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Abstract Controllers for swarms of robots are hard to design as swarm behaviour
emerges from their interaction, and so controllers are often evolved. However, these
evolved controllers are often difficult to understand, limiting our ability to predict
swarm behaviour. We suggest behaviour trees are a good control architecture for
swarm robotics, as they are comprehensible and promote modular reuse.We design a
foraging task for kilobots and evolve a behaviour tree capable of performing that task,
both in simulation and reality, and show the controller is compact and understandable.

1 Introduction

Swarm robotics is the field of robotics inspired by social insects, flocks of birds,
schools of fish and other natural collective phenomena. By using many simple and
cheap robots, it is hoped that goals such as pollution control, mapping and explo-
ration, and disaster recovery could be met in ways which are resilient, scalable and
decentralised [3]. The desired collective behaviour of the swarm emerges in a self-
organised way from the interactions of the many individual agents that make up the
swarm. Designing the controller for these agents is notoriously hard. A commonly
used approach is the use of evolutionary methods to discover suitable controller
designs.

Behaviour trees are widely used in the games industry to represent the decision
processes of non-player characters. Recently, they have been applied to robotics,
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although not to our knowledge to swarm robotics. They have desirable properties
that make them interesting to consider in the context of swarm robotics. They are
human readable. They are hierarchical, all subtrees are themselves behaviour trees,
encapsulating a complete behaviour that can exist within a larger tree, offering pos-
sibilities for modularity and building block reuse. Finally, they can be created and
optimised using the techniques of Genetic Programming [26].

In this work, we design a behaviour tree controller architecture suitable for instan-
tiation in a swarm of kilobots. We then automatically evolve behaviour trees in simu-
lation to enable the swarm to perform a collective foraging task. The fittest behaviour
tree is then evaluated in a swarm of real robots and analysed.

This paper is organised as follows; Sect. 2 gives a brief overview of swarm robotics
and the kilobot platform, and introduces behaviour trees, Sect. 3 describes the experi-
mental procedure, Sect. 4 details the results and Sect. 5 discusses results and possible
further work.

2 Background and Previous Work

We work within the paradigm of swarm robotics as described by Şahin [35] taking
inspiration from social insects, where many simple, homogeneous and not partic-
ularly capable robots with only local sensing and knowledge interact to produce
a desired collective behaviour. There are no principled solutions to designing the
controller to produce a given collective behaviour, common approaches are based
on bioinspiration, evolutionary methods and gaining insight by reverse engineering
the discovered controllers [19, 20, 33]. See [15] for a recent survey of the state of
automatic swarm controller generation.

One problem with automatic generation of swarm controllers is that of bootstrap-
ping; it is difficult to devise fitness functions to get complex behaviours [10, 29],
the evolutionary process will often get stuck in uninteresting local maxima. Iter-
ative approaches, with a gradually complexifying fitness function can work well,
but this requires the designer to a priori specify the path to the eventual complex
behaviour, lessening the likelihood of discovering novel behaviours. Hierarchical
modular approaches are a promising alternative. AutoMoDe by Francesca et al. [16,
17] uses hand-designed modular and parameterised sub-behaviours which are com-
binedwithin a Probabilistic Finite StateMachine (PFSM), and themodule parameters
and PFSM topology constitute a search space over which optimisation is automati-
cally carried out. Interestingly their automatically generated controllers have a lower
reality gap compared to pure neural net approaches. Another modular approach is
work byDuarte et al. [12, 13]where individual sub-behaviours are separately evolved
neural net controllerswhich are again combined in a higher level Finite StateMachine
(FSM), this time hand-designed.

