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Special Issue on the 8th International Workshop on
Performance Modeling, Benchmarking and Simulation
of High Performance Computing Systems (PMBS 2017)

This volume contains the 13 papers that were presented at the 8th International
Workshop on Performance Modeling, Benchmarking, and Simulation of High Per-
formance Computing Systems (PMBS 2017), which was held as part of the 29th
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC 2017) at the Colorado Convention Centre in Denver
between 12–17 November 2017. SC offers a vibrant technical program, which includes
technical papers, tutorials in advanced areas, Birds of a Feather sessions (BoFs), panel
debates, a doctoral showcase, and a number of technical workshops in specialist areas
(of which PMBS is one). The focus of PMBS is comparing high performance com-
puting systems through performance modeling, benchmarking, or the use of tools such
as simulators. Contributions are sought in areas including: performance modeling and
analysis of applications and high performance computing systems; novel techniques
and tools for performance evaluation and prediction; advanced simulation techniques
and tools; micro-benchmarking, application benchmarking, and tracing;
performance-driven code optimization and scalability analysis; verification and vali-
dation of performance models; benchmarking and performance analysis of novel
hardware; performance concerns in software/hardware co-design; tuning and
auto-tuning of HPC applications and algorithms; benchmark suites; performance
visualization; real-world case studies; studies of novel hardware such as Intel’s Knights
Landing platform and NVIDIA Pascal GPUs.

The 8th International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computing Systems (PMBS 2017) was held on
November 13 as part of the 29th ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (SC 2017) at the Colorado
Convention Center in Denver during November 12–17, 2017.

The SC conference is the premier international forum for high performance com-
puting, networking, storage, and analysis. The conference is unique in that it hosts a
wide range of international participants from academia, national laboratories, and
industry; this year’s conference attracted over 13,000 attendees and featured over 350
exhibitors in the industry’s largest HPC technology fair.

This year’s conference was themed “HPC Connects,” encouraging academia and
industry to come together to inspire new collaborations between different fields of
science, with the goal of bringing about an impact on society and the changing nature
of our world.

SC offers a vibrant technical program, which includes technical papers, tutorials in
advanced areas, Birds of a Feather sessions (BoFs), panel debates, a doctoral showcase,
and a number of technical workshops in specialist areas (of which PMBS is one).



The focus of the PMBS 2017 workshop was comparing high performance com-
puting systems through performance modeling, benchmarking, or the use of tools such
as simulators. We were particularly interested in receiving research papers that reported
on the ability to measure and make trade-offs in hardware/software co-design to
improve sustained application performance. We were also keen to capture the
assessment of future systems, for example, through work that ensured continued
application scalability through peta- and exa-scale systems.

Like SC 2017, the aim of the PMBS 2017 workshop was to bring together
researchers from industry, national labs, and academia, who are concerned with the
qualitative and quantitative evaluation and modeling of high performance computing
systems. Authors were invited to submit novel research in all areas of performance
modeling, benchmarking, and simulation, and we welcomed research that combined
novel theory and practice. We also expressed an interest in submissions that included
analysis of power consumption and reliability, and were receptive to performance
modeling research that made use of analytical methods as well as those based on
tracing tools and simulators.

Technical submissions were encouraged in areas including: performance modeling
and analysis of applications and high performance computing systems; novel tech-
niques and tools for performance evaluation and prediction; advanced simulation
techniques and tools; micro-benchmarking, application benchmarking, and tracing;
performance-driven code optimization and scalability analysis; verification and vali-
dation of performance models; benchmarking and performance analysis of novel
hardware; performance concerns in software/hardware co-design; tuning and
auto-tuning of HPC applications and algorithms; benchmark suites; performance
visualization; real-world case studies; and studies of novel hardware such as the Intel’s
Knights Landing platform and NVIDIA Pascal GPUs.

PMBS 2017

We received a good number of submissions for this year’s workshop. This meant that
we were able to be selective in those papers that were chosen; the acceptance rate for
papers was approximately 35%. The resulting papers show worldwide programs of
research committed to understanding application and architecture performance to
enable exascale computational science.

The workshop included contributions from Argonne National Laboratory,
Brookhaven National Laboratory, Clemson University, École Normale Supérieure de
Lyon, Edinburgh Parallel Computing Centre, ENS Lyon, Florida State University,
Hewlett Packard Labs, Inria, Lawrence Berkley National Laboratory, Los Alamos
National Laboratory, New Mexico State University, NVIDIA Corporation, Pacific
Northwest National Laboratory, Pazmany Peter Catholic University, Universidade de
Lisboa, University of Basel, University of Bristol, University at Buffalo, University of
Cambridge, University of Chicago, University of Florida, University of Tennessee,
University of Udine, University of Warwick, and Vanderbilt University.
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Several of the papers are concerned with “Performance Evaluation and Analysis”
(see Section A). The paper by Nathan Tallent et al. discusses the performance differ-
ences between PCIe- and NVLink-connected GPU devices on deep learning work-
loads. They demonstrate the performance advantage of NVLink over PCIe- connected
GPUs. Balogh et al. provide a comprehensive survey of parallelization approaches,
languages and compilers for unstructured mesh algorithms on GPU architectures. In
particular, they show improvements in performance for CUDA codes when using the
Clang compiler over NVIDIA’s own nvcc. Guillaume Aupy and colleagues exploit the
periodic nature of I/O in HPC applications to develop efficient scheduling strategies.
Using their scheduling strategy they demonstrate a 32% increase in throughput on the
Mira system. Finally, Romero et al. document their porting of the PWscf code to
multi-core and GPU systems decreasing time-to-solution by 2–3�.

Section B of the proceedings collates papers concerned with “Performance
Modeling and Simulation.” Nicolas Denoyelle et al. present the cache-aware roofline
model (CARM) and validate the model on a Xeon Phi Knights Landing platform.
Similarly, Chennupati et al. document a scalable memory model to enable CPU per-
formance prediction. Mollah et al. examine universal globally adaptive load-balanced
routing algorithms on the Dragonfly topology. Their performance model is able to
accurately predict the aggregate throughput for Dragonfly networks. Cavelan et al.
apply algorithm-based focused recovery (ABFR) to N-body computations. They
compare this approach with the classic checkpoint/restart strategy and show significant
gains over the latter. Zhang et al. propose a multi-fidelity surrogate modeling approach,
using a combination of low-fidelity models (mini-applications) and a small number of
high fidelity models (production applications) to enable faster application/architecture
co-design cycles. They demonstrate an improvement over using either low-fidelity
models or high-fidelity models alone. Finally, Simakov and colleagues document their
development of a simulator of the Slurm resource manager. Their simulation is able to
use historical logs to simulate different scheduling algorithms to identify potential
optimizations in the scheduler.

The final section of the proceedings, Section C, contains the three short papers
presented at PMBS. The paper by Yoga et al. discusses their extension to the Gen-Z
communication protocol in the structural simulation toolkit, enabling source-code
attribution tagging in network packets. Tyler Allen and colleagues at the Lawrence
Berkley National Laboratory, conduct a performance and energy survey for NERSC
workloads on Intel KNL and Haswell architectures. The final paper in this volume, by
Turner and McIntosh-Smith, presents a survey of application memory usage on the
ARCHER national supercomputer.

The PMBS 2017 workshop was extremely well attended and we thank the partic-
ipants for the lively discussion and positive feedback received throughout the work-
shop. We hope to be able to repeat this success in future years.

The SC conference series is sponsored by the IEEE Computer Society and the ACM
(Association for Computing Machinery). We are extremely grateful for the support we
received from the SC 2017 Steering Committee, and in particular from Almadena
Chtchelkanova and Luiz DeRose, the workshop chair and vice chair.

The PMBS 2017 workshop was only possible thanks to significant input from AWE
in the UK, and from Sandia National Laboratories and the Lawrence Livermore
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National Laboratory in the USA. We acknowledge the support of the AWE Technical
Outreach Program (project CDK0724).

We are also grateful to LNCS for their support, and to Alfred Hofmann and Anna
Kramer for assisting with the production of this issue.

November 2017 Stephen A. Jarvis
Steven A. Wright

Simon D. Hammond
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Evaluating On-Node GPU Interconnects
for Deep Learning Workloads

Nathan R. Tallent1(B), Nitin A. Gawande1, Charles Siegel1, Abhinav Vishnu1,
and Adolfy Hoisie2

1 Pacific Northwest National Laboratory, Richland, WA, USA
{nathan.tallent,nitin.gawande,charles.siegel,abhinav.vishnu}@pnnl.gov

2 Brookhaven National Laboratory, Upton, NY, USA
ahoisie@bnl.gov

Abstract. Scaling deep learning workloads across multiple GPUs on
a single node has become increasingly important in data analytics. A
key question is how well a PCIe-based GPU interconnect can perform
relative to a custom high-performance interconnect such as NVIDIA’s
NVLink. This paper evaluates two such on-node interconnects for eight
NVIDIA Pascal P100 GPUs: (a) the NVIDIA DGX-1’s NVLink 1.0
‘hybrid cube mesh’; and (b) the Cirrascale GX8’s two-level PCIe tree
using dual SR3615 switch risers. To show the effects of a range of neu-
ral network workloads, we define a parameterized version of the popular
ResNet architecture. We define a workload intensity metric that char-
acterizes the expected computation/communication ratio; we also locate
AlexNet and GoogLeNet within that space. As expected, the DGX-1 typ-
ically has superior performance. However, the GX8 is very competitive
on all ResNet workloads. With 8 GPUs, the GX8 can outperform the
DGX-1 on all-to-all reductions by 10% for medium-sized payloads; and
in rare cases, the GX8 slightly outperforms on ResNet.

Keywords: GPU interconnects · NVIDIA DGX-1 · NVIDIA NVLink
Cirrascale SR3615 switch riser · Convolutional neural networks

1 Introduction

Scaling deep learning workloads across multiple GPUs has become increasingly
important in data analytics. For example, strong scaling can reduce the training
time of neural networks. Moreover to train deep networks on large data sets, it
may be necessary to harness multiple GPU memories.

The inter-GPU network can dictate performance when scaling deep learning
workloads across multiple GPUs. Figure 1 shows that scaling some workloads
is impossible without a high-performance interconnect [1]. The figure shows
strong scaling behavior of two well known workloads — CifarNet/Cifar10 and
AlexNet/ImageNet — on an NVIDIA DGX-1 [2] and an Intel Knights Land-
ing [3] (KNL) cluster. The DGX-1 uses an NVLink-based GPU interconnect. The
KNL cluster interconnects KNL processors (1 per node) using Intel’s Omni-Path.
For each workload, the single-KNL/GPU performance is very similar — despite
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-319-72971-8_1



4 N. R. Tallent et al.

Fig. 1. Performance scaling of (a) CifarNet/Cifar10 and (b) AlexNet/ImageNet on an
NVIDIA DGX-1 and an Intel KNL/Omni-Path cluster.

the GPU’s higher peak floating point rate. However, scaling behavior is quite
different. Although both workloads perform better over NVLink than Omni-
Path, the qualitative scaling trends are different. With NVLink, the AlexNet
workload (Fig. 1b) scales better than the CifarNet one (Fig. 1a). With Omni-
Path, the qualitative scaling performance is inverted : scaling is better with Cifar-
Net than AlexNet. The reason is that AlexNet’s much larger all-to-all reduction
operations (allreduce) place a much higher stress on interconnect bandwidth.
Omni-Path, designed as a cluster interconnect, has a per-node (uni-directional)
bandwidth of 12.5 GB/s whereas the DGX-1’s NVLink supports up to 80 GB/s
per GPU.

Because GPU interconnect performance can be a bottleneck when scaling
deep learning workloads, some computing vendors are creating products to
enable scalable GPU computing on a single densely populated node. A key
question is how well a PCIe-based GPU interconnect can perform relative to
a custom high-performance interconnect such as NVIDIA’s NVLink. Unfortu-
nately, it is difficult for data scientists to quantify the potential of these different
products. In particular, Fig. 1 shows that a high-performance interconnect may
not be critical to scaling. The interconnect’s importance depends significantly on
a workload’s characteristics, including total work and effective communication
to computation ratio.

This paper evaluates two recent GPU interconnects (Sect. 2) for eight
NVIDIA Pascal P100 GPUs on a single node: (a) the NVIDIA DGX-1’s ‘hybrid
cube mesh’ based on NVLink 1.0; and (b) the Cirrascale GX8’s [4] two-level
PCIe tree using two Cirrascale SR3615 switch risers.

We evaluate the two interconnects on a parameterized neural network work-
load (Sect. 3). The performance scaling of a parameterized neural network space
has not been well studied. Other performance evaluations select specific net-
works — for example AlexNet [5] and GoogLeNet [6] — that have been designed
for classifier performance, not workload evaluation. We define a parameterized
variant of the popular ResNet [7] with controllable computational and commu-
nication intensities. With our parameterized ResNet, we show the effects of
different neural network topologies and batch sizes on a workload’s communi-
cation/computation ratio and scaling behavior. We define a workload intensity



Evaluating On-Node GPU Interconnect for Deep Learning Workloads 5

metric to characterize space of workload intensities and locate AlexNet and
GoogLeNet within that space.

Our findings (Sect. 4) are as follows. The workload intensity metric in helpful
in explaining scaling behavior. Given that the DGX-1’s NVLink interconnect has
more links and higher per-link bandwidth than the GX8’s PCIe bus, it is not
surprising that the DGX-1 typically has superior performance. However, we find
that the GX8 is very competitive for all ResNet-style workloads; in rare cases,
the GX8 slightly outperforms. Surprisingly, with 8 GPUs, the GX8 can outper-
form the DGX-1 on an allreduce benchmark by as much as 10% on payloads
between 0.5–6 MB. In contrast, with 4 GPUs the DGX-1 allreduces outperform
the GX8 by 40%. The reason is that with 8 GPUs, the PCIe network saturates
more quickly with respect to payload size. The DGX-1 has a distinct scaling
advantage for the communication-intensive AlexNet where we hypothesize that
load imbalance enables its NVLink interconnect to perform closer to the 4 GPU
bandwidths than 8, resulting in a 36% DGX-1 advantage.

2 Multi-GPU Computing Systems

This section describes the NVIDIA DGX-1 (Pascal) [2] and the Cirrascale GX8
(NVIDIA Pascal) [4] computing systems and then explains the test configuration.
To isolate the interconnects, we configured the systems as closely as possible
except for GPU interconnect.

Each system has a very similar host processor configuration. Both systems
have a dual-processor host based on Intel Xeon processors. For the DGX-1, each
processor is an Intel Xeon E5-2698v4; for the GX8, it is an E5-2697v4. The DGX-
1’s Xeon has 20 cores, two threads enabled per core, running at 2.2/3.6 GHz;
and a 50 MB L3 cache, a 256 KB L2 cache shared between two cores, and 64 KB
L1 cache per core. The GX8’s Xeon has 18 cores with 2 thread/core, running
at 2.3/3.6 GHz; L3 45 MB. In both cases, host memory is 512 GB DDR4-2133.
Both systems use PCIe 3.0.

All important workload activities (e.g., neural network training) occurs on the
GPUs. The primary work the host CPU performs is reading the initial training
data set into memory and transferring it to the GPUs. Both systems read the
large training inputs files from a local SSD whose throughput is sufficient to
overlap training and reading.

2.1 NVIDIA P100 Pascal

Both systems have eight NVIDIA Tesla P100 (Pascal) GPUs. To isolate the inter-
connects, we configured the systems with the closest possible GPUs: Tesla P100-
SXM2 and P100-PCIE-16GB. The DGX-1 has the former and the Cirrascale the
latter. The only P100 available with NVLink support is the P100-SXM2; and
because of NVLink support it uses a different form factor (SXM2). The P100-
PCIE-16GB is the ‘highest bin’ P100 available with the PCIe 3.0 × 16 inter-
face. The only differences between the two P100s — besides NVLink and form
factor — are SM clock speed (1328 vs. 1189 MHz) and TDP (300 vs. 250 W).
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Pascal GPUs are fabricated with a 16 nm process. Each GPU has 3584 CUDA
cores divided into 56 streaming multiprocessors (SM), where each SM has 64
CUDA cores. The P100-PCIE-16GB has a peak FP performance of 9.3 Teraflops
single precision (4.67 Teraflops double). Due to the higher clock rate, the P100-
SXM2 has a peak FP performance of 10.6 Teraflops single precision (5.3 Teraflops
double). Each GPU has 16 GB high-bandwidth global memory (HBM2), a 4096-
bit memory bus operating at 715 MHz (split into 8 memory controllers), and
4 MB L2 cache.

Normalizing GPU Performance. Given the different GPUs, it is necessary
to distinguish the performance effects of the varying GPU clocks from the dif-
ferent interconnects. One possibility is normalizing or scaling GPU performance
post facto. This approach is difficult with fixed clocks; and more difficult with
dynamically boosted clocks. Rather than attempting this approach, we power-
capped both GPUs. The obvious approach is to cap both GPU variants at the
nominal frequency of the P100-PCIE-16GB, 1189 MHz. To present results as
close to the P100-SXM2 as possible, we found the maximum sustained frequency
of the P100-PCIE-16GB for a representative workload. That is, we empirically
identified the maximum frequency for the P100-PCIE-16GB to execute with-
out throttling. Based on this study, we capped both GPUs at 1227 MHz, which
closes the gap by 27%. With this experimental setup, we expect the performance
of each GPU to be identical. The GPU performance is still sufficiently high to
highlight the scaling effects of each interconnect.

2.2 NVIDIA DGX-1 and NVLink 1.0

Figure 2 shows the DGX-1’s intra-node interconnect topology [2]. Each GPU’s
SXM2 interface, in contrast to the more conventional PCIe interface, connects
directly to the NVLink interconnect. The NVLink interconnect enables intra-
node GPU communication. Each GPU has 4 NVLink lanes arranged in a ‘hybrid
cube mesh’ topology. The hybrid cube mesh has two directly connected groups
of 4 along with 3D hypercube links between the groups. The topology ensures
that a GPU is no more than two hops away from another GPU.

Each of the 4 NVLink lanes supports 20 GB/s in both directions. Thus, the
total NVLink uni-directional bandwidth of a GPU is 80 GB/s. Each GPU also
connects via a PLX-switch to a PCIe 3.0× 16 bus with maximum bandwidth of
16 GB/s (uni-directional). This PLX switch serves as a connecting point between
GPUs and CPUs, and a potential InfiniBand network.

2.3 Cirrascale GX8 and SR3615 Switch

The Cirrascale GX8 [4] system supports direct communication between 8 GPUs
using two Cirrascale SR3615 switch risers [8]. Communication occurs over the
PCIe bus, enabling a single memory address space.
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Fig. 2. Inter-GPU network on NVIDIA DGX-1.

Fig. 3. Inter-GPU network on Cirrascale GX8.

Figure 3 shows the GX8’s inter-GPU network. To enable communication over
a single PCIe bus (and hence single memory address space), the GX8 uses a tree
topology rooted at only one of the host CPUs [9]. The two-level tree is rooted
at one host’s on-die PCIe controller, a.k.a. the root complex, supporting PCIe
3.0×40. Attached to that host CPU are two SR3615 switch risers. Each SR3615’s
upstream is PCIe 3.0 × 16 (16 GB/s uni-directional). Two risers consume 32/40
lanes of the root complex. Communication between the SR3615s occurs via the
root complex using the standard PCIe bus.

Four P100s are attached to each SR3615 switch riser. Each GPU (P100-PCIE-
16GB) has a PCIe 3.0 × 16 interface. Thus, each switch riser’s input is 64 PCIe
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lanes of GPU; and 16 out. As a result there is a peak uni-directional 16 GB/s
(PCIe 3.0 × 16) between any two GPUs.

Because of the SR3615 switch, communication paths do not all need to tra-
verse the root complex. A pair of GPUs attached to different risers traverse two
switches and the PCIe root complex. However, a pair of GPUs attached to the
same switch require no intermediate paths.

2.4 Inter-GPU Communication

For inter-GPU (peer-to-peer) communication, we use a combination of CUDA
8.0 and the NVIDIA Collective Communications Library (NCCL). CUDA 8.0
includes support for GPUDirect, or GPU-to-GPU direct memory access (DMA).
NCCL [10,11] is a library for inter-GPU collective communication and synchro-
nization. NCCL’s collective algorithms are based on topology-aware rings and
optimized for throughput [12,13]. NCCL is interconnect-aware and thus the same
collective call uses, as appropriate, the NVLink or PCIe interconnect. Available
collectives include allgather, allreduce, and broadcast.

To achieve high throughput on large payloads, NCCL’s algorithms are
pipelined based on small 4–16 KB chunks and GPUDirect peer-to-peer direct
access. With large payloads, pipelining hides the linear latency term of the ring
resulting in transfer bandwidths approaching link bandwidth [14]. However, for
small messages, the ring latency is exposed.

3 Workloads

In this paper, we develop a systematic approach for characterizing and speci-
fying neural network workloads. To explore the effects of different neural net-
work topologies and batch sizes on scaling behavior, we define a parameterized
variant of the popular ResNet [7] with controllable computational and commu-
nication intensities. We complement our study with results from the well known
AlexNet [5] and GoogLeNet [6]. The subsections below describe each CNN archi-
tecture. After each network is described, we characterize the space of workload
intensities and locate AlexNet and GoogLeNet within that space.

Each distinct neural-network training workload executes in the following man-
ner. First, a given neural network architecture is replicated on each GPU. Then,
the neural network is trained, processing an image dataset sequentially in batches
or iterations. For each batch, images are divided among available GPUs for data
parallelism. To train, each GPU processes its images resulting in a series of
model activations — floating point operations — resulting in distinct values for
each GPU’s copy of model parameters. At the end of each iteration, allreduce
operations ensure each GPU’s model has an identical copy of model parameters.

For all workloads, we use the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [15], a well known benchmark for object classification and detec-
tion. Specifically, we use ILSVRC2012 which has 1000 object classes and 1.43 M
images annotated images, each of size 256× 256.
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3.1 AlexNet

AlexNet [5] uses the ImageNet (ILSVRC2012) [15] dataset. Compared to non-
deep learning methods, AlexNet has performed well on ILSVRC2012. AlexNet
has five convolution layers, three pooling layers, and two fully-connected layers.
This CNN architecture requires about 1.4 M activations/image and has 60 M
parameters.

3.2 GoogLeNet

GoogLeNet [6] is more complex model than AlexNet. GoogLeNet has two con-
volution layers, two pooling layers, and nine inception layers. Each inception
layer consists of six convolution layers and one pooling layer. The concept of
inception layer is to cover bigger area of images while maintaining fine resolu-
tion for small information on these images. The inception module of GoogLeNet
concatenates filters of different sizes into a single new filter. This avoids parame-
ter explosion with the use of inception layers. GoogLeNet performs significantly
better than AlexNet for the ImageNet and the recent ILSVRC [15] challenge
datasets. This CNN architecture has about 5.5 M parameters. GoogLeNet in
relation to AlexNet has (i) more layers; (ii) fewer features per layer, and; (iii)
more activations. GoogLeNet has 10.8 M activations per image.

3.3 ResNet/x

Deep Residual Learning Network (ResNet) [7] introduced the concept of a resid-
ual block. Each block consists of two convolution layers along with a connection
adding the output of the second block to the input of the first. Residual blocks
are designed to allow the training of substantially deeper models than had been
trained previously. By adding the input of the block to its output, the residual
block learns the residual function, and forwards the activations to deeper layers
than earlier. One advantage of ResNet is that it can improve accuracy of the
model while avoiding parameter explosion. That is, the ResNet blocks increase
the depth (and inner layers) of the network instead of its width.

Using residual blocks as a fundamental building block, several ResNet incar-
nations have been designed by researchers, including ResNet50 and ResNet1000.
ResNets of various depths outperform GoogLeNet on the ILSVRC challenge,
with a 50 layer network — consisting of a convolutional layer, 48 residual blocks,
and a classifier layer — winning in 2015.

To explore the effects of different ResNet networks, we generate several
ResNet variants by defining each network’s inner layers to be a multiple of a
‘ResNet block’. This enables us to explore how neural network topology and
training batch size affects its communication/computation ratio and scaling. We
define ResNet/x to be a standard ResNet input and output layer but where the
inner layers are defined by x replications of the ‘ResNet block’. Thus, ResNet/1 is
a single convolution layer followed by a residual block and finally a classifier layer.
Similarly, ResNet/16 has the same convolution and classifier layers as ResNet/1
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but 16 residual blocks. Using this parameterized definition, we can explore the
different computation and communication ratios by simply increasing the depth
of residual blocks.

Each ResNet block has a certain number of features. As a result, increasing
ResNet blocks proportionally increases activations/image and model parameters.
More precisely, activations/image as a function of the block replications x is
given with the following expression: 1, 204, 224x + 11, 55, 113. Similarly model
parameters as a function of replications is given by 46, 211x+74, 857. Thus, our
ResNet/x models have the activations/image and parameters shown in Fig. 4.

Fig. 4. Activations and parameters for ResNet/x.

3.4 Workload Characterization

Figure 5 overviews the workloads we used in our study. To leverage well-known,
verified, and optimized implementations of convolutional neural networks (CNN),
we based our experiments on Convolutional Architecture for Fast Feature Embed-
ding (Caffe) framework [16,17], a widely used framework for CNN models. Caffe
is a collection of state-of-the-art deep learning algorithms and reference models
in a clean and modifiable framework accessible through a open source reposi-
tory [18].

Fig. 5. CNN architecture models and input datasets.

Figure 6 characterizes each workload’s batch properties using metrics repre-
senting work and work intensity. Figure 6a shows activations per batch, a measure
of total GPU work. The horizontal axis refers to the batch categories in Fig. 5.
(AlexNet and GoogLeNet each have two categories while ResNet/x has three.)
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Fig. 6. Each workload’s (a) work and (b) work intensity (work/communication).

Fig. 7. Each workload’s intensity (work/communication) during strong scaling.

Observe the large spread of work shown along the vertical axis (independent of the
horizontal axis). The points densely cover over two orders of magnitude, specifi-
cally between 38 M and 5,500 M activations/batch.

Next we characterize work intensity, a measure of the ratio of communica-
tion to computation. Figure 6b shows activations per parameter for each batch,
a measure of the batch’s work intensity. We capture well over two orders of
magnitude of intensities, between 6–1650 activations/parameter. Our ResNet/x
parameter sweep densely covers the space between 300–1650; and it sandwiches
GoogLeNet.

Finally, we characterize each execution’s work intensity. For each perfor-
mance experiment, the batch’s work is strong-scaled across 1, 2, 4 or 8 GPUs.
Figure 7 shows activations per parameter for each GPU, a measure of the commu-
nication/computation ratio during execution. We capture well over three orders



12 N. R. Tallent et al.

of magnitude of intensities, between 1–1650 activations per parameter per GPU.
Our ResNet/x parameter sweep densely covers most of the space (between 40–
1650); again, it sandwiches GoogLeNet.

4 Evaluation

We conduct a performance evaluation using strong scaling to highlight effects of
interconnect performance. Strong scaling is often desirable to reduce response
time. With strong scaling, the amount of available per-GPU work systematically
decreases, increasing the communication to computation ratio. In contrast to
strong scaling, weak scaling tends to mask performance effects of weaker inter-
connects.

We used NVIDIA’s optimized Caffe, a fork from BVLC-Caffe [18] optimized
for the DGX-1 architecture [19]. For AlexNet and GoogLeNet, we used NVIDIA’s
provided models. For ResNet/x, we defined custom versions. We confirmed that
all executions produced semantically meaningful results in that the models were
equivalent to a sequentially equivalent execution.

We present our results in four subsections. The first two subsections discuss
microbenchmarks for inter-GPU copies and NCCL collectives. We then show
scaling results for AlexNet and GoogLeNet. Finally we discuss ResNet/x.

4.1 Inter-GPU Data Transfer

We used MGBench [20] to collect bandwidths and latencies between pairs of
GPUs for GPU-to-GPU memory copy and GPU-to-GPU DMA (direct memory
access).

Fig. 8. Bandwidth of GPU-to-GPU memory copy for DGX-1 and GX8.

Figure 8a shows bandwidths between pairs of GPUs for GPU-to-GPU mem-
ory copy. (Units are in power of 2, or GiB.) This unidirectional GPU-to-GPU
memory copy is pipelined using CUDA’s asynchronous memory-copy primitive.
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Fig. 9. Latency of GPU-to-GPU memory copy for DGX-1 and GX8.

Rather than showing the full matrix for all pairs, we group the results by value
clusters, where each group has an insignificant spread.

Figure 9 shows latencies of GPU-to-GPU memory copy highlighted at four
different data sizes. A horizontal axis label of x-y means GPU x sent data to
GPU y. Although the figure shows data with GPU 0 as source, we validated that
using other GPUs as source produced qualitatively similar results.

For both figures, the DGX-1 results are typically clustered in two groups,
one representing a single NVLink hop and the other representing two NVLink
hops. The one-hop data corresponds to communication within a fully-connected
4-GPU cluster; achieved bandwidth is about 85% (17.2 GB/s) of the 20 GB/s
per-link peak. The two-hop data corresponds to communication between 4-GPU
clusters; achieved bandwidth is about 50% (9.6 GB/s) of the peak.

The GX8 results are clustered in three groups. The groups are clearly seen in
the latency plots (Fig. 9) for payload sizes 1 MB and above. The first two groups,
Intra-SR and Inter-SR, correspond to communication within and between an
SR3615 switch riser (SR), respectively. These groups are analogous to DGX-1
groups in that each SR forms a fully connected 4-GPU cluster. The Intra-SR
achieved bandwidth is about 75% (12.2 GB/s) of peak (16 GB/s). The Inter-SR
group includes GPUs 4, 6 and 7; achieved bandwidth is about 60% (9.6 GB/s)
of peak. The third Inter-SR* group captures the anomaly of sending data from
GPU 0 to 5. It turns out that the second logical PCIe slot (GPU5) has longer
physical signal paths between some elements on the ASIC which can lead to
delays in dequeuing PCIe packets [21]. The circumstances in which these delays
occur are narrow and more likely to originate within a microbenchmark than a
real world application. For example, we do not observe the behavior in collective
benchmarks.

Interestingly, the GX8 can have better bandwidth and latencies between
GPUs that are in different 4-GPU-clusters. Compare Fig. 8a’s Inter-SR and
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Inter-SR* GX8 curves with the 2-hop DGX-1 curve. The GX8’s PCIe bandwidth
saturates more quickly with respect to message size, resulting in higher GX8
bandwidth at medium-sized messages. Figure 9 shows the same effect in terms
of latency for message sizes 1 MB and below. In contrast, but as is expected,
within a fully connected 4-GPU-cluster, NVLink’s bandwidth and latency are
better than PCIe.

Another interesting comparison is that although NVLink latencies are very
predictable, GX8 latencies are dependent on message size. The NVLink latencies
fall into two clusters — one-hop and two-hops — independent of data size. In
contrast, the GX8 latencies fall into 1 or 3 clusters depending on data size. For
very small payloads (4 bytes), the GX8 latencies are flat and independent of
hops. This shows the PCIe switching latency — even across multiple hops — is
very low. The 1-cluster phenomenon largely holds true at 100 KB. By 1 MB, the
GX8 results are clustered into the three groups described above. We hypothesize
that the reason that small messages appear to be independent of topology — in
contrast to NVLink — is related to PCIe switch buffering that effectively enables
pipelining of smaller messages across multiple PCIe switches.

Figure 8b shows GPU-to-GPU bandwidths for DMA (direct memory access).
The DMA data closely corresponds to the memory copy data. For DGX-1, we
only shows single-hop DMA bandwidth because CUDA 8.0 does not support
GPUDirect across 2 NVLink hops. In contrast, DMA is supported over a single
PCIe bus.

4.2 Inter-GPU Collectives

Figure 10 shows effective bandwidth of NCCL allreduce, the key collective used in
training. (Bandwidths are in power of 2, or GiB.) These results characterize allre-
duce performance given perfect GPU load balance. The size of allreduce payloads
is the neural network’s parameters represented as single precision floating points,
or 4× parameters bytes. Thus for ResNet/x, payloads range from 0.5–6 MB and
for GoogLeNet and AlexNet they are 22 MB and 240 MB, respectively.

We define effective bandwidth to be relative to a single GPU’s payload, i.e.,
1-GPU-payload/runtime. With this metric, the ideal value is relative to the

Fig. 10. Effective bandwidth for NCCL allreduce on DGX-1 and GX8.
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bandwidth of one link. For example, in a fully connected 4-GPU NVLink cluster,
the ideal allreduce is performed in 1 step where each GPU concurrently utilizes
3 links, yielding an effective bandwidth of 1 link, or 20 GB/s. Similarly, 8-GPU
allreduce requires in the best case one more step, meaning the maximum effec-
tive bandwidth is halved to 10 GB/s. Three more considerations imply that an
allreduce’s effective bandwidth should be less than ideal. As already observed,
achievable link bandwidth for a direct copy is about 85% of ideal. Further,
each GPU must execute the reduction operator. Finally, there is synchronization
overhead.

Figure 10a shows that the NCCL allreduce is implemented well; there does
not appear to be appreciable optimization headroom. The following observa-
tions explain. Within a fully connected 4-GPU-cluster, an allreduce’s maximum
effective bandwidth on DGX-1 and GX8 is 10 and 7 GB/s, respectively. For
both systems, these values are about 60% of achievable bandwidth; they are
also higher than copying data between inter GPU-clusters. This implies that
NCCL’s allreduces are effectively using a one-step algorithm. Between fully con-
nected GPU-clusters, an allreduce’s maximum effective bandwidth is 4.6 and 4.7
vs GB/s for DGX-1 and GX8, respectively. Given the extra hop, we assume that
the maximum achievable bandwidth is half of the single link transfer bandwidth,
or 8.6 and 6.1 GB/s. The above effective bandwidths are about 50% and 75% of
maximum.

Interestingly, Fig. 10a shows that the relative performance of allreduce
depends on number of GPUs. For 4 GPUs, the DGX-1 has a 40% performance
advantage for large messages (such as those used for AlexNet). For 8 GPUs,
between fully connected GPU clusters, the GX8 has 3% better performance for
large messages.

Figure 10b highlights allreduce’s effective bandwidth on 8 GPUs for the pay-
loads encountered in our ResNet/x workloads. The figure shows that the per-
formance divergence between 0.5 and 5 MB payloads averages 10% in favor of
the GX8. Clearly, as observed in GPU-to-GPU copies (Sect. 4.1), PCIe band-
width saturates more quickly with respect to payload size. We expect that PCIe
switching hardware is part of the explanation.

Fig. 11. Bandwidth for NCCL broadcast collective on DGX-1 and GX8.
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Finally, we observe that performance varies depending on collective. Collec-
tives have two costs: data transmission and synchronization. An allreduce must
synchronize with all GPUs using all-to-all synchronization. This synchroniza-
tion attenuates the NVLink’s potential advantages. We would therefore expect
a single-root collective such as broadcast, where GPUs synchronize only with the
root GPU, to have a difference performance profile. Figure 11 shows that on 8
GPUs, the DGX-1 does have slightly higher effective bandwidth.

4.3 Strong Scaling of AlexNet and GoogLeNet

Figure 12 shows strong-scaling performance for AlexNet and GoogLeNet training
on the DGX-1 and GX8. We collected results using two different batch sizes (256
and 512 images) on 1, 2, 4, and 8 GPUs. Although the batch sizes would be
considered large for a single GPU, they are not large when scaling to 8 GPUs.
Caffe data-parallelism distributes the images in each batch. Thus, with 256 batch
size and 8 GPUs, there are 32 images per GPU.

Fig. 12. Strong-scaling (ImageNet): AlexNet and GoogLeNet on DGX-1 and GX8.

Recall that we power cap GPUs to equalize the slightly different SM fre-
quencies between the P100 SXM2 and PCIe variants. Therefore we expect both
systems to have same single-GPU performance. As shown in Fig. 12a, this expec-
tation is true for AlexNet. GoogLeNet’s results (Fig. 12b) have data points miss-
ing for 1 and 2 GPUs. The reason is limited GPU memory capacity. With 1 and
2 GPUs, there was not enough memory to store both the GoogLeNet activations
and the training data.

The most interesting results is that NVLink is far more important for AlexNet
scaling than for GoogLeNet: for AlexNet the DGX-1 has a 36% advantage
(11.0 vs. 8.1 iterations/s). It is more difficult than it might seem to explain the
much higher DGX-1 performance on 8 GPUs. On one hand, as shown in Fig. 7,
AlexNet’s activations/parameter per GPU is very small: past 4 GPUs, the met-
ric is less than 1, meaning the workload is communication intensive. However,
as noted in Sect. 4.2, the GX8 has slightly higher performance for 8 GPUs on an
allreduce benchmark. Validating the root cause is difficult because of the limited
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value of GPU performance tools. Further more, to show the best performance
results, we use NVIDIA’s (read-only) Docker version of Caffe, which cannot be
instrumented.

On GoogLeNet, the benefit of NVLink is comparatively small. As shown
by Fig. 6b, GoogLeNet is more compute intensive (in activations/parameter) by
almost a factor of 100. Whereas AlexNet’s intensities are 5.9 and 11.9 per batch
category, GoogLeNet’s are 500 and 1004, respectively.

Finally, NVLink becomes less important as batch size increases. This is not
surprising as a larger batch size increases the per-GPU computation without
changing communication, therefore reducing the importance of the interconnect.

4.4 Strong Scaling of ResNet/x

Figure 13 shows strong-scaling performance for ResNet/x on the DGX-1 and
GX8. We use smaller batch sizes for ResNet than with AlexNet or GoogLeNet.
From a learning perspective, ResNet tends to use smaller batch sizes. Because of
the deep network, a smaller batch size yields more updates per training epoch,
which affects convergence. Also, the activations’ memory consumption means

Fig. 13. Strong-scaling (ImageNet): ResNet/x on DGX-1 and GX8.
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larger network sizes will not fit in GPU memory. Observe that with ResNet/32,
batch size 64 would not fit in the memory of either 1 or 2 GPUs.

Furthermore, the smaller batch sizes highlight GPU interconnect effects. Our
custom ResNet/x has many fewer model parameters than either AlexNet or
GoogLeNet, yielding smaller allreduce payloads and reducing the effects of inter-
GPU communication and synchronization. We therefore compensate by using
smaller batch sizes. The smaller batch sizes results in less per-GPU work, main-
taining pressure on interconnect.

First, we discuss single-GPU performance. As before, we expect both systems
to have same single-GPU performance given the power capping to equalize SM
frequencies. Curiously, we see single-GPU performance converging as batch size
increases. Thus, although the expectation holds true for batch size 64, there is a
small divergence for batch sizes 16 and 32. We are not sure how to explain the
divergence but have identified two possible factors.

One factor could be that for each batch of images, there is some CPU-based
images processing overhead. For ResNet/x, this processing includes random hori-
zontal flips, random crops, and subtraction of mean values to center distributions
at 0. For smaller batch sizes, there is a potential this overhead can be exposed.

A second factor is host-CPU-based operations such as memory operations (e.g.,
cudaMemset and cudaFree) and scattering batch images to GPUs. This opera-
tions would occur over each system’s PCIe bus. Although both host-to-GPU PCIe
busses are PCIe ×16 (16 GB/s), benchmarks show that there are slight differ-
ences in performance. For instance, for a host-to-GPU0 scatter, host-GPU0 com-
munication on DGX-1 consistently yields about 4% higher bandwidth (11.1 vs.
10.7 GB/s). Again, this overhead could be exposed for smaller batch sizes.

We next sketch a simple model of our performance expectations. With
equivalent GPU performance, each workload has an identical GPU work cost.
The expected overall DGX-1 performance advantage is therefore the workload’s
fraction of communication multiplied by the DGX-1’s allreduce performance
advantage. Given the DGX-1’s slightly better allreduce performance on 4 GPUs
for ResNet/x payloads, our model points to better DGX-1 performance for 2
and 4 GPUs. That expectation holds true in general. Given the GX8’s better
allreduce performance on 8 GPUs, the model suggests the ‘knee’ that appears in
the DGX-1 curves for batch size 16. Recall that on 8 GPUs, the GX8 averages
10% better allreduce performance for the payloads used in ResNet/x (0.5–5 MB);
see Sect. 4.2.

Our model does a good job explaining scaling results through 4 GPUs and
the DGX-1 ‘knee’ for batch 16. However, for batch sizes 32 and 64 on 8 GPUs,
the DGX-1 consistently outperforms the GX8. Clearly, other effects must be
taken into account to fully explain the scaling results.

We conclude by observing that similar performance trends hold true for a very
large range of workload intensities, or activations/parameter per GPU (Fig. 7).
These data show that if one is interested in ResNet-style workloads, the GX8
may be an attractive option if there is enough price differential.
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5 Related Work

An important aspect of this work is defining ResNet/x, a paramerized version
of ResNet. To our knowledge, there is no prior study that systematically param-
eterizes a deep learning workload to explore its space of computational inten-
sities. Other performance evaluations select specific networks that have been
designed for classifier performance, not workload evaluation. Even deep learning
benchmark suites such as Fathom [22] represent only several points instead of
a (discrete) continuum. Conversely, several studies assert general benefits [2,23]
of NVLink but do not look at the conditions under which one should or should
not expect benefits.

Multi-GPU systems (or nodes) are becoming increasingly important. We have
found no study comparing NVLink and PCIe-based GPU interconnects for up to
8 GPUs. Our comparison of the DGX-1/NVLink and GX8/Cirrascale SR3615
is relevant because both systems represent the ‘top-tier’ of multi-GPU systems
but are also generally available.

Shams et al. [24] compare performance of Caffe using AlexNet for up to 4
P100 GPUs with and without NVLink. They show unexpected differences in
the performance of AlexNet even with the use of only one GPU. Also, that
study does not explain the effect of NVLink and the network topology using
microbenchmarks.

Nomura et al. [25] study performance of a multi-GPU system connected by
PCIe. They show significant speedup on 4 GPUs for applications of particle
motion and advection computation. They showed that data transfer becomes a
bottleneck even with relatively low computation.

Ben-Nun et al. [26] present the Groute asynchronous multi-GPU program-
ming model and show nearly 7× speedup for some algorithms on a 8-GPU hetero-
geneous system. Awan et al. present MVAPICH2-GDR [27], an inter/intra-node
multi-GPU collective library. They compare NVIDIA NCCL and MVAPICH2-
GDR using microbenchmarks and a DNN training application. Their proposed
design of MVAPICH2-GDR showed to have enabled up to 14× to 16.6× improve-
ments as compared to NCCL-based solutions, for intra-/inter-node multi-GPU
communication.

6 Conclusions

Scaling ML workloads across multiple on-node GPUs is becoming increasingly
important. A closely related question is whether PCIe-based interconnects are
adequate. We have provided a detailed performance evaluation of two GPU-
based interconnects for eight NVIDIA Pascal P100 GPUs: (a) NVIDIA DGX-1
(NVLink 1.0 with ‘hybrid cube mesh’ topology); and (b) Cirrascale GX8 (two-
level PCIe tree using two Cirrascale SR3615 switch risers). To systematically
study the scaling effects of different neural networks, we define a parameter-
ized variant of the popular ResNet [7] with controllable model activations and
parameters.
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To characterize the workload space, we defined a workload intensity met-
ric that captures the expected computation/communication ratio and has good
explanatory power. We show that our parameterized ResNet captures a large
space of workload intensities.

Our conclusions are as follows. We find that the DGX-1 typically has supe-
rior performance. Given that the DGX-1’s NVLink interconnect has more links
and higher per-link bandwidth than the GX8’s PCIe bus, this is not surprising.
However, we also find that the GX8 is very competitive for all ResNet-style
workloads. In rare cases, the GX8 slightly outperforms. The reason is related to
the fact that the GX8’s PCIe bandwidth saturates more quickly with respect to
payload size. As a result, for medium-sized messages, the GX8 on 8 GPUs can
have better memory copy latency and an average of 10% better allreduce perfor-
mance. Our results shows that if one is interested in ResNet-style workloads, the
GX8 may be an attractive option if there is enough price differential.
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Abstract. Efficiently exploiting GPUs is increasingly essential in sci-
entific computing, as many current and upcoming supercomputers are
built using them. To facilitate this, there are a number of programming
approaches, such as CUDA, OpenACC and OpenMP 4, supporting dif-
ferent programming languages (mainly C/C++ and Fortran). There are
also several compiler suites (clang, nvcc, PGI, XL) each supporting dif-
ferent combinations of languages. In this study, we take a detailed look
at some of the currently available options, and carry out a comprehen-
sive analysis and comparison using computational loops and applications
from the domain of unstructured mesh computations. Beyond runtimes
and performance metrics (GB/s), we explore factors that influence per-
formance such as register counts, occupancy, usage of different mem-
ory types, instruction counts, and algorithmic differences. Results of this
work show how clang’s CUDA compiler frequently outperform NVIDIA’s
nvcc, performance issues with directive-based approaches on complex
kernels, and OpenMP 4 support maturing in clang and XL; currently
around 10% slower than CUDA.

Keywords: Compilers · CUDA · OpenACC · OpenMP · GPU
Benchmarking

1 Introduction

The last ten years has seen the widespread adoption of Graphical Process-
ing Units (GPUs) by the high performance computing community. For a wide
range of highly parallel workloads they offer higher performance and efficiency.
Programming techniques for GPUs have also evolved significantly. The CUDA
[1] language extensions to C/C++ and the OpenCL language [2] provide a low-
level programming abstraction commonly referred to as Single Instruction Mul-
tiple Thread (SIMT) that gives fine-grained control over GPU architectures.
CUDA/OpenCL allows the exploitation of low-level features like scratch pad
c© Springer International Publishing AG 2018
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memory, warp operations, and block-level synchronization. However, converting
existing applications to use CUDA or OpenCL is a substantial undertaking that
require significant effort and considrable changes to the design of the programe
and the source code. Furthermore, getting good performance can entail detailed
work in orchestrating parallelism.

To simplify the adoption of GPUs, particularly for existing codes, high-level
directive based programming abstractions were introduced. OpenACC [3] intro-
duced in 2011 was one of the first supporting GPUs. Subsequetly OpenMP
standard introduced support for accelerators starting from version 4 [4], with
refinements in 4.5 and 5.0. Of particular note is that the evolution of directive
based approaches being driven by the acquisition of large US DoE systems such
as Titan and the upcoming Summit and Sierra systems. To be able to efficiently
utilize these systems it was necessary that existing codes be modified to support
GPUs with relative ease. Many of these codes are written in Fortran and as such
there is now compiler support for writing CUDA, OpenACC, and OpenMP with
Fortran in various compilers.

It is generally agreed that the best performance can be achieved by using
CUDA, but the difference between CUDA and directive-based approaches vary
significantly based on a multitude of factors. Primarily these include the type
of computation being parallelized, as well as the language being used (C or
Fortran), and the compiler. This motivates the present study: for a number of
parallel loops, coming from the domain of unstructured mesh computations, we
wanted to get an idea of what performance looks like on different GPUs, different
languages, and different compilers. Given the available systems and compilers,
we would like to acertain what the state-of-th-art is with regard to utilizing GPU
based systems for this class of applications.

We evaluate some of the most commonly used compilers and parallelization
approaches. We explore the performance of CUDA C, compiled with nvcc, as well
as with Google’s recent clang based compiler [5]. We also explore the performance
of the compilers by Portland Group (PGI, now owned by NVIDIA) which has
had support for wirting CUDA applications in Fortran [6,7]. Additionally, as part
of a recent push by IBM, preparing for the Summit and Sierra machines there
has been support for CUDA Fortran with the XL compilers since v15.1.5 [8]. We
also explore XL compiler performance in this paper. For OpenACC we use the
PGI compilers which support both C and Fortran. There is also good support
for OpenACC by the Cray compilers, however we did not have access to such
a machine and therefore will not be part of this analysis. For OpenMP 4 there
are two compilers developed by IBM directed at developing applications using
C: the XL compilers (since v13.1.5), and an extension to Clang [9]. There is also
support for writing OpenMP 4 parallizations in Fortran applications using the
XL compilers (since v15.1.5).

While there is a tremendous amount of research on performance evaluation of
various combinations of languages and compilers, we believe our work is unique
in its breadth: it directly compares C and Fortran implementations of the same
code (Airfoil), and with three different parallelizations: CUDA, OpenACC, and
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OpenMP, and with five different state-of-the-art compilers. We also present an
in-depth study trying to explain the differences with the help of instruction
counters and the inspection of low-level code. Specifically, we make the following
contributions:

1. Using a representative CFD application called Airfoil, we run the same algo-
rithms on NVIDIA K40 and P100 GPUs, with CUDA, OpenMP 4, and Ope-
nACC parallelizations written in both C and Fortran, compiled with a number
of different compilers.

2. We carry out a detailed analysis of the results with the help of performance
counters to help identify differences between algorithms, languages, and
compilers.

3. We evaluate these parallelizations and compilers on two additional appli-
cations, Volna (C) and BookLeaf (Fortran) to confirm the key trends and
differences observed on Airfoil.

The rest of the paper is structured as follows: Sect. 2 discusses some related
work, Sect. 3 briefly introduces the applications being studied, then Sect. 4
presents the test setup, compilers and flags. Section 5 carries out the bench-
marking of parallelizations and the detailed analysis, and finally Sect. 6 draws
conclusions.

2 Related Work

There is a significant body of existing research on performance engineering for
GPUs, and compiler engineering, as well as some comparisons between paral-
lelization approaches - the latter however is usually limited in scope due to the
lack of availability of multiple implementations of the same code. Here we cite
some examples, to show how this work offers a wider look at the possible com-
binations.

Work by Ledur et al. compares a few simple testcases such as Mandelbrot and
N-Queens implemented with CUDA and OpenACC (PGI) [10], Herdman et al.
[11] take a larger stencil code written in C, and study CUDA, OpenCL and
OpenACC implementations, but offer no detailed insights into the differences.
Work by Hoshino et al. [12] offers a detailed look at CUDA and OpenACC
variants of a CFD code and some smaller benchmarks written in C, and show
a few language-specific optimizations, but analysis stops at the measured run-
time. Normat et al. [13] compare CUDA Fortran and OpenACC versions of an
atmospheric model, CAM-SE, which offers some details about code generated
by the PGI and Cray compilers, and identifies a number of key differences that
let CUDA outperform OpenACC, thanks to lower level optimizations, such as
the use of shared memory. Kuan et al. [14] also compare runtimes of CUDA
and OpenACC implementations of the same statistical algorithm (phylogenetic
inference). Gonge et al. [15] compare CUDA Fortran and OpenACC implemen-
tations of Nekbone, and scale up to 16k GPUs on Titan - but no detailed study
of performance differences.
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Support in compilers for OpenMP 4 and GPU offloading is relatively new [16]
and there are only a handful of papers evaluating their performance: Martineau
et al. [17] present some runtimes of basic computational loops in C compiled
with Cray and clang, and comparisons with CUDA. Karlin et al. [18] port three
CORAL benchmark codes to OpenMP 4.5 (C), compile them with clang, and
compare them with CUDA implementations - the analysis is focused on runtimes
and register pressure. Hart el. al. [19] compare OpenMP 4.5 with Cray to Ope-
nACC on Nekbone, however the analysis here is also restricted to runtimes, the
focus is more on programmability. We are not aware of academic papers studying
the performance of CUDA Fortran or OpenMP 4 in the IBM XL compilers aside
from early results in our own previous work [20]. There is also very little work
on comparing the performance of CUDA code compiled with nvcc and clang.

Thus we believe that there is a significant gap in current research: a compar-
ison of C and Fortran based CUDA, OpenACC, and OpenMP 4, the evaluation
of the IBM XL compilers, the maturity of OpenMP 4 compared to CUDA in
terms of performance and a more detailed investigation into the reasons for the
performance difference between various languages, compilers, and parallelization
approaches. With the present study, we work towards filling this gap.

3 Applications

The applications being studied in this work come from the unstructured mesh
computations domain solving problems in the areas of computational fluid
dynamics, shallow-water simulation and Lagrangian hydrodynamics. As such,
they consist of parallel loops over some set in the mesh, such as edges, cells
or nodes, and on each set element some computations are carried out, while
accessing data either directly on the iteration set, or indirectly via a mapping
to another set. Our applications are all written using the OP2 domain specific
language [21] embedded in C and Fortran, targeting unstructured mesh compu-
tations. For OP2, the user has to give a high level description of the simulation
using the OP2 API. Then the OP2 source-to-source translator generates all par-
allelized versions from the abstract description [22]. While OP2 is capable of
many things, its relevant feature for this work is that it can generate different
parallelizations such as CUDA, OpenACC, and OpenMP4, based on the abstract
description of parallel loops.

A key challenge in unstructured mesh computations is the handling of race
conditions when data is indirectly written. For the loops with indirect incre-
ments (which means we incrementing some value through a mapping so there
are multiple iterations incrementing the same value), we use coloring to ensure
that no two threads will write to the same memory at the same time. We can use
a more sophisticated coloring approach for GPUs using CUDA as described in
[23], where we create and color mini-partitions such that no two mini-partitions
of the same color will update the same cell. This allows mini-partitions of the
same color to be processed by the blocks of one CUDA kernel. Within these
mini-partitions, each assigned to a different CUDA thread block, each thread
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will process a different element within these blocks, and thus is it necessary to
introduce a further level of coloring. For an edges to cells mapping, we color all
edges in a mini-partition so that no two edges with the same color update the
same cell. Such a coloring is shown in Fig. 1. Here, we first calculate the incre-
ment of every thread in the block, then we iterate through the colors and add
the increment to the cell with synchronization between each color. The benefit
of such an execution scheme is that there is a possibility that the data we loaded
from the global memory can be reused within a block, which can lead to a per-
formance increase due to fewer memory transactions. This technique is referred
to as hierarchical coloring in the paper.

MPI boundary
Owner-compute
Halo exchanges

Block 1
Block 2

Organizing parallelism

Fig. 1. Illustration for hierarchical coloring on a computation on edges that write data
on the cells. The blocks are colored so that there is no neighboring blocks with the
same color and inside the blocks threads colored so that no two threads with the same
color write the same data.

With other methods such as OpenACC and OpenMP4 there is no method
for thread synchronization and data sharing in blocks, which is essential for
the hierarchical coloring technique described above. Therefore a global coloring
technique is used in case of these parallelization approaches. This technique is
similar to the thread coloring inside the mini-partitions, but works on the full
set. We assign colors to each thread in a way that no two edges of the same
color update the same cell and threads from the same color can run parallel in a
separate CUDA kernel with synchronization between the kernels. This however
excludes the possibility of the reuse of the data of the cells.

3.1 Airfoil

Airfoil is a benchmark application, representative of large industrial CFD
applications. It is a non-linear 2D inviscid airfoil code that uses an unstruc-
tured grid and a finite-volume discretisation to solve the 2D Euler equations
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using a scalar numerical dissipation. The algorithm iterates towards the steady
state solution, in each iteration using a control volume approach, meaning the
change in the mass of a cell is equal to the net flux along the four edges of
the cell, which requires indirect connections between cells and edges. Airfoil is
implemented using OP2, where two versions exists, one implemented with OP2’s
C/C++ API and the other using OP2’s Fortran API [21,24].

The application consists of five parallel loops: save soln, adt calc, res calc,
bres calc and update [22]. The save soln loop iterates through cells and is
a simple loop accessing two arrays directly. It basically copies every four state
variables of cells from the first array to the second one. The adt calc kernel
also iterates on cells and it computes the local area/timestep for every single
cell. For the computation it reads values from nodes indirectly and writes in
a direct way. There are some computationally expensive operations (such as
square roots) performed in this kernel. The res calc loop is the most complex
loop with both indirect reads and writes; it iterates through edges, and computes
the flux through them. It is called 2000 times during the total execution of the
application and performs about 100 floating-point operations per mesh edge.
The bres calc loop is similar to res calc but computes the flux for boundary
edges. Finally update is a direct kernel that includes a global reduction which
computes a root mean square error over the cells and updates the state variables.

