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Abstract Control graphs are used in multi-robot systems to maintain information
about which robot senses another robot, and at what position. Control graphs allow
robots to localize relative to others, and maintain stable formations. Previous work
makes two critical assumptions. First, it assumes edge weights of control graphs
are deterministic scalars, while in reality they represent complex stochastic factors.
Second, it assumes that a single robot is pre-determined to serve as the global anchor
for the robots’ relative estimates. However, optimal selection of this robot is an open
problem. In this work, we address these two issues. We show that existing work may
be recast as graph-theoretic algorithms inducing control graphs for more general
representation of the sensing capabilities of robots. We then formulate the problem
of optimal selection of an anchor, and present a centralized algorithm for solving it.
We evaluate use of these algorithm on physical and simulated robots and show they
very significantly improve on existing work.

1 Introduction

Control graphs are used in multi-robot systems to maintain information about which
robot senses another robot, and at what position. In such control graphs, nodes rep-
resent robots in given positions. Weighted edges represent sensing capabilities; an
edge from node A to node B, with weight w, represents the fact that robot A can
sense robot B, with preferencew (typically, smaller weight indicates stronger prefer-
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ence). On the basis of such graphs, it is possible to build a shared coordinate system
(e.g., [10]), compute message passing paths in ad-hoc networks, and maintain stable
formations (e.g., [2, 6]).

Existing work utilizing control graphs raises several open challenges. First, it
offers no systematic treatment of the edge weights, how they are determined, and
how they should be utilized in the computation of optimal control graphs. Different
tasks (e.g., building a coordinate system versus formation maintenance) utilizes the
edge weights differently. Second, it makes the assumption that a single robot is
given, chosen to serve as the global anchor of the shared coordinate system, leader
of the formation, or origin of a message whose position is taken as the basis for the
robots’ relative positioning and location estimates. Third, it ignores uncertainty in
the weights of edges, such that, for instance, if the edge weight denotes a distance,
it assumes the distance is known with certainty, despite the inherent uncertainty that
exists in real-world sensing. In this work, we tackle these open challenges.

First, we synthesize from existing work, and then generalize the notion of control
graphs and their uses.We begin by refining the definition ofmonitoring multi-graphs
[6], which distinguish between different sensing configurations of robots. We show
how existing techniques (e.g., for computing shared coordinate systems) can be
optimized by re-casting them in terms of graph-theoretic algorithms for inducing
directed trees from the multi-graphs, such that the trees optimize for a given criteria
(e.g., team costs, individual position error). Each such tree is an optimal control
graph for a given task (e.g., message passing, formation maintenance).

Second, on the basis of this more general understanding of how control graphs
are generated from monitoring multi-graphs, we formulate the problem of optimal
selection of leader or global anchor in a given monitoring multi-graph. A leader
robot serves as the root of the control graph (tree) generated from it. We present a
centralized algorithm that efficiently determines the optimal leader for a given task,
as well as the resulting control graph.

We evaluate use of the novel algorithms on physical and simulated robots equipped
with depth and image sensors (RGB-D cameras), and contrast them with results
obtained from existing work. The results show very significant improvements from
using these algorithms for coordinate frame alignment, in both simulated and real
robots, in static and dynamic settings.

2 Related Work

The use of graph theory for reasoning about roles of robots in cooperativemulti-robot
tasks has a long history. We survey below only the most related, recent work.

Formation maintenance. Here the robots move while maintaining a shape, dictated
by their relative positions. Desai et al. [2] defined a control graph as an unweighted
directed graph (digraph) whose vertices are the robots in the formation. An edge
from A to B represents that robot A monitors robot B’s position. They show that a
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formation can be stably maintained if the control graph implies each robot (except a
single leader) maintains its bearing (angle) and separation (distance) with respect to
one other robot (target). This type of formation control is known as SBC (Separation-
Bearing Control). Without referring to control graphs, Fredslund and Matarić [3]
propose a distributed algorithm for generating SBC monitoring rules (i.e., which
robot monitors whom) given a target placement of the robots and the leader. In
contrast, we consider weighted edges in our control graphs, and show how to induce
optimal control graphs for different tasks (not just formations). We also address the
question of leader selection. However, our algorithms here are centralized.

