brevity we assume a single
speaker scenario. Both of these approaches rely on estimated noisy speech and noise-
only covariance matrices, i.e. ̂Φx j (n, f ) (where Φx j (n, f ) = Φc j (n, f ) + Φu( f ))

and ̂Φu(n, f ). Given the estimated covariance matrices, covariance subtraction esti-
mates the speaker RTF by

ã j,CS( f ) � 1

iH1 (̂Φc j (n, f ) − ̂Φu(n, f ))i1
(̂Φc j (n, f ) − ̂Φu(n, f ))i1 (12.62)
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where i1 = [ 1 01×M−1 ]T is an M × 1 selection vector for extracting the component
of the reference microphone, here assumed to be the first micrphone.

The covariance whitening approach estimates the RTF by: (1) applying the gen-
eralized eigenvalue decomposition (GEVD) to ̂Φx j (n, f ) with ̂Φu(n, f ) as the
whitening matrix; (2) de-whitening the eigenvector corresponding to the strongest
eigenvalue, denoted ȧ j ( f ), namely ̂Φu(n, f )ȧ j ( f ); (3) normalizing the de-whitened
eigenvector by the reference microphone component. Explicitly:

ã j,CW( f ) � (iH1 ̂Φu(n, f )ȧ j ( f ))
−1

̂Φu(n, f )ȧ j ( f ). (12.63)

A preliminary analysis and comparison of the covariance subtraction and covariance
whitening methods can be found in [30].

Other methods utilize the speech nonstationarity property, assuming that the noise
has slow time-varying statistics. In [10], the problem of estimating the RTF of micro-
phone i is formulated as a least squares (LS) problemwhere the l-th equation utilizes
φ̂l
xi x1 (f), the estimated cross-PSD of microphone i and the reference microphone in

the l-th time segment. This cross-PSD satisfies:

φ̂l
x j,i1( f ) = ã j,i ( f )φ̂

l
x j,11( f ) + φ̂u̇i,x j1( f ) + εlj,i ( f ) (12.64)

where we use the relation x(n, f ) = ã j ( f )x1(n, f ) + u̇(n, f ). The unknowns are
ã j,i ( f ), i.e. the required RTF, and φ̂u̇i,x j1( f ), which is a nuisance parameter. εlj,i ( f )
denotes the error term of the l-th equation. Multiple LS problems, one for each
microphone, are solved for estimating the vector RTF. Note that, the latter method,
also known as the nonstationarity-based RTF estimation, does not require a prior
estimate of the noise covariance, since it simultaneously solves for RTF and the
noise statistics. Similarly, a weighted least squares (WLS) problem with exponential
weighting can be defined and implemented using a recursive least squares (RLS)
algorithm [31]. Considering speech sparsity in the STFT domain, in [28] the SPPs
were incorporated into the weights of theWLS problem, resulting in a more accurate
solution.

12.7 Examples

In the following section some simple examples are used to present the behaviors
and differences between the MF, MWF and LCMV spatial filters. The case of a
narrowband signal in an anechoic environment is presented in Sect. 12.7.1, and the
case of two speech sources in a reverberant environment is presented in Sect. 12.7.2.
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12.7.1 Narrowband Signals at an Anechoic Environment

Consider the case of J = 2 narrowband sources occupying the f -th frequency-bin
propagating in an anechoic environment and receivedby auniform linear array (ULA)
array comprising M microphones with microphone spacing . Define a spherical-
coordinate system with the origin coincides with the center of the ULA, and rotated
such that the ULA is placed along the elevation angle θ = ±90◦ and azimuth angle
of φ = 0◦. The sources are positioned in the far-field at a large distance from the
microphones and on the same plane as the microphones. The DOA of the sources
with respect to the microphones array are denoted θ j for j = 1, 2. By adopting the
far-field free-space propagation model the ATF vectors of the sources are given by:

a0j ( f ) =
[
1, exp

(
−j2π

 sin(θ j)
λ

)
, · · · , exp

(
−j2π

(M−1) sin(θ j)
λ

)]T
(12.65)

for j = 1, 2 where λ is the wavelength corresponding to the f -th frequency-bin. The
wavelength can be expressed as:

λ � νF

f fs
(12.66)

with the continuous frequency which corresponds to the discrete frequency-bin f is
f fs
F where fs is the sample-rate, F is the length of STFT window and ν ≈ 343 m/s
is the sound velocity. An additive white Gaussian noise with covariance matrix of

Φ0
u(n, f ) = φuI. (12.67)

is contaminating the received microphone signals. The setup of the sources and
microphones is depicted in Fig. 12.1. Note that the ATF vector is independent of the
azimuth angle φ, and therefore the beampattern and all performance measures of
any spatial filter in this case will have a cylindrical symmetry. Next, we compare the
performance of various spatial filters that are applied in this problem, namely MF,
MWF and LCMV. The performance criteria that we use are SNR, SIR, SINR and
SDR which are evaluated empirically from the signals. For the MF spatial filter we
derive simplified expressions for the performance criteria, whereas for theMWF and
the LCMV spatial filters we use the previously defined generic scenario expressions.

Let us revisit the performance criteria of the MF for this case. By substituting the
ATF vectors in (12.65), the scalar product of the j-th and j ′-th ATF vectors, denoted
by ρ j j ′( f ) in (12.25), can be expressed as:
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Fig. 12.1 Setup of the
narrowband signal at an
anechoic environment
example

ρ0
j j ′ ( f ) =

M∑

i=1

exp

(

j2π
(i − 1) 

(
sin

(
θ j

) − sin
(
θ j ′

))

λ

)

=M · diric
(

2π

(
sin

(
θ j

) − sin
(
θ j ′

))

λ

)

· exp
(

jπ
(M − 1) 

(
sin

(
θ j

) − sin
(
θ j ′

))

λ

)

(12.68)

where

diric

(

2π

(
sin

(
θ j

) − sin
(
θ j ′

))

λ

)

�
sin

(
Mπ

(sin(θ j)−sin(θ j ′))
λ

)

M · sin
(
π

(sin(θ j)−sin(θ j ′))
λ

) (12.69)

is the Dirichlet function which in general has a period of 4π . Note that
∣∣∣ρ0

j j ′( f )
∣∣∣
2 =

M2 for


(
sin

(
θ j

) − sin
(
θ j ′

))

λ
= k (12.70)

where k = 0,±1,±2, . . . is any integer number. Next, since the sin (·) is bounded
by −1 ≤ sin (·) ≤ 1 the left-hand side of (12.70) is bounded by:

−2

λ
≤ 

(
sin

(
θ j

) − sin
(
θ j ′

))

λ
≤ 2

λ
. (12.71)

Hence, in order to avoid the spatial aliasing phenomenon, where undesired direc-
tions are passed through the spatial filter without any attenuation, the well-known
constraint on the ratio between microphones spacing and the wavelength is given by:



λ
<

1

2
. (12.72)

Furthermore, note that for
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M

(
sin

(
θ j

) − sin
(
θ j ′

))

λ
= k (12.73)

for any integer k non-divisible by M with the a zero remainder, i.e. of the form

k �= ιM where ι is an integer, we obtain that
∣∣∣ρ0

j j ′( f )
∣∣∣
2 = 0. Explicitly, in the range

of −π
2 ≤ θ j ′ ≤ π

2 there are M − 1 such DOAs that are perfectly attenuated by the
MF, also referred to as nulls in the beampattern. By replacing ρ j j ′( f )with ρ0

j j ′( f ) in
the power of the residual j ′-th interference at the j-th output, see (12.24a), and the
corresponding SIR improvement of the MF, see (12.24b), the following simplified
expressions are obtained:

ψ
0,MF
d j, j ′ (n, f ) =diric2

(

2π

(
sin

(
θ j

) − sin
(
θ j ′

))

λ

)

φs j ′ (n, f ) (12.74a)

ΔSIR0,MF
j j ′ ( f ) =

(

diric2
(

2π

(
sin

(
θ j

) − sin
(
θ j ′

))

λ

))−1

. (12.74b)

Considering the spatially non-correlated noise properties, see (12.67), and substi-
tuting it in the power of the noise at the output of the j-th source MF, see (12.26a),
and the corresponding SNR improvement, see (12.26b), the latter can be expressed
in this special case as:

ψ0,MF
v j ( f ) = φu( f )

M
(12.75a)

ΔSNR0,MF
j ( f ) = M. (12.75b)

The corresponding criteria for the MWF and multichannel LCMV are more compli-
cated, and their derivation is omitted.

We compare the spatial filters in a specific scenario of: (a) the microphone array
comprises of M = 4 microphones with a microphone spacing of  = 10 cm; (b) the
desired source is the first source which arrives from θ1 = 0◦. In the following, we
investigate the performance dependency on the parameters: (a) SNRand interference-
to-noise ratio (INR); (b) interference DOA, θ2; (c) frequency. For simplicity, we
consider two subsets of the above mentioned parameters.

In the first parameters subset, the interference DOA and frequency are set to
θ2 = 10o and f · fs

F = 1715Hz, corresponding to 
λ

= 1
2 (in other figures we explore

the performance depending on the frequency or wavelength). For this parameters
selection the performance measures of the spatial filters are compared as a function
of SNR and INR values that are selected within the range of [−20 dB, 30 dB]. The
improvements in SNR, SIR and SINR and the SDR are depicted in Fig. 12.2a–d. We
can observe in these figures the consequences of the different design criteria: (a) the
MF is designed to maximized the SNR improvement with a spatially white noise
(as in this example) and obtains the highest SNR improvement in Fig. 12.2a; (b) the
LCMV is designed to null out the interfering sources and therefore obtains an infinite
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(d) SDR of the MWF.

Fig. 12.2 Performance comparison depending on input SNR and INR of various spatial filters
in the narrowband case with 2 speech sources propagating in freespace and spatially white noise
received by a ULA comprising 4 microphones

SIR improvement, which is of course higher than the finite SIR improvement of the
other methods that are depicted in Fig. 12.2b; (c) the MWF is designed to maximize
the SINR improvement and this is evidently seen in Fig. 12.2c. The MWF aims to
maximize the SINR improvement and thus minimize the sum of interference and
noise powers at its output. In the limit cases of INR [dB] → −∞ where the interfer-
ence power is negligible and INR [dB] → ∞ where the noise power is negligible,
the MWF coincides with the MF and the LCMV, respectively. This can be clearly
seen in Fig. 12.2a–c, where the performance of the MWF converges to that of the
MF and LCMV for INR [dB] → −∞ and INR [dB] → ∞, respectively. The MF
and LCMV spatial filters are distortionless by design at any input SNR and INR
levels, and therefore we do not depict their SDR. The SDR at the output of the MWF
as a function of the input SNR and INR is depicted in Fig. 12.2d. The higher is the
input SNR the higher is the relative weight of the distortion component compared
to the interference and noise components in the MSE in (12.27), which is the MWF
design criterion and correspondingly the higher is the SDR of the MWF.
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Fig. 12.3 Performance comparison of various spatial filters applied in the narrowband case (at
frequency 1715Hz), where 2 speech sources propagating in freespace and a spatially white additive
noise are received by a ULA comprising 4 microphones. The desired source arrives from θ1 = 0◦
and the interfering source arrives from θ2

∫
[−90◦, 90◦]

In the second parameters subset, the input SNR and INR are both set to 20 dB and
the interference DOA and frequency are selected within the range of [−90◦, 90◦] and
[0Hz, 8000Hz], respectively. The SNR, SIR and SINR improvement as well as SDR
for frequency 1715Hz (for which 

λ
= 0.5) depending the interference source DOA

are depicted in Fig. 12.3 for the various spatial filters. As in the previous example
and regardless of the DOA of the interference: (a) the MF is optimal in the sense
of SNR improvement for a spatially white noise, see Fig. 12.3a; (b) the LCMV is
optimal in the sense of SIR improvement, see Fig. 12.3b, as it completely nulls out
the interference and obtains infinite SIR improvement, whereas for MF and MWF
there is some residual interference at the output for almost all interference DOAs;
(c) the MWF is optimal in the sense of SINR improvement, see Fig. 12.3c, although
the SINR improvement of the LCMV is very similar for most interference DOAs.
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The main difference between the LCMV and MWF can be observed when the
interference DOA, θ2, is close to that of the desired source, θ1 = 0◦. The LCMV,
which is designed to null the interference, “struggles” to satisfy its constraints as the
interference and desired source DOAs become closer. As a result, the SNR improve-
ment (which is a secondary objective for the LCMV) and correspondingly the SINR
improvement are degraded (see Fig. 12.3a, c), and might even become negative (i.e.
the spatial noise power at the output might become higher than the noise power at the
input and in extreme cases might even become higher than the noise an interference
power at the input). Furthermore, the LCMV is not defined for the singular case of
θ2 = θ1. In this specific case, the MWF is not able to improve the SIR, however, it
is able to improve the SNR. However, note in Fig. 12.3 that as the interference and
desired source DOAs become close the SDR degrades. This is because the MWF
converges in this case to the MF scaled by a single channel Wiener filter, which
introduces more distortion as interference and noise power increases.