All test are executed with double precision on a mesh containing 2.8 million
cells and with SOA data layout described in [22].

3.2 Volna

Volna is a shallow water simulation capable of handling the complete life-cycle of
a tsunami (generation, propagation and run-up along the coast) [25]. The sim-
ulation algorithm works on unstructured triangular meshes and uses the finite
volume method. Volna is written in C/C++ and converted to use the OP2
library [21]. For Volna we examined the top three kernels where most time is
pent: computeFluxes, SpaceDiscretization and NumericalFluxes. In the
computeFluxes kernel there are indirect reads and direct writes, in Numer-
icalFluxes there are indirect reads with direct writes and a global reduction
for calculating the minimum timestep and in SpaceDiscretization there are
indirect reads and indirect increments.

Tests are executed in single precision, on a mesh containing 2.4 million tri-
angular cells, simulating a tsunami run-up to the US pacific coast.

3.3 BookLeaf

BookLeaf is a 2D unstructured mesh Lagrangian hydrodynamics application
from the UK Mini-App Consortium [26]. It uses a low order finite element
method with an arbitrary Lagrangian-Eulerian method. Bookleaf is written
entirely in Fortran 90 and has been ported to use the OP2 API and library.
Bookleaf has a large number of kernels with different access patterns such as



28 G. D. Balogh et al.

indirect increments similar to increments inside res calc in Airfoil. For test-
ing we used the SOD testcase with a 4 million element mesh. We examined
the top five kernels with the highest runtimes which are getq christiensen1,
getq christiensen q, getacc scatter, gather, getforce visc. Among these
there is only one kernel (getacc scatter) with indirect increments (where col-
oring is needed), the gather and getq christiensen1 have indirect reads and
direct writes as adt calc in Airfoil, and the other two kernels have only direct
reads and writes.

4 Test Setup

For testing we used NVIDIA K40 and P100 GPUs in IBM S824L systems (both
systems has 2*10 cores) with Ubuntu 16.04. We used nvcc in CUDA 9.0 and
clang 6.0.0 (r315446) for compiling CUDA with C/C++. For compiling CUDA
Fortran, we used PGI 17.4 compilers and IBM’s XL compiler 15.1.6 beta 12 for
Power systems. For OpenMP4, we tested clang version 4.0.0 (commit 6dec6f4
from the clang-ykt repo), and the XL compilers (13.1.6 beta 12). Finally, for
OpenACC, we used the PGI compiler version 17.4. The specific compiler versions
and flags are shown in Table 1.

Table 1. Compiler flags used on K40 GPU (for P100 cc60 and sm 60 is used)

Version Flags

PGI 17.4-0 -O3 -ta=nvidia,cc35 -Mcuda=fastmath
-Minline=reshape (-acc for OpenACC)

XL 15.1.6 beta 12
13.1.6 beta 12

-O3 -qarch=pwr8 -qtune=pwr8 -qhot
-qxflag=nrcptpo -qinline=level=10
-Wx,-nvvm-compile-options=-ftz=1
-Wx,-nvvm-compile-options=-prec-div=0
-Wx,-nvvm-compile-options=-prec-sqrt=0
(-qsmp=omp -qthreaded -qoffload for OpenMP4)

clang for
OpenMP4

4.0 -O3 -ffast-math -fopenmp=libomp -Rpass-analysis
-fopenmp-targets=nvptx64-nvidia-cuda
-fopenmp-nonaliased-maps -ffp-contract=fast

clang for
CUDA

6.0 -O3 –cuda-gpu-arch=sm 35 -ffast-math

nvcc 9.0.176 -O3 -gencode arch=compute 35,code=sm 35
–use fast math

5 Benchmarking

5.1 Airfoil

The run times of different versions of Airfoil on the K40 and P100 GPUs are
shown in Fig. 2. The hierarchical coloring is used in res calc and bres calc,
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Fig. 2. Measured run times of versions on the K40 and P100 GPU

because these have indirect increments and in the case of other kernels we don’t
need coloring because they have only direct updates. The versions using the
hierarchical coloring scheme have the best performance, due to the huge per-
formance gains in res calc thanks to data reuse. The main differences between
versions with the same coloring strategy is in the run times of the res calc and
adt calc kernels, where most of the computation is performed. In the following,
we examine performance in detail on all five kernels.

save soln: save soln is a really simple kernel with only direct reads and writes.
It copies state variables of the cells, and thus is highly memory bounded. In
CUDA versions we used 200 blocks so each thread processes more than one cell
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to save on integer instructions. However this leads us to a for loop inside the
kernel, increasing control instructions, and slowing performance. In Table 2 the
runtimes of the save soln kernel are shown: all versions have approximately
the same performance. The bandwidth values shown in the table are the useful
bandwidth from the users perspective, that is the sum of the moved simulation
data and mappings for the kernel divided by the run time of the kernel. In case
of C/C++, OpenMP4 and OpenACC versions have about 5–7% better run-
times and bandwidth than CUDA versions (even though the OpenMP4 version
compiled with clang on the K40 GPU is the only version that have only 75%
occupancy). If we run one thread per cell and delete the loop from the kernel
the performance of CUDA matches the performance of OpenMP4. The results
shows that in a simple case such as save soln Fortran performs about as well
as the C/C++ versions, and the high level approaches such as OpenMP4 and
OpenACC can reach the performance of CUDA.

Table 2. Measured run time, bandwidth, register count and occupancy values in case
of save soln

K40 P100

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 1.055 175 21 (100%) 0.362 509 24 (100%)

clang - CUDA 1.055 175 21 (100%) 0.362 509 24 (100%)

PGI - OpenACC 1.006 183 26 (100%) 0.351 526 29 (100%)

XL - OpenMP4 1.003 184 17 (100%) 0.357 517 19 (100%)

clang - OpenMP4 0.982 188 35 (75%) 0.356 518 32 (100%)

PGI - F CUDA 1.061 174 32 (100%) 0.368 502 32 (100%)

PGI - F OpenACC 1.012 182 24 (100%) 0.349 528 29 (100%)

XL - F CUDA 1.060 174 32 (100%) 0.362 502 32 (100%)

XL - F OpenMP4 1.009 183 22 (100%) 0.352 524 24 (100%)

adt calc: In case of adt calc the loop iterates over cells and reads data indi-
rectly from the nodes while updating a single value per cell multiple times. The
operation contains some expensive square root calculations which introduce high
numbers of additional floating point operations and increase the register counts
for the kernel. For adt calc the directive based approaches use significantly
higher numbers of registers than CUDA as shown in Table 3; this means lower
occupancy and about 30% worse performance on the K40 machine (on the P100
machine the difference is only about 10–20%). In case of OpenMP4 with the XL
compiler and OpenACC with the PGI compiler every time the value on the cell
is written we see a global store instruction instead of calculating the intermedi-
ate results in registers and only write the final results to the global memory as
other versions do. Another source of performance difference for OpenMP4 with
clang compiler comes from the lack of usage of texture caches for loading the
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read only data from the nodes. The cause of clang CUDA slightly outperform-
ing nvcc CUDA on the K40 machine is that it computes the expensive square
root operations with fewer floating point instructions, which leads to about 16%
less floating point instructions than nvcc (this also holds for the P100 card) for
adt calc. The Fortran versions have high register counts, thus lower occupancy,
this is one of the key reasons for the 30% lower performance on the K40 GPU
(on the P100 GPU the difference is about 10–15%), also Fortran versions use
about 50% more integer instructions than C/C++ versions. The directive based
approaches perform within 20% of CUDA Fortran’s performance and the with
the PGI compiler the versions execute twice as many integer instructions than
other versions.

Table 3. Measured run time, bandwidth, register count and occupancy values in case
of adt calc

K40 P100

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 2.810 148 40 (75%) 0.869 477 40 (75%)

clang - CUDA 2.756 151 36 (75%) 0.867 478 40 (75%)

PGI - OpenACC 4.071 102 86 (31.25%) 0.978 424 96 (31.25%)

XL - OpenMP4 3.775 110 64 (50%) 0.984 421 72 (43.75%)

clang - OpenMP4 4.108 101 88 (31.25%) 1.077 385 96 (31.25%)

PGI - F CUDA 3.753 116 64 (50%) 0.955 434 56 (56.25%)

PGI - F OpenACC 4.341 96 86 (31.25%) 1.053 394 96 (31.25%)

XL - F CUDA 3.581 116 78 (37.5%) 1.001 415 88 (31.25%)

XL - F OpenMP4 3.905 106 80 (37.5%) 1.090 380 86 (31.25%)

res calc: In the case of res calc we have indirect updates, therefore we need
coloring to avoid race conditions. The runtime and bandwidth results are shown
in Table 4 for hierarchical coloring, and for global coloring in Table 5. In this
kernel there is a lot of indirectly read and written data, therefore the runtime
can be significantly improved with the hierarchical coloring approach due to
data reuse. However, hierarchical coloring leads to higher register counts and
arithmetic instruction counts, but the impact of these factors are smaller than
the gain from better memory usage. As we saw it in adt calc for CUDA versions
clang performs better than nvcc in terms of integer and floating point instruction
counts (clang has 2–5% lower instruction counts on both GPUs). The OpenMP4
and OpenACC versions have 2–5% higher run time because of low occupancy
(caused by register pressure) and the OpenMP4 versions don’t use the texture
caches as much (or at all in case of clang) as other versions which lead to 3 times
as much global loads and high number of integer instructions. The results are
shown in Tables 6 and 7.
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Table 4. Measured run time, bandwidth, register count and occupancy values of
res calc in case of hierarchical coloring

K40 P100

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 13.118 67 53 (56.25%) 3.727 235 50 (56.25%)

clang - CUDA 12.537 70 56 (56.25%) 3.721 235 51 (56.25%)

PGI - F CUDA 16.880 72 69 (43.75%) 4.425 198 78 (37.5%)

XL - F CUDA 16.235 54 72 (43.75%) 3.968 221 70 (43.75%)

Table 5. Measured run time, bandwidth, register count and occupancy values of
res calc in case of global coloring

K40 P100

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 21.133 41 46 (62.5%) 6.706 131 40 (56.25%)

clang - CUDA 21.083 42 46 (62.5%) 6.676 131 40 (56.25%)

PGI - OpenACC 21.472 41 72 (43.75%) 6.617 132 88 (31.25%)

XL - OpenMP4 22.277 39 71 (43.75%) 7.200 122 80 (37.5%)

clang - OpenMP4 22.245 39 96 (31.25%) 6.676 131 96 (31.25%)

PGI - F CUDA 22.700 38 87 (31.25%) 6.993 125 88 (31.25%)

PGI - F OpenACC 22.992 38 87 (31.25%) 6.713 130 96 (31.25%)

XL - F CUDA 22.236 39 88 (31.25%) 6.806 129 94 (31.25%)

XL - F OpenMP4 23.755 37 110 (25%) 7.229 121 104 (25%)

Table 6. Average number of instructions and transactions performed in res calc kernel
with hierarchical coloring (absolute values for nvcc and for other versions relative to
nvcc) on k40 GPU

nvcc clang Fortran PGI Fortran XL

Integer instructions 191743K 0.86 0.82 0.90

Floating point (64 bit) instructions 88698K 0.87 0.97 0.95

Control instructions 8955K 0.90 0.64 0.26

Texture read transactions 761K 1.00 16.91 8.88

Global read transactions 188K 1.00 0.95 4.22

Fortran versions with hierarchical coloring have 23–30% worse performance
than the same C/C++ versions, while with global coloring this difference is only
5% (15% on P100), but generally Fortran versions have high register counts and
lower occupancy, as well as higher numbers of integer instructions and global load
transactions. With Fortran the differences between the performance of CUDA
and directive based approaches are about the same as described above.
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Table 7. Average number of instructions and transactions performed in res calc kernel
with global coloring (absolute values for nvcc and for other versions relative to nvcc)
on K40 GPU

fp (64 bit) Integer Control Texture read
transaction

Global read
transaction

nvcc - CUDA 93555K 94994K 1439K 2175K 334K

clang - CUDA 0.98 0.94 1.00 1.01 1.04

PGI - OpenACC 1.03 1.38 1.00 0.98 1.00

XL - OpenMP4 1.00 1.50 1.00 0.28 3.53

clang - OpenMP4 0.97 1.26 1.00 0.00 3.42

PGI - fortran CUDA 1.03 1.80 2.00 1.05 13.47

PGI - fortran OpenACC 1.03 1.55 1.00 3.73 3.73

XL - fortran CUDA 1.00 2.20 2.00 3.74 3.73

XL - fortran OpenMP4 1.00 1.82 1.00 3.77 3.73

Table 8. Measured run time, bandwidth, register count and occupancy values in case
of bres calc in case of hierarchical coloring

K40 P100

Run
Time (s)

BW
(GB/s)

Reg. count
(Occupancy)

Run
Time (s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 0.064 32 44 (62.5%) 0.032 64 48 (62.5%)

clang - CUDA 0.064 32 44 (62.5%) 0.032 64 46 (62.5%)

PGI - F CUDA 0.082 25 53 (56.25%) 0.029 71 72 (43.75%)

XL - F CUDA 0.061 33 48 (62.5%) 0.035 59 64 (50%)

Table 9. Measured run time, bandwidth, register count and occupancy values in case
of bres calc in case of global coloring

K40 P100

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 0.072 28 44 (62.5%) 0.035 58 42 (62.5%)

clang - CUDA 0.071 29 38 (75%) 0.034 59 37 (75%)

PGI - OpenACC 0.072 28 71 (43.75%) 0.034 60 56 (56.25%)

XL - OpenMP4 0.084 24 72 (43.75%) 0.037 55 80 (37.5%)

clang - OpenMP4 0.079 26 88 (31.25%) 0.039 52 94 (31.25%)

PGI - F CUDA 0.096 21 56 (56.25%) 0.038 54 72 (43.75%)

PGI - F OpenACC 0.073 28 102 (25%) 0.036 57 88 (31.25%)

XL - F CUDA 0.078 26 70 (43.75%) 0.037 55 80 (37.5%)

XL - F OpenMP4 0.078 26 94 (31.25%) 0.035 57 80 (37.5%)
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bres calc: The bres calc kernel also has indirect reads and writes, so we need
coloring like with res calc. In bres calc the versions using hierarchical color-
ing performs equally good except the Fortran CUDA version compiled with the
PGI compiler as shown in Table 8. The CUDA Fortran version with the PGI
compiler has 30% lower performance compared to other versions with hierar-
chical coloring. On the K40 GPU in res calc CUDA PGI has high number
of load transactions but in this case the PGI version doesn’t use the texture
cache. However on the P100 GPU the version using the PGI compiler have same
amount of memory transactions as nvcc, but executes less floating point opera-
tions. In case of global coloring on the C/C++ side OpenACC performs as good
as CUDA versions despite the lower occupancy as shown in Table 9. However
the OpenMP4 versions have the same issue as in case of res calc and get high
number of global read transactions while don’t use the texture cache, which
(with the lower occupancy due to high register counts) leads to the 20% lower
performance.

In this case Fortran versions have only 10% lower performance than C/C++
versions (except for CUDA with the PGI compiler which has the same issue as
with hierarchical coloring). The key reason for the difference is the lower occu-
pancy of the Fortran versions and the higher instruction and memory transac-
tion counts on both GPU. However in this case the directive based approaches
performing equally to CUDA Fortran with the XL compiler. Surprisingly for
bres calc the Fortran OpenACC version has as low register count as the CUDA
versions on the C/C++ side.

Update: The CUDA Fortran versions have lower occupancy because of the high
register usage (the OpenACC version has a separate kernel for reduction thus
have lower register count for the bulk of the kernel and the OpenMP4 version
performs about the same as the C/C++ versions). All of the Fortran versions
ended up with about 4 times more texture read (except OpenMP4 which doesn’t
use texture cache, but has 12 times more global loads), global load and store
transactions than CUDA with nvcc. CUDA Fortran versions also have spilled
registers (which introduce about 10 k–20 k local load and store transactions).

Effect of tuning the number of registers per thread. In case of the
Airfoil application, the key performance limiter is the latency of accesses to
global memory. To achieve high bandwidth, we need many loads in flight. This
requires increasing the occupancy, which is limited by the number of registers
used in these kernels. To get better occupancy we can limit the maximum number
of registers per thread during the compilation. The register counts where the
occupancy decreases if we use one more register per thread are the same for both
K40 and P100 GPUs with 128 thread per block. For CUDA C/C++ versions
we restricted the register counts to 56, 48 and 40 in order to increase occupancy,
while for other versions we got higher register counts thus the restricted the
register usage to 80, 72 and 64. With hierarchical coloring the shared memory
required by the kernel could be the bottleneck for occupancy. In Figs. 3 and 4
the runtime of limited versions relative to the original version in percentage are
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Fig. 3. Runtime of C OpenACC/OpenMP4 and Fortran versions with limited register
per thread relative to original versions measured on K40. Lower is better.

Fig. 4. Runtime of CUDA C versions with limited register per thread relative to original
versions measured on K40. Lower is better.

shown. The shared memory requirement of res calc and bres calc is roughly
4 KB per block which limits the occupancy at 68.8% on the K40, meaning that
we cannot reach better occupancy by further reducing the maximum register
count (reducing the count to 48 would lead to 62.5% and to 40 would lead to
75% occupancy). On the P100 GPU shared memory requirement maximizes the
occupancy at 94% thanks to more available shared memory. For most language-
compiler combinations, limiting the register count only affects the adt calc,
res calc and bres calc kernels. In the OpenMP4 - clang, Fortran OpenMP4 -
XL, and Fortran CUDA - PGI combinations, update is also affected by the
limiting because of the high register count as shown in Table 10.

With the increased occupancy, we do get better run times in most cases (a
limit of 56 in case of C/C++ and CUDA and 80 for other versions), except for
the clang OpenMP4 and CUDA with nvcc. However further limitation of register
counts leads to performance degradation, with the exception of CUDA Fortran
code compiled with XL (which have the best performance with register count
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Table 10. Measured run time, bandwidth, register count and occupancy values in case
of update (for OpenACC versions the second register count belongs to the reduction
kernel, the run times are the sum of the two kernels)

K40 P100

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

Run time
(s)

BW
(GB/s)

Reg. count
(Occupancy)

nvcc - CUDA 4.478 175 31 (100%) 1.519 516 32 (100%)

clang - CUDA 4.481 175 32 (100%) 1.519 516 32 (100%)

PGI - OpenACC 4.416 177 36 (75%)
18 (100%)

1.588 493 38 (75%)
12 (100%)

XL - OpenMP4 4.497 174 32 (100%) 1.660 472 32 (100%)

clang - OpenMP4 5.175 151 86 (31.25%) 1.719 456 86 (31.25%)

PGI - F CUDA 4.598 170 79 (43.75%) 1.654 474 48 (62.5%)

PGI - F OpenACC 4.350 180 37 (75%)
18 (100%)

1.583 495 40 (75%)
16 (100%)

XL - F CUDA 4.598 169 80 (37.5%) 1.566 500 80 (37.5%)

XL - F OpenMP4 5.074 154 46 (62.5%) 1.712 458 40 (75%)

limited to 72). The reason for the loss of performance is the increasing number
of spilled registers, and the latency introduced by the usage of these registers.

The main differences lie in the run times of res calc and adt calc. For
res calc on C/C++ side limiting the register count increases the performance by
2–5% in case of CUDA with hierarchical coloring, the OpenMP4 XL compiler and
the Fortran versions also get better run times by 1–2% but the OpenACCversion
performs the same, while the OpenMP4 clang versions get 2% higher run time
thus get higher total run time despite of the 5% performance increase in update
and adt calc. For Fortran CUDA with XL and Fortran OpenACC with PGI
compiler reach 15% better performance in adt calc for the first level limitation.
These results implies that for the most cases the increased occupancy gained
with the restriction of the register usage could increase performance significantly
(especially for kernels with low occupancy). In terms of instruction counts the
limitation of register usage leads to slightly increased integer instruction counts
in our cases.

5.2 Volna

For Volna the SpaceDiscretization kernel has a huge impact on runtime (half
of the time is spent in this kernel when using global coloring), and so the hier-
archical coloring leads to significant overall performance gain as shown on Fig. 5
(the measurements are in single precision because Volna requires only single pre-
cision to get correct results). However the presence of the local reads in com-
puteFluxes in case of clang CUDA leads to 20% performance loss in this kernel.
On other kernels we found the same tendencies as we observed on Airfoil, i.e.
clang reaches lower floating point and integer instruction counts compared to
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Fig. 5. Measured run times of Volna versions on the K40 and P100 GPU

nvcc. The directive based approaches have lower performance in the two most
time consuming kernels. The OpenMP4 with XL has about 50% lower perfor-
mance in SpaceDiscretization on the K40 GPU (the difference is 40% on the
P100 machine), while for the other kernels these approaches performed within
10% of CUDA’s performance and in some cases even better as shown in Table 11.
In terms of occupancy the OpenMP4 with XL reach about the same occupancy
in most cases as CUDA, while OpenMP4 clang and OpenACC have high register
counts as shown in Table 12. In terms of instruction counts in case of Volna the
directive based approaches performed the same as in Airfoil. The OpenMP4 ver-
sions don’t use texture caches (in case of XL the texture cache usage is about 15%
of nvcc’s) and all directive based approach have higher global read transactions
and about 30% higher integer instruction counts.
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Table 11. Run times of the five most time consuming Volna kernels on the K40 GPU

nvcc

CUDA

clang

CUDA

nvcc

CUDA

global

clang

CUDA

global

clang

OpenMP4

XL

OpenMP4

PGI

OpenACC

compute Fluxes 1.336 1.693 1.323 1.734 2.186 1.613 1.623

Space Discretization 1.758 1.834 4.150 4.134 3.973 6.261 4.762

Numerical Fluxes 0.431 0.431 0.507 0.511 0.549 0.528 0.496

Evolve Values RK2 2 0.312 0.313 0.326 0.325 0.416 0.300 0.302

Evolve Values RK2 1 0.371 0.372 0.366 0.365 0.648 0.383 0.338

Table 12. Register counts and occupancy of the five most time consuming Volna
kernels on the K40 GPU (for OpenACC the second register count belongs to the
reduction kernel)

nvcc

CUDA

clang

CUDA

nvcc

CUDA

global

clang

CUDA

global

clang

OpenMP4

XL

OpenMP4

PGI

OpenACC

compute

Fluxes

56

(56.25%)

60

(56.25%)

22

(100%)

22

(100%)

93

(31.25%)

78

(37.5%)

77

(37.5%)

Space

Discretization

32

(100%)

36

(75%)

28

(100%)

25

(100%)

64

(50%)

30

(100%)

30

(100%)

Numerical

Fluxes

28

(100%)

16

(100%)

45

(62.5%)

46

(62.5%)

40

(75%)

30

(100%)

33 (75%)

12

(100%)

Evolve Values

RK2 2

26

(100%)

24

(100%)

26

(100%)

24

(100%)

80

(37.5%)

25

(100%)

28

(100%)

Evolve Values

RK2 1

28

(100%)

27

(100%)

28

(100%)

27

(100%)

86

(31.25%)

32

(100%)

33

(75%)

5.3 BookLeaf

Considering that in BookLeaf most of the time is spent in direct kernels or
indirect read kernels, there is not as much difference between hierarchical and
global coloring versions in total run time, as shown in Fig. 6. However in case
of getacc scatter, which is the only kernel with indirect increments among the
top five most time consuming kernels, the runtime of the hierarchical coloring
is at least 50% better than that of the global coloring versions. All versions
are within 7% of the performance of the best version which is Fortran CUDA
with hierarchical coloring compiled with the XL compiler on the K40, while on
the P100 machine the PGI compiler performance is about 10% lower than the
performance of the versions compiled with the XL compiler. As we saw in Airfoil,
the CUDA versions have high register count in the most cases, but OpenACC
and OpenMP4 reach better occupancy as shown in Table 14 which leads even
better runtime than in case of CUDA versions as shown in Table 13.
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Fig. 6. Measured run times of BookLeaf versions on K40 and P100 GPU

Table 13. Run times of the five most time consuming BookLeaf kernel on K40 GPU

CUDA -

PGI

CUDA

global - PGI

OpenACC CUDA -

XL

CUDA

global - XL

OpenMP4

getq christiensen1 0.937 0.937 1.033 0.979 0.987 0.866

getq christiensen q 0.933 0.934 0.975 0.888 0.889 0.751

getacc scatter 0.457 0.450 0.917 0.497 0.785 0.769

gather 0.526 0.526 0.525 0.523 0.523 0.542

getforce visc 0.493 0.493 0.484 0.421 0.421 0.390
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Table 14. Register counts of the five most time consuming BookLeaf kernel on K40
GPU

CUDA -

PGI

CUDA

global - PGI

OpenACC CUDA -

XL

CUDA

global - XL

OpenMP4

getq christiensen1 78

(37.5%)

78

(37.5%)

77

(37.5%)

144

(18.75%)

86

(31.25%)

78

(37.5%)

getq christiensen q 86

(31.25%)

86

(31.25%)

143

(18.75%)

126

(25%)

126

(25%)

70

(43.75%)

getacc scatter 75

(37.5%)

79

(37.5%)

28

(100%)

96

(31.25%)

54

(56.25%)

23

(100%)

gather 30

(100%)

30

(100%)

23

(100%)

32

(100%)

32

(100%)

23

(100%)

getforce visc 44

(62.5%)

40

(75%)

32

(100%)

56

(56.25%)

56

(56.25%)

32

(100%)

6 Conclusions

In this paper we have carried out a detailed study of some of the most popular
parallelization approaches, programming languages, and compilers used to pro-
gram GPUs, on a number of parallel loops coming from the domain of unstruc-
tured mesh computations. OpenMP4 and OpenACC are high level models using
directives on loops in order to utilize GPUs, while CUDA use a lower level Single
Instruction Multiple Threads model.

In this class of applications, a key common computational pattern is the
indirect incrementing of data: to avoid race conditions we explored the use of
coloring. The high level models must use global coloring of the iteration set to
ensure that no two threads writes the same value when running simultaneously,
whereas with lower-level models (CUDA) it is possible to apply a “two-level”
coloring approach permitting better data reuse.

In case of Fortran, the CUDA versions with global coloring and OpenACC
versions are within 10% of each other’s performance. However the OpenMP4
versions use higher number of registers per thread in some cases, leading to low
occupancy, as well as lower performance executing reductions. Directive based
approaches also use higher numbers of integer and control instructions.

On the C/C++ side, CUDA code compiled with the clang compiler performs
2–5% better in terms of runtime and in most cases can outperform nvcc in the
optimization of computations thus perform 20% fewer integer and floating point
instructions compared to nvcc. The higher level approaches currently using more
registers (even for simple kernels in case of OpenMP4 with the clang compiler)
which leads to lower occupancy that lowers the performance. Also these versions
now executing 30% more integer instructions than CUDA, but in some cases
they performs within 5% of nvcc’s performance. Since the support for OpenMP4
is relatively new there are still some issues that lowers performance, such as
the more infrequent use of the texture cache and the lower performance when
performing reductions. Also the OpenACC and OpenMP4 with the XL compiler
currently have problems with computations with multiple increment of the same
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data as in adt calc where these versions write back all intermediate result to the
global memory introducing the gap between the their performance and CUDA’s.

We have also shown that using CUDA one can handle race conditions more
efficiently thanks to block-level synchronization; this in turn enables an execu-
tion approach with much higher data reuse. Kernels with indirect increments
using hierarchical coloring have significantly better performance than the ver-
sions using global coloring; in case of Airfoil hierarchical coloring leads to about
35% better overall performance, for Volna the difference is about 50% and with
BookLeaf about 3%.

In summary, we have demonstrated that support for C is only slightly better
than for Fortran, for all possible combinations, with a 3–10% performance gap.
Our work is among the first ones comparatively evaluating the clang CUDA
compiler and IBM’s XL compilers; clang’s CUDA support is showing great per-
formance already, often outperforming nvcc. Even though the XL compilers are
only about one year old, they are already showing competitive performance and
good stability - on the OpenMP 4 side often outperforming clang’s OpenMP
4 and PGI’s OpenACC. Directive based approaches demonstrate good perfor-
mance on simple computational loops, but struggle with more complex kernels
due to increased register pressure and instruction counts - lagging behind CUDA
on average by 5–15%, but in the worst cases by up to 50%. It still shows that
OpenMP 4 GPU support isn’t yet as mature as OpenACC, nevertheless, they
are within 5–10%. Our results also demonstrate how CUDA allows for more flex-
ibility in applying optimizations that are currently not possible with OpenACC
or OpenMP 4.
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3 École Normale Supérieure de Lyon, Lyon, France
valentin.le-fevre@ens-lyon.fr

Abstract. With the ever-growing need of data in HPC applications, the
congestion at the I/O level becomes critical in super-computers. Archi-
tectural enhancement such as burst-buffers and pre-fetching are added to
machines, but are not sufficient to prevent congestion. Recent online I/O
scheduling strategies have been put in place, but they add an additional
congestion point and overheads in the computation of applications.

In this work, we show how to take advantage of the periodic nature of
HPC applications in order to develop efficient periodic scheduling strate-
gies for their I/O transfers. Our strategy computes once during the job
scheduling phase a pattern where it defines the I/O behavior for each
application, after which the applications run independently, transferring
their I/O at the specified times. Our strategy limits the amount of I/O
congestion at the I/O node level and can be easily integrated into current
job schedulers. We validate this model through extensive simulations and
experiments by comparing it to state-of-the-art online solutions.

Specifically, we show that not only our scheduler has the advantage
of being de-centralized, thus overcoming the overhead of online sched-
ulers, but we also show that on Mira one can expect an average dilation
improvement of 22% with an average throughput improvement of 32%!
Finally, we show that one can expect those improvements to get better
in the next generation of platforms where the compute - I/O bandwidth
imbalance increases.

1 Introduction

Nowadays, supercomputing applications create or have to deal with TeraBytes
of data. This is true in all fields: as example LIGO (gravitational wave detection)
generates 1500 TB/year [22], the Large Hadron Collider generates 15 PB/year,
light source projects deal with 300 TB of data per day and climate modeling
applications are expected to have to deal with 100EB of data [17]. According to
experts “Very few large scale applications of practical importance are not data
intensive” (Alok Choudhary, Apr 2012).

Management of I/O operations is critical at scale. However, observations on
the Intrepid machine at Argonne National Lab show that I/O transfer can be
slowed down up to 70% due to congestion [14]. In 2013, Argonne upgraded its

c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 44–66, 2018.
https://doi.org/10.1007/978-3-319-72971-8_3
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house supercomputer: moving from Intrepid (Peak performance: 0.56 PFlop/s;
peak I/O throughput: 88 GB/s) to Mira (Peak performance: 10 PFlop/s; peak
I/O throughput: 240 GB/s). In 2018, the new machine at Argonne, Aurora, is
expected to have a Peak performance of 450 PFlops/s and a peak I/O through-
put of 1 TB/s. While both criteria seem to continuously improve considerably,
the reality behind is that for a given application, its I/O throughput scales lin-
early (or worse) with its performance, and hence, what should be noticed is a
downgrade from 160 GB/PFlop (Intrepid) to 24 GB/PFlop (Mira) and finally
2.2 GB/PFlop (Aurora)!

With this in mind, to be able to scale, conception of new algorithms has to
change paradigm: going from a compute-centric model to a data-centric model.

To help with the ever growing amount of data created, architectural improve-
ment such as burst buffers [23] have been added to the system. Work is being
done to transform the data before sending it to the disks in the hope of reducing
the I/O sent [11]. However, even with the current I/O footprint burst buffers
are not able to completely hide congestion. Moreover, the data used is always
expected to grow. Recent works [14] have started working on novel online, cen-
tralized I/O scheduling strategies at the I/O node level. However one of the
risk noted on these strategies is the scalability issue caused by potentially high
overheads (between 1 and 5% depending on the number of nodes used in the
experiments) [14]. Moreover, it is expected this overhead to increase at larger
scale since it need centralized information about all applications running in the
system.

In this paper, we present a decentralized I/O scheduling strategy for super-
computers. We show how to take known HPC application behaviors (namely their
periodicity) into account to derive novel static algorithms.

Many recent HPC studies have observed independent patterns in the I/O
behavior of HPC applications. The periodicity of HPC applications has been
well observed and documented [7,12,14]: HPC applications alternate between
computation and I/O transfer, this pattern being repeated over-time. Further-
more, fault-tolerance techniques (such as periodic checkpointing [10]) also add
to this periodic behavior. Carns et al. [7] observed with Darshan the periodic-
ity of four different applications (MADBench2 [8], Chombo I/O benchmark [9],
S3D IO [27] and HOMME [26]). Furthermore, in our previous work [14] we were
able to verify the periodicity of gyrokinetic toroidal code (GTC) [13], Enzo [6],
HACC application [15] and CM1 [5].

Recently, Hu et al. [18] summed up the four key characteristics of HPC
applications observed in the literature:

1. Periodicity: Applications alternate between compute phases and I/O phases.
Furthermore they do so in a periodic fashion: a regular pattern of computa-
tion - I/O is repeated over time.

2. Burstiness: In addition to the periodicity observed, sometimes, short I/O
bursts occur.

3. Synchronization: I/O accesses of an application are performed in a synchro-
nized way between the different parallel processes.
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4. Repeatability: The same jobs are often run many times with only different
input, hence the compute-I/O pattern of an application can be predicted
before it is executed.

The key idea in this project is to take into account those known structural
behaviors of HPC applications and to include them in scheduling strategies.

Using this periodicity property, we compute a static periodic scheduling strat-
egy, which provides a way for each application to know when they should start
transferring their I/O (i) hence reducing potential bottlenecks either due to I/O
congestion, and (ii) without having to consult with I/O nodes every time I/O
should be done and hence adding an extra overhead. The main contributions of
this paper are:

– A novel light-weight I/O algorithm that looks at optimizing both application-
oriented (dilation or fairness) and platform-oriented (maximum system effi-
ciency) objectives;

– A set of extensive simulations and experiments that show that this algorithm
performs as well or better than current state of the art heavy-weight online
algorithms.

Note that the algorithm presented here is done as a proof of concept to show
the efficiency of these kind of light-weight techniques. We believe our scheduler
can be implemented naturally into a job scheduler and we provide experimental
results backing this claim. However, this integration is beyond the scope of this
paper. For the purpose of this paper the applications are already scheduled on
the system and are able to receive information about their I/O scheduling. The
goal of our I/O scheduler is to eliminate congestion points caused by application
interference while keeping the overhead seen by all applications to the minimum.
Computing a full I/O schedule over all iterations of all applications is not realistic
at today’s scale. The process would be too expensive both in time and space. Our
scheduler overcomes this by computing a period of I/O scheduling that includes
different number of iterations for each application.

The rest of the paper is organized as follows: in Sect. 2 we present the applica-
tion model and optimization problem. In Sect. 3 we present our novel algorithm
technique as well as a brief proof of concept for a future implementation. In
Sect. 4 we present extensive simulations based on the model to show the per-
formance of our algorithm compared to state of the art. We then confirm the
performance on a super-computer to validate the model. We give some back-
ground and related work in Sect. 5. We provide concluding remarks and ideas
for future research directions in Sect. 6.

2 Model

In this section we use the model introduced in our previous work [14] that has
been verified experimentally to be consistent with the behavior of Intrepid and
Mira, super-computers at Argonne.
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We consider scientific applications running at the same time on a parallel
platform. The applications consist of series of computations followed by I/O oper-
ations. On a super-computer, the computations are done independently because
each application uses its own nodes. However, the applications are concurrently
sending and receiving data during their I/O phase on a dedicated I/O network.
The consequence of this I/O concurrency is congestion between an I/O node of
the platform and the file storage.

2.1 Parameters

We assume that we have a parallel platform made up of N identical unit-speed
nodes, each equipped with an I/O card of bandwidth b (expressed in bytes
per second). We further assume having “a centralized I/O system with a total
bandwidth B (also expressed in bytes per second). This means that the total
bandwidth between the computation nodes and an I/O node is N · b while the
bandwidth between an I/O node and the file storage is B, with usually N ·b � B.
We have instantiated this model for the Intrepid platform on Fig. 1.

Fig. 1. Model instantiation for the Intrepid platform [14].

We have K applications, all assigned to independent and dedicated com-
putational resources, but competing for I/O. For each application App(k) we
define:

– Its size: App(k) executes with β(k) dedicated nodes;
– Its pattern: App(k) obeys a pattern that repeats over time. There are n

(k)
tot

instances of App(k) that are executed one after the other. Each instance
consists of two disjoint phases: computations that take a time w(k), followed
by I/O transfers for a total volume vol(k)io . The next instance cannot start
before I/O operations for the current instance is terminated.
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We further denote by rk the time when App(k) is released on the platform and dk

the time when the last instance is completed. Finally, we denote by γ(k)(t), the
bandwidth used by a node on which application App(k) is running, at instant t.
For simplicity we assume just one I/O transfer in each loop. However, our model
can be extended to work with multiple I/O patterns as long as these are periodic
in nature or as long as they are known in advance.

2.2 Execution Model

As the computation resources are dedicated, we can always assume w.l.o.g that
the next computation chunk starts right away after completion of the previous
I/O transfers, and is executed at full (unit) speed. On the contrary, all appli-
cations compete for I/O, and congestion will likely occur. The simplest case
is that of a single periodic application App(k) using the I/O system in dedi-
cated mode during a time-interval of duration D. In that case, let γ be the
I/O bandwidth used by each processor of App(k) during that time-interval. We
derive the condition β(k)γD = vol(k)io to express that the entire I/O data vol-
ume is transferred. We must also enforce the constraints that (i) γ ≤ b (output
capacity of each processor); and (ii) β(k)γ ≤ B (total capacity of I/O system).
Therefore, the minimum time to perform the I/O transfers for an instance of

App(k) is time(k)io = vol
(k)
io

min(β(k)b,B)
. However, in general many applications will

use the I/O system simultaneously, whose bandwidth capacity B will be shared
among all these applications (see Fig. 2). Scheduling application I/O will guaran-
tee that the I/O network will not be loaded with more than its designed capacity.
Figure 2 presents the view of the machine when 3 applications are sharing the I/O
system. This translates at the application level to delays inserted before I/O
bursts (see Fig. 3 for application 2’s point of view).

Fig. 2. Scheduling the I/O of three periodic applications (top: computation, bottom:
I/O).

App(2) w(2) IO delay IO w(2) IO w(2) IO

Time

Fig. 3. Application 2 execution view
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This model is very flexible, and the only assumption is that at any instant,
all nodes assigned to a given application are assigned the same bandwidth. This
assumption is transparent for the I/O system and simplifies the problem state-
ment without being restrictive. Again, in the end, the total volume of I/O trans-
fers for an instance of App(k) must be vol(k)io , and at any instant, the rules of
the game are simple: never exceed the individual bandwidth b of each processor
(γ(k)(t) ≤ b for any k and t), and never exceed the total bandwidth B of the

I/O system (
K∑

k=1

β(k)γ(k)(t) ≤ B for any t).

2.3 Objectives

We now focus on the optimization objectives at hand here. We use the objectives
introduced in [14].

First, the application efficiency achieved for each application App(k) at time
t is defined as

ρ̃(k)(t) =

∑
i≤n(k)(t) w(k,i)

t − rk
,

where n(k)(t) ≤ n
(k)
tot is the number of instances of application App(k) that have

been executed at time t, since the release of App(k) at time rk. Because we
execute w(k,i) units of computation followed by vol(k,i)

io units of I/O operations

on instance I(k)
i of App(k), we have t− rk ≥ ∑

i≤n(k)(t)

(
w(k,i) + time(k,i)

io

)
. Due

to I/O congestion, ρ̃(k) never exceeds the optimal efficiency that can be achieved
for App(k), namely

ρ(k) =
w(k)

w(k) + time(k)io

The two key optimization objectives, together with a rationale for each of
them, are:

– SysEfficiency: where we maximize the peak performance of the platform,
namely maximizing the amount of operations per time unit:

maximize
1
N

K∑

k=1

β(k)ρ̃(k)(dk). (1)

– Dilation: where we minimize the largest slowdown imposed to each appli-
cation (hence optimizing fairness across applications):

minimize max
k=1..K

ρ(k)

ρ̃(k)(dk)
. (2)

Note that it is known that both problems are NP-complete, even in an (easier)
offline setting [14].
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3 Periodic Scheduling Strategy

In general, for an application App(k), n
(k)
tot the number of instances of App(k) is

very large and not polynomial in the size of the problem. For this reason, online
schedule have been preferred until now. The key novelty of this paper is to
introduce periodic schedules for the K applications. Intuitively, we are looking
for a computation and I/O pattern of duration T that will be repeated over
time (except for initialization and clean up phases), as shown on Fig. 4a. In this
section, we start by introducing the notion of periodic schedule and a way to
compute the application efficiency differently. We then provide the algorithms
that are at the core of this work.

Because there is no competition on computation (no shared resources), we
can consider that a chunk of computation directly follows the end of the I/O
transfer, hence we need only to represent I/O transfers in this pattern. The
bandwidth used by each application during the I/O operations is represented
over time, as shown in Fig. 4b. We can see that an operation can overlap with
the one of the previous pattern or the next pattern, but overall, the pattern will
just repeat.

Bw

Time

Init

· · ·

Pattern Clean up

c T+c 2T+c 3T+c (n−2)T+c (n−1)T+c nT+c

(a) Periodic schedule (phases)

Bw

Time0

0

T

B

vol
(1)
io vol

(1)
io vol

(1)
io

vol
(2)
io vol

(2)
io vol

(2)
io

vol
(3)
io vol

(3)
iovol

(4)
io

initW
(4)
1endW

(4)
1 initIO

(4)
1

(b) Detail of I/O in a period/pattern

Fig. 4. A schedule (above), and the detail of one of its regular pattern (below), where

(w(1) = 3.5; vol
(1)
io = 240; n

(1)
per = 3), (w(2) = 27.5; vol

(2)
io = 288; n

(2)
per = 3), (w(3) =

90; vol
(3)
io = 350; n

(3)
per = 1), (w(4) = 75; vol

(4)
io = 524; n

(4)
per = 1).

To describe a pattern, we use the following notations:

– n
(k)
per: the number of instances of App(k) during a pattern.

– I(k)
i : the i-th instance of App(k) during a pattern.

– initW
(k)
i : the time of the beginning of I(k)

i . So, I(k)
i has a computation interval

going from initW
(k)
i to endW

(k)
i = initW

(k)
i + w(k) mod T .
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– initIO
(k)
i : the time when the I/O transfer from the i-th instance of App(k)

starts (between endW
(k)
i and initIO

(k)
i , App(k) is idle). Therefore, we have

∫ initW
(k)

(i+1)%n
(k)
per

initIO
(k)
i

β(k)γ(k)(t)dt = vol(k)io .

Globally, if we consider the two dates per instance initW
(k)
i and initIO

(k)
i ,

that define the change between computation and I/O phases, we have a total of
S ≤ ∑K

k=1 2n
(k)
per distinct dates, that are called the events of the pattern.

We define the periodic efficiency of a pattern of size T :

ρ̃(k)per =
n
(k)
perw(k)

T
. (3)

For periodic schedules, we use it to approximate the actual efficiency achieved
for each application. The rationale behind this can be seen on Fig. 4. If App(k)

is released at time rk, and the first pattern starts at time rk + c, that is after
an initialization phase, then the main pattern is repeated n times (until time
n · T + rk + c), and finally App(k) ends its execution after a clean-up phase at
time dk = rk +c+n ·T +c′. If we assume that n ·T � c+c′, then dk −rk ≈ n ·T .
Then the value of the ρ̃(k)(dk) for App(k) is:

ρ̃(k)(dk) =

(
n · n

(k)
per + δ

)
w(k)

dk − rk
=

(
n · n

(k)
per + δ

)
w(k)

c + n · T + c′

≈ n
(k)
perw(k)

T
= ρ̃(k)per

where δ can be 1 or 0 depending whether App(k) was executed or not during the
clean-up or init phase.

3.1 PerSched: A Periodic Scheduling Algorithm

For details in the implementation, we refer the interested reader to the source
code available at https://github.com/vlefevre/IO-scheduling-simu.

The difficulties of finding an efficient periodic schedule are three-fold:

– The first one is that the right pattern size has to be determined;
– The second one is that for a given pattern size, the number of instances of each

application that should be included in this pattern need to be determined;
– Finally, the time constraint between two consecutive I/O transfers of a

given application, due to the computation in-between makes naive scheduling
strategies harder to implement.

https://github.com/vlefevre/IO-scheduling-simu
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Finding the right pattern size. A solution is to find schedules with different
pattern sizes between a minimum pattern size Tmin and a maximum pattern size
Tmax.

Because we want a pattern to have at least one instance of each applica-
tion, we can trivially set up Tmin = maxk(w(k) + time(k)io ). Intuitively, the larger
Tmax is, the more possibilities we can have to find a good solution. However this
also increases the complexity of the algorithm. We want to limit the number
of instances of all applications in a schedule. For this reason we chose to have
Tmax = O(maxk(w(k) + time(k)io )). We discuss this hypothesis in Sect. 4, where
we give better experimental intuition on finding the right value for Tmax. Exper-
imentally we observe (see the companion report [1]) that Tmax = 10Tmin seems
to be sufficient.

We then decided on an iterative search where the pattern size increases expo-
nentially at each iteration from Tmin to Tmax. In particular, we use a precision
ε as input and we iteratively increase the pattern size from Tmin to Tmax by a
factor (1 + ε). This allows us to have a polynomial number of iterations. The
rationale behind the exponential increase is that when the pattern size gets large,
we expect performance to converge to an optimal value, hence needing less the
precision of a precise pattern size. Furthermore while we could try only large
pattern sizes, it seems important to find a good small pattern size as it would
simplify the scheduling step. Hence a more precise search for smaller pattern
sizes. Finally, we expect the best performance to cycle with the pattern size. We
verify these statements experimentally in the companion report [1].

Determining the number of instances of each application. By choosing Tmax =
O(maxk(w(k) + time(k)io )), we guarantee the maximum number of instances of

each application that fit into a pattern is O

(
maxk(w

(k)+time
(k)
io )

mink(w(k)+time
(k)
io )

)

.

Instance scheduling. Finally, our last item is, given a pattern of size T , how to
schedule instances of applications into a periodic schedule.

To do this, we decided on a strategy where we insert instances of applica-
tions in a pattern, without modifying dates and bandwidth of already scheduled
instances. Formally, we call an application schedulable:

Definition 1 (Schedulable). Given an existing pattern

P = ∪K
k=1

(

n
(k)
per,∪n(k)

per

i=1 {initW(k)i , initIO
(k)
i , γ(k)()}

)

, we say that an application

App(k) is schedulable if there exists 1 ≤ i ≤ n
(k)
per, such that:

∫ initIO
(k)
i −w(k)

initW
(k)
i +w(k)

min

(

β(k)b,B −
∑

l

β(l)γ(l)(t)

)

dt ≥ vol(k)io (4)

To understand Eq. (4): we are checking that during the end of the computa-
tion of the ith instance (initW(k)i + w(k)), and the beginning of the computation
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of the i + 1th instance (initIO(k)i −w(k): this will represent the beginning of
computation of the i + 1th instance after the insertion of the new one, but cur-
rently it is just some time before the I/O transfer of the ith instance), there is
enough bandwidth to perform at least a volume of I/O of vol(k)io . We represent
it graphically on Fig. 5.

Bw

Time

vol
(1)
io 1 vol

(1)
io 2

vol
(2)
io 1 vol

(2)
io 2

initW
(2)
2 +w(2) initIO

(2)
2 −w(2)

Fig. 5. Graphical description of Definition 1: to insert an instance of App(2), we need
to check that the blue area is greater than vol

(2)
io with the bandwidth constraint. The

red area is off limit for I/O as it would be used for computations. (Color figure online)

With Definition 1, we can now explain the core idea of the instance schedul-
ing part of our algorithm. Starting from an existing pattern, while there exist
applications that are schedulable:

– Amongst the applications that are schedulable, we choose the application
that has the worse Dilation. The rationale is that even though we want to
increase SysEfficiency, we do it in a way that ensures that all applications
are treated fairly;

– We insert the instance into an existing scheduling using a procedure Insert-
In-Pattern such that (i) the first instance of each application is inserted so
that it minimizes its I/O transfer time, (ii) the other instances are inserted
just after the last inserted one.

With all of this in mind, we can now write PerSched (Algorithm 1), our
algorithm to construct a periodic pattern. For all pattern sizes tried between
Tmin and Tmax, we return the pattern with maximal SysEfficiency. For space
concerns, we present here a simplified version of the real PerSched algorithm
used in the simulations. You can find the minor improvement in the companion
report [1].

3.2 Complexity Analysis

Due to lack of space, we only give the complexity of our algorithm, the proof is
in the companion report [1].
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Theorem 1. Let nmax =
(

maxk(w
(k)+time

(k)
io )

mink(w(k)+time
(k)
io )

)

,

PerSched(K ′, ε, {App(k)}1≤k≤K) runs in

O

((⌈
1
ε

⌉

+
⌈

log K ′

log(1 + ε)

⌉)

· K2 (nmax + log K ′)
)

.

Note that in practice, both K ′ and K are small (≈ 10), and ε is close to 0,
hence making the complexity O

(
nmax

ε

)
.

Algorithm 1. Periodic Scheduling heuristic: PerSched

1 procedure PerSched(K′, ε, {App(k)}1≤k≤K)
2 begin

3 Tmin ← maxk(w(k) + time
(k)
io );

4 Tmax ← K′ · Tmin;
5 T = Tmin;
6 SE ← 0;
7 Topt ← 0;
8 Popt ← {};
9 while T ≤ Tmax do

10 P = {};
11 while exists a schedulable application do

12 A = {App(k)|App(k) is schedulable};

13 Let App(k) be the element of A minimal with respect to the

lexicographic order

(
ρ(k)

ρ̃
(k)
per

, w(k)

time
(k)
io

)
;

14 P ←Insert-In-Pattern(P, App(k));

15 if SE < SysEfficiency(P) then
16 SE ← SysEfficiency(P);
17 Topt ← T ;
18 Popt ← P
19 T ← T · (1 + ε);

20 return Popt

We estimate SysEfficiency of a periodic pattern, by replacing ρ̃(k)(dk) by ρ̃(k)
per in Eq. (1)

3.3 High-Level Implementation, Proof of Concept

We envision the implementation of this periodic scheduler to take place at two
levels:

(1) The job scheduler would know the application profiles (using solutions such
as Omnisc’IO [12]). Using the profiles, it would be in charge of computing a
periodic pattern every time an application enters or leaves the system.
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(2) Application-side I/O management strategies (such as [24,32,33]) then would
be responsible to ensure the correct I/O transfer at the right time by limiting
the bandwidth used by nodes that transfer I/O. The start and end time for
each I/O as well as the used bandwidth are described in input files.

4 Evaluation and Model Validation

Note that the data used for this section and the scripts to generate the figures
are available at https://github.com/vlefevre/IO-scheduling-simu.

In this section, (i) we assess the efficiency of our algorithm by comparing it to
a recent dynamic framework [14], and (ii) we validate our model by comparing
theoretical performance (as obtained by the simulations) to actual performance
on a real system.

We perform the evaluation in three steps: first we simulate behavior of appli-
cations and input them into our model to estimate both Dilation and Sys-
Efficiency of our algorithm (Sect. 4.4) and evaluate these cases on an actual
machine to confirm the validity of our model. Once the model is validated, we
perform extensive simulations.

4.1 Experimental Setup

The platform available for experimentation is Jupiter at Mellanox, Inc. To be
able to verify our model, we use it to instantiate our platform model. Jupiter is a
Dell PowerEdge R720xd/R720 32-node cluster using Intel Sandy Bridge CPUs.
Each node has dual Intel Xeon 10-core CPUs running at 2.80 GHz, 25 MB of
L3, 256 KB unified L2 and a separate L1 cache for data and instructions, each
32 KB in size. The system has a total of 64 GB DDR3 RDIMMs running at
1.6 GHz per node. Jupiter uses Mellanox ConnectX-3 FDR 56 Gb/s InfiniBand
and Ethernet VPI adapters and Mellanox SwitchX SX6036 36-Port 56 Gb/s FDR
VPI InfiniBand switches.

We measured the different bandwidths of the machine and obtained b =
0.01 GB/s and B = 3 GB/s. Therefore, when 300 cores transfer at full speed
(less than half of the 640 available cores), congestion occurs.

Implementation of scheduler on Jupiter. We simulate the existence of such a
scheduler by computing beforehand the I/O pattern for each application and
feeding it as input files. The experiments require a way to control for how long
they use the CPU or stay idle waiting to start their I/O in addition to the
amount of I/O they are writing to the disk. For this purpose, we modified the
IOR benchmark [30] to read the input files that provide the start and end time
for each I/O transfer as well as the bandwidth used. Our scheduler generates
one such file for each application. The IOR benchmark is split in different sets
of processes running independently on different nodes, where each set represents
a different application. One separate process acts as the scheduler and receives
I/O requests for all groups in IOR. Since we are interested in modeling the

https://github.com/vlefevre/IO-scheduling-simu
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Table 1. Details of each application.

App(k) w(k) (s) vol
(k)
io (GB) β(k)

Turbulence1 (T1) 70 128.2 32,768

Turbulence2 (T2) 1.2 235.8 4,096

AstroPhysics (AP) 240 423.4 8,192

PlasmaPhysics (PP) 7554 34304 32,768

Table 2. Number of applications
of each type launched at the same
time for each experiment scenario.

Set # T1 T2 AP PP

1 0 10 0 0

2 0 8 1 0

3 0 6 2 0

4 0 4 3 0

5 0 2 0 1

6 0 2 4 0

7 1 2 0 0

8 0 0 1 1

9 0 0 5 0

10 1 0 1 0

I/O delays due to congestion or scheduler imposed delays, the modified IOR
benchmarks do not use inter-processor communications. Our modified version
of the benchmark reads the I/O scheduling file and adapts the bandwidth used
for I/O transfers for each application as well as delaying the beginning of I/O
transfers accordingly.

We made experiments on our IOR benchmark and compared the results
between periodic and online schedulers as well as with the performance of the
original IOR benchmark without any extra scheduler.

4.2 Applications and Scenarios

In the literature, there are many examples of periodic applications. Carns
et al. [7] observed with Darshan the periodicity of four different applications
(MADBench2 [8], Chombo I/O benchmark [9], S3D IO [27] and HOMME [26]).
Furthermore, in our previous work [14] we were able to verify the periodicity
of gyrokinetic toroidal code (GTC) [13], Enzo [6], HACC application [15] and
CM1 [5].

Unfortunately, few documents give the actual values for w(k), vol(k)io and β(k).
Liu et al. [23] provide different periodic patterns of four scientific applications:
PlasmaPhysics, Turbulence1, Astrophysics and Turbulence2. They were also the
top four write-intensive jobs run on Intrepid in 2011. We chose the most I/O
intensive patterns for all applications (as they are the most likely to create I/O
congestion). We present these results in Table 1. Note that to scale those values
to our system, we divided the number of nodes β(k) by 64, hence increasing w(k)

by 64. The I/O volume stays constant.
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To compare our strategy, we tried all possible combinations of those appli-
cations such that the number of nodes used equals 640. That is a total of ten
different scenarios that we report in Table 2.

4.3 Baseline and Evaluation of Existing Degradation

We ran all scenarios on Jupiter without any additional scheduler. In all tested
scenarios congestion occurred and decreased the visible bandwidth used by
each applications as well as significantly increased the total execution time. We
present in Table 3 the average I/O bandwidth slowdown due to congestion for
the most representative scenarios together with the corresponding values for
SysEfficiency. Depending on the I/O transfers per computation ratio of each
application as well as how the transfers of multiple applications overlap, the
slowdown in the perceived bandwidth ranges between 25% to 65%.