Kaminka et al. [6] generalized on these works. They defined a weighted moni-
toring multi-graph, which compactly represents all possible SBC control graphs for
a given placement of robots. Each edge represents a possible configuration of the
follower robot by which it can sense a target robot, and its weight represents its cost.
They present a centralized algorithm for inducing a specific control graph, which
optimizes the selection of targets, assuming a pre-determined leader. We show that
their representation and algorithm is in a special case of a broader definition of mon-
itoring multi-graphs, and we address the question of leader selection, which they
leave open.

Lemay et al. [7] present a distributed method of assigning robots to formation
positions. The computation relies on a cost function that considers distances and
angles to the teammates; it outputs the lowest-cost assignment of robots to positions,
and a leader that minimizes costs over all possible assignments. In contrast, we
begin with robots already assigned to positions, and only then select a leader and
SBC targets. However, we explicitly consider sensor capabilities, including errors.

Shared Coordinate Systems (Coordinate Frame Alignment). Another common
task is that of multiple robots agreeing on a common coordinate system (axes and
origin), e.g., as the basis for multi-robot mapping. There are several studies regarding
the construction and alignment of coordinate systems (e.g., [4, 9, 11, 13]). Briefly,
the task here is for robots to identify their alignment (translation and rotation) with
respect to each other (typically one of the robots serves as a global anchor). As not
all robots can sense the global anchors, they may instead localize via anchor chains,
i.e., localize with respect to local anchors, who sense other anchors, etc. This is also
referred to as coordinate frame alignment.

Most such work focuses on the filtering mechanisms able to cope with the uncer-
tainty inherent to this process, and with various types of errors (e.g., receiving only
range information). However, recently, Nagavalli et al. [10] presented a distributed
method for improving the accuracy of such alignments, by utilizing a breadth-first
search (BFS) to minimize the number of anchors in anchor chains, all beginning
with a selected global anchor. In this paper we present a centralized algorithm for
selecting an optimal global anchor in this task, and show that this further improves
(significantly) the position estimates of the robots.Moreover, this workswith anchors
that are not part of the team, such as objects in the team surroundings that the robots
can identify.
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3 Optimal Construction of Control Graphs

We begin with robots placed in fixed relative positions, and no leader assigned. In
Sect. 3.1 we show how to compactly represent all the different possibilities for robots
to sense each other in their positions, using a refined definition of monitoring multi-
graphs, originally presented in [6]. Then, in Sect. 3.1 we show how existing work
can be re-cast in terms of graph-theoretical algorithms, properly extended to run on
monitoring multi-graphs. Existing work leaves open the question of optimal leader
selection, which we address in Sect. 3.2.

3.1 Monitoring Multi-graphs

A monitoring multigraph captures all the potential control graphs for a group of
robots in fixed positions. As defined in [6], it is a directed, weighted multigraph
G = 〈V, E〉, where V is a set of vertices representing robots, and E is a bag (multi-
set) of weighted edges between vertices.

Each vi ∈ V represents a unique robot i , identified by its index, and having a
specific pose in space. The function pos : V �→ �n identifies the unique pose of
each robot v ∈ V (typically, n = 3, with the pose determined by the position and
orientation of the robot v).

Let vi , v j ∈ V be two robots. Suppose vi can use a specific configuration of its
sensors to sense v j , i.e., vi computes an estimate of pos(v j ), denoted by ˆpos(v j ).
Denote the specific configuration by x . For instance, it may refer to a specific pan of a
camera or Lidar, combined with a specific sensor processing algorithms (e.g., visual
marking recognition, depth perception), or a specific choice of resolution or focus.
Reference [6] propose using a single scalar value cxi j as the edge weight, indicating
preferences for using the sensor in this configuration, e.g.. based on reliability. We
depart from this definition in two ways. First, we distinguish between directly mea-
surable resource costs (such as expenditure of power, computation time, or sensor
processing latency), and errors in the estimate ˆpos(v j ), which are given in terms of
deviations from the ground truth. Second, we accept that realistically, costs and errors
can only be estimated with uncertainty. Thus we model them as random variables,
with a known probability distribution function.

More precisely, with each measurable cost factor k in the operation of the sensor,
and each component of error m resulting from it in ˆpos(v j ), we associate a known
probability distribution Cx,k

i j (Rx,m
i j , respectively), explicitly or parametrically repre-

sented. For instance, if the perception latency l is known to be uniformly distributed in
the range 20–30ms, this may be explicitly represented by setting Cx,l

i j ≡ U (20, 30).
If the distance from vi to v j is d, measured by a Lidar with a 3% error, we may
set Rx,d

i j ≡ U (−0.015d,+0.015d). As vi only approximates the true position of v j
with ˆpos(v j )), we use an approximate distance measure d, and update it as addi-
tional measurements are made. The overall costs associated with the edge ei j are
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then drawn from the joint distribution of all Cx,k
i j , denote Cx

i j . Likewise, we denote

the errors by Rx
i j .

