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Abstract. Performance anomalies involving interconnection networks
have largely remained a “black box” for developers relying on tradi-
tional CPU profilers. Network-side profilers collect aggregate statistics
and lack source-code attribution. We have incorporated an effective pro-
tocol extension in the Gen-Z communication protocol for tagging net-
work packets in an interconnection network; additionally, we have backed
the protocol extension with hardware and software enhancements that
allow tracking the flow of a network transaction through every hop in
the interconnection network and associate it back to the application
source code. The result is a first-of-its-kind hardware-assisted telemetry
of disparate, autonomous interconnection networking components with
application source code association that offers better developer insights.
Our scheme works on a sampling basis to ensure low runtime overhead
and generates modest volumes of data. Simulation of our methods in
the open-source Structural Simulation Toolkit (SST/Macro) shows its
effectiveness—deep insights into the underlying network details to the
developer at minimal overheads.

1 Introduction

Interconnection networks used in today’s supercomputers play a vital role in
the overall performance, efficiency, and scalability of scientific simulation and
modeling. HPC applications achieve a paltry 5–15% of a machine’s peak per-
formance [1–3] on modern microprocessor-based supercomputers. A significant
fraction of the loss comes from inter-node data movement.

When applications fail to make effective use of the compute resources at
scale, application developers resort to profilers to understand bottlenecks. There
is sufficient state-of-the-art and commercial tools for CPU profiling [4–10] that
capture metrics such as CPU cycles, cache misses, branch mis-predictions, etc.
and associate the measurements back to the application source code or applica-
tion data objects [11,12].
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Domain scientists can only reason about performance when the measure-
ments are attributed back to the application source code. Unfortunately, net-
work performance problems are a “black box” from an application developer’s
viewpoint. CPU-side profilers typically quantify the amount of delay waiting for
a network communication but offer little insight into why an instance of network
transaction was slow. Even the most sophisticated network performance analysis
techniques [13–16] only reason about communication endpoints but do not cap-
ture measurements from under-the-hood workings from the autonomous inter-
connection hardware, which includes network interface cards (NICs), bridges,
and switches.

Figure 2 in AppendixA shows the execution profile of NWChem [17]—a US
Department of Energy flagship computational chemistry code—running with
1024 MPI ranks on the Dragonfly [18,19] interconnection network on the NERSC
Edison [20] supercomputer. The figure shows a hotpath in the CPU profile taken
using HPCToolkit [5], a state-of-the-art CPU PMU-based profiler. The figure
shows a deep call stack with various layers of host-side code leading to the
vendor-provided networking API dmapp lock acquire to acquire a lock on a
remote node. The execution spends a significant (26%) part of execution waiting
in this networking API, but the profiles cannot obtain any insights on the cause of
this wait. This leaves an application developer with many unanswered questions:

1. Is there load imbalance in the code? Our conversation with the NWChem
application developers eliminated this case of any load imbalance and con-
tention for a single lock—the workload is dynamically balanced.

2. Is the network lock implementation suboptimal? Our conversation with Cray
Inc. eliminated this possibility—the network lock is local spinning MCS [21]
lock.

3. Is the communication network performing poorly?
4. Is there an interference from another job that affected this execution?
5. Is the observed, seemingly network problem, indeed a network bandwidth

problem or delays in the local NICs to inject messages?
6. If locking is frequent, is the lock-release message getting delayed in the inter-

connection network? If so, can we use a separate high-priority virtual channel
for such network communication that appear on the critical path?

Clearly, traditional CPU profilers cannot offer answers to these questions
since they cannot measure what happens in the interconnection network hard-
ware components. Once a network-related transaction leaves the CPU, even in
a simplistic network, the following events happen. The message gets enqueued
as a command to the NIC. The NIC notices the command at some later point,
which introduces an arbitrary delay. Now, the NIC may initiate a DMA transfer
from the local DRAM if the command is a send/put. It packetizes a put/send
command into multiple MTU-sized packets and injects them one by one. The
NIC may then wait for the acknowledgement of every packet (which is the case
in Gen-Z [22] protocol). Different packets may take different paths in the net-
work based on the network routing heuristics. At each router hop, a packet may
be subject to different policies and arbitration delays before being forwarded to
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an output port. At the destination NIC, the packets may arrive out of order
(which happen in Gen-Z [22]). The destination NIC may delay injecting packet-
level acknowledgments. The destination CPU may get notified some time later
after the entire message is reassembled and may introduce further delays before
a message-level acknowledgment is generated. Finally, an acknowledgment mes-
sage may be subject to the same set of uncertainties on its return journey.