Another interesting observation in the SIR improvement (see Fig. 12.3b) is that for
some DOAs (θ2 ≈ ±30◦) the SIR improvement of the MWF and MF also converge
to infinity (as the optimal LCMV). The reason for that is that for these DOAs the
interfering and desired ATF vectors are orthogonal (i.e. ρ0

12( f ) = 0, see (12.68)) and
the corresponding SIR improvement is also infinite.

The SINR improvement of the MF and MWF depending on interference DOA
and frequency are depicted in Figs. 12.4a, b. Clearly the SINR improvement of the
MWF outperforms that of the MF. For brevity we omit the SINR improvement of
the LCMV as it is similar to the improvement of the MWF almost always, except for
when the interference DOA approaches the desired source DOA. The red regions in
the SINR improvement of the MF in Fig. 12.4a, similarly to the peaks in the SINR
improvement of the MF in Fig. 12.3c, correspond to cases where the desired source
and interference ATF vectors are orthogonal. Note that positions of these peaks vary
over frequency. The blue regions in the SINR improvement of the MF in Fig. 12.4a
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Fig. 12.4 SINR improvement depending on interference DOA and frequency of various spatial
filters in the narrowband case with 2 speech sources propagating in freespace and spatially white
noise received by a ULA comprising 4 microphones
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(except for the one around θ2 ≈ θ1) correspond to the spatial aliasing phenomenon.
When the interference arrives from the DOA of the desired source or from a DOA
which corresponds to a grating lobe of the spatial filter, it cannot be attenuatedwithout
degrading the desired source. Hence, the SINR improvement at these DOA is close to
zero (blue color). Note that the positions of the grating lobes vary over frequencies.
A similar phenomenon can be seen when observing the SINR improvement of the
MWF in Fig. 12.4b. For the MWF, however, the areas in which the SINR is close to
zero are narrower than in the MF, and the areas of high SINR improvement cover
almost the entire interference DOA and frequency ranges.

12.7.2 Speech Signals at a Reverberant Environment

In this section we compare the performance of the various spatial filters in a scenario
simulated by convolving recorded speech signals from theWSJCAM0 database [32]
with AIRs drawn from a database collected in reverberant enclosures [33]. A ULA
comprising M = 4 microphones with spacing of  = 8 cm is picking up signals of
J = 2 speakers, a female and a male, located at a distance of 1m from the array at
DOAs of −90◦ and 75◦, respectively, as well as diffuse noise that is generated using
a diffuse noise simulator [34]. The SIR is set to 0 dB and the SNR is set to 15 dB.

The signals are transformed to the STFT domain, where MF, MWF and LCMV
are designed to enhance the first speaker. Speech-free time-segments and single-talk
time-segments of each of the speech sources are used as training segments fromwhich
the required parameters for the various spatial filters are estimated: (a) RTFs vec-
tor ã1( f ) of the first source for theMF; (b) RTFs vector ã1( f ) and spectrumφs1( f ) of
the first source, covariancematrix of the second sourceΦc2( f ) and covariancematrix
of the noise Φu( f ) for the MWF; (c) RTF vectors of both sources ã1( f ),ã2( f ) and
covariance matrix of the noise Φu( f ) for the LCMV. The output of the spatial filter
is transformed back to the time-domain, yielding the enhanced signal. A reference
microphone and outputs of the various spatial filters decomposed to their various
components (desired speech, interfering speech and noise) are depicted in Fig. 12.5.
The corresponding spectrograms of the reference microphone and the outputs of
the spatial filters are depicted in Fig. 12.6. The performance measures of each of the
spatial filters per frequency-bin in terms of SNR, SIR and SINR improvement as well
as SDR are depicted in Fig. 12.7. Considering the SIR and SINR improvements, it is
clear fromFigs. 12.5 and 12.7b, c, that theMWF is slightly better than the LCMVand
that both are significantly better than the MF. While the MWF is expected to obtain
the maximal SINR improvement, it is surprising that it outperforms the LCMV in
terms of SIR improvement as well. The reason for that lies in the fact that LCMVdes-
ignates a single constraint for nulling the interfering source, thus assuming a rank-1
model for the interference, while the MWF utilizes the complete covariance matrix
of the interfering source, thus allowing to reduce interferences with higher ranks.
Although, theoretically, the covariance matrix of coherent point sources is rank-1,
in practice, finite window lengths and variations in the AIR (AIR might vary even
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Fig. 12.5 Input and output signals of various spatial filters in a simulated scenario with J = 2
speech signals contaminated by diffuse noise and received by a M = 4 microphones array in a
reverberant environment. The signals are decomposed to their components: (1) desired speaker
(blue); (2) interfering speaker (green); and (3) noise (red)

when the source is static due to slight variations in the enclosure) increase the matrix
rank. Considering the SNR improvement, note that the MWF and LCMV are better
than the MF in frequencies lower than 1000Hz, and that for higher frequencies the
MF is better than the MWF and LCMV. This result is attributed to the diffuse noise
properties. In low frequencies, where 

λ
< 1

2 the diffuse noise has a strong coherent
component which the data-dependent filters, MWF and LCMV, reduce efficiently. In
higher frequencies the diffuse noise becomes spatially uncorrelated, in which case
the MF is optimal and outperforms the MWF and LCMV which utilize their DoF to
reduce the interfering speech.
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(a) Reference microphone.
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(b) Source 1 at reference micro-
phone.
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(c) Source 2 at reference micro-
phone.
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(d) MF output.
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(e) MWF output.
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(f) LCMV output.

Fig. 12.6 Input and output spectrograms of various spatial filters aiming to enhance the first source
in a simulated scenario with J = 2 speech signals contaminated by diffuse noise and received by a
M = 4 microphones array in a reverberant environment. Input spectrogram of the reference signal
and its speech components are respectively depicted in a, b, c and the outputs of the MF, MWF and
LCMV spatial filters are respectively depicted in d, e, f

12.8 Summary

MMSE based criteria for designing beamformers, also referred to as spatial-filters,
can be used in noise reduction and speech separation tasks. The following methods
were presented and analyzed: (1) the MF, which maximizes the SNR at the out-
put without distorting the speech signal, assuming a spatially white noise; (2) the
MWF, which minimizes the MSE between the output signal and the desired speech
signal, and assigns equal weights to the desired speech distortion, the variance of
the interfering speakers at the output, and the noise variance at the output; and (3)
the LCMV, which minimizes the noise variance at the output while satisfying a set
of constraints designed to maintain the desired speech undistorted and to null out
the interfering speakers. Estimation methods for implementing the various beam-
formers are surveyed. Specifically, methods for estimating the RTFs of speakers and
for estimating the spatial covariance matrices of the noise and of the various speaker
components were presented. The estimation methods are governed by the multichan-
nel SPP, which was also presented. Some simple examples of applying the various
beamformers to simulated narrowband signals in an anechoic environment and to
speech signals in a real reverberant environment were presented and discussed.
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Fig. 12.7 Performance criteria per frequency-bin of various spatial filters in a simulated scenario
with J = 2 speech signals contaminated by diffuse noise and received by a M = 4 microphones
array in a reverberant environment
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Chapter 13
Musical-Noise-Free Blind Speech Extraction
Based on Higher-Order Statistics Analysis

Hiroshi Saruwatari and Ryoichi Miyazaki

Abstract In this chapter, we introduce a musical-noise-free blind speech extrac-
tion method using a microphone array for application to nonstationary noise. In the
recent noise reduction study, it was found that optimized iterative spectral subtrac-
tion (SS) results in speech enhancement with almost nomusical noise generation, but
this method is valid only for stationary noise. The method presented in this chapter
consists of iterative blind dynamic noise estimation by, e.g., independent compo-
nent analysis (ICA) or multichannel Wiener filtering, and musical-noise-free speech
extraction by modified iterative SS, where multiple iterative SS is applied to each
channel while maintaining the multichannel property reused for the dynamic noise
estimators. Also, in relation to the method, we discuss the justification of applying
ICA to signals nonlinearly distorted by SS. From objective and subjective evalua-
tions simulating a real-world hands-free speech communication system, we reveal
that the method outperforms the conventional speech enhancement methods.

13.1 Introduction

In the past few decades, many applications of speech communication systems have
been investigated, but it is well known that these systems always suffer from the
deterioration of speech quality under adverse noise conditions. In a study of speech
enhancement, many types of statistical signal estimation methods have been pro-
posed, e.g., the maximum likelihood estimator of short-time spectral amplitude
(spectral subtraction (SS) [1–4]), the minimum mean-square error estimator of the
complex-valued spectrum (Wiener filtering (WF) [5]), the Bayesian estimator of
short-time spectral amplitude (the minimum mean-square error short-time spec-
tral amplitude (MMSE-STSA) estimator [6] and theminimum mean-square error
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log-spectral amplitude estimator (MMSE-LSA) [7]), and the MAP estimator [8]. SS
is the commonly used noise reduction method that has high noise reduction per-
formance with low computational complexity. However, in this method, artificial
distortion, referred to as musical noise, arises owing to nonlinear signal process-
ing, leading to a serious deterioration of sound quality [9, 10]. Therefore, to assess
and control the generation of musical noise, several studies were conducted using
higher-order statistics [11–13].

To achieve high-quality noise reduction with low musical noise, an iterative SS
method has been proposed [14–16]. This method is performed through signal pro-
cessing, in which weak SS processes are iteratively applied to the input signal. Also,
Inoue et al. have reported the very interesting phenomenon that this method with
appropriate parameters gives equilibrium behavior in the growth of higher-order
statistics with increasing number of iterations [17]. This means that almost no musi-
cal noise is generated even with high noise reduction, which is one of the most
desirable properties of single-channel nonlinear noise reduction methods. Following
this finding, Miyazaki et al. have derived the optimal parameters satisfying the no-
musical-noise-generation condition by analysis based on higher-order statistics [18].
We have defined this method as musical-noise-free speech enhancement, where no
musical noise is generated even for a high signal-to-noise ratio (SNR) in iterative SS.
In this chapter, firstly, we explain the overview of musical-noise-free iterative SS.

In conventional iterative SS, however, it is assumed that the input noise signal
is stationary, meaning that we can estimate the expectation of noise power spectral
density from a time-frequency period of a signal that contains only noise. In con-
trast, under real-world acoustical environments, such as a nonstationary noise field,
although it is necessary to dynamically estimate noise, this is very difficult. There-
fore, in this chapter, secondly, we describe an advanced iterative signal extraction
method using amicrophone array that can be applied to nonstationary noise [19]. This
method consists of iterative blind dynamic noise estimation by independent compo-
nent analysis (ICA) [20–23] and musical-noise-free speech extraction by modified
iterative SS, where multiple iterative SS is applied to each channel while maintaining
the multichannel property reused for ICA.

