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Abstract. In this paper we present an algorithm that optimizes artifi-
cial neural networks using Differential Evolution. The evolutionary algo-
rithm is applied according the conventional neuroevolution approach,
i.e. to evolve the network weights instead of backpropagation or other
optimization methods based on backpropagation. A batch system, simi-
lar to that one used in stochastic gradient descent, is adopted to reduce
the computation time. Preliminary experimental results are very encour-
aging because we obtained good performance also in real classification
dataset like MNIST, that are usually considered prohibitive for this kind
of approach.

1 Introduction

The raise of Deep Learning allowed to Neural Networks (NN) to come back on
the crest of a wave since very complex problems have been solved with new
architectures and optimization techniques [2,5,15,18]. Moreover this raise has
been motivated also by the birth of new computational models using NNs, like
Neural Turing Machines [11], Neural Programmer-Interpreters [26] or hybrid
models [12].

According to these new trends also neuroevolution has been renewed [4,9,
13,14,23,32]. Several approaches have been proposed both to train the topology
and the weigths of the networks. Compared to other neural network learning
methods, neuroevolution is highly general, allowing learning without explicit
targets, with non differentiable activation functions, and with recurrent networks
[10,22]. An interesting analysis on the motivations why backpropagation (and
its developments) is still the most used technique to train neural networks and
evolutionary approaches are not sufficiently studied is presented in [23]. In that
work a simple and efficient method to divide the training set in batches in order
to train neural networks with a particular version of Differential Evolution (DE)
is presented. Despite the performance are very interesting in terms of accuracy
of the predictions the authors do not present experiments with large problems.

The advantages of replacing backpropagation, or other similar methods, with
an evolutionary algorithm is clear: the fitness function to be optimized is not
required to be differentiable or even continuous.
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DE it is a well known evolutionary technique that demonstrated very good
performance in several problems [31], has a quick convergence and is robust [25].

The main purpose of this paper is hence to show that DE can be effectively
used to train neural networks also in case of quite large problems. We propose
an algorithm that uses DE with population elements which encode the weights
of the neural network. The system applies a batching system, with restart and
elitism for different DE variants and mutation operators.

In order to prove that this mechanism is feasible, we tested it using state of
art classification datasets chosen with different numbers of features and different
number of records. Although the results are preliminary, they are very encour-
aging because in all the experiments the system reaches a very good accuracy,
always comparable or even better than BPG, also when the network is larger
(for instance in MNIST) than the ones presented in literature. Considering also
that there is a room for further improvements, we are confident that this idea
could be applicable also to larger networks.

The paper is organized as follows. Background knowledge about DE algo-
rithm and neuroevolution are summarized in Sect. 2, related works are presented
in Sect. 3, the system is described in Sect. 4 and experimental results are shown
in Sect. 5. Conclusions are drawn in Sect. 6 where some ideas for future works
are also depicted.

2 Background

2.1 Differential Evolution

Differential evolution (DE) is a metaheuristics that solves an optimization prob-
lem by iteratively improving a population of N candidate solutions with respect
to a fitness function f . Usually, DE is used to solve continuous optimization
problems, where the candidate solutions are numerical vectors of dimension D,
but there exist many adaptions to solve combinatorial optimization problems,
where the solutions are discrete objects [27]. The population evolution proceeds
for a certain number of generations or terminates after a given criterion is met.
The initial population can be generated with some strategies, the most used
approach is to randomly generate each vector. In each generation, for every
population element, a new vector is generated by means of a mutation and a
crossover operators. Then, a selection operator is used to choose the vectors in
the population for the next generation.

The most important operator used in DE is the differential mutation. For
each vector xi in the current generation, called target vector, a vector ȳi, called
donor vector, is obtained as linear combination of some vectors in the population
selected according to a given strategy. There exist many variants of the mutation
operator (see for instance [7,8]). In our paper we have used DE/rand/1, where

ȳi = xa + F (xb − xc)

and DE/current to best, where

ȳi = xi + F (xbest − xi) + F (xa − xb)
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In these formulae, a, b, c are unique random indices different from i, best is the
index of the best vector in the population and F is a real parameter.

