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Abstract. This paper presents a human gait data collection for anal-
ysis and activity recognition consisting of continues recordings of com-
bined activities, such as walking, running, taking stairs up and down,
sitting down, and so on; and the data recorded are segmented and anno-
tated. Data were collected from a body sensor network consisting of six
wearable inertial sensors (accelerometer and gyroscope) located on the
right and left thighs, shins, and feet. Additionally, two electromyogra-
phy sensors were used on the quadriceps (front thigh) to measure muscle
activity. This database can be used not only for activity recognition
but also for studying how activities are performed and how the parts of
the legs move relative to each other. Therefore, the data can be used
(a) to perform health-care-related studies, such as in walking rehabilita-
tion or Parkinson’s disease recognition, (b) in virtual reality and gaming
for simulating humanoid motion, or (c) for humanoid robotics to model
humanoid walking. This dataset is the first of its kind which provides
data about human gait in great detail. The database is available free of
charge https://github.com/romanchereshnev/HuGaDB.

1 Introduction

The increasing availability of wearable body sensors leads to novel scientific stud-
ies and industrial applications [1]. The main large areas include gesture recog-
nition, human activity recognition, and human gait analysis. Several databases
have been released for benchmarking; however, due to a wide variety of sen-
sor types and the complexity of activities, these databases are rather distinct.
Now, we will review these areas and the corresponding databases in a taxonomic
manner.

Gesture recognition (GR) mainly focuses on recognizing hand-drawn ges-
tures in the air. Patterns to be recognized may include numbers, circles, boxes,
or Latin alphabet letters. Prediction is usually made on data obtained from
smartphone sensors or some special gloves equipped with kinematic sensors, such
as 3-axis accelerometers, 3-axis gyroscopes, and occasionally electromyography
(EMG) sensors, to measure the electrical potential on the human skin during
muscular activities [2]. A database for gesture recognition is available in [3].
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Human activity recognition (HAR), on the other hand, aims at recogniz-
ing daily lifestyle activities. For instance, an interesting research topic is recog-
nizing activities in or around the kitchen, such as cooking; loading the dishwasher
or washing machine; preparing brownies or salads; scrambling eggs; light clean-
ing; opening or closing drawers, the fridge, or doors; and so on. Often these
activities can be interrupted by, for example, answering phones. Databases on
this topic include the MIT Place dataset [4,5], Darmstadt Daily Routine dataset
[6], Ambient Kitchen [7], CMU Multi-Modal Activity Database (CMU-MMAC)
[8], and Opportunity dataset [9,10]. In this topic, on-body inertial sensors are
usually worn on the wrist, back, or ankle, however, additional sensors are used,
such as temperature sensor, proximity sensor, water consumption sensor, heart
rate and so on. For instance, CMU-MMAC includes videos, audios, RFID tags,
motion capture system based on on-body markers, and physiological sensors such
as galvanic skin response (GSR) and skin temperature, which are all located on
both forearms and upper arms, left and right calves and thighs, abdomen, and
wrists.

Other types of HAR usually focus on walking-related activities, such as walk-
ing, jogging, turning left or right, jumping, laying down, going up or down
the stairs, and so on. Data on this topic can be found in the WARD dataset
[11], PAMAP2 dataset [12,13], HASC challenge [14–16], USC-HAD [17,18], and
MAREA [19]. For data collection, on-body sensors are often placed on the par-
ticipant’s wrist, waist, ankles, and back.

In some databases, exceptional efforts are taken to provide a reliable bench-
mark. The body sensor network conference (BSNC) (http://bsncontest.org) [20],
for instance, has carried out a contest where organizers provided three different
datasets from different research groups. Databases differ in sensor types used and
activities recorded. Another team, called the Evaluating Ambient Assisted Living
Systems through Competitive Benchmarking – Activity Recognition (EvAAL-
AR), provides a service to evaluate HAR systems live on the same activity scenar-
ios performed by an actor [21]. In this contest, each team brings its own activity
recognition system, and the evaluation criteria attempt to capture the practical
usability: recognition accuracy, user acceptance, recognition delay, installation
complexity, and interoperability with ambient-assisted living systems.

