
Performance and Energy Usage of Workloads
on KNL and Haswell Architectures

Tyler Allen1(B), Christopher S. Daley2, Douglas Doerfler2, Brian Austin2,
and Nicholas J. Wright2

1 Clemson University, Clemson, SC, USA
tnallen@clemson.edu

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{csdaley,dwdoerf,baustin,njwright}@lbl.gov

Abstract. Manycore architectures are an energy-efficient step towards
exascale computing within a constrained power budget. The Intel
Knights Landing (KNL) manycore chip is a specific example of this and
has seen early adoption by a number of HPC facilities. It is therefore
important to understand the performance and energy usage character-
istics of KNL. In this paper, we evaluate the performance and energy
efficiency of KNL in contrast to the Xeon (Haswell) architecture for
applications representative of the workload of users at NERSC. We con-
sider the optimal MPI/OpenMP configuration of each application and
use the results to characterize KNL in contrast to Haswell. As well as
traditional DDR memory, KNL contains MCDRAM and we also eval-
uate its efficacy. Our results show that, averaged over our benchmarks,
KNL is 1.84× more energy efficient than Haswell and has 1.27× greater
performance.

Keywords: Benchmarking · Power consumption · Energy
Hyperthreads · Manycore architecture · Intel Knights Landing
Haswell

1 Introduction

Manycore architectures promise significant gains in application performance and
energy efficiency over past High Performance Computing (HPC) architectural
designs. The first mainstream manycore architecture, Intel Knights Landing
(KNL), already boasts early adoption in several clusters hosted by major HPC
facilities, including Cori at the National Energy Research Scientific Computing
(NERSC) Center [16,30], Trinity at Los Alamos National Laboratory (LANL)
[15], and Theta at Argonne National Laboratory (ANL) [39]. These first pre-
exascale manycore systems are intended to pave the way towards exascale-at-
twenty-megawatt computing for the DoE [19]. In this paper, we use modern HPC
workloads to evaluate how well the KNL satisfies the trajectory requirements for
exascale.

c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 236–249, 2018.
https://doi.org/10.1007/978-3-319-72971-8_12



Performance and Energy Usage of Workloads on KNL 237

We use applications representative of the NERSC workload to characterize
and quantify the performance and efficiency benefits of KNL. This application-
suite is a broad composite of prominent applications used on NERSC systems [10]
with some traditional micro-benchmarks for fine-grain evaluation. We evaluate
this workload on the current NERSC flagship supercomputer, Cori. We use the
most popular KNL configuration: KNL with MCDRAM memory configured to
operate as a cache, where MCDRAM is Intel’s on-package high bandwidth mem-
ory. We contrast this by evaluating the same workload on Cori Haswell nodes at
the same node count. To make this a fair comparison, we use optimal Message
Passing Interface (MPI) and Open Multi-Processing (OpenMP) configurations
for both KNL and Haswell, as well as compiling with the appropriate vector
Instruction Set Architecture (ISA) (AVX512, AVX2 respectively). We also con-
trast against KNL runs that use only Double Data Rate (DDR) memory. Hence-
forth, we will refer to the KNL cache mode configuration as KNL-Cache and the
KNL flat mode configurations as KNL-DDR and KNL-MCDRAM depending on
whether data is explicitly allocated in DDR or MCDRAM.

Our key findings are:

– Optimized micro-benchmark configurations run 1.5 to 4.0 times faster on
KNL nodes than Haswell nodes.

– The STREAM memory bandwidth is approximately 140 GiB/s less when
using KNL-Cache compared to KNL-MCDRAM. In addition, cache conflicts
can reduce KNL-Cache memory bandwidth by up to an additional 100 GiB/s.

– The average performance of the full benchmark suite is only better on KNL
compared to Haswell when using KNL-Cache. KNL-Cache improves the per-
formance of every single benchmark compared to KNL-DDR. This indicates
the value of MCDRAM to overall performance.

– The average energy efficiency of the full benchmark suite is better on KNL
than Haswell in both KNL-Cache and KNL-DDR modes. This indicates that
there can still be an overall win in terms of work done within a given energy
budget by using an architecture with small cores and no MCDRAM.

– The performance and energy gains of hyperthreads are dependent on the
individual application, indicating the importance of understanding applica-
tion characteristics.