Given these definitions, we define the edges in E as follows. An edge exi j ∈ E is

a tuple exi j = 〈vi , v j ,Cx
i j , R

x
i j 〉. When clear from the context, we omit the superscript

x . This definition departs from [6] in that we add the representation of errors, and
distinguish multiple components in costs and errors. We also depart from [6] in that
we assume that the sensing robot can identify the sensed robot id and contrast the
graph with the existing edges without assuming all possible edges can exist and
eliminating edges that are occluded by other robots. Alternative configurations may
result in improved costs or lower errors; often a robot may trade these off, e.g., by
spending more computation time or more energy to improve its position estimate
of the other robot. Given |X | configurations for robot vi to monitor v j (which are
usually determined by the number of different sensors the robot has), there exist
edges e1i j , e

2
i j , . . . , e

|X |
i j ∈ E .

Inducing Control Graphs with Uncertainty: Managing Risk. Following [8], we
refer to a multigraph with random-variable weights as a stochastic multigraph. Dif-
ferent tasks, such as formation maintenance, may reduce to selecting paths in the
multigraph. The length of a path in a stochastic graph is a function of random events
characterized by the probability distributions associated with the cost along the path.
We therefore have to decide how we would like to deal with the uncertainty. The
common approach to dealing with uncertainty is by considering the risk involved in
the decision. Standard policies include risk-aversion (hoping to reduce risk, even at
higher cost, i.e., minimize the expectedmaximal cost/error); risk-seeking (inversely);
and risk-neutrality (perfectly balancing risk and costs). Different decision strategies
can lead to different shortest path selections.

Several such algorithms appear elsewhere [5, 8], and are outside the scope of this
paper. However, it has been shown that risk-neutral selection both works correctly
[8], and is safe, in the sense that it minimizes notions of regret [12]. For the remainder
of the work, and in the experiments, we therefore used the risk-neutral policy, by
using the expected (mean) value of the distributions E[Cx

i j ] (or, as needed, E[Rx
i j ])

as the edge weights. Here E[P] is the expected (mean) value of the probability
distribution P .

InducingControl Graphs (for aGivenRobot). Monitoringmultigraphs compactly
represent all potential ways in which robots could monitor each other in their posi-
tions. Given a task which requires robots to monitor each other’s positions (e.g.,
formation maintenance), we want to induce a control graph: a subset of the moni-
toring graph, which specifies for each robot which sensor configuration to use, and
what other robot(s) to monitor, in order to improve task performance.

Table1 summarizes the progression in previous work. In the column marked
“Arbitrary leader, arbitrary control graph”we list previousworkswhichutilize heuris-
tic algorithms for constructing control graphs which are not guaranteed to be optimal
(in the sense of reducing accumulating errors or costs). In the next column, marked
“Arbitrary leader, Optimal control graph”, we list investigations which, for a pre-
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Table 1 Related work utilizing accumulating factors, re-cast by type of algorithm and problem set-
tings. Reference [6] uses costs to represent errors. Reference [10] assumes uniform errors, allowing
use of BFS instead of Dijkstra’s algorithm

Arbitrary leader,
arbitrary control graph

Arbitrary leader,
optimal control graph

Optimal leader,
optimal control graph

Algorithm type Heuristic Dijkstra’s All pairs shortest path

Formation
maintenance

[3] [6] This work

Relative localization [4, 13] [10]

determined leader, generate an optimal control graphs minimizing accumulating
errors or costs (assuming scalar edge weights). A variant of Dijkstra’s single-source
shortest path (S3P), described in [6] is optimal for such cases.

3.2 Inducing Control Graphs with Optimal Global Anchor

Thus the challenge remains of determining the optimal leader (i.e., one whose asso-
ciated control graph is superior to those of other leaders). Our task here is to select
a single robot which will serve as a leader of a formation, or the origin point (global
anchor) for an agreed-upon shared coordinate system. We will therefore optimize
the leader selection and associated control graph to reduce the errors Rx

i j .

