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Abstract. Computational complexity and approximation algorithms
are reported for a problem of stabbing a set of straight line segments
with the least cardinality set of disks of fixed radii r > 0 where the
set of segments forms a straight line drawing G = (V, E) of a planar
graph without edge crossings. Close geometric problems arise in net-
work security applications. We give strong NP-hardness of the problem
for edge sets of Delaunay triangulations, Gabriel graphs and other sub-
graphs (which are often used in network design) for r ∈ [dmin, ηdmax]
and some constant η where dmax and dmin are Euclidean lengths of the
longest and shortest graph edges respectively. Fast O(|E| log |E|)-time
O(1)-approximation algorithm is proposed within the class of straight
line drawings of planar graphs for which the inequality r ≥ ηdmax holds
uniformly for some constant η > 0, i.e. when lengths of edges of G are
uniformly bounded from above by some linear function of r.
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1 Introduction

Numerous applications from security, sensor placement and robotics lead to com-
putational geometry problems in which one needs to find the smallest cardinality
set C of points on the plane having bounded (in some sense) visibility area such
that each piece of the boundary of a given geometric object or any part of the
complex (i.e. set of edges or faces) of a plane graph is within visibility area of
some point from C, see e.g. [5,12]. Refining complexity statuses and designing
approximation algorithms for these problems is still an area of active research. In
this paper complexity and approximability are studied of the following problem.
Intersecting Plane Graph with Disks (IPGD): given a straight line draw-
ing (or a plane graph) G = (V,E) of an arbitrary simple1 planar graph without
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edge crossings and a constant r > 0, find the smallest cardinality set C ⊂ R
2 of

points (disk centers) such that each edge e ∈ E is within Euclidean distance r
from some point c = c(e) ∈ C or, equivalently, the disk of radius r centered at c
intersects e.

The IPGD abbreviation is used throughout our paper to denote the above
problem for simplicity of presentation. Applications of complexity and algorith-
mic analysis of the IPGD problem come from network security. More specifically,
IPGD represents the following model in which we are to evaluate vulnerability of
some physical network to simultaneous technical failures caused by natural (e.g.
floods, fire, electromagnetic pulses) and human sources. In this model network
nodes are modeled by points on the plane while its physical links are given in the
form of straight line segments. A catastrophic event (threat) is usually localized
in a particular geographical area and modeled by a disk of some fixed radius
r > 0. A threat impacts a network link when the corresponding disk and seg-
ment intersect. Evaluation of the network vulnerability can be posed in the form
of finding the minimum number of threats along with their positions that cause
all network links to be broken. Thus, it brings us to the IPGD problem assum-
ing that network links are geographically non-overlapping. A similar setting is
considered in [1] with the fixed number of threats. Furthermore, in [12] a close
geometric problem is considered called the Art Gallery problem where point
coverage area is affected by boundaries of its neighbouring geometric objects
whereas point has circular visibility area in the case of the IPGD problem.

In this paper computational complexity and approximability of IPGD are
studied for simple plane graphs with either r ∈ [dmin, dmax] or r = Ω(dmax)
where dmax and dmin are Euclidean lengths of the longest and shortest edges of
G. Our emphasis is on those classes of simple plane graphs that are defined by
some distance function, namely, on Delaunay triangulations, some of their con-
nected subgraphs, e.g. for Gabriel graphs. These graphs are often called proximity
graphs. Delaunay triangulations are plane graphs which admit efficient geometric
routing algorithms [4], thus, representing convenient network topologies. Gabriel
graphs arise in modeling wireless networks [14].

1.1 Related Work

IPGD is related to several well-known combinatorial optimization problems.
First, we have the Continuous Disk Cover (CDC) problem for the case of IPGD
where G consists of isolated vertices, i.e. when segments from E are all of zero
length. Strong NP-hardness is well known for CDC [9]. Second, IPGD coincides
with known Vertex Cover problem for r = 0. Third, it is the special case of
the geometric Hitting Set problem on the plane.
Hitting Set: given a family N of sets on the plane and a set U ⊆ R

2, find the
smallest cardinality set H ⊆ U such that N ∩ H �= ∅ for every N ∈ N .

