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Abstract. Scaling deep learning workloads across multiple GPUs on
a single node has become increasingly important in data analytics. A
key question is how well a PCIe-based GPU interconnect can perform
relative to a custom high-performance interconnect such as NVIDIA’s
NVLink. This paper evaluates two such on-node interconnects for eight
NVIDIA Pascal P100 GPUs: (a) the NVIDIA DGX-1’s NVLink 1.0
‘hybrid cube mesh’; and (b) the Cirrascale GX8’s two-level PCIe tree
using dual SR3615 switch risers. To show the effects of a range of neu-
ral network workloads, we define a parameterized version of the popular
ResNet architecture. We define a workload intensity metric that char-
acterizes the expected computation/communication ratio; we also locate
AlexNet and GoogLeNet within that space. As expected, the DGX-1 typ-
ically has superior performance. However, the GX8 is very competitive
on all ResNet workloads. With 8 GPUs, the GX8 can outperform the
DGX-1 on all-to-all reductions by 10% for medium-sized payloads; and
in rare cases, the GX8 slightly outperforms on ResNet.

Keywords: GPU interconnects · NVIDIA DGX-1 · NVIDIA NVLink
Cirrascale SR3615 switch riser · Convolutional neural networks

1 Introduction

Scaling deep learning workloads across multiple GPUs has become increasingly
important in data analytics. For example, strong scaling can reduce the training
time of neural networks. Moreover to train deep networks on large data sets, it
may be necessary to harness multiple GPU memories.

The inter-GPU network can dictate performance when scaling deep learning
workloads across multiple GPUs. Figure 1 shows that scaling some workloads
is impossible without a high-performance interconnect [1]. The figure shows
strong scaling behavior of two well known workloads — CifarNet/Cifar10 and
AlexNet/ImageNet — on an NVIDIA DGX-1 [2] and an Intel Knights Land-
ing [3] (KNL) cluster. The DGX-1 uses an NVLink-based GPU interconnect. The
KNL cluster interconnects KNL processors (1 per node) using Intel’s Omni-Path.
For each workload, the single-KNL/GPU performance is very similar — despite
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Fig. 1. Performance scaling of (a) CifarNet/Cifar10 and (b) AlexNet/ImageNet on an
NVIDIA DGX-1 and an Intel KNL/Omni-Path cluster.

the GPU’s higher peak floating point rate. However, scaling behavior is quite
different. Although both workloads perform better over NVLink than Omni-
Path, the qualitative scaling trends are different. With NVLink, the AlexNet
workload (Fig. 1b) scales better than the CifarNet one (Fig. 1a). With Omni-
Path, the qualitative scaling performance is inverted : scaling is better with Cifar-
Net than AlexNet. The reason is that AlexNet’s much larger all-to-all reduction
operations (allreduce) place a much higher stress on interconnect bandwidth.
Omni-Path, designed as a cluster interconnect, has a per-node (uni-directional)
bandwidth of 12.5 GB/s whereas the DGX-1’s NVLink supports up to 80 GB/s
per GPU.

Because GPU interconnect performance can be a bottleneck when scaling
deep learning workloads, some computing vendors are creating products to
enable scalable GPU computing on a single densely populated node. A key
question is how well a PCIe-based GPU interconnect can perform relative to
a custom high-performance interconnect such as NVIDIA’s NVLink. Unfortu-
nately, it is difficult for data scientists to quantify the potential of these different
products. In particular, Fig. 1 shows that a high-performance interconnect may
not be critical to scaling. The interconnect’s importance depends significantly on
a workload’s characteristics, including total work and effective communication
to computation ratio.

This paper evaluates two recent GPU interconnects (Sect. 2) for eight
NVIDIA Pascal P100 GPUs on a single node: (a) the NVIDIA DGX-1’s ‘hybrid
cube mesh’ based on NVLink 1.0; and (b) the Cirrascale GX8’s [4] two-level
PCIe tree using two Cirrascale SR3615 switch risers.

We evaluate the two interconnects on a parameterized neural network work-
load (Sect. 3). The performance scaling of a parameterized neural network space
has not been well studied. Other performance evaluations select specific net-
works — for example AlexNet [5] and GoogLeNet [6] — that have been designed
for classifier performance, not workload evaluation. We define a parameterized
variant of the popular ResNet [7] with controllable computational and commu-
nication intensities. With our parameterized ResNet, we show the effects of
different neural network topologies and batch sizes on a workload’s communi-
cation/computation ratio and scaling behavior. We define a workload intensity
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metric to characterize space of workload intensities and locate AlexNet and
GoogLeNet within that space.

