
Job Sequencing with One Common and Multiple
Secondary Resources: A Problem Motivated
from Particle Therapy for Cancer Treatment

Matthias Horn1(B), Günther Raidl1, and Christian Blum2

1 Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria
{horn,raidl}@ac.tuwien.ac.at

2 Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB,
Bellaterra, Spain

christian.blum@iiia.csic.es

Abstract. We consider in this work the problem of scheduling a set of
jobs without preemption, where each job requires two resources: (1) a
common resource, shared by all jobs, is required during a part of the
job’s processing period, while (2) a secondary resource, which is shared
with only a subset of the other jobs, is required during the job’s whole
processing period. This problem models, for example, the scheduling of
patients during one day in a particle therapy facility for cancer treatment.
First, we show that the tackled problem is NP-hard. We then present
a construction heuristic and a novel A* algorithm, both on the basis
of an effective lower bound calculation. For comparison, we also model
the problem as a mixed-integer linear program (MILP). An extensive
experimental evaluation on three types of problem instances shows that
A* typically works extremely well, even in the context of large instances
with up to 1000 jobs. When our A* does not terminate with proven
optimality, which might happen due to excessive memory requirements,
it still returns an approximate solution with a usually small optimality
gap. In contrast, solving the MILP model with the MILP solver CPLEX
is not competitive except for very small problem instances.

1 Introduction

This work considers the following combinatorial optimization problem. A finite
set of jobs must be processed without preemption. Each job requires two
resources: (1) a common resource, shared by all jobs, is required during a cer-
tain part of the job’s processing period, while (2) a secondary resource, which is
shared with only a subset of the other jobs, is required during the job’s whole
processing period. This is the case, for example, in the context of the produc-
tion of certain products where some raw material is put into specific fixtures or

We gratefully acknowledge the financial support of the Doctoral Program “Vienna
Graduate School on Computational Optimization” funded by Austrian Science Foun-
dation under Project No W1260-N35.

c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 506–518, 2018.
https://doi.org/10.1007/978-3-319-72926-8_42

Job Sequencing with One Common and Multiple Secondary Resources 507

molds (the secondary resources), which are then sequentially processed on a sin-
gle machine (the common resource). Finally, some further postprocessing (e.g.,
cooling) might be required before the fixtures/molds are available for further
usage again. In order to perform this process as efficiently as possible, the aim is
to minimizing the makespan, i.e., the total time required to finish the processing
of all jobs. In the following we refer to this problem as Job Sequencing with One
Common and Multiple Secondary Resources (JSOCMSR).

The technical definition of the problem, which is provided later on, was
inspired by a more specific application scenario: the scheduling of patients in
radiotherapy for cancer treatment [2,7] and particle therapy for cancer treat-
ment [8]. In modern particle therapy, carbon or proton particles are accelerated
in cyclotrons or synchrotrons to almost the speed of light and from there directed
into a treatment room where a patient is radiated. A number of differently
equipped treatment rooms is available (typically two to four) and the particle
beam can only be directed into one of these rooms at a time. For each patient
it is known in advance in which room she or he has to be treated in dependence
on her/his specific needs. Moreover, each patient requires a certain preparation
(such as positioning, fixation, possibly sedation) in the room before the actual
irradiation can start. Upon finishing the irradiation of a patient, some further
time is usually needed for medical inspections before the patient can actually
leave the room and the treatment of a next patient can start. Note that the
available rooms correspond to the secondary resources mentioned above, while
the particle beam is the common resource. The scheduling of a set of patients
at, e.g., one day in such a facility is considered.

For further information on particle therapy patient scheduling, in which
JSOCMSR appears as sub-problem, the interested reader is referred to [8]. The
whole practical scenario has to consider a time horizon of several weeks, addi-
tional resources, their availability time windows, and a combination of more
advanced objectives.

The JSOCMSR is rather easy to solve when (1) only the common resource
usage is the bottleneck and enough secondary resources are available or (2) the
pre- and postprocessing times in which only the secondary resources are required
are negligible in comparison to the jobs’ total processing times. In such cases
the jobs can, essentially, be performed in almost an arbitrary ordering. The
problem, however, becomes challenging when pre- and postprocessing times are
substantial and many jobs require the same secondary resources. In this work
we consider such difficult scenarios.