Furthermore we have chosen to implement also DE with Global and Local
Neighborhoods (DEGL) [6], indeed it works pretty well in neural networks learn-
ing, as explained in [24].

DEGL generates the mutant vector through the combination of two contrib-
utors. The first contributor is computed as:

Li = xi + α(xi−best − xi) + β(xa − xb)

where xi−best is the individual with best fitness in the neighborhood of target xi

and α, β are two constants with same role of F . The neighborhood of the element
xi contains a fixed number of other population elements, chosen at random.

The second contributor is computed as:

Gi = xi + α(xbest − xi) + β(xa − xb)

where xbest is the individual with best fitness in the population. The two con-
tributors are then combined as follow:

ȳi = wGi + (1 − w)Li

where w ∈ [0, 1] is the interpolation factor between Li and Gi.
The crossover operator creates a new vector yi, called trial vector, by recom-

bining the donor with the corresponding target vector by means of a given pro-
cedure. The crossover operator used in this paper is the binomial crossover reg-
ulated by a real parameter CR.

Finally, the usual selection operator compares each trial vector yi with the
corresponding target vector xi and keeps the better of them in the population
of the next generation.

3 Related Works

The first works applying DE to NN date back to the late ’90s and the early
2000s [17,20] where the first applications of DE to train feed-forward NN are
presented and analyzed. More recently, several other applications of evolution-
ary algorithms have been presented in the area of neuroevolution but they
are different either for the evolutionary approach used or for the object of
evolution [7,8].

In the first case the dominating approach used is the genetic one [10,28,33].
The approach is used also to optimize weights but it is very limited by being
a discrete approach so it needs an encoding phase. Several authors proposed a
direct representation of the real weights in genes either as a string of real values
or as a string of characters, which are then interpreted as real values with a given
precision using for example Gray-coded numbers. More adaptive approach has
been suggested, for example in [29] or in the more recent [21]. In the first work
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the authors proposed a dynamic encoding which depends on the exploration
and exploitation phases of the search. In the second one the authors propose
a selfadaptive encoding, where the characters of the string are interpreted as a
system of particles whose center of mass determines the encoded value. Other
approaches have also used a direct encoding that exploits the particular structure
of the problem. The methods are not general and cannot be extended to be
applicable also to general cases [10]. In [14,16] a floating-point representation of
the synaptic weights is used. In these cases the authors use the evolution strategy
called CMA-ES for reinforcement learning applied to the pole balancing problem.

Among DE applications to neuroevolution it is worth to cite [9,19,24,32].
These works are different from our approach because they apply the evolution
in a different way. In [19] the DE algorithm with a modified best mutation opera-
tion is used to enhance the search exploration of a PSO; this PSO is then used to
train the NN and the global best value obtained is used as a seed by the BPG.
In [9] three different methods (GA, DE and EDA) to evolve neural networks
architectures are compared. In particular, the evolutionary methods are imple-
mented to train the architecture of a network with one hidden layer, the learning
factor and the seed for the weights initialization. In [24] the author studied the
stagnation problem of DE approaches when used to train NN. He proposed to
merge the DE with Global and Local neighborhood-based mutation operators
algorithm with the Trigonometric mutation operator. In [32] the authors use the
Adaptive DE (ADE) algorithm to choose the initial weights and the thresholds
of networks. Also in this case the networks are trained by BPG. The authors
proved that the system is effective to solve time series forecasting problems.

The paper which have the strongest connection with ours is undoubtely [23],
where a Limited Evaluation Evolutionary Algorithm (LEEA) is applied to opti-
mize the weigths of the network. The differences between the two papers are
several. First of all, we use DE as evolutionary algorithm, while they employ an
ad hoc evolutionary algorithm, similar in some aspects to a genetic algorithm.
DE and the other enhancement methods allow our algorithm to train networks
much larger than those used in [23]: while we are able to train a feed-forward
neural network for MNIST (which has more than 7000 weights), the maximum
size handled in [23] is less than 1500 weights. Another difference is the batching
system: they use mini-batches which are changed at every generation, while we
use larger batches which are changed after a certain number of generations. On
the other hand, we use the validation set to compare the networks when the
batch is changed, while they use a form of fitness inheritance.