Thirdly, in relation to the above-mentioned method, we discuss the justification
of applying ICA to signals nonlinearly distorted by SS. We theoretically clarify that
the degradation in ICA-based noise estimation obeys an amplitude variation in room
transfer functions between the target user and microphones. Next, to reduce speech
distortion, we introduce a channel selection strategy into ICA, where we automat-
ically choose less varied inputs to maintain the high accuracy of noise estimation.
Furthermore, we introduce a time-variant noise power spectral density (PSD) estima-
tor [24] instead of ICA to improve the noise estimation accuracy. From objective and
subjective evaluations, it is revealed that the presented method outperforms various
types of the conventional methods.

Note that there exist many investigations for musical noise assessment using
higher-order statistics [25–29] and the study on musical-noise-free speech enhance-
ment was carried out for several methods except for iterative SS, namely, iterative
WF [30], the iterative MMSE-STSA estimator [31] and the iterative generalized



13 Musical-Noise-Free Blind Speech Extraction … 335

MMSE-STSA estimator [32]. In this chapter, however, only SS-based method is
dealt with because of ease in the mathematical derivations and readers’ understand-
ing. Also, the theoretical analysis and results in ICA-based noise estimation are valid
for other independent linear factor analysis algorithms, e.g., independent vector anal-
ysis [33–35] and independent low-rank matrix analysis [36–39]. However, we focus
our attention on only ICA in this chapter owing to its simpleness.

13.2 Single-Channel Speech Enhancement
with Musical-Noise-Free Properties

13.2.1 Conventional Non-iterative Spectral Subtraction

We apply a short-time discrete Fourier transform (DFT) to the observed signal,
which is a mixture of target speech and noise, to obtain the time-frequency signal.
We formulate conventional non-iterative SS [1] in the time-frequency domain as
follows:

Y ( f, τ ) =
⎧
⎨

⎩

√|X ( f, τ )|2 − βE[|N |2] exp( jarg(X ( f, τ )))

(if |X ( f, τ )|2 > βE[|N |2]),
ηX ( f, τ ) (otherwise),

(13.1)

where Y ( f, τ ) is the enhanced target speech signal, X ( f, τ ) is the observed signal,
f denotes the frequency subband, τ is the frame index, β is the oversubtraction
parameter, and η is the flooring parameter. Here, E[|N |2] is the expectation of the
random variable |N |2 corresponding to the noise power spectra. In practice, we can
approximate E[|N |2] by averaging the observed noise power spectra |N ( f, τ )|2 in
the first K -sample frames, where we assume the absence of speech in this period and
noise stationarity.However, this often requires high-accuracyvoice activity detection.
In addition, many methods for dynamic estimation of the expectation of the noise
PSD have been proposed [4], but always suffered from difficulty in rapidly changing
nonstationary noise.

Generally speaking, conventional spectral subtraction suffers from the inherent
problem ofmusical noise generation. For example, a large oversubtraction parameter
affords a large noise reduction but considerable musical noise is also generated.
To reduce the amount of musical noise generated, we often increase the flooring
parameter, but this decreases noise reduction; thus, there exists a trade-off between
noise reduction and musical noise generation.

13.2.2 Iterative Spectral Subtraction

In an attempt to achieve high-quality noise reduction with low musical noise, an
improved method based on iterative SS was proposed in previous studies [14–16].
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Fig. 13.1 Block diagram of
iterative SS Noise

Speech

This method is performed through signal processing, in which the followingweak SS
processes are recursively applied to the noise signal (see Fig. 13.1). (I) The average
power spectrum of the input noise is estimated. (II) The estimated noise prototype
is then subtracted from the input with the parameters specifically set for weak sub-
traction, e.g., a large flooring parameter η and a small subtraction parameter β. (III)
We then return to step (I) and substitute the resultant output (partially noise reduced
signal) for the input signal.

13.2.3 Modeling of Input Signal

In this chapter, we assume that the input signal X in the power spectral domain is
modeled using the gamma distribution as

P(x) = xα−1

Γ (α)θα
exp(−x/θ), (13.2)

where x ≥ 0, α > 0, and θ > 0. Here, α is the shape parameter, θ is the scale
parameter, and Γ (α) is the gamma function, defined as

Γ (α) =
∫ ∞

0
tα−1 exp(−t)dt. (13.3)
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If the input signal is Gaussian noise, its complex-valued DFT coefficients also
have the Gaussian distributions in the real and imaginary parts. Therefore, the p.d.f.
of its power spectra obeys the chi-square distribution with two degrees of freedom,
which corresponds to the gamma distribution with α=1. Also, if the input signal is
super-Gaussian noise, the p.d.f. of its power spectra obeys the gamma distribution
with α<1. We make assumption here that θ is assumed to be the deterministically
known noise PSD and estimation artifacts of the noise PSD are not taken into account
in this chapter. Also, the estimation of α for real-world (short-term) data is explained
in, e.g., Ref. [40].

13.2.4 Metric of Musical Noise Generation: Kurtosis Ratio

We speculate that the amount of musical noise is highly correlated with the number
of isolated power spectral components and their level of isolation (see Fig. 13.2).
In this chapter, we call these isolated components tonal components. Since such
tonal components have relatively high power, they are strongly related to the weight
of the tail of their probability density function (p.d.f.). Therefore, quantifying the
tail of the p.d.f. makes it possible to measure the number of tonal components.
Thus, we adopt kurtosis, one of the most commonly used higher-order statistics, to
evaluate the percentage of tonal components among all components. A larger kurtosis
value indicates a signal with a heavy tail, meaning that the signal has many tonal
components. Kurtosis is defined as

kurt = μ4

μ2
2

, (13.4)

where “kurt” is the kurtosis and μm is the mth-order moment, given by

μm =
∫ ∞

0
xm P(x)dx, (13.5)

Fig. 13.2 Example of generation of tonal component after signal processing, where input signal is
speech with white Gaussian noise and output is processed signal by SS
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Fig. 13.3 Relation between
kurtsis ratio (in log scale)
and human-perceptual score
of degree of musical noise
generation [11]

where P(x) is the p.d.f. of the random variable X . Note that μm is not a central
moment but a raw moment. Thus, (13.4) is not kurtosis in the mathematically strict
definition but a modified version; however, we still refer to (13.4) as kurtosis in this
chapter.

In this study, we apply such a kurtosis-based analysis to a time-frequency period
of subject signals for the assessment of musical noise. Thus, this analysis should
be conducted during, for example, periods of silence in speech when we evaluate
the degree of musical noise arising in remaining noise. This is because we aim to
quantify the tonal components arising in the noise-only part, which is the main cause
of musical noise perception, and not in the target-speech-dominant part.

Although kurtosis can be used to measure the number of tonal components, note
that the kurtosis itself is not sufficient to measure the amount of musical noise.
This is obvious since the kurtosis of some unprocessed noise signals, such as an
interfering speech signal, is also high, but we do not recognize speech as musical
noise. Hence, we turn our attention to the change in kurtosis between before and after
signal processing to identify only the musical-noise components. Thus, we adopt the
kurtosis ratio as a measure to assess musical noise [11–13]. This measure is defined
as

kurtosis ratio = kurtproc
kurtorg

, (13.6)

where kurtproc is the kurtosis of the processed signal and kurtorg is the kurtosis of
the original (unprocessed) signal. This measure increases as the amount of generated
musical noise increases. In Ref. [11], it was reported that the kurtosis ratio is strongly
correlatedwith the human perception ofmusical noise. Figure13.3 shows an example
of the relation between the kurtsis ratio (in log scale) and a human-perceptual score
of degree of musical noise generation, where we can confirm the strong correlation.
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13.2.5 Musical Noise Generation in Non-iterative Spectral
Subtraction

In conventional non-iterative spectral subtraction, the long-term-averaged power
spectrum of a noise signal is utilized as the estimated noise power spectrum. Then,
the estimated noise power spectrum multiplied by the oversubtraction parameter β

is subtracted from the observed power spectrum. When a gamma distribution is used
to model the noise signal, its mean is αnθn, where αn and θn are the shape and scale
parameters of noise, respectively (the subscript “n” indicates that the parameters
belong to noise). Thus, the amount of subtraction is βαnθn. The subtraction of the
estimated noise power spectrum in each frequency band can be considered as a shift
of the p.d.f. in the zero-power direction, given by

1

θ
αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{

− z + βαnθn

θn

}

, (13.7)

where z is the random variable of the p.d.f. after spectral subtraction.
As a result, negative-power components with nonzero probability arise. To avoid

this, such negative components are replaced by observations that are multiplied by
a positive value η (flooring parameter). This means that the region corresponding
to the probability of the negative components, which forms a section cut from the
original gamma distribution, is compressed by the effect of the flooring, resulting in

1

(η2θn)αnΓ (αn)
zαn−1 exp

{

− z

η2θn

}

. (13.8)

Note that the flooring parameter η is squared in the p.d.f. because the multiplication
of η is conducted in the amplitude spectrum domain (see the second branch in (13.1))
but we now consider its effect in the power spectrum domain.

Finally, the floored components are superimposed on the laterally shifted p.d.f.
Thus, the resultant p.d.f. after spectral subtraction, PSS(z), can be written as

PSS(z) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
θ

αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{
− z+βαnθn

θn

}

+ 1
(η2θn)αnΓ (αn)

zαn−1 exp
{
− z

η2θn

}
(0 ≤ z < βαnη

2θn),

1
θ

αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{
− z+βαnθn

θn

}
(βαnη

2θn ≤ z),

(13.9)

To characterize non-iterative spectral subtraction, the mth-order moment of z is
required. For PSS(z), the mth-order moment is given by
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μSS
m =

∫ ∞

0
zm · PSS(z)dz

=
∫ ∞

0
zm

1

θ
αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{

− z + βαnθn

θn

}

dz

+
∫ βαnη

2θn

0
zm

1

(η2θn)αnΓ (αn)
zαn−1 exp

{

− z

η2θn

}

dz, (13.10)

where z is the random variable of the p.d.f. after spectral subtraction.We now expand
the first term of the right-hand side of (13.10). Here, let t = (z + βαnθn)/θn, then
θndt = dz and z = θn(t − βαn). Consequently,

∫ ∞

0
zm

1

θ
αn
n Γ (αn)

(z + βαnθn)
αn−1 exp

{

− z + βαnθn

θn

}

dz

=
∫ ∞

βαn

θm
n (t − βαn)

m 1

θ
αn
n Γ (αn)

(θnt)
αn−1 exp{−t}θndt

= θm
n

Γ (αn)

∫ ∞

βαn

m∑

l=0

(−βαn)
l Γ (m + 1)

Γ (l + 1)Γ (m − l + 1)
tm−l tαn−1 exp{−t}dt

= θm
n

Γ (αn)

m∑

l=0

(−βαn)
l Γ (m + 1)

Γ (l + 1)Γ (m − l + 1)
Γ (αn + m − l, βαn), (13.11)

where we use the binomial theorem given by

(t + a)m =
m∑

l=0

al
Γ (m + 1)

Γ (l + 1)Γ (m − l + 1)
tm−l , (13.12)

and Γ (a, b) is the upper incomplete gamma function defined as

Γ (a, b) =
∫ ∞

b
ta−1 exp{−t}dt. (13.13)

Next we consider the second term of the right-hand side of (13.10). Here, let t =
z/(η2θn), then η2θndt = dz. Thus,

∫ βαnη
2θn

0
zm

1

(η2θn)αnΓ (αn)
zαn−1 exp

{

− z

η2θn

}

dz

=
∫ βαn

0
(η2θnt)

m 1

(η2θn)αnΓ (αn)
(η2θnt)

αn−1 exp {−t} η2θndt



13 Musical-Noise-Free Blind Speech Extraction … 341

= η2mθm
n

Γ (αn)

∫ βαn

0
tαn−1+m exp {−t} dt

= η2mθm
n

Γ (αn)
γ (αn + m, βαn), (13.14)

where γ (a, b) is the lower incomplete gamma function defined as

γ (a, b) =
∫ b

0
ta−1 exp{−t}dt. (13.15)

As a result, the mth-order moment after spectral subtraction, μSS
m , is a composite of

(13.11) and (13.14), and is given by [17]