1.1 Contribution of This Work

In addition to formally proving that the JSOCMSR is NP-hard, we provide a
lower bound on the makespan objective, which is then exploited both in the
context of a constructive heuristic and a novel A* algorithm. The latter works
on a special graph structure that allows to efficiently exploit symmetries and
features a diving mechanism in order to obtain also heuristic solutions in regular
intervals. In addition, we present a mixed-integer linear programming (MILP)

508 M. Horn et al.

model for the JSOCMSR. Our experiments show that the A* algorithm performs
excellently. Even many large problem instances with up to 1000 jobs can be
solved to proven optimality. There are, however, also difficult problem instances
for which A* terminates early due to excessive memory requirements. In these
cases, heuristic solutions together with lower bounds and typically small optimal-
ity gaps are returned. In comparison, solving the MILP model by the general
purpose MILP solver CPLEX1 cannot compete with A*, as only solutions to
rather small problem instances can be obtained in reasonable time.

2 Related Work

In the literature there are only few publications dealing with scenarios similar
to JSOCMSR. Veen et al. [10] studied a related problem in which the common
resource corresponds to a machine on which the jobs are processed and secondary
resources needed in a pre- and postprocessing are called templates. An important
restriction in their problem is that the postprocessing times are assumed to
be negligible compared to the total processing times of the jobs. This implies
that the starting time of each job only depends on its immediate predecessor.
More specifically, a job j requiring a different resource than its predecessor j′

can always be started after a setup time only depending on job j, while a job
requiring the same resource can always be started after a postprocessing time
only depending on job j′. Due to these characteristics, this problem can be
interpreted as a traveling salesman problem (TSP) with a special cost structure.
It is shown that this problem can be solved efficiently in time O(n log n).

Somewhat related is the no-wait flowshop problem; see [1] for a survey on
this problem and related ones. Here, each job needs to be processed on each of m
machines in the same order and the processing of the job on a successive machine
always has to take place immediately after its processing has finished on the pre-
ceding machine. This problem can be solved in time O(n log n) for two machines
via a transformation to a specially structured TSP [4]. In contrast, for three
and more machines the problem is NP-hard, although it can still be transformed
into a specially structured TSP. Röck [9] proved that the problem is strongly
NP-hard for three machines by a reduction from the 3D-matching problem.

A more general problem as which our JSOCMSR can be modeled is the
Resource-Constrained Project Scheduling Problem (RCPSP) with maximal time
lags. We obtain a corresponding RCPSP instance from a JSOCMSR instance by
splitting each job into three activities which are the preprocessing, the main
part also requiring the common resource, and the postprocessing. These activ-
ities must be performed for each job in this order with maximal time lags of
zero, and all resource requirements must be respected. For a survey on RCP-
SPs with various extensions and respective solution methods see Hartmann and
Briskorn [6]. For practically solving the JSOCMSR, however, such a mapping
does not seem to be effective due to the increased number of required activities
and since specificities of the problem are not exploited.
1 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer

Job Sequencing with One Common and Multiple Secondary Resources 509

3 Problem Definition and Complexity

An instance of JSOCMSR consists of a set of n jobs J = {1, . . . , n}, the common
resource 0, and a set of m secondary resources R = {1, . . . , m}. By R0 = {0}∪R
we denote the set of all resources. Each job j ∈ J has a total processing time
pj > 0 during which it fully requires a secondary resource qj ∈ R. Furthermore,
each job j requires the common resource 0 from a time pprej ≥ 0 on, counted
from the job’s start, for a duration p0j with 0 < p0j ≤ pj − pprej . A solution to the
problem is described by the jobs’ starting times s = (sj)j∈J with sj ≥ 0. Such a
solution s is feasible if no two jobs require a resource at the same time.

The objective is to find a feasible schedule that minimizes the finishing time of
the job that finishes latest. This optimization criterion is known as the makespan,
and it can be calculated for a solution s by

MS(s) = max {sj + pj | j ∈ J}. (1)

As each job requires the common resource 0, and only one job can use this
resource at a time, a solution implies a total ordering of the jobs. Vice versa, any
ordering—i.e., permutation—π = (πi)i=1,...,n, of the jobs in J can be decoded
into a feasible solution in the straight-forward greedy way by scheduling each job
in the given order at the earliest feasible time. We call a schedule in which, for a
certain job permutation π, each job is scheduled at its earliest time, a normalized
schedule. Obviously, any optimal solution is either a normalized schedule or
there exists a corresponding normalized schedule with the same objective value.
We therefore also use the notation MS(π) for the makespan of the normalized
solution induced by the job permutation π.

For convenience we further define the duration of the postprocessing time by
ppostj = pj − pprej − p0j , ∀j ∈ J and denote by Jr = {j ∈ J | qr = r} the subset
of jobs requiring resource r ∈ R as secondary resource. Note that J =

⋃
r∈R Jr.

The minimal makespan over all feasible solutions, i.e., the optimal solution value,
is denoted by MS∗.