2 Related Work

Barnes et al. provide an initial evaluation of strictly performance of some NERSC
applications on KNL in comparison to Haswell [12]. A similar evaluation was
performed on Trinity by Agelastos et al. [7]. Parker et al. perform a KNL per-
formance study in their evaluation of Theta [31]. The Theta evaluation analyzes
power for two micro-benchmarks, whereas we provide a more in depth analysis of
the power efficiency improvement of KNL compared to Haswell. Several authors
have analyzed the efficacy of hyperthreads, but this work predates KNL and
do not give insights into the performance/power benefits on KNL [14,18,37,41].



238 T. Allen et al.

Lawson et al. evaluated dynamic voltage and frequency scaling (DVFS) tech-
niques on KNL for power limiting and provide a power model, whereas we eval-
uate efficiency gains and optimal usage without limiting power [28]. Peng et al.
[33] evaluate the performance of micro-benchmarks and mini-apps on a KNL sys-
tem with a focus on the performance impact of various KNL memory modes, and
Ramos and Hoefler create a performance model for KNL memory modes [34].
Our evaluation uses a fixed memory mode (KNL-Cache), and contrasts it with
the performance of KNL-DDR to show the benefits of MCDRAM. Work has
been done on providing single metrics for evaluating trade-offs between power
and performance [35]. However, in this paper we optimize applications based on
performance and then report the energy consumption of this configuration.

3 NERSC’s Cori Supercomputer

The Cori supercomputer is located at the U.S. Department of Energy’s Office
of Science National Energy Research Scientific Computing Center [16,30]. Cori
is based on the Cray XC40 architecture [17] and was deployed in two phases.
Phase 1 consists of 2,388 nodes based on dual-socket, 16-core Intel E5-2698
v3 Xeon R© processors clocked at 2.3 GHz and a total 128 GB of DDR4 2133
memory [4]. Phase 2 is 9,688 nodes in size and utilizes a single Intel Xeon
PhiTM 7250 Knights Landing processor with 68 cores at 1.4 GHz and 96 GB
of DDR4 2400 memory [3]. The two node types share a Cray Aries dragonfly
high-speed network and a common storage subsystem. The KNL processor can
be configured to support a variety of non-uniform memory access (NUMA) and
memory modes that are meant to allow the processor to be configured to the
particular needs of a given application [38]. In particular, the on-chip mesh can
be configured in 3 different clustering modes: all-to-all, quadrant (quad), and
sub-NUMA (with the option of 2 or 4 NUMA regions). In addition, the KNL
has a 16 GB on-chip high-speed memory (MCDRAM) that can be configured as
a directly addressable memory region in its own NUMA region (flat) or it can
be used as a cache for DDR. The majority of KNL nodes on Cori are config-
ured to quad/cache mode as it provides an easy on-ramp for users coming from
traditional Xeon R© nodes. However, Cori does support the other available modes
dynamically via a subset of the nodes allocatable in a dedicated reboot queue of
the scheduler for those users that want to set a mode better suited to the needs
of their application.

4 Method and Instrumentation

The key areas of evaluation and characterization for the NERSC workload on
Cori are performance per watt and the efficacy of unique features of the KNL
architecture including MCDRAM and four hardware-threads-per-core. We used
the Integrated Performance Monitoring (IPM) profiling tool in our experiments



Performance and Energy Usage of Workloads on KNL 239

to map the performance over the parameter space of the selected NERSC work-
load applications on KNL. We also performed these experiments on KNL with-
out utilizing MCDRAM and on Haswell nodes. In this section we describe our
experimental design and methodology and discuss IPM and the enhancements
we made to IPM for our experiments.

4.1 Integrated Performance Monitoring Tool

We introduce the power monitoring enhancement to the IPM library as part
of this work1 [20–22]. IPM is a NERSC profiling library for high-performance
applications, first introduced by Fürlinger et al. [21]. IPM aggregates several low
level interfaces to provide a large quantity of performance data. In order to adapt
IPM to the new manycore architecture HPC paradigm and energy-constrained
computing, we added energy measurement to the IPM feature set.

IPM now supports measurement of energy consumption over the course of
application execution. The newly added IPM PMON module is included in IPM
by using the −enable-pmon configure option. The PMON module follows the
standard IPM module interface and requires only the additional IPM PMON= 1
environment flag at runtime in order to activate energy collection. Energy mea-
surements through IPM are currently only supported on Cray systems through
the Cray power monitoring and management stack [29]. IPM measures energy
over the full duration of the application, or programmer-specified sections. By
default, the energy counter is initialized when the application calls MPI Init and
accumulated until the application calls MPI Finalize. We are able to measure
energy at three sources: the full node energy prior to distribution, CPU power,
and DDR memory energy [36]. As a consequence of the architecture, the KNL
MCDRAM energy consumption is included in the CPU power measurement and
cannot be measured separately [36]. Using this energy measurement, we are also
able to compute the average memory, CPU, and total power consumption of an
application. We derive an average power value (W) by dividing this accumulated
energy (J) by the application wall clock time (s). IPM energy information can be
found in both the IPM standard output summary information and the standard
IPM XML output files. Users should note that in the XML output, every rank
provides an energy reading for the entire node. Therefore, user post-processing
should appropriately handle the case where multiple ranks from the same node
producing duplicate values.