IPGD coincides with Hitting Set if we set N := Nr(E) = {Nr(e)}e∈E and
U := R

2 where Nr(e) = Br(0) + e = {x + y : x ∈ Br(0), y ∈ e} is Euclidean r-
neighbourhood of e having form of Minkowski sum and Br(x) is the disk of radius
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r centered at x ∈ R
2. An aspect ratio of a closed convex set N with int N �= ∅

2

coincides with the ratio of the minimum radius of the disk which contains N to
the maximum radius of the disk which is contained in N. For example, each set
Nr(e) (also called by object in the sequel) has aspect ratio equal to 1 + d(e)

2r ,
where d(e) is Euclidean length of edge e ∈ E. APX-hardness of the discrete3

Hitting Set problem is given for families of axis-parallel rectangles, generally,
with unbounded aspect ratio [6], and for families of triangles of bounded aspect
ratio [13].

1.2 Results

Our results report complexity and approximation algorithms for the IPGD prob-
lem within several classes of plane graphs under different assumptions on r. Let
S be a set of n points in general position on the plane no four of which are cocir-
cular. We call a plane graph G = (S,E) a Delaunay triangulation if [u, v] ∈ E
iff there is a disk T such that u, v ∈ bd T 4 and S ∩ int T = ∅. Finally, a plane
graph G = (S,E) is named a nearest neighbour graph when [u, v] ∈ E iff either
u or v is the nearest Euclidean neighbour for v or u respectively.

Hardness Results. Our first result claims strong NP-hardness of IPGD within
the class of Delaunay triangulations and some known classes of their connected
subgraphs (Gabriel and relative neighbourhood graphs) for r ∈ [dmin, dmax] and
μ = dmax

dmin
= O(|S|). IPGD remains strongly NP-hard within the class of nearest

neighbour graphs for r ∈ [dmax, ηdmax] with a large constant η and μ ≤ 4.
Furthermore, we have the same NP-hardness results under the same restrictions
on r and μ even if we are bound to choose points of C close to vertices of G.
The upper bound on μ for Delaunay triangulations is comparable with the lower
bound μ = Ω

(
3
√

n2
)

which holds true with positive probability for Delaunay
triangulations produced by n random independent points on the unit disk [2].
Thus, declared restrictions on r and μ define natural instances of IPGD.

An upper bound on μ implies an upper bound on the ratio of the largest
and smallest aspect ratio of objects from Nr(E). The Hitting Set problem is
generally easier when sets from N have almost equal aspect ratio bounded from
above by some constant. Our result for the class of nearest neighbour graphs
gives the problem NP-hardness in the case where objects of Nr(E) have almost
equal constant aspect ratio.

In distinction to known results for the Hitting Set problem mentioned
above our study is mostly for its continuous setting with the structured system
Nr(E) formed by an edge set of a specific plane graph; each set from Nr(E)
is of the special form of Minkowski sum of some graph edge and radius r disk.
Our proofs are elaborate complexity reductions from the CDC problem which
is intimately related to IPGD.
2 int N is the set of interior points of N .
3 When U coincides with some prescribed finite set.
4 bd T denotes the set of boundary points of T .
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Positive Results. Let R(E) be the smallest radius of the disk that intersects
all segments from the edge set E. As opposed to the cases where either r ∈
[dmin, dmax] or r ∈ [dmax, ηdmax], IPGD is solvable within the class of simple
plane graphs, for which the inequality r ≥ ηR(E) holds uniformly for some

fixed η > 0, in O
(
k2|E|2k+1

)
time with k =

⌈√
2

η

⌉2

. Above inequality implies
an upper bound k on its optimum. Taking proof of W [1]-hardness into account
of parameterized version of CDC [10] as well as the reduction used to prove
the Theorem 2 of this paper, it seems unlikely to improve this time bound to
O(f(k)|E|c) for any computable function f and any constant c > 0.

Finally, we present an 8p(1+2λ)-approximation O(|E| log |E|)-time algorithm
for IPGD when the inequality r ≥ dmax

2λ holds true uniformly within a class of
simple plane graphs for a constant λ > 0, where p(x) is the smallest number of
unit disks needed to cover any disk of radius x > 1. It corresponds to the case
where segments from E have their lengths uniformly bounded from above by
some linear function of r, or, in other words, when objects from Nr(E) have their
aspect ratio bounded from above by 1+λ. A similar but more complex O(|E|1+ε)-
time constant factor approximation algorithm is given in [7] to approximate the
Hitting Set problem for sets of objects whose aspect ratio is bounded from
above by some constant.

