
A Scalable Analytical Memory Model for CPU
Performance Prediction

Gopinath Chennupati1(B), Nandakishore Santhi1, Robert Bird1,
Sunil Thulasidasan1, Abdel-Hameed A. Badawy2, Satyajayant Misra3,

and Stephan Eidenbenz1

1 Los Alamos National Laboratory, SM 30, Los Alamos, NM 87545, USA
{gchennupati,nsanthi,bird,sunil,eidenben}@lanl.gov
2 Klipsch School of Electrical and Computer Engineering,
New Mexico State University, Las Cruces, NM 88003, USA

badawy@nmsu.edu
3 Computer Science Department, New Mexico State University,

Las Cruces, NM 88003, USA
misra@cs.nmsu.edu

Abstract. As the US Department of Energy (DOE) invests in exascale
computing, performance modeling of physics codes on CPUs remain a
challenge in computational co-design due to the complex design of pro-
cessors including memory hierarchies, instruction pipelining, and specu-
lative execution. We present Analytical Memory Model (AMM), a model
of cache hierarchies, embedded in the Performance Prediction Toolkit
(PPT) – a suite of discrete-event-simulation-based co-design hardware
and software models. AMM enables PPT to significantly improve the
quality of its runtime predictions of scientific codes.

AMM uses a computationally efficient, stochastic method to pre-
dict the reuse distance profiles, where reuse distance is a hardware
architecture-independent measure of the patterns of virtual memory
accesses. AMM relies on a stochastic, static basic block-level analysis
of reuse profiles measured from the memory traces of applications on
small instances. The analytical reuse profile is useful to estimate the
effective latency and throughput of memory access, which in turn are
used to predict the overall runtime of an application.

Our experimental results demonstrate the scalability of AMM, where
we report the error-rates of three benchmarks on two different hardware
models.

Keywords: Performance modeling · Cache hierarchies
Reuse distance · Probabilistic models · LLVM · Basic blocks

1 Introduction

The US DOE’s exascale initiative demands a thousand-fold increase in supercom-
puting performance to meet the national needs in science, energy, and security.
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 114–135, 2018.
https://doi.org/10.1007/978-3-319-72971-8_6

Analytical Memory Model for Performance Prediction 115

The transition to exascale computing poses hard challenges in the form of design
of future architectures. Moreover, confining to modulate either of the software
or hardware is insufficient to meet the design goals. Co-design helps to trade-off
the hardware designs and code development. Most of the research in co-design
has been aimed at getting cycle accurate simulations in exploring the design
space. Recent developments encourage novel performance modeling frameworks
due to the black-box nature of the cycle accurate simulators [3]. Especially, cycle
accurate simulators are slow and hinder the factors that contribute to the design
of processors. Apart from the speed/slowness, many of these simulators are old
while the modern processors are far more advanced than many of those models.
Furthermore, the validation of these simulators is not as exhaustive as it should
be, yet they are accepted in the research community. With that motivation, rapid
performance prediction of computational codes on potential hardware architec-
tures is a crucial requirement for pushing forward towards the exascale era.

In co-tuning the hardware and software parameters for physics codes, we
introduce a novel framework, Analytical Memory Model (AMM), to explore the
design space. AMM contains a compiler-driven static analysis of applications
and a hardware-driven performance model. The compiler-driven analysis iden-
tifies the basic blocks (contain no loops and branches with a single entry and
exit points) of a program, for which, an off-line analysis calculates the exact
probability of executing a basic block. The hardware model is unique among
the family of exascale co-design models with its capability to scale while consid-
ering the hardware specific factors such as frequency, latency, throughput, and
cache. For the execution time, we consider the reuse distance [24] (the number
of unique memory references between two references to the same addresses) and
the number of CPU operations. We measure the total execution time of CPU
operations using the pre-calculated instruction latencies.

In measuring the memory access time, we estimate a distribution of reuse
distances from the memory trace of an application at a smaller input size. We
randomly sample for each basic block and measure the conditional reuse distance
profiles. These profiles together with the probability of executing a basic block
results in the overall reuse profile of a program. The resultant reuse profiles help
us estimate the availability of data (conditional hit rates) for a processor through
various cache hierarchies. With the hit-rates, we measure the effective latency
and throughput per memory operation. With the latency and throughput at
hand, we measure the total memory access time of a program. The predicted
runtime of an application is the sum of the time required for CPU operations
and the total memory access time.

We evaluate AMM on three benchmarks: STREAM [23], Matrix Multipli-
cation [15], and BlackScholes [6], on two hardware models – Intel Xeon and
Intel Core i7. The results show that the sampled reuse profiles are similar to
the real profiles, while the characteristic behavior of predicted runtimes is sim-
ilar to actual runtimes on all benchmarks. Using the predicted runtimes, AMM
offers insights into the optimal combination of hardware models for software
applications when run in serial mode.

116 G. Chennupati et al.

The rest of the paper is organized as follows: Sect. 2 presents the background;
Sect. 3 describes AMM, Sect. 4 shows the experiments and the results; Sect. 6
concludes and recommends future research.

2 Background

2.1 Performance Modeling

Although the question, How much execution time and energy does my algo-
rithm cost? [10] is not entirely new, but it helps to justify the trade-offs of the
design decisions (time, energy, power, throughput, and latency). Since perfor-
mance modeling with cycle-accurate simulations is too slow and cannot scale to
large core counts, the framework in [34] introduced scalable performance pre-
diction on the then HPC systems. Their prediction contains the simulation of
an interconnect and a single processor performance, but unfortunately that does
not scale on modern HPC machines.

Bailey and Snavely [4] developed an approach for performance prediction,
which helps the stakeholders (system designers, co-design centers, and compu-
tational scientists) to improve the performance of applications.

For an optimal design decision, Ïpek et al. [18] explored the design space using
neural networks, where they devised a non-linear regression model for which the
data points in the design space are sampled at regular intervals. A machine
learning framework, VERITAS [19], used sparse coding [27], that identified the
performance characteristics (efficiency and resource significance) of proxy appli-
cations on a node. VERITAS compared the performance of proxy and real codes,
which identified the factors that contribute to loss of efficiency. Another machine
learning attempt [20] employed decision-trees on communication data and net-
work hardware counters. These trees derived a strong correlation among a set of
network features that contribute to the runtime.

In contrast, AMM accounts for factors such as memory hierarchy, proces-
sor latency, and throughput. Our model is intertwined with the Performance
Prediction Toolkit (PPT) in predicting the runtimes of physics codes.