3.1 Computational Complexity

Let the decision variant of JSOCMSR be the problem in which it has to be
determined if there exists a feasible solution with a makespan corresponding to
a given constant MS∗.

Theorem 1. The decision variant of JSOCMSR is NP-complete for m ≥ 2.

Proof. Our problem is in class NP since a solution can be checked in polynomial
time. We show that JSOCMSR is NP-complete by a polynomial reduction from
the well-known NP-complete Partition Problem (PP) [3], which is stated as
follows: Given a finite set of positive integers A ⊂ N, partition it into two disjoint
subsets A1 and A2 such that

∑
a∈A1

a =
∑

a∈A2
a.

We transform an instance of the PP into an instance of the JSOCMSRC as
follows. Let m = 2 and J consist of the following jobs:

510 M. Horn et al.

– For each a ∈ A there is a corresponding job j ∈ {1, . . . , |A|} ⊂ J with
processing time pj = a requiring resource qj = 1 and the common resource 0
the whole time, i.e., p0j = pj and pprej = 0.

– Furthermore, there are two jobs j ∈ {|A| + 1, |A| + 2} ⊂ J with processing
times pj = 1

2

∑
a∈A a + 1 requiring resource qj = 2 the whole time but the

common resource 0 just at the first time slot, i.e., p0 = 1 and pprej = 0.

Let MS∗ = p|A|+1 +p|A|+2 =
∑

a∈A a+2. A feasible solution to JSOCMSR with
makespan MS∗ must have the jobs |A| + 1 and |A| + 2 scheduled sequentially
without any gap and all other jobs in parallel to those two. A corresponding
solution to the PP can immediately be derived by considering the integers asso-
ciated with the jobs scheduled in parallel to job |A+1| as A1 and those scheduled
in parallel to job |A+2| as A2. The obtained solution to the PP must be feasible
since

∑
a∈A1

a =
∑

a∈A2
a = 1

2

∑
a∈A a holds as the jobs corresponding to the

integers do not overlap and there is exactly 1
2

∑
a∈A a time left at the common

resource 0 when processing jobs |A| + 1 and |A| + 2, respectively. It also follows
that if there is no JSOCMSR solution with makespan MS∗, then there cannot
exist a feasible solution to the PP.

Clearly, the described transformation of a PP instance into a JSOCMSR
instance as well as the derivation of the PP solution from the obtained schedule
can both be done in time O(|A|), i.e., polynomial time.

Consequently, the decision variant of the JSOCMSR is NP-complete. �	
Corollary 1. The makespan minimization variant of JSOCMSR is NP-hard.

3.2 Lower and Upper Bounds

For an instance of JSOCMSR a lower bound for the makespan can be calculated
on the basis of each resource r ∈ R by taking the total time

∑
j∈Jr

pj . Similarly,
one more lower bound can also be obtained from the total time resource 0 is
required, i.e.,

∑
j∈J p0j . The latter can further be improved by adding the minimal

time for preprocessing and postprocessing for the first and last scheduled jobs,
respectively. Taking the maximum of these m+1 individual lower bounds yields

MSLB = max

⎛

⎝ min
j,j′∈J | j �=j′∨|J|=1

(pprej + ppostj′) +
∑

j∈J

p0j , max
r∈R

∑

j∈Jr

pj

⎞

⎠ . (2)

Figure 1 illustrates these relationships.
A trivial upper bound is obtained when scheduling all jobs strictly sequen-

tially, yielding MSUB =
∑

j∈J pj . It follows that taking any normalized solution
has an approximation factor of no more than m, since MSUB ≤ m · MSLB.

4 Least Lower Bound Heuristic

We construct a heuristic solution by iteratively selecting a not yet scheduled
job and always appending it at the end of the current partial schedule at the

Job Sequencing with One Common and Multiple Secondary Resources 511

time

resource
4 1 23 5

MSLB

0

1
2
3

0

21

3

54

Fig. 1. Resource-specific individual lower bounds and the overall lower bound MSLB

for an example instance with n = 5 jobs and m = 3 secondary resources.

earliest possible time. The crucial aspect is the greedy selection of the job to be
scheduled next, which is based on the lower bound calculation from Sect. 3.2.
Therefore we call this heuristic Least Lower Bound Heuristic (LLBH).