μSS
m = θm

n M (αn, β, η,m), (13.16)

where

M (αn, β, η,m) =S (αn, β, η) + η2mF (αn, β, η), (13.17)

S (αn, β,m) =
m∑

l=0

(−βαn)
l Γ (m+1)Γ (αn+m−l, βαn)

Γ (αn)Γ (l+1)Γ (m−l+1)
, (13.18)

F (αn, β,m) =γ (αn+m, βαn)

Γ (αn)
. (13.19)

From (13.4), (13.16), and (13.17), the kurtosis after SS can be expressed as

kurt = M (αn, β, η, 4)

M 2(αn, β, η, 2)
. (13.20)

Using (13.6) and (13.20), we also express the kurtosis ratio as

kurtosis ratio =M (αn, β, η, 4)/M 2(αn, β, η, 2)

M (αn, 0, 0, 4)/M 2(αn, 0, 0, 2)
. (13.21)

Also, as a measure of the noise reduction performance, the noise reduction rate
(NRR) [41], the output SNR minus the input SNR in dB, can be given in terms of a
1st-order moment as [17]

NRR = 10 log10
αn

M (αn, β, η, 1)
. (13.22)
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13.2.6 Musical-Noise-Free Speech Enhancement

In [18], Miyazaki et al. proposed musical-noise-free noise reduction, where no musi-
cal noise is generated even for a high SNR in iterative SS. In the study, some of the
authors discovered an interesting phenomenon that the kurtosis ratio sometimes does
not change even after SS via mathematical analysis based on (13.21) [17]. This indi-
cates that the kurtosis ratio can be maintained at unity even after iteratively applying
SS to improve the NRR, and thus no musical noise is generated owing to the domino-
toppling phenomenon. Following this finding, the authors derived the optimal param-
eters satisfying the musical-noise-free condition [18] by finding a fixed-point status
in the kurtosis ratio, i.e., by solving

M (αn, 0, 0, 4)

M 2(αn, 0, 0, 2)
= M (αn, β, η, 4)

M 2(αn, β, η, 2)
. (13.23)

The inductive result is that the kurtosis ratio never changes even at a large number
of (ideally “infinite”) iterations. In this situation, sufficient noise reduction can be
gained if the NRR improvement in each iteration is even small but positive. This
corresponds to musical-noise-free noise reduction. In summary, we can formulate a
new theorem on musical-noise-free conditions as follows.
(I) Fixed-point kurtosis condition: The kurtosis should be equal before and after
spectral subtraction in each iteration. This corresponds to a fixed point for the 2nd-
and 4th-order moments.
(II) NRR growth condition: The amount of noise reduction should be larger than
0 dB in each iteration, relating to a change in the 1st-order moment.

Although the parameters to be optimized are η and β, we hereafter derive the
optimal η given a fixed β for ease of closed-form analysis. First, we change (13.20)
for

kurt(αn, β, η) = S (αn, β, 4) + η8F (αn, β, 4)
(
S (αn, β, 2) + η4F (αn, β, 2)

)2 . (13.24)

Next, the fixed-point kurtosis condition corresponds to the kurtosis being equal before
and after spectral subtraction, thus

S (αn, β, 4) + η8F (αn, β, 4)
(
S (αn, β, 2) + η4F (αn, β, 2)

)2 = (αn + 3)(αn + 2)

(αn + 1)αn
. (13.25)

Let H = η4, and (13.25) yields the following quadratic equation inH .

(
F (αn, β, 4)(αn+1)αn−F 2(αn, β, 2)(αn+3)(αn+2)

)
H 2

−2S (αn, β, 2)F (αn, β, 2)(αn+3)(αn+2)H

+S (αn, β, 4)(αn+1)αn−S 2(αn, β, 2)(αn+3)(αn+2)=0. (13.26)



13 Musical-Noise-Free Blind Speech Extraction … 343

Thus, we can derive a closed-form estimate ofH from the given noise shape param-
eter αn and oversubtraction parameter β as

H ={F (αn, β, 4)(αn+1)αn−F 2(αn, β, 2)(αn+3)(αn+2)}−1

[

S (αn, β, 2)F (αn, β, 2)(αn+3)(αn+2)

±
[
{S (αn, β, 2)F (αn, β, 2)(αn+3)(αn+2)}2

− {
F (αn, β, 4)(αn+1)αn−F 2(αn, β, 2)(αn+3)(αn+2)

}

{
S (αn, β, 4)(αn+1)αn−S 2(αn, β, 2)(αn+3)(αn+2)

} ] 1
2

]

. (13.27)

Finally, η = H 1/4 is the resultant flooring parameter that satisfies the fixed-point
kurtosis condition.

From (13.22), the NRR growth condition is expressed as

NRR=10 log10
αn

S (αn, β, 1) + η2F (αn, β, 1)
>0. (13.28)

Here, since η > 0, we can solve the inequality as

0 < η <

√
αn − S (αn, β, 1)

F (αn, β, 1)
. (13.29)

In summary, we can choose the parameters simultaneously satisfying the fixed
kurtosis point condition and NRR growth condition using (13.27) and (13.29).
Figure13.4 shows an example of the kurtosis ratio in optimized iterative SS, where
Gaussian noise is assumed. We can confirm the flat trace of the kurtosis, indicating
no musical noise generation.

Fig. 13.4 Relation between
NRR and kurtosis ratio
obtained from theoretical
analysis for case of Gaussian
noise
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13.3 Extension to Multichannel Blind Signal Processing

13.3.1 Blind Spatial Subtraction Array

In the previous section, we assumed that the input noise signal is stationary, meaning
that we can estimate the expectation of a noise signal from a time-frequency period
of a signal that contains only noise, i.e., speech absence. However, in actual environ-
ments, such as a nonstationary noise field, it is necessary to dynamically estimate
the noise PSD.

To solve this problem, Takahashi et al. previously proposed blind spatial subtrac-
tion array (BSSA) [42], which involves accurate noise estimation by ICA followed
by a speech extraction procedure based on SS (see Fig. 13.5). BSSA improves the
noise reduction performance, particularly in the presence of both diffuse and nonsta-
tionary noises; thus, almost all the environmental noise can be dealt with. However,
BSSA always suffers from musical noise owing to SS. In addition, the output signal
of BSSA degenerates to a monaural (not multichannel) signal, meaning that ICA
cannot be reapplied; thus, we cannot iteratively estimate the noise power spectra.
Therefore, it is impossible to directly apply iterative SS to the conventional BSSA.

13.3.2 Iterative Blind Spatial Subtraction Array

In this section, we introduce a multi-iterative blind signal extraction method inte-
grating iterative blind noise estimation by ICA and iterative noise reduction by SS.
As mentioned previously, the conventional BSSA cannot iteratively and accurately
estimate noise by ICA because the conventional BSSA performs a delay and sum
(DS) operation before SS. To solve this problem, Takahashi et al. have proposed an
improved BSSA structure that performs multiple independent SS in each channel
before DS; we call this structure channelwise SS [43–45]. Using this structure, we
can equalize the number of channels of the observed signal to that of the signals after

D
F
T

θU Σ
Phase

compensation

FD-
ICA

User’s
speech

Noise

Spectral
subtraction

+

θU

Projection
back0 θU Σ

-θU

Fig. 13.5 Block diagram of BSSA [42]
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Fig. 13.6 Block diagram of iterative BSSA [19]

channelwise SS. Therefore, we can iteratively apply noise estimation by ICA and
speech extraction by SS (see Fig. 13.6). Also, the advantage of the structure is that
ICA has the possibility of adaptively estimating the distorted wavefront of a speech
signal to some extent even after SS, because ICA is a blind signal identification
method that does not require knowledge of the target signal direction. Details of this
issue will be discussed in Sect. 13.3.3. Hereafter, we refer to this type of BSSA as
iterative BSSA.

We conduct iterative BSSA in the following manner, where the superscript [i]
represents the value in the i th iteration of SS (initially i = 0).

(I) The observed signal vector of the K -channel array in the time-frequency
domain, X[0]( f, τ ), is given by

X[0]( f, τ ) = H( f )S( f, τ ) + N( f, τ ), (13.30)

whereH( f ) = [H1( f ), H2( f ) . . . , HK ( f )]T is a column vector of the transfer
functions from the target signal position to each microphone, S( f, τ ) is the
target speech signal, and N( f, τ ) is a column vector of the additive noise.

(II) Next, we perform signal separation using ICA as [20]

O[i]( f, τ ) =W[i]
ICA( f )X[i]( f, τ ), (13.31)

W[i][p+1]
ICA ( f ) =μ[I − 〈ϕ(O[i]( f, τ ))(O[i]( f, τ ))H〉τ ]

· W[i][p]
ICA ( f ) + W[i][p]

ICA ( f ), (13.32)

whereW[i][p]
ICA ( f ) is a demixing matrix,μ is the step-size parameter, [p] is used

to express the value of the pth step in the ICA iterations, I is the identity matrix,
〈·〉τ denotes a time-averaging operator, and ϕ(·) is an appropriate nonlinear
vector function. Then, we construct a noise-only vector,

O[i]
noise( f, τ ) =[O [i]

1 ( f, τ ), . . . , O [i]
U−1, 0,

O [i]
U+1( f, τ ), . . . , O [i]

K ( f, τ )]T, (13.33)

where U is the signal number for speech, and we apply the projection back
operation to remove the ambiguity of the amplitude and construct the estimated
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noise signal, Z[i]( f, τ ), as

Z[i]( f, τ ) = W[i]
ICA( f )−1O[i]

noise( f, τ ). (13.34)

(III) Next, we perform SS independently in each input channel and derive the mul-
tiple target-speech-enhanced signals. This procedure can be given by

X [i+1]
k ( f, τ ) =

⎧
⎪⎨

⎪⎩

√

|X [i]
k ( f, τ )|2 − β|Z [i]

k ( f, τ )|2 exp( j arg(X [i]
k ( f, τ )))

(if |X [i]
k ( f, τ )|2 > β|Z [i]

k ( f, τ )|2),
ηX [i]

k ( f, τ ) (otherwise),

(13.35)

where X [i+1]
k ( f, τ ) is the target-speech-enhanced signal obtained by SS at a

specific channel k. Then we return to step (II) with X[i+1]( f, τ ). When we
obtain sufficient noise reduction performance, we proceed to step (IV).

(IV) Finally, we obtain the resultant target-speech-enhanced signal by applying DS
to X[∗]( f, τ ), where ∗ is the number of iterations after which sufficient noise
reduction performance is obtained. This procedure can be expressed by

Y ( f, τ ) = WT
DS( f )X

[∗]( f, τ ), (13.36)

WDS( f ) = [W (DS)
1 ( f ), . . . ,W (DS)

K ( f )], (13.37)

W (DS)
k ( f ) = 1

K
exp(−2π j ( f/M) fsdk sin θU/c), (13.38)

θU = sin−1

arg

( [
W[∗]

ICA( f )−1
]

kU[
W[∗]

ICA( f )−1
]

k′U

)

2π fsc−1(dk − dk ′)
, (13.39)

where Y ( f, τ ) is the final output signal of iterative BSSA, wDS is the filter
coefficient vector of DS, M is the DFT size, fs is the sampling frequency,
dk is the microphone position, c is the sound velocity, and θU is the estimated
direction of arrival of the target speech obtained by ICA’s demixingmatrix [46].
Moreover, [A]l j represents the entry in the lth row and j th column of A.

13.3.3 Accuracy of Wavefront Estimated by Independent
Component Analysis After Spectral Subtraction

In this subsection, we discuss the accuracy of the estimated noise signal in each
iteration of iterative BSSA. In actual environments, not only point-source noise
but also non-point-source (e.g., diffuse) noise often exists. It is known that ICA
is proficient in noise estimation rather than speech estimation under such a noise
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condition [42, 47, 48]. This is because the target speech can be regarded as a point-
source signal (thus, the wavefront is static in each subband) and ICA acts as an
effective blocking filter of the speech wavefront even in a time-invariant manner,
resulting in good noise estimation. However, in iterative BSSA, we should address
the inherent question of whether the distorted speech wavefront after nonlinear noise
reduction such as SS can be blocked by ICA or not; thus, we determine whether the
speech component after channelwise SS can become a point source again.