A behaviour tree (BT) is a hierarchical structure of nodes, with leaves that interact
with the state of the world, and inner nodes that link these actions together in various
conditional and sequential ways. The whole tree is evaluated at regular intervals, this
is termed a tick. The tick is propagated down to the leaves and results are propagated
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back up according to the node types. Ogren [30] shows that all Hierarchical Dynamic
Systems and therefore Finite State Machines (FSMs) can be represented by a BT,
provided there are both sequence and selection type operators. With the addition
of a probabilistic selector, Probabilistic Finite state Machines (PFSMs) can also be
represented. Compared to an FSM or PFSM, the state transitions are implicit in the
tree structure, and modular1 structure is explicit; all subtrees are legal behaviour
trees. Behaviour trees have their origins as a graphical software engineering tool
before being adopted by the games industry for describing the decision processes
and actions of non-player characters. Recently they have been formalised and applied
to robotics [1, 2, 5, 7–9, 11, 22, 25, 27, 28, 30–32, 36, 37].

Kilobots are small cheap robots introduced by Rubenstein et al. [34]. They are
capable of motion using two vibrating motors, communication with each other over
a limited range using IR, distance sensing using the communication signal strength,
environmental sensing with an upwards facing photo detector, and signalling with
a multicolour LED. They are cheap enough to make it practical to build very large
swarms and capable enough to run interesting experiments. Collective control of the
kilobots in order to program and to start or stop them is achieved using a high intensity
IR system using the same protocol as the inter-kilobot communication system.

3 Materials and Methods

Foraging as a collective task is often used as a benchmark for swarm systems [38]. It
involves robotic agents leaving a nest region, searching for food, and returning food
to the nest. Cooperative strategies are often more effective.

We designed a simple foraging experiment for a swarm of kilobots in an arena
upon which we can project patterns of light to define the environment (Fig. 1). At the
centre of the arena is a circular nest region. Surrounding this is a gap, then beyond that
is the food region. A kilobot which moves into the food region is regarded as having
picked up an item of food, a kilobot which is carrying an item of food that enters
the nest region is regarded as depositing the food in the nest. Multiple kilobots are
placed in the central region in a grid and all execute the same controller (homogenous
swarm) for a fixed amount of time. The fitness of the swarm is related to the total
amount of food returned to the nest within the test time. The maximum possible
number of food items depends on the starting spatial distribution of the kilobots.
Assume that the kilobots start on the edge of the nest region and for the duration of
the test move directly back and forth between nest and food regions by the shortest
distance. Let f oodmax be the maximum food items, ttest be the test time, vavg be the
average linear velocity of the kilobots, n be the number of kilobots, f ndist be the
shortest (radial) distance between the food and nest regions:

1Perhaps mirroring a fundamental property of nature [6].
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Fig. 1 Left: Kilobot arena. The arena is a 3×2m surface upon which a projector defines the
environment with patterns of light. Right: Starting configuration for kilobot foraging experiment.
25 kilobots are placed in a 5×5 grid in the centre of the nest region, with random orientations.
Surrounding the nest is a 100mm gap, then outside that is the food region

f oodmax = n · vavg · ttest
2 · f ndist

(1)

We normalise the actual collected food items within the time of the test to give a
fitness value. Let f oodcollected be the total collected food items and k be a derating
factor. The fitness f of the controller is given by:

f = k · f oodcollected
f oodmax

(2)

The derating factor k is used to exert selection pressure towards smaller behaviour
trees to ensure they will fit within the limited RAM resources of the kilobots. It is
related to rusage (4) in the following way: k = 1.0 when rusage < 0.75 decreasing
linearly to 0 when rusage = 1.0.

Kilobots.For our experiments, wewant to be able to sensewhetherwe arewithin a
particular region (nest or food) of the arena.Regions are delineatedwithin the arenaby
using different coloured light from a video projector and detected with the upwards-
facing phototransistor of the kilobots. In order to create a robust region sensing
capability with a monochrome sensor, we exploited some particular characteristics
of low cost DLP projectors [21].