3.2.1 Problem Formulation

K robots are positioned in space. Each robot is equipped with sensors, allowing it to
identify (some) other robots in its vicinity, and to estimate their position with respect
to itself (i.e., their position in its own ego-centric coordinate frames). Furthermore,
we assume robots are able to communicate with their peers, at least with those they
are able to observe. The settings are captured by a monitoring multi-graph GK .
The task is to extract a control graph where the coordinate frame of a single robot
(global anchor) is used as the origin, and all robots align their coordinate frames to
it. Because not all robots can directly sense the global anchor, each robot can decide
to align its coordinate system with respect to one other robot (called local anchor),
who aligns itself to the global anchor, or to another local anchor. Thus a coordinate
frame alignment control graph has the following properties:

• The vertex representing the global anchor has an out-degree of 0.
• All other vertices (robots) have an out-degree of 1.
• There exist a path from every vertex (robot) to the vertex representing the global
anchor.
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A coordinate frame alignment control graph is optimal with respect to the selected
global anchor vA if it minimizes the errors in position estimates of the robots. Suppose
we have a robot v0. Its position estimate in the shared coordinate system accumulates
errors with every local anchor it uses on a path from itself to the global anchor in the
control graph. It thus seeks to minimize the sum of expected errors

∑

ei j
E[Ri j ] where

ei j is an edge on the path from v0 to vA. The question is how to choose vA.

3.2.2 Optimal Global Anchor Selection

A global anchor vA is called optimal, if its associated control graph is superior to
the control graphs associated with any other potential global anchor. We consider
two different ways a control graph may be superior to another: It may reduce the
average position error for the group (a societal view of errors), or it may reduce the
maximal position error (an individual view of errors). Our task here is to determine
the optimal global anchor for both definitions. The process includes the following
steps (see details next).

1. Transform the stochastic monitoring multigraph GK into an intermediate repre-
sentation,G ′

K , which is a deterministically-weighted regular digraph (embedding
errors, and reversing direction of edges). This step is carried out in time O(|E |),
where E is the bag of edges in GK .

2. Apply an All Pairs Shortest Path (APSP) algorithm to the graph G ′
K . The time

needed depends on the algorithm chosen, but is generally O(|V |3), where V is
the set of vertices in G ′

K (normally, |V | = K ).
3. Determine for each robot v ∈ V the set of shortest paths leading from it Pv. For

each such set Pv, determine the sum of the path lengths Sv, or the maximal path
length Mv, depending on the global anchor selection criteria. This is carried out
in time O(|V |2).

4. The global anchor vA is one that minimizes SvA or MvA . This is determined in
time O(|V |).

Transformation of GK into G ′
K . This step is carried out to transform the stochastic

directed monitoring multigraph into a deterministic graph, which embeds the neces-
sary information, yet amenable to the execution of familiar graph-theoretic algorithm.
The graph G ′

K = 〈V ′, E ′〉 is built as follows (see example in Fig. 1).
First, we set V ′ ← V . Then, for each pair of vertices vi , v j ∈ V , we do the fol-

lowing: (1) If an edge exi j exists, with error distribution Rx
i j , then create a temporary

reversed edge, e′x
ji , with scalar weight r xji = E[Rx

i j ]. (2) Among all edges e′x
ji , select

the one with minimum r xji , i.e., e ji = argmin
e′x
ji

(r xji ). Finally, (3) add e ji to E ′. The

result is a directed graph, with scalar deterministic edge weights, in which all errors
have been folded into the edge weights using the risk-neutral policy, redundant edges
in the multigraph removed, and edge direction reversed.1

1Note that one can decide at this step to use any function combining C and R.
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Kinect RGB
Kinect RGB & Depth

Hokuyo URG04

Kinect RGB
Kinect RGB & Depth

Hokuyo URG04

Kinect RGB
Kinect RGB & Depth

Hokuyo URG04

Fig. 1 An example for a monitoring multigraph (left), and two resulting monitoring graphs: one
that minimizes the maximal path length (middle), and one that minimizes the sum of path lengths
(right)

All Pairs Shortest Paths.We now run an algorithm for determining the shortest paths
for all pairs of vertices. In our implementation we utilized Johnson’s algorithm [1].
Given the size of V ′ is the number of robots K , the algorithm runs inO(K 2 log K +
K |E |). The result is often represented in a matrix L , such that matrix cell l ji contains
the length of the shortest path from vertex j to vertex i (or∞ if none exists). As edges
are reversed in direction compared to the sensing direction, l ji is the accumulating
error in position estimates, from robot vi to robot v j , where vi , v j ∈ V .