With myriad autonomous, unsynchronized components, it is virtually impos-
sible to track how a message gets affected in its roundtrip from one host to
another. Prior network performance analysis efforts have conducted an event-
driven simulation of the network with characteristic workloads for designing
superior networks without paying attention to delivering developer insights.
Production hardware has offered simple counters in network routers to collect
aggregate runtime data, which offer coarse-grained statistics for system adminis-
tration to spot anomalous or overloaded hardware components; these techniques
are tedious, vendor specific, and often not accessible to CPU profilers.

No prior art has addressed the challenge of tracking an individual message
from its source location through every hop in every hardware component in an
interconnection network and associated the observed performance metrics to the
source and target host codes. This level of detailed measurement in conjunction
with full CPU-side context-sensitive profiling is the basis of delivering rich, end-
to-end application insights. Such detailed profiling and tracing can alone answer
questions that we raised previously in the NWChem example. Evidently, track-
ing every message and every packet in the network with this level of detailed
statistics is a recipe for performance data deluge and will bring the network to
a grinding halt in merely collecting the measurement data. Statistical sampling
comes to our rescue in collecting detailed data with sparse sampling.

Our strategy is to “mark” network transaction to be monitored on a sampling
basis at the origin (CPU) and record statistics of such marked messages at every
hop along its journey in an interconnection network. By retaining both CPU-
side profiles and network profiles for a sparse set of samples, we are able to
observe what happens to network transactions and elevate the measurements to
application source code in a manner that sheds lights on the causes of network-
related problems to the application developer. The result is that the application
developer, with full understanding of the problems, may,

1. Choose to refactor the source code to better utilize the network, or
2. Provision more network resources to reduce network-related bottlenecks that

are caused by her application, or
3. Conclusively infer that the problem was not caused by the application but

due to an interference with another job, the solution is in better network
provisioning or job scheduling, or

4. Pinpoint that the problem is not in the network provisioning but in the net-
working algorithms, an anomalous router, or local network interface (NIC)
software or hardware.
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2 Related Work

There is a rich literature on profiling and tracing CPU executions. Profiling
provides aggregated metrics whereas tracing captures the time-varying behavior
of executions. Profiling and tracing come in various flavors and granularities. It
is common to instrumentation source code or binary, manually or via a tool, at
function, loop, or basic-block granularities. Hardware event-based sampling is
an orthogonal method where CPU PMU counter overflow triggers an interrupt
that a profiler captures and attributes to application binary and in-turn to the
source code [4,5,23]. None of these techniques measure data from interconnection
network hardware.

MPI profilers [24–26] capture communication metrics at endpoints: they mea-
sure time spent in networking-related tasks by wrapping or intercepting each
MPI library functions. Advanced methods [13] are able to replay execution traces
to pinpoint the root causes of some performance bugs. However, none of these
methods obtain measurements from networking hardware. As a result, although
one might observe anomalous communication delays, there exists little evidence
to isolate problems to a host-side NIC, a router, the destination NIC, or desti-
nation CPU.

Networking hardware design is often performed via low-level event-driven
simulators [27–29]. These simulators are driven by predefined communication
patterns to assess the strength of hardware designs or algorithms. A low-level
simulator can simulate only a small (often milliseconds to a second) amount
of real execution. High-level simulators [30–32] capture runtime communication
traces on real execution and replay the communication traces to drive coarse-
grained network simulators. Both high-level and low-level network simulators
treat the CPU execution as a black box and focus only on the networking aspect
and hence are incapable of offering insights to application an developer at the
source code level.

There is rich literature in network profilers for Ethernet [33–35]. We are
unaware of any tool that can a) attribute network profiles to application source
code, or b) perform path-synchronous sampling to capture a specific network
transaction (e.g., traversal of a specific packet) throughout its journey. Network-
side monitoring schemes such as sFlow [35] and netflow [34] capture the source
and destination of a packet when flowing through a component. They, however,
lack the full path information of a sampled transaction and hence the hop-by-
hop details of any specific packet is unavailable. sFlow can aggregate the data
from many components over long periods of time and filter the data by the
traffic originating from the same source going to the destination to reconstruct
an “average” behavior and a “typical” path; but such schemes cannot attribute
the observed behavior to the application source code because over time there can
be many source code locations contributing to the same “flow”. Samples from
different components lack temporal correlation. This lack of temporal correlation
means one can observe only aggregate behavior of traffic and not be able to
pinpoint a specific anomaly to its causes. Aggregate metrics handicap the ability
to pinpoint the cause of a transient anomalous behavior.
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3 Methodology