Our findings (Sect. 4) are as follows. The workload intensity metric in helpful
in explaining scaling behavior. Given that the DGX-1’s NVLink interconnect has
more links and higher per-link bandwidth than the GX8’s PCIe bus, it is not
surprising that the DGX-1 typically has superior performance. However, we find
that the GX8 is very competitive for all ResNet-style workloads; in rare cases,
the GX8 slightly outperforms. Surprisingly, with 8 GPUs, the GX8 can outper-
form the DGX-1 on an allreduce benchmark by as much as 10% on payloads
between 0.5–6 MB. In contrast, with 4 GPUs the DGX-1 allreduces outperform
the GX8 by 40%. The reason is that with 8 GPUs, the PCIe network saturates
more quickly with respect to payload size. The DGX-1 has a distinct scaling
advantage for the communication-intensive AlexNet where we hypothesize that
load imbalance enables its NVLink interconnect to perform closer to the 4 GPU
bandwidths than 8, resulting in a 36% DGX-1 advantage.

2 Multi-GPU Computing Systems

This section describes the NVIDIA DGX-1 (Pascal) [2] and the Cirrascale GX8
(NVIDIA Pascal) [4] computing systems and then explains the test configuration.
To isolate the interconnects, we configured the systems as closely as possible
except for GPU interconnect.

Each system has a very similar host processor configuration. Both systems
have a dual-processor host based on Intel Xeon processors. For the DGX-1, each
processor is an Intel Xeon E5-2698v4; for the GX8, it is an E5-2697v4. The DGX-
1’s Xeon has 20 cores, two threads enabled per core, running at 2.2/3.6 GHz;
and a 50 MB L3 cache, a 256 KB L2 cache shared between two cores, and 64 KB
L1 cache per core. The GX8’s Xeon has 18 cores with 2 thread/core, running
at 2.3/3.6 GHz; L3 45 MB. In both cases, host memory is 512 GB DDR4-2133.
Both systems use PCIe 3.0.

All important workload activities (e.g., neural network training) occurs on the
GPUs. The primary work the host CPU performs is reading the initial training
data set into memory and transferring it to the GPUs. Both systems read the
large training inputs files from a local SSD whose throughput is sufficient to
overlap training and reading.

2.1 NVIDIA P100 Pascal

Both systems have eight NVIDIA Tesla P100 (Pascal) GPUs. To isolate the inter-
connects, we configured the systems with the closest possible GPUs: Tesla P100-
SXM2 and P100-PCIE-16GB. The DGX-1 has the former and the Cirrascale the
latter. The only P100 available with NVLink support is the P100-SXM2; and
because of NVLink support it uses a different form factor (SXM2). The P100-
PCIE-16GB is the ‘highest bin’ P100 available with the PCIe 3.0 × 16 inter-
face. The only differences between the two P100s — besides NVLink and form
factor — are SM clock speed (1328 vs. 1189 MHz) and TDP (300 vs. 250 W).
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Pascal GPUs are fabricated with a 16 nm process. Each GPU has 3584 CUDA
cores divided into 56 streaming multiprocessors (SM), where each SM has 64
CUDA cores. The P100-PCIE-16GB has a peak FP performance of 9.3 Teraflops
single precision (4.67 Teraflops double). Due to the higher clock rate, the P100-
SXM2 has a peak FP performance of 10.6 Teraflops single precision (5.3 Teraflops
double). Each GPU has 16 GB high-bandwidth global memory (HBM2), a 4096-
bit memory bus operating at 715 MHz (split into 8 memory controllers), and
4 MB L2 cache.

Normalizing GPU Performance. Given the different GPUs, it is necessary
to distinguish the performance effects of the varying GPU clocks from the dif-
ferent interconnects. One possibility is normalizing or scaling GPU performance
post facto. This approach is difficult with fixed clocks; and more difficult with
dynamically boosted clocks. Rather than attempting this approach, we power-
capped both GPUs. The obvious approach is to cap both GPU variants at the
nominal frequency of the P100-PCIE-16GB, 1189 MHz. To present results as
close to the P100-SXM2 as possible, we found the maximum sustained frequency
of the P100-PCIE-16GB for a representative workload. That is, we empirically
identified the maximum frequency for the P100-PCIE-16GB to execute with-
out throttling. Based on this study, we capped both GPUs at 1227 MHz, which
closes the gap by 27%. With this experimental setup, we expect the performance
of each GPU to be identical. The GPU performance is still sufficiently high to
highlight the scaling effects of each interconnect.