Table 3. Bandwidth slowdown, performance and application slowdown for each set of
experiments

Set # Application BW slowdown SysEfficiency

1 Turbulence 2 65.72% 0.064561

2 Turbulence 2 63.93% 0.250105

AstroPhysics 38.12%

3 Turbulence 2 56.92% 0.439038

AstroPhysics 30.21%

4 Turbulence 2 34.9% 0.610826

AstroPhysics 24.92%

6 Turbulence 2 34.67% 0.621977

AstroPhysics 52.06%

10 Turbulence 1 11.79% 0.98547

AstroPhysics 21.08%

Interestingly, set 1 presents the worst degradation. This scenario is running
concurrently ten times the same application, which means that the I/O for all
applications are executed almost at the same time (depending on the small dif-
ferences in CPU execution time between nodes). This scenario could correspond
to coordinated checkpoints for an application running on the entire system. The
degradation in the perceived bandwidth can be as high as 65% which consid-
erably increases the time to save a checkpoint. The use of I/O schedulers can
decrease this cost, making the entire process more efficient.

4.4 Comparison to Online Algorithms

In this subsection, we present the results obtained by running PerSched and the
online heuristics from our previous work [14]. Because in [14] we had different
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heuristics to optimize either Dilation or SysEfficiency, in this work, the
Dilation and SysEfficiency presented are the best reached by any of those
heuristics. This means that there are no online solution able to reach them both
at the same time! We show that even in this scenario, our algorithm outperforms
simultaneously these heuristics for both optimization objectives!

The results presented in [14] represent the state of the art in what can
be achieved with online schedulers. Other solutions show comparable results,
with [34] presenting similar algorithms but focusing on dilation and [11] having
the extra limitation of allowing the scheduling of only two applications.

PerSched takes as input a list of applications, as well as the parameters,
presented in Sect. 3, K ′ = Tmax

Tmin
, ε. All scenarios were tested with K ′ = 10 and

ε = 0.01.

Simulation results. We present in Table 4 all evaluation results. The results
obtained by running Algorithm1 are called PerSched. To go further in our
evaluation, we also look for the best Dilation obtainable with our pattern (we
do so by changing line 15 of PerSched). We call this result min Dilation in
Table 4. This allows us to estimate how far the Dilation that we obtain is from
what we can do. Furthermore, we can compute an upper bound to SysEffi-
ciency by replacing ρ̃(k) by ρ(k) in Eq. (1):

Upper bound =
1
N

K∑

k=1

β(k)w(k)

w(k) + time(k)io

. (5)

The first noticeable result is that PerSched almost always outperforms
(when it does not, matches) both the Dilation and SysEfficiency attainable
by the online scheduling algorithms! This is particularly impressive as these

Table 4. Best Dilation and SysEfficiency for our periodic heuristic and online
heuristics.

Set Min Dilation Upper bound PerSched Online

SysEff Dilation SysEff Dilation SysEff

1 1.777 0.172 1.896 0.0973 2.091 0.0825

2 1.422 0.334 1.429 0.290 1.658 0.271

3 1.079 0.495 1.087 0.480 1.291 0.442

4 1.014 0.656 1.014 0.647 1.029 0.640

5 1.010 0.816 1.024 0.815 1.039 0.810

6 1.005 0.818 1.005 0.814 1.035 0.761

7 1.007 0.827 1.007 0.824 1.012 0.818

8 1.005 0.977 1.005 0.976 1.005 0.976

9 1.000 0.979 1.000 0.979 1.004 0.978

10 1.009 0.988 1.009 0.986 1.015 0.985
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objectives are not obtained by the same online algorithms (hence conjointly),
contrarily to the PerSched result.

While the gain is minimal (from 0 to 3%, except SysEfficiency increased
by 7% for case 6) when little congestion occurs (cases 4 to 10), the gain is between
9% and 16% for Dilation and between 7% and 18% for SysEfficiency when
congestion occurs (cases 1, 2, 3)!

The value of ε has been chosen so that the computation stays short. It seems
to be a good compromise as the results are good and the execution times vary
from 4 ms (case 10) to 1.8 s (case 5) using a Intel Core I7-6700Q. Note that the
algorithm is easily parallelizable, as each iteration of the loop is independent.
Thus it may be worth considering a smaller value of ε, but we expect no big
improvement on the results.

Model validation through experimental evaluation. We used the modified IOR
benchmark to reproduce the behavior of applications running on HPC systems
and analyze the benefits of I/O schedulers. We made experiments on the 640
cores of the Jupiter system. Additionally to the results from both periodic and
online heuristics, we present the performance of the system with no additional
I/O scheduler.
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Fig. 6. Performance for both experimental evaluation and theoretical (simulated)
results. The performance estimated by our model is accurate within 3.8% for peri-
odic schedules and 2.3% for online schedules.

Figure 6 shows the SysEfficiency (normalized using the upper bound in
Table 4) and Dilation when using the periodic scheduler in comparison with the
online scheduler. The results when applications are running without any sched-
uler are also shown. As observed in the previous section, the periodic scheduler
gives better or similar results to the best solutions that can be returned by the
online ones, in some cases increasing the system performance by 18% and the
dilation by 13%. When we compare to the current strategy on Jupiter, the Sys-
Efficiency reach 48%! In addition, the periodic scheduler has the benefit of
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not requiring a global view of the execution of the applications at every moment
of time (by opposition to the online scheduler).

Finally, a key information from those results is the precision of our model
introduced in Sect. 2. The theoretical results (based on the model) are within
3% of the experimental results!

This observation is key in launching more thorough evaluation via extensive
simulations and is critical in the experimentation of novel periodic scheduling
strategies.

Synthetic applications. The previous experiments showed that our model can be
used to simulate real life machines1. In this next step, we now rely on synthetic
applications and simulation to test extensively the efficiency of our solution.

We considered two platforms (Intrepid and Mira) to run the simulations with
concrete values of bandwidths (B, b) and number of nodes (N). The values are
reported in Table 5.

Table 5. Bandwidth and number of nodes of each platform used for simulations.

Platform B (GB/s) b (GB/s) N GFlops/node

Intrepid 64 0.0125 40,960 2.87

Mira 240 0.03125 49,152 11.18

The parameters of the synthetic applications are generated as followed:

– w(k) is chosen uniformly at random between 2 and 7500 s for Intrepid (and
between 0.5 and 1875 s for Mira whose nodes are about 4 times faster than
Intrepid’s nodes),

– the volume of I/O data vol(k)io is chosen uniformly at random between 100 GB
and 35 TB.

These values where based on the applications we previously studied.
We generate the different sets of applications using the following method: let

n be the number of unused nodes. At the beginning we set n = N .

1. Draw uniformly at random an integer number x between 1 and max(1, n
4096 −

1) (to ensure there are at least two applications).
2. Add to the set an application App(k) with parameters w(k) and vol(k)io set as

previously detailed and β(k) = 4096x.
3. n ← n − 4096x.
4. Go to step 1 if n > 0.

1 Note that in our previous work [14] we already showed that this model was also
fitting Intrepid and Mira.
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We then generated 100 sets for Intrepid (using a total of 40,960 nodes) and
100 sets for Mira (using a total of 49,152 nodes) on which we run the online
algorithms (either maximizing the system efficiency or minimizing the dilation)
and PerSched. The results are presented on Figs. 7a and b for simulations using
the Intrepid settings and Figs. 7c and d for simulations using the Mira settings.
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Fig. 7. Comparison between online heuristics and PerSched on synthetic applications.

We can see that overall, our algorithm increases the system efficiency in
almost every case. On average the system efficiency is improved by 16% on
intrepid (32% on Mira) with peaks up to 116%! On Intrepid the dilation has
overall similar values (an average of 0.6% degradation over the best online algo-
rithm, with variation between 11% improvement and 42% degradation). How-
ever on Mira in addition to the improvement in system efficiency, PerSched
improves on average by 22% the dilation!

The main difference between Intrepid and Mira is the ratio compute over
I/O bandwidth, that is the speed at which data is created/used over the speed at
which data is transfered. This ratio increases a lot (and hence incurring more I/O
congestion) on Mira. Hence we expect our algorithm to be a lot more efficient
on systems where congestion is even more critical.
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These two experiments show two things: (i) our algorithm improves a lot the
system efficiency compared to the online algorithms, without degrading too much
the dilation and (ii) our algorithm is expected to scale extremely well, that is
when the computing power increases faster than the bandwidth of the platform,
as we can see from the results on Mira.

5 Related Work

Performance variability due to resource sharing can significantly detract from
the suitability of a given architecture for a workload as well as from the over-
all performance realized by parallel workloads [31]. Over the last decade there
have been studies to analyze the sources of performance degradation and several
solutions have been proposed. In this section, we first detail some of the existing
work that copes with I/O congestion and then we present some of the theoretical
literature that is similar to our Periodic problem.

The storage I/O stack of current HPC systems has been increasingly iden-
tified as a performance bottleneck. Significant improvements in both hardware
and software need to be addressed to overcome oncoming scalability challenges.
The study in [19] argues for making data staging coordination driven by generic
cross-layer mechanisms that enable global optimizations by enforcing local deci-
sions at node granularity at individual stack layers.

While many other studies suggest that I/O congestion is one of the main
problems for future scale platforms [4,25], few papers focus on finding a solution
at the platform level. Some papers consider application-side I/O management
and transformation (using aggregate nodes, compression etc.) [24,32,33]. We
consider those work to be orthogonal to our work and able to work jointly.
Recently, numerous works focus on using machine learning for auto tuning and
performance studies [3,21]. However these solution also work at the application
level, do not have a global view of the I/O requirements of the system and they
need to be supported by a platform level I/O management for better results.

Some papers consider the use of burst buffers to reduce I/O congestion by
delaying accesses to the file storage, as they found that congestion occurs on a
short period of time and the bandwidth to the storage system is often underuti-
lized [23]. Note that because the computation power increases faster than the
I/O bandwidth, this assumption may not hold in the future and the bandwidth
may tend to be saturated more often and thus decreasing the efficiency of burst
buffers. [20] presents a dynamic I/O scheduling at the application level using
burst buffers to stage I/O and to allow computations to continue uninterrupted.
They design different strategies to mitigate I/O interference, including partition-
ing the PFS, which reduces the effective bandwidth non-linearly. For now, these
strategies are designed for only two applications.

The study from [28] offers ways of isolating the performance experienced by
applications of one operating system from variations in the I/O request stream
characteristics of applications of other operating systems. While their solution
cannot be applied to HPC systems, the study offers a way of controlling the
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coarse grain allocation of disk time to the different operating system instances as
well as determining the fine-grain interleaving of requests from the corresponding
operating systems to the storage system.

Closer to this work, online schedulers for HPC systems were developed such
as our previous work [14], the study by Zhou et al. [34], and a solution proposed
by Dorier et al. [11]. In [11], the authors investigate the interference of two
applications and analyze the benefits of interrupting or delaying either one in
order to avoid congestion. Unfortunately their approach cannot be used for more
than two applications. Another main difference with our previous work is the
light-weight approach of this study where the computation is only done once.

Our previous study [14] is more general by offering a range of options to
schedule each I/O performed by an application. Similarly, the work from [34]
also utilizes a global job scheduler to mitigate I/O congestion by monitoring and
controlling jobs’ I/O operations on the fly. Unlike online solutions, this paper
focuses on a decentralized approach where the scheduler is integrated into the
job scheduler and computes ahead of time, thus overcoming the need to monitor
the I/O traffic of each application at every moment of time.

As a scheduling problem, our problem is somewhat close to the cyclic schedul-
ing problem (we refer to Hanen and Munier [16] for a survey) and periodic
scheduling problems [2,29]. Namely there are given a set of activities with time
dependency between consecutive tasks stored in a DAG that should be executed
on N nodes. The main difference is that in cyclic scheduling there is no consid-
eration of a constant time between the end of the previous instance and the next
instance. More specifically, if an instance of an application has been delayed, the
next instance of the same application is not delayed by the same time. With our
model this could be interpreted as not overlapping I/O and computation.

6 Conclusion

Performance variation due to resource sharing in HPC systems is a reality and
I/O congestion is currently one of the main causes of degradation. Current stor-
age systems are unable to keep up with the amount of data handled by all appli-
cations running on an HPC system, either during their computation or when
taking checkpoints. In this document we have presented a novel I/O scheduling
technique that offers a decentralized solution for minimizing the congestion due
to application interference. Our method takes advantage of the periodic nature
of HPC applications by allowing the job scheduler to pre-define each applica-
tion’s I/O behavior for their entire execution. Recent studies [12] have shown
that HPC applications have predictable I/O patterns even when they are not
completely periodic, thus we believe our solution is general enough to easily
include the large majority of HPC applications.

We conducted simulations for different scenarios and made experiments to
validate our results. Decentralized solutions are able to improve both total sys-
tem efficiency by 32% and application dilation by 22% simultaneously compared
to dynamic state-of-the-art schedulers. Moreover, they do not require a constant
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daemon capable of monitoring the state of all applications, nor do they require
a change in the current I/O stack. One particularly interesting result is for sce-
nario 1 with 10 identical periodic behaviors (such as what can be observed with
periodic checkpointing for fault-tolerance). In this case the periodic scheduler
shows a 30% improvement in SysEfficiency. Thus, system wide applications
taking global checkpoints could benefit from such a strategy.

Future work: We believe this work is the initialization of a new set of techniques
to deal with the I/O requirements of HPC system. In particular, by showing
the efficiency of the periodic technique on simple pattern, we expect to open a
door to multiple extensions. We give here some examples that we will consider
in the future. The next natural directions is to take more complicated periodic
shapes for applications (an instance could be composed of sub-instances) as well
as different points of entry inside the job scheduler (multiple I/O nodes). This
would be modifying the Insert-In-Pattern procedure and we expect that this
should work well as well. Another future step would be to study how variability
in the compute or I/O volumes impact a periodic schedule or the impact of non
periodic applications. Finally we plan to model burst buffers and to show how
to use them conjointly with periodic schedules.

Our method is used for minimizing the congestion caused by concurrent I/O
accesses. However, the methodology and concepts are general and can be applied
to any resource sharing problem. We will continue to investigate the causes for
performance degradation in HPC applications and adapt our findings to each
case.
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Abstract. We describe the porting of PWscf (Plane-Wave Self Consis-
tent Field), a key component of the Quantum ESPRESSO open-source
suite of codes for materials modeling, to GPU systems using CUDA For-
tran. Kernel loop directives (CUF kernels) have been extensively used in
order to have a single source code for both CPU and GPU implemen-
tations. The results of the GPU version have been carefully validated
and the performance of the code on several GPU systems (both x86 and
POWER8 based) has been compared with traditional Intel multi-core
(CPU only) systems. This current GPU version can reduce the time-to-
solution by an average factor of 2–3 running two different input cases
widely used as benchmarks on small and large high performance com-
puting systems.

Keywords: DFT · Materials science · Eigensolver · GPU computing
CUDA Fortran

1 Introduction

Computer simulations of materials, in particular first-principle simulations based
on density-functional theory [9,13], pseudo-potentials, and plane-wave basis sets
[14], have become widespread in many fields of science as well as in industry.
These applications are run on a variety of computing systems, from desktop PCs
to very large parallel machines, depending on the physical system under inves-
tigation and the property to be computed. The search for better methodologies
and for better algorithms is a very active field of research.

Among the various packages implementing first-principle techniques, we focus
on Quantum ESPRESSO (QE) [6], an integrated suite of open-source software
released under the terms of the GNU General Public License (GPL). Programs
included in QE can perform many different kinds of calculations. The com-
plete distribution consists of approximately 520,000 lines of Fortran 95 source
code, some additional code written in C, auxiliary scripts, and Python utilities.
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 67–87, 2018.
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Due to accuracy requirements in electronic-structure computations, double pre-
cision floating point arithmetic is always used. In this study, we will concentrate
on the PWscf code which solves self-consistently the Kohn-Sham equations aris-
ing in density-functional theory.

QE is designed to work on a variety of computing architectures and has
evolved into a complex application with multiple layers of parallelism and key
dependencies on mathematical libraries. The suite is able to run in serial and
in parallel, targeting multi-core systems via multi-threaded libraries and explicit
OpenMP and distributed systems using the Message Passing Interface (MPI) [12]
and parallel libraries such as ScaLAPACK [2] or ELPA [11]. QE also supports
modern approaches to effectively exploit multi-core and many-core architectures
via hybrid parallelism based on MPI and OpenMP combined [17].

The need to accelerate time to discovery and tackle bigger and more chal-
lenging problems has motivated the first porting of QE to the programmable
Graphics Processing Unit (GPU). GPUs are remarkable pieces of technology
that have evolved into highly parallel many-core processors with floating-point
performance and memory bandwidth that far exceed that of today’s central pro-
cessing units (CPUs). GPUs are especially well suited to address problems that
can be expressed as data-parallel computations, where the same program is exe-
cuted on different data elements in parallel. The CUDA programming model
developed by NVIDIA has become the de-facto standard in GPU computing.

Today, the highest performing GPUs available on the market, suitable for sci-
entific computation in fields like materials science, computational fluid dynamics,
astrophysics and many others, are those within the NVIDIA Pascal family. In
this paper, we will focus our evaluation on several computing platforms based
on NVIDIA Pascal P100. This GPU is available in both PCI and SMX2 form-
factors, with slightly different technical specifications (such as peak memory
bandwidth and peak floating-point throughput). It is now possible to program
GPUs in several languages, from the original CUDA C to the new OpenACC
directive based compilers. QE is written in Fortran 90, so the natural choices for
a GPU port are either CUDA Fortran or OpenACC. We decided to use CUDA
Fortran as the structure of the code allows for the extensive use of CUF kernels,
making the effort comparable to an OpenACC port, while also retaining the
possibility of using explicit CUDA kernels when needed. In addition, the explicit
nature of data movement in CUDA Fortran allows us to better optimize the
CPU/GPU data movement and network traffic.

An initial GPU version of QE was developed several years ago [18] written in
CUDA C and bundled with the original Fortran source code. This version, still
available for reference and performance comparison [16], has been discontinued
due to the complexity of managing and maintaining a large code base of mixed
Fortran and CUDA C. This original version offloaded only limited portions of the
workload to GPUs. A brand new version compatible with QE version 6 has been
developed from the ground-up based on CUDA Fortran, focused on delivering
performance on both large-scale and dense GPU system configurations, with
all significant computation carried out on GPUs. As a consequence, unlike the
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original plugin, this new version requires the complete dataset to fit in GPU
memory.

The following section will first introduce the CUDA programming model and
then provide an overview of CUDA Fortran and some specific features used in
the porting effort. A detailed guide of the CUDA Fortran language extensions
and features used can be found in [4].

2 CUDA Programming Model and CUDA Fortran

CUDA-enabled GPUs can contain anything from a few to thousands of processor
cores which are capable of running tens of thousands of threads concurrently. To
allow for the same CUDA code to run efficiently on different GPUs with varying
specifications, a hierarchy of resources exists both in physical hardware, and in
available programming models. In hardware, the processor cores on a GPU are
grouped into multiprocessors. The programming model mimics this grouping: a
subroutine run on the device, called a kernel, is launched with a grid of threads
grouped into thread blocks. Within a thread block, data can be shared between
threads, and there is a fine-grained thread and data parallelism. Thread blocks
run independently of one another, which allows for scalability in the program-
ming model: each block of threads can be scheduled on any of the available
multiprocessors within a GPU, in any order, concurrently or sequentially, so
that a compiled CUDA program can execute on a device with any number of
multiprocessors. This scheduling is performed behind the scenes, the CUDA pro-
grammer needs only to partition the problem into coarse sub-problems that can
be solved independently in parallel by blocks of threads, where each sub-problem
is solved cooperatively in parallel by all threads within the block.

The CUDA platform enables hybrid computing, where both the host (CPU
and its memory) and device (GPU and its memory) can be used to perform
computations. A typical sequence of operations for a simple CUDA Fortran
code is:

– Declare and allocate host and device memory
– Initialize host data
– Transfer data from the host to the device
– Execute one or more kernels
– Transfer results from the device to the host

From a performance perspective, the bandwidth of the PCIe bus is over
an order of magnitude less than the bandwidth between the device’s memory
and GPU, and therefore a special emphasis needs to be placed on limiting and
hiding PCIe traffic. For MPI applications, data transfers between the host and
device are required to transfer data between MPI processes. Therefore, the use
of asynchronous data transfers, i.e. performing data transfers concurrently with
computation, becomes mandatory. This will be discussed in detail in Sect. 5.
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Data Declaration, Allocation, and Transfers. The first Fortran exten-
sion we discuss is the variable attribute device used when declaring data that
resides in GPU memory. Such declarations can be allocatable. The allocate()
command has been overloaded so allocation occurs on the device when the argu-
ment is declared with the device attribute. Similarly, the assignment operator
has been overloaded to perform data transfers between host and device memory
spaces.

TheFortran2003sourcedallocation construct,allocate(lhs,source=rhs),
is also supported and extended. When allocate is invoked with the optional
source= argument, lhs becomes a clone of rhs: it is allocated with the same shape
of rhs and each element of rhs is copied into the corresponding element of lhs. In
CUDA Fortran, if the lhs array was defined as a device array, lhs will be a GPU
array and the content from the CPU array rhs will be copied over the PCIe bus to
GPU memory.

The above methods of data transfer are all blocking transfers, in that con-
trol is not returned to the CPU thread until the transfer is complete. This is
sufficient in many cases, but prevents the possibility of overlapping data trans-
fers with computation on both the host and device. The CUDA API function
cudaMemcpyAsync() and its variants can be used to perform asynchronous trans-
fers between host and device which allows concurrent computation.

Kernels. Kernels, or subroutines that are executed on the device, are denoted
using the attributes(global) function attribute. Kernels are typically invoked
in host code just as any subroutine is called, with the exception that an additional
execution configuration specifying the number of thread blocks and number of
threads per thread block to be used is included. In the device code itself, the
automatically defined variables threadIdx, blockIdx, blockDim, and gridDim
can be used to map threads to data elements. Aside from this, kernel code looks
similar to the subroutines in the host code. The difference is that the kernel code
is executed by many threads in parallel.

CUF Kernels. CUDA Fortran can automatically generate and invoke kernel
code from a region of host code containing tightly nested loops. Such code is
referred to as a CUF kernel. A simple example of a CUF kernel is:

!$cuf kernel do <<<*,*>>>

do i=1, n

a_d(i) = a_d(i) + b

enddo

where the directive indicates that the following loop has to be performed on
the device. One can specify the execution configuration in the chevrons. In the
example above we use wild-cards and let the runtime system determine these
parameters. The arrays in CUF kernels, such as a d above, are required to be
device arrays; however, the scalar b can be a host variable which will be passed
as a kernel argument by value.
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One can port host code to the device using CUF kernels without modifying
the contents of the loops using the following programming convention. If the
arrays used in the loops are declared in a module, along with a device equivalent:

module m

...

real :: a(n)

real ,device :: a_d(n)

...

end module

then the rename option to the use statement can be invoked to allow conditional
execution of the code either on the host or device:

subroutine update

#ifdef USE_CUDA

use m, only: a => a_d

#else

use m, only: a

#endif

...

!$cuf kernel do <<<*,*>>>

do i=1, n

a(i) = a(i) + b

enddo

...

If the arrays used in the loops are explicitly passed to the subroutine, the only
change required is to add the device attribute:

subroutine update(a,n)

real:: a(n)

#ifdef USE_CUDA

attributes(device) :: a

#endif

...

!$cuf kernel do <<<*,*>>>

do i=1, n

a(i) = a(i) + b

enddo

...

Note that here the contents of the loop are unaltered. The only changes to
the host code are the conditional renaming of module variables or the additional
device attribute and the CUF kernel directive. The directive will appear as a
comment to the compiler if GPU code generation is disabled or if the compiler
does not support them (similar to the OpenMP directives that are ignored if
OpenMP is not enabled).
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3 Profiling Using NVTX

Profiling is an essential tool to identify parts of the code that may require addi-
tional tuning. When dealing with GPU codes, profiling is even more impor-
tant as new opportunities for better interactions between the CPUs and the
GPUs can be discovered. The standard profiling tools in CUDA, nvprof and
nvvp, are able to show the GPU timeline but do not present CPU activity.
The NVIDIA Tools Extension (NVTX) is a C-based API (application program
interface) to annotate the profiler time line with events and ranges and to cus-
tomize their appearance and assign names to resources such as CPU threads
and devices [10]. We have written a Fortran module to instrument CUDA/Ope-
nACC Fortran codes using Fortran ISO C bindings [3]. Using this module is
very simple: once the NVTX module is included, the developer only needs to
mark the region of interest with nvtxRangePush and nvtxRangePop calls. Calls
to nvtxStartRange("text") with a single argument will insert green markers
with a text label in the timeline. Different colors can be selected using an optional
integer parameter and the regions of interest can be nested.

Since QE already has a built-in performance report that summarizes the time
spent in the important parts of the code, we added the NVTX calls to the timing
functions. This allowed a minimal code change.

To eliminate profiling overhead during production runs, we use a preprocessor
variable to make the profiling calls return immediately. During the runs, one or
more MPI processes generate the traces that are later imported and visualized
with nvvp, the NVIDIA Visual Profiler.

Figure 1 shows a typical output for a PWscf run (when the mouse rolls over
the markers, it will indicate the name of the marker and information on the
kernel configurations).

4 Structure of the PWscf Code

As noted in the introduction, QE is not a monolithic program but a modular
suite of codes sharing common libraries and data structures. The two major
packages that are the foundation of every material science simulation work-flow
are PWscf (Plane-Wave Self-Consistent Field) and CP (Car-Parrinello).

In this GPU porting effort, PWscf has been the main focus. The basic compu-
tations of the PWscf code involve the calculation of the Kohn-Sham (KS) orbitals
and energies for isolated or extended/periodic systems and the complete struc-
tural optimizations of the microscopic (atomic coordinates) and macroscopic
(unit cell) degrees of freedom. The KS orbitals are quantum-mechanical states of
electrons under an effective Kohn-Sham potential. The solution is self-consistent:
the KS potential depends upon the KS orbitals via the charge density (the sum
of the square moduli of Kohn-Sham orbitals). This non-linear problem can be
solved with an iterative procedure (see [6], Appendix A.2). Figure 2 illustrates
the main activities performed in a typical execution of PWscf, where both high-
level structural optimization and self-consistency [8] are explored.
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Fig. 1. Segment of nvvp output for AUSURF112 case on the DGX-1 system with
8 GPUs and no GPUDirect (GDR) features enabled. “Markers and Ranges” section
contains colored markers corresponding to various NVTX ranges.

Fig. 2. Schematic view of PWscf internal steps.

In a plane-wave basis set, each KS orbital, ψ, is represented by a vector of
plane-wave coefficients. The self-consistency loop is an iteration over the charge
density, until input and output charge densities are the same within a predefined
threshold. The output charge density is computed from KS orbitals, obtained
by diagonalizing the matrix of the Hamiltonian operator, HKS , which depends
on the KS potential. By default, iterative diagonalization is completed using
a block Davidson method. The calculation of the charge density requires all
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occupied KS orbitals in the system. In a crystal, KS orbitals are classified by a
Bloch vector, or “k-point”, and by a “band” index. In practice, a discrete number
of k-points, ranging from one to a few tens or hundreds at most, is needed [5].
The diagonalization is separately performed for each k-point. The number of
occupied KS orbitals is determined by the number of electrons in the unit cell.

The iterative diagonalization and computation of charge density account for
the majority of the time spent in the solver, with the remaining cost attributed
to initialization and post processing routines. In the iterative diagonalization,
the time-consuming step is the direct calculation of products HKSψ. Note that
those products are not computed as matrix-vector products: the HKS matrix
would be far too large for all but the simplest systems. Using the so-called dual-
space technique, all computationally expensive terms can be expressed in terms
of the following basic operations:

– 3-dimensional Fast Fourier Transforms (FFT);
– basic linear-algebra operations on vectors and matrices, in particular matrix-

matrix multiplications (Level-3 BLAS);
– dense matrix diagonalization (LAPACK or ScaLAPACK).

The code offers a number of run-time options that affect the parallelization
and enable distributed operation. A list of options used in this study includes:

– k-point parallelization using -npool: distributes the k-points into NK pools,
allowing embarrassingly parallel execution of the iterative diagonalizations.
If N is the total number of MPI processes, there are NP = N

NK
processes per

pool.
– linear-algebra parallelization using -ndiag: distributes the solution of the sub-

space diagonalization, needed by the block Davidson algorithm, to ND ≤ NP

processes, enabling usage of ScaLAPACK or similar distributed linear solver
library.

These options can be applied simultaneously, resulting in a wide array of
possible combinations, not all valid or equally effective. The k-point paralleliza-
tion takes precedence, splitting all available processes into equal pools. Within
each pool, plane waves are distributed (this is also referred as plane-wave or
g-parallelism). This distribution of plane waves across multiple MPI processes
results in the need to perform parallel distributed 3D FFTs in order to trans-
form physical quantities (KS orbitals, charge density and potentials) between
reciprocal and real space. The FFT grids are generally of modest size (with
dimensions in the hundreds); however, the FFT computation is repeated many
times throughout the course of the calculation.

5 GPU Porting of Key Routines

While the full GPU porting effort involved the translation of a number routines
in the original CPU code to GPU either by the use of CUF directives or CUDA
kernels, we focus our discussion here on the routines that are considered most
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performance critical. Without delving too deep into the specifics, it is informative
to breakdown the major components of the PWscf iteration and identify the
key computational operations involved. The iterative diagonalization involves
the heavy use of three main computational components: a dense generalized
eigensolver to diagonalize the subspace projected linear system, double-precision
complex GEMMs which are mostly used to process the approximated eigenvalues
and eigenvectors and expand the basis, and distributed forward and inverse
3D FFTs used in the procedure to compute the local potential term in HKSψ
for each unconverged band using the dual-space technique. The computation
of the symmetrized charge density is dominated by the accumulation of wave-
function contributions to the charge from each k-point which involves numerous
distributed forward 3D FFT computations, one for each band.

Of the operations identified, the matrix-matrix multiplications are the most
straightforward and can be easily computed on GPU using the CUBLAS library.
The porting effort of the other computational components is more involved and
requires further discussion.

5.1 Forward and Inverse 3D FFTs

Forward and inverse 3D FFTs are required in both the iterative diagonalization
process and the computation of charge. As such, they account for a large share of
the total computational load. While the component-wise 1D FFT computations
can be carried out on GPU using simple calls to the CUFFT library, the complete
computation is typically distributed among a number of processes, requiring
transposition and communication of data across processes.

Currently, QE uses a 1D decomposition of the domain to distribute the 3D
FFTs. With this decomposition, a typical 3D FFT computation of dimension
NX × NY × NZ, distributed across NP processes in the pool, is completed in
the following steps:

1. Begin with contiguous columns of data along z-dimension. Each process con-
tains a NX/NP × NY × NZ sized chunk of the domain. Perform 1D FFTs
on the z-columns.

2. Transpose result into planes representation via MPI Alltoall or similar com-
munication pattern. After communication, each process contains a NX ×
NY × NZ/NP sized chunk of the domain.

3. Perform 2D FFTs on the xy-planes.

This process also occurs in reverse within the solver, but the forward description
is sufficient for this discussion.

The existing CPU implementation of this distributed 3D FFT procedure
is fairly basic, with a few characteristics making a direct translation to GPU
low performing. The first of these characteristics is that the FFT computation
is carried out in a loop over bands, with relatively small FFT computations
for each band. These small FFT computations are problematic on GPUs due
to the lack of available concurrent work to fully saturate the GPU resources,
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leading to inefficient device utilization and possible losses due to latency.
The second characteristic is that the existing procedure does not make any
attempt to overlap MPI communication with computation. This is especially
problematic for a GPU implementation where, when direct peer-to-peer access
between GPUs is unavailable, MPI communication buffers must be staged
through CPU memory. Therefore, in addition to efficiency losses due to non-
overlapped MPI communication, there are additional losses attributed to data
movement of the communication buffers between host and device memory.

To address these issues, a new batched FFT strategy was implemented for
GPUs which processes the 3D FFTs for several bands together. By processing
multiple 3D FFTs at a time, there is naturally more concurrent work avail-
able to fully saturate the GPUs which addresses the first issue with the original
implementation. In addition to this, further separation of batches into smaller
sub-batches yields an opportunity for pipelining data movement and computa-
tion between sub-batches which we leveraged in our implementation. As a further
optimization, the all-to-all communication pattern was carried out using non-
blocking MPI Isend and MPI Irecv. This is of particular importance on GPU
systems with fully-connected subsets of GPUs via NVLink, like the DGX-1,
where numerous peer-to-peer transfers can occur simultaneously via GPUDi-
rect (GDR). A simple method to enable these concurrent peer-to-peer transfers
is through the use of a CUDA-aware MPI distribution. With that being said,
early experimentation indicated that several issues arise in a number of avail-
able MPI implementations of these features, leading to suboptimal utilization of
available peer-to-peer bandwidth on systems with numerous peer-to-peer links.
To address this, an explicit handling of peer-to-peer communication was imple-
mented using CUDA inter-process communication (IPC) features, with non-peer
transfers handled by the linked MPI library. Lastly, by finely controlling the all-
to-all communication, self-to-self buffer transfers on the GPU can be handled
specifically to avoid any unneeded use of host resources. It should be noted that
batching the FFT computation does increase memory requirements, as multi-
ple FFT domains must be resident in device memory. For the benchmark cases
tested in this study, this was not a limiting factor; however, for larger cases, the
batch size can be adjusted to fit within available memory.

5.2 Solving the Eigenproblem

The final major computational component to discuss is the dense eigensolver,
which is used to solve the subspace projected problem generated through the
Davidson iteration process. In the existing CPU implementation, the dense eigen-
solve can either be computed sequentially, using one process in a k-point pool
group, or distributed across ND processes in the pool group using ScaLAPACK
or a similar distributed linear algebra package.

The initial GPU port targets only the serial path, using a custom developed
GPU eigensolver. A custom solver was chosen in lieu of several existing GPU-
enabled eigensolvers, like those available in MAGMA [7]. The custom GPU eigen-
solver was developed to specifically limit dependencies on CPU resources, using
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the CPU only for the solution of a reduced tridiagonal eigensystem using avail-
able functionality from Intel MKL or other LAPACK implementations. This is in
contrast to implementations available in MAGMA, where many more operations
are offloaded to the CPU, with a complex pipelining of CPU computation, GPU
computation, and data movement between the host and device. This is especially
beneficial on “fat” GPU nodes, nodes with a high ratio of GPU to CPU sock-
ets, where available CPU resources (host memory bandwidth, PCIe bandwidth
between host and device, available CPU FLOPS) per GPU can be limited. By
limiting the use of CPU resources, the custom eigensolver can achieve more con-
sistent performance across these types of node topologies, with less sensitivity to
available CPU resources per GPU. Even with node topologies with one full CPU
socket available per GPU, limiting these CPU dependencies has been shown to
improve performance of the custom solver relative to MAGMA and MKL [15].

While only the serial eigensolver path has been ported, the results of several
benchmark cases to be discussed in later sections will show that our custom
eigensolver, even operating on a single GPU, provides competitive performance
relative to high-performance distributed CPU solvers, like the ELPA solver [1].

6 Performance Comparison

Performance results were obtained on a number of GPU systems ranging in
size from a small workstation containing only two GPUs up to several large
GPU accelerated clusters, with reference CPU performance results obtained on
a private development cluster.

The reference CPU system (labeled “Broadwell” in the results) is a private
development system of a few hundred nodes fully based on Intel technology. Each
node has dual socket 18-core Intel Xeon E5-2697 v4 (Broadwell) CPUs, 128 GB
of system memory and one single Intel Omni-Path interconnect to provide 100
Gb/s connectivity for both parallel jobs and I/O.

The small systems used in this study were a workstation with a 6-core Intel
Core i7-5930K CPU with two 16 GB NVIDIA P100 GPUs and an NVIDIA
DGX-1 system. The DGX-1 contains dual socket 20-core Intel Xeon E5-2698 v4
(Broadwell) CPUs with eight 16 GB NVIDIA P100 GPUs, with fully-connected
clusters of four GPUs with NVLink associated with each CPU socket.

The large GPU systems used in this study were Piz Daint at the Swiss National
Supercomputing Centre (CSCS), SummitDev at the Oak Ridge National Labora-
tory (ORNL) and Wilkes-2 cluster at the University of Cambridge.

Piz Daint is a Cray XC50 with 5,272 nodes, each with a 12-core Intel Xeon
E5-2690 v3 (Haswell) CPU, 64 GB of system memory and a 16 GB NVIDIA
P100 GPU. The network uses Aries routing and communications ASICs and a
dragonfly network topology. Piz Daint is currently number three on the June
2017 Top500 list with 19.59PF and is one of the most efficient petaFLOP class
machines in the world: in the Green 500 list published in June 2017, the machine
was able to achieve 10398 MFLOP/s/W with level 3 measurements, the most
accurate available.
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The SummitDev system is an early access system that is one generation
removed from ORNL’s next big supercomputer, Summit. The system has 54 IBM
POWER8 S822LC nodes. Each node has dual socket IBM POWER8 CPUs, each
with 10 cores and 80 HW threads, 256 GB of system memory, and four 16 GB
NVIDIA P100 GPUs, with two NVLink connected GPUs per socket. In contrast
to the Intel based systems, the GPUs on SummitDev are connected to the CPUs
by NVLink 1.0 at 80 GB/s. The nodes are connected in a full fat-tree via EDR
InfiniBand. SummitDev has access to Spider 2, the OLCF’s center-wide Lustre
parallel file system, and also local NVMe disks.

Wilkes-2 is a new GPU cluster at the University of Cambridge composed of
90 Dell PowerEdge C4130 compute nodes. Each node has a single socket 12-core
Intel Xeon CPU E5-2650 v4 (Broadwell) CPU, 96 GB of system memory and
four 16 GB NVIDIA P100 GPUs all connected to the same PCIe root complex.
One single Mellanox Infiniband EDR card provides 100 Gb/s connectivity for
both parallel jobs and access to the Lustre storage. Wilkes-2 is completely based
on commodity hardware and it is currently number 100 on the June 2017 Top500
list with 1.193 PF and number 5 on the Green500 list with 10428 MFLOP/s/W.

6.1 Performance Analysis

Benchmark Cases and Details. For testing, two benchmark test cases were
used which span a range of typical use cases for the PWscf solver. The cases
used were:

– AUSURF112: computation of a surface of 112 gold atoms with two k-points.
Small case suitable for testing on workstations and small distributed systems.

– Ta2O5: computation of tantalum pentoxide with 96 atoms and 26 k-points.
Large case suitable for scaling from small to large distributed systems.

Detailed input specifications for these benchmark cases can be found in Table 1.
For cases run on GPU systems with Intel CPUs, multithreaded MKL was

used for any BLAS and LAPACK routines computed using the CPU, including
the tridiagonal eigensolve offloaded from the custom GPU eigensolver. On Sum-
mitDev, multithreaded ESSL was used in place of MKL; however, due to the
lack of a linkable implementation of ZSTEDC, the CPU tridiagonal eigensolver
routine we require for our GPU eigensolver, the program was linked against the
LAPACK implementation provided with PGI, with underlying BLAS routines
computed using ESSL.

For all runs on the reference CPU system, the eigenproblem is solved using
the distributed ELPA library, with ND set to the closest square number to half
the available MPI processes per pool group. Note that the number of available
MPI processes per pool group is reduced if OpenMP threads are enabled. The
results on the reference CPU system reported are the best-case results achieved
using a variety of possible configurations of OpenMP threads and ND values.

For all runs on the GPU systems, ND is always set to one since only the serial
eigensolver path was ported to GPU. For systems using Intel CPUs, OpenMP
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Table 1. Benchmark case input specifications

Parameter Benchmark case

AUSURF112 Ta2O5

Number of atomic species 1 2

Number of atoms 112 96

Number of electrons 1, 232 544

Number of Kohn-Sham states 739 326

Number of k-points 2 26

Number of plane waves 100, 747 477, 247

Kinetic energy cutoff 25 Ry 130 Ry

Charge density cutoff 200 Ry 520 Ry

Dimension of dense FFT grid {180, 90, 288} {198, 168, 220}

threading was enabled to improve the offloaded CPU tridiagonal eigensolve using
multithreaded MKL; as such, threads were distributed so that a larger portion of
available cores were bound to processes within pool groups performing the serial
eigensolve. On SummitDev, a similar thread distribution strategy was utilized
with multi-threaded ESSL; however, OpenMP was disabled elsewhere in the
code due to existing compatibility issues between the PGI and IBM OpenMP
runtimes.

On GPU systems with available peer-to-peer connections between GPUs, the
test cases were run both with and without using GPUDirect (GDR) features. For
all communication except the all-to-all in the distributed FFTs, these features
were enabled implicitly through the use of CUDA-aware MPI distributions, typ-
ically Open MPI or Cray MPICH on Piz Daint. On SummitDev, due to poor
performance of the CUDA-aware features of Spectrum MPI, all MPI communi-
cation is staged through the host. For the all-to-all communication, peer-to-peer
transfers were handled explicitly using our explicit CUDA IPC implementation,
with non-peer transfers handled by the linked MPI library.

Results and Discussion. Performance results for the AUSURF112 test case
can be found in Table 2, with timing breakdowns for the cases run with 4 GPUs
or CPUs and cases run with 8 GPUs or CPUs plotted in Figs. 3 and 4 respec-
tively. For accuracy considerations, the final converged total energy results on the
reference CPU system for this test case were within the range −11427.08997421
Ry to −11427.08997363 Ry. This compares well with the converged total energy
results obtained on the GPU systems, which ranged from −11427.08997417 Ry
to −11427.08997388 Ry.

Similarly, performance results for the Ta2O5 test case across the tested sys-
tems can be found in Table 3, with timing breakdowns for the cases using 8
GPUs or CPUs, 104 GPUs or CPUs, and 208 GPUs or CPUs plotted in Figs. 5,
6 and 7 respectively. For this test case, the final converged total energy results
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Table 2. PWscf time in seconds for AUSURF112 testcase

System NK Number of CPUs or GPUs used

2 4 8 16 32

Broadwell (CPU) 1 1142.24 642.03 369.66 272.00 266.20

2 1190.13 586.84 335.00 196.54 144.07

Piz Daint 1 286.24 219.91 171.80 – –

2 – 149.21 115.87 – –

DGX-1 1 347.82 271.37 210.67 – –

2 – 184.10 142.15 – –

DGX-1, GDR 1 270.21 190.12 174.75 – –

2 – 142.43 100.54 – –

Summit Dev 1 321.69 234.32 187.69 – –

2 – 176.50 128.85 – –

Summit Dev, GDR 1 308.52 227.74 188.39 – –

2 – 169.60 124.22 – –

Wilkes-2 1 395.26 326.71 227.61 – –

2 – 226.89 167.80 – –

Wilkes-2, GDR 1 300.03 226.13 203.59 – –

2 – 164.63 116.50 – –

Workstation 1 334.23 – – – –

Workstation, GDR 1 279.54 – – – –

on the reference CPU system were within the range −2370.63541806 Ry to
−2370.63541801 Ry. This also compares well with the converged total energy
results obtained on the GPU systems, which ranged from −2370.63541805 Ry
to −2370.63541804 Ry.

Considering the tabulated performance results in Tables 2 and 3, several
observations can be made. First, across most results for this case, it can be
noted that for a fixed number of CPU or GPU resources, increasing NK pro-
vides a performance improvement. This indicates that the program on both CPU
and GPU is more efficiently utilizing compute resources when there are fewer
resources assigned per pool. If the program scaled perfectly with the number of
resources per pool, the PWscf time, assuming the computation outside the scope
of the pool parallelization is negligible, should remain nearly fixed if the number
of pools is doubled. This is because the doubling of performance associated with
processing more k-points concurrently would be counteracted by a halving in
performance due to halving the number of compute resources per pool.

This reduction in efficiency can largely be attributed to the scaling char-
acteristics of the distributed 3D FFT computations and the eigensolver. This
can be observed clearly in the timing breakdowns plotted in Figs. 3, 4, 5, 6
and 7 when comparing the results for the different NK values on each system.



A Performance Study of Quantum ESPRESSO’s PWscf Code 81

Fig. 3. Breakdown of PWscf time for AUSURF112 using 4 GPUs or CPUs by system
and pool size.

Fig. 4. Breakdown of PWscf time for AUSURF112 using 8 GPUs or CPUs by system
and pool size.
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Table 3. PWscf time in seconds for Ta2O5 testcase

System NK Number of CPUs or GPUs used

8 26 52 104 208

Broadwell (CPU) 13 – – 1374.26 809.36 540.64

26 – 3055.46 1566.95 682.05 378.73

Piz Daint 1 5273.93 – – – –

2 3602.07 – – – –

13 – – 617.58 419.39 330.85

26 – – – 315.60 217.29

DGX-1 1 7253.06 – – – –

2 5008.94 – – – –

DGX-1, GDR 1 4139.18 – – – –

2 2701.00 – – – –

Summit Dev 1 4122.03 – – – –

2 3236.12 – – – –

13 – – 581.15 394.62 289.30

26 – – – 305.66 216.95

Summit Dev, GDR 1 3994.21 – – – –

2 2959.70 – – – –

13 – – 544.83 398.91 292.87

26 – – – 284.90 207.37

Wilkes-2 1 7394.40 – – – –

2 6111.83 – – – –

13 – – 1035.20 656.85 –

26 – – – 515.78 –

Wilkes-2, GDR 1 5032.51 – – – –

2 3264.26 – – – –

13 – – 572.43 460.16 –

26 – – – 273.86 –

First, on both the CPU and GPU systems, the distributed FFT operates more
efficiently when distributed across fewer processes. This is because distribution
across fewer processes on the tested systems generally resulted in improved all-to-
all communication performance. One reason for this performance improvement
is that a smaller group of processes can maintain better locality, resulting in a
larger percentage of communication occurring over higher bandwidth intra-node
connections, either within local CPU memory, or through more direct NVLink
or PCIe connections when using GDR features on GPU systems. In addition
to this, with fewer processes, the self to self buffer involved in the all-to-all,
which is a fast local memory movement, comprises a larger portion of the total
communication volume.
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Fig. 5. Breakdown of PWscf time for Ta2O5 using 8 GPUs or CPUs by system and
pool size.

Fig. 6. Breakdown of PWscf time for Ta2O5 using 104 GPUs or CPUs by system and
pool size.
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Fig. 7. Breakdown of PWscf time for Ta2O5 using 208 GPUs or CPUs by system and
pool size.

Continuing on this point, the benefits of using GDR on the GPU systems
with available peer-to-peer access can be substantial, with improved performance
in most cases on systems with GDR features utilized. As expected, systems with
more available peer-to-peer links between GPUs, like the DGX-1 and Wilkes-2
with fully connected clusters of four GPUs, benefit the most from these features;
in contrast, SummitDev, which has only connected pairs of GPUs, benefits less
in this case. Comparing plots in Figs. 3, 4, 5, 6 and 7 with and without GDR
enabled indicates that the use of GDR primarily improves the performance of
the distributed 3D FFTs. Additionally, it can be noted that on the DGX-1
and Wilkes-2, the FFT performance improves dramatically when the number of
pools results in pool groups with four GPUs, where all communication within
the all-to-all occurs over peer-to-peer connections.

Considering the eigensolver on the CPU, the scaling behavior aligns more
closely with what is expected, with a small edge in efficiency when distributed
across fewer processes. On the GPU systems, due to the use of a serial eigen-
solver, increasing the number of pools from one to two results in a halving of the
eigensolve time. Since the serial eigensolver is always computed using a single
GPU per pool group, the eigensolve time scales proportionally with the number
of pools. This trend can be observed in Figs. 3, 4, 5, 6 and 7 on all the GPU
systems. Consequently, for a given number of pools, the eigensolver performance
will remain fixed regardless of the number of GPUs assigned to the pool group,
leading to some loss in efficiency. Despite this, the serial GPU eigensolver outper-
forms the distributed ELPA library used on the reference CPU system for the
AUSURF112 cases, while maintaining competitive performance in the Ta2O5
cases.

Comparing the reference CPU system to the GPU system results, the GPU
systems are outperforming the reference CPU system in all tested configurations,
when comparing single CPU socket performance to single GPU performance,
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with relative speedups ranging from 2 to 4. Figures 3, 4, 5, 6 and 7 illustrate
where to attribute these gains in performance. In all cases, a large portion of the
improvement can be attributed to faster ZGEMM and DGEMM performance
on the GPU systems. This is clear, since on the GPU systems, the GEMM dom-
inated portion of the runtime outside of the FFT and eigensolve is significantly
reduced on the GPU systems relative to the reference CPU system. Beyond this,
additional performance improvements of varying degree can be attributed to the
FFT and eigensolver.

Comparing GPU system results, there is some observed variability in the per-
formance between the systems, which can be attributed to differences in node
topology (how many GPUs are associated with each CPU socket and how are
they connected) and node architecture (IBM POWER8 with host-to-device con-
nections via NVLink compared to Intel Xeon with host-to-device connections via
PCIe). As a first example, the slowest GPU system results occur on DGX-1 and
Wilkes-2 when GDR features are disabled. These two systems have the highest
ratio of GPUs to CPU sockets, with each system having four GPUs per CPU
socket. In addition to this, the GPUs on these system share PCIe lanes, with
two GPUs per PCIe root complex on the DGX-1, and four GPUs per PCIe
root complex on Wilkes-2. Thus, with GDR disabled, the all-to-all communi-
cation during the distributed 3D FFTs become bottlenecked by a lack of PCIe
bandwidth for transfer of communication buffers between the host and device
and CPU memory bandwidth to handle all the MPI traffic. With GDR features
enabled however, these bottlenecks are alleviated due to the substantial increase
in device-to-device bandwidth offered via peer-to-peer connections, freeing up
the CPU to handle only out of socket MPI traffic. This results in these systems
showing the highest performance of all the systems tested when GDR features
are enabled, demonstrating the importance of exploiting these peer-to-peer con-
nections when possible.

On a related note, due to higher memory bandwidth offered by the POWER8
CPU and greater host-device bandwidth through NVLink, SummitDev is less
impacted by these issues, leading to high distributed FFT performance even
without GDR. The higher host-to-device bandwidth also gives SummitDev an
improvement in distributed FFT performance over Piz Daint, due to faster trans-
fer of communication buffers between host and device.

While SummitDev maintains an edge in the distributed FFT performance in
non-GDR enabled cases, the eigensolver performance on this system lags behinds
that of the other GPU systems. As a generic LAPACK implementation of the
offloaded tridiagonal eigensolver was used for this system, the benefits of multi-
threading from ESSL was limited to the underlying BLAS calls, leading to a loss
in performance relative to a fully multi-threaded implementation. Otherwise,
the eigensolver performance is generally more consistent across the GPU sys-
tems using Intel CPUs with MKL, even with a varied number of cores available
to the GPUs performing the eigensolve.
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7 Conclusions

This paper presented development details and performance of PWscf on CPU
and GPU systems. The new GPU version produces accurate results and can
reduce the time-to-solution by an average factor of 2–3 relative to a reference
CPU system.

The custom GPU eigensolver developed for this code is very competitive with
both ScaLAPACK and ELPA, with little sensitivity to available host resources.
Improvements to performance via distribution over multiple GPUs and removing
existing CPU dependencies are being considered for future development.

The performance results in this study illustrate the importance of exploiting
peer-to-peer connectivity between GPUs when available, implicitly via CUDA-
aware MPI or explicitly using CUDA IPC or similar mechanisms. These features,
when properly utilized, can provide a substantial performance boost, particularly
on systems with high GPU to CPU socket ratios. The upcoming generation of
NVIDIA GPUs, Volta, with a faster memory subsystem and double precision
performance higher than 7 TeraFLOP/s, will help push the performance of this
code even further.
The code is available for download at https://github.com/fspiga/qe-gpu.
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2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{aleksandar.ilic,leonel.sousa}@inesc-id.pt

3 Atos, Paris, France

Abstract. In order to fulfill modern applications needs, computing sys-
tems become more powerful, heterogeneous and complex. NUMA plat-
forms and emerging high bandwidth memories offer new opportunities
for performance improvements. However they also increase hardware
and software complexity, thus making application performance analy-
sis and optimization an even harder task. The Cache-Aware Roofline
Model (CARM) is an insightful, yet simple model designed to address
this issue. It provides feedback on potential applications bottlenecks and
shows how far is the application performance from the achievable hard-
ware upper-bounds. However, it does not encompass NUMA systems
and next generation processors with heterogeneous memories. Yet, some
application bottlenecks belong to those memory subsystems, and would
benefit from the CARM insights. In this paper, we fill the missing require-
ments to scope recent large shared memory systems with the CARM.
We provide the methodology to instantiate, and validate the model on
a NUMA system as well as on the latest Xeon Phi processor equiped
with configurable hybrid memory. Finally, we show the model ability to
exhibits several bottlenecks of such systems, which were not supported
by CARM.

1 Introduction

The increasing demands of current applications, both in terms of computation
and amount of data, and the limited improvements of sequential performance of
the cores led to the development of large multi-core and many-core systems [1].
These platforms embed complex memory hierarchies, spanning from registers, to
private and shared caches, local main memory, and memory accessed remotely
through the interconnection network. In these systems, memory throughput is
not uniform anymore since the distance between processor and memory banks
varies. On such Non-Uniform Memory Access (NUMA) architectures, the way
data is allocated and accessed has a strong impact on performance [2]. Optimiz-
ing applications data locality for these machines requires a deep understanding
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 91–113, 2018.
https://doi.org/10.1007/978-3-319-72971-8_5



92 N. Denoyelle et al.

of hardware bottlenecks as well as application needs. Hence, modeling of memory
access performance is of high importance.

Recently, the latest Intel Xeon Phi processor, codename Knights Landing
(KNL) [3], entered the NUMA landscape with a processor divisible into 4 Sub-
NUMA Clusters (SNC-4 mode). Usually, NUMA platforms include several sock-
ets interconnected with processor-specific links (e.g. Quick Path Interconnect [4])
or by custom technologies such as SGI NUMAlink or Bull Coherent Switch [5].
However, the KNL interconnects NUMA clusters at the chip scale (through a
2D mesh of up to 36 dual-core tiles). Though the software may see both types of
system as similar homogeneous NUMA trees, the strong architectural differences
between NUMA sockets and KNL chips, described above, can impact application
performance in different ways and motivate the joint study of both systems.

Additionally, each cluster of the KNL may feature traditional DDR mem-
ory as well as 3D-stacked high-bandwidth memory named MCDRAM, that can
be used as a hardware-managed cache or as an additional software-managed
memory. Managing heterogeneous memories in runtime systems, applications or
compilers brings another level of complexity and makes performance analysis
harder and even more necessary. Hence, being able to understand the impact
of the memory hierarchy and core layout on application performance as well as
on attainable hardware upper-bounds is of high interest. This is especially true
when modeling the architecture and tuning applications to this kind of hardware.

To optimize the application execution and to infer their ability to fully exploit
the capabilities of those complex systems, it is necessary to model and acquire
the knowledge about the realistically achievable performance upper-bounds of
these systems and their components (including all levels of memory hierarchy
and interconnection network). The Cache-Aware Roofline Model [6] (CARM)
has been recently proposed (by some of the authors of this paper) as an insight-
ful model and an associated methodology aimed at visually aiding the perfor-
mance characterization and optimization of applications running on systems
with cache memory subsystems. CARM has been integrated by Intel into their
proprietary tools, and it is described as “an incredibly useful diagnosis tool (that
can guide the developers in the application optimization process), ensuring that
they can squeeze the maximum performance out of their code with minimal time
and effort.”1 However, the CARM only refers to systems based on a single-
socket computational node with uniform memory access, without considering
the NUMA effects that can also dramatically impact the performance.