A key requirement for attributing network behavior to application source code is
to identify what happens to a transaction initiated by a line of source code (could
be an assembly instruction) throughout its journey through the network. Such
hop-by-hop tracking retains temporal correlation among performance metrics
generated by unsynchronized components. We track hop-by-hop metrics of a
small subset of packets as they are forwarded across a network. This is done on
sampling basis because observing every transaction is infeasible both from space
and time overhead viewpoint. In other words, one in N packet originating from
a source is chosen to be tracked throughout its journey. The choice of N can be
arbitrary or more intelligent. Each endpoint may choose the same or different
value of N. Endpoints need not coordinate when they track a packet. Sampling
ensures that any event that is statistically significant will be observed with the
frequency proportional to its occurrence. We propose the following extensions:

Protocol Extension: every packet of the protocol carries a special Perfor-
mance Monitoring (PM) tag. The PM tag may be present at a designated
offset in the packet header to make it quick to inspect by the hardware. We
call a packet whose PM tag is enabled as a “marked” packet. We have already
incorporated a PM tag in the Gen-Z protocol [22] to enable performance tools.

Hardware Extensions: 1. The NIC exposes a special tag “track me” (TM)
to the software. The software may assert the TM bit in a command it
issues to the local NIC indicating the NIC to track the command.

2. The NIC propagates the TM bit from a CPU-issued command into a (one
or more) packet(s) by setting the PM bit in the packets that it injects
into the network on behalf of the command.

3. Every switch inspects the PM tag of each packet it routes. If the PM tag is
enabled in an incoming packet, the switch logs a performance data record
into its local buffer (typically an SRAM). The PM tag is propagated
through the switch from an incoming packet to the corresponding out-
going packet.

The fact that a marked packet’s information is logged at each hop allows
us to achieve the path-synchronous sampling. A key piece of information logged
at each hop is the unique identity of the next hop of the packet. The next hop
information allows us to, in a post mortem pass, reconstruct the full path along
the journey of a marked packet. In systems with request-response protocol (e.g.,
Gen-Z), the PM tag is retained from request to response so that its journey
is tracked in both directions. To accomplish this, the endpoint hardware (e.g.,
NIC) may be modified to propagate the PM tag from request to response. We
assume that every network packet at least contains its source identifier (SID),
destination identifier (DIS), a tag (need not be unique), and the PM tag. The
log in each component contains at least the following information:

1. The arrival time of the packet or command (component local time).
2. The departure time of the packet or command (component local time).
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3. The identity of the next hop (out going port) of the packet/command.
4. (Optional) In addition to the first three necessary data, a component may

include any additional data: for example, anomalous condition at the time of
routing the designated marked packet (e.g., ran out of credit when transmit-
ting this packet), position of the packet in a router’s input queue on arrival,
conflict during router arbitration, etc.
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Fig. 1. An interconnection network with four switches, two endpoints and
their respective NICs. A message sent from A to B traverses the path
A→NICa→S1→S2→S4→NICb→B. The profiler captures CPU-side contexts, marks
the message to be tracked in the network and logs data to a collection server. NICs
and switches that the marked packet traverses also log their data to the collection
server.

Figure 1 depicts the workflow when the endpoint A wants to send a message to
endpoint B and the packet follows the route A→NICa→S1→S2→S4→NICb→B
in an anecdotal network:

1. The software (profiler running on the source CPU, endpoint A) on a sampling
basis chooses a transaction to be monitored. The choice can be random
sampling or more intelligent, if desired.

2. The software captures its CPU calling context (CTXT1) and creates a locally
unique command id (CID1) representing the network command.

3. The software (at time T1) issues the network command to NICa passing the
unique id (CID1) setting the TM flag.

4. Software logs the tuple 〈CTXT1, CID1, T1, A, B〉.
5. NICa at a later point (time T2) inspects the command, generates some M

network packets for the command, and by observing the TM flag, it enables
the PM tag in one of (randomly chosen or otherwise) the M network packets.

6. NICa injects the PM-marked packet at time T3 to the switch S1. Let the id
of the marked packet be PKID. Let the last packet corresponding to CID1

leave at time T4. NICa logs the local information tuple 〈CID1, A, B, PKID,
S1, T2, T3, T4〉.
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7. The switch S1 notices the marked packet with PKID at time T5 and forwards
it to switch S2 at time T6 and the logs the information tuple 〈A, B, PKID,
S2, T5, T6〉.