Structural Simulation Toolkit (SST) [29], a complex code execution simula-
tor, offers some similar functionality but with different goals; unlike Performance
Prediction Toolkit (PPT), relies on replicating control flow (i.e.,dynamically exe-
cutes the application), models messaging behavior, scalable unlike cycle-accurate
simulators.

2.2 Performance Prediction Toolkit

Performance Prediction Toolkit (PPT) developed at Los Alamos National Labo-
ratory (LANL), is a scalable co-design framework, that has parameterized hard-
ware and middleware models, accepts stylized codes as input and predicts the
runtimes. PPT relies on Simian [31], a parallel discrete event simulation engine
written in Python, Lua, and JavaScript. In Simian, each computing unit (host,

Analytical Memory Model for Performance Prediction 117

compute node, CPU core) is an entity. Processes perform their tasks through
message exchanges to remain active, sleep, wakeup, begin, and end. Simian
advances the simulated time through a time compute() function, that takes a
task list – the number of CPU operations, memory usage, etc.The parameter-
ized models of PPT use the task list to approximate the runtime. The hardware
models – interconnects, compute nodes and CPU cores – mimic the lower level
hardware processes using regression models resulting from PAPI [8] counters
data.

The drawbacks of current PPT models are – regression often relies on inac-
curate PAPI data; and the dependence on application developers expertise to
explicitly specify the hit-rates. Alternatively, AMM predicts the hit-rates for a
given input using an analytical reuse profile, we discuss the state-of-the-art in
reuse distance calculation.

2.3 Reuse Distance

The reuse distance of a memory reference (M) is the number of distinct addresses
in the trace after the most recent access to M. Memory traces were explored in
a number of facets, including performance counters, reuse analysis, and cache
behavior [26,33,35]. Our work differs in that, it improves concepts of in-situ
reuse analysis from a memory trace. The reuse distances are used in defining a
reuse profile, which is a distribution of reuse distances, that helps to estimate
the availability of data in cache.

The compiler generated trace files for most scientific applications are often
in tens and/or hundreds of gigabytes. Calculating reuse profiles from such large
files is infeasible, moreover, the applications spend enormous amount of com-
putational effort in generating these memory traces. Alternatively, synthetic
traces [13] are used to estimate the reuse distributions. Partial Markov Model
(PMM) [1] produced random memory references that rely on the existence of
original trace and reported inaccuracies in the reuse profiles. Synthetic traces
in [13] identified patterns in the memory references based on an analysis of
instruction profiling, branches and dependencies. Attempts in [16] adapted least
recently used stack models [7] over PMM states to accurately produce synthetic
traces, their reuse profiles are accurate but unscalable.

Other attempts that sampled reuse profiles to study data locality include,
StatCache [5], presented a probabilistic model that employs sampling to ana-
lyze the data locality on realistic workloads. Another sampling and paralleliza-
tion attempt in [32] accelerated the reuse distance analysis on multi-cores.
Unlike, these sampling attempts we use the memory trace of a single run of
a program at smaller input size to estimate the reuse profiles at larger inputs.
A recent approach [11] presented an analytical model to predict the perfor-
mance and the energy consumption of a processor using architecture independent
characteristics.

Of the attempts to approximate the reuse distance, Ding and Zhong [12]
estimated the reuse patterns of a whole program based on training runs of a few
small inputs. The model uses dependency analysis to estimate the cache misses

118 G. Chennupati et al.

with poor accuracy. In a different attempt, Chatterjee et al. [9] applied a set of
formulas to characterize the cache misses, which perfectly handles nested loops
and non-linear array layouts. Their model lacks the runtime knowledge of loop
bounds. Sahoo et al. [30] tried to accurately characterize the cache miss count
using reuse distances in the context of tensor contraction computations. Recently,
reuse distance analysis predicted miss-rate per instruction [14], however, such a
fine grained miss-rate estimation fail to scale.

In contrast to the existing attempts, AMM is simple, scalable and relies on
Low-Level Virtual Machine (LLVM) [21] basic blocks (BB). We calculate reuse
profiles for each BB of a program. These profiles are used to measure the cache
hit-rates at different levels, which are used in predicting the runtimes of scientific
applications.

3 Analytical Memory Model

AMM is a parameterized model for performance prediction, the factors that we
consider in the prediction are: reuse distance distribution, latency and through-
put of a program. The reuse profile corresponds to modeling different cache hier-
archies of a processor in an elegant and scalable manner. These reuse profiles
are used in estimating the availability of data from main memory to the proces-
sor via different cache levels. Further, we use data availability in calculating the
latency and throughput of a program.

Figure 1 shows different steps of AMM in predicting the runtime of a pro-
gram. AMM accepts a computer program (written in FORTRAN or C/C++) as

Start

Input program

Generate a basic block labeled memory trace with a smaller input size to the program

Estimate the analytical reuse profile from the labeled memory trace

Measure 1) the effective latency, 2) bandwidth and 3) predict the runtime of a program

Runtime of a program

Stop

Fig. 1. Different steps in analytical memory model (AMM)

Analytical Memory Model for Performance Prediction 119

an input, which is transformed into an intermediate representation (IR) using
the compilation framework, LLVM. The transformation and analysis process
involves: (a) generating a memory trace with basic block labels produced with
a smaller input size of a program, (b) estimating the analytical reuse profiles
of a program from the labeled memory trace, and (c) measuring the effective
latency and throughput, with which, program runtime prediction can be made.
We describe each step in detail as follows.

3.1 Generate Memory Trace

The first step in AMM is to generate a memory trace that contains the LLVM
basic blocks. When the source code is compiled to produce IR, the transformed
code consists of basic blocks. A basic block is a straight-line code with single
entry and exit, with no intermediate branches except a branch at the exit.

The basic block labels in the trace of a program are generated using an LLVM
characterization tool, Byfl [28], developed at LANL. We extended Byfl to instru-
ment the memory addresses with LLVM basic block names. Note that LLVM
does not create a distinct basic block for the function calls. We resolve such an
ineptitude through preprocessing the labeled trace, where we ensure to distin-
guish the function calls as a separate basic block. For example, the ith basic block
(BBi) of the labeled trace contains all the memory addresses that are generated
as a result of executing the corresponding straight-line code of BBi. Similar
traces can be generated with Valgrind [25] and Pin [22], however, we use Byfl
as it is developed using LLVM infrastructure. Like AMM, the attempts in [11]
present a similar architecture independent performance and energy modeling.