2 NP-Hardness Results

We give complexity analysis for the IPGD problem by considering its setting
where r ∈ [dmin, dmax]. Under this restriction on r IPGD coincides neither with
known Vertex Cover problem nor with CDC. In fact it is equivalent (see
the Introduction) to the geometric Hitting Set problem for the set Nr(E) of
Euclidean r-neighbourhoods of edges of G. For the IPGD problem we claim its
NP-hardness even if we restrict the graph G to be either a Delaunay triangulation
or some of its known subgraphs. We keep the ratio μ = dmax

dmin
bounded from above,

thus, imposing an upper bound on the ratio of the largest and smallest aspect
ratio of objects from Nr(E). We show that IPGD remains intractable even in
its simple case where r = Θ(dmax) and μ is bounded by some small constant or,
equivalently, when objects of Nr(E) have close constant aspect ratio.

Our first hardness result for IPGD is obtained by using a complexity reduc-
tion from the CDC problem. Below we describe a class of hard instances of the
CDC problem which correspond to hard instances of the IPGD problem for
Delaunay triangulations with relatively small upper bound on the parameter μ.

2.1 NP-Hardness of the CDC Problem

To single out the class of hard instances of the CDC problem a reduction is used
in [9] from the strongly NP-complete minimum dominating set problem which
is formulated as follows: given a simple planar graph G0 = (V0, E0) of degree at
most 3, find the smallest cardinality set V ′

0 ⊆ V0 such that for each u ∈ V0\V ′
0

there is some v = v(u) ∈ V ′
0 which is adjacent to u.
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Below an integer grid denotes the set of all points on the plane with integer-
valued coordinates each of which belongs to some bounded interval. An orthog-
onal drawing of the graph G0 on some integer grid is the drawing whose vertices
are represented by points on that grid whereas its edges are given in the form of
polylines that are composed of connected axis-parallel straight line segments of
the form [p1, p2], [p2, p3], . . . , [pk−1, pk], and intersecting only at the edge end-
points p1 and pk, where each point pi again belongs to the grid. In [9] strong
NP-hardness of CDC is proved by reduction from the minimum dominating set
problem. This reduction involves using plane orthogonal drawing of G0 on some
integer grid. More specifically, a set D is build on that grid with V0 ⊂ D. The
resulting hard instance of the CDC problem is for the set D and some integer
(constant) radius r0 ≥ 1. Let us observe that G0 admits an orthogonal draw-
ing (Theorem 1 [15]) on the grid of size O(|V0|) × O(|V0|) whereas total length
of each its edge is of the order O(|V0|). Proof of strong NP-hardness of CDC
could be conducted taking into account this observation. We can formulate (see
Theorems 1 and 3 from [9]).

Theorem 1 [9]. The CDC problem is strongly NP-hard for a constant integer
radius r0 and point sets D on the integer grid of size O(|D|)×O(|D|). It remains
strongly NP-hard even if we restrict centers of radius r0 disks to be at the points
of D.

Remark 1. For every simple planar graph G0 of degree at most 3 its orthogonal
drawing can be constructed such that at least one of its edges is a polyline which
is composed of at least two axis-parallel segments.

2.2 NP-Hardness of the IPGD Problem for Delaunay Triangulations

To build a reduction from the CDC problem on the set D (as constructed in
proof of the Theorem 1 from [9]), we exploit a simple idea that a radius r disk
covers a set of points D′ ⊂ D iff a slightly larger disk intersects (and, sometimes,
covers) straight line segments, each of which is close to some point of D′ and has
a small length with respect to distances between points of D. Then a proximity
graph H is build whose vertex set coincides with the set of endpoints of small
segments corresponding to points of D. Since H usually contains these small
segments as its edges, this technique gives NP-hardness for the IPGD problem
within numerous classes of proximity graphs. The following technical lemma
holds which reports an r-dependent lower bound on the distance between any
point with integer coordinates and a radius r circle through the pair of integer-
valued points.

Lemma 1. Let X ⊂ Z
2, r ≥ 1 is an integer, ρ(u; v, w) denotes the minimum of

two Euclidean distances from an arbitrary point u ∈ X to the union of two radius
r circles which pass through distinct points v and w from X, where |v−w|2 ≤ 2r,
Z is the set of integers and | · |2 is Euclidean norm. Then

min
u/∈C(v,w), v �=w, u,v,w∈X, |v−w|2≤2r

ρ(u; v, w) ≥ 1
480r5

,
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where C(v, w) is the union of two radius r circles passing through v and w.