4.2 Experiment Methodology

We designed our experiments to show the effect of the following parameter
variations:

– Varying MPI ranks-per-node and OpenMP threads-per-rank with a fixed
amount of total concurrency

1 IPM is open-source and available on github: https://github.com/nerscadmin/IPM.

https://github.com/nerscadmin/IPM


240 T. Allen et al.

– Varying the total concurrency to evaluate the effects of using one, two, three,
and four threads-per-physical-core

– Using KNL nodes in various modes, including KNL-Cache, KNL-MCDRAM
and KNL-DDR, and Haswell nodes

We performed experiments using every combination of the parameter variations.
The lightweight attribute of IPM makes it possible to collect all of the data
required from each of these experiments in a single run per configuration. All
applications are built with icc version 17.0.2.174 using the -xMIC-AVX512 opti-
mization flag to enable the 512-bit vector optimizations for KNL. (Haswell builds
used the -xAVX2 flag instead.)

With the rise of manycore architectures, MPI/OpenMP hybrid parallelism
is seeing increased popularity. We designed an experiment to explore the perfor-
mance relationship between MPI/OpenMP for our applications. We first fixed
the amount of total concurrency such that there is only one MPI rank or
OpenMP thread per core. One thread or process-per-core is exactly 68 threads-
per-node on Cori. At times we needed to use MPI counts and/or OpenMP
thread counts in powers of 2 because of the domain decomposition require-
ments of the applications. Experimentally, most applications did not receive
a significant performance increase when using 68 cores instead of 64. To eval-
uate with two-or-more threads per core, we simply used appropriate values for
ranks-per-node and threads-per-rank. We used the OMP PLACES=threads and
OMP PROC BIND=spread environment variable settings for our experiments to
ensure OpenMP threads are not grouped on a single core. We also used the
Slurm option --cpu bind=cores to ensure MPI ranks are spread across differ-
ent cores.

We conducted our experiments using KNL and Haswell nodes. We used the
flat KNL modes to evaluate the benefit of MCDRAM for performance and
power consumption. The numactl tool is used to explicitly allocate memory
in MCDRAM or DDR. We also used Haswell nodes to compare the perfor-
mance, but also the energy efficiency, of KNL nodes to Haswell nodes. This
required us to modify our experiment somewhat, as Haswell nodes have fewer
cores and threads-per-core than KNL. We only use one and two threads-per-core
for Haswell experiments, and limit our MPI concurrencies accordingly. Haswell
nodes also do not support the AVX512 instruction set, and so AVX2 optimizations
are used instead.

4.3 Applications and Micro-benchmarks

Table 1 lists the applications used for this study. For application descriptions
please refer to the respective references. The table lists the details of decompo-
sition in addition to a brief description of the level of tuning performed for the
KNL processor. Minimal refers to no source codes changes, but compiler opti-
mizations may have been performed. Significant refers to code restructuring,
thread and/or vectorization optimizations performed specifically for the KNL
architecture.



Performance and Energy Usage of Workloads on KNL 241

Table 1. Application benchmark details

Application Science area Level of tuning Nodes Rnks-Thds/Rnk GiB/

HSW KNL node

STREAM [6] Memory bandwidth Minimal 1 32t 68t 6.7

RandN [11] Random memory access Minimal 1 64t 256t 6.5

DGEMM [1] Dense linear algebra Intel MKL 1 32t 136t 2.3

GTC-P [2,40] Fusion Moderate OpenMP 8 32r-1t 32r-8t 0.17

MILC [13] Quantum chromodynamics QPhiX dslash solver 8 32r-1t 32r-2t 8.3

Nyx-AMReX [9] Cosmology Minimal 2 16r-4t 16r-16t 58

Castro-AMReX [8] Astrophysics Minimal 4 32r-1t 32r-2t 6.5

Quantum Espresso [23] Quantum chemistry Significant 4 4r-8t 4r-16t 21

BD-CATS [32] Data analytics for cosmology Minimal 16 16r-4t 16r-16t 5.4

5 Results

5.1 Micro-benchmarks

In this section we evaluate the performance and energy efficiency of the DGEMM,
STREAM and RandN micro-benchmarks on the KNL and Haswell architectures.
The micro-benchmarks stress peak floating point, sequential memory access, and
random memory access performance, respectively. The KNL results are obtained
in the three modes discussed earlier: KNL-Cache, KNL-MCDRAM and KNL-
DDR. We choose the problem size so that the memory footprint per compute
node is less than the memory capacity of MCDRAM. This allows us to evaluate
the benefit of MCDRAM under ideal circumstances.