To address these issues, we propose a new methodology to enhance the
CARM insightfullness and provide locality hints for application optimization on
contemporary large shared memory systems, such as multi-socket NUMA sys-
tems and Many Integrated Core processors equipped with heterogeneous memory
technologies and with various hardware configurations. The proposed model is
experimentally validated with high accuracy on both an Intel Knights Landing

1 Intel Advisor Roofline - 2017-05-12: https://software.intel.com/en-us/articles/intel-
advisor-roofline.

https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/intel-advisor-roofline
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and a dual-socket Broadwell Xeon multi-core host by relying on a set of micro-
benchmarks, a set of synthetic benchmarks, and finally proxy applications.

The remainder of this paper is organized as follows. Section 2 provides an
in-depth overview of the Cache Aware Roofline Model and our contribution to
make the model usable for NUMA and KNL architectures. Section 3 deep dives
into the methodology to measure hardware upper-bounds for these systems.
Sections 4 and 5 detail the model instantiation and validation for a Xeon E5-
2650L v4 NUMA system composed of 4 NUMA nodes and the latest Xeon Phi
many-core processor. Finally, Sect. 6 gives an overview of state-of-the-art related
works.

2 Locality Aware Roofline Modeling

The generic Roofline modeling [7] is an insightful approach to represent the
performance upper-bounds of a processor micro-architecture. Since computation
and memory transfers can be simultaneously performed, this modeling is based
on the assumption that the overall execution time can be limited either by the
time to perform computations or by the time to transfer data. Hence, from the
micro-architecture perspective, the overall performance can be limited either
by the peak performance of computational units or by the capabilities of the
memory system (i.e. bandwidth).

To model the performance limits of contemporary multi-core systems, the
Cache-Aware Roofline Model (CARM) [6] explicitly considers both the through-
put of computational unit and the realistically achievable bandwidth of each
memory hierarchy level2. With this purpose, the CARM (see Fig. 1) includes
several lines representing the system upper-bounds (Roofs). Oblique lines (rep-
resenting the memory bandwidths) cross the horizontal lines (representing the

Fig. 1. CARM chart of an hypothetical compute node composed of one cache level and
NUMA memories.

2 Main memory and cache levels.
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peak compute performance), bounding hereby the area of application charac-
terization by respectively memory and compute regions. The CARM introduces
a detailed and meticulous methodology for platform benchmarking from which
this paper inherit and extends the content to NUMA platforms.

In contrast to the other roofline approaches [7], the CARM perceives the
computations and memory transfers from a consistent micro-architecture point
of view, i.e. cores where the instructions are issued. Hence, when characterizing
the applications, the CARM relies on the performance (in GFlop/s) and the true
Arithmetic Intensity (AI), i.e. the ratio of performed compute operations (flops)
over the total volume of requested data (in bytes). The CARM is presented in
the log-log scale, where the x-axis refers to the AI (in flops/byte) and the y-axis
to the performance (in GFlop/s).

Our Contribution: Extending the CARM to NUMA and KNL

From the application perspective, the memory of modern computing systems is
abstracted as a flat address space. However, the memory architecture of contem-
porary large compute nodes is made of remote and/or heterogeneous memories.
In order to fully exploit those system capabilities, current software interfaces [8–
10] require an explicit data allocation policy and/or thread binding policy to
reach good performance [11,12]. Figure 2 depicts such a system, including two
sockets with their local memory (also named NUMA node) and a set of cores. On
these systems, the bandwidth is not uniform across the network, and it influences
memory access performance. Hence, when modeling, the source and destination
of memory access (i.e. from a core to a NUMA node, e.g. local access: Fig. 2a

Fig. 2. Modeled memory access patterns.
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or remote access: Fig. 2b) should be taken into account to understand applica-
tion performance. Moreover, such large scale systems contain a high amount of
cores whose pressure on NUMA nodes can cause data accesses to be serialized
when all of them are accessing a single memory. We qualify this situation as
Contention and depict it in Fig. 2c. Finally, the network connecting the NUMA
nodes to the cores can be subject to Congestion, when several data paths from
the memory to the cores, cross the same link. In Fig. 2d, we consider the case
where data is balanced on memories, i.e. there is no contention, however, each
core will access data located over the whole system NUMA nodes and will even-
tually create Congestion because of the interleaved data paths. In the remainder
of the paper, we use the term Cluster to refer to a set of neighbor cores and their
local NUMA node(s)3.

CARM metrics are consistent across the whole memory hierarchy of a single
cluster (as illustrated for the first cluster in Fig. 2a). However, from the core per-
spective, memory access performance is not consistent across the system: bytes
transferred from one NUMA node to a cluster are not transferred at the same
speed to other clusters. This implies that the legacy CARM can only handle a
single multi-core cluster, and fails to characterize accurately the cases in Figs. 2b,
c, and d. Yet, as Fig. 1 shows, without proper (here remote) bandwidth repre-
sentation in the CARM, locality issues are not obvious since the performance
loss can come from many different sources: no vectorization, sparse memory
access, etc.

Thus, we propose to extend the CARM with the Locality Aware Roofline
Model (LARM), providing the lacking NUMA insights, represented in Fig. 2
and characterizing the three main throughput bottlenecks, characteristic of this
type of hardware: non uniform network bandwidth (Fig. 2b), node contention
(Fig. 2c), and network congestion (Fig. 2d). For this purpose, the LARM iter-
ates the CARM over all the clusters of a computing system and keeps local
consistency while minimizing the changes over the legacy model and taking into
account the non-uniform aspect of the system. It follows that the LARM chart is
a set of CARM charts, i.e. one chart per cluster, characterizing hereby the system
performance upper-bounds under all perspectives. In each subsequent chart, the
LARM includes three new groups of roof characterizing above mentioned bottle-
necks. The remote roofs set the reference upper-bound of achievable bandwidth
from remote nodes to a cluster. The congestion roof set the bandwidth achieved
by a cluster when all the system cores are accessing simultaneously memory
regions located across every NUMA nodes in a round-robin fashion. Finally the
contention roofs characterize a cluster granted bandwidth when the whole system
cores are accessing simultaneously a single NUMA node. Unlike usual CARM
roofs, the new roofs stand as lower-bound roofs because they represent a refer-
ence below top expectations, i.e. local memory access roofs. However, as for the

3 On usual platforms, a cluster is identical to the widely-used definition of a NUMA
node. On KNL, there can exist two local NUMA nodes near each core (DDR and
MCDRAM), hence two NUMA nodes per cluster.
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CARM, the closer an application is to a roof, the more likely this application is
to be bound by this hardware bottleneck.

To the best of our knowledge, there is no work using the CARM to character-
ize NUMA platforms. Hence, beside the contribution of extending the CARM,
we present the following work in the remainder of this paper: (1) we imple-
mented a tool based on CARM methodology and the proposed improvements to
automatically instantiate and validate the model on multi-socket systems and
Knights Landing (KNL) Xeon Phi (for various memory configurations); (2) we
thus validate the new model with high accuracy micro-benchmarks, for both
systems; (3) We also demonstrate the model usability with synthetic bench-
marks from the BLAS package; and (4) we exhibit the model ability to pinpoint
data locality issues on MG from the NAS parallel benchmarks [13] and Lulesh
proxy-application [14], where several data allocation policies are applied.

3 Methodology for Memory and Micro-architecture
Throughputs Evaluation

Initially, the Cache-Aware Roofline Model is built with two sets of parameters:
micro-architecture instruction throughput and the attainable memory band-
width. The former provides the peak floating point performance and L1 band-
width while the latter is used to construct a set of local memory roofs (i.e. L2,
L3, local DRAM bandwidths). The Locality-Aware Roofline model, adds the
perspective dimension and rooflines for several memory access patterns which
require the ability to detect and model the system topology. For this purpose,
we leverage hwloc [9] hierarchical representation of the machine to automatically
enrich the CARM with the herein proposed memory roofs.

The micro-architecture throughput can be obtained whether by relying on
the theoretical hardware properties, or by extensively benchmarking the micro
architecture. In the former case, the peak floating point performance can be
computed as:

Fpeak
︸ ︷︷ ︸

GFlop/s

= Throughput
︸ ︷︷ ︸

Instructions/Cycle

∗ Flops

Instruction
∗ N ∗ Frequency

︸ ︷︷ ︸

GHz

, (1)

where the Throughput is the number floating point instruction retired per cycle
by one core, Flops/instruction is the number of floating point operations per-
formed in each instruction (e.g. 2 for FMA instruction and 1 for ADD instruction),
and N is the number of cores considered. Similarly, the peak bandwidth of the
Level 1 cache can be computed as:

Bandwidth
︸ ︷︷ ︸

GByte/s

= Throughput
︸ ︷︷ ︸

Instructions/Cycle

∗ Bytes

Instruction
∗ N ∗ Frequency

︸ ︷︷ ︸

GHz

. (2)

Sometimes, theoretical throughput, provided by the constructor, and experimen-
tal throughput measured from highly tuned software do not match, or even the
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former is not publicly available. For this reason, we use the prior CARM method-
ology to implement highly optimized micro-benchmarks and build the proposed
roofs. Our methodology for NUMA-specific bandwidth evaluation relies on a
hierarchical description of the system topology as provided by the hwloc library,
to characterize the system bandwidth in a pertinent way. We focus on deep
and heterogeneous memory level evaluation, rather than on micro-architecture
throughput evaluation and caches already studied in [6]. Since the model needs
to provide insights on possible bottlenecks of NUMA systems, the model includes
the bandwidth roofs described in Sect. 2 and Fig. 2, i.e. local accesses, remote
accesses, accesses with congestion and accesses with contention. In order to char-
acterize local and remote bandwidths of a cluster in the model, a benchmark
performs contiguous memory access, as in the CARM, but on each NUMA node
individually. One thread per core of the target cluster is spawned, then for each
roof (i.e. local and remotes), the workload is iteratively allocated on each NUMA
node, as depicted in Figs. 2a and b. We do not look at individual links, but
rather at pairs of cores+NUMA node, even though sometimes there are multi-
ple (unknown) hops between clusters. The contended bandwidths are obtained
similarly to the local and remote bandwidths, but loading the whole system
cores with threads (Fig. 2c). Each cluster granted bandwidth is associated with
the source contended node to build the contended roofs on each cluster chart.
Finally, the congested bandwidth is obtained by doing memory access from all
the cores, contiguous on the virtual address space, but with pages physically
allocated in a round-robin fashion across the system NUMA nodes, and with a
private data set for each thread. Once again, the bandwidth perceived by each
cluster is modeled as the congested roof in its local CARM. Though we call it
congestion, it differs from the official definition4. However it fits a more practical
and easy to reproduce memory access pattern, i.e. the one implied by using the
linux interleave memory allocation policy.

In this paper, we only show the bandwidth of LOAD instructions because it
suits better our use cases, however we are able to also measure STORE, non-
temporal STORE and mix of those for all memory levels with our tool.

4 Model Instantiation and Validation on Multi-socket
System

In order to set up and validate the model, we use a dual-socket NUMA system
named Joe0. It is composed with two Broadwell Xeon E5-2650L v4 processors
(at 1.7 GHz), configured with the cluster-on-die mode and exposing the 4 NUMA
nodes to the system. Each NUMA node of the system topology (Fig. 3) imple-
ment 7 cores, here with hyperthreading disabled, and is pictured on Fig. 3.

4 Network congestion in data networking and queueing theory is the reduced quality
of service that occurs when a network node is carrying more data than it can handle.
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Fig. 3. hwloc topology representation of a dual-socket Xeon E5-2650L v4.

4.1 Platform Evaluation and Model Instantiation

By relying on the testing methodology proposed in [6], it was possible to reach
near theoretical compute and L1 cache throughputs on the Intel Broadwell micro-
architecture, as presented in Table 1. Each core throughput is derived using the
number of operations per instruction and the processor frequency to obtain the
peak FMA floating point performance (reaching 190 GFlop/s for a single cluster).

Table 1. Joe0 core instructions throughput (Instructions/Cycle)

Instruction throughput Load Store ADD MUL FMA

Theoretical 2 1 1 2 2
Experimental 1.99 0.99 0.99 1.99 1.99

As presented in Sect. 3, the next evaluation aims to extensively benchmark
the memory subsystem with several memory access patterns, i.e. the remote/lo-
cal bandwidth between each pair (cluster, NUMA node), as well as the contend-
ed/congested ones. The results obtained are presented in Table 2 for the first
NUMA cluster of the system. Unless specified, the model presented herein is
restricted to a single NUMA cluster, due to the bandwidth symmetry between
clusters.

The obtained measures (Tables 1 and 2) are then used to build the proposed
model depicted in Fig. 4 for the first cluster of Joe0. Besides the roofs for local
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Table 2. Joe0 bandwidth roofs to the first NUMA cluster, i.e. NUMANODE:0.

Memory level Bandwidth (GByte/s)

L1 760.1
L2 309.2
L3 154.0
NUMANODE:0 (local) 36.1
NUMANODE:1 (remote) 17.5
NUMANODE:2 (remote) 15.0
NUMANODE:3 (remote) 14.3
NUMANODE:0 (contended) 16.7
NUMANODE:1 (contended) 8.3
NUMANODE:2 (contended) 6.8
NUMANODE:3 (contended) 6.2
All NUMANODES (congested) 18.1

caches, this CARM chart also includes all the proposed memory roofs, namely
local, remote, contended and congested roofs.

4.2 Model Validation

WithMicro-benchmarks. This validation step consists inmicro-benchmarking
the system with several arithmetic intensities, i.e. interleaving the memory and
compute instructions used in the above platform evaluation. It assesses code ability
to reachmeasured roofswhileperformingbothcomputationsandmemoryaccesses.
We measure the roofs fitness as the relative root mean squared error5 of validation
points to the roof performance for a realistic range of arithmetic intensities. The
errors and deviation (too small to be visible) for each validation point, and for each
bandwidth roof of a single cluster of the system are presented in Fig. 4. As the error
computed in the legend is small (less than 2% in average for every roof), the vali-
dation enforces that measured bandwidths are attainable by programs of various
arithmetic intensities.

With Synthetic Benchmarks. Figure 5 shows the LARM instantiated on
the first socket of Joe0. For each NUMA cluster a CARM chart includes local
cache bandwidths, local node bandwidth, the bandwidth under congestion6 and

5 The error is computed as 100
n

×
√∑

i=1..n

(
yi−ŷi

ŷi

)2

where yi is the validation point at

a given arithmetic intensity, and ŷi is the corresponding roof.
6 Remote memory bandwidths are very close to congested bandwidths on this system

and we omit the former in the chart to avoid confusion.
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Fig. 4. CARM validation of one NUMA cluster of Joe0 platform. Validation points are
visible along the roofs. Finally the model error for each roof is in the legend.

Fig. 5. LARM chart of linear algebra kernels on one socket of Joe0 system.
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the bandwidth of the first NUMA node under contention (which is different
whether we see it from the first or the second cluster). Figure 5 also illustrates
the memory-bound ddot kernel and the compute-bound dgemm kernel from the
BLAS package, under several scenarios, showing the model ability to pinpoint
locality issues. For each scenario, threads are bound in round-robin fashion and
data allocation policy is one of: firsttouch (i.e. data in memory close to threads),
interleave (i.e. data spread on all nodes), Node:0 (i.e. data on a single memory
node). Each thread performs the same amount of work though the allocation
policy on a single node may create an asymmetry when observing their perfor-
mance across different NUMA nodes (Fig. 5). The modeled applications were run
on the full system, i.e. 28 threads (1 thread per core), however, only the model
for a single socket is presented to avoid redundancy. On the chart (Fig. 5), ddot
and dgemm are represented each with their own constant arithmetic intensity
(i.e. the code is unchanged between scenarios) but with several performances
(changed runtime parameters).

The ddot case with allocation on Node:0 has a different performance whether
we look at the first or the second cluster. Hence, the kernel characterization shows
the model ability to spot asymmetries. Even if asymmetries do not originate from
the instructions, they can come from the data distribution and significantly
impact the performance [15]. Congested and contended roofs also successfully
characterize similar bottlenecks in ddot application. Indeed, in Fig. 5, ddot ker-
nel with interleaved access (i.e. inducing congestion) and access on a single node
(i.e. inducing contention) match with appropriate memory bandwidths. Opti-
mized compute-intensive applications do not suffer from locality issues. Indeed,
as presented in Fig. 5, the dgemm execution is not affected by non-uniform mem-
ory access, since it achieves the same performance on each node even if data is
allocated with different policies. This can be attributed the high cache efficiency
of the kernel allowing the system to prefetch the required data into the cache
before it is actually required, thus avoiding the local and remote memory access
bottlenecks.

In a nutshell, data allocation policies applied to synthetic benchmarks affects
the performance in a way that is foreseeable. It matches expectations from their
characterization in the LARM, thus validating the proposed roofs relevance.

With NAS MG Parallel Benchmark. This step aims to show that the model
insights can help to flush out performance bottlenecks, i.e. application charac-
terization relatively to the new roofs can help to pinpoint potential execution
bottlenecks. For this purpose, we ran a C version7 of the NAS-3.0 MG bench-
mark with one thread per core, bound in a round-robin fashion on the system
cores. On this system, we extract the LARM metrics with hardware counters
at the core level, and aggregate the results at the Cluster level. As presented in
Fig. 6, three functions from MG benchmark are characterized on the first cluster
of the system with several memory allocation strategies. In the first scenario, the
default linux policy firsttouch is used for data allocation. The characterization of
7 https://github.com/benchmark-subsetting/NPB3.0-omp-C.

https://github.com/benchmark-subsetting/NPB3.0-omp-C
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these functions (labeled with firsttouch) reach near contention roof performance,
and suggest to use the interleave allocation policy to balance memory accesses
over the NUMA nodes in order to decrease the contention. Indeed, the latter
policy increases dramatically the performance above the congestion roof. How-
ever, it is unlikely that the interleave policy surpasses the firsttouch policy with
such a significance. Hence this observation also suggests that firsttouch actu-
ally allocates memory on a single node. Indeed, once parallelized, the previously
sequential memory allocations, enable the firsttouch policy to allocate data on
all NUMA nodes near appropriate threads, and improve again the performance
(labeled with enhanced firsttouch) compared to the interleave policy.

L1D_LOAD  

L3_LOAD  
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Fig. 6. NAS-3.0 MG functions characterization on Joe0 first cluster.

To sum up, the LARM characterization of the memory-bound MG bench-
mark, matches the contended roofs when data-allocation is serialized, i.e. data
is allocated on a single contented node, and improves above the congestion roof
once the contention issue is solved, validating hereby the proposed roofs.

5 Model Instantiation and Validation on Knights Landing
Processor

When in SNC-4 mode [3], the KNL is a special case of a multi-Socket system
where each socket has an additional fast memory (MCDRAM) to the conven-
tional memory (DRAM also specified as NUMA:i), which is addressable in Flat
mode or configurable as a last level cache in Cache mode. Whether the flat mode
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Fig. 7. hwloc model of KNL topology in SNC-4 flat mode. Only the fourth cluster is
detailed, for clarity. Other clusters have a similar topology.

Fig. 8. Architecture of the Knights Landing mesh interconnect with DRAM and
MCDRAM memory controllers (Source: Intel). Only 32 of these 38 tiles are actually
enabled in our experimentation platform. The amount of tiles enabled can reach up to
36 tiles, though 38 are present.
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or the cache mode is used, the system may yield different bandwidths, perfor-
mance and execution time, and thus, the proposed model changes accordingly.

For our experiments, we used Knights Landing 7230 chips, with 64 cores at
1.3 GHz. The topology of the KNL with SNC-4 flat configuration is shown in
Fig. 7 where the complete topology is provided for the last cluster. The mesh
interconnection network (Fig. 8) between L2 tiles of the chip is widely different
from conventional multi-socket system [16] and motivates additional observations
compared to the previous system.

5.1 Platform Evaluation and Model Instantiation

By relying on the micro-architecture evaluation methodology from Sect. 3, the
highest achievable throughput with carefully design micro-benchmarks is slightly
lower than the theoretical values (see Table 3). However a performance of
2.2 TFlop/s for 64 cores is still achieved.

Table 3. Theoretical and experimental instruction throughput (in instructions per
cycle) for a single core of the KNL platform.

Instruction Load Store ADD MUL FMA

Theoretical throughput 2 1 2 2 2
Experimental throughput 1.66 0.96 1.70 1.70 1.70

Table 4 presents the bandwidth evaluation between clusters solo (i.e. by fully
exercising memory units with a single cluster) for the flat mode. Only the evalu-
ation for the first two clusters is presented since the others yield a similar band-
width. Contrary to the multi-socket system, remote and local DRAM attain
similar bandwidths which suggests high efficiency of the KNL interconnection
network. However, significant and less predictable variations can be noticed for
MCDRAM, which would require the disclosure of more architectural details to
fully explain the mesh behavior.

Table 4. KNL load bandwidth (GByte/s) from first and second clusters memories to
cores in flat mode. Other clusters are omitted because of similar results.

From
NUMA:0 MCDRAM:1 NUMA:2 MCDRAM:3

To Cluster:0 38.1 ± 0.1 92.0 ± 0.5 38.0 ± 0.8 86.6 ± 0.4
Cluster:1 38.1 ± 0.1 91.5 ± 0.4 38.2 ± 0.1 92.8 ± 0.4 . . .
Cluster:2 37.8 ± 0.1 90.6 ± 0.5 38.1 ± 0.1 83.7 ± 0.6
Cluster:3 38.0 ± 0.2 82.8 ± 0.4 38.0 ± 0.1 90.8 ± 0.3
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In Table 5, we also compare the load bandwidth granted to the first cluster
when the data set is allocated into the first cluster DRAM and MCDRAM under
several scenarios. The very first line is the reference when the cluster runs solo
as in Table 4 but comparing the cache and flat modes. In the cache mode, the
bandwidth of both types of memories (i.e. DRAM and MCDRAM) decreases,
probably due to the overheads induced by the MCDRAM caching mechanism. In
both modes, the DRAM bandwidth (NUMA:0) reduces when using all clusters
simultaneously (i.e. local with 64 versus 16 threads), whereas this is less obvious
for the MCDRAM. The presence of only two DRAM memory controllers shared
among 4 clusters to access DRAM memory, whereas there are 8 EDC controllers
(two per cluster) to access the MCDRAM (see Fig. 8), is a possible cause of this
behavior.

Table 5. KNL load bandwidth (GByte/s) from first cluster memories.

Flat Cache Threads
NUMA:0 MCDRAM:1 NUMA:0 MCDRAM:1

Cluster:0 Local 38.1 ± 0.1 92.0 ± 0.5 22.9 ± 0.7 85.4 ± 3.0 16
Local 21.7 ± 0.7 90.9 ± 1.2 20.0 ± 0.7 83.3 ± 2.0 64
Congested 19.8 ± 0.3 77.6 ± 2.0 17.0 ± 0.4 NA 64
Contended 10.7 ± 0.0 21.5 ± 0.5 NA NA 64

In the cache mode, the bandwidth drop of DRAM memory when using all
clusters simultaneously is not as high as the drop in the flat mode, probably
because of data reuse in MCDRAM cache, which redirects a part of the traffic
via the EDC channels and absorbs a part of the contention on DRAM mem-
ory controllers. Congestion already happens for interleaved memory access on
DRAMs, provoking a further bandwidth reduction when compared to local mem-
ory accesses. As expected, contention is the worse case scenario, resulting in a
dramatic bandwidth reduction for the cluster. Since congestion and contention
are observable, they imply a need for locality to get good performance. Several
Non-Achievable values stand in Table 4. One of them, i.e. contention on NUMA:0
in cache mode cannot be observed with the technique used in Sect. 3 method-
ology. Indeed, the private data accessed by each cluster in NUMA:0 memory
would actually fit into the 4 MCDRAMs and result in MCDRAMs benchmark
instead of NUMA:0 benchmark.

Based on the above characterization, the LARM is constructed for a single
cluster and presented in Fig. 9, where the chip is configured in (SNC-4), flat
mode. In contrast to the previous platform, it also includes the MCDRAM roofs
siblings of the DRAM roofs. Bandwidths of remote nodes are hidden for clarity
because they have the same order of magnitude as the local bandwidth and thus
overlap on the chart.
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5.2 Model Validation

With Micro-benchmarks. We use again the previous methodology to vali-
date the model in Fig. 9, for one cluster (equivalent on the others). The micro-
benchmark validation on KNL fits the model with an error below 5% in average
for each roofs. Most of it is due to the points located near the ridge on L1 and
MCDRAM bandwidths roofs. Otherwise it still fits nearly perfectly the roofs in
the memory-bound and in the compute-bound regions.

Fig. 9. CARM validation of one sub-NUMA cluster of KNL platform in SNC-4 flat
mode.

With Synthetic Benchmarks. As previously referred, the validation with
synthetic benchmarks aims to verify that well chosen causes lead to expected
consequences, i.e. well chosen synthetic benchmarks are able to hit the roofs. For
this purpose, we characterize again ddot and dgemm BLAS kernels in the CARM
chart (Fig. 10) of the first cluster of the KNL. Here we focus on MCDRAM usage
rather than the classical memory allocation policy already studied for the multi-
socket system. Hence, we compare several data allocation strategies and sizes,
as well as the flat and cache configurations of the chip.

The ddot function is compared under both flat and cache modes and by
adopting various allocation strategies and data-set sizes. The small data-set
(labeled small in Fig. 10 fits into the MCDRAM, whereas the large data-set
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Fig. 10. CARM of KNL first cluster with synthetic benchmarks running whether in
flat mode or in cache mode.

(labeled large) does not. In the MCDRAM policy, we allocate the whole small
data-set into MCDRAM. In the interleave policy, we use the Linux policy allo-
cating pages of the data-set across all the nodes, i.e. MCDRAM and DRAM
nodes. Finally, the Linux policy firsttouch allocates data on the DRAM near the
first thread writing the corresponding page.

In flat mode, allocation into MCDRAM allows for the performance to reach
near MCDRAM roof, and is visually assessed by the model. Unlike allocations
into MCDRAM, large data-set with firsttouch policy are allocated into slow
memory and also reach near DRAM roof performance. With the interleave pol-
icy, the data-set is mixed across memories and thus the performance stands in
between the local DRAM roof and the local MCDRAM roof, with higher influ-
ence of the slower DRAM memory (the point is closer to this roof). In cache
mode, the small data-set is cached in the MCDRAM, thus reaches a perfor-
mance near MCDRAM bandwidth roof. Although the MCDRAM bandwidth is
lower in cache mode, the performance of large data-set with firsttouch policy
is higher than the DRAM roof. This is because of the large MCDRAM cache
size that allows reusing a significant part of the data, thus improving the achiev-
able performance. Interleaving memory accesses decreases the performance when
compared to firsttouch policy, because of the congestion hereby created.

The dgemm function uses a data set too large to fit into MCDRAM and is
compared in flat or cache mode. As expected, the intrinsic temporal locality of
this kernel allows the cache mode to yield a better performance. When choosing
the dataset size or location (DRAM or MCDRAM) the synthetic benchmark



108 N. Denoyelle et al.

performance still correspond to our expectation and validate the model insights
on KNL system. When choosing the system configuration (flat or cache), the
model also shows that kernels with good data reuse, i.e. with a performance
over MCDRAM roofs, benefit from the hardware cache mechanism and also
validates the model relevance.

With Lulesh Proxy-Applications. For this NUMA system, we focus on the
Lulesh application because of it sensitivity to memory bandwidth. The aim of
this validation step, is to show whether the model helps managing memory, i.e.
whether performance can be improved with the chip configuration or a good
memory allocation policy. From Lulesh, we pick the three greatest memory-
bound hot spots of the application (i.e. the ones bounded below NUMANode:0
roof), namely CalcFBHourGlassForElems, IntegrateStressForElems functions,
and a loop in the main function. Due to the lack of required hardware coun-
ters, arithmetic intensity, performance and application profile are collected with
the Intel advisor tool8. In our experiments, we ran the application using a work-
ing set size large enough9 not to fit into the MCDRAM. Hence, target memory
needs to be carefully chosen to fulfill size constraints and a special care needs to
be addressed when managing memory allocation to get good performance.

The first run allocates all data into regular DRAM memory (labeled DRAM),
and aims at characterizing the application to find the potential allocation
improvements. We then customize dynamic allocations in those hot spots by
replacing the usual allocator from the standard C library with memkind [17] allo-
cator to target the fast memory (labeled as MCDRAM in Fig. 11a) instead of the
traditional DRAM (labeled as DRAM ). Finally, instead of forcing MCDRAM
allocations, we let the interleave policy (labeled as interleave) to choose data to
put into MCDRAM for all allocations visible in the file lulesh.cc. Summarized,
each hereby found hot spot is executed using three different policies, i.e. DRAM
allocation (labeled DRAM), custom allocations (labeled MCDRAM), and inter-
leave policy, in flat mode (see Fig. 11a).

The second chart in cache mode (see Fig. 11b), contrasts the performance
of hand-tuned allocations into the MCDRAM with the hardware management
of the fast MCDRAM cache. As expected MCDRAM allocations provide higher
performance in flat mode. However, in cache mode the hot spots characteriza-
tion reaches comparable performance to the top achieved performances in flat
mode, denoting the hardware efficiency to manage data locality. In compari-
son, the interleave memory policy performs poorly maybe because of the spread
allocations forcing threads to access remote nodes, and congesting the mesh.

To summarize the use of the LARM for data allocation policy choice with
lulesh on the KNL, the cache mode brings no significant performance improve-
ment, and the characterization laying below the MCDRAM roofs gave us this

8 Product version: Update 2 (build 501009).
9 Lulesh application run parameters: -i 1000 -s 60 -r 4. The application is compiled

with ICC 17.0.2 and options: -DUSE MPI=0 -qopenmp -O3 -xHost.
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Fig. 11. CARM chart of the KNL first cluster. The 3 main hot spots as detected by
Intel Advisor are represented both in cache and flat modes.

insight. The data allocation policy however changes the performance dramati-
cally between the interleave policy and other policies, but the cause is not clear
in the model since the interleave points are widely spread on the performance
axis which suggest another issue than ones the expected.

6 Related Works

To this date, there are two main approaches for Roofline modeling, namely:
the Original Roofline Model (ORM) [7] and the Cache-Aware Roofline Model
(CARM) [6]. Unlike the CARM that includes the complete memory hierarchy in
a single plot, the ORM mainly considers the memory transfers between the last
level cache and the DRAM, thus it provides fundamentally different perspective
and insights when characterizing and optimizing applications [18]. Recently, the
ORM was also instantiated on the KNL [19], without modifying the original
model. The arithmetic intensity (AI) described in ORM is not to be confused
with CARM AI because of the difference in the way how the memory traffic is
observed. The bandwidth measured also differs from the one measured in this
paper, the latter being explicitly load bandwidth. In [19], the authors present
several ORM-based optimization case studies, and compare the performance
improvements between Haswell processor and KNL, with data in DDR4 memory
or MCDRAM, and finally KNL with data in MCDRAM memory. However, the
authors do not show how the model can help choosing between memories when
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working sets do not fit in the fastest one nor they provide a comparison with the
cache mode.

An extension to the ORM, named 3DyRM [20], has been proposed to pro-
vide locality insights on NUMA systems. This model considers memory accesses
from a single last level cache to any other memory, and not only local mem-
ory. It extends the ORM with a latency dimension to characterize the sam-
pled memory access. Not only 3DyRM inherits the distorted perspective of the
ORM, when characterizing real-world applications, but also it gives very limited
insights on the distance of memory accesses to the NUMA thresholds considered
in this paper. Moreover, 3DyRM characterizes applications with sampled mem-
ory accesses, without classifying them nor providing a methodology to get the
first order insights, which is the main goal of the legacy model.

Capability Model [16] is recently proposed to evaluate KNL realistic upper-
bounds and guide applications performance optimizations. The authors estab-
lished a complex model mostly focusing on latency and bandwidth of the mesh
interconnect. The Capability Model focuses on communication intensive algo-
rithms (such as barrier synchronization, reduction, sorting, etc.), whereas the
LARM has a throughput oriented approach, focusing on computational work-
loads stressing both compute and memory units. As such, the Capability models
suits better message passing programming paradigms to enhance communication
based algorithms, while the LARM suits better shared memory programming
paradigms where communications are not explicitly expressed and mixed with
computations.

Execution Cache Memory (ECM) [21] is also another insightful approach to
model performance of memory-bound applications. This model is built under the
similar assumptions as the CARM when modeling the performance of process-
ing elements and memory levels, e.g., by considering their maximum through-
put. However, the ECM aims at predicting the application runtime whereas the
CARM aims at providing insights toward application characterization and opti-
mization. Moreover, to the best of our knowledge, their are no studies demon-
strating the usability of the ECM for NUMA and heterogeneous memory systems
featuring emerging heterogeneous memory technologies.

Our contribution to the CARM also advances its current implementation
in the Intel proprietary tool’s, referred as Intel Advisor Roofline [22], and for
which some author of this paper published concrete cases usage [23]. Unlike Intel
Advisor Roofline, we keep track of the MCDRAM bandwidth in several aspects,
and provide additional insights about potential bottlenecks and characteristics
of NUMA systems. Indeed, we demonstrated that our model improvements can
efficiently spot locality related issues, and provide more insights, especially in
the case of traditional multi-socket systems.

7 Conclusions

The trend of increasing the number of cores on-chip is enlarging the gap between
compute power and memory performance. This issue leads to design systems with
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heterogeneous memories, creating new challenges for data locality. Before the
release of those memory architectures, the Cache-Aware Roofline Model offered
an insightful model and methodology to improve application performance with
knowledge of the cache memory subsystem. With the help of hwloc library, we
are able to leverage the machine topology to extend the CARM for modeling
NUMA and heterogeneous memory systems, by evaluating the memory band-
widths between all combinations of cores and NUMA nodes.

Our contribution scopes most contemporary types of large compute nodes
and characterizes three bottlenecks typical of those systems, namely contention,
congestion and remote access. We showed that this additional information can
help to successfully spot locality issues coming from parameters such as data
allocation policy or memory configuration. To do so, we emphasized on several
validation stages, ranging from micro-benchmarks to real-world applications on
both a dual-Broadwell Xeon host and on an Intel Knight Landing processor. The
LARM extension remains consistent with the traditional Cache-Aware Roofline
Model while including a minimum of changes to the original methodology.

In the future we intend to validate the model also on larger systems embed-
ding tens of NUMA nodes and probably yielding even more interest for locality
aware modeling. It would also be interesting to investigate an extension of the
model over the network in order to include distributed workloads characteriza-
tion. Also, as mentioned in Sect. 3 footnote, we only consider the load bandwidth
in the paper. However most applications mix load and store instructions and the
top achievable roof in that case is neither the load bandwidth nor the store
bandwidth but rather a combination of those. Additional constraints could also
be added to the load/store mix in order to define a roof, but this would deserve
a paper on its own. It could end up with an automatic roof matching features,
which as for now, is left to the user.
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Abstract. As the US Department of Energy (DOE) invests in exascale
computing, performance modeling of physics codes on CPUs remain a
challenge in computational co-design due to the complex design of pro-
cessors including memory hierarchies, instruction pipelining, and specu-
lative execution. We present Analytical Memory Model (AMM), a model
of cache hierarchies, embedded in the Performance Prediction Toolkit
(PPT) – a suite of discrete-event-simulation-based co-design hardware
and software models. AMM enables PPT to significantly improve the
quality of its runtime predictions of scientific codes.

AMM uses a computationally efficient, stochastic method to pre-
dict the reuse distance profiles, where reuse distance is a hardware
architecture-independent measure of the patterns of virtual memory
accesses. AMM relies on a stochastic, static basic block-level analysis
of reuse profiles measured from the memory traces of applications on
small instances. The analytical reuse profile is useful to estimate the
effective latency and throughput of memory access, which in turn are
used to predict the overall runtime of an application.

Our experimental results demonstrate the scalability of AMM, where
we report the error-rates of three benchmarks on two different hardware
models.

Keywords: Performance modeling · Cache hierarchies
Reuse distance · Probabilistic models · LLVM · Basic blocks

1 Introduction

The US DOE’s exascale initiative demands a thousand-fold increase in supercom-
puting performance to meet the national needs in science, energy, and security.
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 114–135, 2018.
https://doi.org/10.1007/978-3-319-72971-8_6
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The transition to exascale computing poses hard challenges in the form of design
of future architectures. Moreover, confining to modulate either of the software
or hardware is insufficient to meet the design goals. Co-design helps to trade-off
the hardware designs and code development. Most of the research in co-design
has been aimed at getting cycle accurate simulations in exploring the design
space. Recent developments encourage novel performance modeling frameworks
due to the black-box nature of the cycle accurate simulators [3]. Especially, cycle
accurate simulators are slow and hinder the factors that contribute to the design
of processors. Apart from the speed/slowness, many of these simulators are old
while the modern processors are far more advanced than many of those models.
Furthermore, the validation of these simulators is not as exhaustive as it should
be, yet they are accepted in the research community. With that motivation, rapid
performance prediction of computational codes on potential hardware architec-
tures is a crucial requirement for pushing forward towards the exascale era.

In co-tuning the hardware and software parameters for physics codes, we
introduce a novel framework, Analytical Memory Model (AMM), to explore the
design space. AMM contains a compiler-driven static analysis of applications
and a hardware-driven performance model. The compiler-driven analysis iden-
tifies the basic blocks (contain no loops and branches with a single entry and
exit points) of a program, for which, an off-line analysis calculates the exact
probability of executing a basic block. The hardware model is unique among
the family of exascale co-design models with its capability to scale while consid-
ering the hardware specific factors such as frequency, latency, throughput, and
cache. For the execution time, we consider the reuse distance [24] (the number
of unique memory references between two references to the same addresses) and
the number of CPU operations. We measure the total execution time of CPU
operations using the pre-calculated instruction latencies.

In measuring the memory access time, we estimate a distribution of reuse
distances from the memory trace of an application at a smaller input size. We
randomly sample for each basic block and measure the conditional reuse distance
profiles. These profiles together with the probability of executing a basic block
results in the overall reuse profile of a program. The resultant reuse profiles help
us estimate the availability of data (conditional hit rates) for a processor through
various cache hierarchies. With the hit-rates, we measure the effective latency
and throughput per memory operation. With the latency and throughput at
hand, we measure the total memory access time of a program. The predicted
runtime of an application is the sum of the time required for CPU operations
and the total memory access time.

We evaluate AMM on three benchmarks: STREAM [23], Matrix Multipli-
cation [15], and BlackScholes [6], on two hardware models – Intel Xeon and
Intel Core i7. The results show that the sampled reuse profiles are similar to
the real profiles, while the characteristic behavior of predicted runtimes is sim-
ilar to actual runtimes on all benchmarks. Using the predicted runtimes, AMM
offers insights into the optimal combination of hardware models for software
applications when run in serial mode.
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The rest of the paper is organized as follows: Sect. 2 presents the background;
Sect. 3 describes AMM, Sect. 4 shows the experiments and the results; Sect. 6
concludes and recommends future research.

2 Background

2.1 Performance Modeling

Although the question, How much execution time and energy does my algo-
rithm cost? [10] is not entirely new, but it helps to justify the trade-offs of the
design decisions (time, energy, power, throughput, and latency). Since perfor-
mance modeling with cycle-accurate simulations is too slow and cannot scale to
large core counts, the framework in [34] introduced scalable performance pre-
diction on the then HPC systems. Their prediction contains the simulation of
an interconnect and a single processor performance, but unfortunately that does
not scale on modern HPC machines.

Bailey and Snavely [4] developed an approach for performance prediction,
which helps the stakeholders (system designers, co-design centers, and compu-
tational scientists) to improve the performance of applications.

For an optimal design decision, Ïpek et al. [18] explored the design space using
neural networks, where they devised a non-linear regression model for which the
data points in the design space are sampled at regular intervals. A machine
learning framework, VERITAS [19], used sparse coding [27], that identified the
performance characteristics (efficiency and resource significance) of proxy appli-
cations on a node. VERITAS compared the performance of proxy and real codes,
which identified the factors that contribute to loss of efficiency. Another machine
learning attempt [20] employed decision-trees on communication data and net-
work hardware counters. These trees derived a strong correlation among a set of
network features that contribute to the runtime.

In contrast, AMM accounts for factors such as memory hierarchy, proces-
sor latency, and throughput. Our model is intertwined with the Performance
Prediction Toolkit (PPT) in predicting the runtimes of physics codes.

Structural Simulation Toolkit (SST) [29], a complex code execution simula-
tor, offers some similar functionality but with different goals; unlike Performance
Prediction Toolkit (PPT), relies on replicating control flow (i.e.,dynamically exe-
cutes the application), models messaging behavior, scalable unlike cycle-accurate
simulators.

2.2 Performance Prediction Toolkit

Performance Prediction Toolkit (PPT) developed at Los Alamos National Labo-
ratory (LANL), is a scalable co-design framework, that has parameterized hard-
ware and middleware models, accepts stylized codes as input and predicts the
runtimes. PPT relies on Simian [31], a parallel discrete event simulation engine
written in Python, Lua, and JavaScript. In Simian, each computing unit (host,
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compute node, CPU core) is an entity. Processes perform their tasks through
message exchanges to remain active, sleep, wakeup, begin, and end. Simian
advances the simulated time through a time compute() function, that takes a
task list – the number of CPU operations, memory usage, etc.The parameter-
ized models of PPT use the task list to approximate the runtime. The hardware
models – interconnects, compute nodes and CPU cores – mimic the lower level
hardware processes using regression models resulting from PAPI [8] counters
data.

The drawbacks of current PPT models are – regression often relies on inac-
curate PAPI data; and the dependence on application developers expertise to
explicitly specify the hit-rates. Alternatively, AMM predicts the hit-rates for a
given input using an analytical reuse profile, we discuss the state-of-the-art in
reuse distance calculation.

2.3 Reuse Distance

The reuse distance of a memory reference (M) is the number of distinct addresses
in the trace after the most recent access to M. Memory traces were explored in
a number of facets, including performance counters, reuse analysis, and cache
behavior [26,33,35]. Our work differs in that, it improves concepts of in-situ
reuse analysis from a memory trace. The reuse distances are used in defining a
reuse profile, which is a distribution of reuse distances, that helps to estimate
the availability of data in cache.

The compiler generated trace files for most scientific applications are often
in tens and/or hundreds of gigabytes. Calculating reuse profiles from such large
files is infeasible, moreover, the applications spend enormous amount of com-
putational effort in generating these memory traces. Alternatively, synthetic
traces [13] are used to estimate the reuse distributions. Partial Markov Model
(PMM) [1] produced random memory references that rely on the existence of
original trace and reported inaccuracies in the reuse profiles. Synthetic traces
in [13] identified patterns in the memory references based on an analysis of
instruction profiling, branches and dependencies. Attempts in [16] adapted least
recently used stack models [7] over PMM states to accurately produce synthetic
traces, their reuse profiles are accurate but unscalable.

Other attempts that sampled reuse profiles to study data locality include,
StatCache [5], presented a probabilistic model that employs sampling to ana-
lyze the data locality on realistic workloads. Another sampling and paralleliza-
tion attempt in [32] accelerated the reuse distance analysis on multi-cores.
Unlike, these sampling attempts we use the memory trace of a single run of
a program at smaller input size to estimate the reuse profiles at larger inputs.
A recent approach [11] presented an analytical model to predict the perfor-
mance and the energy consumption of a processor using architecture independent
characteristics.

Of the attempts to approximate the reuse distance, Ding and Zhong [12]
estimated the reuse patterns of a whole program based on training runs of a few
small inputs. The model uses dependency analysis to estimate the cache misses
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with poor accuracy. In a different attempt, Chatterjee et al. [9] applied a set of
formulas to characterize the cache misses, which perfectly handles nested loops
and non-linear array layouts. Their model lacks the runtime knowledge of loop
bounds. Sahoo et al. [30] tried to accurately characterize the cache miss count
using reuse distances in the context of tensor contraction computations. Recently,
reuse distance analysis predicted miss-rate per instruction [14], however, such a
fine grained miss-rate estimation fail to scale.

In contrast to the existing attempts, AMM is simple, scalable and relies on
Low-Level Virtual Machine (LLVM) [21] basic blocks (BB). We calculate reuse
profiles for each BB of a program. These profiles are used to measure the cache
hit-rates at different levels, which are used in predicting the runtimes of scientific
applications.

3 Analytical Memory Model

AMM is a parameterized model for performance prediction, the factors that we
consider in the prediction are: reuse distance distribution, latency and through-
put of a program. The reuse profile corresponds to modeling different cache hier-
archies of a processor in an elegant and scalable manner. These reuse profiles
are used in estimating the availability of data from main memory to the proces-
sor via different cache levels. Further, we use data availability in calculating the
latency and throughput of a program.

Figure 1 shows different steps of AMM in predicting the runtime of a pro-
gram. AMM accepts a computer program (written in FORTRAN or C/C++) as

Start

Input program

Generate a basic block labeled memory trace with a smaller input size to the program

Estimate the analytical reuse profile from the labeled memory trace

Measure 1) the effective latency, 2) bandwidth and 3) predict the runtime of a program

Runtime of a program

Stop

Fig. 1. Different steps in analytical memory model (AMM)
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an input, which is transformed into an intermediate representation (IR) using
the compilation framework, LLVM. The transformation and analysis process
involves: (a) generating a memory trace with basic block labels produced with
a smaller input size of a program, (b) estimating the analytical reuse profiles
of a program from the labeled memory trace, and (c) measuring the effective
latency and throughput, with which, program runtime prediction can be made.
We describe each step in detail as follows.

3.1 Generate Memory Trace

The first step in AMM is to generate a memory trace that contains the LLVM
basic blocks. When the source code is compiled to produce IR, the transformed
code consists of basic blocks. A basic block is a straight-line code with single
entry and exit, with no intermediate branches except a branch at the exit.

The basic block labels in the trace of a program are generated using an LLVM
characterization tool, Byfl [28], developed at LANL. We extended Byfl to instru-
ment the memory addresses with LLVM basic block names. Note that LLVM
does not create a distinct basic block for the function calls. We resolve such an
ineptitude through preprocessing the labeled trace, where we ensure to distin-
guish the function calls as a separate basic block. For example, the ith basic block
(BBi) of the labeled trace contains all the memory addresses that are generated
as a result of executing the corresponding straight-line code of BBi. Similar
traces can be generated with Valgrind [25] and Pin [22], however, we use Byfl
as it is developed using LLVM infrastructure. Like AMM, the attempts in [11]
present a similar architecture independent performance and energy modeling.

3.2 Estimate Reuse Profile of a Program

The second step is to analytically estimate the reuse profile of a program
(Pr(D)). The traditional methods of measuring the reuse profile are expensive
due to large memory traces. Our technique promises to produce scalable memory
traces at smaller inputs of a program, with which we estimate the reuse profiles
at larger inputs. With the memory trace using smaller inputs, we estimate the
reuse profile of a program as in Eq. 1

Pr(D) =
n(BB)∑

i=0

P (BBi) × P (D | BBi) (1)

where, D is the reuse distance, n(BB) is the number of basic blocks, P (BBi)
is the apriori probability of executing a basic block and P (D | BBi) is the
conditional reuse profile of ith basic block.

Algorithm 1 measures the conditional reuse profile of a basic block, BBi. The
algorithm takes the labeled trace as input, identifies all the instances of BBi,
from which, randomly select sample size number of occurrences. For example,
if a basic block appears hundred times in the trace, we randomly select n%
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Algorithm 1. Calculating the conditional reuse profile of a basic block (BBi)
1: procedure reuse profile BBi(BBi, memory trace)
2: reuse distances, sampled wins ← [ ], [ ]
3: sample size ← x � x% of all the BBi(s)
4: for bb in all BBi do
5: sampled wins.append([BBi start, BBi end])
6: end for
7: windows ← random(sampled wins, sample size)
8: for window in windows do
9: reuse dist ← get rd(window, memory trace)

10: reuse distances.append(reuse dist)
11: end for
12: uniq reuse dist, counts ← unique(reuse distances)
13: prob rd ← map(lambda x: x/len(reuse distances), counts)
14: r profi ← zip(uniq reuse dist, prob rd)
15: return r profi
16: end procedure

(typically 1%) of the samples from these occurrences. In fact, the reuse distance
distributions are random due to uncertain memory mapping of program data.
Therefore, it is important to randomly sample the trace, we term these random
samples as windows. A window is a list that contains the start and the end indices
of a sampled BB. We measure the reuse distances of all the memory addresses
in a window, from which, calculate the corresponding probabilities.

Algorithm 2. Calculate the reuse distances
1: procedure get rdist(window, memory trace)
2: reuse dist ← [ ]
3: for idx, addr in enumerate(window) do
4: window trace ← memory trace[: idx]; dict rd ← { }; addr found ← False
5: for addr idx in range(len(window trace)) do
6: w addr ← window trace[−addr idx − 1]
7: if addr == w addr then addr found ← True; break
8: end if
9: dict rd[w addr] = True

10: end for
11: if addr found then reuse dist.append(len(dict rd))
12: else reuse dist.append(−1)
13: end if
14: end for
15: return reuse dist
16: end procedure

Algorithm 2 calculates the reuse distances memory addresses in a window. For
each address in a window, we refer back in the trace from the current address
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to the exact same address, termed as max back reference. Once we find the
memory address at two different indexes, the reuse distance for that address is the
cardinality of the unique addresses between the two indexes. If the second index
is absent, the reuse distance is infinite (∞). Similarly, the algorithm continues
to measure the reuse distances for all the addresses in a basic block through a
search for a max back reference in the original trace. At the end, the algorithm
returns a list of all the reuse distances for that window.

Algorithms 1 and 2 calculate the reuse distances for all the addresses from all
the sampled windows. Finally, we measure the frequency of each reuse distance,
where the frequencies produce the respective probabilities. The reuse distances
together with the corresponding probabilities form part of the conditional reuse
profile of BBi, P (D | BBi). The conditional reuse profiles are application depen-
dent, for example, the conditional profiles of some applications may shift with
input size. We extrapolate (see Sect. 4) these changes in conditional reuse profiles
using polynomial regression techniques. Similarly, P (BBi) varies with the input
size, measured as follows.

Measure P (BBi): Let us consider, BB1, BB2, . . . , BBj , . . . , BBn−1, BBn

is a series of basic blocks, any BB can execute any other BB. For example, the
basic blocks BB1, BB2, . . . , BBk can execute BBj , where, BB1, . . . , BBk are
termed as the predecessors of BBj . Therefore, the predecessor BBs satisfy the
following linear recursive relation:

Nj =
∑

i∈Pred(j)

πij × Ni (2)

where, πij is the transition probability (measured off-line using compiler cov-
erage analysis/application developer can identify manually) from predecessor
block BBi to BBj . Nj is a homogeneous system of linear equations with many
solutions. Since the entry basic block of most of the source codes is executed
once, N1 becomes 1.

Given πij , the apriori probability of a basic block (P (BBi)) is defined as in
Eq. 3:

P (BBi) =
Ni

n(BB)∑
k=0

Nk

(3)

where, Ni and Nk are the number of calls to the ith and kth basic blocks
respectively.

P (BBi) changes with respect to the input size, however, we use the same
labeled memory trace at smaller inputs to estimate the reuse profiles for larger
instances of the program. We repeat our off-line analysis on P (BBi) in order
to generate the apriori probabilities of basic blocks at bigger inputs. Note, the
basic blocks with no memory access in their trace has no contribution towards
the final reuse distribution.
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3.3 Predict Runtime

The final step in AMM is to predict the runtime of an application. In runtime
prediction, we measure latency and throughput using the reuse profile. The reuse
profile calculates the availability of the data (hit-rates) from main memory to
processor via different cache levels. The total predicted runtime of a program
is the sum of the average memory access time (Tavg mem) and the average time
taken for the CPU operations (TCPU ops). The application characterization tool,
Byfl is useful in counting the total memory required for the program and the
number of CPU operations.

Therefore, the predicted runtime is measured with Eq. 4:

Tpred = Tavg mem + TCPU ops (4)

Probability of a Cache-Hit: In predicting the runtime, identifying the data
availability at different cache levels is essential. With the analytical reuse profiles
(Pr(D)), we measure the cache hit-rates (data availability) employing a stack
distance based cache model (SDCM) [7], which helps to estimate the probability
of a hit at any cache hierarchy (L1, L2, or L3) for a given memory reference with
a specific reuse distance. The following formula represents the probability of a
hit for an n-way associative cache at a given reuse distance (P (h | D)):

P (h | D) =
A−1∑

a=0

(
D

a

)(
A

B

)a(
B − A

B

)(D−a)

(5)

where D is the reuse distance, A is the associativity and B is cache size in terms
of number of blocks (which is cache size over cache line size). For example, an
L1 cache of size 64K with line size 64 has B = 1024 blocks. For a direct-mapped
cache, P (h | D) is ((B − 1)/B)D [7]. Therefore, the unconditional probability of
a hit P(h) for the entire program can be approximated as in Eq. 6

P (h) =
N∑

i=0

P (Di) × P (h | Di) (6)

where, P (Di) is the probability of ith reuse distance (D) in a reuse distribution
Pr(D). Herein, we investigate two variations (contiguous and non-contiguous)
of runtime prediction with respect to the availability of data on memory and/or
cache.

Case 1 (Contiguous): Memory Runtime Prediction. Assuming the con-
tiguous availability of memory, the average memory access time is measured as
in Eq. 7:

Tavg mem =
λavg + (b − 1) × βavg

b
× total mem (7)

where λavg is average latency, βavg is average reciprocal throughput, b is block
size and total mem is the total memory required by the program. The latency



Analytical Memory Model for Performance Prediction 123

and throughput are per memory access, while the block size is considered as word
size with the assumption of the availability of contiguous memory. Dividing the
first term with block size will result in the average memory access time per
byte, multiplying with total mem results in the total memory access time of a
program.

The hit-rates (Eq. 6) at different cache levels estimate the average latency
and throughput of a given program. The average latency for a three-level cache
is in Eq. 8

λavg = PL1 (h)× λL1 +
(
1− PL1 (h)

)
[
PL2 (h)× λL2 +

(
1− PL2 (h)

)[
PL3 (h)× λL3

+
(
1− PL3 (h)

) × λRAM

]
] (8)

where, λL1 , λL2 , λL3 and λRAM are the hardware specific measured latencies of
L1, L2, L3 caches and RAM respectively; PL1(h), PL2(h) and PL3(h) are the
probabilities of a hit for L1, L2 and L3 caches respectively, that are calculated
using Eq. 6. Similarly, we measure the average throughput, βavg (replace λs in
Eq. 8 with β).

Case 1 (Contiguous): Measure. TCPU ops Byfl and/or a simple off-line anal-
ysis helps to identify the number of CPU operations (ADD, SUB, and DIV,
etc.) of a program. We measure the time required for CPU operations using the
hardware specific instruction latencies and the operations count, thus, the total
runtime is predicted as Tpred (Eq. 4).