Let πp be the current partial job permutation representing the current nor-
malized schedule and J ′ ⊆ J be the set of remaining unscheduled jobs. Given
πp, the earliest availability time for each resource—that is, the time from which
on the resource might be used by a next yet unscheduled job—can be calculated
from the respective finishing time of the last job using this resource:

t0 =

{
maxj∈J\J ′ sj + pprej + p0j for J ′ �= J

0 else
(3)

tr =

{
maxj∈Jr\J ′ sj + pj for Jr \ J ′ �= ∅
0 else

∀r ∈ R (4)

These times, however, can possibly be further increased (trimmed) as the earliest
usage time of resource r ∈ R also depends on the remaining unscheduled jobs
and the earliest usage time of the common resource 0. We therefore apply the
rule

tr ← max(tr, t0 − max
j∈Jr∩J′ ppre

j) ∀r ∈ R | Jr ∩ J ′ �= ∅. (5)

Moreover, also t0 might be increased as its earliest usage time also depends on
the remaining unscheduled jobs and the earliest usage times of their secondary
resources. These relations are considered by applying the rule

t0 ← max

(
t0, min

j∈J′(tqj + ppre
j)

)
= max

(
t0, min

r∈R|Jr∩J′ �=∅
(tr + min

j∈Jr∩J′ ppre
j)

)
. (6)

Further note that after a successful increase of t0 by rule (6), some resource
r ∈ R might become available for a further increase of its tr by the respective
rule (5). We therefore apply all these trimming rules repeatedly until no further
increase can be achieved.

Following our general lower bound calculation for the makespan in (2),
it is now possible to derive a more specific lower bound for a given partial

512 M. Horn et al.

permutation πp considering any possible extension to a complete solution on the
basis of each resource r ∈ R | Jr ∩ J ′ �= ∅ by

MSLB
r (πp) =

{
tr +

∑
j∈Jr∩J ′ pj for Jr ∩ J ′ �= ∅

0 else
∀r ∈ R. (7)

Note that we define MSLB
r (πp) = 0 for any resource r that is not required by any

remaining job in J ′ since these bounds should not be relevant for our further
considerations.

A lower bound w.r.t. the common resource 0 can be calculated similarly by

MSLB
0 (πp) = max

(
t0 + min

j∈J′ ppost
j , min

j,j′∈J′ | j �=j′∨|J′|=1
(tqj + ppre

j + ppost
j′)

)
+

∑
j∈J′

p0
j .

(8)
Clearly, an overall lower bound for the partial solution πp is obtained from the
maximum of the individual bounds

MSLB
max(π

p) = max
r∈R0

MSLB
r (πp). (9)

For selecting the next job in LLBH to be appended to πp, we always consider
the impact of each job j ∈ J ′ on each individual bound MSLB

r , r ∈ R0, as this
gives a more fine-grained discrimination than just considering the impact on the
overall bound MSLB

max(π
p), which would often lead to ties.

More specifically, let f(πp) = (f0(πp), . . . , fm(πp)) be the vector of the
bounds MSLB

r (πp) for r ∈ R0 sorted in non-increasing value order, i.e., f0(πp) =
MSLB

max(π
p) ≥ f1(πp) ≥ . . . ≥ fm(πp) holds.

Let πp ⊕ j denote the partial solution obtained by appending job j ∈ J ′ to
πp. We consider πp ⊕ j better than πp ⊕ j′ for j, j′ ∈ J ′ iff

∃i ∈ {0, . . . , m} | fi(πp ⊕ j) < fi(πp ⊕ j′) ∧ ∀i′ < i : fi′(πp ⊕ j) = fi′(πp ⊕ j′).
(10)

In other words, the sorted vectors f(πp ⊕ j) and f(πp ⊕ j′) are compared in a
lexicographic order.

LLBH always selects in each iteration a job j ∈ J ′ yielding a (locally) best
extension. In the case when multiple extensions have equal f -vectors, one of
them is chosen at random.

5 Mixed Integer Linear Programming Formulation

The position-based mixed integer linear program (MILP) described in the fol-
lowing models solutions to the JSOCMSR in terms of permutations of all jobs.
Index i ∈ {1, . . . , n} refers hereby to position i in a permutation. Variables
xj,i ∈ {0, 1}, for all j ∈ J and i ∈ {1, . . . , n}, are set to one iff job j is assigned
to position i in the permutation. Variables si ≥ 0 represent the starting time

Job Sequencing with One Common and Multiple Secondary Resources 513

of the jobs scheduled at each position i = 1, . . . , n in the permutation. Finally,
MS ≥ 0 is the makespan variable to be minimized.

minMS (11)
∑

j∈J

xj,i = 1 i = 1, . . . , n (12)

n∑

i=1

xj,i = 1 j ∈ J (13)

si +
∑

j∈J

xj,i · pj ≤ MS i = 1, . . . , n (14)

s1 = 0 (15)

si +
∑

j∈J

xj,i · pprej ≥ si−1 +
∑

j∈J

xj,i−1 · (pprej + p0j) i = 2, . . . , n (16)

si′ − si +
∑

j∈Jr

xj,i′(M + pj) +
∑

j∈Jr

xj,iM ≤ 2M

i = 2, . . . , n, i′ = 1, . . . , i − 1, r ∈ R (17)
xj,i ∈ {0, 1} j ∈ J, i = 1, . . . , n (18)
si ≥ 0 i = 1, . . . , n (19)
MS ≥ 0 (20)