Let us formulate the following restricted form of IPGD.
Vertex Restricted IPGD (VRIPGD(δ)): given a simple plane graph G =
(V,E), a constant δ > 0 and a constant r > 0, find the least cardinality set
C ⊂ R

2 such that each e ∈ E is within Euclidean distance r from some point
c = c(e) ∈ C and C ⊂ ⋃

v∈V

Bδ(v).

Theorem 2. Both IPGD and VRIPGD(δ) problems are strongly NP-hard for
r ∈ [dmin, dmax], μ = O(n) and δ = Θ(r) within the class of Delaunay triangula-
tions, where n is the number of vertices in triangulation.

Proof. Let us prove that IPGD is strongly NP-hard. Proof technique for the
VRIPGD(δ) problem is analogous taking into account the Theorem 1 (see also
proof of the Theorem 3 from [9] for details). For any hard instance of the CDC
problem, which the Theorem 1 reports, the IPGD problem instance is built for
r = r0 + δ and δ = 1

200022r11
0

as follows. For every u ∈ D points u0 and v0

are found such that |u − u0|∞ ≤ δ/2 and |u − v0|∞ ≤ δ/2, where Iu = [u0, v0]
has Euclidean length at least δ/2 and | · |∞ denotes norm in R

2 equal to the
maximum of absolute values of vector coordinates. More specifically, let us set
ID = {Iu = [u0, v0] : u ∈ D}. Endpoints of segments from ID are constructed in
sequential manner in polynomial time and space by defining a new segment Iu

to provide general position for the set of endpoints of the set ID′ ∪{Iu}, D′ ⊂ D,
where segments of ID′ are already defined. Here endpoints of Iu are chosen in the
rational grid that contains u whose elementary cell size is c1

|D|2 × c1
|D|2 for some

small absolute rational constant c1 = c1(δ). Assuming u = (ux, uy), the point
u0 is chosen in the lower part of the grid with y-coordinates less than uy − δ/4
whereas v0 is taken from the upper one for which y-coordinates exceed uy + δ/4.

Let S be the set of endpoints of segments from ID. Every disk having Iu

as its diameter does not contain any points of S distinct from endpoints of Iu.
Let G = (S,E) be a Delaunay triangulation for S which can be computed in
polynomial time and space in |D|. Obviously, each segment Iu coincides with
some edge from E. We have dmin ≤ r and μ = O(|S|). It remains to prove that
r ≤ dmax. Due to the Remark 1 and a construction of the set D (see Fig. 1
and proof of the Theorem 1 from [9]) the set S can be constructed such that
the inequality r ≤ dmax holds true for G. Moreover, representation length for
vertices of S is polynomial with respect to representation length for points of D.

Let k be a positive integer. Obviously, centers of at most k disks of radius
r0, containing D in their union, give centers of radius r > r0 disks whose union
is intersected with each segment from E. Conversely, let T be a disk of radius
r which intersects a subset ID′ = {Iu : u ∈ D′} of segments for some D′ ⊆ D.
When |D′| = 1, it is easy to transform T into a disk which contains the segment
ID′ . Points of D have integer coordinates. Moreover, squared Euclidean distance
between each pair of points of the subset D′ does not exceed (2r0 + 4δ)2 =
4r20 + 16r0δ + 16δ2. As r0 ∈ Z, points from D′ are located within the distance
2r0 from each other. Let us use Helly theorem. Let R be the minimum radius
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of the disk T0, containing any triple u1, u2 and u3 from D′. W.l.o.g. we suppose
that, say, u1 and u2 are on the boundary of T0 and denote its center by O.
Obviously, R ≤ r0 + 2δ. Let us show that the case R > r0 is void. The center
of T0 can be shifted along the midperpendicular to [u1, u2] to have u1 and u2

at the distance r0 from the shifted center O′. The distance from the point u3 to
the radius r0 circle centered at O′ does not exceed

|O − u3|2 + |O − O′|2 − r0 ≤ 2δ +
√

(r0 + 2δ)2 − δ21 −
√

r20 − δ21

= 2δ +
4r0δ + 4δ2√

(r0 + 2δ)2 − δ21 +
√

r20 − δ21
≤ 2δ + 2

√
r0δ + δ2 <

1
480r50

,

where δ1 = |u1−u2|2
2 ≤ r0. By the Lemma 1 we have R ≤ r0. Thus, D′ is contained

in some disk of radius r0. Given a set of points on the plane, the smallest radius
disk can be found in polynomial time and space which covers this set. Therefore
we can convert any set of at most k disks of radius r whose union is intersected
with each segment from E to some set of at most k disks of radius r0 whose
union covers D.