2.2 NVIDIA DGX-1 and NVLink 1.0

Figure 2 shows the DGX-1’s intra-node interconnect topology [2]. Each GPU’s
SXM2 interface, in contrast to the more conventional PCIe interface, connects
directly to the NVLink interconnect. The NVLink interconnect enables intra-
node GPU communication. Each GPU has 4 NVLink lanes arranged in a ‘hybrid
cube mesh’ topology. The hybrid cube mesh has two directly connected groups
of 4 along with 3D hypercube links between the groups. The topology ensures
that a GPU is no more than two hops away from another GPU.

Each of the 4 NVLink lanes supports 20 GB/s in both directions. Thus, the
total NVLink uni-directional bandwidth of a GPU is 80 GB/s. Each GPU also
connects via a PLX-switch to a PCIe 3.0× 16 bus with maximum bandwidth of
16 GB/s (uni-directional). This PLX switch serves as a connecting point between
GPUs and CPUs, and a potential InfiniBand network.

2.3 Cirrascale GX8 and SR3615 Switch

The Cirrascale GX8 [4] system supports direct communication between 8 GPUs
using two Cirrascale SR3615 switch risers [8]. Communication occurs over the
PCIe bus, enabling a single memory address space.
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Fig. 2. Inter-GPU network on NVIDIA DGX-1.

Fig. 3. Inter-GPU network on Cirrascale GX8.

Figure 3 shows the GX8’s inter-GPU network. To enable communication over
a single PCIe bus (and hence single memory address space), the GX8 uses a tree
topology rooted at only one of the host CPUs [9]. The two-level tree is rooted
at one host’s on-die PCIe controller, a.k.a. the root complex, supporting PCIe
3.0×40. Attached to that host CPU are two SR3615 switch risers. Each SR3615’s
upstream is PCIe 3.0 × 16 (16 GB/s uni-directional). Two risers consume 32/40
lanes of the root complex. Communication between the SR3615s occurs via the
root complex using the standard PCIe bus.

Four P100s are attached to each SR3615 switch riser. Each GPU (P100-PCIE-
16GB) has a PCIe 3.0 × 16 interface. Thus, each switch riser’s input is 64 PCIe
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lanes of GPU; and 16 out. As a result there is a peak uni-directional 16 GB/s
(PCIe 3.0 × 16) between any two GPUs.

Because of the SR3615 switch, communication paths do not all need to tra-
verse the root complex. A pair of GPUs attached to different risers traverse two
switches and the PCIe root complex. However, a pair of GPUs attached to the
same switch require no intermediate paths.

2.4 Inter-GPU Communication

For inter-GPU (peer-to-peer) communication, we use a combination of CUDA
8.0 and the NVIDIA Collective Communications Library (NCCL). CUDA 8.0
includes support for GPUDirect, or GPU-to-GPU direct memory access (DMA).
NCCL [10,11] is a library for inter-GPU collective communication and synchro-
nization. NCCL’s collective algorithms are based on topology-aware rings and
optimized for throughput [12,13]. NCCL is interconnect-aware and thus the same
collective call uses, as appropriate, the NVLink or PCIe interconnect. Available
collectives include allgather, allreduce, and broadcast.

To achieve high throughput on large payloads, NCCL’s algorithms are
pipelined based on small 4–16 KB chunks and GPUDirect peer-to-peer direct
access. With large payloads, pipelining hides the linear latency term of the ring
resulting in transfer bandwidths approaching link bandwidth [14]. However, for
small messages, the ring latency is exposed.

3 Workloads

In this paper, we develop a systematic approach for characterizing and speci-
fying neural network workloads. To explore the effects of different neural net-
work topologies and batch sizes on scaling behavior, we define a parameterized
variant of the popular ResNet [7] with controllable computational and commu-
nication intensities. We complement our study with results from the well known
AlexNet [5] and GoogLeNet [6]. The subsections below describe each CNN archi-
tecture. After each network is described, we characterize the space of workload
intensities and locate AlexNet and GoogLeNet within that space.

Each distinct neural-network training workload executes in the following man-
ner. First, a given neural network architecture is replicated on each GPU. Then,
the neural network is trained, processing an image dataset sequentially in batches
or iterations. For each batch, images are divided among available GPUs for data
parallelism. To train, each GPU processes its images resulting in a series of
model activations — floating point operations — resulting in distinct values for
each GPU’s copy of model parameters. At the end of each iteration, allreduce
operations ensure each GPU’s model has an identical copy of model parameters.