Figure 1 shows the absolute performance and energy efficiency of the micro-
benchmarks. The top row of the figure shows the performance of the benchmarks
in the appropriate units: floating point rate for DGEMM in units of TFLOP/s
and memory bandwidth for STREAM and RandN in units of GiB/s. The bot-
tom row of the figure shows the energy cost of performing a single operation
in the benchmark: 1 double precision FLOP in DGEMM and transferring a
single 8-byte word to/from memory in STREAM and RandN. The energy met-
ric is calculated by dividing the average power usage in Watts (J/s) by the
micro-benchmark performance metric printed to standard output. In the case of
DGEMM, we divide [J/s] by [FLOP/s] to obtain [J/FLOP].

The results in this figure show that the optimal micro-benchmark configu-
rations run 1.5 to 4.0 times faster on the KNL architecture compared to the
Haswell architecture. Our best KNL performance results are a peak floating
point rate of 2 TFLOP/s, a sequential memory bandwidth of 466 GiB/s and a
random memory access bandwidth of 6 GiB/s. The STREAM micro-benchmark
performs better in KNL-MCDRAM mode than in KNL-Cache mode (466 GiB/s
vs 327 GiB/s), indicating that KNL-Cache mode introduces some overhead for
memory-bandwidth bound applications. This is because streaming stores incur
an additional memory read in KNL-Cache mode to determine whether a line
is already present in MCDRAM [27, p. 565]. We have found that switching
off streaming stores with the compiler option -qopt-streaming-stores=never



242 T. Allen et al.

(a) DGEMM performance (b) STREAM performance (c) RandN performance

(d) DGEMM energy (e) STREAM energy (f) RandN energy

Fig. 1. Performance and energy efficiency of DGEMM, STREAM and RandN micro-
benchmarks on KNL and Haswell architectures with various counts of threads per
core (TPC). The optimal KNL configuration in each mode is marked with the relative
improvement over the optimal Haswell configuration.

reduces STREAM performance in KNL-MCDRAM mode to 347 GiB/s, explain-
ing most of the performance difference. All micro-benchmarks perform worse in
KNL-DDR mode than the other modes, with the exception of RandN in 1 and 2
threads per core (TPC) configurations (Fig. 1c). These lower concurrency config-
urations are impacted by the higher memory latency of MCDRAM [33]. It is only
at the highest TPC concurrency where MCDRAM can support the large num-
ber of memory requests needed to hide the memory latency disadvantage. The
DGEMM and STREAM micro-benchmarks benefit more from MCDRAM than
RandN (Figs. 1a and b). DGEMM and STREAM performance remains approx-
imately the same when adding multiple threads per core because the floating
point performance and memory bandwidth are already saturated.

The figure also shows that the optimal KNL configurations are 2.4 to 4.8
times more energy efficient than the Haswell architecture. Energy efficiency
improves more than performance because of the difference in power usage of
the nodes. For example, the optimally performing DGEMM configuration con-
sumes 270 W on KNL and 360 W on Haswell2. The best KNL energy results
are 0.15 nJ/FLOP in DGEMM, 4.5 nJ/word in STREAM and 200 nJ/word in

2 The DGEMM power consumption is approximately 2 to 8 W higher on KNL over a
range of concurrencies than the synthetic Firestarter benchmark designed to create
near-peak power consumption [24].



Performance and Energy Usage of Workloads on KNL 243

RandN. These are significantly larger than the exascale target of 20 pJ/FLOP
(i.e. 0.02 nJ/FLOP) to achieve an exaFLOP within a 20 MW power budget.
Finally, the order of magnitude difference between STREAM and RandN indi-
cates the high energy cost of random memory access workloads in traditional
CPU architectures.

The evaluated Xeon PhiTM and Xeon R© processors use a 14 nm and 22 nm
technology size, respectively. This is a slightly unfair comparison because a
smaller feature size is more energy efficient. Product sheets show that a 14 nm 16-
core Xeon R© Broadwell processor has a Thermal Design Power (TDP) of 115 W
[5] compared to the Haswell Xeon R© in Cori which has a TDP of 135 W [4].
Therefore, a rough estimate of the energy efficiency improvement over a 14 nm
Xeon R© can be obtained by multiplying the energy efficiency improvement in
the figures by [115/135]. The optimal STREAM configuration on KNL would
therefore be 4.1x more energy efficient than a 14 nm Xeon R©.