Hereafter, we quantify the degree of point-source-likeness for SS-applied speech
signals. For convenience of discussion, a simple two-channel arraymodel is assumed.
First, we define the speech component in each channel after channelwise SS as

Ŝ1( f, τ ) = H1( f )S( f, τ ) + ΔS1( f, τ ), (13.40)

Ŝ2( f, τ ) = H2( f )S( f, τ ) + ΔS2( f, τ ), (13.41)

where S( f, τ ) is the original point-source speech signal, Ŝk( f, τ ) is the speech com-
ponent after channelwise SS at the kth channel, and ΔSk( f, τ ) is the speech com-
ponent distorted by channelwise SS. Also, we assume that S( f, τ ), ΔS1( f, τ ), and
ΔS2( f, τ ) are uncorrelated with each other. Obviously, Ŝ1( f, τ ) and Ŝ2( f, τ ) can be
regarded as being generated by a point source if ΔS1( f, τ ) and ΔS2( f, τ ) are zero,
i.e., a valid static blocking filter can be obtained by ICA as

[WICA( f )]11 Ŝ1( f, τ ) + [WICA( f )]12 Ŝ2( f, τ )

= ([WICA( f )]11H1( f ) + [WICA( f )]12H2( f ))S( f, τ )

= 0, (13.42)

where we assume U = 1 and, e.g., [WICA( f )]11 = H2( f ) and [WICA( f )]12 =
−H1( f ). However, if ΔS1( f, τ ) and ΔS2( f, τ ) become nonzero as a result of SS,
ICA does not have a valid speech-blocking filter with a static (time-invariant) form.

Second, the cosine distance between speech power spectra |Ŝ1( f, τ )|2 and
|Ŝ2( f, τ )|2 is introduced in each frequency subband to indicate the degree of point-
source-likeness as

COS( f ) =
∑

τ |Ŝ1( f, τ )|2|Ŝ2( f, τ )|2
√

∑
τ |Ŝ1( f, τ )|4

√
∑

τ |Ŝ2( f, τ )|4
. (13.43)

From (13.43), the cosine distance reaches its maximum value of unity if and only if
ΔS1( f, τ ) = ΔS2( f, τ ) = 0, regardless of the values of H1( f ) and H2( f ), mean-
ing that the SS-applied speech signals Ŝ1( f, τ ) and Ŝ2( f, τ ) can be assumed to be
produced by the point source. The value of COS( f ) decreases with increasing mag-
nitudes of ΔS1( f, τ ) and ΔS2( f, τ ) as well as with increasing difference between
H1( f ) and H2( f ); this indicates the non-point-source state.

Third, we evaluate the degree of point-source-likeness in each iteration of iterative
BSSA by using COS( f ). We statistically estimate the distorted speech component
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of the enhanced signal in each iteration. Here, we assume that the original speech
power spectrum |S( f, τ )|2 obeys a gamma distribution with a shape parameter of
0.1 (this is a typical value for speech [49–54]) as

|S( f, τ )|2 ∼ x−0.9

Γ (0.1)θ0.1
s

exp(−x/θs), (13.44)

where θs is the speech scale parameter. Regarding the amount of noise to be sub-
tracted, the 1st-order moment of the noise power spectra is equal to θnαn when the
number of iterations, i , equals zero. Also, the value of αn does not change in each
iteration when we use the specific parameters β and η that satisfy the musical-noise-
free condition because the kurtosis ratio does not change in each iteration. If we
perform SS only once, the rate of noise decrease is given by

M (αn, β, η, 1)/αn, (13.45)

and thus, the amount of residual noise after the i th iteration is given by

μ
[i]
1 = θnαn {M (αn, β, η, 1)/αn}i

= θnM
i (αn, β, η, 1)α1−i

n . (13.46)

Next, we assume that the speech and noise are disjoint, i.e., there are no overlaps
in the time-frequency domain, and that speech distortion is caused by subtracting
the average noise from the pure speech component. Thus, the speech component
|Ŝ[i+1]

k ( f, τ )|2 at the kth channel after the i th iteration is represented by subtracting
the amount of residual noise (13.46) as

|Ŝ[i+1]
k ( f, τ )|2 =

⎧
⎨

⎩

|Ŝ[i]
k ( f, τ )|2 − βθnM i (αn, β, η, 1)α1−i

n

(if |Ŝ[i]
k ( f, τ )|2 > βθnM i (αn, β, η, 1)α1−i

n ),

η2|Ŝ[i]
k ( f, τ )|2 (otherwise).

(13.47)

Here, we define the input SNR as the average of both channel SNRs,

ISNR( f ) = 1

2

(
0.1|H1( f )|2θs

αnθn
+ 0.1|H2( f )|2θs

αnθn

)

= 0.1θs
2αnθn

(|H1( f )|2 + |H2( f )|2). (13.48)

If we normalize the speech scale parameter θs to unity, from (13.48), the noise scale
parameter θn is given by
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θn = 0.1(|H1( f )|2 + |H2( f )|2)
2αnISNR( f )

, (13.49)

and using (13.49), we can reformulate (13.47) as

|Ŝ[i+1]
k ( f, τ )|2 =

⎧
⎪⎨

⎪⎩

|Ŝ[i]
k ( f, τ )|2−β

0.1(|H1( f )|2+|H2( f )|2)
2ISNR( f ) M i (αn, β, η, 1)α−i

n

(if |Ŝ[i]
k ( f, τ )|2>β

0.1(|H1( f )|2+|H2( f )|2)
2ISNR( f ) M i (αn, β, η, 1)α−i

n ),

η2|Ŝ[i]
k ( f, τ )|2 (otherwise).

(13.50)

Furthermore, we define the transfer function ratio (TFR) as

TFR( f ) = |H1( f )/H2( f )|2, (13.51)

and if we normalize |H1( f )|2 to unity in each frequency subband, |H1( f )|2 +
|H2( f )|2 becomes 1 + 1/TFR( f ). Finally, we express (13.50) in terms of the input
SNR ISNR( f ) and the transfer function ratio TFR( f ) as

|Ŝ[i+1]
k ( f, τ )|2 =

⎧
⎪⎨

⎪⎩

|Ŝ[i]
k ( f, τ )|2−β

0.1(1+1/TFR( f ))
2ISNR( f ) M i (αn, β, η, 1)α−i

n

(if |Ŝ[i]
k ( f, τ )|2>β

0.1(1+1/TFR( f ))
2ISNR( f ) M i (αn, β, η, 1)α−i

n ),

η2|Ŝ[i]
k ( f, τ )|2 (otherwise).

(13.52)

As can be seen, the speech component is subjected to greater subtraction and distor-
tion as ISNR( f ) and/or TFR( f ) decrease.

Figure13.7 shows the relation between the TFR and the corresponding value
of COS( f ) calculated by (13.43) and (13.52). In Fig. 13.7, we plot the average of
COS( f ) over whole frequency subbands. The noise shape parameter αn is set to 0.2
with the assumption of super-Gaussian noise (this corresponds to the real noises used
in Sect. 13.5), the input SNR is set to 10, 5, or 0 dB, and the noise scale parameter
θn is uniquely determined by (13.49) and the previous parameter settings. The TFR
is set from 0.4 to 1.0 (|h1( f )| is fixed to 1.0). Note that the TFR is highly correlated
to the room reverberation and the interelement spacing of the microphone array; we
determined the range of the TFRby simulating a typicalmoderately reverberant room
and the array with 2.15cm interelement spacing used in Sect. 13.5 (see the example
of the TFR in Fig. 13.8). For the internal parameters used in iterative BSSA in this
simulation, β and η are 8.5 and 0.9, respectively, which satisfy themusical-noise-free
condition. In addition, the smallest value on the horizontal axis is 3 dB in Fig. 13.7
because DS is still performed even when i = 0.

From Figs. 13.7a and b, which correspond to relatively high input SNRs, we can
confirm that the degree of point-source-likeness, i.e., COS( f ), is almost maintained
when the TFR is close to 1 even if the speech components are distorted by iterative
BSSA. Also, it is worth mentioning that the degree of point-source-likeness is still
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Fig. 13.8 Typical examples of TFR( f ) (|H1( f )/H2( f )|2) in each frequency subband

above 0.9 even when the TFR is decreased to 0.4 and i is increased to 6. This means
that almost 90% of the speech components can be regarded as a point source and thus
can be blocked by ICA. In contrast, from Fig. 13.7c, which shows the case of a low
input SNR, when the TFR is dropped to 0.4 and i is more than 3, the degree of point-
source-likeness is lower than 0.6. Thus, less than 60% of the speech components can
be regarded as a point source, and this leads to poor noise estimation.



13 Musical-Noise-Free Blind Speech Extraction … 351

13.4 Improvement Scheme for Poor Noise Estimation

13.4.1 Channel Selection in Independent Component
Analysis

In this subsection, we introduce a channel selection strategy in ICA for achieving
high accuracy of noise estimation. As mentioned previously, speech distortion is
subjected to ISNR( f ) and TFR( f ), and the accuracy of noise estimation is degraded
along with speech distortion. Figure13.8 shows typical examples of the TFR. From
Fig. 13.8, we can confirm that the TFRs in different combinations of microphones
are not the same in each frequency subband; at a specific frequency, one microphone
pair has higher TFR( f ) than another pair, and vice versa at another frequency. Thus,
we are able to select an appropriate combination of microphones to obtain a higher
TFR.

Therefore, we introduce the channel selection method into ICA in each frequency
subband, wherewe automatically choose less varied inputs tomaintain high accuracy
of noise estimation. Hereafter, we describe the detail of the channel selectionmethod.
First, we calculate the average power of the observed signal Xk( f, τ ) at the kth
channel as

Eτ [|Xk( f, τ )|2]=Eτ [|S( f, τ )|2]|Hk( f )|2+Eτ [|Nk( f, τ )|2]. (13.53)

Here, Eτ [|S( f, τ )|2] is a constant, and if we assume a diffuse noise field,
Eτ [|Nk( f, τ )|2] is also a constant. Thus,we can estimate the relative order of |Hk( f )|2
by comparing (13.53) for every k.

Next, we sort Eτ [|Xk( f, τ )|2] in descending order and select the channels corre-
sponding to a high amplitude of |Hk( f )|2 satisfying the following condition:

max
k

Eτ [|Xk( f, τ )|2] · ξ ≤ Eτ [|Xk( f, τ )|2], (13.54)

where ξ(< 1) is the threshold for the selection.
Finally, we perform noise estimation based on ICA using the selected channels in

each frequency subband, and we apply the projection back operation to remove the
ambiguity of the amplitude and construct the estimated noise signal.

13.4.2 Time-Variant Noise Power Spectral Density Estimator

In the previous section, we revealed that the speech components cannot be regarded
as a point source, and this leads to poor noise estimation in iterative BSSA. To solve
this problem, we introduce a time-variant noise PSD estimator [24] instead of ICA
to improve the noise estimation accuracy. This method has been developed for future
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high-end binaural hearing aids and performs a prediction of the left noisy signal from
the right noisy signal via theWiener filter, followed by an auto-PSD of the difference
between the left noisy signal and the prediction. By applying the noise PSD estimated
from this estimator to (13.35), we can perform speech extraction. The procedure of
this noise PSD estimator is described in Appendix.

13.5 Experiments in Real World

13.5.1 Experimental Conditions

Weconducted objective and subjective evaluation experiments to confirm the validity
of iterative BSSA under the diffuse and nonstationary noise condition. The size
of the experimental room was 4.2 × 3.5 × 3.0 m3 and the reverberation time was
approximately 200 ms. We used a two-, three-, or four-element microphone array
with an interelement spacing of 2.15 cm, and the direction of the target speech was
set to be normal to the array. All the signals used in this experiment were sampled at
16 kHz with 16-bit accuracy. The DFT size was 1024, and the frame shift length was
256. We used 5 male and 5 female speakers (one utterance per speaker) as sources
of the original target speech signal. The input SNR was -5, 0, 5, and 10 dB.