3.2 Estimate Reuse Profile of a Program

The second step is to analytically estimate the reuse profile of a program
(Pr(D)). The traditional methods of measuring the reuse profile are expensive
due to large memory traces. Our technique promises to produce scalable memory
traces at smaller inputs of a program, with which we estimate the reuse profiles
at larger inputs. With the memory trace using smaller inputs, we estimate the
reuse profile of a program as in Eq. 1

Pr(D) =
n(BB)∑

i=0

P (BBi) × P (D | BBi) (1)

where, D is the reuse distance, n(BB) is the number of basic blocks, P (BBi)
is the apriori probability of executing a basic block and P (D | BBi) is the
conditional reuse profile of ith basic block.

Algorithm 1 measures the conditional reuse profile of a basic block, BBi. The
algorithm takes the labeled trace as input, identifies all the instances of BBi,
from which, randomly select sample size number of occurrences. For example,
if a basic block appears hundred times in the trace, we randomly select n%

120 G. Chennupati et al.

Algorithm 1. Calculating the conditional reuse profile of a basic block (BBi)
1: procedure reuse profile BBi(BBi, memory trace)
2: reuse distances, sampled wins ← [], []
3: sample size ← x � x% of all the BBi(s)
4: for bb in all BBi do
5: sampled wins.append([BBi start, BBi end])
6: end for
7: windows ← random(sampled wins, sample size)
8: for window in windows do
9: reuse dist ← get rd(window, memory trace)

10: reuse distances.append(reuse dist)
11: end for
12: uniq reuse dist, counts ← unique(reuse distances)
13: prob rd ← map(lambda x: x/len(reuse distances), counts)
14: r profi ← zip(uniq reuse dist, prob rd)
15: return r profi
16: end procedure

(typically 1%) of the samples from these occurrences. In fact, the reuse distance
distributions are random due to uncertain memory mapping of program data.
Therefore, it is important to randomly sample the trace, we term these random
samples as windows. A window is a list that contains the start and the end indices
of a sampled BB. We measure the reuse distances of all the memory addresses
in a window, from which, calculate the corresponding probabilities.

Algorithm 2. Calculate the reuse distances
1: procedure get rdist(window, memory trace)
2: reuse dist ← []
3: for idx, addr in enumerate(window) do
4: window trace ← memory trace[: idx]; dict rd ← { }; addr found ← False
5: for addr idx in range(len(window trace)) do
6: w addr ← window trace[−addr idx − 1]
7: if addr == w addr then addr found ← True; break
8: end if
9: dict rd[w addr] = True

10: end for
11: if addr found then reuse dist.append(len(dict rd))
12: else reuse dist.append(−1)
13: end if
14: end for
15: return reuse dist
16: end procedure

Algorithm 2 calculates the reuse distances memory addresses in a window. For
each address in a window, we refer back in the trace from the current address

Analytical Memory Model for Performance Prediction 121

to the exact same address, termed as max back reference. Once we find the
memory address at two different indexes, the reuse distance for that address is the
cardinality of the unique addresses between the two indexes. If the second index
is absent, the reuse distance is infinite (∞). Similarly, the algorithm continues
to measure the reuse distances for all the addresses in a basic block through a
search for a max back reference in the original trace. At the end, the algorithm
returns a list of all the reuse distances for that window.

Algorithms 1 and 2 calculate the reuse distances for all the addresses from all
the sampled windows. Finally, we measure the frequency of each reuse distance,
where the frequencies produce the respective probabilities. The reuse distances
together with the corresponding probabilities form part of the conditional reuse
profile of BBi, P (D | BBi). The conditional reuse profiles are application depen-
dent, for example, the conditional profiles of some applications may shift with
input size. We extrapolate (see Sect. 4) these changes in conditional reuse profiles
using polynomial regression techniques. Similarly, P (BBi) varies with the input
size, measured as follows.

Measure P (BBi): Let us consider, BB1, BB2, . . . , BBj , . . . , BBn−1, BBn

is a series of basic blocks, any BB can execute any other BB. For example, the
basic blocks BB1, BB2, . . . , BBk can execute BBj , where, BB1, . . . , BBk are
termed as the predecessors of BBj . Therefore, the predecessor BBs satisfy the
following linear recursive relation:

Nj =
∑

i∈Pred(j)

πij × Ni (2)

where, πij is the transition probability (measured off-line using compiler cov-
erage analysis/application developer can identify manually) from predecessor
block BBi to BBj . Nj is a homogeneous system of linear equations with many
solutions. Since the entry basic block of most of the source codes is executed
once, N1 becomes 1.

Given πij , the apriori probability of a basic block (P (BBi)) is defined as in
Eq. 3:

P (BBi) =
Ni

n(BB)∑
k=0

Nk

(3)

where, Ni and Nk are the number of calls to the ith and kth basic blocks
respectively.

P (BBi) changes with respect to the input size, however, we use the same
labeled memory trace at smaller inputs to estimate the reuse profiles for larger
instances of the program. We repeat our off-line analysis on P (BBi) in order
to generate the apriori probabilities of basic blocks at bigger inputs. Note, the
basic blocks with no memory access in their trace has no contribution towards
the final reuse distribution.

122 G. Chennupati et al.

3.3 Predict Runtime

The final step in AMM is to predict the runtime of an application. In runtime
prediction, we measure latency and throughput using the reuse profile. The reuse
profile calculates the availability of the data (hit-rates) from main memory to
processor via different cache levels. The total predicted runtime of a program
is the sum of the average memory access time (Tavg mem) and the average time
taken for the CPU operations (TCPU ops). The application characterization tool,
Byfl is useful in counting the total memory required for the program and the
number of CPU operations.

Therefore, the predicted runtime is measured with Eq. 4:

Tpred = Tavg mem + TCPU ops (4)

Probability of a Cache-Hit: In predicting the runtime, identifying the data
availability at different cache levels is essential. With the analytical reuse profiles
(Pr(D)), we measure the cache hit-rates (data availability) employing a stack
distance based cache model (SDCM) [7], which helps to estimate the probability
of a hit at any cache hierarchy (L1, L2, or L3) for a given memory reference with
a specific reuse distance. The following formula represents the probability of a
hit for an n-way associative cache at a given reuse distance (P (h | D)):

P (h | D) =
A−1∑

a=0

(
D

a

)(
A

B

)a(
B − A

B

)(D−a)

(5)

where D is the reuse distance, A is the associativity and B is cache size in terms
of number of blocks (which is cache size over cache line size). For example, an
L1 cache of size 64K with line size 64 has B = 1024 blocks. For a direct-mapped
cache, P (h | D) is ((B − 1)/B)D [7]. Therefore, the unconditional probability of
a hit P(h) for the entire program can be approximated as in Eq. 6

P (h) =
N∑

i=0

P (Di) × P (h | Di) (6)

where, P (Di) is the probability of ith reuse distance (D) in a reuse distribution
Pr(D). Herein, we investigate two variations (contiguous and non-contiguous)
of runtime prediction with respect to the availability of data on memory and/or
cache.