4 The Algorithm

In this section we present our idea of applying Differential Evolution to optimize
the weights of the connections in a feed-forward neural network.

Let P a population of np neural networks with a given fixed topology and
fixed activation functions.
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Since the DE works with continuous values, we can use a straightforward
representation based on a one-to-one mapping between the weights of the neural
network and individuals in DE population.

In details, suppose we have a feed-forward neural network with k levels,
numbered from 0 to k − 1. Each network level l is defined by a real valued
matrix W(l) representing the connection weights and by the bias vector b(l).

Then, each population element xi is described by a sequence

〈(Ŵ(i,0),b(i,0)), . . . , (Ŵ(i,k−1),b(i,k−1))〉,

where Ŵ(i,l) is the vector obtained by linearization of the matrix W(i,l), for
l = 0, . . . , k − 1. For a given population element xi, we denote by x

(h)
i its h–th

component, for h = 0, . . . , 2k − 1, i.e. x
(h)
i = Ŵ(i,h/2), if h is even, while x

(h)
i =

b(i,(h−1)/2) if h is odd. Note that each component x
(h)
i of a solution xi is a vector

whose size depends on the number of neurons of the associated levels.
The population elements are evolved by applying mutation and crossover

operators in a componentwise way. For instance, the mutation rand/1 for the
element xi is applied in the following way: three indices a, b, c are randomly
chosen in the set {1, . . . , np} \ {i} without repetition; then, the h–th component
ȳ
(h)
i of the donor element ȳi is obtained as the linear combination

ȳ
(h)
i = x(h)

a + F (x(h)
b − x(h)

c )

for h = 0, . . . , 2L − 1.
The evaluation of a population element in the selection operator is performed

by computing the cross–entropy of the corresponding neural network. The opti-
mization problem is then to find the neural network with the minimum cross–
entropy value.

Anyway, this computation is the most time consuming operation in the over-
all algorithm and it will lead to unacceptable computation time if the cross–
entropy considers the whole dataset. For this motivation we have decided to
follow a batching method similar to the one proposed in [23].

The dataset D is split in three different sets: a training set TS used for
the training phase, a validation set V S used for a uniform evaluation of the
individuals selected at the end of each training phase, and a test set ES used to
evaluate the performance of the best neural network.

Then, the training set TS is randomly partitioned in K batches of size B.
This phase is very important because the records in each batch should follow
more or less the same distribution as in TS. Otherwise, the risk is to train
specialized networks without generalization ability.

At each generation the population is evaluated against only a limited number
of training examples given by the size of the current batch, instead of evaluat-
ing the population against the whole training set. This allows to reduce the
computational load, particularly on large training sets.
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The fitness function used is then

Hz′(z) = −
B∑

i=1

C∑

j=1

z′
ij log(zij)

where z′
ij and zij are respectively the predicted value and the true value for the

classification of i-th record in the batch with respect to the j-th class and C is
the number of classes.

The batch is changed after s generations (called epoch), so that the evolution
has enough time to learn from the batch. If the algorithm is required to continue
for more than K epochs, the batches are reused in a cyclic way, i.e. after the last
batch, the first batch will be used again, and so on.

Since the fitness function depends also on the batch and we need a fixed
way to compare the elements, at the end of every epoch the best neural network
best nete of the epoch e is selected as the neural network in P which reaches the
highest accuracy in the validation set V S. The best neural network best netglobal
found so far is then eventually updated.

At the beginning of each epoch, the fitness of every element in P is re-
evaluated by computing the cross-entropy on the new batch.