For all workloads, we use the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [15], a well known benchmark for object classification and detec-
tion. Specifically, we use ILSVRC2012 which has 1000 object classes and 1.43 M
images annotated images, each of size 256× 256.
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3.1 AlexNet

AlexNet [5] uses the ImageNet (ILSVRC2012) [15] dataset. Compared to non-
deep learning methods, AlexNet has performed well on ILSVRC2012. AlexNet
has five convolution layers, three pooling layers, and two fully-connected layers.
This CNN architecture requires about 1.4 M activations/image and has 60 M
parameters.

3.2 GoogLeNet

GoogLeNet [6] is more complex model than AlexNet. GoogLeNet has two con-
volution layers, two pooling layers, and nine inception layers. Each inception
layer consists of six convolution layers and one pooling layer. The concept of
inception layer is to cover bigger area of images while maintaining fine resolu-
tion for small information on these images. The inception module of GoogLeNet
concatenates filters of different sizes into a single new filter. This avoids parame-
ter explosion with the use of inception layers. GoogLeNet performs significantly
better than AlexNet for the ImageNet and the recent ILSVRC [15] challenge
datasets. This CNN architecture has about 5.5 M parameters. GoogLeNet in
relation to AlexNet has (i) more layers; (ii) fewer features per layer, and; (iii)
more activations. GoogLeNet has 10.8 M activations per image.

3.3 ResNet/x

Deep Residual Learning Network (ResNet) [7] introduced the concept of a resid-
ual block. Each block consists of two convolution layers along with a connection
adding the output of the second block to the input of the first. Residual blocks
are designed to allow the training of substantially deeper models than had been
trained previously. By adding the input of the block to its output, the residual
block learns the residual function, and forwards the activations to deeper layers
than earlier. One advantage of ResNet is that it can improve accuracy of the
model while avoiding parameter explosion. That is, the ResNet blocks increase
the depth (and inner layers) of the network instead of its width.

Using residual blocks as a fundamental building block, several ResNet incar-
nations have been designed by researchers, including ResNet50 and ResNet1000.
ResNets of various depths outperform GoogLeNet on the ILSVRC challenge,
with a 50 layer network — consisting of a convolutional layer, 48 residual blocks,
and a classifier layer — winning in 2015.

To explore the effects of different ResNet networks, we generate several
ResNet variants by defining each network’s inner layers to be a multiple of a
‘ResNet block’. This enables us to explore how neural network topology and
training batch size affects its communication/computation ratio and scaling. We
define ResNet/x to be a standard ResNet input and output layer but where the
inner layers are defined by x replications of the ‘ResNet block’. Thus, ResNet/1 is
a single convolution layer followed by a residual block and finally a classifier layer.
Similarly, ResNet/16 has the same convolution and classifier layers as ResNet/1
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but 16 residual blocks. Using this parameterized definition, we can explore the
different computation and communication ratios by simply increasing the depth
of residual blocks.

Each ResNet block has a certain number of features. As a result, increasing
ResNet blocks proportionally increases activations/image and model parameters.
More precisely, activations/image as a function of the block replications x is
given with the following expression: 1, 204, 224x + 11, 55, 113. Similarly model
parameters as a function of replications is given by 46, 211x+74, 857. Thus, our
ResNet/x models have the activations/image and parameters shown in Fig. 4.

Fig. 4. Activations and parameters for ResNet/x.

3.4 Workload Characterization

Figure 5 overviews the workloads we used in our study. To leverage well-known,
verified, and optimized implementations of convolutional neural networks (CNN),
we based our experiments on Convolutional Architecture for Fast Feature Embed-
ding (Caffe) framework [16,17], a widely used framework for CNN models. Caffe
is a collection of state-of-the-art deep learning algorithms and reference models
in a clean and modifiable framework accessible through a open source reposi-
tory [18].

Fig. 5. CNN architecture models and input datasets.

Figure 6 characterizes each workload’s batch properties using metrics repre-
senting work and work intensity. Figure 6a shows activations per batch, a measure
of total GPU work. The horizontal axis refers to the batch categories in Fig. 5.
(AlexNet and GoogLeNet each have two categories while ResNet/x has three.)
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Fig. 6. Each workload’s (a) work and (b) work intensity (work/communication).

Fig. 7. Each workload’s intensity (work/communication) during strong scaling.

Observe the large spread of work shown along the vertical axis (independent of the
horizontal axis). The points densely cover over two orders of magnitude, specifi-
cally between 38 M and 5,500 M activations/batch.

Next we characterize work intensity, a measure of the ratio of communica-
tion to computation. Figure 6b shows activations per parameter for each batch,
a measure of the batch’s work intensity. We capture well over two orders of
magnitude of intensities, between 6–1650 activations/parameter. Our ResNet/x
parameter sweep densely covers the space between 300–1650; and it sandwiches
GoogLeNet.