Gait analysis focuses not only on the recognition of activities observed but
also on how activities are performed. This can be useful in health-care systems
for monitoring patients recovering after surgery or fall detection or in diagnosing
the state of, for example, Parkinson’s disease [22,23]. For instance, the Daphnet
Gait dataset (DG) [24] consists of recordings of 10 participants affected with
Parkinson’s disease instructed to carry out activities that are likely to be diffi-
cult to perform, such as walking. The objective is to detect these incidents from
accelerometer data recorded from above the ankle, above the knee, and on the
trunk. On the other hand, Bovi et al. provide a gait dataset collected from 40
healthy people with various ages as a reference dataset [25]. In the aforemen-
tioned BSNC, the third database (ID:IC) contains gait data before knee surgery
and 1, 3, 6, 12, and 24 weeks (respectively) after it.

http://bsncontest.org
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2 Motivation and Design Goals

The main purpose of this dataset is to provide detailed gait data to study how
the parts of the legs move individually and relative to each other during activities
such as walking, running, standing up, and so on. A summary of the activities can
be found in Table 1. This dataset contains continuous recordings of combinations
of activities, and the data are segmented and annotated with the label of the
activity currently performed. Thus, this dataset is also suitable for analyzing
human gait and activities between transitions.

Table 1. Characteristics of HuGaDB

ID Activity Time sec (min) Percent Samples Description

1 Walking 11544 (192) 32.15 679073 Walking and turning at
various speeds on a flat
surface

2 Running 1218 (20) 3.39 71653 Running at various paces

3 Going up 2237 (37) 6.23 131604 Taking stairs up at
various speeds

4 Going down 1982 (33) 5.52 116637 Taking the stairs down at
various speeds and steps

5 Sitting 4111 (68) 11.45 241849 Sitting on a chair; sitting
on the floor not included

6 Sitting down 409 (6) 1.14 24112 Sitting on a chair; sitting
down on the floor not
included

7 Standing up 380 (6) 1.06 22373 Standing up from a chair

8 Standing 5587 (93) 15.56 328655 Static standing on a solid
surface

9 Bicycling 2661 (44) 7.41 156560 Typical bicycling

10 Up by elevator 1515 (25) 4.22 89144 Standing in an elevator
while moving up

11 Down by elevator 1185 (19) 3.30 69729 Standing in an elevator
while moving down

12 Sitting in car 3069 (51) 8.55 180573 Sitting while an travelling
by car as a passenger

Total 35903 598 100.00 2111962

Mainly inertial sensors were used for data acquisition. We decided to use
inertial sensors because they are inexpensive, simple to use anywhere such as
indoor and outdoor area, and widely available compared with other systems.
For instance, compared with video-based motion capture systems, they require
expensive video cameras and special full bodysuit with special markers on it. In
addition, they are restricted to being used in the installed test area and they are
sensitive to lightning and suffer from lost markers phenomenon.
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In total, six inertial sensors were placed on the right and left thighs, shins
and feet; and data were collected from 18 healthy participants, providing total
10 h of recording. This allows one to investigate how the parts of the legs move
individually and relative to each other within and in-between activities. Our
dataset could be used as control data, for instance, in health-care-related stud-
ies, such as walking rehabilitation or Parkinson’s disease recognition. In virtual
reality or gaming, our dataset can be used to model a virtual human movements
by reproducing the leg movements from the accelerometer data by simply taking
the integrals. In fact, it is not limited to virtual environment and could be used
to train to walk and move humanoid robots to make them more humanlike and
cope with the uncanny valley.

This dataset is unique in the sense that it is the first to provide human
gait data in great detail mainly from inertial sensors and contains segmented
annotations for studying the transition between different activities.

3 Data Collection and Sensor Network Topology

In data collection, we used MPU9250 inertial sensors and electromyography
(EMG) sensors. Each EMG sensor has a voltage gain is about 5000 and band-pass
filter with bandwidth corresponding to power spectrum of EMG (10–500 Hz). A
sample rate of each EMG-channel is 1.0 kHz, ADC resolution is 8 bits, input volt-
ages: 0–5 V. The inertial sensors consisted of a 3-axis accelerometer and a 3-axis
gyroscope integrated into a single chip. Data were collected with accelerometer’s
range equal to ±2 g with sensitivity 16.384 LSB/g and gyroscope’s range equal to
±2000◦/s with sensitivity 16.4 LSB /◦/s. All sensors are powered from a battery,
that helps to minimize electrical grid noise.