Case 1 (Contiguous): Memory Runtime Prediction. Assuming the con-
tiguous availability of memory, the average memory access time is measured as
in Eq. 7:

Tavg mem =
λavg + (b − 1) × βavg

b
× total mem (7)

where λavg is average latency, βavg is average reciprocal throughput, b is block
size and total mem is the total memory required by the program. The latency

Analytical Memory Model for Performance Prediction 123

and throughput are per memory access, while the block size is considered as word
size with the assumption of the availability of contiguous memory. Dividing the
first term with block size will result in the average memory access time per
byte, multiplying with total mem results in the total memory access time of a
program.

The hit-rates (Eq. 6) at different cache levels estimate the average latency
and throughput of a given program. The average latency for a three-level cache
is in Eq. 8

λavg = PL1 (h)× λL1 +
(
1− PL1 (h)

)
[
PL2 (h)× λL2 +

(
1− PL2 (h)

)[
PL3 (h)× λL3

+
(
1− PL3 (h)

) × λRAM

]
] (8)

where, λL1 , λL2 , λL3 and λRAM are the hardware specific measured latencies of
L1, L2, L3 caches and RAM respectively; PL1(h), PL2(h) and PL3(h) are the
probabilities of a hit for L1, L2 and L3 caches respectively, that are calculated
using Eq. 6. Similarly, we measure the average throughput, βavg (replace λs in
Eq. 8 with β).

Case 1 (Contiguous): Measure. TCPU ops Byfl and/or a simple off-line anal-
ysis helps to identify the number of CPU operations (ADD, SUB, and DIV,
etc.) of a program. We measure the time required for CPU operations using the
hardware specific instruction latencies and the operations count, thus, the total
runtime is predicted as Tpred (Eq. 4).

Case 2 (Non-contiguous): Memory Runtime Prediction. In measuring
the average memory access time, as opposed to the previous consideration, we
consider the non-contiguous alignment of memory, as is the case in reality. There
will be gaps (v) in between the required program data, therefore, the new block
size (b in Eq. 7 becomes bnew): bnew = b + v. However, the entire block may not
always be transferred from main memory to different cache levels due to the
dependence on factors such as data bus width, and cache size, etc. Therefore, we
model such a unique behavior of cache as follows. Let us consider, bnew1 , bnew2 ,
bnew3 , . . . , bnewi , . . . , bnewn are the blocks of data on main memory, while C be
the amount of data transferred on to a cache from main memory at any given
time. Thus, the new block size at a given cache size (B) can be re-written as:

bnew =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C : if bnewi ≤ C⌈
bnewi

C

⌉
× C : if B ≥ bnewi ≥ C

B : if bnewi ≥ B

Case 2 (Non-contiguous): Time for CPU Operations (TCPU ops). In
case of the time taken for CPU operations, there is a large difference in the

124 G. Chennupati et al.

instruction latencies between DIV and the rest of the instructions. Moreover, the
time required for CPU operations is dependent on program characteristics, where
some applications are instruction latency dependent while others are throughput
reliable. Thus, the time for the resultant CPU operations is:

TCPU ops =

⎧
⎪⎨

⎪⎩

λin + (Nin − Nin div − 1)× βin + λdiv + (Nin div − 1)× βdiv : throughput

(Nin − Nin div − 1)× λin + (Nin div − 1)× λdiv : latency

where λin, λdiv, βin and βdiv are latencies and throughputs of instructions,
ADD/SUB, MUL and DIV respectively, while Nin and Nin div are the number
of instructions.

4 Experiments

In this section, we describe the target architectures and the benchmark applica-
tions used in validating our model.

4.1 Target Architectures

We use AMM to validate three different benchmark applications on two hardware
architectures. Table 1 presents the two processor architectures, each of which uses
three cache levels with different sizes. The L3 cache of Intel Xeon processor is
shared among the available cores on the chip while that of the Intel Core i7 is
unshared.

In predicting the runtimes, we build the hardware models for the two experi-
mental processors (Table 1) along with AMM in Performance Prediction Toolkit
(PPT). PPT has parametrized hardware models and software proxy applications.
The hardware parameters of PPT are: cache latencies, cache sizes, cache line
sizes, associativity, and memory bandwidth (throughput) at different cache lev-
els (we consider the reciprocal throughput), RAM latency, and data bus width.
The hardware parameters are measured values for a given processor, reason-
ably reliable sources include Agner Fog’s manual [2], Intel and others1 present
these parameter values for a number of hardware architectures. We can measure

Table 1. The target architectures and their parameters

Processor Speed Cache size (bytes) Shared

(GHz) L1 L2 L3 L3?

1 Intel Xeon E5-2695 2.10 64K 256K 45M Yes

2 Intel Core i7-4770HQ 2.20 256K 1M 6M No

1 http://www.7-cpu.com/cpu/Haswell.html.

http://www.7-cpu.com/cpu/Haswell.html

Analytical Memory Model for Performance Prediction 125

these parameters using standard benchmarks, nevertheless, the objective in this
paper is performance modeling rather parameter calibrations. The latencies and
throughputs used in the hardware model include both at the cache hierarchies
and the instructions such as ADD/SUB, MUL, and DIV. The software parame-
ters are: total memory of an application, the number of integer and floating point
operations (add, mul, etc.), and the block size (Eq. 7 in Sect. 3.3), measured using
Byfl.

4.2 Benchmarks

The three benchmark applications we used are: STREAM [23], matrix-matrix
multiplication (MM) [15], and BlackScholes [6].

STREAM is a memory benchmark with vectors of floating point operations.
STREAM contains four kernels: ADD performs the sum of two vectors; SCALE
multiplies a vector with a floating-point scalar; COPY assigns one vector into
another and TRIAD performs the above three operations. We execute all the
above four kernels.

MM is a naive implementation (ijk method that has 3 nested loops) of floating-
point matrix-matrix multiplication. MM, in this paper, is defined as R = αP ×
Q + βR, where P, Q and R are m × k, k × n and m × n matrices respectively
while α and β are floating-point scalars.

BlackScholes is a PARSEC benchmark, partial differential model used to pre-
dict the European stock option prices. BlackScholes functions within two nested
loops, where the outer-loop stands for the number of iterations of the algorithm
and the inner loop performs the floating-point operations needed for option
prices.

5 Results

We implemented the respective proxy application in PPT for all the three bench-
marks. We validate AMM for these three applications as follows: (1) compare
the real and predicted reuse profiles, and (2) compare the real and predicted
runtimes. Both the simulation and actual runs are computed on a single core of
a CPU.