The optical path of these type of projectors consists of a white light source, an
optical modulator array, and a spinning colour wheel with multiple segments. Dif-
ferent full intensity primary and secondary colours produce different, quite distinct
brightness modulation patterns in the light, which our eyes integrate but which we



Evolving Behaviour Trees for Swarm Robotics 491

can detect easily with a series of samples from the photodetector. In our case, the
projector had a wheel spinning at 120Hz.Within each 8.3ms period, primary colours
were represented with a single pulse of about 1.2ms, cyan and yellow with a pulse
of 3.5ms, and magenta with two pulses of 1.2ms separated by a gap of 2ms, giving,
including black, four distinguishable patterns. We take 16 brightness samples from
the phototransistor at 520us intervals, covering one complete cycle, and classify the
pattern.

The IR communication system between the kilobots has a range of about 100mm.
Twice a second, the kilobot system software sends any available outgoing message,
retrying if the sending attempt collided with another sender. A kilobot receiving a
valid message calls a user specified function to handle it. The message has a payload
of nine bytes, and associatedwith themessage is signal strength information to enable
the distance from the sender to be calculated.

Controller. In order to control a robot with a behaviour tree, we need to define
the interface between the behaviour tree action nodes and the robot, and the action
nodes that act on the interface. This interface is known as the blackboard. Here there
is a trade-off between the capabilities that we choose to hard code and those that we
hope will evolve in the BT. We do not design the behaviour of the swarm but we
do make assumptions about what kind of sensory capabilities might be useful for
the evolutionary algorithm. This is often implicit in swarm robotics. The kilobot has
no in-built directional sensors, like the range-and-bearing sensors that are common
in swarm robotics experiments, so we synthesise collective sensing such that it is
possible for a robot to tell if it is moving towards or away from the food or nest. We
also give the capability of sensing the environment and the local density of kilobots,
and of sending and receiving signals to other kilobots.

This relatively rich set of hardwired capabilities is outlined in Table1. There are
ten blackboard entries,motors maps to the motion control commands of the kilolib
API, The send_signal and receive_signal entries allow for communication between

Table 1 Behaviour tree blackboard, defining interface between the behaviour tree and the robot

Index Name Access Description

0 motors W 0 = off, 1= left turn, 2 = right turn, 3 = forward

1 scratchpad RW Arbitrary state storage

2 send_signal RW >0.5 = Send a signal flag

3 received_signal R 1 = A signal flag has been received

4 detected_ f ood R 1 = Light sensor showing food region

5 carrying_ f ood R 1 = Carrying food

6 densi ty R Density of kilobots in local region

7 Δdensi ty R Change in density

8 Δdist f ood R Change in distance to food

9 Δdistnest R Change in distance to nest
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kilobots initiated within the BT; send_signal is writeable from the BT. When the
value is greater than 0.5, it is considered true, and a signal flag will be set in the
stream of outgoing message packets. The receive_signal entry will be set to 1 if any
message packets were received over the previous update cycle that had their signal
flag set, otherwise it will remain zero. The scratchpad can be read and written, and
has no defined meaning, it makes available some form of memory for the evolution
of the BT to exploit.Detected_food is read-only, and is 1 if the environment sensing
shows that the kilobot is in the food region, and zero otherwise, and carrying_food
denotes whether the kilobot is considered to be carrying a food item. This entry is
set to 1 if the kilobot enters the food region, and cleared to zero if the kilobot enters
the nest region.

The remaining four entries are all metrics derived from the incoming stream of
messages and their associated distance measurements. densi ty and Δdensi ty are
measures of the local population density and how it is changing. Each kilobot has
a unique ID, which is embedded in its outgoing message packets. By tracking the
number of unique IDs and the distances associated with messages from them, we
can estimate the local density. Let U I Dreceived be the set of unique IDs received in
the last update cycle, disti be the distance in mm associated with the unique ID, the
raw local density in kilobots · m−2 in an update cycle draw is given by:

draw =
∑

i∈U I Dreceived

1

π(disti/1000)2
(3)

This value is filtered with a moving average over w = 5 update cycles2 to give
densi ty(t) at update cycle t and Δdensi ty(t) = densi ty(t) − densi ty(t − 1).