Determine Sv and/or Mv. We propose two different criteria for selecting a global
anchor that, if used as the origin for a shared coordinate system, would result in
smaller position estimate errors for the team of K robots. One possible criterion is
to minimize the mean position error of all K robots. This is a societal criterion, as
it balances the errors across all robots. An alternative criterion is to minimize the
worst-case error of any single robot, possibly resulting in some robots accepting a
larger error than individually needed, in order to reduce the error of the other robots.

We examine the matrix L . Let S,M be vectors of dimension K . We denote Sv
the component of S associated with a given v (and similarly, Mv). For all v ∈ V ,

Sv = 1
K

K∑

i=1
lvi , i.e., the sum of all cells in row v divided by K , or more intuitively,

the mean length of shortest paths from all robots i to robot v. As these shortest path
represent smallest errors, this is the mean smallest error in position estimates, if v is

selected as global anchor. Similarly, for all v ∈ V , Mv = K
max
i=1

lvi , i.e., the maximal

smallest error in position estimate for any robot i , if v is the global anchor.

Determine global anchor vA. Finally, a new global anchor can be chosen, by setting
vA = argminv∈V ′ Sv, if we prefer a global anchor that minimizes the average position
error, or vA = argminv∈V ′ Mv, if we prefer to minimize the maximal error instead.
If there are ties, they can be broken by preferring according to the other criterion, or
arbitrarily.



Construction of Optimal Control Graphs in Multi-robot Systems 171

(a) Six simulated robots. (b) Three real robots.
Simulated robots placed
like wise.

Fig. 2 Formation in static experiments

4 Evaluation

Toevaluate the effects of using the techniques presented in thiswork,we implemented
the algorithms for optimal global-anchor selection and coordinate frame alignment in
ROS (RobotOperatingSystem), to be usedonGazebo-simulated and realRoboTICan
Lizi robots (shown in Fig. 2b). All robots in the teamwere marked with unique visual
markers identifying each robot. Using image and depth data from an RGB-D sensor,
each robot identified its neighbors andmeasured their relative position in its reference
frame. A calibrated sensor model was used to estimate the error measurements Ri j .

We compared the global position errors resulting from using the optimal vA algo-
rithm above, to the errors resulting from using an arbitrary robot [10]. Specifically,
we contrast the robots’ estimates with the ground truthmeasured externally. This was
done by carrying out five repeated trials in each setting, each lasting two minutes,
resulting in thousands of data points, for each robot.

We have carried out experiments in three types of settings: robots standing still,
robots moving while maintaining a static formation, and robots moving while chang-
ing formation. In the first two settings, the relative positions of the robots are main-
tained: by definition in the first setting, and using feedback control in the second.
In the third setting, moving robots changed their initial formation, requiring them to
select a new global anchor.

Our first experiment recreates an experiment in [10]. Six Lizi robots are placed as
shown in Fig. 2a. All robots are static, and align their coordinate system with respect
to the selected global anchor. Similar experiments involve placing three robots as
shown in Fig. 2b. These were conducted both in simulation, as well as in real robots.
Robot 1 (bottom of the image) could monitor robot 2 (center) and vice versa; robot
3 could see robot 2.
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(a) Static formation place-
ment.

(b) Static real robots. (c) Dynamic formation. Robot
#4 overtaking others.

Fig. 3 Formations maintained while moving

We then turned to experiments where robots moved while continually estimating
their position based on a shared coordinate system, with the origin at the selected
global anchor. We placed four robots in the formation shown in Fig. 3a, again both in
simulation as well as in the lab. Robot 1 (front of the formation) could monitor robot
2 (center) and vice versa, robots 3 and 4 (side by side, bottom) could monitor robot
2. Figure3b shows the real robots in one of the trials. In the arbitrary ID settings,
robot 1 was selected as the global anchor. In the optimal settings, our algorithm chose
robot 2 as the global anchor.

As a final experiment, we tested the ability of the algorithm to adjust the global
anchor while moving, when the relative position of robots is changed. Four simulated
robots were placed as shown in Fig. 3c. All robots moved forward; robots 1–3 at
constant speed, and robot 4 three time faster, along the dotted path shown in the
figure, anduntil it pulled aheadof everyone else.Whilemoving, the robots continually
checked and recomputed the global anchor appropriate to their current settings. At
the beginning of each run, robot 1 was chosen as global anchor vA, and the algorithm
chose local anchors for all other robots: robot 4 monitored 3, which monitored 2,
which monitored 1. However, as robot 4 begins to overtake it peers, its local anchor
changes from 3 to 2, then to 1, until finally it overtakes robot 1, at which point it
becomes the global anchor, and root 1 switches to monitor it.