5.1 Validate Reuse Profile

Our goal is to validate the analytical reuse profiles with that of the actual profiles.
The reuse profiles are discrete, in general, they are architecture independent
due to which the reuse profiles are same across the two experimental hardware
architectures.

126 G. Chennupati et al.

101 103 105

Reuse Distance (D)

0.0

0.1

0.2

0.3

P
r(
D
)

STREAM Original Profile

original

101 103 105

Reuse Distance (D)

0.0

0.2

0.4

P
r(
D
)

STREAM Analytical Profile

100% sampling

100 101 102 103 104

Reuse Distance (D)

0.00

0.05

0.10

0.15

0.20

P
r(
D
)

MM Original Profile

original

100 101 102 103 104

Reuse Distance (D)

0.00

0.05

0.10

0.15

0.20

P
r(
D
)

MM Analytical Profile

100% sampling

100 101 102 103

Reuse Distance (D)

0.0

0.1

0.2

P
r(
D
)

BlackScholes Original Profile

original

100 101 102 103

Reuse Distance (D)

0.0

0.1

0.2

P
r(
D
)

BlackScholes Analytical Profile

100% sampling

Fig. 2. Compare the original (left) and analytical (right) reuse profiles of STREAM
(top), MM (middle), and BlackScholes (bottom) at input sizes of 10000 floating-points,
matrix of size 25 × 25 and 16 data points respectively. Original distribution is measured
using a stack based algorithm, while that of the analytical is measured using AMM
with 100% sampling. The reuse distance (D) is in log scale while Pr(D) is in decimal
scale.

Figure 2 compares the actual and the analytical reuse profiles of both the
benchmarks. The analytical reuse profiles are prepared with 100% sampling. For
example, if a basic block contains ten occurrences, all of them contribute to calcu-
late the conditional reuse profiles before multiplying the probability (P (BBi) ×
P (D|BBi)) of execution of that basic block. We adopted 100% sampling in order
to validate the actual and analytical profiles, in the runtime prediction, we con-
sider 1% sampling, which guarantees scalability. On all the three benchmarks,
AMM calculated reuse distances (D, on X-axis) are identical to that of the actual
reuse distances, so does their number of occurrences. The corresponding proba-
bilities (Pr(D), on Y-axis) are approximately similar, the analytical probabilities
are slightly higher at a few reuse distances because of their dependence on the
accuracy of P (BBi). Nonetheless, these inaccuracies have insignificant impact
on the final cache hit-rate, therefore, the analytical reuse profiles are similar to
the actual.

The original reuse profiles are measured using a stack [24] based implemen-
tation that has a time complexity of O(NM). The analytical reuse profiles are
measured using Algorithm 1, which has a computational complexity of O(NSB)
∼ O(N), since the number of samples (S) and size of the basic block (B) are

Analytical Memory Model for Performance Prediction 127

constant. The worst case complexity is O(NM), in the case of 100% sampling,
which will never happen.

5.2 Validate Runtime

We validate the AMM predicted runtimes with that of the actual for all the
three benchmark applications at different input sizes on both the target archi-
tectures. Table 2 presents four different input sizes for each of the three bench-
marks. For example, STREAM has three floating-point vectors, all of which are
initialized with same input size. The inputs for each run of STREAM varies
from 10000, 20000, 30000 to 40000 elements. Similarly, MM and BlackScholes
have four square matrix sizes and four datasets (16, 32, 64, and 128 data-points)
respectively. We report both the actual and predicted runtimes at four different
input sizes on each benchmark.

Table 2. Benchmarks with different input sizes.

Program Input sizes

1 STREAM {10000, 20000, 30000, 40000}
2 MM {25 × 25, 50 × 50, 100 × 100, 200 × 200}
3 BlackScholes {16, 32, 64, 128}

In predicting the runtimes, we analytically estimate the reuse profiles at each
input using the memory trace (1% sampling) for the smaller input size of the
respective benchmark. For example, in the case of MM, we use the memory trace
at an input size of 25 × 25 as the base to estimate the reuse profiles at 50 × 50,
100 × 100 and 200 × 200. The probabilities of basic blocks (P(BBi)) change as
the input size changes.

Figure 3 shows the analytical (1% sampling) reuse profiles of both the bench-
marks at different input sizes. The sampled reuse profiles are approximately
similar to that of the original, however, some large but relatively rare reuse dis-
tances disappear due to random sampling. For example, if a basic block occur-
rence appears at the bottom of the memory trace, there is a chance to omit such
occurrences due to 1% random sampling, thereby, the larger reuse distances dis-
appear. These large values may have significant impact on the cache hit-rates,
thus, we propose to extrapolate these reuse distances, similar to Zhong et al. [36],
where the prediction of program locality with respect to inputs identifies the data
access patterns and builds a parametrized model for extrapolation. In contrast
to Zhong et al., we extrapolate the conditional reuse distances of basic blocks
(instead of the whole program) at larger input sizes of a program using the reuse
distances at a few smaller inputs. In fact, extrapolating the conditional reuse
profiles of basic blocks using small input reuse distances preserves our promise
of scalable AMM.

128 G. Chennupati et al.

101 103 105

Reuse Distance (D)

0.0

0.1

0.2

0.3

0.4

0.5

P
r(
D
)

STREAM Sampled
Profile (10000 input)

1% sampling

100 101 102 103 104

Reuse Distance (D)

0.0

0.1

0.2

0.3

0.4

0.5

P
r(
D
)

MM Sampled
Profile (25 x 25 input)

1% sampling

100 101 102 103

Reuse Distance (D)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
r(
D
)

BlackScholes Sampled
Profile (16 input)

101 103 105

Reuse Distance (D)

0.0

0.1

0.2

0.3

0.4

0.5

P
r(
D
)

STREAM Sampled
Profile (40000 input)

100 101 102 103 104

Reuse Distance (D)

0.0

0.1

0.2

0.3

0.4

0.5

P
r(
D
)

MM Sampled
Profile (200 x 200 input)

100 101 102 103

Reuse Distance (D)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
r(
D
)

BlackScholes Sampled
Profile (128 input)

1% sampling1% sampling 1% sampling

1% sampling

Fig. 3. Sampled analytical reuse profiles (reuse distance (D) is on log scale) of the three
benchmarks: STREAM (left), matrix multiplication (middle), and BlackScholes (right)
at different input sizes. The rate of sampling is 1%, while the base memory traces for
the three benchmarks are at input sizes of 10000, 25 × 25, and 16 respectively.