The two distance metrics Δdist f ood and Δdistnest are calculated by tracking the
minimum communication hops [18] needed to reach the respective region, illustrated
in Fig. 2. For both food and nest, within themessage packet are two fields, a hop count
and an accumulated distance. The hop count is theminimumnumber ofmessage hops
to reach either the food or the nest region. The accumulated distance is the total length
of those hops. Kilobots receiving messages select the lowest hop count, increment it
and forward it and the new accumulated distance in the outgoing message stream. If
no messages are received, we default to a distance of 0mm if in a food or nest region,
or 500mm if not in a region. At every update cycle, we calculate two raw distance
measures dist f ood_raw and distnest_raw. These are then filtered with amoving average
in the same way as the densi ty value.

The behaviour tree nodes we implement are outlined in Table2. Nodes are divided
into two types; composition and action. Composition nodes are always inner nodes
of the tree and combine or modify the results of subtrees in various ways. Action
nodes are always leaf nodes and interface with the blackboard. Every update cycle,
occurring at 2Hz, the root node of the tree is sent the tick event. Each node handles the
tick according to its function and returns success, failure, or running. The propagation
of tick events down the tree and the return of the result to the root happen every cycle.

2Chosen in simulation as a reasonable compromise between responsiveness and stability.
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Fig. 2 Calculation of
distance metrics. Kilobot ‘A’
is in a food or nest region,
kilobot ‘B’ is connected to
‘A’ via two routes. Grey
circles denote maximum
communications radius. ‘B’
selects the message from the
top route because the hop
count is lowest, giving an
accumulated distance along
hops to the region of 300mm

Table 2 Behaviour tree nodes. Ch ≡ children, S ≡ succeeded , F ≡ f ailed, R ≡ running,
N ≡ num children, I ≡ repeat i terations, r ≡ randomly selected child, t ≡ ticks, v,w ≡
blackboard entr y, k ≡ contant . Notation from [28]

Node Size success if failure if running
if

Description

Composition nodes

seqm 2, 3, 4 7, 9, 11 N Ch S 1 Ch F 1 Ch R Sequence, tick until failure

selm 2, 3, 4 7, 9, 11 1 Ch S N Ch F 1 Ch R Selection, tick until success

probm 2, 3, 4 11, 17, 23 Chr S Chr F Chr R Probabilistic choice

repeat 6 I Ch S 1 Ch F Ch R Repeat subtree I times

succeed 4 Ch R̄ never Ch R Always succeed subtree

failured 4 never Ch R̄ Ch R Always fail subtree

Action nodes

mf 2 t = 1 never t = 0 Move forward for 1 tick

ml 2 t = 1 never t = 0 Turn left for 1 tick

mr 2 t = 1 never t = 0 Turn right for 1 tick

ifltvar 4 v1 < v2 v1 ≥ v2 never If v1 < v2
ifgevar 4 v1 ≥ v2 v1 < v2 never If v1 ≥ v2
ifltcon 7 v < k v ≥ k never If v < k

ifgecon 7 v ≥ k v < k never If v ≥ k

set 7 always never never Set w ← k

successl 2 always never never Always succeed

failurel 2 never always never Always fail
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The composition nodes seqm, selm, probm can have either 2, 3, or 4 children. On
receiving a tick they process their child nodes in the following way: seqm will send
tick to each child in turn until one returns failure or all children have been ticked,
returning failure or success respectively, selm will send tick to each child in turn
until one returns success or all children have been ticked, returning success or failure
respectively, probm will probabilistically select one child node to send tick to and
return what the child returns. They all have memory, that is, if a child node returns
running the parent node will also return running, and the next tick event will start
from that child node rather than the beginning of the list of child nodes. The repeat,
succeed, failured nodes have a single child. repeat sends up to a constant number
of ticks to its child for as long as the child returns success, successd and failured
send tick to their child and then always return success or failure respectively. The
action nodes are leaf nodes and interface with the blackboard, described in Table1.
ml, mr, mf turn left, right, or move forward, returning running for one cycle, then
success. The various if nodes compare blackboard entries with each other or with a
constant, and the set node writes a constant to a blackboard entry.