Accelerometer and gyroscope signals were stored in int16 format. EMG sig-
nals are stored in uint8. Therefore, accelerometer data can be converted to m/s2

by dividing raw data 32768 and multiplying it by 2g. Raw gyroscope data can
be converted to ◦/s by multiplying it by 2000/32768. Raw EMG data can be
converted to Volts by multiplying it 0.001/255. We kept the raw data in our
data collection in case one prefers other normalization techniques.

In total, three pairs of inertial sensors and one pair of EMG sensors were
installed symmetrically on the right and left legs with elastic bands. A pair of
inertial sensors were installed on the rectus femoris muscle 5 cm above the knee,
a pair of sensors around the middle of the shinbone at the level where the calf
ends, and a pair on the feet on the metatarsal bones. Two EMG sensors were
placed on vastus lateralis and connected to the skin with three electrodes. The
locations of the sensors are shown in Fig. 1. In total, 38 signals were collected,
36 from the inertial sensors and 2 from the EMG sensors.

The sensors were connected through wires with each other and to a microcon-
troller box, which contained an Arduino electronics platform with a Bluetooth
module. The microcontroller collected 56.3500 samples per second in average
with standard deviation (std) 3.2057 and then transmitted them to a laptop
through Bluetooth connection.



HuGaDB: Human Gait Database for Activity Recognition 135

Fig. 1. Location of sensors. EMG sensor are shown as circles while boxes represent
inertial sensors

The data were collected from 18 participants. These participants were healthy
young adults: 4 females and 14 males, average age of 23.67 (std: 3.69) years, an
average height of 179.06 (std: 9.85) cm, and an average weight of 73.44 (std:
16.67) kg.

The participants performed a combination of activities at normal speed and
casual way, and there were no obstacles placed on their way. For instance, a
participant was instructed to perform the following activities: starting from a
sitting position, sitting - standing up - walking - going up the stairs - walking -
sitting down. The experimenter recorded the data continually using a laptop
and annotated the data with the activities performed. This provided us a long,
continuous sequence of segmented data annotated with activities. We developed
our own data collector program. In total, 2,111,962 samples were collected from
all the 18 participants, and they provided a total of 10 h of data.

Data acquisition was carried out mainly inside a building. However, activi-
ties such as running, bicycling, and sitting in a car were performed outside. We
collected data in a moving elevator and vehicle. In these scenarios, the activi-
ties performed were simply standing or sitting. However, a force impact on the
accelerometer sensors and in certain applications, it may be important to con-
sider these facts. Note that we did not collect data on a treadmill.

4 Data Format

Data obtained from the sensors were stored in flat text files. We decided to store
the data in flat files because they have one of the most universal formats, and they
can be easily preprocessed in all programming languages on every system. One
data file contains one recording, which is either a single activity (e.g., walking)
or a series of activities. Every file name was created according to the template
HGD vX ACT PR CNT.txt. HGD is a prefix that means human gait data
and vX means the version of the data files, currently v1. ACT is a variable, and it
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denotes the activity ID that was performed. If a file contains a series of different
types of activities, then it is indicated as VARIOUS. PR indicates the ID of the
person who performed the activity. Data recording was repeated a few times, and
CNT is a counter for this. For example, a file named HGD v1 walking 17 02.txt
contains data from participant 17 while he was walking for the second time. The
file naming convention is summarized in Table 2.

Table 2. Description of the file naming convention

TAG Description Type Comment

HGD Prefix Fixed Data files start with this prefix

vX Version number Integer Indicates the version of the data format

ACT Activity String Indicates the type of activity

PR Participant ID Integer Indicates the subject whose data was recorded

CNT Counter Integer Counter for repeated experiments

The main body of the data files contains tab-delimited raw, unnormalized
data obtained from the sensors directly. Each data file starts with a header, which
contains metainformation. It summarizes the list of activities, the IDs of the
activities recorded, and the time and date of the recording. This is summarized
in Table 3.