Hereby, Eq. (12) ensure that exactly one job is assigned to the i-th position of the
permutation and (13) ensure that each job is assigned to exactly one position.
The makespan is determined by inequalities (14). Equation (15) sets the starting
time of the first job in the permutation to zero, and the remaining two sets of
inequalities make sure that no resource is used by more than one job at a time.
Hereby, inequalities (16) take care of the common resource 0, while (17) consider
the secondary resources. The Big-M constant in these latter inequalities is set
to the makespan obtained by LLBH.

6 A* Algorithm

Based on the solution construction principle of LLBH it is also possible to per-
form a more systematic search for a proven optimal solution following the concept
of A* search [5]. Our A* algorithm searches in a graph whose nodes correspond
to partial solutions and whose arcs represent the extensions of partial solutions
by appending not yet scheduled nodes. More precisely, each node in this graph
maintains the following information:

1. The unordered set Ĵ ⊂ J of already scheduled jobs, implemented by a bit-
vector.

2. A set of Non-Dominated Times (NDT) records, where each NDT record cor-
responds to an individual, more specific partial solution with an indirectly
given ordering for the scheduled jobs by storing:

514 M. Horn et al.

– the vector t = (tr)r∈R0 of the trimmed earliest usage times tr for all
resources as defined by (3)–(6);

– the last scheduled job jlast ∈ Ĵ after which t was obtained;
– an evaluation vector f ′ similar to f that will be defined below.

Thus, each node aggregates all partial solutions πp having the same jobs
Ĵ scheduled, and each NDT record provides more specific information for each
(non-dominated) partial solution. For a given node/NDT record, the correspond-
ing ordering of the scheduled jobs Ĵ can be derived in a reverse iterative manner
by considering the fitting preceding node/NDT records, always continuing with
the node Ĵ \ {jlast} and an NDT record with times tr allowing to schedule job
jlast without exceeding the tr values of the last node/NDT record.

Initially a starting node/NDT record corresponding to the empty schedule
is generated with Ĵ = ∅, t = 0, jlast = none, and f ′ = (MSLB, . . . ,MSLB). The
goal node is a node with Ĵ = J , corresponding to all complete solutions.

The set of all so far considered nodes is implemented by a hash-table with
Ĵ as key. Furthermore, the A* algorithm maintains a priority queue containing
references to all open node/NDT record pairs, i.e., the non-dominated partial
solutions that have not yet been expanded. The order criterion in this priority
queue extends the is-better relation (10) from the LLBH heuristic by considering
the number of remaining unscheduled jobs |J \Ĵ |(πp) as secondary criterion after
MSLB

max(π
p), i.e., vectors

f ′ := (MSLB
max(π

p) = f0(πp), |J \ Ĵ |(πp), f1(πp), . . . , fm(πp)) (21)

are lexicographically compared. This enhanced relation implies that partial solu-
tions with more scheduled jobs are preferred over partial solutions with the same
MSLB

max but fewer scheduled jobs, and thus the search adopts depth-first search
characteristics when MSLB

max does not change. In this way, complete solutions are
obtained earlier.

Algorithm 1 sketches our A* algorithm. In each major iteration, a best
node/NDT record pair is taken from the priority queue and expanded by con-
sidering the addition of each job j ∈ J \ Ĵ . Hereby, the corresponding node is
looked up or created when it does not yet exist and a respective NDT record is
determined by calculating the earliest usage times t and the evaluation vector
f . The possibly multiple NDT records in the node are checked for dominance:
Only non-identical and non-dominated entries are kept. An NDT record with
time vector t dominates (symbol �) another NDT record with time vector t′ iff
∀r ∈ R0 (tr ≤ t′r) ∧ ∃r ∈ R0 (tr < t′r). The A* algorithm stops with a proven
optimal solution when the goal node representing a complete solution is selected
for expansion.

Diving: The A* algorithm described above aims at finding a proven optimal
solution as quickly as possible. It usually does not yield intermediate complete
solutions significantly earlier than when terminating with the proven optimum.