Case 2 (Non-contiguous): Memory Runtime Prediction. In measuring
the average memory access time, as opposed to the previous consideration, we
consider the non-contiguous alignment of memory, as is the case in reality. There
will be gaps (v) in between the required program data, therefore, the new block
size (b in Eq. 7 becomes bnew): bnew = b + v. However, the entire block may not
always be transferred from main memory to different cache levels due to the
dependence on factors such as data bus width, and cache size, etc. Therefore, we
model such a unique behavior of cache as follows. Let us consider, bnew1 , bnew2 ,
bnew3 , . . . , bnewi , . . . , bnewn are the blocks of data on main memory, while C be
the amount of data transferred on to a cache from main memory at any given
time. Thus, the new block size at a given cache size (B) can be re-written as:

bnew =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C : if bnewi ≤ C⌈
bnewi

C

⌉
× C : if B ≥ bnewi ≥ C

B : if bnewi ≥ B

Case 2 (Non-contiguous): Time for CPU Operations ( TCPU ops). In
case of the time taken for CPU operations, there is a large difference in the
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instruction latencies between DIV and the rest of the instructions. Moreover, the
time required for CPU operations is dependent on program characteristics, where
some applications are instruction latency dependent while others are throughput
reliable. Thus, the time for the resultant CPU operations is:

TCPU ops =

⎧
⎪⎨

⎪⎩

λin + (Nin − Nin div − 1)× βin + λdiv + (Nin div − 1)× βdiv : throughput

(Nin − Nin div − 1)× λin + (Nin div − 1)× λdiv : latency

where λin, λdiv, βin and βdiv are latencies and throughputs of instructions,
ADD/SUB, MUL and DIV respectively, while Nin and Nin div are the number
of instructions.

4 Experiments

In this section, we describe the target architectures and the benchmark applica-
tions used in validating our model.

4.1 Target Architectures

We use AMM to validate three different benchmark applications on two hardware
architectures. Table 1 presents the two processor architectures, each of which uses
three cache levels with different sizes. The L3 cache of Intel Xeon processor is
shared among the available cores on the chip while that of the Intel Core i7 is
unshared.

In predicting the runtimes, we build the hardware models for the two experi-
mental processors (Table 1) along with AMM in Performance Prediction Toolkit
(PPT). PPT has parametrized hardware models and software proxy applications.
The hardware parameters of PPT are: cache latencies, cache sizes, cache line
sizes, associativity, and memory bandwidth (throughput) at different cache lev-
els (we consider the reciprocal throughput), RAM latency, and data bus width.
The hardware parameters are measured values for a given processor, reason-
ably reliable sources include Agner Fog’s manual [2], Intel and others1 present
these parameter values for a number of hardware architectures. We can measure

Table 1. The target architectures and their parameters

# Processor Speed Cache size (bytes) Shared

(GHz) L1 L2 L3 L3?

1 Intel Xeon E5-2695 2.10 64K 256K 45M Yes

2 Intel Core i7-4770HQ 2.20 256K 1M 6M No

1 http://www.7-cpu.com/cpu/Haswell.html.

http://www.7-cpu.com/cpu/Haswell.html
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these parameters using standard benchmarks, nevertheless, the objective in this
paper is performance modeling rather parameter calibrations. The latencies and
throughputs used in the hardware model include both at the cache hierarchies
and the instructions such as ADD/SUB, MUL, and DIV. The software parame-
ters are: total memory of an application, the number of integer and floating point
operations (add, mul, etc.), and the block size (Eq. 7 in Sect. 3.3), measured using
Byfl.

4.2 Benchmarks

The three benchmark applications we used are: STREAM [23], matrix-matrix
multiplication (MM) [15], and BlackScholes [6].

STREAM is a memory benchmark with vectors of floating point operations.
STREAM contains four kernels: ADD performs the sum of two vectors; SCALE
multiplies a vector with a floating-point scalar; COPY assigns one vector into
another and TRIAD performs the above three operations. We execute all the
above four kernels.

MM is a naive implementation (ijk method that has 3 nested loops) of floating-
point matrix-matrix multiplication. MM, in this paper, is defined as R = αP ×
Q + βR, where P, Q and R are m × k, k × n and m × n matrices respectively
while α and β are floating-point scalars.

BlackScholes is a PARSEC benchmark, partial differential model used to pre-
dict the European stock option prices. BlackScholes functions within two nested
loops, where the outer-loop stands for the number of iterations of the algorithm
and the inner loop performs the floating-point operations needed for option
prices.

5 Results

We implemented the respective proxy application in PPT for all the three bench-
marks. We validate AMM for these three applications as follows: (1) compare
the real and predicted reuse profiles, and (2) compare the real and predicted
runtimes. Both the simulation and actual runs are computed on a single core of
a CPU.

5.1 Validate Reuse Profile

Our goal is to validate the analytical reuse profiles with that of the actual profiles.
The reuse profiles are discrete, in general, they are architecture independent
due to which the reuse profiles are same across the two experimental hardware
architectures.
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Fig. 2. Compare the original (left) and analytical (right) reuse profiles of STREAM
(top), MM (middle), and BlackScholes (bottom) at input sizes of 10000 floating-points,
matrix of size 25 × 25 and 16 data points respectively. Original distribution is measured
using a stack based algorithm, while that of the analytical is measured using AMM
with 100% sampling. The reuse distance (D) is in log scale while Pr(D) is in decimal
scale.

Figure 2 compares the actual and the analytical reuse profiles of both the
benchmarks. The analytical reuse profiles are prepared with 100% sampling. For
example, if a basic block contains ten occurrences, all of them contribute to calcu-
late the conditional reuse profiles before multiplying the probability (P (BBi) ×
P (D|BBi)) of execution of that basic block. We adopted 100% sampling in order
to validate the actual and analytical profiles, in the runtime prediction, we con-
sider 1% sampling, which guarantees scalability. On all the three benchmarks,
AMM calculated reuse distances (D, on X-axis) are identical to that of the actual
reuse distances, so does their number of occurrences. The corresponding proba-
bilities (Pr(D), on Y-axis) are approximately similar, the analytical probabilities
are slightly higher at a few reuse distances because of their dependence on the
accuracy of P (BBi). Nonetheless, these inaccuracies have insignificant impact
on the final cache hit-rate, therefore, the analytical reuse profiles are similar to
the actual.

The original reuse profiles are measured using a stack [24] based implemen-
tation that has a time complexity of O(NM). The analytical reuse profiles are
measured using Algorithm 1, which has a computational complexity of O(NSB)
∼ O(N), since the number of samples (S) and size of the basic block (B) are
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constant. The worst case complexity is O(NM), in the case of 100% sampling,
which will never happen.

5.2 Validate Runtime

We validate the AMM predicted runtimes with that of the actual for all the
three benchmark applications at different input sizes on both the target archi-
tectures. Table 2 presents four different input sizes for each of the three bench-
marks. For example, STREAM has three floating-point vectors, all of which are
initialized with same input size. The inputs for each run of STREAM varies
from 10000, 20000, 30000 to 40000 elements. Similarly, MM and BlackScholes
have four square matrix sizes and four datasets (16, 32, 64, and 128 data-points)
respectively. We report both the actual and predicted runtimes at four different
input sizes on each benchmark.

Table 2. Benchmarks with different input sizes.

# Program Input sizes

1 STREAM {10000, 20000, 30000, 40000}
2 MM {25 × 25, 50 × 50, 100 × 100, 200 × 200}
3 BlackScholes {16, 32, 64, 128}

In predicting the runtimes, we analytically estimate the reuse profiles at each
input using the memory trace (1% sampling) for the smaller input size of the
respective benchmark. For example, in the case of MM, we use the memory trace
at an input size of 25 × 25 as the base to estimate the reuse profiles at 50 × 50,
100 × 100 and 200 × 200. The probabilities of basic blocks (P(BBi)) change as
the input size changes.

Figure 3 shows the analytical (1% sampling) reuse profiles of both the bench-
marks at different input sizes. The sampled reuse profiles are approximately
similar to that of the original, however, some large but relatively rare reuse dis-
tances disappear due to random sampling. For example, if a basic block occur-
rence appears at the bottom of the memory trace, there is a chance to omit such
occurrences due to 1% random sampling, thereby, the larger reuse distances dis-
appear. These large values may have significant impact on the cache hit-rates,
thus, we propose to extrapolate these reuse distances, similar to Zhong et al. [36],
where the prediction of program locality with respect to inputs identifies the data
access patterns and builds a parametrized model for extrapolation. In contrast
to Zhong et al., we extrapolate the conditional reuse distances of basic blocks
(instead of the whole program) at larger input sizes of a program using the reuse
distances at a few smaller inputs. In fact, extrapolating the conditional reuse
profiles of basic blocks using small input reuse distances preserves our promise
of scalable AMM.
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Fig. 3. Sampled analytical reuse profiles (reuse distance (D) is on log scale) of the three
benchmarks: STREAM (left), matrix multiplication (middle), and BlackScholes (right)
at different input sizes. The rate of sampling is 1%, while the base memory traces for
the three benchmarks are at input sizes of 10000, 25 × 25, and 16 respectively.

Extrapolate the Conditional Reuse Distances of a BB. From the proba-
bility distribution of executing the basic blocks, we observe that a few number of
the total basic blocks of a program have significant impact on the reuse profiles.
Figure 4 (left) shows the probability of executing each basic block (P (BBi)) at
different small input sizes (10, 12, 15, 17, and 20) of MM. Of all the twenty
two basic blocks of a MM program, BB15 – BB17 have relatively significant
contribution over the remaining basic blocks. Empirically, the number of entries
in the conditional reuse profiles of these three basic blocks grow with the input
size, while that of the remaining basic blocks remain consistent irrespective of
the input size. Therefore, extrapolating the conditional reuse distances of these
significant BBs helps in identifying the missing large reuse distances.

We explain the extrapolation strategy on one of the three BBs, BB15, where
we find that the first few (seven for MM) reuse distance entries of the distri-
bution remain unchanged irrespective of the inputs. Probability of these reuse
distances contribute 75% of the distribution, while the other growing reuse dis-
tances contribute the remaining 25%. Since these initial entries are consistent,
what the following linear relation (Eq. 9) predicts is useful in estimating the
reuse distances at any input size (x).

D
′
i|x = Di ∀ i = 1 . . . 7 (9)

where, D
′
i|x is new reuse distance at an input, Di is the reuse distance of a basic

block.
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Fig. 4. Probabilities (left) of all basic blocks (BBs) of MM at multiple small inputs.
Extrapolation of reuse distances (right) as a function of input size (x) for matrix
multiplication using the data from five small runs at five different input sizes.

We extrapolate the remaining reuse distance entries that grow with the input
size, where the number of these entries are inconsistent at each input size. In
order to regulate these inconsistencies, we apply a fixed-binning strategy, in
which, we use a constant number of bins, each of which represents an aver-
age of the subset-of-reuse-distances. The number of entries within a bin changes
while the total number of bins remain same.

Figure 4 (right) shows the extrapolation of three bins using five small input
sizes. The points represent the average reuse distances for each bin while the
curves represent the predicted polynomial fit for each bin as a function of input
size (x). Note, the input (x) in the extrapolated curves is on one-dimension of
MM. We observe that the predicted average reuse distances grow in polynomial
fashion. Similarly, n we can estimate the respective probabilities of these reuse
distances, together forms the extrapolated conditional reuse profile of a BB. We
can increase the number of bins, however, estimating the hit-rates relies on the
magnitude of the reuse distances rather the distinct number of reuses alone. That
way, we extrapolate the conditional reuse profiles of the most significant basic
blocks of an application and combine the reuse profiles of all the basic blocks to
produce the complete reuse profile of a program.

Our prediction strategy does not incur the extra computational overhead of
extrapolating the reuse profiles on the whole program (as opposed to Zhong et al.,
therefore, AMM is scalable), while approximates the hit-rates with reasonably
good accuracy.

Is the Data Available for Use by the Processor? Given the reuse profiles,
it is essential to analyze the availability of data for the processor. Figure 5 shows
the conditional cache hit-rates at a given reuse distance for three different cache
sizes (L1, L2, and L3). The results are for the input sizes of 10000, 25 × 25 and
16 of STREAM, MM and BlackScholes respectively. Since the reuse distances
are independent of the underlying hardware, we use the same reuse profile (with
respect to the benchmark) to measure the cache hit-rates at different cache
sizes. However, the conditional hit-rates at a given stack distance are calculated
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on Intel Xeon E5-2695 architecture. The reuse distance (D) is on a log scale,
whereas B1, B2 and B3 are cache sizes measured in terms of the number of blocks
(cache-size/cache-line-size). PL1(h|D), PL2(h|D) and PL3(h|D) are conditional
hit-rates at three cache levels L1, L2 and L3 respectively. On all the benchmarks,
the cache hit-rate at a reuse distance (PL1(h|D)) suddenly drops for L1 cache
after the cache size (B1), which confirms that the application data exceeds the L1

cache of Intel Xeon processor. A similar behavior is found on L2 cache in the case
of STREAM and matrix multiplication, while for BlackScholes the data exists
on L2 cache. STREAM data slightly exceeds the L3 limits, while the data of the
remaining two benchmarks is available on L3. We found that the probability of
the corresponding large reuse distances (P (Di) in Fig. 3) is approximately zero.

However, for Intel Core i7-4470HQ – BlackScholes data exists in L1 cache
and the remaining two benchmarks data does not exist; on L2, STREAM data
is not present while the remaining two benchmarks data does exist; L3 can hold
the data for all the three benchmarks. Since Intel Core i7 has relatively large
L1 and L2 cache sizes, the data is readily available for the processor. Intel Core
i7 have relatively smaller L3 cache size compared with that of Intel Xeon. Intel
Core i7 processors L3 capacity is insufficient for large input sizes of a program.
In addition, L3 cache of Intel Xeon is shared among the available cores while
that is not the case with Core i7. With these characteristics, reuse distances that
exceed the cache sizes are always a miss. These observations (Fig. 5) suggest that
the availability of data in the cache depends on the target architectures and the
application data requirements.

A discussion on the locality of data is out of the scope. However, this study
shows that the 1% sampled reuse profiles are reasonably better approximations
in estimating the runtime of an application. Therefore, for better availability of
data, we suggest to design a processor with the L1 and L2 caches of Intel Core
i7 and the L3 of Intel Xeon.

Prediction of Run-Times: We validate the predicted runtimes, Fig. 6 presents
the error-rates of the AMM predicted runtimes when compared wxith that of
the actual for all the three benchmarks at different input sizes on the two tar-
get architectures. We assume that the processor executes one application at a
given time, so that the cache and RAM are available for the application. We
observe that Intel Core i7 error-rates of STREAM are significantly higher than
the Intel Xeon due to small L3 cache size of Core i7. For the remaining two
benchmarks (MM and BlackScholes), the difference in the predicted error-rates
across both the target architectures is insignificant, The reason being the fact
that the application data for these two benchmarks fits in the cache hierarchy.

We observe that AMM over-predicts the runtimes when compared to the
actual runtimes, especially, at larger input sizes. Although we over-predict, the
characteristic behavior of the runtimes with respect to the input remains in
coherence with the actual runtimes. The reason behind the over-prediction is
due to the fact that AMM is purely a memory model. We can reduce such over-
prediction through a model for pipelines along with the memory model. AMM
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Fig. 5. Conditional cache hit-rates at a given reuse distance for all the three bench-
marks – STREAM (left), matrix multiplication (middle) and BlackScholes (right). B1,
B2 and B3 are the cache sizes in terms of number of blocks (see Sect. 3.2) for L1, L2

and L3 caches respectively.
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Fig. 6. Error-rates of predicted runtimes (with respect to the actual runtimes) for the
three benchmark applications (STREAM, matrix multiplication (MM) and BlackSc-
holes) on both the target architectures (Intel Xeon E5-2695, Intel Core i7-4770HQ).

assumes the execution of the program in complete sequential mode, whereas
the actual CPU core executes the independent tasks simultaneously through
pipelines. In addition to pipelines, factors such as prefetching, replacement strat-
egy, TLB, vector operations, micro-architecture, and etc. can have higher div-
idends in performance prediction. Building a parameterized model (one of our
future directions to investigate) using these factors that work hand-in-hand with
AMM would reduce the over-prediction in runtimes. Although the pipeline effect
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is not present in AMM, the predicted runtimes are reasonably abreast with that
of the actual while we also claim that the characteristic behavior of the predicted
runtimes is akin to the actual runtimes of all the benchmarks on both the target
architectures.

Between Intel Xeon and Core i7, the latter is much faster than the former
on these set of benchmarks due to higher clock speed. Our observations (Fig. 5)
in cache sizes play a significant role in making the data available for processor,
which obviously impacts the performance of an application. Intel Core i7 clearly
has larger L1, L2 caches and a smaller L3 cache, which in fact, is insufficient
for large applications that might have adverse effects on performance despite
processor speed. Intel states that the Broadwell family of Xeon processors are
less powerful and energy efficient compared to the Haswell of Intel Core i7.
With our study, we believe that increasing the L1 and L2 cache sizes of Xeon
processors might further boost the performance with little/minimum effect on
energy consumption, especially, when the execution of an application becomes
concurrent/parallel.

6 Conclusion

We presented a novel analytical memory model (AMM) that produces basic
block labeled memory traces using LLVM instrumentation. The memory traces
at smaller inputs are randomly sampled to produce the reuse distance distribu-
tions at larger inputs for scientific applications. Using the smaller input memory
traces, reuse distance profiles of the applications are estimated at larger input
sizes. The analytically measured reuse profiles are similar to the actual reuse pro-
files. Further, the estimated reuse profiles are used to predict the runtimes of the
applications. Our hardware model consists of low-level details such as latency,
throughput of different hardware components (cache levels, RAM, etc.) and CPU
instructions (add, sub, mul, etc.). The runtime results are consistent with the real
runtimes while the characteristic behavior of the predicted runtimes is similar to
that of the actual runtimes. We observed that AMM over-predicted the runtimes
due to nonexistence of pipeline, cache prefetching, hardware threads, and TLB
in the hardware model. Developing and integrating these missing models would
guarantee a close prediction, therefore, is one of our future directions. With the
addition of pipelines in AMM, similar to [4,17,20], we aim to predict the perfor-
mance of MPI aware applications. Nevertheless, having AMM like fine-grained
hardware model is essential for accurate and scalable performance prediction in
distributed environments.
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Abstract. The Dragonfly topology has been proposed and deployed as
the interconnection network topology for next-generation supercomput-
ers. Practical routing algorithms developed for Dragonfly are based on
a routing scheme called Universal Globally Adaptive Load-balanced rout-
ing with Global information (UGAL-G). While UGAL-G and UGAL-
based practical routing schemes have been extensively studied, all
existing results are based on simulation or measurement. There is no the-
oretical understanding of how the UGAL-based routing schemes achieve
their performance on a particular network configuration as well as what
the routing schemes optimize for. In this work, we develop and validate
throughput models for UGAL-G on the Dragonfly topology and identify
a robust model that is both accurate and efficient across many Drag-
onfly variations. Given a traffic pattern, the proposed models estimate
the aggregate throughput for the pattern accurately and effectively. Our
results not only provide a mechanism to predict the communication per-
formance for large scale Dragonfly networks but also reveal the inner
working of UGAL-G, which furthers our understanding of UGAL-based
routing on Dragonfly.

1 Introduction

The Dragonfly topology features a cost-effective interconnect design. It is scal-
able and supports high aggregate throughput capacity at a lower cost in compar-
ison to other alternatives such as fat-trees [1]. Dragonfly has been deployed in
the Cray Cascade architecture [2] and in current supercomputers such as Cori [3]
and Trinity [4].

To achieve high performance in the Dragonfly topology, different routing
schemes must be used for different traffic patterns [1]. In particular, minimal
routing (MIN) is better suited to uniform traffic while non-minimal Valiant
Load-balanced routing (VLB) is essential for achieving good performance on
adversarial traffic patterns. To unify the two routing schemes in one system, the
Universal Globally Adaptive Load-balanced routing (UGAL) [1] was developed
to adapt the routing decision for each packet between MIN and VLB paths based
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on the occupancy of packet queues [5]. The theoretical UGAL with perfect global
link state information (UGAL-G) achieves high performance on Dragonfly [1],
and performs similarly as MIN for uniform traffic and as VLB for adversarial
traffic.

While UGAL-G is an ideal scheme that cannot be perfectly implemented, it is
the foundation of practical routing schemes developed for Dragonfly [2,6]. These
practical adaptive routing schemes, including the one used in Cray Cascade [2],
are based on UGAL and approximate the performance of UGAL-G. As such,
the performance characteristics of UGAL-G is representative of all UGAL-based
adaptive routing schemes.

Although UGAL-G and UGAL-based routing schemes have been extensively
studied, all existing results are obtained through simulation and measurement.
To the best of our knowledge, no theoretical model for UGAL-based routing
has been developed. As such, the theoretical understanding of UGAL is lacking.
For example, it is unclear how effectively these routing schemes can utilize the
path diversity of a given network configuration and how sensitive the routing
performances are to any change in local as well as in global network connectivity.
An analysis of UGAL-G along this direction provides useful information to the
problem of provisioning links and bandwidths on different Dragonfly designs.

In this work, we develop effective throughput models using linear program-
ming (LP) for UGAL-G on the Dragonfly topology and identify a robust model
for many Dragonfly variations that is both accurate and efficient. There are
several theoretical as well as practical implications of our contribution. First,
our proposed theoretical throughput models can accurately and efficiently pre-
dict the aggregate throughput for large scale Dragonfly networks. Second, the
models reveal the implicit rate allocation in UGAL-G and thus, further our
understanding of UGAL-based routing schemes. Third, the proposed models
can be applied in many practical situations. For example, the models allow
for efficiently exploring the design space of potential Dragonfly configurations
and thus, enabling faster design prototyping before a detailed simulation on
selected designs is performed. The models also give rate allocation that is com-
petitive with UGAL-G. They can be applied to solve traffic engineering opti-
mization problems in Software Defined Networking (SDN) architectures [7] to
find rate allocation schemes that are competitive to adaptive routing in the SDN
environment.

Given a traffic pattern and a Dragonfly topology, our models estimate the
aggregate throughput for the pattern under the maximum concurrent flow
(MCF) model, which is commonly used to model the throughput performance of
interconnects [8–11]. The models are validated through simulations with a flit-
level simulator, Booksim [12]. The results demonstrate that to accurately model
UGAL-G, the LP formulations need only a small number of variables per flow.
This enables the models to be used for large-scale systems with tens of thou-
sands of flows. The study also reveals that even with the precise global network
state information, UGAL-G does not have effective control over all the paths
that are available and does not allocate rates to individual paths to maximize
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its performance. Instead, for the general cases when the numbers of MIN and
VLB paths are sufficiently large, UGAL-G effectively allocates rates to groups
of paths instead of individual paths.

The rest of the paper is structured as follows. Section 2 discusses the back-
ground of this work, describing the Dragonfly topology, its variation in Cray
Cascade, UGAL-G routing, and the MCF throughput model. Section 3 intro-
duces our performance models for UGAL-G on Dragonfly. Section 4 presents the
results of a set of experiments used to validate the models. Section 5 discusses
related work. Finally, in Sect. 6 we draw some conclusions from our work.

2 Background

2.1 Dragonfly Topology

We will briefly introduce the Dragonfly topology. More details about the topology
can be found in Kim et al.’s original paper [1]. The Dragonfly topology has
a 2-layer structure. A group of low-radix routers/switches are interconnected
with an intra-group topology into a group that works as a single virtual router
with a very high radix. In this paper, the terms router and switch will be used
interchangeably. The groups are then connected with some inter-group topology.
Figure 1 shows an example of the 2-layer Dragonfly topology. In this example,
each group consists of 4 switches; there are a total of 9 groups in the system.

Fig. 1. Dragonfly architecture (p=h=2, a=4, g=9)

Various topologies can be used to form the intra-group connectivity. A typical
intra-group topology is a fully connected graph where all pairs of switches are
directly connected [1]. An example of such an intra-group topology is shown in
the G0 group in Fig. 1. The groups in a Dragonfly are also fully connected where
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there is at least one global link connecting each pair of groups. Such a topology is
uniquely defined by four parameters: the number of links per switch connecting
to local compute nodes p, the number of switches in each group a, the number
of global links per switch connecting to switches in other groups h, and the
number of groups g. In a fully connected Dragonfly group, the number of links
per switch connecting to local switches is a−1. We will use the 4-tuple notation
dfly(p, a, h, g) to denote such a topology and 3-tuple notation group(p, a, h) to
denote an individual Dragonfly group. By definition, the number of ports in each
switch in dfly(p, a, h, g) is p + a − 1 + h; the number of global links from each
group is a × h, and the number of groups, g, is thus at most a × h + 1. The
number of global links between each pair of groups is a × h/(g − 1). The total
number of switches and the total number of compute nodes in dfly(p, a, h, g) is
a × g and p × a × g respectively. As discussed in [1], a load-balanced Dragonfly
system should have a = 2p = 2h. Figure 1 illustrates a balanced system with the
largest possible group count dfly(p = 2, a = 4, h = 2, g = 9). In this case, each
group has a = 4 switches and a × h = 8 global links with a × h/(g − 1) = 1
global link connecting to each of other groups.

2.2 Cray Cascade Topology

The Cray Cascade architecture employs Dragonfly as its topology [2]. It has a
well-defined structure for each group, but allows a variable number of groups to
form a system.

Unlike dfly(p, a, h, g), switches in a Cray Cascade group are not fully con-
nected. Every group in Cascade is formed of a pair of cabinets. Each cabinet
houses three chassis. Each chassis contains 16 blades. Each blade connects a
single Aries router and four compute nodes. Each chassis backplane provides
all-to-all connections among sixteen Aries routers. Each router is also connected
to five other routers in the remaining five chassis within the same group. Each
inter-chassis link is equivalent to three intra-chassis links in terms of bandwidth.
Each Aries router has a total of 48 ports: 8 ports for local compute nodes, 15
ports connecting to 15 routers in the same chassis, 15 ports to 5 routers in the
same slot but different chassis, and 10 ports to other groups. Figure 2 shows
the interconnect topology of a single Cascade group. Logically, a cascade group
consists of a 6 × 16 mesh with fully connected X and Y dimensions. Each pair
in the same row is connected by one link while each pair in the same column is
connected by three links.

In practice, the number of global links connecting a pair of groups in Cascade
can be configured. For example, in the NERSC Edison supercomputer, there are
24 global links (spreading among multiple pairs of switches) connecting each pair
of groups [13]. The details about how the global links are connected can be quite
involved. The Cascade topology that we consider in this paper is a six-group
system whose connectivity is directly read from the connectivity dump file for
the first 6 groups of the Edison supercomputer [13].
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Fig. 2. Cray cascade intra-group topology

2.3 Routing in Dragonfly and UGAL

The following terminology will be used to describe routing in Dragonfly. Packets
are routed from a source compute node to a destination compute node. The switch
that the source compute node connects to is called the source switch. The switch
that the destination compute node connects to is called the destination switch.
The group that the source compute node is in is called the source group; the
group that the destination compute node is in is called the destination group.
We will describe routing for a generic Dragonfly topology. The routing can also
be applied to the Cascade Dragonfly variation.

In a Dragonfly topology, packets are routed along either a minimal or a non-
minimal path. The minimal path is the shortest path from the source compute
node to the destination compute node that contains at most one global link. The
thick segmented line in Fig. 3 shows a typical minimal path from s to d, where
the path takes one local hop in the source group from the source switch to the
switch that has a global link to the destination group, then the global link to
the destination group, and finally a local link at the destination group to the
destination switch. Depending on the positions of the source and the destination,
the minimal path may have fewer hops. In dfly(p, a, h, g), two routers belonging
to different groups may be connected through one of the (a × h)/(g − 1) global
links between the two groups. Thus, there are (a × h)/(g − 1) minimal paths
between such router pairs.

The Minimal routing (MIN) scheme routes packets only with minimal paths.
It minimizes the resource usage and works well for traffic patterns where MIN
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Fig. 3. MIN and VLB routing on Dragonfly

can evenly distribute the load such as the random uniform traffic. However,
since the number of links between each pair of groups is typically small, for
traffic patterns where many nodes in one group must communicate to many
nodes in another group, the MIN routing will perform poorly since all of the
traffic from one group to another must use the small number of links between
the two groups. Such traffic patterns are considered adversarial.

To avoid congestion on global links for an adversarial traffic pattern, Valiant
Load-balanced routing (VLB) [14] can be used to spread non-uniform traffic
evenly over the set of available links. A VLB path can be considered as using
MIN to find a path from the source to a randomly selected intermediate switch
that is not in the source and destination groups, and then, from the intermediate
switch to the destination. A VLB path is thus non-minimal. Figure 3 shows a 6-
hop VLB path in solid thick lines. With a VLB route, a packet is first sent to an
intermediate router (Ri in this example) and then to the destination. We note
that the initial works on Dragonfly routing [1,6] consider randomly selecting
an intermediate group to obtain VLB paths. However, it is shown by Garcia
et al. [15] that the randomly choosing a group leads to local link congestion at
the intermediate group and instead, random selection of an intermediate switch
is preferred. In dfly(p, a, h, g), there are a total of a×(g−2) intermediate switches,
(a × h)/(g − 1) minimal paths from the source to each intermediate switch and
again, (a × h)/(g − 1) minimal paths from intermediate switch to destination.
Therefore, the total number of VLB paths between two nodes of a dfly(p, a, h, g)
that are not in the same group is given by

a3 × h2 × (g − 2)
(g − 1)2

(1)
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The Universal Globally Adaptive Load-balanced routing (UGAL) selects
among MIN and VLB paths for each packet based on the traffic condition. The
traffic condition is inferred from the occupancy of packet queues of the network
sensed at the source switch. For each packet, UGAL first randomly selects a
small number of candidate MIN and VLB paths from all possible MIN and VLB
paths for further consideration. In the original UGAL proposal and its Dragon-
fly adaptation, the number of MIN paths is 1 and the number of VLB paths is
1 [1,5]; in Cascade, 2 MIN paths and 2 VLB paths are chosen as candidates [2].
Then, UGAL selects a path from among the candidate paths for routing that
would achieve the smallest packet delay. In contrast, UGAL-G assumes that the
precise global network state information is available, and uses the total queue
length on all links along the path to estimate the packet delay. Let TQMIN be
the smallest path queue length for all MIN paths considered, and TQV LB be the
smallest path queue length for all VLB paths considered. UGAL-G selects the
MIN path if TQMIN ≤ TQV LB , and the VLB path otherwise. Other UGAL-
based schemes [2,6] rely on some practically measurable quantities such as credit-
round-trip latency and piggybacked link-state information broadcast on source
group to estimate the actual packet delay and approximate UGAL-G.

2.4 Maximum Concurrent Flow

Given a traffic pattern, there are various models to quantify the aggregate
throughput performance. Among the throughput models, the maximum con-
current flow model is one of the commonly used models [8–11]. The Maximum
Concurrent Flow (MCF) can informally be described as the maximum attainable
throughput by all flows for a traffic pattern in a given network. In other words,
MCF is the single largest rate that can be assigned to all flows without violating
any capacity constraints. It is therefore the lower bound of the flow rates for all
flows in the traffic pattern.

Without the routing constraint, the MCF rate for a given pattern on a given
topology can be computed using the linear programming (LP) formulation given
by Shahrokhi and Matula [8]. LP is an approach to minimize an objective func-
tion subject to a set of linear inequalities. Their linear-programming formulation
considers all possible paths to route each flow. The models proposed in this work
not only consider the specific UGAL routing on Dragonfly, which is constrained,
but also how the paths are selected in UGAL. This allows us to develop more
accurate and efficient models for UGAL on Dragonfly.

3 Performance Models for UGAL-G on Dragonfly

3.1 Notation

Let A be a set and |A| be the size of the set. Let a Dragonfly network be
represented as a graph G = (V,E), where V is the set of nodes and E is the set
of links in the network. V = PE ∪ S contains two types of nodes. PE is the set
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of compute nodes; and S is the set of switches. The nodes are numbered from 0
to |V | − 1. For each link e ∈ E, Ce is the link capacity.

Let s ∈ PE and d ∈ PE. A flow from s to d is denoted as (s, d). A traffic
pattern F is a set of flows. The traffic in a flow is carried over a set of paths for
the flow. Each path p is represented as a set of links. For each flow, UGAL-G
considers all MIN paths and all VLB paths. For a flow (s, d), PMIN,L

s,d is the set of
MIN paths with path length L; PV LB,L

s,d is the set of VLB paths with path length
L; PMIN

s,d is the set of all MIN paths for the flow; PVLB
s,d is the set of all VLB

paths and Ps,d is the set of all considered paths. Clearly, PMIN
s,d = ∪LPMIN,L

s,d ;
PVLB
s,d = ∪LPVLB,L

s,d ; and Ps,d = PMIN
s,d ∪ PVLB

s,d . Let e ∈ E be a link. If a path p
uses a link e, we say that e ∈ p. Given a set of paths P , P (e) returns a subset
of P only containing paths that use link e. Table 1 summarizes the notations.

Table 1. Notation used in the models

G = (V,E) the topology with node set V and edge set E

Ce, e ∈ E link capacity

(s, d) a flow from s to d

Ps,d the set of all MIN and VLB paths for (s, d)

PMIN
s,d the set of MIN paths for (s, d)

PMIN,L
s,d the set of MIN paths of length L for (s, d)

PVLB
s,d the set of VLB paths for (s, d)

PVLB,L
s,d the set of VLB paths of length L for (s, d)

P (e) {p|e ∈ p and p ∈ P}

3.2 Performance Models

We use linear programming (LP) to model UGAL-G performance as an opti-
mization problem. For accuracy, our models consider the following UGAL-G
features.

– Feature 1: UGAL-G considers all MIN and VLB paths.
– Feature 2: UGAL-G randomly selects a small number of MIN and VLB

paths as candidate paths for each packet.
– Feature 3: UGAL-G implicitly differentiates paths of different lengths.

UGAL-G selects paths based on the path latency. As a result, it biases towards
using shorter paths: if the queue length is the same for all links, shorter paths
will have smaller aggregate queue length and are more likely to be selected
by UGAL-G.
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The challenge to develop accurate performance models is to capture the dom-
inating factors in the UGAL-G routing process. UGAL-G uses an identical pro-
cess to select between MIN and VLB paths. Thus, the spectrum of UGAL-G’s
control over MIN and VLB paths is the same. Next, we will use VLB paths to
describe the potential control that UGAL-G has on paths. Consider the spectrum
of UGAL-G’s control over VLB paths. At one end, since UGAL-G considers all
VLB paths (Feature 1), if it may have a fine-grain control at the path level, it
could allocate rates for individual paths so as to maximize the aggregate through-
put for a pattern. This level of control will be referred to as individual control.
On the other end, UGAL-G randomly selects a small number of VLB paths as
candidate paths for each packet (Feature 2). If the random selection dominates
the performance, the routing essentially treats all VLB paths the same as a group
and uniformly distribute the load to each of the paths. This level of control will
be referred to as all random control. In general, the level of control falls in
between the two extremes. Feature 3 states that UGAL-G differentiates paths of
different lengths. This gives another potential level of control in between the two
extremes, which we call path-length-based random control. In this control,
the VLB paths are grouped based on their lengths. The routing scheme may
allocate rates differently for different groups, but will treat paths in the same
group the same. Further refinement of the levels of control is possible. However,
it will be shown later that the combination of these three levels of control already
yields accurate modeling.

The level of control that UGAL-G has would depend on the number of MIN
and VLB paths, which is determined by the Dragonfly topology. When the num-
ber of MIN (VLB) paths is small, each MIN (VLB) path is likely considered as
a candidate path for each packet; and UGAL-G can have a high level of control
over the rate allocation over the MIN (VLB) paths. On the other hand, when
the number of MIN (VLB) paths is very large, the chance for each MIN (VLB)
path to be selected as the candidate path by UGAL-G is very small. As a result,
UGAL-G will have a low level of control of the rate allocation over such paths.
In between these two extremes, path-length-based random control may be more
appropriate.

Table 2. Summary of models (Model No. 3 is a robust and efficient model for different
topologies)

Model MIN VLB

No. 0 individual individual

No. 1 individual path-length-based random

No. 2 individual all random

No. 3 path-length-based random path-length-based random

No. 4 path-length-based random all random

No. 5 all random all random
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Given a Dragonfly topology, it is unclear which level of control UGAL-G
has for the MIN and VLB paths. In general, the number of MIN paths is sig-
nificantly smaller than the number of VLB paths. As such, UGAL-G will have
more control over MIN paths than over VLB paths. To find a robust model that
is both accurate and efficient, we develop a set of six models that applies each
of the three levels of control on the two types of paths (MIN and VLB) with
the assumption that UGAL-G will have an equal or higher level of control over
MIN paths than over VLB paths. The models are summarized in Table 2. Our
experiments indicate that Model No. 3 with path-length-based random control
for both MIN and VLB paths is a robust and efficient model across many varia-
tions of Dragonfly including the Cascade topology, achieving accurate modeling
results and low modeling complexity.

Model No. 0 (the upper bound, individual control on both MIN and
VLB paths)

For each flow, UGAL-G considers all MIN and VLB paths. Model No. 0 assumes
that UGAL-G has individual control over both MIN and VLB paths so that it
can allocate the rate for each path to maximize the throughput. To model the
individual control over each MIN and VLB path, each MIN or VLB path can have
a different rate, which is represented as one variable in the LP formulation. Our
linear programming formulation uses the edge-path formulation assuming that
each path considered by UGAL-G can be assigned a different rate to maximize
the MCF rate.

The LP formulation is shown in Fig. 4. In this model, one variable xp
s,d is

assigned to each path p considered by UGAL-G for a flow (s, d) in the pattern.
The variable xp

s,d represents the rate allocated for the path. Hence, for flow (s, d),
the sum of the rates allocated to all of its paths,

∑
p∈Ps,d

xp
s,d, is the flow rate.

The variable α is the MCF rate for the pattern. By MCF definition, the rates for
all flows must be no less than the MCF rate. The constraints in (1) ensure that
the rates for all flows are no less than the MCF rate. Constraints (2) are link
capacity constraints that state that for each link, the total rates for all paths
that use the link,

∑
e∈p,p∈Ps,d,(s,d)∈F xp

s,d, do not exceed the link capacity.

Fig. 4. Model No. 0: the upper bound MCF rate for all UGAL-based schemes (indi-
vidual control over MIN paths and individual control over VLB paths)

The formulation in Fig. 4 assumes that the rate for each path can be tuned to
maximize the MCF throughput, which provides an upper bound for all UGAL-
based algorithms. This formulation, however, has two issues. First, solving the
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problem on reasonably sized networks becomes computationally infeasible due
to the use of a large number of variables. In practical Dragonfly networks, the
number of minimal paths is usually not very large, while the number of VLB
paths can easily approach tens of thousands to millions. See Table 3 for Drag-
onfly examples with the numbers of MIN and VLB paths. This formulation can
easily introduce more than one million variables for some topology. Solving LP
problems of such sizes is computationally infeasible with today’s technology.
The second issue is that this formulation does not consider the inner working of
UGAL-G such as Features 2 and 3. Thus, it may not yield accurate estimation
results for UGAL-G.

Model No. 1 (individual control on MIN paths and path-length-based
random control on VLB paths)

Model No. 0 would yield an accurate modeling result only if UGAL-G were
capable of tuning the rate for each available MIN and VLB path in the most
effective manner. In the Dragonfly topology, the number of MIN paths for each
flow is usually small while the number of VLB paths can be much larger. For
example, in dfly(3, 6, 3, 10), the number of VLB paths between two nodes that
are not in the same group is 192 as calculated from Formula 1, while the number
of MIN paths for each flow is 2. In such a situation, considering a small number
of (1 or 2) VLB paths for each packet is not likely to result in effective use of VLB
paths while the routing may have individual control over MIN paths since the
MIN path is considered for every packet. Model No. 1 assumes individual control
over MIN paths and path-length-based random control over VLB paths and
targets Dragonfly networks with a small number of MIN paths and a reasonably
large number of VLB paths per flow.

The LP formulation for Model No. 1 is shown in Fig. 5. In this model, for each
flow (s, d), a variable xp

s,d is assigned to each MIN path p ∈ PMIN
s,d . In addition,

another variable xVLB,L
s,d is assigned for all VLB paths of length L (PVLB,L

s,d �= ∅)
of a given flow (s, d): each of the VLB paths of length L will have the same rate,
xVLB,L
s,d , while VLB paths of different lengths may have different rates. The LP

formulation of Model No. 1 is basically the same as that of Model No. 0 except
that all VLB paths of the same length L for each flow is assumed to have the same
rate.

∑
p∈PMIN

s,d
xp
s,d +

∑
PVLB,L

s,d �=∅ |PVLB,L
s,d | × xVLB,L

s,d is the rate allocated for flow

(s, d); and Constraints (1) ensure that the rates for all flows are no less than the
MCF rate.

∑
p∈PMIN

s,d (e),(s,d)∈F xp
s,d +

∑
PVLB,L

s,d (e) �=∅,(s,d)∈F |PVLB,L
s,d (e)| × xVLB,L

s,d

is the total rate allocated over link e; and Constraints (2) are link capacity
constraints that ensure that the rate allocated over each link is no more than its
capacity.

The Model No. 1 in Fig. 5 will be accurate when the random selection of VLB
paths (Feature 2) and the path length preferences (Feature 3) have impacts
on the throughput performance. Since VLB paths have similar path lengths
in Dragonfly, Model No. 1 only needs a small number of variables for VLB
paths, which significantly reduces the number of variables over Model No. 0. For
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Fig. 5. Model No. 1: Maximize the MCF rate with the assumption that VLB paths of
the same length for a flow have the same rate (individual control over MIN paths and
path-length-based random control over VLB paths)

example, the longest VLB path in dfly(p, a, h, g) is 6 hops, as shown in Fig. 3.
Therefore, there could be at most 6 different path lengths for all VLB paths and
thus, only up to 6 variables corresponding to VLB routing is required per flow
in the model LP formulation. This reduction in the number of variables enables
Model 1 to be used to solve much larger problems in much larger systems.

Model No. 2 (individual control on MIN paths and all random
control on VLB paths)

Model No. 1 considers the three features of UGAL-G: (1) the routing considers all
MIN and VLB paths, (2) the large number of VLB paths is randomly selected for
consideration for each packet, and (3) UGAL-G inherently differentiates between
paths of different lengths. When the number of VLB paths is very large, the
random selection of VLB paths to be considered for each packet may be the
dominating factor. In this case, UGAL-G may only have the all random control
over VLB paths. Model No. 2 that assumes individual control of MIN paths and
all random control of VLB paths is designed for such cases.

The LP formulation for Model No. 2 is shown in Fig. 6. In this model, for each
flow (s, d), a variable xp

s,d is assigned to each MIN path p ∈ PMIN
s,d . In addition,

another variable xVLB
s,d is assigned for all VLB paths, that is, each of the VLB

paths is assumed to have the same rate xVLB
s,d . Model No. 2 is basically the same

as Model No. 1 except that all VLB paths for each flow are assumed to have the
same rate. Constraints (1) ensure that the rates for all flows are no less than the
MCF rate.

∑
p∈PMIN

s,d (e),(s,d)∈F xp
s,d +

∑
PVLB

s,d (e) �=∅,(s,d)∈F |PVLB
s,d (e)| × xVLB

s,d is the

Fig. 6. Model No. 2: Maximize the MCF rate with the assumption that all VLB paths
for a flow have the same rate (individual control for MIN paths and all random control
for VLB paths)
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total rate allocated over link e which must not exceed the link capacity. Such
capacity constraints are summarized in Constraints (2).

The Model No. 2 in Fig. 6 will be accurate when the random selection of VLB
paths dominates the performance. It further reduces the number of variables for
each flow in comparison to Model No. 1.

Model No. 3 (path-length-based random control on MIN paths and
path-length-based random control on VLB paths)

Although the number of VLB paths is always significantly larger than the number
of MIN paths for each flow in a Dragonfly topology, some Dragonfly topologies
can have a significant number of MIN paths. Variants of Dragonfly such as the
Cascade topology that do not have a fully connected intra-group network and
have high number of global links between all group pairs, fall into this category.
For such topologies, UGAL-G may not have the individual control over each
MIN path. Model No. 3 assumes that the control over MIN paths as well as
VLB paths is path-length-based random.

The LP formulation for Model No. 3 is shown in Fig. 7. In this model, for
each flow (s, d), a variable xMIN,L

s,d is assigned to each group of MIN paths of
length L (PMIN,L

s,d �= ∅). For VLB paths, a variable xVLB,L
s,d is assigned for each

group of VLB paths of length L (PVLB,L
s,d �= ∅).

∑
PMIN,L

s,d �=∅ |PMIN,L
s,d | × xMIN,L

s,d +
∑

PVLB,L
s,d �=∅ |PVLB,L

s,d |×xVLB,L
s,d is the rate allocated for flow (s, d). Constraints (1)

describe the MCF rate constraints.
∑

PMIN,L
s,d (e) �=∅,(s,d)∈F |PMIN,L

s,d (e)| ×xMIN,L
s,d +

∑
PVLB,L

s,d (e) �=∅,(s,d)∈F |PVLB,L
s,d (e)| × xVLB,L

s,d is the total rate allocated over link

e; and the same expression is used in Constraints (2) to summarize capacity
constraints on all links.

Fig. 7. Model No. 3: Maximize the MCF rate with the assumption of path-length based
control for both MIN and VLB paths

Model No. 4 and Model No. 5

Model No. 4 assumes path-length-based random control on MIN paths and all
random control on VLB paths. Model No. 5 assumes all random control on
both VLB and MIN paths. These two models uses less variables than all of the
earlier models. Their LP formulations are straight-forward extensions of those
for Models No. 1, 2, and 3, and are omitted.
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4 Model Validation

We implemented the six models for the general Dragonfly topology as well as for
the Cascade topology. Each implemented model takes in a topology, a routing
scheme and a traffic pattern as inputs and generates an LP formulation file.
The LP formulation is then fed into IBM’s CPLEX optimizer [16] to find the
maximum MCF rate for each of our experiment instances.

We have also extended Booksim [12] to support UGAL-G for dfly(p, a, h, g)
and the Cascade topology. Then, simulation results on the same network config-
urations are obtained to validate the models. We assume single-flit packets and a
2.5x speedup for router crossbar over network links. The latency of each network
link is set to 10 cycles. To ensure deadlock-free routing, we allocate three virtual
channels for the Dragonfly topology in the same way as described in [1], and ten
virtual channels for the Cascade topology. The buffer size of each virtual chan-
nel is set to 256 flits. For each data point, the network is warmed-up for 40,000
cycles and network statistics are collected for another 10,000 cycles. In Booksim,
all processing nodes inject traffic to the network at a same injection rate. During
each simulation run, We gradually increment the injection rate until the packet
queues across the network becomes saturated. Once the network is saturated, we
record the corresponding injection rate as the maximum concurrent throughput
of that run.

Table 3. Topologies used in the validation

Topology # of # of # of # of

switches PEs MIN VLB

dfly(2, 4, 2, 9) 36 72 1 28

dfly(3, 6, 3, 19) 114 342 1 102

dfly(4, 8, 4, 33) 264 1, 056 1 248

dfly(5, 10, 5, 51) 510 2, 550 1 490

dfly(5, 10, 5, 26) 260 1, 300 2 960

dfly(5, 10, 5, 11) 110 550 5 2250

dfly(5, 10, 5, 6) 60 300 10 4000

Cascade 576 2, 304 96 3,538,944

The topologies considered are summarized in Table 3. Two types of topologies
are used: the load-balanced Dragonfly with fully connected intra-group topology
described in dfly(p, a, h, g) denotation, and the 6-group Cascade topology. The
difference between these two topologies is in the number of MIN and VLB paths
that are available. The number of MIN and VLB paths in dfly(p, a, h, g) is (a ×
h)/(g−1) and (a3×h2×(g−2))/(g−1)2 respectively, as shown in Sect. 2. In the
Cascade topology, a packet can go in either X or Y dimension first within each
group and there are 24 global links between each group pair. Hence, the number
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of MIN paths between two nodes in different groups can be up to 2×24×2 = 96.
The number of VLB paths in Cascade is much larger. Using 4 × 96 = 384
potential intermediate switches, the number of VLB paths for each flow can be
up-to 96 × 96 × 384 = 3, 538, 944. As discussed earlier, the number of MIN and
VLB paths affects how UGAL-G controls the paths.

In the experiments on dfly(p, a, h, g), one MIN path and one VLB path are
randomly chosen as candidate paths for each packet, same as in the original
UGAL proposal [6]. On the Cascade topology, we consider 2 MIN and 2 VLB
candidate paths in consistency with the current Cascade routing scheme [2].

The results for two types of traffic patterns are reported, the random permu-
tation patterns where each node sends to and receives from at most one other
destination and source respectively, and the random shift pattern where compute
node i sends to compute node (i + x) mod |PE| where x is a random number.
Results for other patterns yield similar trends.

The general observations in the experiments include the following: individual
control in general overestimates the throughput; all random control in general
underestimates the throughput; and the path-length-based random control gives
good estimation for a wide range of Dragonfly variations. In particular, Model
No. 3 that assumes path-length-based random control for both MIN and VLB
paths, which has a low complexity with a small number of variables for each
flow, achieves good prediction for a wide range of Dragonfly topologies (within
10% of prediction errors in all cases in our study).
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Fig. 8. The modeling and simulation results for random permutation patterns on
dfly(p, a, h, a × h + 1)

Figure 8 shows the average modeling and simulation results for five random
permutation patterns on maximum size dfly(p, a, h, a × h + 1) networks of dif-
ferent sizes. For these topologies, since the number of MIN paths for each flow
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Fig. 9. The modeling and simulation results for individual random permutation pat-
terns on dfly(2, 4, 2, 9)

is only 1, Model No. 1 is equivalent to Model No. 3, and Models No. 2, 4, and
5 are equivalent. As can be seen from the figure, the throughput with UGAL-G
across all topologies is significantly worse than the throughput predicted by Model
No. 0. This indicates that for these topologies, UGAL-G cannot fully control the
MIN and VLB paths to maximize its throughput. The figure also shows that the
throughput with UGAL-G is significantly better than that predicted with Model
No. 2. This indicates that UGAL-G has better control than all random over VLB
paths. Across all topologies, the throughput predicted by Models No. 1 and No.
3 closely matches the simulation with the prediction errors ranging from 4.3% to
8.6%. Figure 9 shows prediction and simulation results for each individual random
permutation on dfly(2, 4, 2, 9). As can be seen from the figure, the trend for the
prediction with each model is exactly the same as that in Fig. 8. Results on other
similar dfly(p, a, h, g) instances are similar.

Figure 10 shows the average modeling and simulation results for five ran-
dom permutation patterns on Dragonfly topologies with the same group
group(5, 10, 5), but different numbers of groups: dfly(5, 10, 5, 6) with 6 groups,
dfly(5, 10, 5, 11) with 11 groups, and so forth. These topologies have the same
structure with different numbers of global links connecting each pair of groups,
which affects the number of MIN and VLB paths as shown in Table 3. Results
for Model No. 4, which are in-between the results for Models No. 3 and No. 5,
are omitted to make the figure less dense. From the figure, it is evident that
individual control overestimates the throughput when the number of paths in a
group (MIN or VLB) is sufficiently large, while the all random control under-
estimates the throughput. The overall throughput estimation is a combination
of the estimation of VLB paths and MIN paths. Thus, Model No. 0 overes-
timates the throughput for both VLB and MIN paths, resulting in consistent
over-estimation of throughput for all cases. Similarly, Model No. 5 consistently
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Fig. 10. The modeling and simulation results for random permutation patterns on
different number of group(5, 10, 5) groups

underestimates the throughput for all cases. Model No. 3 consistently tracks
the throughput obtained from simulation for different topologies. Notice that
the overall throughput estimation is the combination of the estimation for MIN
and VLB paths: over-estimating or under-estimating either MIN or VLB per-
formance can sometimes dominate the overall prediction, resulting in prediction
errors. For example, for dfly(5, 10, 5, 6) with 10 MIN paths per flow, Models No. 1
and No. 2 both overestimate the throughput for MIN by assuming individual
control, resulting large overall prediction errors.
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Fig. 12. The modeling and simulation results for random shift patterns on different
number of group(5, 10, 5) groups

Figure 11 shows the average modeling and simulation results for five random
shift patterns on the largest Dragonfly of different sizes dfly(p, a, h, a × h + 1).
This is one of the adversarial traffic patterns for Dragonfly. From the rate allo-
cation perspective, however, it is clear what needs to happen to achieve high
performance: use the VLB paths uniformly. As can be seen from the figure, even
with the full control of the rate allocation for the patterns, the throughput is
not much higher than treating all VLB paths the same. For this pattern, Model
No. 0 only slightly overestimates the throughput while Models No. 2, 4, 5 only
slightly underestimates the throughput. Models No. 1 and No. 3, nonetheless,
produces the most accurate prediction. Figure 12 compares modeling and simu-
lation results on Dragonfly topologies with the same group group(5, 10, 5), but
different number of groups. Very similar results to those in Fig. 11 are observed.
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Fig. 13. The modeling and simulation results on the 6-group Cascade topology
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Figure 13(a) shows modeling and simulation results for five different random
permutation patterns on the 6-group Cascade topology. We recall that the LP
formulation given by Model No. 0 requires a unique variable for each unique
path. Due to the large number of VLB and MIN paths in this topology, calcu-
lating the performance upper bound of UGAL-G in Cascade would then require
solving LP with several billions of variables which is not computationally fea-
sible. We, therefore, omit considering Model No. 0 on the Cascade system and
compare UGAL-G performance with the remaining five models. In the experi-
ments, Models No. 1 and No. 3 result in almost the same values while Models
No. 2, No. 4, and No. 5 yield almost the same value. We only show the results
for Models No. 3 and No. 5 in the figure for clarity. For this topology, the num-
ber of MIN and VLB paths are both very large. Models No. 1 and No. 3 differ
in how the MIN paths are controlled: Model No. 1 assumes individual control
of MIN paths while Model No. 3 assumes path-length based control. The fact
that Models No. 1 and No. 3 yield similar results for the random permutation
patterns indicates that fine-grain control of the MIN paths does not yield bet-
ter throughput performance for this topology, which is likely due to the large
number of links between each pair of groups. Models No. 2, No. 4 and No. 5
also only differ in how the MIN paths are controlled. Thus, similar logic applies.
It is evident from Fig. 13(a) that Model No. 3 and Model No. 1 predict the
throughput performance on this topology very accurately. The prediction errors
for the five random permutation patterns range from 0.0% to 2.6%. In fact, even
Model No. 5 (as well as Models No. 2 and No. 4) has good prediction accuracy
with errors up-to 7.0%. These results confirm that when the number of MIN and
VLB paths are large, the control of UGAL-G over the MIN and VLB paths is
group-based. Figure 13(b) shows modeling and simulation results for five random
shift patterns on the same Cascade topology. The trend is very similar: UGAL-
G performance is almost perfectly approximated by Model No. 3 and can be
reasonably approximated with Model No. 5.

Other patterns and other Dragonfly topologies have also been studied. The
results have the similar trend: individual control consistently overestimates the
performance although the level of over-estimation differs based on the topol-
ogy; all random control consistently underestimates the performance; and the
path-length-based random control, which takes the three distinguished features
of UGAL-G described in Sect. 3 into consideration, consistently tracks the per-
formance across a wide range of topologies. These results have two indications.
First, UGAL-G has group-based control when the number of MIN and VLB
paths is sufficiently large. Second, path-length-based control for both MIN and
VLB paths (Model No. 3) is sufficient to model UGAL-G accurately on different
Dragonfly topologies. As a result, the LP formulation only needs a small number
of variables (at most 6 for dfly(p, a, h, g) and 12 for Cray Cascade) to model each
flow; and the models can be used to obtain throughput performance for large
systems with tens of thousands of flows.
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5 Related Work

Since the Dragonfly network was first introduced, it has been clear that a globally
adaptive routing scheme is needed. In the seminalworkbyKimet al. [1], the authors
propose selecting a random intermediate group to route non-minimally in order
to load-balance adversarial traffic patterns over global channels. Jiang proposes
several adaptive routing heuristics that approximate UGAL-G [6]. Improvements
over the original UGAL-based scheme have been developed. Garcia et al. [15] are
the first to address local congestion inside Dragonfly groups and proposed allowing
non-minimal routing on both intra- and inter-group communication in their OFAR
routing scheme. OFAR-CM [17] proposes throttling packet injection at local nodes
as well as routing through an escape subnetwork to mitigate congestion on OFAR
routing at the cost of additional hops. Opportunistic Local Misrouting (OLM) [18]
allows non-minimal routing on both local and global levels of the Dragonfly hier-
archy and the routing decision may be updated at any hop. Improvements for load
estimation with UGAL-based routing scheme have also been developed [19,20].
Existing research on UGAL-based routing mainly focuses on improving the effec-
tiveness of the routing scheme. Jain et al. [21] provide an iterative model to predict
the link utilization and thus, estimate throughput of UGAL-G routing on large-
scale Dragonfly networks. Their model uses a bandwidth approximation scheme
assuming all flows have a fair of bandwidth on each link, which is known to under-
estimate throughput with a multi-path routing. Our work is different from the
existing research in that we develop efficient throughput performance models using
linear programming that give more insights about rate allocation control of UGAL
on Dragonfly designs.