The controller runs an update cycle at 2Hz. Message handling takes place asyn-
chronously, and amessage is always sent at each sending opportunity. Environmental
sensing takes place at 8Hz, synchronously with the update cycle, with a median filter
over 7 samples to remove noise. Each cycle, the following steps take place: (1) New
blackboard values are calculated based on the messages received and the environ-
ment. (2) The behaviour tree is ticked, possibly reading and writing the blackboard.
(3) The movement motors are activated, and the message signal flag set according to
the blackboard values.

Implementation of the behaviour tree for execution on the kilobot required careful
use of resources; the processor has only 2kbytes RAM,whichmust hold all variables,
the heap, and the stack. The tree structure is directly represented in memory, with
each node being a structure with type, state, and additional type-dependent data such
as pointers to children. Execution of the behaviour tree involves a recursive descent
following node child pointers and as such, each deeper level uses entries on the stack.

The compiled kilobot code uses about 500 bytes for all non-heap variables. We
allocate 1024 bytes to the tree storage, leaving another 500 bytes for the stack and
some margin for Interrupt Service Routine stack usage. Each level of tree depth uses
16 bytes of stack. Let trsi ze be tree storage bytes and trstack be tree stack usage. The
resource usage is given by:

rusage = max

(
trsi ze
1024

,
trstack
500

)
(4)

This gives a maximum tree depth of about 30 and a maximum number of about 140
nodes at the average node size.

Evolutionary algorithm and simulator.

Behaviour trees are amenable to evolution using genetic programming techniques.
Using the DEAP library [14] a primitive set of strongly typed nodes were defined to
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represent behaviour tree nodes and their associated allowable constants. There are
several types of constants: if and set k ∈ [−1.0, 1.0], repeat iterations I ∈ [1..9],
if blackboard index vi ∈ [1..9], set blackboard index w ∈ [1..2], prob probability
p ∈ [0.0, 1.0]

Evolution proceeds as follows: The population of npop is evaluated for fitness by
running 10 simulations for each individual, each simulation with a different starting
configuration. The starting position is always a 5×5 grid with 50mm spacing in
the centre of the nest region, but the orientation is randomly chosen from interval
(−π, π) radians. The simulation runs for 300 simulated seconds and fitness is as
Eq.2.

An elite of neli te is transferred unchanged to the next generation. The remain-
der are chosen by tournament selection with size tsi ze. A tree crossover operator is
applied with probability pxover to all pairs of non-elite, then three different mutation
operators are applied to the non-elite individuals. Firstly, with probability pmutu , a
node in the tree is selected at random and the subtree at that point is replaced with a
randomly generated one. Next, with probability pmuts , a branch is chosen randomly
and replaced with one of its terminals. Next, with probability pmutn a node is picked
at random and replaced with another node with the same argument types. Lastly, with
probability pmute, a constant is picked randomly and its value changed. Parameters
are shown in Table3.

We wrote a simple 2D simulator based on the games physics engine Box2D [4].
The physics engine is capable of simulating interactions between simple convex geo-
metric shapes. We model the kilobots as disks sliding on a flat surface with motion
modelled using two-wheel kinematics, with forward velocity of 8 × 10−3ms−1 and
turn velocity of 0.55 rad s−1, based on measurements of 25 kilobots. Physical colli-
sions between kilobots, and movement into and out of communication range were
handled by Box2D, with an update loop running 10Hz. Simulator deficiencies
were masked using the addition of noise [23]. Gaussian noise was added to linear