Using the Corollary 1 of Sect. 4.2 from [2] and the Theorem 1 from [11]
we arrive at the lower bound μ = Ω

(
3
√

n2
)

which holds true with positive
probability for Delaunay triangulations produced by n random uniform points
on the unit disk. Thus, the order of the parameter μ for the considered class
of hard instances of the IPGD problem is comparable with the one for random
Delaunay triangulations.

2.3 NP-Hardness of IPGD for Other Classes of Proximity Graphs

The same proof technique could be applied for proving NP-hardness of the prob-
lem within the other classes of proximity graphs. Let us start with some defini-
tions. The following graphs are connected subgraphs of Delaunay triangulations.
A plane graph G = (S,E) is called a Gabriel graph when [u, v] ∈ E iff the disk
having [u, v] as its diameter does not contain any other points of S distinct from
u and v. A relative neighbourhood graph is the plane graph G with the same
vertex set for which [u, v] ∈ E iff there is no any other point w ∈ S such that
w �= u, v with max{|u − w|2, |v − w|2} < |u − v|2. Finally, a plane graph is called
a minimum Euclidean spanning tree if it is the minimum weight spanning tree
of the weighted complete graph K|S| whose vertices are points of S such that its
edge weight is given by Euclidean distance between the edge endpoints.

Corollary 1. Both IPGD and VRIPGD(δ) problems are strongly NP-hard for
r ∈ [dmin, dmax], μ = O(n) and δ = Θ(r) within classes of Gabriel, relative
neighbourhood graphs and minimum Euclidean spanning trees as well as for r ∈
[dmax, ηdmax] and μ ≤ 4 within the class of nearest neighbour graphs where η is
a large constant.
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3 Positive Results

3.1 Polynomial Solvability of the IPGD Problem for Large r

Before presenting polynomially solvable case of the IPGD problem we are to
take some preprocessing. It is aimed at reducing the set of points, among which
centers of radius r disks are chosen, to a finite set whose cardinality is bounded
from above by some polynomial in |E|.

Problem Preprocessing. As was mentioned in the Introduction, the IPGD
problem coincides with the Hitting Set problem considered for Euclidean r-
neighbourhoods of graph edges which form the system denoted by Nr(E). Their
boundaries are composed of four parts: two half-circles and two parallel straight
line segments. W.l.o.g. we can assume that intersection of any subset of objects
from Nr(E) (if nonempty) contains a point from the intersection of boundaries
of two objects from Nr(E). Thus, our choice of points to form a feasible solution
to the IPGD problem can be restricted to the set of intersection points of bound-
aries of pairs of objects from Nr(E). The following lemma can be considered a
folklore.

Lemma 2. Let G = (V,E) be a simple plane graph. Each feasible solution C
to the IPGD problem for G can be converted in polynomial time and space
(in |E|) to a feasible solution D ⊂ Dr(G) to IPGD for G with |D| ≤ |C|,
where Dr(G) ⊂ R

2 is some set of cardinality of the order O(|E|2) which can be
constructed in polynomial time and space.

Polynomially Solvable Case of IPGD. In distinction to the cases where
either r ∈ [dmin, dmax] or r = Θ(dmax) the IPGD problem is polynomially solv-
able for r = Ω(R(E)), where R(E) is the smallest radius of the disk that inter-
sects all segments from E. Due to [3] the IPGD problem is solvable in O(|E|)
time within the class of plane graphs for which the inequality r ≥ R(E) holds
uniformly.