Finally, we characterize each execution’s work intensity. For each perfor-
mance experiment, the batch’s work is strong-scaled across 1, 2, 4 or 8 GPUs.
Figure 7 shows activations per parameter for each GPU, a measure of the commu-
nication/computation ratio during execution. We capture well over three orders
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of magnitude of intensities, between 1–1650 activations per parameter per GPU.
Our ResNet/x parameter sweep densely covers most of the space (between 40–
1650); again, it sandwiches GoogLeNet.

4 Evaluation

We conduct a performance evaluation using strong scaling to highlight effects of
interconnect performance. Strong scaling is often desirable to reduce response
time. With strong scaling, the amount of available per-GPU work systematically
decreases, increasing the communication to computation ratio. In contrast to
strong scaling, weak scaling tends to mask performance effects of weaker inter-
connects.

We used NVIDIA’s optimized Caffe, a fork from BVLC-Caffe [18] optimized
for the DGX-1 architecture [19]. For AlexNet and GoogLeNet, we used NVIDIA’s
provided models. For ResNet/x, we defined custom versions. We confirmed that
all executions produced semantically meaningful results in that the models were
equivalent to a sequentially equivalent execution.

We present our results in four subsections. The first two subsections discuss
microbenchmarks for inter-GPU copies and NCCL collectives. We then show
scaling results for AlexNet and GoogLeNet. Finally we discuss ResNet/x.

4.1 Inter-GPU Data Transfer

We used MGBench [20] to collect bandwidths and latencies between pairs of
GPUs for GPU-to-GPU memory copy and GPU-to-GPU DMA (direct memory
access).

Fig. 8. Bandwidth of GPU-to-GPU memory copy for DGX-1 and GX8.

Figure 8a shows bandwidths between pairs of GPUs for GPU-to-GPU mem-
ory copy. (Units are in power of 2, or GiB.) This unidirectional GPU-to-GPU
memory copy is pipelined using CUDA’s asynchronous memory-copy primitive.
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Fig. 9. Latency of GPU-to-GPU memory copy for DGX-1 and GX8.

Rather than showing the full matrix for all pairs, we group the results by value
clusters, where each group has an insignificant spread.

Figure 9 shows latencies of GPU-to-GPU memory copy highlighted at four
different data sizes. A horizontal axis label of x-y means GPU x sent data to
GPU y. Although the figure shows data with GPU 0 as source, we validated that
using other GPUs as source produced qualitatively similar results.

For both figures, the DGX-1 results are typically clustered in two groups,
one representing a single NVLink hop and the other representing two NVLink
hops. The one-hop data corresponds to communication within a fully-connected
4-GPU cluster; achieved bandwidth is about 85% (17.2 GB/s) of the 20 GB/s
per-link peak. The two-hop data corresponds to communication between 4-GPU
clusters; achieved bandwidth is about 50% (9.6 GB/s) of the peak.

The GX8 results are clustered in three groups. The groups are clearly seen in
the latency plots (Fig. 9) for payload sizes 1 MB and above. The first two groups,
Intra-SR and Inter-SR, correspond to communication within and between an
SR3615 switch riser (SR), respectively. These groups are analogous to DGX-1
groups in that each SR forms a fully connected 4-GPU cluster. The Intra-SR
achieved bandwidth is about 75% (12.2 GB/s) of peak (16 GB/s). The Inter-SR
group includes GPUs 4, 6 and 7; achieved bandwidth is about 60% (9.6 GB/s)
of peak. The third Inter-SR* group captures the anomaly of sending data from
GPU 0 to 5. It turns out that the second logical PCIe slot (GPU5) has longer
physical signal paths between some elements on the ASIC which can lead to
delays in dequeuing PCIe packets [21]. The circumstances in which these delays
occur are narrow and more likely to originate within a microbenchmark than a
real world application. For example, we do not observe the behavior in collective
benchmarks.

Interestingly, the GX8 can have better bandwidth and latencies between
GPUs that are in different 4-GPU-clusters. Compare Fig. 8a’s Inter-SR and
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Inter-SR* GX8 curves with the 2-hop DGX-1 curve. The GX8’s PCIe bandwidth
saturates more quickly with respect to message size, resulting in higher GX8
bandwidth at medium-sized messages. Figure 9 shows the same effect in terms
of latency for message sizes 1 MB and below. In contrast, but as is expected,
within a fully connected 4-GPU-cluster, NVLink’s bandwidth and latency are
better than PCIe.