Table 3 Parameters for a single evolutionary run

Parameter Value Description

ngen 200 Generations

ttest 300 Test length in seconds

n pop 25 Population

neli te 3 Elite

tsi ze 3 Tournament size

pxover 0.8 Crossover probability

pmutu 0.05 Probability of subtree replacement

pmuts 0.1 Probability of subtree shrink

pmutn 0.5 Probability of node replacement

pmute 0.5 Probability of ephemeral constant
replacement
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(σ = 1 × 10−3ms−1) and angular (σ = 0.2 rad s−1) components of motion at every
simulator timestep, and each kilobot had a unique fixed linear (σ = 1.3 × 10−3ms−1)

and angular (σ = 0.06 rads−1) velocity bias added, to reproducemeasured noise per-
formance and variability of real kilobots. Message reception probability was fixed
at 0.95. Simulation performance racc, measured using the methodology described in
[24] on an iMac 3.2GHz machine was approximately 8 × 104.

Twenty five independent evolutionary runs were conducted, each one using the
parameters in Table3. Each individual fitness evaluation was the mean over ten
simulations with different starting configurations. A total of 1.1 million simulations
were run.3

The fittest individual across the 25 separate populations was evaluated again for
fitness, this time over 200 simulations with different starting configurations. This
individual controller was then instantiated uniformly across a swarm of real kilobots,
giving a homogenous swarm. The real kilobots were run 20 times with different
starting configurations and their fitness measured.

4 Results and Discussion

The results (Fig. 3) show that we have successfully evolved a behaviour tree for use
as a swarm robot controller to perform a foraging task. When instantiated in a swarm

Fig. 3 Result of evolutionary runs. The left hand graph shows the maximum individual fitness
across all 25 independent evolutionary runs, with a box plot every 5 generations to show the
distribution. The right hand shows the distribution of fitnesses of the fittest individual, measured
over 200 simulation and 20 real runs

3Due to the elitism policy, three individuals per generation are unchanged and need no fitness
evaluation.
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Fig. 4 Kilobot trails from simulation of the fittest controller in the first generation (left) and the
200th generation (right) of the fittest lineage

of real robots, it performs similarly to the simulation, validating the applicability
of using this simulator for evolving kilobot swarm controllers. The performance is
slightly lower in real life (0.058) compared to the simulated (0.075) performance,
this is expected due to reality gap [23] effects. It is worth noting this is still a good
outcome, the robots are able to effectively forage.

Fitness rises fast to about 0.03 after the first generation. This is due to the fact that
an extremely simple controller that does nothing exceptmove forwardwill still collect
some food; because of the variability of the kilobots, some will move in large arcs
that leave the nest, enter the food region and return to the nest. This type of controller
is easily discovered by the evolutionary algorithm, confirmed by examining the fittest
controller after one generation in the fittest lineage. The kilobot paths in simulation
are shown in Fig. 4. It is noteworthy that the fittest of the 25 lineages ismuchfitter than
the median, and the innovation seems to have been discovered around generation 30.
This suggests that the evolutionary algorithm is not exploring the fitness landscape
very effectively, otherwisewewould expect evolution to discover similar behavioural
innovations within other lineages.

We can examine the fittest BT, shown in Fig. 5, to gain insights into its workings.
First of all, it is interesting to note that not all of the hardwired capabilities are used,
onlydetected_ f ood,Δdist f ood , andΔdistnest . Both scratchpad and send_signal
are read but never written, so are equivalent to zero. This is not the case with all the
evolved behaviour trees, see Table4 for details of the blackboard usage of the top
five fittest trees from different lineages. Between these individuals, every behaviour
tree construct and blackboard entry is used. There is no obvious correlation between
the features used and the fitness of the individual, perhaps indicating that there are
multiple ways to solve this foraging problem.