5.2 STREAM Variability

The performance of the STREAM micro-benchmark varies considerably in KNL-
Cache mode because of cache conflicts in the direct-mapped MCDRAM cache.
This effect cannot be controlled and depends on the specific physical memory
pages allocated to a job at runtime. It is a known issue that Intel has partially
mitigated by creating a kernel module named Zonesort [25,26]. The kernel mod-
ule reorders memory pages to reduce cache-conflicts and is run on Cori before
every Slurm job step.

Figure 2 is a cumulative density plot showing STREAM performance over 48
trials. The results show that over 50% of trials achieve a bandwidth of 324–327
GiB/s and that there is a long tail of degradation towards 225 GiB/s. We moni-
tored a performance counter measuring DDR traffic named OFFCORE RESPONSE -
0:ANY REQUEST:DDR in each trial and found that high values correlate with poor

Fig. 2. STREAM bandwidth in KNL-Cache mode over 48 trials



244 T. Allen et al.

STREAM memory bandwidth and high DDR memory power. This indicates
that the direct-mapped cache on KNL can cause performance and energy ineffi-
ciencies and that Zonesort does not eliminate all cache-conflicts. It is significant
because this effect can reduce STREAM memory bandwidth by a factor of 2
compared to the optimally performing KNL-MCDRAM configuration.

5.3 Performance and Energy Consumption Across Applications

In this section we compare application performance and energy consumption
across architectural configurations for the application benchmark suite. We iden-
tify the fastest MPI/OpenMP configuration for each benchmark on KNL and
then use this MPI count and a variable number of OpenMP threads for every
experiment. Our tests are designed to show application sensitivity to memory
bandwidth and hyperthreading on KNL. The later experiment studying hyper-
threads is performed in KNL-cache mode.

Figure 3 summarizes the application performance and energy consumption
on KNL and Haswell. The results are normalized so that values greater than 1.0
indicate that the application has a higher figure of merit on KNL than Haswell.
The results show that 6 out of 9 applications perform better on the KNL node
architecture. The KNL performance is best when using KNL-Cache mode in
every experiment, and the KNL-DDR mode is worse than Haswell for all scien-
tific applications, indicating the importance of MCDRAM to application perfor-
mance. The greatest MCDRAM gains occur in STREAM and MILC which are
applications bound by memory bandwidth. In some cases, the opposite is true:
when applications like RandN and BD-CATS are dominated by random memory
access, MCDRAM provides negligible gains in performance. Perhaps the most
significant result is that all applications consume less energy on KNL compared

(a) Performance
Geometric mean: 0.84 and 1.27

(b) Energy consumption
Geometric mean: 1.21 and 1.84

Fig. 3. Figures of merit improvement of KNL relative to Haswell. The best KNL con-
figuration is compared against the best Haswell configuration.



Performance and Energy Usage of Workloads on KNL 245

to Haswell. If we follow the approach from earlier then we estimate that the
1.84x energy improvement over Haswell would be a 1.56x energy improvement
over a 14 nm Broadwell processor.

Figure 4 shows that application performance is more variable when changing
the number of threads per core. Several applications, e.g. STREAM, Quantum
Espresso and Castro, perform worse when using hyperthreads because of either
resource saturation or increased overhead of using more threads. Other applica-
tions with random memory access, e.g. RandN and BD-CATS, have significant
gains when using all 4 threads per core. On average, hyperthreads improve per-
formance by approximately 16% over the optimal Haswell configuration. We find
that 2 and 4 hyperthreads per core deliver similar average performance, however,
we find that the 4 hyperthreads per core configuration consumes more energy
than the 2 hyperthreads per core configuration. Therefore, based on energy con-
sumption, 4 threads per core configurations are only helpful for a very specialized
workload, e.g. a graph analytics workload dominated by random memory access.

(a) Performance
Geometric mean: 1.01, 1.16 and 1.16

(b) Energy consumption
Geometric mean: 1.56, 1.68 and 1.64

Fig. 4. Figures of merit improvement of KNL relative to Haswell. The KNL configu-
ration at each thread count is compared against the best Haswell configuration. The
KNL results are obtained in KNL-Cache mode.