8. The switch S2 notices the marked packet with PKID at time T7 and forwards
it to switch S4 at time T8 and the logs the information tuple 〈A, B, PKID,
S4, T7, T8〉.

9. The switch S4 notices the marked packet with PKID at time T9 and forwards
it to NICb at T10 and the logs the information tuple 〈A, B, PKID, NICb,
T9, T10〉.

10. NICb at time T11 assembles all packets and create an entry for the endpoint
B and produces the log entry 〈A, B, PKID, CID2, B, T10, T11, TM = 1〉.

11. The CPU at endpoint B at time T12 in calling context CTXT2 receives the
full message and on noticing the TM flag, logs the tuple 〈CTXT2, CID2, T12,
A, B〉.
For brevity, we are not discussing the case of response or acknowledgment

or dropped packets. In unreliable networks when a marked packet is dropped,
no further logs will be available—a clear indication of a dropped packet. We do
not discuss what additional information a component may log. There can be
component-specific fields, which, for example, can include link-level credits.

Collection server: Hardware has a limited local buffer to log performance data.
Hence, we use a management software running on each hardware component to
periodically drain the logs collected to a centralized server. The SRAM buffer on
the hardware acts as a circular buffer. All modern HPC networking components
have additional management hardware with Ethernet connections of ∼1 GBPS.
The management software on each component is capable of NFS mounting a
remote distributed server and dump logs from local memory to a unique file on
the remote server.

Post-mortem analysis: The collection server contains logs collected from all com-
ponents through which every marked packet traverses. A post-mortem analysis
of the logs in the collection server allows a software tool to reconstruct the com-
plete path traversed by each marked packet initiated at a source and associate
the data with the application source code in its calling context. In the previous
example, starting from the CPU-side log of the endpoint A, we can go through
the following steps to reconstruct the path:

1. Endpoint A’s log entry 〈CTXT1, CID1, T1, A, B〉 tells that at source-code
context CTXT1, a command CID1 was issued to target B.

2. Sifting through NICa’s logs for CID1 shows the following entry: 〈CID1, A, B,
PKID, S1, T2, T3, T4〉. T2−T1 is the in-node delay. The command took a
total of T4−T2 time to get injected. The marked packet has the tag PKID
and was injected at time T3 and was sent to switch S1.

3. Sifting through switch S1’s logs for 〈A, B, PKID, T3 ±Δ〉 shows a record
〈A, B, PKID, S2, T5, T6〉. The packet’s delay at hop S1 is T6−T5. It was
forwarded to S2.
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4. Sifting through switch S2’s logs for 〈A, B, PKID, T6 ±Δ〉 shows a record
〈A, B, PKID, S4, T7, T8〉. The packet’s delay at hop S2 is T8−T7. It was
forwarded to S4.

5. Sifting through switch S4’s logs for 〈A, B, PKID, T8 ±Δ〉 shows a record
〈A, B, PKID, B, T9, T10〉.〉. The packet’s delay at hop S4 is T10−T9. It was
forwarded to the destination NICb.

6. Sifting through NICb’s logs for 〈A, B, PKID, T10 ±Δ〉 shows the following
entry: 〈A, B, PKID, CID2, B, T10, T11, TM = 1〉. T11−T10 is the delay at
NICb. It was delivered to the destination B.

7. Sifting through endpoint B’s logs for 〈A, B, CID2, T11 ±Δ〉 shows the fol-
lowing entry: 〈CTXT2, CID2, T12, A, B〉. CTXT2 is the receiving application
calling context. The packet’s journey ends here.

Full calling context with source code attribution at both endpoints along
with hop-by-hop metrics for the traversal: A(CTXT1)→NICa→S1→S2→S4

→NICb→B(CTXT2) including the in-NIC delays is easily reconstructed. Since
each component logs data into its local buffer, there is no need for concurrency
control. There is no need for perfectly synchronized clocks across the system; but,
we expect the components to be close enough in time via standard protocols such
as NTP.

Alternative uses: Our approach samples a randomly chosen transaction in a
window of N transactions. Alternatively, we may also sample the exact Nth

transaction. In fact, a precise, predetermined, transaction may be sampled, if
desired. Instead of the software at the source of a transaction enabling the PM
tag, any component may choose to enable the PM tag and capture the partial
path. Although we suggested unsynchronized sampling from endpoints, we do
not preclude sampling in a synchronized manner, which is useful for debugging
purposes. Our approach associates metrics to the source-code location that ini-
tiated a transaction. We do not preclude associating metrics to some other place
in the source code, e.g., a network wait event associated with a non-blocking
transaction.