Another interesting comparison is that although NVLink latencies are very
predictable, GX8 latencies are dependent on message size. The NVLink latencies
fall into two clusters — one-hop and two-hops — independent of data size. In
contrast, the GX8 latencies fall into 1 or 3 clusters depending on data size. For
very small payloads (4 bytes), the GX8 latencies are flat and independent of
hops. This shows the PCIe switching latency — even across multiple hops — is
very low. The 1-cluster phenomenon largely holds true at 100 KB. By 1 MB, the
GX8 results are clustered into the three groups described above. We hypothesize
that the reason that small messages appear to be independent of topology — in
contrast to NVLink — is related to PCIe switch buffering that effectively enables
pipelining of smaller messages across multiple PCIe switches.

Figure 8b shows GPU-to-GPU bandwidths for DMA (direct memory access).
The DMA data closely corresponds to the memory copy data. For DGX-1, we
only shows single-hop DMA bandwidth because CUDA 8.0 does not support
GPUDirect across 2 NVLink hops. In contrast, DMA is supported over a single
PCIe bus.

4.2 Inter-GPU Collectives

Figure 10 shows effective bandwidth of NCCL allreduce, the key collective used in
training. (Bandwidths are in power of 2, or GiB.) These results characterize allre-
duce performance given perfect GPU load balance. The size of allreduce payloads
is the neural network’s parameters represented as single precision floating points,
or 4× parameters bytes. Thus for ResNet/x, payloads range from 0.5–6 MB and
for GoogLeNet and AlexNet they are 22 MB and 240 MB, respectively.

We define effective bandwidth to be relative to a single GPU’s payload, i.e.,
1-GPU-payload/runtime. With this metric, the ideal value is relative to the

Fig. 10. Effective bandwidth for NCCL allreduce on DGX-1 and GX8.
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bandwidth of one link. For example, in a fully connected 4-GPU NVLink cluster,
the ideal allreduce is performed in 1 step where each GPU concurrently utilizes
3 links, yielding an effective bandwidth of 1 link, or 20 GB/s. Similarly, 8-GPU
allreduce requires in the best case one more step, meaning the maximum effec-
tive bandwidth is halved to 10 GB/s. Three more considerations imply that an
allreduce’s effective bandwidth should be less than ideal. As already observed,
achievable link bandwidth for a direct copy is about 85% of ideal. Further,
each GPU must execute the reduction operator. Finally, there is synchronization
overhead.

Figure 10a shows that the NCCL allreduce is implemented well; there does
not appear to be appreciable optimization headroom. The following observa-
tions explain. Within a fully connected 4-GPU-cluster, an allreduce’s maximum
effective bandwidth on DGX-1 and GX8 is 10 and 7 GB/s, respectively. For
both systems, these values are about 60% of achievable bandwidth; they are
also higher than copying data between inter GPU-clusters. This implies that
NCCL’s allreduces are effectively using a one-step algorithm. Between fully con-
nected GPU-clusters, an allreduce’s maximum effective bandwidth is 4.6 and 4.7
vs GB/s for DGX-1 and GX8, respectively. Given the extra hop, we assume that
the maximum achievable bandwidth is half of the single link transfer bandwidth,
or 8.6 and 6.1 GB/s. The above effective bandwidths are about 50% and 75% of
maximum.

Interestingly, Fig. 10a shows that the relative performance of allreduce
depends on number of GPUs. For 4 GPUs, the DGX-1 has a 40% performance
advantage for large messages (such as those used for AlexNet). For 8 GPUs,
between fully connected GPU clusters, the GX8 has 3% better performance for
large messages.

Figure 10b highlights allreduce’s effective bandwidth on 8 GPUs for the pay-
loads encountered in our ResNet/x workloads. The figure shows that the per-
formance divergence between 0.5 and 5 MB payloads averages 10% in favor of
the GX8. Clearly, as observed in GPU-to-GPU copies (Sect. 4.1), PCIe band-
width saturates more quickly with respect to payload size. We expect that PCIe
switching hardware is part of the explanation.

Fig. 11. Bandwidth for NCCL broadcast collective on DGX-1 and GX8.
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Finally, we observe that performance varies depending on collective. Collec-
tives have two costs: data transmission and synchronization. An allreduce must
synchronize with all GPUs using all-to-all synchronization. This synchroniza-
tion attenuates the NVLink’s potential advantages. We would therefore expect
a single-root collective such as broadcast, where GPUs synchronize only with the
root GPU, to have a difference performance profile. Figure 11 shows that on 8
GPUs, the DGX-1 does have slightly higher effective bandwidth.