The overall structure is a three-clause selm, the child trees will be ticked in turn
until one returns success. Consider a single kilobot, with no neighbours in commu-
nication with it. The first clause causes the kilobot to move forward as long as it
is not in the food region. If it enters the food, the second clause comes into play,
performing a series of left turns and forward movements until it moves out of the
food region. Behaviour will then revert to the first clause and it will move forward



498 S. Jones et al.

Fig. 5 Fittest behaviour tree. Left shows the code as evolved. Right shows the code with redundant
lines removed by hand, the seqm nodes condensed, and conditionals simplified. Boxes highlight
the three functional clauses

Table 4 Individuals from top five lineages and their usage of the blackboard and behaviour tree
constructs. All individuals use at least the forward and one other of the motor action nodes. Usage
is after redundant or unreachable nodes have been removed

Rank Fitness Blackboard entry BT Nodes

1 2 3 4 5 6 7 8 9 SEQ SEL PROB REPEAT IF SET

1 0.104 x x x x x x x

2 0.0873 x x x x x x x x

3 0.0853 x x x x x x x x

4 0.0723 x x x x x x x x x x x x x x

5 0.0710 x x x x x x x

again, likely hitting the nest region. We can see that this will produce reasonable
individual foraging behaviour, and this pattern is visible in the right hand trail plot
in Fig. 4. The foraging behaviour will be enhanced in the presence of neighbours,
since in this case the second clause will promote movement away from food gener-
ally, rather than just on the food region boundary. Finally, if the kilobot is executing
the second clause, manages to leave the food then re-enters it, or moves towards it
in the presence of neighbours, the third clause is triggered, which produces some
additional left turning. The repeat sub-clause will fail on the first iteration since it is
not physically possible for the kilobot to move 59mm in one update cycle of half a
second.
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This evolved behaviour tree is sufficiently small that it can be analysed by hand
relatively easily. It may be that greater foraging performance could be obtained by
removing the selective pressure to small trees, and a larger tree would be harder
to analyse. But, in contrast to evolved neural networks, which are a black box for
which there are no adequate tools to predict behaviour apart from direct testing [29],
it is possible at least in principle to analyse any behaviour tree, in the same way it
is possible to analyse any computer program. The behaviour of each sub-tree can
be analysed in isolation, descending until the size of the sub-tree is tractable, and
automatic tools can simplify and prune branches which will never be entered, or will
always do nothing.

Understanding the behaviour of an evolved BT does not mean that it becomes
possible to predict the emergent swarm behaviour that the interaction between the
kilobots will produce. However, we believe that the more easily we can understand
the controller, the more likely we are to gain insights into the problem of predicting
these higher-level behaviours.

5 Conclusions and Further Work

Evolved controllers for swarm robotics are generally hard to understand. We have
introduced the use of behaviour trees as an architecture for evolved swarm robot con-
trollers that are more easily human readable. A simple foraging task was designed,
a behaviour tree node set and blackboard interface specified, and a population of
behaviour trees were evolved for a swarm of kilobot robots. The fittest individual
was tested in real robots and showed good correspondence in performance to the indi-
vidual in simulation. The individual was then analysed for insight into the discovered
foraging algorithm.

There are many possible avenues for exploration in the application of genetic
programming to behaviour trees since little work in this area exists. Choices of
the evolutionary parameter values, and the filtering of environmental signals are
somewhat arbitrary andwill be explored further. The choice of blackboard and action
nodes is another area for further investigation. We also want to develop automatic
tools for simplifying the analysis of evolved trees.

We intend to apply the evolution of behaviour trees to other collective swarm robot
tasks, using a more computationally capable platform that will not be so limited in
possible tree size, and will also allow the on-board adaptive co-evolution of new BT
controllers in response to changing environmental conditions. We are interested in
the possibility of encapsulation of various swarm behaviours such as aggregation,
flocking, and dispersion. In this, we are inspired by the argument of Francesca et al.
[17] that restricting the representational power of the controller allows the automatic
discovery of solutions that are more resistant to reality gap effects, and feel the
hierarchical structure of behaviour trees may lend themselves to tuning the bias-
variance tradeoff.



500 S. Jones et al.

Finally, we believe the increased human readability of evolved behaviour trees
compared to other forms of evolved controller achieves progress towards more fully
comprehending the emergence of collective behaviour from the interactions of indi-
vidual agents.
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