Let us consider the IPGD problem within the class of plane graphs for which
the inequality r ≥ ηR(E) holds uniformly for some fixed constant 0 < η < 1.
Since every radius r disk contains an axis-parallel rectangle whose side is equal to

r
√

2, roughly at most
⌈√

2R(E)
r

⌉2

≤
⌈√

2
η

⌉2

= k(η) = k radius r disks are needed
to intersect all segments from E. Therefore the brute-force search algorithm
could be applied that just sequentially tries each subset of Dr(G) of cardinality
at most k. This amounts roughly to O

(
k2|E|2k+1

)
time complexity. Thus, we

arrive at the polynomial time algorithm whose complexity depends exponentially
on 1/η. This algorithm gives an optimal solution to the IPGD problem taking
the Lemma 2 into account.

3.2 Approximation Algorithm for the IPGD Problem

Below the approximation algorithm is reported for the IPGD problem whose
approximation factor depends on the maximum aspect ratio among objects of
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Nr(E). More specifically, let us focus on the case of IPGD where the inequality
r ≥ dmax

2λ holds uniformly within some class Gλ of simple plane graphs for a
constant λ > 0. It corresponds to the situation where objects from the system
Nr(E) have their aspect ratio bounded from above by 1+λ. In this case it turns
out that the problem admits an O(1)-approximation algorithm whose factor
depends on λ. The following auxiliary problem is considered to formulate it.

Cover endpoints of segments with disks (CESD). Let S(G) ⊆ V be the
set of endpoints of edges of G. It is required to find the smallest cardinality set
of radius r disks whose union contains S(G).

Algorithm. Compute and output 8-approximate solution to the CESD prob-
lem using O(|E| log OPTCESD(S(G), r))-time algorithm (see Sects. 2 and 4 from
[8]).

We call a subset V ′ ⊆ V by a vertex cover for G = (V,E) when e ∩ V ′ �= ∅

for any e ∈ E. The statement below bounds the ratio of optima for CESD and
IPGD problems in the general case where S(G) is an arbitrary vertex cover of
the graph G.

Statement 3. The following bound holds true for any graph G ∈ Gλ without
isolated vertices:

OPTCESD(S(G), r)
OPTIPGD(G, r)

≤ p(1 + 2λ)

where p(x) is the smallest number of unit disks needed to cover radius x disk.

Proof. Let C0 = C0(G, r) ⊂ R
2 be an optimal solution to IPGD for a given

G ∈ Gλ. Set E(c,G) := {e ∈ E : c ∈ Nr(e)}, c ∈ C0. For every e ∈ E(c,G)
there is a point c(e) ∈ e with |c − c(e)|2 ≤ r. Any point from the set S(c,G)
of endpoints of segments from E(c,G) is within the distance r + dmax from the
point c. Due to definition of p, at most p(1 + 2λ) radius r disks are needed to
cover radius r + dmax disk. Therefore the set S(G) ⊆ ⋃

c∈C0

S(c,G) is contained

in the union of at most |C0|p(1 + 2λ) radius r disks.

Corollary 2. The algorithm is 8p(1 + 2λ)-approximate.

Remark 2. Approximation factor of the algorithm is in fact lower when Gλ is the
subclass of Delaunay triangulations or of their subgraphs. Indeed, in this case
there is no need to cover the whole radius r + dmax disk with radius r disks.

Remark 3. If S(G) is the set of midpoints of segments from E, the algorithm is
8p(1 + λ)-approximate.

4 Conclusion

Complexity and approximability are studied for the problem of intersecting a
structured set of straight line segments with the smallest number of disks of
radii r > 0 where a structural information about segments is given in the form
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of an edge set of a plane graph. It is shown that the problem is strongly NP-
hard within the class of Delaunay triangulations and some of their subgraphs for
small and medium values of r while for large r it is polynomially solvable. Fast
approximation algorithm is given for the IPGD problem whose approximation
factor depends on the maximum aspect ratio among objects from Nr(E). Of
course, those algorithms are of particular interest whose factor is bounded from
above by some absolute constant. This sort of algorithms is our special focus for
future research.

A Proof of the Lemma 1

Proof. Let u = (x, y), v = (x1, y1) and w = (x2, y2) be distinct points of X.
Consider an arbitrary radius r circle (out of two circles) which passes through
v and w, and denote its center by O. A lower bound is obtained below for the
distance π = π(u; v, w) from that circle to the point u /∈ C(v, w).