13.5.2 Objective Evaluation

We conducted an objective experimental evaluation under the same NRR condi-
tion. First, Figs. 13.9, 13.10, 13.11, and 13.12 show the kurtosis ratio and cepstral
distortion obtained from the experiments with real traffic noise and railway station
noise, where we evaluate 10-dB NRR (i.e., output SNRs = 5, 10, 15, and 20 dB) sig-
nals processed by five conventional methods, namely, the MMSE-STSA estimator,
the Log MMSE estimator incorporating speech-presence uncertainty [55], single-
channel musical-noise-free iterative spectral subtraction, the multichannel speech
enhancement method integrating the minimum variance beamformer and the Log
MMSE estimator for postfiltering, and BSSA, in addition to several types of iterative
BSSAs (using ICA or a time-variant noise estimator with/without channel selec-
tion). Here, we did not apply the channel selection method to the two-microphone
case because ICA or time-variant noise estimation requires at least two-channel
signals. Also, we applied a minimum statistics noise PSD estimator [4] to theMMSE
STSA estimator and musical-noise-free iterative spectral subtraction, and we use the
decision-directed approach for a priori SNR estimation in the MMSE STSA estima-
tor and the log MMSE estimator. From Figs. 13.9 and 13.11, we can confirm that the
iterative BSSA methods outperform the MMSE STSA estimator, the Log MMSE
estimator, and the conventional BSSA in terms of kurtosis ratio. In particular, the
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Fig. 13.13 Subjective evaluation results for a traffic noise and b railway station noise

kurtosis ratios of the iterative BSSA methods are mostly close to 1.0. This means
that the iterative methods did not generate any musical noise. However, the iterative
BSSA methods lead to greater speech distortion compared with the conventional
BSSA (see Figs. 13.10 and 13.12). Therefore, a trade-off exists between the amount
of musical noise generation and speech distortion in the conventional BSSA and
iterative BSSA methods. This result implies the disadvantage of iterative BSSA,
i.e., large speech distortion, which has been theoretically predicted in Sect. 13.3.3.
However, since the speech distortion of the proposed iterative BSSA with channel
selection is lower than that of the original iterative BSSA, we can confirm the validity
of the channel selection method.

13.5.3 Subjective Evaluation

Since we found the above-mentioned trade-off, we next conducted a subjective eval-
uation for setting the performance competition. In the evaluation, we presented a
pair of 10-dB NRR signals processed by the conventional BSSA and four of iterative
BSSAs (using ICA or a time-variant noise estimator with/without channel selection)
in random order to 10 examinees, who selected which signal they preferred from the
viewpoint of total sound quality, e.g., less musical noise, less speech distortion, and
so forth.

The result of this experiment is shown in Fig. 13.13 for (a) traffic noise and (b)
railway station noise. It is found that the output signals of some iterative BSSAs are
preferred to that of the conventional BSSA, indicating the higher sound quality of
the iterative methods in terms of human perception. This result is plausible because



358 H. Saruwatari and R. Miyazaki

(a)

(b)

(c)

(d)

Fig. 13.14 Spectrogram for a clean signal, b observed signal, c signal extracted by BSSA, and
d signal extracted by iterative BSSA
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humans are oftenmore sensitive tomusical noise than to speechdistortion as indicated
in past studies, e.g., [12].

To visually understand the above-mentioned result, Fig. 13.14 shows part of the
spectrograms of (a) a clean signal, (b) an observed signal, (c) a signal extracted by
BSSA, and (d) a signal extracted by iterative BSSA, where the input SNR is set to
5 dB with real traffic noise and the NRR is 10 dB. From Fig. 13.14, it is confirmed
that iterative BSSA reduces the number of isolated components in time-frequency
domain sequences, which is a factor contributing to musical noise, compared with
BSSA. Also, there are no major differences in the speech components of the clean
signal, the signal processed by BSSA, and the signal processed by iterative BSSA;
thus, we can conclude that the intelligibility of iterative BSSA is no less than that of
BSSA.

13.6 Conclusions and Remarks

In this chapter, we addressed a musical-noise-free blind speech extraction method
using a microphone array that can be applied to nonstationary noise. Firstly, we
introduced iterative BSSA using a new BSSA structure, which generates almost no
musical noise even with increasing noise reduction performance.

Secondly, in relation to themethod, we discussed the justification of applying ICA
to signals nonlinearly distorted by SS. We theoretically clarified that the degradation
in ICA-based noise estimation obeys an amplitude variation in room transfer func-
tions between the target user and microphones. Therefore, we gave the introduction
of a channel selection strategy in ICA and a time-variant noise PSD estimator to
improve the noise estimation accuracy.

Finally, from the objective evaluation experiments, we confirmed a trade-off
between the amount of musical noise generation and speech distortion in the conven-
tional and iterative BSSA. However, in a subjective preference test, iterative BSSA
obtained a higher preference score than the conventional BSSA.Thus, iterativeBSSA
is advantageous to the conventional BSSA in terms of sound quality.

Implementation on a small hardware still receives much attention in industrial
applications. Due to the limitation of space, however, the authors skip the discussion
on this issue. Instead, several studies [56–60] have dealt with the issue of real-time
implementation of ICA and BSSA, which would be helpful for the readers.

Acknowledgements Thisworkwas partially supported by SECOMScience andTechnology Foun-
dation.
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Appendix

This appendix provides a brief review of the time-variant nonlinear noise estimator.
For more detailed information, Ref. [24] is available.

Let X1( f, τ ) and X2( f, τ ) be noisy signals received at the microphones in the
time-frequency domain, defined as

X1( f, τ ) = H1( f )S( f, τ ) + N1( f, τ ), (13.55)

X2( f, τ ) = H2( f )S( f, τ ) + N2( f, τ ), (13.56)

where H1( f ) and H2( f ) are the transfer functions from the target signal position
to each microphone. Next, the auto-power PSDs in each microphone, Γ11( f ) and
Γ22( f ), can be expressed as follows:

Γ11( f, τ ) = |H1( f )|2ΓSS( f, τ ) + ΓNN( f, τ ), (13.57)

Γ22( f, τ ) = |H2( f )|2ΓSS( f, τ ) + ΓNN( f, τ ), (13.58)

where ΓSS( f, τ ) is the PSD of the target speech signal and ΓNN( f, τ ) is the PSD of
the noise signal. In this chapter, we assume that the left and right noise PSDs are
approximately the same, i.e., ΓN1N1( f, τ ) 
 ΓN2N2( f, τ ) 
 ΓNN( f, τ ).

Next,we consider theWiener solution between the left and right transfer functions,
which is defined as

HW( f, τ ) = Γ12( f, τ )

Γ22( f, τ )
, (13.59)

where Γ12( f ) is the cross-PSD between the left and right noisy signals. The cross-
PSD expression then becomes

Γ12( f, τ ) = ΓSS( f, τ )H1( f )H
∗
2 ( f ). (13.60)

Therefore, substituting (13.60) into (13.59) yields

HW( f, τ ) = ΓSS( f, τ )H1( f )H∗
2 ( f )

Γ22( f, τ )
. (13.61)

Furthermore, using (13.57) and (13.58), the squared magnitude response of the
Wiener solution in (13.61) can also be expressed as

|HW( f, τ )|2= (Γ11( f, τ )−ΓNN( f, τ ))(Γ22( f, τ )−ΓNN( f, τ ))

Γ 2
22( f, τ )

. (13.62)

Equation (13.62) is rearranged into the following quadratic equation:
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Γ 2
NN( f, τ ) − ΓNN( f, τ ) (Γ11( f, τ ) + Γ22( f, τ ))

+ ΓEE( f, τ )Γ22( f, τ ) = 0, (13.63)

where

ΓEE( f, τ ) = Γ11( f, τ ) − Γ22( f, τ )|HW( f )|2. (13.64)

Consequently, the noise PSD ΓNN( f ) can be estimated by solving the quadratic
equation in (13.63) as follows:

ΓNN( f, τ ) = 1

2
(Γ11( f, τ ) + Γ22( f, τ )) − Γavg( f, τ ), (13.65)

Γavg( f, τ ) = 1

2
{(Γ11( f, τ ) + Γ22( f, τ ))2

− 4ΓEE( f, τ )Γ22( f, τ )}0.5. (13.66)
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Chapter 14
Audio-Visual Source Separation
with Alternating Diffusion Maps

David Dov, Ronen Talmon and Israel Cohen

Abstract In this chapter we consider the separation of multiple sound sources of
different types including multiple speakers and transients, which are measured by a
single microphone and by a video camera. We address the problem of separating a
particular sound source from all other sources focusing specifically on obtaining an
underlying representation of it while attenuating all other sources. By pointing the
video camera merely to the desired sound source, the problem becomes equivalent to
extracting the common source to the audio and the video modalities while ignoring
the other sources. We use a kernel-based method, which is particularly designed
for this task, providing an underlying representation of the common source. We
demonstrate the usefulness of the obtained representation for the activity detection
of the common source and discuss how it may be further used for source separation.

14.1 Introduction

We consider a complex sound scene with multiple sound sources, which are highly
non stationary and are of different types including speech and transients. The sources
may share similar characteristics, e.g., multiple speakers with similar voices may be
present in the scene. The sound sources are measured by a single microphone, so
that no spatial information of the sources is available. The objective in this chapter is
to extract a particular sound source from all other sources in the scene by providing
an underlying representation of the source, in which all other interfering sources are
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attenuated.We address this goal by incorporating a video signal pointedmerely at the
particular sound source, so that the objective transforms to the problem of extracting
the common source to the audio and the video signals. We use a data driven method
termed “alternating diffusionmaps” [1], which is particularly designed for extracting
the common source via the fusion between the audio and the video signals.

Alternating diffusion maps belong to a class of kernel based geometric methods,
which are originally designed for dimensionality reduction of single modal signals,
i.e., thosemeasuredby a single sensor [2–6]. Thesemethods are basedon constructing
an affinity kernel, which aggregates affinities (similarities) between samples of the
signal, and they provide low dimensional representations through the eigenvalue
decomposition of the affinity kernel. The kernel methods were recently extended to
the processing of multimodal signals in [1, 7–18]. The multi-modal kernel methods
are mostly based on constructing separate affinity kernels for each modality and
fusing (incorporating) the modalities by a combination of the affinity kernels.

The fusion of audio visual signals is often addressed in previous studies for the
analysis of speech signals. These studies focus on modeling the shape and the move-
ment of the mouth by the design of video-based features such as key-points at the
mouth area [19–21]; width, height and intensity levels of the mouth [22–24]; and
motion vectors [25, 26]. Then, features of the audio and the video signals are concate-
nated into a single vector—a fusion approach often referred to as early fusion [27,
28]. The new vectors are then processed as data that is measured in a single sensor.
Another common approach for the fusion of audio visual signals, often designed for
specific tasks such as classification, is based on the combinations of measure func-
tions constructed separately from each modality. For example in [29], we presented
a method for voice activity detection, which is based on fusing two voice activity
measures, constructed separately and similarly in specifically designed domains of
the audio and the video signals.

In this chapter, we present a sound source separation approach based on the
alternating diffusionmapsmethod, in which audio and video signals are fused via the
product between affinity kernels.Alternatingdiffusionmapsdiffers from the common
approaches for audio-visual fusion since it allows to consider complex relations
between the modalities. The method has an interpretation of iterating between two
diffusion steps, one for each modality such that the diffusion step in one modality
attenuates factors, which are specific to the othermodality, i.e., the interfering sources
in our case. Therefore, the eigenvalue decomposition of the kernel product allows us
to obtain an underlying representation of the signal, in which the interfering sources
are attenuated.