To also obtain intermediate heuristic solutions we extended our A* algorithm
by diving for a complete solution at regular intervals: At the very beginning

Job Sequencing with One Common and Multiple Secondary Resources 515

Algorithm 1. A* Algorithm for JSOCMSR
1: Initialize priority queue Q with (∅, (0, none, (MSLB, . . . , MSLB))
2: iter ← 0
3: repeat
4: if iter mod δ = 0 then
5: π ← perform diving to obtain complete solution
6: πbest ← π if new best complete solution
7: end if
8: (Ĵ , (t, jlast, f ′)) ← Q.pop()
9: if |Ĵ | = n then

10: return proven optimal solution πbest

11: end if
12: for all j ∈ J \ Ĵ do
13: find or create node N with Ĵ(N) = Ĵ ∪ {j}
14: calculate new NDT record (tnew, j, f ′

new) from t
15: if � ∃(tdom, jlastdom, f ′

dom) ∈ NDTs(N) | tdom � tnew then
16: Remove every (td, j′

d, f ′
d) ∈ NDTs(N) | tnew � td

17: Add (tnew, j, f ′
new) to NDTs(N)

18: Q.push(Ĵ(N), (tnew, j, f ′
new))

19: if |Ĵ(N)| = n then
20: π ← derive complete solution from (Ĵ(N), (tnew, j, f ′

new))
21: πbest ← π if new best complete solution
22: end if
23: end if
24: end for
25: iter ← iter + 1
26: until time- or memory-limit reached
27: return heuristic solution πbest and lower bound f0

and after each δ regular iterations, the algorithm switches from its classical
best-first strategy temporarily to a greedy completion strategy which follows
in essence LLBH. The currently selected node is expanded by considering all
feasible extensions, and each extension is evaluated by calculating the respective
evaluation vector f ′. From all these extensions, only those that are new and non-
dominated—i.e., no corresponding node/NDT entry exists yet—are kept. Should
no extension remain in this way, diving terminates unsuccessfully. Otherwise, a
best extension is selected from this set according to the lexicographic comparison
of the f ′ vectors, and the diving continues by expanding this node/NDT record
pair next. This methodology guarantees that always not yet expanded nodes are
further expanded and the diving, if successful, always yields a different solution.

7 Computational Results

To test our algorithms we created two non-trivial sets of random instances.
Set B exhibits a balanced (B) workload over all resources R, whereas set S has a
skewed (S) workload. Each set consists of 50 instances for each combination of

516 M. Horn et al.

n ∈ {10, 20, 50, 100, 200, 500, 1000} jobs and m ∈ {2, 3, 5} secondary resources.
The required resource qj for each job j ∈ J was randomly sampled from the
discrete uniform distribution U{1,m} for the balanced set B but in a skewed
way for set S: There, resource m is chosen with twice the probability of each of
the resources 1 to m− 1. The preprocessing times pprej and postprocessing times
ppostj were sampled from U{0, 1000} for both instance sets, while times p0j were
sampled from U{1, 1000} in case of set B and U{1, 2500} in case of set S.

A third set of instances was derived from the work on patient scheduling
for particle therapy in [8]. This set, called P, comprises 699 instances that are
expected in practical day-scenarios of this application. We partitioned the whole
set into groups with up to 10, 11 to 20, 21 to 50, and 51 to 100 jobs with 51,
39, 207 and 402 instances, respectively. All these instances use m = 3 secondary
resources. All three instance sets are available from https://www.ac.tuwien.ac.
at/research/problem-instances#JSOCMSR.

The algorithms were implemented using G++ 5.4.1. All tests were done on
a single core of an Intel Xeon E5649 with 2.53 GHz with a CPU-time limit of
900 s and a memory limit of 15 GB RAM. The MILP from Sect. 5 was solved
with CPLEX 12.7. In A* diving was performed every δ = 1000-th iteration.

Table 1 lists aggregated results for each combination of instance type and
the different numbers of jobs and secondary resources. Columns opt state the
percentage of instances that could be solved to proven optimality. Columns
%-gap list average optimality gaps of final solutions π, which are calculated
by 100 · (MS(π) − LB)/LB, where LB is the lower bound returned from A* in
case of LLBH and A* and the lower bound returned from CPLEX in case of
CPLEX. Columns σ%-gap provide corresponding standard deviations. Columns
t show the median running times in seconds. In case of MILP, optimality gaps
are list only if solutions for all 50 instances could be obtained.