To avoid a premature convergence of the algorithm, a reset method is applied,
i.e. discard all the current population, except the best element, and continue with

Algorithm 1. The algorithm DENN
Initialize the population;
Extract the K = TS/B batches batch0, . . . , batchK−1;
h ← 0;
for e ← 1 to tot gen/s do

Set the current batch as batche modK ;
Re-evaluate all the elements (x1, . . . , xnp);
for g ← 1 to s do

for i ← 1 to np do
yi ← generate offspring(xi)

for i ← 1 to np do
if yi is better than xi in terms of H then

xi ← yi

best nete, best scoree ← best score(x1, . . . , xnp);
Update best netglobal, best scoreglobal;
if best netglobal is not changed then

if h > counter then
Reset the population;
h ← 0;

else
h ← h + 1

return best netglobal;
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a new randomly generated population. The reset is performed at the end of each
epoch e, if the the score of best netglobal has remained unchanged for a certain
number counter of epochs.

The DE parameters F and CR have a great impact on the evolution and
their values are not easy to be chosen. Therefore, we have decided to adopt
the auto–adaptive scheme jDE [3]. This method evolves the values of these two
parameters by a process which is strictly related to the selection operator of
DE. In this way, the algorithm is able to dynamically select the best values of
F and CR for the problem. The complete algorithm, called DENN, is depicted
in Algorithm 1.

In the algorithm DENN, the function generate offspring computes the muta-
tion and the crossover operator in order to produce the trial element, while the
function best score returns the best network and its score among all the elements
in the population.

5 Experimental Results

The main objective of these experiments is to assess the effectiveness of DE
algorithm as an alternative to backpropagation, and other similar methods, for
neural network optimization also in the case of quite large problems. The size
of NNs handled in this paper are larger than those used in the previous works
presented in literature. We run two kinds of experiments in order to (i) evaluate
which combination of DE variant and mutation operator performs better and
(ii) study which setting of algorithm parameters can provide the best results,
also considering the computational effort. DENN has been implemented both as
a TensorFlow plugin written in C++ and Python and as a stand-alone C++
program1.

5.1 Datasets

We decided to test the system on recent classification datasets downloaded by
the UCI repository2, and on the well known MNIST3 dataset. MAGIC, QSAR
and GAS are datasets for classification problems that have been chosen because
they differ for the number of features and records and therefore are well suited
to assess the scalability of the system. Finally, we decided to test the system on
the MNIST dataset because it is a classical challenge with well known results
obtained by NN classification systems. Moreover, it is considered an interested
challenge also in [23].

– MAGIC Gamma telescope: dataset with 10 features, 2 classes and 19020
records.

– QSAR biodegradation: dataset with 41 features, 2 classes and 1055 records.

1 Source code available at https://github.com/Gabriele91/DENN.
2 https://archive.ics.uci.edu/ml/datasets.
3 http://yann.lecun.com/exdb/mnist/.

https://github.com/Gabriele91/DENN
https://archive.ics.uci.edu/ml/datasets
http://yann.lecun.com/exdb/mnist/
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– GAS Sensor Array Drift: dataset with 128 features, 6 classes and 13910
records.

– MNIST: dataset with 784 features, 10 classes and 70000 records.

MAGIC, QSAR and GAS have been split in this way: the training set is
composed of 80% of the records, the validation set is composed of another 10%
of the records and the remaining 10% records are in the test set.

The MNIST dataset is already provided as a pair with separated training and
test sets (TS,ES). Then we extracted the validation set V S from the training set
by a uniform random sampling that preserves the distribution over the classes.
Since a too small validation set could have a negative impact on the performance
in term of accuracy, we chose, as in the other datsets, |V S| = |TS| · 10%.

5.2 Results

First of all we have analyzed the data in order to understand which are the
parameters yielding to the best performance. The system depends from several
parameters: some deriving from the use of DE (np, F , CR, the DE-variant
and the mutation and crossover operators), other depending from the batching
system (B, s) or from the application of the reset mechanism (counter).

A systematic battery of test has been run in order to study all the parame-
ters. Due to the space limits, in this work just some data and graphics can be
discussed. Other preliminary experiments are discussed in [1,30].