Extrapolate the Conditional Reuse Distances of a BB. From the proba-
bility distribution of executing the basic blocks, we observe that a few number of
the total basic blocks of a program have significant impact on the reuse profiles.
Figure 4 (left) shows the probability of executing each basic block (P (BBi)) at
different small input sizes (10, 12, 15, 17, and 20) of MM. Of all the twenty
two basic blocks of a MM program, BB15 – BB17 have relatively significant
contribution over the remaining basic blocks. Empirically, the number of entries
in the conditional reuse profiles of these three basic blocks grow with the input
size, while that of the remaining basic blocks remain consistent irrespective of
the input size. Therefore, extrapolating the conditional reuse distances of these
significant BBs helps in identifying the missing large reuse distances.

We explain the extrapolation strategy on one of the three BBs, BB15, where
we find that the first few (seven for MM) reuse distance entries of the distri-
bution remain unchanged irrespective of the inputs. Probability of these reuse
distances contribute 75% of the distribution, while the other growing reuse dis-
tances contribute the remaining 25%. Since these initial entries are consistent,
what the following linear relation (Eq. 9) predicts is useful in estimating the
reuse distances at any input size (x).

D
′
i|x = Di ∀ i = 1 . . . 7 (9)

where, D
′
i|x is new reuse distance at an input, Di is the reuse distance of a basic

block.

Analytical Memory Model for Performance Prediction 129

0 5 10 15 20 25

BB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
(B

B
)

Matrix Mutliplication
BasicBlock Probabilities

input = 10

input = 12

input = 15

input = 17

input = 20

10 12 14 16 18 20 22

Input Size (x)

0

2000

4000

6000

8000

10000

R
eu
se

D
is
ta
nc
e
(D

)

Matrix Mutliplication
Curve Fitting (BB 15)

D7 = (9.107) ∗ x2 + (−27.281) ∗ x+ (−546.595)

D8 = (16.914) ∗ x2 + (−202.101) ∗ x+ (1592.6)

D9 = (13.75) ∗ x2 + (353.216) ∗ x+ (−3361.767)

Fig. 4. Probabilities (left) of all basic blocks (BBs) of MM at multiple small inputs.
Extrapolation of reuse distances (right) as a function of input size (x) for matrix
multiplication using the data from five small runs at five different input sizes.

We extrapolate the remaining reuse distance entries that grow with the input
size, where the number of these entries are inconsistent at each input size. In
order to regulate these inconsistencies, we apply a fixed-binning strategy, in
which, we use a constant number of bins, each of which represents an aver-
age of the subset-of-reuse-distances. The number of entries within a bin changes
while the total number of bins remain same.

Figure 4 (right) shows the extrapolation of three bins using five small input
sizes. The points represent the average reuse distances for each bin while the
curves represent the predicted polynomial fit for each bin as a function of input
size (x). Note, the input (x) in the extrapolated curves is on one-dimension of
MM. We observe that the predicted average reuse distances grow in polynomial
fashion. Similarly, n we can estimate the respective probabilities of these reuse
distances, together forms the extrapolated conditional reuse profile of a BB. We
can increase the number of bins, however, estimating the hit-rates relies on the
magnitude of the reuse distances rather the distinct number of reuses alone. That
way, we extrapolate the conditional reuse profiles of the most significant basic
blocks of an application and combine the reuse profiles of all the basic blocks to
produce the complete reuse profile of a program.

Our prediction strategy does not incur the extra computational overhead of
extrapolating the reuse profiles on the whole program (as opposed to Zhong et al.,
therefore, AMM is scalable), while approximates the hit-rates with reasonably
good accuracy.

Is the Data Available for Use by the Processor? Given the reuse profiles,
it is essential to analyze the availability of data for the processor. Figure 5 shows
the conditional cache hit-rates at a given reuse distance for three different cache
sizes (L1, L2, and L3). The results are for the input sizes of 10000, 25 × 25 and
16 of STREAM, MM and BlackScholes respectively. Since the reuse distances
are independent of the underlying hardware, we use the same reuse profile (with
respect to the benchmark) to measure the cache hit-rates at different cache
sizes. However, the conditional hit-rates at a given stack distance are calculated

130 G. Chennupati et al.

on Intel Xeon E5-2695 architecture. The reuse distance (D) is on a log scale,
whereas B1, B2 and B3 are cache sizes measured in terms of the number of blocks
(cache-size/cache-line-size). PL1(h|D), PL2(h|D) and PL3(h|D) are conditional
hit-rates at three cache levels L1, L2 and L3 respectively. On all the benchmarks,
the cache hit-rate at a reuse distance (PL1(h|D)) suddenly drops for L1 cache
after the cache size (B1), which confirms that the application data exceeds the L1

cache of Intel Xeon processor. A similar behavior is found on L2 cache in the case
of STREAM and matrix multiplication, while for BlackScholes the data exists
on L2 cache. STREAM data slightly exceeds the L3 limits, while the data of the
remaining two benchmarks is available on L3. We found that the probability of
the corresponding large reuse distances (P (Di) in Fig. 3) is approximately zero.

However, for Intel Core i7-4470HQ – BlackScholes data exists in L1 cache
and the remaining two benchmarks data does not exist; on L2, STREAM data
is not present while the remaining two benchmarks data does exist; L3 can hold
the data for all the three benchmarks. Since Intel Core i7 has relatively large
L1 and L2 cache sizes, the data is readily available for the processor. Intel Core
i7 have relatively smaller L3 cache size compared with that of Intel Xeon. Intel
Core i7 processors L3 capacity is insufficient for large input sizes of a program.
In addition, L3 cache of Intel Xeon is shared among the available cores while
that is not the case with Core i7. With these characteristics, reuse distances that
exceed the cache sizes are always a miss. These observations (Fig. 5) suggest that
the availability of data in the cache depends on the target architectures and the
application data requirements.

A discussion on the locality of data is out of the scope. However, this study
shows that the 1% sampled reuse profiles are reasonably better approximations
in estimating the runtime of an application. Therefore, for better availability of
data, we suggest to design a processor with the L1 and L2 caches of Intel Core
i7 and the L3 of Intel Xeon.

Prediction of Run-Times: We validate the predicted runtimes, Fig. 6 presents
the error-rates of the AMM predicted runtimes when compared wxith that of
the actual for all the three benchmarks at different input sizes on the two tar-
get architectures. We assume that the processor executes one application at a
given time, so that the cache and RAM are available for the application. We
observe that Intel Core i7 error-rates of STREAM are significantly higher than
the Intel Xeon due to small L3 cache size of Core i7. For the remaining two
benchmarks (MM and BlackScholes), the difference in the predicted error-rates
across both the target architectures is insignificant, The reason being the fact
that the application data for these two benchmarks fits in the cache hierarchy.