We demonstrate the usefulness of the obtained representation for the activity
detection of the common source by presenting a simple unsupervised detection algo-
rithm. We apply the algorithm for the detection of different common sources. When
the video camera is pointed at the face of a speaker, and the interfering sources are
acoustic noises and transients, which are short term environmental sounds such as
door-knocks [30–32], the algorithm operates as a voice activity detector [33]. We
further demonstrate that a useful representation is obtained even when the common
source is of the same type as the interfering sources such that they share similar
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acoustic characteristics. Specifically, the proposed approach provides good distinc-
tion between different speakers implying that the representation of the common
source may be further used for the problem of speaker diarization (who spoke when).
We note that the objective in this chapter of obtaining an underlying representation,
in which the common source is separated from other sources, deviates from the
classical problem of source separation. Yet, we show in this chapter the useful-
ness of the representation of the common source for applications, directly related to
source separation, and discuss how this representationmay be further used for source
separation.

The remainder of this chapter is organized as follows. In Sect. 14.2, we formulate
the problem. In Sect. 14.3, we describe the use of alternating diffusionmaps for build-
ing a representation of the common source, in which the other sources are attenuated.
Based on the new representation, we present an algorithm for the activity detection
of the common source. Finally, we show experimental results in Sect. 14.4 demon-
strating the usefulness of the representation of common sources for their activity
detection, and discuss how to separate them from the interfering sources.

14.2 Problem Formulation

Consider an audio-visual signal measured by a single microphone and by a video
camera. A common practice in the processing of audio signals is dividing them into
consecutive time frames with a certain overlap. Here we consider N consecutive
pairs of frames of the audio and the video signals:

(v1,w1) , (v2,w2) , ..., (vN ,wN ) , (14.1)

where vn ∈ R
Lv and wn ∈ R

Lw are feature representations of the nth audio and the
nth video frame, and Lv and Lw are the corresponding number of the features,
respectively. We note that throughout this chapter we follow the notations in [33],
where v and w correspond to two different views, i.e., two different modalities—
audio and video in our case. Specifically, the pair (vn,wn) is assumed aligned. The
particular selection of the features is described in Sect. 14.4.

The audio-visual signal is used tomeasure a certain sound source, i.e., the common
source, which we denote by x , in the presence of other interfering sources. For
simplicity of the formulation, we assume a single interfering sound source, which
we denote by y, and accordingly, the audio signal is given by a certain function f of
these sources:

vn = f (x, y) . (14.2)

Similarly, the video signal is given by a function g of the common source and of an
interfering video source z:

wn = g (x, z) .
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We do not focus in this chapter on the interfering video sources and use in the
experimental results relatively clean video signals. Yet, interferences such as non-
speech mouth movements of a speaker may be naturally present in the recordings.
The goal is to obtain a new representation of the measured signal according to the
common source x while attenuating the interfering sources y and z:

φn = h (x) ,

where φn ∈ R
L , is the new representation of the nth frame, and h is a function

that maps the common source to the new representation. We note that throughout
this chapter we do not define explicitly the functions f, g and h nor the sources
x, y and z. These are merely used for an analysis that shows how to construct an
underlying representation of the measured signal according to the common source
x , i.e., φn , using the alternating diffusion maps method.

14.3 Separation of the Common Source via Alternating
Diffusion Maps

14.3.1 Alternating Diffusion Maps

Alternating Diffusion maps [6] is a kernel based geometric method for multimodal
data fusion, which is based on the construction of two affinity kernels, Kv ∈ R

N×N

and Kw ∈ R
N×N , from the audio and the video signal, respectively. The affinity

kernels are real-valued symmetric matrices whose entries are in the range of [0, 1].
Here we describe the construction of Kv; the construction of Kw is similar. We use
a Gaussian kernel whose (n,m)th entry is denoted by Kv

n,m , and is given by:

Kv
n,m = exp

[
−‖vn − vm‖2

σ 2
v

]
, (14.3)

where ‖·‖ is the l2 norm, and σv is a scaling parameter, which is also called the kernel
bandwidth. The term Kv

n,m defines a measure of affinity (similarity) between frames
vn, vm ∈ R

Lv , which are viewed as data points in a (high) Lv dimensional domain.
The closer the data points are in the high dimensional domain, the higher the affinity
between them. The kernel bandwidth σv defines a measure of locality between the
data points such that when ‖vn − vm‖2 � σ 2

v the affinity between frames vn and vm
approaches zero. The affinity kernel Kv aggregates local relations (affinities) between
each pair of the N audio frames, which is also often referred to as the geometry of
the data. In addition, the affinity kernel has an interpretation from graph theory such
that the frames v1, v2, ..., vN are viewed as nodes of a graph and the weight of the
edge between frames vn and vm is given by Kv

n,m .
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We note that the choice of the affinity kernel and in particular the metric function
between the frames has an important implication on the obtained representation. In
[34] we suggested using a modified version of the Mahalanobis distance based on
short term temporal statistics of the measured signal, instead of the l2 norm used
here [35]. To analyze the metric based on the Mahalanobis distance, we suggested
an underlying model of speech and transient sound sources, and showed that this
metric improves the separation between them.

Next, we construct a normalized version of the affinity kernel, Mv ∈ R
N×N , by

normalizing the rows of Kv:
Mv = (

Dv
)−1

Kv, (14.4)

where Dv ∈ R
N×N is a diagonal matrix whose nth element on the diagonal, denoted

by Dv
n,n , is given by:

Dv
n,n =

N∑
m=1

Kv
n,m . (14.5)

The matrix Mv is a row stochastic matrix and it has an interpretation of a transi-
tion probabilities matrix of a random walker. Specifically, Mv

n,m is viewed as the
probability of transitioning from node n to node m on the graph.

Similarly to Mv, let Mw be a row normalized affinity kernel obtained from the
video data according to (14.3)–(14.5). The audio and the video data are fused by
constructing a unified affinity kernelM ∈ R

N×N via the product of the (normalized)
affinity kernels:

M = Mv · Mw. (14.6)

The matrix M is also row stochastic, and it aggregates the affinities between the
frames of the signal in the two modalities. Specifically, its (n,m)th entry is given by
the rule of matrix product by:

Mn,m =
N∑
l=1

Mv
n,l M

w
l,m .

The matrixMmay be viewed as defining a random walk on a graph whose nodes are
the pairs of frames in (14.1). Accordingly, the probability of transitioning from node
n to node m on this graph is given by the probability of transitioning from node n to
any other point l in the graph constructed from the audio signal in one step, and then
transitioning from node l to node m in the video-related graph in the second step.
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14.3.2 Separation of the Common Source

The motivation to fuse the audio and the video signals via the product of affinity
kernels in (14.6) for source separation lies in the analysis of the continuous coun-
terpart ofM, which is considered as a diffusion operator [6]. Lederman and Talmon
[1] showed that the continuous counterpart ofM is an operator whose application is
equivalent to applying two diffusion operators, one for each modality. They further
showed that the application of a diffusion operator in one modality integrates out
factors, which are specific to the other modality, i.e., the interfering sources in our
case. This implies that while the unified affinity kernelM is constructed from the two
modalities, i.e., from the sources x, y and z, it is equivalent to a diffusion operator,
which is effectively a function of merely the common source x .

A representation of the common source is obtained through the eigenvalue decom-
position of M. Let λ0, λ1, ...λL be the L + 1 largest eigenvectors of M arranged in
a decreasing order and let θ0, θ1, ..., θ L ∈ R

N be their corresponding eigenvectors.
Since the matrix M is row stochastic, the first eigenvector θ0 is an all ones vec-
tor, so it is discarded along with the corresponding eigenvalue since they do not
contain information [6]. Using the other L eigenvalues and eigenvectors we con-
struct a matrix Θ ∈ R

N×L :

Θ = (λ1θ1, λ2θ2, ..., λLθ L) . (14.7)

Note that the nth entry of each eigenvector corresponds to the nth row ofM, and as
a result to the nth pair of frames (vn,wn). The columns of the matrix Θ define a new
coordinate system on the data such the new representation of the nth frame, φn , is
given by the nth row of Θ :

φn = [
Θn,1,Θn,2, ..., Θn,L

]T
, (14.8)

where T denotes transpose. Since φn is constructed from the unified affinity kernel
M, it is a representation of the measured signal according to the common source x , in
which the interfering sources y and z are attenuated, i.e., φn = h (x). We summarize
the alternating diffusion maps method in Algorithm 1.

Algorithm 1 Alternating Diffusion Maps

1: Obtain N consecutive pairs of frames {vn,wn}Nn=1 in (14.1)
2: Calculate the affinity kernels of the audio and the video modalities, Kv and Kw , respectively,

according to (14.3)
3: Using (14.4)-(14.5), calculate the normalized affinity kernelsMv andMw

4: Obtain the unified kernel M by fusing the modalities via the product of kernels in (14.6)
5: Obtain the first L eigenvalues λ1, λ2, ..., λL and their corresponding eigenvectors θ1, θ2, ..., θ L

6: Construct the matrix Θ in (14.7)
7: Use the nth row in Θ as the new representation φn of frame n



14 Audio-Visual Source Separation with Alternating Diffusion Maps 371

14.3.3 Online Extension

The mapping of the audio-visual signal (vn,wn) → φn provides a representation
separating the common source from all other sources. However, it is based on batch
processing of N time frames, which has to be available in advance. Although this
requirement poses a significant limitation in online applications, it has a relatively
simple solution based on the Nyström method, which is used for the extension of
eigenvectors to new entries [36]. First, N consecutive frames are collected in a batch
manner and the corresponding eigenvectors θ1, θ2, ..., θ L are constructed. These N
frames may be viewed as a calibration dataset. Then, given a new incoming point
(frame) m, the new entry of the lth eigenvector is given by:

θl (m) = 1

λl

N∑
n=1

Mm,nθl (n) . (14.9)

This typeof extensionmaybe interpreted as aweightednearest neighbor interpolation
such that the weight of point n in the interpolation is proportional to the probability
of transitioning from the new pointm to point n in the calibration dataset. Intuitively,
a higher weight will be assigned to points in the interpolation, to which the random
walker will jump from nodem with high probability. According to (14.8) and (14.9),
the new representation of the frame m may be efficiently calculated via the product:

φT
m = [

Mm,1, Mm,2, ..., Mm,N
] · Θ · (14.10)

14.3.4 Source Activity Detection

As an application of the obtained representation φn , in which the common source
is separated from all other sources, we consider in Sect. 14.4 the task of the activity
detection of the common source. LetH x

0 andH x
1 be two hypotheses of the absence

and the presence of the common source x , respectively, and let 1x
m be an indicator

of the presence of source x in frame m, given by:

1x
m =

{
1 ; m ∈ H x

1
0 ; m ∈ H x

0

}
.

The goal in the task of source activity detection is to estimate 1x
m for each frame m,

i.e., to cluster the frames according to the activity of the common source.
As we show in Sect. 14.4, this task may be successfully addressed using the new

representation; specifically, we propose using the first coordinate ofφm for clustering
the frames:

1̂x
m =

{
1; φm(1) ≥ τ

0; otherwise

}
, (14.11)
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where φm(1) is the first coordinate in φm , and τ is a threshold value selected accord-
ing to a particular application at hand. In fact, 1̂x

m is obtained based on the leading
eigenvector θ1 according to (14.7) and (14.8), which solves the well-known normal-
ized cut problem, and is widely used for clustering [37]. Specifically, in [37], the
sign of the eigenvector is used for binary clustering, while here we use the leading
eigenvector to construct a continuous measure. In addition, here the eigenvector is
constructed from the unified affinity kernel such that it represents themeasured signal
according to the common source, while the effect of the other sources is attenuated.

We note that in an online setting, the algorithm for the activity detection may
be viewed as an unsupervised learning algorithm such that first N pairs of frames
in the sequence are used as a training set without labels to construct the source
activity measure for each training frame, i.e., φ1(1), φ2(1), ..., φN (1). Then, given a
new incoming frame m, the level of the activity of the common source in the new
frame, i.e., φm(1), is calculated using the training set and compared to a threshold for
source activity detection. We summarize the algorithm for source activity detection
in anonline setting in Algorithm 2.