6 Conclusions

We have shown that KNL is a solid step towards exascale efficiency, but that
there is still significant progress left to be made. On the NERSC workload,
we have shown that KNL improves performance for 6 out of 9 applications vs.
Haswell, but manages to reduce energy consumption for every application. Also,
for applications with memory locality, the MCDRAM present on KNL can pro-
vide enormous performance benefits in comparison to DDR4, and simultaneously
reduces the energy-per-operation for every application. MCDRAM is a critical



246 T. Allen et al.

feature of this architectural shift. Future architectures will need to make even
greater strides towards efficiency.

7 Future Work

The work in this paper relied on our experience with the applications to explain
the observed performance results. We plan a more thorough approach that will
automatically characterize applications using hardware performance counters.
We have already started to create this performance analysis framework by adding
PAPI multiplexing support to IPM and developing scripts to create derived per-
formance metrics based on this data to quantify the performance requirements
of applications. This will allow us to understand at a deeper level the overall
sensitivity of the larger NERSC workload to features on modern CPUs, such as
MCDRAM and hyperthreads.

Acknowledgment. This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

1. DGEMM. http://www.nersc.gov/research-and-development/apex/apex-benchma
rks/dgemm/

2. GTC-P. http://www.nersc.gov/research-and-development/apex/apex-benchma
rks/gtc-p/

3. Intel Xeon Phi Processor 7250 16GB, 1.40 GHz, 68 core. https://ark.intel.com/
products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1 40-GHz-68-core

4. Intel Xeon Processor E5–2698 v3 40M Cache, 2.30 GHz. https://ark.intel.com/
products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2 30-GHz

5. Intel Xeon Processor E7–4850 v4 40M Cache, 2.10 GHz. https://ark.intel.com/
products/93806/Intel-Xeon-Processor-E7-4850-v4-40M-Cache-2 10-GHz

6. STREAM: Sustainable Memory Bandwidth in High Performance Computers.
https://www.cs.virginia.edu/stream/FTP/Code/

7. Agelastos, A.M., Rajan, M., Wichmann, N., Baker, R., Domino, S., Draeger, E.W.,
Anderson, S., Balma, J., Behling, S., Berry, M., Carrier, P., Davis, M., McMahon,
K., Sandness, D., Thomas, K., Warren, S., Zhu, T.: Performance on Trinity phase 2
(a Cray XC40 utilizing Intel Xeon Phi processors) with acceptance applications and
benchmarks. In: Cray User Group CUG, May 2017. https://cug.org/proceedings/
cug2017 proceedings/includes/files/pap138s2-file1.pdf

8. Almgren, A.S., Beckner, V.E., Bell, J.B., Day, M.S., Howell, L.H., Joggerst, C.C.,
Lijewski, M.J., Nonaka, A., Singer, M., Zingale, M.: CASTRO: A new compressible
astrophysical solver. I. hydrodynamics and self-gravity. Astrophys. J. 715, 1221–
1238 (2010)

9. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Andel, E.V.: Nyx: A massively
parallel AMR code for computational cosmology. Astrophys. J. 765(1), 39 (2013).
http://stacks.iop.org/0004-637X/765/i=1/a=39

http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/gtc-p/
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/gtc-p/
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
https://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
https://ark.intel.com/products/93806/Intel-Xeon-Processor-E7-4850-v4-40M-Cache-2_10-GHz
https://ark.intel.com/products/93806/Intel-Xeon-Processor-E7-4850-v4-40M-Cache-2_10-GHz
https://www.cs.virginia.edu/stream/FTP/Code/
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap138s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap138s2-file1.pdf
http://stacks.iop.org/0004-637X/765/i=1/a=39


Performance and Energy Usage of Workloads on KNL 247

10. APEX Benchmark Distribution and Run Rules. http://www.nersc.gov/research-
and-development/apex/apex-benchmarks/

11. Austin, B., Wright, N.J.: Measurement and interpretation of microbenchmark and
application energy use on the Cray XC30. In: Proceedings of the 2nd International
Workshop on Energy Efficient Supercomputing, pp. 51–59. IEEE Press (2014)

12. Barnes, T., Cook, B., Deslippe, J., Doerfler, D., Friesen, B., He, Y., Kurth,
T., Koskela, T., Lobet, M., Malas, T., Oliker, L., Ovsyannikov, A., Sarje, A.,
Vay, J.L., Vincenti, H., Williams, S., Carrier, P., Wichmann, N., Wagner, M.,
Kent, P., Kerr, C., Dennis, J.: Evaluating and optimizing the NERSC workload on
knights landing. In: 2016 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS),
pp. 43–53, November 2016