Let Δ = |v−w|2, λ =
√

r2 − Δ2

4 , a = (u−v, u−w) and b = (u−v, (v−w)⊥),
where (v − w)⊥ = ±(y1 − y2,−x1 + x2). The distance π > 0 can be written in
the form:

π = π(u; v, w) =
∣∣∣∣
∣∣∣∣
v + w

2
− λ

(v − w)⊥

|v − w|2 − u

∣∣∣∣
2

− r

∣∣∣∣ =

∣∣∣∣∣∣
a + 2λb

Δ√
a + 2λb

Δ + r2 + r

∣∣∣∣∣∣
.

Without loss of generality it is assumed that u is in the 2r radius disk centered
at O. Indeed, we get π ≥ r ≥ 1

r otherwise. Let us bound denominator of the
fraction π, taking into account that Δ ≤ 2r, |u − v|2 ≤ |u − O|2 + |O − v|2 ≤ 3r
and |b|/Δ ≤ 3r : √

a +
2λb

Δ
+ r2 + r ≤ 5r.

As points of X have integer coordinates, a and b are integers. For Δ2 = 4r2 we
get π ≥ 1

5r . When Δ2 ≤ 4r2 − 1, it is enough to prove the inequality
∣∣∣∣a +

2λb

Δ

∣∣∣∣ ≥ 1
96r4

. (1)

Indeed, again, combining this bound with the aforementioned upper bound for
denominator of the fraction π, we get π ≥ 1

480r5 .
For integer 2λb

Δ the left-hand side of the inequality (1) is at least 1. Thus, it
remains for us to prove the inequality (1) for the case where 2λb

Δ /∈ Z. Suppose
that q =

{∣∣2λb
Δ

∣∣} > 0 and k =
[∣∣ 2λb

Δ

∣∣] , where {·} and [·] denote fractional and
integer part of real number respectively. In fact, the term min{q, 1 − q} can be
bounded from below. Let us start estimating with q. First, it is assumed that
γ = 4r2b2

Δ2 ∈ Z. We have k2 < 4λ2b2

Δ2 < (k+1)2. As q > 0, we get q ≥ {√
k2 + 1

}
.

Due to concavity of the square root we have
{√

k2 + 1
}

=

{√
2k · k2

2k + 1
+

(k + 1)2

2k + 1

}
≥

{
k +

1
2k + 1

}
=

1
2k + 1
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≥ 1
4λ|b|

Δ + 1
≥ 1

13r2
.

Now the case is considered where γ /∈ Z. As 2kq + q2 ≥ {2kq + q2} = {γ},
we have that

q ≥
√

k2 + {γ} − k ≥ {γ}√
k2 + {γ} + k

≥
1

Δ2

4r|b|
Δ

≥ 1
12r2Δ2

≥ 1
48r4

.

Let us get a lower bound for 1 − q. Again, assume that γ ∈ Z. Arguing
analogously, we arrive at the bound

2k(1 − q) + (1 − q)2 ≥ {(k + 1 − q)2} =
{

(k + 1)2 − 4λ2b2

Δ2
− 2q(1 − q)

}
≥ 1

2
.

Resolving the quadratic inequality with respect to 1 − q, we get:

1 − q ≥
√

k2 +
1
2

− k =
1
2√

k2 + 1
2 + k

≥ 1
8r|b|

Δ

≥ 1
24r2

.

Now let γ /∈ Z. Let us consider the subcase, where {γ} + 2q(1 − q) > 1. We get
{

(k + 1)2 − 4λ2b2

Δ2
− 2q(1 − q)

}
≥ 1 − {γ} ≥ 1

Δ2
.

Resolving the corresponding inequality with respect to 1 − q, we arrive at the
analogous lower bound 1 − q ≥ 1

48r4 .
Now we are to address the case where {γ} + 2q(1 − q) < 1. Obviously,

{
(k + 1)2 − 4λ2b2

Δ2
− 2q(1 − q)

}
= 1 − {γ} − 2q(1 − q).

For 1 − q < 1
4Δ2 we have 1 − {γ} − 2q(1 − q) ≥ 1

Δ2 − 1
2Δ2 = 1

2Δ2 . Arguing
analogously, we obtain the following bound 1 − q ≥ 1

96r4 ; otherwise, we get
1 − q ≥ 1

4Δ2 ≥ 1
16r2 .

For {γ} + 2q(1 − q) = 1 we have:

1 − q =
1 − {γ}

2q
≥ 1 − {γ}

2
≥ 1

2Δ2
≥ 1

8r2
.

Finally, we arrive at the claimed bound:

min{q, 1 − q} ≥ 1
96r4

.
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