6 Conclusion

We develop a set of throughput models for UGAL-G on the Dragonfly topology
based on the level of control that UGAL-G has on the MIN and VLB paths, and
identify a robust model that is both accurate and efficient for a large number of
Dragonfly variations. The model not only provides a mechanism to predict the
aggregate throughput performance for large scale Dragonfly networks, but also
reveals (1) that even with the precise global information, UGAL-G is unable to
achieve a fine-grain control over individual paths that are available, and (2) that
UGAL-G in general allocates rates to groups of paths.

The Dragonfly topology has a large number of variants. The level of control
that UGAL has over its paths is largely determined by the number of MIN
and VLB paths, which in turn is decided by the topology. This work in general
indicates that higher level of control can be achieved by UGAL-G when the
number of MIN (VLB) paths is small, and that the level of control decreases
as the number of MIN (VLB) paths increases. More research is necessary to
determine the relationship between the number of available MIN and VLB paths
and the level of control that UGAL has over the paths.
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cient dragonfly networks with simple congestion management. In: 2013 IEEE
21st Annual Symposium on High-Performance Interconnects (HOTI), pp. 55–62,
August 2013

18. Garcia, M., Vallejo, E., Beivide, R., Odriozola, M., Valero, M.: Efficient routing
mechanisms for dragonfly networks. In: 2013 42nd International Conference on
Parallel Processing (ICPP), pp. 582–592, October 2013

19. Won, J., Kim, G., Kim, J., Jiang, T., Parker, M., Scott, S.: Overcoming far-end
congestion in large-scale networks. In: 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pp. 415–427, February 2015

20. Fuentes, P., Vallejo, E., Garcia, M., Beivide, R., Rodŕıguez, G., Minkenberg, C.,
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Abstract. This paper presents a model and performance study for
Algorithm-Based Focused Recovery (ABFR) applied to N-body compu-
tations, subject to latent errors. We make a detailed comparison with the
classical Checkpoint/Restart (CR) approach. While the model applies to
general frameworks, the performance study is limited to perfect binary
trees, due to the inherent difficulty of the analysis. With ABFR, the cru-
cial parameter is the detection interval, which bounds the error latency.
We show that the detection interval has a dramatic impact on the over-
head, and that optimally choosing its value leads to significant gains over
the CR approach.

1 Introduction

Future large-scale systems are projected to have higher error rates, with MTBFs
(Mean Time Between Failures) as low as 20 min [1]. We focus on latent errors,
that are not detected immediately after their occurrence. Such errors escape sim-
ple system level detection and can only be exposed by sophisticated application
checks [2,3]. We use the term “detection latency” to denote the time from error
occurrence to detection. Such latency may be thousands (103) to billions (109)
cycles, corrupting a range of computational data. Without support to detect
and recover from latent errors, applications will suffer silent data corruption,
producing invalid scientific results.

In previous work [4], we proposed a new approach, Application-Based
Focused Recovery (ABFR), that exploits application data flow and interme-
diate states to focus recovery on an accurate estimate of potentially corrupted
data. Our study on stencil computations demonstrated ABFR reduces recov-
ery cost by up to 400×. This paper investigates the use of ABFR for N-body
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computations in the presence of latent errors. N-body computations are much
more challenging, as information is exchanged along time-varying patterns that
progress up and down the computation tree.

The first contribution of this paper is to propose a detailed model to enable
the comparison of ABFR with the classical Checkpoint/Restart (CR) approach.
The model is valid for arbitrary N-body trees, which can be either binary trees, or
quad-trees-, or oct-trees, and which are locally imbalanced to account for specific
simulation requirements. The second and major contribution is to provide a
comprehensive performance study for perfect binary trees. While the scenario
of perfect binary trees is not the most general, it encompasses the intrinsic
complexity of the whole model while being amenable to an exact analytical
evaluation. In particular, setting the value of the detection interval, which bounds
the error latency, is crucial to minimize the overhead incurred by ABFR to
detect, and recover from, a latent error. We show how to compute the optimal
value of this key parameter, and that the optimal value leads to significant
savings over the CR approach. This result is an important step towards a full
understanding of the potential impact of ABFR to N-body computations.

The rest of the paper is organized as follows. We start with background
material in Sect. 2: in Sect. 2.1, we introduce Global View Resilience (GVR),
the execution framework for resilient computing which is used as the support to
deploy ABFR, and in Sect. 2.2, we briefly review N-body computations. Next,
we outline the general principles of the ABFR approach in Sect. 3, and describe
how to apply ABFR for N-body tree simulations. Then we provide a detailed
formulation of the performance model in Sect. 4. Sections 5 and 6 are devoted to
the performance study, and show how to compute the expected cost (Sect. 5) and
expected overhead (Sect. 6) of the CR and ABFR approaches. Section 7 shows
how to compute the optimal detection interval for ABFR. We report simulation
results corresponding to a broad range of scenarios in Sect. 8. Section 9 presents
related work. Finally, we give concluding remarks and hints for future directions
in Sect. 10.

2 Background

2.1 Global View Resilience (GVR)

We use the GVR library to preserve application data and enable flexible recov-
ery. GVR provides a global view of array data, enabling an application to easily
create, version and restore (partial or entire) arrays. In addition, GVR’s conve-
nient naming enables applications to flexibly compute across versions of single or
multiple arrays. GVR users can control where (data structure) and when (tim-
ing and rate) array versioning is done, and tune the parameters according to
the needs of the application. The ability to create multi-version array and par-
tially materialize them, enables flexible recovery across versions. GVR has been
used to demonstrate flexible multi-version rollback, forward error correction,
and other creative recovery schemes [5,6]. Demonstrations include high-error
rates, and results show modest runtime cost (<1%) and programming effort in
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full-scale molecular dynamics, Monte Carlo, adaptive mesh, and indirect linear
solver applications [7,8].

GVR exploits both DRAM and high bandwidth and capacity burst buffers or
other forms of non-volatile memory to enable low-cost, frequent versioning and
retention of large numbers of versions. As needed, local disks and parallel file sys-
tem can also be exploited for additional capacity. For example, NERSC Cori [9]
supercomputer provides 1.8 PB SSDs in the burst buffer, with 1.7 TB/s aggre-
gate bandwidth (6 GB/s per node). The JUQUEEN supercomputer at Jülich
Supercomputing Center [10] is equipped with 2 TB flash memory, providing 2
GB/s bandwidth per node. Multi-versioning performance studies on JUQUEEN
[10] showed GVR is able to create versions at full bandwidth, demonstrating low
cost versioning is a reality [11]. In this paper, GVR’s low-cost versioning enables
flexible recovery for ABFR.

2.2 N-Body Computations

The N-body problem is the problem of predicting the motions of a dynamical
system of objects, under the influence of physical forces, e.g. gravity. N-body
simulations are a fundamental tool in the study of physical systems, from inves-
tigating three-body systems like the Earth-Moon-Sun to understanding the evo-
lution of star clusters [12].

Over the past years, a number of methods have been introduced to solve N-
body problem. The direct-summation method computes and integrates the pair-
wise forces on each particle with all others, in which the computation increases
as O(N2). Much effort [13–16] has been expended to reduce the complexity
by approximating the contribution of many particles with a single interaction,
resulting in complexity of O(N log N). Among them, “tree codes” [15,17,18] are
widely deployed, which use a tree structure to organize particles and group dis-
tant particles into one larger cell, allowing their gravity to be accounted for a
single force. Barnes-Hut [17] is a commonly used tree algorithm, consisting of
two major steps: first construct the tree and then compute the force of each
particle by walking the tree.

Tree construction: A root node is used to encompass the full mass distribution.
In 2D simulation, the space is repeatedly subdivided into four daughter nodes of
half the side length each, until one ends up with single particles (see Fig. 1). After
the topology of the tree has been constructed, the contents (mass, position) of
each node are initialized by a post-order tree traversal.

Force computation: For each particle, forces are obtained by traversing the
tree, i.e. starting at the root node, a decision is made whether or not to open a
node (i.e. continue the tree walk) to provide an accurate enough partial force.
Thus the error is controlled conveniently by the opening criterion, because higher
accuracy is obtained by walking the tree to lower levels. The Barnes-Hut opening
criterion determines if a node is sufficiently far away by computing l/D , where l
is the length of the region represented by the node, and D the distance between
the node’s center-of-mass and the particle. If l/D < θ (i.e. opening criterion),
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Fig. 1. Barnes-Hut quad-tree computation for 2D N-body simulation

then approximate the particles in the node by their center of mass. Otherwise,
continue the tree walk. The typical value of θ ranges from 0.3 to 0.8.

The reconstruction of full tree at each step can lead to significant overhead.
As a result, the dominant time of simulation is spent on tree construction rather
than force computation. McMillan and Aarseth [19] first discussed that the geo-
metric structure of tree evolves slowly in time, therefore it is sufficient to recon-
struct the tree once in a while to take into account the slow changes in the tree
hierarchy. Gadget [20] proposed a dynamic tree update scheme, in which the
tree node is updated without reconstructing the full tree. The tree reconstruc-
tion frequency can be controlled to improve computation efficiency. In our study,
we adopt the dynamic tree update scheme and allow tree nodes to be updated
with tunable frequency.

3 Algorithm-Based Focused Recovery (ABFR)

We propose to use the Algorithm-Based Focused Recovery (ABFR) approach [4]
for N-body computations. ABFR exploits application semantics and versioned
states to bound error impact and further localize recovery. ABFR exploits
application algorithmics and data flow to identify potential root causes of a
latent error and focus recovery effort on a small subset (see Fig. 2b). ABFR
allows recovery to be overlapped with computation, reducing recovery overhead
and enabling tolerance of high error rates. In contrast, checkpoint-restart (CR)
(Fig. 2a) blindly rolls back the entire computation to the last verified checkpoint
and recomputes everything.

We assume that a latent error detector (or “error check”) is available. Such
detectors are application-specific and computationally expensive. In order to
keep the model general, we make the following assumptions:
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Fig. 2. Checkpoint restart (CR) vs. Algorithm-based focused recovery (ABFR).

– The error detector has 100%1 coverage, finding some manifestation whenever
there is an error, but not precisely identifying all manifestations.

– The error check detects error manifestations in the data, namely, corrupted
values and their locations.

– Because latent (“silent”) errors are complex to identify, the detector is com-
putationally expensive.2

The interval between two consecutive error detections bounds the error
latency. Given the error location and timing, three steps are performed to correct
the state of corrupted data.

1. Inverse propagation: application logic and dataflow is used to inverse error
propagation, identifying all data points in past that could have contributed
to this error manifestation. These data points are called potential root causes
(PRC). For N-Body tree computations, the errors may reside in leave nodes
(i.e. no propagation) or propagate to some up-level nodes depending on the
latency. Nodes that have interacted with the detected erroneous node in the
latency bound are considered as PRCs. Therefore the tree structure and the
error latency bound are used to invert error propagation and identify PRCs.

2. Diagnosis: to bound error impact more precisely, PRCs can be tested (diag-
nosis), eliminating many of the initial PRCs. For N-Body tree computations,
this can be accomplished by recomputing intermediate states from versions
(courtesy of GVR) and comparing to previously saved results. If the values
match, the PRC can be pruned.

3. Recovery: recovery is applied to the reduced set of PRCs and their down-
stream error propagation paths. For instance, recovery can be recomputing
PRCs and particles that have interacted with PRCs in the latency bound.

1 Errors that cannot be detected are beyond the ability of any error recovery system
to consider.

2 Assuming expensive checks means that any improvements in checking can be incor-
porated – cost is not a disqualifier.
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4 Analytical Performance Model

In this section, we introduce the model. We start with the application frame-
work before detailing all error-related and fault-tolerance parameters. Table 1
summarizes main notations.

Table 1. Summary of main notations.

Definitions

n Height of tree

K Number of iterations performed at level n (tree leaves)

Error rate

λ Errors per second per leaf

Time

c Time to compute one leaf

d Time to detect errors on one leaf

v Time to version one leaf

r Time to recover one leaf

Tree-wise

Tc Time to compute the tree without errors

Td Time for detection the tree without errors

Tv Time for versioning the tree without errors

Frequency

D Detection interval of the form 2x · K

Application model. We consider a perfect binary tree Tn of depth n. Leaves
at the bottom of the tree hold the original data and perform computations,
while internal nodes operate by aggregating the data of their two children and
keeping a summary. The root is at level 0, and leaves are at level n. Nodes at
different levels are updated with different rates: these rates are decreasing from
bottom to top, so that leaves are updated the most frequently, while the root
is updated the least frequently. The execution proceeds through iterations with
global period 2n. Each iteration consists of K computing steps at leaf level n, plus
some information propagation, first bottom-up and then top-down, to exchange
summary data. The scope of the propagation across the tree varies as follows.
Every odd iteration is limited to level n nodes (leaves), without any propagation.
Iteration number 2j with j odd is a depth-1 propagation that goes up to level
n − 1 nodes and then back to the leaves. Iteration number 4j with j odd is a
depth-2 propagation that goes up to level n − 2 nodes and then back to the
leaves. More generally, iteration number 2ij with j odd is a depth-i propagation
that goes up to level n − i nodes and then back to the leaves. Hence the root is
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Table 2. Iterations and number of nodes updated each level for T3, with n = 3.

Level Iterations

1 2 3 4 5 6 7 8

0 20

1 21 21

2 22 22 22 22

3 K · 23 K · 23 K · 23 K · 23 K · 23 K · 23 K · 23 K · 23

first updated at iteration 2n. Note that the root is updated only once per global
period of 2n iterations, which represent 2nK computing steps at leaf level. The
value of parameter K is application-dependent. See an illustration with n = 3
on Table 2, which also shows how many nodes per iteration are updated at the
different levels.

During a global period of 2n iterations, the 2n leaves execute K computation
steps every iteration, hence the total computing cost is Tc = 4n · K · c, where c
denote the time of a computing step at the bottom level.

Error model. An error can strike at any time during the computations of
the leaves. When an error occurs, it produces a localized error on a leaf, as
shown in Fig. 3a. This error then spreads to other nodes every time data is
exchanged, i.e., during iterations 1, 4, 6, 8 in Table 2 and in Fig. 3c. This results
in several leaves being corrupted after a few iterations (as shown by Fig. 3b). In
particular, the whole tree will be corrupted after the root has been updated and
the data has been sent back to all nodes, which happens every 2n iterations (this
corresponds to iteration 8 in Table 2). We assume that errors strike following an

Fig. 3. Computation of a tree with x = n = 3. An error strikes a node at t = 3 (a).
The error propagates to neighboring nodes following the communication pattern and
four leaves are corrupted at t = 5 (b). Detection is done on the leaves at t = 8 after
computation but before propagation (c).
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Exponential probability distribution. Let λ denote the error rate per leaf node,
so that 1 − e−λc is the probability of having an error during the computation of
one leaf, and 1−e−λTc the probability of having an error during the computation
of the whole global period. We also assume that at most one error strikes during
the execution of one period.

Versioning. Versioning a leaf consists in saving its current state. We assume
that the cost of versioning is low in front of the detection cost. For simplicity,
we version the state of the leaves every K steps. Therefore the total time needed
for versioning 2n leaves, for a period of 2n iterations, is Tv = 2n · 2n · v, where v
is the time to version a leaf.

Detection. Let D denote the detection interval, i.e. the number of steps between
two consecutive error checks. D will be chosen as D has a multiple of K. Detec-
tion is performed at level x every D time-steps. Finding the optimal value of x
is part of the optimization problem to be solved.

The detector is applied after computations at leaf nodes and before prop-
agation to upper level nodes. D is of the form D = 2x · K, where x is an
arbitrary integer between 0 and n. Therefore the detection is performed 2n−x

times during a global period. If x = n, detection occurs only once while if x = 0,
detection occurs every K steps, just as versioning. The total time for detection
is Td = 2n−x · 2n · d, where d is the time to apply the detector at a leaf.

We assume that the detector is perfect: it always detects the manifestation
of the error if one has struck. Finding how many leaves have been affected by
the error (after its striking and until detection), and how many nodes must be
recomputed, is performed through diagnosis and recomputation, respectively.

5 Performance Study: Expected Cost

In this section, we derive exact formulas for the expected total cost of the
Checkpoint-Restart (CR) and Application-Based Focused Recovery (ABFR)
approaches.

5.1 CR

Theorem 1. The expected total cost for executing a global period with a binary
tree of depth n using the CR approach is given by:

E(TCR) = (2 − e−λ4nKc) · 4n · K · c + 2n · (d + v). (1)

Proof. Let E(TCR) denote the expected cost for executing the entire period
before checkpointing, using the standard CR approach. We first need to account
for the cost of computation Tc. Detection and checkpointing are done at the end
of the period, with cost 2nd and 2ns respectively, where s denotes the time to
save the state of a leaf onto global storage. If an error occurs, with probability
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(1 − e−λ2Tc), all nodes need to be recomputed, with cost Tc again, from the last
correct version. We can write:

E(TCR) = Tc + 2n · (d + v) + (1 − e−λTc)Tc.

Then, setting Tc = 4n · K · c and simplifying, we retrieve Eq. 1.

5.2 ABFR

Theorem 2. The expected total cost for executing a global period with a binary
tree of depth n using the ABFR approach is given by:

E(TABFR) = 4n · K · c + 2n−x · 2n · d + 4n · v

+ (1 − e−λ4nKc)
(

1
4
(4x + 2x)(Kc + r) +

1
6
(4x − 1)(Kc + v)

)
. (2)

Proof. Let E(TABFR) denote the expected cost for executing the entire period
using the ABFR approach. We first need to account for the cost of computation
Tc, the cost of detection Td and the cost of versioning at every step Tv. Then, we
need to account for the cost of diagnosis and recomputation in case of error. Let
Tdiag and Trecomp denote the time for diagnosis and recomputation, respectively.
By definition, the probability that an error strikes during the period is given by
(1 − e−λTc), therefore we can write:

E(TABFR) = Tc + Td + Tv + (1 − e−λTc)(Tdiag + Trecomp).

Note that diagnosis and recomputation are random variables, because they
depend upon when the error strikes. We take expectations and write:

E(TABFR) = Tc + Td + Tv + (1 − e−λTc) (E(Tdiag) + E(Trecomp)) (3)

Inverse Propagation. When an error is detected, we can use inverse error-
propagation to identify the set of potential root causes. The number of potential
root causes depends on the detection interval D = 2xK. Indeed, the error can
only be located in the 2x−1 nodes connected to the manifestation of the error,
as shown in Fig. 4a.

With x = n = 3, this means that there is exactly one detection during the
execution of the entire tree. Remember that detection is done after computations,
but before propagation. Therefore in this example the number of potential root
causes can be restricted to the 4 leaves (out of 8 leaves) that are directly linked
to the manifestation of the error. Similarly, setting x = 2 and n = 3 means two
detections during the execution of the tree and at most 2 potential root causes
(out of 8 leaves).
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Fig. 4. Computation of the leaves with x = n = 3. (a) After an error has been detected,
we use inverse propagation to identify the set of potential root causes; (b) Then we
use diagnosis, i.e. we recompute potential root causes from the last correct version
and check again old versions, to locate the root cause; (c) Finally, we recompute all
corrupted nodes.

Diagnosis. There are 2x versions in one detection interval. Knowing that an
error has occurred, the probability of having an error in each version is uniformly
distributed. Thus the probability of having an error in version i (resp. iteration i)
is 1

2x . Diagnosis is done by recomputing all potential root causes and comparing
the result with previous versions (as shown in Fig. 4b). We need to recompute
(and reload) 2x−1 nodes i times in order to locate the root cause of the error.
Thus the expected time for diagnosis is given by:

E(Tdiag) =
2x∑
i=1

1
2x

· i · 2x−1(Kc + r)

= 2x−2(2x + 1)(Kc + r) =
1
4
(4x + 2x)(Kc + r). (4)

Recomputation. Recomputation follows diagnosis. The root cause of the error
has been localized and we know which node must be recomputed, as shown in
Fig. 4c. As seen in diagnosis, when an error is detected, we only need to consider
the 2x−1 nodes that are directly linked to the manifestation of the error. Now,
depending on the actual location of the root cause.

The probability that an error strikes a node is uniformly distributed in space
and time. Therefore, we start with two cases:

1. With probability 1
2 , the error has struck during the first 2x−1 iterations. This

means that the error has propagated to all of the 2x−1 nodes in the last 2x−1

iterations, and that we must recompute at least 2x−1 nodes 2x−1 times.
2. With probability 1

2 the error has struck in the other 2x−1 nodes and we don’t
need to recompute any of the first 2x−1 nodes.
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We can write
E(Trecomp) =

1
2
2x−1 · 2x−1 · (Kc + v) + . . .

Then, we have four cases:

1. With probability 1
4 , the error has struck in the first 2x−2 nodes of the first

2x−1 iterations.
2. With probability 1

4 , the error has struck in the last 2x−2 nodes of the first
2x−1 iterations.

3. With probability 1
4 , the error has struck in the first 2x−2 nodes of the last

2x−1 iterations.
4. With probability 1

4 , the error has struck in the last 2x−2 nodes of the last
2x−1 iterations.

In cases 1 and 3, we need to recompute at least 2x−2 nodes 2x−2 times. However,
in cases 3 and 4, we do not need to recompute these nodes. We can write:

E(Trecomp) =
1
2
2x−1 · 2x−1 · (Kc + v) +

2
4
(2x−2 · 2x−2 · (Kc + v) + . . .

This approach can be used recursively to compute the probability and cost
of all possible scenarios (i.e. for all possible error locations). See Fig. 5 for an
example with x = n = 3. We derive that:

E(Trecomp) =
x∑

i=1

2i−1

2i
2x−i · 2x−i · (Kc + v)

=
x∑

i=1

1
2
4x−i · (Kc + v) =

1
6
(4x − 1)(Kc + v) . (5)

E(Trecomp) =
1
2
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Fig. 5. Computation of the expected recomputation cost for x = n = 3 considering
all 8 possible scenarios. The error can hit any one of the 8 iterations with uniform
probability.
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Expected Cost. Altogether, putting expressions for diagnosis (see Eq. 4) and
recomputation (see Eq. 5) back into Eq. 3, we retrieve Eq. 2.

6 Performance Analysis: Expected Overhead

In this section, we derive exact formulas for the overhead incurred by using the
CR or ABFR approach. For either method, the expected overhead is defined as
E(HX) = E(TX)

Tc
− 1, where TX denotes the cost for method X. Recall that Tc is

the baseline cost, so that the overhead measures extra the fraction of work spent
to mitigate the impact of errors.

6.1 CR

Let E(HCR) denote the expected overhead for CR. We can write:

E(HCR) =
E(TCR)

Tc
− 1.

Taking Eq. 1 for E(TCR) and setting Tc to 4n · K · c, we obtain:

E(HCR) = 1 − e−λ4nKc +
d + v

2n · K · c
. (6)

6.2 ABFR

Let E(HABFR) denote the expected overhead for ABFR. We can write:

E(HABFR) =
E(TABFR)

Tc
− 1.

Taking Eq. 2 for E(TABFR) and setting Tc = 4n · K · c, we obtain:

E(HABFR) =
4n ·K · c+ 2n−x · 2n · d+ 4n · v

4nKc

+
(1− e−λ4nKc)

4nKc

(
1

4
(4x + 2x)Kc+

1

6
(4x − 1)(Kc)

)

=
2−xd+ v

Kc
+

(1− e−λ4nKc)

4nKc

(
1

4
(4x + 2x)(Kc+ r) +

1

6
(4x − 1)(Kc+ v)

)
.

(7)

7 Optimal Detection Interval for ABFR

We now show how to derive the optimal detection interval for ABFR. Recall
that the detection interval is of the form D = 2x · K. Our goal is to find the
optimal value for x, denoted by x∗.
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First, we use Taylor series to approximate 1 − e−λ4nKc to λ4nKc + O(λ2),
and derive that:

E(HABFR) =
2−xd + v

Kc
+ λ

(4x + 2x

4
(Kc + r) +

4x − 1
6

(Kc + v)
)
.

Then, in order to get the optimal value for x, denoted by x∗, we need to solve
the following equation:

∂E(HABFR)
∂x

= 0, (8)

Note that letting y = 2x in Eq. (8) leads to solving a third-degree equation in y,
so it is possible to obtain a closed-form expression for the optimal value y∗, and
hence for x∗. In the following, we simply solve Eq. (8) numerically, obtain the
optimal solution as a real variable, and using nearest rounding to retrieve the
optimal integer value. Finally, plugging x∗ back into Eq. 7, we obtain E(Hopt

ABFR).

7.1 Limits of the Analysis

For the sake of simplicity, we have made the assumption that only one error can
strike during the computation of a tree, meaning that (1) re-execution after an
error always succeeds, and (2) diagnosis only needs to find one root cause. While
this makes for a good approximation with large MTBE, the error rate can only
get so small in the analysis. In particular, we must ensure that MTBE >> Tc in
order to keep the probability of having more than one error as low as possible.

Note that this is a common assumption when dealing with CR models. How-
ever there are several possible ways the model could be extended to handle mul-
tiple errors. First, multiple errors within a detection interval could trigger multi-
ple ABFR responses. Alternatively, diagnosis and recovery could be extended to
deal with multiple errors concurrently. These are promising directions for future
work.

8 Simulations

In this section, we run a set of simulations whose goal is twofold: (1) show
the accuracy of the theoretical analysis; and (2) assess the performance of the
proposed ABFR approach against the standard CR approach. We describe the
settings of the simulations in Sect. 8.1 and we present the results in Sect. 8.2.

8.1 Settings

We target large platforms subject to silent errors. Such platforms can handle
large simulations with millions of nodes, and we set n = �log2(106)� = 20. The
time needed to compute one node in N-Body computation is typically measured
at around c = 10−5 s and we set the number of iterations at the bottom level
to K = 100. In addition, we assume that ABFR can take advantage of high
bandwidth, high capacity burst buffers or other form of non-volatile memory to
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perform low-cost, frequent versioning, and we set cost to version and recover a
node to r = v = c

100 . Detection, on the opposite, is assumed to be expensive and
we set the detection cost for one node to d = 100 · c. Finally, we set the error
rate to λ = 1.15 · 10−10, which corresponds to a MTBE of 275 years for a single
processor (or one day on a platform with 100000 of such processors).

Simulations are based on the model and we instantiate the model using the
above values by default. Errors are injected into the computation following the
error rate λ. Note that at most one error is injected into the computation of a
tree and that errors can strike any node with uniform probability. When an error
strikes a node, diagnosis and recomputation are computed according to the exact
number of nodes that need to be recomputed for diagnosis and recomputation,
with respect to the error location. The overhead of the simulation is obtained
by averaging the results of 1000 runs.

8.2 Results

In this section, we present the results of the simulations for different scenarios.
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Fig. 6. Overhead of CR and ABFR approaches for different values of x and with
detection cost d = 100 · c (a) and d = 10000 · c (b).

Impact of Detection Interval. Figure 6 shows the expected overhead
obtained using the CR and ABFR approach, denoted by HCR and HABFR,
respectively, for all possible values of x between 0 and n. We show the results
for the default detection cost d = 100 · c (a) and for a much larger detection cost
d = 10000 · c (b). In addition, we plot the theoretical optimal expected overhead
for ABFR, denoted by E(Hopt

ABFR), which is obtained with Eq. 7 for the optimal
value of x. By solving Eq. 8 numerically, we find that x∗ = 14 for d = 100 · c and
x∗ = 17 for d = 10000 · c.
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First, we observe that, in both cases, the optimal overhead obtained with the
simulations closely matches the optimal theoretical overhead, which confirms the
accuracy of the analysis. Then, we can see that both figures show a dramatic
increase of the overhead for small values of x. This is because the detection
interval D is of the form 2x ·K. This means that decreasing x (and therefore the
detection interval D) causes an exponential increase in the number of detections,
which in turns increases the overhead. In addition, we note a slight increase of
the overhead for large values of x. Indeed, when the detection interval is too
large, (e.g. only one detection at the end of the computation when x = n = 20),
errors have more time to propagate and more nodes need to be recomputed as
a result, which increases the recovery cost, and therefore the overhead.

While the optimal overhead is very sensitive to the detection interval, we
observe (by comparing both scenarios) that it does not vary much as a function
of the detection cost. This is because the detection cost only represents a small
part of the total computation. Overall, we show that ABFR is able to improve the
overhead by several orders of magnitude compared to the standard CR approach,
and is up to 120 times more efficient with this setting.
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Fig. 7. Impact of the detection cost on the optimal x (a) and impact of the versioning
cost on the optimal overhead (b).

Impact of Detection and Version Cost. The detection cost d has almost
no effect on the optimal overhead (as shown in the previous scenario). It does
however have an impact on the optimal value of x. Figure 7(a) shows the optimal
x∗ obtained for different detection costs. We can see that unless the detection
cost is extremely small, the optimal x∗ must be a trade-off between the detection
cost and the recovery cost in case of error.

As opposed to the detection cost, the versioning cost v has no effect on the
optimal x∗, but its value can have a significant impact on the overhead. Because
all nodes are versioned, the overhead increases linearly with the version cost v, as
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shown in Fig. 7(b), and we must ensure that this cost remains cheap for ABFR
to perform better than CR.
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Fig. 8. Overhead of CR and ABFR for different MTBE (a) and corresponding optimal
detection interval x∗ (b).

Impact of MTBE. Figure 8(a) shows the overhead obtained with CR and
ABFR for different MTBE ranging from 100 years to 1000. Figure 8(b) shows
the corresponding optimal detection interval for ABFR. We can see that ABFR
scales much better than CR with high error rates (MTBE < 400 years). Where
CR needs to recompute the entire tree in case of error, ABFR has the ability to
detect the error earlier in the computation, and to recompute only a fraction of
all the nodes. Indeed, the number of nodes to recompute in case of error depends
on the size of the detection interval D and is at most O(4x) for ABFR, while it
is exactly Θ(4n) for CR. Note that for the same reason, ABFR remains better
than CR even with low error rates (MTBE > 1000 years).

Impact of Error Latency. Figure 9(a) shows the recovery cost of ABFR nor-
malized with respect to the recovery cost of CR, while Fig. 9(b) shows the cost
of diagnosis and recomputation normalized with respect to the recovery cost of
ABFR. For the sake of simplicity, we simulated the execution of small trees with
x = n = 10. Here there are 210 · K = 1024 · K iterations in total. The x-axis
denotes the number of iterations already done before the error occurred from
1 (first iteration) to 1024 · K (last iteration). Because the detection interval x
is set to x = n = 10, both CR and ABFR detect faults only at the end of the
computation.

First, we note that the cost of diagnosis is linear, while the cost of recompu-
tation is not. Indeed, diagnosis is done by recomputing all iterations from the
last correct version until we find the error, while recomputation will skip part of



174 A. Cavelan et al.

Fig. 9. Recovery cost normalized w.r.t. CR (a) and w.r.t. ABFR (b) with detection
interval set to x = n = 10.

the nodes depending on the location of the error. In particular, the spike that
we can observe at iteration 512 corresponds to the biggest propagation step. If
the error strikes right before this step, then exactly half of the remaining nodes
must be recomputed. On the contrary, if the error strikes right after this step,
it is not possible for the error to propagate further, and only one fourth of the
remaining nodes needs to be recomputed. Note that, as shown in Sect. 5.2, we
never need to recompute more than half of all the nodes, hence the recovery cost
of ABFR is at worst 48% better than CR, and at best it is 65% better than CR.

9 Related Work

Latent errors, also known as silent errors or silent data corruption, represent a
major threat to scientific applications executing on large scale platforms [21–
23]. There are several causes of silent errors, such as cosmic radiation, packaging
pollution, among others. Silent errors can strike the cache and memory (bit flips)
as well as CPU operations; in the latter case they resemble floating-point errors
due to improper rounding, but have a dramatically larger impact because any
bit of the result, not only low-order mantissa bits, can be corrupted. In contrast
to a fail-stop error whose detection is immediate, a latent error is identified only
when the corrupted data leads to an unusual application behavior. This detection
latency renders periodic checkpointing insufficient: if the error struck before the
last checkpoint, and is detected after that checkpoint, then the checkpoint is
corrupted and cannot be used for rollback. This is why checkpointing must be
coupled with some verification mechanism, in order to detect any latent error
before taking a new checkpoint.

Replication remains the most transparent and least intrusive technique and
can be used at different levels (duplication, triplication or even more). Combined
with checkpointing, replication comes with two flavors: process replication [24,
25] and group replication [26]. Process replication applies to message-passing
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applications with communicating processes. Each process is replicated, and the
platform is composed of process pairs, or triplets. Group replication applies to
black-box applications, whose parallel execution is replicated several times. The
platform is partitioned into two halves (or three thirds). In both scenarios, results
are compared before each checkpoint, which is taken only when both results
(duplication) or two out of three results (triplication) coincide. If not, one or
more silent errors have been detected, and the application rolls back to the last
checkpoint. Note that duplication enables to detect but not to correct a latent
error, while triplication enables both. Replication is not a new technique. Triple
Modular Redundancy, or TMR [27], is the standard fault-tolerance approach
for critical systems, such as embedded or aeronautical devices [28]. However,
triplication has a high cost, since two-thirds of the processors are executing
redundant work, and HPC scientists are not ready to pay such a price.

To address the problem of latent errors in HPC, many application-specific
detectors have been proposed. Indeed, application-specific information enables
ad-hoc solutions, which dramatically decrease the cost of error detection.
Algorithm-based fault tolerance (ABFT) [29–31] is a well-known technique,
which uses checksums to detect up to a certain number of errors in linear algebra
kernels. Unfortunately, ABFT can only protect datasets in linear algebra kernels,
and it must be implemented for each different kernel, which incurs a large amount
of work for large HPC applications. Other techniques have also been advocated.
Benson, Schmit and Schreiber [32] compare the result of a higher-order scheme
with that of a lower-order one to detect errors in the numerical analysis of ODEs
and PDEs. Sao and Vuduc [33] investigate self-stabilizing corrections after error
detection in the conjugate gradient method. Heroux and Hoemmen [34] propose
linear solvers to tolerant soft faults using selective reliability. Elliot et al. [35]
design a fault-tolerant GMRES capable of converging despite latent errors. Bron-
evetsky and de Supinski [36] provide a comparative study of detection costs for
iterative methods. Recently, several silent error detectors based on data analyt-
ics have been proposed, showing promising results. These detectors use several
interpolation techniques such as time series prediction [37] and spatial multi-
variate interpolation [38–40]. Such techniques offer large detection coverage for
a negligible overhead. However, these detectors do not guarantee full coverage;
they can detect only a certain percentage of corruptions (i.e., partial verification
with an imperfect recall). Nonetheless, the accuracy-to-cost ratios of these detec-
tors are high, which makes them interesting alternatives at large scale. Similar
detectors have also been designed to detect silent errors in the temperature data
of the Orbital Thermal Imaging Spectrometer (OTIS) [41].

The ABFR approach presented in this paper is similar to ABFT approaches,
exploiting application knowledge for error detection, but adding the use of appli-
cation knowledge to diagnose what state is potentially corrupted, and using that
knowledge to limit recomputation, and thereby achieve efficient recovery from
latent errors. Recently, we have successfully applied ABFR to stencil computa-
tions [4], which are perfectly suited to ABFR due to their regular and neighbor-
based communication pattern. The tree-based propagation pattern of N-Body
computations is much more challenging for ABFR.



176 A. Cavelan et al.

10 Conclusion

We have applied ABFR for N-Body tree computations to efficiently recover from
latent errors. By exploiting application data flow and intermediate states, ABFR
focuses recovery on an accurate estimate of potentially corrupted data, reducing
recovery cost significantly. To explore the performance of ABFR, we build an
analytical model parameterized by error rate and detection interval for a per-
fect binary tree. Simulation results show that ABFR reduces 50% of recovery
overhead compared to checkpoint-restart approach. While the model is built for
binary trees, it can be generalized to higher dimensions of simulations. Future
directions include applying ABFR to production N-Body tree codes and demon-
strating an application-agnostic ABFR runtime that supports portable and scal-
able performance.
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Abstract. The HPC community has been using abstract, representative
applications and architecture models to enable faster co-design cycles.
While developers often qualitatively verify the correlation of the appli-
cation abstractions to the parent application, it is equally important to
quantify this correlation to understand how the co-design results trans-
late to the parent application. In this paper, we propose a multi-fidelity
surrogate (MFS) approach which combines data samples of low-fidelity
(LF) models (representative apps and architecture simulation) with a few
samples of a high-fidelity (HF) model (parent app). The application of
MFS is demonstrated using a multi-physics simulation application and
its proxy-app, skeleton-app, and simulation models. Our results show
that RMSE between predictions of MFS and the baseline HF models
was 4%, which is significantly better than using either LF or HF data
alone, demonstrating that MFS is a promising approach for predicting
the parent application performance while staying within a computational
budget.

Keywords: Performance estimation · Multi-fidelity surrogate
Behavioral emulation

1 Introduction

As we approach exascale computing, the next frontier in high-performance com-
puting, it is important that application developers and system designers co-
design to develop better performing and more energy efficient application codes
and machines [6]. For fast and effective turnaround during the co-design process,
application developers create representative applications which are abstract,
smaller, and self-contained descriptions of their application code (also called par-
ent app) and only capture the key parameters and features that predominantly
influence the outcome of co-design [13]. To further speed up the co-design process
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 179–196, 2018.
https://doi.org/10.1007/978-3-319-72971-8_9
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and to enable architecture design-space exploration (DSE), system architects
build simulator models to study the application performance on various under-
lying architectures. Behavioral Emulation (BE) [19] is one such coarse-grained
approach for simulation of extreme-scale systems and applications. While the
parent application can be used to drive architecture simulations, abstract appli-
cation end-point models are often used to represent the parent app to speed up
the co-design process.

Representative applications, in the form of mini-apps, proxy-apps, or skeleton
apps, have been developed for many scientific HPC codes (parent app) and are a
necessity in cases where the actual application cannot be shared with the hard-
ware architects [5,7,16,18]. After development, it is important to validate these
representative apps against their parent apps to ensure they are reasonably accu-
rate representations of the application behavior. Typically, this qualitative vali-
dation is performed by comparing ratio of computation to communication, weak
scaling and strong scaling trends, similarity analysis, etc. Similarly, performance
prediction results of architecture simulations are verified against testbed mea-
surements. After validation, both the representative apps and simulator mod-
els can be used as platforms to evaluate tradeoffs for improved performance,
power, and resilience, different programming models, compilers, etc. and guide
the refinement of parent application. Qualitative validation is important; how-
ever, it is also important to determine quantitatively how the improvements in a
representative app or architecture translate to the parent app. To the best of our
knowledge no solution for quantitative validation of representative applications
under a reasonable computational budget has been proposed in the literature.

In general, surrogate models are approximations that are fit to the available
data of a phenomenon of interest, herein the parent app. A high-fidelity surro-
gate model (HFM) can be constructed from more accurate and computationally
expensive high-fidelity data (e.g., benchmarking data using parent app); and a
low-fidelity model (LFM) can be constructed from computationally cheaper but
less accurate low-fidelity data (e.g., skeleton apps, simulation results). In this
paper, we propose the use of a multi-fidelity surrogate model (MFS) for identi-
fying the relation between parent and representative apps. The MFS works when
LF and HF have similar trends/curvature in the design space. An indication of
trend similarity between LF and HF is the scale factor. A scale factor around 1
denotes high correlation between HF and LF whereas a negative or extremely
large scale factor denotes an inappropriate LF under certain discrepancy (dis-
cussed in Sect. 4).

The concept of MFS has been extensively studied to approximate the high-
fidelity models (HFMs) assisted by cheaper low-fidelity models (LFMs) [12]. To
balance accuracy and computational cost associated with data collection, the
MFS approach aims to develop a surrogate model based mostly on LF sam-
ples assisted with only a few HF samples. Typical multi-fidelity models include
finite element analysis with different resolution, physical tests versus numerical
simulations, etc. [12,17,25].
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Representative apps are often used for studying the performance impact of
various optimization techniques. But it is important to validate these changes on
the parent app. In order to use our proposed approach, changes have to be made
to both the representative and parent app. The payoff of the additional effort
required for modifying the parent app is the ability to validate performance over
a considerably larger design space at a very low cost. In addition to low-cost
validation of parent app, our proposed approach can also be used for predicting
performance of the parent app with BE simulations of notional architectures
as the source of LF data for developing the MFS. The HF data for notional
architectures could be obtained from fine-grained simulators over a small subset
of design-space. BE’s ability to simulate any hardware through an architecture
model, whether existing or notional, adds an additional capability of predicting
performance of the parent app on the future systems quantitatively at a low cost.

In this paper, we leverage many of the MFS methods developed in other sci-
entific domains and adapt and apply them to reduce the computational cost of
validation of representative apps used in the HPC co-design process. After a sur-
vey of the related research in Sect. 2, in Sect. 3 we present an overview of the par-
ent application case study (CMT-nek), its representative mini-app (CMT-bone)
and skeleton app (CMT-bone-BE), and the Behavioral Emulation approach that
we use for performance modeling and simulation. In Sects. 4 and 5, we describe a
methodology for developing an MFS for an application from its mini-app (HFM),
skeleton app (LFM), and a simulator model (LFM). In Sect. 6, we demonstrate
the usefulness of the proposed methodology by applying it to a multi-physics
simulation application being developed for exascale systems - CMT-nek [1]. The
results demonstrate MFS as a promising approach for predicting parent applica-
tion performance (HF model) from representative app or architecture simulation
(LF model) while staying within a reasonable computational budget.

2 Related Research

Mini-apps have become extremely important for exascale DSE and perfor-
mance optimization. In [9], which presents a validation methodology, the authors
state that mini-apps reduce the DSE time by a factor of a thousand, making
them extremely useful for exploring the design space of the parent application.
Dosanjh, et al. in [10] provide a verification and validation (V&V) methodology
for assessing the ability of the mini-app to effectively represent the performance
of their parent application. The authors use the difference between mini-app
and parent app performance as their validation metric and compare it against
a threshold. This approach requires equal number of samples for both the par-
ent app and the mini-app. Since samples for the parent app are typically more
expensive to obtain, it can be a limiting factor in extensive validation stud-
ies over a large design space. In our proposed approach, constructing an MFS
requires much fewer samples of parent app than of the mini-app, thus consider-
ably reducing the computational budget of conducting performance validation.

Mini-apps are used as a tool to evaluate optimization methods to improve
the performance of the parent application. But improving the performance of
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the mini-app does not guarantee the same for the parent app, making it impor-
tant to know how representative these mini-apps are of their parent app [13].
For example, in [13] the authors seek to improve the performance of the appli-
cation on new and future systems using mini-apps. Although the optimizations
applied improve the mini-app performance, the impact on actual application
performance is not clear. In our work, an MFS for the parent application, built
using high-fidelity application performance samples and lower-fidelity mini-app
performance samples, can help us draw a relationship between the performance
behavior of the two applications.

Several frameworks have been proposed to realize multi-fidelity modeling in
various science and engineering domains [12,17,25]. In [17], a Bayesian frame-
work has been applied to predict the data of nuclear radiation based on simu-
lations. A variable fidelity optimization framework has been demonstrated for
the design of engine piston [23]. In [25], a deterministic framework has been
proposed to predict the strength of composite laminate based on finite element
simulations. Large number of application of MFS to mechanical systems can be
found in [12], which reports that the MFS reduces computational cost drastically
while enabling desirable prediction accuracy. The MFS has also been adopted
as a powerful tool for uncertainty propagation [21].

Various MFS frameworks have been proposed for different engineering appli-
cations. For example, the Bayesian MFS based on a scale factor has been applied
to design buildings [11] and flapping flight [26]. The Bayesian MFS incorporat-
ing discrepancy function has been proposed [17,22] as a popular MFS framework
for various applications. This Bayesian framework is equivalent to the co-Kriging
surrogate [20] with no prior information. Balabanov et al. [4] used a sequential
deterministic MFS based on the discrepancy function to combine finite element
simulation with different resolutions. Zhang et al. [24,25] proposed a simulta-
neous deterministic MFS based on the discrepancy function to combine exper-
imental strength and finite element simulation for composite laminate. We can
apply this methodology in our HPC community to save computational cost of
parent application.

Sampling schemes for multi-fidelity models have been studied correspond-
ingly. HF samples are usually a subset of LF samples. One representative all-
at-once sampling strategy is the nested design sampling [15]. First, LF samples
are generated using Latin Hypercube Sampling (LHS). Then the HF samples
are generated by maximizing the minimum distance between all existing LF
samples. Huang et al. [14] proposed a sequential sampling scheme for design
optimization using Bayesian MFS. Either LF or HF samples are generated iter-
atively for design optimization. In our approach, we used Full Factorial Design
(FFD) [8] for sampling as it is convenient for parametric study.

In this paper, we leverage many of the MFS methods developed in other
scientific domains and adapt and apply them to the HPC domain to reduce the
computational cost of validation of representative apps used in the co-design
process.
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3 Application and Architecture Models

In this section, we give an overview of the parent application under study (CMT-
nek), its representative mini-app (CMT-bone) and skeleton app (CMT-bone-
BE); and a BE simulation approach that we use for performance modeling and
simulation. The relationships among their corresponding models are shown in
Fig. 1. The parent app, CMT-nek, represents a high-fidelity (HF) model, whereas
CMT-bone (a mini-app) and CMT-bone-BE (a skeleton app) are low-fidelity
(LF) models, as compared to CMT-nek. BE simulation is a modeling and sim-
ulation of CMT-bone-BE. Thus, BE simulation is an even lower fidelity model
than CMT-bone-BE and CMT-bone.

In this study, our objective is to first perform validation and uncertainty
estimation of the BE simulation results against test samples of CMT-bone-BE
(details in Sect. 5). Then a multi-fidelity surrogate model (MFS) is developed
using mostly samples from the low-fidelity BE simulation and a few high-fidelity
CMT-nek samples. The MFS model is then used to predict CMT-nek results
(Sect. 6, case study 1). This experiment is repeated between BE simulation (LF)
with CMT-bone (now being a HF, as compared to BE simulation) in case study
2, followed by CMT-nek (HF) and CMT-bone (LF) for case study 3.

Fig. 1. Hierarchy of the CMT models

3.1 CMT-nek

CMT-nek [1] is being developed at the PSAAP-II Center for Compressible Mul-
tiphase Turbulence (CCMT) at University of Florida to perform simulation of
instabilities, turbulence, and mixing in particulate-laden flows under conditions
of extreme pressure and temperature [1]. CMT has applications in many envi-
ronmental, industrial, and national defense and security areas. CMT-nek is being
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developed from a production release of petascale code Nek5000 [2], a Gordon Bell
prize winning open-source software for simulating unsteady incompressible fluid
flow with thermal and passive scalar transport. It is a highly scalable code with
strong scaling to over a million MPI ranks on ALCF BG/Q Mira. CMT-nek aims
to take advantage of this sustained performance by inheriting the MPI strategies
used in Nek5000; and by hooking into the Nek5000 repository, leveraging any
changes and optimizations made to Nek5000.

3.2 CMT-bone and CMT-bone-BE

CMT-bone is a mini-app that encapsulates the key data structures and compute
and communication kernels of CMT-nek. While retaining the workflow of CMT-
nek, CMT-bone simplifies the number of variables defined and allocated and also
the number of computation and communication operations performed at each
time step in the simulation. The authors in [5,18] have validated mini-app CMT-
bone with its parent app CMT-nek and found that the key compute kernels are
well represented by the proxy application.

CMT-bone-BE is a skeleton app of CMT-nek created to support rapid
algorithmic design-space exploration. It models the computation that happens
within every simulation timestep to calculate the partial derivative and exchange
data between nearby spectral element meshes. CMT-bone-BE ignores the initial
problem setup including mesh generation. Mesh generation operations can be
abstracted and replaced with a computation model in BE.

3.3 Behavioral Emulation (BE) Simulation

Behavioral Emulation (BE) is a coarse-grained modeling and simulation app-
roach that aims to provide timely, flexible, and scalable estimates of application
performance on existing and future system architectures. In BE, the complex-
ity of large-scale system simulation is handled by simultaneously dividing the
simulation into different levels of system abstraction (e.g., device, node, rack,
system) and abstracting the behavior of the components at each of these levels.
The coarse-grained component models mimic or emulate the observed execution
behavior of the component instead of its cycle-accurate operation. There are two
basic types of BE models - application BE objects (AppBEOs) and architecture
BE objects (ArchBEOs).

BE simulations are used to predict the execution time of CMT-bone-BE and
have computational cost less than that of CMT-bone-BE (and much less than
that of CMT-nek and CMT-bone). In our study, BE simulation results are used
to produce the LF data points which are used to construct MFS models to predict
the execution time of CMT-nek and CMT-bone, using very few data points from
these two applications, thus reducing the overall computational budget of the
DSE process.
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4 Multi-fidelity Surrogates

In engineering applications, it is common to have multiple models with different
fidelities for solving the same problem such as finite element simulations with
different grid resolutions, numerical simulations, and physical experiments. A
high-fidelity model (HFM) represents the physical phenomenon more accurately
than the low-fidelity model (LFM) but it is often very expensive. An MFS based
approach uses both high-fidelity and low-fidelity datasets to approximate the
HFM in the design space. An effective MFS is expected to make accurate pre-
diction with limited budget for sampling. Fernández-Godino et al. [12] reviewed
recent developments of MFS especially on effectiveness of applying MFS to prac-
tical design. Peherstorfer et al. [21] summarized the technical details of MFS for
inference and uncertainty propagation.

MFS translates LFM against a few HF samples using an algebraic function.
Typical MFS frameworks include two major components: (1) a model to define
the relation between LFM and HFM, and (2) the scheme to find parameters of
the MFS and associated uncertainty of prediction. The LFM could be translated
to HFM through (1) a constant scale factor, or (2) scaling up the LFM and adding
to a discrepancy function. After determining the form of algebraic function,
the MFS could be developed either using Bayesian inference through Gaussian
process, or using a least-square regression minimizing error between fitted model
and data.

In this work, we investigate the feasibility of MFS to quantify and mitigate
the difference between high-fidelity parent applications (e.g., CMT-nek) and low-
fidelity simulations (e.g., BE simulation) in the area of co-design of large-scale
system. The least-squares MFS (LS-MFS) [24] was selected for this feasibility
study while balancing complexity and predictive capability.

f̂H(x) = ρf̂L(x) + δ̂(x) (1)

The LS-MFS is built with two surrogates, f̂L(x), a polynomial response sur-
face (PRS) fitted to low-fidelity data, and δ̂(x), the fitted discrepancy data
(Eq. 1). The scale factor ρ and discrepancy function δ̂(x) are obtained to min-
imize prediction error at the high-fidelity samples according to Eqs. 2 and 3.
(xH ,yH) denotes the high-fidelity dataset containing n samples.

min
ρ,δ̂(x)

: (δ̂(xH) − dH)T (δ̂(xH) − dH) (2)

dH = ρf̂L(xH) − yH (3)

The multi-fidelity surrogate using a single linear regression is obtained from
Eqs. (4–7). Y is the vector of high-fidelity samples, X is the augmented design
matrix, B is the vector of unknown coefficients and e is the vector for residual
errors. Xi(x) denotes the ith monomial/basis, and bi is the coefficient of Xi(x).
The obtained discrepancy function δ̂(x) is shown in Eq. 8.

Y = XB + e (4)
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The LS-MFS scales up the LFM and adds a polynomial function δ̂(x) to
match a few high-fidelity samples. The scale factor ρ is critical for prediction.
Negative or extremely large values of ρ indicates a prediction with large error,
which is likely to be associated with undesirable LFMs, inappropriate surrogate
forms, or inadequate samples. δ̂(x) is supposed to be a low-order polynomial
function while assuming the LFM has a trend similar to HFM. In our study, we
adopted a constant δ̂(x) for less than 10 HF samples and a linear polynomial
function as δ̂(x) for the rest. We approximated the execution time in logarithmic
coordinate to account for the order-of-magnitude variation of execution time.
f̂L(x) was developed using a quartic PRS.

5 Developing MFS Model

Although various performance metrics can be studied for performance sim-
ulation such as energy consumption and communication times between the
processors, the metric of interest in this paper is the total execution time for
running a typical computational fluid dynamics analysis using CMT-nek (HFM),
CMT-bone (HFM), CMT-bone BE (LFM), and BE simulation (LFM). All the
benchmarking of the CMT models is performed on the Vulcan HPC platform
from Lawrence Livermore National Laboratory (LLNL) [3]. Vulcan is a 24-rack
IBM Blue Gene/Q system based on POWER architecture that consists of 24,576
nodes and 400 TB of compute memory. It is important to ensure that the HF
and LF data are obtained from the same hardware. The accuracy of the MFS
model reflects how representative the LF and HF are of each other.

5.1 Design Space

For CMT-nek, the three main application parameters of concern are Element Size
(ES), Elements per Processor (EPP) and Number of Processors (NP). Applica-
tion performance can be affected by changing any one of these parameters. We



Multi-fidelity Surrogate Modeling for Application/Architecture Co-design 187

chose 125 experimental points based on five-level full factorial design.“Five-level”
denotes the 5 points/grids selected along each application parameter with sim-
ilar space, as shown in Fig. 2. The design of experiment is ES = {5,9,13,17,21},
EPP = {8,32,64,128,256} and NP = {16,256,2048,16384,131072}. The experi-
mental runs require up to 131,072 processors, 34 million elements and 311 billion
computational grid points.
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Fig. 2. Design of experiments for CMT-nek, CMT-bone, and BE simulations

As the model fidelity increases so does the cost of obtaining a test sample.
We obtained data for CMT-bone-BE and BE simulation for the entire design
space (125 data points); but for CMT-nek and CMT-bone, data was judiciously
obtained from a subset of the design space. For the runs from LFM and HFM,
we made 22 runs from CMT-nek (HFM), 67 runs from CMT-bone, and 125 runs
for both LFMs (CMT-bone-BE and BE simulation).

5.2 Validations of BE Simulation Results

Recall from Fig. 1 that the order of fidelity is as follows: parent app CMT-nek
(highest), mini-app CMT-bone, skeleton app CMT-bone-BE, and BE simulation
(lowest). In the next section, we will use the BE-simulation results (LF) to predict
the performance of CMT-nek (HF parent app). Thus, first it is important to
evaluate the accuracy of the BE simulation. To do so, in this section, we will
first validate the accuracy of BE simulation against skeleton app CMT-bone-BE.
We then evaluate the accuracy of CMT-bone-BE by validating its results against
those of mini-app CMT-bone.
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BE simulation vs. CMT-bone-BE. Validation is the process of comparing
the BE simulation results to its respective benchmarking result using CMT-
bone-BE. In this study, we have validated the simulation results for the entire
design space on Vulcan, one of the largest high-performance computing system
available at the Lawrence Livermore National Lab. The validation of the design
space covered all the calibration points. But to further evaluate the accuracy of
the simulator, true validation was performed by validating points that are not
present in the calibration set. Polynomial interpolation was used in the simulator
to predict the execution time of the application at these validation points. The
obtained simulation results are then validated by running the actual CMT-bone-
BE application on Vulcan for those validation points.