We observe that AMM over-predicts the runtimes when compared to the
actual runtimes, especially, at larger input sizes. Although we over-predict, the
characteristic behavior of the runtimes with respect to the input remains in
coherence with the actual runtimes. The reason behind the over-prediction is
due to the fact that AMM is purely a memory model. We can reduce such over-
prediction through a model for pipelines along with the memory model. AMM

Analytical Memory Model for Performance Prediction 131

0.0000 0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×107

0.0

0.2

0.4

0.6

0.8

1.0

1.2
P
L
1
(h

|D
)

STREAM
D vs PL1(h|D)

PL1(h|D)
B1

0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
1
(h

|D
)

MM
D vs PL1(h|D)

PL1(h|D)
B1

0.0000 0.0001 0.0010 0.0100 0.1000

D ×105

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
1
(h

|D
)

BlackScholes
D vs PL1(h|D)

PL1(h|D)
B1

0.0000 0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×107

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
2
(h

|D
)

STREAM
D vs PL2(h|D)

PL2(h|D)
B2

0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
2
(h

|D
)

MM
D vs PL2(h|D)

PL2(h|D)
B2

0.0000 0.0001 0.0010 0.0100 0.1000

D ×105

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
2
(h

|D
)

BlackScholes
D vs PL2(h|D)

PL2(h|D)
B2

0.0000 0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×107

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
3
(h

|D
)

STREAM
D vs PL3(h|D)

PL3(h|D)
B3

0.0000 0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×107

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
3
(h

|D
)

MM
D vs PL3(h|D)

PL3(h|D)
B3

0.0000 0.0000 0.0000 0.0001 0.0010 0.0100 0.1000

D ×107

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
L
3
(h

|D
)

BlackScholes
D vs PL3(h|D)

PL3(h|D)
B3

Fig. 5. Conditional cache hit-rates at a given reuse distance for all the three bench-
marks – STREAM (left), matrix multiplication (middle) and BlackScholes (right). B1,
B2 and B3 are the cache sizes in terms of number of blocks (see Sect. 3.2) for L1, L2

and L3 caches respectively.

10000 20000 30000 40000

Input size

13

14

15

16

17

18

19

20

21

22

E
rr
or

ra
te
(%

)

STREAM

Intel Xeon E5-2695

Intel Core i7-4770HQ

25 50 100 200

Input size

5

10

15

20

25

30

E
rr
or

ra
te
(%

)

MM

Intel Xeon E5-2695

Intel Core i7-4770HQ

16 32 64 128

Input size

5

10

15

20

25

E
rr
or

ra
te
(%

)

BlackScholes

Intel Xeon E5-2695

Intel Core i7-4770HQ

Fig. 6. Error-rates of predicted runtimes (with respect to the actual runtimes) for the
three benchmark applications (STREAM, matrix multiplication (MM) and BlackSc-
holes) on both the target architectures (Intel Xeon E5-2695, Intel Core i7-4770HQ).

assumes the execution of the program in complete sequential mode, whereas
the actual CPU core executes the independent tasks simultaneously through
pipelines. In addition to pipelines, factors such as prefetching, replacement strat-
egy, TLB, vector operations, micro-architecture, and etc. can have higher div-
idends in performance prediction. Building a parameterized model (one of our
future directions to investigate) using these factors that work hand-in-hand with
AMM would reduce the over-prediction in runtimes. Although the pipeline effect

132 G. Chennupati et al.

is not present in AMM, the predicted runtimes are reasonably abreast with that
of the actual while we also claim that the characteristic behavior of the predicted
runtimes is akin to the actual runtimes of all the benchmarks on both the target
architectures.

Between Intel Xeon and Core i7, the latter is much faster than the former
on these set of benchmarks due to higher clock speed. Our observations (Fig. 5)
in cache sizes play a significant role in making the data available for processor,
which obviously impacts the performance of an application. Intel Core i7 clearly
has larger L1, L2 caches and a smaller L3 cache, which in fact, is insufficient
for large applications that might have adverse effects on performance despite
processor speed. Intel states that the Broadwell family of Xeon processors are
less powerful and energy efficient compared to the Haswell of Intel Core i7.
With our study, we believe that increasing the L1 and L2 cache sizes of Xeon
processors might further boost the performance with little/minimum effect on
energy consumption, especially, when the execution of an application becomes
concurrent/parallel.

6 Conclusion

We presented a novel analytical memory model (AMM) that produces basic
block labeled memory traces using LLVM instrumentation. The memory traces
at smaller inputs are randomly sampled to produce the reuse distance distribu-
tions at larger inputs for scientific applications. Using the smaller input memory
traces, reuse distance profiles of the applications are estimated at larger input
sizes. The analytically measured reuse profiles are similar to the actual reuse pro-
files. Further, the estimated reuse profiles are used to predict the runtimes of the
applications. Our hardware model consists of low-level details such as latency,
throughput of different hardware components (cache levels, RAM, etc.) and CPU
instructions (add, sub, mul, etc.). The runtime results are consistent with the real
runtimes while the characteristic behavior of the predicted runtimes is similar to
that of the actual runtimes. We observed that AMM over-predicted the runtimes
due to nonexistence of pipeline, cache prefetching, hardware threads, and TLB
in the hardware model. Developing and integrating these missing models would
guarantee a close prediction, therefore, is one of our future directions. With the
addition of pipelines in AMM, similar to [4,17,20], we aim to predict the perfor-
mance of MPI aware applications. Nevertheless, having AMM like fine-grained
hardware model is essential for accurate and scalable performance prediction in
distributed environments.

References

1. Agarwal, A., Hennessy, J., Horowitz, M.: An analytical cache model. ACM Trans.
Comput. Syst. 7(2), 184–215 (1989)

2. Agner, F.: Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for intel, AMD and VIA CPUs. Technical University of
Denmark, Copenhagen, Denmark (2016)

Analytical Memory Model for Performance Prediction 133

3. Austin, T., Larson, E., Ernst, D.: Simplescalar: an infrastructure for computer
system modeling. Computer 35(2), 59–67 (2002)

4. Bailey, D.H., Snavely, A.: Performance modeling: understanding the past and
predicting the future. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648, pp. 185–195. Springer, Heidelberg (2005). https://doi.org/10.
1007/11549468 23

5. Berg, E., Hagersten, E.: StatCache: a probabilistic approach to efficient and accu-
rate data locality analysis. IEEE Int. Symp. ISPASS Perform. Anal. Syst. Softw.
2004, 20–27 (2004)

6. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: charac-
terization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2008,
New York, NY, USA, pp. 72–81. ACM (2008)

7. Brehob, M., Enbody, R.: An analytical model of locality and caching. Technical
report MSU-CSE-99-31 (1999)

8. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000)