4.3 Strong Scaling of AlexNet and GoogLeNet

Figure 12 shows strong-scaling performance for AlexNet and GoogLeNet training
on the DGX-1 and GX8. We collected results using two different batch sizes (256
and 512 images) on 1, 2, 4, and 8 GPUs. Although the batch sizes would be
considered large for a single GPU, they are not large when scaling to 8 GPUs.
Caffe data-parallelism distributes the images in each batch. Thus, with 256 batch
size and 8 GPUs, there are 32 images per GPU.

Fig. 12. Strong-scaling (ImageNet): AlexNet and GoogLeNet on DGX-1 and GX8.

Recall that we power cap GPUs to equalize the slightly different SM fre-
quencies between the P100 SXM2 and PCIe variants. Therefore we expect both
systems to have same single-GPU performance. As shown in Fig. 12a, this expec-
tation is true for AlexNet. GoogLeNet’s results (Fig. 12b) have data points miss-
ing for 1 and 2 GPUs. The reason is limited GPU memory capacity. With 1 and
2 GPUs, there was not enough memory to store both the GoogLeNet activations
and the training data.

The most interesting results is that NVLink is far more important for AlexNet
scaling than for GoogLeNet: for AlexNet the DGX-1 has a 36% advantage
(11.0 vs. 8.1 iterations/s). It is more difficult than it might seem to explain the
much higher DGX-1 performance on 8 GPUs. On one hand, as shown in Fig. 7,
AlexNet’s activations/parameter per GPU is very small: past 4 GPUs, the met-
ric is less than 1, meaning the workload is communication intensive. However,
as noted in Sect. 4.2, the GX8 has slightly higher performance for 8 GPUs on an
allreduce benchmark. Validating the root cause is difficult because of the limited
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value of GPU performance tools. Further more, to show the best performance
results, we use NVIDIA’s (read-only) Docker version of Caffe, which cannot be
instrumented.

On GoogLeNet, the benefit of NVLink is comparatively small. As shown
by Fig. 6b, GoogLeNet is more compute intensive (in activations/parameter) by
almost a factor of 100. Whereas AlexNet’s intensities are 5.9 and 11.9 per batch
category, GoogLeNet’s are 500 and 1004, respectively.

Finally, NVLink becomes less important as batch size increases. This is not
surprising as a larger batch size increases the per-GPU computation without
changing communication, therefore reducing the importance of the interconnect.

4.4 Strong Scaling of ResNet/x

Figure 13 shows strong-scaling performance for ResNet/x on the DGX-1 and
GX8. We use smaller batch sizes for ResNet than with AlexNet or GoogLeNet.
From a learning perspective, ResNet tends to use smaller batch sizes. Because of
the deep network, a smaller batch size yields more updates per training epoch,
which affects convergence. Also, the activations’ memory consumption means

Fig. 13. Strong-scaling (ImageNet): ResNet/x on DGX-1 and GX8.
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larger network sizes will not fit in GPU memory. Observe that with ResNet/32,
batch size 64 would not fit in the memory of either 1 or 2 GPUs.

Furthermore, the smaller batch sizes highlight GPU interconnect effects. Our
custom ResNet/x has many fewer model parameters than either AlexNet or
GoogLeNet, yielding smaller allreduce payloads and reducing the effects of inter-
GPU communication and synchronization. We therefore compensate by using
smaller batch sizes. The smaller batch sizes results in less per-GPU work, main-
taining pressure on interconnect.

First, we discuss single-GPU performance. As before, we expect both systems
to have same single-GPU performance given the power capping to equalize SM
frequencies. Curiously, we see single-GPU performance converging as batch size
increases. Thus, although the expectation holds true for batch size 64, there is a
small divergence for batch sizes 16 and 32. We are not sure how to explain the
divergence but have identified two possible factors.

One factor could be that for each batch of images, there is some CPU-based
images processing overhead. For ResNet/x, this processing includes random hori-
zontal flips, random crops, and subtraction of mean values to center distributions
at 0. For smaller batch sizes, there is a potential this overhead can be exposed.

A second factor is host-CPU-based operations such as memory operations (e.g.,
cudaMemset and cudaFree) and scattering batch images to GPUs. This opera-
tions would occur over each system’s PCIe bus. Although both host-to-GPU PCIe
busses are PCIe ×16 (16 GB/s), benchmarks show that there are slight differ-
ences in performance. For instance, for a host-to-GPU0 scatter, host-GPU0 com-
munication on DGX-1 consistently yields about 4% higher bandwidth (11.1 vs.
10.7 GB/s). Again, this overhead could be exposed for smaller batch sizes.