Fig. 3. Validation of BE simulation against CMT-bone-BE (Color figure online)

The validation results of BE simulation against CMT-bone-BE are shown in
Fig. 3 where the blue points represent the predicted CMT-bone-BE time using
BE simulation and the red points are the validation points obtained by running
the application (CMT-bone-BE) on Vulcan. We validated the simulations up to
128k NP on Vulcan and predicted the time for 256k NP and 512k NP. The
average percentage error between BE simulation and CMT-bone-BE is 4%, thus
demonstrating the accuracy of the BE simulator.

CMT-bone-BE vs. CMT-bone. The validation of the skeleton app CMT-
bone-BE against mini-app CMT-bone (Fig. 4a and b, respectively) is done through
comparing their trends under the same experimental setup described above. CMT-
bone-BE being the skeleton app, takes less time to execute than that of the mini-
app, CMT-bone, and hence the range of their execution time varies. Therefore, to
make it easier to compare the trend, the execution time is plotted on a color scale
with red being the lowest in the range and blue being highest in the range as shown
in Fig. 4. The step-wise increase shows that the predicted execution time for CMT-
bone-BE and CMT-bone increases monotonically with ES and EPP and does not
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Fig. 4. Comparing CMT-bone mini-app and CMT-bone-BE skeleton app trends for
various parameter values (Color figure online)

change appreciably with NP, and the color scale on the graphs verify the similarity
in trend between CMT-bone-BE and CMT-bone.

6 Evaluating MFS Predictions — Three Case Studies

Three case studies were used to demonstrate the multi-fidelity surrogate (MFS)
approach in which a surrogate model, based mostly on low-fidelity (LF) sam-
ples assisted with only a few high-fidelity (HF) samples, is used to predict the
performance of a high-fidelity (HF).
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– Case 1: Multi-fidelity model based mostly on BE simulation (LF) and few
CMT-nek (HF parent app) data points to predict the performance of CMT-
nek (HF)

– Case 2: Multi-fidelity model based mostly on BE simulation (LF) and few
CMT-bone (relatively HF mini-app) data points to predict the performance
of CMT-bone (HF)

– Case 3: Multi-fidelity model based mostly on CMT-bone (relatively LF
mini-app) and few CMT-nek (HF) data points to predict the performance
of CMT-nek (HF)

The setup was same in all three case studies. A subset of high-fidelity data
was selected as the validation/test runs to evaluate predictions while the others
were used as training runs to train LS-MFS (least square MFS). The number
of samples increased gradually from the remaining runs (which excludes the
validation runs) to investigate the effect of sampling plan. For each number of
samples, random selection was repeated 20 times to account for the effect of
sampling plan. The overall difference was measured using relative root-mean-
square error (R-RMSE) between the LS-MFS predictions and the validation
runs. The relative maximum difference (R-MD) at the validation runs based on
the repeated samples was also provided to understand individual prediction. In
this paper, we study LS-MFS using polynomial response surface as it is robust
with noise effect. Other frameworks of multi-fidelity surrogates are also available
such as co-Kriging. The comparison between different multi-fidelity surrogates
is beyond the scope of this paper.

6.1 Case Study 1: CMT-nek Predictions from BE Simulations

22 runs of CMT-nek are obtained as shown in Fig. 2. 10 runs (out of 22) were
selected randomly and fixed as the validation runs. We first examined LS-MFS
to approximate CMT-nek (HF model) runs using a typical set of 12 samples

Table 1. Predicting execution times of CMT models based on typical set of 12 samples
and evaluating the prediction using R-RMSE (%)

Case 1: CMT-nek
prediction from BE
simulation

Case 2: CMT-bone
prediction from BE
simulation

Case 3: CMT-nek
prediction from
CMT-bone

Number of validation
runs

10 20 10

LS-MFS 4.49% 5.40% 7.34%

f̂L(x) 66.85% 61.26% 18.65%

Linear fit to (xH ,yH) 131.23% 1901.91% 131.23%

Residual errors of
f̂L(x)

0.77% 0.77% 1.05%

Residual errors of the

linear fit to (xH ,yH)

18.40% 50.71% 18.40%



Multi-fidelity Surrogate Modeling for Application/Architecture Co-design 191

as shown in the Case 1 column of Table 1. The R-RMSE of LS-MFS is 4.49%
using BE simulation (LF model) at 10 validation runs. The linear fit using only
HF CMT-nek runs was also developed as a comparison with the R-RMSE to
be 131.23% at the validation runs. The R-RMSE between original BE simula-
tion and CMT-nek (f̂L(x)) at all the 12 points, without translation, is 66.85%.
As mentioned before, BE simulation mimics CMT-bone-BE and not CMT-nek.
Since CMT-bone-BE is just a skeleton app with very few computational ker-
nels, the percentage difference is high. The LS-MFS was much more accurate
than either the f̂L(x) or the linear fit to (xH ,yH), demonstrating its promise to
compensate the difference between high-fidelity and low-fidelity models.

Next, we investigated the effect of the sampling plan on prediction accuracy.
The LS-MFS predictions for CMT-nek runs with increasing number of samples
were summarized in Fig. 5a. The LS-MFS was unstable using only 2 CMT-nek
samples due to over-fitting and became more accurate with increasing CMT-nek
samples. The R-RMSE was less than 10% with more than 9 CMT-nek samples
and ended with 4.49%. The R-MD was less than 20% with more than 9 CMT-nek
samples and ended with 7% as seen in Fig. 5b. The order of δ̂(x) was changed
from constant to linear for more than 9 CMT-nek samples which was critical
for the accuracy of LS-MFS. We specified the order of δ̂(x) for simplicity in this
feasibility study. The performance of LS-MFS could be improved by choosing
appropriate δ̂(x). Another observation is the large variation of R-RMSE while
repeating HF samples. The design of experiments for HF samples affected LS-
MFS noticeably. The evaluation of LS-MFS for CMT-nek is based on up to 12
samples and may suffer large uncertainty due to the scarce runs.

6.2 Case Study 2: CMT-bone Predictions from BE Simulations

20 runs (out of 67) were selected randomly and fixed as the validation runs. We
performed LS-MFS for CMT-bone (HF model in this case) based on 20 valida-
tion runs and up to 47 samples. Again, LS-MFS was most accurate comparing
to f̂L(x) and the linear fit to only (xH ,yH) as shown in Case 2 column of
Table 1. The LS-MFS predictions were much closer to HFM than the original
BE simulations.

Once again, we investigate the effect of the sampling plan on prediction
accuracy. The R-RMSE in Fig. 6a reduced with increasing CMT-bone samples
and ended with 5.4%. The R-MD in Fig. 6b oscillated with scarce CMT-bone
runs at the beginning and stabilized around 10%. Both R-RMSE and R-MD
reduced noticeably with the first few samples and stabilized to less than 10%
thus proving to be a promising approach.

6.3 Case Study 3: CMT-nek Predictions from CMT-bone

In the final case study, the LS-MFS was developed to predict the high-fidelity
parent app (CMT-nek) from its low-fidelity mini-app (CMT-bone). This helps
in quantitative validation of the mini-app. The setup was same as in case study
1, where CMT-nek was the HF model. From Case 3 column of Table 1, we see
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Fig. 5. Difference between CMT-nek validation runs and multi-fidelity predictions
based on BE simulation

that LS-MFS provides the best fit compared to linear fit. The LS-MFS had
less-than 10% R-RMSE in Fig. 7a. It is worth noting the significant jump between
9 and 10 samples while changing the order of δ̂(x) in Fig. 7a and b. CMT-bone
was close to CMT-nek and a different scheme might be preferred to determine
δ̂(x).
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Fig. 6. Difference between CMT-bone validation runs and multi-fidelity predictions
based on BE simulation

A key observation between case study 1 and 3 is that although the CMT-
bone samples were much closer to the CMT-nek samples, the MFS predictions
of CMT-nek (HF) from BE simulations (LF) were more accurate than the MFS
predictions from CMT-bone (LF) as shown in Table 1. Fitting CMT-bone was
more challenging considering the scarce samples (67 runs). BE simulations, on
the other hand, had all the 125 samples in the design space and thus, lead
to better MFS predictions. This is supported by residual errors of f̂L(x) from
Table 1.
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Fig. 7. Difference between CMT-nek validation runs and multi-fidelity predictions
based on CMT-bone

In all three cases, the error in prediction ended less than 10%; thus, prov-
ing it to be a valuable approach to use for reducing computational budget in
the process of co-design. The range of scale factor (ρ) for the three cases are
summarized in Table 2. The scale factors are around 1 which indicates that the
LF and HF have similar trend. The major difference between HF and LF are
well-compensated by the constant/linear discrepancy function.
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Table 2. Range of the scale factors for LS-MFS

Case 1 Case 2 Case 3

Minimum ρ 0.8 0.91 0.5

Maximum ρ 0.98 1.08 1.3

7 Conclusions

Due to high computational cost, validation samples from HFM are usually
obtained at small scale. But with MFS model, we were able to perform quan-
titative validation at a reduced computational budget. In this paper, we stud-
ied the least-square MFS (LS-MFS) using polynomial response surface as it
is robust with noise effect. For future work, different multi-fidelity surrogates
can be compared. Our ultimate goal is to predict the performance for exascale
computation platform which is essentially long-range extrapolation far from the
validation samples. In the future, we will investigate the capability of LS-MFS
for long-range extrapolation which suffers large uncertainty. We also noticed
the LS-MFS predictions were sensitive with the high-fidelity samples. Effective
design of experiments for validation runs are expected to improve the accuracy
of LS-MFS, which is also a valuable research direction.
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Abstract. Slurm is an open-source resource manager for HPC that provides
high configurability for inhomogeneous resources and job scheduling. Various
Slurm parametric settings can significantly influence HPC resource utilization
and job wait time, however in many cases it is hard to judge how these options
will affect the overall HPC resource performance. The Slurm simulator can be a
very helpful tool to aid parameter selection for a particular HPC resource. Here,
we report our implementation of a Slurm simulator and the impact of parameter
choice on HPC resource performance. The simulator is based on a real Slurm
instance with modifications to allow simulation of historical jobs and to improve
the simulation speed. The simulator speed heavily depends on job composition,
HPC resource size and Slurm configuration. For an 8000 cores heterogeneous
cluster, we achieve about 100 times acceleration, e.g. 20 days can be simulated
in 5 h. Several parameters affecting job placement were studied. Disabling node
sharing on our 8000 core cluster showed a 45% increase in the time needed to
complete the same workload. For a large system (>6000 nodes) comprised of
two distinct sub-clusters, two separate Slurm controllers and adding node
sharing can cut waiting times nearly in half.

Keywords: HPC � SLURM � Batch jobs scheduler � Simulator

1 Introduction

Different fields of science and engineering exhibit different demands on computational
resources. Responding to that, modern HPC clusters have significantly heterogeneous
architecture, where in addition to traditional computational nodes a number of spe-
cialized nodes can be present including high memory nodes, GPU or MIC accelerated
nodes and fast/large local file storage nodes. In addition, many HPC centers have
various generations of these nodes operational at the same time. Managing such a
facility efficiently can be challenging. Previously, centers would have a separate
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scheduler for each resource type, limiting users to use a specific resource even if
multiple resources could serve the user request. This often led to resource imbalances
where some resources had large queues while other were almost idle. To overcome this
problem, Slurm workload manager [1, 14, 17] can manage all these resources under a
single controller. Slurm is an open-source HPC resource manager used in a large
number of HPC centers, including those which include systems on the Top500 list.
There are a number of ways by which Slurm can support heterogeneous resource
organization. For example, GPU nodes can be organized as a separate partition or as a
part of a general partition with higher priorities for jobs requesting GPUs. There are
many other adjustable parameters which influence the scheduler and in many cases
their overall effect on the system performance can far from obvious. Performing a
Slurm parametric optimization on a live-production system can have undesirable
consequences for the end-users. Therefore, the ability to execute Slurm in a “simu-
lated” mode, where the actual system is modelled and actual historical jobs are used as
a probe can be very helpful to optimize job throughput at an HPC center.

Besides mentioned aid in organizing heterogeneous components of a cluster, the
Slurm simulator can be useful in number of other parameters optimization affecting the
Slurm and system performance. These can include: identification of adequate priority
boost for priority users or users under deadline, optimization of parameters affecting the
work of main and backfill scheduler. The simulator can also be used for testing and
development of scheduling related components of Slurm.

Here we report on our Slurm simulator which is a further development of the Slurm
simulator done by Lucero [9] and by Trofinoff and Benini [16]. The Slurm simulator is
based on the actual Slurm source code and thus can be used to study most of the Slurm
parameters. Special attention was given to simulation speed and the capability to
simulate historical job load on medium and large clusters. We performed validation and
analysis of the effect of several scheduler parameters on the HPC cluster performance.

2 Related Work

There are a number of job scheduler simulators for traditional HPC and Grid resources.
Among them there are Bricks [15], SimGrid [8], Simbatch [3], GridSim [4] and Alea
[7]. While providing a general framework for studying scheduling strategies they are
only of limited interest for HPC centers looking to make specific changes to optimize
their scheduling policies. Maui and Moab Scheduler has a built in scheduler simulator,
however it also provides limited help for Slurm users as well [6, 10, 11].

One way to simulate the full workloads of a real scheduler is by scaling the actual
job wall time and submission time. However, Slurm has many time-dependent qualities
like discrete execution of schedulers (main and backfill) and priorities calculations.
Therefore, conclusions drawn from such a scaled simulation may not be strictly
applicable to the non-scaled system.

The Slurm Simulator originally developed by Alejandro Lucero [9] and improved
by Trofinoff and Benini [16] is based on the actual Slurm source code and has the
potential to be helpful for Slurm parametric optimization. Both schedules are capable of
simulation of small clusters possibly with realistic and long workloads. However, our
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experience with them shows a low simulation speed for small clusters and an inability
to handle mid-sized clusters with a realistic multiweek load. In addition, they are also
based on an older version of Slurm.

3 Implementation Details

In this section, we describe modifications made to Slurm to allow its usage as its own
simulator. A brief description of Slurm is given to help aid in understanding some of
the concepts appearing later in the paper. For a detailed description refer to Slurm
documentation [14] and the original articles [1, 17].

Slurm has a fault tolerant, multi-daemon and multi-thread design. The main dae-
mon is the Slurm controller daemon (slurmctrld). It manages resources and allocates
work on them. It also receives and services request calls from many Slurm utilities (for
example squeue, sinfo and sbatch). Slurmd is a communication daemon running on
every node managed by Slurm. It starts and finishes the user’s jobs, per controller
request, on that node and performs other node operations like execution of prolog and
epilog. Slurmdbd is used for users accounts storage and is important for access rights
and historical usage for fair-share calculation. Slurm control daemon (slurmctrld) has a
multi-thread design where the most crucial parts are executed as separate threads with a
number of health monitoring threads. For the simulation, the most important threads are
ones which periodically execute the main scheduler, backfill scheduler, database
synchronization and priority decay calculation. For every allocated new job Slurm
spins-off a separate thread to initiate the user’s job on the designated resources.
A separate thread is also spun-off for each retiring job. This multi-thread design is used
to achieve a high fault tolerance.

Although this multi-daemon, multi-thread design is good for the intended Slurm
utilization, it has a drawback for simulation since it significantly affects performance
due to the need for synchronization. For the simulator, there is no need for such a high
tolerance but there is a need to perform a simulation in a reasonable amount of time.
Previous Slurm simulators [9, 16] continued to use this feature of Slurm and maintain
the overall Slurm workflow. The previous simulators were able to simulate small
clusters with reasonable speed but had a hard time simulating real mid-size clusters.
Although they occasionally were able to simulate a 256 nodes homogeneous cluster
with a simulation speed of 10 simulated days per day, in many cases the simulator
stalled at a certain point of the simulation without finishing it. The problem is the large
number of threads which were spun-off to serve new job allocations and deallocation of
resources from retired jobs. In the simulation the number of threads has a higher
probability to accumulate than it does in real time due to time acceleration in the
simulation. The unserved threads therefore tend to pile up and effectively hang the
main process. In Slurm, it is possible to limit the thread counts, however, the
yet-unspun threads will be accumulated in a special agent queue for later execution,
which leads to similar problems and delays in job actual starting time and resource
deallocation. To overcome this issue and obtain a higher simulation speed, we mini-
mized the number of daemons and threads in our simulator.
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Similar to previous implementations, our simulator was also developed with actual
Slurm source code (a forked version of the original Slurm). The simulator was
implemented as separate conditionally compiled source files with a relatively small
number of modifications to the main Slurm code, allowing compilation of the code in
normal and simulated modes. This layout in conjunction with Git tracking and merging
capabilities would simplify simulator porting to newer Slurm versions. Unlike previous
implementations, we didn’t attempt to keep the entire Slurm functionality but used only
the bare minimum necessary for a simulation and did not introduce an external sim-
ulation controller.

In this implementation the Slurm controller daemon, slurmctld, in addition to
resource management and job scheduling, also controls the simulation. The controller
daemon was serialized: all threads that are not crucial for simulation remain unstarted
while the functions of crucial ones are called from the simulator main event loop in a
serial way. In the simulation mode, instead of entering the main thread loop, slurmctrld
enters the simulator main event loop where it remains until the end of the simulation.
The simulator main event loop replaces the functionality of all crucial threads of normal
Slurm and controls the execution of batch job submission, scheduling (both main and
backfill), jobs priority decay calculation, synchronization with slurmdbd, jobs alloca-
tion and deallocation. The calls to respective Slurm functions are done within the loop
based on expiration of their scheduled execution time, i.e. if the scheduled time is equal
or less than the current simulated time. For periodically executed functions like the
main and the backfill scheduler, the scheduled execution time is calculated as the
previous execution time plus the sleeping time as defined in the respective Slurm agent
thread. Scheduled execution time for batch job submission is an input parameter and
job deallocation time is calculated as job start time plus job duration time which is also
an input parameter. The simulator does not start a separate job launching and termi-
nation thread; instead it simulates the positive slurmd response which eliminates the
need for the actual slurmd daemon. Thus, the simulator uses only two daemons:
slurmctld and slurmdbd.

Even though slurmctrld in simulated mode is sequential, still the calls to mutex
locks cost up to 40% of the total execution time, overwriting of the locking function
with a dummy placeholder allows one to save that time. By default, Slurm is compiled
in debug mode with assert enabled, since it is not crucial in simulation mode com-
pilation without debugging and without asserts gains additional speed. The overall
improvement in comparison with the real Slurm for the backfill scheduler is of factor
of 10.

Because many Slurm functions rely on calls to time and gettimeofday functions,
these functions were overwritten in the simulator to return current simulation time,
which is similar to the previous simulator implementation. In addition, simulated time
is allowed to tick along with the real clock and the simulator would increment the
simulated time by one second at the end of the event loop if no important event
happened (submission of a new job or resources deallocation).

The significant increase in backfill scheduler speed can affect the job placement. In
real Slurm a single backfill cycle can take several minutes while in the simulation it
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takes seconds, that can lead to jobs starting much earlier in the simulation. To com-
pensate for that we scale the execution time taken by the backfill scheduler by the
speed-up factor calculated as the average ratio of execution time of real and simulated
Slurm over the number of jobs it is attempting to schedule.

The overall simulation process is as follows: (1) compile Slurm in simulation mode,
(2) prepare the Slurm configuration files, (3) initiate and populate the Slurm accounting
system, (4) prepare the job trace file containing the description of jobs submitted to the
simulator, (5) prepare the simulation configuration files, (6) run the simulation (execute
slurmdbd and slurmctld) and (7) analyze the results. Our Slurm Simulator code is
available at https://github.com/nsimakov/slurm_simulator. A number of utilities were
developed to help and to improve usability during these steps. These utilities as well as
a documentation are available at https://github.com/nsimakov/slurm_sim_tools.

4 Studied HPC Cluster Systems

4.1 Micro Cluster

For the validation of the Slurm simulator, a small theoretical cluster, named
Micro-cluster, was modelled using regular Slurm. Slurm has a front-end mode where a
single slurmd communication daemon is used for all nodes. This mode is often used by
Slurm developers for validation and developmental purposes. In this mode, most of the
Slurm infrastructure is in-place and it functions in the same way as the real system; the
users batch scripts are submitted through sbatch command and squeue and other
utilities function in the same way. Because in this mode there is only one real compute
node the users batch jobs simply consist of a sleep command with a requested duration
as an argument. The utilization of this model allows us to execute real Slurm under the
same workload multiple times in order to evaluate the variability intrinsic to real Slurm.
The utilization of a single historical workload from the actual cluster does not offer
such an option.

The characteristics of the Micro-cluster’s nodes are shown in Table 1. This con-
figuration includes two different types of compute nodes, large memory nodes and
GPU nodes. This selection allows us to validate job placement based on the resource
requests within the batch job. The 500 trace jobs were generated requesting either
non-specific nodes or specific nodes. Jobs were distributed between five users grouped
in two accounts (three users in one account and two in other account). Specific requests
can be either for a CPU type or for a large size memory or for a GPU as a generic
resource (GRES for GPU). The job sizes were randomly selected and varying from
serial to 1–8 node parallel jobs. The wall time request was randomly selected between 5
and 30 min. Actual execution time was randomly selected between 0 and the requested
wall time (10% of the jobs were set to use the entire requested time and 10% to use
none, to model failed jobs). The distribution of core hours assigned to users and
accounts in the generated job trace is shown in Fig. 1. The network topology was each
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of the two types of compute node were connected to their own switch, the
large-memory node and the GPU node were connected to the same switch and all of
these switches connected to the top switch.

4.2 Rush – HPC Production Cluster

Rush cluster is a cluster used in our center for academic users. Its’ specification is
summarized in Table 2. The workload was simulated using historical jobs running on
the actual cluster between October 4, 2016 and October 28, 2016 comprising 23.8 days.
The start and end days corresponds to two system scheduled services days when all the
nodes were drained down. All historical jobs were included in the simulation including
cancelled jobs, because although not running they affect the job placement on the
cluster. The requested jobs’ resources were extracted from the Slurm accounting and
actual users’ batch jobs. Slurm accounting does not store complete information about
resources requested by jobs, particularly it doesn’t store requested CPU types or job
dependencies. This information was extracted from the users’ scripts, however some
portion of this information can be specified as arguments to the sbatch utility and
therefore was not captured. The historical job set consists of 65,000 jobs from 161
users utilizing 83 accounts consuming a total of 3,300,000 core hours. The distribution
of jobs over core counts and wall time is shown in Fig. 2, these properties were
obtained from the OpenXDMoD tool installed in our center [12]. The complete Slurm
configuration parameters can be found in the supplementary material.

Table 1. Specification of modeled Micro cluster.

Node type Number of nodes Cores per node CPU type RAM, GB

Compute 4 12 CPU-N 48
Compute 4 12 CPU-M 48
High memory 1 12 CPU-G 512
GPU compute 1 12 CPU-G 48

Fig. 1. (A) Core hours consumed by users on Micro cluster. (B) Core hours charged to account
(users 1,2,3 belong to account 1 and users 4 and 5 belong to account 2).
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4.3 Stampede2 – Supercomputer

Stampede2 is a supercomputer at The University of Texas at Austin’s Texas Advanced
Computing Center (TACC). It consists of 4,200 Intel Xeon Phi Knights Landing
(KNL) nodes and 1,736 Intel Xeon Skylake-X (SKX) nodes.

At the time of this article writing Stampede2 was still in the deployment stage and
thus there was little historical workload available. Furthermore, the available workload
is mainly from the initial deployment stage and it would not be representative of the
workload during production stage. For the simulation, the workload was generated

Table 2. Specification of real rush cluster.

Node type Number of nodes Cores per node CPU type RAM

Compute 32 16 Intel E5-2660 128 GB
Compute 372 12 Intel E5645 48 GB
Compute 128 8 Intel L5630 24 GB
Compute 128 8 Intel L5520 24 GB
High memory 8 32 Intel E7-4830 256 GB
High memory 8 32 AMD 6132HE 256 GB
High memory 2 32 Intel E7-4830 512 GB
GPU compute 26 12 Intel X5650 48 GB

Fig. 2. Rush Cluster workload characterization for the period between October 4, 2016 and
October 28, 2016. (A) Distribution of core hours and number of jobs over the number of
allocated cores. (B) Distribution of core hours and number of jobs over the jobs’ duration.
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from the historical workload of Stampede1 supercomputer which is 6,400 node
supercomputer at TACC.

The workload was generated as follows. First, a job bank was created from
stampede1 historical jobs running after 2015-05-16 and submitted before 2015-08-08
(12 weeks period). All single node jobs were converted to cores-requested jobs using
average CPU utilization with rounding to closest biggest core count of 1,2,4,6,8 and 12.
Jobs with CPU utilization higher than 12 was considered as requested a whole node.
The CPU utilization data was obtained from XDMoD [12] using TACC-Stats data [5].
Next jobs were randomly selected from job bank (without replacement). Number of
selected jobs was proportional to node counts of Stampede 1 and 2. Next portion
of jobs was set to be executed on KNL nodes (number of jobs proportional to portion of
KNL nodes).

Two configuration for Slurm controllers were tested: one controller for all nodes
and separate controllers for KNL and SKX nodes. Three options for node sharing on
SKX nodes was simulated: no sharing, sharing by cores (each shared job has dedicated
cores) and sharing by sockets (each shared job has all cores from same physical CPU).

5 Results and Discussion

5.1 Validation

The Slurm simulator is essentially the normal Slurm resource manager with several
modifications and simplifications. These include: serialization, faster performance of
individual components, neglect of jobs epilog time and node failures. Therefore, for the
proper use of the simulator it is important to know how these simplifications affected
the simulator performance.

Validation on Micro-cluster. The first validation of the Slurm simulator was done
against the small, 10 nodes, model cluster. The multiple simulated runs were compared
to multiple runs of the regular Slurm under the same workload. The workload consisted
of 500 jobs and takes 12.9 h to complete. In all cases, Slurm preformed a proper job
placement based on user requests: jobs requesting large amount of memory, GPUs or
specific CPU type executed on nodes with suitable characteristics.

The job start time was used to characterize the differences between the Slurm runs.
Other characteristics like waiting times and system utilization are essentially deriva-
tives of the individual job start times. It is interesting to compare multiple runs of Slurm
in both simulated and normal mode. The start time difference between a single sim-
ulated and a real Slurm run is shown in Fig. 3(A). For that particular runs, the mean
start time difference is 0.8 min with a standard deviation of 57.0 min and number of
outliers exceeding 4 h. For a 12.9 h workload, such variability is comparable to the
differences between two real Slurm runs with similar initial conditions (Fig. 3(B)). The
mean difference for that real Slurm runs is 1.4 min with a standard deviation of
50.3 min. In Slurm, many routings are executed regularly with a sleep cycle between
the executions. Among these routings are main and backfill schedulers and priority
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decay calculations. Because of the system jitter and varying workload, the execution
time of these functions vary leading to differences in relative function start-up times.
This can create an opportunity hole for some jobs, which can be placed on a resource
earlier and eventually lead to different job placement for other jobs leading to relatively
large differences in scheduling from run to run.

The multiple Slurm runs were obtained by varying the time between the Slurm
controller boot time and the first job submission time, the submission time of other jobs
relative to the first job remains the same. This serves as initial seed and varies the initial
calls to the main and the backfill schedulers relative to the first job in the workload.
To study the variability, seven real Slurm runs and 120 simulated runs were performed.
The job start times were compared to the average job start times over all real Slurm time.

The start time differences for all real and simulated jobs is shown in Fig. 4(A) along
with its distribution in Fig. 4(B). The difference between mean values for real and
simulated Slurm distribution is 3.2 min (on average the simulated Slurm jobs start
later) and the standard deviation is 36.9 and 42.5 min for real and simulated Slurm runs
respectively. There are a number of jobs in both simulated and real Slurm exceed 3 h.
For each run the mean and standard deviation of all job start time differences were
calculated. The Student t-test and the Kolmogorov-Smirnov test were used to compare
the simulated and the real runs. The tests showed that although the means cannot be
distinguished the standard deviations are different (p-values < 0.01). Some of this 15%
difference in standard deviation between real and simulated runs can be attributed to a
smaller number of independent runs there (7). There is an interesting time dependence
exhibited during the runs. In the beginning of the run the deviation is small and starts to
grow as the accumulation in job placement varies. However instead of growing

Fig. 3. Job start time difference between (A) simulated and real Slurm runs and (B) two real
Slurm runs.
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indefinitely it reaches certain level and stays there. This is probably caused by a steady
stream of new jobs and the retirement of old jobs resulting in historical job placement
having a decaying memory when it affects the allocation of new jobs. As for the
starting times the system utilization (Fig. 5) and the job priorities (Fig. 6) change over
time in a similar fashion between the normal and the simulated runs. For the Slurm
simulator it took 17 s to complete this 12.9 h workload, that is the simulation speed for
the Micro-cluster was 112 simulated days per hour.

Fig. 4. Comparison of job starting times between multiple real and simulated Slurm Runs.
(A) Difference between job start times and mean job start times over all real Slurm runs for real
and simulated Slurm runs. (B) Distribution of start time differences from A for real and simulated
Slurm runs.

Fig. 5. Comparison of Micro-cluster utilization between single real and simulated Slurm runs,
aggregation was done over 1 min period.
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Often instead of absolute prediction there is an interest in predicting a change upon
modification of some parameter. In order to study this, fair-share priority factor weight
was increased by 20% and the simulator and the normal Slurm was rerun using the new
value of this parameter. The fair-share priority factor alters the job’s priority based
upon the user for the resource allocation order in the main scheduler and in the backfill
scheduler. The fair-share factor takes into consideration the individual user’s previous
resource usage as well as the resource usage of all other users from same account. The
fair-share factor allows users with lower previous usage to receive an allocation to
resource faster than users with higher usage. The resulting change in waiting times is
shown in Fig. 7. The effect of 20% increase in fair-share weight is small and does not
exceed 5% of jobs wait time. This is due to similar resource utilization by all users
(Fig. 1(A)). The first three users belong to account one and the last two users belong to
account two. The resource utilization by account one users is 30% higher than that by
users from account two users (Fig. 1(B)). The simulation predicts that on average users
from account one would have longer waiting times while users from account two
shorter. However, the variation in predicted values is high and a significant portion of
the distributions lays on both sides of zero. The wait time differences from two sets of
real Slurm runs stays within predicted values (Fig. 7). Because of relatively small
difference in resource utilization by all users and associated accounts the resulting
difference is small as well. To produce a more pronounce difference a second

Fig. 6. Comparison of job priority (C) and its’ components, age factor (A) and fair-share factor
(B), change over time between single real and simulated Slurm runs for one of the long pending
jobs. The fair-share priority factor has a step-like form because these values are recalculated
every 5 min.

A Slurm Simulator: Implementation and Parametric Analysis 207



experiment was performed where 70% of user 4 was reassigned to user 3 (Fig. 7(B)
and (C)). The simulation predicts that user 4 will have 18% smaller waiting time and
more than 75% of distribution for user 4 from account two lays below zero. Indeed, in
real Slurm run users 4 and 5 have significantly lower wait time (Fig. 7(A)), however
unlike the mean values from simulation the user 1 and 2 are higher. Nevertheless, the
values from real Slurm are within simulator predicted values (Fig. 8).

Fig. 7. Effect of increasing fair-share priority factor weight by 20% on waiting time for each user.
Change in waiting time for simulated runs shown as boxplot where the lower and higher sides
corresponds to first and third quartiles, the horizontal bar in the box is median and the whiskers
extends to the furthest value not exceeded 1.5 of inter-quartile range. The wait time differences
from two sets of real Slurm runs are shown as red and green points. (Color figure online)

Fig. 8. (A) Same as Fig. 7 but with modified workload shown in (B) and (C).
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The model Micro cluster allowed us to study the simulator in comparison to multiple
real Slurm runs. The simulator predicted mean start times statistically undistinguishable
from actual Slurm start times with a slightly larger standard deviation. The simulator
properly allocates resources and updates jobs priority values. The simulator predicted
ranges for waiting time change upon modification of fair-share priority factors similar to
those of the real Slurm runs.

5.2 Validation on the Rush Cluster

In order to evaluate how the simulator compares with real Slurm executed on a real
system we performed a simulation of using an actual historical workload from our
cluster. As opposed to the modeled Micro-cluster here we only have one historical
result. In the simulation, we do not take into consideration the cluster usage prior to the
beginning of the simulation or node failures. Both have a significant effect on the job
scheduling as the first one affects the job priorities calculation and the second makes the
effective simulated cluster bigger. Node failures is a significant component of aging
clusters and can be added to the simulator in the future.

In normal Slurm running on medium to large clusters the backfill scheduler takes a
significant amount of time requiring more than several minutes per single loop. Due to
simplification in the simulator the backfill scheduler runs more than 10 times faster. An
artificially faster scheduler can affect the job placement and produce significant devia-
tion from the real Slurm performance. Although the backfill scheduler execution time
for real and simulated Slurm have similar patterns (Fig. 9(A)) the actual Slurm has much
more noise than the simulated one (Fig. 9(B)). Such variability is because real Slurm
needs to spin-off a number of threads to serve various users requests, jobs allocation and
deallocation. These threads can slow the backfill scheduler due to thread locking and the
decreased amount of CPU time available to the scheduler thread. Slurm in simulated
mode does not have such interruptions. Ideally a good simulator would incorporate such
effects. In this article, we simply scale the backfill scheduler loop by the speed-up factor.
In the real Slurm the dependency of the backfill scheduler run time on the number of
jobs attempted to schedule is non-linear. However, we were not able to produce a better
model than simple scaling from the available data. Collecting a wider range of Slurm
performance metrics might help to improve the backfill scheduler model.

The difference of jobs start time between historical and simulated Slurm runs is
shown in Fig. 10. The average difference in jobs start time between historical and
simulated Slurm run was −2.4 h (on average simulated jobs start earlier) with a
standard deviation of 12.0 h. There is a large number of outliers with time difference
more than 4 days. The outliers’ deviation from zero decreases over time, this is due to
neglect of the initial resource usage. Because in fair-share the previous utilization
contribution decays over time, the influence of initial historical usage diminished
resulting in smaller deviation further from the starting point. It is interesting to compare
this standard deviation with one between two simulated runs. The difference of job start
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times between two simulated runs is shown in Fig. 11. It has a mean of 1.3 min and a
standard deviation of 2.5 h. Figure 12 shows the whole resource utilization. Both
historical and simulated results show a similar pattern. Interestingly in the beginning
the simulated run has a higher utilization. Probably the omission of initial historical
usage by users allows the simulator to allocate resources more efficiently. Throughout
the middle part of the timeline there are a number places where the historical run has a
higher utilization than the simulated runs. Most likely some of the job resources
requests were specifically tailored by users to fit the gaps in the cluster at that time and
in the simulator these gaps were different preventing the job placement.

Given the differences in initial conditions and lack of node failures modeling the
simulator shows a reasonable approximation of historical workflows. Combined with
results from the Micro-cluster the simulator can be used for studies of the effects of
various Slurm parameters on the system performance.

Fig. 9. (A) Backfill scheduler execution time historical variation in real Slurm along used
workload. (B) Dependency of backfill scheduler execution time on the number of jobs attempted
to schedule for single historical and simulated runs
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Fig. 10. (A) Difference in jobs start time between real and simulated Slurm runs. (B) Distribution
of that start time difference. (C) Same as B, zoomed to −12 to 12 h region.

Fig. 11. (A) Difference in jobs start time between two simulated Slurm runs. (B) Distribution of
that start time difference. (C) Same as B, zoomed to −12 to 12 h region.
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5.3 Study of Various Parameters

Node Sharing. Many smaller HPC centers, like ours, have a large portion of serial
jobs and jobs which do not fully utilize an entire node (Fig. 1(A)). Allowing multiples
of such jobs to be executed on the same node increases the overall system throughput.
This is often referred to as node sharing mode as opposed to node exclusive mode
where the whole node is allocated to a single job. It was shown that many applications
running on a fraction of a node’s cores have less than 5% decrease in their performance
when running in none sharing mode [13]. In certain cases of large parallel jobs, the jobs
can actually complement each over in sub-system usage leading to faster execution
time [2]. In order to quantitatively determine the increase in the overall system gained
by node sharing the simulator was run in node sharing and exclusive modes.

The exclusive mode takes 10.8 more days (45% more time) to complete the same
workload (Fig. 13). The average increase in waiting time is 5.1 days with a standard
deviation of 6.6 days. The 45% increase in time to complete the same load can be
translated into the need to have a 45% larger cluster to serve the same workload. This is
a major savings even after considering a potential 3% slow down by some jobs. Long
wait times are a significant difficulty and users could potentially adjust their compu-
tational work load to decrease the wait time potentially endangering the quality of their
work. In other words, if we would switch back to exclusive mode, the users would
adjust by decreasing their usage and in this way the benefit of shared mode can be
rephrased as it allows users to do more than 40% more computational job. Therefore,
there is a good reason to have shared mode enabled and the users preferred to use
exclusive mode still can ask for the whole node.

Fig. 12. Comparison of resource utilization between historical Slurm run and two simulated
runs.
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Maximal Number of User’s Jobs Considered by Backfill Scheduler for Schedul-
ing. The backfill scheduler allows resource allocation to jobs which do not affect the
start time of higher priority jobs. In many centers a large portion of the jobs are
scheduled by the backfill scheduler. This scheduler scans through pending jobs and
attempts to allocate resources for them without affecting the highest priority jobs. Such
a single scan can take more than several minutes and due to multiple operations
requiring controller locking can significantly affect the controller responsiveness.
Extremely long run times can also lead to a decreased number of jobs being scheduled.
Therefore, there should be a good balance between execution time of single scan of the
backfill scheduler and the quality of its scheduling. There are a number of parameters
which affect the scheduler performance. Here we will consider the bf_max_job_user
parameter which defines the maximal number of user’s jobs considered by the backfill
scheduler for scheduling. In the reference simulation bf_max_job_user was set to 20
user’s job, we will show how the performance of the cluster would be affected by
decreasing this parameter to 10 user’s jobs.

The simulation showed only small increase in time needed to complete the
workload, namely 40 min or 0.1% from the referenced time. The mean wait time is
8 min slower and the standard deviation of the wait time differences is 3 h. Surpris-
ingly, there is no strong dependency of the job wait time on the total number of jobs
submitted by the user during the simulated period (Fig. 14). With this small decrease in
resource utilization and increase user’s wait time, there is a 25% decrease in the number
of jobs to consider for scheduling which leads to a 30% decrease in backfill scheduler
run time. Therefore, a reasonable decrease of the maximal number of user’s jobs
considered by a backfill scheduler for scheduling have small average effect on job
placement and offers significant improvement in backfill scheduler run time. This can
be a good choice for systems where backfill scheduler run time is an issue.

Fig. 13. Comparison of resource utilization for exclusive and shared node modes.
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5.4 Stampede2: Node Sharing and Multiple Slurm Controllers

Stampede2 is a new supercomputer at The University of Texas at Austin’s Texas
Advanced Computing Center (TACC). We chose to model it to show the capability of
the simulator to handle large systems with a realistic workload and to illustrate the
simulator potential for optimization of the Slurm scheduler for such systems.

Stampede2 is composed of two distinct parts: the first consists of Intel Xeon Phi
Knights Landing (KNL) nodes (4,200 nodes) and the second consists of Intel Xeon
Skylake-X (SKX) nodes (1,736 nodes). Because of the architectural differences
between these nodes, users most likely would specifically request a particular node type
for their jobs. This allows us to consider using separate controllers for each part to
reduce the load on the controller and thus potentially improve performance. The
drawback of separate controllers is the extra labor associated with maintenance of an
additional Slurm controller. Therefore, it would be useful to estimate the benefits of
separate controllers first prior to the actual implementation.

Because of the large number of cores per node on SKX nodes (48 cores per node)
the benefits of node sharing can be substantial. However, Stampede2 is a large system
and enabling node sharing will increase the number of consumable resources (cores and
memory are needed to be tracked now instead of only nodes) and would lead to a
significantly higher computational load on the backfill scheduler. Such an increase
could potentially render the entire system inefficient or inoperable. For this reason, the
Slurm documentation does not recommend node sharing for large systems. Therefore,
it is of interest to compare the simulated performance of Slurm without node-sharing
with different node-sharing schemes enabled to estimate the feasibility of node sharing
on the SLX nodes. In this article two configurations for node sharing were modeled:
sharing by sockets, where all the cores from the same physical CPU are assignable to a
single job and sharing by cores, where each core can be allocated individually.

Fig. 14. Wait time difference between bf_max_job_user parameter set 10 and 20 for users
grouped by their total number of jobs. bf_max_job_user parameter define maximal number of
user’s job considered by backfill scheduler. The mean values shown as points and error bar
correspond to standard deviation.
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The mean wait time for different configurations is summarized in Table 3. For SLX
jobs, dedicating separate controller resulted in a 35% improvement in waiting time.
In this case the smaller number of jobs per controller and smaller number of resources
to track (3.4 times less nodes) for each controller lead to much better performance by
the backfill scheduler. Indeed, the backfill scheduler with only a single controller
reached the run time limit in 70% of all runs. A separate dedicated controller reached
the limit on only 32% of the runs. Interestingly, that there is almost no benefit for KNL
jobs, this is probably due to a much smaller decrease in nodes for the KNL controller
than for SKX node controller (1.4 times vs 3.4 times).

Another 22%–25% improvement in wait time can be achieved by allowing node
sharing. Surprisingly sharing by sockets shows a marginally shorter waiting time than
node sharing by cores. This may be due to the smaller number of tractable resources or
it may be an artifact of the workload composition. The percentage of backfill scheduler
runs which hit the run time limits are very similar in both cases (30% for sharing by
sockets and 32% for sharing by cores).

These simulations show that it is possible to enable node sharing on SLX nodes of
Stampede 2 to improve wait time. The best performance is achieved with node sharing
and with dedicated controllers for the SLX and KNL nodes. The difference between
allocations by cores and sockets is very small and it is problematic whether it is more
beneficial to do node sharing by cores or by sockets. For this system, we only ran a
single simulation for each configuration due to time constraints. Similar to the
micro-cluster, it is expected that there should be a variation in wait time and ideally
multiple simulations must be done to generate reasonable statistics. Therefore, these
findings should be regarded as preliminary.

Table 3. Simulated waiting times on Stampede2. Mean wait hours weighted by node hours
increases the contribution of large jobs to the mean.

Controller Node sharing
on SKX nodes

Wait hours, mean Wait hours, mean weighted
by node hours

Jobs on SKX Nodes
Single No sharing 10.9 (0%) 17.0 (0%)

Sharing by sockets 8.2 (−25%) 15.5 (−9%)
Sharing by cores 8.2 (−24%) 15.5 (−9%)

Separate No sharing 7.1 (−35%) 15.0 (−12%)
Sharing by sockets 5.3 (−51%) 13.8 (−19%)
Sharing by cores 5.5 (−49%) 13.9 (−18%)

Jobs on KNL Nodes
Single No sharing 8.6 (0%) 9.2 (0%)

Sharing by sockets 7.2 (−16%) 9.2 (−1%)
Sharing by cores 7.3 (−15%) 9.1 (−1%)

Separate No sharing 8.2 (−4%) 9.4 (2%)
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5.5 Simulation Speed

The simulator speed heavily depends on the cluster size, workload and Slurm con-
figuration. For a small 120 core cluster the simulation speed was 112 simulated days
per hour while for a medium 8000 core cluster it was in the range of 0.8 to 17.3
simulated days per hour depending on the Slurm configuration. In the reference con-
figuration, it was 5.4 simulated days per hour. In exclusive node job allocation mode it
was 0.8 simulated days per hour. With a smaller maximal number of user’s job con-
sidered by the backfill scheduler, it was 17.3 simulated days per hour. For the tested
large system, it was around 1 simulated day per hour. In most cases the simulation
speed correlates with the backfill scheduler run time and can serve as an indicator of
whether the backfill scheduler run time needs to be optimized.

6 Conclusions

A new Slurm simulator was developed capable of simulation of large clusters with a
simulation speed of multiple days per hour. Its validity was established by a com-
parison with actual Slurm runs which showed similar mean values for job start times
between the simulated and actual data with a slightly larger standard deviation for the
simulation results. We have exercised this simulator in studying a number of Slurm
parameters that affect system utilization and throughput such as fair share policy,
maximum number of user jobs considered for backfill, and node sharing policy. As
expected fair share policy alters job priorities and start times but in a non-trivial
fashion. Decreasing the maximal number of user’s job considered by the backfill
scheduler from 20 to 10 was found to have a minimal effect on average scheduling and
serves to decrease the backfill scheduler run time by 30%. The simulation study of
node sharing on our cluster showed a 45% increase in the time needed to complete the
workload in exclusive mode compared to shared mode. An initial analysis of Stam-
pede2 supercomputer scheduling shows that it can benefit from separate Slurm con-
trollers and node sharing.
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Abstract. Performance anomalies involving interconnection networks
have largely remained a “black box” for developers relying on tradi-
tional CPU profilers. Network-side profilers collect aggregate statistics
and lack source-code attribution. We have incorporated an effective pro-
tocol extension in the Gen-Z communication protocol for tagging net-
work packets in an interconnection network; additionally, we have backed
the protocol extension with hardware and software enhancements that
allow tracking the flow of a network transaction through every hop in
the interconnection network and associate it back to the application
source code. The result is a first-of-its-kind hardware-assisted telemetry
of disparate, autonomous interconnection networking components with
application source code association that offers better developer insights.
Our scheme works on a sampling basis to ensure low runtime overhead
and generates modest volumes of data. Simulation of our methods in
the open-source Structural Simulation Toolkit (SST/Macro) shows its
effectiveness—deep insights into the underlying network details to the
developer at minimal overheads.

1 Introduction

Interconnection networks used in today’s supercomputers play a vital role in
the overall performance, efficiency, and scalability of scientific simulation and
modeling. HPC applications achieve a paltry 5–15% of a machine’s peak per-
formance [1–3] on modern microprocessor-based supercomputers. A significant
fraction of the loss comes from inter-node data movement.

When applications fail to make effective use of the compute resources at
scale, application developers resort to profilers to understand bottlenecks. There
is sufficient state-of-the-art and commercial tools for CPU profiling [4–10] that
capture metrics such as CPU cycles, cache misses, branch mis-predictions, etc.
and associate the measurements back to the application source code or applica-
tion data objects [11,12].
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Domain scientists can only reason about performance when the measure-
ments are attributed back to the application source code. Unfortunately, net-
work performance problems are a “black box” from an application developer’s
viewpoint. CPU-side profilers typically quantify the amount of delay waiting for
a network communication but offer little insight into why an instance of network
transaction was slow. Even the most sophisticated network performance analysis
techniques [13–16] only reason about communication endpoints but do not cap-
ture measurements from under-the-hood workings from the autonomous inter-
connection hardware, which includes network interface cards (NICs), bridges,
and switches.

Figure 2 in AppendixA shows the execution profile of NWChem [17]—a US
Department of Energy flagship computational chemistry code—running with
1024 MPI ranks on the Dragonfly [18,19] interconnection network on the NERSC
Edison [20] supercomputer. The figure shows a hotpath in the CPU profile taken
using HPCToolkit [5], a state-of-the-art CPU PMU-based profiler. The figure
shows a deep call stack with various layers of host-side code leading to the
vendor-provided networking API dmapp lock acquire to acquire a lock on a
remote node. The execution spends a significant (26%) part of execution waiting
in this networking API, but the profiles cannot obtain any insights on the cause of
this wait. This leaves an application developer with many unanswered questions:

1. Is there load imbalance in the code? Our conversation with the NWChem
application developers eliminated this case of any load imbalance and con-
tention for a single lock—the workload is dynamically balanced.

2. Is the network lock implementation suboptimal? Our conversation with Cray
Inc. eliminated this possibility—the network lock is local spinning MCS [21]
lock.

3. Is the communication network performing poorly?
4. Is there an interference from another job that affected this execution?
5. Is the observed, seemingly network problem, indeed a network bandwidth

problem or delays in the local NICs to inject messages?
6. If locking is frequent, is the lock-release message getting delayed in the inter-

connection network? If so, can we use a separate high-priority virtual channel
for such network communication that appear on the critical path?

Clearly, traditional CPU profilers cannot offer answers to these questions
since they cannot measure what happens in the interconnection network hard-
ware components. Once a network-related transaction leaves the CPU, even in
a simplistic network, the following events happen. The message gets enqueued
as a command to the NIC. The NIC notices the command at some later point,
which introduces an arbitrary delay. Now, the NIC may initiate a DMA transfer
from the local DRAM if the command is a send/put. It packetizes a put/send
command into multiple MTU-sized packets and injects them one by one. The
NIC may then wait for the acknowledgement of every packet (which is the case
in Gen-Z [22] protocol). Different packets may take different paths in the net-
work based on the network routing heuristics. At each router hop, a packet may
be subject to different policies and arbitration delays before being forwarded to
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an output port. At the destination NIC, the packets may arrive out of order
(which happen in Gen-Z [22]). The destination NIC may delay injecting packet-
level acknowledgments. The destination CPU may get notified some time later
after the entire message is reassembled and may introduce further delays before
a message-level acknowledgment is generated. Finally, an acknowledgment mes-
sage may be subject to the same set of uncertainties on its return journey.

With myriad autonomous, unsynchronized components, it is virtually impos-
sible to track how a message gets affected in its roundtrip from one host to
another. Prior network performance analysis efforts have conducted an event-
driven simulation of the network with characteristic workloads for designing
superior networks without paying attention to delivering developer insights.
Production hardware has offered simple counters in network routers to collect
aggregate runtime data, which offer coarse-grained statistics for system adminis-
tration to spot anomalous or overloaded hardware components; these techniques
are tedious, vendor specific, and often not accessible to CPU profilers.

No prior art has addressed the challenge of tracking an individual message
from its source location through every hop in every hardware component in an
interconnection network and associated the observed performance metrics to the
source and target host codes. This level of detailed measurement in conjunction
with full CPU-side context-sensitive profiling is the basis of delivering rich, end-
to-end application insights. Such detailed profiling and tracing can alone answer
questions that we raised previously in the NWChem example. Evidently, track-
ing every message and every packet in the network with this level of detailed
statistics is a recipe for performance data deluge and will bring the network to
a grinding halt in merely collecting the measurement data. Statistical sampling
comes to our rescue in collecting detailed data with sparse sampling.

Our strategy is to “mark” network transaction to be monitored on a sampling
basis at the origin (CPU) and record statistics of such marked messages at every
hop along its journey in an interconnection network. By retaining both CPU-
side profiles and network profiles for a sparse set of samples, we are able to
observe what happens to network transactions and elevate the measurements to
application source code in a manner that sheds lights on the causes of network-
related problems to the application developer. The result is that the application
developer, with full understanding of the problems, may,

1. Choose to refactor the source code to better utilize the network, or
2. Provision more network resources to reduce network-related bottlenecks that

are caused by her application, or
3. Conclusively infer that the problem was not caused by the application but

due to an interference with another job, the solution is in better network
provisioning or job scheduling, or

4. Pinpoint that the problem is not in the network provisioning but in the net-
working algorithms, an anomalous router, or local network interface (NIC)
software or hardware.
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2 Related Work

There is a rich literature on profiling and tracing CPU executions. Profiling
provides aggregated metrics whereas tracing captures the time-varying behavior
of executions. Profiling and tracing come in various flavors and granularities. It
is common to instrumentation source code or binary, manually or via a tool, at
function, loop, or basic-block granularities. Hardware event-based sampling is
an orthogonal method where CPU PMU counter overflow triggers an interrupt
that a profiler captures and attributes to application binary and in-turn to the
source code [4,5,23]. None of these techniques measure data from interconnection
network hardware.

MPI profilers [24–26] capture communication metrics at endpoints: they mea-
sure time spent in networking-related tasks by wrapping or intercepting each
MPI library functions. Advanced methods [13] are able to replay execution traces
to pinpoint the root causes of some performance bugs. However, none of these
methods obtain measurements from networking hardware. As a result, although
one might observe anomalous communication delays, there exists little evidence
to isolate problems to a host-side NIC, a router, the destination NIC, or desti-
nation CPU.

Networking hardware design is often performed via low-level event-driven
simulators [27–29]. These simulators are driven by predefined communication
patterns to assess the strength of hardware designs or algorithms. A low-level
simulator can simulate only a small (often milliseconds to a second) amount
of real execution. High-level simulators [30–32] capture runtime communication
traces on real execution and replay the communication traces to drive coarse-
grained network simulators. Both high-level and low-level network simulators
treat the CPU execution as a black box and focus only on the networking aspect
and hence are incapable of offering insights to application an developer at the
source code level.

There is rich literature in network profilers for Ethernet [33–35]. We are
unaware of any tool that can a) attribute network profiles to application source
code, or b) perform path-synchronous sampling to capture a specific network
transaction (e.g., traversal of a specific packet) throughout its journey. Network-
side monitoring schemes such as sFlow [35] and netflow [34] capture the source
and destination of a packet when flowing through a component. They, however,
lack the full path information of a sampled transaction and hence the hop-by-
hop details of any specific packet is unavailable. sFlow can aggregate the data
from many components over long periods of time and filter the data by the
traffic originating from the same source going to the destination to reconstruct
an “average” behavior and a “typical” path; but such schemes cannot attribute
the observed behavior to the application source code because over time there can
be many source code locations contributing to the same “flow”. Samples from
different components lack temporal correlation. This lack of temporal correlation
means one can observe only aggregate behavior of traffic and not be able to
pinpoint a specific anomaly to its causes. Aggregate metrics handicap the ability
to pinpoint the cause of a transient anomalous behavior.
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3 Methodology

A key requirement for attributing network behavior to application source code is
to identify what happens to a transaction initiated by a line of source code (could
be an assembly instruction) throughout its journey through the network. Such
hop-by-hop tracking retains temporal correlation among performance metrics
generated by unsynchronized components. We track hop-by-hop metrics of a
small subset of packets as they are forwarded across a network. This is done on
sampling basis because observing every transaction is infeasible both from space
and time overhead viewpoint. In other words, one in N packet originating from
a source is chosen to be tracked throughout its journey. The choice of N can be
arbitrary or more intelligent. Each endpoint may choose the same or different
value of N. Endpoints need not coordinate when they track a packet. Sampling
ensures that any event that is statistically significant will be observed with the
frequency proportional to its occurrence. We propose the following extensions:

Protocol Extension: every packet of the protocol carries a special Perfor-
mance Monitoring (PM) tag. The PM tag may be present at a designated
offset in the packet header to make it quick to inspect by the hardware. We
call a packet whose PM tag is enabled as a “marked” packet. We have already
incorporated a PM tag in the Gen-Z protocol [22] to enable performance tools.

Hardware Extensions: 1. The NIC exposes a special tag “track me” (TM)
to the software. The software may assert the TM bit in a command it
issues to the local NIC indicating the NIC to track the command.

2. The NIC propagates the TM bit from a CPU-issued command into a (one
or more) packet(s) by setting the PM bit in the packets that it injects
into the network on behalf of the command.

3. Every switch inspects the PM tag of each packet it routes. If the PM tag is
enabled in an incoming packet, the switch logs a performance data record
into its local buffer (typically an SRAM). The PM tag is propagated
through the switch from an incoming packet to the corresponding out-
going packet.