9. Chatterjee, S., Parker, E., Hanlon, P.J., Lebeck, A.R.: Exact analysis of the cache
behavior of nested loops. In: Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, PLDI 2001, New York,
NY, USA, pp. 286–297. ACM (2001)

10. Choi, J.W., Vuduc, R.W.: How much (execution) time and energy does my algo-
rithm cost? XRDS 19(3), 49–51 (2013)

11. den Steen, S.V., Eyerman, S., Pestel, S.D., Mechri, M., Carlson, T.E., Black-
Schaffer, D., Hagersten, E., Eeckhout, L.: Analytical processor performance and
power modeling using micro-architecture independent characteristics. IEEE Trans.
Comput. 65(12), 3537–3551 (2016)

12. Ding, C., Zhong, Y.: Predicting whole-program locality through reuse distance
analysis. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, PLDI 2003, pp. 245–257. ACM (2003)

13. Eeckhout, L., de Bosschere, K., Neefs, H.: Performance analysis through synthetic
trace generation. In: Proceedings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS 2000, Washington, DC, USA,
pp. 1–6. IEEE (2000)

14. Fang, C., Carr, S., Önder, S., Wang, Z.: Reuse-distance-based miss-rate prediction
on a per instruction basis. In: Proceedings of the 2004 Workshop on Memory
System Performance, MSP 2004, New York, NY, USA, pp. 60–68. ACM (2004)

15. Gunnels, J.A., Henry, G.M., van de Geijn, R.A.: A family of high-performance
matrix multiplication algorithms. In: Alexandrov, V.N., Dongarra, J.J., Juliano,
B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 51–60.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0 15

16. Hassan, R., Harris, A., Topham, N., Efthymiou, A.: Synthetic trace-driven simu-
lation of cache memory. In: 21st International Conference on Advanced Informa-
tion Networking and Applications Workshops, vol. 1 of AINAW 2007, pp. 764–771
(2007)

17. Ipek, E., de Supinski, B.R., Schulz, M., McKee, S.A.: An approach to performance
prediction for parallel applications. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-
Par 2005. LNCS, vol. 3648, pp. 196–205. Springer, Heidelberg (2005). https://doi.
org/10.1007/11549468 24

https://doi.org/10.1007/11549468_23
https://doi.org/10.1007/11549468_23
https://doi.org/10.1007/3-540-45545-0_15
https://doi.org/10.1007/11549468_24
https://doi.org/10.1007/11549468_24

134 G. Chennupati et al.

18. Ipek, E., McKee, S.A., Caruana, R., de Supinski, B.R., Schulz, M.: Efficiently
exploring architectural design spaces via predictive modeling. In: Proceedings of
the 12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XII, New York, NY, USA, pp. 195–206.
ACM (2006)

19. Islam, T.Z., Thiagarajan, J.J., Bhatele, A., Schulz, M., Gamblin, T.: A machine
learning framework for performance coverage analysis of proxy applications. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, Piscataway, NJ, USA, pp. 46:1–46:12.
IEEE (2016)

20. Jain, N., Bhatele, A., Robson, M.P., Gamblin, T., Kale, L.V.: Predicting applica-
tion performance using supervised learning on communication features. In: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC 2013, New York, NY, USA, pp. 95:1–95:12.
ACM (2013)

21. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong program analysis
& transformation. In: Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, CGO 2004,
Washington, DC, USA, pp. 75–87. IEEE (2004)

22. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, New York,
NY, USA, pp. 190–200. ACM (2005)

23. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas, R.F., Rabenseifner,
R., Takahashi, D.: The hpc challenge (hpcc) benchmark suite. In: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, SC 2006, New York, NY,
USA. ACM (2006)

24. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for
storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)

25. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2007, New York, NY, USA,
pp. 89–100. ACM (2007)

26. Nguyen, A.T., Bose, P., Ekanadham, K., Nanda, A., Michael, M.: Accuracy and
speed-up of parallel trace-driven architectural simulation. In: Proceedings 11th
International Parallel Processing Symposium, pp. 39–44. IEEE (1997)

27. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strat-
egy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

28. Pakin, S., McCormick, p.: Hardware-independent application characterization. In:
International Symposium on Workload Characterization (IISWC), Portland, Ore-
gon, USA, pp. 111–112. IEEE (2013)

29. Rodrigues, A.F., Murphy, R.C., Kogge, P., Underwood, K.D.: The structural
simulation toolkit: exploring novel architectures. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC 2006, New York, NY, USA, p.
157. ACM (2006)

30. Sahoo, S.K., Panuganti, R., Sadayappan, P., Krishnamoorthy, P.: Cache miss char-
acterization and data locality optimization for imperfectly nested loops on shared
memory multiprocessors. In: Proceeding of the 19th IEEE International Parallel
and Distributed Processing Symposium, pp. 44–53 (2005)

Analytical Memory Model for Performance Prediction 135

31. Santhi, N., Eidenbenz, S., Liu, J.: The simian concept: parallel discrete event sim-
ulation with interpreted languages and just-in-time compilation. In: Proceedings
of the 2015 Winter Simulation Conference (WSC), pp. 3013–3024. IEEE (2015)

32. Schuff, D.L., Kulkarni, M., Pai, V.S.: Accelerating multicore reuse distance anal-
ysis with sampling and parallelization. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2010,
New York, NY, USA, pp. 53–64. ACM (2010)

33. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing
large scale program behavior. In: Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS X, New York, NY, USA, pp. 45–57. ACM (2002)

34. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.: A
framework for performance modeling and prediction. In: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, SC 2002, Los Alamitos, CA, USA,
pp. 1–17. IEEE (2002)

35. Weinberg, J., McCracken, M.O., Strohmaier, E., Snavely, A.: Quantifying locality
in the memory access patterns of hpc applications. In: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, SC 2005, Washington, DC, USA, pp.
50–61. IEEE (2005)

36. Zhong, Y., Shen, X., Ding, C.: Program locality analysis using reuse distance. ACM
Trans. Program. Lang. Syst. 31(6), 20:1–20:39 (2009)

	A Scalable Analytical Memory Model for CPU Performance Prediction
	1 Introduction
	2 Background
	2.1 Performance Modeling
	2.2 Performance Prediction Toolkit
	2.3 Reuse Distance

	3 Analytical Memory Model
	3.1 Generate Memory Trace
	3.2 Estimate Reuse Profile of a Program
	3.3 Predict Runtime

	4 Experiments
	4.1 Target Architectures
	4.2 Benchmarks

	5 Results
	5.1 Validate Reuse Profile
	5.2 Validate Runtime

	6 Conclusion
	References