During this experimental phase, we have noted that the most important
choice is selecting the DE variant (classical or jDE) and the mutation operator
(rand/1, current-to-best, DEGL). Increasing other parameters, like np or B, can
have a positive impact on the algorithm performance only when these values are
below a certain threshold. When this threshold is overcome, either the computa-
tional time becomes too high or the results do not improve. This fact also agrees
with (i) other traditional results on DE that in general suggest large (but not
too large) populations and (ii) our initial idea about the batch size, according
to which a trade-off between batch size and computational effort is necessary.

The batch size has been chosen to be proportional to the number of classes, in
order to have, on average, a given number of examples for each class. Moreover we
found that B influnces also the number of population elements np, and the steps
s spent on the same batch to train the network. This is unsurprising because
with a larger number of records in a batch, the population size (and the number
of steps) should be larger as well.

In Fig. 1, for all the datasets analyzed in this work, the accuracy values
of a NN without hidden layer trained with different settings of the algorithm
are plotted. We compare the six different combinations of the DE variants and
mutation operators (DE+rand/1 ; DE+current to best ; DE+degl ; jDE+rand/1 ;
jDE+current to best ; jDE+DEGL). Moreover, also the accuracy values obtained
by the same NN trained with BPG (GD) are reported. The accuracy values
plotted in the graphics are computed: (i) training the neural network for a given
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Fig. 1. Comparisons in term of accuracy among the different combinations DEvariant-
mutationType on GAS, MAGIC, MNIST and QSAR datasets

number k of generations (on the x-axis from 1 to 20000) and (ii) running, on
the test set, the NN that obtained the best evaluation on the validation set.

The values of the other parameters are: batch size B = 20C, where C is the
number of classes in the dataset, population size np = 2B, number of training
steps in the same batch s = B and counter = 10. The values of F = 0.5 and
CR = 0.9 are used only when the classical DE is applied. These data have been
chosen after an extended experimental phase, partially showed in [1,30]. From
these experiments we noted, for example, that fixing B and setting s = B and
np = 2B we can obtain, on average, good results.

From the data plotted in the graphics in Fig. 1 we can conclude that in the
most cases jDE performs better than standard DE. Both in the largest datasets
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Fig. 2. Comparisons in term of accuracy among different setting of s (and consequently
of B and np) on GAS, MAGIC, MNIST and QSAR datasets

(GAS and MNIST) and QSAR the differences are sharp, while in the case of
MAGIC dataset the differences are so narrow that it is impossible to distinguish
the best algorithm.

While the “winner” variant is undisputable (at least for these experi-
ments), the same is not for the mutation operator: in the GAS dataset the
difference between the combination DE+DEGL and the second performing
jDE+current to best is clear, but in the MNIST dataset the best performing
combination is jDE+rand/1, with DE+DEGL only in 4th/5th position.

In Fig. 2 data on accuracy for different settings of B, s and np are plotted. In
these graphics we can compare different values for the batch size B, set respec-
tively to B = 5C, B = 10C, B = 20C, where C is the number of the classes.



Can Differential Evolution Be an Efficient Engine to Optimize NN? 411

The right setting of B is determinant for our algorithm because a too small
value for B does not allow to reach good performance, while a too high value
can increase too much the execution time and moreover can cause overfitting.

From the plots we can see that, excluding the cases where the differences are
not significant, the best values are obtained with the highest values of B, both
for the rand/1 and degl mutation.

6 Conclusions and Future Works

In this paper we presented an algorithm based on Differential Evolution to train
the weights of a neural network. This algorithm can be an effective alterna-
tive to the backpropagation method because of its intrinsic advantages deriving
from the use of an evolutionary algorithm. The experiments presented show how
the system is able to solve classification problems also in case of large image
datasets, like MNIST, reaching satisfying accuracy very close to the state of the
art. These results are very encouraging considering that the algorithm and the
implementation could be improved and other enhancements are already under
investigation.

The proposed approach allows also to handle computational models based
on neural networks which do not need to be fully differentiable and this can lead
to simpler models.

Future works include: the implementation of other DE variants and muta-
tion/crossover operators; the application of the system both to other kind of
problems like numerical estimation and to larger problems; the application
to other computational models based on neural networks like Neural Turing
Machines.
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