4 Implementation

We implemented our network performance monitoring prototype using the SST/-
Macro event-driven network simulator framework [32] and open sourced it [36].
SST/Macro models hardware components such as CPU, memory, NIC, switch,
crossbar. The networking components of SST/Macro are mature with various,
configurable network topologies, bandwidths, latencies, and algorithms of packet-
based routing and arbitration, ideally suited for our evaluation. SST/Macro is
easy to extend with additional hardware and software components, which was
necessary for our extensions. SST/Macro is driven by “skeleton” C++ code that
mimics an HPC C++ code written using MPI and needs trivial or no modifica-
tions to work with SST/Macro.
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We enhanced SST/Macro in the following ways. We introduced a new flag
(PM bit) in SST/Macro packet format. We extended SST/Macro NIC and switch
hardware components with the additional capability to log “marked” packets to
a bounded SRAM buffer. We chose a bounded buffer of 2 KB in each router
and NIC. We introduced a new hardware subcomponent “drainer” in NICs and
routers, which reads the performance data accummulated in a local bounded
SRAM buffer and transfers it to an on-component management software. The
management software NFS mounts a file on the remote data collection server
and drains the incoming performance logs to the server.

Additionally, we also implemented extensions to the NIC-software interface
to express the ability to track a message. We extended the NIC with the ability
to mark one out of N packets with the PM bit if the command issued from the
CPU carried the TM flag and append its log in a local SRAM.

We drive the profiling with a software profiler in SST that uses random
sampling to determine if a message needs to be monitored. If so, it sets a special
TM tag when it issues a command to its NIC. Also, the CPU profiler collects
the calling context and logs the CPU metrics about the message in a per-CPU
log file.

The postmortem analysis inspects the log files to reconstruct the path taken
by each marked packet by each endpoint and associates performance metrics to
each hop on the path as described in the previous section. The output of our
postmortem analysis is a set of files containing the path information of all the
marked messages. The path information also contains the performance metrics
attributed to each hop along the path.

To visualize how the application behaves, we generate a heatmap and a set
of stacked bar graphs from the performance metrics using a graphing software
called Plotly [37]. Figure 3a in Appendix B shows the heatmap for an example
NCAST program. The heatmap shows the total time taken by each marked
packet to travel from the source CPU to the destination CPU. The points on
the x-axis correspond to the time at which messages were initiated. The points
on the y-axis correspond to the processes that sent the messages. A point on the
heatmap that is darker than other points signifies the message took relatively
longer to travel from the source to the destination. In addition to the heatmap,
we also generate a set of stacked bar graphs, one for each process that initiated
a message in the program. Figure 3b shows a bar graph for process 97 in the
ncast program. Each bar represents the cumulative time spent by the message
in each network component along its path and each stack in a bar represents the
time spent at each network component. A large stack in a bar shows that the
message was stuck in the component for a long time. To summarize, we can use
the heatmap to identify what messages were delayed, and then use the stacked
bar graph corresponding to the process that initiated that message to identify
network component that caused the delay.
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5 Evaluation

We evaluated our prototype implementation to answer the following ques-
tions: (1) how effective is our prototype in finding performance bottlenecks in the
network due to the application? (2) does our prototype monitor network traf-
fic with low overhead? All our experiments were run on a four socket, 15-core
Intel Xeon E7-4890 machine clocked at 2.8 GHz and containing 1 TB DRAM.
Our setup simulated the NERSC Edison [20] system with the Dragonfly [18,19]
topology containing 5586 compute nodes.

Effectiveness: To evaluate the effectiveness of our prototype, we executed it
with an MPI skeleton program and ran with 4096 MPI ranks. In the skeleton
program—NCAST—a single MPI process (rank 42) is bombarded with multiple
large (4 MB) messages from all the other MPI processes in the network. As a
large number of messages are sent to a single node, the NIC at the destination
CPU becomes a bottleneck. Also, since all packets would flow through a sin-
gle network switch before reaching the destination, the switch at the last hop
becomes congested. Our goal is to use our prototype implementation to precisely
identify the network component that is the bottleneck in the NCAST program.