These results give a rather clear picture: While A* performs very well on
essentially all instance sets and sizes—its largest average optimality gaps are
<5%—CPLEX applied to our MILP model cannot compete at all. CPLEX is
not even able to solve all instances with 10 jobs to optimality, and generally
does not yield any solution for instances with 200 and more jobs. With only few
exceptions, instances of set B are generally rather easy to solve for A* to either
optimality or with a small remaining gap of less than 0.2%. Median running
times are here fractions of a second for n ≤ 500 and under three seconds for
n = 1000. Here we could observe that the general lower bound MSLB is usually
very tight and especially for m = 2 often already corresponds to the optimal
solution value. Skewed instances of type S but also most instances of type P are
more difficult to solve. Especially for set S and m ∈ {2, 3}, A* was only able
to solve instances up to size 20 consistently to optimality. The reason when A*
did not terminate with proven optimality was always that the memory limit had
been reached. However, thanks to A*’s diving, heuristic solutions with small
remaining optimality gaps could still be found. The LLBH is—as expected—
always very fast, nevertheless providing excellent solutions, although without
specific performance guarantees.

https://www.ac.tuwien.ac.at/research/problem-instances#JSOCMSR
https://www.ac.tuwien.ac.at/research/problem-instances#JSOCMSR

Job Sequencing with One Common and Multiple Secondary Resources 517

Table 1. Average results of LLBH, A*, and CPLEX for instances of sets B, S, and P.

LLBH A* Search MILP/CPLEX

type n m opt[%] %-gap σ%-gap t[s] opt[%] %-gap σ%-gap t[s] opt[%] %-gap σ%-gap t[s]

B 10 2 90 0.197 0.87 <0.1 100 0.000 0.00 <0.1 40 0.007 0.01 22.6
B 20 2 96 0.074 0.37 <0.1 100 0.000 0.00 <0.1 - - - 900.1
B 50 2 100 0.000 0.00 <0.1 100 0.000 0.00 <0.1 - - - 900.0
B 100 2 100 0.000 0.00 <0.1 100 0.000 0.00 <0.1 - - - 900.0
B 200 2 100 0.000 0.00 <0.1 100 0.000 0.00 <0.1 - - - 900.0
B 500 2 100 0.000 0.00 0.5 100 0.000 0.00 0.4 - - - 900.0
B 1000 2 100 0.000 0.00 3.8 100 0.000 0.00 2.6 - - - 900.0

B 10 3 74 1.133 2.48 <0.1 100 0.000 0.00 <0.1 48 0.007 0.01 19.2
B 20 3 76 0.767 1.65 <0.1 100 0.000 0.00 <0.1 2 - - 900.1
B 50 3 74 0.752 1.40 <0.1 92 0.078 0.30 <0.1 - - - 900.0
B 100 3 68 0.632 1.16 <0.1 82 0.168 0.39 <0.1 - - - 900.0
B 200 3 68 0.405 0.81 <0.1 82 0.172 0.42 <0.1 - - - 900.0
B 500 3 64 0.294 0.46 0.5 68 0.117 0.21 0.4 - - - 900.0
B 1000 3 68 0.127 0.25 3.8 76 0.062 0.16 2.7 - - - 900.0

B 10 5 50 2.320 3.27 <0.1 100 0.000 0.00 <0.1 74 0.004 0.01 2.2
B 20 5 42 1.634 2.31 <0.1 100 0.000 0.00 <0.1 44 - - 900.0
B 50 5 52 0.475 0.78 <0.1 94 0.016 0.07 <0.1 34 - - 900.0
B 100 5 52 0.247 0.45 <0.1 88 0.016 0.06 <0.1 - - - 900.0
B 200 5 74 0.076 0.17 <0.1 96 0.002 0.01 <0.1 - - - 900.0
B 500 5 80 0.014 0.04 0.5 96 0.001 0.01 0.4 - - - 900.0
B 1000 5 76 0.006 0.01 3.8 98 0.000 0.00 2.6 - - - 900.0

S 10 2 40 1.387 1.84 <0.1 100 0.000 0.00 <0.1 60 0.004 0.01 2.8
S 20 2 14 1.675 1.41 <0.1 100 0.000 0.00 19.3 2 11.986 10.09 900.1
S 50 2 0 4.739 2.58 <0.1 0 3.374 2.32 154.2 - - - 900.1
S 100 2 0 4.122 1.70 <0.1 0 3.271 1.57 153.1 - - - 900.0
S 200 2 0 3.678 1.01 <0.1 0 3.163 0.98 166.1 - - - 900.0
S 500 2 0 3.662 0.75 0.5 0 3.360 0.70 201.5 - - - 900.0
S 1000 2 0 3.626 0.50 3.8 0 3.453 0.48 241.1 - - - 900.0