We next sketch a simple model of our performance expectations. With
equivalent GPU performance, each workload has an identical GPU work cost.
The expected overall DGX-1 performance advantage is therefore the workload’s
fraction of communication multiplied by the DGX-1’s allreduce performance
advantage. Given the DGX-1’s slightly better allreduce performance on 4 GPUs
for ResNet/x payloads, our model points to better DGX-1 performance for 2
and 4 GPUs. That expectation holds true in general. Given the GX8’s better
allreduce performance on 8 GPUs, the model suggests the ‘knee’ that appears in
the DGX-1 curves for batch size 16. Recall that on 8 GPUs, the GX8 averages
10% better allreduce performance for the payloads used in ResNet/x (0.5–5 MB);
see Sect. 4.2.

Our model does a good job explaining scaling results through 4 GPUs and
the DGX-1 ‘knee’ for batch 16. However, for batch sizes 32 and 64 on 8 GPUs,
the DGX-1 consistently outperforms the GX8. Clearly, other effects must be
taken into account to fully explain the scaling results.

We conclude by observing that similar performance trends hold true for a very
large range of workload intensities, or activations/parameter per GPU (Fig. 7).
These data show that if one is interested in ResNet-style workloads, the GX8
may be an attractive option if there is enough price differential.
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5 Related Work

An important aspect of this work is defining ResNet/x, a paramerized version
of ResNet. To our knowledge, there is no prior study that systematically param-
eterizes a deep learning workload to explore its space of computational inten-
sities. Other performance evaluations select specific networks that have been
designed for classifier performance, not workload evaluation. Even deep learning
benchmark suites such as Fathom [22] represent only several points instead of
a (discrete) continuum. Conversely, several studies assert general benefits [2,23]
of NVLink but do not look at the conditions under which one should or should
not expect benefits.

Multi-GPU systems (or nodes) are becoming increasingly important. We have
found no study comparing NVLink and PCIe-based GPU interconnects for up to
8 GPUs. Our comparison of the DGX-1/NVLink and GX8/Cirrascale SR3615
is relevant because both systems represent the ‘top-tier’ of multi-GPU systems
but are also generally available.

Shams et al. [24] compare performance of Caffe using AlexNet for up to 4
P100 GPUs with and without NVLink. They show unexpected differences in
the performance of AlexNet even with the use of only one GPU. Also, that
study does not explain the effect of NVLink and the network topology using
microbenchmarks.

Nomura et al. [25] study performance of a multi-GPU system connected by
PCIe. They show significant speedup on 4 GPUs for applications of particle
motion and advection computation. They showed that data transfer becomes a
bottleneck even with relatively low computation.

Ben-Nun et al. [26] present the Groute asynchronous multi-GPU program-
ming model and show nearly 7× speedup for some algorithms on a 8-GPU hetero-
geneous system. Awan et al. present MVAPICH2-GDR [27], an inter/intra-node
multi-GPU collective library. They compare NVIDIA NCCL and MVAPICH2-
GDR using microbenchmarks and a DNN training application. Their proposed
design of MVAPICH2-GDR showed to have enabled up to 14× to 16.6× improve-
ments as compared to NCCL-based solutions, for intra-/inter-node multi-GPU
communication.

6 Conclusions

Scaling ML workloads across multiple on-node GPUs is becoming increasingly
important. A closely related question is whether PCIe-based interconnects are
adequate. We have provided a detailed performance evaluation of two GPU-
based interconnects for eight NVIDIA Pascal P100 GPUs: (a) NVIDIA DGX-1
(NVLink 1.0 with ‘hybrid cube mesh’ topology); and (b) Cirrascale GX8 (two-
level PCIe tree using two Cirrascale SR3615 switch risers). To systematically
study the scaling effects of different neural networks, we define a parameter-
ized variant of the popular ResNet [7] with controllable model activations and
parameters.
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To characterize the workload space, we defined a workload intensity met-
ric that captures the expected computation/communication ratio and has good
explanatory power. We show that our parameterized ResNet captures a large
space of workload intensities.

Our conclusions are as follows. We find that the DGX-1 typically has supe-
rior performance. Given that the DGX-1’s NVLink interconnect has more links
and higher per-link bandwidth than the GX8’s PCIe bus, this is not surprising.
However, we also find that the GX8 is very competitive for all ResNet-style
workloads. In rare cases, the GX8 slightly outperforms. The reason is related to
the fact that the GX8’s PCIe bandwidth saturates more quickly with respect to
payload size. As a result, for medium-sized messages, the GX8 on 8 GPUs can
have better memory copy latency and an average of 10% better allreduce perfor-
mance. Our results shows that if one is interested in ResNet-style workloads, the
GX8 may be an attractive option if there is enough price differential.
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