13. Bauer, B., Gottlieb, S., Hoefler, T.: Performance modeling and comparative analy-
sis of the MILC Lattice QCD application su3 rmd. In: Proceedings CCGRID2012:
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing
(2012)

14. Coghlan, S., Kumaran, K., Loy, R.M., Messina, P., Morozov, V., Osborn, J.C.,
Parker, S., Riley, K.M., Romero, N.A., Williams, T.J.: Argonne applications for
the IBM Blue Gene/Q, Mira. IBM J. Res. Dev. 57(1/2), 12:1–12:11 (2013)

15. LANL Trinity Supercomputer. http://www.lanl.gov/projects/trinity/
16. NERSC Cori Supercomputer. https://www.nersc.gov/systems/cori/
17. Cray XC Series Supercomputers. http://www.cray.com/products/computing/xc-

series
18. Evangelinos, C., Walkup, R.E., Sachdeva, V., Jordan, K.E., Gahvari, H., Chung,

I.H., Perrone, M.P., Lu, L., Liu, L.K., Magerlein, K.: Determination of performance
characteristics of scientific applications on IBM Blue Gene/Q. IBM J. Res. Dev.
57(1), 99–110 (2013). https://doi.org/10.1147/JRD.2012.2229901

19. The Opportunities and Challenges of Exascale Computing. https://science.energy.
gov/∼/media/ascr/ascac/pdf/reports/Exascale subcommittee report.pdf

20. Fuerlinger, K., Wright, N.J., Skinner, D.: Effective performance measurement at
petascale using IPM. In: 2010 IEEE 16th International Conference on Parallel and
Distributed Systems, pp. 373–380, December 2010

21. Fürlinger, K., Wright, N.J., Skinner, D.: Performance analysis and workload char-
acterization with IPM. In: Müller, M., Resch, M., Schulz, A., Nagel, W. (eds.) Tools
for High Performance Computing 2009, pp. 31–38. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11261-4 3

22. Fürlinger, K., Wright, N.J., Skinner, D., Klausecker, C., Kranzlmüller, D.: Effec-
tive holistic performance measurement at petascale using IPM. In: Bischof, C.,
Hegering, H.G., Nagel, W., Wittum, G. (eds.) Competence in High Performance
Computing 2010, pp. 15–26. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-24025-6 2

23. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli,
S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A.,
Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S.,
Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen,
A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a
modular and open-source software project for quantum simulations of materials.
J. Phys. Condens. Matter 21(39), 395502 (19pp) (2009). http://www.quantum-
espresso.org

http://www.nersc.gov/research-and-development/apex/apex-benchmarks/
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/
http://www.lanl.gov/projects/trinity/
https://www.nersc.gov/systems/cori/
http://www.cray.com/products/computing/xc-series
http://www.cray.com/products/computing/xc-series
https://doi.org/10.1147/JRD.2012.2229901
https://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://doi.org/10.1007/978-3-642-11261-4_3
https://doi.org/10.1007/978-3-642-24025-6_2
https://doi.org/10.1007/978-3-642-24025-6_2
http://www.quantum-espresso.org
http://www.quantum-espresso.org


248 T. Allen et al.

24. Hackenberg, D., Oldenburg, R., Molka, D., Schöne, R.: Introducing
FIRESTARTER: a processor stress test utility. In: 2013 International Green
Computing Conference Proceedings, pp. 1–9, June 2013

25. He, Y., Cook, B., Deslippe, J., Friesen, B., Gerber, R., Hartman-Baker, R.,
Koniges, A., Kurth, T., Leak, S., Yang, W.S., Zhao, Z.: Preparing NERSC
users for Cori, a Cray XC40 system with Intel many integrated cores. In: Cray
User Group CUG, May 2017. https://cug.org/proceedings/cug2017 proceedings/
includes/files/pap161s2-file1.pdf

26. Hill, P., Snyder, C., Sygulla, J.: KNL system software. In: Cray User Group
CUG, May 2017. https://cug.org/proceedings/cug2017 proceedings/includes/
files/pap169s2-file1.pdf

27. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming: Knights, Landing edn. Morgan Kaufmann, Boston (2016)

28. Lawson, G., Sundriyal, V., Sosonkina, M., Shen, Y.: Runtime power limiting of par-
allel applications on Intel Xeon Phi Processors. In: 2016 4th International Work-
shop on Energy Efficient Supercomputing (E2SC), pp. 39–45, November 2016