S 10 3 44 1.343 1.73 <0.1 100 0.000 0.00 <0.1 50 0.006 0.01 4.2
S 20 3 20 2.323 1.86 <0.1 100 0.000 0.00 15.2 28 - - 900.0
S 50 3 18 4.170 2.96 <0.1 20 2.807 2.34 163.3 8 - - 900.0
S 100 3 18 4.506 3.11 <0.1 20 3.593 2.64 181.4 - - - 900.0
S 200 3 10 4.545 2.91 <0.1 10 4.011 2.70 194.1 - - - 900.0
S 500 3 0 4.960 1.94 0.5 0 4.672 1.92 236.5 - - - 900.0
S 1000 3 0 5.018 1.46 3.8 0 4.852 1.41 246.3 - - - 900.0

S 10 5 46 1.496 1.87 <0.1 100 0.000 0.00 <0.1 66 0.004 0.01 0.2
S 20 5 64 0.890 1.80 <0.1 100 0.000 0.00 <0.1 82 0.616 2.42 0.8
S 50 5 74 0.275 0.85 <0.1 88 0.097 0.49 <0.1 84 - - 16.6
S 100 5 88 0.044 0.17 <0.1 98 0.014 0.10 <0.1 46 - - 890.5
S 200 5 86 0.010 0.03 <0.1 100 0.000 0.00 <0.1 - - - 900.0
S 500 5 96 0.002 0.01 0.5 100 0.000 0.00 0.4 - - - 900.0
S 1000 5 96 0.001 0.01 3.8 100 0.000 0.00 2.6 - - - 900.0

P ≤10 3 82 0.366 0.93 <0.1 100 0.000 0.00 <0.1 63 0.611 0.84 <0.1
P ≤20 3 64 0.374 0.75 <0.1 100 0.000 0.00 <0.1 59 7.512 17.35 63.5
P ≤50 3 62 0.554 0.96 <0.1 80 0.219 0.55 <0.1 27 - - 900.0
P ≤100 3 65 0.497 1.01 <0.1 77 0.247 0.58 <0.1 4 - - 900.0

518 M. Horn et al.

8 Conclusions

In this work we introduced the problem of scheduling a set of jobs, where each
job requires two resources: a common resource shared by all jobs for part of their
processing, and a secondary resource for the whole processing time. Despite that
we could show this problem to be NP-hard, we came up with an excellent lower
bound for the makespan, which we exploited in the fast constructive heuristic
LLBH and the complete A* search. The A* algorithm features in particular
a special graph structure in which each node corresponds to an unordered set
of already scheduled jobs in combination with a set of NDT records represent-
ing individual non-dominated partial solutions. Hereby it is possible to exploit
symmetries and reduce the memory consumption. A diving mechanism is further
used to obtain heuristic solutions in regular intervals. It turns out that A* works
mostly extremely well. However, some instances especially with skewed resource
workloads and competing resources are occasionally hard to solve. The focus
of further research will be to better understand difficult instances, to consider
extended variants of this problem and to develop advanced heuristic methods.

References

1. Allahverdi, A.: A survey of scheduling problems with no-wait in process. Eur. J.
Oper. Res. 255(3), 665–686 (2016)

2. Conforti, D., Guerriero, F., Guido, R.: Optimization models for radiotherapy
patient scheduling. 4OR 6(3), 263–278 (2008)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York (1979)

4. Gilmore, P.C., Gomory, R.E.: Sequencing a one-state variable machine: a solvable
case of the traveling salesman problem. Oper. Res. 12(5), 655–679 (1964)

5. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

6. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010)

7. Kapamara, T., Sheibani, K., Haas, O., Petrovic, D., Reeves, C.: A review of schedul-
ing problems in radiotherapy. In: Proceedings of the International Control Systems
Engineering Conference, pp. 207–211. Coventry University Publishing, Coventry
(2006)

8. Maschler, J., Riedler, M., Stock, M., Raidl, G.R.: Particle therapy patient schedul-
ing: first heuristic approaches. In: PATAT 2016: Proceedings of the 11th Interna-
tional Conference of the Practice and Theory of Automated Timetabling, Udine,
Italy, pp. 223–244 (2016)

9. Röck, H.: The three-machine no-wait flow shop is NP-complete. J. ACM 31(2),
336–345 (1984)

10. Van der Veen, J.A.A., Wöginger, G.J., Zhang, S.: Sequencing jobs that require
common resources on a single machine: a solvable case of the TSP. Math. Program.
82(1–2), 235–254 (1998)

	Job Sequencing with One Common and Multiple Secondary Resources: A Problem Motivated from Particle Therapy for Cancer Treatment
	1 Introduction
	1.1 Contribution of This Work

	2 Related Work
	3 Problem Definition and Complexity
	3.1 Computational Complexity
	3.2 Lower and Upper Bounds

	4 Least Lower Bound Heuristic
	5 Mixed Integer Linear Programming Formulation
	6 A* Algorithm
	7 Computational Results
	8 Conclusions
	References