Algorithm 2 Source Activity Detection
1: Obtain N consecutive pairs of frames {vn,wn}Nn=1 in (14.1)
2: Using Algorithm 1, calculate the new representation

{
φ1,φ2, ...,φN

}
of the signals, in which

the common source is separated from the interfering sources

Given a new incoming frame m:
3: Calculate the interpolation weights

{
Mm,1, Mm,2, ..., Mm,N

}
4: Using online extension, obtain the new representation of frame m, φm , according to (14.10)
5: if φm(1) > τ then

1̂m = 1
else

1̂n = 0
end if

14.4 Experimental Results

14.4.1 Experimental Setup

We simulate a sound scene, in which multiple sound sources including speech, back-
ground noises and transients are active simultaneously. Specifically, the speech sig-
nals are taken from the audio-visual database we presented in [29], and the transients
are taken from a free online corpus [38]. The speech signals and the transients are
rescaled to have the same maximal amplitude. This is a common normalization used
instead of, e.g., the ratio between the energies of the speech signal and the transients.
Due to their short duration, transients often have low energy levels, which do not
reflect properly the dominant effect of their presence in sound scenes. All signals
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are resampled to 8 kHz and are synthetically added to simulate the complex sound
scene. The signals are divided into sequences of≈60s; in each sequence, there exists
a single sound source which is also recorded by a video camera. The video signal has
the resolution of 640 × 480 pixels and it is processed in ≈25 fps; to align between
the video and the audio frames, we use audio frames comprising 634 samples.

We demonstrate the use of the obtained representation, in which the common
source is separated from all other sources, for the activity detection of the common
source. To evaluate the performance of the activity detection algorithm, we set the
ground truth for the true activity of the common source using its clean recordings
such that frames whose energy value is above 1% of the maximal energy value in the
sequence are considered active. We note that this type of ground truth setting has a
fine resolution of few tens of milliseconds, so it allows for evaluating the ability of
the algorithm to detect very short active sequences with 50% overlap.

For the feature representation of the video signal, we use motion vectors, which
are widely used for the representation of video recordings of speech [25, 26]. The
motion vectors are calculated using the Lucas-Kanade method [39, 40] over blocks
of 10 × 10 pixels. The feature representation of the nth video frame, wn ∈ R

Lw , is
given by a concatenation into a column vector of the absolute values of the velocities
in each block of pixels in frames n − 1, n, n + 1. In this context, we note that the
alternating diffusion maps method used to separate the common source from the
other sources is a data driven method in the sense that the frames of the signal are
viewed as high dimensional data points. As a result, it does not rely on a temporal
information between the frames; to incorporate the temporal information, we use
data from three consecutive frames n − 1, n, n + 1 for the representation of the nth
frame. For the representation of the audio signal we use the perceptually meaningful
Mel-Frequency Cepstral Coefficients (MFCC), which are widely used for speech
and music processing applications [41–43]. The MFCCs are constructed from the
responses of a filter bank with filters whose bandwidths increase proportionally
to their central frequency imitating the human auditory system. Similarly to the
video features, vn ∈ R

Lw is constructed by concatenating the MFCCs of frames n −
1, n, n + 1.

14.4.2 Activity Detection of the Common Source

In the first experiment, we consider two sound sources—speech of a single speaker
and a single type of transient. The video camera is pointed at the face of the speaker
such that speech is the common source x and the transient is the interfering source
y in (14.2). An example of a typical video frame is presented in Fig. 14.1. In this
setting, the algorithm for source activity detection performs as a voice detector. An
example of the obtained detection of the common source is presented in Fig. 14.2,
in which we refer to the source activity detection algorithm presented in Sect. 14.3
as the “proposed algorithm”. We compare the proposed algorithm to an alternative
kernel approach based on a different combination between the affinity kernels of
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Fig. 14.1 An example of a video frame

each modality. Specifically, we consider the combination of the kernels using the
Hadamard product, i.e.,Mv ◦ Mw, where ◦ denotes pointwise multiplication. In this
context, we note that for simplicity of comparison, the signals are processed in a batch
manner for both methods. For both algorithms, we set a threshold to 90% correct
detection rate and compare their false alarms. Although Hadamard differs from the
proposed approach only in the type of combination between the affinity kernels, it
provides significantly more false alarms and it detects most transients as speech.

In Figs. 14.3, 14.4 and 14.5 we present a quantitative evaluation of the source
activity detection in the form of receiver operating characteristic (ROC) curves,
which are plots of probability of detection versus the probability of false alarm.
The ROC curves are obtained by sweeping the value of the threshold τ in (14.11)
from the maximal to the minimal values of the source activity measure such that
the lower the threshold value the higher both the probability of detection and the
probability of false alarm. We compare the proposed algorithm for source activity
detection, in addition to Hadamard, to its single modal versions, which are based
on the eigenvalue decomposition of the single modal kernels Mv and Mw rather
than of the unified kernel M. In addition, we compare the proposed algorithm to
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Fig. 14.2 Qualitative assessment of the source activity detection algorithm. Common source:
speech. Interfering source: hammering. (Top) Time domain, input signal—black solid line,
true speech—green squares, true hammering—red stars, “Hadamard”—blue triangles, proposed
algorithm—black circles. (Bottom) Spectrogram of the input audio signal

Fig. 14.3 Probability of the detection versus probability of false alarm. Common source: speech.
Interfering source: hammering
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Fig. 14.4 Probability of the detection versus probability of false alarm. Common source: speech.
Interfering source: door-knocks

Fig. 14.5 Probability of the detection versus probability of false alarm. Common source: speech.
Interfering source: microwave
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another multimodal approach, which is obtained using a simple sum between the
kernel Mv + Mw, and is termed “Sum” in the plots. Figures14.3, 14.4 and 14.5
demonstrate that the single modal approaches perform inferior to the multi-modal
approaches. In the single modal approaches, the representation obtained through the
eigenvalue decomposition of the single modal kernel is called “diffusion maps” and
it is widely used for clustering [6]. The poor results of the approach based only on
the audio signal implies that the different sound sources speech and transients share
similar characteristics, so they are not separated (clustered) properly. Combining the
two modalities using the alternative fusion approaches “Hadamard” and “Sum” only
slightly improves the activity detection of the common source, and the proposed
algorithm outperform all other methods. The improved performance of the proposed
algorithm implies that alternating diffusion maps indeed provide a representation
of the audio-visual signal, in which the common source is separated from the other
sources.

In the next experiment,we consider a setting, inwhichmultiple sources are present
including transients, background noise and speech from two speakers. The video
camera is pointed to one of the speakers, which is considered as the common source
while the other speech source is considered interference. This setting is particularly
challenging not only due to the presence of multiple interferences, but specifically
due to the presence of an interfering speech which has similar characteristics to
the common source. In Fig. 14.6 we use relatively low levels of noise, and present
an example of how alternating diffusion maps extracts the common speech source
while ignoring the interfering speaker. It can be seen in Fig. 14.6 that the proposed
source activity detection algorithm successfully tracks the common source, while
providing only few false alarms in the presence of the interfering source. In contrast,
Hadamard provides significantly more false alarms wrongly detecting the interfering
speech. Figures14.7 and 14.8 demonstrate the improved performance of the proposed
method in the activity detection of the common source compared to all othermethods.
These results imply that the representation obtained by the alternating diffusionmaps
method successfully separates the common source even in the presenceof challenging
interferences with similar characteristics to the common source. We note that the
ability to detect the activity of a particular speaker while ignoring the activity of
the other speaker may be particularly useful for the task of source diarization (who
spoke when). In this task, speech activity of each speaker in a sound scene has to be
detected while ignoring the activity of the other speakers and noises. For example in
a teleconference room, one approach to address this task would be to use multiple
video cameras—each pointed at a different speaker, and to apply the source activity
detection algorithm separately for each one of them.

14.4.3 Discussion—Sound Source Separation

The alternating diffusion maps method provides a representation of the audio-visual
signal, by mapping the signal into a new coordinate system constructed from the
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Fig. 14.6 Qualitative assessment of the source activity detection algorithm. Common source:
speech. Interfering sources: speech, babble noise with 20 dB SNR. (Top) Time domain, input
signal—black solid line, true common source (speech)—green squares, true interfering speech
source—red stars, “Hadamard”—blue triangles, proposed algorithm—black circles. (Bottom)Spec-
trogram of the input signal

Fig. 14.7 Probability of the detection versus probability of false alarm. Common source: speech.
Interfering sources: speech, babble noise with 20 dB SNR
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Fig. 14.8 Probability of the detection versus probability of false alarm. Common source: speech.
Interfering sources: speech, door-knocks transients and white Gaussian noise with 15 dB SNR

eigenvalue decomposition of the unified affinity kernelM. In the new representation
the common source is separated from all other sources, so it may be used, e.g., for
the activity detection of the common source as we show in this chapter. However,
the mapping to the new coordinate system is non-linear so that the question of
how to reproduce the original sound produced by the common source from its new
representation still requires further research.Based on the study presented in [44], one
possible kernel-based solution for this question is the incorporation of the underlying
representation of the common source in a non-local filtering technique. The main
idea is to construct non-local filters for the estimation of the spectral variance of
each source, and then incorporate the estimates in a spectral gain filter for source
separation.

The spectral variance of the common source in frame n may be obtained by
a weighted average of the spectral variance of the measured audio signal in frames
k ∈ 1, 2, ..., N , where the selection of proper weights, denoted byw (n, k), is the key
for a good estimation. Assuming that the activity of the common source is known
in advance, the authors in [44] proposed a statistical model showing that assigning
w (n, k) = 1 for pairs of frames (n, k) in which the common source is active, and
zero otherwise, indeed leads to the estimate of the common source. Intuitively, large
weights are selected only for frames that share similar content with frame n in terms
of the common source. In such a case, the content of the common source remains
unchanged, while the other parts of the spectral variance are averaged out. We note
that for a proper estimation of the spectral variance of the common source, in practice,
spectral subtraction is further applied to reduce an additive error term related to the
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spectral variance of the interfering sources; for more details, we refer the reader
to [44].

One approach for the selection of the weights w (n, k) is to use the unified affinity
kernel setting w (n, k) = Mn,k . As described in Sect. 14.3, the unified affinity kernel
M in (14.6) represents relations between the frames according to the common source
such that when both frames n and k are similar to each other in term of the common
source Mn,k has a high value. Another approach would be to construct the new rep-
resentation from the common source φ1,φ2, ...,φN , and then to use the Euclidean
distance between the frames in the new representation setting the coefficients, for

example, to w (n, k) = exp
[
− ∥∥φn − φk

∥∥2
]
. The motivation to use the Euclidean

distance in the domain of the new representation is that it approximates the meaning-
ful diffusion distance [6]. Talmon, Cohen, and Gannot [44] have studied these two
approaches for the separation of speech from transients in a single modal setting,
and they indeed found that the second approach provides better performance.

For source separation, each source is enhanced using the optimally modified log
spectral amplitude (OM-LSA) algorithm [45], in which the spectral gain function
provides an optimal solution minimizing the quadratic error of the log of the spectral
amplitude of a particular source assuming that the spectral variances of all sources
are known. In practice, the estimates of the spectral variances of the sources may
be obtained via the non-local filtering technique using multiple video cameras, each
pointed at a different sound source.

14.5 Conclusions

We have addressed the problem of extracting a particular sound source measured in
a complex sound scene by a single microphone and by a video camera. By pointing
the video camera to this particular sound source, the problem becomes equivalent
to extracting the common source to the video and the audio modalities, and as we
showed, it can be addressed using the alternating diffusion maps method. The latter
provides an underlying representation of the common source while attenuating the
interfering sources as we demonstrated for the activity detection of the common
source. The alternating diffusion maps is applied in a data driven manner to the
measured signal, so that no specific assumptions on the types of the source are used.
Therefore even though we demonstrated its use for extracting speech sources, it has
the potential to be used for other sources. For example, an audio-visual recording
of keyboard taps may be used for extracting the taps in the presence of speech and
other transients. In addition, although we have focused in this chapter on obtaining
an underlying representation of the common source, the alternating diffusion maps
method has the potential to be further used for the separation of the common source
via non-local filtering as shown in previous studies in a single modal setting.
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