29. Martin, S.J., Kappel, M.: Cray XC30 power monitoring and management. In: Cray
User Group 2014 Proceedings (2014)

30. National Energy Research Scientific Computing Center. https://www.nersc.gov
31. Parker, S., Morozov, V., Chunduri, S., Harms, K., Knight, C., Kumaran, K.: Early

evaluation of the Cray XC40 Xeon Phi System ‘Theta’ at Argonne. In: Cray
User Group CUG, May 2017. https://cug.org/proceedings/cug2017 proceedings/
includes/files/pap113s2-file1.pdf

32. Patwary, M.M.A., Dubey, P., Byna, S., Satish, N.R., Sundaram, N., Lukić, Z.,
Roytershteyn, V., Anderson, M.J., Yao, Y., Prabhat: BD-CATS: big data clustering
at trillion particle scale. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis on - SC 2015, pp. 1–
12. ACM Press, New York (2015). http://dl.acm.org/citation.cfm?doid=2807591.
2807616

33. Peng, I.B., Gioiosa, R., Kestor, G., Laure, E., Markidis, S.: Exploring the Per-
formance Benefit of Hybrid Memory System on HPC Environments. CoRR
abs/1704.08273 (2017). http://arxiv.org/abs/1704.08273

34. Ramos, S., Hoefler, T.: Capability models for manycore memory systems: a case-
study with Xeon Phi KNL. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 297–306, May 2017

35. Roberts, S.I., Wright, S.A., Fahmy, S.A., Jarvis, S.A.: Metrics for energy-aware
software optimisation. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.)
ISC 2017. LNCS, vol. 10266, pp. 413–430. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-58667-0 22

36. Rush, D., Martin, S.J., Kappel, M., Sandstedt, M., Williams, J.: Cray XC40 power
monitoring and control for knights landing. In: Cray User Group CUG, May
2017. https://cug.org/proceedings/cug2016 proceedings/includes/files/pap112s2-
file1.pdf

37. Saini, S., Jin, H., Hood, R., Barker, D., Mehrotra, P., Biswas, R.: The impact
of hyper-threading on processor resource utilization in production applications.
In: Proceedings of the 2011 18th International Conference on High Performance
Computing, pp. 1–10, HIPC 2011, IEEE Computer Society, Washington, DC, USA
(2011). https://doi.org/10.1109/HiPC.2011.6152743

https://cug.org/proceedings/cug2017_proceedings/includes/files/pap161s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap161s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap169s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap169s2-file1.pdf
https://www.nersc.gov
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap113s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap113s2-file1.pdf
http://dl.acm.org/citation.cfm?doid=2807591.2807616
http://dl.acm.org/citation.cfm?doid=2807591.2807616
http://arxiv.org/abs/1704.08273
https://doi.org/10.1007/978-3-319-58667-0_22
https://doi.org/10.1007/978-3-319-58667-0_22
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112s2-file1.pdf
https://doi.org/10.1109/HiPC.2011.6152743


Performance and Energy Usage of Workloads on KNL 249

38. Sodani, A.: Knights landing (KNL): 2nd generation Intel Xeon Phi Processor.
In: Hot Chips 27, Flint Center, Cupertino, CA, August 23–25 2015. http://www.
hotchips.org/wp-content/uploads/hc archives/hc27/HC27.25-Tuesday-Epub/
HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf

39. ANL Theta Supercomputer. https://www.alcf.anl.gov/theta
40. Wang, B., Ethier, S., Tang, W.M., Ibrahim, K.Z., Madduri, K., Williams, S., Oliker,

L.: Modern Gyrokinetic Particle-In-Cell Simulation of Fusion Plasmas on Top
Supercomputers. CoRR abs/1510.05546 (2015). http://arxiv.org/abs/1510.05546

41. Zhao, Z., Wright, N.J., Antypas, K.: Effects of hyper-threading on the NERSC
workload on Edison. In: Cray User Group CUG, May 2013. https://www.nersc.
gov/assets/CUG13HTpaper.pdf

http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
https://www.alcf.anl.gov/theta
http://arxiv.org/abs/1510.05546
https://www.nersc.gov/assets/CUG13HTpaper.pdf
https://www.nersc.gov/assets/CUG13HTpaper.pdf

	Performance and Energy Usage of Workloads on KNL and Haswell Architectures
	1 Introduction
	2 Related Work
	3 NERSC's Cori Supercomputer
	4 Method and Instrumentation
	4.1 Integrated Performance Monitoring Tool
	4.2 Experiment Methodology
	4.3 Applications and Micro-benchmarks

	5 Results
	5.1 Micro-benchmarks
	5.2 STREAM Variability
	5.3 Performance and Energy Consumption Across Applications

	6 Conclusions
	7 Future Work
	References