The fact that a marked packet’s information is logged at each hop allows
us to achieve the path-synchronous sampling. A key piece of information logged
at each hop is the unique identity of the next hop of the packet. The next hop
information allows us to, in a post mortem pass, reconstruct the full path along
the journey of a marked packet. In systems with request-response protocol (e.g.,
Gen-Z), the PM tag is retained from request to response so that its journey
is tracked in both directions. To accomplish this, the endpoint hardware (e.g.,
NIC) may be modified to propagate the PM tag from request to response. We
assume that every network packet at least contains its source identifier (SID),
destination identifier (DIS), a tag (need not be unique), and the PM tag. The
log in each component contains at least the following information:

1. The arrival time of the packet or command (component local time).
2. The departure time of the packet or command (component local time).
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3. The identity of the next hop (out going port) of the packet/command.
4. (Optional) In addition to the first three necessary data, a component may

include any additional data: for example, anomalous condition at the time of
routing the designated marked packet (e.g., ran out of credit when transmit-
ting this packet), position of the packet in a router’s input queue on arrival,
conflict during router arbitration, etc.
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Fig. 1. An interconnection network with four switches, two endpoints and
their respective NICs. A message sent from A to B traverses the path
A→NICa→S1→S2→S4→NICb→B. The profiler captures CPU-side contexts, marks
the message to be tracked in the network and logs data to a collection server. NICs
and switches that the marked packet traverses also log their data to the collection
server.

Figure 1 depicts the workflow when the endpoint A wants to send a message to
endpoint B and the packet follows the route A→NICa→S1→S2→S4→NICb→B
in an anecdotal network:

1. The software (profiler running on the source CPU, endpoint A) on a sampling
basis chooses a transaction to be monitored. The choice can be random
sampling or more intelligent, if desired.

2. The software captures its CPU calling context (CTXT1) and creates a locally
unique command id (CID1) representing the network command.

3. The software (at time T1) issues the network command to NICa passing the
unique id (CID1) setting the TM flag.

4. Software logs the tuple 〈CTXT1, CID1, T1, A, B〉.
5. NICa at a later point (time T2) inspects the command, generates some M

network packets for the command, and by observing the TM flag, it enables
the PM tag in one of (randomly chosen or otherwise) the M network packets.

6. NICa injects the PM-marked packet at time T3 to the switch S1. Let the id
of the marked packet be PKID. Let the last packet corresponding to CID1

leave at time T4. NICa logs the local information tuple 〈CID1, A, B, PKID,
S1, T2, T3, T4〉.
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7. The switch S1 notices the marked packet with PKID at time T5 and forwards
it to switch S2 at time T6 and the logs the information tuple 〈A, B, PKID,
S2, T5, T6〉.

8. The switch S2 notices the marked packet with PKID at time T7 and forwards
it to switch S4 at time T8 and the logs the information tuple 〈A, B, PKID,
S4, T7, T8〉.

9. The switch S4 notices the marked packet with PKID at time T9 and forwards
it to NICb at T10 and the logs the information tuple 〈A, B, PKID, NICb,
T9, T10〉.

10. NICb at time T11 assembles all packets and create an entry for the endpoint
B and produces the log entry 〈A, B, PKID, CID2, B, T10, T11, TM = 1〉.

11. The CPU at endpoint B at time T12 in calling context CTXT2 receives the
full message and on noticing the TM flag, logs the tuple 〈CTXT2, CID2, T12,
A, B〉.
For brevity, we are not discussing the case of response or acknowledgment

or dropped packets. In unreliable networks when a marked packet is dropped,
no further logs will be available—a clear indication of a dropped packet. We do
not discuss what additional information a component may log. There can be
component-specific fields, which, for example, can include link-level credits.

Collection server: Hardware has a limited local buffer to log performance data.
Hence, we use a management software running on each hardware component to
periodically drain the logs collected to a centralized server. The SRAM buffer on
the hardware acts as a circular buffer. All modern HPC networking components
have additional management hardware with Ethernet connections of ∼1 GBPS.
The management software on each component is capable of NFS mounting a
remote distributed server and dump logs from local memory to a unique file on
the remote server.

Post-mortem analysis: The collection server contains logs collected from all com-
ponents through which every marked packet traverses. A post-mortem analysis
of the logs in the collection server allows a software tool to reconstruct the com-
plete path traversed by each marked packet initiated at a source and associate
the data with the application source code in its calling context. In the previous
example, starting from the CPU-side log of the endpoint A, we can go through
the following steps to reconstruct the path:

1. Endpoint A’s log entry 〈CTXT1, CID1, T1, A, B〉 tells that at source-code
context CTXT1, a command CID1 was issued to target B.

2. Sifting through NICa’s logs for CID1 shows the following entry: 〈CID1, A, B,
PKID, S1, T2, T3, T4〉. T2−T1 is the in-node delay. The command took a
total of T4−T2 time to get injected. The marked packet has the tag PKID
and was injected at time T3 and was sent to switch S1.

3. Sifting through switch S1’s logs for 〈A, B, PKID, T3 ±Δ〉 shows a record
〈A, B, PKID, S2, T5, T6〉. The packet’s delay at hop S1 is T6−T5. It was
forwarded to S2.
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4. Sifting through switch S2’s logs for 〈A, B, PKID, T6 ±Δ〉 shows a record
〈A, B, PKID, S4, T7, T8〉. The packet’s delay at hop S2 is T8−T7. It was
forwarded to S4.

5. Sifting through switch S4’s logs for 〈A, B, PKID, T8 ±Δ〉 shows a record
〈A, B, PKID, B, T9, T10〉.〉. The packet’s delay at hop S4 is T10−T9. It was
forwarded to the destination NICb.

6. Sifting through NICb’s logs for 〈A, B, PKID, T10 ±Δ〉 shows the following
entry: 〈A, B, PKID, CID2, B, T10, T11, TM = 1〉. T11−T10 is the delay at
NICb. It was delivered to the destination B.

7. Sifting through endpoint B’s logs for 〈A, B, CID2, T11 ±Δ〉 shows the fol-
lowing entry: 〈CTXT2, CID2, T12, A, B〉. CTXT2 is the receiving application
calling context. The packet’s journey ends here.

Full calling context with source code attribution at both endpoints along
with hop-by-hop metrics for the traversal: A(CTXT1)→NICa→S1→S2→S4

→NICb→B(CTXT2) including the in-NIC delays is easily reconstructed. Since
each component logs data into its local buffer, there is no need for concurrency
control. There is no need for perfectly synchronized clocks across the system; but,
we expect the components to be close enough in time via standard protocols such
as NTP.

Alternative uses: Our approach samples a randomly chosen transaction in a
window of N transactions. Alternatively, we may also sample the exact Nth

transaction. In fact, a precise, predetermined, transaction may be sampled, if
desired. Instead of the software at the source of a transaction enabling the PM
tag, any component may choose to enable the PM tag and capture the partial
path. Although we suggested unsynchronized sampling from endpoints, we do
not preclude sampling in a synchronized manner, which is useful for debugging
purposes. Our approach associates metrics to the source-code location that ini-
tiated a transaction. We do not preclude associating metrics to some other place
in the source code, e.g., a network wait event associated with a non-blocking
transaction.

4 Implementation

We implemented our network performance monitoring prototype using the SST/-
Macro event-driven network simulator framework [32] and open sourced it [36].
SST/Macro models hardware components such as CPU, memory, NIC, switch,
crossbar. The networking components of SST/Macro are mature with various,
configurable network topologies, bandwidths, latencies, and algorithms of packet-
based routing and arbitration, ideally suited for our evaluation. SST/Macro is
easy to extend with additional hardware and software components, which was
necessary for our extensions. SST/Macro is driven by “skeleton” C++ code that
mimics an HPC C++ code written using MPI and needs trivial or no modifica-
tions to work with SST/Macro.
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We enhanced SST/Macro in the following ways. We introduced a new flag
(PM bit) in SST/Macro packet format. We extended SST/Macro NIC and switch
hardware components with the additional capability to log “marked” packets to
a bounded SRAM buffer. We chose a bounded buffer of 2 KB in each router
and NIC. We introduced a new hardware subcomponent “drainer” in NICs and
routers, which reads the performance data accummulated in a local bounded
SRAM buffer and transfers it to an on-component management software. The
management software NFS mounts a file on the remote data collection server
and drains the incoming performance logs to the server.

Additionally, we also implemented extensions to the NIC-software interface
to express the ability to track a message. We extended the NIC with the ability
to mark one out of N packets with the PM bit if the command issued from the
CPU carried the TM flag and append its log in a local SRAM.

We drive the profiling with a software profiler in SST that uses random
sampling to determine if a message needs to be monitored. If so, it sets a special
TM tag when it issues a command to its NIC. Also, the CPU profiler collects
the calling context and logs the CPU metrics about the message in a per-CPU
log file.

The postmortem analysis inspects the log files to reconstruct the path taken
by each marked packet by each endpoint and associates performance metrics to
each hop on the path as described in the previous section. The output of our
postmortem analysis is a set of files containing the path information of all the
marked messages. The path information also contains the performance metrics
attributed to each hop along the path.

To visualize how the application behaves, we generate a heatmap and a set
of stacked bar graphs from the performance metrics using a graphing software
called Plotly [37]. Figure 3a in Appendix B shows the heatmap for an example
NCAST program. The heatmap shows the total time taken by each marked
packet to travel from the source CPU to the destination CPU. The points on
the x-axis correspond to the time at which messages were initiated. The points
on the y-axis correspond to the processes that sent the messages. A point on the
heatmap that is darker than other points signifies the message took relatively
longer to travel from the source to the destination. In addition to the heatmap,
we also generate a set of stacked bar graphs, one for each process that initiated
a message in the program. Figure 3b shows a bar graph for process 97 in the
ncast program. Each bar represents the cumulative time spent by the message
in each network component along its path and each stack in a bar represents the
time spent at each network component. A large stack in a bar shows that the
message was stuck in the component for a long time. To summarize, we can use
the heatmap to identify what messages were delayed, and then use the stacked
bar graph corresponding to the process that initiated that message to identify
network component that caused the delay.
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5 Evaluation

We evaluated our prototype implementation to answer the following ques-
tions: (1) how effective is our prototype in finding performance bottlenecks in the
network due to the application? (2) does our prototype monitor network traf-
fic with low overhead? All our experiments were run on a four socket, 15-core
Intel Xeon E7-4890 machine clocked at 2.8 GHz and containing 1 TB DRAM.
Our setup simulated the NERSC Edison [20] system with the Dragonfly [18,19]
topology containing 5586 compute nodes.

Effectiveness: To evaluate the effectiveness of our prototype, we executed it
with an MPI skeleton program and ran with 4096 MPI ranks. In the skeleton
program—NCAST—a single MPI process (rank 42) is bombarded with multiple
large (4 MB) messages from all the other MPI processes in the network. As a
large number of messages are sent to a single node, the NIC at the destination
CPU becomes a bottleneck. Also, since all packets would flow through a sin-
gle network switch before reaching the destination, the switch at the last hop
becomes congested. Our goal is to use our prototype implementation to precisely
identify the network component that is the bottleneck in the NCAST program.

Figure 3 in AppendixB shows the graphs generated by our prototype after
executing the NCAST program. The heatmap in Fig. 3a in AppendixB reveals
a surprising and non-obvious performance problem—the messages are all seri-
alized; the MPI ranks are sending messages one after another, resulting in the
diagonal in the heatmap. Samples from all CPUs except for CPU 42 are sparse
and CPU 42 samples show that it is continuously sending messages to other
processes, which is reflected in the thick horizontal line in the heatmap. The
reason for serialization is the large message size sent from all other nodes. For
large messages, each MPI process sends a short notification message to the target
(rank 42); and the target one-by-one fetches the large message from the sources.
The concurrency gets completely destroyed—a subtle anomaly invisible in the
CPU-only profiles but distinctly visible in full network telemetry.

On the diagonal, we can see that the points above CPU 80 appear darker
which means that those messages take relatively longer than the earlier messages.
This shows that the messages that are being sent later are getting delayed at
either the destination or at a network switch. Figure 3b in AppendixB shows
the stacked bar graph of CPU 97. The large stack in the bar graph represents
the time spent at switch 21. Switch 21 directly connects to node 42 which is
receiving messages from all other nodes. Hence the stack is large since all the
packets are queued at switch 21. We observe a similar pattern in the bar graphs
corresponding to all other CPUs after CPU 80. This shows that all the messages
are queued up at switch 21, which has become chocked.

Efficiency: We evaluate the efficiency of our network performance monitoring
scheme by measuring the simulation and wall clock time on three MPI skeletons:
NCAST, broadcast, and a mutiapp. We execute each application five times and
report the geometric mean of the overhead. The skeletons were designed such
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that their simulation time was at least one second. We tracked one in every
hundred NIC command at each endpoint. Our measurements showed that the
hardware extensions added a negligible 0.16% mean overhead to the simulation
time. The wall clock time for simulation marginally increased (4.8%) over the
original execution without our extensions to SST/Macro. The average size of the
log files generated for the three applications is 61 MB.

6 Conclusions

Application developers better understand performance when measurements are
attributed back to the source code. However, it is hard to attribute perfor-
mance measurement data from myriad autonomous, asynchronously operating
hardware components in an HPC system back to application source-code. Tra-
ditional profilers have either focused only on CPU-side hardware measurements
for source-code attribution or focused on network-side hardware measurements
without source-code attribution.

We developed a protocol extension to track the flow of packets and collect
hardware performance data in the emerging memory-semantic-based communi-
cation protocol—Gen-Z. We enhanced the router and NIC hardware and man-
agement software with additional components for logging performance data. We
enhanced traditional CPU profilers to unify CPU profiles with telemetry from
networking hardware. Our sampling-based scheme implemented in the SST/-
Macro simulator shows promise of our technique in offering a unified system-wide
performance insights for application developers.

Our future work involves extensively evaluating our methods on serious work-
loads, working with hardware development teams to incorporate our proposed
extensions, and working with software profiling tools to best utilize the network
telemetry.

Acknowledgments. This work was supported (in part) by the US Department
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Project.
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A NWChem Profiles from HPCToolkit
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Fig. 2. CPU execution hotspot in NWChem running on NERSC Edison with 1024 MPI
ranks captured via HPCToolkit [5] profiler. 25% of execution on all MPI processes waste
time waiting to acquire remote locks embedded deep inside many layers of host code.
The cause of the lock waiting despite good load balance is unknown since CPU profiles
do not capture networking hardware component internals.
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B Profiles of NCAST Program

(a) Heatmap showing the time taken by each marked packet in the NCAST program.
Sample points that are darker in color correspond to messages that were delayed the
most.

(b) The stacked bar graph of process 97 in the NCAST program. The colored stacks in
each bar represent the delay at each hop of the packet.

Fig. 3. Figure shows the visualization graphs generated for the NCAST program run-
ning 4096 MPI ranks.
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Abstract. Manycore architectures are an energy-efficient step towards
exascale computing within a constrained power budget. The Intel
Knights Landing (KNL) manycore chip is a specific example of this and
has seen early adoption by a number of HPC facilities. It is therefore
important to understand the performance and energy usage character-
istics of KNL. In this paper, we evaluate the performance and energy
efficiency of KNL in contrast to the Xeon (Haswell) architecture for
applications representative of the workload of users at NERSC. We con-
sider the optimal MPI/OpenMP configuration of each application and
use the results to characterize KNL in contrast to Haswell. As well as
traditional DDR memory, KNL contains MCDRAM and we also eval-
uate its efficacy. Our results show that, averaged over our benchmarks,
KNL is 1.84× more energy efficient than Haswell and has 1.27× greater
performance.

Keywords: Benchmarking · Power consumption · Energy
Hyperthreads · Manycore architecture · Intel Knights Landing
Haswell

1 Introduction

Manycore architectures promise significant gains in application performance and
energy efficiency over past High Performance Computing (HPC) architectural
designs. The first mainstream manycore architecture, Intel Knights Landing
(KNL), already boasts early adoption in several clusters hosted by major HPC
facilities, including Cori at the National Energy Research Scientific Computing
(NERSC) Center [16,30], Trinity at Los Alamos National Laboratory (LANL)
[15], and Theta at Argonne National Laboratory (ANL) [39]. These first pre-
exascale manycore systems are intended to pave the way towards exascale-at-
twenty-megawatt computing for the DoE [19]. In this paper, we use modern HPC
workloads to evaluate how well the KNL satisfies the trajectory requirements for
exascale.
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We use applications representative of the NERSC workload to characterize
and quantify the performance and efficiency benefits of KNL. This application-
suite is a broad composite of prominent applications used on NERSC systems [10]
with some traditional micro-benchmarks for fine-grain evaluation. We evaluate
this workload on the current NERSC flagship supercomputer, Cori. We use the
most popular KNL configuration: KNL with MCDRAM memory configured to
operate as a cache, where MCDRAM is Intel’s on-package high bandwidth mem-
ory. We contrast this by evaluating the same workload on Cori Haswell nodes at
the same node count. To make this a fair comparison, we use optimal Message
Passing Interface (MPI) and Open Multi-Processing (OpenMP) configurations
for both KNL and Haswell, as well as compiling with the appropriate vector
Instruction Set Architecture (ISA) (AVX512, AVX2 respectively). We also con-
trast against KNL runs that use only Double Data Rate (DDR) memory. Hence-
forth, we will refer to the KNL cache mode configuration as KNL-Cache and the
KNL flat mode configurations as KNL-DDR and KNL-MCDRAM depending on
whether data is explicitly allocated in DDR or MCDRAM.

Our key findings are:

– Optimized micro-benchmark configurations run 1.5 to 4.0 times faster on
KNL nodes than Haswell nodes.

– The STREAM memory bandwidth is approximately 140 GiB/s less when
using KNL-Cache compared to KNL-MCDRAM. In addition, cache conflicts
can reduce KNL-Cache memory bandwidth by up to an additional 100 GiB/s.

– The average performance of the full benchmark suite is only better on KNL
compared to Haswell when using KNL-Cache. KNL-Cache improves the per-
formance of every single benchmark compared to KNL-DDR. This indicates
the value of MCDRAM to overall performance.

– The average energy efficiency of the full benchmark suite is better on KNL
than Haswell in both KNL-Cache and KNL-DDR modes. This indicates that
there can still be an overall win in terms of work done within a given energy
budget by using an architecture with small cores and no MCDRAM.

– The performance and energy gains of hyperthreads are dependent on the
individual application, indicating the importance of understanding applica-
tion characteristics.

2 Related Work

Barnes et al. provide an initial evaluation of strictly performance of some NERSC
applications on KNL in comparison to Haswell [12]. A similar evaluation was
performed on Trinity by Agelastos et al. [7]. Parker et al. perform a KNL per-
formance study in their evaluation of Theta [31]. The Theta evaluation analyzes
power for two micro-benchmarks, whereas we provide a more in depth analysis of
the power efficiency improvement of KNL compared to Haswell. Several authors
have analyzed the efficacy of hyperthreads, but this work predates KNL and
do not give insights into the performance/power benefits on KNL [14,18,37,41].
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Lawson et al. evaluated dynamic voltage and frequency scaling (DVFS) tech-
niques on KNL for power limiting and provide a power model, whereas we eval-
uate efficiency gains and optimal usage without limiting power [28]. Peng et al.
[33] evaluate the performance of micro-benchmarks and mini-apps on a KNL sys-
tem with a focus on the performance impact of various KNL memory modes, and
Ramos and Hoefler create a performance model for KNL memory modes [34].
Our evaluation uses a fixed memory mode (KNL-Cache), and contrasts it with
the performance of KNL-DDR to show the benefits of MCDRAM. Work has
been done on providing single metrics for evaluating trade-offs between power
and performance [35]. However, in this paper we optimize applications based on
performance and then report the energy consumption of this configuration.

3 NERSC’s Cori Supercomputer

The Cori supercomputer is located at the U.S. Department of Energy’s Office
of Science National Energy Research Scientific Computing Center [16,30]. Cori
is based on the Cray XC40 architecture [17] and was deployed in two phases.
Phase 1 consists of 2,388 nodes based on dual-socket, 16-core Intel E5-2698
v3 Xeon R© processors clocked at 2.3 GHz and a total 128 GB of DDR4 2133
memory [4]. Phase 2 is 9,688 nodes in size and utilizes a single Intel Xeon
PhiTM 7250 Knights Landing processor with 68 cores at 1.4 GHz and 96 GB
of DDR4 2400 memory [3]. The two node types share a Cray Aries dragonfly
high-speed network and a common storage subsystem. The KNL processor can
be configured to support a variety of non-uniform memory access (NUMA) and
memory modes that are meant to allow the processor to be configured to the
particular needs of a given application [38]. In particular, the on-chip mesh can
be configured in 3 different clustering modes: all-to-all, quadrant (quad), and
sub-NUMA (with the option of 2 or 4 NUMA regions). In addition, the KNL
has a 16 GB on-chip high-speed memory (MCDRAM) that can be configured as
a directly addressable memory region in its own NUMA region (flat) or it can
be used as a cache for DDR. The majority of KNL nodes on Cori are config-
ured to quad/cache mode as it provides an easy on-ramp for users coming from
traditional Xeon R© nodes. However, Cori does support the other available modes
dynamically via a subset of the nodes allocatable in a dedicated reboot queue of
the scheduler for those users that want to set a mode better suited to the needs
of their application.

4 Method and Instrumentation

The key areas of evaluation and characterization for the NERSC workload on
Cori are performance per watt and the efficacy of unique features of the KNL
architecture including MCDRAM and four hardware-threads-per-core. We used
the Integrated Performance Monitoring (IPM) profiling tool in our experiments
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to map the performance over the parameter space of the selected NERSC work-
load applications on KNL. We also performed these experiments on KNL with-
out utilizing MCDRAM and on Haswell nodes. In this section we describe our
experimental design and methodology and discuss IPM and the enhancements
we made to IPM for our experiments.

4.1 Integrated Performance Monitoring Tool

We introduce the power monitoring enhancement to the IPM library as part
of this work1 [20–22]. IPM is a NERSC profiling library for high-performance
applications, first introduced by Fürlinger et al. [21]. IPM aggregates several low
level interfaces to provide a large quantity of performance data. In order to adapt
IPM to the new manycore architecture HPC paradigm and energy-constrained
computing, we added energy measurement to the IPM feature set.

IPM now supports measurement of energy consumption over the course of
application execution. The newly added IPM PMON module is included in IPM
by using the −enable-pmon configure option. The PMON module follows the
standard IPM module interface and requires only the additional IPM PMON= 1
environment flag at runtime in order to activate energy collection. Energy mea-
surements through IPM are currently only supported on Cray systems through
the Cray power monitoring and management stack [29]. IPM measures energy
over the full duration of the application, or programmer-specified sections. By
default, the energy counter is initialized when the application calls MPI Init and
accumulated until the application calls MPI Finalize. We are able to measure
energy at three sources: the full node energy prior to distribution, CPU power,
and DDR memory energy [36]. As a consequence of the architecture, the KNL
MCDRAM energy consumption is included in the CPU power measurement and
cannot be measured separately [36]. Using this energy measurement, we are also
able to compute the average memory, CPU, and total power consumption of an
application. We derive an average power value (W) by dividing this accumulated
energy (J) by the application wall clock time (s). IPM energy information can be
found in both the IPM standard output summary information and the standard
IPM XML output files. Users should note that in the XML output, every rank
provides an energy reading for the entire node. Therefore, user post-processing
should appropriately handle the case where multiple ranks from the same node
producing duplicate values.

4.2 Experiment Methodology

We designed our experiments to show the effect of the following parameter
variations:

– Varying MPI ranks-per-node and OpenMP threads-per-rank with a fixed
amount of total concurrency

1 IPM is open-source and available on github: https://github.com/nerscadmin/IPM.

https://github.com/nerscadmin/IPM


240 T. Allen et al.

– Varying the total concurrency to evaluate the effects of using one, two, three,
and four threads-per-physical-core

– Using KNL nodes in various modes, including KNL-Cache, KNL-MCDRAM
and KNL-DDR, and Haswell nodes

We performed experiments using every combination of the parameter variations.
The lightweight attribute of IPM makes it possible to collect all of the data
required from each of these experiments in a single run per configuration. All
applications are built with icc version 17.0.2.174 using the -xMIC-AVX512 opti-
mization flag to enable the 512-bit vector optimizations for KNL. (Haswell builds
used the -xAVX2 flag instead.)

With the rise of manycore architectures, MPI/OpenMP hybrid parallelism
is seeing increased popularity. We designed an experiment to explore the perfor-
mance relationship between MPI/OpenMP for our applications. We first fixed
the amount of total concurrency such that there is only one MPI rank or
OpenMP thread per core. One thread or process-per-core is exactly 68 threads-
per-node on Cori. At times we needed to use MPI counts and/or OpenMP
thread counts in powers of 2 because of the domain decomposition require-
ments of the applications. Experimentally, most applications did not receive
a significant performance increase when using 68 cores instead of 64. To eval-
uate with two-or-more threads per core, we simply used appropriate values for
ranks-per-node and threads-per-rank. We used the OMP PLACES=threads and
OMP PROC BIND=spread environment variable settings for our experiments to
ensure OpenMP threads are not grouped on a single core. We also used the
Slurm option --cpu bind=cores to ensure MPI ranks are spread across differ-
ent cores.

We conducted our experiments using KNL and Haswell nodes. We used the
flat KNL modes to evaluate the benefit of MCDRAM for performance and
power consumption. The numactl tool is used to explicitly allocate memory
in MCDRAM or DDR. We also used Haswell nodes to compare the perfor-
mance, but also the energy efficiency, of KNL nodes to Haswell nodes. This
required us to modify our experiment somewhat, as Haswell nodes have fewer
cores and threads-per-core than KNL. We only use one and two threads-per-core
for Haswell experiments, and limit our MPI concurrencies accordingly. Haswell
nodes also do not support the AVX512 instruction set, and so AVX2 optimizations
are used instead.

4.3 Applications and Micro-benchmarks

Table 1 lists the applications used for this study. For application descriptions
please refer to the respective references. The table lists the details of decompo-
sition in addition to a brief description of the level of tuning performed for the
KNL processor. Minimal refers to no source codes changes, but compiler opti-
mizations may have been performed. Significant refers to code restructuring,
thread and/or vectorization optimizations performed specifically for the KNL
architecture.
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Table 1. Application benchmark details

Application Science area Level of tuning Nodes Rnks-Thds/Rnk GiB/

HSW KNL node

STREAM [6] Memory bandwidth Minimal 1 32t 68t 6.7

RandN [11] Random memory access Minimal 1 64t 256t 6.5

DGEMM [1] Dense linear algebra Intel MKL 1 32t 136t 2.3

GTC-P [2,40] Fusion Moderate OpenMP 8 32r-1t 32r-8t 0.17

MILC [13] Quantum chromodynamics QPhiX dslash solver 8 32r-1t 32r-2t 8.3

Nyx-AMReX [9] Cosmology Minimal 2 16r-4t 16r-16t 58

Castro-AMReX [8] Astrophysics Minimal 4 32r-1t 32r-2t 6.5

Quantum Espresso [23] Quantum chemistry Significant 4 4r-8t 4r-16t 21

BD-CATS [32] Data analytics for cosmology Minimal 16 16r-4t 16r-16t 5.4

5 Results

5.1 Micro-benchmarks

In this section we evaluate the performance and energy efficiency of the DGEMM,
STREAM and RandN micro-benchmarks on the KNL and Haswell architectures.
The micro-benchmarks stress peak floating point, sequential memory access, and
random memory access performance, respectively. The KNL results are obtained
in the three modes discussed earlier: KNL-Cache, KNL-MCDRAM and KNL-
DDR. We choose the problem size so that the memory footprint per compute
node is less than the memory capacity of MCDRAM. This allows us to evaluate
the benefit of MCDRAM under ideal circumstances.

Figure 1 shows the absolute performance and energy efficiency of the micro-
benchmarks. The top row of the figure shows the performance of the benchmarks
in the appropriate units: floating point rate for DGEMM in units of TFLOP/s
and memory bandwidth for STREAM and RandN in units of GiB/s. The bot-
tom row of the figure shows the energy cost of performing a single operation
in the benchmark: 1 double precision FLOP in DGEMM and transferring a
single 8-byte word to/from memory in STREAM and RandN. The energy met-
ric is calculated by dividing the average power usage in Watts (J/s) by the
micro-benchmark performance metric printed to standard output. In the case of
DGEMM, we divide [J/s] by [FLOP/s] to obtain [J/FLOP].

The results in this figure show that the optimal micro-benchmark configu-
rations run 1.5 to 4.0 times faster on the KNL architecture compared to the
Haswell architecture. Our best KNL performance results are a peak floating
point rate of 2 TFLOP/s, a sequential memory bandwidth of 466 GiB/s and a
random memory access bandwidth of 6 GiB/s. The STREAM micro-benchmark
performs better in KNL-MCDRAM mode than in KNL-Cache mode (466 GiB/s
vs 327 GiB/s), indicating that KNL-Cache mode introduces some overhead for
memory-bandwidth bound applications. This is because streaming stores incur
an additional memory read in KNL-Cache mode to determine whether a line
is already present in MCDRAM [27, p. 565]. We have found that switching
off streaming stores with the compiler option -qopt-streaming-stores=never
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(a) DGEMM performance (b) STREAM performance (c) RandN performance

(d) DGEMM energy (e) STREAM energy (f) RandN energy

Fig. 1. Performance and energy efficiency of DGEMM, STREAM and RandN micro-
benchmarks on KNL and Haswell architectures with various counts of threads per
core (TPC). The optimal KNL configuration in each mode is marked with the relative
improvement over the optimal Haswell configuration.

reduces STREAM performance in KNL-MCDRAM mode to 347 GiB/s, explain-
ing most of the performance difference. All micro-benchmarks perform worse in
KNL-DDR mode than the other modes, with the exception of RandN in 1 and 2
threads per core (TPC) configurations (Fig. 1c). These lower concurrency config-
urations are impacted by the higher memory latency of MCDRAM [33]. It is only
at the highest TPC concurrency where MCDRAM can support the large num-
ber of memory requests needed to hide the memory latency disadvantage. The
DGEMM and STREAM micro-benchmarks benefit more from MCDRAM than
RandN (Figs. 1a and b). DGEMM and STREAM performance remains approx-
imately the same when adding multiple threads per core because the floating
point performance and memory bandwidth are already saturated.

The figure also shows that the optimal KNL configurations are 2.4 to 4.8
times more energy efficient than the Haswell architecture. Energy efficiency
improves more than performance because of the difference in power usage of
the nodes. For example, the optimally performing DGEMM configuration con-
sumes 270 W on KNL and 360 W on Haswell2. The best KNL energy results
are 0.15 nJ/FLOP in DGEMM, 4.5 nJ/word in STREAM and 200 nJ/word in

2 The DGEMM power consumption is approximately 2 to 8 W higher on KNL over a
range of concurrencies than the synthetic Firestarter benchmark designed to create
near-peak power consumption [24].
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RandN. These are significantly larger than the exascale target of 20 pJ/FLOP
(i.e. 0.02 nJ/FLOP) to achieve an exaFLOP within a 20 MW power budget.
Finally, the order of magnitude difference between STREAM and RandN indi-
cates the high energy cost of random memory access workloads in traditional
CPU architectures.

The evaluated Xeon PhiTM and Xeon R© processors use a 14 nm and 22 nm
technology size, respectively. This is a slightly unfair comparison because a
smaller feature size is more energy efficient. Product sheets show that a 14 nm 16-
core Xeon R© Broadwell processor has a Thermal Design Power (TDP) of 115 W
[5] compared to the Haswell Xeon R© in Cori which has a TDP of 135 W [4].
Therefore, a rough estimate of the energy efficiency improvement over a 14 nm
Xeon R© can be obtained by multiplying the energy efficiency improvement in
the figures by [115/135]. The optimal STREAM configuration on KNL would
therefore be 4.1x more energy efficient than a 14 nm Xeon R©.

5.2 STREAM Variability

The performance of the STREAM micro-benchmark varies considerably in KNL-
Cache mode because of cache conflicts in the direct-mapped MCDRAM cache.
This effect cannot be controlled and depends on the specific physical memory
pages allocated to a job at runtime. It is a known issue that Intel has partially
mitigated by creating a kernel module named Zonesort [25,26]. The kernel mod-
ule reorders memory pages to reduce cache-conflicts and is run on Cori before
every Slurm job step.

Figure 2 is a cumulative density plot showing STREAM performance over 48
trials. The results show that over 50% of trials achieve a bandwidth of 324–327
GiB/s and that there is a long tail of degradation towards 225 GiB/s. We moni-
tored a performance counter measuring DDR traffic named OFFCORE RESPONSE -
0:ANY REQUEST:DDR in each trial and found that high values correlate with poor

Fig. 2. STREAM bandwidth in KNL-Cache mode over 48 trials
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STREAM memory bandwidth and high DDR memory power. This indicates
that the direct-mapped cache on KNL can cause performance and energy ineffi-
ciencies and that Zonesort does not eliminate all cache-conflicts. It is significant
because this effect can reduce STREAM memory bandwidth by a factor of 2
compared to the optimally performing KNL-MCDRAM configuration.

5.3 Performance and Energy Consumption Across Applications

In this section we compare application performance and energy consumption
across architectural configurations for the application benchmark suite. We iden-
tify the fastest MPI/OpenMP configuration for each benchmark on KNL and
then use this MPI count and a variable number of OpenMP threads for every
experiment. Our tests are designed to show application sensitivity to memory
bandwidth and hyperthreading on KNL. The later experiment studying hyper-
threads is performed in KNL-cache mode.

Figure 3 summarizes the application performance and energy consumption
on KNL and Haswell. The results are normalized so that values greater than 1.0
indicate that the application has a higher figure of merit on KNL than Haswell.
The results show that 6 out of 9 applications perform better on the KNL node
architecture. The KNL performance is best when using KNL-Cache mode in
every experiment, and the KNL-DDR mode is worse than Haswell for all scien-
tific applications, indicating the importance of MCDRAM to application perfor-
mance. The greatest MCDRAM gains occur in STREAM and MILC which are
applications bound by memory bandwidth. In some cases, the opposite is true:
when applications like RandN and BD-CATS are dominated by random memory
access, MCDRAM provides negligible gains in performance. Perhaps the most
significant result is that all applications consume less energy on KNL compared

(a) Performance
Geometric mean: 0.84 and 1.27

(b) Energy consumption
Geometric mean: 1.21 and 1.84

Fig. 3. Figures of merit improvement of KNL relative to Haswell. The best KNL con-
figuration is compared against the best Haswell configuration.
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to Haswell. If we follow the approach from earlier then we estimate that the
1.84x energy improvement over Haswell would be a 1.56x energy improvement
over a 14 nm Broadwell processor.

Figure 4 shows that application performance is more variable when changing
the number of threads per core. Several applications, e.g. STREAM, Quantum
Espresso and Castro, perform worse when using hyperthreads because of either
resource saturation or increased overhead of using more threads. Other applica-
tions with random memory access, e.g. RandN and BD-CATS, have significant
gains when using all 4 threads per core. On average, hyperthreads improve per-
formance by approximately 16% over the optimal Haswell configuration. We find
that 2 and 4 hyperthreads per core deliver similar average performance, however,
we find that the 4 hyperthreads per core configuration consumes more energy
than the 2 hyperthreads per core configuration. Therefore, based on energy con-
sumption, 4 threads per core configurations are only helpful for a very specialized
workload, e.g. a graph analytics workload dominated by random memory access.

(a) Performance
Geometric mean: 1.01, 1.16 and 1.16

(b) Energy consumption
Geometric mean: 1.56, 1.68 and 1.64

Fig. 4. Figures of merit improvement of KNL relative to Haswell. The KNL configu-
ration at each thread count is compared against the best Haswell configuration. The
KNL results are obtained in KNL-Cache mode.

6 Conclusions

We have shown that KNL is a solid step towards exascale efficiency, but that
there is still significant progress left to be made. On the NERSC workload,
we have shown that KNL improves performance for 6 out of 9 applications vs.
Haswell, but manages to reduce energy consumption for every application. Also,
for applications with memory locality, the MCDRAM present on KNL can pro-
vide enormous performance benefits in comparison to DDR4, and simultaneously
reduces the energy-per-operation for every application. MCDRAM is a critical
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feature of this architectural shift. Future architectures will need to make even
greater strides towards efficiency.

7 Future Work

The work in this paper relied on our experience with the applications to explain
the observed performance results. We plan a more thorough approach that will
automatically characterize applications using hardware performance counters.
We have already started to create this performance analysis framework by adding
PAPI multiplexing support to IPM and developing scripts to create derived per-
formance metrics based on this data to quantify the performance requirements
of applications. This will allow us to understand at a deeper level the overall
sensitivity of the larger NERSC workload to features on modern CPUs, such as
MCDRAM and hyperthreads.

Acknowledgment. This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

1. DGEMM. http://www.nersc.gov/research-and-development/apex/apex-benchma
rks/dgemm/

2. GTC-P. http://www.nersc.gov/research-and-development/apex/apex-benchma
rks/gtc-p/

3. Intel Xeon Phi Processor 7250 16GB, 1.40 GHz, 68 core. https://ark.intel.com/
products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1 40-GHz-68-core

4. Intel Xeon Processor E5–2698 v3 40M Cache, 2.30 GHz. https://ark.intel.com/
products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2 30-GHz

5. Intel Xeon Processor E7–4850 v4 40M Cache, 2.10 GHz. https://ark.intel.com/
products/93806/Intel-Xeon-Processor-E7-4850-v4-40M-Cache-2 10-GHz

6. STREAM: Sustainable Memory Bandwidth in High Performance Computers.
https://www.cs.virginia.edu/stream/FTP/Code/

7. Agelastos, A.M., Rajan, M., Wichmann, N., Baker, R., Domino, S., Draeger, E.W.,
Anderson, S., Balma, J., Behling, S., Berry, M., Carrier, P., Davis, M., McMahon,
K., Sandness, D., Thomas, K., Warren, S., Zhu, T.: Performance on Trinity phase 2
(a Cray XC40 utilizing Intel Xeon Phi processors) with acceptance applications and
benchmarks. In: Cray User Group CUG, May 2017. https://cug.org/proceedings/
cug2017 proceedings/includes/files/pap138s2-file1.pdf

8. Almgren, A.S., Beckner, V.E., Bell, J.B., Day, M.S., Howell, L.H., Joggerst, C.C.,
Lijewski, M.J., Nonaka, A., Singer, M., Zingale, M.: CASTRO: A new compressible
astrophysical solver. I. hydrodynamics and self-gravity. Astrophys. J. 715, 1221–
1238 (2010)

9. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Andel, E.V.: Nyx: A massively
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Abstract. In this short paper we set out to provide a set of modern
data on the actual memory per core and memory per node requirements
of the most heavily used applications on a contemporary, national-scale
supercomputer. This report is based on data from all jobs run on the UK
national supercomputing service, ARCHER, a 118,000 core Cray XC30,
in the 1 year period from 1st July 2016 to 30th June 2017 inclusive. Our
analysis shows that 80% of all usage on ARCHER has a maximum mem-
ory use of 1 GiB/core or less (24 GiB/node or less) and that there is a
trend to larger memory use as job size increases. Analysis of memory use
by software application type reveals differences in memory use between
periodic electronic structure, atomistic N-body, grid-based climate mod-
elling, and grid-based CFD applications. We present an analysis of these
differences, and suggest further analysis and work in this area. Finally,
we discuss the implications of these results for the design of future HPC
systems, in particular the applicability of high bandwidth memory type
technologies.

Keywords: HPC · Memory · Profiling

1 Introduction

Memory hierarchies in supercomputer systems are becoming increasingly com-
plex and diverse. A recent trend has been to add a new kind of high-performance
memory but with limited capacity, to high-end HPC-optimised processors.
Recent examples include the MCDRAM of Intel’s Knights Landing Xeon Phi,
and the HBM of NVIDIA’s Pascal P100 GPUs. These memories tend to provide
500–600 GBytes/s of STREAM bandwidth, but to only about 16 GiB of capacity
per compute node.

To establish whether these fast but limited capacity memories are applicable
to mainstream HPC services, we need to revisit and update our data on the typ-
ical memory requirements of modern codes. This is an area where conventional
c© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 250–260, 2018.
https://doi.org/10.1007/978-3-319-72971-8_13
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wisdom abounds, yet it is likely to be out of date. The underpinnings of this
conventional wisdom were recently reviewed by Zivanovic et al. [1]. One of the
key findings from this previous study is that the amount of memory provisioned
on large HPC systems is a consequence of a desired high performance for HPL,
where larger memory is required to achieve good scores, rather than the actual
memory requirements of real HPC applications.

There are many factors which affect the memory capacity requirements of any
scientific code, and these factors are likely to have been changing rapidly in recent
years. For example, the ratio of network performance to node-level performance
tends to influence how much work each node needs to perform, and as the node-
level performance tends to grow faster than the network-level performance, the
trend is for each node to be given more work, typically implying larger memory
requirements. Because of these changes, we cannot rely on conventional wisdom,
nor even older results, when estimating future memory capacity requirements.
Instead, we need up-to-date, good quality data with which to reason and then
to inform our predictions.

In this study we have used ARCHER, the UK’s national supercomputer, as
an example of a reasonably high-end supercomputer. ARCHER reached #19 in
the Top500 upon its launch in 2013. It is a 4,920 node Cray XC30, and consists
of over 118,000 Intel Ivy Bridge cores, with two 2.7 GHz, 12-core E5-2697 v2
CPUs per node1. 4,544 of the 4,920 nodes have 64 GiB per node (2.66 GiB per
core), while the remaining 376 ‘high memory’ nodes have 128 GiB each (5.32
GiB per core).

We set out to analyse all of the codes running on ARCHER for their cur-
rent memory usage, in the hope that this will inform whether future processors
exploiting smaller but faster HBM-like memory technologies would be relevant
to ARCHER-class national services. Zivanovic et al. [1] also studied the memory
footprints of real HPC applications on a system of similar scale to ARCHER.
Their approach differs from ours in that they used profiling tools to instrument
a particular subset of applications using a standard benchmark set (PRACE
UEABS [2]). In contrast, we are sampling the memory usage of every job run on
ARCHER in the analysis period. Thus our data should complement that from
Zivanovic’s study.

2 Data Collection and Analysis

We use Cray Resource Usage Reporting (RUR) [3] to collect various statistics
from all jobs running on ARCHER. This includes the maximum process memory
used across all parallel processes in a single job. It is this data that provides
the basis of the analysis in this paper. Unfortunately, RUR does not include
details on the number of processes per node, executable name, user ID and
project ID which allow the memory use to be analysed in terms of application
used and research area (for example). Tying the RUR data to these additional
properties of jobs on ARCHER requires importing multiple data feeds into our
1 https://www.archer.ac.uk/about-archer/hardware/.

https://www.archer.ac.uk/about-archer/hardware/
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service management and reporting database framework, SAFE [4]. All of the
data reported in this paper rely on multiple data feeds linked together through
SAFE. Applications are identified using a library of regexp against executable
name that has been built up over the ARCHER service with help from the user
community. With this approach we are currently able to identify around 75% of
all usage on ARCHER.

Memory usage numbers below are presented as maximum memory use in
GiB/node. As there are 24 cores per node on ARCHER, a maximum memory
use of 24 GiB/node corresponds (if memory use is homogeneous) to 1 GiB/core.
Note that, as described above, the actual value measured on the system is max-
imum memory use across all parallel processes running in a single job. The
measured value has then been converted to GiB/node by multiplying by the
number of processes used per node in the job. This is a reasonable initial model
as the majority of parallel applications on ARCHER employ a symmetric par-
allel model, where the amount of memory used per process is similar across all
processes. However, if an application has asymmetric memory use across differ-
ent parallel processes, this will show up as an overestimation of the maximum
memory use per node. Indeed, we discuss an example of exactly this effect in the
section on grid-based climate modelling applications below.

We have analysed memory usage data from Cray RUR for all applications
run on ARCHER in the 1 year period from 1st July 2016 to 30th June 2017
inclusive.

3 Application Memory Usage

First we look at overall memory usage for all jobs on ARCHER in the period,
and then go on to look at the data for the top 10 applications used on the
service (these 10 applications cover over 50% of the usage). We have broken the
applications down into four broad types to facilitate this initial analysis:

– Periodic electronic structure: VASP, CASTEP, CP2K
– N-body models: GROMACS, LAMMPS, NAMD
– Grid-based climate modelling: Met Office UM, MITgcm
– Grid-based computational fluid dynamics: SBLI, OpenFOAM

Due to space restrictions we are not able to include memory usage figures for
all applications listed above. Instead we plot the data that best represents the
trends for that application class, or that we use to illustrate a particular point.
An expanded version of this paper that includes plots for all the applications
listed above (along with the numerical data that was used to produce the plots)
can be found online [5].
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3.1 Overall Memory Use

Table 1 shows a breakdown by memory use for all jobs on ARCHER in the
12 month analysis period. Additional columns show the usage for Small jobs (32
nodes or less) and Large jobs (more than 32 nodes). Just under 80% of all usage
in the period uses a maximum of 24 GiB/node (1 GiB/core). Memory usage
for larger jobs is generally higher, with large jobs showing only 70% of usage
at a maximum of 24 GiB/node, and over 25% of usage in the range [24,96)
GiB/node. These results generally echo the results from Zivanovic et al. [1] with
the exception that we do not observe large memory requirements for smaller jobs,
as seen in their application benchmarks. This could be due to the benchmarks
chosen in the previous study not being representative of the usage pattern of
those applications on ARCHER (see, for example, the results for CP2K below
which is also one of the applications in the PRACE UEABS).

Table 1. % usage breakdown by maximum memory use per node for all jobs run on
ARCHER during the analysis period. (Small: 32 nodes or less; Large: more than 32
nodes.)

Max. memory use
(GiB/node)

Usage

All Small Large

(0,12) 61.0% 69.5% 53.0%

[12,24) 18.6% 19.4% 16.9%

[24,48) 11.5% 7.7% 14.8%

[48,96) 6.9% 3.0% 11.2%

[96,128) 2.0% 0.4% 4.2%

Fig. 1. Usage heatmap of maximum memory versus job size for all jobs in the period.
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Figure 1 shows a heatmap of the usage broken down by job size versus overall
memory use in GiB/node (extrapolated from the maximum process memory
usage). The trend for higher maximum memory use as job size increases can be
seen as a diagonal feature running from top left to bottom right.

3.2 Periodic Electronic Structure (PES) Applications

The top three of the top ten most heavily used applications on ARCHER are
PES modelling applications: VASP, CASTEP, and CP2K. Although the imple-
mentation of the theory differs across the three applications, the algorithms used
are similar, involving dense linear algebra and spectral methods (generally small
Fourier transforms). Table 2 shows the breakdown of usage by maximum memory
use for these three applications combined.

Table 2. % usage breakdown by maximum memory use per node for VASP, CASTEP
and CP2K jobs run on ARCHER during the analysis period. (Small: 32 nodes or less;
Large: more than 32 nodes.)

Max. memory use
(GiB/node)

Usage

All Small Large

(0,12) 65.4% 68.6% 55.4%

[12,24) 21.4% 20.0% 25.7%

[24,48) 9.4% 8.5% 12.1%

[48,96) 3.7% 2.7% 6.7%

[96,128) 0.1% 0.1% 0.1%

Comparing to the overall distribution (Table 1), we can see that this distribu-
tion is very similar, with a large majority of usage at 24 GiB/node (1 GiB/core)
or less. This is unsurprising, as PES applications make up such a large part of
the use of ARCHER (almost 30% from just these three applications, and over
40% if all similar applications are included). Only 13% of usage needs more than
24 GiB/node, and this only increases to 19% for larger jobs. The heatmap of
usage broken down by maximum memory use and job size for CP2K is shown
in Fig. 2. Heatmaps for VASP and CASTEP show the same trends as that for
CP2K. When compared to the overall heatmap (Fig. 1) CP2K does not mirror
the trend that larger job sizes lead to increased memory use per node. For PES
applications, the larger jobs have similar memory use per node as smaller jobs.

It is interesting to compare our results for CP2K (Fig. 2) with those reported
in Zivanovic et al. [1]. In particular, they report that the small CP2K benchmark
(Test Case A: bulk water) has a memory requirement of approx. 6 GiB/core
running on a single node (16 cores), whereas on ARCHER, small CP2K jobs
generally have maximum memory requirements of less than 0.5 GiB/core. This
would suggest that, generally, the size of problem people are using these low
core-count jobs to study on ARCHER is substantially smaller than the small
CP2K benchmark in the PRACE UEABS.
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3.3 N -body atomistic simulation applications

The N -body atomistic modelling applications, GROMACS, LAMMPS, and
NAMD, are important applications in the top ten on ARCHER. Two of these,
GROMACS and NAMD, are almost exclusively used for biomolecular simula-
tions, while LAMMPS is used more broadly across a number of research areas.
All three applications use very similar algorithms, with pairwise evaluation of
short-range forces and energies, and Fourier transforms for long range electro-
static forces. The parallelisation strategies differ across the applications. Table 3
shows the breakdown of usage by maximum memory use for these three appli-
cations combined.

Fig. 2. Usage heatmap of maximum memory versus job size for CP2K jobs in the
period.

Table 3. % usage breakdown by maximum memory use per node for GROMACS,
LAMMPS and NAMD jobs run on ARCHER during the analysis period. (Small: 32
nodes or less; Large: more than 32 nodes.)

Max. memory use
(GiB/node)

Usage

All Small Large

(0,12) 91.6% 96.6% 80.7%

[12,24) 2.7% 3.1% 2.1%

[24,48) 0.5% 0.4% 0.6%

[48,96) 4.8% 0.0% 15.5%

[96,128) 0.1% 0.0% 0.1%

These applications generally have the lowest memory demands on ARCHER,
with over 90% of usage requiring less than 12 GiB/node (0.5 GiB/core). Even for
larger jobs, only 20% of jobs require more than 12 GiB/node. This ties in with
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the results from NAMD and GROMACS in Zivanovic et al. [1]. Figure 3 shows
the heatmap of memory usage versus job size for NAMD. Heatmaps for the other
applications show similar trends. Each of these applications have a class of large
calculations that have higher memory demands (48–96 GiB/node, around four
times higher than the majority of jobs). This is particularly prominent in the
NAMD heatmap (Fig. 3). We plan to contact users to understand what this use
case is and why it has such a large memory requirement. It is worth noting that
these jobs with a larger memory requirement only represent 0.5% of the total
node hours used on ARCHER in the period.

Fig. 3. Usage heatmap of maximum memory versus job size for NAMD jobs in the
period.

3.4 Grid-Based Climate Modelling Applications

Both of the grid-based climate modelling applications analysed (Met Office UM
and MITgcm) show a very different profile from the other application classes
studied in this paper. As shown in Table 4, a much higher proportion of jobs use
large amounts of memory, and that use of higher memory is almost always for
the largest jobs. The heatmap for the MET Office UM (Fig. 4) clearly reveals
a very distinct split, with two classes of job existing: small jobs (less than 32
nodes) with low memory requirements (24 GiB/node or less), and very large
jobs (above 128 nodes) with very large memory requirements (96–128 GiB/node
for Met Office UM). MITgcm shows a similar usage peak for large jobs at 24–
48 GiB/node for 256–512 node jobs. We have performed initial investigations
into this phenomenon for the Met Office UM jobs and found that it is due to
asymmetrical memory use across parallel processes in the jobs. These jobs have a
small number of parallel processes that have much higher memory requirements.
These high-memory processes work as asynchronous I/O servers that write data
to the file system while other processes continue the computational work.
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3.5 Grid-Based Computational Fluid Dynamics (CFD) Applications

Finally, we look at the grid-based CFD applications. Two applications appear in
the top ten on ARCHER: SBLI and OpenFOAM. Table 5 reveals that they do not
follow the same memory usage trend as the climate modelling applications, even
though both classes of application use grid-based methods and both have the
same drive to higher resolution and, generally, larger jobs. The usage heatmap
for SBLI (Fig. 5) shows that the large jobs can have a larger memory requirement
(24–96 GiB/node), but this is not always required (as was seen for the climate
applications), as a reasonable proportion of the large jobs also have low memory
requirement (up to 12 GiB/node). We plan to contact SBLI users to understand
the differences between the jobs that have large memory requirements and those
having low memory requirements. The OpenFOAM data show no clear link
between increasing job size and increased memory requirements, with 94% of
usage requiring less than 24 GiB/node.

Table 4. % usage breakdown by maximum memory use per node for Met Office UM
and MITgcm jobs run on ARCHER during the analysis period. (Small: 32 nodes or
less; Large: more than 32 nodes.)

Max. memory use
(GiB/node)

Usage

All Small Large

(0,12) 53.5% 66.4% 18.8%

[12,24) 25.0% 33.1% 3.3%

[24,48) 6.0% 0.2% 21.5%

[48,96) 0.2% 0.2% 0.0%

[96,128) 15.3% 0.0% 56.4%

Fig. 4. Usage heatmap of maximum memory versus job size for Met Office UM jobs in
the period.
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Table 5. % usage breakdown by maximum memory use per node for SBLI and Open-
FOAM jobs run on ARCHER during the analysis period. (Small: 32 nodes or less;
Large: more than 32 nodes.)

Max. memory use
(GiB/node)

Usage

All Small Large

(0,12) 64.2% 71.8% 62.2%

[12,24) 14.8% 8.6% 16.4%

[24,48) 13.4% 5.6% 15.4%

[48,96) 7.7% 14.0% 6.0%

[96,128) 0.0% 0.0% 0.0%

Fig. 5. Usage heatmap of maximum memory versus job size for SBLI jobs in the period.

4 Conclusions and Future Work

Our initial analysis of memory use of applications running on ARCHER has
shown that a large amount of use (80%) is under 24 GiB/node (1 GiB/core),
with a significant fraction (60%) using less than 12 GiB/node (0.5 GiB/core).
There seems to be a trend to increased memory requirements as jobs get larger,
although some of this increase may be due to asymmetric memory use across
processes. Another possible reason for this phenomenon is that larger jobs are
usually larger simulations, and so the memory requirement may generally be
larger. These results are generally in line with those reported for specific appli-
cations benchmarks in Zivanovic et al. [1], with the exception that we do not see
large memory requirements for small jobs as reported in their study.

We also illustrated one weakness in our current analysis, when memory
use between parallel processes is very asymmetric. As the analysis is based on
maximum process memory use extrapolated to a per-node value, parallel pro-
cesses with very different memory use within the same application can produce
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misleading estimated memory use figures. We plan to refine our analysis method-
ology to take this type of asymmetric memory use into account for future work.

Our analysis leads us to conclude that there is an opportunity for exploit-
ing emerging, high bandwidth memory technologies for most of the research on
ARCHER. Many applications from a broad range of research areas have perfor-
mance that is currently bound by memory bandwidth and would therefore poten-
tially see significant performance improvements from this type of technology. The
data in this paper suggests that, even memory was as low as 0.5 GiB/core, two-
thirds of the current workload on ARCHER would be in a position to exploit
this, without any software changes. Expanding to 1.0 GiB/core would address
nearly 80% of ARCHER’s current workload. Our results (and results from pre-
vious studies) suggest that a future ARCHER service could even benefit from
architectures where HBM-like technologies with limited capacity replace main
memory, rather than using a hybrid solution (such as the MCDRAM+DRAM
seen on the Intel Xeon Phi). The reasoning here is that using HBM technologies
as a main memory replacement allows applications to access the best perfor-
mance without application code modifications whereas in the hybrid approach
the only way to use the HBM without code modification is as an additional,
large cache level, which can limit the performance gains available [6]. Another
option would be to use a combination of processors with high memory bandwidth
alongside processors with high memory capacity.

In addition to refining our analysis technique using this new data from
ARCHER, we need to work with the user community to understand the different
memory use classes for particular applications and research problems. This work
will help us make sure that future UK national supercomputing services provide
the best resource for researchers.

In future we plan to work with other HPC centres worldwide to understand
the variability in memory use profile across different services. We have already
opened discussions with other European and US HPC centres on this topic.
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