Figure 3 in AppendixB shows the graphs generated by our prototype after
executing the NCAST program. The heatmap in Fig. 3a in AppendixB reveals
a surprising and non-obvious performance problem—the messages are all seri-
alized; the MPI ranks are sending messages one after another, resulting in the
diagonal in the heatmap. Samples from all CPUs except for CPU 42 are sparse
and CPU 42 samples show that it is continuously sending messages to other
processes, which is reflected in the thick horizontal line in the heatmap. The
reason for serialization is the large message size sent from all other nodes. For
large messages, each MPI process sends a short notification message to the target
(rank 42); and the target one-by-one fetches the large message from the sources.
The concurrency gets completely destroyed—a subtle anomaly invisible in the
CPU-only profiles but distinctly visible in full network telemetry.

On the diagonal, we can see that the points above CPU 80 appear darker
which means that those messages take relatively longer than the earlier messages.
This shows that the messages that are being sent later are getting delayed at
either the destination or at a network switch. Figure 3b in AppendixB shows
the stacked bar graph of CPU 97. The large stack in the bar graph represents
the time spent at switch 21. Switch 21 directly connects to node 42 which is
receiving messages from all other nodes. Hence the stack is large since all the
packets are queued at switch 21. We observe a similar pattern in the bar graphs
corresponding to all other CPUs after CPU 80. This shows that all the messages
are queued up at switch 21, which has become chocked.

Efficiency: We evaluate the efficiency of our network performance monitoring
scheme by measuring the simulation and wall clock time on three MPI skeletons:
NCAST, broadcast, and a mutiapp. We execute each application five times and
report the geometric mean of the overhead. The skeletons were designed such
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that their simulation time was at least one second. We tracked one in every
hundred NIC command at each endpoint. Our measurements showed that the
hardware extensions added a negligible 0.16% mean overhead to the simulation
time. The wall clock time for simulation marginally increased (4.8%) over the
original execution without our extensions to SST/Macro. The average size of the
log files generated for the three applications is 61 MB.

6 Conclusions

Application developers better understand performance when measurements are
attributed back to the source code. However, it is hard to attribute perfor-
mance measurement data from myriad autonomous, asynchronously operating
hardware components in an HPC system back to application source-code. Tra-
ditional profilers have either focused only on CPU-side hardware measurements
for source-code attribution or focused on network-side hardware measurements
without source-code attribution.

We developed a protocol extension to track the flow of packets and collect
hardware performance data in the emerging memory-semantic-based communi-
cation protocol—Gen-Z. We enhanced the router and NIC hardware and man-
agement software with additional components for logging performance data. We
enhanced traditional CPU profilers to unify CPU profiles with telemetry from
networking hardware. Our sampling-based scheme implemented in the SST/-
Macro simulator shows promise of our technique in offering a unified system-wide
performance insights for application developers.

Our future work involves extensively evaluating our methods on serious work-
loads, working with hardware development teams to incorporate our proposed
extensions, and working with software profiling tools to best utilize the network
telemetry.

Acknowledgments. This work was supported (in part) by the US Department
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Project.
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A NWChem Profiles from HPCToolkit
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Fig. 2. CPU execution hotspot in NWChem running on NERSC Edison with 1024 MPI
ranks captured via HPCToolkit [5] profiler. 25% of execution on all MPI processes waste
time waiting to acquire remote locks embedded deep inside many layers of host code.
The cause of the lock waiting despite good load balance is unknown since CPU profiles
do not capture networking hardware component internals.
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B Profiles of NCAST Program

(a) Heatmap showing the time taken by each marked packet in the NCAST program.
Sample points that are darker in color correspond to messages that were delayed the
most.

(b) The stacked bar graph of process 97 in the NCAST program. The colored stacks in
each bar represent the delay at each hop of the packet.

Fig. 3. Figure shows the visualization graphs generated for the NCAST program run-
ning 4096 MPI ranks.
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13. Böhme, D., Geimer, M., Arnold, L., Voigtlaender, F., Wolf, F.: Identifying the
root causes of wait states in large-scale parallel applications. ACM Trans. Parallel
Comput. 3(2), 11:1–11:24 (2016)

14. Isaacs, K.E., Gamblin, T., Bhatele, A., Schulz, M., Hamann, B., Bremer, P.T.:
Ordering traces logically to identify lateness in message passing programs. IEEE
Trans. Parallel Distrib. Syst. 27(3), 829–840 (2016)

15. Weber, M., Brendel, R., Hilbrich, T., Mohror, K., Schulz, M., Brunst, H.: Structural
clustering: a new approach to support performance analysis at scale. In: 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 484–
493, May 2016
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