Figure4 shows the mean error (error bars indicate standard deviation) of robot 4
during the experiment. It shows that between 0.1 and 0.5min into a trial, when robot
4’s local anchor is robot 3, the error in position (in the shared coordinate system
where robot 1 is the origin) is around 40cm. After passing robot 3, robot 4 changes
local anchor based on the optimal selection, first to robot 2 and then to robot 1.
Approximately 0.95min into the run, and until 1.15min in it, robot 4’s local anchor
is robot 1 which is still the global anchor vA. We see a corresponding decrease in
robot 4’s position error as it now monitors the global anchor directly. After 1.15min,
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Fig. 4 Changing control graph in real time

robot 4 cannot see any other robot and its error increases due tomoving and assuming
location in its last position. With real robot it is possible to change the localization
method to less accurate one such as GPS in this situation. After robot 4 enters robot
1’s field of view, the algorithm sets robot 4 to serve as vA.

Results. The results, summarized in Table2, show the use of the leader-selection
algorithm leads to very significant improvements in the position estimates of the
robots in the shared coordinate system. In many cases, the mean error is reduced
by 50% or more. For example, in the experiment with six standing robots, when
using the minimal robot ID as a global anchor the farthest robot (#6) was located
five hops away, and accumulated approximately 13cm in error. However, using the
global anchor selected by our algorithm, the average error for the same robot, now
located 3 hops away, drops to 6cm. This improvement is statistically significant
(one tailed t-test, p < 7.49 × 10−16). Similar improvements can be seen in the other
experiments, both in simulated and real robots. Over all trials, these results are over
approximately 5000 measurements in each settings, for each robot.

5 Conclusions and Future Work

Control graphs are used in multi-robot systems to maintain information about which
robot senses another robot, and at what position. On the basis of such graphs, it is
possible to compute a shared coordinate system, localize relative to others, andmain-
tain stable formations. In this work, we demonstrated that previous work assumes
that a robot is pre-determined, to serve as global anchor (origin point) for coordi-
nate frame alignment. We extended previous notions of monitoring multigraphs, a
construct intended to compactly represent all possible control graphs. We focused
on risk-neutral decision policy, which allows us to replace stochastic edge weights
with the deterministic expected value of the distributions. Second, we demonstrated
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Table 2 All experiment results, including mean errors in meters (standard deviations), and t-test
significance testing. Robot ID is shown for robots not acting as global anchor vA in either setting.
The optimal global anchor column shows significant improvement in all experiments

Type Experiment Robot ID Arbitrary vA
error in meters

Optimal vA
error in meters

Significance p
value
(one-tailed
t-test)

Standing 3-line
(simulation)

3 0.058 (0.102) 0.036 (0.009) 7.12 × 10−15

3-line (real
robots)

3 0.107 (0.019) 0.049 (0.001) 0 (below excel
limit)

6 zigzag
(simulation)

2 0.031 (0.021) 0.014 (0.006) 2.62 × 10−78

4 0.073 (0.142) 0.030 (0.005) 4.12 × 10−15

5 0.086 (0.181) 0.032 (0.005) 4.90 × 10−15

6 0.134 (0.239) 0.061 (0.033) 7.49 × 10−16

Moving Simulation 4
center

3 0.036 (0.014) 0.019 (0.018) 1.72 × 10−98

4 0.032 (0.017) 0.013 (0.012) 5.92 × 10−143

Real moving 4
center

3 0.155 (0.076) 0.095 (0.009) 8.31 × 10−6

4 0.140 (0.105) 0.084 (0.038) 0.00056

that an All Pairs Shortest Path algorithm can be utilized, on the extended mon-
itoring multi-graph, through some transformations. This facilitates the automatic
determination of an optimal robot to lead a formation or serve as a global anchor.
We conducted extensive experiments in real and simulated robots; these show very
significant improvement to the robots’ position estimates. In future work, we hope to
examine alternative methods for dealing with decision policies that are risk-averse,
or risk-seeking.

The algorithms presented herein assume that all information about the sensing
capabilities and location of the robots is known - either to a centralized unit, or to
one of the robots. Using this information, the optimal local and global anchors are
determined. It would be interesting to extend these results to a decentralized setting.
In this case, choosing a local anchor may be straightforward, yet choosing an optimal
global anchor would require using innovative methods.

Acknowledgements We gratefully acknowledge support by ISF grants #1511/12 and #1337/15.
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