Table 3. Description of the data file header

TAG Description Type Comment

#Activity List of the
activities

String Lists the activity types in
this file

#ActivityID List of the ID
of activities

List of integers Lists the activity types in
this file

#Date-Time Date and
Time

YEAR-MM-
DD-HR-MN

Year-Month-Day-Hour-Min
format

The main data body of every file has 39 columns. Each column corresponds
to a sensor, and one row corresponds to a sample. The order of the columns is
fixed. The first 36 columns correspond to the inertial sensors, the next 2 columns
correspond to the EMG sensors, and the last column contains the activity ID.
The activities are coded as shown in Table 1. The inertial sensors are listed in the
following order: right foot (RF), right shin (RS), right thigh (RT), left foot (LT),
left shin (LS), and left thigh (LT), followed by right EMG (R) and left EMG
(L). Each inertial sensor produces three acceleration data on x, y, z axes and
three gyroscope data on x, y, z axes. For instance, the column named ‘RT acc z’
contains data obtained from the z-axis of accelerometer located on the right
thigh.
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Sample data with respect to the activities are visualized through a heat map
representation in Fig. 2.

Fig. 2. Data visualization. For normalization data from initial sensors were divided by
32768 and data from EMG were subtracted by 128 and divided by 128

A screenshot of some part of data file can be seen in Fig. 3

Fig. 3. Screenshot of the data file

The data files can be loaded easily in most of the popular programming
languages. For instance, they can be loaded in Python using the following script:

import numpy as np
data = np . genfromtxt ( p a t h t o f i l e ,

d e l im i t e r=’ \ t ’ ,
s k ip heade r=4)

Please note that it requires NumPy library. It also can be loaded in Matlab with
the following one-line command:

data = dlmread( p a t h t o f i l e , ’ \ t ’ , 4 , 0 ) ;
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We have prepared a script to load the data into SQLite database, which
is available at the database’s website: https://github.com/romanchereshnev/
HuGaDB/blob/master/Scripts/create db.py.

5 Discussion on Data Variance

We were interested seeing the variance among the data collected, in particular,
the data variance (A) within a single user and (B) between several users. For this
reason, we plotted in Fig. 4 the x-axes acceleration data from the thigh recorded
during a short two-three-step walk. Panel A shows the data from various record-
ings performed by the same user. It can be seen that the data variance at a single

(A) Single user

(B) Various users

Fig. 4. Data variance during walking. (A) Activity performed by the same user multiple
times. (B) Activity performed by different users. Legend indicates the source of the
data. Data are scaled to the range [−1,+1].

https://github.com/romanchereshnev/HuGaDB/blob/master/Scripts/create_db.py
https://github.com/romanchereshnev/HuGaDB/blob/master/Scripts/create_db.py
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frame is quite low suggesting that people perform activities very similar way. On
the other hand, panel B shows data obtained from six different, randomly chosen
users. Here, a much higher variance can be seen in the same frames compared to
the previous case. The increased variance may arise from several facts including:
difference in gait, difference in leg shape, sensors mounted in slightly different
positions, etc. We obtained similar conclusions on data obtained from differ-
ent sensors during different activities. We note that, even higher variance was
observed in the EMG data, which resulted from the difference in the electricity
conduction characteristics of the skin, skin thickness, etc.

Taking into account the high data variance between different users, we
emphasize the importance of proper evaluation of machine learning methods
developed for human activity recognition. Therefore, we propose using the super-
vised cross-validation approach for constructing training and test sets [26]. In
this approach, all the data from a designated user are held out only for tests
and the data from the other 17 participants are used for training. Thus, this
approach provides a reliable estimation of how an activity recognition system
would perform with a new user whose data was not seen before.

Variance can arise from using different brands of sensors. Unfortunately, we
did not have the capacity to collect data from different brands of sensors. We
hope the measurement noise is small in general and that different sensors can
be calibrated to be compatible with each other.

6 Availability

The database is available free of charge at https://github.com/romanche
reshnev/HuGaDB (455 Mb).

7 Summary

The HuGaDB dataset contains detailed kinematic data for analyzing human gait
and activity recognition. This dataset differs from previously published datasets
in the sense that HuGaDB provides human gait data in great detail mainly
from inertial sensors and contains segmented annotations for studying the tran-
sition between different activities. Data were obtained from 18 participants, and
in total, they provide around 10 h of recording. This dataset can be used in
health-care-related studies, such as walking rehabilitation, or in modeling human
movements in virtual reality or humanoid robotics. The dataset will be updated
with new data from new participants in the future.
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